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Introduction

The mass of the visible stars and gas in the Universe is not enough to explain
the observed gravitational effects. The missing non-luminous matter is called dark
matter and there are many candidates, among which the sterile neutrinos belong
to the better ones. Originally the sterile neutrinos were proposed as a dark mat-
ter candidate to solve the structure formation problems of the cold dark matter
scenario predicting an over abundance of small structures, such as dwarf galaxies,
in the Universe. It is a warm dark matter particle with a mass in the keV-range,
which apart from being a dark matter candidate also has provided solutions to
other problems: the masses of the active neutrinos, the baryon asymmetry of the
Universe, observed peculiar velocities of pulsars, synthesizing the early star forma-
tion, reionisation, etc. Sterile, or non-weakly interacting right handed neutrinos,
are a natural part of a minimally extended standard model of particle physics. If
the active neutrinos have a non-zero mass, as indicated by several atmospheric and
solar neutrino oscillation experiments, the sterile neutrinos will take part in the
neutrino oscillations, which allow for a radiative decay under emission of an X-ray
photon with energy of half the sterile neutrino mass. This renders it a testable
dark matter candidate. The probability of a decay is related to the amount of
oscillation with the active neutrinos, which is described by the mixing angle.

Chandra X-ray spectra of the flux received from dark matter dense regions such
as the outskirts of galaxy clusters and the halo of the Milky Way can be used in
a search for sterile neutrinos as dark matter. From these spectra the decay rate of
any dark matter particle with a radiative decay in X-ray can be constrained. By
comparison with theoretical models for sterile neutrinos more specific constraints
on the lifetime, mass and mixing angle of sterile neutrinos and a possible additional
entropy release after the production of the sterile neutrinos can be determined.

The structure of this report is as follows: In Sec. 1 a short introduction is given
to basic cosmology and its notation together with an introduction to the problem
of missing non-luminous gravitational sources called dark matter. In Sec. 2 the
standard model of particle physics is explained with focus on the neutrino sector
in order to present the sterile neutrino in the context of particle physics. To be
able to constrain the sterile neutrino we need to know how it behaved in the early
Universe which is the purpose of Sec. 3. At this point the theoretical stage is set,
and we are ready to look at X-ray observations in Sec. 4 and X-ray data analysis
in Sec. 5. Then in Sec. 6 several possibilities of where to point our X-ray telescopes
are considered to get the best view of the dark matter in order to find or constrain
the sterile neutrinos. The next four sections, Sec. 7 to Sec. 10, are a presentation of
the obtained spectra of the regions selected in Sec. 6. The resulting constraints are
presented in Sec. 11 and compared to other constraints on the sterile neutrinos in
Sec. 12. Just before the end a short comment on the future of sterile neutrinos and
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other dark matter candidates is given in Sec. 13. Finally the report is concluded
by a short summary in Sec. 14.

In the technical language of X-ray observations abbreviations and acronyms
are extensively used. They are explained when introduced, and can furthermore
be found in App. A.1.

A part of this work has been published in [1] which can be found in App. A.3.
Throughout the report I have used natural units where c = ~ = kB = 1. They

are all universal constants, i. e. they have the same value in all reference systems.
In the natural units velocity is not given in m/ sec but as a fraction of c. This
means that velocity becomes a pure number, momentum, mass and temperature
all take the unit of energy, and length has the same unit inverted [2].

This report constitutes my masters thesis and I would like to thank everybody
at the Dark Cosmology Centre and especially my supervisors Kristian Pedersen
and Steen H. Hansen for letting me do a very interesting and instructive project
in the overlapping fields of particle physics and cosmology.

Signe Riemer-Sørensen, Copenhagen, June 23, 2006
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1 Basic Cosmology

Cosmology is the description of the Universe on a large scale. This section contains
a short introduction to the standard model of cosmology and its most important
parameters1. The notations of redshift and distance measurements are presented
for later use before the concept of dark matter and the challenges to be solved by
a dark matter candidate are introduced.

1.1 The Benchmark model

The Benchmark model is the “standard Big Bang model of cosmology” where
the Universe is assumed to be nearly flat and at the present time dominated
by a cosmological constant (also called dark energy) which is responsible for the
accelerating expansion of the Universe. The acceleration was concluded from super
nova observations in 1998 [3].

The Universe is described in space-time coordinates (t, r, θ, φ) and the shortest
distance between two points, called a geodesic, is given by the Robertson–Walker
metric, which has the properties that the Universe is spatially homogeneous and
isotropic at all times and distances are allowed to expand (or contract) as a function
of time [4]:

ds2 = dt2 − a2(t)

[

dr2

1 − kr2
+ r2(dθ + sin2(θ)dφ)

]

. (1)

k = 0,±1 determines the curvature of the Universe. The Universe can either be
positively curved (k = +1), which in two dimensions would correspond to the
surface of a sphere, or it can be negatively curved (k = −1) corresponding to the
“seat” of a saddle. For a flat Universe, k is equal to zero, and the two dimensional
analogy is a plane. a(t) is the scale factor that independent of location tells us how
the expansion of the Universe depends on time. The spatial coordinates (r, θ, φ) are
called co-moving coordinates and can be regarded as the non-changing coordinates
in a coordinate system that expands with the scale factor, a(t). The isotropy and
homogeneity on large scales (≈ 100 Mpc) are observational facts from large scale
structure surveys.

The time evolution of the Universe is described by two independent key equa-
tions. The first one is the Friedmann equation that can be derived from the
Robertson–Walker metric [4]:

H2(t) =
ȧ(t)

a(t)
=

8πGρ(t)

3
− κ

R0a2(t)
. (2)

1An extended introduction to cosmology can be found in [4] or [5].
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H(t) = ȧ(t)/a(t) is called the Hubble parameter and specifies the expansion ve-
locity of the Universe. At the present time it is usually given in units of h defined
as h = H0/(100 km/sec/Mpc). ρ0 is the energy density at the present time and κ
determines the sign of the curvature of the Universe with a present time radius of
curvature given by R0. The density parameter is defined as Ω(t) = ρ(t)/ρc where
ρc = (3H2(t))/(8πG) is the critical energy density needed for the Universe to be
flat. With Ω(t) the Friedmann equation can then be rewritten as:

1 = Ω(t) − κ

R2
0a

2(t)H2(t)
, (3)

where it is seen that for a flat Universe, as in the Benchmark model (κ = 0), the last
term disappears and Ω(t) = 1. The flatness of the Universe is given by observations
(Sec. 1.3). The Universe consist of three components of importance: radiation,
matter and a cosmological constant. They are assumed not to be in thermal
equilibrium (since shortly after Big Bang) and therefore they evolve independently
and Ω(t) becomes a sum over the Ωs of the different components.

The second key equation is the fluid equation which corresponds to the first
law of thermodynamics for an expanding universe [4]:

ρ̇(t) + 3
ȧ(t)

a(t)
(ρ(t) + P ) = 0 (4)

where P is the pressure. It is given by P = ωρ, where ω is a dimensionless
number which takes the values ω ≈ 0 for non-relativistic matter, ω = 1/3 for
relativistic matter including radiation and ω < −1/3 for a cosmological constant.
The Friedmann equation (Eqn. 2), the fluid equation (Eqn. 4) and P = ωρ can be
combined to give:

ä(t)

a(t)
= −4πG

3
ρ(t)(1 + ω) . (5)

We see that the time evolution of the scale factor depends on the value of ω and
therefore on the dominating component of the Universe at a given time. The
very early Universe was radiation dominated (a(t) ∝ t1/2), then matter took over
(a(t) ∝ t2/3), and at the present time it seems like a cosmological constant is taking
over (a(t) ∝ eHt) [4]. The t-dependence of a(t) is shown in Fig. 1.

1.2 Redshift and distances

A direct consequence of the Hubble expansion is the cosmological redshift of ob-
served photons. A local observer observing a distant light source will see a redshift
of the wavelength, λobs, compared to that of the emitted light, λem [4]:

z =
λobs − λem

λem

. (6)
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Figure 1: a(t) depends differently on t depending on the component dominating the
Universe. The early Universe was radiation dominated, then matter took over, and
finally the Universe is dominated by a cosmological constant [4].

The definition of the scale factor gives a useful relation between redshift and scale
factor for small peculiar velocities [4]:

z + 1 =
a(tobs)

a(tem)
, (7)

which in the near universe, where the expansion is taken to be linear, reduces to
Hubbles law for proper distances, r [4]:

z = H0r . (8)

Unfortunately the expansion of the Universe makes it impossible to measure the
proper distance to a cosmological object in practice. One thing we can measure
instead is the flux, F , i. e. the energy emitted per area per time from a given
source. If the luminosity (the total energy emitted per time) of a celestial object is
known, the measured flux can be used to define a distance, called the “luminosity
distance” [4]:

DL =

(

L

4πF

)1/2

. (9)

In a static Euclidean Universe the flux received from a source at a given proper
distance, r, is F = L/(4πr2) so the luminosity distance is equal to the proper
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distance, DL = r. For a flat Universe described by the Robertson–Walker metric
(Eqn. 1), the relation becomes [4]:

DL = r(1 + z) . (10)

The problem is that we need to know the total luminosity of at least one celestial
object in order to calibrate the method (and we would still have a problem with
extinction in dust etc.). With the Robertson–Walker metric for a flat Universe,
the angular extension of an object of proper length, l, is given by [4]:

∆θ =
l(1 + z)2

DL

. (11)

For very distant objects, the redshift is usually given as a measure of distance
to avoid the problems of determining proper distances.

1.3 Values of cosmological parameters

The values of the cosmological parameters in the Friedmann equation (Eqn. 2), can
be determined from different observations. In Fig. 2 is shown the constraints on
the values of the matter density, ΩM , and the density of the cosmological constant,
ΩΛ, at the present time, determined from observations of super novae, the Cosmic
Microwave Background (CMB) from the satellite observatory WMAP, and from
clusters of galaxies.

The best fitting present day values from the combined data sets are [6]: Ωtot =
1.00 ± 0.02 giving a flat universe, ΩM = 0.26 ± 0.03, ΩΛ = 0.76 ± 0.03, and
h = 0.73 ± 0.03. These values have been used throughout the report except for h
where all earlier results are based on an older value of h = 0.71 which I have kept
in order to make the results directly comparable.

1.4 Dark matter

The amount of visible matter in the Universe is not enough for the Universe to
be flat as observed from the CMB [7]. It turns out that of the matter density
of ΩM = 0.26 only about one tenth is in the form of stars, dust, gas, etc. i. e.
in the form we call baryonic matter [6]. The rest does not emit light but is
only observed through its gravitational effects and is therefore called dark matter.
In the 1930’s the astronomer, Fritz Zwicky, studied the velocity dispersion as a
function of radius of the Coma Cluster of galaxies shown in the right part of Fig. 3.
What he found was that the dispersion of radial velocities was very large - around
1000 km/sec. The mass of the visible stars and gas inside the cluster does not
provide a gravitational potential large enough to hold together a cluster with such
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Figure 2: The constraints on the values of ΩM and ΩΛ at the present time. The
constraints are determined from observations of super novae, the CMB from the satellite
observatory WMAP, and from clusters of galaxies [7].

velocity dispersions, so he came to the conclusion that the cluster must contain a
lot of “dunkle Materie” later translated to “Dark Matter.” Today we know that
clusters are dominated by dark matter and therefore they are matter dominated
and their formation and evolution are driven by gravity [8]. The rotation curves
of spiral galaxies do also indicate the presence of a galactic dark matter halo.

No one knows what the dark matter is and there are many proposed candidates,
mostly in the form of exotic new types of particles. There could also be more than
one type of particle contributing to the dark matter, but unless otherwise stated I
have assumed all of the dark matter to be one particle specie with a present day
density of ΩDM = 0.26.

1.5 Cold, hot, and warm dark matter

The Universe was matter-dominated at the time when structures formed. As
dark matter is the dominant matter component a dark matter particle would have
printed its signature in the structures observed today. There are several scenarios
for different energy scales of the dark matter particle.
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Figure 3: Left: The energy distribution of the Universe with ≈ 70% in the form of dark
energy (given by a cosmological constant), ≈ 26% in the form of dark matter, and only
≈ 4% in the form of ordinary (baryonic) matter as we see it on the Earth [7]. Right:

The velocity dispersions of the Coma cluster galaxies is of the order of 1000 km/sec [9].

The classical dark matter scenario is one with a cold dark matter particle
(CDM). Cold means the particles were non-relativistic (T 2 ≈ E2 << m2) at the
time when the expansion rate of the Universe became larger than the interaction
rate (production and annihilation) called the time of decoupling. The particles in-
teracted and started to form clustering at small scales (stars and galaxies), which
later combined to form larger structures (galaxies and clusters). However there
are several problems with this “bottom-up” CDM scenario. One problem is that
numerical simulations of the structure formation based on simple physical inter-
actions of CDM particles predicts an over-abundance of small halos, e. g. dwarf
galaxies, near a Milky Way-like halo [10]. In the case of the Milky Way around 500
sub-halos are predicted by simulations but only of the order of 10 dwarf galaxies
have been found [11]. Either there is something wrong with the observations or
the physics applied by the model, or more likely, there is something wrong with
the model. Another problem is that the density profile of galaxies and clusters of
galaxies predicted by the simulations increase the density monotonically towards
the centre of the halo and thereby leading to a cuspy density profile which has not
yet been observationally verified [12].

An alternative possibility is a hot dark matter particle (HDM) which was rel-
ativistic (T 2 ≈ E2 >> m2) at the time of decoupling. HDM particles moving
freely in all directions with velocities close to the speed of light tends to wipe out
density fluctuations. Therefore structures on scales below a characteristic length
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are erased, so at the time when the particles become non-relativistic, there are
no structures at small scales. Instead the structure formation will be “top-down”
with the larger structures (galaxies and clusters) forming first and then the smaller
structures (stars and galaxies) forming inside the larger structures. In the HDM
scenario there will be very little structure on small scales which does not corre-
spond very well with the observations of galaxies, halos, etc. as seen in the Hubble
Space Telescope image in Fig. 4.

Between the bottom-up scenario of CDM and the HDM top-down scenario lies
the intermediate region of a warm dark matter particle (WDM) with dark matter
particles of a typical rest mass of the order of ≈ 1 keV, which allows for both small
and large scale structures and the right amount of sub-halos [11].

Figure 4: The Hubble Deep Field images show a lot of structures in the Universe [13].

1.6 The sterile neutrino of cosmology

The sterile neutrino was originally proposed as a dark matter candidate by Dodel-
son and Widrow in 1993 [14] to solve the discrepancies between the CDM predicted
structure formation and observations. It is a WDM dark matter candidate, with a
mass in the keV-range and its interactions are dominated by gravity, as preferred
by the structure formation [11]. In Sec. 2 it is discussed how the sterile neutrinos
are highly motivated by particle physics, but as they are invented as a dark matter
candidate, they cannot be constrained very much from particle physics.

Apart from being a dark matter candidate other uses have also been found for
the sterile neutrinos e. g. as an explanation for the peculiar velocities of pulsars
by allowing for asymmetric neutrino emission [15, 16], for synthesizing early star
formation [17], and as an explanation for the fact that we have more baryons than
anti-baryons in the Universe [18].
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2 Theory of Sterile Neutrinos

The sterile neutrinos can be highly motivated by particle physics. In this section
the standard model of particle physics is introduced with the focus on the neutrino
sector leading to a presentation of the sterile neutrinos and their characteristics.
The section is concluded by some remarks on possible decay signatures of the
sterile neutrinos.

2.1 The standard model of particle physics

Developed primarily in the 1960’s the standard model is a group-theoretical exten-
sion of quantum mechanics derived from fundamental symmetries found in nature.
Basically the standard model describes the elementary particles and the forces be-
tween these particles. The elementary particles summarized in Tab. 1 are split
into two categories: quarks and leptons. Both categories are again split into three
generations shown experimentally at the now closed LEP-experiment (Large Elec-
tron Positron Collider) at CERN [19]. For the leptons the three generations are
composed of an electron-like particle and its corresponding neutrino: (e, νe), (µ,
νµ), and (τ , ντ ).

Quarks (spin 1/2) Leptons (spin 1/2)

Particle Mass Charge Particle Mass Charge

up(u) 3 · 103 2/3 electron (e) 511 −1
down(d) 6 · 103 −1/3 e-neutrino(νe) < 3 · 10−2 0
charm(c) 1.3 2/3 muon (µ) 1.06 · 105 −1
strange(s) 1 · 105 −1/3 µ-neutrino (νµ) < 200 0

top(t) 1.75 · 108 2/3 tau (τ) 1.7771 · 106 −1
bottom(b) 4.3 · 106 −1/3 τ -neutrino (ντ ) < 2 · 104 0

Table 1: The particles of the standard model. The force carrying particle for gravity,
the graviton, has not yet been observed experimentally. The unit of charge is the electron
charge and the masses are given in keV [19, 20].

The standard model particles interacts through the four fundamental forces
via their proper force carriers: The photon for the electromagnetic interaction,
the Z0 and W± bosons for the weak interaction, the eight gluons for the strong
interaction and perhaps a graviton for the gravity. The description of two of these,
the electromagnetic and the weak interactions have been unified into the so called
electro-weak interaction. So far, the gravity has not yet been mathematically
incorporated in the standard model with any success. All the particles in the
standard model have antiparticles associated with them, except for the photon
which is its own anti-particle. These antiparticles have the same mass and spin as
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their counterparts, but all other quantum numbers are reversed. All the particles
of the standard model are summarized in Fig. 5.

Matter, in the form that we know it, consists of protons and neutrons which
again are made of three quarks (two up and a down quark for the proton and
two down and an up quark for the neutron) together with a number of gluons.
All particles composed of three quarks are called baryons and the fact that we
observe more matter than anti-matter in the Universe is called baryon asymmetry.
Particles composed of two quarks (a quark and anti-quark) are called mesons.

On top of all this comes the Higgs boson which provide the link between the
quantum field description of the particles and their masses [21]. Its existence has
not yet been experimentally verified, but one of the purposes of the upcoming Large
Hadron Collider (LHC) at CERN is to look for the Higgs boson. The standard
model does not predict any masses for the neutrinos but there are compelling
experimental evidence for flavour neutrino oscillations (described in Sec. 2.2) which
requires the neutrinos to have non-zero masses and implies particle physics beyond
the standard model [22]. Another problem with the standard model is that it does
not provide any good candidates for the dark matter and the cosmological constant
(dark energy). The cosmological constant has been proposed to be some kind of
vacuum energy, but so far no one has been able to come up with the right order
of magnitude from a standard model vacuum energy.

2.2 Standard model neutrino physics

The number of neutrinos in the standard model is known experimentally from
LEP where the decay width of the Z-boson was analysed. The conclusion was that
there exist Nν = 2.994±0.012 neutrinos that are sensitive only to weak interactions
[19]. They are called flavour eigenstates or active neutrinos, νe, νµ, ντ , and are
linear combinations of states with definitive mass, νi, where i is the number of
the massive neutrinos, which in the standard model is taken to be equal to the
number of flavour eigenstates i. e. i = 3. The non-standard model phenomenon of
the difference between flavour and eigenstates is called neutrino oscillations.

In a three-neutrino scenario flavour and mass eigenstates are related by a 3×3
mixing matrix called U which can be parametrized by three mixing angles and a
phase describing the experimentally verified non-conservation of charge and parity
in weak interactions (CP-violation). So in total there are seven mixing parameters
(if we include the three neutrino masses) to be determined experimentally. One
way is through the neutrino oscillation experiments, where the (dis)appearance of
a given type of neutrinos in a pure one-type neutrino beam is measured. Unfortu-
nately the oscillation experiments are not sensitive to the absolute mass scale but
only to the differences of squared neutrino masses ∆m21 = m2

2 − m2
1 (solar neu-

trinos), |∆m31| = m2
3 − m2

1 (atmospheric neutrinos). The absolute mass scale can
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Figure 5: The standard model of particle physics [23].
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however be constrained otherwise e. g. through measurements of the time-of-flight
dispersion of super novae to be Σimi . 6 eV [22].

2.3 Sterile neutrinos of particle physics

Of all the particles in the standard model, the neutrinos are some of the least
understood and the least theoretically incorporated. In the standard model, all
of the leptons are said to be Dirac particles and, except for the neutrinos, they
all have two polarisation states. We say that they exist as left-handed and right-
handed. The neutrinos are different because when measured from weak interaction
experiments, they are always left-handed and the anti-neutrinos are always right-
handed. This effect is called parity violation2 [21]. If the neutrinos are pure Dirac
particles, there should also exist right-handed neutrinos (and their left-handed
anti-neutrinos). They are called sterile neutrinos, as they do not participate in any
standard model electro-weak interactions (they are singlets of the SU(2)L×U(1)γ

gauge group) [2]. Also the right-handed eigenstates are “shiftet” from their mass
eigenstates, so the total number of mass eigenstates accesible by neutrino oscilla-
tions is larger than the number of active flavour eigenstates.

The neutrinos can also be of another type called Majorana particles, which
by definition are their own anti-particles. If the neutrinos are pure Majorana
particles they can be described as entirely left-handed, but then the lepton number
conservation in electro-weak interactions involving neutrinos is violated. It is very
difficult to distinguish experimentally between the two types of particles. To make
it even more complicated there is also the possibility that the neutrinos are a
mixture between Dirac and Majorana particles achieving characteristics from both
types.

As mentioned in Sec. 2.1 the standard model does not predict any masses for
the active neutrinos, but the masses are required by the experimentally verified
neutrino oscillations. A simple way to incorporate the neutrino masses is to extend
the model with the right-handed neutrinos (as a mixture of Dirac and Majorana
particles) just as for the other leptons. It is possible to add an arbitrary number
of sterile neutrinos, but at least three sterile neutrinos are needed to explain the
neutrino oscillations, the baryon asymmetry, and the dark matter [18]. Interest-
ingly this is the same number as the number of leptonic families. The successful
“three sterile neutrino extension” of the standard model is called the νMSM (neu-
trino Minimal Standard Model) [18, 24, 25, 26, 27, 28]. It is renormalisable and in
agreement with most particle physics experiments [18]. In the νMSM the lightest
of the sterile neutrinos plays the role as the dark matter.

2Parity means “mirror image”.
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2.4 Two-type neutrino oscillation

How is it possible to measure a sterile neutrino that does not interact at all?
The answer lies in the neutrino oscillations. Two-type neutrino oscillation is a
good approximation to the active-sterile neutrino oscillation because it will be
dominated by mixing with only one type of the active neutrinos since the mass-
eigenstates of the neutrinos are not fully degenerate (the active neutrinos have
different masses) [22]. In the following a short introduction to two-type neutrino
oscillation is given which of course can be generalized to three or more types of
neutrinos3.

With two types of neutrinos, here chosen as an active and a sterile neutrino
(without loss of generality), the neutrino mixing can be described with only one
mixing angle in vacuum, θ [29]:

(

να

νs

)

=

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

ν1

ν2

)

, (12)

where να and νs are flavour eigenstates, and ν1 and ν2 are a light and a heavy mass
eigenstate. θ is called the mixing angle and describes the amount of mixing between
two states in vacuum. If θ = 0 there is no mixing and the flavour eigenstates are
identical to the mass eigenstates. For the active neutrinos, θ is very small, and the
flavour eigenstates are almost identical to the mass eigenstates but with a slight
shift. If you try to measure the mass of να many times by a weak interaction
experiment, most of the outcome will be the mass of ν1, but a few times you will
get ν2 as shown in the left part of Fig. 6. The effective mass of the neutrino
is a weighted average. In matter the mixing angle is suppressed by quantum
mechanical effects [29].

The phenomenon is called neutrino oscillations, because the probability of mea-
suring a given flavour oscillates with distance (time) and energy [29]:

P (νs → να) =
1

2
sin2(2θ)

(

1 − cos

(

L · ∆m2

2Eν

))

, (13)

where L is the propagated length, Eν is the neutrino energy and ∆m2 is the
difference of the masses squared. The probability of detecting an ν̄e in an originally
pure ν̄µ beam as a function of distance is shown in the right part of Fig. 6. Often
the expression “mixing angle” denotes sin2(2θ).

By regarding all decay branches possible through oscillations, the mean lifetime
of a sterile Dirac neutrino of mass, ms, has been determined to be [30, 31]:

τ =
1

Γtot

=
f(ms) · 1020

(ms/ keV)5 sin2(2θ)
sec−1 , (14)

3A deeper treatment can be found in the literature e.g. [29].



2 THEORY OF STERILE NEUTRINOS 15

Figure 6: Left: An interaction dependent measurement of the mass of να in a two-type
mixing scenario, with mass eigenstates ν1 and ν2. Right: The probability of detecting
an ν̄e in an originally pure ν̄µ beam as a function of distance.

where Γtot is the total decay rate. f(ms) takes into account the open decay channels
so that for ms < 1 MeV, where only the neutrino channel is open, f(ms) = 0.86,
but for ms > 2me ≈ 1 MeV also the e+e−-channel is open and f(ms) = 1. Only
the case where ms < 1 MeV (f(ms) = 0.86) has been considered here.

Unless otherwise stated, throughout the report I have assumed the active-sterile
neutrino mixing to be a two-type mixing between a Dirac type sterile neutrino and
the electron neutrino. If the sterile neutrino is a Majorana particle, it is by defi-
nition its own anti-particle and the interaction probability will double and hence
its theoretically predicted decay rate is twice as large (Γγ,Majorana = 2Γγ,Dirac).
Because of this difference, any constraints derived from the decay rate for a Dirac
particles is more conservative than the corresponding constraints derived for a
Majorana particle.

2.5 Radiative decay

The most dominant decay of the sterile neutrinos is νs → νανανα, where the
sterile neutrino decays into three active neutrinos, να [30]. Unfortunately it is a
very challenging signature to detect experimentally. Active neutrinos are detected
in huge underground experiments and even though it is possible to determine the
original direction of a detected neutrino, the resolution is not very good and many
detected neutrinos originate in processes in the atmosphere or inside the Earth. It
makes it difficult to tell whether a given detected neutrino is a decay product of
dark matter.

If ms > mα the radiative decay νs → να + γ shown in Fig. 7 becomes allowed.
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The decay is achieved by νs virtually transforming itself into two charged particles.
This is possible if the mass eigenstate of the sterile neutrino couples to a W boson
and transforms it into a charged lepton (e, µ, τ) [29, 32]. One of the charged
particles can emit a photon and hereafter the two charged particles recombine to
form a να.

Figure 7: The Feynman diagrams for a νs virtually transforming itself into two charged
particles by the coupling of the mass eigenstate to a W boson and thereby decaying
radiatively [32, 33].

The kinematics of the reaction give that the photon must be mono-energetic
and the energy in the νs rest frame can be determined from energy and momentum
conservation (two-body decay) [19]:

Eγ =
1

2
ms

(

1 − m2
α

m2
s

)

. (15)

If ms >> mα, which is likely since
∑

α mα . 5eV [22] and ms is of the order
of keV, then Eγ ≈ ms/2. The branching ratio for the radiative decay has been
derived to be [30]:

Γγ

Γtot

=
27α

8π
≈ 1

128
. (16)

The radiative decay is a testable signature of the sterile neutrinos as dark
matter4. A mass of ms ≈ 0.5 − 100 keV is preferred by structure formation [11]
leading to X-ray photon emission. X-ray observatories usually have a sensitivity
range of Eγ = 0.3 − 10 keV corresponding to a mass search range of ms = 0.6 −
20 keV.

2.6 Constraining the decay rate from the emitted photons

For a dark matter particle decaying radiatively with Eγ = m/2 the upper limit on
the detected flux originating from a given clump of matter can be converted into
a constraint on the decay rate.

4A wide range of effects from neutrinos decaying into photons have been discussed for many
years e. g. by Sciama [34].
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The number of dark matter particles of mass m in a clump of matter is given
by:

N = Mtot/m , (17)

where Mtot is the total mass of dark matter, which is taken to be the total mass
of the clump. The luminosity from dark matter particles decaying to photons is:

L = EγNΓγ, (18)

where Eγ is the photon energy and Γγ is the decay rate of the radiative decay.
Then the flux at a luminosty distance, DL, is:

F =
L

4πD2
L

=
EγNΓγ

4πD2
L

(19)

The observed flux, Fdet, gives an upper limit for the flux from decaying dark matter
so Eqn. 19 can be rewritten as:

Γγ,max ≤ 8πFdetD
2
L

Mtot

(20)

= 1.34 · 10−4 sec−1

(

Fdet

erg/cm2/sec

)(

DL

Mpc

)2(
Mtot

M⊙

)−1

.

Fluxes are additive so if there are i dark matter sources of different masses at

different distances, the last two terms of Eqn. 20 become
[

∑

i
M i

tot
/ M⊙

(Di

L
/ Mpc)2

]−1

.

2.7 Is the flux measurable

If the dark matter particles are to be around today, as we can observe them,
their lifetime has to be of the same order of magnitude as the age of the Universe
i. e. τ & 4 · 1017 sec giving a decay rate of Γtot . 2.5 · 10−16 sec−1 [4]. With the
branching ratio given by Eqn. 16, a first estimate of the flux from decaying dark
matter particles is:

F . 1.865 · 10−14 erg/cm2/sec

(

Mtot

M⊙

)(

DL

Mpc

)−2

. (21)

As an example let us look at a typical cluster of galaxies where Mtot ≈ 1014 M⊙

and DL ≈ 1000 Mpc. This gives a flux of F . 2 · 10−6 erg/cm2/sec. This order of
magnitude is measurable by the X-ray observatories Chandra and XMM that both
have a point source sensitivity of the order of F & 10−15 erg/cm2/sec in a 100 ksec
observation [35].
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3 The Early Universe

The mass and mixing angle of the sterile neutrinos can be constrained from their
interactions in the early universe. Before going into the specific case of the ster-
ile neutrinos, the concept of distribution functions is introduced to describe the
thermal evolution of the early Universe.

3.1 The distribution function

In the early Universe (before decoupling) the number densities of radiation and
matter were so high that the photons and the particles did not propagate very
far before encountering another photon or particle to interact with. The particles
are said to be in thermal equilibrium, if the interaction rates are fast compared to
the expansion of the Universe, Γ(t) >> H(t), and standard thermodynamics can
be used to describe the evolution. The interaction rate depends on the particle
density, which decreases as the Universe expands with time, so at a given time,
when Γ(t) ≈ H(t), the particles decouple and essentially stop interacting.

The distribution function describes the number of particles of specie “i” with
a given momentum at a given temperature, Ti. For a dilute, weakly interacting
gas, it is given either by Fermi-Dirac statistics for spin-1

2
particles called fermions

(“+” in Eqn. 22) or by Bose-Einstein statistics for particles with even valued spin
called bosons (“−” in Eqn. 22) [36]:

fi(p) =
1

e(Ei−µi)/Ti ± 1
, (22)

where E2
i = m2

i + p2 is the particle energy and µi is the chemical potential related
to the numerical difference between particles and anti-particles. Normally the
number densities of particles and anti-particles are taken to be equal in the early
Universe and µi is neglected [37].

An important quantity is the number of internal degrees of freedom, gi, of the
ith particle specie, since the species contribute differently to the number density,
the energy density, the pressure etc. The number of internal degrees of freedom is
given by the number of polarization states e. i. gγ = 2, ge,µ,τ = 2, gν = 1 (there
exist only left-handed neutrinos and right-handed anti-neutrinos according to the
standard model), etc.

The number density and the energy density is calculated by integrating over
the full momentum phase space [37]:

ni =
gi

(2π)3

∫

fi(p)d3p =
gi

(2π2)3

∫

fi(p)
√

E2
i − m2

i EidE , (23)



3 THE EARLY UNIVERSE 19

ρi =
gi

(2π)3

∫

fi(p)Ei(p)d3p =
gi

(2π2)3

∫

fi(p)
√

E2
i − m2

i E
2
i dE , (24)

where the last equality in both equations is for an isotropic distribution function,
in which the momentum, p, does not depend on the position so d3p = 4πp2dp and
E2

i = m2
i + p2 as usual.

In the ultra-relativistic limit where T 2
i ≈ E2

i >> m2
i , it is possible to solve the

integrals analytically [37]:

nrel
i =

{

1.202giT
3
i Bose − Einstein

3
4
(1.202giT

3
i ) Fermi − Dirac

, (25)

ρrel
i =

gi

6π2

∫ ∞

0

E3
i

eEi/Ti ± 1
=

{ π2

30
giT

4
i Bose − Einstein

7
8

(

π2

30
giT

4
i

)

Fermi − Dirac
. (26)

If we want to calculate the total contribution to ρ (and n) from all species
in the early Universe, it is a good approximation to include only the relativistic
species since the non-relativistic species pick up an exponential suppression, when
integrating Eqn. 24 in the non-relativistic limit. For a mean plasma temperature,
T , the energy density becomes [37]:

ρrel
tot =

π2

30
g∗(T )T 4 , (27)

where g∗ is the effective number of degrees of freedom of the particles including
the 7/8 in Eqn. 26 for the fermions (3/4 if calculating the total number density)
and accounting for varying temperatures of the different particle species [37]:

g∗ =
∑

i=bosons

gi

(

Ti

T

)4

+
7

8

∑

j=fermions

gj

(

Tj

T

)4

. (28)

The production peak of the sterile neutrinos takes place close to the quark-
hadron phase transition (the quarks freeze out from a quark gluon plasma and
form composite particles)5. This phase transition changes g∗ drastically around
T ≈ 200 MeV as seen in Fig. 8. The value of g∗ for sterile neutrinos is usually con-
sidered to be between 10.75 as for the active neutrinos [37] and 20, depending on
the details of the phase transition described by the strong interaction in a theory
called Quantum Chromo6 Dynamics (QCD), which is not fully understood yet.

5For an introduction to quark gluon plasmas see [39].
6Chromo means colour and refers to the colour charge of the quarks, not to be taken too

literally.
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Figure 8: The evolution of g∗(T ) as a function of temperature, T . The sharp edge at
T ≈ 170 keV is the quark-hadron phase transition [38].

Throughout the report the value g∗(Tproduced) = 15 has been used as a reference
value, corresponding to a production peak of the sterile neutrinos at T = 170 MeV
[40].

In the early Universe the curvature can be neglected (at least if the Universe
was either radiation or mass dominated) and the Friedmann equation (Eqn. 2) can
be rewritten as:

H2(t) =
ȧ(t)

a(t)
=

8πGρrel
tot(t)

3
= 2.76g∗

T 4

m2
Pl

, (29)

by demanding the Universe to be flat (κ = 0, ρ0 = ρc) and using the definition
of Ω = ρ(t)/ρc. The typical mass scale related to G is the Planck mass, mPl. By
simple dimensional analysis G = ~c/mPl that in natural units (~ = c = kB = 1)
reduces to G = 1/mPl, which gives mPl a value of mPl = 1.221 · 1025 keV [37]. In
the last equality of Eqn. 29 the expression of Eqn. 27 has been inserted for ρrel

tot.

3.2 The Boltzmann equation

The sterile neutrinos are assumed to be produced through collisions processes
between leptons

l1 + l2 → νs + l3 . (30)

When the particles are involved in interactions, such as production, their distribu-
tion function changes. The time evolution of the distribution function is given by
the Boltzmann transport equation [36]. For the sterile neutrinos it can be written
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as [37]:
(

∂

∂t
− pH(t)

∂

∂p

)

fs(p) = Icoll , (31)

where the first term on the left hand side describes the time evolution, the sec-
ond term describes the Hubble expansion and the right hand side describes the
interactions in the form of collisions. Icoll is called the collision integral. It can
either be determined analytically [41] or it can be determined from a simple phys-
ical approximation of which the resulting estimated number density ns lies within
a factor of 2 of the one from the analytical approach. In both cases the sterile
neutrinos are assumed to be initially absent and only produced through neutrino
oscillations in leptonic collision processes as the one in Eqn. 30. It is possible that
there are other creation processes such as coupling to the scalar field of inflation
[26] or through hadronic interactions [28]. Nonetheless the dominant production
is through the leptonic collisions and alternative production processes can be ne-
glected. Here the physical approximation is described in detail and only short
comments on the analytical solution and more complicated numerical solutions
including other production methods, are given in Sec. 3.5 and Sec. 3.6.

3.3 The simple physical approximation

The sterile neutrinos do only interact through oscillations with the active neu-
trinos. Therefore the collision integral on the right hand side of Eqn. 31 can be
approximated as the rate of weak interactions of the active neutrinos suppressed
by the mixing angle of the sterile neutrinos in matter.

The interaction rate for a given type of particles depends on their number
density, n, their velocity, v, and their “probability of interaction” given by the
cross-section, σ: Γ = nvσ. The number density of relativistic fermions evolves
with time as n ∝ a−3 ∝ T 3 (Eqn. 26). Neutrinos (including the sterile) are very
light particles (m2 << E2 ≈ T 2) so they are ultra-relativistic in the early Universe
and v ≈ c = 1. The cross-section for the weak interactions goes like [37]:

σW ∼ 1.202
α2T 2

m4
W

, (32)

where α is the fine structure constant, α ≈ 1/128 [19], and mW is the characteristic
mass of the weak interactions namely the mass of the W-boson, mW ≈ 81 GeV
[19]. The interaction rate of the weak interactions then becomes:

ΓW = n
α2T 2

m4
W

≈ α2T 5

m4
W

. (33)
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The interaction of the sterile neutrinos are suppressed by the mixing angle.
The relevant suppression factor of the cross-section is sin2(2θM)/4 [21] so the ap-
proximated Boltzmann equation becomes:

(

∂

∂t
− pH(t)

∂

∂p

)

fs(p) =
sin2(2θM)

4
ΓW fν(p) . (34)

The mixing angle of the sterile neutrinos described in Sec. 2.4 is influenced by
matter effects and suppressed at large temperatures [42, 43]:

sin2(2θM) =
sin2(2θ)

1 + 3.73 · 10−16C(ms/ keV)−2(y2/x6)
, (35)

where C is a numerical constant which for mixing with νe takes the value Ce =
0.61, and for mixing mixing with νµ,τ takes the value Cµ,τ = 0.17 (however for
temperatures near the mass of νµ, C becomes equal for νe and νµ). x and y are
unit-less variables defined as x = a(t) MeV and y = E · a(t) = p · a(t).

3.4 Integration of the Boltzmann equation

To isolate fs(p) we start by rewriting the right-hand side of the Boltzmann equation
(Eqn. 31) as a function of x and y, using the notations fs = fs(x, y), a = a(t),
H = ȧ/a = ẋ/x = H(t) (the details of the calculations can be found in App. A.2)
[31]:

xH
∂

∂x
fs =

sin2(2θM)

4
ΓW fν . (36)

What we are looking for is the distribution function, fs, which can be found
by integrating Eqn. 36 over x:

fs =

∫ ∞

0

sin2(2θM)

4

ΓW

xH
fνdx . (37)

ΓW /H can be expressed from the rewritten Friedmann equation (Eqn. 29) and the
decay rate of the weak interactions (Eqn. 33):

ΓW

H
=

1.202α2T 2

m4

W
√

2.76g∗
T 2

m2

Pl

= 0.72
α2

√
g∗

mPl

m4
W

. (38)

With Eqn. 38, the expression for sin2(2θM) given by Eqn. 35 and x = a(t) ·
MeV = MeV/T , the integral in Eqn. 37 can be written as:

fs = K1fν

∫ ∞

0

1

x4

1

1 + K2
2/x

6
dx , (39)
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where fν has been extracted from the integral since the active neutrinos are taken
to be in thermal equilibrium and therefore their distribution function does not
depend on x. K1 and K2 are constants defined as:

K1 = 0.72
sin2(2θ)

4

α2

√
g∗

mPl

m4
W

MeV 3 , (40)

K2 =
√

2.27 × 10−20y2MeV

ms

.

The integral can be performed by a change of variable by using [44]:

∫ ∞

0

dx

c2 + x2
=

π

2c
, (41)

to become:

fs = K1
π

2

1

3K2

fν = Cfν , (42)

where it is seen that the distribution function of the sterile neutrinos, fs, is directly
proportional to that of the active neutrinos, fν . Also the number densities are then
proportional:

ns =

∫

fsd
3p = C

∫

fνd
3p = Cnν . (43)

If the sterile neutrinos are assumed to account for all dark matter in the Uni-
verse, the density parameter, ΩDM , can be expressed as :

ΩDMh2 =
nsms

ρc

=
Cnνms

ρc

=

(

0.72π√
2.27 · 10−20y

sin2(2θ)

24

α2

√
g∗

mpl

m4
W

MeV 2nν

ρc

)

m2
s (44)

= B · sin2(2θ)m2
s

⇔
sin2(2θ) =

ΩDMh2

Bm2
s

, (45)

where B does not depend on the mass or on sin2(2θ). Note that for the sterile neu-
trinos ΩDMh2 ∝ m2

s which is different from the case of the active neutrinos where
ΩDM ∝ mα [37]. If the sterile neutrinos are produced by some other mechanism
than leptonic collisions (Eqn. 30), Eqn. 45 is no longer viable and no constraints
have been derived from the conditions of the early Universe [25].
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3.5 Analytical collision integral

The difference between the simple approach and the analytical solution of the
Boltzmann equation (by Dolgov and Hansen [41]) is that instead of approximating
the collision integral in Eqn. 36 by the order of magnitude of the electroweak
interaction, all possible interactions including a sterile neutrino are considered and
all the interaction matrix elements contributing to the cross-section are computed.
The result is given by Eqn. 209 and Eqn. 210 in [45]:

sin2(2θ) ≈ 1.14 · 10−7

(

A

6.7 · 10−8

)(

g∗(Tproduced)

15

)3/2

(46)

×
(

S

1

)(

ΩDM

0.26

)(

h

0.71

)2
( ms

keV

)−2

,

where A is a constant depending on the type of active neutrino, the sterile neutrinos
are assumed to mix with. It takes the values Ase = 6.7 · 10−8 for νs mixing with νe

and Asµ = 4.8 · 10−8 for νµ,τ . g∗(Tproduced) is the number of relativistic degrees of
freedom at the temperature, where the sterile neutrinos are produced (discussed in
Sec. 3.1). S is a free parameter taking into account a possible additional entropy
production after the sterile neutrinos have been created. This entropy production
could be from decays of the heavier sterile neutrino mass eigenstates, leading to a
dilution of the momentum distribution of the sterile neutrinos. The characteristic
size of structure formation must remain the same even with the additional entropy
production and we have [25]:

msS
1/3 ∝ constant . (47)

Also the temperature of the sterile neutrinos will be diluted by a factor of S1/3.
S was originally suggested to be in the range between 1 and 100 [25] and later
proposed to be between 1 and 2 [25, 26].

If there is a difference between the number density of particles and anti-
particles, the chemical potential in the distribution function (Eqn. 22) cannot
be neglected. As the sterile neutrinos are produced through leptonic collisions
(Eqn. 30), only the difference between leptons and anti-leptons is important. A
measure of the possible asymmetry is the cosmological lepton number defined as
[31]:

L =
nν − nν̄

nγ

, (48)

The value of L is constrained experimentally from the primordial helium abun-
dance and from the mixing angle of the active neutrinos to be: |Le| < 0.05 and
|Lµ +Lτ | < 0.4 [46]. Usually it is assumed to be of the same order of magnitude as
the equally defined cosmological baryon number, B ≈ 10−5, so it is negligible and
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L ≈ 0. A negative value of L describes a Universe with more anti-leptons than
leptons in contradiction with observations, namely a Universe with more matter
than anti-matter. A positive value of L allows for a resonant production of the
sterile neutrinos which gives an overproduction [47]. Eqn. 46 is derived for L ≈ 0,
in which case it gives an upper limit on the mixing angle. However this limit is
not very robust. The details of the quark-hadron phase transition are not very
well known and the exact value of g∗(Tproduced) might change the constraint signif-
icantly. Additional production mechanism will add extra terms in the Boltzmann
(Eqn. 31) and will also change Eqn. 46.

3.6 Numerical solutions of the Boltzmann equation

Numerical solutions of the Boltzmann equation have been done including the ef-
fects of the quark-hadron phase transition taking place at temperatures comparable
to the temperature at which the sterile neutrinos are produced [40]. The hadrons
and leptons produced in the transition, will annihilate and reheat the plasma and
the coupled active neutrinos relative to the decoupled sterile neutrinos which are
diluted and spectrally distorted. However in the 0.5 − 10 keV mass range, the
distribution function of the sterile neutrino does not change more than a factor of
five compared to that of the active neutrinos [40].

The numerical calculations are well fitted by the expression [40]:

ms = 3.40 keV

(

sin2(2θ)

10−8

)−0.615(
ΩDM

0.26

)0.5

(49)

×
(

0.527erfc

[

−1.15

(

TQCD

170 MeV

)2.15
])

,

where TQCD is the temperature of the quark-hadron phase transition, and the
quantity inside the last set of brackets including the error-function is unity for
TQCD = 170 keV.

In Sec. 11 it will be clear that the results obtained from the analytical and
numerical solutions are almost identical for ms ≈ 0.5− 20 keV if TQCD is taken to
be TQCD = 170 keV. However, the details of the QCD phase transition are not yet
very well understood, and they may affect the production of the sterile neutrinos
and change it by a factor of a few [48, 49].

The numerical solution including the phase transition has also been carried out
for L > 0 allowing for other production mechanisms than the leptonic collisions
(Eqn. 30) such as resonant productions [50]. Fig. 9 shows how the relation between
sin2(2θ) and ms changes for different values of L. As L augments, smaller and
smaller mixing angles are needed (allowed).
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Figure 9: The relation between sin2(2θ) and ms changes for different values of L (for
Ωs = 0.24) [50].
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4 X-ray Observations

At this point we have learned that the sterile neutrino is a keV-mass particle
that only interacts through mixing with the active neutrinos. A small fraction of
the decays are radiative and the signature of sterile neutrinos is a mono-energetic
emission line with Eγ = ms/2 in the X-ray range. In this section X-ray observations
and observatories are presented.

4.1 X-ray observatories

X-rays are absorbed by the Earth’s atmosphere and therefore X-ray observations
have to be carried out from space. For the time being there are two X-ray obser-
vatories operating onboard satellites: XMM-Newton (ESA) and Chandra (NASA).

The concept behind the two observatories is the same. The incoming X-ray
photons are collected and focused by grazing incidence telescopes as seen in Fig. 10.
The focal planes are equipped with CCD cameras allowing for measurements of
the energy and the position of each incoming photon individually. This permits
spatially resolved spectroscopy with medium resolution (∆Eγ ≈ 0.1 keV) in the
energy range Eγ = 0.3 − 10 keV [8]. Higher resolution spectroscopy of point-like
objects can be performed by using gratings inserted between the mirrors and the
CCDs.

Figure 10: The Chandra mirrors [52].

Chandra has a good spatial resolution (∆θChandra ≈ 0.5 arcsec where ∆θXMM ≈
8 arcsec), but as it is only equipped with one telescope, where XMM has three
telescopes operating in parallel, its effective area is 3 to 5 times smaller than for
XMM. The total on-orbit background level of Chandra is a bit lower than that of
XMM [35, 51] . In this work only Chandra data has been analysed but when it
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has been possible, the obtained results have been compared to published XMM

results.

Figure 11: Chandra [52].

4.2 Chandra details

Chandra is approximately 10 m long and was launched by NASA in 1999 to an
orbit of 139, 000 km, which is about a third of the distance to the moon [52]. It
has only one telescope with Ir-coated mirrors, called the High-Resolution Mirror
Assembly (HRMA), but in the focal plane it is possible to change between two
detector arrays; the High Resolution Camera (HRC) with a very high spatial reso-
lution and the Advanced CCD Imaging Spectrometer (ACIS) with a good spectral
resolution. The spectral resolution can be improved by a factor of approximately
50 by applying one of the two transmission gratings, LETG and HETG, which
are described in Sec. 4.3. Chandra provides calibrated data for the energy interval
0.3 − 10.0 keV. In this report only data from observations with the ACIS camera
has been analysed because of its better spectral resolution.

The ACIS camera consists of two CCD arrays, ACIS-I with 4 chips and ACIS-
S with 6 chips, arranged as shown in Fig. 12. The ten chips covers each a field
of approximately (8.1 arcmin)2 but during observations only six of the ten chips
can be active (due to telemetry constraints). Two of the ten chips (ACIS-S1 and
S3) have been treated specially and are back-illuminated thereby extending their
sensitivity to lower energies than the rest of the chips which are front-illuminated.



4 X-RAY OBSERVATIONS 29

Figure 12: A schematic view of the Chandra ACIS focal plane layout. The “×” at the
I3 chip and the “+” at the S3 chip represents the aiming points for observations with
ACIS-I and ACIS-S respectively [52].

The spectral resolution of the ACIS chips given as Full Width Half Maximum
is shown in Fig. 13. For ACIS-S3 the resolution expressed as the standard devia-
tion for a Gaussian distribution (FWHM ≈ 2.35σ), is approximated by a linear
function of photon energy, Eγ:

σS3 = 0.005Eγ + 0.05 keV (50)

Figure 13: The resolution of the Chandra ACIS chips given as the full width half
maximum (FWHM = 2.35σ) [35].

The optical components of a galactic or cluster halo have velocity dispersions of
the order of v/c ≈ 10−5 to 10−4 [53]. The dark matter is assumed to have the same
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velocity dispersion. Therefore it can be taken to be at rest and the line broadening
due to motion can be neglected since it is of the order of Eobs/Eem = 1.0001,
which is the same as a broadening of 0.1 eV at 1 keV. This is much smaller than
the energy resolution of Chandra (and XMM) observations even with a grating. In
Fig. 14 is shown the spectrum of the cluster of galaxies A1835 and three Gaussians
representing three hypothetical mono-energetic emission lines at 1.0 keV, 5.0 keV,
and 9.0 keV respectively with a width corresponding to the instrumental resolution
at the given energy. The normalisation of the Gaussians are arbitrarily chosen so
they are clearly visible on the plot.
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Figure 14: Spectrum of the cluster of galaxies A1835 with three Gaussians represent-
ing three hypothetical mono-energetic emission lines at 1.0 keV, 5.0 keV, and 9.0 keV
respectively with arbitrary normalisations.

More information of Chandra can be found in the Proposers Guide [35] or in
Jesper Rasmussens PhD Thesis [54]. Details on data analysis can be found in the
CIAO data analysis guide [55].

4.3 Gratings

The X-rays arriving from a point source can be deflected in a grating allowing for
a very high spectral resolution. The High Energy Transmission Grating, HETG,
onboard Chandra, intercepts the X-rays reflected from the mirrors, changing their
direction by amounts that depend sensitively on the energy of the incoming pho-
tons. One of the focal plane detectors (HRC or as in our case the ACIS-S) records
the location of the diffracted X-rays, enabling a precise determination of their
energies with an accuracy better than Eγ/σE ≈ 1000 [56].
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The HETG consists of 336 gold grating facets mounted on a multiple ring
formed assembly that can be swung into position between the Chandra mirrors
and the CCDs. The inner two rings are High Energy Grating, HEG, facets, and
the outer two rings are Medium Energy Grating, MEG, facets. The HETG facets
are made of gold bars, which are spaced closer together than the wavelength of
visible light. The bars are supported by plastic membranes, which are as thin as
a soap bubble (≈ 10−7 m), yet they can withstand the trauma of a shuttle launch.
The gratings take advantage of the fact that the gold bars are partially transparent
to X-rays, so that the diffraction is more efficient, and more X-rays are captured
by the CCDs.

The HETG gratings are designed to cover an energy range from 0.4 keV to
10 keV with HEG covering the interval Eγ = 0.8 − 10.0 keV and MEG covering
Eγ = 0.4 − 5.0 keV. The very high spectral resolution is used in the study of
detailed energy spectra, distinguishing individual X-ray lines from specific atomic
transitions or as in our case from decaying dark matter. The exact resolutions of
the HEG and MEG spectrometers are given in Tab. 2.

Grating part Resolution, FWHM [Å] Default Bin Size [Å]
HEG 0.012 0.0025
MEG 0.023 0.005

Table 2: Resolutions and default bin sizes for HEG and MEG [57].

The default pipe line bin size of HEG and MEG is oversampled by a factor of
4–5 so the binning is finer than the actual instrumental resolution. To account for
this and to improve statistics, the data can be rebinned by a factor of “x”. The
data in Tab. 2 can be converted to an expression for the resolution as a function
of energy. For HEG this converts to:

λ

∆λFWHM

=
λ

x · 0.0025Å
. (51)

where the value x = 4.8 corresponds to the instrumental resolution. This gives an
energy resolution of:

∆EFWHM =
x(Eγ/ keV)2

4972
keV ⇒ σHEG =

x(Eγ/ keV)2

11684
keV (52)

And for MEG:
λ

∆λFWHM

=
λ

x · 0.005Å
, (53)

∆EFWHM =
x(Eγ/ keV)2

2486
keV ⇒ σMEG =

x(Eγ/ keV)2

5842
keV . (54)
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Figure 15: The resolution of HEG (red) and MEG (blue) compared to the resolution
of ACIS-S3 (green).

5 Analysis of X-ray Data

In this section the X-ray data analysis procedure and the needed software tools
are described.

5.1 The raw data

A year after observation all Chandra observations become public and can be ac-
cessed through NASA’s High Energy Astrophysics Science Archive Research Cen-
tre, HEASARC [58]. From there it is possible to download available data for any
given object. All observations are denoted with a number called the “observation
identification”.

For Chandra , the obtained data consist of the “raw” data files called secondary
files, and the default pipe-line processed data files called primary files, which are
“level2” files to be used straight away for data analysis. I have analysed the level2
data files adhering to Jesper Rasmussens “analysis guide” [59].

5.2 CIAO and Sherpa

Chandra observation data are analysed with the Chandra Interactive Analysis
of Observations, called CIAO7. It is a mission independent command-line based
data analysis system, which is designed to handle N-dimensional data files [55].
The modelling and fitting tool “Sherpa” is central to the CIAO system. Sherpa

7CIAO comes from “s’sciavo” meaning “I am your servant” in Venetian
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performs forward fitting of models to data in N dimensions. Sherpa includes the
“S-Lang” [60] language which can be used for scripting and data manipulation
[61]. Another spectral fitting package included in CIAO is the tcl-based Xspec
[62, 63].

5.3 Bad pixels, good time intervals and point source re-

moval

Before the actual data analysis can take place it is necessary to take care of bad
pixels in the CCDs, radiative activity disturbing the observation, and point source
removal.

The first step of the preparation is to locate the bad-pixel file among the
primary files, and set up the system to use this file containing observation specific
information about the CCD pixels.

The next issue is the bad events which origin in cosmic rays instead of in
X-rays but produce similar signatures in the detectors. For ACIS all events are
automatically assigned a grade according to the event detection pattern within
a 3 × 3 CCD pixel island and some events are rejected by the default pipe-line
according to the shape and splitting of these pixel values. For observations of very
faint sources there exist a “Very Faint” mode, which uses a 5 × 5 pixel island to
grade the events. This allows for an improved grade assessment of which events are
probable cosmic rays and thus enabling a superior extraction of non X-ray events
relative to the standard “Faint” mode [54]. If the data are observed in the Faint
mode, the primary files provided by HEASARC are normally ready to use, but if
the data are observed in the Very Faint mode or with a grating, the data need to
be reprocessed from the secondary files to create new primary files following the
instructions of the CIAO web page [55].

Thanks to the orbit of Chandra the periods of flaring particle background are
rare compared to XMM, but they still have to be identified and excluded [54]. This
is done separately for each chip by plotting the “light curve” which is the number
of received photons as a function of time and cut away those time intervals where
the number of received photons deviates more than 3σ from the mean as shown in
the left part of Fig. 16.

Point sources can also be removed during the data preparation. CIAO features
three algorithms for point source identification: Wavelets, Voronoi tesselation, and
sliding-cell search. I have used the wavelet algorithm since it is the most effective
all-round point source identifier [54]. The point sources are assumed to have a
Gaussian shape and are then identified on statistical basis. More information on
the methods can be found in [55]. An example of the point sources identified by
the wavelet algorithm for an observation of the cluster of galaxies A383, is shown
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Figure 16: Left: An example of the lightcurve (number of received photons as a
function of time) for the ACIS-S3 chip in a simulated observation. The points marked
in red deviates more than 3σ from the mean, and the time interval should be cut out
[55]. Right: An observation of the cluster of galaxies A383 with the point sources found
by wavelet detection marked by very small green spots.

in the right part of Fig. 16. If any point sources are removed, it is important to
remove the same regions in a possible background data set (if applied).

5.4 Instrumental response

The energy and spatial distributions of the photons collected by the CCDs are not
necessarily identical to the corresponding distributions of the incoming photons.
This effect is caused by vignetting and the probability of an incoming photon to
be detected by a given pixel in the CCD. Vignetting describes the variation in the
effective photon collecting area of the telescopes as a function of photon energy
and position relative to the optical axis of the telescope. The spatial part can be
understood in terms of classical optics (in the case of no diffraction) by looking
at Fig. 17: An incident wave will only be totally reflected from the mirror if the
incident angle is less than the critical angle. If the incident angle is larger than the
critical angle, the reflectivity decreases monotonically as a function of increasing
angle and hence the effective photon collecting area decreases as a function of
off-axis distance. One way to increase the effective area is to arrange several
nearly cylindrical mirrors inside each other in a co-axial configuration as seen in
Fig. 10. Vignetting is also energy dependent since the reflectivity of the high-
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density materials used for mirror coating in general decrease with energy at X-ray
frequencies.

Figure 17: An incident wave will only be totally reflected from the mirror if the incident
angle is less than a critical angle. If the incident angle is larger the reflectivity decreases
monotonically as a function of increasing angle.

For imaging analysis the vignetting can be accounted for by using an exposure
map, i. e. an image containing the effective exposure time at a given energy and
detector position.

For spectra the vignetting can be accounted for by using two files to convert the
observed photon energy distribution (in units of “normalized counts per instrument
energy channel”) into an incident flux (in units of “photon energy (or number of
photons) per area per time per energy”): A “redistribution matrix file”, rmf, which
maps from instrument energy channel to incident photon energy i. e. converts
between channel space and energy space; and an “ancillary response file”, arf,
which accounts for the net effective area. As an example the arf file for an ACIS-
S3 observations of the cluster of galaxies A383 is shown in Fig. 18.

5.5 Extracting spectra and instrumental response files

The regions for which the spectrum and background should be extracted, must be
defined before the spectra can be extracted with the “spec extract” algorithm in-
cluded in CIAO. Besides extracting the spectrum, it does also generate the arf and
rmf files described in Sec. 5.4. The resulting extracted spectrum has been shown
in Fig. 19 for the outer parts of the cluster A383. If nothing is subtracted as back-
ground, the spectrum includes contributions from the Cosmic X-ray Background
(CXB), unresolved sources within the field of view, emission from the Milky Way
halo, and instrumental effects apart from X-rays from the source.
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Figure 18: The net effective area of a Chandra ACIS-S3 observation of the cluster of
galaxies A383 corrected for the ACIS quantum efficiency degradation.
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Figure 19: The spectrum of the outer parts of the cluster A383 fitted to a spectral
model consisting of an exponential, a power law and two Gaussians.

5.6 Background subtraction

Background subtraction is a rather non-trivial task because the background con-
sist of several components with a different dependence on energy and position,
both of the detector and the sky. There are three possibilities for subtracting the
background: using another part of the same observation, using blank sky data, or
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using a model for the background [54].
If the spectrum is extracted from a region that does not cover all of the obser-

vation, another part of the observation can be used as background. The advantage
is that the background will be from the right position of the sky at the right time,
but the disadvantage is that the instrumental background does also depend on the
position on the detector and the same region cannot be used both as background
and source. To avoid this problem it is possible to use blank sky data which is a
collection of observations of “X-ray empty” regions in the sky where there are no
known X-ray sources. In this way the background can be taken from the right po-
sition on the detector, but there is no guarantee that the background of the blank
sky data is similar to the background in the direction of the observed source at
the given time [64]. Modelling the background is almost pure guessing, so neither
does this provide a perfect method for background subtraction. Luckily we do not
need to worry too much about the background subtractions in order to constrain
decaying dark matter particles. We just include all the received flux in a very
conservative upper limit on the flux.

The galactic halo is dark matter dominated and the observed mass of the halo
(see Sec. 6.2) will contribute to the flux of possible decaying dark mater. We have
estimated the mass of dark matter particles in the Milky Way halo (see Sec. 8.2)
and their mean distance and included this mass as a possible flux source in the
further calculations and model comparisons.

5.7 Determining the flux from spectral model comparison

For X-ray observations it is not possible to remove the instrumental effects (arf and
rmf files) and compare the unfolded spectrum with a model spectrum in order to
extract information about the observed object, because the instrumental response
is not an analytical function. Instead a model is convolved with the instrumen-
tal effects before it is fitted to the spectrum in units of “normalized counts per
instrument energy channel” and the free model parameters are determined using
χ2–statistics. The incoming flux can then be calculated from the model. As long
as we are only concerned about the flux and do not try to derive any other physical
quantities such as temperature or redshift from the model, the type of the model
does not matter as long as it fits the data well. Xspec contains a lot of pre-defined
models, which can also be accessed from Sherpa.
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6 Where to Look for Decaying Dark Matter

As the mixing angle between the sterile and active neutrinos is very small, the
decays are very rare and to look for the emission line, we need to look at a region
where the number of sterile neutrinos is very large. On the other hand, the flux
we receive from a given source is inversely proportional to the distance squared
(Eqn. 19) so the distance should not be too large. In this section I present four
types of observations of nearby dark matter dense regions of the Universe suitable
for a search for decaying dark matter: Clusters of galaxies, the Milky Way halo,
dark matter blobs in clusters of galaxies and grating data.

6.1 Clusters of galaxies

In Sec. 1.4 it was discussed how the dark matter was first observed in clusters of
galaxies, so clusters are an obvious place to look for decaying dark matter particles.
Unfortunately the clusters emit a lot of X-ray themselves from hot gas between
the galaxies. In Sec. 7 it is shown how the observational field of view can be
optimised by only regarding the outskirts of a cluster in order to get rid of some
of the unwanted X-rays from the gas. This method has been applied to the cluster
A383 seen in Tab. 3.

A383
RA (2000) 02h48min06.00 sec

DEC (2000) −03o29
′

30.0
′′

Redshift, zA383 0.1883
Luminosity distance, DA383

L 900 Mpc
Temperature, TA383 (4.8 ± 0.1) keV
Radius, RA383 800 kpc
Mass, MA383 (3.1± 0.3) · 1014 M⊙

Table 3: Left: The central (3 arcmin)2 of the cluster A383 observed in optical wave-
lengths with the Canada-France-Hawaii Telescope [65]. Right: A383 data [66] and coor-
dinates [58].

6.2 The Milky Way halo

In our own neighbourhood we have a region that is dark matter dominated: The
Milky Way halo. The left part of Tab. 4 displays the galaxy M101 which is believed
to be quite similar to the Milky Way. For most galaxies the rotation curve of the
stars are fairly flat as shown in the left part of Fig. 20 indicating that galaxies
have a dark matter halo as sketched in the right part of Fig. 20. It is possible
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to study the X-ray emission of the halo by observing in any given direction with
no known X-ray sources. These observations are called “blank sky” observations
and are usually used for background subtraction in observations of more distant
objects. If the halo consist of radiatively decaying dark matter particles, a decay
line should be visible in the blank sky spectrum. This possibility is investigated
in Sec. 8.

The Milky Way
Mass, MMW (1.0) · 1012 M⊙

Scale radius, RMW
s 21 kpc

Concentration, CMW 12

Table 4: Left: The Milky Way-like galaxy M101 observed with the Hubble Space
Telescope [13]. Right: Milky Way data [67].

Figure 20: Left: The observed rotation curve of the Milky Way compared to the
rotation curve we would observe if only the visible matter in the galaxy contributed to
the Keplerian orbits. Right: A sketch of the Milky Way Halo demonstrating how we
observe through the halo (not to scale.)

The best place to look for an emission line in the galactic halo, would be
the dwarf galaxies accompanying the Milky Way because they are dark matter
dominated and not very X-ray luminous [68, 69]. Unfortunately there are no
X-ray observations of the Milky Way dwarf galaxies of sufficient exposure time
available.
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6.3 Dark matter blobs in clusters of galaxies

According to general relativity the space-time is curved by (large) masses and
therefore the trajectory of light passing by large masses is bent. This is called grav-
itational lensing and can be exploited to map the mass distribution of foreground
clusters along the line of sight to a distant bright light source. You distinguish
between two different cases of gravitational lensing: The strong lensing where you
get multiple image systems of a single bright background light source (normally a
quasar) lensed by a foreground cluster and the weak lensing, where you analyse
the weak distortions in the shape parameters of a galaxy population. The strong
lensing is used to constrain the inner part of a cluster, where the weak lensing is
used on larger scales.

The gravitational potential obtained from weak lensing compared to a Chandra

X-ray image of the cluster of galaxies A520 shown in Fig. 21 reveals a difference
between the matter distribution and the emission in a R ≈ 200 kpc region in the
lower part of the image (in the yellow circle). The difference is not unique for A520
and these regions with high mass and low X-ray luminosity we have named “dark
matter blobs.” As they contain lots of matter and are very X-ray faint, they are
perfect for a search for decaying dark matter X-ray emission lines. In Sec. 9 the
spectrum of the dark matter blob of A520 is analysed.

A520 blob
RA (2000) 04h54min19.00 sec

DEC (2000) +02o56
′

49.0
′′

Redshift, zblob 0.203
Luminosity distance, Dblob

L 980 Mpc
Temperature, T blob 9.8 keV
Radius, Rblob ≈ 200 kpc
Mass of blob, M blob 3.16±1.27 ·1013 M⊙

Table 5: Left: The central (2.83 arcmin)2 of the cluster A520 observed in optical wave-
lengths [70]. Right: A520 data [71] and coordinates [58].

6.4 Improving the resolution

When looking for a mono-energetic emission line hiding in an already line-full spec-
trum, the spectral resolution plays an important role. In Sec. 4.3 it was described
how it is possible to improve the spatial resolution by deflecting the incoming
X-ray photons in a grating, because their deflection angle depends sensitively on
their energy. The cluster of galaxies A1835 has been observed with a grating and
the extracted spectrum is analysed in Sec. 10.
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Figure 21: A Chandra X-ray image of A520 with the mass map derived from gravita-
tional weak lensing overlaid. The dark matter blob is in the yellow circle [72].

A1835
RA (2000) 14h01min02.07 sec

DEC (2000) +02o52
′

43.2
′′

Redshift, zA1835 0.252
Luminosity distance, DA1835

L 1225 Mpc
Temperature, TA1835 10 keV
Radius, RA1835 800 kpc
Mass, MA1835 6.6 · 1014 M⊙

Table 6: Left: The central (3 arcmin)2 of the cluster A1835 observed in optical wave-
lengths with the Canada-France-Hawaii Telescope [65]. Right: A1835 data [73, 74] and
coordinates [58].
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7 A383, A Cluster of Galaxies

In this section it is described how the signal to noise ratio can be improved by
observing the outskirts of a cluster of galaxies, and the method is applied to the
cluster A383.

7.1 Clusters of galaxies and their properties

Galaxies are not randomly distributed throughout the universe but instead most
galaxies are found in collections called clusters (or groups if the number of mem-
bers is less than ≈ 50). As far as known today clusters are the most massive
bound systems in the universe that have reached a virial equilibrium [8]. Clusters
generally have virial masses ranging from 1013 M⊙ for groups up to a few 1015 M⊙

for very rich clusters [8]. The matter of the galaxies does only account for a small
part of a cluster. In between the galaxies is the intra-cluster medium (ICM), which
contains a hot dilute gas emitting X-rays. The average temperature of the ICM is
typically observed to be T ≈ 0.3 − 15 keV which corresponds to T ≈ 107K.

7.2 Why A383 is a good cluster to observe

There are four important criteria to consider when selecting a cluster in which to
look for a dark matter emission line. First of all it has to be observed and the data
has to be accessible. The second criteria is that the distance to the cluster has
preferably to be so that all of the cluster is contained within one Chandra pointing
but not so far away that we receive too few photons to do statistical model fitting.
For a cluster with a virial radius around R ≈ 1000 kpc the optimal distance is
z ≈ 0.15 − 0.25. The third criteria is that the cluster should be heavy in order to
increase the mass within the field of view as the flux from decaying dark matter is
proportional to the amount of dark matter (Eqn. 19). The last criteria to consider
is the temperature of the cluster. The number of emission lines from a gas grows
as the temperature falls so in order to reduce the number of lines in the spectrum
originating in “standard” physical processes a relatively hot (T ≈ 10 keV) cluster
is preferred [75].

The cluster A383 is not very heavy nor very hot, as a mass of MA383 = 3.1 ·
1014 M⊙ [66] and a temperature of TA383 = 4.8 keV [66] are typical average values
for clusters. But it is observed with Chandra and with a redshift of zA383 = 0.1883
[66] and an outer radius of RA383 ≈ 800 kpc it fulfils the first two requirements
- even within the Chandra ACIS-S3 chip, and no cluster could be found that
fulfilled all of the four criteria. The observation with observation identification
2321 consists of 19.76 ksec ACIS-S observations of A383. A longer observation
time would increase the photon sensitivity.
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7.3 Intra-cluster gas and the β-model

The dominant baryonic matter component of a cluster is the hot intergalactic/intra-
cluster gas [76]. A hot intra-cluster gas that is only supported against gravitational
infall by its own pressure is described by the equation of hydrostatic equilibrium8

which for spherical symmetry is given by [4]:

dP

dr
= −GMtot(< r)ρg(r)

r2
, (55)

where P is the pressure of the gas, G is the gravitational constant, ρg(r) is the
density of the gas, and Mtot(r) is the total mass inside a sphere of radius r including
gas, stars, dark matter, spaceships, and what else hides in the universe.

The pressure of the gas is given by the perfect gas law:

P =
ρg(r)T (r)

µmp

, (56)

where T (r) is the temperature of the gas, and µ is the mean molecular weight of
the gas (not to be confused with the chemical potential, µi) in units of the proton
mass, mp. Combining Eqn. 55 and Eqn. 56 gives the total mass of everything in
the cluster inside a given radius:

M(< r) = − T (r)

Gµmp

r

[

d ln(ρg(r))

d ln(r)
+

d ln(T (r))

d ln(r)

]

. (57)

If the cluster is assumed to be isothermal and spherically symmetric, Eqn. 57
reduces to:

Mtot(< r) = − Tr

Gµmp

d(ln(ρg(r))

d(ln(r))
, (58)

where T is the characteristic temperature of the gas. Most clusters are not exactly
spherical symmetric and consists of several components with different temperatures
but comparisons between X-ray observations and simulations show that Eqn. 58
gives a good first order description of the average mass distribution despite the
crude approximations. If the volume density of galaxies in a cluster follows a King
profile [77, 78], then the density of an isothermal spherical gas cloud in hydrostatic
equilibrium follows a β-profile [8]:

ρg(r) = ρ0

(

1 + (r/rc)
2)−3β/2

, (59)

where ρ0 is the gas density at b = 0, rc is the core radius defined as the radius at
which the surface brightness is half its central value, and β describes the slope of
the distribution at the radii r >> rc.

8The same equation describes the internal structure of a star where the inward force due to
gravity is balanced by an outward force due to a pressure gradient.
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The intensity of X-ray emission of a hot, tenuous, optically thin gas (which is a
good description of ICM) scales as the square of the number density as all emission
processes origins in collisions between two charged particles (electrons and ions) as
for example bremsstrahlung. For the β-model the surface brightness as a function
of the projected radius, b, is given by [8]:

S(b) = S0

(

1 + (b/rc)
2)−3β+1/2

, (60)

where S0 is the surface brightness at b = 0. The parameters β, rc are the same in
Eqn. 59 and Eqn. 60 and can be found from fitting the observed surface brightness.

Even though the β-model is fairly simple and make some crude approximations
80% of all clusters are well fitted by it [8].

7.4 The NFW-profile

Another model for the distribution of dark matter haloes of galaxies and clusters,
is the Navarro-Frenk-White (NFW) profile. As for the β-model the gas is assumed
to be spherical symmetric and in hydrostatic equilibrium, so it is described by
Eqn. 58. The generalized density distribution of the NFW-profile is given by [74]:

ρDM(x) =
ρ0

xα(1 + xγ)(β−α)/γ
, (61)

where x = r/rs. The scale radius, rs, is a free parameter. For a standard NFW-
profile α = 1.0, β = 3.0, and γ = 1.0. The same values are adopted here. The
density profile then becomes:

ρDM(x) =
ρ0

x(1 + x)2
. (62)

As the mass of a sphere is M(< r) =
∫ r

0
ρDM(r′)4πr′2dr′, the total mass inside r

is given by integration [74]:

Mtot(< r) = 4πρ0r
3
s

(

ln(1 + x) − x

1 + x

)

(63)

In Fig. 22 the dashed line shows the NFW profile described above fitted to
data points obtained for the cluster A1835 from X-ray analysis. The vertical solid
line is the best fit scale radius, rs, with the 1σ values as the vertical dotted lines.
The arrow marks the best fit scale radius for a fit to a more complicated model
shown as the solid line, but as it is seen A1835 is almost as well fitted by the
NFW-profile. The green square is the gravitational lensing mass [79]. In the lower
part of Fig. 22 the gas mass fraction is shown.
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Figure 22: Upper: The density profile of A1835 fitted to a NFW-profile (dashed) and
a more complicated model (solid). The vertical solid line is the best fit scale radius,
rs, for the NFW-profile with the 1σ values as the vertical dotted lines. The arrow
marks the best fit scale radius for the more complicated model. The green square is the
gravitational lensing mass given by [79]. Lower: The gas mass fraction. [74].

7.5 Optimising the observational field of view

It is possible to optimize the ratio of the signal from decaying dark matter particles
to noise (X-ray from ICM) by choosing the observation radius of a given cluster
with care. The intensity of X-ray radiation from ICM is proportional to the ICM
electron density squared because all emission processes origins in collisions between
two charged particles. The intensity of X-ray radiation from decaying particles is
directly proportional to the dark matter density; the more dark matter particles,
the larger a probability that one will decay at a given time. As the ICM density
and the dark matter density both depends on the radius, there exist an annulus
around the cluster for which the ratio of signal to noise is maximal for a given dark
matter distribution. This means that the ratio of signal to noise can be maximized
by maximizing the ratio Σ(b)/S(b), where Σ(b) is the mass per observed surface
unit as a function of projected radius, b, and S(b) is the surface of brightness of
the cluster in X-ray. If the density of the ICM is assumed to follow a β-profile,
S(b) is given by Eqn. 60.

In order to calculate Σ(b) the distribution of all matter in the cluster (taken to
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be equal to the mass of dark matter), ρDM , is needed [80]:

Σ(b) =

∫ R

0

ρDM(r)√
r2 − b2

dr2 , (64)

where the upper integration limit, R, is the chosen outer radius of the cluster.
The total mass inside a given radius, MDM , can be calculated from Eqn. 67 for

an ICM density distribution given by the β-profile (Eqn. 59):

Mtot(< r) =
3βT

Gµmp

r3

r2 + r2
c

, (65)

The total density, ρDM , can then be found from:

Mtot(< r) = 4π

∫ r

0

ρDMr2dr . (66)

In practice S(b) and Σ(b) are not observed at a single radius, but rather as a
mass, Mann, and a flux, Fann, of an annulus of a certain width. The total mass
and flux of an annulus with inner radius b1 and outer radius b2 are given by:

Mann =
∫ b2

b1
2πΣ(b)bdb , Fann =

∫ b2
b1

2πS(b)bdb . (67)

It is necessary to set some kind of criteria for selecting b1 and b2. The first
criterion is of course that they should both lie within the observational field of
view and preferably within a single chip. Another criteria is that most of the ICM
X-ray “noise” should be avoided but the annulus should still be fairly large in
order to get enough photons to do statistical calculations. The values of b1 and
b2 can be chosen from the values of the ratio of Mann/Fann. It was calculated in
a tiny annulus of width a 2∆b around the optimal radius, (bopt − ∆b,bopt + ∆b)
and b1 and b2 were chosen so that the ratio of Mann/Fann becomes some fractional
value of the ratio in the tiny annulus:

Mann(bopt, bopt ± b1,2)

Fann(bopt, bopt ± b1,2)
= x1,2

Mann(bopt − ∆b, bopt + ∆b)

Fann(bopt − ∆b, bopt + ∆b)
(68)

where x1,2 is the fraction of the value in the tiny annulus for b1 and b2 respectively.
The angular extension of the annulus can be calculated from Eqn. 11.

∆θ =
∆b

DA

=
(b2 − b1)(1 + z)2

DL

. (69)
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7.6 The optimised field of view for A383

The ratio Σ(b)/S(b) as a function of b was determined numerically for a couple
of clusters with an IDL routine. As input the routine takes the mass at a given
radius, M(rK) ± σM , rK ± σK , rc, R, β, z and DL. The input values were taken
from Vikhlinin et al. [66]. As output it returns the optimal projected radius;
bopt ± σb, the inner and outer radii of the annulus; b1, b2 and the mass of the
annulus Mann(b1 < b < b2) ± σM . Fig. 23 shows S(b) (dotted), Σ(b) (dashed) and
the ratio Σ(b)/S(b) (solid), scaled to their values at b = 0 for the cluster A383.
The general result was that bopt lied in the outer half of the cluster at around 80%
of the outer radius.

Figure 23: S(b) (dotted), Σ(b) (dashed) and the ratio Σ(b)/S(b) (solid), all scaled
to their value at b = 0 for A383. The optimal annulus is for b = (230 − 650) kpc =
(1.3 − 3.5) arcmin. Left: Logarithmic scale. Right: Linear scale.

Input [66] Output
rK ± σK 956 ± 33 kpc bopt 648 ± 1 kpc
M(rK) ± σM 3.1 ± 0.3 · 1014 M⊙ b1 232 kpc = 1.3 arcmin
rc 115.2 kpc b2 648 kpc = 3.5 arcmin
R 800 kpc Mann(b1 < b < b2) 1.3 ± 0.1 · 1014 M⊙

β 0.583
z 0.1883
DL 903.5 Mpc

Table 7: The input and output values for the IDL routine determining the optimized
observation annulus for A383.

The input and output values for A383 are given in Tab. 7. For A383 bopt

almost corresponds to the outer edge of the Chandra ACIS-S3 chip. Hence it was
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chosen as the outer radius of the annulus, b2. b1 was chosen by setting x1 = 0.5
in Eqn. 68. The obtained values of b1 and b2 has been plotted as vertical lines
on Fig. 23 (dot-dashed) and as the green circles in in Fig. 24. The mass of the
annulus was determined to be MA383

ann = 1.3 ± 0.1 · 1014 M⊙.
The Milky Way halo contribution (described in Sec. 8) from the annulus of

field of view is MA383
halo = π(b2 − b1)

2/(60 · 360 arcmin)2Mhalo = 3.3 · 104 M⊙ with b1

and b2 given in arcmin.
Other values of x1 and x2 were tested. If e. g. x1 was chosen as x1 = 0.75

instead of 0.5 in order to improve the signal to noise ratio, the annulus becomes
too small and the lack of photons becomes significant.

Figure 24: A383 observed with the Chandra ACIS-S3 chip and the optimal observation
annulus. The ACIS-S3 chip is (8.1 arcmin)2.

7.7 Uncertainty in optimal radius and mass of the annulus

The precision of the radii of the optimal annulus is not critical, as the annulus is
only used for data selection and their uncertainties do not propagate to any final
result. The critical uncertainty originating in the optimisation process, is that of
the mass. In order to determine the uncertainty of the mass of the annulus the
IDL routine calculates the mass of the annulus a 1000 times with different values
of M(rK) and rK which clearly dominates the uncertainty in the mass estimate.
The values are randomly picked from a Gaussian distribution of M(rK) and rK

centred at the values given in [66] and a width of the given σM and σK respectively.
The total mass inside a given radius calculated from Eqn. 67 is a lower limit.

The outer radius used as the upper integration limit in the integral defining the
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surface density as a function of the projected radius (Eqn. 64) is taken to be either
the radius, where the X-ray brightness is detected at more than 3σ or the outer
boundary of the Chandra field of view, whichever is smaller [66]. The actual outer
radius of the cluster could actually be larger which would lead to an augmented
density distribution and therefore result in a larger total mass of the annulus.

Recently the precision of the β-model has been investigated by Rasia et al.
[81] who find that the β-model underestimates the cluster masses and the mass
determined from Eqn. 67 certainly becomes a lower limit. This agrees with the
fact that masses determined from gravitational lensing methods seem to be larger
than X-ray determined masses.

7.8 Remark: Comparison to a modified β-model

The model parameters from Vikhlinin et al. [66] are derived for an extended
version of the β-model. It has been tested that using their parameters (β, rc, R)
from the modified β-model in a non-modified β-model to determine the optimal
radius gives optimal radii that only deviates about 5% from what is obtained using
their full β-model. The conclusion is then to use a standard β-model, because it
is simpler and bopt, b1 and b2 are only used for data selection.

7.9 Extracting spectrum of A383

The spectrum of A383 was extracted as described in Sec. 5 with the CIAO algo-
rithm “spec extract” for the optimised annulus. The resulting spectrum is shown
in Fig. 25. Over the interval E = 0.8− 9.0 keV it was fitted to a model consisting
of an exponential, a powerlaw and two Gaussians with a reduced χ2 = 1.1 for 226
degrees of freedom.
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Figure 25: The raw spectrum of the optimised annulus of A383 fitted to a model
consisting of an exponential, a powerlaw and two Gaussians.
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8 The Milky Way Dark Matter Halo

The Milky Way halo is a nearby dark matter dense region suited for a search for
decaying dark matter. In this section, the blank sky data are presented together
with some characteristics of the Milky Way halo.

8.1 Blank sky data

As seen in Sec. 6.2 the Milky Way halo can be studied by analysing X-ray blank
sky data. Blank sky data consist of many hours of observations of different regions
of the sky with no known X-ray sources, that have been stacked. The ACIS-S3
part of the blank sky data set D2000-12-01 (Fig. 26), created during 2001, was
analysed [64].

Figure 26: The ACIS-S3 blank sky observation from the Chandra blank sky data set
D2000-12-01. No sources are clearly visible.

Sources identifiable by eye are already marked out in the creation of the blank
sky data files, so no extra point source removal is needed. Also only good “non-
flaring” time intervals have been used and all time stamps have been set to zero,
so it is not possible to clean the light curve further [64]. The extracted spectrum
is shown in Fig. 27 for E = (0.8 − 9.0) keV. A composite model consisting of a
continuum of two power laws plus an exponential and with five Gaussians added
at the energies of the most prominent lines, was fitted to the blank sky spectrum
with a resulting reduced χ2 = 1.1 for 540 degrees of freedom.

The background level of the ACIS-I chips is slightly lower than the background
level of ACIS-S3 (see Fig. 35, [35]), but as we wanted to compare the blank sky
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Figure 27: The blank sky spectrum of Chandra ACIS-S3 fitted to a model consisting
of a two power laws, an exponential and five Gaussians.

spectrum with the spectrum of A383 observed with ACIS-S3 and look out for
instrumental effects, it was decided to use blank sky data from the ACIS-S3 chip .

8.2 Observed halo mass and mean distance

The density distribution of the Milky Way is assumed to follow a NFW-profile
which in the most general form is given by Eqn. 61:

ρDM(x) =
ρ0

xα(1 + xγ)(β−α)/γ
, (70)

where x = r/rs. The standard values α = 1.0, β = 3.0, and γ = 1.0 were adopted.
It was tested that the total mass within the field of view does not depend sensitively
on the values; varying the inner density slope, α, from −1 to zero or changing the
outer density slope, β, between −3 and −4 changes the predicted mass by less
than a factor of 2.

The total mass of the Milky Way halo was assumed to be Mhalo
tot = 1012 M⊙

which is a rather conservative choice [67]. The scale radius and virial radius were
taken to be rs = 21 kpc and rvir = 256 kpc respectively, and the solar distance
R⊙ = 8kpc [67]. The average distance to the halo mass was determined to be
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Dhalo
L = 0.035 Mpc by integration of the density profile:

Mtot(< r) =

∫ r

0

ρ(r)4πr2dr . (71)

The fraction of the halo mass observed by the ACIS-S3 chip in the blank sky
observations is M blank

halo = (8.1 arcmin)2/(60 · 360 arcmin)2 = 1.4 · 105 M⊙.
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9 The Dark Matter Blob of A520

The difference between the gravitational potential from weak lensing and an X-ray
image reveals regions of large mass and low X-ray intensity. In this section the
data analysis of one such region, called a dark matter blob, is discussed.

9.1 Extracting the spectrum of A520

The Chandra observation 4215 consists of 67.15 ksec observations of the cluster of
galaxies A520 taken in the Very Faint mode described in Sec. 5.3. Before the data
could be analysed, they had to be reprocessed in order to fully exploit the more
precise event filtering of the Very Faint mode. The dark matter blob was identified
with a circular region shown in red in Fig. 28 of radius r = 0.738 arcmin and centre
at the coordinates (RA,DEC) = (04h54min05.67 sec, +02o51

′

33.9
′′

). The two point
sources within the region were removed manually. As seen by the red circles in
Fig. 29 the dark matter blob is corresponding to a small group of very X-ray faint
galaxies. The region is slightly shifted from the region with highest density because
it has been define from Fig. 21 and not from Fig. 29.

Figure 28: A520. The region in red is the dark matter blob for which the spectrum
was extracted and the regions in green are the regions used for background subtraction.
Compare to Fig. 21 or Fig. 29.

The extracted spectrum was fitted in the interval E = 0.3 − 9.0 keV to a
composite model of a power law and six Gaussians with a reduced χ2 = 1.2 for 80
degrees of freedom. The spectrum and the fitted model are shown Fig. 30.
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Figure 29: Left: The galaxies of A520. The size of the circle reflects the luminosity
of the galaxy. The red circle is the region of the dark matter blob. Right: The surface
mass density of A520 [82].

For A520 we tried to subtract the background in the form of some nearby
regions with the same area but away from the dark matter blob. The spectrum
subtracted the region to the left is shown in Fig. 31. The line feature just below
1 keV behaves like expected for a dark matter decay line. It shows up in the
spectrum of a dark matter dense region (the blob) but not in the background from
any of the nearby and less dark matter dense regions. However it is not a very
significant effect. As seen in the right part of Fig. 31, the line does not show up
in a similar spectrum from XMM .

9.2 The mass of the blob

The mass of the blob was determined from weak gravitational lensing by H̊akon
Dahle [83] to be M blob

tot = 3.16 ± 1.27 · 1013 M⊙. The halo contribution to the mass
circular field of view is MA520

halo = πr2/(60 · 360 arcmin)2Mhalo = 3.7 · 103 M⊙ with
r = 0.738 arcmin.
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Figure 30: The spectrum of the A520 dark matter blob shown in Fig. 28 fitted to a
model consisting of a power law and six Gaussians.

Figure 31: Left: The Chandra spectrum of the A520 dark matter blob subtracted the
spectrum of the region to the left. Right: The XMM spectrum of the same region (white)
and the background from the left region (red).
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10 Grating Spectrum of A1835

The better the spectral resolution becomes, the better the chances of finding a
specific emission line in the spectrum. The spectral resolution of Chandra can
be significantly improved by employing a grating as described in Sec. 4.3. Un-
fortunately this method does only apply to bright point sources (or nearly point
sources) as the spatial resolution of the arriving photons is lost, when they are
deflected by the grating. Also it has to be a fairly bright source as some of the
arriving photons are absorbed by the grating. In this section the data analysis of
a grating spectrum of the cluster of galaxies A1835 is described.

10.1 The advantages of A1835

A1835 has a redshift of z1835 = 0.252 which gives a luminosity distance of DL =
1225 Mpc [79, 84]. With an outer radius of RA1835 ≈ 800 kpc [73] it is reasonable
to assume that all of the cluster mass lies inside the observational field of view
of the 6 Chandra ACIS-S chips used in the observation 511. There are no other
obvious mass sources in the field as seen in Fig. 32. This means that all of the
observed flux can be taken to origin from A1835 and the Milky Way halo. The
halo contribution is MA1835

halo = 6·(8.1 arcmin/(60·360 arcmin))2Mhalo = 8.4·105 M⊙

because there are six ACIS-S chips, each with an effective area of (8.1 arcmin)2.
The mass distribution of A1835 has been investigated by Voigt and Fabian [74]

who find that the cluster is well described by a standard NFW-profile (see Fig. 22).
The total mass inside the full field of view has been calculated from Eqn. 63
with the best-fit parameters given in by Voigt and Fabian [74]; rs = 0.8+1.59

−0.38 and
ρ0 = 5.2±2.5·1014 M⊙/ Mpc3. This gives a total mass of MA1835

tot = 6.6±2.7·1014 M⊙

which is a mass in the heavier end of the cluster scale.

Figure 32: A1835 as observed with Chandra-HETG instrument. The green lines marks
the deflected spectrum, and the circle is the zero order region.
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10.2 Data treatment of A1835

The grating data of A1835 requires special treatment. The steps of the data
analysis are briefly described here and for further details I will refer to the guide
at the CIAO webpage [55].

Since the pipeline data treatment does not apply to grating spectra, it is nec-
essary to reprocess the grating data manually. First the ACIS afterglow correction
from the pipeline must be removed, because it is outdated and a better one is
incorporated in CIAO. Then a new badpixel file is created and the data are re-
processed with the new badpixel file and the new afterglow correction applied.
These first steps are not different from those of reprocessing normal data files.
The next step is to locate the detector position of the zero order spectrum and the
lines of deflected photons shown in Fig. 32. Then the data are reprocessed to a
level2 file, which is in principle ready for light curve cleaning etc. If the ACIS-S4
chip was turned on during observations (which it is by default for grating observa-
tions), it is necessary to destreak the data from the chip in order to account for a
defect in the serial readout of the chip causing “lines” in the image [55]. The rmf
and arf files are created together with the spectrum and the data are split out in
deflection orders before they can be regrouped and binned ready to be fitted to a
spectral model.

Figure 33: Left: The first order ACIS-HEG grating spectrum of A1835 with a fitted
MEKAL model. Right: The first order ACIS-MEG grating spectrum of A1835 with a
fitted MEKAL model.

The spectra of the first order deflection to both sides (called ±1) are fitted
simultaneously for the HEG and MEG data respectively. The model fitted to
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the data is a MEKAL model [85], which is a plasma physics model describing
the emission from a diffuse hot gas. The MEKAL model has the temperature,
the metal abundance and the redshift as free parameters. The redshift was fixed
at the known value and the parameter frozen before the model was fitted to the
spectrum. The resulting fits shown in Fig. 33 have reduced χ2 of χ2

HEG = 1.2 (683
degrees of freedom) for HEG and χ2

MEG = 1.2 (569 degrees of freedom) for MEG.

10.3 The zero order spectrum

The zero order spectrum consists of the photons that were not deflected by the
grating and can be extracted from the zero order region by following the standard
spectrum extraction procedure described in Sec. 5. For the observation 511, the
zero order region (the green circle in Fig. 32) has a radius of 0.35 arcmin. The
mass inside the field of view can be calculated from a NFW-profile (Eqn. 63) for
the same parameters as in Sec. 10.1 giving a mass of M zero

tot = 1.48 · 1013 M⊙. The
halo contribution to mass inside the field of view is M zero

halo = π(0.35 arcmin)2/(60 ·
360 arcmin))2Mhalo = 8.2 · 102 M⊙.

Because it is a Very Faint mode observation, the background level is very low
and the zero order spectrum is well fitted by a single MEKAL model with a reduced
χ2 = 1.1 for 594 degrees of freedom.
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Figure 34: The zero order spectrum of A1835 with a fitted MEKAL model.



11 X-RAY CONSTRAINTS ON STERILE NEUTRINOS 60

11 X-Ray Constraints on Sterile Neutrinos

With the spectra extracted from the different dark matter dense regions and fitted
to models it is possible to determine the flux and constrain several parameters of
the sterile neutrinos; the decay rate, the lifetime, the mass, the mixing angle and
any additional entropy production.

11.1 Distinguishing between emission lines and spectral
features

The extracted blank sky spectrum shown in the left part of Fig. 35 contains several
very prominent line features. The right part of Fig. 35 shows the spectrum of a
Chandra observation with the telescope stowed behind a lid and not pointing at
the sky. As the lines are still visible, they must be of instrumental origin.

Figure 35: Left: The blank sky spectrum (see Sec. 8.1). Right: Energy spectra of the
charged particle ACIS background with ACIS in the stowed position. Line features are
due to fluorescence of material in the telescope and focal plane [35].

Most of the line features are identified since they originate from fluorescence of
materials in the telescope and focal plane. However a decay line from dark matter
could “hide” under one of these prominent features. In this case, the energy of the
decay line will be redshifted by a factor of (1+z) in the spectrum of a dark matter
region at a given redshift, z. To test for this, the blank sky spectrum was compared
to those of the outskirts of the clusters A478 and A383 shown in Fig. 36. In the
blank sky spectrum the line features at Eγ = 1.74 keV, 2.1−2.2 keV, and 7.47 keV
are identified as the Si Kα, the Au Mαβ complex, and Ni Kα respectively.
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For A487 with a redshift of zA478 = 0.0881 [66], the lines would be redshifted
to Eγ = 1.5 keV, 1.8 keV, and 6.9 keV. As seen in the left part of Fig. 36 there are
no obvious line features at these energies marked by the arrows. For A383 with
zA383 = 0.1883 [66], the lines would be redshifted to Eγ = 1.2 keV, 1.7 keV, and
6.3 keV as shown in the right part of Fig. 36. There is a visible line at Eγ ≈ 1.7,
but this line is the original instrumental Si Kα line, so A383 is not suitable for
checking whether there is an emission line hiding under the Au Mαβ complex.

In the case where a moving line had been found in the spectra, it would not
necessarily be an emission line from dark matter. It would probably origin in
standard physical processes of the observed object as the redshifting of course
applies to all emission lines.

Figure 36: Left: The spectrum of the outer parts of A478 (only a fraction of the opti-
mized annulus, b = 385 − 1150 kpc) with the corresponding redshifted energies marked
by arrows. Right: The spectrum of the outer parts of A383 (b = 230− 650 kpc) with the
corresponding redshifted energies marked by the arrows.

11.2 A conservative upper mass limit from the total flux

The flux received by an X-ray observatory can be taken as an upper limit on
the flux originating in decaying sterile neutrinos. The decay rate (Eqn. 20), the
lifetime (Eqn. 14), and the branching ratio (Eqn. 16) can be combined with the
expression for the mixing angle (Eqn. 46) and the proper conversion factors to give
an upper limit for ms:

( ms

keV

)3

. 1.5 · 1025f(ms)

(
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6.7 · 10−8

)
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For the entire spectrum (E = 0.3−10 keV) of the outer parts of A383, Eqn. 72
gives an upper limit of ms . 20 keV (for S = 1) and similar results are obtained
for the blank sky data and the dark matter blob of A520. The result is very
conservative and robust since no background have been subtracted, no physical
meaningful model is needed for the flux, and no information on the instrumental
energy resolution is needed. Unfortunately this constraint is very close to the
upper limit of the energy interval measurable by Chandra so it does not exclude
very much.

11.3 Determining the emission line flux

As we are looking for a mono-energetic emission line it is not necessary to determine
the flux from the entire energy interval. Instead it can be divided into a number of
bins of a width comparable to the expected width of the emission line and the flux
of each bin can be determined from a model describing the spectrum well from
a statistical point of view. There are several ways to perform the division of the
energy interval and the representation of the hypothetical mono-energetic emission
line. The most conservative method is the “slice method” where the energy range
of the spectrum is divided into bins of a width equal to the instrumental energy
resolution (2σ) and all of the X-ray flux in a particular bin (determined from the
fitted model) is assumed to originate in decaying dark matter particles. Fig. 37
shows the blank sky spectrum fitted to a model with an energy “slice” at Eγ =
7.9 − 8.1 keV. The slice method is very robust as it does not assume anything
about the background, but regards all received flux as an upper limit for the flux
from decaying dark matter even though the total flux is known to consist of several
contributions; the CXB, the X-ray emission from the ICM, the Milky Way halo,
and the instrumental background.

The fluxes obtained with the slice method are shown in Fig. 38 for A383 (solid
yellow), the blank sky data (solid navy), the dark matter blob in A520 (solid
green), and the grating spectrum of A1835 (solid red). It is clearly seen that the
smallest fluxes are obtained for regions with very low X-ray background such as
the blank sky data and the dark matter blob. By decreasing the bin-size, as done
with grating spectrum of A1835, the flux per bin is also decreased.

Another method to determine the flux is to let a hypothetical mono-energetic
emission line in the spectrum be represented by a Gaussian, centred at the line
energy, with a width, σ, given by the instrumental spectral resolution, and with the
maximum at the value of the model fitted to the broad-band spectrum. An example
of such a Gaussian is shown in Fig. 37 at Eγ = 6.0 keV. The flux determined by
this Gaussian can be taken as an upper limit on the mono-energetic emission from
decaying dark matter. As shown for the blank sky data in Fig. 39, the fluxes
obtained by the two methods are very similar.
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Figure 37: The blank sky spectrum fitted to two power laws, an exponential, and five
Gaussians (reduced χ2 = 1.1). At Eγ = (7.9 − 8.1) keV is shown a slice as used in
the slice method, and at Eγ = 6.0 keV is shown a Gaussian demonstrating the similar
method.

The line broadening due to velocity dispersions in the observed dark matter
halo is negligible compared to the spectral resolution of Chandra (even for grating
spectra, Sec. 4.2). If it was not negligible, the width of the slice or the Gaussian
should be determined by the broadening due to velocity dispersion and not by the
instrumental spectral resolution.

The more photons received by Chandra , the more precisely the flux can be
determined. The relative error on the flux determination is given by Xspec and
Sherpa and for the relevant spectra it is of the order of σf/Fdet ≈ 0.1 − 0.2 for
models fitted with a reduced χ2 of 1.1 − 1.4.

11.4 A more model dependent limit on the flux

If the broad-band spectrum is fitted to a physical meaningful spectral model, e. g.
the MEKAL model for clusters, it is possible to improve the upper limit of the flux
by applying a “Gaussian method” where a hypothetical mono-energetic emission
line in the spectrum is represented by a Gaussian, centred at the line energy,
and with a width, σ, given by the instrumental spectral resolution (as before).
This Gaussian is added to the previously fitted physical model and the composite
model is again fitted to the data with the norm of the Gaussian as the only free
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Figure 38: The fluxes obtained with the slice method for blank sky data (solid navy),
A383 (solid yellow), A520 (solid green), A1835 grating (solid red), and A1835 zero order
(solid purple).

Figure 39: The flux obtained from the slice method (solid navy) and for the method
with a Gaussian with maximum at the fitted base model (dashed navy) for the blank
sky data.

parameter. The flux from the physical model is assumed to originate in standard
physical processes, so the only flux, which could possibly originate in decaying



11 X-RAY CONSTRAINTS ON STERILE NEUTRINOS 65

dark matter, is the flux between the physical model and the Gaussian9. Fig. 40
shows the flux from the Gaussian method applied to the grating spectrum of A1835
(solid blue) compared to the results obtained for the same data by the slice method
(solid red).

Figure 40: The fluxes obtained with the Gaussian method for A1835 grating (solid
blue) compared to the fluxes obtained for the same data by the slice method (solid red).

There are small intervals where the flux observed by Chandra is zero, leading
to a very low upper limit on the flux. Over most of the energy interval there is a
quite good agreement between the slice method and the Gaussian method. The
largest disagreement is for very low photon energies. It is due to the much higher
instrumental background level (see the right part of Fig. 35) which makes it harder
to fit the data well by the physical model at the low energies. Therefore it leaves
room for a larger Gaussian within the data error bars when fitting the composite
model.

In the following sections the flux limit has been obtained with the slice method,
unless otherwise stated.

9The method is comparable to that of Boyarsky et al. [86] but not identical.
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11.5 Constraining the decay rate of a dark matter particle

The observed upper limit of the flux can be used to set an upper limit on the
radiative decay rate of a dark matter particle in the observed field of view (Eqn. 20):

Γγ . 8πFdet
D2

L

Mfov

(73)

= 1.34 · 10−4

(

Fdet

erg/cm2/sec

)[

(Mfov/ M⊙)

(DL/ Mpc)2
+

(Mhalo/ M⊙)

(Dhalo/ Mpc)2

]−1

,

Both the observed object and the Milky Way halo contribute to the mass within
the field of view. The obtained constraints are shown in Fig. 41 for blank sky data
(solid navy), A383 (solid yellow), A520 (solid green), A1835 grating (solid red),
and A1835 zero order (solid purple).

Figure 41: The constraints on the decay rate obtained with the slice method for blank
sky data (solid navy), A383 (solid yellow), A520 (solid green), A1835 grating (solid red),
and A1835 zero order (solid purple). The hatched region is excluded by Eqn. 73 applied
to the A1835 grating data.

The fluxes are determined with an accuracy of σf/Fdet ≈ 0.1 − 0.2. The
uncertainty in the distance and the mass are not uncorrelated, but they are both
determined with an accuracy of σD/DL ≈ σM/Mtot ≈ 0.1− 0.3. The decay rate is
directly proportional to the flux and the mass, but the dependency on distance is
squared. Therefore the uncertainty of the distance dominates the total uncertainty
of the decay rate. The values of the observed masses used to determine Γγ have
all been chosen conservatively small and as Γγ ∝ M−1

fov the possibly larger masses
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would just improve the obtained constraints. When all the uncertainties adds up,
the uncertainty in the decay rate is still less than a factor of two and even though
the result is not very precise, the order of magnitude is reliable.

The achieved upper limit on the decay rate is very general, as the only assump-
tions about the dark matter particle is that is has a radiative two-body decay.

The zero order spectrum of A1835 gives the weakest constraint on the decay
rate confirming that observations of a full cluster is not the optimal method to
constrain a decaying dark matter particle. If only the outer parts of a cluster
is considered, as for A383, it is possible to gain an order of magnitude. The
the grating spectrum of A1835 gives a constraint which is three to four orders of
magnitude better than the zero order spectrum of A1835 even though the same
cluster is observed. The improvement is due to the grating spectral resolution
being approximately a factor of 50 better than the normal spectral resolution
(Sec. 4.3).

Figure 42: The decay rate constraint of the A1835 grating spectrum (solid red) fitted
to a polynomial (dashed black) independently for HEG and MEG.

The decay rate constraints from the grating data of A1835 has been approxi-
mated by an analytical expression for HEG and MEG independently. As seen in
Fig. 42 a second order polynomial describes the HEG constraints quite well, and
a sixth order polynomial does the job for the MEG data:

ΓHEG = −1.78 · 10−28 + 4.38 · 10−28Eγ − 3.61 · 10−28E2
γ

ΓMEG = −7.08 · 10−28 + 3.78 · 10−28Eγ + 2.91 · 10−28E2
γ (74)

−1.57 · 10−28E3
γ + 3.08 · 10−29E4

γ − 2.89 · 10−30E5
γ + 1.09 · 10−31E6

γ
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11.6 Lifetime constraints and model confrontation

By using the branching ratio for the sterile neutrinos (Eqn. 16), the general dark
matter X-ray constraints on the decay rate can be converted into constraints on
the lifetime of the sterile neutrinos. The obtained constraints (shown in Fig. 43)
can be compared to the νMSM model predictions for the lifetime (Eqn. 14) and
mixing angle (the analytical solution, Eqn. 46) combined:

τmodel = 8.8 · 1026 sec · f(ms)

(

A

6.7 · 10−8

)−1(
ΩDM

0.26

)−1

(75)
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)−2(
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)−1
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)−3
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Figure 43: The constraints on the lifetime obtained with the slice method for blank
sky data (solid navy), A383 (solid yellow), A520 (solid green), A1835 grating (solid red),
and A1835 zero order (solid purple) as a function of mass.

In Fig. 44 the νMSM model predictions for several values of g∗ and S (black)
has been plotted on top of the constraints from the grating spectrum of A1835
(solid red). Even though S has been predicted to lie between 1 and 100 [25, 26]
values down to S = 0.2 are included. This is done as a conservative approach
accounting for all uncertainties of the models and the experimental constraints
on the decay rate. The numerical uncertainty of Eqn. 75 is dominated by the
uncertainty of the value of g∗(Tproduced). As described in Sec. 3.1 g∗ is usually
chosen between 10 and 20. In Fig. 44 Eqn. 75 is plotted for g∗ = 10 − 20 (black
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hatched). It is seen that even though the difference is not very large, there is a
difference of approximately a factor of two between these two outer limits. When
comparing the lifetime calculated with the analytical solution of the Boltzman
equation (Eqn. 46, black hatched) to the more complicated numerical solution
including effects from the quark-hadron phase transition and other production
mechanism at TQCD = 170 keV (Eqn. 49, solid orange), it is seen that for the
considered mass range, the solutions are almost identical, and the mean difference
lies in the chosen value of g∗. The conclusion is that both the theoretical model
prediction of the lifetime and the observational constraint are only accurate within
a factor of two, which in the most conservative case are accounted for by choosing
S = 0.2.

Figure 44: The blank sky (solid navy) and A1835 grating (solid red) constraints on
the lifetime compared to the νMSM model predictions of Eqn. 75 for sterile neutrinos
for several values of g∗ and S (black), and the numerical model prediction of Abazajian
[40] from Eqn. 49 (solid orange).

From the right part of Fig. 44 it is seen that the values of S & 20 are excluded,
and for the most conservative choice of S = 0.2, an upper limit of the mass of the
sterile neutrino is ms . 8 keV. For S = 1 the limit becomes ms . 3.5 keV, and for
S = 15, ms . 1.1.

If there are several dark matter components and the sterile neutrinos only con-
tribute to a fraction of the total amount of dark matter, the upper mass limit
changes. The change is shown as a function of fraction in Fig. 45 for the conserva-
tive choice of S = 0.2 (solid red) and the standard choice of S = 1.0 (dashed red)
for the HEG grating spectrum of A1835. The lower the fraction of dark matter,
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the weaker becomes the upper limit of the mass.

Figure 45: The mass limit as a function of the fraction of dark matter consisting of
sterile neutrinos for S = 0.2 (solid red) and S = 1.0 (dashed red) for the HEG grating
spectrum of A1835.

11.7 Constraining S

By comparing the lifetime constraints with the νMSM model predictions for several
values of S (the right part of Fig. 43), it is possible to constrain the ms − S
parameter space as shown in Fig. 46 for the X-ray constraints presented in this
report. It is seen that the general tendency is an exclusion of large values of S
(S & 20) and large masses (ms & 10 keV).

11.8 The sin2(2θ) − ms parameter space

Constraints on the sterile neutrinos are often displayed in the sin2(2θ) − ms pa-
rameter space. Combining the decay rate (Eqn. 20) and the lifetime (Eqn. 14)
with the branching ratio (Eqn. 16) the mass can be expressed as a function of the
mixing angle without having to assume anything about the behaviour of the sterile
neutrinos in the early Universe:

sin2(2θ) . sec−1f(ms)

(

Fdet

erg/cm2/sec

)

(76)

×
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Figure 46: The ms − S parameter space excluded by X-ray observations of blank sky
data (navy), A383 (yellow), A520 (green), A1835 grating (red), and A1835 zero order
(purple).

In Fig. 47 are shown the constraints presented in this report in the sin2(2θ)−ms

parameter space. It is seen that large masses and large mixing angles are excluded.
The uncertainty of the constraints is dominated by the uncertainty of mass and
distance, and lies within a factor of two.

11.9 Improving the results

The uncertainties are dominated by those of the masses and especially by those of
the distances. More precise mass and distance measurements would increase the
quality of the constraints, but they would not change the quantitative conclusions
very much.

The accuracy of the flux determination could be increased by stacking X-ray
observations from different regions in order to improve statistics. Or, as mentioned
in Sec. 6.2, X-ray observations of the dwarf galaxies within the Milky Way dark
matter halo such as Draco or Ursa Minor could improve the constraints as the dwarf
galaxies are believed to be dark matter dominated and X-ray faint [69]. None of
these improvements would change the conclusions of the constraints significantly.

The constraints could be improved by observations at lower and especially
higher energies than covered by the sensitivity of Chandra . The statistical errors
and the flux determination can be improved by observations of longer exposure
time.
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Figure 47: The sin2(2θ) − m parameter space constrained from X-ray observations of
the blank sky (navy), A383 (yellow), A520 (green), A1835 grating (red), and A1835 zero
order (purple).
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12 Comparison to Other Constraints

There are several constraints published on the sterile neutrinos both from X-ray
and from independent methods of which the most important ones are presented
briefly in this section. The results presented in the literature are often displayed in
the sin2(2θ)−ms parameter space for sterile neutrinos of the Majorana type. As all
the constraints presented in Sec. 11 are for Dirac type sterile neutrinos, they have
to be converted to Majorana type constraints. As discussed in Sec. 2.4, Majorana
particles are by definition their own antiparticles, and therefore they decay twice
as fast. Constraints obtained for a Dirac particle on the sin2(2θ) − ms parameter
space, are twice as restrictive when converted to constraints on Majorana sterile
neutrinos.

12.1 The Tremaine-Gunn bound

Liouville’s theorem, stating that the phase space density is conserved along par-
ticle trajectories in a collisionless fluid, provides a fundamental constraint on the
clustering of warm particles [11, 68]. Studies of the available phase space for
dark matter domination in dwarf galaxies by Tremaine and Gunn [68] leads to
a very strong constraint on the mass of any dark matter particle. This limit of
m & 0.5 keV is called the Tremaine-Gunn bound [87] and is plotted in black in the
following figures.

12.2 Diffuse X-ray background

There are many different X-ray constraints on sterile neutrinos in the literature.
In the following a brief outline of some of the recent results is given. Boyarsky
et al. [88] searched for spectral cut-off features in the CXB from XMM (0.5 −
12.0 keV) and NASAs HEAO-1 (High Energy Astrophysics Observatory, 3.0 −
60.0 keV) observations. The resulting constraint in the sin2(2θ) − ms parameter
space follows the trend:

sin2(2θ) . 1 · 10−5

(

ΩDM

0.26

)−1
( ms

keV

)−5

. (77)

It is plotted in Fig. 48 in grey.
XMM observations of the clusters of galaxies Virgo and Coma was studied by

Boyarsky et al. [86] who obtained the following constraint:

sin2(2θ) . 7.74 · 10−5
( ms

keV

)−5.43

, (78)
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Figure 48: Constraints in the sin2(2θ) − m parameter space for Majorana type ster-
ile neutrinos from X-ray observations: CXB (grey) [88], the clusters Coma and Virgo
(purple) [86], the galaxies Virgo and Andromeda (green) [90], and the Tremaine-Gunn
bound (horizontal black) [68, 87].

which is plotted in Fig. 48 in purple. This constraint is not as conservative and
robust as the similar results for clusters of galaxies presented in Sec. 11. The
spectrum was modelled by a constructed composite model composed from elements
chosen with physical arguments (continuum and emission lines) but in order for
the model to fit the data. The base model was fitted to the data and then a
Gaussian was added with increasing norm until the fit of the base model plus the
Gaussian (to the data) was disturbed by a predefined value of χ2. The flux with a
possible dark matter emission line origin was then determined from the difference
between the base model and the Gaussian. The non-robustness lies within the
modelling of the broad-band base model of the spectrum. When it was composed,
all emission lines were modelled and a hypothetical mono-energetic emission line
from decaying dark matter may already have been included in the base model,
especially in the situation where the line has an energy close to the energy of
instrumental or standard physical line features in the spectrum.

The sterile neutrinos were also constrained from cluster observations by Abaza-
jian et al. [89], but the flux was underestimated by a factor of two and their strong
claim on the upper mass limit is not reliable [86].

An independent analysis of XMM observations of the Milky Way halo by Bo-
yarsky et al. [69] came to qualitatively the same conclusions as the blank sky
constraints presented in Sec. 11 (and in [1]).
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An analysis of galactic dark matter halos was performed by Watson et al. [90]
using XMM observations of the galaxies Andromeda and Virgo (M87, the central
galaxy in the Virgo cluster of galaxies). A hypothetical mono-energetic emission
line was represented by a Gaussian with the line energy determined by the mass
and the norm determined by the theoretically expected flux at that particular mass
for a given value of sin2(2θ). For each value of the mass, the flux expected from
the Gaussian as a function of increasing sin2(2θ) was compared to the observed
spectrum at the corresponding photon energy. The values of the mass and the
mixing angle were fixed when the expected flux exceeded the observed flux by 4σ.
They obtained the following constraint:

sin2(2θ) . 3.2 · 10−6
( ms

keV

)−4.69

, (79)

which is plotted in Fig. 48 in green.

12.3 The Lyman-α forest

All the X-ray constraints provide upper limits on the mass of the sterile neutrino,
but lower limits on the mass also exists (which are more specific than the Tremaine-
Gunn bound). As described in Sec. 1.5 the mass of a dark matter particle will
influence the structure formation in the Universe, and different dark matter sce-
narios will lead to a difference in the structures observed today: A too light dark
matter particle would erase all structures at small scales where a too heavy dark
matter particle would yield too much structure. A map of the structure is an
X-ray independent method to constrain the mass of a dark matter particle from
below. A map of the clustering of hydrogen can be obtained from the Lyman-α
forest (Ly-α). The Ly-α emission line is the spectral line originating in a transition
between the two lowest energy states of the hydrogen atom (n = 2, n = 1). Ly-α
light emitted from very bright distant sources (usually quasars) will pass through
hydrogen clouds, where it will be absorbed by the atoms. The excited atoms will
eventually re-emit the photons over the entire solid angle. Therefore we observe
an absorption at the Ly-α line energy corresponding to the redshift of the hydro-
gen cloud. The Lyα absorption lines from clouds at different distances will be
redshifted by different amounts leading to a “forest” of Lyα lines in the quasar
spectra (see Fig. 49). The dark matter density distribution is assumed to follow
that of the gas down to the scale, where the gas becomes pressure supported.

The matter power spectrum is defined as the mean square amplitude of the
Fourier components of the density fluctuation field i. e. it describes the density
fluctuations. The power spectrum can be modelled as a function of the mass and
interactions of a given dark matter particle by numerical simulations and can be
compared to the observed mass distribution to constrain the mass of the particle.
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Figure 49: A spectrum of the quasar Q1422+231 observed with the Keck 1 Telescope.
The peak around 5600Å is the Ly-α emission from the quasar and for shorter wave
lengths the absorption line forest is clearly visible [92].

The drawback of the method is, that it is indirect as it only probes the macro-
scopic clustering signatures of a dark matter particle. Furthermore it requires
interpretation of simulations at their resolution limit [46, 91].

Narayana et al. [93] compared the flux power spectrum (defined similarly to
the matter power spectrum) and flux probability distribution of a small sample of
“low redshift high resolution” quasar absorption spectra to the matter power spec-
trum obtained from numerical dark matter simulations assuming a linear relation
between the two power spectra. In this way they were able to constrain the mass of
any WDM particle (produced in thermal equilibrium) to be m & 0.75 keV. Later
the limit was improved to ms & 2.0 keV for sterile neutrinos by Viel et al. [94]
by using the linear dark matter power spectrum inferred from two large samples
of “low redshift high resolution” quasar absorption spectra and state-of-the-art
hydrodynamical simulations combined with CMB data from WMAP.

A recent analysis of a large sample of “medium redshift low resolution” quasar
absorption spectra by Seljak et al. [95] came to the surprising result ms & 14 keV,
later confirmed by Viel et al. [96], who performed an independent analysis and
modelling of the same data set to obtain a limit of ms & 10 keV.

In the following figures the Ly-α constraints are plotted in cyan and blue.
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12.4 All constraints

In Fig. 50 the exclusions in the ms−S parameter space are shown for the Tremaine-
Gunn bound (horizontal black), the Ly-α bound of ms & 2.0 keV [94] (vertical
blue), the Ly-α bound of ms & 14 keV [95] (diagonal cyan), and the grating
spectrum of A1835 (solid red). (Remember msS

1/3 ∝ const, Eqn. 47). It is seen
that if all constraints are applied, there is no parameter space left open for masses
in the 0 − 20 keV range and S = 0.2 − 100.

Figure 50: The constraints in the m−S parameter space of the Tremaine-Gunn bound
(horizontal black), the Ly-α of [94] (vertical blue), the Ly-α of [95] (diagonal cyan), and
the grating spectrum of A1835 (solid red).

In Fig. 51 the excluded areas in the m − sin2(2θ) parameter space are shown
for the Tremaine-Gunn bound (horizontal black), the Ly-α bound of ms & 2.0 keV
[94] (vertical blue), the Ly-α bound of ms & 14 keV [95] (diagonal cyan), the CXB
(solid grey) [88], the clusters of galaxies Virgo and Coma (solid purple) [86], the
galaxies of Virgo (M87) and Andromeda (solid green) [90], and the grating spec-
trum of A1835 (solid red). It is seen that the A1835 grating spectrum constraint
is among the best X-ray constraints, even though it is very conservative and ro-
bust. There is not much room left in the parameter space, if all the constraints
are applied. Only very small mixing angles sin2(2θ) . 10−11 and large masses
ms & 14 keV are allowed.
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Figure 51: The areas excluded in the m − sin2(2θ) parameter space by the Tremaine-
Gunn bound (horizontal black), the Ly-α bound of [94] (diagonal blue), the Ly-α bound
of [95] (diagonal cyan), the CXB (solid grey) [88], the clusters of galaxies Virgo and
Coma (solid purple) [86], the galaxies of Virgo (M87) and Andromeda (solid green) [90],
and the grating spectrum of A1835 (solid red).

12.5 Pulsar kicks and early star synthesizing

The observed peculiar velocities of pulsars, can be explained by an asymmetrical
emission of sterile neutrinos, called pulsar kicks [16, 33, 97]. The region in the
m− sin2(2θ) parameter space allowing for pulsar kicks to be explained by the dark
matter sterile neutrino of νMSM corresponds approximately to the region excluded
by the X-ray observations of the Virgo and Andromeda galaxies and by the A1835
grating data [33, 46]. However the for the pulsar kick velocities to be explained
by sterile neutrinos does not require an extension of the standard model by three
sterile neutrinos, but can do with one or two. The uncertainties of the constraints
taken into regard, the region allowing for pulsar kicks is not entirely excluded, but
neither does the requirement of the two problems being solved by the same sterile
neutrino contribute to confirm or reject the dark matter sterile neutrino.

The sterile neutrino needed to explain the synthesizing of the early star for-
mation is the same as for the dark matter [98]. However there are disagreements
on the effect of the decaying sterile neutrinos on the collapsing hydrogen clouds in
the early Universe [99, 100].
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13 Other Dark Matter Candidates

From the discussion in Sec. 12.4 we see that the parameter space left for a sterile
neutrino in the simplest νMSM model including the entropy S is very small and the
sterile neutrino is not a favoured dark matter candidate. Some of the constraints
obtained in the work presented here, e. g. the decay rate, are very general and
not related to the theory of sterile neutrinos, so the constraints can be transferred
directly to other dark matter candidates with a radiative decay in the energy range
Eγ = 0.3 − 10.0 keV.

13.1 Higgs-like bosons and axions

Higgs-like bosons and axions have been speculated to be the dark matter, but so
far their interactions beside gravity have not been predicted to a level, where it
can be constrained experimentally. A large effort is put into the discovery of the
Higgs boson at the LHC (CERN) and the results might give a hint of whether the
Higss or a Higgs-like boson is a viable dark matter candidate.

13.2 Super-symmetric particles

Super-symmetry is a symmetry between fermions (particles with spin 1/2) and
bosons (particles with integer spin). Super-symmetric extensions of the standard
model (SUSY) dictates the existence of a super-partner to every particle in the
standard model (all the particles of the standard model are summarized in Fig. 5).
These super-partners provides naturally a number of particles for the dark matter
candidature such as: sneutrinos, axinos, gravitinos, photinos, neutralinos etc.

Probably the best SUSY candidate is the lightest of the SUSY particles which
is either the neutralino or the gravitino (depending on the exact model). It is
predicted to be stable electrically neutral Majorana fermion with a mass, mχ, in
the range between some GeV and some TeV which is considerably heavier than
the sterile neutrino and renders it a CDM candidate.

It is possible to constrain the neutralino with particle accelerator experiments
and a lower limit mχ & 30 GeV was provided by LEP [101]. An indirect search
for decay product effects from a decaying neutralino by several experiments seems
to favour a mass below ≈ 100 GeV [102]. The neutralino will also have decay
channels with a γ-ray signature, which have not yet been found.

The lightest super-symmetric particle in the simplest SUSY models are pre-
dicted to be experimentally verifiable when LHC finishes. If they are found at
LHC, the work of demonstrating that they are really the dark matter still remains.

None of the proposed candidates lies in the mass range probed by X-rays, so
the constraints presented in Sec. 11 does not give any helpful constraints.
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14 Summary

The sterile neutrino, or non-weakly interacting right-handed neutrino, is a warm
dark matter candidate proposed to solve the structure formation problems of the
CDM scenario. It is participating in the flavour-mass eigenstate oscillations of the
active standard model neutrinos, and thereby it is allowed to decay radiatively
under the emission of a photon with an energy (Eγ = ms/2) predicted to lie in the
X-ray range.

The radiative decay rate (Γγ), the lifetime (τ), the mass (ms), the mixing angle
(sin2(2θ)), and any additional entropy release after the production of the sterile
neutrinos (S) can be constrained from X-ray observations of dark matter dense
regions. The Chandra observations of the Milky Way halo (blank sky data), the
outskirts of the galaxy cluster A383, the dark matter blob in the cluster A520, and
the grating observations of the cluster A1835 all have been analysed. The obtained
constraints are valid for the observed photon energy range Eγ = 0.3 − 10.0 keV.

Several steps were taken to improve the obtained results. Compared to observa-
tions of a full cluster the signal to noise ratio of a radiatively decaying dark matter
particle is improved by an order of magnitude by observing only the outskirts of a
cluster. By using high energy resolution data from Chandra grating observations,
the constraints on the decay rate and lifetime was improved by a factor of ≈ 100
compared to previously published results from observations of entire clusters. Due
to the improvement of energy resolution, the grating data provides the best of the
acquired constraints even though the signal to noise ratio decreases when including
the central part of the cluster in the observations.

A very conservative and robust upper limit on the mass of ms . 8 keV is
obtained for all mixing angles under the assumption of absolutely no additional
entropy release (S = 0.2). This upper mass limit can be strengthened to ms .

3.5 keV by allowing for a small amount of entropy release after the sterile neutrinos
have been produced (S ≈ 1 − 2) and thereby diluting their distribution.

If the sterile neutrinos are mainly produced by other processes not related to
active-sterile neutrino oscillations, no constraints on the lifetime and mass can
be derived from the conditions of the early Universe. The presented results of
the radiative decay rate are very general and can be applied to all dark matter
candidates with a two-body radiative decay photon energy in the interval Eγ =
0.3 − 10.0 keV independently of production mechanism.

The obtained constraints were compared to several of the X-ray constraints
in the sin2(2θ) − ms parameter space found in the literature. The constraints
presented in this report are very conservative and are still among the best upper
limit constraints on sin2(2θ) for ms = 0.8 − 20 keV. The sin2(2θ) − ms parameter
space can also be constrained from structure formation in the Universe by analyses
of Ly-α and CMB data. If all constraints are combined, the only parameter space
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left open is for ms & 14 keV, sin2(2θ) . 10−11 and no additional entropy release.
No signature of the sterile neutrinos has been found, and even though “not

found” is not the same as “not existing”, the combined constraints of X-ray, Ly-
α, and CMB point towards the non-existence of a keV-mass dark matter sterile
neutrino.





A Appendix

A.1 Abbreviations and Acronyms

Abbreviations Explanation
Axxxx Abell xxxx
ACIS Advanced Charge-Coupled Device Imaging Spectrometer
arf ancillary response file, X-ray analysis
CCD Charge-Coupled Device
CDM Cold Dark Matter
CERN European Organization for Nuclear Research,

Conseil Européene pour la Recherche Nucleaire,
http://www.cern.ch

CIAO Chandra Interactive Analysis of Observations,
http://cxc.harvard.edu/ciao

Chandra Just a name, http://chandra.harvard.edu
CMB Cosmic Microwave Background
CP Charge and Parity
CXB Cosmic X-ray Background
DM Dark Matter
DET DETected
ESA European Space Agency

http://www.esa.int
FOV Field Of View
HDM Hot Dark Matter
HEAO-1 High Energy Astrophysics Observatory 1, NASA
HEASARC High Energy Astrophysics Science Archive Research Centre

http://heasarc.gsfc.nasa.gov
HEG High Energy Grating, Chandra

HETG High Energy Transmission Grating, Chandra

HRC High Resolution Camera, Chandra

HRMA High Resolution Mirror Assembly, Chandra

ICM Intra-Cluter Medium
IDL Interactive Data Language
LEP Large Electron-Positron Collider at CERN
LHC Large Hadron Collider at CERN
Lyα Lyman-α
MEKAL Mewe-Kaastra-Liedahl model

for emission from hot diffuse gas
MSM Minimal Standard Model (of particle physics)

To be continued on the following page...



... Continued from the previous page
Abbreviations Explanation
NASA National Aeronautics and Space Administration
NFW Navarro-Frenk-White
QCD Quantum Chromo Dynamics, strong interaction theory
rmf redistribution matrix file, X-ray analysis
SDSS Sloan Digital Sky Survey,

http://www.sdss.org
Sherpa http://cxc.harvard.edu/sherpa
SUSY SUper SYmmetric (extension of the standard model)
WDM Warm Dark Matter
XMM X-ray Multi-Mirror,

http://sci.esa.int/xmm
Xspec http://heasarc.nasa.gov/docs/xanadu/xspec
νMSM Neutrino extension of the Minimal Standard Model



A.2 Rewriting the Boltzmann equation

The Boltzmann equation:

(

∂

∂t
− pH(t)

∂

∂p

)

f(p) = Icoll , (80)

can be rewritten in terms of x = a(t) MeV and y = E · a(t) = p · a(t). Using the
notations f = f(x, y), a = a(t), H = ȧ/a = ẋ/x = H(t) the following derivatives
are calculated:

∂y

∂t
=

∂p

∂t
a +

∂a

∂t
p = 0 + ȧp ,

∂y

∂x
= MeV

∂a

∂t
= ȧ MeV ,

∂y

∂p
= a , (81)

∂f

∂p
=

∂f

∂x

∂x

∂p
+

∂f

∂y

∂y

∂p
= 0 +

∂f

∂y
a

⇔
∂f

∂y
=

1

a

∂f

∂p
.

(82)

The derivatives can be inserted in the left hand side of the Boltzmann equation
(Eqn. 31):

∂f

∂t
− pH

∂f

∂p
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
− pH

∂f

∂p

=
∂f

∂x
ẋ
x

x
+

∂f

∂p

ȧ

a
p − pH

∂f

∂p
(83)

= Hx
∂f

∂x
,

Now the approximated Boltzmann equation in terms of x and y looks like [31]:

xH
∂

∂x
f = Icoll . (84)



A.3 Sterile neutrinos in the Milky Way: Observational
constraints

A part of the work presented in this report was published in the article:

S. Riemer-Sorensen, S. H. Hansen and K. Pedersen,
“Sterile neutrinos in the Milky Way: Observational constraints,”

Astrophys. J. 664, L33 (2006),
[arXiv:astro-ph/0603661]
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