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Abstract

This thesis presents a novel approach to search for the H → Zγ decay.
Previously, only cut-based methods has been explored [1]. Here, a
machine learning-based approach is introduced, using tree-based
methods in the Higgs boson search.

The analysis presented is based on the decay products of the
H → Zγ decay; muons, electrons—their combination into a Z boson—
and photons. The Z → llγ decay is utilized as a control channel, as it
shares decay channels with the Higgs boson, allowing for testing in
data from the ATLAS detector.

All Z and Higgs models are evaluated against the selection in
[1] on Monte Carlo data (MC) and real data. The Z → µµγ model
increases the signal with 40− 106% (17− 30%) in MC (data) while the
Z → eeγ model shows increase in signal of 12− 44% (6− 48%) in MC
(data) for same amount of background as the ATLAS selection. The
Higgs trained models are evaluated in MC only, where an increase
of 44 − 53% (29 − 32%) is seen for the H → Z(→ ll)γ decay for
muons (electrons). As a large decrease is seen for the MC-trained
Z → µµγ model when applied to data, expected increase for the
H → Z(→ µµ)γ decay is 16% while for the H → Z(→ ee)γ model,
22% more signal is expected compared with the selection in [1].

In summary, the results of this thesis strongly suggests that adop-
tion of a tree-based approach would drastically improve the signal
selection of the H → Zγ decay compared to previous cut-based
methods.
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Disclaimer

It is important to note, that this thesis succeeds several Master’s The-
ses on the same subject, all with different foci. Previously, emphasis
was put on electrons and photons whereas my work primarily investi-
gates muons. Furthermore, while previous work relied mainly on MC
data, I have implemented the evaluation in data for both electrons,
muons and photons. Since changes were necessary to extend the
analysis to data, I have trained new models for electrons and photons,
based on previous work on MC data.

The thesis concludes my Masters degree in Computational Physics.
Prior to this project, I had very little experience with Particle Physics.
It has been an interesting topic to learn, and it has served as a great
subject to apply computational methods.
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Introduction

In 1964, two independent papers, proposing a theory to explain
mass generation, where published [2, 3]. The papers gave name to
the Brout-Englert-Higgs mechanism (later shortened to the Higgs
mechanism). The mechanism required a spin-less boson to exist and
the search of the Higgs boson thus began in 1975 [4], even though no
one really knew exactly what to look for.

In the late 1990’s and early 2000’s, searches ruled out masses above
200 GeV [5] and below 114 GeV [6]. On September 30th 2008, the
Large Hadron Collider (LHC) was commissioned. The accelerator
was CERN’s flagship accelerator, built to—among other things—prove
whether the Higgs boson existed. In 2012, two LHC experiments,
A Toroidal LHC ApparatuS (ATLAS) [7] and the Compact Muon
Solenoid (CMS) [8], announced results consistent with the Higgs
particle at mH = 125 GeV.

The discovery-channels in 2012 were H → ZZ(∗) → 4l, H → γγ

and H →WW∗ → eνµν. Current searches [1] include the H → Z(→
ll)γ decay, which is explored in this thesis. The well-investigated
Z → llγ decay is used as a control channel, where models are tested in
data. Current and previous searches of the H → Z(→ ll)γ decay uses
a cut-based method [1, 9–12] to separate signal from background. This
thesis will present a machine learning-based approach. The procedure
presented is split in several parts where each part is optimized and
evaluated against current methods in ATLAS.

Like the cut-based ATLAS methods, the ML based approach fo-
cuses on the different decay products separately. First, models for
single leptons (e, µ) and photons (γ), are created. The models helps
us identify and select well-isolated particles. These models are re-
ferred to as Pid and Iso models. Secondly, the Z boson decay into
two leptons, Z → µµ and Z → ee, is studied and models are cre-
ated focusing on the combination of the leptons, the Zmm and Zee
(Zll) models. These takes the Pid and Iso models for the muons and
electrons as input, together with track variables. Lastly, models are
created for the Z → llγ and H → Z(→ ll)γ decays, Zllg and Hllg.
Here, the Zll models are combined with the Pid and Iso models for
the photon, creating a model for the triplet of particles. The results is
evaluated against [1] aiming to get a clearer signal at the same level
of background. [1] focuses on the H → Z(→ ll)γ decay, but the cuts
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introduced are applied to Z decays in thesis as well.

The aim of the thesis is to create models independent of mass and
kinematics. This is achieved by creating “bottlenecks” in the models,
i.e. not putting all variables into one single model, but rather creating
several smaller ones serving as input to each other. This prevents the
final model to focus on one specific variable, but instead forces the
model to see the event as a whole.

The models are mainly trained on Monte Carlo generated data, but
data-trained models are created for muons and electron in Pid, Iso
and Zll. The Pid and Iso models are evaluated on the test set, i.e. the
same type of data as it was trained upon and the Z models (both Zll
and Zllg) are evaluated on both data and MC. The H → Z(→ ll)γ
models are evaluated in MC only, but from the performance of the
Zllg models in data, performance in Higgs data will be estimated.



1 The Standard Model of Particle Physics

The following sections dives into the current theory of Particle Physics,
the Standard Model. It describes the basic building blocks of matter
and interactions. The chapter will give a short introduction to the
particles and forces in the theory before elaborating more on the
particles focused on in the thesis.

1.1 The Standard Model . . . . . . . . . . . . . . 9

1.1.1 Fermions . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1.1 Quarks . . . . . . . . . . . . . . . . . . . 10

1.1.1.2 Leptons . . . . . . . . . . . . . . . . . . . 10

1.1.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 The Z boson . . . . . . . . . . . . . . . . . . . 11

1.3 The Higgs boson . . . . . . . . . . . . . . . . 12

1.1 The Standard Model

The Standard Model (SM) is a framework describing our current
understanding of Particle Physics. The SM relies on two field theories
to describe three of four fundamental forces. The field theory called
Quantum Chromo Dynamics (QCD) describes the strong interaction,
while Electroweak Interaction (EWK) describes the electromagnetic
and weak forces. The fourth fundamental force—gravity—is not
included in the present formulation of SM. The model has been
developed in stages driven by both theorists and experimentalists,
where the latest addition to the theory was the confirmation of the
Higgs particle [7, 8].

An overview of the elementary particles described by the Standard
Model can be seen in Fig. 1.1.

The SM groups the particles into two part: The fermions and the
bosons. A brief introduction to the groups will be given.

1.1.1 Fermions

Fermions are particles with spin 1
2 and all have a corresponding anti-

particle. There are 12 types of elementary fermions in the Standard
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Particle Physics [13]. The particles of the
SM is grouped into two; the fermions
and the bosons. The fermions are fur-
ther split into quarks and leptons which
are the building blocks of all matter. The
bosons are force carrying particles me-
diating the weak, stong and electromag-
netic forces.

Model: Six quarks and six leptons. They are the basic building blocks
of all matter and have all been experimentally observed. They are
separated into two groups, depending on whether they interact via
the strong interaction or not.

Particle
Anti-

particle
Spin Charge

u ū 1/2 +2/3
d d̄ 1/2 −1/3
c c̄ 1/2 +2/3
s s̄ 1/2 −1/3
t t̄ 1/2 +2/3
b b̄ 1/2 −1/3

Table 1.1: List of the quarks, their an-
tiparticle, spin and charge.

1.1.1.1 Quarks

The six quarks are up, down, charm, strange, top, and bottom (u, d, c,
s, t and b). We group them in generations, written as doublets:(u

d

)
,
( s

c

)
,
(

b
t

)
(1.1)

Quarks interact via the strong, electromagnetic, and weak forces. The
quarks also carry color change, meaning that they are strongly bound
to each other. The color change allows for the formation of color-
neutral composites. This can both be as quark-antiquark pair (mesons,
e.g. π+ = ud̄, κ0 = sd̄) or three quarks (baryons, e.g. proton (uud),
neutron (udd)). This means that the quarks are the fundamentals
constituents of mesons and baryons, the two types of particles also
known under the joint name hadrons. Tab. 1.1 shows a list of the
quarks along with a few of their properties.

Particle
Anti-

particle
Spin Charge

e− e+ 1/2 −1
νe ν̄e 1/2 0
µ− µ+ 1/2 −1
νµ ν̄µ 1/2 0
τ− τ+ 1/2 −1
ντ ν̄τ 1/2 0

Table 1.2: List of the leptons, their an-
tiparticle, spin, and charge.

1.1.1.2 Leptons

The six leptons are also grouped into three generations:( νe

e−
)

,
(

νµ

µ−

)
,
( ντ

τ−
)

(1.2)

These are the three negatively charged leptons; the electron, muon,
and tau along with their neutral lepton; electron neutrino, muon-
neutrino, and tau-neutrino, respectively. The leptons has—similar
to the quarks—a corresponding anti-particle with opposite charge
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(Tab. 1.2). The electron, muon, and tau interact via the electromagnetic
and weak forces. We will focus on the electron and the muon in this
thesis, as taons are not measured in the ATLAS experiment.

1.1.2 Bosons

In order to mediate interactions and understand the forces between
the fermions, we need the bosons. Bosons form the second of the two
fundamental classes of particles and are different from the fermions
as they all have integer spin. There are four types of bosons with spin
1: The photon, gluon, Z boson, and W bosons. The newest particle in
the SM is the Higgs boson, which has spin 0.

Particle
Anti-

particle
Spin Charge Interaction

γ self 1 0 Electro
W− W+ 1 −1 Weak
Z0 self 1 0 Weak
g self 1 0 Strong

H0 self 0 0 Mass

Table 1.3: List of the bosons, their an-
tiparticle, spin, charge, and the force me-
diated by the particle. “Self” means that
the particle is its own anti-particle.

The bosons are all force-carriers, meaning that they each mediate
a type of interaction in the Standard Model. The photon, which is
massless, mediates the electromagnetic interaction between electri-
cally charged particles. The Z and W bosons are responsible for the
weak interaction between quarks and leptons. The gluon mediates
the strong interactions between color-charged particles (quarks and
the gluon itself). Finally, the Higgs bosons interacts with all parti-
cles with mass, which are all particles, except the photon and the
gluon. Tab. 1.3 summarizes this class of particles in the Standard
Model. All particles and their interactions are summarized in Figure
1.2.

Figure 1.2: The interactions between par-
ticles in the Standard Model.

In this thesis, the focus will be on the Z and Higgs bosons. Below,
a deeper introduction to the two particles is given.

1.2 The Z boson

The Z boson was first observed in the UA1 and UA2 experiments at
CERN in 1983 [14]. The neutral vector is named after having zero
electric charge opposed to its co-mediator of the weak force, the
W± boson. Mathematically, the weak fields are the W1, W2, W3 and
the electromagnetic field, B. They all give rise to the gauge bosons,
mediating the electroweak interaction, a combination of the weak and
electromagnetic fields. The W1 and W2 fields combine to yield the
W± bosons,

W± =
1√
2
(W1 ∓ iW2) . (1.3)

The W± boson is left-handed, meaning that it interacts only with
left-handed particles. Spontaneous symmetry breaking rotates the W3

and B fields into the Z and γ bosons as follows,

(
γ∗

Z

)
=

(
cos θW sin θW

− sin θW cos θW

)(
B

W3

)
, (1.4)

where θW is the weak mixing angle [15]. The Z boson is thus
sometimes written as Z/γ∗, where the γ boson is the mediator of
electromagnetic force and Z, the weak force. The combination of
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the B and W fields means that the Z boson is neither right- or left-
handed, but it is a combination of the two which affects the Z to
favor some decays over others. The lifetime of the Z boson is very
short (∼ 10−23 s), and it is therefore only its decay products that are
detected in the ATLAS detector.

Z

20.0%

Z +

10.1%

Z qq

69.9%

Figure 1.3: The decay rates of the Z bo-
son. Figure made with data from [16].
The Z boson has equal probability of
decaying into the three types of leptons,
making it a lepton universality. How-
ever, only electrons and muons are con-
sidered in ATLAS.

The Z boson decay into a fermion and its anti-particle and the most
likely decay for the Z boson is Z → qq̄ accounting for 69.2% of the
decays of the Z boson (see Fig. 1.3). However, the quarks are difficult
to separate from jets in the detector and the production of Z bosons
at the LHC is dominated by the less likely Drell-Yan mechanism [17],
where a quark from each of the incoming protons annihilate into a
pair of leptons; muons or electrons (see the Feynmann diagram in
Fig. 1.4).

Figure 1.4: The Drell-Yan production of
the Z boson decaying into a dilepton
final state

This thesis will investigate the Z boson decays Z → ll and Z → llγ
where in the latter, the hard process causes emission of a photon from
one of the leptons. The Z boson is valuable to investigate, as it a part
of many analyses and searches for new physics phenomena [18]. In
our case, the Z boson is especially interesting as the Higgs and Z
boson share decay products, allowing us to investigate the impacts
on a known high statistic resonance before testing the method on the
Higgs boson.

1.3 The Higgs boson

In 1964, the Brout–Englert–Higgs mechanism was proposed as a
theory to explain mass generation [2, 3, 19–22]. The mechanism
required a spinless boson to exist. The boson was given the name the
Higgs boson. In 2012, the ATLAS [7] and the CMS [8] experiments, at
LHC in CERN, announced results consistent with the Higgs particle.
In 2013, Peter Higgs and François Englert was awarded the Nobel
Prize in Physics for their theory.

Their theory introduces the Higgs field which interact with all
massive particles and thereby allowing them to have masses. This
field is mediated by the Higgs particle discovered in 2012, filling the
last missing piece in the Standard Model theory.

The Higgs particle couples with any particle having mass, and the
coupling is proportional to the mass of the particle. The stronger the
coupling, the more likely the Higgs decay into that particle is. Thus
we are more likely to observe some decays than others. Fig. 1.5 shows
the possible decays for the Higgs particle and the branching ratio1 as 1 See Sect. 2.2.2

a function of mass.
From this figure we see, given mH = 125 GeV, that we are most

likely to observe the H → bb̄ decay. However, the discovery-channels
from 2012 are the H → ZZ(∗) → 4l, H → γγ, and H →WW∗ → eνµν

decays with a much lower branching ratio. The rare Higgs bb̄ decay
is difficult to separate from the abundant production of bb̄ and other
jets in the detector [24].
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Figure 1.5: Possible decays for the Higgs
boson as a funciton of mass and branch-
ing ratio [23]. For mH = 125 GeV, the
most likely decay is the H → bb̄.

In this thesis, the H → Z(→ ll)γ decay will be investigated along
the Z → llγ boson decay. Several studies have been made by CMS
and ATLAS on the H → Z(→ ll)γ decay [1, 9–12].

The predicted branching ratio of the H → Zγ decay is (1.54±
0.09) · 10−3 at mH = 125.9 GeV [1] which is comparable to that of
H → γγ of 2.27 · 10−3 [25] (see Fig. 1.5). However, combining the
rates of the H → Zγ and the Z → ll , the H → Z(→ ll)γ is rarer than
all discovery channels.

As mentioned in Sect. 1.2, the Z boson is well-investigated it is
thus valuable to study the shared decay modes, as the analysis of the
Z boson can provide knowledge of background events and signatures
useful for the Higgs search.

In [1], an improved analysis compared to [10], is presented, includ-
ing optimized lepton and photon identification criteria. The dominant
background is the production of a Z boson together with a random
photon. The events are classified into six categories designed to max-
imize the sensitivity to the presence of the SM Higgs boson. The
categories each have different expected signal-to-background ratios
and mass resolutions. A fit to the reconstructed Zγ invariant mass
distribution in all categories is performed to extract the overall signal.
Fig. 1.6 shows the invariant mass of the Zγ events satisfying the
H → Zγ selection in Data in [1]. The observed data are consistent
with the expected background with a p-value of 1.3% while the ex-
pected p-value in the presence of a SM Higgs boson is 12.3%. Thus,
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increase in signal is very much striven for.

Figure 1.6: Weighted Zγ invariant mass
by the signal-to-background ratio. Fig-
ure from [1]



2 The ATLAS Experiment

ATLAS is one of the four major experiments at the Large Hadron
Collider (LHC). This chapter will describe LHC and the associated
experiments, before diving into the ATLAS detector itself. Unless
otherwise stated, this chapter is based on the ATLAS detector paper
[26].

2.1 The Large Hadron Collider . . . . . . . . . . . 15

2.2 Detector requirements . . . . . . . . . . . . . 16

2.2.1 Coordinate system. . . . . . . . . . . . . . . . . . 16

2.2.2 Cross-section, luminosity and pileup . . . . . . . . 17

2.3 The ATLAS Detector . . . . . . . . . . . . . . 18

2.3.1 Inner Detector . . . . . . . . . . . . . . . . . . . 18

2.3.1.1 Pixel Detector . . . . . . . . . . . . . . . 19

2.3.1.2 The Semiconductor Tracker (SCT) . . . . 19

2.3.1.3 The Transition Radiation Tracker (TRT) 19

2.3.2 The Calorimeters . . . . . . . . . . . . . . . . . . 19

2.3.2.1 The Electromagnetic Calorimeter (ECAL) 20

2.3.2.2 The Hadronic Calorimeter (HCAL) . . . 20

2.3.2.3 The Forward Calorimeter (FCAL) . . . . 21

2.3.3 The Muon System. . . . . . . . . . . . . . . . . . 21

2.3.3.1 The toroid magnets . . . . . . . . . . . . 21

2.3.3.2 The muon chambers . . . . . . . . . . . . 22

2.3.4 Overview of particle interactions . . . . . . . . . . 22

2.3.5 Trigger System . . . . . . . . . . . . . . . . . . . 23

2.3.6 ATLAS Likelihood and Working Points . . . . . . . 23

2.3.7 MC production . . . . . . . . . . . . . . . . . . . 24

2.1 The Large Hadron Collider

The LHC is the World’s largest particle accelerator. It is located in
Geneva, Switzerland, at the Consiel Européen pour la Rescherche
Nucléaire (CERN). The accelerator is a 27-kilometer ring of super-
conducting magnets, where protons and heavy ions are brought to
collision in one of the four different detectors associated with the
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accelerator: Large Hadron Collider beauty (LHCb), A Large Ion Col-
lider Experiment (ALICE), Compact Muon Solenoid (CMS), and A
Toroidal LHC ApparatuS (ATLAS). The four detectors take on dif-
ferent jobs - LHCb is specialized in b-physics and ALICE is, as the
acronym implies, designed for heavy ion physics. CMS and ATLAS
are general-purpose detectors built to probe the Standard Model and
it was these two experiments which discovered the Higgs Boson in
2012. The two differs in technical solutions and magnet-system design
[27].

The LHC is the last element in the CERN accelerator complex—
a succession of machines to increase the energy of particles. Each
machine boosts the energy of the particle beam before it is passed on
to the next machine in the sequence. Fig. 2.1 shows the accelerator
complex and the placement of the four different detectors associated
with the LHC.

Figure 2.1: The CERN accelerator com-
plex. The LHC is the last element in the
succession of machines built to increase
energy of particles. For detectors are lo-
cated on the 27-kilometer ring. Picture
from [28].

2.2 Detector requirements

Before we move on to the description of the ATLAS detector, I will
first go through some necessary general information.

2.2.1 Coordinate system

Figure 2.2: The coordinate system of the
ATLAS detector. Modified but originally
from [29]

ATLAS uses a right-handed coordinate system with cylindrical co-
ordinates to describe the detector geometries. The collision point of
the particle is defined as the origin while the beam direction defines
the z-axis. The x-axis points in the direction of the centre of the LHC
and the y-axis points towards the sky (see Fig. 2.2). Several angles are
defined as well: The angle ϕ is measured in the xy-plane from the
x-axis while θ is measured from the positive z-axis in the yz-plane.

Fig. 2.2 similarly shows a vector p. This is the momentum vector
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[30] which is defined from the angles θ and ϕ, p = (|p|, θ, ϕ). The
transverse momentum, pT , is the component of p that is in the xy-
plane transverse to the beam pipe, pT = p sin θ. The transverse energy
ET is defined similarly.

The pseudorapidity, η, is defined from the angle θ, and is, unlike θ,
invariant under boosts along the beam axis,

η = − ln(tan(θ/2)).

For a particle perpendicular to the beam axis, the pseudorapidity η

would be zero and for a particle in the beam axis, the pseudorapidity
η would be infinite. The relationship between θ and η can be seen in
Fig. 2.3. η is symmetric around the perpendicular axis.

Figure 2.3: The relationship between θ
and η. Picture from [31]

2.2.2 Cross-section, luminosity and pileup

The cross-section σ is a measure of the probability of producing a
specific particle during collisions. Some particles are produced more
frequently—and thus have a higher cross-section—than the ones being
produced more rarely. When a particle has a small cross-section, a
larger amount of interactions is needed to observe these rare particles
and their decay. The cross-section is measured in barns (b = 10−28m2).
The branching ratio of a particle is the fraction of events measured
to decay in a certain way. The branching ratios sum to one for each
particle.

To measure how many interactions happens, we use the concept of
luminosity. Both the instantaneous and integrated luminosity exist.

Figure 2.4: The total integrated luminos-
ity of Run2 as a function of time. Picture
from [32].

Instantaneous luminosity is a measure of the interaction rate calcu-
lated from the cross-section σ and the number of events per second,

L =
1
σ

dN
dt

.

L is given in units of interactions per square centimeters per sec-
ond, cm2s−1. The integrated luminosity is, as the name implies, the
luminosity collected over time in units of inverse barns, b−1,

Lint =
∫
Ldt.

Thus Lint is the total amount of data recorded. Fig. 2.4 shows a plot
of the total integrated luminosity as a function of time during Run2

1.

1 ATLAS divides data-taking periods
into “Runs”. Run2 was the period 2015-
2018, while Run3 is planed to run 2021-
2023.

Given the cross-section and luminosity, the number of produced
events from a specific process can be calculated by Lint · σ. The higher
the number, the more occurrences of the process.

Figure 2.5: The luminosity-weighted dis-
tribution of the mean number of inter-
actions per crossing. The mean value of
µ is shown for each year. Picture from
[33].

Pileup is the accumulation of luminosity. As we have many proton-
proton collisions for each bunch crossing, the accumulated measure
is used. More specifically, it is the integrated luminosity as a function
of mean number of interactions, 〈µ〉. Fig. 2.5 shows the distribution
of pileup for the years 2015-2018 along with the mean number of µ

for each year. The estimated pileup for Run3 is 〈µ〉 ≈ 60.
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2.3 The ATLAS Detector

The ATLAS Detector is a general-purpose detector. This means that it
investigates the fundamentals of matter and basic forces shaping the
universe [34].

Beams of particles are sent to collide in the detector, forming new
particles. The ATLAS Detector consists of several layers of detection
systems, recording paths, momentum, and energy of the particles
allowing for identification [27].

The detector is a 46 meter long and 25 meter wide forward-
backward symmetric cylinder. It consists of the Inner Detector (ID),
Calorimeters, the Muon Spectrometer (MS), and the Magnet System.

2.3.1 Inner Detector

The ID is the first part of the ATLAS detector the particle meets,
starting only few centimeters from the beam axis and extending to
a radius of 1.2 meters. Approximately 1000 particles emerge every
25 ns making it very important that the ID has high resolution. The
main purpose of the Inner Detector is to track charged particles,
revealing information about charge and momentum. This is achieved
in the Pixel Detector, Semiconductor Tracker (SCT), and Transition
Radiation Tracker (TRT) constituting the Inner Detector together with
the 2T magnetic field surrounding the ID. The magnetic field bends
the tracks of the charged particles, the direction and curvature of
which disclose the charge and momentum.

All three sub-detectors in the ID is seperated into a barrel and
end-cap part (see Fig. 2.6). The Pixel Detector and SCT covers the
range η < |2.5| while the TRT covers η < |2|. It is designed for
particles above the transverse momentum threshold of pT > 0.5 GeV.

Figure 2.6: Cut-away view of the Inner
Detector showing the Pixel, SCT, and
TRT detectors. Picture from [26].
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2.3.1.1 Pixel Detector

The pixel detector is the part of the detector closest to the beam pipe
and is thus designed both to provide high-precision measurements
with its 80 million read-out channels [35] and to withstand significant
exposure to radiation. It is built out of semiconductors, consisting
of three pixel disks in each end-cap region and three barrel disks
designed to provide at minimum three points of the track from the
collision. It has a resolution of 10 µm (R− φ) and 115 µm (z) for the
barrels, and 10 µm (R− φ) and 115 µm (R) for the disks.

2.3.1.2 The Semiconductor Tracker (SCT)

As the name implies, the SCT also utilizes semiconductors, but in
strips rather than pixels. The strips are glued back-to-back yielding
two-side modules with good resolution in both dimensions. The
SCT has four barrel layers and nine layers in each end-cap [35]. It
has a resolution of 17 µm (R − φ) and 580 µm (z) for the barrels,
and 117 µm (R− φ) and 580 µm (R) for the disks. The SCT, like the
Pixel Detector, provides points of the track. The two parts combined
provides about 10 coordinates with very high precision [36].

2.3.1.3 The Transition Radiation Tracker (TRT)

This part of the detector is a gaseous detector providing almost
continuous tracking [36]. It is a combination of a straw tracker and a
transition radiation detector. Long straw tubes with 4mm diameter
with a gold-plated tungsten wire in the center are filled with gas [35].
A high bias voltage is applied causing a charged particle passing the
tube to ionize the gas. This will be detected as a current creating a
pattern allowing the path of the particle to be determined. Particles
with a large γ factor (γ > 10, 000, speed near the speed of light) emit
transition radiation due to the tubes being filled mostly with xenon.
This enlarges the signal improving the identification of these particles
which are especially electrons.

The gas tubes are leaking and, due to cost reasons, some are being
refilled with argon. The Ar gas performs similar to Xe for track
reconstruction, but does not absorb as many transition radiation
photons, and does thus not identify electrons as well. The TRT only
obtains information with the resolution 130 µm (R− φ) direction as
the tubes are aligned parallel to the beam.

2.3.2 The Calorimeters

The Calorimeters are located outside the magnet, surrounding the
Inner Detector. It measures the energy of particles by absorbing it, and
is built to contain the energy showers and limit the punch-through to
the muon system. It is seperated into the Electromagnetic Calorimeter
(ECAL) (|η| < 3.2), Hadronic Calorimeter (HCAL) (|η| < 3.2), and the
Forward Calorimeter (FCAL) (3.1 < |η| < 4.9). All three calorimeters
are sampling calorimeters, meaning that they have both an active and



20 improving z and higgs selections in atlas using machine learning

passive layer. In the active layer, the energy is deposited and in the
passive layer, the particles create showers of particles. See Fig. 2.7 for
an overview of the calorimeters.

Figure 2.7: Cut-away view of the
Calorimeters showing the ECAL, HCAL,
and FCAL. Picture from [26].

2.3.2.1 The Electromagnetic Calorimeter (ECAL)

The EM calorimeter consists of a barrel part (|η| < 1.475) and two
end-cap parts (1.375 < |η| < 3.2). It is a lead-LAr detector, meaning
that the active material is liquid argon (LAr), and the passive absorb-
ing material is lead. An overview of the calorimeter can be seen in
Fig. 2.8. The ECAL absorbs energy from particles interacting electro-
magnetically, such as electrons and photons [37]. When the electron
interacts with the calorimeter, a cascade of secondary particles (pho-
tons) will be produced with lesser energy. Each of these interact in
the same way, producing a shower of particles. The electrons radiate
off a photon via bremsstrahlung with the length scale of a radiation
length (X0). The total thickness in the ECAL is > 22X0 in the barrel
and > 24X0 in the end-caps.

Figure 2.8: Overview of the Electromag-
netic Calorimeter. Picture taken from
[38].

2.3.2.2 The Hadronic Calorimeter (HCAL)

The HCAL consists of three parts, a barrel, an extended barrel, and
end-caps. The barrels are built out of tile scintillators and steel as
passive material. The barrels cover |η| < 1.7. The gaps between the
barrel and extended barrel are called the “crack” containing some
steel-scintillator modules recovering some of the lost energy of the
region. The end-caps has a total of four layers with LAr as active
material and copper as passive absorbing material covering the range
2.5 < |η| < 3.2. Hadrons interact with the protons and neutrons
in the material when passing the HCAL. Here, secondary particles
are created interacting further with the material causing a hadronic
shower. For both the HCAL and the ECAL, the intensity of the shower
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is measured and converted into an electric current (signal).

2.3.2.3 The Forward Calorimeter (FCAL)

The FCAL covers the region closest to the beam pipe with 3.1 < |η| <
4.9. It has three layers. The passive material is copper in the first layer
and tungsten in the second and third layers. The active material is
LAr in all layers. The first layer is mostly measuring electromagnetic
interactions while the second and third layers are measuring hadronic
interactions.

Figure 2.9: Overview of the Muon Spec-
trometer. Picture taken from [26].

Monitored drift tubes (MDT)

Coverage |η| < 2.0
No. of chambers 1150
No. of channels 354000
Function Precision tracking

Cathode strip chambers (CSC)

Coverage 2.0 < |η| < 2.7
No. of chambers 32
No. of channels 31000
Function Precision tracking

Resistive plate chambers (RPC)

Coverage |η| < 1.05
No. of chambers 606
No. of channels 373000

Function
Triggering,

second coordinate

Thin gap chambers (TGC)

Coverage
1.05 < |η| < 2.7

(2.4 for triggering)
No. of chambers 3588
No. of channels 318000

Function
Triggering,

second coordinate

Table 2.1: Main parameters of the MS.
Numbers for the MDT and RPC refer to
the final configuration of the detector in
2009. Table from [26].

2.3.3 The Muon System

As muons pass through both the ID and the Calorimeters, a special
setup is needed for the particle. The Muon Spectrometer is based
on deflection of muons tracks in toroid magnets, instrumented with
trigger and high-precision tracking chambers. Fig. 2.9 provides an
overview of the large system while Tab. 2.1 lists the main parameters.
The MS extends over the radius from 4.25 m to 11 m. The size is
required to measure the momentum of muons accurately. For the
range |η| < 1.4 the track is bend by the large barrel toroid magnet
while for 1.4 < |η| < 1.6 the magnetic deflection is provided by the
barrel and end-cap fields in combination.

2.3.3.1 The toroid magnets

Three large air-core toroid generates the magnetic field for the Muon
Spectrometer. There is one barrel toroid and two end-cap toroids.
The barrel magnet provides bending in the range 0 < |η| < 1.4 and
the end-cap magnets in 1.6 < |η| < 2.7. The magnets overlap in the
region 1.4 < |η| < 1.6 giving a slightly lower bending power.
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2.3.3.2 The muon chambers

The precision measurements of the track coordinates is provided by
the Monitored Drift Tubes (MDT’s) combining high measurement
accuracy and simplicity of construction. They cover |η| < 2.7 (except
for the innermost end-cap region, where |η| < 2.0). In the forward
region (2 < |η| < 2.7), the Cathode-Strip Chambers (CSC) are used.

The trigger system covers |η| < 2.4 consisting of Resistive Plate
Chambers (RPC’s) in the barrel and Thin Gap Chambers (TGC’s) in
the end-cap regions. They serve the purpose of providing bunch-
crossing identification, provide pT thresholds, and measure muon
coordinates. There exists two different trigger systems as the radiation
in the forward region is high and should withstand the exposure.

2.3.4 Overview of particle interactions

Figure 2.10: Computer generated image
of an event cross section in the ATLAS
detector. Picture from [39].

Fig. 2.10 shows a computer generated image of an event cross
section in the ATLAS detector. The image shows the interaction of
final-state particles in the detector layers discussed in this chapter.

Electrons and photons: Deposit their energy in the ECAL. The
electron will leave a track in the ID while the photon leaves no track
here (unless it is converted).

Hadrons (protons and neutrons): Deposit their energy in the ECAL
and the HCAL. A charged particle (e.g. a proton), will leave a track
in the ID and interact with the ECAL before leaving a shower in
the HCAL. The neutral neutron will not leave a track in the ID but
interact with the ECAL and HCAL. Note that the figure does not
show the neutron interacting with the ECAL, this is a mistake.
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Muons: Are electrically charged and thus leaves a bent track in the
ID and 1− 3 GeV energy depositions in the ECAL and HCAL. They
are detected in the MS by tracking, but not stopped.

Neutrinos: Passes the detector undetected. The existence of neutri-
nos is inferred by missing transverse energy.

2.3.5 Trigger System

The purpose of the trigger system is to reconstruct events in real-time
to identify the most interesting events to retain. There where two
trigger levels in Run2 combined with a final event selection.

L1: The level-1 trigger is implemented in hardware at the detector
site. It searches for high transverse-momentum muons, electron,
photons, jets, and τ-leptons decaying into hadrons. It uses infor-
mation from calorimeters and muon spectrometer and reduces the
rate of events in the read-out to 100 kHz. The L1 trigger also de-
fines Regions-of-Interest (RoI’s) within the detector with interesting
features. This is passed to the high level trigger.

L2/HLT: The level-2 trigger, also known as the high level trigger,
is implemented in software. It utilizes the RoI’s from L1 and all
available detector data from the regions. The L2 reduces the trigger
rate to approx. 3.5 kHz averaged over all events.

Event filter: The final stage of the event selection reduces the event
rate2 to approx. 200 Hz which can be recorded for offline analysis. 2 i.e. saved events

The events saved for offline analysis are available for members of
the ATLAS experiment. It is this data that will be used for investiga-
tion of relevant decays for the thesis. The trigger information is saved
and used later to recognize “good” particles.

2.3.6 ATLAS Likelihood and Working Points

Prompt electrons in the central region of the detector are selected
using a likelihood-based (LH) identification. It is based on simulated
samples with prompt electrons as signal, and a combination of jets
as background [40]. For different binned variables, products of the
signal and background likelihoods are calculated,

LS(B)(x) =
n

∏
i=1

PS(B),i(xi), (2.1)

where n is the number of variables and x is the vector of variables. Pi is
the PDF for the i’th variable, and LS(B) is the final signal (background)
LH value. A discriminant is formed upon where the LH is based,

d =
LS

LS + LB
, (2.2)

which is logit transformed into d′ without the sharp peaks at zero
and one,

d′ = −τ−1 ln (d−1 − 1), (2.3)
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with τ = 15. The PDFs and discriminant are formed in bins of η and
ET . These can be seen in Tab. 2.2.

Bin boundaries in |η|

0.0 0.6 0.8 1.15 1.37 1.52 1.81 2.01 2.37 2.47

Table 2.2: Boundaries of the bins in |η|
and ET of the electron candidate.

Bin boundaries in ET [GeV]

4.5 7 10 15 20 25 30 35 40 45 80 150 ∞

ATLAS has four fixed operating points for the likelihood, referred
to as VeryLoose, Loose, Medium, and Tight. They have different re-
quirements on tracking criteria. E.g. the Loose, Medium, and Tight
require the same number of hits in the pixel detector, but further
requirements exists for Medium and Tight in terms of hits in the
innermost pixel layer [40].

Previously, the electron selection in ATLAS was cut-based, but the
LH has advantages such that if a prompt (signal) electron fails the
cut-based identification on only one parameter, it might survive the
LH selection as the parameters are considered as a whole [40].

The muon and photon selections are still cut-based, having criteria
of e.g. pT , hits, and η. These selections are thus not based on likeli-
hoods, but are referred to as Working Points (WP). The photon has the
two operating points Loose and Tight while the muon selection has the
WPs Low-pT , Loose, Medium, Tight, and High-pT . In [41], a multivariate
Low-pT WP based on a boosted decision tree is introduced, showing
promising results.

2.3.7 MC production

In order to study the vast data in ATLAS, a very detailed simulation
has been implemented, allowing the study of the detector response
for the wide range of physics phenomena. Generally, the simulation
is generated in three steps: The generation of the event and decays,
the simulation of the detector and physics interactions, and the dig-
itization of the energy deposited; creating signals in the detector
electronics.

In the event generation, sets of particles are produced and brought
to collision [42]. Several generators exists, each responsible for differ-
ent types of event productions. Each event contains particles from a
single interaction, with a vertex located in the geometric origin. No
detector geometry is considered at this step.

After the events are generated, each particle is propagated through
the ATLAS detector. The energy deposited is recorded and stored.
Furthermore, the truth information (i.e. the particle id, true energy
etc.) is also stored for each event, which can be used to quantify the
success of the reconstruction [42].
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The last step, the digitization, takes the stored information about
energy deposits and generate the detector signal. To reproduce par-
ticular runs, dead channels and noise rates are read from a database
and added to the simulation. The first level trigger, implemented in
hardware on the real detector, is also simulated [42].

All of these steps produces the Monte Carlo simulated data which
forms the foundation of this thesis. The samples allows for model
production and analysis which will be discussed in the next chapters.





3 Machine Learning

The goal of this thesis is to use data from the ATLAS detector to im-
prove the search of the Higgs particle. The large-scale MC production
in ATLAS facilitate ideal conditions to train machine learning (ML)
models, as processes with known heritage can be investigated. In
this chapter, it will be described how one learns from data, and the
specific machine learning-based method used in the thesis will be
covered.
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3.1 Learning methods

Generally, learning from data allows one to utilize historical data
to improve decisions tomorrow. A set of observations are used to
uncover an underlying process. The main type of learning is called
supervised learning, where the training process can be seen as being
supervised by a teacher presenting the learner with training data.
Since we are in a teaching situation, the training data has examples
of correct output. The training data and the corresponding output is
given to the learner, in order to grasp the underlying function1. 1 See the next section for a more formal

definitionOther types of learning are unsupervised learning and reinforcement
learning. In the former, no correct output is provided and the data is
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instead characterized based on inherent properties while the latter
utilizes scoring of the output to force the model to learn.

In this thesis, I have used the method of supervised learning,
because the correct output is known. The decay processes for the
Z and Higgs bosons are well-described. The training of the models
are based on Monte Carlo simulated data allowing us supervise the
algorithm. The following sections will focus on the paradigm of
supervised learning.

3.2 The Learning Problem

To understand the learning problem, a hands-on example will be
used—a bank. They get a lot of loan applications. Can the process
of approving costumers be automated? By using data available from
previous loans and the profit earned, together with information on
the costumers; salary, years in residence, outstanding loans etc., a
supervised learning task is formed. Historical data serves as a good
formula for credit approval. Below, the learning example is formalized
[43].

input x: Customer information (salary, previous loans etc.)

input space X : Set of all possible inputs x

output space Y : Set of all possible outputs (can be binary (yes/no,
0/1) or multi-class (1,2,3..., red, green, blue...). In this example, it
would be to approve or not approve the loan application. Is often
referred to as labels

data set D: Set of input-output examples (x1, y1), . . . , (xN , yN),
where yn = f (xn) for n = 1, . . . , N. In the credit approval ex-
ample, x is information about previous customers and y is the
correct decision of approval in hindsight.

hypothesis set H: A set of candidate formulas to describe the
input-output relation. Could be a set of linear functions.

unknown target function f : X → Y : Ideal formula for credit
approval

approximated target function g : X → Y : The target function best
approximating the unknown function f . This is chosen from H, e.g.
the function with the best fit to data, ŷ = g(xN).

When a new customer applies for a loan, the decision will be
based on g and how good a decision that is depends on how well g
replicates f [43]. g is more commonly referred to as a “model”.

3.2.1 Training a model

Figure 3.1: Examples of ways to parti-
tion a dataset. Method A only has a
training and a test set, while method B
also has a validation set. Figure inspired
by [44].

A data set, used to train the model and find the best fitting approxi-
mation to the unknown target function, is usually divided into two
or three sets. The first, a training set, is used to train the model and
fit the parameters to create a model best fitting the training set. The
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performance of the model is evaluated on the test set. This is a part of
the data not known by the model. If the model is trained properly,
it is able to predict the output yN of the test set. The third set, the
validation set is not always used, but it can be utilized to evaluate the
fit of a model, tune parameters unbiased, and to implement early
stopping to ensure that a model is not overfitted2. See Fig. 3.1 for an 2 See Sect. 3.2.3: If the model is fitted

“too well” on the training data, it will not
be able to generalize and is overfitted.

example of the partition.
It is important that the datasets all follow the same probability

distribution, i.e. represents the same data. If the training set only
contains people accepted for loan and the test set only contains people
rejected for a loan, the model will not be able to predict the data in
the test set correctly.

3.2.2 Error measure

It is not expected that a trained model g will predict the correct
output every time, as it is an approximation to the target model f ,
f (x) 6= g(x). We define an error measure3 to evaluate the model. The 3 is also often referred to as a loss, cost or

objectivechoice of an error measure may affect the learning outcome, so its not
unimportant which measure is chosen.

We will only work with binary classification in this thesis, where
only two outputs are possible; 0/1, true/false, signal/background.
Models used for binary classification often outputs a score between 0
and 1, where the higher the score, the more signal-like the data-point
is.

An error measure used for such classification is the Receiver Char-
acteristic Operator (ROC) curve corresponding and Area Under Curve
(AUC) score. These measures takes a one-dimensional variable—the
output score of the model—and computes the true positive rate (TPR)
and false positive rate (FPR) at various threshold settings.

TPR =
TP

TP + FN
FPR =

FP
TN + FP

, (3.1)

True / Predicted P N

P TP FP
N FN TN

Table 3.1: Confusion matrix

where TP are the true positives, FP are the false positives, TN
are the true negatives and FN are the false negatives. This means
that TP are the samples which the model (at the specific threshold)
predicted to be “positive” or “signal” correctly, while FP are the ones
that are incorrectly predicted as signal. These can also be visualized
in a confusion matrix (see Tab. 3.1), where the correct predictions are
those in the diagonal.

Figure 3.2: Top: two histograms show-
ing true and false values. At x = 0.45
there are 0.5 true positives and 0.16 false
positives (of the total true and false, re-
spectively). Bottom: Area under curve
(AUC) including the cut of x = 0.45.

The ROC curve is a plot of the TPR against the FPR, and thus the
ability for the model to separate signal from background at various
threshold settings. One way to visualize this, is to look at distributions
of true/signal values and false/background values (see Fig. 3.2). In
the top figure, a cut at x = 0.45 is shown. Here, TP = 0.5 and
FP = 0.16 (of the total true and false, respectively), corresponding to
the dashed lines in the bottom figure. Creating cuts at all thresholds
in the top plot yields the bottom curve, having an area under the
curve of 0.76. If the histograms where completely separable, the AUC
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would be 1 and if they where indistinguishable the AUC would be
0.5. In this thesis, the ROC curve and AUC will be used for the Pid
and Iso models.

3.2.3 Overfitting and early stopping

The in-sample error, Ein [43], is based on data points used for training
of the model. It measures training performance, adjusting the model
towards improvement to create the model best fitting the training data.
The out-of-sample error, Eout [43], measures how well the training
has generalized on data not seen before. We are interested in training
the model well and minimize Ein, but not so well that it does not
generalize. The optimal will be to minimize Eout.

In practice, this is achieved using the validation set. While training
the model using the training set, the model is simultaneously eval-
uated on the validation set. If evaluation of the validation set stops
improving, the optimal training is achieved and is stopped. This is
referred to as early stopping. See Fig. 3.3. If the evaluation stops
before a minimum in the validation error is reached, the model is
underfitted, meaning that it does not capture the underlying structure
of the data. The final evaluation will be on the test set, as both the
training and validation set is used during training and the error on
these will be biased.

Figure 3.3: The error during training
for the training and validation set. If
the training stops before the minimum
validation error is achieved, the model
is underfitted.

3.2.4 Hyper-parameters

A hyper-parameter is a parameter used to control the learning process
of a machine learning model. They can be optimized to optimally
solve the learning task. This is done by trying various sets of pa-
rameters for the algorithm. The values yielding the optimal model
minimizing the loss is chosen.

Figure 3.4: Grid and random search
in nine trials. The method of random
search randomly searches parameters in
a given range and can often outmatch
the search in a grid. Picture inspired by
[45].

For the search of the optimal hyper-parameters a random search
can be used. Here, parameters to be tested are chosen randomly
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within a given range. Opposed to grid search, where specified com-
binations of parameters are searched (see Fig. 3.4), the number of
parameter searches can be controlled explicitly. Random search is
thus more efficient than grid search in many cases [45].

3.3 Models

Many types of machine learning models exist. Examples of supervised
learning algorithms are regression, K-nearest neighbors, and neural
networks. In this thesis, the tree based method (Gradient) Boosted
Decision Trees (BDT’s) with the framework LightGBM [46] is used. It
is a simple and fast algorithm. Different algorithms has been explored
by previous students in the group [47], where BDT’s showed similar
performance as neural networks. Furthermore, BDT’s are already
implemented in the ATLAS experiment framework allowing for easier
implementation of new BDT models. In the following, I will therefore
only review different types of tree based methods.

3.3.1 Decision trees

Decision trees are used for classification and regression [48]. The
goal is to create a model, which uses simple decision rules inferred
from data features to predict the value of a target. Fig. 3.5 shows a
simple decision tree used to separate two species of the Iris flower (the
“setosa” and “versicolor” species) based on sepal and petal length.
Here, four cuts were required to create a total separation of the two
species.

The optimal split for the decision trees is calculated using the
Gini impurity [49], which is the probability that a randomly selected
object will be misclassified. If allowed, the model will continue the
splitting until a pure node4 is reached. In practice, the training can 4 All events in the node have the same

labelbe controlled by setting the maximum depth of the tree to avoid
over-training. Still, decision trees have a tendency to over-fit as this
parameter can be difficult to set, and a small variation in the data may
even lead to a completely different prediction [48].

A way to reduce the downsides of the decision trees and keep
the benefits of simplicity is to use ensemble methods. Some ensem-
ble methods based on decision trees are Random Forest, Bagging,
Adaptive Booster, and Gradient Boosting. I will discuss two of them
below.

3.3.2 Random Forest

The Random Forest learning method create a multitude of decision
trees, and the predicted output is based on a majority vote from the
different trees. The name “random” is chosen, because the trees are
build in randomly selected sub-spaces of the feature space to reduce
over-fitting [50].
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Figure 3.5: Classification of two different
species of the Iris flower using a decision
tree. Four cuts are combined to separate
the two species in sepal length and petal
length.

3.3.3 Gradient Boosting

The gradient boosting method combines weak learners to create a
strong model. The weak learners are simple decision trees, and
these are combined stage-wise to compensate for the mistakes of the
previous learners [51]. When working with gradient boosting, the
mistakes are identified by gradients in the loss function.

3.3.3.1 LightGBM

In previous comparisons of different gradient boosting algorithms
for ATLAS [47], the framework LightGBM was found optimal due
to superior speed. For smaller datasets, LGBM also outperformed
its competitor in terms of accuracy. The LightGBM is a gradient
boosting framework using histogram-based algorithms, which speeds
up training and reduces memory usage [46]. Most decision tree learn-
ers grow trees depth-wise, and reduces the loss by adding levels
to the tree. LightGBM grows leaf-wise, so only a single leaf is ex-
panded instead of all leafs on that level. The leaf with the highest
gain is split. Thus, the main parameter controlling the complexity
of the model is the maximum number of leaves. When optimiz-
ing the hyper-parameters for models, the parameters num_leaves ,
max_depth , and min_data_in_leaf are tuned. The first and second

both controlling the depth of the tree and the latter controlling if a
split can be made for that leaf [52].
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3.3.3.2 Hyper-parameter search for the LightGBM model

When performing the search of the hyper-parameters for the models,
cross validation will be utilized with the package lightgbm.cv() .

Here, the dataset is split into K parts, e.g. 5 as in Fig. 3.6. In the
first round, the first part of the dataset is used as the validation set
and the rest is used for training. The model is then re-trained, but this
time with the second part of the dataset as validation. The training is
completed K times, and the performance is measured as a mean of
the performance on the K validation sets.

Figure 3.6: Splitting of the dataset in
5-fold cross validation

When we use this method for hyper-parameter search, 20 random
configurations are drawn and a 5-fold cross validation is performed
with a number of boosting rounds of 500 and early stopping rounds
of 100. The configuration of parameters yielding the best performance
(measured using AUC) is chosen as the parameters for the training.

For all models, the number of leaves, maximum depth, and min-
imum data in leaf is searched in ranges num_leaves = [20, 40],
max_depth = [−20, 20] (negative being unlimited) and min_data_in_leaf

= [10; 100]. num_leaves < 2^(max_depth) is required [52].

3.3.3.3 Reweighing for the LightGBM model

Before training a model, the data is reweighed to ensure that distri-
butions for certain variables are statistically identical in signal and
background. We do so, such that the model is trained independent
on these variables and the model cannot infer something about the
signal and background distribution. E.g. the models for the di-lepton
pair in the Z → ll decay is also used as input for the Z → llγ model,
where the di-lepton pair has a lower invariant mass, mZ→llγ

ll < mZ→ll
ll ,

as both mZ = 91.2 GeV. Thus it is important that the model is trained
without knowledge of the mass and is unable to infer the information
from other variables. The reweighing is performed with respect to
3-4 different variables that we wish to train models independent on—
including the invariant mass—and a single weight is assigned to each
event; it is not variable dependent.

The reweighing is performed using the module GBReweighter

from the package hep_ml [53]. It is a gradient boosted reweigher
based on ensembles of regression trees. The parameter n_estimators

sets the number of trees used [54]. The number of estimators will
determine how well the reweighed data fits the target, and a high
number might over-fit the data. If so, the algorithm will have diffi-
culties matching the distribution for the validation data. Thus, the
reweighing is run with different number of estimators, and the best is
chosen. For the Pid and Iso models, it is the distributions of η, 〈µ〉 and
ET that will be reweighed to match between signal and background.
For the Zll(g) and Hllg models, also the distribution of invariant mass
will be reweighed. An example of reweighing of distributions for the
ePid model can be seen in Fig. 3.7.
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Figure 3.7: An example of reweighted
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dashed lines. The right-most plot shows
a distribution of the weights.



4 Data processing and selection

A lot of data is produced in the ATLAS detector. This chapter will
describe the processing and selection of the original data before it is
used in the Machine Learning models.

4.1 Derivations . . . . . . . . . . . . . . . . . . . 35

4.2 Ntuple production . . . . . . . . . . . . . . . 36

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . 36

4.1 Derivations

All events produced in ATLAS (both in Monte Carlo and Data1) are 1 Monte Carlo generated data and Data
taken in the ATLAS detector will be dis-
tinguished in the following by capitaliz-
ing Data.

saved in xAOD files. From the xAOD files several DxAODs (derived
xAODs) are produced. As the name implies, not all content of the
xAODs are saved when producing the DxAODs. They are produced to
reduce the size of the data such that the analysis can be run smoother
and faster. The three main operations in the derivation are [55]:

Skimming: Removing non-relevant events
Thinning: Removing non-relevant objects from events
Slimming: Removing non-relevant information from objects

The DxAODs are produced by the working groups in ATLAS2

2 e.g. E/gamma, Muon, Tau, Higgs,
Standard Model etc.

saving the events and variables relevant for the analysis of the group.
Each group has different derivations where the relevant ones for this
thesis can be seen in Tab. 4.1.

Name Selection

EGAM1 Z → ee
EGAM3 Z → eeγ
EGAM4 Z → µµγ
EGAM8 Z → ee with at least

one electron from the
forward region

MUON1 One CB muon w/ pT >
24 GeV and |η| < 2.5,
second muon w/ pT >
4 GeV and dimuon in-
variant mass > 70 GeV.

HIGG1D2 At least one photon and
two opposite-sign elec-
trons or muons. Invari-
ant mass of the three
above 40 GeV. Further
cuts in ET , pT and |η| for
the particles.

Table 4.1: Different derivations relevant
for the thesis. EGAM derivations are
produced for the specific decays while
MUON and HIGG derivations are based
on skimming events [56–58].

During the work in this thesis, it was found necessary to get more
variables for certain type of decay processes than was available in the
derivations, as we wished to have a MC dataset for the decay Z → µµ

including variables for photons. The MUON1 derivation only saves
very little information about the background photons and the EGAM4

production is only run on the Z → µµγ decay. The solution was to
run the DxAOD software for EGAM4 (using the skimming, thinning,
and slimming defined for the derivation) on the Z → µµ AOD file.
This allowed for getting more variables for the background photons
in the events. Similarly, a EGAM8 Z → ee Data file was produced as
this was not available.
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4.2 Ntuple production

The DxAODs are accessible to all members of ATLAS via Rucio3 and 3 The data management system used in
ATLAS, see https://rucio.cern.ch/can be downloaded to a local server. Before using the (still quite big)

.root files, they are processed to even smaller files by creating ntuples.
These are produced using the same principles of skimming, thinning,
and slimming as the production of DxAODs with the difference that
this is done locally. The ntuple production of this group has been
developed by Helle Leerberg, a previous student of the group [59],
and has been adapted for my own needs during the work of the
thesis4. 4 The latest version of the ntuple produc-

tion of the group is available at [60]The only skimming process used by the ntuple production is over-
lap removal [61], it focuses mainly on slimming and thinning. The
thinning is dependent on the type of file, e.g. if you are working with
a Z → µµ file, only variables for muons are kept. Similarly, only the
relevant variables are saved for each type of particle, for example the
ET is saved for the electron (if the file contains electrons), while pT is
saved for the muon.

In the production, truth-matching is run (for MC files), where
particles, e.g. muon candidates, are matched with the truth events to
get the truth variables. This is the simulated origin, pT , η etc. for the
particle.

The ntuple production is made specifically for the derivations seen
in Tab. 4.1 as the different groups have different variables available
in their DxAOD, and the production should thus be adapted if one
considers a new type of DxAOD file.

Lastly, the ntuple dataset is converted into hdf5 files [62] before
the data files for each specific analysis is created.

4.3 Datasets

All decay processes used for training can be seen in Tab. 4.2, along
with the derivation used. The right-most column list the models
where the specific decay is included in training.

Some datasets are used to train a series of models. When ntuple
datasets are transformed into hdf5 files, they are split into 10 equal-
size files. It is ensured that, if the models trained on the same decay
will later be evaluated together, the files used for training are different.
An example is the Z → µµ decay, where the MUON1 Zmm file is
used in training of the mPid, mIso, and Zmm models. Here, file 0-3
are used for Pid and Iso, while 4-9 are used for the Zmm model (both
training and test), as we do not want to risk the test sample of the
Zmm model to include events previously seen by the Pid and Iso
models in training. However, the Z → eeγ data is used in the Zeeg
and Heeg models will never “meet”, meaning that the same data can
be used for training and predicting without any trouble.

https://rucio.cern.ch/


data processing and selection 37

Process Derivation Model

Z → µµ MUON1 mPid, mIso, Zmm
Z → µµ (incl. γ in events) EGAM4 (created from MUON1 AOD) Zmmg
Z → µµγ EGAM4 mPid, mIso, pPid, pIso,

Zmm, Zmmg, Hmmg
W+ → µν MUON1 mPid, mIso, Zmm
W− → µν MUON1 mPid, mIso, Zmm
Z → ee EGAM1 ePid, eIso, Zee
Z → ee (fwd) EGAM8 ePid, eIso, Zee
Z → ee (incl. γ in events) EGAM3 ePid, eIso, Zeeg
Z → eeγ EGAM3 ePid, eIso, pPid, pIso, Zee,

Zeeg, Heeg
W+ → eν EGAM1 ePid, eIso, Zee
W− → eν EGAM1 ePid, eIso, Zee
H → llγ HIGG1D2 Hmmg, Heeg

Table 4.2: The different processes and
derivations used. A full list of the con-
tainers can be seen in Tab. A.1
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In this chapter I will present the analysis-part of the thesis. I will
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photons—and their combinations into Z and Higgs bosons.
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5.1 Overview

This thesis presents a new approach to the H → Zγ search which will
be evaluated against that of [1]. In that ATLAS selection, a cut-based
approach is taken: The decay products are to satisfy the medium
(loose) working point (WP) criteria, be within |η| < 2.7 (2.47, with
1.37 < |η| < 1.52 excluded), and have pT > 10 GeV (ET > 10 GeV) for
muons (electrons). Photons are to satisfy same requirements as the
electrons, except the WP criteria, where photons should meet the Tight
WP identification criteria, and |η|, where |η| < 2.37. Furthermore,
muons and electrons are ensured to be from the primary vertex with
the requirements of |∆z0 · sin θ| < 0.5 mm. To suppress heavy-flavour
decays, the requirement |d0|/σd0 < 3 (5) for muons (electrons), should
be met. See Tab. 5.1 for an overview of the cuts.

ATLAS selection

Cut Type Description

M
uo

ns
(e

le
ct

ro
ns

) Q1 ·Q2 < 0 Kinematic Leptons should have opposite charge
pT (ET) > 10 GeV Kinematic The transverse momentum (energy) pT (ET) should be

above 10 GeV
|η| < 2.7 (2.47, with 1.37 <

|η| < 1.52 excluded)
Kinematic The pseudorapidity should be lower than 2.7 (2.47, the

crack and forward calorimenter are excluded)
WP medium (LH loose) Identification Both leptons are identified with the medium (loose)

working points
|d0|/σd0 < 3 (5) Vertex The d0 significance of both leptons should be less than

3 (5)
|∆z0 · sin θ| < 0.5 mm Vertex Leptons are required to be associated with the primary

vertex.
track isolation Isolation Cut requiring 99% efficiency over the lepton pT range.

That means removing all pairs containing lepton with
the 1% highest ptvarcone20.

Ph
ot

on
s pT > 10 GeV Kinematic The transverse momentum pT should be above 10 GeV

|η| < 2.37, with 1.37 <

|η| < 1.52 excluded
Kinematic Photons from forward and crack regions are excluded

WP Tight Identification Photons are identified with the tight working point

Table 5.1: Selection from [1] used in this
thesis to evaluate against ATLAS.

In this chapter, the new approach—an ML based one—will be
aimed to improve the selection compared to the cut-based selection
from ATLAS. The ATLAS selection focuses on the different decay
products of the H → Zγ decay. The cuts of the selection are either
based on kinematic variables, identification of the particle, or isolation
of the particle. The ML based method presented in this chapter will
take a similar approach. To replace the different cuts in Tab. 5.1,
several models will be trained, and the output from some models will
serve as input to the next. Below, I will introduce the different type
of models and their purpose:

Pid: Particle identification models. Trained for muons, electrons,
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and photons. Answers whether the particle we are looking at,
is indeed the particle we are looking for. Sometimes an electron
candidate can actually be a photon in-disguise, and the Pid models
are trained to identify these. A separate Pid model for forward
electrons (i.e. electrons in the forward calorimeter with η > 2.47) is
trained. These types of electrons are usually not included in ATLAS
selections. Different variables exist for the forward electrons, as the
FCAL include other variables compared to the ECAL, and thus a
separate model is necessary. The Pid models have similar tasks as
the ATLAS Likelihoods/Working points for muons, electrons, and
photons.

Iso: Isolation models. Trained for muons, electrons, and photons.
Answers if the particle is isolated from nearby tracks. A true
identified muon (by the Pid model) can originate from hadron
decays in flight, pileup interactions, or cosmic rays [41] instead of
the hard-scattering proton-proton interaction. These background
muons, however, are not isolated in the detector. The Iso models
takes different kinematic variables as input.

Zll: Di-lepton models. Combines the Pid and Iso models for
muons and electrons with track and vertex variables. Trained for
the Z → µµ and Z → ee decays. The output of this model is
compared with the cuts for muons and electrons in Tab. 5.1 (i.e. the
top part of the table).

Zllg/Hllg: Models for the full Z → llγ and H → Z(→ ll)γ decays.
Combines the di-lepton models with Pid and Iso models for the
photon. The output of this model is compared with all cuts in
Tab. 5.1.

The Pid and Iso models will be referred to mPid/mIso, ePid/eIso,
and pPid/pIso to distinguish the models for each particle—m, e, and p
representing the three particles; muons, electrons, and photons. The
models for the Z → µµ and Z → ee decays will be referred to under
the joint name Zll, while Zmm and Zee will refer to the model for the
specific decay. Same applies to Zllg and Hllg models.

Fig. 5.1 represents an overview of the muon models and their
combination into succeeding models. The mPid and mIso models
are combined with track and vertex variables into the Zmm model.
This Zmm model is then combined with the photon models and
other variables to the Zmmg and Hmmg models. The figure shows
the combination for muon models, but the same format applies to
the electron models. The other variables, serving as input to the
models, will be elaborated upon later in the chapter including the
identification and kinematic variables being input to the Pid and Iso
models.

The models are mainly trained using Monte Carlo generated data
(see Sect. 2.3.7). Here, the truth variables (e.g. origin) are used to
identify signal and background. These models are referred to as MC
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Figure 5.1: Overview of the models and
their combinations. Shown for muon
models. Same concept applies for the
electron models. Pid and Iso models are
trained and combined with track vari-
ables into a Zmm model. The Zmm
model and photon variables are com-
bined into a Zmmg/Hmmg model.

Truth models. Some models are trained in real Data where truth
variables do not exist. To give labels (and distinguish signal and
background) a Tag & Probe method is used, which will be explained
in later sections. Tag & Probe-based models are also trained in MC
data. These models are referenced to as MC T&P and Data T&P.

Figure 5.2: Type of models trained. MC
Truth, MC T&P, and Data T&P models
are trained for muons (and electrons)
and Zll models. For the pPid, pIso, and
Zllg/Hllg, only MC Truth models are
trained.

Fig. 5.2 shows the timeline for muon models and which of the
models are trained on the types of datasets. The lepton Pid and Iso
models, as well as the di-lepton model, are trained in MC and Data
T&P. They will each take the corresponding Pid and Iso models as
input to the di-lepton model. The Pid and Iso models for the photon,
as well as the Zllg and Hllg models, are trained in MC Truth only.
A total of 25 models are trained. In this chapter, it will be aimed to
introduce all types of models and their performance. However, many
of the details will be put in appendix.

When training in Monte Carlo data, it is important to consider the
dominant background and the signal-to-background ratios for the
true Data the final model is predicted upon. We wish to train on data
resembling the true distribution of Data. It has been aimed to do
so, but it has not been optimized fully. The Data-trained models are
introduced in order to have a better relationship between the training
and testing data. However, since we still need labels on the training
data, in order to supervise the model, it is not certain that this model
will be the most successful one, as we might not assign the labels
perfectly.

When evaluating the models, it is important to consider the labeling
and distributions. The Pid and Iso models will be evaluated using
the ROC curve of the test sets. Here, a perfect ROC score does not
necessarily mean that the model generalizes well to Data, but instead
that it generalizes well to the test data with the same distribution in
variables (and labels) as the training data.

The Zmm and Zee models are evaluated in both MC and Data,
and compared to the selection in [1]. When evaluated in MC, they
will be evaluated against their own test set. This means that the MC
Truth model will be evaluated against the MC Truth labels while the
Data T&P model is evaluated based on the T&P labels1. When the 1 Thus, the Data T&P is actually not eval-

uated in MC, but in Data with labelsZmm and Zee models are evaluated on Data, all types of models will
be shown together on the same Data along with the ATLAS selection.
The Zllg models will similarly be evaluated in MC and Data, while
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the Hllg models are evaluated on MC data only.

5.2 Lepton and photon models

In this section, single particle models will be described. In the Higgs
decay H → Z(→ ll)γ , single leptons and photons are decay products,
and will be detected in the ATLAS detector. Thus, it is key that we
have models identifying these particles and answering questions such
as “Is it a muon?” or “Is the muon isolated?”. Models to answer
those two questions are described in this chapter. Pid models will
answer the particle identification question, while Iso models tell us
whether the particle is isolated. A separate Pid model for electrons in
the forward calorimeter will be trained, which will be referred to as
the eFwd model.

The procedure for data selection, training, and evaluation of Pid
and Iso models will be described in the following.

5.2.1 Datasets

This section will describe the datasets for all types of training data.
All models will be trained single particles, i.e. one electron, one

muon, or one photon. Tab. 5.2 shows the data files used for training
the Pid and Iso models for electrons and muons, while Tab. 5.3 shows
the photon files.

The datasets are separated into a training, validation, and test
sample. As described in Chap. 3, the training and validation set is
used in training. The results in this chapter will be shown on the test
set as we want the unbiased estimate of the model output.

Signal files
Electrons Muons

Z → ee Z → µµ
Z → eeγ Z → µµγ

Background files
Electrons Muons

W → eν W → µν

Table 5.2: The decay processes used for
the electron and muon data selection
described in this section.

Datasets for photons

Z → eeγ
Z → µµγ

Table 5.3: The decay processes used for
the photon selection described in this
section.

5.2.1.1 MC Truth dataset for muons and electrons

Monte Carlo (MC) generated data has the advantage that one knows
the true identity of a particle. This information is stored in truth vari-
ables, such as truthType [63], truthPdgId 2[64], or truthOrigin [63].

2 pdgId is an abbreviation for Particle
Data Group ID

The datasets based on the truth variables in the MC data will
be slightly different for the Pid and Isolation models. In the Pid
case, the signal and background will be distinguished using the truth
variable truthPdgId. In the muon case, the truthPdgId is 13 for a
negatively charged muon and −13 for a positively charged muon.
For the election, this number is 11 [64]. Thus, signal will be muons
(electrons) with |pdgId| = 13 (11) and background |pdgId| 6= 13
(11). For the eFwd model, the signal and background electrons are
chosen the same way, however of course only considering electrons
from the forward calorimeter.

For the Isolation models, we look at the truthType, as this allows
for distinction of isolated and non-isolated particles. Particles with
truthType = 6 (2) are isolated muons (electrons), i.e. signal, and
those with truthType = 7 (3) are non-isolated muons (electrons), i.e.
background.
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For both the Pid and Iso models, we will use the datasets listed
in Tab. 5.2 and will not distinguish whether the particle came from
a signal or background file. That means that muons not passing the
signal cut, coming from the Z → µµ file, will be background along
with the events from the W → µν file.

5.2.1.2 Tag & Probe datasets

The method of Tag & Probe has the advantage that it can be used in
both MC and Data. Pairs of particles are created using this method,
where the "tag" particle passes tight selections; it should be a trigger
particle, have a transverse energy above 26 GeV, be isolated (pvarcone

T <

0.15 · ET), and meet the Tight WP. This is paired with a "probe" particle
from the same event passing very loose selection cuts, only checking
that ET > 10 GeV (see Fig. 5.3).

Figure 5.3: Tag & Probe selection. The
tag particle is found from tight selection
cuts, while only a very loose cut is made
on the probe particle.

Figure 5.4: Signal and background se-
lection for Tag & Probe selection. Only
the probe particle is used as input in the
training.

From this, we choose signal and background events based on the
charge and the invariant mass between the particles (see Fig. 5.4). If
the particles have opposite sign and are within 5 GeV of the Z boson
mass, it is a signal event. Background is selected either from events
where the leptons have same charge and invariant mass between 10
and 40 GeV from the Z boson mass, or opposite-sign events with
invariant mass between 20 and 40 GeV from the Z boson mass.

Furthermore, for the MC, we only choose signal events from the
signal files in Tab. 5.2 and background events only from the back-
ground files. The background will be dominated by signal events if
events from signal files are also considered as background. In Data,
all events are considered for both signal and background.

When implementing the models, data was lacking and the files
containing the background events were small. To get a proper sig-
nal/background ratio in terms of number of events, events are copied
and shuffled from the existing background to augment the data.
When training the model, only the probe particle is used, the tag
particle is discarded.

5.2.1.3 MC Truth dataset for photons

The signal and background photons will be found slightly different
than for the muons and electrons. When training the photon models,
both Pid and Isolation, we will use isolated photons as signal. These
have the truthType 14. For the isolation model, the background will be
photons with truthType 16 (background photons). The pPid models
are trained with all other types available as background. All photons
with ET < 4.5 GeV are cut away.

5.2.1.4 A note on T&P dataset for photons

A T&P model can also be trained for the photons, however, due to
time constraints, this was not considered in this thesis. This could
be done using signal events from the Z → llγ decays, ensuring
ET < 10 GeV for the photon and invariant mass within 5 GeV of the Z
boson mass. A lot of different files that could serve as background
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files in the photon case exist. Considering the data we have available,
random photon candidates from Z → ll files would be the preferred
source of background.

Tab. 5.4 shows the number of events in the datasets for each model
trained. From these numbers, the datasets are split into training,
validation, and test set using the split 60-20-20.

Pid and Iso data selection

Model MC Truth MC T&P Data T&P
Signal Background Signal Background Signal Background

mPid 498, 220 476, 379 53, 292 150, 250 18, 204 12, 198
mIso 489, 168 489, 375 53, 292 150, 250 18, 204 12, 198
ePid 551, 256 644, 507 56, 852 32, 535 19, 228 75, 460
eFwd 30, 967 402, 927
eIso 551, 256 371, 853 56, 852 32, 535 19, 228 75, 460
pPid 121, 126 524, 555
pIso 121, 126 109, 482

Table 5.4: Number of events for the Pid
and Iso data sets. Rows show the model
and columns show the signal and back-
ground events for each type of model
trained. Note that the same datasets
are used in Pid and Iso for T&P trained
models.

5.2.2 Reweighing

The reweighing is made separately for each type of dataset, but is done
in the variables 〈µ〉, ET or pT , and η for all datasets. Fig. 5.5 shows
the MC Truth training dataset for the ePid model is shown reweighed
using 100 estimators. We see that for 〈µ〉 and η, the background
distribution resembles the signal well, but for ET , it has some trouble
fitting the signal distribution. It is clear that the signal has higher
values of ET than the background, it can thus not be reweighed to
match completely. This is also not striven for, as the data then might
be overfitted.
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Figure 5.5: Signal and background dis-
tributions of 〈µ〉, ET and η for the MC
truth dataset for the electron PID model.
The background is reweighed with 100

estimators to match the signal distribu-
tion.

5.2.3 Model training

In the next parts, I will describe how the models are trained, their
input parameters, and the performance of the models.
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All models will be trained using the framework LightGBM. To
ensure that the models are trained with the best parameters and
that they are not over-fitted, hyper-parameter optimization and early
stopping is implemented in the training as described in Sects. 3.2.3
and 3.2.4.

I will only show plots for the MC Truth muon model as all Pid
and Iso model has same general implementation. However, variables
for the other models will be shown. Furthermore, comments will
be made and conclusions will be drawn on all Pid and Iso models,
including the T&P trained ones. The full description for all models
can be found in App. A.2.

5.2.3.1 Particle Identification: Pid

As mentioned in the introduction to Sect. 5.2, the Pid model helps
answering the question of whether the particle we are looking at, is
indeed the particle we are looking for. Input features to these models
are tracking and calorimeter variables, which are also used in the
ATLAS Likelihood (see Sect. 2.3.6).

The mPid models are trained using the parameters in Tab. 5.5. A
description of the variables can also be found here. The features for
the electron and photon models can be found in Tab. 5.6 and for a
detailed description, see Tabs. A.2 and A.4.

ML mPid input features

muo_numberOfPrecisionLayers The number of hits in the precision layers
muo_numberOfPrecisionHoleLayers Number of expected hits in the precision layer not seen
muo_quality Type of muon (Combined, Segment tagged, StandAlone

etc.)
muo_MuonSpectrometerPt The pT deposited in the muon spectrometer
muo_scatteringCurvatureSignificance Used to search for a kink along the track, computed as the

change of the normalised integral of the scattering angle
significances in the track bending plane.

muo_scatteringNeighbourSignificance Used to search for a kink along the track, defined as the
largest value of scattering angle significance over the en-
tire track

muo_momentumBalanceSignificance Quantifies the difference between the energy loss in the
calorimeters and the corresponding direct calorimeter
measurement.

muo_EnergyLoss Energy deposited in calorimeter
muo_energyLossType Type of energy deposited in calorimeter

Table 5.5: Input features for the mPid
models.

For the electrons, a separate model will be trained for the events in
the forward calorimeter. The forward electrons does not include as
many variables as the prompt electrons, as the detector is different,
and thus the same model cannot be used. Usually, the events in the
forward detector are excluded—as in the ATLAS selection we will
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be comparing our models against—but they are included here. The
model will be referred to as the eFwd model.

All Pid models will be compared to the ATLAS Likelihood working
points Loose, Medium, and Tight for muons and electrons, and Loose
and Tight for the photons.

ML ePid input features ML eFwd input features ML pPid input features

ele_Rhad ele_centerLambdaCluster correctedScaledAverageMu

ele_Rhad1 ele_lateralCluster pho_eta

ele_f3 ele_fracMaxCluster pho_et

ele_weta2 ele_topoetconecoreConeEnergyCorrection pho_Rhad

ele_Rphi ele_longitudinalCluster pho_Rhad1

ele_Reta NvtxReco pho_weta2

ele_Eratio pho_Rphi

ele_f1 pho_Reta

ele_d0 pho_Eratio

ele_d0Sig pho_f1

ele_dPOverP pho_wtots1

ele_TRTPID pho_weta1

ele_deltaEta1 pho_fracs1

ele_deltaPhiRescaled2 pho_ConversionType

pho_ConversionRadius

pho_VertexConvEtOverPt

pho_VertexConvPtRatio

Table 5.6: Features for the ePid, eFwd,
and pPid models. The list including
description of the variables can be seen
in Tabs. A.2 and A.4.SHapley Additive exPlanations (SHAP) is a game theoretic ap-

proach to explain the output of a Machine Learning model [65]. We
will use this method to quantify the importance of the features used
in the model. The features are ranked in terms of largest contribution
or importance to the final model. The SHAP values for the mPid
MC Truth model is seen in Fig. 5.6. The top ranking variable is
muo_numberOfPrecisionLayers , which contains information on the

quality of the muon track. The ranking is the same for the MC T&P
model, while they are slightly different for the Data trained T&P
model, however still with the muo_numberOfPrecisionLayers as the
most important feature (see Fig. A.1).

For the ePid models (Figs. A.7 and A.10), the rankings differ to
some extent for the three trained models. The feature ele_Reta

scores high for all models, and also ele_Eratio and ele_deltaEta1

are in the top. The Reta and Eratio variables both relates to the en-
ergy deposit in the calorimeter, while deltaEta1 is a tracking vari-
able. For the eFwd model (Fig. A.7), it is also a calorimeter variable,
ele_fracMaxCluster , that has the highest SHAP value.

For the pPid model (Fig. A.19), the variables pho_Reta , pho_Eratio ,
and pho_deltaE that has the biggest influence of the model output.
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Figure 5.6: SHAP values for the
mPid model. The variable with the
highest influence on the model is
muo_numberOfPrecisionLayers

These are all similar to the top features for the ePid models just
described.

Each of the different models is tested on the corresponding test set
by predicting the labels for the events. When predicting using the
LGBM model, each input event is given a output score between 0 and
1. The higher the value, the more signal-like the event is. The (logit
transformed) output for the final mPid model can be seen in Fig. 5.7.
The logit transformation [66] maps the value in the range (0, 1) to
(−∞, ∞). In Fig. 5.7 we can see that the signal and background
are separated nicely, which tells us that the model performs well.
Another way to see this, is to plot the ROC curve. Fig. 5.8 shows the
ROC curve for the mPid MC Truth test set. We see that the AUC
for the LGBM model is 0.998, meaning that it has almost perfect
performance and the output distribution of signal and background
are nearly completely seperable. The figure also shows the ATLAS
working-points (WP) Loose, Medium, and Tight. Plots of the LGBM
scores and ROC curves for the rest of the muon models along with
the electron and photon models can be found in App. A.2.
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Figure 5.7: Logit transformed LGBM
score for the final mPid MC Truth model.
There are some evident features in the
prediction scores, but the signal and
background are separated nicely.
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Figure 5.8: The ROC curve for the mPid
MC Truth test set. The ATLAS Loose,
Medium and Tight WP are shown on the
figure as well as the ML selection that
matches their background efficiency.



data analysis 49

Tab. 5.7 shows the TPR (signal efficiency) for the ATLAS selection
and the corresponding TPR for the LGBM Pid models at similar back-
ground efficiency. The change for each model is shown, indicating
the improvement or deterioration of the ML models compared to the
ATLAS WPs. The TPRs are similarly shown in Fig. 5.8 for both the
ATLAS selection and the LGBM, the latter as ML mPid sel.. Since the
outputs of the WPs are binary, compared to the continuous output
of the LGBM model as seen in Fig. 5.7, they are depicted as single
points rather than a curve.

The Data T&P models has efficiency much worse than the ATLAS
prediction, but for the electron and muon models, the MC trained
model improves the selection from 2− 28%, where the largest im-
provement is for the ePid MC T&P model at the Tight cut, with 27.6%.
The signal efficiency of the eFwd model drops significantly compared
to the ATLAS WP. However, ATLAS does not include the forward
electrons, so simply doing so, is likely to yield an increase in the final
comparison.

For the photon model, the ML model has an improvement of 9%
for the Loose WP while a slight worsening is seen for the Tight WP.
The corresponding ROC curve can be found in Fig. A.20.

Pid models performance

Model Loose WP Medium WP Tight WP
ATLAS ML Change ATLAS ML Change ATLAS ML Change

mPid MC Truth 0.966 0.997 3.1% 0.950 0.995 4.5% 0.855 0.958 10.8%
mPid MC T&P 0.982 0.999 1.7% 0.958 0.998 4% 0.882 0.997 11.5%
mPid Data T&P 0.940 0.741 −26.9% 0.919 0.701 −31.0% 0.860 0.680 −26.5%

ePid MC Truth 0.837 0.944 11.4% 0.766 0.888 13.7% 0.681 0.801 15.0%
ePid MC T&P 0.885 0.982 9.8% 0.814 0.976 16.5% 0.708 0.977 27.6%
ePid Data T&P 0.799 0.41 −94.8% 0.716 0.337 −112.4% 0.614 0.274 −124.2%
eFwd 0.797 0.46 −73.3% 0.624 0.254 −145.6% 0.429 0.164 −161.1%

pPid 0.739 0.813 9.3% 0.526 0.522 −0.7%

Table 5.7: Performance of the Pid mod-
els for muons, electrons, and pho-
tons. Three (two) working points are
shown for muons and electrons (pho-
tons). These are the Loose, Medium,
and Tight (Loose, Tight). The signal effi-
ciency is shown for the WPs, where the
ML efficiency is measured at the same
background efficiency as the ATLAS WP.
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5.2.3.2 Isolation: Iso

The Iso models give us information about the isolation of the particle.
Variables used here are energy and energy deposits in the detector.
The training features for the mIso model can be seen in Tab. 5.8, while
features for the eIso and pIso models can be seen in Tab. 5.9 (Tabs. A.3
and A.5 for full description). All models share similar features—the
pileup, number of vertices and different energy measures for the
particle.

The performances of the mIso models are compared to the isolation
WP from [41], pvarcone30

T < 0.06 pT , and the eIso models to pvarcone20
T <

0.15 ET from [67]. No direct comparison can be made for the pIso
model, but for visualization purposes, the muon WP will be depicted
on the photon isolation ROC curve.

ML mIso input features

correctedScaledAverageMu Pileup
NvtxReco Number of reconstructed vertecies in the event
muo_etcone20 A variable of the sum of ET tracks in the 0.20 cone around

the object
muo_pt The transverse momentum pT of the muon
muo_ptcone20 A variable of the sum of pT tracks in the 0.20 cone around

the object
muo_etconecoreConeEnergyCorrection The correction of the etcone variable

Table 5.8: Input features for the mIso
models.

ML eIso input features ML pIso input features

correctedScaledAverageMu correctedScaledAverageMu

NvtxReco NvtxReco

ele_et pho_et

ele_ptvarcone20 pho_ptvarcone20

ele_topoetcone20 pho_topoetcone20

ele_topoetcone40 pho_topoetcone40

Table 5.9: Features for the eIso and pIso
models. The list including description
of the variables can be seen in Tabs. A.3
and A.5.

As for the Pid models, the SHAP values are investigated (see
Fig. 5.9). Here, muo_pt has the largest importance in the mPid model
training. Generally for all isolation models, the transverse momen-
tum/transverse energy (pT/ET) variables are important together with
the topoetcone20 variable for electrons and photons. The topoet-
cone variable is the sum of the ET tracks in a cone around the object,
making it ideal as an isolation variable. The SHAP listings for the
other isolation models can be found in App. A.2.
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Figure 5.9: SHAP values for the mIso
model. The variable with the highest
influence on the model is muo_pt .
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Figure 5.10: The ROC curve for the
mIso MC Truth test set. The ATLAS
WP pvarcone30

T < 0.06 pT is shown on the
figure.

Fig. 5.11 shows the logit transformed LGBM score for the MC Truth
trained mIso model, while the ROC curve for the test set can be seen
in Fig. 5.10. The mIso model gets an AUC of 0.939, and, compared to
the ATLAS WP plotted in Fig. 5.10, pvarcone30

T < 0.06 pT , yielding an
AUC of 0.694, the mIso model performs well. For the T&P trained
models, we get an AUC of 0.958 for the MC and 0.703 for the Data
trained model.
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Figure 5.11: Logit transformed LGBM
score for the final mIso MC Truth model.
As can also be seen on the ROC curve in
Fig. 5.10, the signal and background are
less seperable than in the mPid model
in Fig. 5.7.

The eIso MC models has AUCs of 0.986 and 0.991, while the Data
trained eIso model has an AUC of 0.885, lower than its MC trained
siblings, just as the mIso and Pid cases. Here—different from the Pid
models—the Data-trained models performs better than ATLAS. The
photon isolation has an AUC of 0.893.

The signal efficiencies and their improvement can be seen in
Tab. 5.10, where it is evident that all model improves compared
to the ATLAS WPs, varying between 6− 12%. However, as can be
seen on the slightly lower AUCs compared to those of the Pid mod-
els, isolation is a difficult task, and definitely a place where further
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improvements can be made.
Note that the photon is evaluated against a muon WP and should

thus not be seen as a direct comparison to the ATLAS photon isolation.
See App. A.2 for all ROC curves and LGBM scores for the isolation
models.

Iso models performance

Model Isolation WP
ATLAS ML Change Note

mIso MC Truth 0.907 0.991 8.5%
mIso MC T&P 0.941 1.0 5.9%
mIso Data T&P 0.899 0.975 7.9%

eIso MC Truth 0.885 0.986 10.3%
eIso MC T&P 0.876 0.998 12.3%
eIso Data T&P 0.811 0.919 11.7%

pIso 0.82 0.93 11.8% Compared with
muon WP

Table 5.10: Performance of the Iso mod-
els for muons, electrons, and photons.
One isolation working points are shown.
The signal efficiency is shown for the
WPs, where the ML efficiency is mea-
sured at the same background efficiency
as the ATLAS WP. Note that the photon
is evaluated against a muon WP.

5.2.4 Conclusions on lepton and photon models

In the last section, the training and performance of the lepton and
photon models has been described. Two types of models have been
trained for all particles; a particle identification model and an isolation
model. For the muon and electron, we have used three different
datasets for training.

The Pid models have been compared to ATLAS Likelihood WPs
in Tab. 5.7, where most muon and electron models have yielded
similar or better results. Exceptions are the forward model for the
electron and the Data trained T&P models. For the forward model,
ATLAS does not even include the electrons in this part of the detector,
and as mentioned, simply including the particles will be likely to
yield an increase in performance. For the Data trained models, the
low statistics might play a role in the bad performance. The pPid
model shows an improvement compared to the Loose WP and a slight
worsening for the Tight WP.

Isolation models have all been compared to isolation working
points in Tab. 5.10, and we have seen an increase in performance
for all models. The isolation models is generally a place where
improvements could be made compared to the ATLAS selection.

Common to all ML trained models is that the model output is
continuous opposite to ATLAS, where all WPs are binary. For the
next part of the analysis, the continuous output is important, as we
will use the models as input features for new models. This gives the
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models the ability to find the best cut in the continuous feature rather
than accepting the “cut” already made when working with a binary
variable.

For all models, the performance is measured on the test set, where
the labels are created in the same manner as the training set. However,
we might find that the distribution of the test data does not match the
final Data distribution that we are trying to predict upon. Thus we
will still keep all types of models and test all in the next part of the
data analysis.
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5.3 Boson models

In this section the training and evaluation of the boson models will
be presented. As described in Sect. 5.1, these are the Zll (di-lepton
models) and Zllg/Hllg models. The decays and the model names
are listed in Tab. 5.11.

Boson decays Model names

Z → ee Zee (Zll)
Z → eeγ Zeeg (Zllg)
H → Z(→ ee)γ Heeg (Hllg)
Z → µµ Zmm (Zll)
Z → µµγ Zmmg (Zllg)
H → Z(→ µµ)γ Hmmg (Hllg)

Table 5.11: The boson decays investi-
gated in Sect. 5.3

The Zmm and Zee models will be trained on three different types
of datasets, as for the lepton models, the MC Truth, MC T&P, and
Data T&P. The Zllg and Hllg models will be trained on MC Truth
only.

ATLAS selection

Muons Q1 ·Q2 < 0
(electrons) pT > 10 GeV

|η| < 2.7 (2.47, with 1.37 <
|η| < 1.52 excluded)

LH medium (LH loose)
|d0|/σd0 < 3 (5)
|∆z0 · sin θ| < 0.5 mm
track isolation

Photons pT > 10 GeV
|η| < 2.37, with 1.37 <
|η| < 1.52 excluded

LH Tight

Table 5.12: Selection from [1]. See
Tab. 5.1 for an elaboration of the cuts.

The models for the Z → llγ decays serves as control models for
the H → Z(→ ll)γ decays, since the Z-decays are discovered and
well-investigated—opposed to the H-decay. The Z and Higgs decays
will be compared in MC and the H Data behavior will be extrapolated
from the Z Data performance.

The performance of the ML models will be measured with respect
to the ATLAS selection from [1] as described in Sect. 5.1 and summa-
rized in Tab. 5.12. The ATLAS and ML selections will be shown in
the figures and the improvement achieved by the ML models will can
be seen in the figure legend as well as tables.

The section will be structured as follows: First, the data production
and selection will be introduced. This also includes the evaluation
methods used throughout the section. Then, the models will be
presented: First, the Zll models are introduced and their performance
in MC and Data is presented and discussed. The presentation of the
Zllg and Higgs models will follow. The behavior of the Zllg models
in Monte Carlo and Data from the ATLAS detector will be reviewed,
before the Higgs models are evaluated in MC and their expected
performance in Data is discussed.

5.3.1 Datasets

We are using datasets with decay products from the Z and Higgs bo-
son. This means that we are creating datasets with multiple particles
and their variables. Event variables are calculated, such as the energy,
η, and invariant mass of the combination of products—thus the origin
particle.

As mentioned, three types of datasets will be created for training
the Zee and Zmm model. These are—again—the MC Truth, MC T&P,
and Data T&P. The procedure has some similarities with the lepton
model datasets. The difference here is, that we need to keep both the
tag and probe particle, and thus we cannot perform as many checks
on the tag as we could when this was discarded, since this will bias
our data selection.

First, the procedure for production of datasets for the Zee and
Zmm model will be described and afterwards we will do the same
for Zllg and Hllg.
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5.3.1.1 MC Truth datasets for Zee and Zmm

When creating the MC Truth datasets, we again rely on the truth
variables. But first, we create a pair using the tag and probe-method.
We loop through all particles, and if the particle activated the trigger,
it is labeled as tag and if not, it is a probe, see Fig. 5.12.

Figure 5.12: Illustration of the T&P pair
selections from [59]. 1) All electrons
in the event are seperated into tag and
probe using trigger information. 2) The
tag electrons are combined with the
probe electrons. 3) The electron pairs
are outputted in array.

The tag and probe candidates are combined in pairs and their truth
variables are checked. The pair is labeled as signal if both particles
have truthOrigin 13 (Z boson), if their truthPgdId match the correct
(±13 for muons and ±11 for electrons) and if they have opposite
charge. They are labeled as background if they match one of the
following conditions:

Bkg0Lep: Both are muons (electrons), but not from Z,
Bkg1Lep: One is a muon (electron) or
Bkg2Lep: No muons (electrons).

Particles where one lepton origin from the Z boson will be discarded.
The largest contribution to the background is Bkg1Lep, where one of
the tag and probe candidates are the correct lepton. This will most
likely be the tag lepton, as it has triggered.

5.3.1.2 Tag & Probe datasets for Zee and Zmm

For the tag & probe datasets, we find tag and probe pairs by checking
that the tag particle has triggered, and we then demand the probe to
have pT (ET) > 10 GeV for muons (electrons).

In MC, the signal is found from signal files (as for lepton models,
see Tab. 5.2) where we check the invariant mass is in the range
|mZ −mll | < 5 and that the particles have opposite sign.

For the background, we consider the background files in Tab. 5.2
and accept same-sign candidates in 10 < |mZ − mll | < 40 and
opposite-sign candidates with 20 < |mZ − mll | < 40. This also
means that we only have data in these ranges; mZ ± 5 GeV and
mZ ± (10− 40)GeV.

For the Data T&P data set, we find signal and background con-
sidering all events in the data file and enforcing same cuts as for the
MC.

As for the lepton models, the data is augmented by adding more
background by copying shuffled events. This means that the differ-
ence in from the T&P datasets for single leptons, is, that we do not
check if the tag particle is tight, isolated, and have pT (ET) > 26 GeV
and that both the tag and probe particles are kept.

Tab. 5.13 shows the number of events for all different datasets for
the Zll models. These are used for training, validation, and test with
the split 60-20-20.
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ML Zll data selection

Decay MC Truth MC T&P Data T&P
Signal Background Signal Background Signal Background

Z → µµ 809, 151 1, 800, 617 73, 376 315, 875 19, 228 75, 460
Z → ee 126, 480 306, 778 82, 983 748, 875 19, 988 31, 327

Table 5.13: Number of events for the
Zll data sets. The rows shows the two
different decays. The columns are split
into the MC Truth, MC T&P, and Data
T&P datasets, and numbers of signal
and background events for the different
datasets are shown.

5.3.1.3 MC datasets for Zllg and Hllg

The data selection for Zllg and Hllg is based on the truth variables
and the tag and probe method. Since we are considering three decay
particles, there will be one tag and two probes (TP&P; tag, probe, and
probe). As for the Zll models, all leptons triggering will be considered
as tags while the rest are considered as probes. All photons with
ET > 4.5 GeV will be labeled as probes.

To label the events, all three particles in the event are considered.
For signal leptons, their origin should be 13 (14) for Z (Higgs), truth-
PdgId ±13 (±11) for muons (electrons), and have opposite charge.
The signal photon should have origin 3 (14) for Z (Higgs) and truth-
PdgId 22. There will be the following different combinations for the
signal and background:

Signal: All particles meets the signal requirements
Bkg0: The leptons meets the signal requirements, but the photon
does not
Bkg1: The leptons does not meet the signal requirements, but the
photon does
Bkg2: None of the particles meets the signal requirements

The main background will be from a Z → ll decay with a random
photon for both the Zllg and Hllg data files, Bkg0. A cut will be
performed for the Zllg datasets in the invariant mass—we will require
40 < mllγ < 83 GeV as in [68]. For both the Z → llγ and H → Z(→
ll)γ decays, a cut on the photon energy, pγ

T > 10 GeV, will also be
performed.

Tab. 5.14 shows the selection for the Zllg and Hllg datasets in-
cluding cuts. Here we see that for the Zllg models, the cut in the
invariant mass reduces the signal to around 75% while reducing the
background to 26− 28%. The photon cuts further reduces the amount
signal events to around 60% and the background to 3− 4% of the
original size. For the Higgs datasets, the photon cuts only reduces
the signal amount to 92% while the background is heavily reduced
to 13− 14%. From the data, the training, validation, and test sets are
created, again using the split 60-20-20.

5.3.1.4 Datasets for testing in Data

We wish to test both the Zmm, Zee, and Zllg models on Data and
need a test dataset. We find tags and probes using the trigger particles
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ML Zllg and Hllg data selection

Decay N before cuts N after cuts Cuts applied
40 < Mll [GeV] < 83 pγ

T > 10 GeV
Signal Background Signal Background Signal Background Signal Background

Z → µµγ 237, 725 4, 289, 018 142, 404 168, 049 75.1% 38.2% 59.9% 3.9%
Z → eeγ 113, 156 5, 860, 330 67, 922 174, 223 75.3% 26.4% 60% 2.9%
H → Z(→µµ)γ 84, 101 2, 171, 535 77, 736 290, 949 92% 13.3%
H → Z(→ee)γ 82, 572 6, 728, 870 75, 927 972, 480 92% 14.4%

Table 5.14: Number of events for the
Zllg and Hllg datasets. Each row corre-
sponds to a different decay. The first two
columns show the absolute number of
events in the data sets before and after
the cuts are applied. The cuts and their
percentage of the data left after cutting,
are shown in the last two columns of the
table. The cut in the invariant mass is
not relevant for the Higgs datasets. A
table with absolute numbers on the cuts
can be seen in Tab. A.8.

as for the MC datasets. Only photons with ET above 10 GeV will be
considered. The lepton and photon candidates are combined into
triplets without further checks.

For the Zllg data, the cut on the Z → ll mass will be made as for
the MC data.

Tab. 5.15 shows the number of events for each Data file before and
after the different cuts. No cuts are performed on the Zmm and Zee
datasets, so the table simply shows the number of events.

Zll(g) Data selection

Decay N before cuts N after cuts Cuts applied [GeV]

40 < Mll < 83 pγ
T > 10

Z → µµ 145, 815
Z → ee 1, 099, 400
Z → µµγ 12, 791, 783 424, 880 29.5% 3.3%
Z → eeγ 21, 176, 293 493, 441 24.3% 2.3%

Table 5.15: Number of events for the
Zll(g) Data data sets. Each row shows
the two different decays. The first two
columns show the absolute number of
events in the data sets before and after
the cuts are applied. The cuts and their
percentage of the data left after cutting,
are shown in the last two columns of the
table. No cuts are made on the Z → µµ
and Z → ee decays, so the table simply
shows the total number of events in the
Data file.

5.3.2 Reweighing

As for the lepton and photon models, the data will be reweighed
before training. Background events are given weights to ensure that
the signal and background distribution matches for the variables 〈µ〉,
pT , η, and mZ/H . Fig. 5.13 shows the reweighed data for the Zee MC
Truth model using 40 estimators.

5.3.3 Evaluation methods

We will evaluate all models on both MC and Data. In Monte Carlo,
truth variables are available allowing for easy evaluation of the models.
However these are not available in Data, so alternative methods are
needed. When evaluating the MC or Data T&P methods, we will
still use the labeling of the events as an error measure. It will be
considered how many background-labeled events are passed in the
selection (false positives). This evaluation will be made alongside the
following described below, which can also be applied to Data where
no labels exist. We do so, to check if the method of evaluation is
consistent with our labeling.
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Figure 5.13: Signal and background dis-
tributions of 〈µ〉, pT , η and mee for the
MC truth dataset for the Zee model. The
background is reweighted with 40 esti-
mators to match the signal distribution.

One method of evaluation is by looking at the same-sign data. We
know that the leptons decaying from either the Z or the Higgs boson
will be of opposite sign, to make up for the zero electric charge of the
bosons. We will consider the amount of same-sign data in the tails of
the signal peak in invariant mass (see Fig. 5.14).

Figure 5.14: The signal and background
calculation for the nSS method.

For the Z and H decays, the signal will be calculated as the number
of opposite-sign leptons in the signal peak, with 70 < mll(γ) < 110.
And the background, the number of same-sign leptons for 15 <

|mll(γ) −mZ| > 40. For the Higgs decays, the number of same-sign
leptons will be counted in the the tails (mH − 25) < mllγ < (mH − 15)
and (mH + 40) > mllγ > (mH + 15), that is, in the range [100; 115]
and [140; 165]. The signal will be counted as the opposite-sign events
in 115 < mllγ < 135. I will refer to this evaluation method by the
same-sign method.

Another way to evaluate the performance of the model is by fitting
the peak and estimating the number of signal and background events
from the fit. The framework RooFit developed by ROOT, is used. For
Z, the signal will be fitted with a Breit-Wigner function convoluted
with a Crystal-Ball (BWxCB). For the Higgs decay, the signal is fitted
with a Crystal-Ball only. The background will be fitted with an
exponential decay.

An example of a fit using the simple background model can
be seen in Fig. 5.15. This is the Z → µµ decay. The fitting vari-
ables estimate the fraction of background to be fbkg = 0.5284, yield-
ing Nbkg = 317, 400 · 0.5284 = 167, 714 and Nsig = 317, 400 · (1 −
0.5284) = 149, 686. The example here shows the full dataset with no
cuts in the background, thus the high rate of background. I will refer
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Figure 5.15: A fit of the Z → µµ de-
cay using RooFit. Background is fit-
ted with a exponential decay and sig-
nal is fitted with a Breit-Wigner func-
tion convoluted with a Crystal-Ball. Fit-
ting estimates fraction of background
fbkg to be 0.5284 and the total num-
ber of events 316, 400, yielding Nbkg =
317, 400 · 0.5284 = 167, 714

to this evaluation method by the fbkg method.

The third performance measure will be to count the number of
events in the high-mass tails. This simply counts the number of events
above 110 GeV (150 GeV) for the Z (H) decays. The background is
counted in the high-mass tail rather than the low mass tail, as the Z
peak will have (signal) events in the low mass tail. These exist due
to the Z/γ∗ relationship and are avoided in the high mass tail. This
method will only be used for the Zllg and Hllg models and will be
referred to as the bkg-count method.

We will use these evaluation models for both the MC and Data for
the boson models to be able to compare the performance. In both
cases, we will compare with the ATLAS cut. Thus, we will aim for the
same number of same-sign leptons, bkg events in the high-mass tail,
or estimated number of background events by the fit as ATLAS gets
in their selection based on the same type of evaluation. I.e. the events
passed in the ATLAS selection are fitted, estimating the amount of
background in the selection. Then, the ML selected events are fitted
and it is aimed to get the same amount of background as the ATLAS
selection.

Figure 5.16: Example of a series of cuts
in the LGBM score

The LGBM models give each event a score, which indicates the
probability of that event being either signal or background. To know at
which threshold the model will have the same amount of background
compared to the ATLAS selection, a series of cuts will be made in the
score. The cut giving the result closest to the desired is chosen and
the search is terminated. This is not necessarily the same cut for the
methods of evaluation. See Fig. 5.16 for an example of a LGBM score
distribution and a series of cuts. The cut giving the desired output
(marked with a solid line) is chosen.
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5.3.4 Model training and testing

Now I will move on to describing how the models are trained and
their performance is in both MC and Data. I will start with the Zmm
and Zee models. Since the approach is similar for both models, these
will be described together. Afterwards we will move on to the Zllg
and Hllg models.

5.3.4.1 Zmm and Zee training

The training features for the Zmm and Zee models can be seen in
Tab. 5.16. All features with “N”, exist for both leptons, and is thus
referring to the first or second lepton in the event. Both models are
trained with similar variables except for the ele2_isFwd feature,
existing for the Zee model only. If the probe electron is from the
forward calorimeter, the ePid score for the probe electron will be
replaced with the eFwd score. Tag electrons cannot be from the
forward calorimeter as no triggering is available here.

ML Zll input features

NvtxReco NvtxReco The number of reconstructed verticies

Z_sig Z_sig Zsig = (l1,z0 − l2,z0) ·
(√

(l1,σz0)
2 + (l2,σz0)

2
)−1

, where l is
the relevant lepton

muoN_PID_score eleN_PID_score The mPid and ePid score for both leptons in the event.
If the probe electron is from the forward calorimeter,
the Pid score for the probe electron will replaced with
ele_Fwd_score

muoN_ISO_score eleN_ISO_score The mIso and eIso score for both leptons in the event
muoN_priTrack_d0 eleN_d0 d0 for the lepton
muoN_priTrack_d0Sig eleN_d0Sig σd0 for the lepton

ele2_isFwd Is the probe electron from the forward calorimeter? Not
relevant for the muons

Table 5.16: Input features for the Zmm
and Zee models.
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Figure 5.17: SHAP values for the Zmm
(left) and Zee (right) models.Fig. 5.17 shows the SHAP values for the Zmm and Zee models.

For both models, the Pid score for the second lepton has the highest
influence on the model prediction. When creating the dataset, the tag
lepton gets the number “1” and the probe, “2”. We are almost certain
that lepton 1 is a good lepton from a Z, since it has triggered, and
thus if the second lepton has a good Pid score, they are most likely
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Figure 5.18: Top left: Plot of Zmm test
set LGBM score and the corresponding
cuts. Right: Plot of the invariant mass
of the Z → µµ decay. Bottom left: Plot
of the signal vs. background for the fbkg
method. Also shown with looser cuts.
The plot of the invariant mass is shown
on log scale in Fig. A.24.

both originating from a Z boson, indicating that the Pid for the first
particle is not as important as the Pid for the second particle. It could
be interesting to see how the model performance would change if the
leptons were shuffled.

5.3.4.2 Zmm and Zee testing in MC

The trained models are evaluated on the MC test set and on Data. We
will use the same-sign and fbkg evaluation methods on the MC data
as well as the truth, referring to the labeling of the data.

Fig. 5.18 shows the LGBM score and the invariant mass for the
Zmm model. On the figure of the LGBM score, we see the cuts of the
two different evaluation methods. The same number of same-sign
events yield an increase in the signal peak of 16.1%. The fit has a
slightly stricter cut, yielding increase of +14.6% compared to ATLAS.
The figure also shows the MC Truth cut. This is the true increase in
signal based on the MC labeling of the data, where we get +16.9%,
similar to the same-sign cut.

The cuts are the ones that achieve the same background as ATLAS.
In Fig. 5.18 bottom left, the fbkg cut is loosened to see how much
signal we can get if we don’t restrict our selves on the number of
background events. The same plot can be found for the nSS method
in Fig. A.23. For both methods, the number of background events rise
a lot when loosening the cut. Some further signal is achieved.

In Fig. 5.19, the same plots are plotted for the Zee model. The
two methods yields increase in signal of 22.5% and 23.4% for the fit
and same-sign methods, which is more than the Zmm model. The
increase for MC Truth is close to both methods method with +23.2%.
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Figure 5.19: Top left: Plot of Zee test
set LGBM score and the corresponding
cuts. Right: Plot of the invariant mass
of the Z → ee decay. Bottom left: Plot
of the signal vs. background for the fbkg
method. Also shown with looser cuts.
The plot of the invariant mass is shown
on log scale in Fig. A.24.

On the LGBM score plot in Fig. 5.19 top left, we see that especially
the same-sign cut is well into the signal-part of the LGBM score, and
on Fig. 5.19 bottom left and Fig. A.23, we can see that more signal can
be achieved without adding much more background.

The corresponding plots for the MC T&P and Data T&P models
can be found in Apps. A.3.2 and A.3.3. The Zmm T&P trained models
improves the selection in the test set with 10 − 11% for the Data
trained and 19% for the MC trained models. For both models, the
most important parameter according to the SHAP values is the mPid
score for the second muon, as was also seen in Fig. 5.17 for the MC
truth trained model. For Zee T&P trained models, the increase for the
Data trained T&P model is ranging from 21− 27% and 24− 30% for
the MC trained model. The SHAP values related to their training is,
as the muon models, also similar to the MC Truth trained Zee model.

Tab. 5.17 shows an overview of the performance for the labeling of
the data while the performance for the nSS and fbkg evaluations can
be seen in Tabs. A.6 and A.7.

The Zll models are later being used for the Z → llγ decays. The
di-lepton pair in this decay will have an invariant mass below mZ,
and it thus relevant to look at how the performance changes at lower
invariant mass. Figs. 5.20 and 5.21 shows the efficiency of the Zll
MC Truth models as a function of the invariant mass. The shaded
area marks mZ, where both the LGBM and ATLAS models have the
highest signal efficiency.

For the Zmm model, the efficiency of the LGBM models is high for
Mµµ > 70 but for low mass, the efficiency drops.

For the Zee model, the efficiency of all models has a slight drop in
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Zll models performance, truth labeling MC

Model N ATLAS N LGBM Change
Zmm Sig Bkg Sig Bkg
MC Truth 119, 328 23 139, 525 24 16.93%
MC T&P 12, 232 2 14, 599 3 19.35%
Data T&P 3, 183 438 3, 521 439 10.62%
Zee
MC Truth 16, 745 16 20, 750 15 23.19%
MC T&P 12, 434 495 16, 255 497 30.73%
Data T&P 2, 841 182 3, 441 183 21.12%

Table 5.17: Performance of the Zll mod-
els. The number of signal events are
measured in the range [70; 110]GeV
while the number of background events
are measured for [50; 150]GeV.

Figure 5.20: Efficiency of the Zmm
model evaluated as a function of the
invariant mass. The shaded area marks
mZ .

the range [100; 110], where the ATLAS selection has the biggest drop.
This is an interesting feature, that has also been seen by previous
students in the group [59]. The most relevant range to consider in
both the Zee and Zmm plots, however, is below the Z mass, as this
where the invariant mass of the di-lepton pair in the Zllg models will
be.

For Zee, The LGBM model has a higher efficiency for all ranges,
however they are comparable for [50, 60]GeV. For Zmm, the efficiency
of the LGBM model is just below the ATLAS efficiency for [0, 60]GeV.
The drop for low mass in both Zmm and Zee, might be due to limited
amount of training data in low mass. Data from the Z → llγ decay
is included in training, to get low-mass signal, however, the drop
in performance could indicate that the statistics are still too low for
low-mass. The invariant mass of the di-lepton pair in the Z → llγ
decay is assumed to mainly be in the range [60, 80]GeV which is thus
the most important mass range to consider. It is important to note,
that the efficiencies of the Zmm and Zee models are measured at the
specific cut in LGBM score that gives the same amount of background
as the ATLAS cut. Loosening the cuts is likely to yield different
distributions.
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Figure 5.21: Efficiency of the Zee model
evaluated as a function of the invariant
mass. The shaded area marks mZ , where
it is evident that both the LGBM and
ATLAS selections have the highest effi-
ciency.

Figure 5.22: Efficiency of the Zmm
model evaluated as a function of |η|.
The efficiency is stable for the full range
of |η|, only a small drop for high and
low η, most significant for the ATLAS
selection.

Fig. 5.23 shows the efficiency of the Zee model as a function of |η|
to give us information on where the increase of the model is gained.
The ATLAS selection has a drop in the crack (they do not include
events in 1.37 < |η| < 1.52 at all) and goes to zero where the forward
detector starts (|η| > 2.47). The efficiency for the LGBM model drops
in the forward part of the detector, but some signal events are caught.
Thus, one can see, that the increase is gained both from crack and
forward, but some also from the fiducial part of the detector. The
same distribution for Zmm is shown in Fig. 5.22, where no special
features are seen across the ranges of |η|.

Figure 5.23: Efficiency of the Zee model
evaluated as a function of |η|. The AT-
LAS efficiency is zero in the crack be-
tween HCAL and ECAL and after the be-
ginning of the forward detector, marked
by the dashed line. Efficiencies for all
MC selections are on top of each other.

5.3.4.3 Zmm and Zee testing in Data

We’ll now consider the performance of the Zll models in Data. Fig. 5.24

shows the invariant mass of the Zmm model inlcuding increases
achieved by the ML models. Fig. 5.25 shows the same for the Zee
model. The fbkg evaluation and nSS are separated into two plots
showing all three models together for clarity. For examples of the fits,
see Fig. A.25, where the fits of the ATLAS and Data T&P selections
for the Zmm model are shown.
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Figure 5.24: Plot of the invariant mass
for the Z → µµ decay in Data. The
left plot shows the MC Truth, MC T&P,
and Data T&P performance for the fbkg
evaluation. The right plot shows the nSS
evaluation. Here, the very few same-
sign events are also plotted on the figure.
They are better visualized in Fig. A.26,
which is the same plot in logarithmic
scale.

For both decays, the MC Truth model is the best performing one.
It yields an increase in signal at the same amount of background
as ATLAS for the Z → µµ decay of 8.9% and 2.9% for the fit and
same-sign cut respectively and 20.1% and 11.9% for the Z → ee decay.

Figure 5.25: Plot of the invariant mass
for the Z → ee decay in Data. The left
plot shows the MC Truth, MC T&P, and
Data T&P performance for the fbkg eval-
uation. The right plot shows the same
models but for the nSS evaluation. Here,
the same-sign events are also plotted on
the figure. The same plots in logarithmic
scale can be found in Fig. A.27.

The improvement for the Zmm model is lower in Data compared
with the MC Truth test set. For the same-sign method, this is especially
low. ATLAS has 7 same-sign events and 9, 423 opposite-sign events,
making the selection extremely effective. The two T&P methods,
especially the MC trained one, shows very bad performance in Data.

Fig. 5.26 shows the LGBM distribution for the MC T&P trained
model in MC and Data (the MC T&P-trained model predicted on
Data). This figure shows that the Data distribution does not match the
MC distribution at all, indicating that the training data is not a good
approximation to the Data we are predicting upon. The same-sign
cut in Zmm M&P includes 16 same-sign events compared to ATLAS’
7, but no further cuts can be made for the MC T&P model, as 16
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same-sign events has a LGBM score of 1.

Figure 5.26: The LGBM score of the MC
T&P trained models plotted in the MC
test set and the Data. The MC data is
weighted in signal and background sep-
arately, in order to compare the distri-
bution to Data. Left shows the Zmm
model while right shows the Zee model.

The Zee improvement in Data for the same-sign cuts is lower
than the improvement in MC while comparable for fbkg cuts in Data.
Fig. A.37 shows that more signal can be gained from loosening the
cuts, where doubling the background yields +25% for both same-sign
and fbkg methods for the MC Truth model. The MC T&P selection
for Zee has the lowest improvement. Looking at Fig. 5.26, the LGBM
score matches the predicted Data better than was seen for the Zmm
MC T&P model, but it seems that the background distribution in MC
gets a score of 10 lower than the Data. This indicates that the signal
and background is not as well-separated in Data as we saw in MC,
accounting for the lower improvement.

Tab. 5.18 shows the number of signal and background events for
each model and method in Data with corresponding increase in
signal compared to the ATLAS selection. For the Zee model, data

Zll models performance Data

Eval ATLAS MC Truth MC T&P Data T&P
Zmm Sig Bkg Sig Bkg Sig Bkg Sig Bkg
nSS 9, 423 7 9, 696 (+3%) 8 9, 140 (−3%) 16 8, 573 (−9%) 8
fbkg 9, 423 392 10, 262 (+9%) 398 9, 140 (−3%) 393 9, 917 (+5%) 400
Zee
nSS 27, 320 173 30, 566 (+12%) 174 28919 (+6%) 177 29872 (+9%) 178
fbkg 27, 282 1, 110 32, 108 (+18%) 1, 116 31, 237 (+15%) 1, 113 31, 581 (+16%) 1, 108

Table 5.18: Performance of the Zll mod-
els in Data. For the same-sign method,
the number of signal events are mea-
sured in the range [70; 110]GeV while
the number of background events are
measured for [50; 150]GeV. For the fit-
ting, the number of signal and back-
ground events are estimated by the fit
in the range [60; 130]GeV.

from the forward container has been included in both the training
data and prediction Data. It should be noted that only a very small
data sample was available in MC, with only 6000 signal events of the
126, 000 total signal events in the Zee decay. In Data, no forwards
events were available, and the dataset was thus acquired by applying
the EGAM8 derivation to the Data AOD, as described in Chap. 4. Still,
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the forward events are only 4200 out of the total 1, 099, 000 events
in the Data sample. Thus, it is important to remember that an even
stronger increase could be achieved, since we saw in Fig. 5.23 that
the Zee model has around 50% signal efficiency in this area of the
detector where ATLAS has zero.

Fig. 5.27 shows the LGBM distribution for MC and Data for the MC
Truth trained Zmm and Zee models, showing best performance in
Data. To compare distributions, densities for signal and background
in MC has been weighted to match the Data distribution. The ratio of
the LGBM score on the different datasets are plotted in the bottom of
the figure.

These plots shows very similar distributions of the LGBM scores.
The Zee MC Truth data seem to have a little more background than
the Data. However, both distributions match well and the MC Truth
training data seem to approximate the Data we are predicting upon
well. Distributions of the LGBM score for the Zll Data T&P trained
models can be seen in Fig. A.38.

Figure 5.27: The LGBM score of the MC
Truth trained models plotted in the MC
test set and the Data. The MC data is
weighted in signal and background sep-
arately, in order to compare the distri-
bution to Data. Left shows the Zmm
model while right shows the Zee model.

5.3.4.4 Zllg and Hllg training

Zllg and Hllg models all aim to identify triplets of particles, two
leptons and one photon, decaying from either the Z or Higgs bosons.
Thus, the training features for the Zmmg/Hmmg and Zeeg/Heeg
models (see Tab. 5.19) are identical, only diverting at the point that the
feature Z_score is taken from the Zmm model for Zmmg/Hmmg
and the Zee model for Zeeg/Heeg.

The models for the Z boson and Higgs boson are trained separately—
for the Z boson on a datasets with Z’s and for the Higgs on datasets
with H’s. The dominant background for both decays is the Z → ll
decay combined with a random photon. For the Zllg model, a cut for
the invariant mass of the two leptons is made, 40 < mll < 83 GeV as
in [68], to reduce the amount of background around mZ. This cut will
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ML Zllg and Hllg input features

dZ0 dZ0 = (γz0 − llz0) ·
(√

(γσz0)
2 + (llσz0)

2
)−1

, where llz0 is the weighted average

of the z0 of the two leptons, l1/(l1,σz0)
2 + l2/(l2,σz0)

2 and

llσz0 =
(
1/(l1,σz0)

2 + 1/(l2,σz0)
2)−1

Z_score The Zee score for the Zeeg/Heeg model and the Zmm score for Zmmg/Hmmg
pho_isConv Is the photon converted?
pho_PID_score The pPid score
pho_ISO_score The pIso score

Table 5.19: Input features for the Zllg
and Hllg models.

not be performed for the Hllg models, as this will also cut away the
signal, where mll = 91.2 GeV.

Fig. 5.28 shows the SHAP values all models. The models all agree
on their top contributor to the output score; Z_score . The pPid
and pIso takes the second and third spot for all models, however the
Hmmg model ranks the pIso higher than the pPid. The feature dZ0

should give information about whether the particles emerge from
the same vertex, but does not seem to have a big importance for the
models. If all decay particles receive high Pid and Iso scores, they
are unlikely to be from different vertices, which might make the dZ0

feature redundant. The uncertainty for the photon γσz0 is also high,
making the variable very uncertain.

0 5000 10000 15000 20000 25000 30000
mean(|SHAP|)

Z_score

pho_PID_score

pho_ISO_score

pho_isConv

dZ0

Z→µµγ: SHAP values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mean(|SHAP|)

Z_score

pho_PID_score

pho_ISO_score

dZ0

pho_isConv

Z ee : SHAP values

0 1 2 3 4 5
mean(|SHAP|)

Z_score

pho_ISO_score

pho_PID_score

dZ0

pho_isConv

H→µµγ: SHAP values

0.0 0.2 0.4 0.6 0.8 1.0
mean(|SHAP|)

Z_score

pho_PID_score

pho_ISO_score

dZ0

pho_isConv

H→ eeγ: SHAP values

Figure 5.28: SHAP values for the Zllg
(top) and Hllg (bottom) models

5.3.4.5 Zllg testing in MC

Fig. 5.29 shows the model performance of the Zllg models in the MC
test set. The MC truth labeling shows an increase for both models,
with +74.3% for the Zmmg model and +43.8% for the Zeeg model.

Same-sign evaluation for the Zeeg model is about 15% lower than
the Truth evaluation while the bkg-count mehod lowers the increase
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to 60% of that of the Truth, with only 12.1% increase, significantly
lower than the MC Truth increase on the same dataset. The fitting
shows an increase of 64.1%.

Figure 5.29: Plot of the invariant mass
for the Z → llγ decays in MC test. The
left plot shows the Z → µµγ decay and
the right plot shows the invariant mass
for the Z → eeγ decay. Same plots can
be seen in Fig. A.39 in logarithmic scale.

For the Zmm model, the same-sign evaluation is again low. Here
the ATLAS selection only has 1 same-sign event compared to 13, 276
opposite-sign signal events. The evaluation method yields a decrease
of 44.8%. However, the fit and bkg-count methods has a high increase,
with 105% for the fit and 39% for the bkg-count respectively.

Zllg models performance MC

Eval N ATLAS N LGBM Change
Zmmg Sig Bkg Sig Bkg
fbkg 13, 498 107 27, 951 105 106%
nSS 13, 276 1 7, 334 0 −45%
bkg-count 13, 276 304 18, 519 309 39%
MC Truth 13, 174 514 23, 274 515 74%
Zeeg
fbkg 6, 123 88 10, 045 88 64%
nSS 6, 030 7 7, 788 8 29%
bkg-count 6, 030 122 6, 802 124 13%
MC Truth 5, 744 380 8, 365 381 44%

Table 5.20: Performance of the Zllg mod-
els in MC. The number of signal events
are measured in the range [70; 110]GeV
while the number of background events
are measured for [50; 150]GeV.

An overview of the different evaluation methods and their per-
formance can be seen in Tab. 5.20. The evaluation methods have a
high variance in the estimation of the signal increase. It could seem
that one method overestimates while other underestimates the gained
increase of the model.

As was seen in Figs. 5.20 and 5.21, the Zee and Zmm models were
most efficient for Mll > 70. This measure was based on the getting
the same background efficiency as ATLAS in the di-lepton models. In
Figs. 5.30 and 5.31, the invariant masses of the di-lepton pair in the
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Z → eeγ and Z → µµγ decays are shown along with the MC Truth
selection from the Zeeg and Zmmg models. For the Zmmg model,
we seem to have an increase in signal for the full range of the mass,
differently than what we saw in the efficiency plot in Fig. 5.20.

Figure 5.30: Plot of the Mµµ for the
Zmmg test set.

Figure 5.31: Plot of the Mee for the Zeeg
test set. It is evident that the increase
is for Mee > 70 GeV. The shaded area
shows all events labeled as signal, in-
dicating that the most signal is in the
region Mee > 70 GeV.

However, in the Zmmg model, both the Zmm model and the
photon models are combined. The Zmmg model can put more or
less weight on the inputs—it might be that background is removed
mainly by cutting in the pPid score—thus we might reach the same
desired background efficiency at a different cut in the di-lepton score
than for in the Zmm model. If we use the cut found for the Z → µµ

decay in the Zmmg model, the story is different. Then the increase is
gained from the range [65; 83]GeV, as expected. It indicates that the
Zmmg model can be less strict compared to the Zmm model when
cutting in the di-lepton score, and that the main background cut away
by the Zmmg model, seems to be based on stricter cuts in the photon
models. For the Zeeg model, it seems that it is the same cut in the
Z score for both Zee and Zeeg models where increase in signal is
mainly for mll in [60; 83]GeV.

5.3.4.6 Zllg testing in Data

The invariant mass plot for the two models on Data is shown in
Fig. 5.32 while Tab. 5.21 summarizes the number of signal and back-
ground events and the performance.

For the Zmmg decay, an improvement of +30.9% is found for
the fitting method. Again, a decrease is seen for same-sign evalua-
tion, here of −39.4%. The bkg-count method, increases the selection
with 17.6%. Thus a significant drop compared with selections in the
corresponding MC data.

Zllg models performance Data

Eval N ATLAS N LGBM Change
Zmmg Sig Bkg Sig Bkg
fbkg 30, 572 3350 40, 628 3518 31%
nSS 32, 148 21 19, 483 22 −39%
bkg-count 32, 148 2752 37, 800 2761 18%
Zeeg
fbkg 7, 736 696 9, 438 697 21%
nSS 7, 964 58 11, 809 58 48%
bkg-count 7, 964 621 8, 479 631 6%

Table 5.21: Performance of the Zllg mod-
els in Data. The number of signal events
are measured in the range [70; 110]GeV
while the number of background events
are measured for [50; 150]GeV.

The Zeeg model shows increase between 6% and 48% depending
on the method of evaluation. Again, the bkg-count method shows
the least improvement, while the same-sign the highest improvement,
with around 10% higher increase compared with the same method in
MC.

A plot of the LGBM scores can be seen in Fig. A.40, showing similar
distributions for both Zmmg and Zeeg models in MC and Data.
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Figure 5.32: Plot of the invariant mass
for the Z → llγ decays in Data. The top
plot shows the Z → µµγ decay and the
bottom plot shows the invariant mass
for the Z → eeγ decay and correspond-
ing increases in Data. They are shown
in linear scale to better see the large in-
crease in signal. See Fig. A.41 for same
plots on logarithmic scale.



72 improving z and higgs selections in atlas using machine learning

5.3.4.7 Hllg testing in MC

Fig. 5.33 shows the invariant mass of the Higgs MC test set along
with the different evaluation methods. Generally, it is noticeable that
the evaluation methods here all yield results in similar ranges (i.e.
a smaller variation between evaluation methods is seen) for both
models opposed to what was seen for the Zllg models.

The MC Truth prediction yields an increase of 52.6% for the Hmmg
model and 28.8% for the Heeg model. For the H → Z(→ ee)γ decay,
it is again, similar to the Zeeg model, the result same-sign method
that is closest to the MC truth increase, here with 29%. For the
H → Z(→ µµ)γ decay, the same-sign cut again yields a decrease,
while the two other methods are lower than the MC truth, bkg-count
with the closest improvement of 48.8%.

All models for muon decays has shown a decrease in signal when
using the same-sign evaluation method. It could indicate that the
ATLAS selection for muons is optimized with respect to the num-
ber of same-sign events in some way. The charge of the electron is
more uncertain than the charge of the muon. This is due to charge
misidentification mainly caused by small-angle bremsstrahlung in
the calorimeter leading to incorrect determination of the track curva-
ture [68]. This could explain why the selection for muons might be
optimized against the charge and the selection for the electrons is not.

See Tab. 5.22 for an overview of the improvements.

Hllg models performance MC

Eval N ATLAS N LGBM Change
Hmmg Sig Bkg Sig Bkg
fbkg 8, 959 587 12, 582 588 44%
nSS 8, 652 3 8, 236 3 −5%
bkg-count 8, 652 177 12, 873 178 49%
MC Truth 8, 429 611 13, 033 612 53%
Heeg
fbkg 7, 676 562 9, 897 552 29%
nSS 7, 678 15 9, 958 14 30%
bkg-count 7, 678 144 10, 167 145 32%
MC Truth 7, 363 706 9, 623 707 29%

Table 5.22: Performance of the Hllg mod-
els. The number of signal events are
measured in the range [115; 135]GeV
while the number of background events
are measured for [100; 170]GeV.

5.3.4.8 Hllg performance in Data

We cannot test our Higgs models in Data, but from the performance
of the Zllg models, we will try to extrapolate the Higgs Data behavior.

Considering the Zmmg model, the MC Truth yields an increase
of 74.3%. The mean increase of the bkg-count and fbkg methods is
73%. In Data, the mean performance of the same methods is 24.5%,
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Figure 5.33: Plot of the invariant mass
for the H → Z(→ ll)γ decays in MC
test. The top plot shows the H → Z(→
µµ)γ decay and the bottom plot shows
the invariant mass for the H → Z(→
ee)γ decay. They are shown in linear
scale to better see the large increase in
signal. See Fig. A.42 for same plots on
logarithmic scale.

corresponding to a decrease of 66% compared to the MC performance.
In H → Z(→ µµ)γ, we see a mean performance of 46.5%. Assuming
similar decrease going from MC to Data, it can be expected to see
an increase of 16% in H → Z(→ µµ)γ Data. See Tab. 5.23 for an
overview of the numbers.
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Extrapolated H→ Z(→µµ)γ model performance Data

Z→µµγ H→ Z(→µµ)γ

Eval MC Data MC Data
fbkg 106% 31% 44%
bkg-count 40% 18% 49%
Mean 73% 24.5% (−66%) 46.5% 16% (est.)

Table 5.23: Extrapolated performance of
the Hmmg model in Data. The table
shows the performance of the evalua-
tion methods (excluding the same-sign
method) in MC and Data for the Zmmg
model and the mean performance of the
models where a decrease of 66% is seen
going from MC to Data. Assuming sim-
ilar behavior for the Hmmg model, the
expected increase in Data is +16%.

Extrapolated H→ Z(→ ee)γ model performance Data

Z→ eeγ H→ Z(→ ee)γ
Eval MC Data MC Data
fbkg 64% 21% 29%
nSS 29% 48% 30%
Mean 47% 34.5% (−27%) 29.5% 22% (est.)

Table 5.24: Extrapolated performance
of the Heeg model in Data. The table
shows the performance of the evalua-
tion methods in MC and Data for the
Zeeg model and the mean performance
of the models. The bkg-count evalua-
tion method is excluded, as a significant
worsening in performance is seen com-
pared with the MC Truth evaluation in
Z → eeγ . We see a decrease in the Zeeg
model going from MC to Data of −27%.
Assuming similar behavior for the Heeg
model, the expected increase in Data is
+22%.

The same train of thought can be used for the H → Z(→ ee)γ
decay. Here, the bkg-count evaluation method is excluded, as it
performs significantly worse than the MC Truth method in Zeeg.
The two other, same-sign and fbkg methods, has a mean increase in
performance of 47%, similar to the 43.8% increase seen for the MC
Truth method. In Data, their mean increase drops 27%, to 34.5%. For
the H → Z(→ ee)γ decay, we see a mean increase of 29.5% in MC
and a 27% decrease will yield a final increase in Data of 22%. See
Tab. 5.24.

It is peculiar that the mean increase for both Higgs models in MC
corresponds to the equivalent MC Truth increase. It seems that one
method overestimates the performance while the second underes-
timates the performance. In the muon case, the fit yields a higher
increase for the Z model than the bkg-count method. In Higgs, they
get comparable results, however the bkg-count method actually yields
the highest increase.

For the electrons, it is the fit that has the high increase for Z in
MC while the nSS has the high increase in Data. In MC, ATLAS has
7 same-sign events compared to 6, 000 opposite-sign (signal) events.
In Data, the ATLAS selection gets 58 same-sign events and 8, 000
opposite-sign events, that is 8 times the background at 1.3 times the
signal. It is not evident why there is such a big difference, but it is
likely to be the reason for the high increase of the same-sign method
in Data compared to the same method in MC.

5.3.5 Conclusions on boson models

The training and performance on boson models has been described in
the last section. Models for the Z → ll, Z → llγ, and H → Z(→ ll)γ
decays have been trained based on the lepton and photon models
from Sect. 5.2. The di-lepton models have been trained for three
different types of datasets, where the best performing models were
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the ones trained in MC using truth variables as labeling.

The model performance has been measured against the ATLAS
selection of [1]. Models for the Z boson has been evaluated in both
Monte Carlo and Data, while models for the Higgs boson has been
evaluated in MC only. In MC, improvements (based on the labeling
of data) ranging between 10− 74% has been seen. Generally a small
drop in performance happens when applying the models to Data,
where improvements are in the range 6− 48%. The difference in
estimated increase between the methods of evaluation is quite high. It
seems that some methods overestimates while other underestimates
the gained increase of the model.

From the performance in Z → llγ in MC and Data, the Data
performance in H → Z(→ ll)γ is extrapolated. Improvements for
H → Z(→ ee)γ around 20% is expected and for H → Z(→ µµ)γ

expected improvements are around 15%.

The di-lepton models shows the least improvement in Data. How-
ever, it is shown that more signal can be gained, especially for the
electron model. This is both by including the crack and forward
regions, but also in fiducial parts of the detector. By loosening the
cut on the model, and allowing more background in the selection, an
even stronger improvement is seen. This can definitely be of relevance
for several physics searches in the ATLAS detector, as the Z boson is
part of final states in many ATLAS analyses, both measurements and
searches.

Generally, the ML models presented in the section has shown large
improvements in Z and Higgs selections with very few exceptions.





6 Conclusions and outlook

This chapter will draw the final conclusion and suggest further work
that can be done.

6.1 Conclusions . . . . . . . . . . . . . . . . . . . 77

6.2 Outlook and further work . . . . . . . . . . . 78

6.1 Conclusions

In this thesis, the H → Z(→ ll)γ decay has been investigated. Ma-
chine Learning models has been created to optimize the search for
the decay, and the work has been evaluated against the cut-based
selection of [1].

Particle identification and isolation models for single leptons and
photons, e, µ and γ, has been trained. The models for muons and
electrons were trained using three different datasets—two based on
Monte Carlo data and one based on Data—while photon models were
trained on one MC dataset only.

The Pid models has been evaluated against ATLAS working points
Loose, Medium, and Tight. The Data trained models showed bad
results for particle identification, with decrease in signal up to 115%.
The MC trained muon models showed increase in signal of 4− 4.5%
compared to the Medium WP and 11% compared to the Tight WP
while electron models increased signal selection of 14 − 17% and
15− 28% for Medium and Tight WP respectively. The photon Pid
model showed increase of 9% for the Loose WP while a decrease in
signal of −0.7% was seen for the Tight WP. A separate Pid model
for the electrons in the forward calorimeter has also been trained.
Evaluated against the ATLAS WPs, a decrease in signal was seen.
However, forward electrons are discarded in the ATLAS selection, so
simply including electrons from this part of the detector was likely to
yield an increase in performance.

The isolation models has been evaluated against ATLAS isolation
WPs, all showing increase in signal with 6− 8% for the muon and
10− 12% for the electron models respectively. Photon models does
not have an ATLAS comparison, but was evaluated against the muon
WP for visualization purposes. The AUC of the photon model was
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found to be 0.893.

The Pid and Iso models for muons and electrons were used as
input variables for a di-lepton model trained on the Z → ee and
Z → µµ datasets. The di-lepton models were again trained on three
different datasets, just as the single muon and electron models. The
models has been evaluated in MC and Data. The MC performance
showed increase in signal compared with the selection from [1] of
20− 30% for the electrons and 10− 19% for the muons. The increase
for electrons was gained from the fiducial part of the detector, but
also from the crack and forward calorimeter, which are excluded in
the ATLAS selection. For the muons, the increase was gained from
the fiducial part of the detector. In Data, the performance of especially
the MC T&P trained models dropped, and a plot of the LGBM score
in MC and Data revealed that the distributions did not match. For the
other models, the increase was 9− 18% for the electrons and 5− 9%
for the muons, excluding same-sign evaluation for muons.

Lastly, the di-lepton models served as input, together with the
photon Pid and Iso models, to the Z → llγ and H → Z(→ ll)γ
models. The Z → µµγ and Z → eeγ models were trained on MC
Truth data only and evaluated in both MC and Data. The H → Z(→
µµ)γ and H → Z(→ ee)γ models were trained and evaluated in MC.

The Z → µµγ model showed increase in signal in MC of 40− 106%
dropping to 17− 30% when applied to Data, excluding same-sign
evaluations in both cases. The Z → eeγ model showed MC increase of
12− 44% and Data increase of 6− 48%. The Higgs model for muon
decays, H → Z(→ µµ)γ, showed increase of 44− 53% in MC while
for the H → Z(→ ee)γ model, an increase of 29− 32% was seen.
Considering the application of the Z → llγ MC trained models in
Data, where the largest drop in performance was seen for the muon
model, expected increase of the muon and electron models is at 15%
and 20% respectively.

The ML approach for the H → Zγ decay presented in the thesis
has shown results consistently improving the ATLAS selection of [1].
Machine learning-based methods have shown beneficial in particle
identification tasks, and the results strongly suggests that adoption
of ML-based methods would improve signal selections compared to
current cut-based methods in ATLAS.

6.2 Outlook and further work

The analysis in [1] showed results consistent with both signal and
background. The Data collection in Run3 will increase the luminos-
ity, which hopefully increases the possibility of observing the decay.
However, a larger amount of signal is still relevant to aim for.

Improving the selection presented in this thesis could be achieved
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with better performing photon models. The pPid model trained in
Sect. 5.2 showed a decrease in signal of −0.7% compared to the Tight
WP, which is used in the ATLAS selection from [1]. The photon mod-
els in this analysis has been trained for unconverted and converted
photons together, but splitting them up and training distinct models
for the two types could be considered. Furthermore, the training
data for the photon models was data from the Z → llγ decays. Here,
the photon energy is lower than for the Higgs decays, and thus it is
relevant to include high-energy photons in the training data as well.

Furthermore, more electrons from the forward calorimeter should
be included in the Z → ee dataset. Unfortunately, these were unavail-
able, but could in principle be a source to further improvements for
the Zee model.

The MC data used in the thesis has been aimed to correspond to
real Data in terms of type of background and also, in some extent,
signal-background ratios. However this could certainly be optimized
which could give less performance difference between models in MC
and Data.

The Z boson models serves as a great candidates for scale-factor
calculation. By fitting, one can estimate the efficiency of the Z selec-
tion in MC and Data. In principle, three selections—a loose, medium,
and tight—could be made with corresponding scale factors. This will
give the possibility to correct simulation to match Data. The scale
factors are often calculated in different regimes, e.g. in high and low
pT , which is also possible here.

Ongoing studies in the group include better energy resolution,
narrowing the signal peak of a detected particle. If successful, more
background (and thus also more signal) can be included while still
having a decent signal-to-background ratio. Models for this analysis
is trained in Data and MC together, which could also be applied to
the analysis presented in this thesis. This ensures a better transaction
from the trained model to the data it is applied to.

Current searches in ATLAS also include the H → γ∗γ decay, where
the γ∗ decays into two low-mass leptons (mll < 30 GeV). The di-lepton
model described in this analysis could in principle be applied to the
decay together with the photon Pid and Iso models. However, the
di-lepton models showed decreasing efficiency for low-mass, but with
training samples from the Drell-Yan process or a Υ → l+l− decay
sample, a better signal selection for low-mass could be achieved.
Furthermore, the muon lepton models could also be utilized on the
decay H → µµ.





A Appendix

A.1 Datasets

Process Container Model

Z → µµ mc16_13TeV.361107.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zmumu.

deriv.DAOD_MUON1.e3601_e5984_s3126_r10724_r10726_p3629

mPid, mIso,
Zmm

Z → µµ (incl.
γ in events)

mc16_13TeV.361107.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zmumu.

merge.DAOD_EGAM4.e3601_e5984_s3126_r10724_r10726

Zmmg

Z → µµγ mc16_13TeV.301536.Sherpa_CT10_mumugammaPt10_35.

deriv.DAOD_EGAM4.e3952_s3126_r10201_r10210_p3956

mPid, mIso,
Zmm, Zmmg

W+ → µν mc16_13TeV.361101.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplusmunu.

deriv.DAOD_MUON1.e3601_e5984_s3126_s3136_r10724_r10726_p4145

mPid, mIso,
Zmm

W− → µν mc16_13TeV.361104.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminusmunu

.deriv.DAOD_MUON1.e3601_e5984_s3126_s3136_r10724_r10726_p4145

mPid, mIso,
Zmm

Z → ee mc16_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.

deriv.DAOD_EGAM1.e3601_e5984_s3126_r10724_r10726_p4323

ePid, eIso, Zee

Z → ee (fwd) mc16_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.

deriv.DAOD_EGAM8.e3601_s3126_r10201_r10210_p3648

ePid, eIso, Zee

Z → ee (incl.
γ in events)

mc16_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.

deriv.DAOD_EGAM3.e3601_e5984_s3126_r10724_r10726_p4250

ePid, eIso, Zeeg

Z → eeγ mc16_13TeV.301535.Sherpa_CT10_eegammaPt10_35.

deriv.DAOD_EGAM3.e3952_s3126_r10201_r10210_p3956

ePid, eIso, Zee,
Zeeg

W+ → eν mc16_13TeV.361100.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wplusenu.

deriv.DAOD_EGAM1.e3601_e5984_s3126_r10201_r10210_p3916

ePid, eIso, Zee

W− → eν mc16_13TeV.361103.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Wminusenu.

deriv.DAOD_EGAM1.e3601_e5984_s3126_r10201_r10210_p3916

ePid, eIso, Zee

H → llγ mc16_13TeV.345833.PowhegPythia8EvtGen_NNPDF30_AZNLOCTEQ6L1_

VBFH125_Zllgam.deriv.DAOD_HIGG1D2.e7111_s3126_r10724_p4062

Hmmg, Heeg

H → llγ mc16_13TeV.344303.PowhegPythia8EvtGen_CT10_AZNLOCTEQ6L1_MPIOFF_

ggH125_Zllgam.deriv.DAOD_HIGG1D2.e5145_s3126_r10724_p4062

Hmmg, Heeg

Table A.1: Used datasets

A.2 Lepton and photon models

A.2.1 Particle Identification: Muons

Here, the plots for the muon Pid models trained in MC T&P and
Data T&P are shown. The procedure of the training and prediction is
described in Sect. 5.2.3.1.
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Figure A.1: SHAP values for the MC and
Data T&P mPid model. The variable
with the highest influence on both mod-
els is muo_numberOfPrecisionLayers .

The LGBM score plots in Fig. A.2 shows complete seperation of
signal and background for the MC trained model. The ROC curve
for the same model, shown in Fig. A.3 also shows that the model has
an AUC of 1, i.e. perfect performance. The Data trained T&P model
shows performance worse than the ATLAS selection. Both features
could be due to the datasets being sparse—for the MC model the
total seperation could indicate that only specific regions are covered,
making the decision easy for the model. For the Data trained model,
we have low statistics in the training data, meaning that the model
cannot generalize well.
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Figure A.2: LGBM score for the T&P
mPid models.

A.2.2 Isolation: Muons

Here, the plots for the muon Iso models trained in MC T&P and
Data T&P are shown. The procedure of the training and prediction is
described in Sect. 5.2.3.2.

The LGBM scores (Fig. A.5) show some overlap between signal and
background, which is also evident in the ROC curve in Fig. A.6, where
the AUC is 0.958 and 0.703 for the MC and Data model respectively.

A.2.3 Particle Identification: Electrons

For the electron, the ePid and eFwd for the MC Truth will first be
shown, and then the T&P trained ePid models will follow.
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Figure A.3: ROC curve for the T&P
mPid models
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Figure A.4: SHAP values for the MC
T&P mIso model. The variable with
the highest influence on the model is
muo_etconecoreConeEnergyCorrection .
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Figure A.5: LGBM score for the T&P
mIso models. The signal and back-
ground has some overlap in their dis-
tributions.
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ML mIso sel.

Figure A.6: ROC curve for the T&P mIso
models. The MC trained model has an
AUC of 0.958 while the Data trained
model has AUC = 0.703.

The parameters for the ePid and eFwd models can be seen in
Tab. A.2. The ePid input features are chosen to be the same as
the likelihood identification used by ATLAS and will thus also be
compared to the ATLAS WPs. The eFwd input features are chosen as
the top 8 in [69], where the forward region has been well-researched.
Unfortunately, it was not possible to use the model trained in [69], as
one variable was missing in the available data.

SHAP values for the ePid and eFwd MC Truth trained models can
be seen in Fig. A.7.
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Figure A.7: SHAP values for the ePid
(left) and eFwd (right) models. The
variable with the highest influence on
the model is ele_deltaEta1 for the
ePid model and ele_fracMaxCluster

for the eFwd model.

Fig. A.8 shows the logit transformed LGBM scores for the ePid
and eFwd models. The ePid score is well-seperated and also yields
an AUC of AUC = 0.992 (see Fig. A.9). Here, we also see clear
improvement compared to ATLAS WPs Loose, Medium and Tight.
For the eFwd model, the signal and background are not as clearly
seperated which is also evident on the bottom ROC curve in Fig. A.9,
where the ATLAS WPs actually yields a higher signal efficiency than
the LGBM model. However, ATLAS does not use forward electrons
in the analysis, so simply including that part of the detector will most
likely yield improvements in the output.

For the T&P trained models, we get an AUC of 0.998 for the MC
and 0.893 for the Data trained ePid model, see Fig. A.12. The LGBM
scores (Fig. A.11) also shows a clear seperation between signal and
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ML ePid input features

ele_Rhad Ratio of ET in the hadronic calorimeter to ET of the EM
cluster

ele_Rhad1 Ratio of ET in the first layer of the hadronic calorimeter
to ET of the EM cluster

ele_f3 Ratio of the energy in the back layer to the total energy
in the EM accordion calorimeter

ele_weta2 Lateral shower width
ele_Rphi Ratio of the energy in 3x3 cells over the energy in 3x7

cells centered at the electron cluster position
ele_Reta Ratio of the energy in 3x7 cells over the energy in 7x7

cells centered at the electron cluster position
ele_Eratio Ratio of the energy difference between the largest and

second largest energy deposits in the cluster over the
sum of these energies

ele_f1 Ratio of the energy in the strip layer to the total energy
in the EM accordion calorimeter

ele_d0 Transverse impact parameter with respect to the beam-
line

ele_d0Sig Significance of transverse impact parameter defined as
the ratio of d0 and its uncertainty

ele_dPOverP Momentum lost by the track between the perigee and
the last measurement point divided by the original mo-
mentum

ele_TRTPID Likelihood probability based on transition radiation in
the TRT

ele_deltaEta1 ∆η between the cluster position in the strip layer and
the extrapolated track

ele_deltaPhiRescaled2 Defined as ∆φ2, but the track momentum is rescaled to
the cluster energy before extrapolating the track from
the perigee to the middle layer of the calorimeter

ML eFwd input features

ele_centerLambdaCluster Distance of the shower barycentre from the calorimeter
front face measured along the shower axis.

ele_lateralCluster Lateral width of the shower cluster.
ele_fracMaxCluster Fraction of cluster energy in the most energetic cell.
ele_topoetconecoreConeEnergyCorrection The energy of the candidate electron for subtracting

and thereby correcting the isolation topoetcone energy.
ele_longitudinalCluster Lateral width, thereby depth, of the shower cluster.
NvtxReco The number of reconstructed vertices in the event.

Table A.2: Input features for the ePid
and eFwd models. Description of ePid
from [67]. The eFwd feature description
is from [69].
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Figure A.8: Logit transformed LGBM
score for the final ePid and eFwd MC
Truth models.
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Figure A.9: The ROC curve for the ePid
and eFwd MC Truth test sets. The AT-
LAS Loose, Medium and Tight WP are
shown on the figure as well as the ML
selection that matches their background
efficiency.

background. However, the performance for the Data trained model is
worse than the ATLAS selection, as was also seen in the muon model.
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Figure A.10: SHAP values for the
T&P ePid model. The variable with
the highest influence on the model is
muo_numberOfPrecisionLayers .
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Figure A.11: LGBM score for the T&P
ePid models.
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Figure A.12: ROC curve for the T&P
ePid models
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A.2.4 Isolation: Electrons

For the eIso models, the training features can be seen in Tab. A.3.
The performance will be compared to the isolation WP from [67],
pvarcone20

T < 0.15 ET .

ML eIso input features

correctedScaledAverageMu Pileup
NvtxReco Number of reconstructed vertecies in

the event
ele_et the energy ET of the electron
ele_ptvarcone20 A variable of the sum of pT tracks in

the 0.20 cone around the object
ele_topoetcone20 The sum of ET tracks in the topo-

clusters the 0.20 cone around the object
ele_topoetcone40 The sum of ET tracks in the topo-

clusters the 0.40 cone around the object

Table A.3: Input features for the eIso
models [70].

The SHAP values for the MC Truth trained eIso model can be seen
in Fig. A.13. We see that ele_et has the largest importance in the
model training corresponding to the top variable in the mIso model,
muo_pt .
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Figure A.13: SHAP values for the eIso
model. The variable with the highest
influence on the model is ele_et .
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LGBM, AUC = 0.986
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ptvarcone20/ele_pt < 0.15,
 AUC = 0.942
ML eIso sel.

Figure A.14: The ROC curve for the
eIso MC Truth test set. The ATLAS WP
pvarcone30

T < 0.15 ET is shown on the fig-
ure.

Fig. A.15 shows the logit transformed LGBM score for the MC
Truth trained eIso model, the ROC curve for the test set can be
seen in Fig. A.14. The AUC for the eIso model is 0.899 which is a
big improvement compared to the ATLAS isolation WP pvarcone20

T <

0.15 ET , yielding an AUC of 0.722. For the T&P trained models, we
get an AUC of 0.988 for the MC and 0.896 for the Data trained model,
all with increase in performance compared to the ATLAS WP.
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Figure A.15: Logit transformed LGBM
score for the final eIso MC Truth model
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Figure A.16: SHAP values for the MC
T&P eIso model. The variable with
the highest influence on the model is
muo_numberOfPrecisionLayers .
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Figure A.17: LGBM score for the MC
T&P eIso model.
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Figure A.18: ROC curve for the MC T&P
eIso model

A.2.5 Particle Identification: Photons

The photon models, both the Pid and Iso, are only trained on the MC
Truth dataset. The variables for the pPid model, that resembles those
used in the ATLAS Likelihood model, can be seen in Tab. A.4. In this
case, we will compare the result with the ATLAS Likelihood Loose
and Tight working points, as these are the ones available for photons.

The SHAP values for the MC Truth trained pPid model can be seen
in Fig. A.19. We see that pho_Reta has the largest importance in the
model training.
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Figure A.19: SHAP values for the pPid
model. The variable with the highest
influence on the model is pho_Reta .

Left plot in Fig. A.20 shows the logit transformed LGBM score for
the MC Truth trained pPid model, the ROC curve for the test set can
be seen in right plot in Fig. A.20. The AUC for the pPid model is
0.87 which is a big improvement compared to the ATLAS likelihood
WP Loose yielding an AUC of 0.741. The Tight working point has an
AUC of 0.71, but we can see in Fig. A.20 that we get similar signal
and background efficiencies.
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ML pPid input features

correctedScaledAverageMu Pileup
pho_eta The pseudorapidity
pho_et The energy
pho_Rhad Ratio of ET in the hadronic calorimeter to ET of the EM

cluster
pho_Rhad1 Ratio of ET in the first layer of the hadronic calorimeter to

ET of the EM cluster
pho_weta2 Lateral shower width in the EM middle layer
pho_Rphi Ratio of the energy in 3x3 cells over the energy in 3x7 cells

centered at the electron cluster position
pho_Reta Ratio of the energy in 3x7 cells over the energy in 7x7 cells

centered at the electron cluster position
pho_Eratio Ratio of the energy difference between the largest and sec-

ond largest energy deposits in the cluster over the sum of
these energies

pho_f1 Ratio of the energy in the strip layer to the total energy in
the EM accordion calorimeter

pho_wtots1 Lateral shower width in the EM strip layer
pho_DeltaE Difference between the energy of the strip associated with

the second maximum in the strip layer, and the energy re-
constructed in the strip with the minimal value found be-
tween the first and second maxima

pho_weta1

pho_fracs1

pho_ConversionType The type of conversion of the photon. 0 is unconverted
pho_ConversionRadius The radius of conversion
pho_VertexConvEtOverPt

pho_VertexConvPtRatio

Table A.4: Input features for the pPid
model [70].
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Figure A.20: (left) Logit transformed
LGBM score for the final eIso MC Truth
model. (right) The ROC curve for the
pPid MC Truth test set. The ATLAS
WPs Loose and Tight are shown on the
figure.
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A.2.6 Isolation: Photons

Input features for the photon isolation model can be found in Tab. A.5.
They are similar to the features from the mIso and eIso models.

ML pIso input features

correctedScaledAverageMu Pileup
NvtxReco Number of reconstructed verti-

cies
pho_et The energy ET of the photon
pho_topoetcone20 The sum of ET tracks in the topo-

clusters the 0.20 cone around the
object

pho_topoetcone40 The sum of ET tracks in the topo-
clusters the 0.40 cone around the
object

pho_ptvarcone20 A variable of the sum of pT
tracks in the 0.20 cone around
the object

Table A.5: Input features for the pIso
model.

The SHAP values for the MC Truth trained mIso model can be
seen in Fig. A.21. We see that pho_topoetcone20 has the largest
importance in the model training.
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Figure A.21: SHAP values for the
pIso model. The variable with the
highest influence on the model is
pho_topoetcone20 .

Fig. A.22 (left) shows the logit transformed LGBM score for the
MC Truth trained pIso model. The signal and background are not so
easily seperable which is also evident in the ROC curve in the right
plot in Fig. A.22. The pIso model gets an AUC of 0.893. On the figure,
this performance is compared to the ATLAS WP for muons from [41],
pvarcone30

T < 0.06 pT for visualisation purposes. This WP yields an
AUC of 0.73.
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Figure A.22: (left) Logit transformed
LGBM score for the final pIso MC Truth
model. As can also be seen on the ROC
curve in the right plot, the signal and
background are less seperable than in
the pPid model in Fig. 5.7. (right) The
ROC curve for the pIso MC Truth test
set. The ATLAS WP pvarcone30

T < 0.06 pT
is shown on the figure. This WP is from
[41], and is only shown for visualisation
purposes.

A.3 Zll models

A.3.1 Zll Truth

Figure A.23: Number of background
events for the Z → µµ and Z → ee de-
cays. Left plot shows the number of
same-sign events for the Z → µµ model
while the right plot shows the number
of background events for the fit for the
Z → ee decay.
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Figure A.24: Invariant mass of the Z →
µµ and Z → ee decays (log scale)

Figure A.25: Examples of fits for the
Zmm model. The fit of the ATLAS se-
lection and the Data T&P selection is
shown.

Figure A.26: Plot of the invariant mass
for the Z → µµ decay in Data. The
left plot shows the MC Truth, MC T&P
and Data T&P performance for the fbkg
evaluation. The right plot shows the
same models but for the nSS evaluation.
Here, the very few same-sign events are
also plotted on the figure. Shown in
logarithmic scale.
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Figure A.27: Plot of the invariant mass
for the Z → ee decay in Data. The left
plot shows the MC Truth, MC T&P and
Data T&P performance for the fbkg eval-
uation. The right plot shows the same
models but for the nSS evaluation. Here,
the same-sign events are also plotted on
the figure. Shown in logarithmic scale.

A.3.2 Zmm T&P

A.3.2.1 Training

The T&P models are trained using the same variables as listed in
Tab. 5.16. They each take their “own” mPid and mIso score as input,
i.e. the MC T&P Zmm model takes the mPid and mIso MC T&P
trained models as input.
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Figure A.28: The SHAP values for the
T&P trained Zmm modelsThe SHAP values for the models are shown in Fig. A.28. For both

models, the feature with the highest importance is the mPid score for
the second muon. This is as in the MC Truth trained model. However,
we see that it is almost the only important variable for the MC trained
model, while the rest of the features has some importance for Data
trained T&P model.

A.3.2.2 Testing

Fig. A.29 shows the invariant mass for the Data and MC T&P models.
As mentioned, the cuts defining the signal and background, removes
all data not in the ranges mZ ± 5 GeV and mZ ± (10− 40)GeV, respon-
sible for the empty tails in the figure.

We see an increase in signal of 10− 11% for the Data T&P model
and around 19% for the MC T&P model for all evaulation methods.

Fig. A.30 shows the increase in signal and background when loos-
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Figure A.29: Plot of the invariant mass
for the Zmm Data and MC T&P models.

ening the cuts for the Data T&P model along with the cut in the
LGBM score. We see that the fitting method is unable to include more
signal, but that loosening the same-sign cut, we can achieve around
+20% more signal with the double amount of background.

Figure A.30: (left) Signal and back-
ground plots for the Zmm Data T&P
model. (right) LGBM score for the Zmm
Data T&P model.Fig. A.31 shows the increase in signal and background when loos-

ening the cuts for the MC T&P model along with the cut in the LGBM
score. Here, it is evident that there is not much more signal to gain,
but the LGBM score also shows that the signal and background are
completely seperated.

Figure A.31: (left) Signal and back-
ground plots for the Zmm MC T&P
model. (right) LGBM score for the Zmm
MC T&P model.
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A.3.3 Zee T&P

A.3.3.1 Training

The T&P models are again trained using the same variables as listed
in Tab. 5.16 with their corresponding ePid and eIso model.
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Figure A.32: The SHAP values for the
T&P trained Zee models

The SHAP values for the models are shown in Fig. A.32. Again, for
both models, the feature with the highest importance is the ePid score
for the second election. This is as in the MC Truth trained model.
Here, opposed to the muon models, also the eIso score for the second
electron has high importance for both models.

A.3.3.2 Testing

Fig. A.33 shows the invariant mass for the Data and MC T&P models.
The Data trained model shows an increase of 7− 17%, meaning that
it is highly dependent on the evaluation method. The MC trained
model has improvements in the range 24− 30%.

Figure A.33: Plot of the invariant mass
for the Zee Data and MC T&P models.

Fig. A.34 shows the increase in signal and background when loos-
ening the cuts for the Data T&P model along with the cut in the
LGBM score. Some signal can be achieved by loosening the cuts,
but especially for the same-sign method. Here we see an increase of
around +20% with double background.
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Figure A.34: (left) Signal and back-
ground plots for the Zee Data T&P
model. (right) LGBM score for the Zee
Data T&P model.

Fig. A.34 shows the increase in signal and background when loos-
ening the cuts for the MC T&P model along with the cut in the LGBM
score. Here, it is evident that there is not much more signal to gain.
The plot of the LGBM score also shows that the selection is already
well into the background part of the score.

Figure A.35: (left) Signal and back-
ground plots for the Zee MC T&P model.
(right) LGBM score for the Zee MC T&P
model.Zll models performance, fbkg MC

Model N ATLAS N LGBM Change
Zmm Sig Bkg Sig Bkg
MC Truth 122, 632 2740 140, 575 2735 14.58%
MC T&P 12, 233 0 14, 603 0 19.37%
Data T&P 3, 281 226 3, 649 225 10.79%
Zee
MC Truth 17, 435 200 20, 396 198 22.49%
MC T&P 12, 750 10 15, 859 10 24.19%
Data T&P 2, 912 64 3710 63 27.01%

Table A.6: Performance of the Zll mod-
els for fbkg evaluation. The number
of signal events are measured in the
range [70; 110]GeV while the number
of background events are measured for
[50; 150]GeV.

A.3.4 Predicting in Data

Fig. A.36 shows the relation between signal and background events
in Data. When the cuts are loosened, mainly background is let in.
This was also seen for MC data in the Z → µµ channel. In Fig. A.37,
the same plot for the Z → ee decay is shown, indicating that more
signal events can be found by loosening the cuts. Fig. A.38 shows
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Zll models performance, nSS MC

Model N ATLAS N LGBM Change
Zmm Sig Bkg Sig Bkg
MC Truth 119, 341 10 138, 530 11 16.08%
MC T&P 12, 232 5 14, 600 5 19.36%
Data T&P 3, 225 187 3, 606 175 11.81%
Zee
MC Truth 16, 745 13 20, 661 12 23.39%
MC T&P 12, 524 549 15, 551 552 24.17%
Data T&P 2, 851 18 3, 501 19 22.8%

Table A.7: Performance of the Zll mod-
els for nSS evaluation. The number
of signal events are measured in the
range [70; 110]GeV while the number
of background events are measured for
[50; 150]GeV.

the LGBM score for the Data and the Data T&P trained models. The
distribution for the Zmm model has a sharper peak in signal for the
Data T&P data than the Data, otherwise, the ratio plot shows similar
distributions.

Figure A.36: The number of background
events for the Zmm model.

Figure A.37: The number of background
events for the Zee model.
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Figure A.38: LGBM score of the Data
T&P trained models for Zee and Zmm

A.4 Zllg and Hllg

Figure A.39: Plot of the invariant mass
for the Z → llγ decays in MC test. The
left plot shows the Z → µµγ decay and
the right plot shows the invariant mass
for the Z → eeγ decay
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Figure A.40: LGBM score of the Zmmg
and Zeeg models for MC and Data

Figure A.41: Plot of the invariant mass
for the Z → llγ decays in Data on
logarithmic scale. The top plot shows
the Z → µµγ decay and the bottom
plot shows the invariant mass for the
Z → eeγ decay and corresponding in-
creases in Data
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ML Zllg and Hllg data selection

Z → µµγ Signal Background
Absolute Relative Absolute Relative

All events 237, 725 100% 4, 289, 018 100%
83 > Mee[GeV] >

40
178, 619 75.1% 1, 639, 869 38.2%

pγ
T > 10 GeV 142, 404 79.7% 168, 049 10.2%

Final data sets Training Validation Test
data points percentage data points percentage data points percentage

Signal 90, 856 45.73% 22, 924 46.15% 28, 624 46.1%
Background 107, 834 54.27% 26, 748 53.85% 33, 467 53.9%

Z → eeγ Signal Background
Absolute Relative Absolute Relative

All events 113156 100% 5860330 100%
83 > Mee[GeV] >

40
85212 75.3% 1547834 26.4%

pγ
T > 10 GeV 67922 79.7% 174223 11.2%

Final data sets Training Validation Test
data points percentage data points percentage data points percentage

Signal 43587 28.13% 10854 28.02% 13481 27.84%
Background 111386 71.87% 27889 71.98% 34948 72.16%

H → Z(→ µµ)γ Signal Background
Absolute Relative Absolute Relative

All events 84101 100% 2171535 100%
pγ

T > 10 GeV 77362 92% 290949 13.3%

Final data sets Training Validation Test
data points percentage data points percentage data points percentage

Signal 49489 21% 12498 21.21% 15375 20.87%
Background 186229 79% 46432 78.79% 58288 79.13%

H → Z(→ ee)γ Signal Background
Absolute Relative Absolute Relative

All events 82572 100% 6728870 100%
pγ

T > 10 GeV 75927 92% 972480 14.4%

Final data sets Training Validation Test
data points percentage data points percentage data points percentage

Signal 48657 7.25% 12118 7.22% 15152 7.23%
Background 622323 92.75% 155627 92.78% 194530 92.77%

Table A.8: Data set selection for Hllg
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Figure A.42: Plot of the invariant mass
for the H → Z(→ ll)γ decays in MC test
on logarithmic scale. The top plot shows
the H → Z(→ µµ)γ decay and the bot-
tom plot shows the invariant mass for
the H → Z(→ ee)γ decay.
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