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Abstract

In this thesis we make progress within the effective field theory for gravitating spinning
objects in the post-Newtonian (PN) approximation, which is used to describe the inspiral
phase of a compact binary coalescence. Based on a newly computed interaction potential
[1], we derive for the first time the complete dynamics of a compact binary system to
the next-to-leading order with cubic-in-spin effects, which enter at the fourth and a half
PN (4.5PN) order for maximally-rotating objects, beyond the current state of the art.
After verifying the Feynman rules and the total evaluation of the Feynman diagrams, we
compute the reduced potential, which no longer contains higher-order time derivatives, via
lower-order variable redefinitions. Furthermore, we derive the corresponding correction to
the equations of motion and to the general Hamiltonian, valid also for general compact
objects, generic orbits, and with arbitrary spin orientations. Then, we also compute the
complete gauge-invariant relations between the binding energy, angular momentum and
orbital frequency of the binary for circular orbits and aligned spins. These results are
of high interest for the community, as they can be used to develop the highest-in-spin
gravitational corrections at next-to-leading order for the waveform templates of the emitted
gravitational waves. On the other hand, this work helps to advance towards understanding
the limits of the gravitational Compton scattering with massive particles of spin s > 2.
Finally, we address the Poincaré invariance of the system, which constitutes the most
stringent theoretical self-consistency check in PN gravity.
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Part 1
Introduction

1 Background and motivation

We live in exciting times for theories of gravitation. In 1915, the general theory of relativity
(GR) was formulated by Einstein [2], and shortly after, in 1916, he already predicted the
existence of gravitational waves (GWs) in the theory [3]. Nevertheless, it was not until very
recently, a century after the original prediction, that GWs were observed. The first direct
detection of GWs, labeled “GW150914” and announced in 2016 [4], was accomplished
by the Advanced LIGO detectors [5] in 2015, which launched the era of gravitational-wave
astronomy. Since then, more than 50 detections have been announced in collaboration with
the Advanced Virgo detector [6]. In fact, GWs have proven to be so promising that further
ground detectors are planned, such as KAGRA [7] in Japan, which became operational last
year, IndIGO [8] in India, the Einstein Telescope [9] in Europe, the Cosmic Explorer [10]
in the United States, and even the space-based detector LISA [11].

What makes GWs so significant is that they stand among the few events that can
probe classical gravity in a strong regime where Newtonian physics no longer holds, and
could shed light onto previously unknown features of gravity. In particular, all of the
GW detections made so far involve the coalescence of binaries of compact objects (CBCs),
reporting mostly binaries of black holes (BHs) but even including neutron stars [12]. The
CBC involves three stages [13]:

1. The inspiral, when the components of the binary still move at non-relativistic veloc-
ities and their orbital separation slowly decreases.

2. The merger, when the objects reach relativistic velocities and merge into a single
object.

3. The ringdown (for BH binaries), when the merged object settles to a rotating Kerr
BH via quasinormal oscillations.

Given that the detections are based on the matched-filtering technique, in which GW tem-
plates are superposed with the data in order to find agreement, it becomes thus crucial to
provide high-precision theoretical models for the templates. With that objective, effective
field theories (EFTSs) precisely provide a framework designed for high-precision analytical
perturbative descriptions of systems with distinct physical scales [14, 15]. In particular,
the EFT of post-Newtonian (PN) gravity [13, 14, 16, 17] is employed to describe the or-
bital dynamics of the inspiral phase of the binary system, building on quantum field theory
(QFT) techniques applied to classical gravity. With the analytical description provided
by PN gravity and via the effective one-body formalism [18], which develops the Newto-
nian idea of mapping the 2-body problem to an effective one-body system, gravitational
waveform templates can be modeled. However, it turns out that even then, high-order
corrections such as the sixth PN (6PN) are at least required to obtain useful information



(NOLO | NWLO | N2LO | N°LO | N'LO | N°LO
Non-spinning (S") ++ I e = et
Spin-orbit (S') e | |+
Quadratic-in-spin (S?) ++ ++ + +
Cubic-in-spin (S%) ++ +
Quartic-in-spin (S%) ++ +

Table 1.1: State of the art of PN gravity for the dynamics of the compact binary inspiral. The ++
and + entries denote sectors that have been fully completed and verified, or partially completed /not
verified, respectively. The corresponding PN correction enters at the order n+14Parity(l)/2, where
n denotes the highest n-loop order at N"LO and [ the highest spin multipole S' for each sector,
where parity is 0 or 1 for [ even or odd, respectively. The gray area corresponds to gravitational
Compton scattering with spin s > 3/2, as elaborated below.

of the inner structure of the components of the binary from the GWs [19]. This propelled
the community to push the frontier of PN gravity, pushing for the 5.5PN and 6PN orders
in the non-spinning sectors very recently [20, 21].

Furthermore, astrophysical observations indicated that the components of such binary
systems had large spins [22], meaning that they have an intrinsic rotation around an axis.
Hence, the development of an EFT formulation for gravitating spinning objects for the
binary system was also required [23, 24], with the state-of-the-art frontier, including the
spinning sectors, summarized in Table 1.1. Within the EFT approach, the work in [23]
approached the first rederivation of Tulczyjew’s [25] and Barker and O’Connell’s [26] results
for the leading order (LO) corrections to the PN binary dynamics due to spin-orbit (SO)
and quadratic-in-spin (S?) effects. Then, based on [24], in [19] the LO corrections due to
cubic- and quartic-in-spin (S* and S*) effects were computed, which together with [27-29]
completed the 4PN order for spinning objects. Since then, work has been done to approach
both the high-in-spin sectors [1, 30] and to increase the loop order in the perturbation, with
the next-to-leading order (NLO), the NNLO and the N®LO dynamics up to quadratic-in-
spin (S?) effects derived in [24], [27-29] and [31, 32], respectively.

What is more, as first shown in [33], where the traditional spinor-helicity formalism
for massless particles was extended to massive particles with arbitrary spin, the 4-particle
gravitational Compton scattering amplitude cannot be uniquely fixed for spins s > 2.
Hence, from that point onward spin effects cannot be treated from the scattering ampli-
tudes point of view, and nowadays can only be approached using EFT methods. This
is because classical effects with spin to the Ith order correspond to scattering amplitudes
with a quantum spin of s = [/2 [34, 35]. Thus, odd-in-spin effects in our EFT formalism
correspond to scattering amplitudes with particles of half-integer spin, or fermions, making
them more intricate than the even-in-spin effects, whose homologous scattering amplitudes
describe bosons, of integer spin.

In this direction, the works carried out in [1, 30|, where the interaction potentials



to NLO S? and S* were respectively calculated, represent the state-of-the-art research.
Their results stand close to the edge of the Compton ambiguity, with counterparts being
4-particle scattering amplitudes with s = 3/2 and s = 2, the first to be approached within
the s > 3/2 condition represented by the gray area in Table 1.1.

Based on the pressing necessity to obtain high-precision theoretical predictions for the
spinning binary inspiral problem, the aim of this thesis is to push even further the high-
in-spin frontier. For that, starting from the basic formulation of the EFT of PN gravity,
we compute the state-of-the-art dynamics at the NLO cubic-in-spin effects, corresponding
to a 4.5PN correction for maximally-rotating objects, using a newly derived interaction
potential [1]. These results have never been previously computed, and are of high interest
for the GW community, as they provide the highest-in-spin corrections at 1-loop for the
binary inspiral problem with general compact objects.

Throughout the thesis we use units with ¢ = A = 1, and choose the convention 7,, =
Diag[1l,—1,—1,—1] for the Minkowski metric. Greek letters (u,v,p,...) denote tensor
indices in the global coordinate frame, running from 0 to 3, while lowercase Latin letters
from the middle of the alphabet, (i, j,k,...), denote spatial indices running from 1 to 3.
Lowercase Latin letters from the beginning of the alphabet, (a,b,c,...), denote indices
in the local Lorentz frame, running from 0 to 3, whereas uppercase ones, (A, B,C,...),
denote indices in the body-fixed frame, also running from 0 to 3. Lastly, uppercase Latin
letters from the middle of the alphabet, (I, J, K,...), denote particle labels from 1 to 2.



2 Introduction to EFTs of compact binaries

In this section we review the formulation of EFTs and present its implementation to the
binary inspiral problem with PN gravity, for which we build on [13, 14]. This way, it will
also serve as the theoretical background needed for the methodology carried out in the
thesis.

For formulations with a foundation in QFT, EFTs are effective theories that describe
physics at a given energy (or length) scale w, while neglecting all higher energy (or short
distance) phenomena, characterized by a cut-off scale A. Thus, they are especially relevant
for problems that involve several widely separated scales w < A, and are broadly used
in many branches of physics. Intuitively, their motivation is yet very simple: We do not
need to know about the high-energy behavior of the atoms that constitute a planet to
make precise predictions about its orbit around a star, we only require information at the
relevant scale.

To formulate an EFT, there are two distinct but equivalent approaches [14]. The first
one is known as the top-down approach, in which the full theory action S[¢, ®] valid at the
scale A is known. In the top-down approach we integrate out the high-energy (or heavy
modes of mass = A) degrees of freedom (DoFs) ® by performing a functional integral.
Then, the resulting effective action Seg[¢] is relevant for the low-energy (or light modes of
mass w) DoFs ¢,

giSeilé] — / D ¢iS102], (2.1)

where D® denotes integration over all modes ®. Thus, the effects of the ultra-violet
(UV) physics that we suppressed arise as a systematic expansion of the ratio w/A < 1.
Diagrammatically, the heavy modes ® appear as internal lines of the diagrams with ¢
particles, creating corrections to the low-energy result.

Alternatively, one can use the bottom-up approach, which is especially useful when
the full theory is not known or is highly non-trivial. In this approach, the effective action
Seft|¢] is directly constructed as a functional of the fields ¢(z),

Surld) = 3o / Az Oy(), (2.2)

so that it is given by an infinite set of the operators O;(z), where the coefficients ¢; are
known as Wilson coefficients. In this approach, the effective action is built from scratch,
by considering the most general set of operators O;(x) that are allowed by the symmetries
of the system. Moreover, this infinite series directly separates the physical scales, as the
Wilson coefficients encapsulate all UV information, while the operators O;(x) only depend
on the low-energy scale, according to what is known as the decoupling theorem [13].

To fix the unknown Wilson coefficients, if the full theory is known and both approaches
can be used and compared, then the coefficients can be directly matched to the full theory,
or else they can also be determined from the data of experiments.



2.1 Post-Newtonian gravity and tower of EFTs

r~ Gm/v* A~ Gm/v®
: : : |

re ~ Gm
—

Gravitational radiation

Figure 2.1: Representation of the binary inspiral setup with the relevant length scales for the
EFT: the scale of the single compact object r,, the scale of the orbital separation r, and the scale
of the wavelength of the gravitational radiation A.

As presented in §1, the inspiral phase of the CBC is characterized by non-relativistic
velocities. Therefore, it is natural to assume the PN approximation v < 1, where the nPN
order is defined as the v?" correction from GR to Newtonian gravity (already entering at
order v?), as well as the weak field approximation [17]. Furthermore, in the binary inspiral
problem we have a hierarchy of 3 widely separated scales, as depicted in Figure 2.1:

1. The scale of the internal structure of the single compact object, rs. For BHs with
Schwarzschild radius rg, we can relate it to its mass m with Newton’s constant G,
rs ~ Gm.

2. The scale of the orbital separation r between the components of the binary. For a

bound binary system the virial theorem holds, relating Gm/r ~ v2.

3. The scale of the wavelength of the gravitational radiation, A. Since we measure on-
shell gravitons, it holds that A™' ~ k ~ w ~ v/r, where k is the momentum and w
the frequency of the emitted gravitons in the GWs.

This way, the scales are related by
rs ~ 102 ~ AU, (2.3)

which creates a hierarchy of 3 scales ry < r < A, controlled by the expansion parameter
v < 1. Therefore, it is natural to address the binary inspiral problem via EFTs. In
this case, in order to arrive at the EFT of orbital dynamics we will require a tower of
EFTs. First, we will define a one-particle EFT in which we integrate out the small scale
of the object rg, next an EFT for the composite object, where the orbital field modes are
integrated out, and finally we remove the radiation scale A to obtain an EFT of dynamical
multipoles. Moreover, due to the virial theorem we have Gm/r ~ v?, which creates a
combined perturbative expansion in both G and v, which can be interchanged!.

'Recently, an EFT formulation for the post-Minkowskian approximation was put forward, in which the
velocity is not small and only a perturbative expansion in terms of GG is considered, i.e., only considering a
weak field approximation. See [36] for the current state-of-the-art result for the binary inspiral problem at
order O(G*) for non-spinning objects.



2.1.1 One-particle EFT

Our first goal is to remove the scale of the single compact object rg, obtaining an EFT
that is valid far away from it. At this stage, the relevant DoFs for the system would
be the low-energy modes of the gravitational field g, (x), the worldline coordinate z*(\)
parametrizing the location of the object, and the body-fixed orthonormal frame e4*(\)
representing its rotation (spin). The latter is described by a tetrad field, which will be
introduced in the next section.

First, we will have the gravitational field action in the bulk, which is the part of the
effective action that does not contain matter components, and so generates pure gravity
self-interactions in all points of the spacetime. From the full GR theory, we have that
the action for the gravitational field, represented by a metric field gu.(x) = gu + Gy
where g, stands for the strong modes, is given by the Einstein-Hilbert action Sgn [37].
However, here we just apply it to the low-energy gravitational field modes g, (x) that are
not integrated out. Adding also a gauge-fixing term Sgp, which we choose as the fully
harmonic gauge, the bulk action reads

1

d*z\/G —
WR+ o

SglGuv] = Sen + Sar = —

4 = — nv
e /d 2/ G THTY, (2.4)

as given in eq. (2.3) of [28], where R = R(x) is the Ricci scalar for the low-energy modes
Guv, and where we define g = det(g,,) and I'** = I'5;g”7, being I'f» the Christoffel symbols.
At this point, to define the effective action for the compact object we should adopt the

bottom-up approach, so that we write
Seff[g,uu: xli’ €AM] - Sg[guu] + Z Ci(rs> /d/\ Oz(/\)7 (2'5)
i
where all the small scale dependence goes into the Wilson coefficients C;(rs). To constrain
the infinite series, we will consider the following symmetries [13, 14]:
e General coordinate invariance, including parity invariance;
e Worldline reparametrization invariance;

Internal Lorentz invariance of the local frame field, e,*;

e SO(3) rotational invariance of the worldline spatial triad, e4*;

Spin gauge invariance, which implies invariance under the completion of the worldline
spatial triad to a tetrad.

With these symmetry considerations, we can infer some terms via the bottom-up approach.
As seen from far away, the compact object can be approximated to a point-particle, with

action
Spp G, 2"] = —m/dT = —m/ V Guvdatda? = —m/d)\ Vu?, (2.6)
where 7 is the proper time along the worldline and u* = % is the coordinate velocity.

Nevertheless, this is only a minimal coupling term, as we can also have couplings of the



point-particle with the gravitational field arising from its finite-size effects. As explained
n [13, 14], the non-minimal couplings would add the terms

Spp s 7] D CE/‘D‘ W /d>\ W ))7 (2.7)

where the Riemann tensor is decomposed into its electric and magnetic components,

aagwRaﬁgl,u'yua, (2.8)

N =

E, = Ruayguauﬁ, B, =

which have definite parity (even and odd, respectively), with e,4,, being the Levi-Civita
tensor density. Here, cg and cp are the Wilson coefficients, which also correspond to the
Love numbers of the compact object, accounting for its finite-size effects that produce mass-
induced tidal deformations. However, as pointed out in [13], they only start contributing
as of the 5PN order for non-spinning objects. In addition, in [38] it was found that they
vanish for Schwarzschild BHs in spacetime dimension d = 4.

However, if we consider that the point-particle is spinning, the following additions to
the point-particle action take place [24, 39],

1
Spp Gy, T, €4"] = /dA [— mvu2 — 5 S+ Lnaic (G u, Sy | (2.9)

where the first two terms represent the point-particle minimal coupling terms in the spin-
ning case, and where the spin tensor S,, is defined as the conjugate to the angular ve-
locity tensor Q* = e A“%. Lnyvc stands for the spin-induced non-minimal coupling
Lagrangian, arising from finite-size spin-induced effects. It has a general expression given
in eq. (4.16) of [24], where it was obtained via a direct product of SO(3) vectors S*. Up
to cubic-in-spin order, it reads

_ CfES2 E/W w Qv
Cires D B
Lpgs = — 25 2 gigvsA, (2.11)

6m2 vVu?

where D, stands for the covariant derivative. Here, Cpg2 and Cpgs are the Wilson co-
efficients that describe the quadrupolar and octupolar tidal deformations due to spin,
respectively. For BHs, the coefficients are equal to 1, but they can be larger for neu-
tron stars. Therefore, the effective action for a general spinning compact object becomes
Seff = Sg + Spp, Where Sy is given in eq. (2.4) and Sy, is given in eq. (2.9).

2.1.2 EFT of a composite object
To obtain an EFT that is valid for the composite object formed by the bound binary

system, two steps are required using the top-down approach.
First, we need to define the EFT that is valid for two compact objects, seen from far
away, that interact with the gravitational field. Based on the considerations of the previous



section, the effective action would be the sum of the effective point-particle actions for the
two spinning particles plus the bulk action,

2

SeftlGpus (1), (22)", (e1) 4", (€2)4"] = SglGuw] + Y Strypp G (@), (x1)", (er)a"], (2.12)
I=1

where S; is given in eq. (2.4) and Sy, is given in eq. (2.9).
Second, to obtain an EFT for the binary system we should remove the orbital scale of
the binary [24]. For that, we decompose the low-energy modes of the metric into

G = N + Hyu + Ry, (2.13)

where 7, is the flat Minkowski metric, H,, are the orbital field modes, and iLW are
the radiation modes. Then, we integrate out the hard-momentum orbital field modes by
performing an explicit functional integral, which defines the EFT for the composite object,

eiseff[guV?(xC)u7(eC)Au} — /DHyV eiSeff[gHVV(xl)uv(xQ)'uv(el)AH7(62)AH}’ (214)

where the subscript ¢ denotes the worldline DoF of the composite object as a whole. This
functional integral defines a diagrammatic expansion that consists of Feynman diagrams
for the binary problem. However, we will take the classical limit and only consider tree-
level diagrams in gravitons, without quantum graviton loops. This way, we can use the
QFT methods for classical gravity.

For our purpose, we will only be interested in the conservative regime, where no dis-
sipative effects are considered, hence there are no radiation modes present. So, our EFT
formulation for the problem would be complete at this point.

As a last remark, if radiation modes are present, then a final EFT is defined by
integrating out all field dependence. This creates an EFT of dynamical multipoles, where
radiation-reaction and tail effects can be studied. For more details, see the review [13].

2.2 Tetrad fields and non-relativistic gravitational fields

As pointed out in the beginning of last section, an orthonormal frame e 4#(\) must be used
to represent the rotation of objects in GR. This is because up to now, the formulation
is only valid for objects that behave like scalars, but rotation is closely related to spinor
fields. To describe them, we require a new non-coordinate basis called tetrad or wvierbein
(vielbein in many dimensions), see §12.5 of [37] and §98 of [40], and especially §7.8 of [41]
for a review.

The tetrad is defined by a set of 4 independent vector fields e,”, where p = 0,...,3
are the global coordinate indices and a = 0,...,3 is the index labeling the vectors in the
tetrad. In particular, tetrads are useful because they satisfy the relation

Juvea' e’ = Tab, (2.15)



so that the label @ = 0,...,3 becomes a label in the local tangent space®. This way, the
tetrad internal indices are lowered/raised with the Minkowski metric,

e = ey (2.16)
and so they define an orthonormal and complete basis,
guetey” =0y, eape™ =0, (2.17)
Hence, we can write the metric and its inverse in terms of tetrads,
Guw = Nave®u€’n, 9" =n"eat ey’ (2.18)
Similarly, they can be used to project any tensor to the locally flat tangent space,
Ve =et, VH Vo = el'V, (2.19)

and viceversa,

VE =V, V= Vee,. (2.20)

Recapitulating, the tetrads e,* describe curved spacetime effects, but project them to the
locally flat space. By contrast, to represent the rotation of the spinning object itself, a
distinct body-fixed tetrad frame e4#(\) is used, which follows the worldline of the object.
Since the tetrads satisfy the relation

ea = Nel, (2.21)

they allow us to finally disentangle the point-particle DoFs, given in the worldline Lorentz
matrices A% (\), from the field DoF's, in e,*(z). This way, tetrads are valid to capture the
coupling of gravity to spin.

The last ingredient that we need in order to apply the EFT formalism to the binary in-
spiral problem is the metric. Although spacetime is 4-dimensional, from the non-relativistic
point of view, where the gravitational interaction is instantaneous, time can be regarded as
a compact dimension. Therefore, this motivates the use of a temporal Kaluza-Klein (KK)
reduction of the metric, see §11 of [42]. As introduced in [43], it adopts the following form,

ds* = g, datda” = P (dt — Aydz®)? — e 2y datda? (2.22)

where we define the non-relativistic gravitational (NRG) fields: the Newtonian scalar ¢,
the gravito-magnetic vector A;, which play the reminiscent role of the scalar and vector
potentials of electrodynamics, and the tensor field v;; = d;; + 0;;. Here, we just use the
KK decomposition for the metric, the usefulness of which will become clear later on, but
we do not proceed to the typical KK reduction of the action.

2Therefore, tetrads allow for 16 DoFs, accounting for the 10 DoFs of a symmetric metric g, and 6 DoFs
of Lorentz transformations (rotations + boosts), applying the Lorentz transformation matrices A*” of flat
spacetime to the local frames in curved spacetime.



At this point, for the derivation of the Feynman rules it will be useful to express all
variables in terms of the NRG fields. First, we can expand the metric in terms of them,
given in eq. (2) of [44], where we also use the weak field approximation,

_ e2? —e2?A;
I = —62¢Ai —6_2¢"}/Z‘j + eQd)AZ‘Aj

N (1 + 20 + 267 —A; —2A;6

=Ny + hyy, (2.23
—A; —2A;0 _(5ij + 2¢5ij — 055 — 2¢25ij + 2¢0¢j + AiAj> Mo ( )

as well as its inverse, given in eq. (3) of [44],

o €20 — 200 A A; —e2P AT
9 = _e20 A 20y

- 1—2¢+2¢2—AkAk —Aj _2¢Aj+0'jkAk (2.24)
T\ A= 204 oAy 0y — 2¢0i5 + 0ij — 20°6i; + 29035 — oo ) ‘

where 7% is the inverse of 7;;, defined by 7% Vik = 6};, and A’ = 9 A;. Using them, we can
also calculate the determinant

1 1.
V=g =+/1 +T]“phup =1+ §h00 — §5Uhi]‘ =1-2¢+..., (2.25)
which appears in the measure of the Levi-Civita tensor density in curved spacetime,
Cafyp = V —Y9 €afyus (2:26)

where €4, is the totally antisymmetric Levi-Civita symbol with €p123 = +1, as well as
the 4-velocity contraction

- 1 )
VUQZ,/gM,,uMuV:\/1—v2+2¢—2Aiv’+...:1—§v2+¢—Aivl+.... (2.27)

Secondly, we require the tetrad expressed in terms of the NRG fields, as given in eq. (5.8)

of [24],
S _ePA.
e, =< —¢ A} (2.28)
0 e/

which obeys the Schwinger time gauge é;)°(z) = 0, given in eq. (5.7) of [24], and from
which we can also calculate:

el = ghr ep“ = gM° (eap>T

- 1—2¢ —Aj 1+ ¢ 0 N 1—¢ _Aj
- ( —Ai =0y — 2¢5z’j> (_Ai dij — ¢(5z’j> N ( 0 —dij — ¢5l.j> : (2.29)

This expressions will be used when projecting the spin variables onto the locally flat frame.
With that, we are able to separate all field dependence, which goes with the tetrad, from
the spin variable defined in flat space. Similarly, covariant derivatives are also projected
onto the locally flat frame using the tetrad fields.
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3 Outline

Addressing a new sector in PN gravity is not at all simple, since it directly builds on lower-
order sectors, and it also grows in scale and complexity. Therefore, in order to attempt
the computation at NLO S* we had to first master all previous sectors: from the LO
Newtonian sector without spin to the LO S* and to the NLO S? corrections. For that,
during the thesis, the exact reproduction of the results in the articles [1, 19, 24, 28, 29, 45]
has been necessary, in order to later apply and expand their formalism for the first time to
NLO S2. Since the calculations are very complex and require a meticolous and thorough
examination, even though some parts have also been computed by hand, the necessity
of a computer program becomes imperative. With this objective, a code programmed in
Wolfram Mathematica [46] has also been developed from scratch, including all calculations
from the Newtonian to the NLO S? order present in the thesis. The code is completely
analytic, and it builds on the zTensor package used for abstract computer tensor algebra,
present in the zAct bundle [47], regularly used in GR. Additionally, the derivation of the
Feynman rules and the evaluation of the respective diagrams is also available in the public
EFTofPNG code [48], used in this thesis to reproduce the NLO S* Feynman diagrams first
derived in [1].

The outline of the rest of this thesis is as follows. In Part II we present the methodology
and formulation required to obtain the NLO S dynamics. Since we need to be proficient in
the lower-order sectors, which play an important role in the new results, we will exemplify
the methodology deriving the relevant lower-order results, which include up to LO S? and
to NLO S2. In sections 4 and 5 we first derive the Feynman rules from the effective action
and next evaluate the Feynman diagrams to obtain the interaction potentials for general
compact objects. Since these potentials include higher-order time derivatives, in section 6
we perform a redefinition of the position and spin variables to eliminate them, obtaining
the reduced potentials. In section 7 we similarly derive the physical equations of motion
via proper variations of the reduced action. In section 8 we perform a Legendre transform
on the reduced potentials to obtain the Hamiltonian, from which in section 9 the binding
energy and its gauge-invariant relations with the angular momentum and with the orbital
frequency are be derived. Lastly, in section 10 the Poincaré invariance of the system is
addressed, which provides the most stringent self-consistency check in PN gravity.

Once the methodology of Part IT has been exemplified and applied to all lower-order
sectors, in Part IIT we present the novel results at NLO S3. In section 11 we implement the
methodology for the first time at NLO S?, first addressing the calculation of the Feynman
rules and diagrams, and then deriving the reduced potential, the equations of motion, the
Hamiltonian, the gauge-invariant observables and tackling its Poincaré invariants. Finally,
in Part IV we summarize our main conclusions and outlook.

11



Part 11
Methodology

4 Derivation of Feynman rules

In this section we derive the Feynman rules from the effective action for the binary, given
in eq. (2.12). We will address separately the different components of the action: the
gravitational bulk action, the minimal couplings and the non-minimal couplings, as they
will require different treatments.

4.1 Bulk action

Let us first describe the process required to extract the gravitational self-interaction vertices
and propagators from the bulk action, given in eq. (2.4).

In order to extract from this action the Feynman rules for the NRG fields, we first
need to express the Ricci scalar in terms of them. Nevertheless, the traditional method of
calculating first the Christoffel symbols, next the Riemann tensor, then the Ricci tensor
and finally the Ricci scalar turns out to be rather cumbersome, due to the non-linearity of
the equations that origin from the metric in eq. (2.22). To this end, we can alternatively use
Cartan’s method of two-forms, see §7.8 of [41], which allows us to compute the curvature
in terms of the NRG fields in an analytic and elegant manner. A review and a simple
example of the use of Cartan’s method of exterior forms is provided in Appendix A.

As first done in [49], or rewritten in our notation in eq. (5) of [44], after calculating
the Ricci scalar via Cartan’s method, the Einstein-Hilbert action becomes

SEH = —ﬁ /dtdgl’\ﬁ [—R[%j] + QWijaigb@jgb — ie4¢Fiijl7ik7jl s (4.1)
where v = det(vs5), Fij = 0;Aj — 0;A;, and R[y;;] denotes the Ricci scalar for the spatial
metric v;;. Similarly, the gauge-fixing term is expanded in terms of the NRG fields in
eq. (4.3) of [49]. Expanding the actions in the weak field regime, we can obtain the prop-
agators in the harmonic gauge, their relativistic time corrections, and the self-interaction
vertices.

The propagators are obtained as usual in QFT, inverting the quadratic term in the
action in Fourier space. Specifically, they are given in eqgs. (2.4)-(2.6) of [28], and read

ezk-(a‘ﬁ—fg)

= (¢(z1) ¢(x2)) = 4nG | ——=—0(t1 —t2), (4.2)
2 k2
ik-(Z1—72)
777777777 = (Ay(w1) Aj(m2)) = —167G 65 k% St — ta), (4.3)
iE~(i“1—fz)

= (0ij(z1) ok (72)) = 327G Pijip [ eT Oty —ta2), (4.4)

2

where P = %(5%6]-1 + 04101 — 20;j01), and where we introduce the abbreviated notation

fE =/ (gjr’;d. Note that a solid line will represent the propagation of the scalar field, a
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dashed line represents the vector field, and a double solid line that of the tensor field.
Other mixed 2-point functions between different fields vanish, namely: (¢(x1) Ai(z2)) =
(¢(z1) oji(22)) = (Ai(z1) ojk(22)) = 0.

The relativistic time corrections to the propagators arise because, as we will work
in non-relativistic gravity, we want propagators to be instantaneous. Nonetheless, the
propagators of the orbital field modes are in fact given by

Ak . 1 Ak e 1
—tkr _— _ —1 ik-x — 4.5
/ @i # / (@m)° KR (4.5)

Expanding the denominator in the PN approximation, since |k | ~ % while kg ~ 2,

1 1 [ 1 1 )

k2
we have that to lowest order in the velocity, the propagator becomes

d'k —ikot+ik-@ L dko —ikot &k ihz 1 d°k ihz 1
e i = LY = i

Therefore, we obtain the desired instantaneous propagator at LO, where the momenta is
only in 3 dimensions. This detail will have to be taken into account later on, as we will have
to set d = 3 in dimensional regularization. The velocity corrections to the instantaneous
propagator, or relativistic time corrections, present in eq. (4.6), are then treated as self-
gravitational quadratic vertices. They are expressed as follows, as given in egs. (2.7)-(2.9)

of [28],

_ 1 4 2
=G / 4z (09)", (4.8)
_ 1 4 N2
T 327rG/d z (0 A)’, (4.9)
1
T TG / d'a [2(0,0,))? — (A1)’ (4.10)

where the relativistic time correction is represented diagrammatically by a cross on a
propagator.

The self-interactions, as well as the diagrams later on, will be given in position space
rather than in momentum space. This is because it is more natural for the binary inspiral
problem, in which the positions of the 2 bodies are specified, rather than the momenta of
the particles as in usual QFT computations for collider physics.

Finally, expanding the bulk actions of eq. (4.1) we also obtain n-graviton self-interaction
vertices. In particular, some cubic self-interactions are given by

~
~
~
~

_ 1 A A5
< = oo [ e Ao, (4.12)
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1

J\ " 167G / d' |20,0,00;0 — 0301900, (4.13)

but more interactions are gathered in egs. (2.10)-(2.17) of [28]. Self-interactions are natural
in our theory, as we are computing GR corrections to Newtonian gravity, and General
Relativity is known for being a highly non-linear theory.

4.2 Minimal couplings

In order to obtain the Feynman rules for the graviton couplings to the worldline mass and
spin dipole, we start from the minimal coupling part of the point-particle action, given in
dz®

eq. (2.9). Choosing the parametrization A = 20 = ¢, so that «’ = 1 and v’ = = v’ the

non-spinning minimal coupling part reads

dxt dxv ) -
- m/dt\/zﬁ = _m/dtwg‘wdtdt = —m/dt [e¢\/(1 — Ajvt)2 — e4¢%-jvlvﬂ]
(1.14)
which can be expanded in the velocities and in the NRG fields to obtain an infinite number

of worldline couplings. Here, we use a classical source (the mass) to source a quantum field

(the gravitational field), although at the end we will only consider its classical contributions.
For instance, we obtain the following one-graviton couplings to the worldline mass, or
monopole couplings, represented by a black dot, given to NLO in egs. (2.19)-(2.21) of [28]:

s = —m/dth[l%—ZvQ...}, (4.15)
®---- zm/thivi[l—f—;vQ—i-...], (4.16)
J— :;m/dtaijvivj [1+...], (4.17)

where the vertical line represents the worldline or trajectory of the classical source, which
is one of the components of the binary, and where the ellipses indicate higher orders in
v. For couplings with higher number of gravitons, see eqs. (2.22)-(2.26) of [28]. As an
example, at NLO we have the 2-graviton scalar coupling

__;m/dt¢2[1—gv2+...]. (4.18)

Here we already start noting the benefits of the KK decomposition: There is a PN hierarchy
in the coupling of the graviton fields to the mass, making the scalar ¢ dominant with respect
to the vector A;, and to the tensor field o;;. Therefore, depending on the order in velocity
desired, there will be fields that will not contribute, simplifying the calculations. When
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spin is included, the hierarchy is not so explicit within the spin dipole, but there will also
be dominant fields, as we will see.

From the non-spinning minimal coupling we also obtain kinetic terms that do not
contain fields, such as

1 1 1
Lign = —mv* + —mv* + —mo® + ... 4.1
K 5 +8mv +16mv +..., (4.19)

where we can identify the leading Newtonian contribution and its 1PN and 2PN corrections.

Similarly, from the minimal coupling part for spin we obtain Feynman rules. Never-
theless, here special care has to be taken with the spin variables, as explained in [24, 44].
First of all, we need to address the gauge freedom in the spin variable. In general, the spin

tensor is commonly gauge-fixed using the covariant spin supplementary condition (SSC)
uM

Suwp” =0, for p# = m-*= + O(R), as introduced in [50] and later extended to curvature-

u2

dependent higher-multipoles in [51]. Then, as explained in §3.2 of [24], we can relate it to
the generic spin variable S by the shift

gov g guottot” . goptot” (4.20)
u U
Using the previous equation, we have that to leading order in the velocity,
SOk — _ GkLyl, (4.21)
, . 1 .. 1. ,
ik — Gik 4 §Sﬂvlvk - iSklvlvj. (4.22)

Now, the spin vector is related to the spin tensor by the following expression, see eq. (2.13)
of [19],

1 oy D
Su = _§EHV76S ﬁ, (423)
which acts as a classical version of the Pauli-Lubanski pseudovector S* = —ﬁe“W‘SJwP(s,

with J,, being the relativistic angular momentum tensor and Pj; the four-momentum.
Thus, we find that to lowest order in the velocity,

S() = — gmvk, (4.24)
« 1. .
Si =Sy + is[l]vlvl, (4.25)

where we defined tlr}e Newtonian (or Euclidean) spin using square-bracketed indices, given
in the local frame, S = {S’[Z-]}, by S[i} = %e,;jkgjk. As we will express at the end all Feynman
rules in terms of the Newtonian spin, we will drop the hat and square indices notation,
leaving S = {S;}. Moreover, we can also relate the spin tensor and the spin vector, both
being Newtonian now, by

S = ik g, St = ie”’fsjk. (4.26)
With the previous considerations, one can rewrite the minimal coupling part for spin

Spp(s) introducing the Ricci rotation coefficients, see eq. (50) of [44], defined by

wi = e D,el, (4.27)
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so that it reads
Sabpb Dpa

1 174
Son(s) = / d\ [—QSWQ“ ] _ / dx Y DA] (428

where the first term on the right-hand side is a flat spacetime rotation term. Expanding

1, 1,
— 582" — = Sapwpul" —

this expression, one can derive the following kinetic terms with one spin vector, given in
eq. (2.27) of [28], which should be added to the potentials of the relevant spinning sectors,
T 3 5
Lkin:—S-Q+25.6x6<1+4v2+804+...>, (4.29)
where a' = ©' is the orbital acceleration.

Moreover, we can extract the following one-graviton couplings with the worldline spin
dipole, which again acts as a classical source of the field, given to NLO in egs. (2.28)-(2.36)

of [28]:
% = / dt €, Spv’ (20;¢ + v20;¢ — 247 ¢) (4.30)

1 . )
S :/dt el-ijk (26iAj + Zv’vl(alAj — 6jAl) + UlatAj) , (4.31)

1
% :/dt geijkskvlaiaﬂ, (4.32)

where the gray oval represents the spin dipole on the worldline. Feynman rules with a
higher number of graviton couplings can be found in §2 of [52].

4.3 Non-minimal couplings

Now let us consider the spin-induced non-minimal couplings, from which the higher-spin
Feynman rules can be extracted, and which up to cubic-in-spin order are given in egs.
(2.10), (2.11). In order to obtain the Feynman rules, we just have to express all variables
in terms of the NRG fields, and expand up to the desired order in the fields and in the
velocities. For that, we can directly employ the expansions given in egs. (2.23)-(2.29).

Using also the following expressions, valid in the weak gravitational field regime, see
eq. (6.6.2) of [37], for the Riemann tensor,

1
RQB(SV = 5 [aﬂaéhoa/ + aaal/hﬁé - 8ﬂauho¢5 - 8a85hﬁy

+ o [Péuf%a —I%,T%,| + O(h?), (4.33)
and (10.1.3) of [37] for the Christoffel symbol,
1
I8y = 51" (Ovhao + Oahwo — Oshav) + O(h?), (4.34)
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we have all the prescriptions necessary to evaluate the non-minimal higher-spin Feynman
rules.

As a detailed example, we can derive the LO coupling of one scalar to the worldline
octupole. For that, we start from eq. (2.11), which fully expanded and with the spin vectors
projected onto the locally flat frame becomes

CBSS 1
12m2 \/ u2

Now, to simplify the derivation we can realize that some quantities can be taken out of

Lggs = — Dy [\/—g €aBypu gaa/gﬂﬁl Rogrsy wul et S, et Sp et S, (4.35)

the covariant derivative. First of all, the 4-velocity u* is a worldline parameter, and so
it can be pulled out. Similarly, the covariant derivative of the metric vanishes, see egs.
(4.6.16)-(4.6.17) of [37], i.e.,

D)\ Juv = 0, D)\ g’uy = 0, (436)

and the metric can also be taken out. Secondly, from eq. (4.4.2) of [37], we have the follow-
ing transformation rule for the determinant of the metric under a coordinate transformation

=z
ox
L
ox'

which also means that \/—g¢g is a scalar density of weight w = 1. Consequently, from

V=3, (4.37)

eq. (4.4.9) of [37], we have the transformation rule for the Levi-Civita tensor density,

oz’

ox

ox'P 9z’ 9z Ox'¢
ozt Ox¥ Ox 83:"‘5

pAR = ‘ erm, (4.38)

and so it is a tensor density of weight w = —1. Then, by virtue of the general form for the
covariant derivative of a tensor density J. with arbitrary indices and weight w, given in
eq. (4.6.11) of [37],

DT =g 2Dy (92T, (4.39)

we have that for the Levi-Civita tensor density a8, = v/—9 €agur;
D)\(\/ -9 6aﬁ,uy> = (_g)l/ZD)\ ((_9)71/2 V—9g 6a,3,ull> =v—g D)\Eaﬁuu - 07 (440)

which vanishes since €,g,, is the Levi-Civita symbol, a constant. Hence, it can also be
taken out of the covariant derivative. Therefore, we obtain that eq. (4.35) becomes

Lpgs = — gB;rS; \/172\/—;9604,37“ ¢ g% D, (Ra/g/(;l,)uwu‘se“a e’ e S, ) S, (4.41)
Now, since we want the LO Feynman rule, we can expand to leading order in the velocity.
In addition, since we want the one-graviton coupling, we can neglect all quadratic (or
higher) terms in the fields. For that, we can realize that for the Riemann tensor not to be
zero, it has to contain derivatives of the gravitational fields, so it is the term containing the
desired field dependence, and all other contributions with fields can be neglected. Thus, we
can already substitute the covariant derivative Dy = 9y + O(¢) by the partial derivative.
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Then, using the equations (2.29), (4.24) and (4.25), we can realize that for A = 0 we
would obtain a velocity dependence €%¢S, = —S [i]vi and 0; ~ 7, whereas for A = ¢ we would
have €S, = _S[i} and 0; ~ % So, we can keep A = i to leading order in the velocities.
With similar considerations and expanding all contractions, one can obtain that

C
LBS3 T2m —BS? 5 €kim 8anl'j0 + Ulaanilj + 2’Uk8nRZ'0joj| SmSan, (4.42)

where we already dropped the hat and bracketed indices in the Newtonian spin variables,
as advertised. Finally, if we require the scalar vertex, we just have to use the metric given
in eq. (2.23) in the definition (4.33) for the Riemann tensor, and take all other fields as
zero. Specifically, we obtain that

Riojo = — 0;0;¢, Ryijo = 0;j0101p — 010;049, (4.43)
Ryit; =01;0;010 + 6710k 0j¢ — 611 0;0;¢ — 040,010, (4.44)

which upon substitution gives, to LO in the velocity, the Feynman rule

%H - / dt ggjj €xim SiS;Smv! 8;0,0,0, (4.45)

in agreement with eq. (2.7) of [1

Proceeding analogously, for the quadrupole coupling, given in eq. (2.10), we have the
following one-graviton couplings with the worldline spin-squared, given to NLO in egs.
(2.18)-(2.25) of [27]:

+7 /dt s [SZSJ (8 aj¢( + v ) 30'*0,; 00 — 2079, 3@)

—5? (aiai¢(1 + gzﬂ) — V019,06 + 20006 + 2a§¢)] , (4.46)
o OB\ (qici _ 25\ (kA A — F DB A — A
= [t (- ) (557 - §%6Y)(*0,0 A — oM 00k A; — DidA; ), (447)
o (-G (5157 —5251‘3‘)(&@13-8% + vF 0l o004
am, 19 i
— 2vkvl8i8kaﬂ — QUkataiO'jk + 2Ukatak0ij + 815201']'), (4.48)

where the black square represents the electric quadrupolar spin coupling on the worldline.
For the octupole coupling, expressed in eq. (2.11), we have the following cubic-in-spin
one-graviton couplings, given to NLO in egs. (2.6)-(2.8) of [1]:

b -fa

1 _
5% chim i3S’ (90,000 (1 + 5“2) + 000000, (4.49)
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:/dt 102 B8 6. ehim [a 0,00y, (S (1 + ;&) — %vanv”> + S (viatajalAk

+ 00 (0,0;00A; — 0:0;06An) + 01(0,0:0; Ag + 0,0;0, As ))] (4.50)

%]i /dt Cpso >S5S €ktm Sm i al( (00 kn — Onoji) — ato—]k) (4.51)

where the grey rectangle represents the magnetic octupolar spin coupling on the worldline.

For Feynman rules with a higher number of graviton couplings, as well as higher
contributions in the velocity, see §2 of [27] for quadrupole coulpings, egs. (2.9)-(2.10) of [1]
for octupole couplings, and egs. (2.6)-(2.8) of [30] for higher orders in spin.

As noted for the mass monopole, for the spin multipoles there is also a hierarchy of
fields depending on the parity of the multipole: The scalar field ¢ is dominant in the
even-parity multipoles, e.g. the mass monopole and the spin quadrupole, while the vector
field A; is dominant for the odd-parity counterparts, like the spin dipole and octupole, and
so on. This is a clear reminiscent of the scalar and vector potentials in electrodynamics,
where the gravito-static component couples to the monopole and the gravito-magnetic
vector component to the dipole. Hence, this hierarchy in the spin couplings also highlights
the benefits of the KK decomposition of the gravitational field.

Finally, as first approached in [1], at NLO S® we can no longer consider the linear
momentum to be given by its leading approximation, but we must add corrections arising
from the non-minimal coupling in the action, expressed in eq. (2.10),

OL
Pu= g = “T’: + O(R)
— Up CE82 p QU 2 a 1 a. B
=m ui 2m S S |:\/1?Rpay#u WRpaVBu u u“ . (452)

When this difference is taken into account in eq. (4.28), it creates a new set of special
Feynman rules, where we have the following one-graviton couplings, given in egs. (4.6)-

% — / dt <—§fnsj> SiS;€rim [2Smak (2(ulaiaj¢— vjaialgb)

+ 65 (atalgb n v"@lanqb)) Y (QUjE?i@ng) _yy (8,581(;5 + u"alan¢)

+ i1 (ataj¢ + Unaj3n¢> )] ; (4.53)

B /dt Ci S SiSj€kim [(QSmak + vak) (@-ajz‘ll — 81'8[143')] ) (4.54)
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where the black square superposed on top of a gray oval represents the new cubic-in-spin
coupling. Feynman rules with a higher number of graviton exchanges can be found also in
egs. (4.8)-(4.9) of [1].
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5 Evaluation of Feynman diagrams

In this section we describe the method performed to evaluate the Feynman diagrams from
the previously derived Feynman rules, in order to obtain the interaction potentials. As
explained in §2.1.2, the diagrams arise in the second stage in the tower of EFTs for the
conservative binary problem, when we integrate out the orbital field modes. First we will go
over the bare topologies, which serve as the starting point to obtain the dressed diagrams.
Once the prescription utilized to evaluate the non-spinning diagrams is presented, the
generalization to spinning sectors will naturally arise. The evaluation of the diagrams is
also automated in the public EFTofPNG code [48].

5.1 Bare topologies

To begin with, we remark that we will calculate graphs that contribute to two-particle in-
teraction amplitudes, hence we have 2 worldlines for the 2 components of the binary, which
are to be interchanged, as the gravitational interaction is symmetric under exchange. More-
over, some graph topologies are already excluded from the diagrammatic expansion of the
theory [13]. Specifically, the graphs excluded consist in graphs with separate connectiv-
ity components, because the effective action e*# is defined in the exponent; graphs with
graviton loops, as we consider classical gravity with no internal purely quantum loops; and
graphs that renormalize the Wilson coefficients. Then, graphs are drawn in position space
with the direction of time flowing upwards, in accordance with spacetime representations
in relativity, as opposed to Feynman diagrams for particle physics, in which time flows
from left to right.

Next, in order to identify which topologies can potentially contribute to each PN order
in the interaction, it is beneficial to address their power counting, as it will identify the
relevant bare (without the specific vertices) topologies for each order. For that, we first
have from the propagators in egs. (4.2)-(4.4) that fields scale as G 3, Hence, each n-graviton
coupling to the worldline scales as GZ. Due to an extra G™! in the purely gravitational
action, each n-graviton self-interaction vertex thus scales as Gz L Counting the powers
of G in the bare graphs, we can identify the relevant topologies at each PN order, as it
holds that for the nPN order we can have a weight up to G®*! in the bare graphs. For the
dressed graphs, which are the full graphs including the specific vertices, it is a matter of
counting powers of velocity v, keeping in mind that from the virial theorem it holds that

2. In particular, at nPN order we can have dressed graphs with orders G"*1,

Gm/r ~ v
G™?, ..., Gv*. The order GO2("+1) is not present as it would be a purely kinetic term
without coupling, not an interaction.

To make the prescription explicit, let us examine the bare topologies contributing to
the first PN orders. At Newtonian order, or 0PN order (O(G)), there is a single topology,
consisting of a diagram with a one-graviton exchange, drawn in Figure 5.1(a). At 1PN
order (up to O(G?)), we can have three topologies, represented in Figures 5.1(a)-(c): A
one-graviton exchange, which is of order G but will contain additional factors of v when
dressed, a 2-graviton exchange, and a one-loop diagram with a cubic self-interaction. This

loop is not quantum, as it comes from the inherent non-linearity of the theory, and contains
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(a) (b) (c)

Figure 5.1: The single graph topology at O(G): (a) One-graviton exchange; and the graph
topologies at O(G?): (b) Two-graviton exchange, (c) Single cubic self-interaction. We also indicate
the contribution to the power counting in Newton’s constant G for all vertices.

an integral over the time and position of the self-interaction in the bulk. Nevertheless, when
we dress the diagrams, since the cubic vertex composed of the scalar field only is of the form
#(0;¢)? ~ v?, it defers the diagram to the 2PN order, as it would be of order G?v2, beyond
the allowed 1PN order. This signifies one of the advantages of the KK decomposition that
was chosen: It delays higher loop topologies, more complicated to calculate, to higher PN
orders.

For topologies of higher PN orders, we refer to §4.2 of the review [13], where the bare
topologies are represented up to order G°. At this order, there are four loops present in
the graphs.

5.2 Dressed diagrams

In order to evaluate the diagrams, we dress the previously permitted bare topologies with
the Feynman rules of §4, PN-weighted according to the allowed power in v, and then
perform the usual quantum field theory techniques [53], which involve Wick contractions,
symmetry factors and Feynman integrals. For the integrals, we recall that due to the KK
decomposition of the metric, which makes the LO propagator instantaneous, we will take
d = 3 in dimensional regularization.

To exemplify it, we can calculate the Newtonian interaction, or OPN order. For that,
we require O(Gv°), and looking at the only bare topology at O(G) in Figure 5.1(a), we
see that we cannot allow for more powers of v. To this end, and since we have no spin in
the Newtonian interaction, we see that only the LO scalar graviton coupling to the mass
monopole, given in eq. (4.15), can contribute. Thus, we only have one diagram, represented
in Figure 5.2, which contracts as follows:

| \
Fig. 52 = (—ml)/dtl ¢(ac1) . (—mg) /dtg ¢($2), (51)

where x for I = 1,2 denotes the 4-vector specifying the position of each of the components
of the binary, and where we have a trivial symmetry factor of 1, and the overline represents
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Figure 5.2: The one-graviton exchange diagram representing the Newtonian (OPN) interaction.
We also indicate the contribution to the power counting in the velocity v for all vertices.

the Wick contraction between the fields. Using for the contraction the propagator given in
eq. (4.2), we have:

ik
Fig.5.2 = 47TGm1m2/dt1dt2 5(t1 — tg)/ eEQ = /dtGTannQ, (52)
i T

where we denote the orbital separation by r = || = |#1 — Z2|. Here we can see that time
can be integrated straightforwardly, due to the delta function in time in the propagator.
To evaluate the last Fourier integral, the following scalar master integral is used:

[ Ak ek 1 I'§-a r? S
I(a):/ 2m)4 (k2)e  (4m)3 <4> ’ (53)

which can be derived using Schwinger parametrization,

1 1 & 1 A
in = 7F(TL) /0 dz x e R (5 )

as given in eq. (4.4.1) of [54], and using the following integral form of the Gamma function:

I'(z) = /000 drz*te™®, (5.5)

This way, we obtain from eq. (5.2) the expected classical Newtonian potential,

Gm1m2

Vi = (5.6)

r

Adding the corresponding kinetic term given in eq. (4.19), we thus also obtain the Newto-
nian Lagrangian for the binary system,
1

1
Ly = imlvf + §m211§ +

Gmims (5.7)

To make the evaluation of higher-order graphs more transparent, we also exemplify the
calculation of the 1PN order interaction potential in Appendix B, where we evaluate the
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4 diagrams that contribute to both O(G?v°) and O(Gv?). As a result, we obtain the first
GR correction to Newtonian gravity, given by
Gm1m2

Vien = 0 [ 3(0F 4 0) 4 T8 - T+ B 7 7] +

G2m1m2

27“2 (m1 + mg), (58)

which matches the well-known Einstein-Infeld-Hoffmann correction [55], where @ = 7/r is
the unit vector in the separation direction. The 1PN Lagrangian then reads
4 Gmima

L = —-myv P DXY
1PN ] 1Y ] 2Ug 9

G?*mims

5,2 (m1+ma).

(5.9)
Examples of non-spinning interaction potentials at higher PN orders can be found in [45],
with [20, 21] being the highest-order calculations at 5.5PN and 6PN order.

9 ) N T,
[3(v1+02)—7v1-v2—v1-nvg-n}—

5.3 Higher loops

As mentioned before, in general, at nPN order we first encounter n-loop topologies, al-
though they are deferred to higher order by virtue of the KK decomposition in the non-
spinning sectors. Nonetheless, in this section we shall see that there are further properties
that can be used to calculate higher loop diagrams.

First of all, we saw that at tree-level (0-loop), the integral over the momentum of the
propagator can be calculated using the scalar master integral in eq. (5.3). However, we
also saw that there are higher-order topologies arising from the non-linearity of the theory
that factorize onto a product of 2 tree integrals, as in the 1PN diagram of Figure B.1(c).
For the genuine 1-loop topologies, as the graph in Figure 5.1(c), we require the following
1-loop scalar master integral:

[ d%k 1
J(OéHB) = / (27T)d [EQ]Q[(E*®2]6

1 T(a+p—-d/2)T(d/2 —a)[(d/2—B), o\d/2—a—8
= , 5.10
i T Td-a-p 1) (510)
which is obtained using Feynman parametrization,
1 T(a+p) [* 2211 — z)P 1
AeBS  T()T(B) /0 e (zA+ (1 — x)B)aJ“B, (5:11)

as given in eq. (4.4.10) of [54], and using the following integral form of the Beta function:

L(a)I'(B)
Ta+pB)"

Other extensions of these Feynman integrals, such as the vector and tensor master integrals

B(a,p) = /01 dez® (1 —z)P~ 1 = (5.12)

that can be obtained by taking spatial derivatives, are gathered in appendix A of [52].

However, it is when one goes to 2-loop level that more methods are needed. At order
G3, with 9 different bare topologies shown in Figure 11 of [13], there is one “non-reducible”
2-loop diagram. All of the others factorize onto 3 tree-level integrals, or a tree and a 1-loop,
or two 1-loops, or even onto two 1-loops where one is nested in the other.
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Then, we can evaluate graphs using standard QFT multiloop techniques, such as
Integration-by-parts (IBP) identities [56]. In particular, the “non-reducible” 2-loop topol-
ogy can be reduced to a sum of factorized or nested 1-loop integrals using the IBP two-loop
reduction relation

1
F(a1,a2,a3,a4,a5) = /]517152 P R [ T (s — )™
a1[F(a1+,a3—) — F(a1+,a5—)] + [1 <> 2,3 <> 4]

= 1
a1 + a2 + 2a5 — d ’ (5 3)

where F(ay+,a3—) = F(a1+1,a2,a3—1,a4,as5). Thus, at O(G?) all topologies still involve
only the evaluation of tree or 1-loop integrals. In fact, for the non-spinning sector even at
O(G*) this holds, and it is only at the next order that new master integrals are required

13].

5.4 Higher-in-spin diagrams

For diagrams that contain couplings with spin, we conduct an analogous procedure, but
also taking into account the time dependence in the spin couplings, which upon action of
the time derivatives can lead to derivatives of the spin vector, S 1= ds T / dt, S 1= d2S 1/ dt?,
as well as derivatives of the spin length 52 = § - S, such as (S?) and (S%).

In addition, we also have to maintain the desired order in the spin multipole coupling.
Mainly, for the spin-orbit (denoted as SO) sectors we can only have 1 spin dipole, for the
spinl-spin2 (bi-linear in spin, denoted as S;S9) sectors we can have 1 spin dipole in each
worldline, for the spin-squared® (denoted as SS) sectors we can have 1 spin quadrupole or
2 spin dipoles in one worldline, and so on.

Furthermore, odd-in-spin sectors carry an extra power of velocity due to their tensor
structure, which will make them much more complex than the even-in-spin sectors in
general, as we further elaborate at the end of the section. Moreover, as we are interested in
the NLO S? sector, the quartic-in-spin and NNLO contributions will be irrelevant, as they
have powers of G or spin beyond the relevant order. Hence, they will not be considered
throughout the thesis.

Proceeding as described in the previous section, it can be calculated that the LO SO
potential, originally computed in [25], with 2 graphs shown in Figure 1 of [44] and rewritten
in our convention in eq. (72) there, is given by

Gms = 1
VSLOO:—Q—QQSy(ﬁlxﬁ—ﬁgxﬁ)—g
T

where we have already added the corresponding kinetic contribution, while the LO S1So

Si T x @+ (1 2), (5.14)

potential, first derived in [26] and reproduced in eq. (11) of [57], with a single graph also
shown in Figure 1 there, is

Gla @ ag -a -
VS, =5 |- % -85S -] (5.15)

3We remark that the quadratic-in-spin contributions are commonly separated in two sectors (S1S2 and
SS), as the spin-squared sector contains Wilson coefficients coming from the non-minimal coupling, i.e.,
finite-size effects.
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It is significant to remark that under the exchange 1 <+ 2, the unit vector 77 changes sign,
71 — —1i, and that we can verify the correct PN weight of each expression counting powers
of G, v and time derivatives 9; ~ v. The LO SS potential [26], given in eq. (2.17) of [19]
with a single graph in Figure 1 there, becomes

B Cl(ES2)Gm2 |:

VIO = 833511 + (1 e 2), (5.16)

2myrs

whereas the LO S? potential, expressed in egs. (3.1)-(3.4) of [19] and obtained from 4
graphs in Figure 2 there, is

—

CypsnG 1 - L _
ﬂ[SQ-(ﬁlXﬁ—ﬁ'gXﬁ)S%—l—?Sy(ngﬁl—SQXEQ)Sl-ﬁ

myrs

=58y (51 x 71— T x 7) (51 - 7)?]

V¥ = -3

C Gr., iR Lo -
+3%{51-52xﬁSl-ﬁJrSl-SzxﬁSl'ﬁ}
myr
C ssz_, o
- SOETEG (@x — B x @) [ 57— 551 )P + (1 2). (5.17)
1

Similarly, at the next-to-leading order in the PN approximation, we have that the NLO SO
potential [44], with the kinetic term already included, rewritten in eq. (6.18) of [24] using
our spin gauge and given by 15 graphs drawn in Figure 2 there, is

G’m2 =
Vin© = - [

= 31-171xﬁ(v%—2z71-172+v§—3171-ﬁ172~ﬁ>

+Sl'172xﬁ(ﬁl-ﬁg—v§+36yﬁﬁg-ﬁ)+Sl-171><172172-ﬁ]

Gm3rg . . @ - . .3a . .
+ 32[5’1‘1)1><n—51-v2><n}—&—fSl-alxvlv%

2r 8

Gm2 — — — —
+ [251‘&1XU1—351‘(11XU2+Sl‘a2XU1—Sl‘a1XnU2'n
—Sl-agxﬁq-ﬁ—sl-ﬁlxmz-msl.ﬁgxﬁﬁz-ﬁ—?,sl-mxag]
+ GmaoSy - do X 11 + (1 — 2). (5.18)

We can verify that the PN order is now uniform with the presence of velocities and time
derivatives, which act on both the position coordinates or the spin variables. The NLO
S1S2 potential [57], which is derived from 6 graphs shown in Figure 3 of [24] and can be
found in eq. (6.28) there, is given by

Gr= =/7 15, 7 . 1., ..
VSIZHSJQO: —T—g[sl-5'2(§U%f?vl-v2+§v§f6(v1 n)2+ 5 |- Uy - 1 — 6(U n)2)
. 5 9.
+ 51 7)1(—*5'2 U1+§Sg Uy + =Sy - 1 ﬁ—552-ﬁ_»2 T_i)
- 9 - 7 = 15 & -
+ 51 172(552 171—552 Uy — —S9 -1V -1+ 6S9 - 11Uy ﬁ)
9

, , 15 - , 9.
+Sl~ﬁ<6 2-*1*1.ﬁ—?sg-alﬁz-ﬁ—552-172171-ﬁ+552-62172-ﬁ)
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- - 9 21 9 15
+Slfi5’2ﬁ( U1+ 7)1 Uy — U§+f171ﬁ’[_)‘2ﬁ>}

Gz(ml + mg)

LTS, 5 — 48, 7 - n}+g[51 S+ 811 Sa -7

G ﬂ L
——[231 Sgc_il~ﬁ—25’1~5262-ﬁ+251-&'252-%—251-%52-61

7«2

- 0, 1 - 0 . 15 = . - S
—1-25'1-521)1-71—551-ngg‘n—i—iSl-ngl n—281-Sy0 -7
1= - 1= 5 pt - 1= .
+§Sl'17252'ﬁ—551-ﬁ52'171 251 - 1S, 1714—531 789 - Us
15 5 - 4 3% = L. L 3= & L.
—551-1}152-71,—1-251-1}252 55 .99 + 1 VU9 n+551 n oy - nNUp n:|,

(5.19)

while the NLO SS potential, first approached in [58], and computed with 6 graphs shown
in Figure 4 of [24], with a total result given in our convention in eq. (6.40) there, reads as
follows:
CireyGm
NLO _ 1ESHUM2 T 5 (D 5 9
R T R CL R L
+§1"l71< Sl ’U1+Sl 1}2—1-351 Uy

L , 9, 21 9, 15
—351-17231-ﬁ171-ﬁ+(51-ﬁ)2< Bl I, N B, A 2 )}

Sl
3
OO
P
S
<
[\v)
S
~—

2t 2 2 2
Cl(ESZ)GQm2 2 Y Cl(ESQ)G2m2 2 Y
T[sl—g(sl-n)}+2 i [1—3(51-71)}
G?*my , = CigsyGmar. _ - . = _ - _ 3% _ o
- 42(51'71)2—%[51 a1 S1-m+ 51 -0 S1-n— ;502517
r mir 2

5 - 3= - 3
—I—Sl-ﬁSl-ﬁl—fSl-ﬁSl-ﬁg—g
C(ps2yGm
L(ESH T2 S
- S 1+ 2). 5.20
S GIRREE) (5:20)
At NLO S? we have 53 diagrams, shown in Figures 2-5 of [1], including 4 diagrams contain-
ing the new Feynman rules coming from the dependence of the momentum on the spin, as
presented at the end of §4.3. The corresponding interaction Lagrangian, which was recently
first derived, is written in egs. (5.1)-(5.22) of [1], and reads as follows:

L = LNLO + LNLO +(1 & 2), (5.21)
where we have
G2 Cl G 1 C 2,G? C 2G* m
NLO __ (ES?) 1(ES?) 1(ES?) 2
Les, = mlo+— o ot — 5 Llot — 5 to
G? Cies?)G 1 C(ps»)G” Ci(ps2)G? my
toatet— 5 ot — ot — a1 ke

C G C G
n 1(ES?) LL(Q n 1(ES?)

1
72 m
1 r my
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with the following pieces, organized so that more higher-order time derivatives are present

in the last terms:
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. L 5 .
+951 @ x @Sy 7Sy it — 285w x 7t (57 +3(51 - 7))
. L L 1- .
+ Sy x i (381 S =128 i Sy i) — £S5 x 7t (757 — 27(8i 7)),
(5.23)
e e e N 9 o
L(2)2—351-S2X2}1(4 1 U1 2~n—|— 1~vgv2~n)+552~vl><v2511)1~n
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+38) @ (— 28101 + 28, T + 55, A7) — 168 -0 Sy AT -7
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L(g):<§1'771Xﬁ—gl‘UQXﬁ)§1'§2

— — 1—' ].—* 3—' 3—»
+ 81 S x it (= 58T oS T — DS AT A+ S5 A7)
2 2 2 2
1/ - =
—1(52-171 X 7 — Sy - xﬁ) (75%—15(51 -ﬁ)Q), (5.25)

Ly =318 -5 x7i = §1 -5 x 7) 1 - S,
=27 x i = S 7 x 1) (1987 — 21(S; - 7)*)

—

+51~§2><ﬁ<—41§1'171+41§1-1724—635’1-77_’1'77&'—66 1-77_'2'17&'), (5.26)

L(5):351'52Xﬁgl'ﬁ—gl'ggXﬁgl'ﬁ—2§1'§2Xﬁgl'ﬁ+2§1'§1><§2, (5.27)
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and also
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We highlight that the elements Ly and L exclusively receive contributions from the 4
graphs with new Feynman rules, which do not contribute to any other term.

Examples of higher PN corrections for other high-in-spin results can be found at tree
and 1-loop level in [19, 30], where the LO and NLO quartic-in-spin potential were respec-
tively first derived, at 2-loop in [27], where the NNLO spin-squared potential was calcu-
lated, and lastly at 3-loop in [31, 32|, where the N3LO spin-orbit and quadratic-in-spin
interactions were recently addressed, respectively.
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As can be seen, there exists an intrinsic difficulty within the odd-in-spin sectors, which
are much more complicated than the even-in-spin counterparts, not only in the number
of diagrams but also in the scale and complexity of their expressions, containing triple
products that make calculations more cumbersome. This feature of PN theory reflects the
fact that classical effects with spin to the [th order correspond to scattering amplitudes
with a quantum spin of s = 1/2 [34, 35|, as presented in §1.
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6 Elimination of higher-order time derivatives

In the previous section we obtained the interaction potentials for the relevant PN sectors.
However, we should note that starting from the LO SO potential, given in eq. (5.14), there
appear higher-order time derivatives of both the position, such as a; = 15’1, and of the
spin variables, as S 1. Hence, a common procedure in perturbative theories is to make a
redefinition of the variables so as to eliminate the higher-order terms without altering the
physical predictions. Such quantum operators are also known as redundant operators in
effective field theories [14], because they vanish by the lower-order equations of motion
(they vanish on-shell), making their effects non-physical.

In the context of the PN perturbative scheme, we will shift both the position and
spin variables so that the variation of the action entails the PN equation of motion (EoM)
of such variable, used to eliminate the higher-order terms at linear approximation only
[59-61]. With this procedure, which represents the most subtle and laborious part of the
thesis, we will obtain the so-called standard reduced potential, or reduced potential for
short, which will no longer contain higher-order time derivatives.

6.1 Elimination of accelerations

More concretely, we will start describing the elimination of accelerations, as done in §5.1
of [45]. Let us consider a Lagrangian containing kinetic and potential terms, that depend
on higher-order time derivatives of the position,

L(f,ﬁ,iﬁ...)2270%—1/(:8,17,{?,...). (6.1)

Then, by the variation principle, an infinitesimal variation 0Z; of the action yields the
EoM,

ov. dov d*ov

OV a0V @OV, 2
o Taon acey T (62

5[/dtL(f,z7,{7,...)}:0 —  md; =

and the same for particle 2. Similarly, if we consider a position redefinition ¥; — 71 + Ay,
it induces a change in the Lagrangian of the form

AL =

oL _d oL & oL
oZy  dtov,  di? oy

+.. } - ATy 4 O[(AT)?]

oV dov  d® oV
= - Qi+ — a5 +—5—=—+...| AT A7) )
[ml‘” T om @ow aom } arolansl o (69)
Therefore, if the acceleration terms in the original Lagrangian take the form
La1 == /Yl . (3:1, (64)

where A; can itself depend on further accelerations, we can eliminate them by setting in
eq. (6.3) the position shift

Az = 2L (6.5)
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With this redefinition, we eliminate the accelerations? present in the Lagrangian at a certain
PN order by pushing them to higher-orders, which can then be neglected to a certain
approximation. At linear order in AZ7, one would obtain the same result substituting the
lower-order EoM into the acceleration terms. Nonetheless, the O[(A%})?] contributions
also play an important role, as they would appear in higher-order PN sectors. Therefore,
the full position redefinition has to be considered in general. Moreover, if the shift A
still contains accelerations, then one has to iteratively eliminate them.

6.2 Elimination of time derivatives of spin
Let us now turn our attention to the elimination of time derivatives of spin, which was first

addressed in §5.2 of [45]. In this case, we have a Lagrangian of the following form:

—

L(5,5.5.. Z Lstigi _v($,5.5,...

~—

(6.6)

Then, similarly as before, combining an independent infinitesimal variation of the Lorentz
rotation matrix A7 and of the spin S}’ yields the EoM for the spin, also known as the
precession equation, given in eq. (5.9) of [45],

S — 4 Ghl 5l (6.7)

oV _dov.
osE ~dtagk |

and the same for the spin of particle 2. Analogously, if we consider a spin redefinition
ASY = Sikwki — S{kwki so that the spin is rotated similarly to the rotation matrices,
which change as AAY = AWk it induces a contribution in the Lagrangian of the form

AL = — W + Of(w?)?]. (6.8)

2

1 .. ,
S?HS{“((‘W d oV )

98k dt pg

Therefore, if the terms in the Lagrangian containing S? take the form
Lg = A7SY, (6.9)
where Aij can itself depend on further time derivatives of spin, we can eliminate them by
setting in eq. (6.8) the spin redefinition
wid = A — AT (6.10)

With this redefinition, we eliminate the time derivatives® of spin present in the Lagrangian.
Again, one would obtain the same result substituting the lower-order EoM of spin. Even

4To eliminate even higher-order time derivatives like Lai = ffl . &'1, we use a position shift 71 —
T+ AT =T + 4 Axl that itself is a total time derivative. This way, we can flip the total time derivative

in egs. (6.2) and (6.3)7 and eliminate the higher-order terms by setting A‘i?.l = fEAxl = f%%.
®Again, to eliminate even higher-order time derivatives like Ly = AYSY, we set a spin redefinition

wi = 7% (Aij - AJIZ) that itself is a total time derivative.
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though at first sight the procedure seems analogous to the elimination of accelerations, the
necessity to work with the spin tensor makes the application of spin redefinitions technically
more difficult.

Finally, once the higher-order time derivatives have been systematically eliminated,
the spin variables satisfy the so(3) canonical Poisson bracket [45], given by

{5, 5M} = gl — glgTk 4 SItgk — ik, (6.11)
which allows us to write the precession equation of eq. (6.7) in the form
SY = {sY,-Va}, (6.12)

where V; stands for the standard potential, which no longer contains higher-order time
derivatives.

6.3 Reduced potentials at leading order

As pointed out in the beginning of the section, we can observe that accelerations start
appearing as of the LO SO potential, given in eq. (5.14), which we rewrite here for conve-
nience:

VdS = —z%ﬁl (T X T — Ty X ) — %51 Ty x a4 (1 2). (6.13)
According to the previous prescription, and following §6.1.1 of [24], we can identify that
the shift of the positions required to eliminate the LO SO acceleration terms is

- - - - 1 .
T — T+ (A:zl)lgg =T+ Tmlsl X U1, (6.14)

where we have taken an extra minus sign due to it being the potential, not the Lagrangian.
Now, this position shift should be performed onto all sectors of the EFT Lagrangian, which
includes lower and higher PN orders, not just the present LO SO potential. This will make
different sectors start mixing among them, as a shift in one sector affects others. This
interplay between sectors is depicted in Table 6.1, where it is shown the PN sectors at
which different orders of the LO SO shift contribute, when applied on different potentials®.

Hence, starting with the lowest PN order, by eq. (6.3) the change in the Newtonian

__ Gmimg

potential Yy = , at linear order in the shift (6.14), is given by

Gm2
272

1= o
AVSE = 580t x i+ 4 58t x i+ (14 2). (6.15)

We see that it contributes to LO SO and exactly cancels the acceleration terms that we
had in the first place, as expected. Therefore, the so-called shifted LO SO potential reads:

3GWL2 = R - 2Gm2
5,2 S1-01 X1+ 2

(VLS = VIS + AVES = — Si-Tyxi+(12), (6.16)

SInstead of computing the contributions separately, all of the following calculations are done in practice
just shifting everything at once, which guarantees that all the affected sectors will be taken into account.
While our approach requires a careful examination and quite some work, it nevertheless reduces the running
time of the code enormously.
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Linear order in A% 2 | Quadratic order in A% o | Cubic order in A% o
1% LO SO NLO S2 NLO §3
Vien | NLO SO
Vi§ | NLO $? NLO $*
Va5
Ve? | LOS?
Va9 | NLO S°
Vil

Table 6.1: PN sectors to which different orders in the LO SO shift A%} 5 of eq. (6.14) contribute,
when applied on the different sectors, up to the relevant NLO S* contributions, where any sector
beyond NLO or S? is omitted here.

which is now free of accelerations.

In fact, we can argue that there are no other contributions to the LO SO sector coming
from this shift, as can be seen in Table 6.1. First, if we were to consider the second order
in the shift for the Newtonian potential, we would have two spin variables and an extra
factor of v? coming from (AZ7)?, thus contributing to NLO quadratic-in-spin sectors, not
to LO SO. Similarly, applying the shift to linear order on the 1PN Lagrangian, in eq. (5.9),
creates a contribution to NLO SO, beyond what we need at leading order. Finally, a shift
in the LO SO potential itself would contribute to next-to-leading order, and would contain
two spin variables.

Consequently, we can also see that the LO quadratic-in-spin potentials given in egs.
(5.15)-(5.16), which did not have accelerations, are neither modified due to the LO SO
shift acting on lower-order sectors, nor do they need extra variable redefinitions.

By contrast, the LO S3 potential of eq. (5.17) is modified by the LO SO shift. In this
case, the LO SO shift of eq. (6.14) is applied to linear order on the LO quadratic-in-spin
sectors of egs. (5.15)-(5.16), as shown in Table 6.1, resulting in

301 (ESQ) Gmg

AVEC), = (S0t 25y ) (85 - 551 )

4m3rt ma

3G

—2m§1-§2><172§1-ﬁ] +4|:§1-'l71Xﬁ<§1-§2—5§1-ﬁ§2~ﬁ)
mo 2m1r

—§1-§2X171§1-ﬁ:| +(1<—>2), (6.17)
as given in eq. (3.8) of [19]. Note that the subscript 1 is a label indicating that this is
the first contribution to LO S®. Thus, adding this contribution we obtain the shifted LO
S3 potential. Nevertheless, we can observe that eq. (5.17) contains time derivatives of

spin. Thus, to obtain the reduced potential we require a separate redefinition of the spin
variables. Following the prescription given in §6.2, we calculate that we require a spin
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redefinition
301 (ESZ ) G

1J\LO _
(wl ) m1r3

Lo _ ( — Sikgilpkpl 4 S{lsgknink) — (i < ). (6.18)
To verify this result, we employ eq. (6.8) to obtain that the contribution to the LO S3
potential due to this spin redefinition is given by

AVEO), = S-S x Sy i+ S Sy xS i)+ (12, (619)

mar3
Comparing with eq. (5.17), we see it exactly cancels the terms with time derivatives of
spin. To the order we are interested in, this LO S® spin redefinition will only affect our
sector, the NLO S3, as will be addressed later on.

Consequently, the reduced LO S3 potential can also be obtained simply adding egs.
(5.17) and (6.17) and taking S; = 0, which precisely corresponds to the insertion of the
Newtonian EoM for the spin, as anticipated. More concretely, as given in eq. (3.10) of [19],
it corresponds to

C G
3 1(ES?)

mqrt

—

(VS)LO— — |:§2-(’l71Xﬁ—ﬁgXﬁ)5%+2§1-(§2Xﬁl—ggxﬁg)sl-ﬁ

s3 =

o o 1 R o
—552-(171xﬁ—@xﬁ)(51~ﬁ)2—4<—2S1-52><17281~ﬁ

+ (%gl '771 X 17 — §2 : 272 X ﬁ) (512 — 5(51 ﬁ)2>>:|
C Gmoy .
- MBSVTTES (@ x i — Ty x ) (52 = 5(51 -7’
my

3G
2mar

ré

4|:§1'171 Xﬁ<§1'§2—5§1'ﬁ§2'ﬁ) —gl'gg Xﬁlgl'ﬁ:| —1—(1(—)2).
(6.20)
6.4 Reduced potentials at next-to-leading order

Let us now proceed to the elimination of higher-order time derivatives at the next-to-leading
order for spinning sectors. We will start with the NLO SO sector, with the interaction
potential given in eq. (5.18). First of all, we have to add to it the contribution coming
from the LO SO position shift of eq. (6.14) acting to linear order on the 1PN potential of
eq. (5.8), as depicted in Table 6.1. Following eq. (6.3), it results in

lg . . Gmo |35 . . Tz L .
AVSI\CI)LOZZSl-lealv%—i— §S1-v1xa1—151~v1xa2
e o . |, Gma|35 . _ . 5 o o
—15’1 ’UlX’/’LGQ'n:|+ 5 ZSl-lenU%—2Sl-vl><nvl-v2
r

o - 3.
+ 51 -1 xﬁv%—i—%ﬁ-ﬁlxﬁgﬁl-ﬁ—iSl-ﬁlxﬁgig-ﬁ
3~ G? -
— 28 5 x ﬁ(UQ-ﬁ)Q] - mz(;";*m?)sl-al x4+ (12), (6.21)
T
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as given in eq. (6.19) of [24]. Now, since both the potential itself and the lower-order
contribution contain higher-order time derivatives, we have to perform further position
and spin redefinitions to eliminate them. In particular, the following redefinitions are
required, as showed in egs. (6.20)-(6.21) of [24],

GTTLQ

mar

2
~ 1= . ~
(AT1)55° —81:;181 X Ty + (281 X Oy — 38 x T — (T - 71) 5 x ﬁ)

+f(11§2xvg—(vz n)SQXn+i(§2-T72Xﬁ>ﬁ> —§2xﬁ, (6.22)

g Gm y o ~ o . ,
(wij)ls\%o == 2 (31}}1}% +vin! (Vg - 71) —vin? (Ug - 1) — (i <> j)) (6.23)
These redefinitions will not affect lower-order sectors, and will first affect the NLO S3.
Using them, the reduced NLO SO potential becomes

Gm 1 - IS
(Vs)ls\%o— 2 2[51 UlXn(—§U%+3U1-nv2'n—*(v2-n)2>

4
T 0 T O SN BN
+ 8] - Vo xn(vy —U) -V —301-002-1) + 5101 X U 21}1-n—502-n

TGPmime = . G2m§
r

[Sl 1)1 X 1 — zgl 'UQ X TL] (6.24)

[\

3
Having finished with the spin-orbit sector, let us proceed to the quadratic-in-spin sectors:
the NLO SS9 and NLO SS sectors, with potentials given in eqs. (5.19) and (5.20), respec-
tively. According to Table 6.1, they receive contributions from the LO SO shift applied to
second order onto the Newtonian potential, and applied to linear order onto the LO SO
potential. The latter can be computed as usual, but the shift to second order requires more
careful attention. In general, given a general function f(x1,x2,21,42) that depends on the
position and its time derivatives, a position redefinition x; — x5 + Az induces a change
up to second order given by

f(.%’1+ Al‘l, xo + sz, T+ Ai‘l, To + A:L‘Q) =

2 2
= f(z1, 22,21, &2) -I-Z Ax —i—Z ij §Zzﬁx18xJAx1Ax‘]

+

N

2 2 0 .y
ZZ 95,05, At Azy+ = ZZ 8x18x A:ch:UJJrO((A:c[) ), (6.25)
I=1J=1 I 1 7=

where one usually assumes that Az; = %Aw 7. In the present case, we will consider the
Newtonian Lagrangian,

1 1 Gmim

5ot + 5mavd + # (6.26)

Then, using the previous description, the NLO quadratic-in-spin contributions will be given

LN(fla fQ, Q_]'17 Q_]'2) =

by the terms
1/ 0°L . 0L S 0L . 0L o
( AT AT + Az AT+ —— Az A + —— Am%Ax%)

Oxt o] Ozt ol Oxb O] Oz ol
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(6.27)

PLy d , ;d 5 PLn d, ;d
— Az —A
(81} 81)] th 1thx1 * o c%] it~ "2t a;2)

where A7 is given by eq. (6.14), and where the crossed derivatives 62/ 81}%61}% and 02 /0x'0v’
vanish for the Newtonian Lagrangian. Separating the two sectors, we obtain that the com-
plete contributions read

Glg 28 . 7 & 28 .7 8 . 85 . 708 Sm.n
AVNLO _ 2 NG 5 S i — S, Sy — S-Sy w A+ Sy Sy -7
S1S2 r2

Gl=z = 3 3
+T3|:515’2(U%2171172+U%4271ﬁ172ﬁ)

5 - S = 0d == N.,.a& -(3z - @ - Y9z . .
+Sl’U1<—SQ‘U1+3SQ'TL’Ul'n>+S1'Uz(*SQ'Ul—SQ‘UQ—ZSQ'nvl'n>
. 9. N
+51-n<—152 Uy Vg - n+352 Vo Ug - TL+SQ n<—3vl+ZU1-1}2—31}2)> ,

(6.28)

Gma [3 L oL 3 = > o= L 9= _ = .. .
AVSI\SI,LO mﬂj’ [45%1}% — S% Uy - Uy — Z(Sl -1)1)2 + 51 -1 51Uy + 151 U181 -nv -1

—351 '172 Sl -ﬁvl n— g(Sl n)2 U%+3(Sl T_i)2 U1 -U2+§S%(U1 n)2:|
Gmg

mir

+ [5*1 algl-ﬁ—gl.ﬁlal.ﬁ]

1 R g »a - 1 l & o
+47n1[—25?0,1"014—251-0,151"01—25%01%-1-2(51-0,1)2

435, G S -d 8- S — 4SS o @ — S-S

1 = 5 - 1> =
+ 5(51 . 171)2 + 57 -a1 51U — 551 - 51 ’U%:| + (1 > 2), (6.29)

in agreement with egs. (6.29) and (6.41)-(6.42) of [24], but also including the omitted
precession terms. Then, as before, to eliminate the remaining higher-order time derivatives,
new position and spin redefinitions must be carried out. The spin-squared potential requires
extra manipulations, as it contains terms that are quadratic in the accelerations. To
eliminate them, two iterative position redefinitions must be carried out. Furthermore, it
also contains time derivatives at even higher orders, like ar and S 1, which should be treated
first. With these considerations, we have

G pd pd = — = —
(AZ)55, = 2m1r2 [(51 - So) i — (S - 1) 52] , (6.30)
ij G ik, j L i i i . .
(wlj)ls\lllég) =3 [(252kv{nk — 552’% S kndy k S Kk (U - n)) — (i <> )
ij ~ G i
— 55 Uy -1 +Z S knink —(ZH])—QS (6.31)
S Cl(esz)Gma = Gm S = .
(A7)0 = (m%)ﬂ(& 51+ o 222 |:(Sl i) S — 57 n}
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1 [3 5 .5 3.0, = .2 .z
— [(Sl -d1)S1 — 5512 @ + (S1-11)S1 — (S1 - vl)Sl], (6.32)

4m% 2
.. C 2 Gmg L L 3 . 3
(W0 = VT ik bt + Ssthudnt + Jsthato

3 ., . . .
+ 55;%%’“(@ 1) — (i < §) + 287 (0 - 7) — 35V (¥ - ﬁ)]

Gm2 o . ) ) .
T i [Sikv{nk — Sikn]vf — (i < j):|

1
= {S’kvlal + Sikal ok 4 Slkvlvlf — (i + j)], (6.33)

as given in egs. (6.30)-(6.31) and (6.43)-(6.44) of [24], including the omitted precession
terms. This way, the reduced potentials become

G I L
(Vo)§iE) = Glmi +ma) jmg) {451 -Gy — 108, 78, -7t
T
G = = 5 2 N — 5 2 — _,2 45_, = —» — _,2
+7£[Sl-82(—2v1+6v1-v2—2v2+6(v1-n) -4 nz-n+6(v2-n)>
= 55 5 = 3 = 95
+51-*1(§52-51—552-52— SQ-ﬁﬁl-ﬁijSg-ﬁﬁg-ﬁ)
+§1-_'2<—3§ U1 + 5'2 1)2+ 5’2 U] - n7652 71U ﬁ)
+51‘n<—682- 101 -1+ SQ U1 Vg - 71 + SQ Ug Uy - n—*Sg U U - n)
- = 3 21 3 15
+ 518yt (S0t - T 172—1—51)%—?171 7 7 *)} (6.34)
C 2 G2m3 G2m2
NLO __ ~1(ES?%) 2 2 g =\2 my 2 3 =\2
(Vs)ss —T[251—5(51‘”)}+8m17ﬂ4[ ST+ (S5 ”)]
Cl(Esz)G2m2 9 = . Gm2 9
+T[51_3< l-n)} (S 7)
Cl(rs?)Gma 5 9, . 3 3. 3. .
# O |8 (- et g e 56 )
. 1. 1. 3 3
+ 55 (55T 58 - S5 w4 5 )
- 9 21 15
+ 28w 8 v A+ (S A) (va—zj-fﬁg%—zu%—zﬁl 7 7 ﬁ)}
Gm2 2 5 2 3_, - 9 - 3_, = - = -
- [5’1 (Zvl_i 1-@2—8(121 ) +2v1 71 Uy n)—3Sl Vg S1 -1 -7
. 5 3= 5 __. . 3= .. .
—1-51'1)1(—1 1 U1+§S1 Vg + 451 n U1 n—251 71 U n)
21 - 5
- §(51 . T_i)2 v% + 3(51 . T_i)2 1 ‘772:| + (1 — 2). (6.35)

At this point we have thus considered all relevant sectors at leading and next-to-leading
orders below the NLO S? sector, which will be addressed using similar considerations in
§11.3 in the results section.
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7 Equations of motion

In the previous section we obtained the reduced potentials by the elimination of higher-
order time derivatives. In this section, we will use them to perform a proper variation of
the action to obtain the physical equations of motion (EoMs) for the binary system, first
for the non-spinning sectors and then generalizing it to spinning ones.

7.1 Equations of motion for non-spinning sectors

Starting from the already calculated standard reduced potentials Vj, in the non-spinning
sectors we will have a Lagrangian that no longer depends on higher-order time derivatives

of the position,
2

o m R
L(#,7) = Z v = V(@ 9), (7.1)
where we explicitly take out the Newtonian kinetic term. Then, as we did in §6.1, by the

variation principle, an infinitesimal variation dZ; of the action yields the EoM,
oV n d OV
0F,  dt 0vy’

and the same for particle 2. Note that now we do not have to consider derivatives with

5[ / L7, 17)] 00— md = (7.2)

respect to accelerations and higher-order derivatives of Z;. Therefore, we can use eq. (7.2)
to compute the physical equations of motion.

Starting with the Newtonian potential, given in eq. (5.6), which is not modified during
the elimination of higher-order time derivatives, we compute

" Gms
(CL]_)N = - 7"227-1/’ (73)

which is the usual acceleration derived from Newton’s law of universal gravitation for a

2-body system undergoing gravitational interaction.
Going then to the 1PN sector, with a Lagrangian given in eq. (5.9) that is also not
modified during the position and spin redefinitions, we obtain that

3Gms 7Gms 1, ., Gm
2a1—|— 2r2a2—§v%a1—(v1-a1)v1+ 2

n sz |:Gm1 4 Gm2 3’0%

(@1)ipn = —

T AT e 2
| AT B =

3Gma Gma

+ 5 |:171~ﬁ—’l72-ﬁ:|171+ 5 I:—4171-ﬁ+3'l72-ﬁ:|172. (7.4)
T

r

As can be seen, due to the presence of a time derivative in eq. (7.2), intrinsic accelerations
start appearing. Hence, at this point we have to use the lower-order EoMs to eliminate
them iteratively. Therefore, this will create again an interplay between sectors, so that
higher-order sectors receive contributions from combinations of lower-order sectors. In the
present case, plugging the Newtonian EoM of eq. (7.3) into eq. (7.4), we obtain that the
final 1PN correction to the physical EoMs is

2
. ma L Gmo . LS
(@1)1pn = 3 (5my + 4ma) 1 + 7 —v%n—i—ﬁl(vl - U) 1l +

(U - )27 — 2037
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+ 4(v1 - 11) (V1 — V) — 3(v2 - 1) (V1 — V2) |, (7.5)

in agreement with [17]. Analogously, higher-order PN corrections for the EoMs in the
non-spinning sectors can be obtained. Nevertheless, for the NLO S? sector, we will only
need the EoMs from the non-spinning sectors up to the 1PN order.

7.2 Equations of motion for spinning sectors

In the spinning sectors we will have now a Lagrangian that no longer depends on higher-
order time derivatives of the position nor of the spin,

2 2
.-G m 5 3 LG
( z, 75) Z?IU%_Z ]~Q—‘/;<I',U,S), (76)

where we explicitly take out the leading kinetic terms. Then, as we did in §6.2, an in-
finitesimal variation of the action yields both the EoM for the position and for the spin
variables,

. ovs  d Vs

miay = —

ki ¢4l Vs ij
97, | dt o, S = 45,707 ask — =80 00)

and the same for particle 2. Now we do not have to consider derivatives with respect to
neither accelerations etc., nor time derivatives of spin. Nevertheless, we will have now a
double interplay between sectors, as the EoMs for the position and for the spin will mix. To
keep track of these contributions more conveniently, Table 7.1 has been created. There, we
show the PN sectors to which the accelerations etc., and time derivatives of spin contribute,
when we substitute different PN corrections to the EoMs. Note that since the EoM for
spin cannot contain higher-order time derivatives, contributions to other sectors can only
arise from the position EoMs.

Focusing first on the LO SO sector, with a reduced potential written in eq. (6.16),
from eq. (7.7) we have that the EoM for the spin is

(5?)58 = G?ZLZ Sn[iS{}kvlf — 3nFv [ZSJ} n[iS{]kvlg + 4nkv£i5{]k], (7.8)

in agreement with eq. (5.19) of [45]. For the EoM of the position, we obtain

i 3Gma i i 2G i s Gmy 9/ 2\ T 2\
(@86 = = g 2 S~ S S [ = 5 (S s +6(5 - 52 x )
9 .9
+ 5(_'1 1) S n? — 5(172 ) SnI — 3870 + S” J]
G . .
+r3[ 6(52 len)n —|—2(52 UQXTZ)TL + 6(1 - 71) S5’ n? — 6(y - 1) Sy n?
] + 357l 79)

As we can observe, time derivatives of spin appear. Following Table 7.1, if we were
to substitute the only spin EoM that we have so far, the LO SO correction that we just
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Newton | IPN |LOSO |LOS? |LOS?

(@)~ =

(@1)1pn = -+ + #dr | 1PN NLO SO | NLO $? | NLO S
(@) =+ #S; | LO SO NLO SO | NLO $? | NLO S3
(@)NEO = ... + #d; | NLO SO NLO 3

+#5; | NLO SO

(@)g =
(@)©° =+ #d; | NLO §° NLO $3
+#5; | NLO 82 NLO §*
@) = +#S |LOS? NLO s°
(@)NO =+ #d; | NLO S°

+#S; | NLO $3

Table 7.1: PN sectors to which accelerations and time derivatives of spin contribute, when we
substitute different PN corrections to the equations of motion, up to the relevant NLO S* con-
tributions. The ellipses indicate terms with no higher-order time derivatives, while the symbol #
indicates some coefficient multiplying the relevant higher-order time derivatives.

computed in eq. (7.8), it would create a contribution to NLO SO. Since we are computing
the LO SO EoM, this contribution can be neglected. Hence, we can only substitute the
Newtonian EoM for the spin, which is S;’ = 0. Thus, we finally obtain that

. G 9/ , . 9 9 o
(@)L = m:';‘f,) [— 5(51 T X ﬁ)n +6(S1 Ty X ﬁ)n + 5@ A)SPnd = S (@ - ) S
3570 1 L5 | 4 Sl 6(5y m x)ni 4 2 (G5 x i)
101 511)2 773 2+ U1 nin 5 2V XN|In
i T T
+ 6(th - 11)S5'n? — 6(vy - 71)S5'n? — 455 v] + 25’;]114, (7.10)

in agreement with eq. (5.18) of [45]. Similarly, if we were to substitute eq. (7.10) into the
1PN order EoM, in eq. (7.4), we would obtain a contribution to NLO SO.

The quadratic-in-spin sectors are much easier, since their LO reduced potentials do not
contain velocities, as given in egs. (5.15)-(5.16). Therefore, no higher-order time derivatives
appear in their equations of motion, so they cannot receive contributions from lower-order
sectors, as shown in Table 7.1, and become

i 2G [ = o i P
($7)8%, =25 [s(32 - s - s (1)
» 6C o Gm o
~ij\LO __ 1(ES?) 2.8 i ]
(S9)ES _T(Sl.n)n[ S (7.12)
. 3G [,2 o m o aa
(@)5%, = — — {(51 - 8y) 7 —5(S - 7)(So - @) 74 (Sy - 7@) Sy + (51 -7) Sa|,  (7.13)
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3C 2 Gm2 7 5 .
(@9 = - T st S+ (6 )
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in agreement with egs. (5.18)-(5.19) of [45], respectively. If we were to substitute these
EoMs onto the 1PN order EoM of eq. (7.4) or onto the LO SO position EoM of eq. (7.9), we
would obtain in both cases contributions to the NLO quadratic-in-spin sectors, as shown
in Table 7.1.
Finally, for the LO S? sector, with a reduced potential given in eq. (6.20), we have that
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so that the LO S? correction to the EoMs is obtained by substituting the Newtonian EoM
for the spin, Sij = 0. If we were to substitute the LO SO EoM for the spin, given in
eq. (7.8), we would obtain a contribution to NLO S3, as will be addressed in our results.

At this point, we can continue to the next-to-leading order spinning sectors. Nonethe-
less, as can be seen in Table 7.1, only the EoMs of the position are relevant for the NLO
S? sector, so we will only focus on them.

Starting with the NLO SO sector, following Table 7.1 its EoM receives contributions
from iterations of the LO SO on the 1PN sector, and evaluating eq. (7.7) it reads
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where we have already taken S; = 0 since the precession terms will not contribute to
NLO S3. For the exact NLO SO correction to the EoM, we would have to substitute
the Newtonian EoM of eq. (7.3) into the accelerations. Yet, the substitution of the LO
quadratic-in-spin EoM in those acceleration terms precisely generates NLO S? contribu-
tions.

As for the NLO S1Ss sector, based on Table 7.1, it receives contributions from iterations
of the LO S1Ss sector with the 1PN and LO SO EoMs. Calculating the contributions, it

results in
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where the NLO 515, correction to the physical EoM is obtained by further substituting

the Newtonian EoM of eq. (7.3) in the accelerations and S; = 0.
Analogously, following Table 7.1, the NLO SS EoM receives contributions from the LO
SS EoM substituted in the 1PN and in the LO SO EoMs. Explicitly, it reads
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where the NLO SS correction to the physical EoM is again obtained by further substituting

the Newtonian EoM of eq. (7.3) in the accelerations and S; = 0.
With this last result, we have all lower-order EoMs necessary for the evaluation of the

NLO S? correction to the EoMs, which will be done in §11.4 in the results section.
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8 Hamiltonian

In §6 we derived the reduced potentials for the relevant PN sectors. Now, we will use them
to compute the Hamiltonian for the binary system. Even though having a Hamiltonian
formulation of the problem is theoretically interesting on its own, the Hamiltonian is the
central object used in the effective-one-body formalism to model gravitational waveform
templates [18]. It will be calculated in the general coordinate frame, and will be valid for
general compact objects, regardless if they are black holes or neutron stars, since it will
contain general Wilson coefficient. In addition, it will be valid for generic orbits, not only
circular, allowing for further studies based on the eccentricity. Finally, it will also hold for
any orientations of the spins.

8.1 Legendre transformation and Hamiltonian

The computation of the Hamiltonian is much simpler than obtaining the reduced potential,
and to derive it we will closely follow the description given in §6 of [45], see also §7.2 of [17].
The derivation starts as usual in analytical mechanics, by defining a canonical momentum,
conjugate to the position variable,

7t = — = — = — - V L - V) - U - ’
i 95, _ om ( mivy + Moy N + LnPN s myv1 + ow, ot

2 2
and the same for particle 2. We expanded the Lagrangian into the leading Newtonian

(8.1)

contribution and its higher PN corrections, which may include higher non-spinning La-
grangians L,pn as well as spinning sectors, contained in a general standard reduced po-
tential Vi. In our case, it will be sufficient to consider the contributions coming from the
1PN Lagrangian of eq. (5.9), from the LO reduced potentials up to cubic-in-spin, given in
egs. (6.16), (5.15)-(5.16), (6.20), and from the NLO quadratic-in-spin reduced potentials’
of egs. (6.34)-(6.35),

oLy (V)RS 0(Vo)g  o(Ve)g?  o(Ve)g (8.2)
ot o o ot ov '

where the derivatives of the LO quadratic-in-spin potentials vanish as they do not contain

p1 = m71 +

velocities. One has then to invert this expression in a PN expansion to obtain the relation
U7(p). Expanded explicitly to LO SO it becomes
G 3mopt 7

o1
+= +-ph +

( 3Gm25ijnj QGSéjnj
mi  2m$ 7 my 2 2

2myr? r2

i i, 2
i b1 P11
V)= — — —=

B - i) . (8.3)
as given in eq. (6.3) of [45]. The full expression expanded to LO S* and to NLO quadratic-
in-spin order is provided in §11.5, which is only used at the NLO S3.

Then, the total Hamiltonian H is obtained with an ordinary Legendre transformation,
where we substitute the relation ¥7(p) in the velocities,

L. L. L. L. 1 1
HZUl‘p1+02‘p2—L:U1‘pl+02‘P2—imlv%—imﬂ}%—FVN—LnPN—f—Vs

"We do not need to consider the NLO SO sector in the canonical momentum as it would only create
NLO S? contributions when substituted in the LO quadratic-in-spin sectors, which do not have velocities.
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and where we already identified the Newtonian Hamiltonian,
2 2 2
P b1 Py Gmima
Hy = =1 N = — . 8.5
N 2my 2m2 + 2m1 + 2mo T (8:5)

Identifying the relevant PN orders in the extra terms of eq. (8.4) with p; ~ ¥, we can
obtain all PN corrections to the Hamiltonian. More concretely, the 1PN correction is
obtained by a direct Legendre transform of the 1PN Lagrangian in eq. (5.9), and is given
by
LI
Hipn = — Lipn (UI - 7)
my
4 4
pl p2 G |: (m2 2 ) — — — — = —»]
=—— -5+ —|—-3 — p1 - TP N
8m3 8m§+27‘ mq 1+ p2 TP P2t P npy
G2m1m2

272 (m1 +ma), (8.6)

as in eq. (6.5) of [45]. Analogously, the LO SO Hamiltonian, derived from the reduced
potential of eq. (6.16), is

D 3G 2G z

Hgg—(V)gg( _>p7[>: m251 p1><n—|——51 p2XTl+(1<—>2) (87)
my 2myr2

as given also in eq. (6.7) of [45]. For the LO quadratic-in-spin sectors, given in egs. (5.15)-

(5.16), since their reduced potentials do not contain velocities, they will be equivalent to

the corresponding Hamiltonians [24],
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2myr3

The LO S® Hamiltonian is again obtained from a straightforward Legendre transform of
its reduced potential in eq. (6.20),
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in agreement with eq. (3.12) of [19]. At next-to-leading order the procedure is the same,
but now we also have to take into account contributions coming from lower-order sectors.

Thus, the NLO SO Hamiltonian is obtained from the Legendre transform of its reduced

potential, expressed in eq. (6.24), and also from combinations in eq. (8.4) of the 1PN and
the LO SO sectors,
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as obtained in eq. (6.22) of [24]. Since the LO quadratic-in-spin sectors did not contain
velocities, the Legendre transform for the next-to-leading order case is much simpler, and

only contains the reduced potentials of eqs. (6.34)-(6.35) and self-iterations of the LO SO
sector,
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as given in eqs. (6.32) and (6.45) of [24]. With these Hamiltonians, we will be able to
compute the new NLO S? correction, which is done in §11.5 of the results.

8.2 Simplified Hamiltonian

Up to this point, all of the potentials and Hamiltonians that we already computed are
gauge or coordinate dependent. By contrast, we would be interested in obtaining gauge-
invariant quantities. For a binary system, the most natural observable that we can think
of is the total energy of the system, or binding energy, which is global and gauge-invariant.
Similarly, the total angular momentum of the system is also gauge-invariant, and so we
would like to express the binding energy in terms of it. In fact, this relation is a very useful
tool used in different descriptions of non-spinning binary systems with circular orbits [45],
such as the effective-one-body formalism and even numerical simulations [62, 63], where
they are used to refine the gravitational waveform templates.

To calculate the binding energy, for which we will follow the description given in §8
of [45], we can consider the center-of-mass frame, where we have vanishing total linear

momentum,
P =p1 = —p2, (8.14)
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and we also specify to the condition r = const. for circular orbits, which implies a vanishing
radial momentum p, and thus the relations
2
2 L

pen=0 p=_5 (8.15)

pr

Then, to obtain the gauge-invariant relations, we rescale all variables so that they become
dimensionless. With that purpose, we define the total mass m = mi + meo and the reduced
mass [ = mims/ m? of the system, so that we rescale

ﬁ_ E r L = S[
M

, F=——, L =

— S;= for I =1,2 8.16
Gm’ Gmu’ I Gmu’ or ) ( )

where the orbital angular momentum is defined by L=rix 7, and where H is known
as the simplified Hamiltonian. Here, H stands for the sum of all Hamiltonians except the
rest-mass contribution, so that the total simplified Hamiltonian equals the dimensionless
binding energy, H = e.

For the general spinning case, the energy also depends on the spins of the components
and their orientations. Therefore, to define a gauge-invariant relation, it is customary
to consider the aligned-spins case, where the spins are aligned with the orbital angular
momentum,

S, i=S8-p=0, forI=1,2. (8.17)

Furthermore, this configuration of circular orbits with aligned spins corresponds to the
case in which gravitational-wave detectors have the highest signal-to-noise ratio [63], the
so-called “orbital configuration”.
Finally, it is also useful to define the mass ratio ¢ and the symmetric mass ratio v,
given by
m1 mimsg 1% q

= — = == — 8.18
1= YT T Ao (8.18)

out of which all results can be expressed. Using all conditions (8.17)-(8.18), as well as
the Hamiltonians that we derived in (8.5)-(8.13), we can obtain all of the corresponding
simplified Hamiltonians, which are much simpler than in the general case. To 1PN order
in the non-spinning case, they are

-1 L?
Hy=-| —1+4 5= 8.19
N F[ - 25]’ (8.19)
- 1 L? L*
HlPN _2f2 |:1_ 7(3_’_1/)—}_@(_1—}_3”) s (820)

as given in eqs. (4.23)-(4.24) of [28]. For the spinning sectors, to leading order they become

~ 1/[25”1 3
HES = —5 [2 + 2{}] + (1 < 2), (8.21)
. 5155
HgS, = — =, (8.22)
. ek
HE = — ﬁj?’cl(w) + (1 ¢ 2), (8.23)
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whereas to next-to-leading order they read

. LS 5 13vl? 1 5 L2
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. 515 L2
YO = 21 2[7—(5—1—21/)], (8.26)

F7NLO Vg% L
HSS = oF 2V — 3VCI(E82) + ?( — 5v =+ QVCI(ES2)) +

1
L2
+27:<5—41/+C'1(E82)(—5+V))>] +(142), (8.27)

in agreement with (4.26)-(4.33) of [28]. Note that under exchange of particles (1 <> 2),
the mass ratio ¢ goes to 1/¢, but the symmetric mass ratio v is invariant. For examples of
simplified Hamiltonians at LO quartic-in-spin and up to NNLO quadratic-in-spin, see [29]
and [28, 45], respectively.
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9 Observables and gauge-invariant relations

In this section we will use the simplified Hamiltonian derived in §8 to compute gauge-
invariant observables for circular orbits, namely the relation between the binding energy
and the angular momentum or with the orbital frequency of the binary.

9.1 Binding energy and angular momentum

The simplified Hamiltonians are still gauge-dependent, as they are a function of the rescaled
radial coordinate 7. In order to eliminate it we will use the condition for circular orbits in
eq. (8.15), which is preserved in time and reads, by Hamilton’s equations,

B OH (7, L) B
Pr = “or 0, (9.1)

to obtain a relation f([:) Then, we will substitute this relation in the binding energy
H(7, L) = e(7, L) to obtain the gauge-invariant relation e(L).

The simplest way to obtain 7(L) is to define the following ansatz for the solution:

=S, (9.2)

<=

where the summation starts at n = 2 so that (#(L))~! oc L=2 o v? is of order OPN, and
corresponds to the Newtonian case, and ends at n = 11 so that (#(L))~!' D L™ o v? - v?
is of order 4.5PN, as our desired NLO S? correction. Hence, the substitution of the ansatz
of eq. (9.2) into the equation of motion for circular orbits of eq. (9.1) allows for all sectors
to intertwine perturbatively. Solving order by order in the orbital angular momentum, we

obtain the solution

:}4,?+T$[6+}(&+4”)+1<2+}(@%+1MXH
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in agreement with eq. (5.1) of [28].

Given the solution for #(L), we substitute it in the simplified Hamiltonians H (7, )
given in eqgs. (8.19)-(8.27) to obtain the gauge-invariant relation for the binding energy as
a function of the angular momentum, which reads

- 1 1 vS, 1 3v 1/3 99
e(L) 212 8L4( +V)JFLS[JFL?( +8>+Q(2+8L2)}
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in complete agreement with [17] for the non-spinning sectors, and with [28] for the spinning

case.

9.2 Binding energy and orbital frequency

As a second application, we can also derive the binding energy as a function of the orbital
frequency of the binary, also gauge-invariant as measured by an asymptotic observer. This
relation is very useful, e.g. it can be used to obtain the change of the frequency of the
emitted gravitational wave over time, or in other words, the phasing of the wave. To do so,
we must obtain first a relation between the angular momentum and the orbital frequency
of the system, to be substituted in eq. (9.4).

With that goal in mind, we use the equation of motion for the orbital phase ¢, which
by Hamilton’s equations is related as canonical conjugate to the angular momentum L by
dp OH(F L)

. _ 9.5
dt oL (9:5)

w

where we also define the orbital frequency w. After evaluating the derivative, we substitute

the solution for 7(L) of eq. (9.3), and we obtain a relation for @(L), which schematically
reads, up to NLO S3,
1 94+ v Slal 5'152&2 + S’%ag n " S%Oxn + S'fgzanﬂ

(:J - = + = =
L3 2L5 LS L7 L2

+(1¢2), (9.6)

for «; being general coefficients. Then, it is useful to define the gauge-invariant parameter
x, given by
&3, (9.7)

x

which by Kepler’s third law, w? = Gm/r3, acts as a measure of the inverse of the orbital
separation of the binary. Schematically, we obtain

3 3 & &2 &3 &2 & 2/3
x:i 1+9—i:V S{Oél+5152a2~+51043+._.+Slan+§152an+1+(1H2)
L? 212 L3 L4 L9
1 9 S 518 52 538, + 525,58,
_ 1 9ty Sk 5186+ 58 SiPn + 5156 Lo, (98)
L2 314 L3 LS L

for 5; again representing general coefficients, where we took out a factor of 1 /JZJ2 to use
the Taylor expansion of (1 + 2)%/3 =1 + 22+... to order O(2°). Now, we would like to
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invert this expression to obtain L(x). To do so, we take out the factor of 1/L? and make
the following manipulation:

~ ~ o~ &9 3 —1
L2 3Lz I3 LA L9
- ~ ~ &0 3
3L2 L3 L4 LQ

for 6; again being general, and where we use the Taylor expansion for (14+2)"! =1—2+...
to order O(z%). Then, to obtain L(z) we substitute iteratively the equation into itself, for
which we use, for instance, 1/L3 = (1/L?)3/2 and its respective Taylor expansion. This
way, it results in the relation

52 :x—x2(3+%> + w228, [2?? —x(16+ 33?) +;<5—x(?+2§y>ﬂ

5 G 196 95 = 365 16
+va38 Sy [ 4+ x(— + V)] + va3 S} [Vx( - 301(E82)>

3 18 36
1 107 o9y
- 1
+ I/.Tg/ZSi)’ |:24I/ CI(ES2) — 6v Cl(BS3) + & (Cl(Esz)(_24 + 221/) + Cl(BS3)(6 — 6V)>:|
9/232 3 1
+ l/ X S SQ GCI(ES2) + 6 — 48 — 8CI(E52) + (1 < 2), (910)

as given in eq. (5.2) of [28]. Finally, we can insert this relation into the expression for
e(ﬂ), given in eq. (9.4), to obtain the gauge-invariant relation between binding energy and
orbital frequency,

)=~ + (3 +5)# +W251[ po( -1 g+ 1(—1+x<—3+5§>ﬂ

2
+ 1235155 [1 + :C( )] + 1/:1:331 [um(f + gC ES2 >
1/1 5T
+§ §CI(ES2) 6 ( 3+ )+ CI(ES2 1 -+ V
~ 1
+ V,’L‘g/QS% |: C (ESQ) + 2V CI(BSS) + 5 <CI(ES2)(3 - 41/) + CI(BSS)(_2 + 21/)>:|
2,9/2325 1

in agreement with [17] for the non-spinning sectors, and with [28] for the spinning case.
The new NLO S? corrections for the previous gauge-invariant observables will be pre-
sented in §11.6 in the results section.
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10 Conserved integrals of motion: Poincaré algebra

In the previous section we derived the general Hamiltonian for different PN sectors. The
next step would naturally be to verify its validity. That could be addressed in two ways:
comparing with independent derivations or via a self-consistency check. Unfortunately, as
the NLO S? sector represents the cutting-edge result obtained exclusively with the EFT
of spinning objects, there are no other independent sources available for a comparison of
our comprehensive result. Therefore, to validate our Hamiltonian, we will resort to a very
strong self-consistency check coming from the global Poincaré symmetry.

For isolated N-body systems in GR, the full Poincaré group acts as a global symmetry.
As first shown in [64], the conservative PN Lagrangian is also Poincaré invariant. Thus,
from Noether’s theorem, this global symmetry implies the existence of conserved integrals
of motion, also constructed in [64]. In phase space, this integrals of motion form a represen-
tation of the Poincaré algebra [65]. Therefore, the usual self-consistency check performed in
PN theory is to verify whether there exist generators that realize the Poincaré algebra, as
it would mean that the Hamiltonian obeys the global Poincaré symmetry. Consequently,
in this section we verify that the lower-order PN corrections to the Hamiltonian admit
global Poincaré symmetry by explicitly finding the corresponding PN corrections to the
generators of the Poincaré algebra.

10.1 The Poincaré algebra

The Poincaré transformations, which include translations in space and time, rotations and
boosts, are generated by the total linear momentum ]3, the Hamiltonian H, the total
angular momentum f, and the boost generator K , respectively. Furthermore, we can
decompose the boost generator as K=3G- t]s, for G being the center-of-mass generator®.
Then, these generators realize the Poincaré algebra [65], which is explicitly given by

{P, Pj} ={P;,H} ={J;,H} =0, {Ji, Pj} = €ijiPr, {Ji, J;} = eijiJe,  (10.1)
{Ji, Gy} = ejiGr,  {Gi, H} = P, {Gi, Pj} = 6;H, {Gi, G} = —€jpdy. (10.2)

In the non-spinning two-body phase space (Z1, Z2, p1, P2), the Poincaré algebra is expressed
via the Poisson brackets

2
S S of dg  Of Og
f z,p),g\x,p x = < ; T ; > 9 103
(1@, 5). 9(Z. )} ) ,§ 50T Bt Bl B (10.3)
where the position and momentum variables are conjugates,
{ah,ph} = 6961y, forI,J=1,2. (10.4)

In the present case, we also have to include the spin variables, which satisfy the so(3)
canonical Poisson bracket of eq. (6.11). In terms of the spin vector, it implies the relation

(84,89} = kS5, for I,J = 1,2, (10.5)

8To avoid confusion, in this section we will use Gy to denote Newton’s constant.
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as given in eq. (6.8) of [24]. Thus, we extend the Poisson brackets {, }, ;) expressed in
eq. (10.3) to its spinning generalization, see §3.A of [39] and [66], given by

-,

{f(f,ﬁ, g),g(f,ﬁ,S)} = {f’g}(x,p) + {f7g}spin

2
= {f’g}(x,p) + Z eklmSk 8f ag

I=1
Having introduced the Poisson brackets used to express the Poincaré algebra, we can then
address the calculation of its generators. To do so, we will follow the description and
conventions used in [65] for the non-spinning sectors, and in [29, 67-70] for the spinning
case. First of all, since our gauge choices do not affect the symmetries of translation
and rotation invariance, the Hamiltonian by construction satisfies the Euclidean group
symmetry, with algebra written in eq. (10.1). Thus, these Euclidean generators are still

the total linear momentum and total angular momentum of the binary system:

P =pi + pa, J =T X Py + o x P+ S1 + So. (10.7)

Hence, given the Hamiltonian, the construction and verification of the full Poincaré algebra

of egs. (10.1)-(10.2) reduces to the existence of a vector G (&7, py) satisfying such conditions.

Starting with the condition {G;, P;} = d;;H, we can see that it is solved by the following
ansatz:

G=mZ +hofa+Y,  hy+hy=H, (10.8)

where h; and Y are translation invariant: {h7, P/} = {V? P7} = 0. Then, separating the
point-mass (PM) and the spinning contributions, we can write

H
hi = + WM RO RS 4 b5 4 b (10.9)
so that the condition h; + he = H implies antisymmetry under particle exchange in the
extra terms h?M, . ,h§3. By contrast, we require
Y = YPM L yS0 | ySise  ySS 4 v (10.10)

to be symmetric under particle exchange. Then, it turns out that the ansatz for G can be
uniquely fixed using only the condition {G;, H} = P;, while the other Poisson brackets are
automatically fulfilled [65].

Recapitulating, this means that the verification of the Poincaré algebra boils down
to the existence of a generator G = h1%1 + hoXy + }7, which is unique, and can be fixed
just using one relation of the algebra. To obtain it, we will resort to the method of
undetermined coefficients [65], writing the most general form that the generator can have,
and constraining the coefficients.

There are several considerations to be taken into account when constructing the ansatz
for the generator. First of all, as will be justified in the examples later, the generator is
always of one-PN order less than the sector that we want to verify. For instance, the
NLO SO Poincaré algebra requires a correction to the generator G of the order of the LO

64



SO. Second, the ansatz for the generator must preserve the tensor structure of the sector
according to parity, i.e., it should include triple products for odd-in-spin sectors and scalar
products for even-in-spin sectors.

Third, the form of the ansatz is heavily constrained by dimensional analysis. From
eq. (10.9) we have that [h;] = m has mass dimensions, while [Y] = 1 is dimensionless.
Therefore, their mass dimensions have to be built from a combination of powers of [%] =m,
[Gn] = m™2, [S] = 1 and [Cgs»] = [Cpgr] = 1, compensated with powers of the mass of
the components.

Finally, while in principle one defines an ansatz for all powers in the gravitational
constant Gy in the generator, it turns out that all O(GY) terms can be fixed from the
special-relativistic limit [71], where no curved spacetime effects are considered. In flat
spacetime, a closed form for the generator is given in eq. (4.27) of [71], and reads

2
. 1 .
G— 7 — —(1 1S xp 10.11
151 (W mrZy mI( + 1) Sr X P1>, ( )

where v7 = (1 —v?)7Y2 = (1 4 p?/m2)'/? is the relativistic Lorentz factor. Expanding in
the PN scheme, it becomes

N p% p‘l1 1 = p% o pi1 o
G=m+———%+.. . |1 ——5I XD+ —551Xp1——=S1xp1+--+(1 < 2).
1 21 Smi{’ 1 2my 1 XP1 8m§’ 1 XP1 16m§? 1 XP1 ( )

(10.12)
Therefore, we can already take from this expression the (’)(G%) terms for the different PN
sectors. As can be seen, for quadratic-in-spin order and beyond there are no contributions.
This is because before the accelerations are removed there are no kinetic terms beyond the
spin-orbit sectors, as can be observed in the potentials (5.14)-(5.20).
To illustrate the procedure of verification of the Poincaré algebra and the construction
of the center-of-mass generator, we will exemplify first some non-spinning sectors, and then
we will consider the spinning ones.

10.2 Poincaré algebra for non-spinning sectors

In the non-spinning case, the Poisson brackets are simply given by the usual definition in
eq. (10.3). Then, let us start with the lowest PN sector, the Newtonian sector. In this
case, the generator G is known to be the Newtonian center-of-mass position [65]

Gopx = mi &1 + mada. (10.13)
Computing the Poincaré algebra, we observe that
{(Gopn)i, Pj} = 6i5(m1 + ma). (10.14)

From this, we can extract that the Hamiltonian appearing in the Poisson bracket {G;, P;} =
8;;H and in egs. (10.8)-(10.9) is the rest-mass energy E = my(c?) +ma(c?). Therefore, we
also have that

hPM =™ (149, ¢ = 0. (10.15)

Newton 2 Newton
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By contrast, the relation {G;, H} = P; is satisfied only if we use here the Newtonian
Hamiltonian, given in eq. (8.5). Consequently, we encounter here the PN order offset
announced earlier: To compute the relation {G;, H} = P; at Newtonian order, we require
a generator of one-PN order less, i.e., of order of the rest-mass energy.

Let us then proceed to the next non-spinning PN order, the 1PN sector. Based on
the previous offset, at 1PN we require an ansatz for é, and hence for h¥™ and ?PM, of
OPN order, so at most proportional to Gxym/r ~ v? ~ p?. Taking also into account the
considerations given in §10 that constrain the form of the ansatz, it reads

2 S o V) S N> o
M| g PL g e i) i) gy (10.06)
1PN mi mq mq my
2 — — 2 — — — — —
- ‘n ‘n n
Pl (g P g (g P g BTV gy (10a7)
1PN my my m1 ma Jmi

with «; and B; being unknown numerical coefficients. In order to determine them and
uniquely fix the ansatz, we must use the condition {G;, H} = P,. Expanding both the gen-
erator and the Hamiltonian into its corresponding PN corrections, we obtain the following:

P={G, H}
= {Gopx + Gipn, Hy + Hipn}
= {Gopn, Hx} + {Gopx, Hipn} + {Gipn, Hx} + {Gipx, Hipn ), (10.18)
~——————

O(2PN)

where the last term can be neglected at 1PN order, as it would be of order 2PN. Then,
since at Newtonian order the Poisson bracket already resulted in {éopN, Hy} = ]3, at 1PN
we have that

{Gopn, Hipn} + {Gipn, Hy} = 0. (10.19)

Therefore, one cannot just naively compute {énpN, H} at nPN order, but instead we have
to take into account all combinations of generators and Hamiltonians contributing to that
certain PN order. To make the combinations contributing to each PN sector clearer, we
have included the multiplication Table 10.1, where we show the combinations of generator
and Hamiltonian used in the Poisson bracket of eq. (10.3). Since they act differently,
we separate the contributions coming from the usual Poisson brackets {, }(; ), given by
eq. (10.3), in Table 10.1, and the contributions coming from the spinning addition to the
Poisson bracket {, }spin, defined in eq. (10.6), in Table 10.2. For the latter, which will only
be used in the following section, non-spinning sectors are not necessary, as they do not
include spin variables and vanish upon substitution in {, }spin-

In the present case, using the Newtonian generator given in eq. (10.13) and the 1PN
ansatz of eqs. (10.16)-(10.17), the condition of eq. (10.19) fixes the undetermined coeffi-

cients of the ansatz to be
1

a1 =7, Qg =-=084=0, (10.20)
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Hy Hipn HEQ HELO HYP HYO | HYP HEO
Gopx | Newton | 1PN LOSO |NLOSO|LOS* |NLOS?*|LOS® |NLOS?
Gipn | 1PN NLO SO NLO §2 NLO 3
GLS | LOSO | NLO SO | NLO $? LO S | NLO S?
GO | NLO SO NLO §°
G |LOS* |NLOS? |LOS® |NLOS®
GNO | NLO §? NLO §°
G |LOos* |NLOS?
GNI© | NLO S?

29

HES HYGO | H HYO | HP HYO
GL9 | NLO SO NLO 2 NLO S?
aN%°
G | NLO 82 LO S* | NLO §°
GNLO NLO §°
GLY | NLO §°
GNIO

Table 10.1: PN sectors to which different combinations of the center-of-mass generator G and Hamiltonian H contribute, when substituted in the
Poisson bracket {G;, H}(, ) of eq. (10.3), up to the relevant NLO S? contributions.

Table 10.2: PN sectors to which different combinations of the center-of-mass generator G and Hamiltonian H contribute, when substituted in the
spinning addition to the Poisson bracket {G, H }spin of eq. (10.6), up to the relevant NLO S* contributions.




in agreement with egs. (18a)-(18b) of [65], and with the expected value predicted by the
special-relativistic limit of eq. (10.12). To solve for the coefficients, we make the expression
vanish order by order in GN and in the momenta and masses. Then, we obtain a set of
equations that uniquely fixes all coefficients.

Even though we will not need it at NLO S3, let us continue to 2PN order to exemplify
the course of action once more. At 2PN we require an ansatz of 1PN order, so at most
proportional to G&m?/r? ~ (Gxym/r)p* ~ p*. In particular, it is given by

2 G 4

L o p
{)MLPN = —5raimimy + ppp—— (agm%p% + agm3 (P n)2> — 167%? —(1+2),
(10.21)
YPM’ g[ﬁmlmgn + Gf (ﬁ2m2p1 + 53m2(p1 n)?)ﬁ+ <ﬁ4m2(ﬁ1 _ ﬁ)
2PN r mims

where we have already fixed the O(GY) term with eq. (10.12). To fix the undetermined
coefficients, we then use the 2PN order condition

{Gopn, Hopn'} + {Gipx, Hipn} 4 {Gopn, Ha} = 0, (10.23)

where the 2PN Hamiltonian can be found in eq. (6.6) of [45]. Then, from the condition
resulting from eq. (10.23), we obtain that the 2PN correction to the generator becomes

G2 m2ms pi
hPM‘ = ONTI P g ), (10.24)
2PN 472 16m3
~ Gy
YPM’sz X i+ (1o 2), (10.25)

in agreement with egs. (4.9) and (4.13) of [29].

10.3 Poincaré algebra for spinning sectors

In order to address the sectors including spin variables, we have to take into account the
spinning generalization of the Poisson bracket, given in eq. (10.6). Then, as always, we have
to work our way upwards in the PN orders, notwithstanding that the spinning addition to
the Poisson bracket {, }spin has a different power counting, as it mixes higher-in-spin sectors
without modifying their PN order. Hence, additional different combinations of generator
and Hamiltonian are to be used here, and they are represented in the multiplication Table
10.2.

Starting with the LO SO sector, we would require an ansatz of one-PN order less, so
at most proportional to GONS Lp. Since it does not contain powers of G, we can completely
read it from the special-relativistic limit in eq. (10.12), resulting in

SO
hS ’LO — 0, (10.26)

—

YSO

1 =
= - — | 12 10.2
o= " a S P 2), (10.27)
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in agreement with eqs. (4.10) and (4.14) of [29]. Using it in the LO SO Poincaré algebra
condition

{Gopn, HES Y wp) + {GES Hx }ap) = 0, (10.28)

we find that it is indeed satisfied.
The following LO spinning sectors do not contain kinetic terms, and so their corrections
to the center-of-mass generator vanish by the special-relativistic limit,

GSISZ GSS - Ggso = 0, (1029)

as given also in eqgs. (4.11)-(4.12) and (4.15)-(4.16) of [29]. This is because they can be at
most proportional to GONSlsg, G%Sz, GONSSp, ..., respectively, fixed to zero by eq. (10.12).
Even if their corrections to the generator are zero, their Poincaré algebra conditions are
non-trivially satisfied, and up to LO S? they are

0= {Gorn, H5Z, Hap) + {G5 %, Hn Y p)s (10.30)
0 = {Gopn, HE } (o) + {GES  Hx} (o) (10.31)
0= {GOPN’HS3 Yow) + 1G58 HES, Yoy + {GES HE Y 0y + {GER,, HES Y o)
+{G§3. H, }(a: p) + {ng s AN} (op) + {G5%,. S1Sz}spln
+ {Gslsg7 }smn + {GSS ) Slsg}spln + {Gss ) ss }Spin' (10.32)

We can observe that starting at LO S?, there start appearing contributions from the spin-
ning Poisson bracket.

Having attained all relevant leading order sectors, we can progress to the next-to-
leading orders, starting with the NLO SO. There, we require an ansatz for the generator
of the order of the LO SO, so at most proportional to (Gym/r)S'p ~ S1p3. Fixing the
O(GY) terms from the special-relativistic limit in eq. (10.12), the ansatz reads

e Sy - pr x it Sy - po x i
h§0’ - {al gL anQW] —(1o2), (10.33)
NLO 7 my ma
~ G S, Py x 7 Sy by X i =
Yso‘ _ Gy ([WMW 4 52m2w} [53 ]m251 i
NLO T my mo
Sy x P S x P 2 L
+ Bsmia 1 X Pl + Bgmia ! p2> + p1381 X p1+ (1 &~ 2). (10.34)
mq mo 8my

To fix the undetermined coefficients, the following NLO SO Poincaré algebra condition is
used:

0= {Gorn, H3G Yo p) + {1G1pN, HES Yy + {G5S. Hipn }ap)
+ {GS 56° HN} (z,p) + {G807 %AOO spin» (1035)

which uniquely fixes the ansatz to

SO _GN S1-p1 X7

= — (12 10.
Ulno ~ 42T (I 2), (10.36)
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5m P2
oma —75 PG i+ (12
+2 51><P1 1Xp2>+8m§’ 1 X1+ (14 2),

?50‘ _GN< P2iig
(10.37)

in agreement with egs. (4.10) and (4.14) of [29].
At NLO S;Ss we require an ansatz for the generator of the order of the LO S1Ss, so
at most proportional to (Gxm/r)S1S2 ~ S1S2p®. In particular, it is given by

3152 o =0 (10.38)
yois|  _GNg (S - )1 + (14 2), (10.39)
NLo 2 TRV ! ’

where the O(GY) terms vanish. To fix the only unknown coefficient, we use the NLO S; S,
Poincaré algebra condition

0= {Gorn, HE) Y ap) + {G1PN: HSS, ) + 1G58 HES Y (o)
+ {G%?ng HIPN} (z,p) + {GglLs(g), HN} (z,p) + {GSO’ Slsg}Spln
+{G53, H5 Yopin + {Gsls2a 58V epin + {GES, HES Yopin, (10.40)

which implies a unique correction to the generator at NLO S;1Ss of the form

5152 = 10.41
1 NLO O’ ( 0 )
. 3G

Y518 o WN (S - 71)S1 + (1 ¢ 2), (10.42)

in accordance with egs. (4.11) and (4.15) of [29]. Finally, the last sector that we require to
tackle the NLO S3 is the NLO SS, where a correction of the order of the LO SS is required
for the generator, so at most proportional to (Gnym/7)S? ~ S%p?. However, in this case
we have to take into account the possibility of having Wilson coefficients coming from the
spin-squared non-minimal interaction, so more unknown coefficients will be used. More
concretely, the ansatz is

G 52 (S _ﬁ)Z
SS UGN 7 |
h1 ‘NLO - F |:<a1 + 5101(ESZ)>m2m71 + (Oég + 5201(]382))77’1, ’rn,1:| (1 < 2)
(10.43)
i G S2 (5; ) 'r_i)2
SS _ GnN h | B
Y ‘NLO T2 ([(51 + WICI(ESQ))mQE + (52 + Wch(ESQ)>m27n1:| il
Sy -7
+ (B + wsCrese) ) ma LG )+ (1e2) (10.44)

where «;, §;, 9; and w; are the undetermined numerical coefficients. They are fixed by the
NLO SS condition

0= {Gopn, HE} 2 py + {G1rn, HE Yoy + {GES. HES Y o)
+ {GSS 7H1PN} (z,p) + {GSLO HN} (z,p) + {Gsov Slsg}spln
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+ {GSO7 }Spm + {Gslsg7 }Splﬂ + {GSS ) SO spin;

which forces the generator to have the following form:

G 52
SS N st
& ‘NLO 23 <1 T Cl(E52)> le (1+2),
- G g
SS N
v ‘NLO T2 (1 + Cl(ES?))”w TS 41 2),

equivalent to the solution written egs. (4.12) and (4.16) of [29].

(10.45)

(10.46)

(10.47)

With this last contribution, we have exemplified the verification of the Poincaré algebra

for all relevant lower-order PN sectors. Hence, the next step is to apply this strong self-
consistency check precisely to the NLO S? Hamiltonian, which is addressed in §11.7 in our

results.
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Part 111
Results

11 Next-to-leading cubic-in-spin sector

In this section we will apply the methodology described in Part II to calculate for the first
time the dynamics at the NLO S sector, which represents the highest-in-spin and state-
of-the-art result for the compact binary inspiral. More concretely, we will first address the
derivation of the corresponding Feynman rules and diagrams, and then calculate the stan-
dard reduced potential from the interaction potential, as well as the equations of motion.
Then we will obtain the Hamiltonian, which is valid for general compact objects and holds
in general coordinate frames, with general orbits, and with arbitrary orientations of the
spins. From the Hamiltonian, we will define the binding energy, and proceed to obtain
gauge-invariant relations for the binding energy as a function of the angular momentum
and of the orbital frequency. Lastly, we address the Poincaré invariance of the system,
which constitutes the most stringent self-consistency check in PN gravity.

11.1 Feynman rules

Before turning our attention to the new results at the NLO S? sector, let us first address
a possible source of ambiguity in the interaction potentials, which has never been studied
in detail before. In particular, the spin-induced non-minimal coupling Lagrangian Lxwc
appearing in eq. (2.9) can in principle be freely defined using either a tensor product of
spin vectors, e.g. (S*SY), or a contraction of spin tensors (S**S,").

Consequently, we should evaluate whether the two formulations are equivalent, or if
they lead to different results in the lower-order sectors, which include up to LO S and to
NLO SS. More concretely, the quadrupolar and octupolar non-minimal couplings can be
defined with a product of spin vectors, as given in eqs. (2.10)-(2.11), and rewritten here
for convenience,

CES2 Ep,l/ CESZ D)\Bl“/
2m 1/ u2 6m2 RV u2

or with a contraction of spin tensors, where an extra minus sign appears with respect to

Lpge = -

SHSY  Lpgs = — SHSYSA, (11.1)

the product of spin vectors S*, which are spacelike,

Crs2 L

Crq2 DB
_ poQ v _ ~“ES APwv quy o v o
DyB,, D\B,,
Lpgs = Cps? AT GuGI S A Lpgs = Cps? AT g gv s A, (11.3)

6m? /2 6m? 2

We see that in the octupolar coupling three different options for the contraction of the
spin tensors are possible, so that the free spin vector can be contracted either with the
covariant derivative, or with the first or second index of the magnetic component of the
Riemann tensor.
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Following the description presented in §4 and computing all different cases, it was
found that the resulting Feynman rules corresponding to the spin tensor prescriptions can
be obtained from the spin vector counterparts, via the explicit rule of thumb substitution
SiSI — (8187 — S2§9) for the pair of spin variables that are contracted. For instance,
using the spin vector prescription of eq. (11.1), we obtain the following NLO one-scalar
graviton coupling to the worldline spin-squared,

F / dr Ces? [slsﬂ (a aj¢(1+ % ) 300k 8,00 — 2070, 8t¢))

—52 —Uvjaajgb 20099 — 8t¢)} (11.4)

so that its spin tensor analog, derived from eq. (11.2) and with a result given in eq. (4.46),
can also be obtained realizing the substitution $S7 — (5%S7 — §25), as well as S? =
S1896;; — (8887 — §259)8;; = —25% in eq. (11.4).

Now, it turns out that to leading order, the spin vector and the spin tensor prescrip-
tions lead to identical results already at the level of the Feynman diagrams, calculated
following §5. This is because, in all instances, during the evaluation of the diagrams we
encounter a contraction like

o - 1 .
(5187 — 525”)81-8]-; = (887 — 525”) 5 (=0 + 3niny), (11.5)

0
that makes the extra term between the two Feynman rules vanish. As a consequence, we
find that the two formulations are equivalent, and we recover the same potential, Hamil-
tonian and binding energy at LO SS and at LO S3.

By contrast, at NLO SS, the prescriptions yield different results in each Feynman
diagram. Nonetheless, they were also found to be equivalent, but at the level of the
interaction potential, when the sum of all graphs is taken into account. To calculate the
NLO SS potential we require six diagrams, given in figure 4 of [24]. Using the spin tensor
prescription of eq. (11.2), we have that all diagrams are in exact agreement with egs.
(6.34)-(6.39) of [24], so that we obtain the same potential V&LO as in eq. (5.20).

On the other hand, using the spin vector prescription of eq. (11.1), we obtain the
following differences for each diagram, where AFig. 4(-) = Fig. 4(-)|vector — Fig. 4(*)|tensor
signifies the difference with respect to the results given in the paper:

. C(ms?) Gma Lo 30 (ms2)GM2
AFig. 4(a) = W [ — S22 + 352, - n)Q] - WS%
C 2 GTnQ 1 . . N .
+%[—555(a1-n)+5§(v1.n)} +(142), (11.6)
C 2 Gmg
AFig. 4(b) = — % [ — 282(0 - ) + 6S2(T - 1) (T - ﬁ)]

Cira2yGmo .
+ %Sf@ )+ (14 2), (11.7)
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201 (ESQ) Gm2

AFig. 4(c) = e 52(v2 ) + (1 <> 2), (11.8)
AFig. 4(d) =0, (11.9)
AFig. 4(e) =0, (11.10)
AFig. 4(f) =0. (11.11)

As it turns out, the total difference between the two prescriptions is actually given by a
total time derivative,

) CipeyGms d [3 1 L
Y AFig. 4(5):—%& S+ S SHE M|+ (L e 2), (11.12)

which does not affect the equations of motion and thus can be dropped from the La-
grangian, making the two results equivalent also at next-to-leading order. Yet, we could go
on to perform the relevant position and spin redefinitions to eliminate higher-order time
derivatives, and then perform a Legendre transform to obtain the Hamiltonian for each
prescription, following the descriptions provided in §6 and §8, obtaining a difference given

by
NLO NLO NLO
AH HS ‘vector HS |tensor

C G?m?2 C Gm 7. TN 2 2
1 1 mi

2m1r4
_ PP g i ”] + (16 2), (11.13)
mi1ms ma mo

where Hé\ISLO\tensor reproduces the result in eq. (8.13). In this case, the Hamiltonians are
actually related by a canonical transformation. For that, we check whether there exists an
infinitesimal generator g of a canonical transformation such that

dg

HIO = {H, g} = (11.14)

as detailed in Appendix B of [44]. In this case, it was found that the generator reads

Cl(ES2)Gm2 ﬁl -n
= — S? 1< 2). 11.15
g 12 [ + ( ) ( )

Therefore, also at the level of the Hamiltonians the two prescriptions are equivalent, being
indeed related by a canonical transformation.

If we were to still proceed to compute the binding energy as in §9, we reproduce the
NLO SS correction in eq. (9.4) for both the spin tensor and the spin vector prescriptions,
without any additions. Therefore, even if we missed the total time derivative (or canonical
transformation) in the potential (or in the Hamiltonian), the difference vanishes identically
in the binding energy, which is a physical observable.

With this analysis, we verify that all calculations and predictions up to LO S* and to
NLO S? are not modified when using either spin vectors or a contraction of spin tensors
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in the spin-induced non-minimal coupling. The analysis to NLO S, which involves the
calculation of the Feynman rules entering the 53 Feynman diagrams using the different
prescriptions of egs. (11.2)-(11.3), is left for a possible future check.

The Feynman rules for the NLO S were obtained using the spin vector prescription,
combining both pen-and-paper calculations and using the publicly available EFTofPNG
code [48], reproducing the Feynman rules provided in eqgs. (4.49)-(4.51) and (4.53)-(4.54),
as well as those with a higher number of gravitons given in [1].

11.2 Feynman diagrams

Using the Feynman rules that we verified, and employing again the EFTofPNG code, the
corresponding 53 Feynman diagrams were also calculated, verifying the total result for the
interaction Lagrangian provided in egs. (5.21)-(5.42). Nevertheless, due to the presence of
triple products containing both scalar and vector products, its total result has been further
simplified using the following vectorial identity for 4 vectors in 3 dimensions, presented in
eq. (3.14) of [19],

—

N[/_(a] EA}A‘Q-A‘gXE4—EQE3'E4XE1+E3E4'E1ng—g4g1-ggxg3 56 (1116)

This identity will play a central role in the calculation of all of the forthcoming NLO S3
corrections, as it will be regularly used to simplify the results.

11.3 Reduced potential

Following §6, for the NLO S? sector we have to first take into consideration the 4 contribu-
tions coming from the position shift of eq. (6.14) at LO SO, as shown in Table 6.1. They
consist of:

1. The LO SO shift of eq. (6.14) applied to linear order on the NLO quadratic-in-spin
potentials of egs. (5.19)-(5.20);

2. The LO SO shift of eq. (6.14) applied to quadratic order on the LO SO potential of
eq. (5.14);

3. The LO SO shift of eq. (6.14) applied to cubic order on the Newtonian Lagrangian
of eq. (5.7).

Nonetheless, the NLO S? sector also starts receiving contributions from further position
shifts and spin redefinitions. In particular, they are:

4. The NLO SO position shift of eq. (6.22) applied to linear order on the LO quadratic-
in-spin potentials of egs. (5.15)-(5.16);

5. The NLO quadratic-in-spin position shifts of eqs. (6.30)-(6.32) applied to linear order
on the shifted LO SO potential of eq. (6.16);

6. The NLO quadratic-in-spin spin redefinitions of eqs. (6.31)-(6.33) applied to linear
order on the LO quadratic-in-spin potentials of egs. (5.15)-(5.16);
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7. The LO S spin redefinition of eq. (6.18) applied to linear order on the LO SO
potential of eq. (5.14).

These contributions from lower-order sectors amount to a total of 484 terms (plus crossed
1 + 2 terms) in the NLO S? potential. Since the redefinition of variables represents the
most subtle step in the thesis, we provide here the exact values of these highly non-trivial
NLO S? contributions for future reference.

Particularly, when the LO SO shift of eq. (6.14) is applied to linear order on the NLO
S1S2 potential of eq. (5.19), the NLO S3 sector receives the contribution

G2 . . - — -
IR [(1+22)451 ngﬁlsl-ﬁJrSl-ﬁlxﬁ(—451'52
1

- - O 5 3o = -
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Likewise, when applied to linear order on the NLO SS potential of eq. (5.20), the NLO S3
sector receives the contribution
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When the LO SO shift of eq. (6.14) is applied to quadratic order on the LO SO potential
of eq. (5.14), we obtain the NLO S? contribution
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When the LO SO shift of eq. (6.14) is applied to cubic order on the Newtonian Lagrangian
of eq. (5.7), we obtain the NLO S* contribution
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When the NLO SO position shift of eq. (6.22) is applied to linear order on the LO S;So
potential of eq. (5.15), the NLO S? sector obtains the contribution
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Similarly, when it is applied to linear order on the LO SS potential of eq. (5.16), the NLO
S? sector obtains the contribution
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When the NLO S;S; position shift of eq. (6.30) is applied to linear order on the shifted LO
SO potential of eq. (6.16), the NLO S? sector receives the contribution
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Likewise, when the NLO SS position shift of eq. (6.32) is applied to linear order on the
shifted LO SO potential of eq. (6.16), the NLO S? sector receives the contribution
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When the NLO S;S2 spin redefinition of eq. (6.31) is applied to linear order on the LO

quadratic-in-spin potentials of eqs. (5.15)-(5.16), the NLO S? sector receives the respective
contributions
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Analogously, when the NLO SS spin redefinition of eq. (6.33) is applied to linear order on
the LO quadratic-in-spin potentials of egs. (5.15)-(5.16), the NLO S* sector receives the
respective contributions
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Lastly, when the LO S? spin redefinition of eq. (6.18) is applied to linear order on the LO
SO potential of eq. (5.14), the NLO S? sector receives the contribution
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Note that the subscripts 1,...,13, denote the different contributions to NLO S®. Hence,
at this first stage we can already note the enormous increase in complexity and in scale
that going to the next odd-in-spin sector implies.

When combined with the Lagrangian in eqs. (5.21)-(5.42), which came from the evalu-
ation of the 53 Feynman graphs, it results in a potential that requires the following position
and spin redefinitions to eliminate the higher-order time derivatives still there:
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As a check of the variable redefinitions, it has been verified that the resulting reduced
potential corresponds also to the insertion of the lower-order equations of motion in the
higher-order time derivatives, as it should at this order. This way, we obtain that the NLO
S3 reduced potential reads as follows:

(VOJF© = (VOIS + (D)J° + (1 0 2), (11.32)
where we have
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Comparing with the original Lagrangian in egs. (5.21)-(5.42), we can see that the reduced
potential is considerably smaller in scale. Note that there is a peculiar Vj5 term that
is multiplied by a Wilson coefficient squared. This is unusual since Wilson coefficients
capture the UV physics of an extended object that is modeled as a point-like particle.
Thus, a product of them could signal the breakdown of the point-particle picture at higher
spins, as it could indicate the emergence of composite effects. In particular, looking at it
from the EoM perspective instead of from the variable redefinitions, we have that at LO
SS the precession equation is

_ 601(E52)Gm2 -

(578 (S -7)nlis]), (11.51)
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as given in eq. (7.12), while the NLO SS potential of eq. (5.20) contains the terms

Cl (ES2) sz N
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Substituting the lower-order EoM, we exactly obtain the term V5], thus the outcome of the
precession effects at LO SS on the NLO SS potential is the presence of Wilson coeflicients
squared at NLO S3. For black holes these Wilson coefficients are expected to be 1, so
numerically this feature would not be exceptional, yet for neutron stars where this Wilson
coefficient may be considerably larger than 1, then this feature could become notably large
and dominant. Therefore, it would be interesting to investigate the physical interpretation
of this term in the future.

Moreover, the terms Ly and Lg of the original Lagrangian in eqs. (5.21)-(5.42), which
exclusively received contributions from the 4 graphs with new spin-dependent Feynman
rules, conspire to exactly cancel each other in the reduced potential. Consequently, the
NLO S? reduced action does not depend on the gauge used in the new rules, which is
thus equivalent to the original gauge used in lower-order sectors, and nor will the resulting
Hamiltonian and physical observables.

11.4 Equations of motion

Since we have obtained the reduced potential, we can also use it to derive the NLO S?
correction to the physical EoMs, for which we follow the description provided in §7. Based
on Table 7.1, we can see that the NLO S® EoMs receive 11 contributions from lower-order
sectors. In particular, they come from:

1. The substitution of the LO S® EoM for the position, in eq. (7.16), into the 1PN EoM,
in eq. (7.4);

2. The substitution of the LO S* EoM for the spin, in eq. (7.15), into the LO SO EoM
for the position, in eq. (7.9);
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3. The substitution of the LO SO EoM for the spin, in eq. (7.8), into the LO S? EoM
for the position, in eq. (7.16);

4. The substitution of the LO quadratic-in-spin EoMs for the position, in egs. (7.13)
and (7.14), into the NLO SO EoM for the position, in eq. (7.17);

5. The substitution of the LO SO EoM for the position, in eq. (7.10), into the NLO
quadratic-in-spin EoMs for the position, in egs. (7.18) and (7.19);

6. The substitution of the LO quadratic-in-spin EoMs for the spin, in egs. (7.11) and
(7.12), into the NLO quadratic-in-spin EoMs for the position, in egs. (7.18) and
(7.19).

Taking their results into consideration, and adding the contributions to the EoMs coming
precisely from the NLO S? reduced potential, given in egs. (11.32)-(11.50), we obtain that
the NLO S? corrections to the physical equations of motion of the position and the spin
amount to a total of 2216 and 3809 terms, respectively. Since the specific form of the
equations of motion is gauge-dependent, although their solution is not, and they are too
lengthy to be included in the thesis, the complete result for the EoMs can be provided in
a Mathematica notebook upon request.

11.5 Hamiltonian

Continuing in the spirit of §8, at the NLO S? sector we will receive numerous contributions
from lower-order sectors, and its Hamiltonian will come from the Legendre transform of
the reduced potential in egs. (11.32)-(11.50), as well as from iterations of the 1PN sector
with the LO S3, and of the LO SO with both of the NLO quadratic-in-spin sectors. More
specifically, we use the following Legendre transform for the relation ¥7(p), which extends
that used in eq. (8.3) up to LO S? and to NLO quadratic-in-spin,

c_ P 1 0L 1 O(VRES 1 A(Vs)L0 N AN o DV

V] = — — — 1 O0Vs)so | L F\Vs)g2 L PAVs)g2 1 UiVs)gs

1 mp  mp OUy m1 OV my Oy my o, mi 00
P P Gl Bmapy 7, 1 ] 3GmeSni  2GSyn
Comi 2mi " r mi * 2p2+ 2( 2 7i)n 2myr2 )

G lg & A i S (g = i S oy i
+23[sl~sz(12<pl-n>n = 5p) = 8- ((Sh - 5! + (1 - 7) S1)
mir

— —

9.8 v 28 ~vaid = SN i o(d A\ ale = Qi
+§(52'p1)51+§(sl 'p1)82+51 'n<—6(Sg~p1)n +3(52'7‘L)p1 —6(p1-n)S2)}

5 & -\ qi
(52'192)51

G a2 2/ 45, . .
+[51-Sg<—4(2-n)n+6p2)—2

mimers

J = 21 & = 7 9—» -\ Q1 J = 7
+Sg-n(z(51 -pQ)TL —I—*(pz-n) Sl) —3(51 'pz) SQ

2
Y /9 . 154 o921 o o2l
+ 51 ~n(§(52-p2)n _3(52.71) (P2 - ) n —4(Sg-n)p2+4(p2-n)5’2)}
G |3 S i & 20 3G i
+ m%r3 |:2S ((p2 ' n) n _p2) + 3<Sl : ’)’L) Do + 5(51 'pg) Sl

93



G |3 Y A S 20, BE o i
3 [2522 ((p2 ~i)n —p2> +3(Sy - 70)* ph + 5(52 - p2) S5

m27"
R 3 B .
# 8o (= 308 o)t~ 372 1) 53]
Gmeo 21,2 Lo 9 9 5 5 5 i
i [—4(51 - 71) P1+S1< Z(Pl i) n' + 2]91) - 5(51 -p1) St

+Z§1 n<(51 pl)n + (p1 )Si)]
CiesnG T 2 5, ., 21, ) 3. .9,
+m%‘k&"w(_4@TM”—4PQ+&(—4@rmn+4m)

g o\ 38 (/8 ~\i, (= = qi
—§(S1 -pg)Sl—i—iSl -n<(51 ~pa)n' + (p2 - 1) Sl)]

Cpg2)Gma L .. 5. 9 - o =
4-1@;3[%(amwwm—Qm)+2@ym%ﬁ+wypn%
=350 (G g+ i 81|

Cows?G [ a2 o, 21 2 3.
+TTl%’I”3[S2n) (_Z(pQ n)n 4])2)4-5'2(—1(]72 )n+4p2>

L vwi 3a ~((a ~\,i S oy Qi
- 5(52 - p2) S + 552 T ((52 “p2)n' + (P2 - 1t) Sz)]

3Cowes)C (o a2 i o

W [3(52 S7)7 Py — 53 p1}
;¢ (51 7) 5958 — 225, i) (5 - ) S 4 2 (51 Sy) Siing

m2rd |2 2

ChpsyG [ .

% [6(81 -71) S9S) +15(S) - 7)? S n? — 352 S n

mlr

mo 15 - R ii 3 ii 5
o < - 5 i) Sy + ZS% 51]”3>]

ComsnG [ 9 & iwj 45 P9 i

N 7 7, ] 2. Qv),. ]
e [ 5 (82 - 71) S¢S} + (82 - 1)° 55 15351 n}
CypsnGma [~ Copg? G B
1073;3;4 [5(51.71)25” J 525 J] +7ﬁij [5(52%) Sy'n’ — S5 53'n ]
1 2

(11.53)

Then, the NLO S? correction to the Hamiltonian is obtained from

1 O(Ve)gs 57 1 0L
HNLO _LlPN<UI_>p7]+7 ( Sjss )4‘(‘/:9)]5?9(171%&—* iPN)
mr mr 81}1 mr mr 81)[

N 1 9Lipn 8(‘/;)539 n 1 9Lipn 8(Vs>I§9
mi 8171 8171 mo 8172 8172
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(171 — ﬁ—l + 18(‘/8%8)

5 1 0(V)&S
% NLO(—» o pr 2 9Vs)so
+( 8)8182 v + mr mr 817]

Vs NLO
mr mr 817] )+( )SS

L ORI, 0V)s6 1 90K, 0(Vo)ss

mi 8’(71 6171 meo (9?72 8’[72
C L A(VIRC o(Ve)§8 1 A(Ve)§E© a(Ve)ss
mi 8’(71 6171 meo 8?72 8’[72
. NLO S NLO
Lo(~ . b1, 1 9(Vs)gg, ro(» . P, 1 9(Vs)sg
+ (V88 (v - mi; T mi on, ) + (V8 (v = m T m; on, )
+ (V)N (UI = %) (11.54)

Computing all contributions, the NLO S? Hamiltonian reads

HYLO = %Ié(; + Hé\?“o + (1 & 2), (11.55)
where we have
Hgyg, = f;ﬂ}“H(l) + fjn;H@) + fszfﬁ?% CI(E:; “ n}uH“”
N CH(E;Q)GQW;H(E,) + CH(E:;)GQ%H(G) + gw,lﬁH(?) ﬁm:;m H)
+ im;m% Hyg) 01(322)(?”% (10) Cl(iT)G m:;mZ H
Cl(iSj)G m%lm% Him + 01(1;332)G _ 1mg Hys, (11.56)

49~ o - L T9a - ,
H(l)—ZSI SQXplsl’n+§Sl‘ngp2S1 n
- - /. . 141 155 17 .
+ 51 52><n<51 n(6p1 n— — P2 n)—z 1 p1+351 P2>
o 3 = 1 - . 9 . 11
+ 5, qxﬁ(z(sl ﬁ)2—551)+52 ﬁgxn<——(51 )2+—Sf)
; 1o - 99- _ 4
+ 5 *1xﬁ(—§sl.52+5sl-ﬁsg-ﬁ)
- DS = 321 -
+ 8 axﬁ(—Z 1S+ S S ﬁ) (11.57)
I - U - T
Hy =515 X p2 51 n+551-52><n(3 1-mp2 -1+ St p2>
3 5 ; . .
+SQ-172xn(Z(Sloﬁ)QqLZSf)+Sl~ﬁ2xﬁ(717Sl-Sz+3OSl-ﬁSQ-ﬁ>,
(11.58)
31> = = . = = (. = . . 295
H(3):ZSySQxplsl-n+Sl~Sg><n<1851~np1-n—z 1- 1)
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B B B 3. o 141 -
+Sg-ﬁ1xﬁ(B(Sl-ﬁf—SSf)JrSl-ﬁlxﬁ(isl-Sg +—5- ﬁSg-ﬁ>,
(11.59)
11/ = N\N= o = = /(= /3
H(4)—Z(9S SQXp1+Sl SQXpQ)Sl‘n+Sl'SQXn(S n<2p1 7+ T8py - n>
9. - - L= =
+iS1'p1—4451'p2>—51'p1><nS1'52
—‘rgl-ﬁQXﬁ<28§1-§2+3§1~ﬁ§2-ﬁ)-‘rgg-ﬁlXﬁ(—78(§1~ﬁ)2+205%>
= - 169
+ 8 o xt (66(51 72— Sl> (11.60)
27 = L =2 L = = _/ 3= . . 12
H(5):—?51'52><p251'n+51'52><n(—§ 1Py = 55 p2)
= S = 177 = 43
451 Py xSt 8o+ Sy P x ﬁ(T(Sl )2 - Z512), (11.61)
H(G):2251-§2Xﬁlgl'ﬁ+§1~§2Xﬁ(—87§1'ﬁ_’1'ﬁ+45_‘1'_’1>
. - 107
+52-ﬁ1xﬁ(—111(51-ﬁ)2+75f>
1- o L
+§Sl-ﬁlxﬁ<—5951-82+951-ﬁ82-ﬁ), (11.62)
. 212 L 9 33 L . .
Hqgy =5 52><p1<—§ 1 np1+251~ 1 1'71)
1—‘ - 15 = 2 92
+552'P1><n ?(S )2 p? =158, - @ Sy - L pr -7t + 3(Sy - pr)?
15 ., 15 5
—i—S% (?( 1-n)2—3 % )—I— Sl plxn(Sl 52p1—551 7152 npl) (11.63)
3= = L= L. 4 = = - L . 3= . 4 .
H(g):_zl 2 X P20o1-p1p1- N+ 1'52><p1<61n1 2+11 1p2-n
36 poa) e St
1 1°P2p1 1 2 P1 X P2o1P1
1—-‘ N N 55 2 = N~ - = — =~ —~\2
+§5’2-p2><n( ?(Sl n) p] + 5551 -1 Sy -pipy -1 — 11(St - p1)
55 ., S L (27T = .
+S%<—§(p1'n) +11P%)>+51'p1 sz(ZSrSzpl'n
P - S L -
+ZSl-plSQ-n+Sl-n(—SOSQ-npl'n+652~p1>)
s - _/z =& L Lo
+ St (S o — 2651 o — 5571 -7 -
+§2'ﬁ(30§1'ﬁlﬁ2‘ﬁ+55§1'ﬁ2ﬁl’ﬁ>_22§1’ﬁ2§2'ﬁl
=+ §1 e (18552 . ﬁﬁl -}72 + 5552 -ﬁlﬁQ . ’ﬁ:) — 651 'ﬁl 52 'ﬁQ), (11.64)
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—108] - o Sy 7Py -7+ Sy - oSy - P
(35(7% - 71)* — 20p3) 58 Ba - 7)), (11.65)

+
N
3
Qu
31

Hpg) =381 - S x p1 Sy - iip + S - it x ﬁ(— 1551 -7 Sy - Py p1 - 7+ 6(S1 - p1)?
+ 57 (15(171 -71)? — GP%)) + 81 Py x 7 <3§1 - Sopt — 35191 S5 ‘271)7 (11.66)

Hepy =128 - S x 1 S1 - Fipo - 71 + S - S x 5(5 (%pl )2 3p§)
—241 p1 P1 ﬁ)+q2 ﬁ1><ﬁ< (2)5(§ )2 Py - i ph -
+ 158, - @Sy - pap1 - 7 — 651 - 51 St - P + 551 (pl D2 + P - ﬁﬁz'ﬁ»
4380 x o (45(51 APy i - 218,718y g - 27y )
+§2 42Xﬁ((41'ﬁ)2(*%(ﬁl'ﬁ)2 125 2)+7551 nSl “p1p1L T
~6(51 5+ 57 (= )+ 602) ) e x (81 6y
+§1‘p2><n<—3§ - S p? + 3511 Sa - pl)
+ 811 x 7 (ql 5( 3p1 - p2 — 15p1 - 1ipa - n)
11551 71 8o - i - 7+ 351 - S -ﬁl), (11.67)

H9) =351 So x p1 Sy - oo -7l — 128, - Sy x o Sy - Po iy - 7L+ 381 - Py x o S1 - Sa o -
+§2-ﬁlxﬁz(—15(51 )2y - i + 65 - 71 5 - 52+35%52-ﬁ)

- /105 - .o, . S
+52'p2><71(7(51'n)2p1'np2'n—1551'n51'p1p2'71+351'1?151'p2
N T T O .
+S1<—3p1'p2—?p1'np2'n)+51'p2><n( - T P2
158, - 7y Sy - 71 ﬁ) (11.68)
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15 - = L= A £ S S, 15
Has) = — 5 o192 % 5 Sy - iips + Sy - P X i (E(Sl - 71)° p3 — ES%P%» (11.69)
and also
G* mgo G? m3 Ciest)G™ 1 Cres?)G" my
gNLo _ & 2 211 —H H
83 G L e S
2 2 2 2
Cips)G mgH s & ma s & m%H
e s R I U
Cips?)G? 1 Cy(ps3)G? my Cy(8s3)G” m3 G 1
T et s et s s o
G my Cies2)G 1 Ciesn)G 1 Cies) G mo
e e e e s
Cips?)G 1 Cips)G 1 C8s%) G mo
— H ——— —H, 11.70
e L a1 e e R L1 (11.70)
with the pieces:
- L - - L =~ 3
H[l]: 1-P1 xn(9(51~n)2—35f)+Sl‘p2><n(—3(51~n)2+§5f>, (11.71)
= s - 21 = — 2 9 2 = — — 27 = s 2 7 2
Hig = 51-p1 Xn(z(sl'n) —151), Hiz =51 -pa2 X (?(Sl-n) —551), (11.72)

- . (% .5 B S 45 L, 21
Hyg =51y x i (15(3 @) = 282) + S it (L (S m)? = 87), (1173

- . /105, ~ 3 = L L=,
H[5] =51-p1xn (T(Sl -n)2 - ZS%), H[G} =951 - P2 X n(Sl : n)2, (11.74)
= L= I L/25 = 5
Hm = —651 p1 X n(51 -n)2, H[g] = 51 P2 Xn (5(51 -n)2 — 55%), (11.75)
-, . 29 - 17 . . — 23
H[g} :Sl p1 Xn ( — ?(51 '71)2 + FS%) +Sl P2 Xn (39(51 . n)2 — ?S%), (11.76)
Hpg =S plxﬁ(—36(§1-ﬁ)2+7sf), (11.77)
3 (a2 L= . 3= 9, =
H[11}—§S1 p1 X 2( 17151 pl—S%pl'n)+§51 pzxn(—§( |- 71)° p
- L= L N 5. .,
+ 581751 - p1p1 -t — (S P1)2+S%<*§(p1 1) +p%>), (11.78)
Hyy = 28 5(Sy - 7)?p? — 108y - 7Sy - prpy - 7+ 2(S) - 1)
12 = 7551 PL X7 (S1-1)" py 17 Sy -p1p1- i+ 2(S1 - p1)
+ 82 (5(]51 )2 2p%)), (11.79)
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Hyg =5, - Py Xﬁ2<*15(§1 iM)* pi - n+ 51 Sy i+ 51]91 n)

+5-m Xﬁ<15(§ - 77)? ﬁl'ﬁQ‘f‘ZSl'ﬁsl’ﬁlﬁz‘ﬁ_zsl'ﬁlgl'ﬁz

3

N 15
P Be— By n)) (11.80)

+S%< 5

- ., /45 = 5., L 9= L= _ 15 5.
H[14]:Sl~p1><p2<—(51-n)2p2-n—551~nSl-p2——Sfp2-n>

4
-, o = 105, 15 15
—|—Sl-p1><n((S1-n)2 <?(p2-n)2—?p2)——51 i Si - oyt
3 = —\2 2 15 3 2
+ 5 (S1-)" + 57 (o (P2 i) +Zp2)), (11.81)
3. .
Hiysy = oS- x it (= 25(Sh ) pd + 7 (200 - ) + 1Y) ) (11.82)

- L L 35, L. .
Hpyg =p1 P x it (S1 - )% Sy - py + 5 - plXn((sl'n)Q(—5P1'p2—?p1'np2-n)

S e+ S n<651 DL -7t + 551 - Pa Pl - n)+51< )

N | O 031

25 A ﬁ))+§1-ﬁ2xﬁ(4§1'ﬁﬁl‘ﬁlﬁl-ﬁ—(i-ﬁl)?), (11.83)

1., . .
§p1-p2><n<5(S )2 S - Py — 525 - p2>
35 =

+ 8, -1 x ﬁ(5(§1 -7)? pj — S%P§> + 5] - fa X ﬁ(?(sl - 17)?

+§1'171§1'232—5§1'ﬁ<§1']51]72'ﬁ+§1'172]51'ﬁ> -

Hyp= -89 x 2 S-St - oo +

S
St
S
3L

Hyg =S - py x 7 ( 58,72 S g7+ (S -51)2). (11.85)

Note that, still at the level of the Hamiltonian, there are the two peculiar terms Hg and H{y
that are multiplied by a Wilson coefficient squared, which arose from the aforementioned
corresponding contributions to the reduced potential in §11.3.

With this general Hamiltonian, we follow the procedure described in §8.2 to compute
the simplified Hamiltonian in the center-of-mass frame for circular orbits and in the aligned-
spins case, which to NLO S? becomes

vIDS3[ 9 92 3v
HNLO _ F6 1 |: _ 11/ _ T —+ CI(ES2) ( — ? + 21/2) + CI(BS3)(7V + VQ)
L2 11y 502 v 92 )
T <_ s 71 +01(E52>(16 +?> - Cl(BSs))
1/9 9v 92 3 17w 21y
q(4 — O (3 2) + sy (- T+ )
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L? (11 9v? 3 3v 21? 5
+f(8_4”+8+01<ES“’>(_16_4+ i) G ”)))}

V2 LSS, [ 63 3v o 39 v
e T B Gt

L? (3v 15  15v 1/3 3v v
U(s +Cugpsty (- 16+8>>+q<2_4+01(ES2)<_24+2)

L? 3 v 39v
+ (-5 Framn(+Tg)))|+aen. (11.86)

T

Notice how, since S 1 -7 = 0, the peculiar terms Hjg and H7 that were multiplied by a
Wilson coefficient squared in the general Hamiltonian, given in egs. (11.55)-(11.85), now
vanish in the restricted aligned-spins case. Therefore, other partial results in the literature
that may have been computed only for circular orbits and in the aligned-spins case do not
capture these possible composite effects. It would be interesting to note if this would have
observable effects for the unaligned-spins case.

11.6 Gauge-invariant observables and relations

Using the previous simplified Hamiltonian, we can derive the gauge-invariant observables
and relations for the binding energy of the binary system, as presented in §9. First of all,
the circular orbit relation 7#(L) of eq. (9.3) has an addition of the form

ﬁz\»—\

vS$ 10251y 42312 171y 1302
Lu [220'/_224” +C1(ESQ)( 16 4 )+01<353><T_ 2)

10251  2313v 14671/2)

1
= - 220 - 176v — 19512 (— -

q

171 13u2
+ CI(BS3)( 2 65 2 >>:|

V2825, [ 7707 963v o 16287 189y
| T2 s Thumesy ( T 16 T4 )
1/ 19839 123v 2577  981v

which implies that to NLO S?, the gauge-invariant relation between the binding energy e
and the orbital angular momentum L reads

N vS3[ 389y 16702 927

1 /389 20112 927 169v  103v2

8 8 4 4

17v S S 2913 201v 1437
1/1917 2431/
+ Q(4 + — 1(E82 (222 + >>:| + (1 <~ 2), (11.88)
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where the lower orders are given in eq. (9.4).
Secondly, the relation for the angular momentum as a function of the orbital frequency,
i.e., to the variable z, written in eq. (9.10), receives the NLO S3 correction

s <927V * 14V2) * ;(727 B 2032V * 5?? + Cies?) (% - @ B 611721/2>
+ Ciss?) ( - % + 14391/ + 14%))] +2211/252, [9329 n 48§jy
TR IIC I TR

(11.89)

which results in the following NLO S? addition to the binding energy as a function of the
orbital frequency, given to lower orders in eq. (9.11),

e(z) = +vz'l/25} [4; - 12;]/2 + Ci(ms?) (2V - 2091/2> + Ci(ps?) ( - %V — 41/2)
+;<—§+8;—%’2+CI(ESQ)(—2+16V+23'/2>
(11(238 _33V+Cl(ESQ)<—332+10V)>] +(12). (11.90)

From these results, the state-of-the-art next-to-leading order with cubic-in-spin effects grav-
itational waveform template can be obtained, beyond the current state-of-the-art result.
Moreover, it will still be valid for generic compact objects, as we include generic Wilson
coeflicients.

11.7 Poincaré algebra

In §11.5 we derived the new NLO S® Hamiltonian. Hence, to verify its validity, in this
section we address whether it admits global Poincaré symmetry by explicitly finding the
corresponding NLO S? correction to the generators for the Poincaré algebra to hold at this
order. This would result in the most stringent self-consistency check that we can perform
on the Hamiltonian.

Proceeding as described in §10, at NLO S? we require a generator of the order of the
LO S?, so at most proportional® to (Gxm/r)S®p ~ S3p®. But, as seen first in the NLO SS
sector, we also have to account for possible Wilson coeflicients, which can now appear in the
form of both spin-squared and cubic-in-spin coefficients. In particular, now the correction
to the generator is given by the ansatz

NLO 1

S2my

Sy Py x 7l
—_— ((Oél + 5101(E82) + ClCl(BSS)> W
1

st
hy

m1

%In this section we again adopt the convention of Gy to denote Newton’s constant.
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+ <a2 + 020 (gg2y + CQCI(BS3)) :j
(a3 + 030 (ms2) + C301(Bs3)) W
( ay + 64C) (g2 +€4C1(Bs?>)) (5171;]177)(“)

+ SmQﬁ <<Oé5 + 5501(}382) + G0 BS“*)) SITZQ

+ <a6 +06C, 1(Bs?) T CGCl(BSS)) S21

+ <Oé7 + 070 (gs?) + C7Cl(BS‘°’)) W

n <as + 05C) g2y + ggcl(BSS)) (52;?)2) | (11.91)

hffsz o Cj}f W ((ag + 5QCI(E82)> gjnlﬁl + <a10 + 51001(ES2)> 5112]72

n (an X 51101(}382)) W + (alz + 51201(}382)) W)

+ W <<a13 + 51301(Esz)) glmlﬁl + (@14 + (51401(1352)) §1n2ﬁ2

n (a15 n 51501(}382)) W - <a16 + (51601(}382)) W)
51 52 X p1 ( ay7 + 61704 ES2)> §71n-1ﬁ + <a18 + 51801(1352)) 571n2ﬁ>
51 52 5152 X p2 ( aqg + 6190, ES2)> g;l‘lﬁ (Oézo + 52001(E82)> blf)
51 Si-p1xn <<a21 4 52101(]382)) 5;177115)2 + <0422 + (522C1(ESQ)> Sf

n (a23 n 52301(}382)) W + <a24 + 52401(}382)) W)

n §1£22><ﬁ <<a25 + 52501(Es2)> @ + (0426 + 526C1(E52)> §1m2§2

X (a27 + 52701(}382)) W + (ozzs + 52801(}382)) W)

I W <<a29 + 52901(Es2)> 5 + (O‘?’O +030C) (ESQ)> 522

+ (a31 + 53101(Esz)) (Sln;bln) + (agz + 53201(1382)) (5177;;)2)
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where «;, i, 0;, w;, ¢; and \; are the undetermined numerical coefficients, and where
we have also used the special-relativistic limit of eq. (10.12) to fix to zero all O(GY)
terms. Moreover, we have split the generator into the different spin contributions, GNLO
GNLO 4 GNLO (1 o 2).

Then, for the Poincaré algebra the NLO S? sector receives contributions from 22 com-
binations of sectors, as shown in the multiplication Tables 10.1, 10.2. Splitting again into
the different spin contributions, S3 /S5 and $2S5/S1S3, the Poincaré algebra conditions read

0 = {Gopn, HE Y ) + {Grens HEP Y (o) + {G50, HE O Yoy + {GEE HE Y )
+ {G82 : LO} (wp) T {GNLO HEQ Y o) + {GSS ,Hle} ep) {GNLO HN}(m,p
+ {Gsloa }Spln + {ng ) NLO}Spln + {GNLO }Spln + {GSS ’ Slo}spm
+(1+2), (11.95)
0= {éOPN,Hé\Iz%O}(mp + {éle,Héfz% Hap) {GS1O’Hé\Illé?} {GSQOv NLO (z,p)
+{GS1S HES, Vo) + (GRS HY }(arp +{G5%,. gl%o} (xp) T {GSISQaHslo} (@.p)
- {G82 , é\géo (zp) T {GNLO Hszo} (@,p) T {Gs2s s HipN}(zp) + {GS2S s AN} ()
+{G5%. H, 325 Yopin + {GED, H, 325 Yopin + {GEQy» HEE bopin + {GER,, NLO}spin
+ {18, HER, Yopin + {CRIS) HE Yspin + {GE0, HES Yspin + {GEC, HER, Yopin
+ {Gs2s , HEQ Yopin + {Gs2s ; SQO}spm + (1 ¢ 2), (11.96)
where we denote by S;O the terms in the spin-orbit sector containing one spin S;. These
equations result in a total of 5692 terms, and at the present moment we have not yet found
the solution for the undetermined coefficients. The difficulty is mainly due to the vectorial
identity for 4 vectors in 3 dimensions of eq. (11.16), which mixes terms that contain the

same powers of momenta, spins and masses, and thus makes the resolution of the Poincaré
algebra more complicated. Work towards the solution is still in progress.
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Part 1V
Conclusions and Outlook

12 Conclusions

The recent first observation of gravitational waves reinforced the urgency of the devel-
opment of high-precision theoretical models for their waveform templates, for which the
analytical description provided by the EFT of PN gravity plays a central role. In this thesis,
we used this formalism to push the high-in-spin frontier, implementing it for the first time
to derive the dynamics of a generic compact binary system at the next-to-leading order with
cubic-in-spin effects. The most pressing application of our results would be to implement
the Hamiltonian and the gauge-invariant relations within the effective-one-body formalism
to compute the 4.5PN correction to the waveform templates for the emitted GWs.

For that purpose, we have presented the methodology required to obtain the physical
observables, starting from the basic formulation of the effective action. Since a deep under-
standing of the lower-order sectors is necessary to approach any new PN sector, we have
exemplified the methodology to all relevant lower-order PN sectors, from the non-spinning
Newtonian to LO S? and to NLO S2.

We then implemented the methodology for the first time at NLO S3, deriving the
standard reduced potential, where higher-order time derivatives have been eliminated via
lower-order variable redefinitions, the equations of motion, and the Hamiltonian. All of
them have been derived in a general coordinate frame, and are valid for generic compact
objects, generic orbits, and with arbitrary spin orientations. Considering the aligned-spins
case in a circular orbit in the center-of-mass frame, we also computed physical observables,
such as the binding energy, and two gauge-invariant relations between the binding energy,
angular momentum and orbital frequency of the binary. These results, which correspond
to a 4.5PN correction, go beyond the current complete state of the art at 4PN order.
Moreover, as could be observed, the scale and complexity of the calculations increased for
each odd-in-spin sector, being enormously enhanced at the present NLO S? sector, which
prompted the development of a specialized Mathematica code within this master’s project.

As an additional inquiry, we have proven the equivalence of the dynamics for the lower-
order sectors when defining the spin-induced non-minimal coupling either with spin vectors
or with a contraction of spin tensors. While at leading order the difference vanished at
the level of the Feynman rules and diagrams, at next-to-leading order both descriptions
were related by a total time derivative or by a canonical transformation in the interaction
potential and in the Hamiltonian, respectively, which did not modify the physical predic-
tions. The check at the NLO S? sector, which involves the calculation of the 53 Feynman
diagrams using these different prescriptions, is left for a possible future work.

Furthermore, we have proven that the special diagrams that contained the new Feyn-
man rules in this sector, arising from the subleading dependence of the linear momentum in
the curvature and the spin, cancel out altogether in the reduced action. Therefore, the ro-
tational gauge used for these new rules turns out to be equivalent to the simple one used in
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lower-order sectors, and so neither the resulting Hamiltonian nor the physical observables
are modified by this change of gauge.

Besides, it is left for future research to reach a better physical understanding of the
presence of Wilson coefficients squared at NLO S. They arose at the level of the reduced
potential, and could represent composite effects, signaling the breakdown of the original
point-particle picture for higher spins. Approaching it from the EoMs perspective, we saw
that the Wilson coefficients squared at NLO S? originated as an outcome of the precession
effects at LO SS on the NLO SS potential. However, we found that their effects vanish
in the Hamiltonian in the center-of-mass frame in the aligned-spins case. Thus, it would
be interesting to study whether this would have observable effects for the unaligned-spins
case. Although for black holes these Wilson coefficients are expected to be equal to 1,
in which case this feature would not be numerically exceptional, for neutron stars these
Wilson coeflicients may be considerably larger than 1, where it could induce a notably
large and dominant effect.

Finally, it remains to complete the verification of the Poincaré invariance of the system
at NLO S?, which would provide the most stringent self-consistency check for the results
presented in this thesis.
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13 Prospective work

Based on the work presented in this thesis, the possibilities of future research directions
are two-fold: Pursue higher-in-spin corrections, or further apply the results reported in this
thesis, allowing for comparisons with the literature, where restricted partial results have
been computed at this order. For the first direction, the next natural follow-up work would
be to apply the formalism and technology developed in this thesis also in the newly derived
interaction potential at NLO S* [30], to derive the 5PN correction to the dynamics of a
generic compact binary system. This derivation would depend on the results at NLO S3
reported in this thesis, even though it would be computationally simpler, as it corresponds
to an even-in-spin sector. Nevertheless, at this order the effective action for the spinning
particle has to be extended with operators that are quadratic in the curvature, entailing
new Wilson coefficients, as well as the ones encapsulating hexadecapolar finite-size effects.
In the long term, this line of research also attempts to pave the way towards a classical
point of view for understanding the non-uniqueness of the 4-particle gravitational Compton
scattering amplitude for spins s > 2, whose counterpart are classical effects with spins at
the order [ = 2s.

For the second future research direction, it remains to compare the results presented
in this thesis with other independent calculations, in the restricted limit where there is
overlap. Particularly, a comparison of the reduced potential should be made with that of
[72], where it was computed in momentum space from the Post-Minkowskian approximation
at O(G?), using the gravitational Compton amplitude to evaluate the diagrams. Similarly,
work has been done to compute the scattering angle in the case of BHs in the aligned-spins
configuration [73]. Therefore, it would also be interesting to compute the correction to the
scattering angle from our results.

Work is expected to progress in all of these directions in the short-term future.
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Appendices
A Review of Cartan’s method of exterior forms

In this Appendix we describe Cartan’s method of exterior forms, see §7.8 of [41], used in
§4.1 to derive an expression for the Ricci scalar in terms of the NRG fields.

The first step in Cartan’s method of exterior forms is to define a new non-coordinate
basis {0}, which is a dual basis to the vierbein basis, and is defined as

0° = e®, dxt. (A.1)
In terms of this basis, the metric becomes
ds* = G dxt'dz” = gy, dxt @ dx¥ = nap 6* @ 67, (A.2)

where ® denotes a direct product, or tensor product. Thus, we see that the elements of
the dual basis are orthonormal, as they reduce the general metric g,, to the Minkowski
metric 7,4. For a non-Lorentzian metric without time component, it would reduce to the
Euclidean metric d,4.

Now, due to the presence of the differential dx* in the definition of the dual basis, in
eq. (A.1), its elements actually are 1-forms. In general, a differential form of order r, or
r-form, is a totally antisymmetric covariant tensor of rank r. Defining the wedge product
(or exterior product) A of r 1-forms by the totally antisymmetric tensor product

dx" Ndxt? A ANdatt = Z sign(P) dztP®) @ dztP® @ - - - @ daxHP), (A.3)
PeSy

where S, is the set of non-cyclic permutations of r elements, an r-form w is defined by

1
w = gw[mmur]dm“l A ANdahr, (A.4)

where wy,, .| denotes the antisymmetrization of a tensor wy, ...,,,. Moreover, we can define
the exterior derivative d of an r-form, given by

1 0

dw = ﬁ <8$ljwul'“ur> d.fUV A d.’l:'ul VANCERWAN d.fU'uT, <A5)
which creates an (r+1)-form, adding a wedge product with a partial derivative with respect
to the variable we differentiate.

With the previous definitions, we can introduce a matrix-valued 1-form {w®g}, called
the connection one-form, given by

~

whs =19407, (A.6)

where F% = e“ye (@Leg” + 65>\FZ>\> = e*,e4'V  eg” are the Levi-Civita connection

coefficients, projected onto the local frame, which also satisfies the antisymmetry w,, =
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—wy,, due to the condition Vg = 0 for the metric (see eq. (7.155) of [41]). Then, connection
one-forms satisfy Cartan’s structure equations [41], given by

& + g 5P = T
{ s (A.7)

dw®g + w*, ANwrg = R%g,

where T = %TO‘ By 68 A 67 is the torsion two-form, which we will take as zero since we will
consider a torsion-free theory, and where R%g = 7R°‘ 86 67 A6 is the curvature two- form,
out of which the Riemann tensor and thus the Ricci tensor can be finally extracted.

To make the usefulness of Cartan’s method manifest, we can consider the following
simple example: a unit sphere S? in 3 dimensions, with line-element in spherical coordinates
given by

ds* = df ® df + sin® 0 dp @ de. (A.8)
In order to obtain ds? = 0, 0 0° = 0' ©0' + 6% ® 62, we can define the dual basis as
0 = df and 62 = sin 0 d¢, so that by eq. (A.1), the vierbeins are ely = 1, €2y = 0, ely =0
and €2¢ = sin 6. Then, the torsion-free equations for the two elements of the basis are

d(df) + wls A (sinf dep) = 0,
d(sin d¢) + w?1 A (d) = 0,

which are solved by w?; = —w!y = cos dg, since by eq. (A.5), d(df) = 0 and d(sin 0 d¢) =
cos 0 df N d¢p. Then, from the second Cartan structure equation for « = 1 and § = 2, we

(A.9)

have

dw'y = sinfdfh A dp = ~R'512d6 A (sin 6 do) + R 991 (sin 6 do) A db, (A.10)

so that R's;o = 1, or, in coordinate basis, R9¢9¢ = eq 65(1,6796 o R%gys = sin? @ Rlo1y =
sin? @, in agreement with the traditional derivation via Christoffel symbols. In a similar
manner, all components of the Riemann tensor can be calculated, and thereafter the Ricci
tensor and Ricci scalar.

In our present case, we wish to compute the Ricci scalar for the metric

ds? = g drtdz” = e*(dt — Ayda®)? — e 2Py da’ da?, (A.11)
given in terms of the NRG fields. However, solving the torsion-free equations to obtain

the connection 1-forms is still highly non-trivial. Alternatively, one can compute some
coefficients c,,* via

46 — —cy0® 6" N 6. (A12)
where |uv| is restricted to p < v, and then evaluate the connection one-forms as
1 ~
Wy = §(Cuva + Cpav — Cuap) 0%, (A.13)

as detailed in §14.6 of [74]. Proceeding this way, as first done in [49], or rewritten in our
notation in eq. (5) of [44], the Einstein-Hilbert action becomes

. 1 L
Ser = — g G dtd?’x\f[ [%-j]+2wai¢8j¢—164¢Fiij”“'yﬂ ; (A.14)

where v = det(v;;), Fij = 0;A; — 0;A;, and R[v;;] denotes the Ricci scalar for ;;.
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Figure B.1: The diagrams representing the 1PN interaction: (a) One scalar-graviton exchange, (b)
One vector-graviton exchange, (¢) Two scalar-graviton exchange, (d) One scalar-graviton exchange
with a relativistic time correction. We also indicate the contribution to the power counting in the
velocity v for all vertices.

B Evaluation of the 1PN interaction potential

In this Appendix we provide the details required to calculate the Feynman diagrams that
make up the 1PN interaction potential, used in §5.2.

For that, at 1PN we can have both orders O(G2?v?) and O(Gv?). Dressing the bare
topologies represented in Figure 5.1, we obtain 4 possible graphs that contribute to this
order, as shown in Figure B.1.

The first diagram is calculated in an analogous way as the Newtonian case, but now
taking the next-to-leading order in velocity of the scalar graviton Feynman rule, given in
eq. (4.15). This will introduce a velocity in the calculation, which depends on time but not
on the position, as it is dependent on the worldline parameter. Moreover, as opposed to
the Newtonian case where the interaction was symmetric, since here we take the LO rule
for one worldline and the NLO for the other, we have to add the same diagram with the
worldlines interchanged, to explicitly make the interaction symmetric under exchange. It
then evaluates as follows:

[ 3 \
Fig. B.1(a) = (—m1) /dtl ¢(x1) 5”%(751) - (—=m2) /dtz P(x2) + (1 > 2)
3 G
= /dt(v%+v%)mlmQ, (B.1)
2 r
where the dependence of the velocity on time does not change the calculation, as we have
again a trivial delta function in time.
The second diagram is calculated very similarly, but now using the rules for the gravito-
magnetic vector. Hence, we use eq. (4.16) for the vector coupling to the mass and eq. (4.3)
for the propagator of the vector field:

| , \ :
Fig. B.1(b) =my /dtl Ai(z1) vi(ty) - mg/dtg Aj(xo) v3(ta)

4
. /dt@’;lm?m B, (B.2)
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Again, the propagator results in a trivial delta function that can be integrated directly.

The third diagram already becomes more interesting, as we have the 2-graviton ex-
change given in eq. (4.18), which modifies the symmetry factor, trivial up to now. Schemat-
ically, writing the Feynman rules, we will have 2 possible identical contractions:

— [ { \
M1 ¢y - Mada - Madhy + m1d Py - Magy - Madh. (B.3)

To calculate the symmetry factor, we have to multiply the number of identical contractions
with the symmetry coefficient of the contraction. For the latter, we have to expand the
exponential of the action, from which we collect the graphs:

eSeff ~ engrS(l)perS(?)pp

2
S(l)pp
21

2
5(2)pp

] By

S2
1Sy 22 [ Seapn +

51 +...H1+S(2)pp+

where we remind that S, represents the bulk action and S the point-particle action

I)pp
for each of the components of the binary, from §2.1.1. Then, we have to select the order
that is specific for our diagram. In our case, we have no bulk self-interaction, we have one

vertex in the worldline 1, and two vertices in the worldline 2. Since the two vertices in

worldline 2 are identical'?, we have that the symmetry coefficient of the contraction in our
diagram is
: 11
1-S1)pp (;)!pp =  sym. coeff. of contraction=1-1- 2= 3 (B.5)
and so the symmetry factor of the diagram is
1
sym. factor =2 - 5= 1. (B.6)

Then, it evaluates as follows, where now we have to include 2 different times for the
different vertices in worldline 2, which we distinguish using a prime:

T | |
Fig. B.1(c) = — 1ml /dt1 d(x1)p(x1) - (—ma) /dt2 P(x2) - (—m2) /dtlz P(x3) + (1 4 2)

2
k-7 ik 7
= — 87T2G2m1m%/dt/ e_, / e_,i + (1 < 2)
E k2 7 k./Q
G2
= — | dt 7?27:4127%2 (m1 + ma). (B7)

Again, the delta functions of the two propagators are integrated directly, leading to an
overall single time integral. Furthermore, instead of a 1-loop integral, we can observe
that the two integrals decouple into 2 exchanges of one-graviton Fourier integrals. This
factorization behavior is addressed in §5.3, as it will be a general feature of the theory.

107f the vertices were to be different, we would have that S(Q2>pp = (vertex —|—verteX2)2 — 2 vertex; -vertexa,

so it would include an extra factor of 2.

115



For the last diagram, we have an additional complication, it being the time derivative
in the relativistic time correction to the propagator of the scalar graviton, as given in
eq. (4.8). This derivative will dramatically change the evaluation of the diagram, and we
will have to leave all time dependence explicit. In particular, the following generic identity
for the time derivative of a delta function, from eq. (4.36) of [13], will be useful:

/ dtrdtadh, 5 (1 — t2) F(t)g(ts) = — / 0,0t — 1) f(t)g(ts).  (B.S)

Following the previous discussion, in this case the symmetry factor is equal to 2, and the
diagram evaluates as follows, where we denote the coordinates in the bulk using a prime:

| | | |
Fig, B.1(d) =2(-m1) [ dtr o) s [ d's! @uola) @) - (-ma) [ dta o(aa)

:47er1m2/dt1 /d4x//dt2 8t/(5(t1 - t/) 6t/5(t/ - tg)

oiF1- (@1 (1) —&) ke (& —&2(t2))
X / = / — . (B.9)
i k3 F k3

Here it is important to remark that the position #’ of the self-interaction in the bulk does

not depend on t’, because it does not follow a worldline trajectory. Moreover, one could
wonder why does the derivative only act on the delta functions. This is because, going
back to eq. (4.7), we see that in the full propagator the explicit time dependence goes with
the delta function. Then, to evaluate the time derivatives we use eq. (B.8) to swap the
derivative with respect to the bulk time ¢ to a derivative with respect to the worldline
times ¢;, and next we integrate by parts to remove the derivative from the delta function.

Doing so, we obtain

iky(F1—T) ko (T —Z2)
6/ kjei, (B.10)

Fig. B.1(d) = 4rGmima / dt / 71,02, /E k3 P - e

1 1 2 2

where we used that i”j(t) = ¥7. As we see, we can integrate over the position in the bulk,
which leads to momentum conservation in the vertex:

/dBf/ei(EQ—Eﬂ'f' _ (27T)3(53(];1 _ Eg), (B.11)
to obtain that
o eiE'(fl—fz)
Fig. B.1(d) :4me1m2/dtvli02j%kl K T
i
Gmima ,, oL .
= dtT(vl-vg—vl-nvg-n), (B.12)
r

where 77 = 7/r is the unit vector in the separation direction. The last integral is just related
to the scalar master integral in eq. (5.3) by 2 spatial derivatives.

All in all, we obtain that the 1PN correction potential, which conforms with the first
GR correction to Newtonian gravity, is given by

Gmim L Lo G2mam
VlPN:#[_3(0%‘*'05)4‘7’01’U2+v1-nvg-n]+#

which matches the well-known Einstein-Infeld-Hoffmann correction [55].

(m1 + mg), (B13)
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