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Abstract

Antibiotics are considered to be an indispensable part of modern medicine. Recent
years have been marked by an increase in therapeutic failure of antibiotic treatments,
primarily driven by a rise in antibiotic resistant bacteria. However, this is only one
of several phenomena enabling bacterial survival of antibiotics. Antibiotic persistence,
i.e. the ability of a subpopulation to survive a lethal dose of antibiotics, have gained
more attention recently. While the molecular mechanisms behind persistence are not
fully understood, it is known that dormant, non-growing bacteria are more tolerant to
antibiotics. The dormancy can be induced by stress such as nutrient starvation, and
the variation in the length of lag time from dormancy to growth is believed to be a
part the origin of persistent subpopulations. It has also been observed that growing
bacterium can spontaneously go into dormancy, which is commonly interpreted as a
bet-hedging strategy.

Here, we are motivated by previous work that focused on the starvation-induced
persistence under repeated feast-famine cycles, with stochastic applications antibiotics.
We extend the work to treat limited amounts of nutrients explicitly, including also com-
peting phenotypes. We first show that this change of setup does not affect the optimal
lag time. Then we extend the model of starvation-induced persistence to include also
spontaneous persistence, finding that spontaneous persistence can only be optimal
when the application of antibiotics is delayed compared to the nutrients. Importantly,
we do not consider extinctions explicitly, therefore bet-hedging is not a meaningful
strategy here. We study region of antibiotic parameters where the optimal persistence
strategy corresponds to a finite rate of spontaneous persistence, the transition to this
region being discontinuous. These findings are supported by evolutionary simulations.
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Chapter 1

Introduction

1.1 Motivation

For most people it is impossible to imagine a world without antibiotics. Since modern
antibiotics was discovered in the early 20th century [1] it has become an indispensable
part of modern society, with applications in medicine as well as in the agriculture sector
[2]. The use of antibiotics has lowered the mortality rate from bacterial infections,
such as tuberculosis and syphilis, but also from complications following surgeries and
even childbirths [1, 3, 4]. However, our medical advantage is threatened by the rise
of antibiotic resistant bacteria, and infections and medical procedures that are today
relatively harmless are now increasing in mortality. The World Health Organisation
states that antibiotic resistance is a ”serious threat [that] is no longer a prediction for
the future, it is happening right now in every region of the world and has the potential
to affect anyone, of any age, in any country” [5]. It is estimated that as many as
700,000 people die every year from antibiotic resistance, and this number is expected
to increase to 10 million by 2050 [6].

Nature is constantly evolving and mutation of antibiotic resistant bacteria is un-
avoidable. Antibiotic resistance has even been detected among bacteria in a cave that
had been isolated for 4 million years [7]. However, the evolution of resistance is acceler-
ated by overuse and misuse of antibiotics, a behaviour that is reminiscent of a ”Tragedy
of the commons” [8]. Though public focus is often on antibiotic resistance, this is only
one of several phenomena linked to therapeutic failure of antibiotics. Among these are
antibiotic persistence, which is the ability of a subset of a bacterial population to sur-
vive a lethal dose of antibiotics. In other words phenotypic tolerance of a subpopulation
[9, 10]. The persistence phenomenon was originally discovered from its characteristic
biphasic killing curve, in experiments that showed that populations of bacteria that
were sensitive to antibiotics, were not completely eliminated by antibiotics [11, 12].
Though the mechanics underlying persistence are poorly understood, research indi-
cates that the persistence is evolvable, and furthermore that this phenomenon might
trigger the evolution of resistant bacteria [13, 14]. It is known that dormant bacteria
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are more tolerant to stresses, such as antibiotics, than growing bacteria. Furthermore,
experiments have revealed that distributions of single cell lag times have heavy tails
[15, 16]. This phenotypic variation in lag time is believed to be related to the persis-
tence on the population level. Persistence is known to occur as a reaction triggered by
some stress, but has also been observed to happen spontaneously in growth friendly
conditions [17]. Spontaneous persistence has been interpreted as a bet-hedging strat-
egy in fluctuating environments, with the rate of spontaneous persistence believed to
reflect the frequency of fluctuations [18, 19, 20].

Previously, an experiment by Fridman et al. [21] showed that when a bacterial
population is subjected to repeated feast-famine cycles with antibiotics applied along
with the nutrients, the lag time can evovle to reflect the duration of the antibiotic
application Motivated by this experiment, a theoretical study was conducted by Y.
Himeoka and N. Mitarai, optimising the wake-up strategy from starvation-induced
triggered persistence, for repeated feast-famine cycles with stochastic application of
antibiotics [22]. One of their finding is that even simple models of antibiotic persistence
display a discontinuity in the optimal lag time, suggesting that evolution of more
tolerant bacteria can be avoided with strategic use of antibiotics. Importantly, their
work relies on the assumption of the bacteria having infinite access to nutrients, an
assumption that is highly unphysical. In the wild, the nutrients will not only be
restricted by physical limitations, but there will also be competition from other bacteria
for the nutrients. It is therefore not obvious how the optimal lag time will change in
such a setup, as there will be a trade-off between waking up early to gain a competitive
advantage, and waking up late in order to avoid the antibiotics.

1.2 Research Questions

With this in mind we raise the following questions

Q1. How does competition and limitations on nutrients affect the previously computed
optimal strategies of triggered persistence?

Q2. For which antibiotic parameters can spontaneous persistence be beneficial, and
what is the relation between optimal lag time and optimal rate of spontaneous
persistence?

1.3 Thesis outline

In chapter 2 we begin this project with a brief introduction to the biological back-
ground necessary to understand the project. This includes a simplistic explanation

1Reproduced from https://apps.who.int/mediacentre/events/2015/world-antibiotic-awareness-
week/posters/en/index.html

2Reproduced from https://www.antibiotikaellerej.dk/hent-materialer
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#AntibioticResistance

www.who.int/drugresistance

WHAT  
HEALTH WORKERS 
CAN DO Prevent infections by ensuring your 

hands, instruments and environment 
are clean

Antibiotic resistance happens when bacteria change and become resistant to the antibiotics 
used to treat the infections they cause. This is compromising our ability to treat infectious 
diseases and undermining many advances in medicine. 

We must handle antibiotics with care so they remain effective for as long as possible.

ANTIBIOTIC  
RESISTANCE

1

2

3

4

5

 ....................

 ....................

 ....................

 ....................

 ....................

Keep your patients’ vaccinations up 
to date

If you think a patient might need 
antibiotics, where possible, test to 

Only prescribe and dispense antibiotics 
when they are truly needed

Prescribe and dispense the right 
antibiotic at the right dose for the 
right duration

Jo mere antibiotika vi bruger, jo større er risikoen for, at 
bakterier bliver resistente. Derfor bruger vi antibiotika 

med omtanke – så virker det også i morgen!

AntibiotikaEllerEj.dk

(a) (b)

Figure 1.1: Example of posters spreading awareness on antibiotic resistance. a)
Material from World Antibiotic Awareness Week 2015 1. b) Material from ”Antibiotika eller
ej” 2.

of the phenomena of persistence, though this phenomena is rather complex and not
well-defined.

In chapter 3 we provide a brief summary of previous the experimental and theo-
retical works that serve as motivation and inspiration for this project.

In chapter 4 we then move on to explain the setup that we will use in the rest
of this project. This setup being strongly inspired by the before mentioned works. We
also provide a summary of assumptions and limitations.

In chapter 5 we aim to answer the first research question, and we extend the previous
work by Y. Himeoka and N. Mitarai on starvation-induced triggered persistence to a
model with phenotypic competition for a fixed amount of nutrients. This part is mostly
analytical, though the results are supported by numerical results.

In chapter 6 we extend a model with triggered persistence to include also sponta-
neous persistence, as we aim to answer the second research question. In this part we
rely of simulations to obtain the results.

Lastly, in chapter 7, we sum up the thesis and provide a further outlook.
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Chapter 2

Biological background

2.1 Introduction to bacteria

For the most part, this work will be dealing with population dynamics of bacteria,
hence extensive knowledge of the cellular components or the mechanics behind these
dynamics are not necessary. Even so, it can be useful with a basic introduction to the
biological protagonists of this work, for readers unfamiliar with the field.

Bacteria are believed to be the first living organism on Earth. Today they are
found in virtually every environment on Earth [23]. The total population of bacteria
is estimated to around 1030 cells, distributed among 104 − 109 different species [24,
25]. Only a fraction of these are pathogenic [26]. With so large numbers, bacteria
are believed to make up the largest biological domain. Bacteria are primarily single
cell prokaryotic microorganisms1. Despite their apparent simple structure, the world
of bacteria exhibits vast complexity, such as communication [27], or memory [28].

The length of one cell is typically 1 − 5 µm, though they primarily live in larger
communities. In growth friendly conditions, a population of bacteria will usually reach
a density of ∼ 109 cells/ml [29]. Bacterial populations are heterogeneous, in that they
can contain several phenotypes2, but also genetic variation [30, 31]. This diversity
manifests itself e.g. in distributed growth rates, but also as a part of a n effective
survival strategy. We will return to this last point in the section about persistence.

2.1.1 Population dynamics

Bacteria reproduce by binary fission, where a mother cell divides into two identical
daughter cells [32]. This amounts to exponential population growth, with a growth
rate dependent on the doubling time and survival rate of the daughter cells. The
growth rate ranges from ∼ 2 h−1 and below, depending on how growth friendly the

1Organisms without membrane-enclosed nucleus. Prokaryotes are the smallest life form that can
exist individually.

2Set of observable traits. Formed by both genes and environment.
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Figure 2.1: The four phases of bacterial growth. This work focuses exclusively on the
three first phases. The dashed grey line demonstrates theoretical growth under ideal conditions.

conditions are. Under ideal conditions a bacterial population can therefore reach the
mass of Earth within a few days [33]. In a realistic environment bacterial growth is
constrained by physical limitations, such as restricted nutrients and space. Bacteria
cannot grow in absence of nutrients, and they will often enter a more energy-efficient
state of dormancy while waiting for the nutrients to be replenished. Fig. 2.1 illustrates
the life cycle of a bacterial population, constituting of the four phases described below:

1. Lag phase. When a bacterial population is exposed to new conditions, the
bacteria will initially enter some ”adaption phase” where the population prepares
to grow. Though the population is not growing significantly, this is not a dormant
phase but rather the ”wake-up” phase from dormancy. The length of the lag phase
is highly varying, from ∼ 1 hour up to several days [34]. Generally, the lag time
depends on how much the new conditions differ from the original, in addition to
the state of the bacteria just before the change of environment. Research have
shown the lag time to be both adaptive and evolvable [35]. In Fig. 2.1 this
corresponds to the leftmost constant plateau.

2. Exponential phase. When the majority of cells have woken up, the popu-
lation enters the growth phase (also called log phase). The population grows
exponentially, i.e. linearly on the logarithmic axis in fig. 2.1. This is where the
binary fission takes place, but also the release of toxins that are the origin of the
pathogenic nature of certain species. This phase lasts as long as the amount of
nutrients allow, or until some stress prevents the bacteria from growing.

3. Stationary phase. As the nutrients are depleted, or a significant amount of
inhibitors are formed, the population enters the stationary phase. This phase is
characterised by equal growth and death rates, resulting in constant population.
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In Fig. 2.1 this corresponds to the second plateau, just before the population
starts decreasing.

4. Death phase. At some point the death rate becomes larger than the growth
rate, and the population starts declining. This will happen when the nutrients
run out, or it can be caused by other stressors. In Fig. 2.1 this corresponds to
the rightmost part of decreasing slope.

2.1.2 Bacteria under stress

In addition to depletion of nutrients, there are several other stresses and potential treats
that make life tough for bacteria. Among these are naturally occurring environmental
variations such as temperature change or drought, but also deliberately applied stresses
such as antibiotics. If the stress is mild, bacteria have several response mechanisms
while staying in the growth state [36]. More severe stresses might however be lethal for
a growing bacterium, because they target growth processes. In contrast, the dormant
state is more robust. It can therefore be beneficial for a population to have some
fraction of species remain dormant, even in conditions are seemingly growth friendly.

2.1.3 Antibiotic stress

Since its discovery, antibiotics have been our most important weapon against bacte-
rial infections. Generally, antibiotics are divided into two groups depending on how
they act on the bacterium: bacteriostatic and bactericidal antibiotics. Bacteriostatic
antibiotics inhibit the bacterial growth, relying on the immune system to ultimately
kill the bacteria. Bactericidal antibiotics are antibiotics that also kill the bacteria, yet
this distinction is not exact [37]. In the following we will focus exclusively on bacteri-
cidal antibiotics, since persistence is only defined for the latter [10]. The rate at which
antibiotics kill bacteria is found to be in the same range as the bacterial growth rate
[38, 39].

When antibiotics fail to eliminate an infection, it is often related to one of three
phenomena: antibiotic resistance, tolerance, or persistence. Antibiotic resistant bacte-
ria are bacteria that do not only survive applications of antibiotics, but can even grow
in their presence. Antibiotic tolerant bacteria are susceptible to antibiotics, but are
killed at a lower rate. It will therefore take a higher or longer dose of antibiotics to kill
a tolerant population, compared to a normally sensitive population. Lastly, antibiotic
persistent bacteria are bacteria where a subpopulation has higher tolerance than the
rest. We will take a closer look at persistence in the next section.

2.2 Persistence

As just mentioned, persistence is phenotypic tolerance of a subpopulation. Importantly,
persistence is not a genetic trait, but an emergent behaviour on population-level. Per-

6



Figure 2.2: Bacterial population with persister cells, before, during and after an-
tibiotics. The blue cells represent the normally sensitive cells, and the red denote the per-
sistent subpopulation. Reproduced from [10].

sistence is not a well-defined phenomena. The mechanics behind are poorly understood,
and some of the characteristics are vague or might even appear contradictory [40]. N.
Balaban et al. define a persister cell as being a tolerant cell from a population display-
ing antibiotic persistence [10]. Notably, a population that is regrown from presister
cells will be identical to the original population. This is exemplified in fig. 2.2, where
a lethal dose of antibiotics is added to a population of bacteria containing some per-
sisters. The persister cells are the only ones to survive, and thus resume growth after
the antibiotics are removed. Instead of growing a population purely of persister cells,
the new population will contain a fraction of presisters corresponding to that of the
original population [10].

Though it is unknown whether the persister phenotype is encoded in the genes of
the individual cell or not, it is at least somewhat (epi)genetic on the population level.
It has for instants been shown that populations can evolve to change their fraction of
persisters [13]. The tolerance of the persister cells might have different origins, such as
prolonged lag time, or dormancy.

Role in therapeutic failure of antibiotics

Persistence was originally discovered from the biphasic killing curve characteristic of
populations with persister cells. This is illustrated in fig. 2.3. A population of sensitive
(blue) and persister (red) cells are exposed to antibiotics. The gradient line highlights
the killing curve of the total population. The sensitive cells are the first to be killed at
a high rate. As time goes by there will be fewer and fewer sensitive cells left, therefore
the killing rate slows down. Eventually, there are only persisters left in the population,
and the killing rate corresponds to that of the persisters. Note that fig. 2.3 shows
a simplified curve, and that a population might contain several persister phenotypes
resulting in a more complex killing curve.

Fig. 2.3 also illustrates why even antibiotic treatment of sensitive populations might
fail. Since the killing rate of persisters is much slower than the population average,
there will often be a few persisters left after the antibiotic treatment. In other words,

7



Figure 2.3: The biphasic killing curve that is characteristic for a population with
persister cells. Antibiotics are applied to a population containing a fraction of persister
cells. The blue cells represent the normally sensitive cells, and the red cells denote the persis-
tent subpopulation. Initially the killing curve is dominated by the killing of sensitive cells, but
as the population is depleted of sensitive cells the killing rate slows down until there are only
persisters left and the killing curve becomes identical to that of the persisters. The dashed
lines represent the killing curves of the two phenotypes. Reproduced from [41].
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Figure 2.4: The two types of persistence. Reproduced from [10] a) Triggered persistence.
b) Spontaneous persistence.

antibiotic persistence contributes to overuse of antibiotics, because persistent infections
will often not be cleared at first attempt. Furthermore, research also indicates that
antibiotic persistence increases the mutation rate of antibiotic resistant bacteria [42].

2.2.1 Types of persistence

We finish of this chapter with an explanation of the two different types of persistence:
triggered and spontaneous persistence. The two types are illustrated in fig. 2.4. Trig-
gered persistence is caused by stress that triggers a fraction of the population to enter
the more tolerant state of persistence. Nevertheless, triggered persistors might stay in
this phenotype even long after the initial stress is gone. This type makes up most of
the experimentally observed persisters, and a typical trigger is starvation.

Spontaneous persistence happens spontaneously during bacterial growth, in absence
of stress. It has been interpreted as a survival strategy in fluctuating environments,
analogue to that of bet-hedging in gambling [17, 20, 19]. Sensing the surrounding
environment is energy consuming and inefficient, however failure to adapt to potential
stresses might be lethal. In order to maximise longtime growth in an environment that
can contain lethal stresses, it can therefore be advantageous to only have a fraction of
the total population grow (gamble). In cases where the growing population dies from
the stress, the population as a whole will have another shot at the game of ”proliferation
or extinction”. The rate of spontaneously switching to the persistent state and back
is believed to be very low, and is believed to be constant throughout the exponential
phase [10]. For E.coli it is in the range 10−6 − 10−3 [17, 43, 18].

9



Chapter 3

Previous work on optimal lag time

3.1 Experimental evolution of lag time under an-

tibiotics application

This project is heavily inspired by the work of Y. Himeoka and N. Mitarai [22], which
was in turn motivated by experimental work by Fridman et al. [21]. In the latter,
bacterial populations that were subjected to repeated applications of antibiotics were
shown to evolve longer lag times, matching the application length of the antibiotics.
The procedure of the experiment is illustrated in fig. 3.1. A lethal dose of antibiotics
were added along with nutrients to the bacteria. After a fixed time T , the antibiotics
were washed out and the cells that had survived were left to grow overnight. The
population, now in the stationary phase, was then diluted before the cycle was repeated.
After several repetitions of this procedure, the average lag time λ was found to be
approximately equal to the duration of the antibiotics T . In other words, the bacteria
had evolved to become tolerant to the antibiotics.

In the experimental setup just described we consider 〈λ〉 = T 1 to be the optimal
lag time. In contrast, the optimal lag time in an environment without any stresses

1Here, 〈·〉 denotes the population average

Figure 3.1: Illustration of experiment design. Reproduced from [21]
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Figure 3.2: Illustration of advantage and disadvantage of a long lag time. The light
red lines represent growth of a species with short lag time, and the blue lines represent a species
with lag time similar to the duration of the antibiotics. The green background highlights the
period of nutrients, and the red background highlights the period of antibiotics. a) In absence
of antibiotics the red species has an advantage, and is able to consume tha majority of the
nutrients. b) In presence of antibiotics the blue species has an advantage, as it is shielded
from antibiotic killings.

would be 〈λ〉 = 0. The two cases corresponding to growth in an environment with and
without antibiotics are illustrated in fig. 3.2. In wild stresses are not as predictable as in
the experiment above. Furthermore, persistence, specifically spontaneous persistence,
is considered to be a survival strategy in fluctuating environments. It is therefore
meaningful to study the optimal lag time strategy in a setup with stochastic application
of antibiotics. That is a setup analogue to that of Fridman et al. [21], but where we
add antibiotics are during a cycle only with a given probability p. In this case, the
optimal lag time will reflect the trade-off between advantage and disadvantage of a
waking up before the antibiotics are removed, as is illustrated in fig. 3.2.

3.2 Theoretical work by Y. Himeoka and N. Mi-

tarai

The effect of stochastic antibiotics on the optimal lag time has first been investigated
theoretically by Y. Himeoka and N. Mitarai [22]. Considering the dormant state to be
an example of starvation-induced persistence, they studied the optimal lag time in order
to maximise growth under stochastic antibiotics. In order to simplify the calculations,
they assumed that bacterial growth in each round happens with ”unlimited nutrients”,
and optimised the lag time of a single species to obtain the largest net growth. This
corresponds to comparing the net growth at a fixed time very long after addition of
the nutrient, in the system of unlimited nutrients. Here, we will briefly go through the
results that are relevant for our work.
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Model with delta distributed lag time

In the supplement the authors study the optimal lag time for a population with a delta
distributed lag time 2, that is a population where every cell has the same lag time.
They find that the optimal lag time, λ∗ displays a discontinuous transition when the
probability of the antibiotics increases above a threshold determined by the killing rate

λ∗I =

{
0 if p < (γ + 1)−1,

T if p ≥ (γ + 1)−1.
(3.1)

p and T denote the probability and duration of the antibiotics, as described in the
previous section. γ denotes the killing rate of the antibiotics, that is the death rate of
a population subjected to antibiotics.

Model with exponentially distributed lag time

The starting point of the paper is a model where lag time is exponentially distributed
within the population, meaning the dormant cells wake up with a constant rate. They
define a fitness measure corresponding to the long time average effective growth of the
population, which reads

FI(λ; γ, p, T ) = (1− p) ln

[
1

1 + λi

]

+ p

−T + ln

[
e−T/λ − e−γT

γλ− 1
+
e−T/λ

1 + λ

] (3.2)

in the case of exponentially distributed lag times. From maximising FI with respect
to λ, they find that the optimal lag time undergoes a discontinuous transition also for
this model. The discontinuity occurs at some critical probability pc, dependent on the
other antibiotic parameters γ and T

λ∗I ≈

{
0 if p < pc(γ, T ),

pT if p ≥ pc(γ, T ).
(3.3)

General model

The authors also propose a generalised set up for studying the optimal lag time of a
model with any distribution of lag time r(λ), and any distribution of antibiotic duration

2This could also be considered as antibiotic tolerance, since the entire population is in starvation-
induced dormancy with the same lag time.
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q(T ). The fitness function in this generalised setup reads 3

F [r, q](γ, p) = (1− p) ln

[∫ ∞
0

e−λr(λ) dλ

]

+ p

∫ ∞
0

q(T ) ln

(e−(1+γ)T ∫ T

0

eγλr(λ) dλ+

∫ ∞
T

e−λr(λ) dλ

) dT. (3.4)

Motivation for the current project

As mentioned before, these results assume that the bacteria have access to unlimited
nutrients. A more realistic scenario would be a model with limited nutrients. More
specifically, in the experiment in [21], the same media (nutrients) was added in each
round and the length of each round was long enough for the population to reach the
stationary phase. This means that the amount of available nutrient was in fact limited.
In such a case, if there is only one single kind of bacteria, there is not much penalty
to have a long lag time. Since if no one is growing, the nutrient will be left unused. It
is therefore the competition between phenotypes with different lag times, that drives
the selection. In this case, a long lag time would not only amount to a loss of growth
in cycles without antibiotics, but also a competitive disadvantage against a species of
shorter lag time.

The authors themselves also mention spontaneous persistence as an obvious exten-
sion of their work. Specifically, in the case where antibiotics are added later to the
bacteria, such that the bacteria can potentially benefit from entering the exponential
phase before the antibiotics are applied. Even though triggered persistence is believed
to be much more common than spontaneous persistence, it might also be more pre-
dictable and easier preventable. If we want to work towards complete elimination of
bacterial infections by antibiotics, it is therefore crucial to gain better understanding
of also spontaneous persistence. With the endeavour to shred some light on these
additional features, we are now ready to propose the setup for our work.

3r(λ) is normalised, such that r(λ) dλ gives the probability that a cell wakes up between t = λ
and t = λ+ dλ. q(T ) dT is the concentration of the antibiotics with duration between T and T + dT .
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Chapter 4

Setup of the project

In this chapter we present the setup we will use throughout this project. In general the
setup is the same as in [22], with the extension of limited nutrients and one competitor
population. Our theoretical setup imitates the following experimental procedure:

• t = 0: Two species are inoculated in a fresh medium containing a fixed amount
of nutrients, S0. We set S0 = 109 cells/ml in all simulations, corresponding to
the upper limit on bacterial population density [29].

• t = T0, with probability p: Antibiotics are added to the medium, with a
fixed probability p. We allow antibiotics to be applied after the bacteria are
inoculated. Initially we set T0 = 0, such that addition of nutrients and antibiotics
are synchronised.

• t = T , with probability p: Antibiotics are removed from the bacteria. The
two species are left to consume the rest of the nutrients, and harvested once they
reach the stationary state. Since the twp species share nutrients, they will stop
growing simultaneously.

• t ≥ TS: All of the nutrients have been consumed, and the populations enter the
stationary phase. Both populations are harvested and diluted by a fixed dilution
fraction, f . We set f = 10−6 in all simulations.

     

Figure 4.1: Illustration of a series feast-famine cycles with stochastic application
of antibiotics. Note that this is just an illustration, as the initial densities of each cycle
depend on the final densities of the previous cycle.
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We repeat this process infinitely many times, such that we perform an infinite series
of feast-famine1 cycles with stochastic application of antibiotics. This is illustrated in
fig. 4.1 for one species with lag time λ ≈ 0 competing against a species with λ ≈ T .
Note that fig. 4.1 is only illustrative, as the initial density of each cycle is proportional
to the final density of the previous cycle. We also use this setup when we consider
spontaneous persistence, to which we will return in chapter 6.

4.1 Assumptions and limitations

• Spatially homogeneous. We consider an idealised setup that is spatially uni-
form, meaning we do not consider spacial variations or limitations other than
that the one imposed by a fixed S0.

• Phenotypic competition. We simplify our model by let competing species vary
only in parameters related to persistence, keeping all other bacterial parameters
equal for all species. This corresponds to letting different persister phenotypes
competing, picking the phenotype with the best persistence strategy. We consider
this to be a meaningful simplification, as this project does not concern an overall
growth strategy, but is a study of the optimal persistence strategy independently
of other bacterial dynamics.

• Simplified growth dynamics. In order to simplify analytical calculations we
consider a simplified dynamics with sharp transitions between the phases of the
growth cycle (see fig. 2.1). This means that the cells start exponentially growing
immediately after waking up. Likewise, the transition from exponential growth to
the stationary phase happens abruptly. In a more realistic model, the growth rate
of the bacteria would depend on the nutrients according to the Monod equation
[44]

β(t) = βmax ·
S(t)

K + S(t)
. (4.1)

Here, β is the growth rate, and K is some constant that regulates its dependency
on S. In our model we use a special case of eq. 4.1 with K = 0, which results
in a constant growth rate. We consider this assumption to be reasonable, since
a decreasing growth rate according to the Monod equation with our setup will
affect both species equivalently.

• Persistence as dormancy. We model the lag phase to be equivalent to dormant
phase, that is a phase characterised by the absence of events other than the
transition to the exponential phase. This reflects the fact that we only consider
dynamics on the population level, and do not take the molecular processes in the

1Nutrition rich period of growth followed by depletion of nutrients and starvation.
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lag phase into account. Persisters are also modelled as dormant cells, meaning
they are fully tolerant to antibiotics, though they in experiments suggest that
they are rather killed at a slower rate. This further implies that persisters do
not grow at all, though this aspect of persisters is not well-defined, in fact they
might actually be growing with a very slow growth rate [17]. This also means
that we do not distinguish triggered and spontaneous persisters. We will return
to this point in the end of chapter 6.

• Constant antibiotics. Unless otherwise stated, we consider the effect of an-
tibiotics to be constant during the entire presence of antibiotics. Specifically,
the effect of the antibiotics does not decrease with time and we assume the an-
tibiotics to take effect immediately. Physically, this corresponds to applying a
high dose of time-dependent antibiotics, and wash out the antibiotics before the
concentration drops below the minimal inhibitory concentration. Furthermore,
we assume that the antibiotics arrive at exactly the same time T0 in every round.
Letting the application time follow a normal distribution seems more realistic,
specifically for medical purposes.

Notes on notation

To avoid any confusion, we use uppercase ∗ to symbolise the optimal persistence strat-
egy, such that λ∗ denotes the optimal lag time in a given model. Furthermore, we
distinguish quantities in a setup with limited nutrients and competition from the orig-
inal setup of a single species with lowercase I and II. This means FI and λ∗I denote the
fitness and optimal lag time in a single species model, respectively. Likewise, FII and
λ∗II denote the fitness and optimal lag time of a model with competition for nutrients.
In cases where the distinction is not relevant, we use λ∗.
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Chapter 5

Models of triggered persistence

In this chapter we will revisit the results from section 3.1, extending them to the case
of competition for limited nutrients.

5.1 Model with delta distributed lag time

We begin with the simplest case, namely the case with delta distributed lag time. In
this case the entire population wake up simultaneously1. In absence of antibiotics the
growth of a population ni during one feast-famine cycle is given

d

dt
ni(t) =

{
0 if t < λi,

βini(t) if t > λi and S(t) > 0.
(5.1)

Here, t is the time since the nutrients was added to the system. S(t) is the nutrients
at time t, with S(0) = S0. λi denotes the lag time of species i, such that the first
line in eq. 5.1 describes the lag phase of species i. The second line describes the log
phase where βi is the growth rate of species i. For simplicity, we set βi to 1 for all
species. With probability p antibiotics is applied along with the nutrients. In this case
the differential equations read

d

dt
ni(t) =


0 if t < λi,

−γini(t) if λi < t < T,

βini(t) if t > max{λi, T} and S(t) > 0.

(5.2)

The first and last lines are the same as before. The second line describes the killing
(death) phase induced by the presence of antibiotics. γi denotes the rate at which the
antibiotics kill population i. For simplicity we set this to be the same for all species,
i.e. γi = γ. T is the time that the antibiotics are removed, such that we reobtain
eq. 5.1 by setting T to 0. Depending on whether antibiotics are present or not, the

1Again, this is actually antibiotic tolerance.
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Figure 5.1: Example of 6 feast-famine cycles with delta distributed lag time. The
probability and duration of antibiotics are p = 0.6 and T = 8, respectively. The orange line
represent a population waking up at t = T , and the green line represents a population waking
up at t = 0. The light blue line represent the nutrient that are left in the medium at a time t.

growth phase of species i lasts from max{T, λi} until S(t) = 0. That is until the entire
nutrient has been consumed, which is governed by the following equation

d

dt
S(t) =

{
0 if t < max{λi, T},
−
∑

k ṅk(t) if t > max{λi, T}.
(5.3)

Again, we obtain the case without antibiotics by setting T = 0. An example of a
system with two species governed by eqs. 5.1–5.3 can be seen in fig. 5.1.

With this setup, competition only indirectly affects the growth of species i. This
can be seen in eqs. 5.1-5.2, where there is no explicit dependence on other species.
The competing species interact through eq. 5.3, which in turn determines the length
of the growth phase of all species. In this sense, competition is equivalent to setting a
dynamic upper limit on t. In the following we denote the time that all of the nutrient
is consumed as TS. Note that TS is actually a function of all variables and parameters
in the system, which we omit for readability.

We solve eqs. 5.1-5.2 and obtain the bacterial populations as functions of t

ni(t) =


ni(0) if t < λi,

ni(0) · e−γ(t−λi) if λi < t < T,

ni(0) · e−γ(T−λi)·θ(T−λi)et−max{λi,T} if t > max{λi, T}.
(5.4)

θ(T − λi) is here the step function of (T − λi), such that e−γ(T−λi)·θ(T−λi) = 1 if λi ≥ T
and the population wakes up after the antibiotics are removed. As before T = 0
corresponds to the case without antibiotics, for which e−γ(T−λi)·θ(T−λi) = 1 for all λi.

We want to find the optimal survival strategy for species i. In presence of other
species this corresponds to identifying the winning species, that is the species with
the highest effective growth given the upper limit on t. The effective growth of one

feast-famine cycle is βeff = log
[
ni(TS)
ni(0)

]
, where ni(TS) is the population of species i as
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it enters the stationary phase. We define the ”fitness” FII of species i to be the average
of the effective growth over the probability of antibiotics application p

FII(λi; γ, p, T ) = (1− p) · log

[
ni(TS,T=0)

ni(0)

]
T=0

+ p · log

[
ni(TS,T>0)

ni(0)

]
T>0

. (5.5)

The lowercase II refers to the competition, indicating that this is quantity is conceptu-
ally different from the single species fitness in [22]. ni(t) is of course also a function of
λi, γ or T , though this dependence is not written out explicitly in eq. 5.5, The species
with the highest effective growth rate will not always be the largest population after
just a few feast-famine cycles. Only in the ideal case of infinite cycles will the species
with the highest effective growth rate be certain to win. FII is therefore the long term
fitness of a species limited nutrients. We insert ni(TS) from eq. 5.4 for the case with
and without antibiotics, and rearrange

FII(λi; γ, p, T ) = (1− p) TS,T=0 − λi − p(γ + 1)(T − λi)θ(T − λi) + pTS,T>0.

As previously stated, TS is a functions of all parameters in the system, including the
initial conditions of the cycle. This indicated that there is no cycle independent fitness
when fixing the nutrients are fixed. However, to find the fittest species we only need
to consider the difference in fitness: F i

II − F j
II, where F i

II is short for FII(λi; γ, p, T ).
This difference is independent of the initial conditions since the time dependent terms
cancel out. Species i is fittest when the difference is positive, which is the case when
the following inequality is satisfied

F i
II > F j

II

⇔ λi + p(γ + 1)(T − λi)θ(T − λi) < λj + p(γ + 1)(T − λj)θ(T − λj).
(5.6)

In order to determine λi such that the inequality in eq. 5.6 holds, we need to inves-
tigate four cases depending on whether the populations wake up before or after the
antibiotics are removed. The four cases are summarised in tab. 5.1. We will now go
through the constraints on λi from tab. 5.1.

Species i Species j Constraint from F i
II > F j

II

Case 1 λi ≥ T λj ≥ T λi < λj

Case 2 λi ≥ T λj < T λi < λj + p(γ + 1)(T − λj)
Case 3 λi < T λj ≥ T λi(1− p(γ + 1)) < λj − pT (γ + 1)

Case 4 λi < T λj < T λi(1− p(γ + 1)) < λj(1− p(γ + 1))

Table 5.1: The four possible versions of eq. 5.6
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In case 1 is the case where both species wake up at t = T or later, hence none of
the species are affected by the antibiotics. The fittest species is trivially the species
that wakes up first, and thus is able to consume the largest amount of the nutrient.

In case 2 species i wakes up after the antibiotics, whereas species j wakes up during
the antibiotics. Eq. 5.6 now reduces to the following constraint on λi

λi < λj(1− p(γ + 1)) + pT (γ + 1).

This inequality only has a solution when p > (γ + 1)−1, that is when the probability
of antibiotics is high relative to how mild the antibiotics are. That is, it can only be
beneficial to wake up after the antibiotics if the application is frequent or the antibiotic
killing rate is high.

Case 3 is opposite of case 2, namely the case where species i wakes up early enough
to be affected by the antibiotics, whereas its competitor j wakes up after the antibiotics
are washed out. Eq. 5.6 now becomes

λi(1− p(γ + 1)) < λj − pT (γ + 1).

For p < (γ + 1)−1 we just reobtain the definition of case 3, namely λi < T . If we
combine this with the result from case 1 we get the general constraint λi < λj for all
λj ≥ T .

For p > (γ + 1)−1 the inequality only has a solution when λj > pT (γ + 1). In this
case the inequality reduces to λi ≥ 0. A species with lag time shorter than the duration
of the antibiotics can therefore only win for severe antibiotics if the competitor wakes
up sometime after the antibiotics are removed. The wake-up delay of the competitor
depends on the severity of the antibiotics.

Lastly, case 4 is characterised by both species having lag time shorter than T , hence
both are affected by the antibiotics. In this case eq. 5.6 reduces to

λi(1− p(γ + 1)) < λj(1− p(γ + 1)).

When p < (γ + 1)−1 this corresponds to λi < λj, which is similar to case 1. When
p > (γ + 1)−1 this corresponds to the opposite inequality, namely λi > λj.

Optimal lag time

The results from all four cases are collected in tab. 5.2. We now optimise the fitness
F i
II (eq. 5.5) with respect to these, and compare the result with the optimal lag time
λ∗I for a single species with unlimited nutrients in eq. 3.1. The optimal wake up
strategy when considering competition is the λ that maximises the difference in effective
growth. When p < (γ + 1)−1, that is the antibiotic application is mild, this difference
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Domain of λj \\ Severeness of AB p < (γ + 1)−1 p > (γ + 1)−1

λj ∈ [0, T ) λi ∈ [0, λj) λi ∈ (λj, λj + p(T − λj)(γ + 1)]

λj ∈ (T, pT (γ + 1)) - λi ∈ [T, λj)

λj ∈ (max{pT (γ + 1), T}, ∞) λi ∈ [0, λj) λi ∈ [0, λj)

Table 5.2: Constraints from domain of λj and severeness of the antibiotics (AB).

is minimised when λi is as short as possible. λi must be smaller than λj, and the
difference in fitness function is monotonically decreasing with λi. The optimal lag time
is therefore λ∗II = 0. When the antibiotic application is severe (last column in tab.
5.2) the difference in fitness increases with λi until λi = T , after which the difference
decreases with λi. Here, the optimal lag time is therefore λ∗II = T

λ∗II =

{
0 if p < (γ + 1)−1,

T if p > (γ + 1)−1.
(5.7)

Hence, the optimal wake-up strategy in presence of a competing species is the same
as in the case without competition. The case p = (γ + 1)−1 is not well-defined. Only
when the competitor has lag time longer than T can we be sure that λ∗II < T .

5.1.1 Discussion

Intuitively, it seems reasonable that introducing competition to the system would favor
short lag times. A species with long lag time risks that all the nutrients have been
consumed by its competitor before the species itself wakes up. With this in mind it is
not surprising that λ∗II = 0 for low antibiotic stress, also in the case of competition. On
the contrary, one could be tempted to assume that for high antibiotic stresses λ∗II would
be lower than T , possibly approaching T as the probability of antibiotic application
reaches 1. However, in the same way that waking up early is a competitive advantage
in absence of antibiotics, it is a competitive disadvantage in presence of antibiotics.
Since, in the latter, the species that wakes up first, will have reduced population density
compared to that of its competitor at the time T when the antibiotics are removed,
and in turn be able to consume less of the nutrients.

The result in this section is purely analytical, corresponding to an idealised setup
without extinction. This means that a population can always recover from extreme
antibiotic stress if it is given enough time. In reality, λ = 0 is not only unfeasible due
to physical limitations, but would also make the population very vulnerable to just a
single application of antibiotics of duration

T >
1

γ
log

ni(0)

next
,
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Figure 5.2: Example of 6 feast-famine cycles with exponentially distributed lag
time.The probability and duration of antibiotics are p = 0.6 and T = 6, respectively. The
orange line represent a population with wake-up rate (pT )−1, and the green lines represents
a population with wake-up rate 0.01. The light blue line represent the nutrient that are left
in the medium at a time t.

where next is some extinction threshold. Whereas we do not expect that including an
extinction threshold will affect the optimal lag time for high antibiotic stress, it will
likely yield a higher λ∗II for mild stresses.

5.2 Model with exponentially distributed lag time

We now turn to the slightly more realistic model of exponentially distributed lag times,
such that the population wakes up at a constant rate 1/λ. This model is therefore closer
to persistence than the previous model, since some cells will have much longer lag times
than the majority of the population.

5.2.1 Computing the fitness function

As in the previous section we want to find the optimal lag time that maximises the
growth of a species i when there is competition for the nutrients. We therefore compute
the fitness function as defined in eq. 5.5, also for this model. We split one popula-
tion into two sub-populations representing two different states: a dormant population
di(t) (in lag phase) and a growing population gi(t) (in exponential phase). The total
population is therefore ni(t) = di(t) + gi(t). The sub-populations follow the coupled
ordinary differential equations

d

dt
di(t) = −di(t)/λi, if S(t) > 0, (5.8)

d

dt
gi(t) =

{
di(t)/λi − γgi(t) if t < T,

di(t)/λi + βgi(t) if t > T, S(t) > 0.
(5.9)
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As in the previous model λi is the lag time of species i. γ and β are the killing
and growth rates, respectively, and are the same for all species. t is the time after
the nutrient is added, T is the time that the antibiotics are removed. As before, the
probability that antibiotics are added along with the nutrients is p. We obtain the case
without antibiotics by setting T to 0, such that the system does never follow eq. 5.9.
S(t) is the nutrient and is given by

d

dt
S(t) =

{
0 if t < T,

−
∑

k ġk(t) if t > T.
(5.10)

An example of this model can be seen in fig. 5.2.
Eq. 5.8 is straight forward to solve and we obtain di(t) = di(0)e−t/λi . At t = 0 the

entire population is dormant, namely ni(0) = di(0) and gi(0) = 0. We use this along
with the solution for di(t) to solve eq. (5.9)

gi(t) =


di(0)
γλi−1

(
e−t/λi − e−γt

)
if t < T,

gi(T )et−T + di(0)
1+λi

(
e−T/λiet−T − e−t/λi

)
if t > T,

(5.11)

where β = 1 for simplicity. We again define TS to be the time that satisfies S(t) = 0.
The total population at the end of the exponential phase is now

ni(TS) = di(0)

(
e−T/λi − e−γT

γλi − 1
+
e−T/λi

1 + λi

)
· eTS−T + di(TS)

λi
1 + λi

. (5.12)

Before plugging this into eq. 5.5, we make the assumption that at TS the dormant pop-
ulation is negligible compared to the growing population2. We therefore set λi

1+λi
di(TS)

to zero (for further discussion on this approximation see appendix A.1). Finally, we
insert ni(TS) for T = 0 and T > 0 in the fitness function eq. 5.5

FII(λi; γ, p, T ) = (1− p) ln

[
1

1 + λi
· eTS,T=0

]
+ p ln

(e−T/λi − e−γT
γλi − 1

+
e−T/λi

1 + λi

)
· eTS,T>0−T

 ,
= (1− p) ln

[
1

1 + λi

]
+ p

−T + ln

[
e−T/λi − e−γT

γλi − 1
+
e−T/λi

1 + λi

]
+ pTS,T>0 + (1− p) · TS,T=0.

Once again, the time dependent terms are independent of any species specific parame-
ters. The rest of the the expression corresponds to the single species fitness in eq. 3.2.

2In a sense, this corresponds to ignoring ”the most persistent persistors”. However, at TS these
persisters provide no further benefit and can be considered as just normal cells.
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In other words, the difference in fitness of two competing species is just equal to the
difference in their single species fitness

F i
II − F

j
II = F i

I − F
j
I . (5.13)

Here, F i
I refers to the single species fitness as computed by Y. Himeoka and N. Mitarai.

As in the previous section, we therefore expect the intrinsically fittest species to be the
fittest species also when competing for nutrients.

5.2.2 Numerical results

The result in the previous section relies on the assumption that the dormant pop-
ulations are negligible at the time that the system reaches the stationary state. An
equivalent approximation was done by Y. Himeoka and N. Mitarai for d(t) in the t� λ
region. In our setup, where the nutrient is explicitly considered, t is constrained by an
upper limit. We therefore verify our results with a numerical simulation.

We let two species compete for nutrients for Nc cycles in Nλ simulations. One
species is given the analytically calculated optimal lag time from eq. 5.13 for the given
set of antibiotic parameters p and T . The other species has lag time λi = 10−4 + i∆λ,
where i is the ith simulation of Nλ. At every cycle antibiotics are applied along with
the nutrient with a probability p. After every cycle we compute the fraction of the
nutrients that is consumed by each species and use the cycle average of this as a
numerical measure of fitness3. From eq. 5.10 we get that each species consumes a
fraction of the nutrients corresponding to gi(TS)− gi(T ) divided by the initial amount
of nutrients S0. Again, T = 0 in absence of antibiotics. The average consumption
fraction therefore reads

1

Nc

Nc∑
c

1

S0

(
gi,c(TS)− gi,c(T )

)
,

where gi,c(t) denotes the growing population of species i after c cycles. We set Nc to
20 000 and ∆λ = 0.1. Both species start with the same concentration of cells in the
first cycle of each simulation, and after each cycle both populations are diluted with
the dilution factor f = 10−6. We set the initial number of cells to n0 = f · S0, where
S0 = 10−9.

In fig. 5.3 we compare the analytical and numerical results for T = 6 and p =
0.2, 0.3, 0.6, 0.9. In fig. 5.3a the difference in analytically calculated single species
fitness is plotted on a logarithmic axis as function of the lag time of the competitor.
That is FI(λ

∗; γ, p, T ) − FI(λ; γ, p, T ). This expression reaches its minimum when
λ = λ∗. In 5.3b the consumption fraction of the competitor (with lag time λ) is

3We do not use effective growth as numerical fitness because 1
Nc

∑Nc

c log
[
ni,c(TS)
ni,c(0)

]
will be dom-

inated by the cycles when a species with initial density smaller than fS0 consumes most of the
nutrients.
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Figure 5.3: Comparison of analytically predicted and numerically computed opti-
mal lag times. a) Difference in analytical fitness of single species optimal and a species
with lag time λ. The minima correspond to λ = λ∗. b) Consumption fraction, i.e. nu-
merical fitness, of species with lag time λ when competing against the single species optimal
species. Note that the peaks do not exactly correspond to the minima in a), because of the
discretisation of λ.

plotted against its lag time. We expect the consumption fraction to have a peak at
the minimum of FI(λ

∗; γ, p, T ) − FI(λ; γ, p, T ), with a peak value of 0.5 because the
two species are identical here and thus act as one population. We confirm that this is
also what we observe. As expected from [22] there is a discrete jump in optimal lag
time between p = 0.2 and p = 0.3, where the optimal lag time jumps from λ∗ = 0
to λ∗ ≈ pT . The region around the critical probability is explored in more detail in
appendix A.2.

5.3 General model

In the previous sections we have showed for two simple models that the optimal lag
time is the same when the bacteria compete for a fixed amount of nutrients, as in the
case of unlimited nutrients. We will now show that this holds for any model where the
dormant subpopulation can be neglected at the time that the population enters the
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stationary phase. Adapting the general setup from [22] to a nutrient limited setup

FII[ri, q] = (1− p) ln

∫ TS0
eTS−λri(λ) dλ+

∫∞
TS
ri(λ) dλ∫∞

0
ri(λ) dλ

+

p

∫ ∞
0

q(T ) ln

eTS
(
e−(1+γ)T

∫ T
0
eγλri(λ) dλ+

∫ TS
T
e−λri(λ) dλ

)
+
∫∞
TS
ri(λ) dλ∫∞

0
ri(λ) dλ

 dT.
(5.14)

Here, ri(λ) is the distribution of lag times of population i, and q(T ) is the distribution
of antibiotics with duration T . Assuming that the entire population is awake at TS is
equivalent to assuming that there are no cells with lag times in [TS,∞], hence we have∫ ∞

TS

ri(λ) dλ ≈ 0 ⇒
∫ TS

0

eTS−λri(λ) dλ ≈
∫ ∞
0

eTS−λri(λ) dλ.

We can now replace the TS integration limits with ∞. TS = TS(ri, rj, T ) is here a
function of the distributions of lag time, but not of λ itself4. We can therefore pull eTS

outside both integrals and logarithms

FII[ri, q] = (1− p) ln

[∫∞
0
e−λri(λ) dλ∫∞
0
ri(λ)dλ

]
+ (1− p)TS

+ p

∫ ∞
0

q(T ) ln


(
e−(1+γ)T

∫ T
0
eγλri(λ) dλ+

∫∞
T
e−λri(λ) dλ

)
∫∞
0
ri(λ) dλ

 dT + p

∫ ∞
0

TS · q(T ) dT.

Which corresponds to

FII[ri, q] =F [ri, q] + (1− p)TS + p

∫ ∞
0

TS · q(T ) dT,

where F [ri, q] is the single species fitness from eq. 3.4 for a normalised ri(λ). And once
again we have that

FII[ri, q]− FII[rj, q] =F [ri, q]− F [rj, q],

namely that the difference between the fitness of two competing species is equal to the
single species fitness of each species. This result is independent of both lag time distri-
butions and the distribution of antibiotic duration, suggesting that the simplification
of constant antibiotic killing effect is justified.

4TS(ri, rj , T ) = log [S0]− log

[∑
k∈i,j

(
e−(1+γ)T

∫ T
0
eγλrk(λ) dλ+

∫∞
T
e−λrk(λ) dλ

)]
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5.3.1 Discussion

Until now we have seen that the single species optimal lag time is also the optimal lag
time when we limit the nutrients for three different models. This result is dependent
on the fact that the two species have the same growth rate, as TS would otherwise not
cancel out in the expressions for F i

II − F
j
II. Furthermore, we have assumed in all three

models that all cells are awake at the time that the population enter the stationary
phase (in section 5.1 this approximation is exact). With these two assumptions, the
final population density will always be on the form n(TS;λ, γ, T ) = C(λ, γ, T ) ·eTS , and
the difference on fitness of two populations will always be independent of TS. Since TS
is the term that reflects both the limitation on nutrients and competition, the difference
in competition fitness F i

II will therefore always be the same as the difference in single
species fitness F i

I .

We have already argued that it is meaningful to fix the growth rate for all species,
hence we now turn our attention on the approximation that all species are awake at TS.
As mentioned earlier, research indicates that real bacterial populations have long tailed
distributions of lag time. It is therefore likely that in a reality there are still cells in a
dormant or persistent state at a time TS. However, the fraction of persisters is usually
very low [16, 45]. We therefore consider this approximation to be reasonable, even
in a general case where we do not know the lag time distribution. At the same time
this indicates that the competition optimal might not be identical to the single species
optimal, once we include spontaneous persistence. Since we here consider persisters
to be dormant cells, spontaneous presistence corresponds to spontaneous reentering to
the dormant state. Therefore, the dormant population might no longer be negligible
once we include both persistence types.

Lastly, we have still not taken extinction into account, meaning there is no lower
threshold on the populations. For combinations of antibiotic parameters that can be
lethal with just one cycle of application, we expect the true optimal lag time to be
reflecting this. By this we mean that lag times that are too short to protect the
population from extinction, are unlikely to be the true optimals.

5.4 Evolution of average lag time in model with

mutation

So far we have found the analytically optimal lag time and confirmed it with numerical
simulations. Since this work is partly motivated by an experimental demonstration
evolution of antibiotic tolerance, it is relevant to investigate whether our model can
actually allow a population to reach λ∗ through mutation. We therefore extend our
model from two species to Nλ species with λi = 10−2 + i∆λ and ∆λ = 0.1. Using the
model with exponentially distributed lag time (from section 5.2) as a starting point,
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we introduce a small mutation rate ε between the nearest neighbours in terms of λ

d

dt
g0(t) = d0(t)/λ0 + (1− ε) g0(t) + εg1(t),

d

dt
gi(t) = di(t)/λi + (1− 2ε) gi(t) + ε

(
gi−1(t) + gi+1(t)

)
,

d

dt
gN−1(t) = dN−1(t)/λN−1 + (1− ε) gN−1(t) + εgN−2(t),

(5.15)

when t > T and S(t) > 0. Mutations therefore only occur in the exponential phase,
since it is related to reproduction, thus growth, of bacteria. We set all species except
one to 0 at the beginning of every simulation, and then let the system evolve from the
initial population for 104 cycles. After every cycle we compute the average lag time
weighted by the population densities in the system

〈λ〉 =

∑
i λi · ni(TS)∑
k nk(TS)

.

5.4.1 Simulation without extinction

First, we let the system evolve without any lower threshold. In this case, as in previous
sections, a population can always recover from the most extreme antibiotic stress. In
a model with mutation this means that once a mutation occurs, it will not leave the
system. Since all species mutate linearly through lag times, eventually all mutations
allowed by the simulation will be present, though most of them with unphysically low
densities.

In fig. 5.4 we have plotted the evolution of average lag time as function of cycle
number. The antibiotics are still synchronised with the nutrients, and we set the
duration of antibiotics to T = 6. This corresponds to the antibiotic parameters used in
fig. 5.3, which is why we expect a discontinuity in 〈λ〉 in between p = 0.2 and p = 0.3.
The simulation starts from the 0th population, that is the population with λ0 = 10−2.
We observe that for p below pc the average lag time stabilises somewhat around 〈λ〉 =
3 · 10−2. The dominant lag time is here λ0. The average is a little higher because
the species with λ0 only mutate to species with larger lag time, hence the population
densities are not distributed symmetrically around the dominant population. For p
above pc the average stabilises around 〈λ〉 ≈ pT , which corresponds to what we expect
from section 5.2. For p = 0.2 and p = 0.3 we observe a few spikes between 〈λ〉 = 0 and
〈λ〉 = pT .

In fig. 5.4b we investigate the region around the critical probability pc closer.
This region is very chaotic with several spikes and jumps between the two optima,
indicating that the system is in fact bistable in this region. Here, both the population
with λ ≈ 0 and λ ≈ pT are relatively large, and can therefore quikcly grow large when
the conditions are beneficial.
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Figure 5.4: Evolution of average lag time in simulation with mutation, without
extinction. At every time step each population mutates to nearest neighbours with the mu-
tation rate ε = 10−3. a) Evolution of average lag time for different p. b) Evolution of average
lag time around the critical probability pc ≈ 0.25.

5.4.2 Simulation with extinction

We now implement a lower threshold of one cell nmin = 1 such that we truncate
di(t) + gi(t) to zero if di(t) + gi(t) < nmin. We check the system for extinctions after
every antibiotic application and every dilution. In reality, cells are discrete therefore
it would be more correct to use the threshold on di(t) and gi(t) individually. Since we
are working with at continuous model, with transition rates instead of discrete events,
we chose not to apply this individual threshold.

In fig. 5.5a we let the system evolve from λ0 = 10−2 as in the case without extinc-
tion, and find that the system gets stuck in a local optimum close to the lower limit on
λ. Contrary to what one would expect, we observe that the average lag time is lower
the more frequent the antibiotic application is. This is because the simulation starts
from λ0 = 10−2, which is the optimal lag time in cycles where the antibiotics are ab-
sent. Mutations only occur during the growth phase, and are introduced to the system
with a very small initial population. Mutations with higher lag times are therefore
prone to go extinct by dilution the same cycle as they appear, because they are much
smaller than the population they originated from. Since new mutations usually go
extinct the same cycle as they occur, the fittest species during a cycle with antibiotics
will at best have a lag time only a few generations away from the original population
with λ0 = 10−2. Furthermore, this species will also have the smallest density at the
beginning of the cycle. When we take the population density into account, the high-
est lag time is therefore not large enough to provide a real evolutionary advantage.
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Figure 5.5: Evolution of average lag time in simulation with mutation and ex-
tinction. At every time step each population mutates to nearest neighbours with mutation
rate ε = 10−3 and extinction threshold nmin = 1. a) Evolution starting at λ0 = 10−2. b)
Evolution starting at λi = λ∗. c) Evolution starting at λN−1 = T + 10−2.

Put differently, the intrinsically fittest species might also be the most vulnerable to
extinction. For the system to be able to evolve from the initial lag time, a necessary
condition is that the mutations are able to grow large enough to survive at least one
round of antibiotics. Only then is a longer lag time a feasible advantage. For example
a species with λ = pT would need an initial population of

d0 ≥
pTγ − 1

e−1/p − e−γT
· nmin =

pT − 1

e−1/p − e−T
≈ (pT − 1)e1/p,

in order to survive one round of antibiotics. For p = 0.3 and T = 6 this corresponds
to an final population of 73/f cells/ml or more. New mutation typically reach a
population of ∼ 102 cells/ml before dilution, hence they they do no even survive
the dilution event. Decreasing 1/f does not help noticeable, since this will increase
the initial populations of all species, hence shorten the exponential phase where the
mutations take place, because there of the restrictions imposed by S0. Another option
would be to lower the extinction threshold, next. If we want populations of ∼ 100
cells to survive dilution by a factor 10−6, this would require an extinction threshold
of nmin ≤ 10−4. Increasing the mutation rate can improve the situation, however it
requires an unphysically large mutation rate for the new mutation to survive at least
one dilution. Another option is to consider only extinctions from antibiotics, since
most extinctions occur during the dilution event.

Motivated by this we therefore change the initial population that we let the system
evolve from. In the middle plot of fig. 5.5 we start the simulation from the analytically
found optimal lag time λ∗. The average lag times does not change notably, confirming
that these correspond to a local optimum. The behavior is different from the case
without extinction (fig. 5.4), in that there are no fluctuations around the critical
probability. The reason for this is the same as why 〈λ〉 ≈ λ0 for all p in fig.5.5a,
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namely that most new mutations are diluted to extinction. In fig. 5.5b we start the
simulation from the highest lag time, that is λN−1 = T . We observe that for most p
the average lag time converges to the analytic optimal lag time. For p = 0.2 the system
seems to be stuck in the local maximum around λ ≈ pT , though it is likely that it
requires more cycles to reach the true optimal.

When the system gets stuck in (λ0, δ0) here, but not in reality, it is probably related
to the simplifications of our model. Specifically, since we do not consider space, a
population is considered to be extinct when the number of cells per ml drops below 1.
In a real system in absence of antibiotics, one species is enough to keep the population
alive, independently of the volume of the space. This indicates that the extinction
threshold imposed here, might in fact be unphysically strict.
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Chapter 6

Models with spontaneous
persistence

We now extend the model with triggered persistence to allow also spontaneous per-
sistence. First we consider the simple model where all persisters (both triggered and
spontaneous) are modelled by the same dormant state. This means that spontaneous
persistence amounts to a spontaneous re-entering to the dormant state. A consequence
of this simplification is that the lag time or ”wake up” rate from triggered persistence
and spontaneous persistence are the same, despite being two different phenomena. We
use the model with exponentially distributed lag time from section 5.2 as a starting
point, adding a term of spontaneous persistence to all equations. Since spontaneous
persistence is expected to play a bigger role when antibiotics are applied during the
exponential phase, we now allow the nutrients and antibiotic to be desynchronised,
meaning we set T0 ≥ 0. With this setup, T thus denotes the removal time of the
antibiotics, whereas we denote the duration by TAB = T − T0.

In absence of antibiotics, the differential equations read

d

dt
di(t) = −di(t)/λ+ δgi(t) if S(t) > 0, (6.1)

d

dt
gi(t) = di(t)/λ+ (1− δi) · gi(t), if S(t) > 0. (6.2)

λi is the species specific lag time, and δi is the species specific rate of spontaneous
persistence. As in the model of triggered persistence, di(t) and gi(t) denote the dormant
(persister) and growing populations, respectively. S(t) denotes the nutrients at a time
t. With probability p antibiotics are applied at t = T0. In this case ġi(t) reads

d

dt
gi(t) =

{
di(t)/λ− (γ + δi) · gi(t) if T0 < t < T,

di(t)/λ+ (1− δi) · gi(t) if t < T0 or T < t, S(t) > 0.
(6.3)

Again, γ is the antibiotic killing rate. S(t) follows almost the same differential equation
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Figure 6.1: Example of 6 feast-famine cycles with spontaneous persistence. Antibi-
otics are added at T0 = 5, and the probability and duration of antibiotics are p = 0.6 and
Tab = 10, respectively. The orange line represents a population with wake-up rate 3.9 and
a rate of spontaneous persistence 0.04. The green line represents a population with wake-up
rate 0.01 and no spontaneous persistence. The light blue line represents the nutrient that is
consumed by both populations.

as before (eq. 5.10), namely

d

dt
S(t) =

{
0 if T0 < t < T,

−
∑

i ġi(t) if t < T0 or T < t,
(6.4)

where we obtain the case without antibiotics by setting T0 = T = 0. Even though spon-
taneous persistence is specifically defined as spontaneously occuring persisters during
exponential growth, we assume for simplicity that cells enter the dormancy at the
constant rate δi independent of the presence of antibiotics. Letting spontaneous per-
sistence occur only in absence of antibiotics yields qualitatively the same results as
we obtain with this model. An example of two populations evolving according to eq.
6.1–6.4 can be seen in fig. 6.1.

6.1 Single species optimal strategy

In the previous chapter we optimised the wake-up strategy of a species that has to
compete for fixed nutrients, that is we extended some of the results from [22] to the case
of competition. When we now also consider spontaneous persistence, the expression for
competition fitness becomes too complicated to solve analytically. We therefore start
by identifing the optimal single species persistence strategy, which we will later use
in simulations to determine the optimal persistence strategy of a competing species.
Conceptually, optimising the single species strategy corresponds to evolving several
species in parallel, picking the fittest population after infinitely many cycles. We will
return to what is meant by ”fittest” in the end of the next subsection.
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6.1.1 Deriving a measure of fitness

We solve eqs. (6.1) and (6.2) by turning the set of coupled first order differential
equations into a set of second order differential equations. This is achieved by adding
ḋ(t) and ġ(t), and then integrating the sum. We then obtain d as function of g:
d(g) =

∫
g dt − g, which we can plug into eq. (6.2) in order to eliminate the d-

dependence. Lastly, we differentiate to get the equation on the form of a second order
differential equation. The corresponding equation for the killing phase is obtained by
replacing

∫
g dt with −γ

∫
g dt in d(g).

λg̈ + [λ(γ + δ) + 1]ġ + γg = 0, (6.5)

λg̈ − [λ(1− δ)− 1]ġ − g = 0. (6.6)

We solve eq. 6.5-6.6 in appendix B.1. The total size of a population at t > T reads

n(t) =
d0

(ap − bp)(a+ b)2

[
(b+ bp)e

−aT0 + (a− bp)ebT0
]

(b+ ap)e
−bpTAB · aeb(t−T )

− d0
(ap − bp)(a+ b)2

[
(b+ ap)e

−aT0 + (a− ap)ebT0
]

(b+ bp)e
−apTAB · aeb(t−T )

− d0
(ap − bp)(a+ b)2

[
(b+ bp)e

−aT0 + (a− bp)ebT0
]

(a− ap)e−bpTAB · be−a(t−T )

+
d0

(ap − bp)(a+ b)2

[
(b+ ap)e

−aT0 + (a− ap)ebT0
]

(a− bp)e−apTAB · be−a(t−T ).

(6.7)
Here, d0 is the population at t = 0, and as mentioned TAB is the duration of the
antibiotics. Like in the previous chapter the entire population is initially dormant.
a, b, ap, and bp are non-linear combinations of λ, δ, γ, and the growth rate β = 1,
defined as

a = −λ(1− δ)− 1

2λ
+

√
(λ(1− δ)− 1)2 + 4λ

2λ
,

b =
λ(1− δ)− 1

2λ
+

√
(λ(1− δ)− 1)2 + 4λ

2λ
,

ap =
λ(γ + δ) + 1

2λ
+

√
(λ(γ + δ) + 1)2 − 4λγ

2λ
,

bp =
λ(γ + δ) + 1

2λ
−
√

(λ(γ + δ) + 1)2 − 4λγ

2λ
.

The signs are chosen such that a, b, ap and bp are positive for all λ, δ and γ. When
δ = 0, they reduce to

a =
1

λ
, b = 1, ap = γ, bp =

1

λ
.

These parameters express how the parameters from the model of triggered persistence
are transformed when we include spontaneous persistence. b can be interpreted as the
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effective growth rate of a population with persisters, and it decreases with δ because
the fraction of growing cells in this model is lower compared to the model of triggered
persistence. a and bp can be interpreted as the effective wake up rates in absence
and presence of antibiotics, respectively. They have opposite dependency on δ, with
a increasing and bp decreasing. In this sense, a system with spontaneous persistence
is able to have a ”dynamic” effective lag time that is shorter in absence of antibiotics
and longer, thus more tolerant, when antibiotics are present. However, this is at the
expense of a lower growth rate. This interpretation is not faultless, as it implies that
eqs. 6.1-6.2 can be written on the form of eqs. 5.8-5.9. Though this is not the
case, the interpretation still provides some insight on how the model with spontaneous
persistence is different from that of only triggered persistence.

In the case without antibiotics eq. 6.7 reduces to

n(t) =
d0
a+ b

(
aebt + be−at

)
.

At long times t this expression is dominated by the first term, and maximising the
population density corresponds to maximising b, which is the largest when δ = 0. Since
b plays the role of a growth rate, this is also what we would expect in an environment
without antibiotic stress. The case with antibiotics is more complicated. If we let t
become large enough it will always be optimal to maximise the effective growth rate,
that is δ = 0, independently of the antibiotic parameters. In other words spontaneous
persistence is only meaningful when there is a restriction of the growth phase, i.e.
if there is an upper bound on t. This can be achieved by either fixing the amount
of nutrients or by fixing the cycle length. Whereas there are physical meaningful
constraints on S0, these are less obvious for TS. We therefore constrain the growth
phase by a fixed amount of nutrients S0, and define a new measure of single species
fitness: 〈TS〉p, that is the average time it takes a single population to consume S0.

To find an expression for 〈TS〉p we first need to isolate TS, both for a cycle with
and without antibiotics. From eq. 6.4 we have

0 = S0 − g(TS) + g(T )− g(T0). (6.8)

We first compute TS,T=T0 for cycles without antibiotics. In absence of antibiotics both
g(T ) and g(T0) are zero, and g(TS) = d0

ab
a+b

(
exp[bTS]− exp[−aTS]

)
(see appendix B.1

for details). Now we make the approximation that the second term can be neglected
at t = TS. Since a ≥ 1/λ for any δ and we further expect λ ≤ TS, we consider this
approximation to be reasonable 1. We now have

S0 = d0
ab

a+ b
ebTS ,

⇒ TS,T=T0 =
1

b
log

[
a+ b

ab
· S0

d0

]
.

1This corresponds to an upper limit of exp[−aTS ] ≈ 0.37

35



We can replace the dependence on S0 and d0 with f = S0/d0, choosing the initial
population to be d0 = f ·S0, where f is the dilution factor. The case with antibiotics is
computed in appendix B.2. We make the same approximation as in the case without
antibiotics, namely that all terms with the factor exp (−aTS) can be neglected.

TS,T>T0 =
1

b
log

[
(a+ b)2(ap − bp)

ab

1 + fg′(T )− fg′(T0)
fD

]
+ T,

where D is the sum of the factors that the two first terms in eq. 6.7 do not share.
g′(t) = g(t)/d0 such that also this expression is independent of the initial conditions
(see appendix B.2 for the exact form of D). Finally, taking the average of TS weighted
by the probability of antibiotics, we obtain

〈TS〉p = (1− p)1

b
log

[
a+ b

ab
· 1

f

]
+ p

T +
1

b
log

[
(ap − bp)(a+ b)2

ab

1 + fg′(T )− fg′(T0)
fD

] .

We define the fitness to be the inverse of the average consumption, since short TS is
analogue to a high effective growth in a model with unlimited nutrients. Finally, we
therefore have

FI(λ, δ; γ, p, T0, T, f) =
1

〈TS〉p
. (6.9)

Note that in cycles with antibiotics the shortest consumption time does not nec-
essarily yield the largest final density. Minimising consumption time is therefore a
different measure of fitness from effective growth, as used in the previous chapter.
With fixed nutrients and no competition, the effective growth becomes

βeff = − log [bf ] + p log

[
1− g(T0)− g(T )

S0

]
,

which is dominated by the first term, except for when T0 and T are both very long,
such that g(T0)−g(T ) ≈ S0−0. Maximising this expression corresponds to minimising
b and the impact of antibiotics (i.e. g(T0) − g(T )). Using the effective growth with
fixed nutrients will therefore trivially always yield the same answer, namely that it is
optimal with long lag time to avoid antibiotics. Counter-intuitively, it is also optimal
with a high rate of spontaneous persistence independently of all other parameters.
This trivial result reflects that for a single species with fixed nutrients the nutrient will
be left unused, if the species is not growing. Maximising effective growth is therefore
equivalent to minimising the antibiotic impact. Consequently, the word ”fitness” will
in the following refer to eq. 6.9.

Next, we maximise eq. 6.9 numerically. We let λ range from 10−2 to T , and δ range
from 0 to 1, and pick the set (λ, δ) that yields the highest FI(λ, δ; γ, p, T0, T, f) for a
given set of antibiotic parameters. As earlier, we set γ = 1 and f = 10−6.
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Figure 6.2: Optimal persistence strategy when antibiotics and nutrients are syn-
chronised. a) The optimal lag time as function of probability. b) The optimal lag time as
function of the duration of antibiotics.

6.1.2 Optimal strategies for synchronised nutrients and an-
tibiotics

First, we consider T0 = 0. Since antibiotics and nutrients are always applied simulta-
neously, it is less beneficial to wake up before antibiotics are removed and we expect
spontaneous persistence to be less relevant here. Independently of p and TAB, we find
that the rate of spontaneous persistence is always 0. This means that when antibiotics
and nutrients are synchronised, the model with optimal spontaneous persistence strat-
egy reduces to the model with only triggered persistence. We confirm that we obtain
the same optimal strategy as in sections 3.1 and 5.2. In fig. 6.2 the optimal lag time λ∗

is plotted against p and T = TAB. As expected we find that λ∗ → 0 for low antibiotic
severeness, and λ∗ ≈ pT for high antibiotic severeness. The jump between λ∗ → 0 and
λ∗ ≈ pT occurs later the less severe the antibiotic application is. When p & 0.5 there
is no jump and λ∗ ≈ pT for all T . Heat maps of λ∗ and δ∗ for p ∈ [0, 1] and T ∈ [0, 24],
can be found in appendix B.3.

That any set with finite δ is always sub-optimal to (λ∗, 0), confirms that in this
model there is no benefit from waking up earlier. λ∗ from 5.2 is the optimal lag
time independently whether we consider effective growth or consumption time. This
result thus supports that eq. 6.9 is a meaningful fitness measure. In this setup where
extinction is not considered, spontaneous persistence does not act as an insurance
against extinction like it would in a more realistic scenario. Using the analogy of bet-
hedging, in the setup without extinction it is less relevant to bet-hedge because one is in
fact always able to gamble again. Spontaneous persistence provides insurance against
extinction, but does not shield the population density significantly from the antibiotics
(unless the rate of spontaneous persistence is unphysically high). A finite rate of
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Figure 6.3: Optimal persistence strategy when antibiotics and nutrients are desyn-
chronised. The duration of antibiotics is set to TAB = 10. a) The optimal lag time divided
by the time that the antibiotics are removed. b) The optimal rate of spontaneous persistence.

spontaneous persistence will therefore provide relatively little protection against the
antibiotics compared to a long lag time. Furthermore, spontaneous persistence affects
the effective growth rate after the antibiotics are removed, which is not the case for a
long lag time.

6.1.3 Optimal strategies for desynchronised nutrients and an-
tibiotics

Next we desynchronise the application of nutrients and antibiotics, meaning we let
T0 range from 0 to 12. This range approximately corresponds to times below the
lower bound on the consumption time in absence of antibiotics, for f = 10−6. Later
application of antibiotics would therefore reduce to the case without antibiotics.

In fig. 6.3a and 6.3b we have plotted two heat maps corresponding to the optimal
lag time and optimal rate of spontaneous persistence, respectively, as functions of p
and T0. The duration of the antibiotics is fixed to 10. In the heat map of optimal lag
time, we observe three different regions. When the probability of antibiotics is low,
λ∗ → 0. For higher probability and early application of antibiotics, λ∗ ≈ pT . These
are the two cases we know from triggered persistence. We also observe a third region
where λ∗ is finite, but considerably shorter than pT . The three transitions between
the regions all appear to be discontinuous, a point we will return to later. The heat
map of optimal rate of spontaneous persistence only contains two regions, though the
borders coincide with the optimal lag time. For low probability or early application of
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Figure 6.4: Optimal persistence strategy for desynchronised nutrients and antibi-
otics. The duration of antibiotics is set to T0 = 5. a) The optimal lag time divided by the
time that the antibiotics are removed. b) The optimal rate of spontaneous persistence.

antibiotics, we always have δ∗ = 0. This is in agreement with what we observed in the
synchronised case. When antibiotics are frequent and delayed, δ∗ takes values within
0.03− 0.06.

In order to study the optimal persistence strategies as function of antibiotics stress,
we vary the duration of antibiotics and fix the application time to T0 = 5. The result
is plotted as two new heat maps in fig. 6.4. Again we observe three regions of (λ∗, δ∗).
For low probability or short duration of antibiotics, λ∗ → 0 and δ∗ = 0. For high
probability and very long duration of antibiotics we have λ∗ ≈ pT and δ∗ = 0. As
in the previous figure, these are the regions we are familiar with from chapter 5 and
[22]. In between these two regions, we again observe a region of 0 < λ∗ < pT and δ∗

approximately ranging from 0.01 to 0.06. Both transitions between the regions appear
to be discontinuous. We will study these transitions more thoroughly, but first we will
look at how the antibiotic characteristics differ for the three regions.

Regions in parameter space

The three regions are highlighted in fig. 6.5 and roughly summarised in tab. 6.1.

In region I the antibiotic stress is low, either because it is rare, or because it is of
short duration and applied significantly after the nutrients (see fig. 6.5). In the former,
the application is rare enough that it is more beneficial to behave as if antibiotics are
never applied to the system. In the latter, the antibiotics might be very frequent, yet
the duration is short compared to the application time. The antibiotic impact is not
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Figure 6.5: Three regions of optimal persistence strategies. The dashed line highlights
the boundaries between region I and IIa when δ is fixed to 0. a) The three regions in the space
of probability and application time. TAB ≈ 10. The blue arrows show how the boundaries
change when we increase TAB. The stronger the color, the higher is the impact. This figure
approximately corresponds to fig. 6.3. b) The three regions in the space of probability and
duration, for T0 ≈ 5. The red arrow show how the boundary between region I and IIa change
when we increase T0. For very small T0 region IIa does cover region IIb entirely, and also
the upper part of region I. This figure approximately corresponds to fig. 6.4.

Region Characterisation Antibiotic parameters (λ∗, δ∗)

I Low stress Low p or (low TAB and high T0) (0, 0)

IIa High, immediate stress High p and low T0 (pT, 0)

IIb High, delayed stress High p and high TAB and high T0 (λ(p, T0, T ), δ(p, T0, T ))

Table 6.1: Rough characteristics of the three regions in fig. 6.5

large enough to delay the consumption time significantly, and the priority is to wake
up as fast as possible, which translates to λ∗ → 0 and δ∗ = 0.

In region II the antibiotics stress is high, as it is frequently applied and of relatively
long duration compared to the delay in application time (which translates to severe
antibiotic stress compared to the population density at t = T0). When the antibiotics
come shortly after the nutrients (See fig. 6.5a), a medium to high frequency is sufficient
to trigger this region, independently of the duration of the antibiotics. For longer T0,
the duration of antibiotics also need to be long in order to trigger region II. Overall, p
or T are so large that the term of TS,T>T0 dominates 〈TS〉p (eq. 6.9).

In fig. 6.5 region II is split in two. In terms of antibiotic parameters, the main
difference between the two is the delay T0. Region IIa corresponds to a short delay,
whereas region IIb corresponds to a long delay. For a given T0, region IIa corresponds
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to more extreme combinations of p and TAB than region IIb. In region IIa the loss from
waking up early is larger than the gain, and and the priority is to limit the population
loss during antibiotics. With a lag time of λ∗ ≈ pT , spontaneous persistence provides
no further benefit, which is why we also have δ∗ = 0. In region IIb the loss and gain
from waking up early is more balanced because the antibiotics are delayed considerably.

Then we turn our attention to the transitions between the different regions, and
their dependency on the antibiotic parameters. We begin with the application time
T0. As highlighted in fig. 6.5b, T0 controls the boundary between region IIa and IIb.
For T0 below ∼ 4, only region IIa exist. As T0 increases there is a range where both
regions exist, but above T0 ≈ 6 region IIa disappears2 and is replaced by region IIb.
The exact values of T0 depends on f , that is the dilution factor, but also the maximal
fold increase of one cycle. The other boundary in fig. 6.5, that is the boundary between
region I and IIb, is practically independent of T0.

Next, we consider how the boundaries depend on TAB and p. The two boundaries
in fig. 6.5 have the same functional form, just translated. The shape is on the form
p ∝ 1/TAB, but is also dependent on T0.

Optimal persistence strategy in region IIb

Finally, we study the optimal persistence strategies in region IIb in more detail, where
the spontaneous persistence can be beneficial. In fig. 6.6 we have plotted the optimal
lag time and rate of spontaneous persistence as function of p. We set T0 = 5, such that
this corresponds to lines in fig. 6.4. The small inset in fig. 6.6 highlights the connection
between the two figures. We observe a discrete jump in λ∗ from 0 to ≈ 3 for all TAB.
From there the lag time increases almost linearly with p. Just before reaching region
IIa the slope increases exponentially until λ∗ ≈ pT . There is also a jump in δ∗ from 0
to some finite value that is dependent on TAB. Far away from region IIa δ∗ increases
somewhat linearly, but closer to IIa δ∗ starts exponentially decreasing until δ∗ = 0.

When we vary p the optimal persistence strategy in a cycle with or without antibi-
otics is constant, respectively. However, the weight given to each term in the fitness
function (eq. 6.9) varies with p. Decreasing p, increases the weight of TS,T=T0 in 〈TS〉p,
that is it increases the weight of the cycles without antibiotics. It is therefore not
surprising that decreasing p also decreases both λ∗ and δ∗, and conversely the optimal
parameters must increase with p. We note that the transition from region I to region
II (i.e. the discontinuity in fig. 6.6) must happen simultaneously for λ∗ and δ∗. When
p is small it is unlikely that δ > 0 can be a good strategy, because this will decrease
the effective growth rate in all cycles, and provide poor protection in the rare events
of antibiotics. It therefore makes sense that δ∗ = 0 for all antibiotic parameters that
yield λ∗ → 0. We also note that the transition from 0 to a finite value can not happen

2Though not completely, for T0 = 6 region IIa appears around TAB ≈ 48.
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Figure 6.6: Optimal persistence strategy as function of p for T0 = 5. The small inset
highlights the relation to fig. 6.4. a) Optimal lag time a function of probability of antibiotics.
b) Optimal rate of spontnaeous persistence as function of probability of antibiotics.

later for δ∗ than for λ∗, because in this case λ∗ would behave as in the case without
spontaneous persistence, and must in this case jump directly from λ∗ → 0 to λ∗ ≈ pT .
As we have seen, spontaneous persistence provides no further benefit when λ∗ ≈ pT
(see fig. 6.2). Y. Himeoka and N. Mitarai showed that for the single species model
corresponding to section 5.2 there is always a critical p for which the jump in optimal
λ∗ occurs between region I and II. Though we do not prove this mathematically for
our model, it still seems reasonable that eq. 6.9 can yield a discontinuity in p. For
p = 0 the fitness is dominated by the term representing cycles without antibiotic, and
the optimal persistence strategies correspond to the optimal in absence of antibiotics:
(λ∗, δ∗) = (0, 0). Even though this might not be the optimal strategy in cycles with
antibiotics, the disadvantage of (λ∗, δ∗) = (0, 0) during antibiotics is not noticeable for
small p, hence this is still the overall optimal strategy. For the p where TS,T>T0 can no
longer be neglected compared to TS,T=T0 , a continuous change in (λ∗, δ∗) is not enough
to even out the antibiotic impact.

The second transition in fig. 6.2, from region IIb to region IIa, in continuous in p.
Once λ∗ reaches a certain size, spontaneous persistence becomes less advantageous and
δ∗ starts decreasing. As δ∗ decreases, it in turn becomes more important with a high
lag time, hence we interpret the exponential behavior close to region IIa as resulting
from a positive feedback loop between λ∗ and δ∗.

Before introducing competition to the model, we consider the optimal persistence
as function of TAB. In fig. 6.7 we have plotted lines corresponding to three different
p. As before we set T0 = 5, such that these are also lines in fig. 6.4, but orthogonal
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Figure 6.7: Optimal persistence strategy as function of TAB for T0 = 5. The small
inset highlights the relation to fig. 6.4. a) Optimal lag time a function of the duration
of antibiotics. b) Optimal rate of spontaneous persistence as function of the duration of
antibiotics.

to those from fig. 6.6 λ∗ behaves fairly similar as in fig. 6.6. It jumps from λ∗ → 0
to ≈ 3, then it increases somewhat linearly before it λ starts increasing exponentially
close to region IIa. δ∗ also does a discontinuous jump from region I to IIb, after which
it decreases for all TAB, that is opposite of what we observed as function of p in fig.
6.6. Far away from region IIa the decrease appears to be linear, before it decreases
exponentially until δ∗ = 0.

Increasing TAB does not affect the weights of TS,T=T0 and TS,T>T0 in 〈TS〉p. However,
it increases the antibiotic impact of one cycle. This affects both the optimal persistence
strategy of cycles with antibiotics, and the length of TS,T>T0 . For a given p it is therefore
not surprising that λ∗ increases with antibiotic duration. On the contrary δ∗ decreases,
to counteract the slow consumption resulting from a longer lag time on the cycles
without antibiotics. In other words, as λ∗ increases it becomes more important for the
population to have a high effective growth rate since the frequency of antibiotics does
not increase. The optimal parameters display the same discontinuous jump and kink in
fig. 6.7 as they do in fig. 6.6. The discontinuity makes sense from the same arguments
as in fig. 6.6, since for TAB = 0 we trivially have (λ∗, δ∗) = (0, 0). The arguments for
why (λ∗, δ∗) in region II are C0 functions of p also applies to TAB.

Importantly, we emphasise once more that in this model triggered persisters and
spontaneous persisters wake up at the same rate. The advantage of spontaneous per-
sistence in a model of stochastic antibiotics is that the population can wake up earlier,
and thus grow more in cycles without antibiotics, and still maintain some protection
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in cycles with antibiotics. We would therefore expect that spontaneous persistence
is optimal when coupled with a relatively short lag time. This is also what we have
observed, with λ∗ in region IIb being lower than λ∗ in region IIa. If spontaneous persis-
tence is not allowed in the model, the entire region IIb becomes region IIa. However, a
short lag time also constrains the spontaneous persisters to wake up shortly after they
went dormant, necessitating a relatively large rate of spontaneous persistence in order
to maintain the benefit of persistence. This might therefore partially explain why the
rate of spontaneous persistence that our model yields, is higher than what is observed
experimentally. In a model with separated wake-up rates, spontaneous persistence
might therefore be beneficial, even in the case without an antibiotic delay.

6.2 Competition optimal strategy

We now extend the results from previous section to include competition between two
phenotypes. As we have seen, with the addition of spontaneous persistence effective
growth rate becomes species specific. This is why we can no longer isolate TS, and
accordingly not write down a cycle independent expression for the competition fitness
F i
II. As mentioned in the beginning of section 6.1, as the model is now too compli-

cated to be solved analytically, we will now study the optimal persistence strategy for
competition numerically.

6.2.1 Numerical setup

Like in section 5.2.2 we use average consumption fraction as a numerical measure of
fitness. In the simulations we let the single species optimal (λ∗, δ∗)I , with the optimal
parameters corresponding to a given set of antibiotic parameters, compete against a
competitor with (λ, δ) = (λi, δj). Each set of (λi, δj) corresponds to an entry in a
Nλ × Nδ matrix of bacterial parameters, where λi = 10−2 + i∆λ and δj = j∆δ. We
set Nλ = 100 and ∆λ = T/100, such that λi ranges from 0.01 to T . Likewise, we
set Nδ = 100 and ∆δ = 10−3, meaning δ ranges from 0 to 1. We let the matrix of
competitors compete against the single species optimal in parallel for Nc cycles. After
every cycle we compute the consumption fraction of the single species winner and its
competitor. Finally, we take the cycle average of the consumption fraction, such that
the numerical fitness measure becomes3

FII(λi, δi;λj, δj; γ, p, T0, T, f) =
1

Nc

Nc∑
c

1

S0

(
gi,c(TS)− gi,c(T ) + gi,c(T0)

)
. (6.10)

3Here, we have not writen out the explicit dependencies. gi,c(TS) = g(d0, TS ;λi, δi; γ, T0, T ), where
d0 and TS are functions of all parameters in the system, in addition to the sequence of cycles with and
without antibiotics before the current cycle c, that is the ”history” of antibiotic applications. When
we let the number of cycles become very large (Nc → ∞), this sequence dependency reduces to a
dependency on p.
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Figure 6.8: Optimal persistence strategy during competition as function of p for
T0 = 5. The circles denote the competition optimal from F iII, and the solid lines denote
the single species optimal from F iI . The small inset highlights the relation to fig. 6.4. a)
Optimal lag time a function of the probability of antibiotics. b) Optimal rate of spontaneous
persistence as function of the probability of antibiotics.

After Nc cycles we pick the set of (λi, δj) that yields the largest value for eq. 6.10 as
the set of optimal competitor parameters. If the consumption fraction of the optimal
competitor is ≈ 1, this is not only the strongest competitor, but the optimal persistence
strategy when taking competition into account. We run each competition for Nc = 104

cycles. Since we solve this model numerically, we do not make use of the approximation
in section 6.1.

6.2.2 Results

We find that the single species optimal (λ∗, δ∗) from the previous section to a large
extent is also the optimal persistence strategy during competition. Since the single
species fitness FI(λ, δ; γ, p, T0, T, f) is defined as the inverse average consumption time
for a fixed nutrient, and consuming the nutrients fast is an obvious advantage during
competition, this is not very surprising. In fig. 6.8 we have plotted the optimal
persistence strategy according to eq. 6.10 against that from eq. 6.9. The circles
represent the competition optimal (λ∗, δ∗)II, whereas the solid lines represent the single
species optimal (λ∗, δ∗)I corresponding to those in fig. 6.6. The circles do not form
a completely smooth curve, stemming from both a low resolution on λ and δ, and a
finite number of cycles. The complete heat map of competition optimal persistence
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Figure 6.9: Optimal persistence strategy during competition as function of TAB for
T0 = 5. The circles denote the competition optimal from F iII, and the solid lines denote the
single species optimal from F iI . The small inset highlights the relation to fig. 6.4. a) Optimal
lag time a function of the duration of antibiotics. b) Optimal rate of spontaneous persistence
as function of the duration of antibiotics.

strategies can be found in appendix B.3.

The competition optimal display the same three regions as described in the previous
subsection. In region I (λ∗, δ∗)II = (λ∗, δ∗)I = (0, 0), and the jump to region IIb happens
simultaneously in the two setups. Far away from region IIa, the optimal lag time is
approximately the same, that is λ∗II ≈ λ∗I . However, as we approach region IIa we
observe that the single species optimal λ∗I increases faster than λ∗II. The transition to
λ∗ ≈ pT thus occurs later for λ∗II than for λ∗I . From fig. 6.8 we find that competition
appears to have a larger impact on the optimal rate of spontaneous persistence than on
the optimal lag time. δ∗II is a little larger than δ∗I in all of region IIb, and this difference
seems to increase slightly with p.

Then we look at (λ∗, δ∗)II as function of TAB, and compare this to (λ∗, δ∗)I from fig.
6.7. In fig. 6.9 we have plotted (λ∗, δ∗)II and (λ∗, δ∗)I as function of TAB correspond to
those in fig. 6.7. We observe the same here as in fig. 6.8, namely that the transition
from IIb to IIa occurs later for (λ∗, δ∗)II and that δ∗II > δ∗I in region IIb. The transition
is less delayed in TAB than in p, which makes sense when we consider the shape of
the boundary in fig. 6.4. In the range of TAB that we consider, the boundary is
much steeper as function of TAB than of p. Delaying the transition will therefore affect
(λ∗, δ∗) a lot in a small range of p, and affect (λ∗, δ∗) a little for a large range of TAB.

In chapter 5 about triggered persistence we argued that the competition optimal and
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single species optimal was the same as long as the dormant population is negligible when
the population enters the stationary state. An important condition for this was that
the competing phenotypes had the same growth rate. When now allowing spontaneous
persistence, we have seen that the growth rate becomes species specific. Furthermore,
with the rate of growing species that re-enter dormancy (i.e. when δ > 0), the dormant
populations might no longer be negligible at TS. Therefore, it is no longer clear whether
(λ∗, δ∗)II should be identical to (λ∗, δ∗)I or not. At the same time triggered persisters
are expected to be far more common than spontaneous persisters hence results implying
that the dormant (persistent) population is no longer negligible would be unphysical.
Based on experimental observation, the rate of spontaneous persistence is expected to
be in the range 10−6 − 10−3. This range corresponds to an effective growth rate of
b ≈ 1, though the effective growth rate we observe from our simulations are in actually
in the range b ≈ 0.95− 0.99.

The differences (λ∗, δ∗)II and (λ∗, δ∗)I are likely to stem from the effective dilution
factor or maximal fold increase in the two setups. We have set f to 10−6 in both
models, but since there are two species in the competition setup the nutrients will be
consumed faster, which roughly translates to feff = f/2 in cycles where the species
have approximately the same population density. The difference in optimal persistence
strategy of a model with f and f/2 can be found in appendix B.3. We can consider the
exponential phase as a linear function with a negative offset dependent mostly on λ, and
a slope that depends negatively on δ. The optimal parameters are the parameters of the
line that first crosses some threshold value, determined by f . If we set the threshold
infinitely high, the line with the steepest slope will always be the first to cross the
threshold, independently of its offset. However, for a finite threshold there can be a
line of less steep slope with a smaller offset that reaches the threshold first, depending
on whether the two lines intersect before or after the threshold. As the threshold value
decreases, the two lines are less likely to intersect before the threshold, hence it becomes
more important to reduce the (negative) offset than to have a steep slope. It therefore
seems reasonable that for an lower maximal fold increase f , the transition from region
IIb (with smaller offset and less steep slope) to region IIa (large negative offset, steep
slope) occurs later. This interpretation further signalises that the competition optimal
strategy depends on the number of competitors, since the maximal fold increase with
fixed nutrients is ≈ S0/

∑
i ni(0). In the same line of arguments, δ∗II should be higher

than δ∗I , and inversely λ∗II should be shorter than λ∗I . This corresponds to what we
observe in figs. 6.8–6.9 for the rate of spontaneous persistence. It is therefore more
surprising that λ∗ is approximately the same in the two setups, however this simplistic
explanation is not capable of capturing the full complexity of the equations in section
6.1. It seems intuitive that waking up earlier can be a competitive advantage, however
this is seemingly just the case for severe antibiotics.
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Figure 6.10: Suggested 4th region of high risk of extinction. The red arrow highlights
how we expect region X the change with T0, that is we expect this region to appear at longer
antibiotic duration the longer the delay.

6.2.3 Region of vulnerability to extinction

Like in the chapter about triggered persistence, we are not considered extinction. In
region I the optimal strategy is to ignore the antibiotics, i.e. a strategy that is very
vulnerable to extinction. In fig. 6.10 we have highlighted the region where we expect the
optimal (λ∗, δ∗) to change if we include extinction. Region X is where the frequency of
antibiotics is very low, hence the optimisation of (λ∗, δ∗) is dominated by cycles without
antibiotics despite the duration being rather long. Populations with (λ, δ) ≈ (0, 0) are
therefore very vulnerable to extinction during the rare antibiotic events. Specifically, we
expect the optimal persistence strategy to be different where TAB > T0+log

[
fS0/nmin

]
because this is where a species with initial density fS0 and parameters (λ, δ) = (0, 0)
would go extinct with just one cycle of antibiotics. The red line highlights how we
expect this region boundary to change with T0.

6.3 Evolution of average lag time and rate of spon-

taneous persistence

Once more we verify the optimal persistence strategy with simulations evolving λ and
δ through mutation. We extend eq. 5.15 by adding spontaneous persistence, also
allowing mutation in δ. For t > T and S(t) > 0 the equations in the growth phase now
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Figure 6.11: Average lag time and rate of spontaneous persistence from simulation
with mutation and no extinction. The rate of mutation is ε = 10−3 and the simulation is
without extinction. Lines represent λ∗II and δ∗II, and the dots represent the mutation average,
with the standard deviation as error bars. We use cycles 103 − 104 in the average, to allow
the system to settle. Red denotes a simulation with synchronised nutrients and antibiotics,
whereas blue denotes a simulation with T0 = 5. a) The average lag time. b) The average
rate of spontaneous persistence.

become

d

dt
gi,j(t) = di,j(t)/λi +

[
1− δj − αε

]
gi,j(t) + ε

∑
k=1,−1

[
gi+k,j(t) + gi,j+k(t)

]
(6.11)

where α ∈ 2, 3, 4 depending on the number of nearest neighbours in the matrix, and
g−1,j(t), gN,j(t), gi,−1(t), gi,N(t) are 0 for all t. Our system is now a matrix where every
entry corresponds to a of combination of lag time and rate of spontaneous persistence,
(λi, δj), that mutate to the nearest neighbour entries. We let λi range from 10−2 to
T = T0 + TAB with step size ∆λ = 0.2, such that λi = 10−2 + i∆λ. Likewise, we let δj
range from 0 to 0.2 with step size ∆δ = 0.01, such that δj = j∆δ.

As previously, we compute the average λ and δ at each iteration and let the system
evolve for 104 cycles. After every cycle we compute the average lag time weighted after
the population densities in the system

〈λ〉 =

∑
i,j λi · ni,j(TS)∑
k,l nk,l(TS)

, 〈δ〉 =

∑
i,j δj · ni,j(TS)∑
k,l nk,l(TS)

.

6.3.1 Simulations without extinction

First we let the system evolve without extinction, for both a synchronised and desyn-
chronised setup. We initialise the simulation from (λ0, δ0) = (10−2, 0), since without
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extinctions this is not an absorbing state. In fig. 6.11 we have plotted the cycle average
of the average λ and δ at each iteration. That is

〈λ〉c =
1

Nc

∑
c

〈λ〉, 〈δ〉c =
1

Nc

∑
c

〈δ〉. (6.12)

We take the average from the 1000th cycle, in order to avoid effects from the transient
period before system has stabilised.

The synchronised case we have set T0 = 0 and TAB = 6, the same antibiotic
parameters as used in fig. 5.4. Here the optimal persistence strategy is (λ∗, δ∗)II =
(λ∗I , 0), and is represented by the red lines in fig. 6.11. The lines are not smooth
because both the resolution on the parameters, and the number of cycles were relatively
low. The red dots represent the averages 〈λ〉c and 〈δ〉c, with the standard deviation as
error bars. With the error bars most of the mutation averages are in accordance with
(λ∗, δ∗)II. The exception is for the rate of spontaneous persistence at p ≤ 0.2, which
stems from the asymmetric distribution of population densities around the optimal
δ∗ = 0.

The system displays frequent fluctuations around pc, where the discontinuity in
λ∗ occurs, but decreases rapidly away from the jump in 〈λ〉c The large uncertainties
indicate that there are several ”good” persistence strategies in this region. In cycles
with antibiotics populations with δ increase rapidly, and in cycles without antibiotics
they decline again. The relative uncertainty is much larger on 〈δ〉c than 〈λ〉c. This
reflects that around the critical probability (λ∗, δ∗ ± ∆δ) is a better strategy than
(λ∗ ± ∆λ, δ

∗). The evolution of average lag time and rate of spontaneous persistence
from which fig. 6.11 is taken can be found in appendix B.3.

The blue lines and dots represent the desynchronised simulation, where we have
set T0 = 5 and TAB. For this set of antibiotic parameters, we expect spontaneous
persistence to be optimal for all p > pc as demonstrated by the solid blue lines. Again,
the mutation averages are in mostly in accordance with (λ∗, δ∗)II, expect for when
δ∗ = 0. 〈λ〉c is now fluctuating even more frequently around p = pc, but approaches
λ∗II for higher probabilities. A similar behaviour is observed for 〈δ〉c. Around p = pc
we observe that 〈δ〉c > δ∗II, but as p increases, 〈δ〉c approaches the expected value δ∗II.

Qualitatively, the averages behave similarly in the two regions, that is fluctuations
in both 〈λ〉c and 〈δ〉c around the critical pc, and for other p both simulations stabilise
around the optimal values from section 6.1-6.2. The reason that the desynchronised
setup displays more fluctuations than the synchronised setup might be that with the
delay in antibiotics, the loss and gain from waking up early is more balanced, hence the
optimal strategy is less well-defined. Note that the arithmetic mean and standard de-
viation as used here, do not provide a good description of the underlying distributions,
since they are not symmetric (see B.3).
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Figure 6.12: Average lag time and rate of spontaneous persistence from simulation
with mutation and extinction. The rate of mutation is ε = 10−3 and the simulation is
without extinction. Lines represent λ∗II and δ∗II, and the dots represent the mutation average,
with the standard deviation as error bars. We use cycles 103 − 104 in the average, to allow
the system to settle. Red denotes a simulation with synchronised nutrients and antibiotics,
whereas blue denotes a simulation with T0 = 5. a) The average lag time. b) The average
rate of spontaneous persistence.

6.3.2 Simulations with extinction

Then we include extinction, expecting that spontaneous persistence is more important
here, even though mutation also act as some security against extinction, since an
extinct species might reappear through mutation. We observe the same as in section
5.4, namely that the system gets stuck in the initial state when the duration is not long
enough to kill the initial species, and otherwise they all go extinct (See appendix B.3 for
figures). We therefore initialise the system from (λN−1, 0), using the same extinction
threshold as before, namely nmin = 1. In fig. 6.12 we have plotted the average lag time
and rate of spontaneous persistence 〈λ〉c and 〈λ〉c for the same antibiotic parameters
as in fig. 6.11. Again, the dots and error bars represent the average lag time and rate
of spontaneous persistence according to eq. 6.12. The solid lines denote the optimal
strategies λ∗II and δ∗II. The most prominent difference, is the standard deviations that
are much smaller when we include extinction. Considering the results from section
5.4, this is not surprising, since when we include a lower threshold, the mutations will
often go extinct in the same round as they appear. Hence, the system with extinctions
is less volatile than the system without extinctions, which is reflected in the standard
deviation.

The system evolves much slower when we include extinctions, and it takes long to
converge to a steady state. We therefore take the average of only the 3000 last cycles
to avoid too much influence from the transient period, though we should also increase
the total number of cycles. Overall, 〈λ〉c and 〈δ〉c follow the curve of the previously
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computed optimal, but there are a few differences in the simulation of desynchronised
nutrients and antibiotics. First, both 〈λ〉c and 〈δ〉c seem to be stuck in some local opti-
mum for p = 0.3. This is similar to what we observed in section 5.4.2 for the evolution
of average lag time of in the simulation with extinction. For antibiotic parameters cor-
responding to the synchronised case here (fig. 6.12) we observe 〈λ〉c ≈ pT for p = 0.2,
for which we actually expect λ∗ = 0. This suggests that this is a stochastic effect
stemming from a finite number of total cycles. Close to the critical p the system takes
longer to converge. A second difference from the synchronised case is that there are
no averages for p = 0.1 and p = 0.2. Here, all populations go extinct in what appears
to be a ”tragedy of the commons”. The 〈λ〉 and 〈δ〉 decreases during cycles without
antibiotics, but eventually becomes too small to survive one cycle with antibiotics, thus
goes extinct.

6.3.3 Three-state model

Throughout this project, we have mentioned several times that we model spontaneous
and triggered persisters as the same dormant state, with the same wake-up rate 1/λ.
We believe that a more realistic model would allow three separate states or subpopu-
lations:

- d(t): a dormant population waking up at the rate 1/λ representing triggered
persisters.

- g(t): a growing population of antibiotic sensitive cells.

- r(t): a population of spontaneous persisters waking up at the rate 1/ω.

Though temporal constraints prevent us from exploring this model in detail, we still
allow ourselves to evolve such a model through mutation, comparing it the the previous
subsections. Before adding mutation, the differential equations of the system in absence
of antibiotics read

d

dt
di(t) = −di(t)/λ, if S(t) > 0, (6.13)

d

dt
gi(t) = di(t)/λ+ (1− δi) · gi(t) + ri(t)/ωi, if S(t) > 0, (6.14)

d

dt
ri(t) = δigi(t)− ri(t)/ωi, if S(t) > 0. (6.15)

Though r(t) is equivalent to the dormant population in that the spontaneous persisters
do not grow or die, r(t) is distinguished from d(t) by separate wake-up rates. Here, 1/ωi
is the wake-up rate from spontaneous persistence and otherwise all other parameters
are the same as previously. In cycles with antibiotics, we have

d

dt
gi(t) = di(t)/λ− (γ + δi) · gi(t) + ri(t)/ωi if T0 < t < T. (6.16)
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Figure 6.13: Evolution of average persistence strategy for T0 = 0 and TAB = 6. The
simulation is without extinctions and with the mutation rate ε = 10−3. a) The evolution
of average lag time from dormancy. b) The evolution of average time spent in the state of
spontaneous persistence. c) The evolution of average rate of spontaneous persistence.

The nutrient follows the same differential equation as in eq. 6.4.
We allow mutations to occur in all persistence parameters, that is λi, δi, and ωi.

This also means that the matrix that represented the system of competing phenotypes
in previous subsections is now replaced with a 3-dimensional tensor. With mutation,
the differential equation of the growing population in absence of antibiotics becomes

d

dt
gi,j,l(t) =

di,j,l(t)

λi
+
[
1− δj − αε

]
· gi,j,l(t) +

ri,j,l(t)

ωl

+ ε
∑

k=1,−1

[
gi+k,j,l(t) + gi,j+k,l(t) + gi,j,l+k(t)

]
.

(6.17)

Here, α = 3, 4, 5 or 6, depending on the number of nearest neighbours. As in all
previous simulations, we set mutation rate to ε = 10−3. We use the same range of
λ and δ as before, and discretise ω like λ, assuming that the same range of values
are meaningful for the two lag times. That is λi = 10−2 + i∆λ, ωl = 10−2 + l∆λ

and δj = j∆δ Now, we consider only the evolution without extinction, and let the
system evolve from (λ0, ω0, δ0) = (0.01, 0.01, 0). Because the system now can contain
more than 104 species and differential equations, and we are restricted by temporal
constraints, we only let the system evolve for 1000 cycles. This is not ideal, especially
considering previous results from simulations with extinction indicating that 104 cycles
is not enough to allow the system to converge.

We first use the synchronised case corresponding to T0 = 0 and TAB = 6. The
evolution of average persistence parameters can be observed in fig. 6.13. The average
lag time still corresponds to the optimal lag time as from the model of only triggered
persistence. This is perhaps not so surprising, as d(t) in this model reduces to that
in the model of triggered persistence in section 5.2. In addition, with T0 = 0 and
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Figure 6.14: Evolution of average persistence strategy for T0 = 5 and TAB = 12.
The simulation is without extinctions and with the mutation rate ε = 10−3. a) The evolution
of average lag time from dormancy. b) The evolution of average time spent in the state of
spontaneous persistence. c) The evolution of average rate of spontaneous persistence.

no extinction, spontaneous persistence has limited relevancy. Furhtermore, TAB = 6
corresponds to somewhat mild antibiotics as any species with λ ≈ 0 and initial density
n(0) = f · S0 can survive the antibiotics. The average wake-up rate from spontaneous
persistence is low, though higher than the lowest 〈λ〉, and seems to be independent of p.
This is also the case for 〈δ〉. The main difference from the equivalent simulation of the
other models is the lack of fluctuations around pc, though with only 1000 cycles, this
might simply be a stochastic result. Note also that all phenotypes with (λ∗, ωl, δ0 = 0)
are the same species, independent of the value of ωl, because δ = 0⇒ r(t) = 0.

Lastly, we desynchronise antibiotics and nutrients, setting T0 = 5 and TAB = 12
as previously. The evolution of average persistence parameters can be observed in
fig. 6.14. Now we observe the strategy that was suggested in the end of section 6.1,
namely a short 〈λ〉 coupled with finite 〈δ〉 and long 〈ω〉. However, contrary to what
was assumed, 〈δ〉 is still much larger than experimental values. The two wake-up rates
are approximately independent of p, with 〈λ〉 ≈ 3 ·10−2, that is the same as for p = 0.1
in the synchronised case. We observe that 〈ω〉 ≈ 10, which is larger than all 〈λ〉 in the
model with only one wake-up rate. Only 〈δ〉 seem to vary with p, though still within a
range that is higher than experimentally observed. Surprisingly, even the when p = 0.9
is the average 〈λ〉 ≈ λ0. It would be interesting to study this three-state model for
0 < T0 < 5, in order to study the transition between fig. 6.13–6.14.

Overall, it would be useful to study this last model in more details. Now d(t) is
the same as in the model with triggered persistence in section 5.2, and the dynamics
between g(t) and r(t) are the same as in the previous model of spontaneous persistence.
Eqs. 6.13–6.16 describe a set of inhomogeneous second order differentials equations,
which we can evaluate according to the fitness described in section 6.1.
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Chapter 7

Summary and conclusions

We have shown that the optimal strategy of triggered persistence does not change when
we introduce fixed nutrients and competition between phenotypes for nutrients. This
reflects the fact that triggered persistence does not affect the effective growth rate of
a species, and that even though waking up early can be a competitive advantage in
cycles without antibiotics, it can also be a competitive disadvantage in cycles with an-
tibiotics. This seems to be the case, independently of the distribution of lag times and
duration of the antibiotic application, though the general model with triggered persis-
tence is only treated superficially. Our results therefore strengthen the significance of
the previous work by Y. Himeoka and N. Mitarai, suggesting that their work is more
general than what their assumptions suggest. This is encouraging, since the existence
of a discontinuity suggests that the application of antibiotics can be streamlined to be
as efficient as possible, while avoiding the evolution of more tolerant species.

After extending our model to allow also spontaneous persistence, we have seen that
whether spontaneous persistence can be beneficial or not depends on how delayed the
antibiotics are compared to the replenishment of nutrients. Only when the delay is
significant can a population gain from having spontaneous persisters, though what
we find to be the optimal rate of spontaneous persistence is significantly higher than
the experimentally observed rate. The optimal finite rate of spontaneous persistence
is coupled with a lower optimal lag time relative to the model without spontaneous
persistence. We observe a discontinuous jump in both lag time and rate of spontaneous
persistence, much like what was found in the model of starvation-induced triggered
persistence, suggesting that also evolution of the fraction of spontaneous persistence can
be avoided. These findings thus support the assumption that spontaneous persistence
can be beneficial, but disagree with experimentally found rates [17, 18]. Furthermore
they disagree with research suggesting that spontaneous persistence is beneficial when
stress arrives at low frequency. This is possible linked to the fact that we do not treat
extinctions, meaning a species can always recover from any stress. In such a setup there
is not much benefit from very low rates of spontaneous persistence, as any species can
survive antibiotics even without antibiotics.
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7.1 Outlook

There are two main extensions to this project that are very obvious, as they have
been referred to throughout the entire project That is the inclusion of an extinction
threshold and distinguishing the two persister types with the introduction of separate
wake-up rates. We believe extinction to be especially significant for the optimal per-
sistence strategy in regions of rare, but severe antibiotics. Furthermore we believe that
extinction might alter the significance of the delay T0 of the antibiotics, since in our
model the main incentive for spontaneous persistence is the possibility of growing be-
fore the antibiotics. Hence, in our project spontaneous persistence does not really act
as bet-hedging, but in a model with extinction it could.

In the very last section, we did a minimal investigation of the three-state model, that
is a model that distinguishes spontaneous persisters from triggered persisters through
the introduction of separate lag times. While the results from the synchronised simu-
lation were very similar to those from the earlier models, the results from the desyn-
chronised simulation were not. A more thoroughly investigation of this model would
therefore be interesting.
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Appendix A

Appendices to chapter 3

A.1 Approximation in section 5.2.1

We investigate the approximation λd(TS)/(1 + λ) ≈ 0 numerically. λd(t)/(1 + λ) in
monotonically decreasing with t. The smallest value TS can take, and thus the largest
value of d(TS), is obtained in the case without antibiotics1. We now compute a lower
limit on TS by integrating eq. (5.10) in t ∈ [0, TS], and setting it equal to 0. For a
cycle without antibiotics, this yields

S0 −
∑
k

gk(TS) = 0,

⇒S0 −
∑
k

dk(0)

1 + λk

(
eTS − e−TS/λk

)
= 0. (A.1)

From a physical point of view it intuitively clear that the shorter the lag time is, the
faster the nutrient is consumed, why the lower limit on TS must correspond to the
shortest λk. Mathematically, we have that e−TS/λk is monotonically increasing with λk,
hence eTS − e−TS/λk is decreasing with λk. The bigger this difference is, the lower TS
is needed to satisfy eq. (A.1), why inf {TS} corresponds to λk → 0. We can therefore

compute a lower limit on TS by setting λk = 0 ∀k 2 and use that eTS ≥
(
eTS − e−TS/λk

)
inf {TS} ≥ log

[
1

2f

]
,

where we have also used that the ratio S0/dk(0) is the smallest when dk(0) = fS0. For
a dilution factor of 10−6 inf {TS} is approximately 13.

The ratio λ
1+λ

d(t)/g(t) is plotted in Fig. (A.1) for two fixed t. The dashed line
corresponds to t = λ. The blue line corresponds to the lower limit on TS and goes

1Because TS,T>0 − T ≥ TS,T=0 for any combination of parameters.
2So the two populations are the same
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Figure A.1: Value of λ
1+λd(t)/g(t) which is approximated to 0.

toward 10−4 as the lag time exceeds a day. For small lag times the ratio is always
below the region of reasonable dilution factors, hence the approximation is reasonable
here.
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A.2 Numerical average in region around pc

Figure A.2: Optimal lag time around critical probability in model with exponen-
tially distributed lag time. Single species optimal is the analytical optimal according to
FI(λ; γ, p, T ), and competition optimal is the numerical consumption fraction.

Here, we investigate the region around the critical p in fig. 5.3 closer . The analytical
and numerical optimal lag times λ∗ are plotted against the probability of antibiotics.
The jump appears to occur slightly later for the numerical than the analytical optimal.
However, analytically, the jump lies between p = 0.249 and p = 0.25. For p this close to
the critical pc the system is very vulnerable to statistical fluctuations, hence we would
need more than 10 000 cycles to compute the true numerical optimal. It is unlikely that
this is related to the approximation we did in the calculations (see appendix A.1). The
approximation is more accurate the smaller λ is, therefore the approximation ”favours”
short λ and any effect from the approximation would yield a higher analytical pc than
the numerical pc. Here, we see the opposite, namely that the analytical jump in λ∗

occurs earlier than in the numerical case.
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Appendix B

Appendices to chapter 4

B.1 Solving eq. (6.5-6.6)

We want to solve the following set of second order differential equations

λg̈ − [λ(1− δ)− 1]ġ − g = 0, (B.1)

λg̈ + [λ(γ + δ) + 1]ġ + γg = 0. (B.2)

From this we obtain the characteristic equations

λx2 − [λ(1− δ)− 1]x− 1 = 0, (B.3)

λy2 + [λ(γ + δ) + 1]y + γ = 0. (B.4)

First, solving eq. (B.3) for t ≤ T0

x± =
λ(1− δ)− 1

2λ
± 1

2λ

√
[λ(1− δ)− 1]2 + 4λ

We now define b ≡ x+ and a ≡ −x−. From studying b and a we realise that λ = 1/ab
and δ = (a+ 1)(1− b). The solution of eq. (6.5) is on the form

g(t) = B0 · ebt + A0 · e−at, (B.5)

with the boundary conditions

g(0) = B0 + A0 = 0 ⇒ A0 = −B0,

ġ(0) = bB0 − aA0 = ab · d0 ⇒ B0 = d0
ab

a+ b
.

Plugging this into eq. (B.5) yields

g(t) = d0
ab

a+ b

(
ebt − e−at

)
. (B.6)
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We find the equivalent expression for the dormant population by considering eq. (6.2)
and isolating d(t) = λġ − λ(1− δ)g. Then inserting λ = 1/ab and δ = (a+ 1)(1− b)

d(t) =
1

ab

(
ġ + (a− ab− b)g

)
,

⇒ d(t) =
d0
a+ b

(
a(1− b)ebt + b(a+ 1)e−at

)
.

The total population for t ≤ T0 is therefore

n(t) =
d0
a+ b

(
a · ebt + b · e−at

)
.

Then solving eq. (B.4) for t ∈ [T0,T]

y± = −λ(γ + δ) + 1

2λ
± 1

2λ

√
(λ(γ + δ) + 1)2 − 4λγ.

And we again define bp = −y+ and ap = −y−, and we realise that γ = apbp/ab. The
solution to eq. (B.4) is on similar form as before, namely

g(t) = Bp · e−bpt + Ap · e−apt.

The boundary conditions are now

g(T0) = Bp · e−bpT0 + Ap · e−apT0 = d0
ab

a+ b

(
ebT0 − e−aT0

)
,

ġ(T0) = −bpBp · e−bpT0 − apAp · e−apT0 = ab · d(T0)− (ap + bp − ab)g(T0),

where we have used that γ + δ = ap + bp − ab. From this we obtain that

Bp = d0
ab

a+ b

[
(a− bp)ebT0 + (b+ bp)e

−aT0

ap − bp

]
ebpT0 ,

Ap = −d0
ab

a+ b

[
(a− ap)ebT0 + (b+ ap)e

−aT0

ap − bp

]
eapT0 .

Inserting this yields

g(t) = d0
ab

a+ b

[(a− bp)ebT0 + (b+ bp)e
−aT0

ap − bp

]
e−bp(t−T0) −

[
(a− ap)ebT0 + (b+ ap)e

−aT0

ap − bp

]
e−ap(t−T0)

 .

66



And we find the dormant population by isolating d(t) in eq. (6.2), that is d(t) =
λġ + λ(γ + δ)g such that we can find d(T ) for t ∈ [T0, T ]

d(t) =
1

ab

(
ġ + (ap + bp − ab)g

)
.

We thus obtain

d(t) =
d0
a+ b

· ap − ab
ap − bp

[
(a− bp)ebT0 + (b+ bp)e

−aT0
]
e−bp(t−T0)

− d0
a+ b

· bp − ab
ap − bp

[
(a− ap)ebT0 + (b+ ap)e

−aT0
]
e−ap(t−T0).

The total population for t ∈ [T0, T ] is therefore

n(t) =d0
ap
a+ b

[
(a− bp)ebT0 + (b+ bp)e

−aT0

ap − bp

]
e−bp(t−T0)

−d0
bp

a+ b

[
(a− ap)ebT0 + (b+ ap)e

−aT0

ap − bp

]
e−ap(t−T0).

Lastly, solving eq. (B.4) for t ≥ T. The solution is on the same form as for t ≤ T0,
but the boundary conditions are different. Introducing the notation Tab ≡ T − T0

g(T ) = BebT + Ae−aT = Bpe
−bpT + Ape

−apT ,

ġ(T ) = bBebT − aAe−aT = ab · d(T ) + (ab− a+ b)g(T )

which yields

B =
1

a+ b

[
(b+ ap)Bpe

−bpT + (b+ bp)Ape
−apT

]
e−bT ,

A =
1

a+ b

[
(a− ap)Bpe

−bpT + (a− bp)Ape−apT
]
eaT .

Which yields the growing population for t ≥ T

g(t) =
1

a+ b

[
(b+ ap)Bpe

−bpT + (b+ bp)Ape
−apT

]
eb(t−T )

+
1

a+ b

[
(a− ap)Bpe

−bpT + (a− bp)Ape−apT
]
e−a(t−T ).

And we find d(t) for t ≥ T as before

d(t) =
1− b
b

1

a+ b

[
(b+ ap)Bpe

−bpT + (b+ bp)Ape
−apT

]
eb(t−T )

−a+ 1

a

1

a+ b

[
(a− ap)Bpe

−bpT + (a− bp)Ape−apT
]
e−a(t−T ).
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Which yields the total population

n(t) =
1

b

1

a+ b

[
(b+ ap)Bpe

−bpT + (b+ bp)Ape
−apT

]
eb(t−T )

−1

a

1

a+ b

[
(a− ap)Bpe

−bpT + (a− bp)Ape−apT
]
e−a(t−T ).

Finally, replacing Ap and Bp with a, b, ap and bp

n(t) =
a · d0

(a+ b)2
· b+ ap
ap − bp

[
(a− bp)ebT0 + (b+ bp)e

−aT0
]
e−bpTabeb(t−T )

− a · d0
(a+ b)2

· b+ bp
ap − bp

[
(a− ap)ebT0 + (b+ ap)e

−aT0
]
e−apTabeb(t−T )

− b · d0
(a+ b)2

· a− ap
ap − bp

[
(a− bp)ebT0 + (b+ bp)e

−aT0
]
e−bpTabe−a(t−T )

+
b · d0

(a+ b)2
· a− bp
ap − bp

[
(a− ap)ebT0 + (b+ ap)e

−aT0
]
e−apTabe−a(t−T ).

The full forms of g(t) and d(t) are easily found changing the prefactor of each term in
n(t), as given by the equations above.
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B.2 Computing TS in case with antibiotics

We have that

g(TS) = S0 + g(T )− g(T0), (B.7)

where

g(T0) = d0
ab

a+ b

(
ebT0 − e−aT0

)
,

g(T ) = d0
ab

a+ b

1

ap − bp

[
(a− bp)ebT0 + (b+ bp)e

−aT0
]
e−bp(T−T0)

− d0
ab

a+ b

1

ap − bp

[
(a− ap)ebT0 + (b+ ap)e

−aT0
]
e−ap(T−T0),

g(TS) ≈ d0
ab

(a+ b)2
· b+ ap
ap − bp

[
(b+ bp)e

−aT0 + (a− bp)ebT0
]
e−bp(T−T0) · eb(TS−T )

− d0
ab

(a+ b)2
· b+ bp
ap − bp

[
(b+ ap)e

−aT0 + (a− ap)ebT0
]
e−ap(T−T0) · eb(TS−T ).

We have here neglected terms with the factor exp (−at) in g(TS), as discussed in section
6.1.1. We now isolate TS in eq. (B.7)

TS,T>0 =
1

b
log

[
(a+ b)2(ap − bp)

ab

S0 + g(T )− g(T0)

d0D

]
+ T,

where

D = (b+ ap)
[
(b+ bp)e

−aT0 + (a− bp)ebT0
]
e−bpTab − (b+ bp)

[
(b+ ap)e

−aT0 + (a− ap)ebT0
]
e−apTab .

Pulling d0 out of the expression for g(t), such that g(t) = d0g
′(t), and inserting d0 = fS0

TS,T>0 =
1

b
log

[
(a+ b)2(ap − bp)

ab

1 + fg′(T )− f ′g(T0)

fD

]
+ T,
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B.3 Supplementary plots of optimal persistence strat-

egy

Figure B.1: Heat map of optimal persistence strategy when T0 = 0. a) The optimal
lag time. b) The optimal rate of spontaneous persistence.

Figure B.2: Heat map of optimal persistence strategy for competition and T0 = 5.
a) The optimal lag time. b) The optimal rate of spontaneous persistence.
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Figure B.3: Heat map of optimal single species persistence strategy for T0 = 5 for
comparison.a) The optimal lag time. b) The optimal rate of spontaneous persistence.
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Figure B.4: Absolute difference in optimal persistence strategies for f = 10−6 and
f = 0.5 · 10−6. a) The optimal lag time. b) The optimal rate of spontaneous persistence.

B.4 Supplementary plots of evolution of average

persistence strategy
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Figure B.5: Evolution of average persistence strategy with T0 = 0, TAB = 6. a)
Average lag time. b) Average rate of spontaneous persistence

Figure B.6: Evolution of average persistence strategy with T0 = 5, TAB = 12. a)
Average lag time. b) Average rate of spontaneous persistence
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Figure B.7: Evolution of average persistence strategy with extinction and T0 = 0,
TAB = 6. The evolution starts from λ0 = 0.01 and δ0 = 0. a) Average lag time. b) Average
rate of spontaneous persistence

Figure B.8: Evolution of average persistence strategy with extinction and T0 = 0,
TAB = 6. The evolution starts from λ0 = 0.01 and δ0 = 0. a) Average lag time. b) Average
rate of spontaneous persistence
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Figure B.9: Evolution of average persistence strategy with extinction and T0 = 0,
TAB = 6. The evolution starts from λ = λ∗ and δ = δ∗. a) Average lag time. b) Average
rate of spontaneous persistence

Figure B.10: Evolution of average persistence strategy with extinction and T0 = 0,
TAB = 6. The evolution starts from λN−1 = T and δ0 = 0. a) Average lag time. b) Average
rate of spontaneous persistence
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Figure B.11: Evolution of average persistence strategy with extinction and T0 = 5,
TAB = 12. The evolution starts from λN−1 = T and δ0 = 0. a) Average lag time. b) Average
rate of spontaneous persistence
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