Measurement of air content in the
Greenland ice sheet

Master thesis of
Sebastian Bender

Supervisor
Thomas Blunier

co-supervisor
Bo Vinther



ABSTRAKT

I dette speciale beskriver jeg, hvordan jeg har opbygget et apparat, der kan male
luftindholdet i gletsjeris. Jeg har malt luftindholdet i 10 stykker is fra
Indlandsisen i Grgnland (Eurocore) med en rimelig praecision. Jeg har
sammenlignet malinger fra litteraturen. 3-4 malinger stemmer godt overens,
mens 6 malinger giver et lidt hgjere luftindhold end forventet.

ABSTRACT

In this thesis I describe how I have build an apparatus to measure the total gas
content in glacier ice. I show the measurement of 10 adjacent samples from a
Greenland ice core (Eurocore), estimate the accuracy and compare the result
with earlier studies from the literature. 3-4 measurements are in good
agreement and 6 measurements gave a higher air content than expected.
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Introduction

The subject for this thesis is measurements of the total gas content in glacier ice.
[ have build up an apparatus for such measurements, where I mainly follow the
system described in (Lipenkov, 1995). The focus will be on the building of the
setup, and the troubles of getting high accuracy measurements. I finally present
10 measurements [ have done. These measurements mainly serve as a test of the
apparatus and the method.

The amount of air trapped in glacier ice is determined during the densification
process by the porosity in the firn at the bubble close-off level and by the
ambient air pressure. Measurements of the gas content variations as a function
of depth and thus age of the ice, can therefore be interpreted as a combination of
variations in climatic conditions at the formation site and variations in the ice
thickness over time, because formation of ice at greater height will trap less
dense air leading to a smaller air content.



Temperature affects the air content. (Raynaud,1997) gives an empiric derived
linear relation between the temperature at the close off level in the ice and the
total air content.

Wind packing of the snow can as well give variations in air content.

Change in precipitation pattern and relative summer/winter precipitation
affects the content.

Longer time scale variations are caused by insolation variations (Raynaud,
2007).

The most interesting climatic effect on the air content for this thesis is height
changes in the ice shield. Raynaud finds that at least half of the air content
variation in the GRIP core only can be explained by changes of 250 in the ice
shield height.

Another interesting implication is the influence of pressure field changes. As
seen on Figur 1 the mean geopotential in 700 hPa, that is near the ice shield top
differs with 150 gpm over the central Greenland for jan63 and jan91. These to
month are chosen, as it was significant NAO- and NAO+ periods. The difference
in pressure on the ice shield top is equivalent to a height change of the same
magnitude, 150 m. Air content variations could then reflect main changes in
such weather patterns in the past.

20th Centwry Rednclysis V2

Figur 1. Reanalysis of the mean geopotential in 700 hPa (near the ice sheet
top) for jan1963 (NAO-) to the left and jan 1991 (NAO+) to the right.
Source: www.noaa.gov.

PTV-Method

To measure the air content we must extract the air from the ice to a volume, V,
where we can measure the pressure and the temperature.



The method is based on the gas equation pV = nRT. The equation is assumed to
hold then ice is formed at the close off level in the glacier, so for a given mass of
just formed ice (for example one gram):

p:Ve

= 1R
T. "

Here V. is the pore volume (the porosity) of the ice mass, and pc and T. is the
actual pressure and temperature at close off level, nR can be regarded as the
amount of air contained.

When the ice is brought to the laboratory, the air is extracted to a chamber with
volume V.. The pressure, piy, and temperature, Ti, is measured and hence the
amount of air is given as

bV nR = D Ve
T, T

To give a precise definition of the total gas content in ice, | follow Raynaud et al,
who normalize with a standard pressure and temperature:

pTo . pcTo
=V
PoTy, PoT.

V=VL

This gives a measure of volume/mass with the trapped air at standard pressure
and temperature, po =1013 hPa and To =273 K. A reasonable unit to use is STP
cm? air per gram of ice. The formula shows the governing factors that control the
air content is porosity, pressure and temperature at the close off level.

Effects of variations in ice sheet elevation

One reason for determining the gas content is to detect past variations in the ice
sheet elevation. This affects p, and we must establish a relation between height
and V (assumed that all other factors are constant). The air pressure variation
with height can be calculated assuming hydrostatic balance

ap Py

92" P9 TR

Assuming that p and T have been constant, po and Ty, at height, zo, over the ice
shield for a period, it follows that a height chance (of the close off level) gives a
linear response in pc and hence in V.



Raynaud, 1997) says that % can vary and be different to estimate. But we can
0z

try a quick consideration:

If we for example assume T=-30°C on the ice sheet and look at the effect of a
small change in height Az=10m the relative change in p from the above would be
0,14%. To estimate height changes we must then be able to measure the air
content with a high precision. Then comes the question of the magnitude of the
absolute pressure we measure in such an experiment. This depends on the size
of the volume the air is extracted into in the laboratory. For practical reasons it
will be a very low pressure. In this project we have build an equipment that will
give pressures in the range 10 to 20 hPa to measure, so a height chance of 10 m
would be reflected in 2 ice samples where the difference in pressure
measurements is only 1,4 to 2,8 Pa. That says, we need a very precise pressure

gauge.

Setup overview

Following setup was build for this experiment (Figur 2). The air is extracted in
the blue extraction cell. The cell can be cooled from the bottom by the peltier
chiller. The top and sides are isolated with Armaflex - a material with very low
heat diffusivity. A thin heating wire is wrapped around the upper part (17Q) and
a heat flux of 20W can be provided to the cell. The lid is fastened with 9 bolts
and a rubber O-ring provides leak tightness. The cell can be closed with a valve
(valve 7), and can be connected/disconnected to the line with a special VCR-
connector. The cell also serves as a vessel for the ice samples on their final travel
from the freezer to the laboratory. Two temperature sensors are stuck to the cell
(top and bottom) and their wires can easily be plugged in or out the bridge with
banana plugs when the cell is going to the freezer.

All tubes are %” stainless steel. 7 valves (numbered on Figur 2) make it possible
to separate chosen volumes from others to keep vacuum or a constant amount
of air in given volumes. When the extraction cell is connected to the line, it is
immediately evacuated while chilling from the bottom; when all air is removed
valve 7 is closed, the ice sample is melted and refrozen, valve 4 and 5 are closed
and valve 6 and 7 are opened, and the pressure is thus measured in the volume
limited by valve 4 and 5, which I will call the Main Volume, Vu. The pressure is
measured by a big pressure gauge of the model Lektra P-BADR. Two
temperature sensors are stuck to the tubes and pressure gauge to determine the
temperature of the part of extracted air above the cell.

3 special VCR connectors is incorporated: one for the cell, and two others that
can be connected to a dry air inlet, a calibration volume and an appendix
volume, Vapp, that is sometimes necessary for increasing the main volume.



The chiller was constructed by the staff at the NBI-workshop. The chilling is
provided by two 3-steps peltier elements. When current is sent through them,
they transfer heat from one side to the other to a certain temperature difference.
The peltier elements are fastened between two aluminium plates of which the
cold one serves as the cooling base for the extraction cell. It is necessary to keep
the temperature down in the warmer plate. This is done by circulating water
through it with a fountain pump in a bucket. To reach temperatures below -30°C
it further showed to be necessary to cool the cooling water with circa 5 kg ice in
the bucket. This in turn gives the cooling water a stable temperature and hence
secures a stable equilibrium temperature during the measurement, which is
important.

Vapp _C[- T
\)

pressure

Calibration
volume

Dewar

Cooling water

Heat fluxes in the system

Different materials for the extraction chamber were considered: glass,
aluminium, steel. It was finally decided to be aluminium. The advantages of this
material are for the first the high thermal conductivity and for the second it is
cheaper and easier for the university smiths to work with. The drawbacks are
that we cannot follow the melting/refreezing of the ice sample, and from the

Figur 2. Setup.



sample enters the chamber and until the extracted air is measured we must rely
on the temperature sensors on the outside walls. It will be impossible to see if
the refrozen ice is bubble free. It can be done by looking at the sample after the
measurement is conducted, but then it will be to late to re-measure as the main
part of the air is gone.

We will measure the temperature on the top and on the bottom of the outside
wall of the chamber to estimate the air temperature inside. We will first give an
estimate of how big temperature difference we can expect by calculation the
heat flux through the walls.

The chamber is cooled from the bottom; at equilibrium temperature there will
be a flux of energy, Q/t, going in through the tube and the insulating material
and out through the bottom.

Effects of vapour pressure

During the extraction of the air by ice melting some ice/water will evaporate
and we cannot avoid the contribution of the vapour partial pressure to the
measured pressure. To reduce this effect we let the melted ice refreeze and dry
the released air by cooling it to -30°C. The colder it gets the more vapour will
condense hence reducing the error on the pressure measurement. On the other
hand the colder also the pressure - and hence the resolution on the
measurement - will fall. To reach lower (and stable) temperatures also requires
higher technical efforts. To decide a acceptable temperature in this trade off, we
look at the saturated vapour pressure over ice. Several formulas exist; (WMO,
2008) gives this

eco(T) = 6,112exp[22,46T/(272,62K + T)] (eq 1)

eql

where T is in °C and eic. is in hPa, for ice (-65°C to 0°C) (pure phase).

which is shown on Figur 3



Saturated vapor pressure over ice
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Figur 3. Saturated vapor pressure over ice from WMO-formula.

It is seen that to reduce the vapour pressure to less than 7,5 Pa (as discussed in
the chapter on pressure measurement) requires temperatures below -45°C. At
higher temperatures we must assume that the air is saturated and correct for
the vapour pressure. This again sets criteria to the temperature accuracy; at
high temperatures even a small error in the temperature measurement can lead
to a significant error in the determination of the vapour pressure. This is shown
on Figur 4 for 4 different temperature accuracies. It is seen that, if we can
determine the temperature within 0,1 K the error is negligible, but for an
accuracy of 1 K the possible error in the vapour calculation becomes intolerable
big for temperatures higher than -25°C. From this we decide to aim at a
temperature near -30°C and calculate with a vapour contribution at 38 Pa to the
measurement.



Possible error in estimate of vapor pressure
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Figur 4. The possible error in the calculation of the vapor pressure for
different accuracies in the temperature determination.

Refreezing and solubility of gasses
In this method of extracting air from ice, it must be considered, that during the
process some air is dissolved in the water from the molten ice, and hence will
the pressure measurement underestimate the original amount of trapped air. To
avoid the problem the intention has been to degas the molten sample by
refreezing it slowly from the bottom, so that ice crystals are forming on the cell
bottom and slowly growing upwards until the whole sample is frozen. Thereby it
should push out the dissolved air. This technique is used for creating bubble free
ice at CIC, where a column of water is frozen from the bottom and heated from
the top creating ice at a rate of 10 cm/day.

In this setup the extraction chamber is cooled from the bottom by a peltier
chiller. On the top part heating wires are wrapped around it. By cooling from the
bottom and heating from the top, the hope is, that the ice crystals will grow
slowly from the bottom. Several experiments with freezing tap water this way
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has been conducted, but they all end the same way: the water is super cooled
and suddenly the whole lot freezes in few seconds. The experiments were
inspected with a light torch through a Plexiglas lid and certainly no ice crystals
had formed on the bottom before the sudden freeze. Different regulations of
heating and cooling speeds where tried but with no success. I assume the
problem is for the first the shallowity of the sample (bottom area is 3,2cm x 3,2
cm and height is 0-3 cm); water density is highest a 4°C so as the bottom water
cools to temperatures near its freezing point it will shift place with the top layer
until the whole column is super cooled. Either the temperature difference on top
and bottom must be larger than 4°C, or the bottom cooling must be so fast that
ice crystals form and stick to the bottom before they are convected to the top. I
doubt that it will be possible without changing the design.

It must therefore be considered to correct for dissolved air or at least estimate
the error that it can induce.

The nature of solubility of a gas, x, in water under equilibrium is stated in
Henrys law,

Px = ky(T) - ¢y

where px is the partial pressure of the air component x (02 or N2), cx is the
concentration of that component dissolved in the water (fx in mole/L), and Kku is
its Henry coefficient which is dependent on the water temperature. The
solubility decreases with temperature and is almost twice as high at 0°C as at
25°C - the range at which the ice sample in this experiment can be exposed to.
assume though that even if air is degassed from the heated sample to Henry
equilibrium, some will dissolve again during the cooling and refreezing process,
such that the amount of dissolved air is given with the equilibrium of 0°C water.
When further the water freezes no more air will dissolve and the already-
dissolved air will be kept in the ice.

Assume that the air consists of 79% N2 and 21% Oz. The number of mole of air in
Vex is n=nn+no where ny=0,79n and no=0,21n=0,266nn.
The temperature dependence of ky is calculated by the van t’ Hoff equation

ky (T) = kyy (Ty)exp [—C (; - 7—19)]
1700K for O,

where € = {13001{ for N,
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For Te=298K, I use values ky (Ty) =

m3.Pa

163934 — for N,

(taken from: http://en.wikipedia.org/wiki/Henry's_law)
For 0°C this gives

12 m*Pa
456 - 10 — for O,

m

ey (0°C) = s

Pa
1099 - 102

N.
mole for N,

In this experiment we have the special condition of a closed system: water and
air are contained in the volume
Vex = Vw + Va,

where Ve is calibrated from the beginning, I, = % and Va=Vex-Vw. The mass

of the sample, mice, is measured first and hence follows Vw, which is slightly
0,9998 ;1;3 for T=0°C
0,9991 C;:L;g for T=15°C
volumes depend on the mass of the sample and on the water temperature. We
must consider what happens with the air when the ice melts.

dependent on Tyw; in the following I use p,, = { So the

When the sample is enclosed in Vex the amount of mole of air is
n=ny+nyg=ny+ny+n,+ng

where n = ny + n, is the free air and n = ny + ny is the dissolved air.

12



Figur 5. In the closed extraction chamber, Ve, the air molecules are either
dissolved or participating to the pressure.

For each of the gasses we then have the partial pressure

n,RT
p =
N (eq2)
eq?2
and the concentration in the water
n, /
C, = —
* W (eq 3)
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Combining these relations with the constraint condition, n, = n,, + n,, we get
the linear relation between px and cx:

_ VRT
Py _'(nx — Cyx w)'ig' (ec14)

eq4

If all air bubbles were relieved to the air during the melting, we would have:

NnyRT
Va

¢y =0andp, =

If on the contrary all air was dissolved we would have:

px=0andcx=%

w

In either case there would be Henry equilibrium and dissolving or degassing
would begin to take place, changing both concentration and partial pressure
until equilibrium is reached for a given constant temperature. This is illustrated
on Figur 6.
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Figur 6. Henrys Law and the constraint of a closed chamber determine the
partial pressure and concentration of each gas.

The slope of Henrys Law increases with increasing temperature, and both slope
and offset of the constraint condition depends on temperature and the mass of
the sample.

Substituting (eq 3) and (eq 2) into Henrys Law we can express the ratio between
dissolved and free air:

hanaVa g, oy (B 1) eqs

ny RT V, _ RT
f
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It is preferable with a low ratio to give the smallest error. To obtain this we
could heat the water up and hope that the air would not dissolve again during
the re-cooling. It is also seen how the smaller the sample is, the lesser air will be
dissolve (since the free space is then bigger and the partial pressure smaller).
With small samples follows though other sources of error: higher cut bubble
effect and lower measured pressure.

When we try to calculate directly from the pressure measurement the total gas
content, it is essentially n we determine, but we does not a priori know the
composition of the air in V.. Therefore we must now calculate the amount of O;
and N: in dissolution and free air respectively. Oz dissolves more easily than N»,
therefore the partition in the chamber will be different than that in atmospheric
air (with a higher part of N2). We use (eq 4) and Henrys Law to derive an
expression of the concentration given the input parameters (water temperature,
mass of sample and its air content), and getting rid of the partial pressure:

_ n, RT .
" kux(T) -V, + RTV, (eq 6)

CX
eq6

We can now derive ratio between oxygen and nitrogen in V, in three steps using
first (eq 2) then Henrys Law and finally (eq 6) (and we let F denote the 02/N»-
ratio):

RT
V. + —V
F=%/—=p—0= kuoCo _To @ kpn "
B My py  kpnen Ny +ﬂ (eq7)
a kH,O w
eq7
pw(T) )4

2, =1+ ——=

_ @( Mice ¥ kyn(T)

Ny (MV _ 1) + i

Mice ex kH,O (T)

The last step is formulated to show the influence of the input parameters
directly. It is seen as expected, that
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n
n_o forV, = 0 (small samples)
N

)
/m - kHlO ’
—= forl,, - V,, (big samples)
ki n

:—0 is assumed to be 21%/79%. From the determination of n and (eq 7), we get:
N

__ 7

"™TIYF

— _ n (eq 8)
1+ F1

eq8

From (eq 8) and (eq 5) we calculate ny and n,, and then have the complete
estimate for n.

Summarizing, the scheme for determining the air content could be:
1) The measurements are: mic, temperatures, pressure in V.
2) From the pressure we calculate n
3) Calculate n, and n, by (eq 7) and (eq 8)
4) Calculate ny and n, by (eq 5)

We prefer though to derive a formula for dissolved air as a whole, so we will not
have to consider the individual constituents. We calculate the ratio of dissolved
air to free air by combing (eq 5), (eq 7) and (eq 8), and this leads to the general
theorem:

In a closed chamber of volume Vex containing water of temperature T and mass

mice and air composite of two components (N2 and 0z) with relative occurrence Z—O
N
the fraction of dissolved to free air is given by
-1

P (T) (@ + Plup() 4+ (@ + F ki o(D)
/= RT( Vex 1) (1+F)T+Q+F D1 e’

ice

eq9

(pW(T)Vex_1> +_RT

no \m; K v (T)
where F= —2—-1 2
N
Mice * ky,o(T)
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It is seen that it only depends on temperature and sample mass (density, ky and
F depends on temperature and F depends on mass as well), but not on the air
content of the ice. The ratio is plotted as function of sample size on Figur 7 in the
range of ice mass used in the experiments. It is shown for 0°C and 15°C. If the
sample is heated before refreezing clearly it will drive out significant more air. It
is though not clear how much air will re-dissolve while re-cooling it; will
equilibrium with 0°C be reached before freezing or will concentration be in the
field between maximum reached temperature and 0°C? It will have to be tested
experimentally. Attempts have been done by extracting air 2 or 3 times from the
same ice sample, removing the extracted air before the second and third
extraction. For example: for a sample of 10g, it would be conjectured that the
second extraction would give circa 1% of the air extracted first time, and that
the third extraction would give only 10-* of the first, which will be below the
measurable limit. Experiments to test this are discussed later (Figur 62).

25

dissolved air / free air (%)

T S B e - [ 7o -
sample size (9)

Figur 7. Given an ice sample in the closed Vex (35,47 cm3). Fraction of

dissolve air/free air in equilibrium from (eq 9) with 0°C and 15°C for the

span of sample sizes used.
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Figur 8. Same as (Figur 7) but here the full range is shown - the practical
size limit is 25 g ice in this setup.

Measure instruments

On temperature sensors.

The temperatures are measured with pt1000-sensors, that is small pieces of
platinum connected to 2 wires. The resistance in the material is close to but not
exactly linear dependent on the temperature in an interval covering the
temperatures relevant in this experiment (-30°C to +30°C). The measurement is
hence conducted by building the pt1000 into a balancing bridge (Wheatstone
Bridge), pushing a stable voltage on the whole circuit, and measuring the voltage
an appropriate place in the bridge (see diagram). The measurement of the output
voltage must have a resolution, which makes it possible to calculate the
temperature in the pt1000 with a resolution of 0,1°C.

A standard formula, which relates temperature and resistance in the platinum-
sensors, the so-called Callendar - Van Dusen formula, established in 1925, is
given by

R = Ry[1+ AT + BT? + CT3(T — 100)]

where R is the resistance in the sensor, Ry is the resistance at 0 °C, T is the
temperature in Celsius and A, B, C are constants given by

19



A=39083-1073K"1
B =-5775-10"7K?

C = {—4,183 -10712K* when T <0
0 when T >0

(Wikipedia has a very informative article about pt1000 sensors)

Building circuits for the measurements and resolution considerations.

We want to measure temperatures 4 places during the ice-measurements: 2
places on the extraction cell (top and bottom), 1 (or 2) on the tubes connecting
the extraction cell and the pressure gauge, finally 1 to log the air temperature in
the laboratory. To that end a circuit is constructed with 4 Wheatstone Brigdes.

E U !

Rg R

C

Diagram 1. Wheastone Bridge used to measure pt1000-resistances.

In each brigde we have

U=£( Rg _ Ry )
Rg+R; R,+R;
and hence
E
RT—( R, _U)i_RA
Rg + R, R4

where U is the bridge voltage that is going to be measured, € is the
elektromotive force pushed on the circuit, Rt is the temperature dependent
resistance in the pt-sensor, and Ra, Rs, Rc are fix valued resistors. How do we

20



choose values for £, Ra, Rg, Rc? As we want the highest possible resolution for
the temperature measurement - it could called the sensibility of the instrument -
the circuit should be constructed so that:

a change in Rr gives the highest possible change in U
that is,
we must find maximum for

ou c Ry

ORr (R4 + Rr)?
with respect to € and Ra.
Notice that the sensibility is independent of the values of Rg and R¢, but the
choice of € and Ra is not straight forward.
Clearly, € is directly proportional to U, and in principle we could get any
resolution we want by beefing up € to a mighty voltage. This way is in praxis

limited (not only by security but also) because a problem with internal heating
2

in the sensor rises due to the dissipated power. Since P = % where Ur is the
voltage across a resistor dissipated power will certainly from some level of Ur
begin to heat up the sensor and hence give unwanted and annoying errors to the
measurements. So efforts to increase the precision have undesired secondary
effects. A doubling of the emf which a priori would double the resolution on the
temperature measurement would also quadruple the internal heating in the
sensor possibly causing an error of higher magnitude than the increase in
resolution and hence ruin the benefit. Therefore it is important to study the
internal heating effect and fx find a threshold value for the emf for which
internal heating no longer can be neglected.

: : : R : :
Now consider the choice of Ra. The expression m has its maximum for
A T

R, = Ry; therefore the most canonic choice for Ra will be the expected
resistance in the sensor for a central temperature in the interesting range. For
example we would choose R, =~ 882Q if the pt1000 is going to be used at
temperatures near -30°C since the Callendar formula gives this value for -30°C.
This would give the highest resolution in an interval around that temperature.

On the other hand there is a benefit in choosing Ra > Rr since the power

dissipation in the sensor then will be lesser for a given emf. That is true because
R : :
It must therefore be considered if one

the voltage across the sensor is €
Rp+Rr

should operate with a threshold value for the amount of sensor heating we will
tolerate. There form we can decide the optimal values for € and Ra as shown on

21



Figur 9. Here is shown plots ofaaTU as function of Ra for different values of £ and
T

also calculatet points of constant power dissipation. It is seen that actually with
some advantage £ can be increased without increasing the internal heating in
the sensors.

Though it must also be concerned that the stability of a high voltage power
supply is probably lower than a low voltage pendant, which could introduce new
accuracy problems when using to high voltage.

Another concern is the resolution of the voltmeter used for the measurements.
The data loggers we have for use has resolution 1,53 mV.

And what will then the resolution on the temperature measurement be? On
Figur 10 is shown an example with emf  5V. It is seen that we need a resolution
of 0,5 mV in the measurements to give a temperature resolution of 0,1°C. To
increase the resolution we must increase €.
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1
7000 3000

1 1 1 | 1 1
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Figur 9. Plot of functions S(Ri—;lz)Z dependence on Ry with Rr=1000Q and
A T

4 different values of £ (5V, 10V, 15V and 20V). The 4 stars mark points
with the same power-dissipation in the sensor (6,25 mW).

23



expected measured voltage with given fixed resistors and driving voltage

-1 T T T T T T T T T

_1 1 1 | 1 1 1 1 1 1
-%0 -29.9 -298 -29.7 -296 -295 -294 -29.3 -29.2 -29.1 -29
degrees celcius
V.

Figur 10. Here is shown the calculation of the expected voltage to measure
in the temperature range when the resistance in the pt1000-sensor is
calculated by the standard formula, the fixed resistances in the balancing
bridge is and the governing voltage is R1=872,4 Q,R2 =1000,14 Q R3 =
998,2 Q and € =5,0564 V.

Data logging

Measurements is logged with 2 data loggers of the model: NI usb-6009. Each
logger has 4 analogue input channels for differential voltage. During a
measurement 6 voltages are logged: 1 for the pressure gauge, 4 for temperature
and 1 for the electromotive force on the circuit made for temperature sensors.
The accuracy in the loggers are dependent on the voltage range they are set up
to measure. The best accuracy (1,53 mV) is obtained by restraining the input
voltage range to +1 V.

As the Wheatstone bridges is constructed the voltage measurement for the
pt1000 sensors will be within this range; it will be close to 0 when temperatures
are near -30°C in the extraction chamber and near 25°C in the laboratory, and
even if we choose a very high electromotive force, the measured voltage will be
within £1 V.
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To log the electromotive force itself with highest accuracy, a voltage divide is
made by 2 fixed resistor of sufficient resistances, so the voltage above one is
lesser than 1 V. This divide is put parallel to the bridges in the circuit. The emf is
the obtained by multiplying the measured voltage by the ratio of the 2

resistances.

Similar a resistor divide is made for pressure logging with highest accuracy and
resolution (see below).

The 6 electric signals are logged with the software LabView. I use other software
such as Matlab, Excel and LoggerPro to handle the data. For each measurement
a textfile is saved containing the signals. To handle the data I remove the header,
replace all ’; with ' and copy the files to a certain input directory on the
computer. | use the matlab routine 'totair.m’ to calculate on the measured
voltages and obtain temperatures and pressure.

Beside the input file,
totair.m uses:

the textfile 'Fixresistors.txt’ containing the values of the 20 fixed resistors,
and the functions:

wstone.m (calculating the resistances from the measured voltage)
pt1R2T.m (calculating the temperature from the resistance in the pt1000s)

pt2R2T.m
pt3R2T.m
pt4R2T.m

U2p.m (calculating the pressure from the measured voltage over the load

resistor)

and if wanted a file containing displayreadings from the presssuregauge.

Fixresistor | Resistance | sensor function
(©)

1 91,63 pt100 Wheatstone fix 1 (highest sensitivity near
-30°C)

2 110,57 pt100 Wheatstone fix 1 (highest sensitivity near
25°C)

3 100,17 pt100 Wheatstone fix 2

4 100,47 pt100 Wheatstone fix 3

5 872,4 ptl Wheatstone fix 1
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6 871,2 pt2 Wheatstone fix 1

7 1085,0 pt3 Wheatstone fix 1

8 1082,4 pt4 Wheatstone fix 1

9 1000,14 ptl Wheatstone fix 2

10 998,2 ptl Wheatstone fix 3

11 998,2 pt2 Wheatstone fix 2

12 1009,3 pt2 Wheatstone fix 3

13 1001,0 pt3 Wheatstone fix 2

14 999,4 pt3 Wheatstone fix 3

15 1002,7 pt4 Wheatstone fix 2

16 1003,1 pt4 Wheatstone fix 3

17 100,7 power Measure voltage across this R to calculate
suppy emf.

18 1000,3 power Resistor divide - R=R17+R18.
supply

19 39,59 pressure Divide of load resistance. Voltage across
gauge this R is measured.

20 209,89 pressure | Divide of load resistance
gauge (load=R19+R20)(no measurements on

R20)

Tabel 1. Overview of fixed resistances used in the electric circuits.

First temperature instrumentation
The fixed resistors in the brigdes are chosen to give 2 sensors highest resolution
at temperatures near -30°C and 2 other sensors highest resolution at
temperatures near 25°C. We get the highest resolution (neglecting the internal
heating question for now) when the measured voltage is close to 0 V which is
the case when Ra = Rr and Rg = Rc. From the Callendar-formula we get pt1000-
resistances 882 () and 1097 () for these temperatures and search for fixed
resistances near these values to use in the bridges.
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Figur 11. 4 Wheastone Bridges and a system of wires to connect to the
pt1000 sensors and to a datalogger. The switch in upper right corner has
an output that allows a choise of either the bridge-voltage from circuit 3 or

4. The output from these circuits can as well be taken directly from other
wires.

In all 4 times 3 fixed resistors are needed for the bridges which are build into
parallel circuits with common € and ground. They are soldered on a print card
together with wires for connections to the pt1000 sensors and inputs to a data

logger. These wires are connected to plug-connectors, so that the pt1000-
sensors easily can be plug or unplugged.
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Figur 12. DIAGRAM

All resistors are measured with a multimeter to check their values precisely.
Since they could change characteristics with time it can be necessary to re-
measure them from time to other. A complication here is that they are a part of a
bigger circuit now, and a multimeter-measurement above a single resistor does
not simply give its resistance, but is dependent on several of the resistors in the
circuit. Let Ry be the measured resistance across Ro (see Figur 12). From
Kirchovs Laws it is derived that:

~__1
S
R, TR
where
) 1 1
Ro=Ri+g—F+7 7 +t7T 1
+ + +
Rll R12 R13 R14- R15 R16
and
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Ry, ..., Ri¢ are the fixed resistors shown in the diagram.

Similar relations holds for resistors Ry, ..., Ri6. The 8 values of Ry, ..., R1¢ must
then be found by solving this system of 8 nonlinear equations - a formidable
task if it not was for program Matlab, which nowadays has a built in iterative
procedure for solving such equations; one must hope that the solution is unique,
but it seems reasonable and gives values close to the values marked on the
resistors.

The resistors Rs, ..., Rg can be measured directly when the pt1000-sensors are
unplugged, since they in that case no longer are in a closed circuit.

On calibration of sensors.

Several attempts to calibrate the sensors have been done. Now the sensors of
some of these experiments are broken and the whole work is useless and gone
in the sink. The 4 sensors were in some calibration procedures attached on the
surface of the chillier and in other procedures to the side of the extraction cell -
always as close as possible to each other and with a round handed dose of
thermal paste on the contact plane to the cell. They were attached with at piece
of armacel tape. Hence it was assumed that the sensors were exposed to the
same temperature. The Cell was placed on the chiller and cooled with the same
procedure proposed for the experiments. The voltage over each pt1000-senosr
was logged every second.

After 5 of the above-mentioned experiments it turned out that the behaviour of
the individual sensors was not reproduced with a satisfactory degree of
precision. A possible explanation could be that I during soldering had
overheated the solder (more than 300°C on the soldering kolb can cause solder
pest, | now know) - therefore I changed all soldering on all sensors and wires.
During this I broke the legs off 3 sensors and new sensors has been introduced.

Calibration of pt1000-sensors with a precise pt100-sensor — initial considerations.
The calibration described in this chapter leads to 5 interval formulas
for T as function of R for the different pt1000 sensors. Unfortunately
the functions have shown to be erratic and useless. I have discovered
this late - to late to redo it. I let the chapter stay.
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The pt1000-sensors need to be calibrated against a precise thermometer. The
intention from the sensor-producer is to trim them around 0 °C, that is
R=Ro=1000Q at 0°C, but it has been experienced that there can be an offset up to
5 degrees. Further it must be checked if the temperature dependence of their
resistance is exactly as described in the standard formula. The optimal way
would be to measure for a period with the sensors kept in an environment with
absolute constant and extremely, precisely known temperature; and eventually
repeating a series of measurements under different but constant temperatures.
Since this is not possible with our facilities, a calibration procedure with slowly
and controlled rising temperatures was used.

Figur 13. 4 pt1000-sensors attached to the tip of the pt100ensor. Further
the sensors are wrapped tighter together, placed in a thin rubber-etui and
immersed in a spirit-dewar.

The 4 pt1000-sensor are taped to the tip (the sensitive part) of the pt100.
Thermal paste is smeared on the sensors to secure good thermal conduction.
More tape is wrapped around the sensor tips and the whole aggregate is placed
in a rubber glove and immersed in a Dewar containing ethanol. Now
measurements of the sensors are logged. After a while when the temperature in
the Dewar is stable, the resistances are measured with a multimeter (this is a
calibration point at room temperature). Thereafter liquid nitrogen is added to
cool the ethanol to a temperature near -40°C. The lid is placed on the Dewar
again and while it is slowly heating the resistances are measured, at different
temperatures in the operational range. On Figur 14 are shown an example of
this procedure.
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Figur 14. Blue: measured voltage for pt-sensor1l. Green line: temperature
calculated from pt100-sensor-measurements taken at discrete time points
(marked). Dashed lines: expected measured voltage calculated from
standard formula (the 3 lines shows the effect of temperature deviance of
+0,1 °C).

As seen on the figure the temperature rises 10-15 degrees during 100 minutes
with the fastest temperature rise in the beginning at lowest temperature. A
simple assumption would be that the rate of temperature is proportional to the
(approximately constant) room temperature in the laboratory, that is

dr
- = KT = Tiay)

where K is a suiting constant, from which it follows that the temperature
converges exponentially towards Tiap:

T = Tlab — ATOB_Kt
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where AT, is T — T;, at t=0.

In small time intervals in the magnitude of 1 minute, it is a proper assumption
that there is a linear temperature increase with time; the temperature change in
this short time is anyway not much bigger than 0,1 °C which is the aim for the
accuracy.

Therefore the first intention was to make a point wise calibration for example by
taking the mean of 2 minutes interval as shown on Figur 15.

2 minutes measurements with sensor 1 and 2 while temperature rise from -30,2C to -29,9

and standard values with effect of 0,1 K uncertainity shown
20 T T T T T T T

-
(s

Ifknmhy .MA.A}\J\MW umftnfw,h ih Mol o f\
Il 'd)j AL V \ V\M U i ﬂu UJ\ M VMV(K VJAAJJ\ \/lvfln,_ - J\,.\\LVAE.VI\M

10+

- !
150

1 L | | | |
50 100 150 200 250 300 350 400
1i3 seconds

Figur 15. Finding a calibration point. During 2 minutes the temperature
rose from -30,2°C to -29,9°C. Direct measurements of 2 sensors are shown
including linear regression lines. The 3 lines in the bottom are calculations
of the expected measured voltage based on the Callendar-formula and the
measured temperature + 0,1°C.

Refined calibration with 2 data loggers

Later the experimental equipment was supplied with an extra data logger, which
gives the possibilities of 1) logging the electromotive force on the circuit and 2)
logging the measurements of the pt100 calibration sensor to avoid writing a lot
of discrete numbers by hand. Two wheatstone bridges was constructed for the
pt100-sensor - one to give highest accuracy on temperatures near -30°C and
another to give highest accuracy on temperatures near 20°C. The Callendar-
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formula is assumed to hold for the pt100-sensor, and on that basis the
temperature/voltage relation is calculated as shown on Figur 16.

pt100-sensor, voltage=5Y, 2 circuits
30 T T T T I 1

20 -

10+ -

Celciuz

10k i

1 1 1 1
4RUU -300 -200 -100 0 100 200 300
mYy

Figur 16. Relation between temperature and measured voltage with the
pt100-sensor coupled to the two different balancing bridges.

The data logger was used as power supply for the calibration measurements.
The stability of this supply was tested as shown on Figur 17.
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Figur 17. Voltage logged 10 times a second during calibration.
Mean=4,9907 V. Std=4,4 mV. Linear regression gives af slope of -0,00015
V/min showing that drift is negligible.

[ is concluded that drift can be neglected, but there is spread with std=4,4 mV.
Now there is 2 ways of implementing £ in the calculations: either we can use the
direct measured voltage, or we can use the mean value over a period of interest.
[ will calculate the temperature in the corresponding time interval in these to
ways to see what difference it makes. This will also be a kind of test if the power
supplies stability is sufficient. The result is shown on Figur 18.
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red: measured voltage, blue: mean voltage
29 T T T T T

T-25deg Celcius

1 1 1

0 1 2 3 4 5 6
minutes

(=]
(4]
—
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0 1 2 3 4 5 6

diff. betwsen two wayz of calculating T

minutes

Figur 18. Temperature is calculated in two ways: by using the direct
measured voltage and by using the mean voltage over the period. Top:
both temperatures (cannot be distinguished). An initial temperature rise
of 2 degrees caused by internal warming in the sensors is seen. After 3 and
a half minute liquid N: is added to the immersion spirit, and the
temperature begins to decrease. Bottom: the difference between the two
ways of calculating temperature. The voltage is logged 10 times each
second.

It is seen that it will only give differences of less than 3 mK on the temperature if
we choose one or the other way which is negligible compare to the accuracy goal
of 0,1 K. Surprisingly a systematic variation is seen on the deviation from mean
looking like beats with a long period of 4 minutes. To that I can give no
explanation. The conclusion is though that it is defencable to use this power
supply regarding the stability.

Now we look at the contemporary measurements on the pt1000-sensors.
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Figur 19. Measurements with pt1000-sensors 1 and 2. (fil: 4pa.txt).

Notice variation during the time period. It shall be noted that this experiment
was started after the sensors had been immersed in the Dewar for a long time
disconnected from the power supply, so temperature constancy and stability can
be assumed at start. | wanted to see if the internal heating was significant in this
setup, and this is the case. We see the temperature rise 2 degrees during the first
3 minutes on Figur 18 and equivalently we see the pt1000 sensors react in Figur
19 (yet we cannot se the corresponding temperature). [ will later test if this
internal heating can be detected when the sensors are attached to the extraction
cell. Maybe it will be necessary to correct for this. But assuming that the heating
eventually will stable the temperature and that the pt100 and pt1000 sensors
then will keep the same temperature, we don’t have to take this into account in
the calibration. It is just a necessary condition that the sensors have the same
temperature - not what the actual temperature in the Dewar is.
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difference: sensor4-3
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Figur 20. Measurements with pt1000 sensor 3 and 4. (fil: 4pta)

To calibrate the sensors we need to ensure measurements in a temperature
stable environment. Even in the small space in the sensor packet shown on Figur
13 there can apparently be not insignificant temperature differences under
circumstances when there is rapid temperature changes, which can be seen on
Figur 19 and Figur 20. As liquid N: is added there is different lag times for the
sensors. It must be a little test to check if we have a constant difference between
the sensor measurements to clarify if there is sufficient stability.
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Figur 21. The time interval from 3 to 3,5 minutes are use for statistics.
There is still a slight internal heating going on but in this case negligible.

Calibration over an time interval with slowly rising temperatures.

Calibration of sensor 3 and 4 (around 25°C)

Another and probably better calibration method is attempted by making
regression on the sensor-measurements under slowly temperature changes. The
sensors are placed in the Dewar for a long time while temperature slowly
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converges to the room temperature. Data is logged every second. The calculated
temperature and sensor-resistances during the measurement is shown on Figur

22.

12,5 hours measurement in dewar. T (dark green)and 4 pt 1000+resistances
1105 I I I I 1 I I 30
1100 e —29

hlu}““w

*‘W L ratind

(| (]

1095 | m ! uad {28
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minutes

Figur 22. The aggregate of pt-sensors have been immersed in a spirit-
dewar for 12,5 hours. Data was logged 1 time per second.

The intention is to calibrate sensor 3 and 4 as they are going to measure

Celziuz

temperatures in this range. Regression of R/T are shown on the next figures.
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b (Y-Intercept): 984.5
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RMSE: 0.8665
1090
)
a
Auto Fit for: k2p3 | pt3
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1080 - A: -0.001812 +/- 0.001319
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Figur 23. Temperature versus restitance in sensor 3. Data was logged one
time a second during 12,5 hours with slowly rising temperature.
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sensor 4
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A:-0.03931 +/- 0.000979,0
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C: 966.4 +/- 0.6561

RMSE: 0.643,0

Figur 24. Sensor 4 in the same experiment as in Figur 23
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difference pt4-pt3

ohm

22 24 26 28 30
T(¢O
Figur 25. Differrence between sensor 4 and 3 is plotted to look for possible
unstabilities during the measurement. (the x-axis can also be viewed as a
distorted time axis since the temperature was monotonically but
nonlinearly rising.)

As seen on Figur 23 and Figur 24 a linear correlation can be established between
temperature and sensor-restistance. A quadratic fit is tried as well according to
the standard formula. In the interval of 22°C to 29°C the linear and quadratic
relation deviate much less than 0,1 °C for sensor 3 which is somewhat relieving
to see; for sensor 4 the quadratic fit seems to be less appropriate than the linear.
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linear Quadratic Callendar
Sensor 3 (25°C)
Ro () 984,5 983,30
AorA (1073K™1) 3,9919 4,09234 3,9083
B (1077K72%) —18,4 —5,775
Sensor 4 (25°C)
Ro () 992,7 966,4
AorA (1073K™1) 3,71714 57711 3,9083
B (1077K72%) -396,0 —5,775
Sensor 1 (-30°C)
Ro () 959,7
AorA (1073K™1) 3,3042 3,9083
B (1077K72%) —5,775
Sensor 2 (-30°C)
Ro () 954,4
AorA (1073K™1) 3,3057 3,9083
B (1077K72%) —5,775

Tabel 2. Regression parameters.

Linear fitR = R, - (AT + 1)

Calibration of Sensor 1 and 2 (near -30°C)

quadratic R = R, - (AT + BT? + 1)

A similar calibration is made for sensor 1 and 2 near -30°C. In this case the
temperature rise is steeper so data is now logged 5 times/second. Calculations
from the measurements are shown on Figur 26. Conditions seem to be stable
while the temperature rises from -30°C to -27°C (in cirka 25 minutes), so
regression is done on this interval. Regression to temperature is shown on Figur
27, and regression parameters for both linear and quadratic regression is listed
in Tabel 2 for the 4 sensors.
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The linear coefficient is close to the coefficient in the Callendar-formula (3,9) for
temperatures near 25°C, but for temperatures near -30°C they are lower (3,3)
and that is unfortunate since it will give a lower resolution on the temperature
measurements. Further it is noticed that RO deviates significantly from 1000 (),
which gives the suspicion, that the temperature dependence is not linear over
the whole temperature range [-30°C;25°].

Measurement in dewar. Logaing Stimesisec. T (dark green)and 4 pt1000+esistances

880 . T T T T T T T T 26
870 4-28

»

% 860 30 §
850 | 432
840 ; 10 75 70 25 30 38 20 25 50

minutes

Figur 26. As liquid N: is added to the spirit, temperature dives and rises
quiet sharply after the minimum when the nitrogen is boiled off, while the
walls in the dewar is still warmer than its content. From 20 minutes and on
stability is assumed - that is while the temperature rises from -30°C to -
27°C.
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sensor 1 (red) and 2 (green)

870 — Linear Fit for: k3pl | ptl
ptl = mT+b

m (Slope): 3.171 Q/°C

b (Y-Intercept): 959.7 Q
Correlation: 0.9662
RMSE: 0.6742 Q

£
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° xo
Linear Fit for: k3p2 | pt2
pt2 = mT+b

m (Slope): 3.155 Q/°C
b (Y-Intercept): 954.4 Q
Correlation: 0.9706
RMSE: 0.624,0 Q

850 —

-34 -32 30 ' -28 -26
(AT:2.95 Ay:0.98) T(°C)
Figur 27. Sensor1 and 2 are calibrated in the temperature interval [-30;-
27]°C. The 'hysteresis’ is caused by faster reaction times in the small
pt1000-sensors compared to the larger pt100-sensor used for
temperature calculation.

On the spread and error in the measurements.

It is seen, that there is an not insignificant spread in the measurements
(RMSE=0,62 ) in the regression of sensor 2) and the reason must be considered.
How stable are the temperature measurement?

Figur 28 shows a nice linear trend and Figur 29 shows that deviations from the
trend is normal distributed as common measure uncertainties should be.

Figur 30, Figur 31 and Figur 32 shows an analysis of the spread in
measurements of one pt1000 sensor. It shows no periodicity in the errors
(though will it later be tested if there is noise with higher frequency than 2,5 Hz
since data here was logged with 5 Hz) . For now it is concluded that the noise is
random, the standard deviation on the resistance-measurement is 0,67 (, and
with a slope in the linear dependence of 3,3 1/°C that equivalates a standard
deviation on the temperature measurement of 0,2 °C.
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Figur 28. Measured temperature for calibration of sensor 1 and 2.
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Figur 29. Errors on temperature measurements are normal distributed
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Statistics for: k3T20tilS0min | pldevfromlinreg
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Figur 30. Pt-sensor 1. Deviation from regression formula during the
measurement. Std=0,67.
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ptl deviation from linear trend
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Figur 31. The errors on pt1000 measurements are normal distributed.
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Figur 32. Frequency analysis of the signal shown in Figur 30 shows there is
no systematic error (at least with frequency lower than 2,5 Hz) causing the
spread.
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sensorl deviation from regression formula

ohm

’ i - i A ‘
-34 -32 -30 -28 -26
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Figur 33. Measured resistance deviation from the derived sensor formula
during the measurement shown on Figur 26. The tail in the lower left is the
first 20 minutes before stable conditions were actualized.

Further calibration of pt1000 sensors.

Only the two pt1000 sensors attached to the extraction cell need to be calibrated
in the full range [-30°C,30°C]. For measurements on ice it suffices with a
calibration near -30°C, but for volume calibration purposes it is useful to
measure temperatures on the extraction chamber in the full range.
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calibration of pt1000 sensor 2

1100 —

Linear Fit for: Data Set | pt2

P12 = mT+b Linear Fit for: Data Set | pt2

B ] |mloper3.1530/°C P2 = mT+b )
Auto Fit for: Data Set | pt2 b (Y-Intercept): 954.3 Q m (Slope): 4.021 Q/°C
P12 = ATA2+BT+C Correlation: 0.9694 b (¥-Intercepy): 76.3 0
A: 0.02049 +/- 0.0003366 RMSE: 0.6249 Q Correlation: 0.9971 /
RMSE: 0.7674

B: 4.647 +/- 0.01268
C:980.3 +/- 0.08784
RMSE: 0.7238 0

1000 —

o
Linear Fit for: Data Set | pt2

pt2 = mT+b

m (Slope): 3.816 Q/°C
b (Y-Intercept): 984.6 Q
Correlation: 0.9918
RMSE: 0.9016 Q

pt2 (Q)

Auto Fit for: Data Set | pt2
pt2 = ATA2+BT+C

A: -6.525E-05 +/- 5.799E-05
B:4.119 +/- 0.001128
C:977,0 +/- 0.01035

RMSE: 0.9043 O

900 —

1 T T '
-30 -10 10 30

T_pt100 (°C)

Figur 34. Calibration of pt1000 sensor 2. Measurements are taken in 3
different ranges: [-30°C,-27°C] (8300 datapoints), [-12°C, -2°C] (29000
datapoints) and [22°C,30°C] (45000 datapoints)

Measurements are taken in 3 different temperature ranges: [-30°C; -27°C] (8300
data points), [-12°C; -2°C] (29000 data points) and [22°C; 30°C] (45000 data
points). Linear regression is taken on each interval with good correlation. Since
the slopes on each regression line are slightly different the temperature
dependence can not be assumed to be linear on the whole temperature range.
To 'connect’ the 3 linear intervals a quadratic fits are made on data points in the
temperature ranges [-30°C; -7,7°C] (with 8300 data points in each 'block’) and
[-12°C; 27,7°C] (with 29000 data points in each 'block’). This summarizes to a
function for the temperature dependence of pt-sensor 2 as follows:

( 3,1537-T+ 95430 for T € [-30°C;—23,5°C]
—6,525-10752 - T2 + 4,119, - T+ 977,00 for T € [-23,5°C; —7,1°C]
Rpcz =3 40213 T + 976,30 for T e€[-7,1°C;—6,5°C]
—0,002576 - T2 + 4,159% - T + 977,30 for T € [-6,5°C;26,6°C]

| 38165 T + 984,60 for T €[26,6°C;30°C]
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where T is in °C and the intervals are defined by the cuts of the regression
functions.

A similar calibration is made of sensor 1:

Linear Fit for: Data Set | ptl
ptl = mT+b

m (Slope): 3.504 Q/°C

b (Y-Intercept): 997.7 Q
Correlation: 0.9862

RMSE: 1.078 O

1100 — Linear Fit for: Data Set | ptl
ptl = mT+b

m (Slope): 4.048 Q/°C

b (Y-Intercept): 982.1 Q
Correlation: 0.9968

RMSE: 0.8045 Q

1000 —
@ Linear Fit for: Data Set | pt1
E ptl = mT+b
m (Slope): 3.171 Q/°C
b (Y-Intercept): 959.7 Q Auto Fit for: Data Set | ptl
Correlation: 0.9661 ptl = ATA2+BT+C
RMSE: 0.6748 Q A: -0.006081 +/- 7.838E-05
B: 4.207 +/- 0.001528
C:983.4 +/-0.01401
RMSE: 1.23 0
Auto Fit for: Data Set | ptl
9004 ptl = ATA2+BT+C
A:0.01892 +/- 0.0003749
B: 4.622 +/- 0.01414
C:985.7 +/- 0.09851
RMSE: 0.78120Q
1 ! | | ! |
-30 -10 10 30
T_pt100 (°C)
Figur 35. Calibration of pt1000 sensor 1.
The result summarizes to:
0
(3,153 T + 959,70 for T €[-30°C;—28,5°C]

0,01892: - T2 + 4,622 - T + 98570 for T € [-28,5°C; —8,9°C]

0
Rpar = 4,048+ T + 982,10 for T €[-89°C;—6,5°C]
—0,006081= - T2 + 4,207 - T + 983,40 for T € [—6,5°C;26,3°C]
| 3,5042-T + 997,70 for T €[26,3°C;30°C]
K

with T in °C.
The inverted functions with the proper solution for the quadratic functions is
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Ty

T

t2:<

pt1:<

( (R, — 959,7)

3171 for Ry < 869,302

4,622 + /21,3629 — 0,0757 - (985,7 — R;)
0,0378

for R, € [869,30; 946,10]

(R, —982,1)

zoag  Jor Ri€[94610;95580]

4,207 + /17,698 + 0,0243 - (983,4 — R,)

for R, € [955,802; 1089,90]

4,119 — /16,9662 + 2,61 - 10~% - (977,0 — R,)

0,0122
(R, —997,7)
L W fOT' R1 > 1089,9.(2
(R, — 954,3)
W fOT' RZ < 880,2..(2

\

1,3050 - 104

(R, — 976,3)

4,021 for R, €[947,802;950,20]

4,159 — /17,2973 + 0,0103 - (977,3 — R;)

0,0052 for R, € [950,202;1086,102]
(R, — 984,6)

R, > 1086,10
3816 for Ry > ’

for R, € [880,202; 947,80]

where the units are (2 and °C (and [ have omitted writing units on the numbers).
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Figur 36. Pt1000-sensor1 (red) and sensor 2 (blue). Established non-linear

temperature-functions. (matlab-functions pt1R2T og pt2R2T.

Measuring the saturated vapour pressure — test of the pt1000 calibration. A
possible better way of calibrating

To examine the partial pressure of vaporised ice, measurements are taken with
frozen demineralised water in the extraction chamber. The water is cooled to a
stable temperature and the chamber is evacuated. Valve 7 is opened and the
chiller is turned off to let the chamber heat up slowly. On Figur 37 and Figur 38
is shown the temperatures and measured pressure as well as the from eq 1
calculated saturated vapour pressure. It is seen that the measured pressure is
below the calculated and the difference increases as the chamber heats; the ice
inside is colder than the outer chamber walls where the temperature is
measured during heating of course, but already from the beginning a difference
of 10 Pais seen, so we might overestimate the partial vapour pressure by using
the saturation formula. The initial vapour pressure shown here occurred few
seconds after evacuation. This experiment shows that the temperature sensors
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are calibrated wrong. I discover this too late. If [ had discovered it earlier I
would have used this experiment as a calibration of the temperature sensors
rather than a test of the calculated vapour pressure as I original thought it
should be.

T on extraction cell. Red: bottom. Blue:top
T T T T T

0

600

Green:measured p. Blue: calc vapor p (top). Red: calc vapor p (bottorn)
T T T T T T T

L e

500 P //
S
e
// -
400 | P
v -~
s s
S
300 a4
-
4 s
~

200 | <
-

100 F >
fod

- 1 L 1 1 L 1 L 1 L
100 3

10 15 20 25 30 35 40 45
minutes

Figur 37. Left tempertures on extraction cell. Right: measured pressure
(green), and calculated saturated vapor pressure (red: T_bottom, blue:
T_top).



Measured vapor pressure: Red=T b Blue=T y dashed: saturated vapor pressure
140 T T

120 | /
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|
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Figur 38. Measured vapor pressure at different T with ice in the evacuated
chamber. Red: T at chamber bottom, Blue: T at chamber top, dashed:
saturated vapor pressure over ice (eq 1)

Rejecting the sensor calibration

First after some measurements on ice samples I realized that calculating
temperatures using the standard Callendar formula is closer to the real
temperature than using the formulae derived from calibration (horrible). I
compare the tube temperature with an old fashioned quicksilver thermometer
placed on the tubes. The temperature on the extraction cell is tested by
measuring it as it is cooled to below -30°C with ice inside; after evacuation I
measure a pressure assumed to be the saturated vapour pressure (over ice) for
the in the chamber given temperature and calculate the temperature from the
inverted vapour pressure formula. It seems that the calibrated formulae
overestimate the temperature in both extraction chamber and tubes by 3-4°C. In
the opposite the standard formula is in agreement within 1 °C. I recalculate all
pt1000 measurement with the standard formula and rely on that from now on.
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Stability of electronics
We test the stability of the temperature measurement regarding changes in the
room temperature. The sensors are attached to their respective places; the
extraction cell is cooled to a stable temperature
(-37,1°C). A hair dryer is used on the electronic (Figur 11) for circa 20 seconds.
A quicksilver thermometer placed in the air stream showed temperature
increase from 22,5°C to 50°C during the 20 seconds. The sensors were shielded
with isolating material and it was assumed that their temperatures were
constant during this test. Even the less we see changes (both positive and
negative) of up to 1 °C in all sensors (Figur 39), caused by changing of the
resistor characteristics. The room temperature is often relatively stable around
23°C, but in the afternoon the sun comes in through the westward window and
can disturb measurements. In an eventual development of the setup it must be
considered to secure a stable temperature in the electronics, but for room
temperatures of 23°C + 3°C, I will from this experiment assume no influence on
the measurements.

L

354 T T T T T

-35.6
-35.8
-36
-36.2

& -36.4
-36.6

-36.8

ﬁ

-37

E | | | | | | |
872 5 10 15 20 25 30 35 40 45 50

seconds

T (Callendar) ontube-cross (green) and pressure gauge (black)
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T T 1T T T T 11
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Figur 39. Stability test of the temperature measurements. Above: T on
extraction cell, below: T on tubes and pressure gauge. The sensor

temperatures are assumed constant while temperature on the electronic is
changed by 30°C.
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Pressure measurement

The pressure is measured by an electric instrument of the model BADR Lektra. It
measures the pressure difference between to air inlets. The differential pressure
can be read of a display with a resolution of 1 Pa. The accuracy is claimed to be
0,075% of 1000 Pa, that is 7,5 Pa. The range is -1300 Pa to +1200 Pa; outside
this range it will not measure. This gives the possibility of measuring absolute
pressures up to 2500 Pa, by first trapping air in Vyes the closed volume at the
minus side inlet so that the pressure here is 1300 Pa (this can be measured by
evacuating the plus side). In praxis it is easy to trap an amount of air by relative
quick series of valve work so that the pressure stables at a point in the range
1100 to 1300 Pa. Then pressures up to 2300 Pa can be measured.

The gauge is supplied by 24 V, and its analogue output is obtained by the supply
current which is in the range 0-24 mA depending on the pressure difference
between the air inlets. The gauge needs a load resistance of 250 Q serial
connected in the supply circuit. To give the best resolution regarding the data
loggers, the load resistance is divided in 2 by resistors of 209,89 (1 and 39,59 Q
and the voltage is measured and logged across the 39,59 (1 resistor. The voltage
is then in the interval +1 V. The pressure gauge also has a display from which
the pressure is written with a pen for all point wise measurements.

The pump

The pump is a Pfeiffer and should give a vacuum of 10-3 atm. That is 100 Pa,
which actually is a non-negligible amount in this setup. [t must be assumed that
there is a background pressure, ps, where parts of the line has been evacuated.
Since the pressure is measured differential it is not possible to measure this
background pressure directly. An attempt to measure it has been done by
evacuating the whole line, closing the valves to Vineg and V1 and then cooling the
extraction chamber. The pressure fell by only 2 Pa for a temperature decrease of
30 K from which I believe that pg is less than 40 Pa and could be even smaller
since the pressure reduction could partly be caused by vapour condensation.
Since all pressure measurements is taken as the differential pressure, the size of
ps will not affect the measurements, as long as it is stable. Closing Vneg and
pumping continuously on Vyos can test this. If the pump is not stable, we will
then see ps fluctuating. | have never observed such effects and must assume that
the pump is extremely stable, and that pg varies less than 1 Pa over long time
spans. Hence pg can be neglected from now on as it will always cancel out of the
equations containing p.
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Calibration of the pressure gauge

It appeared to be necessary to calibrate the pressure gauge, which a small air-
switching test showed:

1) Trap dry air in Vieg (or Vpos) and evacuate Vpos (or Vieg). Read of Aps.
2) Fill Vpos (or Vieg) until Ap is close to zero. Read of Apa.
3) Evacuate Vieg (0r Vpos). Read of Aps.

Then Aps - Ap: = Apz. But the readings from the gauge deviate from this balance,
as seen in 3 tests. We let ApL denote readings from the pressure gauge (L for
Lektra) and the Pay (‘Lektra-Pascal’) be the unit given from the producer
calibration (initially supposed to be real Pa).

Apra ApL2 ApL3 ApLs a*/a ApL3
(Pav) (Pav) (Pav) (expected calculated
from from
producer calibration
calibration) with
Vaisala
(Par)
-863 195 1029 1058 1,0348 1029,0
1029 16 -1049 -1013 1,0355 -1048,3
-1049 6 1020 1055 1,0345 1019,7

Tabel 3. Test of the Lektra pressure gauge as described above. The fourth
column would equal the third if the readings was a linear function of the
pressure difference as expected from the producer calibration.

This shows that the reading is a nonlinear function of the real pressure
difference.

To calibrate it a Vaisala barometer is borrowed from DMI. The barometer is a
type used for DMI standard observations. It has resolution 0,01 hPa. It was
calibrated by DMI in the range of atmospheric pressure and has a precision of
0,05 hPa.

The Vaisala was connected to a plastic bottle that again was connected to the
line. Ambient air was let in so that there was atmospheric pressure in the whole
system, and then it was closed. Vineg was then closed (valve 1 closed and trapping
a reference pressure, prer, in Vieg), SO variations in the pressure would occur at
Vpos and at Vaisala simultaneously. The pressure is read of Vaisala (pv) and we
must establish the relation between pv-prer and ApL. With a screw clamp on the
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bottle the common pressure was regulated (Figur 40). [t was possible to reach
sufficiently stable pressures for sufficiently long timespans in this way, though
fluctuations of up to 5 Pa was unavoidable since at temperature change in the
flask of 0,1K correspond to a pressure change of circa 33 Pa. Therefore the
whole calibration must be done relatively quickly since small temperature
changes in Vineg will cause to big errors. A calibration was done in 16 minutes.
The reference pressure in Vyeg was taken and controlled by establishing a
differential pressure close to 0 (ApL=0) first and last during the calibration.
First Ap.=2 Par and pv =1003,70 hPa. Last Ap. = 1 Par and pv = 1003,60 hPa.

Since 1 Pay is very close to 1 Pa (as seen on Figur 42), we can assume that:

First prer= 1003,68 hPa and last prer = 1003,59 hPa. The room temperature was
near 23°C (see Figur 41) and a temperature change (decline) in Vyeg of 0,027°C
would actually cause such a change of 9 Pa in prer. The temperature was not
measured directly on Vyeg but on the Lektra gauge and the tubes at Vi (Figur 41).
Changes of less than 0,06°C is seen to occur, but the to sensors are ambiguitic
about the sign. A completely stable temperature in a room with electric
machines and humans producing energy is not possible. Under these
circumstances I have assumed pref = 1003,63 hPa during the calibration and an
uncertainty of 10 Pa.

The readings from the 2 gauges are shown on Figur 42 and the 1-1
correspondence shown as a dashed line. Though a good linearity is seen, we
must seek a better relation that can explain the test in Tabel 3. We try to split the
measurements for Ap.>0 and Ap.L<0. There could be a reason for that since
inside the gauge a sensible diaphragm is bended one or the other way with
respect to the pressure difference. The result is shown on Figur 43 and Figur 44.
From this we conclude the following on how the Lektra is used for
measurements:

Let air be trapped in Vyeg to a reference pressure prerL. (negative sign) and the
reading from Lektra is Ap.. The pressure at Vyos is then given by

1, 0255— (Ap, — Presr) forAp, <0
p= (eq 10)
1, 0255— (- prefL) + 1, 0612— Ap, for Ap, >0

eq 10

To test this we look at the measurements in Tabel 3. If a is split in a- and a* as in
eq 10, we can calculate the ratio a*/a- since it must hold that:
azApL3 - aiApL1 = a2ApL2
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where the a’s are either a* or a- according to the sign of their Ap.. The a*/a- ratios
is shown in the table and are very close to 1,0612/1,0255=1,0348. Further we
can test eq 10 by calculating Ap1and Apz from Apy,1 and Ap2 and then

Apsz = Ap1+ Apz and then use the inverted eq 10 to calculate Apy,3. Comparing this
to the measured Api,3 shows a high agreement as shown in Tabel 1.

Figur 40. Calibration of the Lektra pressure gauge (upper right) with the
Vaisala Barometer (lower left) and a plastic bottle.
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Figur 41. Upper: Blue declining (left scale): Temperature on cross, green
rising (right scale): temperature on Lektra gauge. Lower auto logging of
PaL (not positive for negative pressure differences)
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Vaisala (Pa)

101500

y=1,0421x + 100373
R? =0,99992

101000

100500

100000

99500

99000 T T T T )
-1300 -800 -300 200 700 1200

Lektra (Pa)

Figur 42. Readings of the Lektra gauge (differential pressure with a
reference pressure of 1003,63 hPa) against the Vaisala (full pressure).
Error bars are set with £10 Pa (same size as the point markers). The
dashed line shows the 1-1 correspondence that would hold if Lektra was
perfectly calibrated (assuming Vaisala is perfectly calibrated).
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Vaisala (Pa) - 1003,63 Pa
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Figur 43. Reading of pv-prer against ApL. Regression line is forced to
intersect (0,0) or it would intersect in 0,7 Pa. Error bars show +10 Pa.
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Figur 44. Reading of pv-prer against ApL. Regression line is forced to
intersect (0,0) or it would intersect in 1,2 Pa. Error bars show +10 Pa.
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Automatic logging with the pressure gauge

The relation between input current and pressure is obtained by making a series
of different stable pressures, measuring and noting the display pressure (see
figures below). For each stable pressure 10000 to 20000 samples were logged,
and the mean calculated. In each case the standard deviation was in the interval

. 0,12mA _ L
[0,10 mA to 0,12 mA], so the error is less than 15500 0,0012 mA, which is

within the size of the accuracy determined by the data logger (see below). The
current is calculated from the measured voltage, plotted against the display
values and a regression function is obtained (see figure below). From this the
current-pressure-relation is found to be

p=625L%.1—2494 Pq
mA

where [ is given in mA. On the figure is seen that the data points begin to depart
from the regression line when the pressure rises above 1000 Pa and for
pressures below 0 Pa. These points are excluded from the regression, and the
relation can assume to hold only for pressures in the range +60 Pa to +960 Pa.
Does the precision of the data logger hamper the precision of the pressure

measurement? Since the accuracy on the data logger is 1,53 mV, the accuracy on
1,53 my

39,590
of 2,4 Pa which is lower than the 7,5 Pa of the pressure gauge itself.

the [-measurement is = 0,039 mA, which in turn gives an accuracy on p

Of course pressure directly as a function of the measured voltage could be made,
but [ prefer a current-pressure relation that should hold also in case of a later
change in the load resistance. A somewhat annoying property or lag of property
of the instrument is that the current is only variable when the pressure
difference is positive, so there is only possibility of logging the pressure in the
positive interval, though pressures in the negative range can still be read of the
display.
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Figur 45. Establishment of the p-I relation of the pressure gauge. The
display readings for the steps in Pa are: 1026, 820, 627, 408, 158, 62, -317.
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Figur 46. Establishment of the p-I relation for the pressure gauge. The
display readings for for steps in Pa are: 1006, 973, 955, 836, 782, 774, 650,

621,613,607,92, -168. (fil: pressuregaugecalibration.cmbl)
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Linear Fit for: tryk | pressure
p = ml+b

m (Slope): 62.5 Pa/mA

b (Y-Intercept): -249.4 Pa
Correlation: 1,000

RMSE: 0.3409 Pa
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Figur 47. Linear regression of the means of the steps shown on the
previous figures. Only points with pressures in the range [60 Pa, 960 Pa] is
included in the regression. (fil: pressuregaugecalibration.cmbl)

Dimensions of the setup

We need a precise measurement of the main volume, Vu, in which the air is
trapped, that is the full volume of the extraction chamber, Ve, the connection
tubes and the inner volume of the pressure gauge, Vi, (see diagram). Further
we need the measure off an appendix volume, Vapp, needed under certain
circumstances. The dimension of the extraction chamber was thought to be as
small as possible, that is, to fit an ice sample with the smallest possible excess
space. This will give the highest possible pressure to measure from the trapped
air and following the smallest uncertainty on the measurement. As the ice
samples was considered to be cubes with side length 3 cm, it was decided that
the inner dimension of the extraction chamber should be 32mm x 32mm x
32mm = 32,768 cm? to fit the ice samples. The actual volume can be estimated to
be a bit smaller than this for two reasons: 1) On the floor of the chamber there
are soldered 3 small spikes, on which the ice sample can rest, to avoid trapping
laboratory air beneath the ice, and 2) the corners are rounded. The first estimate
of the volume is therefore 32 cm3 at room temperature. Further we must correct
this volume for contraction of aluminium when it is cooled to minus 30 degrees.
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The thermal expansion coefficient for aluminium is 2,3-10-> K-1. It follows that an
aluminium box of 32,768 cm3 at 25 °C will shrink with 0,12 cm3 when cooled to -
30°C. Since the precise calibration of the volume is conducted at room
temperature this correction must be applied when measurements are conducted
at-30°C.

The tubes are %" stainless steel; their inner diameter is 5,3 mm which gives
them an inner volume of 0,22 cm3/cm. A first and not very accurate measure
give that 64 cm tube connects the extraction chamber and the pressure gauge,
thatis 14,1 cm3. Thereto come the dead volumes of the pressure gauge and the
valves which could be a few cm3. A first estimate of the volume Vy is therefore
close to 50 cm3. Further calibration as shown in the following gives though Vv=
60,52 cm? indicating that the inner volume in the pressure gauge was larger
than expected. To match the accuracy of the pressure gauge (0,075%), the
volume Vv should be estimated with an accuracy of 0,05 cm3

Valve corrections

All valves are hand operated bellow valves. The valves are closed by screwing
the bellow into the inner space. This diminishes the inner volume. In a
measurement with air trapped in Vu the pressure increased from pi1= 2335 Pa to
p2= 2337 Pa when a valve in the system was closed. Let the volume difference on
open and closed be V. Then p:1Vi=p2(Vm- 6V). Hence

6V=(1—§—:)VM

In this case §V=0,0856% of Vu. That is 0,052 cm3, which must be considered as a
correction every time a valve is closed in a closed system.

Leak corrections

It is not easy to build a completely leak tight set up. After this setup was built
small leaks different places were detected and some tubes and connection had
to be shifted. Before measurements the ice samples must be left 4 hours in the
evacuated Vex, melting and refreezing, and it is important that leaks cause
minimal errors. In the end acceptably small leaks survived in the system and
their sizes were estimated by evacuating the whole system for 22 hours, closing
all valves, leaving it for 25,5 hours and finally open valves and evacuating the
different volumes one by one keeping track of the pressure change. Following
pressure rises were detected:
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Vieg: 1 Pa
Veenter: 0 Pa
Vpos: 5 Pa
Vapp: 0 Pa
Vex: 15 Pa

Especially Vapp and Vey1 has proven to be very leak tight and even left closed for
more than a week, no pressure was measure in these volumes.

The only leak that must be corrected for is the leak in Ve, that gives rise to a
pressure increase of 0,59 Pa/hour. For all samples the time from closing valve 7
to the pressure measurements must be noted and the partial pressure from the
intruded air subtracted. Since the test was done in room temperature the partial
pressure would be lower when Ve is cooled to -35°C. On the other hand the ice
sample reduces the air space in Ve giving the leak air intrusion a higher partial
pressure. From (eq 13) the proper correction would be in the range

0,59 to 0,79 Pa/hour for the size of ice used. I will choose to correct all
measurement with 0,7 Pa/hour. That is usually not much more than a correction
of 2 Pa on a sample measurement which is less than 0,3% even for the smallest
ice samples worked with.

The leaks in Vpos and Vieg are negligible; Vpos can be evacuated right until the
pressure measurement. The measurement itself takes 5 minutes and leaks can
be neglected during this short time space.

Volume calibration

To measure or calibrate the volume, Vu, with highest possible accuracy, I follow
a method from (Lipenkov, 1995). Another and larger volume, V., is fabricated
(a steel cylinder), so that we have to unknown volumes Vv and V1. The 2
volumes are connected with valve2. Then Vu is filled with dry air to ambient
pressure, pa, while V¢ are evacuated. Now p,V,, = nRT. Then the valve is
opened, the air is expanded to fill out the complete volume Vu+Vcy1 and the
pressure, p, is measured. Assuming that the temperature is constant, we have
PaVu = p(VM + chz)- Since there is two unknown in this equation it only gives
the relation between the two volumes - not the exact values. We need at least
one more equation. To that end we do the same measurement again, but now
with a steel ball inside the extraction cell. If the volume of the ball is B; we have
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Pa(Vy — By) = P(VM —B; + chl) (eq 11)

eq11

Now we get an exact solution of Vm and V. Even more measurements with balls
of different sizes, B1, B2, ... can be introduced in further measurements to refine
the calibration of V.

The extraction chamber as well as the calibration cylinder was fabricated in the
institute workshop.

The pressure gauge sets a limit on the measure range since its ranges is +1200
Pa. Therefore the calibration cylinder must have a volume that gives pressures
in this range when air at atmospheric pressure (970 hPa to 1050 hPa was
considered as a possible range for atmospheric pressure) in the extraction cell is
expanded into the cylinder.

From the size of the extraction cell plus the estimated volume of the connection
tubes, it was estimated, that the calibration cylinder volume had to be around
2700 cm3 in order to do the calibration procedure as described. Finally the
cylinder has height = 34 cm and diameter = 10 cm, which gives the volume 2669
cm3 (or between 2617 cm3 and 2727 cm3 if [ assume an uncertainty on the
diameter of 1 mm). The rest of V2 constitutes of approximately 64 cm tubes ~ 14
cm?3 + dead volumes in valves. So the first estimate of V; is about 2685 * 70 cm?3.
This gives expected pressure measurements in the range 0 hPa < p <19 hPa,
during the described calibration procedure, which is in the range of the pressure

gauge.

Dry air for the calibration is made by drying laboratory air. (see figure) The air is
taken through a filter (0,5pm) and down in a tube folded to a coil. Coil and filter
is placed in a Dewar with liquid nitrogen in the bottom covering the coil but not
the filter. The tube proceeds up through the dewar lid, forms another coil
outside and ends in the line connected to Vi by valve 5. When valve 5 is open air
is sucked through the filter - [ assume that this air consists mainly of evaporated
N2 with a low vapour content - cooled in the coil and condensing its vapour,
leaving the dewar almost dry, heated in the coil outside the dewar to room
temperature and going into Vu. Valve 5 is only slightly opened, so it takes
several minutes to fill Vu. The air is then moving in very slowly, so it is assumed
that it has been cooled to -196°C in the dewar and attained room temperature
again before entering Vm. Another concern was that a too fast air stream could
bring ice crystals suspended in the air with it into Vu. Between experiments air
is sucked through the system (only through volumes Vg and Vp) with the coil
removed from the Dewar to get rid of ice formed in the coil.
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The ambient pressure was at first estimated by taken the sea level pressure at
Kastrup Airport 10 km away, which is accessible and updated every 10’th
minute on the DMI homepage; from this pressure was subtracted 300 Pa (since
the CIC matrikel is located 12,5 meter above sea level and the laboratory is 10-
12 meter above the ground). To this pressure estimate there was some
misbelief: air condition in the laboratory would change the pressure in the room
as well as draft in the building and wind gusts could make rapid variations; as
the air in V1 is sealed the second valve 5 is closed, the 10-minutes mean pressure
could be erratic to use. The scale of rapid pressure variations in the room was
tested by trapping air at room pressure in Vyeg and letting valve 5 be open;
during 2 minutes there was pressure fluctuations in the range 15 Pa. To get rid
of these pressure worries, we borrowed a very precise (with resolution 1Pa and
accuracy 10 Pa), electronic Vaisala barometer from DMI, which is read of in the
same moment valve 5 is closed.

Also when valve 5 to the dry air inlet is closed the pressure rises. When it is
open the pressure in Vy is assumed to be in equilibrium with the ambient
pressure in the laboratory. [ have closed and opened it several times and seen,
that when it is closed the pressure in Vu rises with a value in the range 12 Pa to
30 Pa. (30 Pa when the valve is closed quickly and with 12 Pa when it is closed
slowly.) This can only be measured when the pressure in Vieg is atmospheric,
and therefore not in actual measurements. I must then close the valve slowly
assume that a correction of 12 Pa should be added.

3 steel balls are used, Bis, B2o, and B2s with industrial standard sizes for the
diameters 15 mm, 20 mm and 25 mm. The extraction cell can contain Bis and Bzs
at the same time. This allows for 6 different measurements: with empty
extraction chamber, or with the chamber containing B1s, B2o, B2s, Bis+B2o or
B1s+B2s. The result is seen in Figur 48: the lines intersecting in one point
defining the two unknown volumes. Since in the first attempts to calibrate the
volumes the intersecting point was not exactly so sharp defined as wanted, I
thought it could be caused by errors in the ball sizes. The balls were measured
with a millimetre screw to give the same sizes with accuracy 0,0025 mm. Also
they were weighed and the density is calculated according to the standard sizes.
There exists different kinds of steel with different densities; the producer
description of these balls did not inform the density, but [ assume that their
actual density are very similar so that a deviance in densities would reveal that
some volumes deviate from their standard size. The ball volumes is thus
described as B = B + b, where B is the standard volume and b is the apriori
unknown deviance which is assumed to be limited as shown in Tabel 4.
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Ball Diameter _ Volume (cm3) Mass density

(mm) B limits for b (g) (g/cm3)
Bis 15+0,0025 1,7671 +0,00088 13,785 7.8007
B2o 20+£0,0025 4,1888 +0,0016 32,643 7,7929
Bas 25+0,0025 8,1812 +0,0025 63,796 7,7978

Tabel 4. Properties of steel balls use for volume calibration.

(eq 11) then takes the form
pa(VM - B - b) = p(VM —B-b+ chl)

or

VM - b - AVC)/'[ == B (eq 12)

eq12

p

Pa—D

combinations of balls we get an over determined system of 6 equations with the
5 unknown volumes (Vw, Ve, b1s, b2o ,bzs):

where A = comes from pressure measurements. With different

( Vuy —0—-A1V =0

Vy — bys — AZchl = BTs

Vi — byo — AsVy = B?o

Vy — bas — A4chl = B’;S
Vi — (b1s + byg) — AsVey = Bis + By
\ Vi — (b1s + bys) — AgVey = Bis + Bys

To check the reproducibility more than one measurement with each of these
combinations are conducted. 14 independent measurements are shown on Figur
48. Zooming in on the intersecting point (Figur 49) we see that Vm is 60 to 61
cm3, but from the graph it is not possible to estimate it with the wanted
precision of 0,05 cm3. Two of the lines deviate particular from the others and
these two measurements are assumed to be erratic and will not be included in
the volume estimation. Error intervals on one experiment are shown with
dashed lines. They are calculated by assuming a precision of 30 Pa on the
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ambient pressure, p,, (10 Pa for the pressure gauge, 10 Pa for the correction on
valve closing, and 10 Pa for pressure fluctuations in the room or height
correction), and a precision of 7 Pa on the secondary measurement, p. It must be
noticed that the error is mainly caused by the 7 Pa on p equivalating a relative
precision of

circa 7 Pa/2000 Pa=0,35%, whereas the relative precision on the ambient
pressure is circa 30 Pa/1000 hPa =0,03%. It is seen that with the given errors
the 2 deviating lines must be excluded as erratic, and the rest is confined in the
error intervals (not shown but having the same size as the one shown).
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Figur 48. Calibration of two volumes defined by the intersecting point of
the lines from 14 independent measurements. The intersection with V=0
shows the composite volume of the steel balls.
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Figur 49. Calibrating Vm (and V1) - zooming in on the intersecting point in

Figur 48. The intersecting point cannot be read of directly with desired

precision. A RMS solution gives Vu=60,52 cm3.

A RMS solution for the equation system and the 14 measurements gives:
VM=60,52 cm3

Vey1=2610,2 cm3

b1=0,00088 cm?

b2=-0,0016 cm?

b3=0,0025 cm?

This indicates that standard sizes for B1 and B3 are underestimated and B2 is
overestimated. The densities that follows is

7,7968 7,7959 and 7,7955 closer to each other than the values calculated from
the standard sizes, which makes these ball correction plausible.

The error on Vu is taken as the span for V¢;1=2610,2 cm3 (0,2 cm3) for the 14

0,2cm?3

V14

measurements = 0,05 cm3 as desired.

Appendix Volume and additional calibration

For ice samples of 27 cm3 as intended, the released air will induce a pressure out
of our pressure gauge range (up to 3 times). To this problem we can think of 3
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solutions: 1) we can gradually trap a sufficient amount of air in Vpeg - fx first fill
Vheg to -1000 Pa, then fill V05 to +1000 Pa (then the pressure is 2000 Pa in Vyos),
then fill Vieg to -1000 Pa (then p= 3000 Pa in Vy.eg) and so on until p=5000 Pa in
Vheg- This of course gives risk of errors every time we fill, and it is not only
annoying not to be able to measure the pressure fx when we evacuate Vex with
ice sample inside, it is also impossible to detect pressure changes in Vyez due to
temperature changes - the higher pressure in Vieg the bigger error will follow in
the measurement with the same relative pressure change in Vyeg. Consequently
this method will only be used as a last alternative 2) We will only measure on
sufficiently small ice samples. This has the drawback that the smaller amount of
released air gives a relatively smaller accuracy, and further the cut bubble effect
will be relatively larger with possibly larger errors. 3) Therefore we have got
and appendix volume, Vapp, produce. This volume is connected to Vv and can be
select on or off by a valve. This volume is calibrated by filling dry air into
Vapp+Viwb to a measurable pressure, p1, closing valve 5, evacuating Vv, opening
valve 5 and expanding the air into Vu and measure the pressure, p2, again. This
gives (for constant temperature during the process), that V;, = (z—: — 1) Vapp- 12
measurements of this scheme were made with different content of calibration
balls in Vex (Figur 50). This could also be used as calibration of Vu but the
uncertainty would be higher than the calibration above, and it is seen (Figur 50),
that Vm would be slightly smaller than found from the calibration above. Instead
we take the found Vu=60,52 cm? to calculate Vapp (Figur 51). From the 12
measurements we get:

Vapp = 118,28 £ 0,07 cm3 given Vu = 60,52 cm?
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Figur 50. Calibration of Vapp (and Vum). 12 independent measurements.
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Figur 51. Calibration of V,pp given Vu=60,52 cm?.
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Calibration of V.,

Vw is partitioned in Vex + Vwp. These volumes are calibrated by trapping air in Vy,
reading the pressure, closing valve7 (preserving the pressure in V), evacuating
Vb, and expanding the in Ve trapped air into V. We then get the ratio Vex/Vw.
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Figur 52. Calibrating Vex/Vwm. Error bars indicate 2 Pa on the pressure
difference between the 2 pressure measurements.

12 independent of these experiments gives mean Vex/Vum = 0,5861 and %

V12
=0,00015.
That gives Vex = (60,52+0,05) cm3 - (0,5861+0,00015) = 35,47 cm3 +0,04 cm?.

Finally we have:
Veun = (1= 72) Vyy = (1 - 0,5861 £ 0,00015)(60,52 % 0,05 cm?)

Vm

= 25,05+ 0,03 cm3.
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Summarizing the calibrated volumes needed for measurements

Volume Size (cm?) Accuracy (cm?)
Vm 60,52 +0,05
Vex 35,47 (-0,12 at -30°C) +0,04
Viub 25,05 +0,03
Vapp 118,28 +0,07

Tabel 5. Calibrated volumes

Measurements on air contained in a volume with variable temperature
When actual measurements are done with refrozen ice in Vex we must consider
the volume of the refrozen ice, Vic, and its deprived air is confined in the volume
Vex"'Vtub, where Vex = Vex-Vice.

By measuring the temperature and pressure to calculate the amount of trapped
air, we can safely assume that the pressure is constant through the whole
volume, but we must deal with the complication, that the temperature varies
across the total volume Vex+Veub. We have two temperature sensors attached to
Vex and two sensors on V. Further we can determine the temperature inside
Vex by the vapour pressure. The simplest concept would be to assume the
temperature constant in each volume taking the mean of the two sensors on
each, or maybe only take the upper sensor on Vex in account, since that is where
the air is. The assumption of two separate air masses with homogenous
temperatures is not unreasonable, if we consider what happens with the air: It is
first contained in Vex, cooled to -30°C and thereby drought. Then the valve
connecting Vex and Vb are opened; preferably the valve are just slightly opened
— which can be done with some fingerspitzengefiihlen - so the air expands
slowly (that could be a couple of minutes) into V. In Vi it expands, cools
adiabatically, but quickly heats up by contact with the tube walls. [ assume that
the flow is turbulent enough in the process of filling the tubes, so contact with
the walls will quickly bring the air in temperature equilibrium with the
surrounding tube. I assume that the flow from Vex will prevent any heated air in
Vb to go back into Vex and mix with the remaining air - this could bring air
warmer than -30°C in contact with the refrozen ice and thereby raise the vapour
pressure unestimately. Further [ assume, that when the expansion is complete
and pressure equilibrium in Vex +Vup is attended (pressure=p) no mixing of air
between Vex and Vb is going on during the measurement; since the warm air is
located above the cold air the conditions should be very stable in this sense.
Finally [ will make a small correction to the volume division. Since the valve for
practical purposes cannot be wrapped in isolation material as the extraction cell,
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a small piece of tube below the valve, 8V, will belong to the high temperature
part; thus we have Vu=Vcoia+Vwarm., where Veoia = Vex = 8V, and Viarm = Veup+ 8V.
The number of mole of trapped air molecules, n, is divided so n=ncola+nwarm, and
the fraction ncold/Nwarm is proportional to Tewup/Tex.

] Pressure

Vcold

Teolda  Meold

Refrozen ice
Bubble free

Figur 53. Conceptual sketch of 2-airmass-assumption.

When pressure, p, is in equilibrium, it follows that

p(Vex - 5V) = Nco1aRTex
p(Vtub + 6V) = NyarmRTeup

and hence

_ nRkR
- Vex — 4oV Viup + 6V
( )/Tex + Wi + 8V) fr (eq 13)

p

eq13
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We test (eq 13) with dry air in Vv, empty extraction cell, and open valve 7. The
cell is cooled to -30°C, while pressure and temperatures are logged - (see Figur
54).
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Figur 54. Cooling dry air in the empty cell. Above: pressure (red line: auto
logging, blue marks are display readings pedantic pencil noted during the
experiment). Below: Temperature on top of the cell, Tex, (blue, left scale)
and on pressure gauge, Twn, (green, right scale).

We isolate n in (eq 13) and assume to get a constant value independent of time.
Calculations of n throughout the experiment is shown on Figur 55 for 3 different
values of 8V. It is seen that for §V=-3 cm3, we get a relatively constant calculation
of n, where as for §V=0 or §V=-6cm3, we get a deviance that grows to 1% as the
cell is cooled from +20°C to -30°C. Thus the volume correction is important.
Further it is seen that when the temperature rises after 90 minutes (the ciller is
turned off) the calculation of n jumps, probably because the cell is heating
quickest from the bottom and the air inside is warmer than the outside lid of the
cell and the temperature sensor; this indicates that it is important to keep a
stable temperature for several minutes before real measurements.

To select a precise value for 8V, we show a spectre of 6V in the interval

[-2 cm?3; -4 cm3] (Figur 56). The best value is §V=-3,0 cm3 for which (eq 13)
gives n=57,00-10-¢ mole for both +20°C and -30°C. During the whole cooling
history the n-calculation deviate less than 0,08% from this. The deviation could
well be caused by the lag time in temperature equilibrium.
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Figur 55. Calculation of air molecules in the system from the dry air
experiment (Figur 54).
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Figur 56. With 8V=3,0 cm3, (eq 13) gives a stable measure of the air content
in Vu while Vex is cooled from +20°C to -30°C.

It was the intention to do more dry air experiments of this kind with steel balls
in the extraction cell to reduce the volume simulating refrozen ice, to see if (eq
13) would still hold, but the time went.

From this we can consider the expected pressure range during ice sample
measurements. (Lipenkov 1995) found air contents in the range 0,087 to 0,117
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cm3 (STP)/gice. Thatis 3,57-10-% to 4,80 -10-° mole/g. The density of refrozen
ice is 0,9200 g/cm?3 at -30°C (according to www.engineeringtoolbox.com), so
every cm3 of refrozen ice has released

3,88:10¢ to 5,22-10-¢ mole air. Regarding the range of the pressure gauge the
preferable pressure would be in the range 1500 Pa to 2000 Pa. For a sample that
in refrozen form has the volume Vice = 9 cm3 (near 1/3 of the extraction
chamber) and assuming Twp=25°C the pressure formula above (eq 13) gives
pressures in the range 1487 Pa to 2001 Pa. To that we must add the saturated
vapor pressure over ice at -30°C which is 38 Pa. Ice samples much bigger than
1/3 of the chamber volume will give pressures out of the gauge range. As the
initial intention was samples of 3 cm? x 3 cm3 x 3 cm? (that was before we
bought the pressure gauge - eventually it could be substituted with antother
gauge with wider range) we have let an extra chamber of 50 cm3 fabricate; this
can be connected to Vwp and thereby give pressures in the proper range in case
of bigger samples.

A schedule for measurements should be: 1) measure the pressure for the
released air. 2) Evacuate Vy, close valve 4 and measure the vapor pressure while
keeping same temperature in both measurements. Then the correction for vapor
pressure can be done as a direct measurement.

Summarize of calculations
For measured mice, Tex, Ttub, p, We use (from eq 13)

Mice
Vex -

4
ice N Viup + 6V

b
n=-—
R Tex Ttub (eq 14)

eq 14

where p is corrected for vapour pressure. We can use (eq 9) to find n from n or
measure two times. The air content, n/mic., can then be given in mole/g ice or

alternatively in the unit cm? air (STP)/g ice which is related to the first as:
V=" 273K

Mice 1013 hPa

- 107° (where mic is in g).
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Ice core measurements

Figur 57. A piece of ice core has just entered the extraction cell in the
freezer.

10 ice samples have been measured. The samples were from Eurocore near
GRIP from a depth of 220 m. A piece of circa 20 cm was cut into 15 pieces of
rectangular but different sizes. All pieces were weighed and their side lengths
were measured for surface area determination. The pieces were kept in the CIC
freezer. The schedule for the single measurements was as following:

The day before the measurement the extraction cell was brought to the freezer,
so it was cooled to -15°C when the sample was put in. The cell was hermetic
closed in the freezer and then brought to the laboratory in a polystyrene box.
The transport must be done quick and careful - to slow and premature melting
can release air bubble; on the other hand, if one runs up the stairs the sample
can rattle inside the cell, edges can break and release air as well.

In the laboratory the chiller was on the forehand cooled down, the cell was put
on and connected to the line. The cell was evacuated for 15 minutes, then valve 7
was closed, and the extraction procedure conducted. Temperatures on the cell
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have always shown to be well below 0°C while evacuation took place. The
heating wire enhanced the melting process after evacuation. Cooling was
continued until a constant temperature was reached (Figur 59). The
temperature sensors were unplugged for a minute. Valve 7 was opened to led
the extracted air out; it was preferably opened as slightly as possible and the air
sieved slowly out in circa %2 minute, and the pressure was measured.
Temperature sensors were plugged in again and the initial temperature taken to
avoid the internal heating problem (Figur 58). The whole main volume was
evacuated for 5 minutes and pressure and temperature was measured again.
This is expected to give the measure of the saturated vapour pressure over ice at
the given temperature, and is used:

For the first to correct the air measurement for vapour pressure.

For the second it is used to calculate the temperature (assuming that the air is
100% saturated) as an alternative to the temperature measurement (Figur 58).

T (Callendar) on extraction cell. Bottom (red) and Top (blug)
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341 -
[22) .----""—_——-_
2
% 35+ .
[0
(&
36 .
37 . . . . .
0 5 10 15 20 25 30
seconds
T (Callendar) on tube-cross (green) and pressure gauge (black)
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Figur 58. Temperatures during pressure measurements. Above:
temperatures on extraction cell and from the 5 minutes later measured
saturated vapour pressure calculated temperature (dashed). Given an
accuracy of 1 Pa on the saturated vapour pressure, the error on the here
from calculated temperature is +0,5°C. Bottom: temperatures on tubes and
pressure gauge. The sensors were connected in the moment the
measuremet was taken. 2 sensors are significantly affected by internal
heating.
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During the measurements 2 of the temperature sensors (1 on the bottom of the
cell and 3 on the tubes) showed to be affected by internal heating (Figur 58).
Further sensor 1 showed to be drifting. I had difficulties with fasten them tightly
enough to the cell and tube and have moved and replaced them in between some
of the measurements. On the other hand the 2 other sensors seemed to be stable
so [ will rely only on these two for the air content determination. Sensor 4 on the
pressure gauge was usually close to the reading of a quicksilver thermometer
placed near by. Sensor 2 on the top of the cell is compared to the temperature
deducted from the measurement of vapour pressure on (Figur 61) on the 21
measurements of vapour pressure. In the given temperature range the to
temperature estimates deviate in mean 1,0°C with a low spread. This shows at
least that both measures are quiet stable. A priori the pt1000 sensor has a high
precision but a low accuracy (since it is not calibrated properly). On the opposite
the vapour pressure derived temperature has good accuracy but a lower
precision. I will rely on the vapour pressure derived temperature, then, since the
pt1000 sensor is not properly calibrated. This could even be a way to calibrate it.
Even with a well-calibrated pt1000 sensor the vapour pressure could provide a
better estimate for the temperature inside the cell since it probably differ
(though not much) from the outside. Assuming an accuracy of +1 Pa on the
vapour pressure we have a temperature measure with an accuracy of £0,3°C at -
32°C decreasing to +0,55°C at -38°C.
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y = 0,9053x - 2,478 %
R2 = 0,95745

T calculated from vapour pressure (°C)

-40 39 738 -37 -36 35 -34 33

T from pt1000-sensor on extraction cell (°C)

Figur 61. Temperature estimation in the extraction cell from 21
measurements done with the pt1000-sensor and by calculating the
temperature from the measurement of saturated vapour pressure. The
error bars correspond to the error from +1 Pa on the pressure
measurement giving errors of +0,55°C near -38°C and +0,3°C near -32°C.
The calculated T consequently gives a lower value than the measured with
a mean of -1,0°C. The dashed line (y=x) shows the expected calculated T if
the measurement gave the correct T inside the cell.

For the problem of dissolved air 7 of the samples were re-melted /re-frozen/re-
measured a second time (Figur 60), to extract remnant air and see if it fit the
conjecture (eq 9). 4 samples were further measured a third time - then it would
be expected no air measurable air was left. The test of extracting remnant air
this way is shown on (Figur 62).

First it is noted that 4 of the second extractions gave more air than was expected
possible to dissolve. Possibly are the values of Henry constants for 02 and N2 to
small (a range can be found on Google, which shows that it is difficult to do
experiments establishing such constants.) Another explanation could be that
some of the degassed air forms small bubbles that stick to the sides of the cell.
This phenomenon is observed every day in half emptied glasses of tap water
that has heated up to room temperature. A possible method to overcome the
problem could be to boil the sample before refreezing; on the other hand it is
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preferable not to expose the extraction cell to too big temperature changes,
which could cause leaks as the steel and aluminium parts respond different to
this. (Lipenkov, 1995) had good experiences with immersing his extraction cell
in an ultrasonic bath a 50°C to avoid bubbles.
2 of the 4 third time extraction clearly gave a higher measure than supposed. |
must ask myself if the leak was underestimated (see Leak corrections), since
more of the second extractions as well give more air than expected, and for the
third extraction the sample has always been left overnight in the cell. Especially
the leftmost in the diagram is strange since the second extraction gave almost no
air from it, but the third gave more. On the other hand it does not look too bad.
Most of the second extractions deviate less than 0,5 per cent points from blue
line. For the small samples near 5 g the first pressure measurements are circa
750 Pa, so for the next extraction I expect to measure 3 Pa (to hit the blue line),
and with an accuracy > 1 Pa this would of course give an significant spread
around the line.
For the air content determination [ must do something consequently and I
decide to use the sum of the first to extractions for the 7 samples and for the 3
only once extracted I add a correction corresponding to the blue line. I will then
assume an uncertainty of 0,5% for the question of dissolved air.

2,5

1,5

dissolved air / free air (%)

0,5

4‘5‘6‘7I8|9l1I()l1I1|12‘13I14I15|16|17
sample size (9)

Figur 62. 7 samples were measured 2 times (green diamonds) and 4 were

further measured a third time (orange x). According to the assumption the

green diamonds should lie in the space between the lines and the orange

crosses should sprout negligibly from them.
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Estimate of the air content

We calculate the air content of each sample from (eq 14) and either sum two
sequent extractions or correct for extracted air by (eq 9) assuming T=0°C.
Assuming that the ice the samples are taken from has a homogenous air content
per mass, n/m=ci. But the samples have different surface areas, A;, and we have
cut a number of bubbles proportional to A; thereby lost some of the air. That is
for a given sample

n; = cym; — C4;

or
n; _ Ai
m; AT m; (eq 15)
eq 15
or
SR A
(T 1013 hPam, = ‘my

where Vi is the measured air content and V* is the real air content in STP cm3/g.
: : : A _—
We assume to find a linear relation between V; and # that will give VV*. The 10
i

samples are shown on (Figur 63).

Individual errors on all measurements

The error bars on the i—ii-axis is taken by assuming an accuracy of #1 mm on the
sides of the samples; uncertainty on m is neglected.

For the error on the single measurements M; = ::l—‘l [ use the propagation of error
formula on eq 9 divided by m. That is

Vex B Pice —ov + VtUb + 6V

n
m mR T,, Tiup

m

Let s denote the error on the different parameters, then the error on the single
measurement M; is given by:
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(I have omitted the index i above for clarity). The partial derivatives have
pedantically been derived, but I shall omit the expressions here.
To this error I add an error of 0,5% of M for the dissolved air uncertainty:

and

For the samples that

SM* =Su + 0,0SM

_ R-273K
v = 1013 hPa M

were extracted twice I calculated error on each and

summed them for the final error.
By first glance it can be hard to see what causes biggest uncertainty. The whole
expression was put in a spreadsheet, where I can study the influence from the
error on the individual parameters changing them one by one, either setting

them to zero or raise

them to an over number.

89
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Figur 63. Determination of the air content in the 10 samples. Full line:
linear regression of all samples. Dashed line: linear regression of green
samples.

The errors on the volumes are given in (Tabel 5). These errors give a minor
contribution to the complete errors.

On the mass [ have taken s»=0,1 g. The samples were weighed on an apparatus
that gave the weigh in g with 2 digits; [ had carefully horizontalised it, and it
should be very precise, but the reading was not complete stable; I would need a
chamber to put above it to avoid draft. The mass error has a pregnant influence
on the smallest samples (in the right end) with masses near 5 g, but it hardly
influences the largest samples (left side) near 17 g.

The error on the temperatures is set to 0,5°C. Initially [ wanted an accuracy of
0,1°C, but as the problems of sensor calibration and stability arose, I must
realize it has been higher. Though the temperature error hardly has any effect
on the complete error even if I raise it to 1 °C.

The error on pressure is set to 7 Pa. Actually [ regard the accuracy on single
pressure measurements as better. For example the 21 vapour pressure
measurements in the range 16 to 30 Pa seems to be consistent with temperature
(Figur 61). Often I have seen the pressure rise by one Pa when closing a valve,
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and it is amazing to imagine how this sensitivity is possible. Then there are the
two measurements from two extractions each with a possible error, and the leak
correction with a possible error. [ would like to say, that each of these 3 terms is
+1 Pa summing to #3 Pa, but as given from the producer [ will say +7 Pa. The
contribution of this is slightly lower than the composite error of +0,1g on m and
+0,5°Con T.

The main contributor to the error on the biggest sample is the dissolved air
error of 0,05%. On the small samples this error does not make a big impact.

As seen on (Figur 63) the 10 measurements do not provide the linear relation
(eq 15) to a degree where a line can be fit within the errors from the single
measurements. The regression line divides the points in a low and a high group.
From this we must suspect that either the ice was not homogenous or some
measurements have been affected by errors not taken into account. The
question would be weather these errors have contributed positively or
negatively to the air content. Leaks would contribute positively and premature
melting, or damaging of the ice samples during sawing or transport to the
laboratory would contribute negatively. One sample that surely is erratic is the
one marked with red on Figur 63; it was the first sample that was measured.
After the measurement the cell was opened and air bubble could be seen in the
refrozen ice (Figur 65). I expect the reason was a piece of ice survived the
melting; the maximum temperature had been 10°C. In later experiments [ got in
the habit of heating the cell to 20°C for the melting. Since we must assume that
this measurement is underestimated one could suspect that 3 other samples in
the low end are also underestimated for some unknown reasons. For the
remnant 6 samples (green on Figur 63) it is possible to make a linear fit. Of
course linear regression in this case must be criticized: the points are not
normal distributed, the points on the right side get an over weight. Further the
accuracies are different. Somehow I would like to make a fit that gave the most
precise measurements the highest weight.

The most accurate measurement (left most) had sides 3,0 cm x 2,9 cm x 2,2 cm
and weighed 16,87 g. It was by the way the only sample where Vapp, had to be
added to keep the pressure down. There is room for even larger samples in the
cell and it would be interesting to have some measurements of samples as big as
possible, which would have the best accuracy.

Correction for the cut bubble effect
Nevertheless we cannot deny there is a slope. Assume it is, as the regression
says, c=-0,0021cm?/g. That says for every cm? surface 0,0021cm? air is lost due
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to bubble cutting. Assume the bubbles are spherical and divided into halves by
the cut. That is equivalent to:

for each cm? there is:

two bubbles of diameter 1,6 mm

or 8 bubbles of each 1,0 mm in diameter

or 66 bubbles of 0,5mm in diameter.

It would be interesting to study the size and density of the bubbles.
(Lipenkov,1995) says that for samples of 25 g the ‘cut-bubble effect’ is 10% near
the close off and 1% deep in the ice, and that it can be estimated from the size
and shape of the bubbles.

We correct all measurements for the air lost by cut bubbles, that is we add ¢ A—i_

m;

to the measurements. We must then add c:sa/m to the errors on V*.

Air content corrected for cut bubbles
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0,098
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0,088
Figur 64. The cut bubble corrected measurements compared with
(Raynaud, 1997) to the right: Green triangle ~ Eurocore 160 m depth.
Violet square ~ present day at GRIP site. Blue circle ~ last millennium
mean and the variation over Holocene marked as shade.

On Figur 64 the samples are sorted after bubble corrected air content. It looks
again like the samples fall in two categories: one with mean V* = 0,091 cm?3/g
and another with mean V* = 0,097 cm3/g. The overall mean is:
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V*=0,094 STP cm3/g but with no samples in the interval 0,092 to 0,096 cm3/g,
though the error have now grown.

Comparing with Raynaud is also shown on Figur 64:

(Raynaud,1997) says:

Eurocore 160 below surface: V=0,091 cm®/g

Present day conditions at GRIP: V=0,092 - 0,093 cm’/g
(calculated from an empiric temperature-air content
relation)

Mean for last millennia at GRIP: V=0,090 - 0,091 cm’/g
with measurements in the range 0,085 to 0,095 cm’/g.

For the 4 samples with lowest content the agreement with Raynaud very
satisfactory (I belive though, that the red coloured sample would be amid the
highest group if all air had been extracted). The remnant 6 gives though a higher
value than we would expect. The one with highest content actually is an
impressive Olympic record of air content ever measured in Holocene ice at GRIP.
The mean of all 10 samples is as well a bit over the expectation.

Figur 65. The first saple after the measurement. Not all air was extracted,;
in the centre air bubbles are seen.
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Figur 66. The -30°C cell is opened after 3 successive extractions. Ice
stalagmites had grown vertical upwards from the extracted ice surface
(seen on the right and bottom) - a visible proof of the importance of drying
the air. The cracks radiating from the centre is formed when the
aluminium cell contracts and squeezes the ice under the low temperatures.

Possible explanations for the deviation from Raynaud

Why do 6 samples deviate from the expectation? Was it caused by measurement
errors? | have thought of following:
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1) Maybe it can be taken seriously that the samples fall in two groups with
different air content. Sometimes strong winds can pack the firn and form
an ice layer that prematurely close off the firn below (Raynaud, 1997)
that following will get a higher air content than the surrounding ice. It is
not impossible that the 6 samples are from such a layer, a signature of a
polar storm. Unfortunately I cannot reconstruct the adjacency of the
samples; the piece they were cut from was not slice from one end, but
irregular cut to get rid of a bad side and turned several times to collect all
useful pieces. | imagined that it was completely homogenous then, but
now it would be interesting to know the original position of the pieces.

2) I overestimate the cut bubble effect - with a lower slope on Figur 63 |
could get air content in the present day range 0,092 to 0,093 cm3/g. The 4
remnant samples would then be too low.

3) Leaks in the extraction cell. Since it is opened and moved in connection
with every measurement there is possibilities for not closing it totally the
same way every time. Further the many heating and cooling cycles could
damage the thread or the O-ring. But from the many second and third
extractions I can refuse that any serious leaks have taken place. They
would have been discovered in the second and third extractions, where
almost no dry air was in the cell for many hours.

4) Air degassing from the cell walls. | have often observed that I can pump
on the empty cell for several hours. When I close Vv there is a pressure - it
could be 5 Pa. I can evacuate again for a while but not get rid of this
pressure - it persists like a small background pressure. This same problem
does not happen for Vwb, which can be perfectly evacuated in few minutes.
It can take several days of constant pumping to get rid of this background
pressure. A have assumed that it is vapour slowly evaporating from small
culverts for example along the O-ring from where the molecules has a long
and narrow way into the inner cell. As long as it is only vapour it will
though not affect the ice measurements. But if it is also dry air it will have
an effect. It could even be that the aluminium walls has an absorptivity for
the air molecules. Every time a molecule hits the wall it will not rebound,
as assumed in the derivation of the gas equation, but is actually absorbed
in the wall while another molecule is expelled. For the evacuated cell there
will be an exponential decay in this molecule expelling causing this
observed background pressure. For the measurements I always evacuated
the cell for only 15 minutes; from then I checked there was a stable
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pressure - the saturated vapour pressure, before I closed V.. I think that
this degassing problem could not have such a big influence, but it could be
interesting to make a test measurement, where the cell was evacuated for
3 hours before melting of the sample. Though it must then be estimated or
measured how much of the sample sublimates.

5) Measurements are affected by a systematic error. If for example the
temperatures are consequently underestimated, I will overestimate the
air content. How much wrong should the temperatures be to explain the
disagreement? To test this [ add a constant to all temperatures and
recalculate the air content. To increase Tex can in no way bring the result
closer to Raynaud. Even if | change Tex to room temperature [ increase c
without much change in V* and a worse correlation. Namely the best
measurement done with Vypp is not much dependent of Tex since it only
applies 11% of the air space. Then I can try to add Twb. | must increase Trub
by 12°C I reach an air content of 0,0929 for the high samples and that with
a poorer correlation. That would be in agreement with Raynaud, but it is
impossible that that room temperature was wrong with 12°C, I have
measured between 22 -25°C for all 21 measurements. So, I can refuse that
the disagreement is caused by errors in temperature measurements.

Then I turn to the pressure measurement. I correct all pressures with
95%. The result is an air content of 0,092 cm3/g for the 6 high samples
and almost same cut bubble effect and correlation. A systematic
overestimation by 5% on all pressure measurements could explain the
difference. Actually, if | omit the calibration done in Calibration of the
pressure gauge the air content would be in better agreement with
Raynaud. But it is undeniable that the pressure gauge needed to be
calibrated as tests like that in Tabel 3 easily shows, and it is implausible
that the DMI-tested barometer should be that erratic. So I will say, that it is
not plausible that systematic errors in the pressure measurements causes
the deviance.

Could the volumes be overestimated? If [ reduce all volumes by 3% the
result is in good agreement with Raynaud. But Vu is calibrated in to
different ways, and from Figur 48 and Figur 50 it is clear that 3% error is
impossible. The volume calibration depends of course on the pressure
precision, but even the change that came following the pressure gauge
calibration only changed the volumes less than 0,5%.
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From the above considerations I cannot really explain the high spread in the
measurements with errors. If I could I would make a series of measurement on
samples with m>15 g, they have the lowest error as the sample on Figur 64 with
V*=0,096 + 0,001 cm3/g. To refer to the quick consideration in Effects of
variations in ice sheet elevation, this single measurement would determine the
close-off height with precision £74m.

To further reduce the error I would change the pt1000 sensors. They would not
stick to the cell wall and tubes. There exist a type incorporated in a thread. It
would be an improvement if they were screwed into the metal; they would
actually be closer to the air, and we would not have to speculate about a possible
temperature gradient across the cell wall. I would certainly have a sensor placed
on Vapp, and [ would have more sensors on V. Then I would make a proper
calibration and then establish a relation with saturated vapour pressure and see
if it would fit with (eq 1). Possibly I would use (eq 1) to calibrate the pt1000-
sensor. A further improvement would be working on the degassing from water;
either by finding a way to refreeze from the bottom slowly or experimenting
with boiling the sample. This actually causes bigger error than the temperature
problem right now for big samples. I would also study the effect mentioned in 4).
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Sample m (g) |dimension | Tex Ttub p A
(mmxmmx | (°C) (°C) (Pa) (STP
mm) cm?/g)

1 4,96 31x25x9 -35,8 24,1 701,4 0,0904

2 4,94 31x25x9 -35,4 22,3 748,5 0,0963

3 4,93 31x25x9 -34,9 23,5 743,6 0,0957

4 5,19 31x25x9 -33,4 24,3 762,3

4b -32,8 25,0 4,2 0,0922

4c -32,3 24,4 2,7

5 10,85 | 27x27x22 -36,3 22,6 1943,8

5b -35,3 22,8 17,2 0,0959

6 4,92 31x25x9 -35,8 22,6 753,1

6b -35,8 22,1 0,3 0,0970

6¢C -34,1 21,8 5,7

7+Vapp 16,87 | 30x29x22 -36,8 22,7 1005,0"

7b -35,8 23,5 73,5 0,0961

7c -35,8 22,5 6

8 11,09 | 29x22x22 -34,5 22,9 1875,1

8b -33,0 25,0 27,9 0,0898

9 6,01 29x29x9 -35,8 23,1 894,3

9b -36,3 22,2 9,1 0,0919

9c -37,8 22,1 -0,2

10 5,83 10x22x29 -36,3 22,1 949,1

10b -36,7 22,6 11,6 0,0992

Tabel 6. Measurements. b and c denotes second and third extraction. Tex is
derived from vapour pressure measurement. p is corrected for vapour
pressure and leak.

Suggestion for changes in the setup

- The pt1000 sensors should be changed to the thread types.

- The resistors should be changed with high quality temperature independent
resistors.
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- Another extraction cell with limpid plastic sides has been manufactured by
the workshop. Possibly slowly refreezing from the bottom will work with that (I
have not tested it).
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