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There’s no such thing as the unknown, only things temporarily hidden, temporarily
not understood.

- Captain Kirk
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vii



viii



Acknowledgments

Listing everyone who contributed to this work would probably double the
length of this document. Hence, as a symbol of my concerns about the

rainforest, I would like to show my gratitude to everyone with a short but
sincere ‘Thank You’ to all.

That being said I would like to exclusively thank three people without whom
my work would not have been possible. I give my special thanks to Professor
Charles Marcus for welcoming me into his experimental family and challenging
me to expand my horizons. I express my appreciation to Professor Piet Brouwer
for helping me to set and reach my goal. Last but not least, I thank Mingtang
Deng for being friendly enough to tag me along on this extremely educational
journey.

ix



x



Abstract

Majorana excitations in certain condensed matter systems are predicted to
exhibit exotic non-Abelian statistics. The elusive quasiparticles are their

own quasiholes, thus possess zero energy. Consequently, a system suited for
observing Majorana zero modes has two energetically degenerate ground states,
reflecting the absence and presence of the quasiparticles. In theory, different
ground states can be accessed by braiding the Majorana modes around each
other. Such an experiment would resemble the main properties of the highly
desired topological qubits.

Following theoretical blueprints, several experimental groups have under-
taken the challenge to synthesize Majorana particles in the lab. Among numer-
ous platforms that hypothetically host Majorana excitations, the biggest share of
attention was received by one-dimensional topological superconductors posing
Majorana zero modes at its ends. Albeit there are no known natural p-wave
superconductors, they can be engineered by placing a material with strong
spin-orbit coupling in a proximity to an ordinary s-wave superconductor and
subjecting it to an external magnetic field. The former two features are intrin-
sically provided by epitaxial superconductor-semiconductor nanowires. Such
nanowire equipped with a normal lead connected to one end and separated
by a tunneling barrier from the rest of the system can be used as a tunneling
spectrometer, therefore the density of states of the induced superconductor can
be probed via low-temperature conductance measurements.

Spatial confinement has an interesting effect on the charge transport in one-
dimensional nanowires. Due to the momentum quantization, charge carriers
in semiconductor-superconductor hybrid nanowires form Andreev reflection
mediated bound states. The corresponding modes are reflected in the proximi-
tized semiconductor energy spectrum as discrete subgap states. Subject to an

xi



xii Abstract

external magnetic field the modes start to descend towards zero energy and
become localized at the ends of the nanowire. Andreev bound states with the
lowest energy eventually coalesce into a robust Majorana bound state with zero
energy, signifying the topological phase transition.

This work introduces some Majorana-physics related theoretical background
and discusses peculiarities of the Majorana quasiparticle hunting.



1
Introducing Topological

Quantum Computation

The world’s critical infrastructures being managed by the internet makes
it difficult to imagine our modern society without computers. The rapid

enhancing of technology requires to continue advancing from the fundamental
point of view as well as to keep an eye open for possible alternatives. The
following chapter provides a short introduction to the quantum computation
and the role of topology in it.

1.1 From Classical to Quantum Computation

For more than half of the last century, the evolution of modern semiconductor
industry has been following the well-known Moore’s law [1]. Named after

Intel co-founder Gordon E. Moore, the law predicts the exponential advance
in semiconductor manufacturing. More precisely, it states that the number
of transistors on a chip, that is electronic switches assembling logical circuits,
should double every two years, decreasing in costs almost at the same rate.

It is startling that the modern technology has kept its pace with Moore’s
law for so long. Nevertheless, the size of transistors has a lower boundary, of
which the order of magnitude is determined by Bohr radius, the characteristic
size of atoms and molecules. Therefore, it does not come as a surprise that an
exponential growth can not continue forever. Furthermore, the Intel architecture
is developed for linear computing and even though it is still very relevant on
a daily basis, real-time data processing is getting more intense and therefore
more efficient performance of complex simulations is desired. These issues have
motivated to look for alternative ways of computing.

1



2 1.2 DiVincenzo Criteria

Already in 1985, Richard P. Feynman theorized about the possibility of
shrinking the bits to the size of atoms, thus introducing the computation to
the quantum realm [2]. This idea has started forming the concept of quantum
computing and a decade later requirements for its physical implementation [3]
have been formulated by David P. DiVincenzo, see Fig. 1.1.

1.2 DiVincenzo Criteria

Firstly, a quantum system to be a quantum computer has to have at least two
well-defined states, for example, the spin of an electron or the polarization of

a photon. Due to the analogy to their classical counterparts, these fundamental
building blocks are called quantum bits or qubits. Despite their similarity,
a qubit can be in a superposition of its both states, a quantum mechanical
property not exhibited by conventional bits. Secondly, it should be possible to
initialize the system to its ground state by either literally or figuratively cooling
it down. Next, by exploiting quantum phenomena, such as entanglement, one
should be able to manipulate the qubits in a way that corresponds to a logical
gate. In the end, the result has to be measured by mapping the system to one
particular states. Most importantly, the whole cycle hast to be carried out before
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Figure 1.1: Illustration of the five criteria for a quantum system to be used as a quantum
computer. Proposed by David P. DiVincenzo [3].



1 Introducing Topological Quantum Computation 3

the wave function describing the quantum system loses the information it is
carrying.

The last criterion is probably the most challenging to overcome experimen-
tally. This is because realistic quantum systems are never truly isolated from
their surroundings. After all, the only way of measuring it is by interaction.
The loss of information contained in a quantum system due to the interaction
with the environment is called decoherence, which is the source of the quantum
errors and the biggest obstacle for realization of a quantum computer. While the
classical computer errors are corrected by simply double checking the encoded
information, the problem gets much more complex in quantum computers. In
addition to the errors in form of a discrete qubit flip, which are similar to the
digital ones, a quantum state may develop a continuous phase error, destroying
the information contained in a superposition of the states. Intermediate state
checking is not an option because it would lead to unavoidable wave collapse
and loss of the information. It is possible to reduce the effects of decoherence
for information stored in quantum memory by using a quantum analog of
error correcting codes [4]. However, such algorithms by themselves require
near error-free performance and are very difficult to implement. An alternative
approach known as topological quantum computation addresses the matter
differently from the fundamental point of view.

1.3 Topology

In mathematics, topology studies whether objects can be transformed con-
tinuously into each other. Knot theory is a close example to the topic of

topological quantum computation. For instance, it is not hard to imagine that a
circle, which is a trivial knot, can be transformed into an infinity shaped knot by
simply twisting it around an arbitrary axis, see Fig. 1.2. This transformation is
continuous and therefore these two knots are topologically equivalent. However,
considering the simplest nontrivial knot, one realizes that there is no continuous
way to transform it into a circle.

Analogously, in condensed matter physics, topology studies whether the
Hamiltonians of two systems can be continuously transformed into each other.
A quantum system with non-trivial topology would be insensitive to local
perturbations and the information contained in this system’s topological degrees
of freedom would be automatically protected from decoherence [5].

Because of this extraordinary property, topological quantum computation
has attracted a lot of attention, triggering the race in search of the first topologi-
cal qubit. In order to clarify further analogy with the condensed matter physics



4 1.4 Particle Exchange

Figure 1.2: In knot theory, a circle (middle), which is a trivial knot, can be continuously
transformed into a infinity shaped knot (left). They are said to be topologically equivalent. The
so-called trefoil knot (right) is the simplest nontrivial knot. There is no continuous way to
transform it into a circle, hence it is topologically different from the other two.

and demonstrate possible realization of the topological quantum qubit, it is
helpful to get familiar with different types of particles.

1.4 Particle Exchange

Consider two fundamentally indistinguishable particles in three dimensions,
described by the joint position quantum state ψ (r1, r2). The exchange of

two identical particles is a unitary transformation and can be represented by
the exchange operator P̂. Two consecutive exchanges - operation equivalent to
one particle encircling the other - restores the two-particle wave function to its
initial state P̂2 |ψ (r1, r2)〉 = |ψ (r1, r2)〉. This indicates that the eigenvalues of
P̂ are +1 and −1, which essentially correspond to the classes of the particles.
Particles described by a symmetric state are called bosons, whereas the ones
described by an antisymmetric state are called fermions. The corresponding
two particle wavefunctions evolve as

P̂ |ψ (r1, r2)〉 = |ψ (r2, r1)〉 (bosons), (1)

P̂ |ψ (r1, r2)〉 = − |ψ (r2, r1)〉 (fermions). (2)

The fact that the motion of a particle being moved around the other does
not get encoded in the two-particle wavefunction makes the whole concept of
particle permutation in three dimensions rather mundane.

It gets more interesting if particles are confined in two dimensions, where
the topology of the particle exchange starts to matter. Similarly to the previous
example with the knot theory (see Fig. 1.2), the trajectories of the exchanged
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particles cannot always be continuously transformed into different ones [5].
Because the space of particle trajectories is disconnected, the process of particles
α and β being exchanged in a clockwise manner, see Fig. 1.3 left, is topolog-
ically different from the process of the same particles being exchanged in a
counterclockwise manner, see Fig. 1.3 right.

Furthermore, even though the double counterclockwise exchange results
in the initial particle configuration, due to the entangled trajectories the two-
particle wavefunction adopts a phase factor eiφ, which depends only on the
exchange topology and can be weighted freely with any φ between 0 and π.
Consequently, these quasiparticles have been named anyons. The traces of two
anyons moving around each other in time form braids, thus the motion is called
braiding.

Anyons forming a system with a nondegenerate ground state obey Abelian
statistics, i.e. braiding of such particles is commutative. Evolution of two Abelian
anyon wavefunction due to counterclockwise exchange can be described as
follows

P̂ |ψ (r1, r2)〉 = eiθ |ψ (r2, r1)〉 (Abelian anyons), (3)

where the adopted phase θ = φ/2.
The Abelian anyons provide the basis for topologically fault-tolerant quan-

tum memory in a form of product of phase factors gathered by a series of

Figure 1.3: In quantum mechanics there are only two distinguishable ways to exchange a pair
of identical particles in two dimensions, namely counterclockwise (left) and clockwise (right).
Note that the third dimension represents time. Because the space of particle trajectories is
disconnected, these two processes cannot be adiabatically deformed into each other.
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braidings. However, braiding of the Abelian anyons does not afford the imple-
mentation of arbitrary unitary transformation, hence there is no way to process
the quantum information.

Non-Abelian anyons, on the other hand, form a system with a degenerate
ground state. Braiding such quasiparticles brings the system from one ground
state to another.

P̂ |ψa (r1, r2)〉 = eiθUab |ψb (r2, r1)〉 (non-Abelian anyons), (4)

where Uab is a unitary matrix representing the transformation and is determined
only by the topology of quasiparticle trajectory. Consecutive braidings result in
a product of such unitary matrices, which in general do not commute. Therefore
non-Abelian anyons intrinsically provide computational resource with purely
topological nature [6].

The improvement of modern computers relies mainly on the geometric scal-
ing of transistors. The downside of this approach is that the physical size

limitation opposes the exponentially increasing density of electrical components.
Therefore the enhancing of technology as it is known nowadays is slowing down
and might eventually stop. These circumstances have motivated advancing
beyond classical computation and so the criteria for quantum computation have
been formulated. The essential requirements of a quantum computer is a two
level system with accessible ground state, which can be manipulated and read
out. The limiting time scale of a single process is intimately related to the
coherence of the quantum state encoded in the qubit, which is very challenging
to maintain due to arbitrary interactions with the environment. This problem
could, in theory, be overcome by employing topological qubits, which are robust
against local perturbations. Non-Abelian anyons are hypothetical quasiparti-
cle excitations in condensed matter, following unique exchange statistics and
therewith providing an excellent basis for the topological qubit. A candidate
quasiparticle speculated to possess such properties is elaborated below.



2
Enter Majorana

In 1997 Alexei Kitaev theorized that due to their exotic exchange statistics
non-Abelian anyons form a quantum system suitable to accommodate a topo-

logical qubit [7]. Majorana fermions as quasiparticle excitations are promising
candidates for non-Abelian anyons. This chapter is concerned with an intro-
duction to the rapidly growing field of topological quantum computation and
Majorana physics [8].

2.1 From Fermions to Non-Abelian Anyons

One of the most common mechanisms believed to support non-Abelian
anyons is quasiparticle excitation hosting Majorana zero mode. It is ex-

pected to occur in certain solid state systems and is the condensed matter
analog of hypothetical elementary particle known as Majorana fermion (MF).
The theoretical background of MF was formed by following the relativistic wave
equation for electrons proposed by Paul Dirac in 1928 [9].

Combining quantum mechanics and special relativity, the British physicist
discovered the theoretical framework for describing spin-1⁄2 particles. Dirac
defined solutions suitable for his equation containing both real and imaginary
numbers, indicating that the electron wavefunction has to be complex. This
is consistent with the fact that electron is a particle with electrical charge and
therefore can only be described with a complex wave function.

Interestingly, the complex conjugate of the wavefunction describing electron
is also an eigenfunction of the Dirac’s wave equation. The mathematical ele-
gance leads to the prediction of electron’s antiparticle, the positron, which was
discovered in cosmic rays a few years later [10]. This supported Dirac’s result
forming the basic understanding of antimatter.

7



8 2.2 Electrons in Condensed Matter

At that moment it seemed that the complex numbers are an unavoidable
part of the solution to Dirac’s equation. The picture, however, changed when
in 1937 Italian physicist Ettore Majorana found solutions for the relativistic
wave equation involving imaginary numbers only and still being consistent
with quantum theory [11]. In this case, the modified Dirac’s equation has
physical meaning only if the wave function describing a spin-1⁄2 particle is real.
Consequently, the corresponding particle has to be electrically neutral and its
own antiparticle. Termed after their discoverer, a few elementary particles have
been postulated to be Majorana fermions [12], however, none of them have
been decisively confirmed in an experiment. In the very early 90s, it has been
theorized that MFs can arise as zero energy quasiparticle excitations in certain
solid state systems [13]. Due to their exotic fundamental properties, MFs in
condensed matter have attracted immense attention.

2.2 Electrons in Condensed Matter

Condensed matter systems are usually described in terms of electrons form-
ing a Fermi sea. An excitation of the system is called quasiparticle, which

essentially corresponds to adding an excess electron to the system. A quasi-
antiparticle is nucleated by removing an electron from the system and leaving
a hole in its place. The hole behaves like a positively charged electron, hence
considering it as a particle simplifies the description of electron interaction with
a nearly full system.

In the second quantization language, the creation of an electron (annihilation
of a hole) in a state i is described by a fermionic operator c†

i , whereas the
annihilation process is described by its Hermitian conjugateci. The occupation
of the state i can be determined with the corresponding number operator

ni = c†
i ci, (5)

which has eigenvalues equal to 0 and 1, corresponding to empty and occupied
states, respectively.

In general electrons follow Fermi-Dirac statistics characterized by three key
relations between two arbitrary states associated with the quasiparticle and
its hole [12]. First, due to the Pauli exclusion principle, the same state can be
occupied by only one electron (or hole) indicating that

(c†
i )

2 = c2
i = 0. (6)



2 Enter Majorana 9

Second, due to the antisymmetry of Fermi-Dirac statistics, two orthogonal states
obey anticommutation relations

{ci, cj} = {c†
i , c†

j } = 0, (7)

where the anitcommutator is defined by {a, b} = ab + ba. Third, the complete-
ness relation gives

{ci, c†
j } = δij. (8)

Eqs. 6-8 are the evidence that electron can be distinguished form its hole
and hence is not a Majorana fermion. On the other hand, there are known
quasiparticle excitations in solid-state physics that are their own holes. As an
example consider exciton, a bound state of an electron and a hole, which has a
general form of

c†
i cj + cic†

j . (9)

It is transparent that complex conjugation yields the same expression, thus an
exciton is its own antiparticle. Nevertheless, its spin is an integer number, hence
effectively it is a boson. This prevents it from fitting into the framework of
Majorana formalism.

It seems that MFs might be unfeasible by utilizing electrons in normal solid
state systems, however, the picture changes in superconducting matter, where
the boundary between particles and antiparticles is smeared out.

2.3 Superconductivity

An electron moving through a lattice generates a phonon, which in turn
interacts with other electrons. This results in a finite attractive force between

electrons. Normally, this force is negligible compared to the thermal excitations.
At sufficiently low temperatures, however, in some materials the attractive force
becomes comparable to other excitations and electrons start to form bound
states called Cooper pairs.

A sudden loss of electrical resistance in certain materials below a charac-
teristic critical temperature, that is the phenomenon of superconductivity, is
mediated by the Cooper pairs [14]. Owing to their boson-like nature, bound
pairs of electrons, condense into the same quantum ground state. Consequently,
adding or removing a Cooper pair from the condensate does not change the
overall state. This implies that the conservation of electron number is no longer
valid. Furthermore, Cooper pairs are attracted by holes and repealed by elec-
trons. This results in charge screening, that blurs out the particle-antiparticle
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dichotomy. Moreover, an electron from a normal state lowers its energy by
mixing with a hole and undergoing in the superconducting state. Such joint
electron-hole excitation is termed Bogoliubov quasiparticle.

Most of the known superconductors exhibit s-wave pairing and Cooper
pairs are formed of electrons with opposite spin projections [8]. The operator
associated with the corresponding Bogoliubov quasiparticle can be expressed
by

b = uc†
↑ + vc↓, (10)

where the electron and hole components generically have different weights
(u 6= v). It seems that these quasiparticles are not the realization of MFs.
Instead, Majorana modes are associated with a spinless operator with both
of its components weighted equally. Such an operator can be constructed by
approaching the issue from a different perspective.

2.4 Majorana Zero Modes

Every fermionic operator can be decomposed into its real and imaginary
part, each of which is a MF, see the top panel of Fig. 2.1. This simply

corresponds to a mathematical change of operator basis and firstly has no
physical importance. That is because normally both components are tightly
localized in space and their wave functions cannot be addressed individually,
see left panel of Fig. 2.1. If, however, each part would happen to be spatially
separated, they would yield a highly delocalized fermionic state, see right panel
of Fig. 2.1, which would be immune to most types of decoherence, since no
local perturbation could change it by affecting only one of the MFs.

In the second quantization language this can be expressed as

ci =
1
2
(γi,1 + iγi,2) and c†

i =
1
2
(γi,1 − iγi,2) . (11)

The inverted relations read

γi,1 = c†
i + ci and γi,2 = i(c†

i − ci). (12)

In contrast to the Bogoliubov quasiparticle operator given by Eq. 10, the new
operators are Hermitian

γ†
i,α = γi,α (13)



2 Enter Majorana 11

and hence Majorana operators. Furthermore, one can verify that

(γ†
i,1)

2 = (γ†
i,2)

2 = 1. (14)

Any fermionic operator satisfying this condition can be associated with a
propagating MF, of the type that neutrino is hypothesized to be, and can occur
in superconductor of any type [15]. In other words, MF as the elementary
particle is not related to the Hamiltonian of any system. However, an operator
associated with a localized MF, also called Majorana zero mode (MZM), is
system specific. That means that in addition to being fermionic and squaring to
one, localized MZM commutes with the Hamiltonian of the system as

[H, γi,1] = [H, γi,2] = 0, (15)

where the commutator is defined by [a, b] = ab− ba.
Eq. 14 has further implication on MZMs, namely adding a second quasi-

particle to an already occupied state does not annihilate it, nor does it create a
new state occupied by both quasiparticles. Instead, it recreates the state of zero
occupancy [12]. Strictly speaking, the Pauli repulsion principle does not apply
for MZMs and the attempt to count the occupation of Majorana mode comes
to naught. Alternatively, the number states are provided through the normal
fermion operator given by Eq. 5. In other words, a pair of MZMs can be either
occupied or non-occupied with a single electron. The two degenerate states
of a pair of MZMs correspond to the parity of superconductor, that is even or

ψ

x

ψ

x

Figure 2.1: Any fermionic operator (blue) can be decomposed into a real (green) and an
imaginary (red) part, both of which are Majorana fermions. Spatially localized Majorana
fermions merge to form a conventional fermion (left), whereas spatially separated Majorana
fermions yield a highly delocalized fermionic state (right).
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oddness of the total electron number in the system. The ground state of a fixed
parity system containing n Majorana mode pairs is 2n−1 fold degenerate.

Furthermore, it can be shown that MZM operators satisfy the anticommuta-
tion relation

{γi,α, γj,β} = 2δijδαβ, (16)

which implies that Majorana modes, compared to the conventional fermionic
particles (see Eqs. 7 and 8), follow different statistics. In particular, the process
of exchanging two MZMs induces the transformation

γi,α → γj,β,

γj,β → −γi,α.
(17)

While the overall sign is a gauge choice, the additional minus sign signatures the
braiding operation of non-Abelian anyons. Such an operation could in principle
bring the system from one ground state to another. The ability to link the simple
motions in physical space with the complex operations in exponentially large
Hilbert space is what makes MZMs so attractive [16].

Localized MZMs are known to emerge at topological phase transitions or at
topological defects in an ordered state [17]. The former scenario is predicted
to occur in the fractional quantum Hall states with filling factor ν = 5/2 [13],
whereas the later can appear at vortices in a two-dimensional superconductor
with px ± ipy pairing [18] or at the domain walls of one-dimensional supercon-
ductor with p-wave pairing [19]. The advantage of the one-dimensional systems
against the others lays in the relatively easy detection of MZMs, therefore it has
the biggest focus of the current research. It can be described by an elegantly
simple toy model.

2.5 1D Electron Chain

A Hamiltonian describing a one-dimensional system with spatially isolated
MFs as eigenstates was first introduced by a Russian theoretical physicist

Alexei Kitaev in 2001 [19]. It considers electrons as spinless fermions hopping
along tight-binding chain consisting of N-sites with the p-wave superconducting
pairing. In the second quantization language, it reads

Hchain =
N

∑
i

[
−µc†

i ci − t
(

c†
i ci+1 + c†

i+1ci

)
+ ∆cici+1 + ∆∗c†

i c†
i+1

]
. (18)

For simplicity, the chemical potential, µ, hopping amplitude, t, and supercon-
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c1
† cN

†

c
i+1
†

c
i+1

c i

c i
†

c1
† cN

†

c
i+1

†

c i†

c i+
1c

i

Figure 2.2: Illustration of Hamiltonian describing 1D tight-binding chain with p-wave super-
conducting pairing, see Eq. 18. The tight binding term (top) allows electrons to hop between
neighboring sites, whereas the superconducting terms (bottom) are responsible for Cooper pair
creation and annihilation.

ducting gap, ∆ = |∆| eiφ, are assumed to be constant for all sites. The first term
of the Hamiltonian gives the energy contribution of an electron sitting on the
ith site. The hopping of electron between sites i and i + 1 is illustrated in the
top panel of Fig. 2.2. The bottom panel of Fig. 2.2 depicts the last two terms
corresponding to the annihilation and creation of Cooper pairs, respectively.
The superconducting term pairs electrons from neighboring sites with the same
spin.

In order to make the Hamiltonian more transparent, it is convenient to
absorb the superconducting phase, φ, into the definition of Majorana operators
as

ei(φ/2)ci =
1
2
(γi,1 + iγi,2) , (19)

so the Eq. 18 can be rewritten in terms of Majorana operators

Hchain =
i
2

N

∑
i
[−µγi,1γi,2 + (t + |∆|) γi,2γi+1,1 + (−t + |∆|) γi,1γi+1,2] . (20)

In this form, the Hamiltonian reveals two distinct special cases. The first one
corresponds to a trivial gapped phase and is centered around the point µ < 0,
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Figure 2.3: Sketch of two limiting cases of Kitaev one-dimensional electron chain with tight
binding and p-wave pairing. Fermionic operators c†

i can be split into two Majorana operators
γ†

i,1 and γ†
i,2. In the trivial case (top), electrons are formed by Majorana operators from the same

site. However, another limiting case (bottom) is possible where coupling between Majorana
fermions from neighboring sites only is present. As a result, there are unpaired Majorana
operators at the end of the wire.

t = |∆| = 0. In this limit, the Hamiltonian simplifies to

H′chain = − iµ
2

N

∑
i

γi,1γi,2 = −µ
N

∑
i

c†
i ci, (21)

and the ground state is formed by pairing Majorana operators from the same
site, see the top panel of Fig. 2.3. There are no MZMs present in this limit.
The more interesting case includes the points µ = 0, t = ± |∆|. Without loss of
generality consider t = |∆| > 0, thus the Hamiltonian evolves to

H′′chain = it
N

∑
i

γi,2γi+1,1 = 2t
N−1

∑
i

c̃†
i c̃i, (22)

with the new fermionic operators defined as

c̃i =
1
2
(γi,2 + iγi+1,1) and c̃†

i =
1
2
(γi,2 − iγi+1,1) . (23)

The latter limit also corresponds to a gapped phase, however, unlike in the
trivial case, paired are the Majorana operators from neighboring sites, see the
bottom panel of Fig. 2.3. Remarkably, there are unpaired Majorana operators
at the ends of the chain, which do not appear in the Hamiltonian and hence
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commute with it as

{γ1,1, γN,2} = [H, γ1,1] = [H, γN,2] = 0. (24)

As a consequence, they are MZM operators. Furthermore, they can be combined
into a single, non-local fermionic state

c̃M =
1
2
(γ1,1 + iγN,2) . (25)

Most importantly, the occupation of this state requires zero energy. As a
consequence there are two degenerate ground states which serve as topologically
protected qubit states: |0〉 and |1〉 = c̃†

M |0〉, where c̃M |0〉 = 0 [20].
Away from this limit, the Majorana end states appear in the Hamiltonian

and thus no longer commute with it. However, it can be shown that generically
MZMs persist under the condition that the chemical potential is maintained
within the gap |µ| < 2t. In this case, more complicated pair of operators are
exponentially localized at the ends of the chain and satisfy

[H, γend] ∼ e−L/ξ , (26)

where L is the length of the chain and ξ is the superconducting coherence
length [15]. As a consequence, the Majorana end states have finite energy, the
splitting of which is exponentially suppressed with increasing wire length [21].

Realization of Kitaev’s proposed chain experimentally requires a p-wave
superconductor. There are speculations that A-phase of superfluid 3He [22]
and superconducting Sr2RuO4 [23] might possess some topological proper-
ties, however, these are not established materials yet and as of today there is
no experimental evidence for natural superconductors with the p-wave pair-
ing. Fortunately, this exotic paring can be engineered using readily available
ingredients.

2.6 Majorana Zero Modes in Nanowires

In 2008, Liang Fu and Charles Kane [24] showed that coupling an ordinary s-
wave superconductor to a strong topological insulator with surface states gives

rise to proximity-induced [25], spinless px ± ipy-wave-like superconductivity in
the topological insulator. Shortly after, several suggestions for simplifications
followed and in 2010 two proposals by Roman Lutchyn et al. [26] and Yuval
Oreg et al. [27], with recipes for synthesization of a one-dimensional topological
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Figure 2.4: Recipe for engineering topological superconductivity. A semiconductor nanowire is
placed in proximity to an ordinary s-wave superconductor, which induces p-wave pairing in the
wire. Placing the system into an external magnetic field nucleates Majorana fermions at the end
of the nanowire.

superconductor have been put forward. They both consider a semiconductor
nanowire with strong spin-orbit interaction deposited on a conventional s-wave
superconductor and placed in an external magnetic field, see Fig. 2.4.

The corresponding single particle Hamiltonian in the first quantization
language is given by

H =

[
k2

x
2m
− µ

]
τy + αkxσyτy + Ezσz + ∆τz. (27)

Without loss of generality, the wire is placed along the x-axis, Rashba spin-orbit
interaction, α, acts along the y-axis and the external magnetic field with Zeeman
energy, EZ, is applied along the z-axis. The Pauli matrices σi and τi operate in
spin space and couple particles and holes in real space, respectively.

The first term of Eq. 27 describes kinetic energy and the corresponding
dispersion relation is a simple parabola, see the top left panel of Fig. 2.5. The
offset in energy is given by the chemical potential, µ. For the moment consider
µ = 0.

Turning on the spin-orbit interaction shifts the two initially spin degenerate
bands, depending on their spin polarization, along the momentum direction
by kso = mα and down in energy by Eso = mα2/2, see the top right panel of
Fig. 2.5. The spin-orbit coupling does not break the time reversal symmetry,
therefore spin degeneracy is still present for all energy values.

With superconductivity absent, to the spin-orbit field orthogonal external
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Figure 2.5: Eigenvalue spectra of the Hamiltonian (see Eq. 27) describing a spin-orbit coupled
semiconducting nanowire deposited on an ordinary s-wave superconductor placed in an external
magnetic field. Each graph corresponds to the evolution of dispersion relation caused by
consecutively turning on one term after another. Top left: The first term of the Hamiltonian
describes the kinetic energy and the corresponding dispersion relation is a simple parabola offset
in energy by mu. Top right: Turning on the spin-orbit interaction splits the spin-polarized
bands. Note that the spin degeneracy is still present, since time-reversal symmetry is not broken.
Bottom left: To the spin-orbint field orthogonal magnetic field turns the crossing at zero
momentum into an anti-crossing. There is only one effective spin direction up to the Zeeman
energy (indicated with a gray rectangle). Bottom right: Turning on the proximity-induced
superconductivity opens up the topological gap between quasiparticle and hole band, which is
necessary for the nucleation of Majorana zero modes.
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magnetic field, Bext, breaks the time-reversal symmetry and turns the crossing
at zero momentum into an anti-crossing, see the bottom left panel of Fig. 2.5.
The size of the gap is given by the Zeeman energy Ez = 1

20gµBBext, with
semiconductor g-factor and Bohr magneton µB. There is only one effective
spin direction in the range of ±Ez. This gives rise to the so-called helical
state. As a consequence, placing µ inside this range (the gray area in Fig.
2.5) allows inducing spinless superconductivity. It is worth mentioning that
the spin direction inside the gap is still momentum dependent. As a matter
of fact, the more spins are polarized the more difficult it is to induce the
superconductivity since only antiparallel components of the spins will be
coupled by the superconducting term.

The last term describes the proximity induced superconducting pairing. It
results in a gapped dispersion relation, see the bottom right panel of Fig. 2.5.
The quasiparticle and hole bands are separated by the superconducting gap,
which is formed by the Cooper pair condensation around the Fermi energy. The
minimum energy required to excite the superconducting state by breaking a
Cooper pair is given by ∆. For small ∆, the effective superconducting gap is
topological due to the external magnetic field and is associated with MZMs.
Increasing ∆ shrinks the gap, when at some point it closes completely, see the
right panel of Fig. 2.6. For even larger values of ∆ the gap opens again in a
non-topological regime.

Phase transition between the trivial and topological superconducting states

k

E

x

E

μ

Ez
2 2- Δ

Ez
2 2- Δμ

Figure 2.6: Nucleation of Majorana zero modes. Left: The chemical potential of a wire can
be tuned spatially with the help of capacitively coupled gate electrodes, allowing to enter the
topological regime. MZMs (indicated in green and red) emerge wheneverµ crosses

√
E2

z − ∆2,
with EZ > ∆. Right: Dispersion relation at the phase transition µ =

√
E2

z − ∆2. A single
nondegenerate pair of states with equal spins and weights cross at Fermi energy, forming a
MZM.
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occurs at the point where the gap closes. Continuously changing the parameters
along the wire brings a single, nondegenerate pair of states with equal spins
and weights to touch at Fermi energy and form a Majorana state. For the fixed
value of the external magnetic field, the decisive point of the effective gap is at
zero momentum. Its size extracted from Eq. 27 at kx = 0, varies as

EGap =

∣∣∣∣EZ −
√

∆2 + µ2

∣∣∣∣ . (28)

In real systems, chemical potential can be tuned spatially by local gate electrodes
capacitively coupled to the wire, allowing to define the position of topological
phase transition. Eq. 28 indicates that for fixed magnetic field and superconduct-
ing gap, Majorana edge states will be nucleated wheneverµ crosses

√
E2

z − ∆2,
with the condition that EZ > ∆, see the left panel of Fig. 2.6.

2.7 Andreev Reflection

Properties of a material in a normal-conducting phase change radically when
brought to the proximity of a material in a superconducting phase. Consider

an electron propagating in a semiconductor at energy E and incident on the
boundary of the superconductor. In the case of a perfect interface, the Fermi
energies of both materials are aligned and for electrons with E < ∆ there are no
single quasiparticle states available in the superconductor. The only way for the
electron to be scattered is by pairing with another electron at energy −E from
the Fermi sea of the semiconductor thereby forming a Cooper pair condensed at
the Fermi surface in the superconductor. The condensation leaves a hole in the
semiconductor Fermi sea. In order to satisfy the momentum conservation law,
the hole is retroreflected in the reverse direction of the incident electron, while
the Cooper pair continues propagating in the superconductor as supercurrent.

The charged transferred into the superconductor with a Cooper pair is 2e,
thus the conductance is doubled at the interface for electrons with energies
smaller than the gap. This unique scattering was first explained in 1964 by a
Russian theoretical physicist Alexander Andreev and hence is termed Andreev
reflection [28]. The process is sketched in energy space in Fig. 2.7.

Electrons with E & ∆ start to scatter normally and thus only a portion of
charge will be transmitted as supercurrent. For even higher energy electrons,
supercurrent decays quickly and quasiparticle current arises.
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superconducting
phase

normal
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E Δ

Figure 2.7: Schematics of Andreev reflection at the boundary between normal and supercon-
ducting phases in energy space. From the normal phase point of view, an incident electron with
energy E < ∆ is retroreflected as a hole, whereas from the superconducting phase point of view,
a Cooper pair is created at the interface.

2.8 The BTK Model

The situation outlined above is idealized because the interface is assumed to
be fully transparent. A more realistic scenario involves a potential barrier

caused by impure boundary dividing the semiconductor and superconductor.
This problem was first approached in 1982 by Greg Blonder, Michael Tinkham,
and Teun Klapwijk [29]. A macroscopic derivation of this model was presented a
few years later independently by Alexandre Zaitsev [30] and Gerald Arnold [31].

The original model considers a simple repulsive potential located at the
interface. It can be advanced by regarding the mismatch of the semiconductor
and superconductor Fermi energies, which can differ by a few orders of magni-
tude. This can lead to a potential step at the bottom of the conduction band at
the interface. Nevertheless, for a qualitative picture, it is enough to consider
δ-shaped potential

U(r) =
h̄2kS

F
me

Zδ(r), (29)

with kS
F being the Fermi wave number in the superconductor. The height of the

barrier is given by the dimensionless parameter Z.
An incoming electron from the semiconductor side is scattered in four differ-

ent channels. It can be reflected as a hole or an electron with probabilities A(E)
and B(E), respectively, or transmitted as a hole-like or an electron-like quasipar-
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ticle with probabilities C(E) and D(E), respectively. Note that A(E) describes
the Andreev reflection and thus also contributes to transmission. The proba-
bilities are determined by solving the Schrödinger equation for electrons and
holes at the interface and are given in their full glory in Ref. [29]. Furthermore,
the conservation of probability requires that A(E) + B(E) + C(E) + D(E) = 1.
Utilizing Landauer formula [32] one gets transmission coefficient for electrical
current, which is directly proportional to the differential conductance through
the junction

dI
dV

∝ 2A(E) + C(E) + D(E) = 1 + A(E)− B(E). (30)

The effect of the superconducting gap on electrons with E→ ∞ is vanishing,
in which case only the normal transmission is present. The differential con-
ductance through the junction is hence obtained by normalizing Eq. 30 to the
normal state conductance.

Fig. 2.8 depicts differential conductance through the boundary as a function
of voltage applied between the semiconductor and superconductor for several
barrier heights Z. As described above, with absent potential barrier, see the
left panel of Fig. 2.8, electrons with energies below the gap are fully Andreev
reflected. The conductance doubles at the interface due to the Cooper pair
transmission into the superconductor. Outside the gap, the current carried by
the Cooper pairs saturates rapidly and single quasiparticle current becomes
evident. With a small potential barrier, see the middle panel of Fig. 2.8,
the probability for electrons to be Andreev reflected is suppressed by the
specular reflection. A peak caused by the retroreflection rises at the edge of
the superconducting gap. In case of higher barriers, see the right panel of
Fig. 2.8, specular reflection takes over within the gap, hence suppressing the
conductance near to zero. All is left from the Andreev reflection is a narrow
peak at E = ∆.

In the tunneling barrier regime, that is for very high Z values, the transmis-
sion coefficient for electrical current given in Eq. 30 can be massaged into the
form of BSC density of states E/

√
E2 − ∆2 [33]. Furthermore, the bias voltage

applied between the normal conductor and superconductor drops mostly at
the interface. Therefore measuring differential conductance allows to directly
probe the superconductor density of states. In case there is a Majorana zero
mode located at the boundary, electrons with zero energy are Andreev reflected,
resulting in zero bias peak in differential conductance measurements, with a
theoretical height of 2e2/h, provided that the temperature is zero.
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Figure 2.8: Differential conductance as a function of voltage in units of superconducting gap
for various barrier strengths Z at T = 0K. With the barrier absent (left), Andreev reflection
is the only process within the gap, whereas outside the gap it decays quickly and the specular
reflection dominates. For increasing barrier (middle), Andreev reflection peaks at the gap edge,
but gets suppressed by the normal scattering within the gap. For very strong barriers (right),
the specular reflection dominates the transport and only a narrow band of electrons with E ≈ ∆
are Andreev reflected.
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Figure 2.9: Differential conductance as a function of voltage in units of superconducting gap
for various temperatures T with the fixed barrier strength Z � E/

√
E2 − ∆2. The gray curve

in the background of each plot corresponds to the conductance at T = 0K. Already very small
temperatures (left) smears the characteristic features and decreases the magnitude of the gap.
Increasing the temperature (middle) shrinks the the gap further. Above a certain temperature
(middle) only a slight decrease at E < ∆ in differential conductance can be measured. The curve
gets blurred toward a constant e2/h value, corresponding to the normal phase conductance.
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In the discussion above the temperature was disregarded, however at any
finite temperature the characteristic features get smeared out due to the ther-
mal excitations. The temperature dependence of differential conductance is
illustrated in Fig. 2.9, for T = 0.02TC, 0.1TC and 0.3TC, where TC is the critical
superconductor temperature above which the superconducting phase transits to
the normal phase. As a reference, the curve in the limit of Z � E/

√
E2 − ∆2 and

T = 0 is plotted in the background of every plot. The effect is visible already for
very small temperatures: the characteristic coherence peak at E = ∆ decreases,
while the quasiparticles start to leak into superconducting gap shrinking its
magnitude. Higher temperature starts breaking up the Cooper pairs, gradually
driving the superconductor normal. This increases the probability for electrons
with E ∼ ∆ to tunnel as single quasiparticles. When the critical temperature is
reached, the superconductivity is quenched resulting in quasiparticle tunneling
for any value of E.

2.9 Proximity Effect

One of the assumptions made in BTK model is that the superconducting gap
increases at the interface as a step function from 0 to a finite bulk value ∆. In

this approach Andreev reflection gives rise to a nonzero pairing amplitude in the
normal phase, however, the proximity induced superconductivity is absent [34].
This appears to be in contrast with the theoretical proposal introduced in Section
2.6, which relies on the gap in the semiconductor excitation spectrum opened
by the Cooper pairs tunneling from the superconductor. These two seemingly
divergent views of proximity effect are bridged in Ref. [35], where it is shown
that the absence of the gap at the normal-conducting phase side of the boundary
is an artifact of quasiclassical treatment of the problem.

The pioneering study on the proximity effect was carried out by French
physicist Pierre-Gilles de Gennes in mid-1960s. The theoretical investigation
showed that the properties of a superconductor get adopted by the normal
conductor to a certain degree if these are coupled together. Furthermore,
the results suggested that the proximity effect is mostly pronounced at the
interface, whereas the normal phase is recovered within a characteristic length
scale given by the material dependent coherence length. Unfortunately, the
effect could not be investigated experimentally at the time due to the limited
fabrication techniques. In 1996s, shortly after the patterning in submicron scales
became available, several experiments reporting an induced gap in the normal
conductor density of states were published [36, 37]. The strong deviations from
the BTK model suggested that there is an additional phenomenon allowing the
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Cooper pair tunneling into the normal phase. In order to obtain a consistent
interpretation of the measured results, the proximity effect had to be taken into
account. This was firstly explained by generalizing the BTK model for the case
of spatially inhomogeneous superconducting gap [38]. Some twenty years later
the problem was treated quantum mechanically [35]. The outcome implied that
the energy gap in the normal conductor is in general always present, whereas
its magnitude depends on the parameters of both materials and the barrier
height at the interface.

2.10 Experimental Study of MZMs

The first experimental signatures of a quasiparticle excitations matching the
characteristics of the MZMs were observed in tunneling spectroscopy mea-

surements [39, 40]. The general setup consisted of a semiconductor nanowire
sourced with a superconductor proximitizing the wire at one end and drained
with a normal metal or a superconductor at the other end. A tunneling barrier
was then created in the uncovered segment of the wire between the leads by
applying negative voltage to capacitively coupled gate electrodes, hence allow-
ing to perform tunneling spectroscopy and probe the proximitized nanowire
density of states. An emerging zero bias peak (ZBP) at finite magnetic field was
observed and interpreted as Majorana excitation. Shortly after, several reports
on signatures of MZMs in similar devices followed [41–45], backing up the first
publications.

Note, however, that the quasiparticles are not explicitly claimed to be MZMs.
That is because one can never rule out all the possible explanations of the
ZBP. The incontestable hallmark of Majorana quasiparticles is the non-Abelian
statistics, hence in the consecutive few years, a tremendous amount of effort
has been put towards implementation of the braiding experiment [46].

First of all, the field took a huge step forward, when the nanowire het-
erostructures consisting of indium arsenide (InAs) and aluminum (Al) layers
grown with epitaxially matched single-plane interfaces were developed [47].
The atomically clean interface has led to a number of fundamental improve-
ments, in particular, hard induced superconducting gap with strongly reduced
low energy excitations [48]. This has enabled quantitative study of near-zero-
energy quasiparticle splitting. An exponential suppression of energy splitting
consistent with the Majorana modes was observed as the modes become spa-
tially separated [49]. Furthermore, double-quantum-dot devices made from
the same nanowires have been studied and the ground state transitions be-
tween normal, superconducting and topological regimes have been shown [50].
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Nevertheless, in spite of all the advances, the origin of MZMs has remained
uncertain. The attempt of the current work is to clarify the origin and simplify
the detection of MZMs.

Relativistic wave equation describing fermionic particles have two distinct
complex solutions, which correspond to electron and its counterpart positron.

Moreover, the equation can be modified so that its solutions are real, hence cor-
respond to a fermionic particle, which is its own antiparticle. While the search
of these hypothetical elementary particles called Majorana fermions continues,
its analog as a quasiparticle excitation in certain condensed matter systems
has been suggested. Majorana fermions in condensed matter, also known as
Majorana zero modes, can be thought of as a real and imaginary part of an
electron. If separated spatially, these two parts form a highly non-local and
robust fermionic state. Controlled spatial manipulation of these modes would
grant access to the non-Abelian statistics and thereby topological quantum
computation. The simplest system with Majorana zero modes as eigenstates
a tight-binding chain of electrons with the p-wave pairing. The system can be
tuned into a regime with two energetically degenerate ground states. One of the
states is filled with a Majorana zero mode, while the other is empty. This system
is suitable to contain a topological qubit. In theory, it can be implemented in a
semiconducting nanowire with a strong spin-orbit coupling, proximitized by
an s-wave superconductor and subject to an external magnetic field. This com-
bination induces a topologically non-trivial gap in the semiconductor and the
Majorana zero modes are nucleated at points where the gap closes. The density
of states of the proximitized nanowire, including the Majorana zero mode, can
be probed by utilizing the tunneling spectroscopy. After the first experiments
have identified signatures of Majorana modes in nanowires with proximity-
induced superconductivity, an enormous progress in the field have been made,
however, a better understanding of the MZM origin is still required. Some of
the technical aspects used to fabricate and measure nanodevices designed to
study Majorana modes are presented in the next chapter.
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3
Submicron & Subkelvin

The following is a brief presentation of the fabrication process and mea-
surement techniques of the devices reported in this thesis. The samples

are prepared using electron beam lithography, whereas the measurements are
carried out in a dilution refrigerator using standard lock-in techniques.

3.1 Lithography

Electron beam lithography (EBL) is a fundamental technique of nanofabrica-
tion allowing for patterning arbitrary submicron scaled features. In a sense,

EBL is a scanning electron microscope (SEM) equipped with a pattern generator
and beam blanker [51]. The lithography steps of the sample-patterning process
are outlined schematically in Fig. 3.1.

The desired circuit is designed through a computer interface, whereas a base
substrate is prepared by spin-coating it with a thin layer of polymeric material
called resist. Usually, a positive resist is used, consisting of polymers (long
chains of molecules), which are monomerized upon exposure to high-energy
electrons. In order to get high-resolution features, electron scattering has to be
considered. Electrons entering the resist start to break up the polymer chains,
which slightly broadens the beam after every collision. The forward scattering
can be reduced by increasing the incident electron energy and decreasing the
thickness of the resist. High-energy electrons easily pass through the resist and
penetrate deeply into the substrate, where they can reflect and reemerge at
the surface, hence additionally exposing the resist. The backscattering can be
compensated by software simulation, however, a small undercut is normally
present.

After the exposure is done, the resist is developed in a solvent. The irradiated
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Figure 3.1: Steps of electron beam lithography process. 1: A substrate (gray) coated with a
thin layer of resist (green) is irradiated by an electron beam (blue). A small undercut is present
due to electron backscattering. 2: The exposed chains of polymers are decomposed into a shorter
molecules, allowing to selectively remove them via development in a solvent. 3: The whole wafer
is then covered with a thin film of metal or other material. The material directly sticks to the
substrate at the previously exposed and developed parts, while the rest is protected by the resist.
4: In the final step, the remaining resist is dissolved in a more aggressive solvent. In this way
the unwanted material is removed, while the designed circuit is left intact.

fragments of the polymer film are dissolved and removed, while the rest is left
intact. The development is terminated by consecutive rinsing of the chip in a
neutral solvent. Normally, this is a straightforward step, however, some care
has to be taken to minimize the swelling as well as under- or over-development
of the polymer. The performance can, in general, be improved by optimizing
development duration and temperature according to exposure conditions, choice
of resist and developer.

Once the wafer is cleaned, it is placed into a thin film deposition chamber.
The whole surface of the wafer is covered by a layer of required metal or other
material. Depending on the properties of the element or compound, it can
be chosen to be deposited by the means of magnetron sputtering, electron
beam evaporation or thermal evaporation. The material can directly stick to the
previously exposed and developed areas of the substrate, whereas everywhere
else the contact with the surface is prevented by the resist. During the procedure,
a tilt and rotation can be applied to the sample, allowing to construct shadowed
patterns, soft edges and more. For the next step it is important that the material
at the exposed regions is well separated from the rest, thus big tilt angles and
high layers, compared to the thickness of the resist, should be avoided.

Lastly, the remaining polymer film is removed together with the unwanted



3 Submicron & Subkelvin 29

metal. The wafer is immersed into a more aggressive solvent dissolving the
resist and simultaneously lifting-off the material on top of it. However, the
material sticking directly to the substrate is left intact, hence the desired pattern
is obtained. The lift-off can be facilitated by exploiting bi-layer resist scheme. A
broader undercut is formed by stacking resist with different sensitivities to the
electron beam, while the resolution is preserved.

3.2 Recipe

All the devices discussed in this work are fabricated on a degenerately n-
doped silicon (Si) substrate capped with a 200 nm silicon oxide (SiO2)

dielectric layer purchased from Sil’tronix Silicon Technologies. First of all, organic
residues are cleaned off the Si wafer by using Piranha solution. The etching
procedure is carried out in following order:

• Firstly, 45 mL of sulfuric acid (H2SO4) is poured into an empty thoroughly
cleaned flat glass beaker.

• Secondly, 15 mL of hydrogen peroxide (H2O2) is added successively.
Side note: Mixing these two chemicals together yields highly exothermic
reaction. Wait 5 min before proceeding.

• The Si wafer is submerged into the solution for 10 min.
• The substrate is consecutively cleaned in at least two beakers of Milli-Q

water and blown dry with nitrogen (N2).
• Finally, the wafer is baked at 185 ◦C on a heating stage for 4 min.

At this point, the substrate is ready for lithography. There are several stan-
dard steps that are carried out in the same manner unless otherwise mentioned.

• Resist is spun at 4000 rpm for 45 s and successively baked at 115 ◦C for
120 s.

• Electron beam resist is developed in methyl isobutyl ketone (MIBK) 1:3 IPA
solvent for 90 sec at room temperature. The development is terminated by
rinsing the chip in IPA for 30 sec. The chip is then blown dry. Finally, the
resist residuals are removed by ashing the chip with oxygen plasma for
60 sec.

• The lift-off is started by putting the chip into the acetone pre-warmed to
55 ◦C. After some 30 min to 60 min, the lift-off is finished by squeezing the
warm acetone to the surface of the chip with a pipette, thus removing the
unwanted metal. The chip is then rinsed in isopropanol (IPA) and blown
dry with N2.
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For the sake of efficiency, the whole wafer is prepared with pre-fabricated
blank chips in one go. The design of a blank chip, inspired by the previous
students, is depicted in Fig. 3.2. One chip is divided into four quarters, so a
higher number of devices can be fabricated at once. Each quarter is surrounded
by 40 bonding pads, for the later device probing and contacting. Every bonding
pad has a thin meander leading to the center of the chip, speeding up the later
device exposures. For the precise exposures and on-chip orientation, a pattern
of unique alignment marks is printed in the center and corners of each quarter
of the chip.

The fabrication of blank chips is a two-step procedure in which the bonding
pads and meanders are defined by means of photolithography using Heidelberg
µPG 501 LED writer, whereas alignment marks require higher resolution and
hence are prepared by means of EBL using Elionix ELS-7000 EBL system. The
metallization is carried out utilizing AJA thin film deposition system. Generally,
gold (Au) is the metal of choice with a thin sticking layer of titanium (Ti)
underneath it. First, the bonding pads and meanders are fabricated as follows,

• AZ1505 photoresist is spun and baked for 120 s.
• Roughly 1 cm from the flat of the wafer is cleaved off using a ruler and a

pen-scriber. This helps the LED writer to find the center of the chip.
• The bonding pads are exposed using 26 ms time constant & −6 defocus.

45
50

 μ
m

50
 μ

m

Figure 3.2: Design of a blank chip. Left: Each chip is divided in four quarters. Bonding pads
and meanders for the device contacting are indicated in green. Alignment marks for the on-chip
orientation are indicated in blue. Right: Close-up of the upper-right quarter center. That is
where the wires are deposited.
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• The wafer is developed in AZ400K solvent for 60 s and rinsed in Milli-Q
water for another 60 s. The cleaning is finalized by blowing it dry and
ashing.

• The metal evaporation is carried out in following order:
- 5 nm of Ti with 10° tilt and 45 rpm rotation;
- 25 nm of Au with 10° tilt and 45 rpm rotation;
- 75 nm of Au with 0° tilt and 45 rpm rotation;

• The step is completed by the lift-off.

In order to reduce the systematic error from the stage drift while exposing
the alignment marks, a bi-layer of sensitive resists is used, so a lower dose is
required.

• First, a layer of MMA EL9 electron beam resist is spun and baked.
• Then, CSAR 4 % (AR-P 6200-04) electron beam resist is spun and baked.
• The alignment marks are exposed with 60 000 px per 600 µm resolution,

400 µC
cm2 dose & 5 nA beam current.

• The development is started by putting the chip in o-Xylene solvent for
60 s, then continued by moving it to MIBK 1:3 IPA for another 30 s. It is
terminated in IPA, thereafter the chip is blown dry and ashed.

• 5 nm of Ti and 80 nm of Au are evaporated with 0° tilt and 45 rpm rotation.
• After the lift-off a protective layer of 950kPMMA A6 resist is spun.
• The substrate is divided into separate chips with a diamond scriber.
• The protective layer is removed from each chip individually before using

by dunking it in acetone for 5 minutes and rinsing it in IPA after.

Going through the steps listed above, one ends up with a batch of blank
chips, ready for the device fabrication. The devices are composed of hexagonal
InAs-core nanowires grown by molecular beam epitaxy (MBE) to a length of
5 µm to 10 µm, followed by low-temperature three-facet (half shell) epitaxial
growth of Al. For more details about the material growth see Ref. [47].

The wires are deposited on the chip directly from the growth substrate with
a help of a standard micromanipulator, see Fig. 3.3.1. After the deposition, the
precise location of the wires (indicated in green in Fig. 3.3.2) is determined
by imaging the chip with Raith e-LiNE SEM. Using DesignCAD software, the
images are then imported into the chip design file, where the desired device
circuit is prepared for the exposure.

The Al shell covers the wires throughout the whole length. As a consequence,
applied gate voltage is screened by the metal. In order to create tunneling
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Figure 3.3: Illustration of device fabrication. 1: The wire are deposited on the chip using
micromanipulator. 2: The precise position of the wires is determined using scanning electron
microscope. 3: The Al shell is selectively removed from the wire in order to be able to create
tunneling barriers. 4. Gold contacts and gate electrodes are metalized in the last step.

barriers, etching windows (indicated in red in Fig. 3.3.3) are opened in the
resist and segments of Al are selectively removed using Aluminum Etchant Type
D chemical etchant manufactured by Transene Company Inc.

• First, 950kPMMA A4 electron beam resist is spun and baked.
• The etching windows are exposed with 240 000 px per 600 µm resolution,

1000 µC
cm2 dose & 440 pA beam current. Note that fine features such as

etching windows require a higher dose.
• The chip is then developed and cleaned with plasma.
• In order to prevent the overrun of the etchant underneath the resist, the

chip is post-baked at 115 ◦C for 60 sec.
• Two beakers, one with the Al-etchant another with the Milli-Q water, are

pre-warmed to 55 ◦C. The chip is dipped into the etchant for 9 sec. Etching
is terminated in the warm Milli-Q water.

• Finally, the chip is cleaned in another beaker with Milli-Q water for 60 sec,
then blown dry and again cleaned with oxygen plasma.

To prevent the wires from moving or falling off completely, the fabrication
is continued without removing the first layer of resist. Next, the contacts and
gate electrodes (indicated in yellow in Fig. 3.3.4) are printed simultaneously in
the final step.

• 950kPMMA A4 resist is spun on top of the first layer.
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• The contact and gate pattern is exposed with 240 000 px per 600 µm res-
olution, 1100 µC

cm2 dose & 440 pA beam current. A slightly higher dose is
used because of the resist stacking.

• After the development the native layer of oxide is removed in AJA system.
The chip is milled with 25 W argon (Ar) plasma for 8 min. The process is
split into two 4 min steps with 5 min waiting in-between to avoid sample
heating.

• The chip is metalized with
- 5 nm of Ti with 10° tilt and 45 rpm rotation;
- 25 nm of Au with 10° tilt and 45 rpm rotation;
- 100 nm of Au with 0° tilt and 45 rpm rotation;

• After the lift-off the chip is again cleaned with oxygen plasma to remove
any unwanted organic residuals.

Once the fabrication is complete, the devices are characterized at room
temperature by measuring their resistance with Lakeshore TTPX Cryogenic Probe
Station. The best looking devices are then bonded and prepared for the cool
down.

3.3 Fridge

As mentioned above, see for example Fig. 2.9, investigation of quantum
phenomena requires low temperatures, so the kBT does not overwhelm

other relevant energy scales. For this reason, the measurements are performed
in Triton Cryofree dilution refrigerator, also referred to as cryostat, with the base
temperature, that is the lowest achievable temperature, of around 10 mK. The
full cool-down of the system from room temperature to the base temperature is
realized in two steps [52, 53].

In the first step, a gaseous mixture of two helium isotopes, 3He−4 He, is
circulated through the pre-cool loop, see Fig. 3.4. The cooling circuit is thermally
coupled to a separate 4He bath cooled to roughly 4 K using a pulse tube cooler.
The pre-cool loop, therefore, cools the system by transferring the heat from
the system to the pulse tube refrigerator. The process is continued until the
temperature of mixing chamber, that is where the sample is mounted, is lowered
to around 10 K. The mixture is then evacuated from the pre-cool loop using a
turbo pump.

In the second step, the 3He −4 He mixture is condensed in the mixing
chamber. For that, the gas is first pressurized with a compressor and refrigerated
to roughly 4 K with the pulse tube cooler. It is then sent through a flow
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Figure 3.4: Schematic of 3He−4 He dilution refrigerator. In the first step of the cool down,
the system is pre-cooled to around 10 K by circulating the 3He−4 He mixture through a loop
(red), which is cooled with a pulse tube cooler (gray) via thermal coupling. In the second step
the mixture is condensed and sent to the mixing chamber. Liquid 3He and 4He mixing requires
energy from surroundings, hence the chamber is cooled. The diluted mixture (blue) then flows to
still, where 3He is vaporized and looped back into the system with a pump.
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impedance, which further compresses, cools and eventually condenses the gas.
The now liquid mixture flows through a series of heat exchangers and enters
the mixing chamber, which ultimately reaches 0.01 K. The upper layer of liquid
in the mixing chamber is highly concentrated 3He, whereas the bottom layer
is diluted mixture predominantly consisting of 4He with a small fraction of
3He. Due to the enthalpy difference between the concentrated and diluted
phases, dilution cooling occurs at the phase boundary [54]. The diluted 3He
then flows to the still at roughly 0.7 K, where it is preferentially evaporated due
to the lower boiling temperature. Finally, the again gaseous 3He is recycled to a
system by a pump continuing the cooling and maintaining the temperature of
the mixing chamber at the base.

3.4 Setup

The measurements are performed exploiting standard alternating current
(AC) lock-in techniques in 2-terminal setup illustrated in Fig. 3.5. An AC

voltage signal sourced from Stanford Research SR830 lock-in amplifier is applied
to one of the sample leads termed source. This generates an AC current through
the device, the signal of which is enhanced with a Ithaco current preamplifier
connected to the other lead of the sample, referred to as drain, and measured
with the same lock-in. The differential conductance of the device is obtained by
digitally dividing the measured current with the applied voltage.

Both the strength and the broadening of the signal increase as a function of
the applied voltage, hence a compromise between these two has to be found.
One of the most relevant energy scales is the size of the superconducting gap,
which normally is a few hundreds of µeV. Therefore, an excitation signal of a
few µeV seems like a reasonable choice. In order to increase the resolution of
the signal, voltage with higher amplitude is sourced first and then divided by a
factor of around 1 : 17700 using a home built voltage divider before applying it
to the sample.

Such a measurement provides information about the sample spectrum only
around zero energy. The broader spectrum is obtained by superimposing the
sinusoidal signal on a direct current (DC) voltage signal sourced from a custom
built digital-to-analog converter (DAC). Foremost, the DC signal is enhanced by
a factor of roughly 1 : 350 using the same home built voltage divider. Thereafter
it is combined with the enhanced AC signal. The signal-to-noise ratio of the
superimposed signal is further increased by a series of RC and radio frequency
filters. The filters are also meant to reduce the effective electron temperature,
which is mostly the biggest source of thermal broadening. Performing the
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Figure 3.5: Block diagram of the setup for device differential conductance measurements. The
resolution of the applied AC, sourced from a lock-in, and DC, sourced from a DAC, voltage
signal are enhanced by a voltage divider. Thereafter, the combined signal is filtered by a series of
filters and applied to the sample. The generated AC current is preamplified and measured by the
same lock-in. Digitally dividing the measured AC current by the applied AC voltage yields the
conductance at the particular DC voltage. Measuring the conductance at different DC voltage
values reveals the energy spectrum of the device. The DAC is also used to apply voltage to the
gate electrodes capacitively coupled to the sample.

measurements at different values of DC bias voltage reveals the device energy
spectrum. Finally, the chemical potential of the sample can be locally altered by
applying voltage, sourced from the same DAC, to gate electrodes.

Lithography is one of the most important tools for nanodevice fabrication.
Exploiting electron beam with a controlled beam blanker one can pattern

a chip with arbitrary electrical circuits in submicron scale. A well-established
recipe is an essential ingredient in a successful fabrication. Following the recipe
allows fabricating reproducible devices of good quality. The devices studied in
this work are composed of semiconductor nanowires grown in molecular beam
epitaxy chamber followed by epitaxial growth of half shell superconductor.
After depositing individual wires on a chip, the superconductor is chemically
removed for gating purposes. Next, the contacts and gates are patterned and
metalized. Thereafter the devices are ready to be measured. In order to see
phenomena related to quantum transport, the measurements are performed in
a dilution refrigerator, which allows cooling the sample down to roughly 10 mK.
The devices are characterized by utilizing standard AC lock-in techniques.
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Majorana Hunting

Device geometry exploited in this work is one of the simplest geometries
allowing nucleation and detection of Majorana zero modes, however, a

few gate electrodes alongside the magnetic field exponentially increases the
dimensionality of the tunable parameter space. Furthermore, every device
is different and has its own character, which depends on every fine detail of
fabrication, cool-down and even measurement itself. It soon becomes clear that
the search for Majorana zero modes is rather an uneasy task. Nevertheless,
there are several thumb rules, knowing of which can ease the device tuning into
the topological regime. This chapter summarizes the gathered knowledge and
main results of what in jargon is called ‘Majorana hunting’.

4.1 Device of interest

In total four devices showing similar behavior have been investigated. The
main texts is mainly concentrated on the device shown in Fig. 4.1, while the

results from the three supplementary devices are summarized in Fig. A.1, A.2
and A.3 presented in the Appendix A.

Scanning electron micrograph in Fig. 4.1a reveals N-I-S geometry similar
to the one mentioned in Section 2.10. The epitaxial hybrid nanowire segment
of 2 µm in length serves as a superconducting lead. It is directly connected to
the voltage source at one end and separated from a normal lead by a 100 nm
constriction of bare semiconductor at the other one. The gate electrodes are
placed on both sides of the device to increase their effectiveness. Each gate
is shorted with its mirror counterpart to keep the applied electric potential
in nanowire as constant as possible. A sharp pincher gate positioned at the
constriction allows creating tunneling barrier, whereas the flat plunger gates

37



38 4.2 Pincher Gate
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Figure 4.1: Device of interest. a: Scanning electron micrograph of the device. The gold contacts
are false colored in yellow, indium arsenide nanowire is colored in green, whereas the aluminum
shell is colored in blue. b: Cross section of the nanowire indicating the Al half shell (blue)
orientation with respect to the substrate (gray). The magnetic field, B, for the Majorana zero
mode nucleation is applied parallel to the wire.

are used to tune the chemical potential in the nanowire. In general, having
two pairs of plunger gates, instead of a single one, enables a higher control
of the system. Nevertheless, for the purpose of this work, the same voltage
is applied to all the plungers, unless otherwise mentioned. Finally, the back
side of the Si wafer serves as a powerful global back gate, applying voltage to
which simultaneously tunes the strength of the tunneling barrier as well as the
chemical potential of the wire. Sections 4.2 and 4.3 introduce the pincher and
plunger gates, respectively, in more detail by demonstrating the effect of the
applied voltage on the device conductance.

Schematic cross section of the nanowire is depicted in Fig. 4.1b. The relative
orientation of Al half shell (blue) with respect to the substrate (gray) can result
in several different configurations. This particular nanowire is placed on one of
the Al covered facets, thus the back gate is expected to be less effective. Except
otherwise specified, the magnetic field, B, is applied parallel to the Al shell and
the nanowire using three-axis vector magnet. The role of the magnetic field
orientation with respect to the wire is elaborated in more detail in section 4.4.

4.2 Pincher Gate

Applying voltage, Vpincher, to the pincher gate electrode, heightens the po-
tential barrier at the constriction, hence reduces the device conductance.

Increasing barrier gradually drives the electron transport through the junction
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from transmission dominated to tunnelling dominated one. As argued in Sec-
tion 2.8, spectroscopy performed in tunnelling regime reflects the density of
states of the system, hence it is important to measure in a right region. Data
illustrating the functionality of pincher gate (taken from the first supplementary,
bottom gated device presented in Fig. A.1) is shown in Fig. 4.2.

Differential conductance, dI/dV, of the nanowire as a function of voltage
applied to the pincher gate, Vpincher, versus the bias voltage, Vbias, between the
normal and superconducting leads is depicted in 4.2a. As mentioned in section
3.4, the measurements are conducted in 2-terminal setup. As a result, in an
open regime, that is at near to zero gate voltages, the measured voltage drop
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Figure 4.2: Functionality of the pincher gate. Data taken from a device presented in Fig. A.1.
a: Differential conductance of the device as a function of pincher gate and bias voltages. b: Line-
cuts from a along Vpincher displaying pinch-off curves at Vbias = 0 mV (dashed green line) and
Vbias = 0.3 mV (dashed red line). c: Line-cuts from a along Vbias displaying conductance plateau
at Vpincher = −735 mV (solid green line) and tunneling regime at Vpincher = −1000 mV (solid
red line). Different axis scales are specified with corresponding colors.
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across the constriction is expected to be of similar order with the line resistance.
This has been taken into the account by separately measuring the line resistance
(Rline ≈ 750 Ohm) and subtracting it from the data.

One of the main features of the plot is that the more negative is Vpincher
the less conductive is the device. The subgap features crossing zero energy
originate from a quantum dot in the constriction [48] and will be discussed
in more depth in section 4.5. High conductance at zero gate voltage implies
that several channels are open, whereas the transport is pinched-off completely
at gate voltages bellow Vpincher = −1000 mV. Increase in conductance at finite
Vbias, both positive and negative, is noticeable throughout the whole conducting
range of Vpincher. This feature is due to the presence of the Al shell. The
magnitude of the induced superconducting gap,∆∗, can be estimated from the
distance between the two resonances in conductance which equals to 2∆∗/e.
The measured induced superconducting gap is found to be∆∗ ≈ 0.21 mV. The
value is comparable to the ones reported in similar epitaxial hybrid devices [48]
and consistent with the values for evaporated ultra-thin Al films reported in
Ref. [55,56]. Note that the induced gap in the device of interest is slightly higher
(∆∗ ≈ 0.25 mV, see for example Fig. 4.3a at Vplunger 2 = −10 000 mV).

The horizontal line cuts from Fig. 4.2a at Vbias = 0 mV and 0.3 mV indicated
by the dashed green and red lines, respectively, are plotted in Fig. 4.2b. The
character of zero energy pinch-off curve is governed by the Coulomb peaks.
Outside the gap, qualitative conductance quantization steps corresponding to
the number of available channels can be perceived in the smoothened curve [57].
It is worth noting that the quantitative conductance quantization can only be
observed in perfectly ballistic channels and so far has been reported in short
devices only [58].

The vertical line cuts from Fig. 4.2a indicated by solid red and green lines at
Vpincher = −1000 mV and −735 mV, respectively, are plotted in Fig. 4.2c, note
different axis scales specified by corresponding colors. Less conductive gate
voltage (green line) reveals Andreev reflection-like conductance plateau. The
conductance is twice the conductance quantum implying that the transport is
mediated through two channels. In the tunneling regime (red line) the hard
superconducting gap becomes apparent.

4.3 Plunger Gates

Due to the dimensional confinement in the nanowires, charge carriers can
form standing waves. In general, both longitudinal and transverse modes

are possible. For instance, a transverse wave can be bound between the bound-
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aries to the superconductor on one side of the nanowire and vacuum on the
other one. In a gross approximation, this process can be explained by an elec-
tron entering the nanowire and undergoing specular reflection at the boundary
to the vacuum. The electron is then Andreev reflected at the boundary to the
superconductor, hence a hole enters the nanowire and undergoes the same
two reflection processes. The resulting bound stated is formed by the Andreev
reflection and thus is termed Andreev bound state (ABS).

Usually, a wire with an unaltered density of states has multiple active bound
states, making it difficult to interpret the measurements quantitatively. In order
to address a single wire state, the others have to be depleted. This is normally
done with the help of side plunger gates, see Fig. 4.1. Alternatively, one can
also invoke the back gate for the task and adjust the tunneling barrier with the
pincher gate accordingly.

Tunneling conductance, dI/dV, dependence on both plunger gate voltages,
Vplunger 2 and Vplunger 1, separately as a function of bias voltage, Vbias, is shown
in Fig. 4.3a and Fig. 4.3b, respectively. A higher-resolution version of Fig. 4.3b
spanning a shorter range of Vplunger 1 and showing a complex pattern is given
in Fig. 4.3c. It is visible that both of the plunger gates affect the subgap states.
However, from the scale it seems that Vplunger 2 is less effective compared to
Vplunger 1. This suggests that either the subgap states are mostly localized near
the constriction or they are simply not probed because they are too far from the
tunneling barrier.

In addition to the subgap states, at energies above the superconducting
gap, structures of Coulomb diamonds can be recognized. The charging energy,
that is the height of the Coulomb diamonds, is at least a few mV, thus the
corresponding quantum dot has to be small. The Coulomb blockade feature in
the spectrum can be explained by the fact that there is a finite capacitive coupling
between the end dot in the constriction and the plunger gates. Consequently,
voltage applied to the plunger gates also affects the junction.

4.4 Magnetic Field Orientation

One of the main superconducting phase properties is that it expulses ex-
ternal magnetic fields, a phenomenon called Meissner effect [59]. The

phenomenon is intimately related to the penetration depth explained by Lon-
don [60], stating that even at zero temperature, external magnetic field strength
decays exponentially as a function of distance from the surface. According to the
Faraday’s law, the change of the magnetic field generates current. Furthermore,
as stated by the Ampère’s law, any electric current induces a magnetic field. If
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Figure 4.3: Tunneling conductance spectra dependence on plunger gates. a & b: Device
conductance dependence on Vplunger 2 and Vplunger 1 (see Fig. 4.1), respectively, as a function of
Vbias. c: Higher resolution and smaller range version of b showing complex pattern. Plot a is
measured at Vpincher = −2000 mV and Vplunger 1 = 0 mV, whereas plots b and c are measured
at Vpincher = −2000 mV and Vplunger 2 = −10 000 mV. Both of the gates tune subgap states,
however, Vplunger1 has a bigger effect. Additionally, Coulomb diamonds are observable, which
can be affiliated with the end dot, indicating finite coupling between the plunger gates and the
junction.
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Figure 4.4: Tunneling conductance dependence on the applied magnetic field orientation. a &
b: Magnetic field with a fixed amplitude of |B| = 500 mT is rotated in planes that are parallel
to the substrate (in-plane) and perpendicular to the wire (coaxial), respectively. Insets indicate
critical magnetic field orientations with respect to the Al shell and the substrate. c-e: Magnetic
field amplitude sweeps along three critical directions indicated with corresponding insets. The
data is taken at Vpincher = 1270 mV, Vplunger1 = −3130 mV, Vplunger2 = −10 000 mV and
Vback−gate = −2000 mV.

the external field is small, the generated current runs along the surface of the
material, leaving the bulk superconducting. There is, however, a superconductor
specific critical magnetic field, Bc, at which the generated current exceeds the
maximum current a superconductor can carry and the material transits to a
normal phase. For the samples with several symmetry axes, the magnitude
of Bc depends on the external field orientation. In general, minimizing the
penetration area maximizes the Bc.
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Device conductance dependence on the external field orientation is sum-
marized in Fig. 4.4. Both in-plane (parallel to the substrate) and coaxial
(perpendicular to the wire) magnetic field rotations with a fixed amplitude of
|B| = 500 mT display two maxima, see Fig. 4.4a and 4.4b, respectively. The
180°-periodicity in both plots indicates two-fold symmetry, just as expected
from the symmetry of the superconducting shell. Note that the 0° in both plots
corresponds to the same magnetic field orientation, that is perpendicular to the
wire and parallel to the substrate. The small insets indicate the magnetic field
direction at critical points with respect to wire and substrate.

The maximum superconducting gap is obtained when the field is aligned
parallel to the nanowire, see Fig. 4.4a, 90° and 180°. At the magnetic field
aligned quasi-parallel to the Al shell, see 4.4b 60° and 240°, the envelope
of superconducting gap is visible, however, the gap is filled with numerous
quasicontinuous subgap states. This is because any non-parallel to the wire
field will contribute to the Lorentz force enhancing by the orbital physics
induced band bending. Furthermore, only to the spin-orbit field perpendicular
component of the external magnetic field contributes to the spin band mixing
and Zeeman splitting required for the topological phase, see section 2.6. Since
the Rashba spin-orbit field is perpendicular to the direction of charge carrier
motion, the gap is maximized when the external field is parallel to the wire.

Magnetic field amplitude sweeps along three critical orientations are pre-
sented in Fig. 4.4c-e. In case of parallel to the wire magnetic field, see Fig. 4.4c,
superconducting gap is preserved over the whole measured range. A single
subgap state slowly approaching zero energy is visible. Quasi-parallel to the
Al shell, but perpendicular to the wire oriented magnetic field, see see Fig.
4.4d, completely fills the gap with states over the first few 100 mT, however,
the feature of superconductivity persist over the whole range. Lastly, no clear
signature of superconducting gap above 300 mT is visible in case of the field
oriented perpendicular to both wire and superconducting shell, see Fig. 4.4e.

4.5 Understanding the Device

After getting acquainted with all the tunable knobs, one can continue with
device study. As mentioned in Section 4.2 an unintentional quantum dot is

formed at the junction between the normal and superconducting leads due to
disorder or band bending [48]. Differential conductance, dI/dV, as a function of
Vpincher and Vbias spanning three Coulomb valleys is shown in Fig. 4.5a. Linear
extrapolation of the Coulomb peak maxima yields the height (in Vbias) of the
Coulomb blockade diamond and reveals the charging energy EC ≈ 4.5 meV of
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the end dot.
The reported charging energy is much larger than the induced supercon-

ducting gap EC � ∆∗. As a result, parking Vpincher in the middle of a Coulomb
valley brings the discrete quantum dot levels far away from the resonant peaks
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Figure 4.5: a: Device conductance as a function of Vpincher and Vbias, displays to the quantum
dot characteristic Coulomb diamonds, the height of which correspond to the dot charging
energy of Ec = 4.5 meV. The data is taken at Vplungers 1 & 2 = −7200 mV and Vback−gate =

−2000 mV. b: The dot charging energy is much higher than the induced superconducting gap.
Therefore cotunneling processes dominate the transport in the Coulomb blockade regime. c: A
schematic of device shown in Fig. 4.1a illustrating the capacitive coupling between the gates
and both the quantum dot (QD) and the nanowire (NW). d: Conductance of the device as a
function of Vplungers 1 & 2 and Vpincher measured at Vbias = 0 mV, Vback−gate = −8000 mV and
B = 1000 mT. Note tha logarithmic color scaling. The sharp states indicated by red arrows
correspond to the Coulomb blockade peaks of the end dot, whereas the broad state is assigned to
the wire state.
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of the induced superconducting gap, see Fig. 4.5b. In this scenario, the transport
is mediated via single electron cotunneling and the dot effectively acts as a
tunneling barrier, allowing to probe the wire. As mentioned in Section 4.3,
the end dot has a finite coupling to the plunger gates, thus tuning the wire
states with Vplungers 1 & 2 simultaneously influences the states of quantum dot.
Similarly, change in Vpincher has a finite impact on the wire states. The capacitive
cross coupling of the gate electrodes is illustrated in Fig. 4.5c.

Differential conductance of the device as a function of combined plunger
1 & 2 gate voltage, Vplungers 1 & 2, and pincher gate voltage, Vpincher, measured
at Vbias = 0 mV and B = 1000 mT is shown in Fig. 4.5d. The sharp states,
indicated by red arrows, are more sensitive to the Vpincher, hence assigned
to the Coulomb peaks of the end dot. The state indicated with a dashed
green arrow is broader and lower in intensity, and has a relatively higher
response to Vplungers 1 & 2, therefore it is attributed to the wire state pulled
down to zero energy by the strong magnetic field. The switching character at
Vpincher ≈ 4000 mV is assigned to a disorder. It appears to be stable and thus can
be avoided. Cotunneling spectroscopy of the wire states through the Coulomb
blockade valley independent from the dot states can be carried out by following
the iso-potential line of the end dot indicated in blue. For this the plunger gates
(Vplungers 1 & 2) have to be compensated with the pincher gate (Vpincher) by the
ratio determined from the slope of the dot state.

It is worth pointing out, that the superconducting lead of the device is
grounded, thus its charging energy is zero. Because it is smaller than the
superconducting gap, the wire states will not change their parity at B = 0 mT.
At a finite magnetic field, however, the wire states experience Zeeman splitting,
which eventually brings the states down to zero energy. In a trivial phase, after
crossing zero energy the ABSs reopens again, which can be understood as a
fermion parity change. In the topological phase, on the other hand, the ABSs
merge and stay pinned down to zero over a large range of magnetic field. The
robust zero energy states can be interpreted as a formation of MZMs, which
due to their origin are also termed Majorana bound states (MBS) [61, 62].

4.6 Majorana Identification

After the excursion in parameter space, the stage is set for the hunt of the
elusive Majorana particles. The strongest signature of a captured Majorana

mode in the DC transport measurements, although not conclusive, is a zero bias
peak persisting over a large range of an applied magnetic field. The indisputable
evidence of the Majorana quasiparticle existence would be the demonstration
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of their exotic non-Abelian exchange statistics [46]. That being said, presently
there is no other known mechanism besides MBSs, which would explain the
collection of results presented bellow.

It is difficult to get hold of the topological regime by simply sweeping
the magnetic field at a randomly fixed gate configuration. More efficient
approach is to characterize a specific gate region by measuring wire chem-
ical potential dependence of the device tunneling spectrum at a few differ-
ent magnetic field values. Figures 4.6a-d display subgap state evolution in
gate voltage (Vcompensated plungers) swept along the blue line in Fig. 4.5d at
B = 0 mT, 400 mT, 1000 mT and 1600 mT, respectively. At zero field, see Fig.
4.6a, multiple ABSs are visible with minimum energy ζ ≈ 0.08 meV smaller than
the effective superconducting gap ∆∗ ≈ 0.25 meV. The states are interpreted as
confinement-induced longitudinal modes from a single transverse subband [63].
The particle-hole symmetry is reflected in the around zero energy symmetric
spectra. Turning on the magnetic field starts to mix states [64], see Fig. 4.6b, and
introduces anticrossings between adjacent parabolas [65]. Increasing magnetic
field further pulls the state to zero energy, see Fig. 4.6c. Topological regime
becomes evident, once the Zeeman energy exceed the superconducting gap: a
robust zero bias peak persist over a finite interval ofVcompensated plungers, see Fig.
4.6d.

Finally, the topological phase can be investigated by taking magnetic field
cuts at several different gate configurations. Subgap state dependence on the
magnetic field at different gate configurations is shown in Fig. 4.7. Evolution of
the ABSs with the lowest energy at gate voltage marked by a square in Fig. 4.6
can be tracked in Fig. 4.7. The states are quick to reach zero and merge already
at 500 mT. Note that there is no visible state mixing at low field. After enduring
at zero energy for several 100 mT, the states split again at roughly 1300 mT.
Lastly, the states merge with the higher energy ABSs above 1600 mT. Similar
behavior has been reported in Refs. [66], that is at the border to the topological
regime. The ABSs evolve qualitatively different where two modes overlap at
zero field. The corresponding magnetic field cut at gate voltage marked by a
triangle in Fig. 4.6 is given in Fig. 4.7b. After mixing and splitting at low field,
the lowest energy ABSs merge and give rise to robust zero bias peak continuing
from 700 mT up to 2000 mT. At more negative gate voltage marked by a circle
in Fig. 4.6, one runs into another pair of ABSs. Corresponding magnetic field
sweep shown in Fig. 4.7c also displays a zero bias peak forming at a slightly
higher magnetic field (≈850 mT) and vanishing into the background at the end
of the measured range. This behavior suggests that there should be a nearby
phase transition back to the trivial phase.
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Figure 4.6: Wire chemical potential dependence of subgap states. a to d: Differential tunneling
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4.5, Vcompensated plungers, and bias voltage Vbias at B = 0 mT, 400 mT, 1000 mT and 1600 mT,
respectively.
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Figure 4.7: Magnetic field dependence of subgap states. a to c: The cuts are done at gate
voltages indicated by the square, triangle and circle in Fig. 4.6, respectively. Depending on the
different gate configurations, the evolution of ABSs display different behavior. The dashed white
line in c is a guide for the eye marking the evolution of the first excited ABSs, observable in all
three sweeps. The white arrow indicates the topological phase transition.

The first excited pairs of ABSs in all three sweeps (for clearness indicated by
dashed white lines in Fig. 4.7c) qualitatively resembles the behavior described
in Ref. [63]. First of all, they are pulled down towards zero energy, but then
they bounce back up at approximately where the lowest energy pair of ABSs
merge together (signified by a white arrow in Fig. 4.7c). This signature is
the manifestation of the finite nanowire length and is interpreted as the phase
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transition to the topologically nontrivial state. The further evolution of the first
excited states is dominantly governed by the collapse of the superconducting
gap. The closing of the trivial and opening of the topological gap, with a single
discrete state with the zero energy extended over a long range of magnetic field
is understood as the formation of MBSs localized at the ends of the wire.

Finding the topological phase and Majorana quasiparticles within is a task that
requires some knowledge and experience. Understanding the investigated

device and following a goal-directed protocol is essential. In order not to get
lost in the vast parameter space, one should get acquainted with the device
response to the tunable knobs. The device investigated in this work is of N-I-S
geometry, see Fig. 4.1, where N is a normal lead separated from a proximitized
nanowire serving as superconducting lead S by a semiconducting constriction I.
Tunneling spectroscopy of the epitaxial hybrid nanowire density of states can
be performed by applying voltage to the so-called pincher gate, thus creating a
tunneling barrier in the constriction, see Fig. 4.2. Due to the spatial confinement,
the nanowire tends to form Andreev reflection induced bound states, the density
of states of which can be tuned with plunger gate electrodes as shown in Fig.
4.3. Magnetic field plays a key role in the search of the Majorana excitations.
The significance of the applied magnetic field orientation is summarized in Fig.
4.4. Additionally, a quantum dot is formed in the constriction, presumably
because of the band bending or disorder. The charging energy of the dot is
found to be much larger (Ec ≈ 4.5 meV) than the induced superconducting gap
(∆∗ ≈ 0.25 meV), thus keeping it off resonance allows to use it as a spectrometer,
see Fig. 4.5. Taking snapshots of tunneling spectrum dependence on wire
chemical potential at several different magnetic field values helps to roughly
locate the topological phase in the gate space, see Fig. 4.6. Finally, the formation
of Majorana bound states from coalescing Andreev bound states can be recorded
by sweeping the magnetic field at an appropriate gate configuration.



5
Epilogue

The writing is finalized by shortly summing up the highlights of this work
and giving a quick outlook into the next generation experiment.

5.1 Summary

Majorana excitations in condensed matter are fascinating from fundamental
as well as from application point of view [15]. Due to their topological

nature, the quasiparticles are immune against most types of decoherence [8].
Furthermore, the particles obey exotic non-Abelian statistics, therefore are ex-
cellent candidates for topological qubit implementation [7]. First experiments
based on series of theoretical proposals [19, 26, 27] allowed detecting zero en-
ergy state, which was interpreted as Majorana zero modes [39]. Additional
experiments further confirmed the result and deepened the understanding
of the Majorana modes [40, 49, 50]. Nevertheless, the origin of the quasipar-
ticles remained obscure. The present work sheds some light on the matter
by introducing the step-by-step protocol of Majorana hunting. Detection of
the topological phase extended in gate voltage and magnetic field space is
demonstrated. Finally, it is shown that Majorana bound states emerge from
coalescing confinement induced Andreev bound states.

5.2 Outlook

As specified above, a conclusive proof of Majorana quasiparticle existence
is the verification of non-Abelian statistics. As explained in Ref. [46], this

can be done in branched geometries applying fast gate operations. This is a
challenging experiment and requires joint forces from several different fields
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Figure 5.1: Outlook for the second generation devices. a: In hexagonal manner prepared
gold (gold) seed particles acts as catalyst in the semiconductor nanowire (green) growth using
molecular beam epitaxy technique. By changing the growth conditions can cause arbitrary
kinking of the wires. Due to the crystal symmetry the kinked wires continue growing parallel
to the substrate in one out of six possible directions and eventually merge with the unkinked
wire forming a cross. Epitaxial aluminum (blue) is deposited on the grown wires. b: Scanning
electron micrograph of the second generation device. One out of four ends serves as a source,
whereas the other ends are used as drains allowing to perform spectroscopy at each branch
separately.
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of physics. High-quality nanowire networks are required, therefore material
science plays a very important role. One of the possible implementations is
presented in Fig. 5.1.

Nanowire growth is seeded with gold catalyst particles, which are pre-
patterned on the wafer in a hexagonal manner using electron beam lithography,
see Fig. 5.1b. Changing growth conditions makes the gold droplet sitting on
top of the wire shift to the edge. Due to the crystal symmetry, the nanowires
continue the growth parallel to the substrate in one out of six possible directions.
The kinked nanowire eventually hits one of the neighboring unkinked wires,
hence forming a cross. The wire growth is followed by low temperature angled
epitaxial aluminum deposition.

A scanning electron micrograph of the second generation device is de-
picted in Fig. 5.1b. One out of four branches is sourced with a bias voltage,
while tunneling conductance of the rest three branches can be probed sepa-
rately. Demonstrating Majorana quasiparticles at all three ends would prove
the concept of branched devices, opening the doors for the ultimate braiding
experiment.
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A
Appendix

In addition to the device studied in the main text, three other devices have
been investigated, two of which were bottom gated. To prevent the device

from shorting, the bottom gates are covered with an insulating oxide layer
fabricated using atomic layer deposition (ALD) technique. Using bottom gates
is a trade-off between stronger gates (because of the smaller spacing and higher
dielectric constant material) and charge traps induced hysteresis (because of
impure growth). Furthermore, wire deposition requires higher mental focus.
Nevertheless, careful fabrication might yield device offering high degrees of
chemical potential control. The two-step lithography is carried out on the blank
chips, thereafter the further device fabrication is finalized as described in the
main text.

• For the first step, 950kPMMA A2 electron beam resist is spun and baked
at 115 ◦C for 120 sec. Thin resist is chosen for sharp features.

• The bottom gate pattern is exposed with 240 000 px per 600 µm resolution,
800 µC

cm2 dose & 500 pA beam current. It is important not to overexpose the
fine pattern, otherwise the gates might get shorted.

• The chip is then developed and cleaned with plasma as usually.
• The gates are metalized with

- 5 nm of Ti with 0° tilt and 45 rpm rotation;
- 15 nm of Au with 0° tilt and 45 rpm rotation;

• The step is completed by the lift-off.
• For the second step, a bi-layer of MMA EL13 + 950kPMMA A4 electron

beam resist is spun and baked (each layer) at 115 ◦C for 120 sec.
• The windows for ALD oxide are exposed with 240 000 px per 600 µm

resolution, 1280 µC
cm2 dose & 500 pA beam current. Here, it does not really

matter if the resist gets over exposed therefore a higher does is chosen to
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Figure A.1: The first supplementary device. a: Scanning electron micrograph of the (bottom
gated) device. b and c: Differential tunneling conductance, dI/dV, as a function of magnetic
field, B, and bias voltage, Vbias. The graph in b is measured at Vplunger = 0 mV and Vpincher =

−1120 mV and displays quasi-continuous band of wire states. The graph in c is recorded at
Vplunger = −6000 mV and Vpincher = −950 mV and displays only a few discrete wire states.
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be on the safe side.
• The chip is then developed and cleaned with plasma.
• The insulating layer of Hafnium ( H f ) oxide is deposited by 130 cycles (1

cycle ≈1 Å) of
- 0.4 sec pulse of H f -based precursor followed by 100 sec adsorption;
- 0.03 sec pulse of water followed by 300 sec purging;

• In order to ease up the lift-off, the chip is scratched at the corners with a
soft needle.

• The lift-off is carried out by dunking the chip into glass beaker with NMP
at 80 ◦C for roughly an hour and then sonicating at 80 kHz with 100 %
power for around 4 min.

The device shown in A.1a is used to demonstrate the functionality of the
pincher gate in Section 4.2. Additionally, the control of wire density of states is
demonstrated subgap state evolution in magnetic field, B, at different plunger
gate voltages, Vplunger, see Figs. A.1b and c. The former graph shows device
tunneling conductance, dI/dV, as a function of magnetic field, B, applied
parallel to the wire and bias voltage, Vbias, at Vplunger = 0 mV and Vpincher =
−1120 mV. A cluster of wire states fill the gap already at a few 100 mT making
it difficult to address the individual states separately. The later graph is taken
at Vplunger = −6000 mV and Vpincher = −950 mV and exhibits quite different
behavior: only a few discrete states are present within the gap, the evolution of
which can easily be followed.

Two supplementary devices showing qualitatively similar behavior to the
device discussed in the main text are summarized in Figs. A.2 and A.3. The
figures are structured as follows: panel a displays false colored device scanning
electron micrograph; panel b shows the wire chemical potential (at constant
quantum dot potential) dependence of the subgap states at finite magnetic
field; panel c shows subgap state evolution in magnetic field at the gate voltage
marked by the triangle in panel b. Both devices display ABSs coalescing into
a robust zero energy state at a finite magnetic field, which are interpreted as
MBSs. The eye shaped re-splitting and re-merging at around 1100 mT in Fig.
A.3c is attributed to the confinement-induced quantization effects discussed in
Ref. [63].
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Figure A.2: The second supplementary device. a: Scanning electron micrograph of the
(bottom gated) device. b: Wire chemical potential dependence of the subgap states taken at
B = 1000 mT. c: Magnetic field dependence of the subgap states taken at Vplunger = −1840 mV
and Vpincher = −609 mV.
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Figure A.3: The third supplementary device. a: Scanning electron micrograph of the (side
gated) device. b: Wire chemical potential dependence of the subgap states taken at B = 1200 mT.
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