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Abstract

For a long time, the existence of a unique type of dusty star forming galaxy (DSFG) has
been well-established in extragalactic astrophysics. With a great amount of interstellar
dust attenuating stellar light, these DSFGs are often extremely faint, or even invisible, to
sophisticated UV-optical facilities such as the Hubble Space Telescope (HST). Typically
hosting star formation rates orders of magnitude larger than that of local galaxies, these
DSFGs could make up a substantial fraction of the cosmic star formation history (SFH)
and energy budget of the Universe. Failing to account for these galaxies could poten-
tially be catastrophic to our models of structure formation, and our understanding of the
cosmic SFH. The existence of these DSFGs was first revealed from their strong infrared
(IR) signature originating from interstellar dust grains heated by the absorption of stellar
light. Using the Atacama Large Millimeter Array (ALMA), astronomers are, for the first
time, able to resolve the spatial details of this IR signature and thereby characterize the
interplay between galactic dust, gas, and stellar light within these DSFGs.

The aim of this project is to test the robustness of the energy balance principle coupling
the absorbed stellar and reemitted IR radiation. This is achieved by utilizing UV-optical
data for a sample of DSFGs detected within the recent 69arcmin? GOODS-ALMA survey.
Characterizing the energy balance within DSFGs would allow astronomers to determine
the IR spectral energy distribution (SED) and infer the IR properties of galaxies without
using scarce and time-costly IR observations. This investigation is carried out by model-
ing galaxy SEDs using a set of stellar population synthesis (SPS) models carefully opti-
mized following considerations regarding IR luminosity and energy absorbed. Upon op-
timizing the SPS models the resulting SED fits were able to reproduce the FIR DSFG SEDs
when fitting UV-optical and IR data. When excluding IR constraints, it was found that the
modeling was only able to predict the FIR SED of 1.1mm ALMA sources with a compact
and co-located HST H-band counterpart, while the remaining SED fits saw a systematic
underestimation of the FIR. Thus, we argue that energy balance between absorbed stellar
light and reemitted IR radiation is a good assumption when the FIR emission and the UV-
optical counterpart is compact and co-located. Following this exercise, the method was
generalized and adapted to predict the 1.1mm Universe within the GOODS-ALMA field.
This proved reasonably successful as this technique was able to generate a synthetic map
in agreement with the observed field, implying that the energy balance principle applies
to regular galaxies with robust UV-optical data, but is challenged by extreme DSFGs.

We conclude this study by emphasizing the promising applications of this method-
ology to large cosmological surveys as future improvements may allow us to determine
DSFG properties in bulk, bringing us one step closer to understanding the cosmic SFH
and the Universe a whole.
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Chapter 1
Introduction

Since its first light operation in 2011 the ground-based Atacama Large Millimeter Array
(ALMA) has enabled astronomers to observe the Universe with unprecedented detail at
long millimeter and submillimeter infrared wavelengths. With its ability to resolve the
cold dust within galaxies billions of light years away, the revolutionary technology of
ALMA has helped set the stage for a variety of new discoveries. Among these break-
throughs is the characterization by spatially resolving a new class of extremely dust-
obscured galaxy even invisible to the Hubble Space Telescope (HST). The exceptional
data produced by ALMA allows astronomers to build extended multiwavelength cat-
alogues with data from observatories spanning the entire electromagnetic spectrum in
legacy fields like the Great Observatories Origins Deep Survey (GOODS), and from this
data properties of these new elusive dust-obscured galaxies can be derived. The deriva-
tion and characterization of dust-obscured galaxies is a crucial piece in the bigger puzzle
of determining the evolution of galaxies with cosmic time. Determining the assembly
of galaxies in the early Universe remains one of the top scientific objectives of several

upcoming observing facilities.

Motivation

The objective of this study is to build a panchromatic cosmological catalogue of dusty
star forming galaxies (DSFGs) recently surveyed in deep 1.Imm ALMA imaging, to in-
vestigate whether the principle of energy balance can be used to model the far infrared
SED by only utilizing UV-optical data. The DSFGs in question are situated within the
GOODS-S legacy field which benefits from exquisite multiwavelength photometry cov-
ering the electromagnetic spectrum from X-ray to radio wavelengths.

To conduct this predictive test, the photometric redshift code EAZY is used to model
spectral energy distributions (SEDs) by fitting sets of stellar population synthesis mod-
els to the sample of DSFGs. In contrast to other redshift tools, the advantage of EAZY
is its efficiency at providing accurate photometric redshifts and SEDs extremely fast. If
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successful in our predition of the FIR SED, this method will enable astronomers to de-
duce galaxy properties without exposure time costly infrared observations. This would
be extraordinarily beneficial to upcoming cosmological surveys such as the Euclid space
mission, which will provide a wealth of visible to near-infrared data from its 15000deg?

wide survey, impossible to follow-up with infrared facilities.

1.1 The origin of structure formation

In astronomy the most widely accepted theory for the composition and nature of the
Universe is the Standard Model of Cosmology. Also known as the A-CDM model, this
framework roughly divides the contents of the Universe into respectively dark energy
(A ~70% ), cold dark matter (CDM~ 25%), and ordinary matter (~ 5%).

Backwards extrapolation in time tells us that that the Universe emerged from a singu-
lar state in an event commonly known as the Big Bang. In this extremely hot and dense
state, the unified fundamental forces separated in a phase-transition-like process and the
Universe went through a phase of rapid expansion (inflation), which smoothened out
the curvature of space-time making it overwhelmingly flat. As a consequence of infla-
tion, microscopic volumes of quantum fluctuations were blown up to macroscopic scales
creating the density fluctuations that would provide the basis for the galaxy and large-
scale cluster structure formation. Gradually, the Universe cooled and the energy density
decreased to levels replicable by modern-day particle accelerators, which now sets the
limits of our probes of the early Universe. The following millions of years, the Universe
was relatively uneventful as photons decoupled and gravity, slowly but steadily, accu-
mulated matter in the halos of the dark matter overdensities. Eventually, the collapsing
overdensities reached the threshold Jeans mass igniting what became the very first stars,
which would reionize the neutral intergalactic medium. The angular momentum of the
collapsing overdensities would eventually form stars and galaxies, and many efforts in
today’s astronomy go into determining the assembly of galaxies over cosmic time, which
is among the scientific goals of new facilities like the James Webb Space Telescope (Schnei-
der 2015 1).

In this first chapter galaxies are discussed with respect to their mode of star formation,
and the basics of star formation and stellar populations are discussed. Additionally, the
detection of high redshift galaxies is discussed, and a new type of dusty star forming

galaxy is reviewed.
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1.2 The two types of star formation: Quiescent and star

forming galaxies

There are numerous ways to categorize and describe galaxies. A standard classification
scheme is the morphology-based Hubble tuning fork diagram, Figure 1.1a. But galaxies
can also be classified by their inherent star formation rate (SFR). Noeske et al. 2007 % de-
veloped the methodology for assessing the SFR of galaxies relative to a main sequence of
star formation, Figure 1.1b. In our local Universe at z ~ 0 the galaxy population seems to
be dominated by rather low SFRs compared to high redshift galaxies with similar masses

but much higher SFRs on the main sequence.
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FIGURE 1.1: 1.1a) The Hubble tuning fork diagram. Credit: NASA & ESA.
1.1b) The galactic main sequence (Speagle et al. 2014 )

This puzzle as to why the local Universe is overwhelmingly dead in terms of star
formation is yet another much debated mystery of the cosmic star formation history of
the Universe central to extragalactic astrophysics. Thus the SFR is often a much desired
parameter to try to characterize and determine in astrophysics. Typically, the SFR can
be determined from the infrared dust emission, which is regulated by the emission from
stars, making the SFR very sensitive to the properties of the underlying stellar population

such as mass and age etc.

1.2.1 Stellar populations and star formation rates

The age of the stellar population can vary much in-between galaxy types. For instance,
local quiescent ellliptical galaxies have notoriously old stellar populations while high-z
DSFGs contain young newly formed stars. These stars are formed during the collapse
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of dense giant molecular clouds in the interstellar medium. As the cloud starts to con-
tract, the gravitational force exceeds the internal cloud pressure causing subregions to
collapse in local filaments in a so-called fragmentation process. For the cloud to collapse
a general flow of baryons is required in the interstellar medium, which depends on the
gas accretion from the intergalactic medium. A galaxy is so to speak in a gradually shift-
ing inflow-outflow equilibrium driven by feedback processes which regulate SFR, gas
fraction, and metallicity etc. (Davé, Finlator, and Oppenheimer 2012 Y. Early studies of
high-z DSFGs, Greve et al. 2005°, found a lower limit on the typical depletion timescale
Tgepr = M(Hz)/SFR >~ 40Myr by using molecular CO line emission. This was done
using the rotational CO line emission which can trace the warm and dense molecular gas
(J] > 2) and the cool and diffuse gas in quiescent regions (J < 2). Thus CO line emission

can be directly related to the molecular gas mass e.g. M(H;) = XCOL/CO( , where Xco

1—
is a conversion factor and LICO(l—O)' is the luminosity of the CO(1-0) line.O)This derived
short depletion timescale at high-z tells us the story of a highly active Universe where
dark matter overdensities were less evolved and the Universe as a whole was less equili-
brated. Studies of low-z depletion timescales have shown depletion timescales 2.5 times
higher than that of the rapidly star forming early Universe (Scoville et al. 2016 ).

The star formation rate used to determine parameters such as depletion timescales can
likewise be determined from data. A common method assumes an approximate linear

relationship with the observed UV radiation corrected for dust attenuation.

SFRruv = xruvLruv (1.1)

Where Lryy is the far UV luminosity and the constant of proportionality, xryy, is a
conversion factor. The total SFR is also often determined from the SFRgyy inferred from
uncorrected UV emission, in addition to the SFR;r inferred from the infrared emission,
which is sometimes more representative of the total SFR in galaxies with significant dust

attenuation and uncertainties regarding the underlying dust model.

SFRtot = xruvLruy + ®1rLIR (1.2)

Thus the SFR is quite dependent on a correct prediction of the underlying UV emitting
stellar population. For a given galaxy the stellar population can be described by the ini-
tial mass function (IMF). The IMF describes the number distribution of stars with mass.
Among popular IMFs is the Salpeter model (Salpeter 1955 7

¢(m) ocm™" (1.3)

which predicts a power law (¢ ~ 2.35) distribution. Under the Salpeter model the

prediction of massive stars is somewhat reliable, while the simple power law tends to
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overestimate the population of low mass stars, causing an overestimation of the mass to
light ratio. Other truncated models have been proposed, e.g. the multi-part power-law
Kroupa model (Kroupa 2001 %)

)
& =03%07 0.01<m/Ms < 0.08

& =13+05 008<m/Ms <05

¢(m) o< m™® /Mo (1.4)
8 =23+03, 05<m/Ms <10

(&= 23+£07, 05<m/Ms <10

This truncation deals with the overestimation of low mass stars m < 0.5M, e.g. red
dwarfs, and the lightest stars such as brown dwarfs m < 0.08M that do not ignite,
whereas the IMF is otherwise almost identical to the Salpeter IMF.

1.2.2 Star formation history and constraints

However, defining the IMF for the stellar population is not always straightforward as star
forming galaxies with young stellar populations can outshine the old population. The
dominance of the UV brighter young stars creates a bias towards younger massive stars
in estimations of the galactic stellar mass, neglecting the old population which may con-
tribute significantly to the stellar mass (Papovich, Dickinson, and Ferguson 2001 °). The
significance of the old stellar populations is e.g. large for older elliptical galaxies, which
tend to have less dust. To avoid such problems it may be necessary to constrain the star
formation history (SFH) more accurately to make unbiased and higher quality predic-
tions about the IMF. However, often many SFHs are possible for any individual galaxy,
and the SFH does not necessarily have to be smooth, if the galaxy has seen e.g. starbursts
due to past galactic mergers throughout cosmic time. Therefore constraining the num-
ber of SFHs, especially for high redshift subjects significantly above the main sequence,
remains one of the biggest challenges in astrophysics. Attempts to constrain SFHs of DS-
FGs through cosmological simulations, have similarly hinted towards a lognormal SFH
which should be calibrated to the mass of the dark galactic halo of the individual galaxy
(Davé, Finlator, and Oppenheimer 2012 '%). Determining the mass of the dark galactic
halo of a high-z DSFG has been attempted for galaxies in so-called protocluster configu-
rations. This can be done by measuring the correlation length in the protocluster to then
compare it with correlation length predictions from cosmological simulations to infer the
halo mass. Apart from constraining the SFH, the derived mass provides an estimate at
which scales DSFGs and starbursts can be found (Casey, Narayanan, and Cooray 2014 '1).

However, on a cosmic scale these stochasticities tend to statistically smoothen in the
global SFH as illustrated on Figure 1.2.
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FIGURE 1.2: Lilly-Madau cosmic SFH, star formation rate density (SFRD) versus look-back time
(Madau and Dickinson 2014 '?)

Typically this cosmic SFH can be approximated by a simple delayed t-model, SFR ~
t exp (—t/ 1), which peaks around z ~ 2 and allows for linear star formation at low-z and
an exponential decay at high-z. More detailed studies of the cosmic SFH by Behroozi,
Wechsler, and Conroy 2013 '* and Madau and Dickinson 2014 ' have found double power
laws or lognormal fits to represent the data even better.

1.3 Detection of high redshift galaxies

Finding star forming and starbursting galaxies can be a difficult task, and in general dis-
covering new galaxies, particularly at high redshift, can be done in countless ways. Of-
tentimes high redshift galaxies are subjected to a distinct absorption of energetic photons
from their young stellar populations due to the large ionization cross-section of photons
with wavelengths below the lyman limit, A < 912A (> 13.6eV lyman continuum photons,
LyC). The vast majority of these photons photoionize the neutral hydrogen in the inter-
galactic or the interstellar medium. However, absorption does not require photoionizing
energies, as this absorption feature also extends to longer wavelengths as well. Namely,
the 10.2¢V Lya (wavelength A = 1216A), which corresponds to the excitation energy from
the neutral hydrogen ground state to its first excited state.

For high redshift objects, we would therefore expect a break at 912A. However, we
still see a Lya forest for A < 1216A. This is a feature consisting of continuum emission

with many superimposed absorption lines, which are due to small fragments of neutral
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hydrogen filaments within the reionized intergalaxtic medium (IGM) between us, the
observers, and the emitting object. At even higher redshifts the IGM has not yet been
entirely reionized and is therefore overwhelmingly neutral. In this case the break shifts
to 1216A with no Lya forest emitters, but just a Gunn-Peterson trough for A < 1216A.
This break can be utilized to detect high redshift galaxies by doing observations with
a set of non-overlapping filters. While the rest frame signal from a high redshift subject
will be visible in the filters with A > 1216A, the galaxy will be invisible and dropout
in filters with A < 1216A as seen on Figure 1.3. Since the discovery of the Lyman-break
method in the 90s (Steidel and Hamilton 1992 '#) this technique has found numerous high
redshift galaxies. However, due to the selection criteria that galaxies have to dropout at
wavelengths below the 1216A break and provide a signal above the break, a weakness
of the LBG method is its bias towards unobscured star-forming galaxies. Thus to charac-
terize the galaxy population at a particular redshift, one has to employ several different
selection methods, due to the inherent bias of individual tests (Schneider 2015 ).
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FIGURE 1.3: U-filter dropout of a Lyman Break Galaxy as demonstrated by Dickinson 1998 '°

In many ways photometric redshift codes apply the same principles as the LBG mehod
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using the lyman break to detect high redshift galaxies, as these codes also heavily rely on
spectral features to give accurate photometric redshift estimates. Many SED fitting codes
fit galaxy colors across many filter bands to estimate photometric redshifts, thus these
methods are particularly vulnerable to color degeneracies. These degeneracies may arise
in featureless blue SEDs where the 912A restframe Lyman break may be mistaken for the
3646A Balmer break (Brammer, van Dokkum, and Coppi 2008 ). A degeneracy in the
redshift estimate then arises as the code can fit the data equally well withaz ~ O orz ~ 3
SED. Therefore SED fitting codes are typically sensitive to spectral features such as the
Lyman or Balmer breaks, or even certain PAH signatures (Negrello et al. 2009 17 Walcher
etal. 2011 '9).

1.4 A new type of galaxy: The dusty star-forming galaxy

The star-forming regions of galaxies are often significantly dust obscured and hence opti-
cally thick to UV radiation. This significant extinction of optical UV light makes them un-
available to the LBG dropout test. At high redshift these dust obscured galaxies are very
faint in the optical and some completely invisible even to the Hubble Space Telescope
(also known as HST-dark galaxies). This elusive new type of galaxy in question is, the al-
ready briefly mentioned, dusty star forming galaxies (DSFGs). DSFGs are very luminous
in the infrared regime as dust grains absorb optical radiation from young stars and re-
emit it as thermal blackbody radiation at long submillimeter infrared wavelengths. Thus
the origin of the initial name Submillimeter Galaxies (SMGs), Blain et al. 2002 19 First dis-
covered by Smail, Ivison, and Blain 1997 %", Hughes et al. 1998 %! and more following the
commencement of the JCMT SCUBA camera (Holland et al. 1999 ??), which saw first light
in July 1996, the DSFG is one of the most recent discoveries in modern astronomy. With
this discovery, a revision of galaxy formation and evolution theory was eminent as a large
portion of star formation had been completely overlooked by UV and optical surveys as
Equation 1.2 indicate.

With their characteristic high emission at infrared wavelengths, classifying DSFGs by
their infrared luminosity has become the standard approach to separate galaxies. E.g.
galaxies with Lig = 101 L, go under the term LIRGs (Luminous Infrared Galaxies) and
Ligr = 10'2L, are called ULIRGs (Ultra-LIRGs). These ULIRGs are often associated with
starbursts, and SFRs as high as 2000M,yr~! have been observed for dusty sources at
z = 2.3 (Fu et al. 2013?%). However, inferring galactic properties such as SFR by directly
relating UV-optical observations to infrared observations of the same galaxy may not be
as straightforward as previously believed. Careful studies of HST detected UV-optical
emission and ALMA detected IR emission of high redshift DSFGs have shown a distinct
spatial offset between the two components. Hodge et al. 2016 %* found that HST H-band
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imaging tracing the stellar emission appeared rather extended and largely uncorrelated
with the dusty regions containing the bulk of star formation. Likewise Gémez-Guijarro
et al. 2018 % found irregular and extended UV emission compared to compact rest-frame
FIR emission and emphasized its effect on elevating the infrared excess (IRX-p) of DSFGs,
which sometimes matches the excess inferred by the Calzetti et al. 20002° dust law but at
other times is off by orders of magnitude (McLure et al. 20182”). The uncertainty in the
infrared excess carries on to the UV spectral slope, B, which has a problematic impact on
energy balancing arguments for SED fitting codes that assume coincident UV-IR emission
as da Cunha et al. 20152 demonstrated using MAGPHYS. Inevitably this affects SED
estimated parameters such as star formation rates. Elbaz et al. 2018 >’ conducted a study
illustrating the underestimating effect on SFRs for starbursting galaxies where rest-frame
UV and FIR emission occupied different distinct regions. Elbaz et al. determined the ratio
of SFRyot = SFRyy + SFRjR (with SFRyy and SFRjr determined according to Kennicutt
199839, Daddi et al. 2004 °!') to SFRggp where EAZY was used to determine SFRggp by
titting rest-frame UV-optical-NIR data. They found SFR./SFRggp ~ 1 for disks with no
signs of disturbance and no offset between UV and IR light, while SFRyt/SFRggp >> 1
for increasingly starbursting galaxies with disconnected UV and IR regions. Thus it seems
particularly problematic for SED-fitting to correctly estimate the total SFR, as part of the
star forming population may be entirely missed. In a detailed 30 mas (200 pc) resolution
ALMA study of 3 DSFGs, Rujopakarn et al. 2019 %> showed that UV-emitting clumps of
star formation offset from the bulk of star formation near the center of the galactic center
only contributed with 1 — 7% of the total star formation of the galaxies. If UV-optical HST
data is used to infer the total SFR of a galaxy from such a UV bright region, the SFR will
be severely underestimated.

Regarding their role in galaxy formation and evolution, DSFGs and their elevated
SFRs are believed to evolve from mergers of molecular gas-rich disk galaxies. Upon col-
lision, compression and cooling of gas sets off star formation activity. This elevated SFR
initializes the production of dust particles, which enshrouds the merger causing signifi-
cant attenuation of the stellar UV radiation from young massive stars. Over cosmic time
DSFGs are believed to shed their dust exposing a luminous quasar and eventually evolv-
ing into the dead massive elliptical galaxies we see today, (Sanders et al. 1988 **, Hopkins
etal. 2008 *, Toft et al. 2014 *°). Dusty quasars have already been found (Blain et al. 2013 *°
etc.) and such AGN can be detected in numerous ways. Typically, AGN are detected by
searching for an abundant X-ray signature as high energetic photons are produced in the
violent accretion disks of the AGN. This direct approach for detecting AGN X-rays tends
to fail in dense environments where the AGN is Compton-thick (Daddi et al. 2007 .
Probing for AGN is then best done through other signatures in multiwavelength data
where they exhibit different features in the galaxy SED. The AGN can smoothen out the
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features in the MIR as the thermally emitting AGN-heated dust leaves a power law in
the MIR. Dust heating is a particularly rich mechanism with many different contributors.
Apart from young stars, AGN and (to an extent) the old stellar population, can heat the
dust population, which can contaminate the conversion of infrared luminosity to SFR in
Equation 1.2.

As demonstrated throughout this section, many considerations go into the character-
ization of DSFGs. In the following of this thesis we will make an attempt at determining
properties such as photometric redshift and FIR fluxes for catalogued DSFGs to test the
robustness of the energy balance principle for this galaxy type. The data in question
comes from the 69arcmin? 1.1lmm GOODS-ALMA survey by Franco et al. 2018 **, Franco
et al. 2020°?, and Franco et al. 2020* where 39 sources are detected with sample red-
shifts at, or beyond, the peak of cosmic star formation. However, before digging into the
practical analysis, we have to establish the necessary theoretical framework.
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Chapter 2

Theory

2.1 Physics of the expanding Universe

Ever since the Big Bang the Universe has continued expanding. The first scientist to make
this realization and to attempt quantifying this acceleration was Hubble 1929 *!. Hubble
obtained spectrographic data of distant galaxies to measure the shift of emission lines
relative to the rest frame spectra. By doing so Hubble could determine Doppler shifts
of these emission lines which he ascribed to their recession velocity relative to us. The
remarkable revelation of Hubble was that most galaxies were moving away from us, and

that this recession was increasing at a constant rate with proper distance.

Where the subscript denotes values at our current time, e.g. t = 0.
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FIGURE 2.1: Hubble diagram illustrating the accelerating recession velocity of distant galaxies
(Hubble 192941

From the slope of the Hubble diagram (Figure 2.1) Hubble estimated this constant

increase in recession velocity by Hyp = 500km/s/Mpc. This parameter, Hy, now also
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known as the Hubble constant, has since this first study become a crucial parameter in
astrophysics, and consequently it has been determined with much higher accuracy and
precision. As alluded to in Equation 2.1 the Hubble constant turns out to be a time-
dependent parameter. This can be deduced if we consider the proper coordinate 7(t)
dependent on time due to the expansion of the Universe, and a comoving coordinate
system where the time-dependence of the corresponding vector, R, is contained in a scale
factor accounting for the expansion of the Universe, e.g. 7(t) = a(t)R. The recession
velocity, 7 (7, t) = 7, is then given by.

57 8) = g?(t) — H(a)7 22)

With The Hubble law (Equation 2.2) Edwin Hubble argued that the Universe is con-
tinually expanding.

The pioneering discovery by Hubble was accompanied by a flood of new questions.
If the Universe is expanding, will the expansion continue forever, or stop at some point?
What did the expansion history of the Universe look like up to our current time? These
were the early questions being addressed by independent cosmologists around the world.
By considering a homogeneous and isotropic spacetime and a smooth spatial distribution
of matter in the Universe, a decade-long collective effort by Friedmann, Lemaitre, Robert-
son and Walker led to the FLRW metric.

ds* = c2dt* — a(t)? <d)(2 + fr(x)? (d@z + sin(@)zdcl)z)) (2.3)

Where ds is an infinitesimal line element between two points in spacetime described
by the comoving coordinates (¢, x, 6, ¢) and the scale factor, a(t). The function fx(x)
depends on the radial coordinate x and its expression also changes depending on the
curvature parameter, K.

When applied to the Einstein field equations of General Relativity, the FLRW met-
ric provided an expression for the expansion history of the Universe in one of the most

fundamental equations of cosmology, also known as the Friedmann equation.

N\ 2 C
(g) = 83722 e(t) — Kc?a(t) 2 (2.4)

Where e(t) describes the energy density of the Universe, K is the curvature of spacetime,
and we know H(a) = ia/a. A common version of the Friedman equation is often given in
terms of the density parameters, (0; o = p;0/pcrit- Where p.,; is the density in todays flat
Universe (t = 0, K = 0), p.it = 3H3/87G from Equation 2.4.

Q Q Q
H(a)? = H} ( aﬂ;,o + a—zo +Qp + a_zK) (2.5)
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This special equation enables us to make predictions about the future of the Universe, but
it also tells an interesting story about its evolution up to our present day. The implications
of the FLRW metric and the assumptions of a homogeneous and isotropic Universe are
extensive. In this simplified Universe, we can also assume that emitted photons travel
only radially such that 40 = d¢ = 0, and as a result of General Relativity, photons travel
along null geodesic paths where ds? = 0. Coupled with the assumption of a flat Universe,
meaning fo(x) = x, the FLRW metric (Equation 2.3) can be written as ¢2dt? = a%dx?. The
comoving distance, x, can then be determined by substituting in the Friedmann equa-
tion (Equation 2.5), using the relationship between scale factor and redshifta=! = 1+ z,
followed by rearringing and integration.
Z dz

X=¢ 0 H{) (2.6)

Determining redshifts and distances enables us to map the Universe around us. Typ-
ically the observables that astronomers measure are photometric fluxes or galaxy spectra
from spectroscopy. With a photometric flux density and a measured distance we can de-
termine the total electromagnetic power irradiated - the luminosity - of an astronomical
object.

In the local Universe where the Hubble flow is negligible, an Euclidian static space-
time can be assumed. Under these assumptions the observed flux density is related to the
luminosity distance, which is just a proper distance D; = D, by the inverse square law,
so we can express the rest frame luminosity:

Lrest — 47TD2fObS (27)

However, if we consider a non-Euclidian spacetime we see that as we go to higher
redshift, the arrival rate of photons decreases by a factor of (1 4 z) and each photon has
less energy as the photons frequency decreases by an additional (1 + z). This means that
the luminosity distance becomes D; = (1 + z)D (Weedman 1986 ** p. 61).

prest — 47TD%fObS (2.8)

Oftentimes we do not have multiwavelength data to cover the entire electromagnetic
spectrum to determine bolometric quantities. Therefore the luminosity and fluxes are
typically spectral quantities per unit wavelength or frequency. Over a given bandpass the
bolometric luminosity is then L = L7¢*dA"*! and the flux density f° = f¢PdA°%. But
we have to remember that the observed wavelengths are lengthened, dA°% = dA"*s!(1 +

z).
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LrAestd)Lrest — 47.[D%f;)\bsd/\obs (2.9)
Rearranging we can get an expression for the rest frame luminosity per unit wave-
length.
; 5 rob A)\obs 5 cob d)rest 5 cob
L = 4nD7 f3 Sd)vest = 4nDji f} Sd/\rest (1+2z) =4nD7f"(1+z) (2.10)

This expression provides a practical method to derive characteristic properties of galax-
ies.

2.2 Galactic extinction and cosmic dust

Throughout this study we will use the spectral luminosity to derive characteristics such
as the output infrared luminosity by integrating Equation 2.10 from 8um to 1000um.

1000pm
Lig = / LIetdA 2.11)
8um

This infrared emission is dominated by re-radiated electromagnetic radiation from
stellar objects. UV-optical emission from the stars heat the dust grain population, and in
turn these dust grains re-emit black body radiation according to their temperature.

The real mechanics of grain heating and infrared emission is complicated as the grain
population may be separated into several populations by temperature. For instance, the
cold fraction of the dust population may be heated by the constant radiation from the
interstellar radiation field, while the hot population situated in photodissociation regions
is additionally heated by much more intense radiation. Thus the infrared SED may be a
combination of modified blackbodies with emissivity indices suchas g =1, § = 1.5 and
B = 2 corresponding to hot, warm, and cold dust etc.

Nevertheless dust grains have an evident attenuation effect on incident starlight. The
exact change in radiation intensity is contained in the equation of radiative transfer which

describes the evolution of the intensity when propagating in matter that can alter the
0 43

intensity through absorption, emission or scattering processes (Chandrasekhar 1950 *° p.
8).

1 al],/ ¢ — ! KSp / / / /

oo T Q) I = ol +jop + 35 [ L(Q)P(Q,0)d0 212)

Where () is the solid angle, x = x, + x5 is the total extinction coefficient due to ab-
sorption x,, and scattering s, j, is the emissivity, p is the density, and ® is the scattering

function.
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The first term on the left hand side describes change in intensity with time, and the
second term describes the spatial change in intensity along the Q) line of sight direction.
This is equal to the right hand side where the first term denotes the decrease in radia-
tive intensity due to scattering and absorption. The second term on the right hand side
describes the emissivity increasing the intensity in the () line of sight direction. The last
term describes how the scattering of photons in all directions change the intensity in the
Q) direction.

This equation, in its most general form, looks overwhelmingly complex, but with a
wide range of assumptions we can simplify this expression significantly. If the galaxy
emission is in a steady state dI,/dt = 0, and in the plane parallel case (Q V), =
—cos(0)dl, /dz = dI,/ds. Furthermore, if we consider only absorption ks = 0 (x = x;)

and an insignificant emissivity into the line of sight direction, j, = 0.

dl
d—: = —xpl, (2.13)
Which has the general solution
dly = —xpds
L,

I (s'=s) dl, s'=s ,
/ — = —/ Kkpds
I,(s'=0) Iy s'=0
In(L,(s)) — In(L,(0) = —7,(s)
L(s) = 1,(0) exp(—(s)) (2.1
Where we have defined the optical depth
s'=s
T (s) :/ kods' (2.15)
s'=0

This reduction of the initial specific intensity by a factor exp(7) in Equation 2.14 trans-
lates directly to the flux density, as the flux density is just the specific intensity integrated
over the solid angle.

fv = fu(0) exp(—T) (2.16)

The flux density is directly related to the magnitude of the source by

m = —2.5log,,(fv) +C (2.17)

The constant C is the zeropoint value where m = 0, which is different in different as-
tronomical magnitude systems (e.g. 48.60erg s~ 'cm2Hz ! in the AB magnitude system)
and may vary between instruments.
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We can define the extinction as the difference in magnitude in the same band with and

without extinction.

fv
fv(0)

Ay =m—my = —25log(fy) +25log(f,(0)) = —2.5log ( ) = —25log(e)Ty
(2.18)
If we know the magnitude with and without dust in two different bands, we can
compare the amount of extinction in these different bands with the ratio A,, /A,,. Com-
parisons are typically done with respect to the V-band extinction, and another band, e.g.

A,/ Ay.
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FIGURE 2.2: Attenuation curves at z > 0.5 (Salim and Narayanan 2020 **)

As can be seen on Figure 2.2 the extinction is largest for short optical radiation and
drops off at longer wavelengths, which is why long infrared wavelengths travel mostly
unattenuated along their paths to our telescopes (apart from atmospheric interference).
Very dusty galaxies with a large amount of infrared emission may therefore be completely
undetected in the optical bands due to their significant dust extinction. A characteristic
feature of the attenuation curve is the 2175A bump or lack thereof. Since its discovery
by Stecher 1965 the 2175A bump has remained one of the great unsolved mysteries of

extragalactic astronomy. Over the decades various explanations have been offered to the
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origin of this feature, which seems to vary in both strength and width around its con-
sistent central wavelength around 2175A. Generally, astrophysicists agree that a feature
this prominent in the attenuation of curve of galaxies must be associated with a fairly
abundant component of the galactic ISM. While the ISM dust grain populations typically
seem to be dominated by silicates and carbonaceous (graphite and PAHs) grains, the
latter seems to be the most popular candidate for explaining the 2175A bump. For some
galaxies the 2175A bump may be very weak or almost completely gone. Gordon, Calzetti,
and Witt 1997 *° and Witt and Gordon 2000* showed that starburst galaxies with SMC-
like dust (dominated by silicate grains) would produce a bump-free attenuation curve.
While the features of the attenuation curve depends on the ISM dust grain population it
also depends on the redshift of the galaxy at hand as high-z galaxies have had less time to
equilibrate kinematically and also have lower metallicities which may limit grain produc-
tion and e.g. depletion of exotic elements onto dust grains affecting the dust attenuation
curve. For these high redshift galaxies numerous attempts have been made to character-
ize the attenuation curve by empirical methods from sampled galaxies (like starburst) or
model based methods. Figure 2.2 shows attenuation curves for higher redshift galaxies
at z > 0.5. Among the most popular dust models is the empirical Calzetti et al. 20002°,

548 is another

which is derived from a sample of local starburst galaxies. Reddy et al. 201
empirical study where MOSFIRE spectroscopic data of 224 star-forming galaxies is pro-
cessed. Other approaches by e.g. Buat et al. 2012*’ and Kriek and Conroy 2013°" are
based on SED fitting models.

Regardless of the dust attenuation law assumed, the dust population has a significant
attenuating effect on starlight from dusty galaxies observed. This effect can be quantified

by measuring magnitudes in instrument filter bands to infer properties of galaxy samples.

2.3 UV]J color selection

A helpful diagnostic tool for distinguishing star-forming galaxies from quiescent galaxies
is the UV] color-color diagram. To get the UV] colors the respective U-, V-, and J-fluxes
are first calculated by convolving the SED through the filters. The color is then given by
subtracting the magnitudes given by Equation 2.17

U —V = —25log;o(Ugux/ Viiux) (2.19)

Where U = my; is the U-band magnitude and Up,, = fy is the flux density in the
U-band etc. Williams et al. 2009 °! were among the first employ this color based selection
method, and furthermore defined a set of selection criteria
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(U-V)>088x (V—-])+069 [0.0<z<05]
(U—=V)>088x (V—])+059 [05<z<1.0]
(U-V)>088x(V—-])+0.49 [1.0 < z < 2.0] (2.20)

Along with a criteria of U —V > 1.3 and V — ] < 1.6 these criteria define a clear
region within the UV] diagram where we can distinguish quiescent galaxies from star-
forming galaxies. Figure 2.3b demonstrates the color selection region where galaxies may
be identified as quiescent for the given redshift intervals. In Williams et al. 2009°! the
bimodal distribution of quiescent and star-forming galaxies seems to disappear at higher
redshift, z > 2, partly due to larger photo-z errors and passive evolution. At higher
redshift (around and beyond the peak of star formation, Figure 1.2) a larger portion of

galaxies are still in their early evolutionary stages and thus the fraction of dusty star-
forming galaxies is larger.
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FIGURE 2.3: 2.3a) UV]J filter transmission curves along with an example galaxy. 2.3b) UV]-color
diagram with a set of galaxies plotted (black squares) along with the region defined by Williams
et al. 2009 °! to distinguish quiescent galaxies from star forming galaxies

Having established the fundamentals of the alteration of light in the expanding Uni-
verse, along with dust attenuation effects and UV] selection of galaxies, we are ready to
apply these techniques and delve into the practical aspect of this study.
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Chapter 3

Methods

In many astrophysical studies, authors use modeled SEDs to extrapolate fluxes as multi-
wavelength data across the entire electromagnetic spectrum is often unavailable. These
fluxes are then used to derive parameters related to gas mass, galaxy star formation rates
(SFRs) etc. at different epochs in the Universe. In the third chapter of this study, we
use the EAZY photometric redshift tool (Brammer, van Dokkum, and Coppi 2008 '°) to
determine redshifts and spectral energy distributions (SEDs) for galaxies discovered in
the 69arcmin?> GOODS-ALMA survey conducted by Franco et al. 2018 %, Franco et al.
202037, and Franco et al. 2020 *. Furthermore, a detailed review and optimization of the
underlying set of galaxy templates used to construct the model SED is carried out. The
1.Imm fluxes derived from the modelled SEDs are then compared with the ALMA fluxes

reported by Franco et al. to test the robustness of the energy balance principle.

3.1 The GOODS-ALMA survey

Throughout this study a sample of DSFGs within the GOODS-S cosmological legacy field
is utilized. These sources are detected in the 69arcmin? 1.lmm GOODS-ALMA survey
by Franco et al. 2018 %, Franco et al. 2020°?, and Franco et al. 2020*. With a 0.6arcsec
limiting resolution the authors detect galaxies down to a limit of 3.50r\ms by also using
Spitzer /IRAC and VLA to detect the faintest galaxies below 4.8cr\ms. The sample con-
sists of DSFGs elevated above the main sequence of star formation, and with low gas
fractions and short depletion timescales these galaxies will be depleted in a short time.
Furthermore the galaxies are among the most massive galaxies at z = 2 — 4 with a me-
dian stellar mass of M =~ 8.5- 10" M. Roughly ~ 19/33 galaxies have a 7 Ms survey
X-ray counterpart from the Luo et al. 2017 °? survey of the Chandra Deep Field-South.
However, Franco et al. emphasize that an X-ray signature does not necessarily mean the
galaxy hosts an AGN, but rather they adopt a threshold of Ly ;,; > 1043erg /s. About half
of the L j,; > 10¥%erg /s galaxies exhibit low gas content and short depletion timescales

possibly due to AGN feedback preventing infall of gas. Franco et al. argue that these may
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be the progenitors of compact elliptical galaxies. No exact amount of AGN hosting galax-
ies is provided but we assume this to be about ~ 10. This AGN fraction is worth noting
as codes like EAZY use stellar population synthesis models roughly built from dust, gas,
and stars, which will have difficulties fitting a strong AGN contribution.

To model these galaxies we start with the establishment of the fundamental principles
of the Stellar Population Synthesis Models that are contained in the template sets used by
EAZY to fit galaxy SEDs. Then an introduction of the EAZY SED fitting code is given
before jumping into the more practical aspect of predicting the FIR SED.

3.2 Stellar Population Synthesis Models

The process of deriving galaxy SEDs starts with the templates used to represent any given
sample. These galaxy templates contain the most interesting details vital to producing a
good SED fit. In this study the sample representative template sets are derived from
computational Stellar Population Synthesis (SPS) Models . The topic of SPS Models is
broad and an extensive discussion of the encompassing details is not within the scope of
this project. Instead we summarize the key aspects of SPS Models and refer to Conroy
2013 for a detailed discussion. As galaxies are conceptually just a collection of stars,
gas, dust, and possibly an AGN, a lot of effort go into determining the interplay between
these components. Therefore a key aspect SPS models revolves around modelling the
stellar population. Put in very rough terms, 3 ingredients are required to build a simple
stellar population (SSP) and 2 additional ingredients to advance the SSP to a composite
stellar population (CSP) as illustrated on Figure 3.1.
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FIGURE 3.1: The basic ingredients that go into determining SSPs and CSPs. Credit: Conroy 2013 >

The components that go into developing an SSP can be summarized in three parts.

1. The IMF as described in subsection 1.2.1, provides essential information for the SPS
model including stellar mass-to-light ratio, and the passive evolution of the galactic
luminosity. The IMF does however not change the galactic SED significantly as the
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SED is dominated by more massive stars where IMFs like the Salpeter and Kroupa

model are in agreement with eah other.

2. Isochrones specifying the stellar evolution of stars with the same age and metallic-
ity. A table of isochrones spanning several evolutionary tracks in the Hertzsprung-
Russell (HR) diagram is needed to produce a good SSP.

3. Stellar spectra are required to convert parameters from stellar evolution calculations
into SEDs.

To advance the SSP to a CSP two additional elements are required, namely.

1. SFHs and information regarding chemical evolution. The SFH is used to define the
age of the different stars of the stellar population, while the metallicities of these

differently aged stars is contained within the time-dependent chemical evolution.

2. Dust models are required to characterize the attenuation of stellar light and subse-

quent infrared emission.

For SPS models we sometimes also want emission lines to be as realistic as possi-
ble, therefore it may be beneficial to include nebular line emission under certain circum-
stances. These emission lines are particularly important in low metallicity environments,
as well as in high redshift galaxies where emission features with a rest-frame equiva-
lent width, due to redshifting effects, will be broadened and thus occupy an increasingly
larger fraction of the filter bandpass.

With the very basics of SPS models established detailed galaxy spectra can be gen-
erated using codes like Flexible Stellar Population Synthesis for Python (FSPS, Conroy,
Gunn, and White 2009 4, Conroy and Gunn 2010°°). These artificial templates can be
used to model broadband photometry and derive SEDs and thus inherent properties of
real observed galaxies. In the Franco et al. papers SED fitting codes like Code Investi-
gating GALaxy Emission (CIGALE, Burgarella, Buat, and Iglesias-Paramo 2005 °°, Noll
et al. 2009 %/, Boquien et al. 2019 °®) were used to derive such galaxy properties. To fit the
DSFGs Franco et al. split their sample into two separate cases; 1) Sources with a matching
Herschel counterpart and 2) Sources without a matching Herschel counterpart.

1. Sources with a Herschel counterpart are fit with CIGALE. Similar to other SED
titting codes CIGALE uses CSP from SPS models to fit galaxy SEDs. Franco et al.
uses the SPS models from Bruzual and Charlot 2003 > and the Calzetti et al. 2000 >
dust attenuation law. The Draine et al. 2014 % dust models were used to fit the
infrared regime of the SED while even longer radio wavelengths are added after
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SED fitting using a FIR to radio luminosity ratio of 2.34 (Yun, Reddy, and Condon
2001 °%). UV to 16um are fit independently from 24pm to millimeter wavelengths.

2. For galaxies without a Herschel counterpart the SED fitting is done iteratively. The
dust SED fit is done using the Schreiber et al. 2018 °> models normalized to the
1.13mm ALMA flux density in the SED. The galaxy is also fit with a main sequence
star forming galaxy whereafter Tj,; and the IR8 = Lir /Lg are then determined and

constrained on the next iteration to generate a the new SED.

0¥erg s~! are treated

Galaxies believed to host an AGN (X-ray luminosity Lx ;s > 1
using the Mullaney et al. 2011 % DECOMPIR code where the Kirkpatrick et al. 2015 %
models are used to extrapolate to shorter wavelengths below 5um. While Franco et al.
use CIGALE which itself employs an energy balancing method assuming a one-to-one
correspondence of the emitted UV and infrared luminosity, the SEDs are fit independently
in the UV-optical and FIR region with seemingly no scaling imposed to ensure energy
balance.

In this thesis we employ another SED fitting routine, EAZY, similarly using SPS mod-
els to fit galaxy SEDs. However, to conserve energy balance across the SED, we do the

SED fitting across the entire data range (not independently fitting part of the data).

3.3 EAZY - A photometric redshift code

Photometric redshifts for highly obscured DSFGs pose a range of issues and are notori-
ously known for being unreliable (Casey et al. 2012 °). Difficulties involve reddening due
to dust grains, which may translate to an overshooting of the redshift estimate. Another
underestimating effect comes from star formation in the multiphase ISM of the galaxy.
Lya photons generated from star formation can bounce off ISM clouds and escape the
galaxy at a higher rate than if the ISM is assumed to be uniform, which is often the case.
This makes the Lya line appear narrower in the UV, which might be misinterpreted as a
lower redshift Neufeld 1991 °°.

Thus, many phenomena has to be taken into account when computing galaxy red-
shifts. The most reliable redshift determinations come from spectroscopic surveys. How-
ever, a basic limitation of spectroscopic surveys is the signal-to-noise ratio (SNR) which
decreases with resolution inversely but increases with exposure time linearly SNR o
t/+/R. The difference in resolution between photometric and spectroscopic surveys are
typically orders of magnitude. For a spectroscopic survey to obtain an SNR equivalent to
its photometric counterpart, the exposure time typically has to be increased by 1-2 orders
of magnitude. This demanding exposure time poses a limitation, which makes it hard to
obtain deep spectroscopic data for very faint subjects.
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EAZY was built to determine photometric redshifts where spectroscopic data is un-
available. Typically, the greatest source of error in photometric template fitting codes is
the template mismatch between the fitted data and the template, however EAZY enables
the user to use a linear combination of several templates (e.g. Rudnick et al. 2001 %),
where the weighing coefficients of each template are then determined according to the
Sha et al. 2007 °® algorithm. As described extensively in Brammer, van Dokkum, and
Coppi 2008 '°, EAZY determines photometric redshifts and SEDs by using a simple x>
minimization technique. EAZY iterates through a grid of redshifts defined by the user,
and determines the x? of the fit at each point. To treat redshift degeneracies EAZY
constrains the best fitting redshift from the posterior redshift probability distribution,
p(z | mg;, C), which is the product of a Bayesian redshift-magnitude prior, p(z | myq,
and a conditional redshift probability, p(z | C), given the x> determined across the red-

shift grid.
z Yi
p(z | mg;) o< 27 exp (— (—> )
20,i

2
izl €)= exp (-4
p(z | m0,C) o plz | mo)p(z | C) cBY

Where 7; and z(; are free parameters fit for each magnitude bin. The error on the
redshift is determined from percentile confidence limits (usually 16/84 e.g. 68%) where
the posterior probability distribution is integrated from the edges in defined by the upper
and lower bound of the redshift grid as shown on Figure 3.2.
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FIGURE 3.2: Demonstration of EAZY showing the SED fit, prior adopted, and posterior redshift
probability distribution

EAZY also employs a variety of measures to minimize the template error, including
the use of a template error function. Photometric redshifts are first computed with a a
uniform template error function. Then residuals between SED model fit and catalogue
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observations are computed and de-redshifted into the restframe. The residuals are then
binned and their median values are fitted with a smoothly varying function (e.g. a spline).
The final template error function is then determined by subtracting the scaled photomet-
ric errors in quadrature from the smoothly varying function.

Given the complexity of the procedures of the code, EAZY is surprisingly cost efficient
compared to other photometric redshift codes, and is able to fit thousands of galaxies with

just seconds of computation time.

3.4 Predicting the 1.1mm flux and FIR of dusty galaxies

In this section we will go over the optimization of galaxy templates used by EAZY, and
the resulting SEDs produced from fitting sample of galaxies from Franco et al. 20185,
Franco et al. 2020°?, and Franco et al. 2020 %°.

A catalogue containing UV-optical data was obtained from the Space Telescope Sci-
ence Institute (STScl) archive, henceforth referred to as the 3D-HST catalogue.

Bands Survey Reference

U, R ESO GOODS  Nonino et al. 2009 ¢

U38,B,V, R, I GaBoDs Hildebrandt et al. 2006 7°, Erben et al. 2005 7!
14 medium band filters MUSYC Cardamone et al. 2010 72

F435W, F606W, F775W, F850LP  GOODS Giavalisco et al. 2004 73

F606W, F814W CANDELS Koekemoer et al. 2011 7*

J,H,Ks ESO/GOODS  Retzlaff et al. 20107°, Wuyts et al. 2008 7

], Ks TENIS Hsieh et al. 201277

F140W 3D-HST Brammer et al. 201278

F125W, F160W CANDELS  Grogin et al. 20117”, Koekemoer et al. 2011 7+
3.6um, 4.5um SEDS Ashby et al. 2013 %

5.8um, 8.0um GOODS Dickinson et al. 2003

TABLE 3.1: The photometric catalog for the GOODS-S field retrieved from the 3D-HST archive
website and the datasets contained

Using TOPCAT (Taylor 2005 ®!) the right ascension and declination of the 3D-HST cat-
alogue was cross-matched with the right ascension and declination of the Franco et al.
catalogue within a 1 arcsecond radius. This was done in order to create a catalogue with
3D-HST data for the Franco et al. AGS sources.

The data has been fit with a variety of templates sets (as previously described in sec-
tion 3.3) in a Jupyter Notebook running Python 3.6. A range of parameters remained the

same regardless of the template set used for fitting. The same redshift-magnitude prior
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was used throughout all fits and a Milky Way reddening of Ez_y = 0.007 was deter-
mined from the Franco et al. center coordinate & = 3h 32m 30.0s, 6 = —27° 48’ 00”}. The
IGM absorption from intervening HI clouds was corrected according to Madau 1995 %2
and the cosmology was fixed to a flat geometry with Hy = 70.0km/s/Mpc, Oy = 0.3
and Qp = 0.7.

Throughout this study we will refer to a range of template sets developed and utilized
for the fitting of the dusty AGS sources. To avoid confusion we adopt simple abbrevia-
tions for each template set. Each template set and its purpose will be explained in due
time. The template sets written in italics are only discussed in the Appendix A section A.3.
Chronologically the template sets are.

XFSPS-120:
First set of 12 original, ‘O’, FSPS generated templates.

XFSPS-12M:
A set identical to the XFSPS-120, apart from the 12th template which has been re-
placed by an FSPS generated template with the maximum, 'M’, Ljg /Ly

XFSPS-1210R:
A set of 22 templates with 12 templates similar to XFSPS-120 but without dust emission,
and an addition of 10 raw, 'R’, infrared templates undefined below 1yum.

XFSPS-1210Z:
A set identical to XFSPS-1210R but where the 10 infrared additions have been extrapolated

to shorter wavelengths below 1um by direct truncation to zero.

XFSPS-1210P:
A set identical to XFSPS-1210R but where the 10 infrared additions have been polynomially,
"P’, extrapolated below 1yum

XFSPS-1210PAH :
A setidentical to XFSPS-1210R but where the 10 infrared additions have been smoothly
extrapolated to lower wavelengths by using a PAH, 'PAH’, component which drops
off rapidly at shorter wavelengths.

XFSPS-12SB:
A set of 12 templates including 2 star bursting templates, ‘SB’.

The first set of templates used to fit the AGS galaxies was the XFSPS-120 displayed on
Figure 3.3 and with UV] colors shown on Figure 2.3b. Non-negative matrix factorization

Ihttps://irsa.ipac.caltech.edu/applications/DUST/
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models were used to produce a minimal template set as described in Blanton and Roweis
2007 %3. This XFSPS-120 set is thus a subsample of a much larger set of galaxy templates,
selected to represent a broad diversity of galaxy types as also described in Brammer, van
Dokkum, and Coppi 2008 '°.

—— Xxfsps_QSF_12_v3_001l.dat
10-2 xfsps_QSF_12_v3_002.dat
—— xfsps_QSF_12 v3 003.dat
—— xfsps_QSF_12_v3_004.dat

xfsps_QSF_12_v3_005.dat
—— xfsps QSF_12 v3_006.dat

10-3
! xfsps QSF 12 v3 007.dat
xfsps_QSF_12_v3_008.dat
xfsps_QSF_12_v3_009.dat
xfsps_QSF_12_v3_010.dat
—— xfsps_QSF_12 v3_0ll.dat
xfsps_QSF_12_v3_012.dat

10*

f lerg sTlem=241]

10-°

107! 10° 10t 107
A [um]

FIGURE 3.3: The 12 galaxy templates of the XFSPS-120 template set

In Franco et al. 2018 *® and Franco et al. 2020 *" AGS4, 11, 15, 17, 24, 25 has IRAC data.
Among these galaxies only the crossmatch for AGS4, 17, 24 has IRAC data in the 3D-HST
catalogue, while the crossmatch for AGS15 has other UV-optical data but no IRAC data,
and AGS11 and 25 has no 3D-HST crossmatch and therefore no 3D-HST data.

A handful of other galaxies are lacking information (AGS14, 16, 19) as they are not de-
tected at any other wavelength. Another, AGS22, is at the detection limit with a very weak
detection in 1-2 HST-WFC3 bands and no significant detection at other wavelengths.
These are most likely spurious sources.

With this in mind we exclude AGS11, 14, 16, 19, 22, 25 such that the final catalogue of
galaxies consists of 33 targets from the Franco et al. GOODS-ALMA survey - all with an
optical 3D-HST counterpart. The SEDs from fitting the XFSPS-120 set are displayed on
Figure 3.4.
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FIGURE 3.4: SEDs fit with the XFSPS-120 template set using UV-optical data only (excluding the

1.Imm ALMA point)

Comparing the model flux densities, Figure 3.5b, extracted from the resulting SED fits
show that just 3/33 modelled ALMA detections (AGS2, AGS21, AGS32) are successfully
predicting the 1.1mm flux as they lie within the 16th and 84th percentile confidence inter-

val (also AGS34 although only due to an exaggerated upper and lower photo-z limit). For
another 5/33 (AGS5, AGS7, AGS13, AGS26, AGS34*) the 1.1mm ALMA flux is overesti-
mated by the fitted model. The flux of the remaining 25/33 galaxies is underestimated by

the model at 1.1mm.
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FIGURE 3.5: 3.5a) Comparison of Franco et al. and EAZY redshifts from fitting UV-optical data
only with the XFSPS-120 template set. 3.5b) Comparison of measured 1.1mm fluxes from Franco
et al. and extracted from EAZY fitting UV-optical data only with the XFSPS-120 set.
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Comparing the photometric redshifts determined by EAZY with the Franco et al.
values, Figure 3.5a shows a nice trend along the zr,;,c0 = zpazy line. However, there
are also cases where EAZY overestimates the redshift sending the source to the up-
per limit of the redshift grid, zypper = 6, (AGS34, AGS35) or close to (AGS5). With
an average (Zrranco/ZEAZY) avg ~ 1.09 several underestimations are also seen. Two of
most severely underestimated EAZY photo-zs AGS15, (zags15 = 0.82Jj8:8§9) and AGS17
(zags1y = 1.97f8:8§) also have 1.1mm fluxes off by orders of magnitude relative to the
Franco et al. values. The outliers, AGS15 and 17, are among the so-called HST-dark
galaxies (AGS4, 11, 15, 17, 24, 25) in the Franco et al. papers with no HST-WFC3 H-band
(F160W 1.6pm) detection. These HST-dark galaxies may be close to another galaxy more
luminous in the H-band, which can easily be confused as the optical counterpart for the

ALMA source, due to outshining and obscuration of the real counterpart.

3.4.1 False associations and HST dark galaxies

As our catalogue contains 4 (AGS4, 15, 17, 24) of these HST-dark sources, they require an
especially careful treatment to avoid false associations.

With the low redshift estimate of AGS15, z 45515 = 0.82J_r8:8§9, and the fact that this esti-
mate is well below the sample median, the crossmatched 3D-HST counterpart is regarded
as a very likely false association, between the ALMA source and the 3D-HST catalogue.

For AGS17, Franco et al. 20183 report a redshift of the closest neighbor associated
with AGS17 IDc anpELs 4414 at z 4517 = 1.85, and Skelton et al. 2014 %4 reports a redshift
of z4gs17 = 1.9772 for the galaxy at AGS17, which is consistent with our EAZY photo-z
estimate z4gs17 = 1.97Jj8:82. While not significantly offset from its counterpart Franco
et al. 2018 % fit an SED to AGS17 counterpart IDcsnpELs 4414 and obtain a FIR peak at
~ 400um, which translates to an abnormally high SFR of ~ 820 4- 240Myr~! at z = 1.85.
However, such SFRs are not entirely impossible. As discussed in section 2.2, Fu et al.
20132° found starbursts of 2000Myr~!. However, the stellar mass obtained by Franco
et al. 2018 % is an order of magnitude below the median stellar mass of their catalogue,
and might therefore also be a false association. Due to this uncertainty in counterpart as-
sociation and incomplete information about stellar mass and redshift, AGS15 and AGS17
are not taken into account in the follow-up work Franco et al. 2020 *°.

For AGS24 the photometric redshift estimated by EAZY z 4gsp4 = 2.9 does not directly
point to a false association between the crossmatched 3D-HST counterpart and the ALMA
source. Even though the estimated redshit is below the reported value by Franco et al., it
is still a reasonable estimate given the sample median.

The last HST-dark galaxy, AGS4, has an EAZY redshift estimate of AGS4 (z544) =
3.98J_r8:83) which is close to, but below, the z!/2% = 4.32 value reported by Franco et al.
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2018 %%, Franco et al. 2018 *® note that the closest neighbor is IDcAnpers 8923, but several
authors also detect another distant galaxy at the location of IDcanpErs 8923. There-
fore Franco et al. 2018°% use a deblending technique to separate the two sources to ob-
tain low-z and high-z SEDs for the local galaxy IDcanpeLs 8923 and the distant galaxy
dubbed IDcanpELs 8923b. EAZY is then used to determine redshifts of zggy3 = 0.09f8:8g
and zggy3, = 4.32f8:§?. The low-z estimate is also obtained by Skelton et al. 2014 b4
(z8923 = 0.096) for the 3D-HST catalogue (same catalogue as the one used in this study)
using EAZY. How we can determine a redshift much closer to the Franco et al. value also
using EAZY and without any deblending technique is presumably due to differences
in the template set used and fit parameters adopted. Nevertheless, Franco et al. 2018 *°
provides an explanation to argue that AGS54 is not associated with the low-z 8923 as this
would mean an extraordinarily cold dust temperature with a FIR peak at 350um, thus the
counterpart to AGS4 must be the high-z galaxy 8923b.

With this breakdown of HST-dark galaxy redshifts in mind, we do note that there are
also a handful of good EAZY redshift estimates in agreement with the reported Franco
et al. values. On the other hand the majority of the modeled 1.1mm fluxes are underesti-
mated by these fits inferring that we are unable to predict FIR SED given just constraints
up to the 8um IRAC band with the XFSPS-120 set. There may be several explanations
to this skewed number of underestimations, e.g. we might be using a template set that
is not representative of the sample. To test this hypothesis we tested the quality of the
SED fit by including Spitzer and Herschel (MIPS 24um, SPIRE 250/350/500um, PACS
70/100/160um) from Jin et al. 2018 %> (henceforth reffered to as the Super-deblended cat-
alogue) to constrain the template combination at longer wavelengths.

By crossmatching right ascension and declination coordinates of the sample with the
Super-deblended catalogue we found 22 matches separated by less than larcsec. Among
the matches, two galaxies (AGS17 and AGS4) were manually excluded due to suspi-
cions of false associations. This was based on inconsistencies with their Franco et al.
redshifts and CANDELS redshifts in the Super-deblended catalogue. For AGS17 the
Super-deblended catalogue reported a redshift zg‘éls\]@ﬂs = 0.098 while Franco et al.
found z/#1¢0 = 3.467. For AGS4 zGANPELS = 0.366 in the Super-deblended catalogue
and z}/#1¢0 = 3.556. Thus 20/33 correctly crossmatched galaxies had their SEDs extended
with Super-deblended catalogue data. The remaining 13/33 galaxies had no entries in the
Super-deblended catalogue, so only 3D-HST catalogued data was used for these sources.

3.5 SED quality control and template optimization

Given these guiding constraints in the FIR, the modelled SEDs still showed difficulties at
reproducing the FIR. Even subjects with Herschel and Spitzer data showed a shift in their
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SED both horizontally and vertically from the data points as shown on the Figure 3.6 ex-
ample (Appendix A Figure A.1 for all SEDs). E.g. the Herchel and Spitzer measurements
were underestimated by the modeled SED.

Combined templates
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FIGURE 3.6: Showcase of the model underestimation of infrared fluxes offset from Herschel and
Spitzer observations using the XFSPS-120 set (including IR data).

There may be several ways to explain this discrepancy between model and data.

First thought was trying to explain the offset with a simple scaling factor between
the 3D-HST catalogue and the Super-deblended catalogue. As the nature of the offsets
looked much like a simple vertical scaling problem. However, the Super-deblended cata-
logue did not include any IRAC channels etc. common to the 3D-HST catalogue making
this comparison challenging. The last hint dismissing this scaling factor explanation was
the fact that one galaxy, AGS13, which already fit relatively well would be offset by this
scaling factor.

Second alternative solution explaining the bad fits came from the template set used
to fit the SEDs. The templates used might not have been able to account for the dusty
infrared emission in our catalogue of mostly ULIRGs. In UV]-color space this means that
either the templates do not sample the color space sufficiently to reproduce the color of
the galaxies in our catalogue, or the templates do sample the color space sufficiently but
their L;g /Ly luminosity ratios are too low. The latter option was explored by generating
a range of galaxy templates using Flexible Stellar Population Synthesis for Python (FSPS,
Conroy, Gunn, and White 2009 5 Conroy and Gunn 2010 ),

3.5.1 Flexible Stellar Population Synthesis for Python (FSPS)

A total of 1 million FSPS spectra were generated with the following parameters.
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¢ The stellar population age was varied across 100 values from ~ 0.03 to ~ 13.80 Gyr.

* For the dust parameter 100 values were adopted ranging from 0.0 to 3.15. The dust
value is the opacity at 55004, as defined in Equation 2.15, which is about the central
wavelength of the V-band.

¢ The SFH e-folding time was varied across 100 values ranging from ~ 0.1 to ~ 2.
The SFH model was set to a delayed t-model of the form SFR ~ texp(—t/T)

* The dust type defining the attenuation curve of dust was set to the Calzetti et al.
2000 ?° model as described in section 2.2.

* Nebular line emission and continuum emission, based on Cloudy models from
Byler et al. 2017 86 was enabled.

* The IMF used was the Kroupa model (Equation 1.4) model as described in subsec-
tion 1.2.1 and Kroupa 2001 ®.

Upon generating the FSPS spectra all of them were convolved through the U- and
V-ilters (Apellaniz 2006 87) and the 2MASS J-filter, all included in the default EAZY fil-
ter transmission file, to get their respective UV] fluxes. Their U-V and V-] colors were
determined as described in section 2.3, as was the colors of the input XFSPS-120 EAZY
templates. Shown on Figure 3.7 is the entire FSPS generated sample and the XFSPS-120
templates on a U-V and V-] color-color diagram.

From Figure 3.7 it is clear that there exists a large subsample of galaxies with approxi-
mately the same color for each EAZY template. Within the +0.1 UV] color box the lumi-
nosity ratios, Lir /Ly, for each FSPS generated galaxy template was determined. The Lz
component of this luminosity ratio was determined by generating a template with the
exact same parameters, but with dust emission turned off. The FSPS template without
dust emission was then subtracted from the FSPS template with dust emission, and the

difference was integrated to get the infrared luminosity.
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FIGURE 3.7: UVJ-color diagram of the FSPS generated galaxy spectra (colored points) and the

XFSPS-120 templates (black squares). A £0.1 box in U-V and V-J color has been drawn with a

dashed black line around the templates to demonstrate the selection of galaxies close in color. We

concentrate on the dusty template marked with a star, as this template ought to dominate the SED
fits.

From Figure 3.7 it is also immediately evident that not all XFSPS-120 templates are
fully sampled within their £0.1 UV] color boxes. But as we are mostly concerned with
high redshift dusty galaxies, we direct our attention to the bottom angled row of input
templates, more specifically the 12th template of the XFSPS-120 set marked with a yellow
star, as this dusty template ought to dominate the dusty SED fits.

We examined the 0.1 UV] subsample within this 12th template of interest to ensure
that no apparent errors were present. This check-up was visualized in a Corner plot, to
reveal the covariances between each free parameter - respectively stellar population age,
dust value, SFH e-folding time, and luminosity ratio.
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FIGURE 3.8: Visualization of covariances within each free parameter, namely stellar population
age, dust value, SFH e-folding time, and luminosity ratio. Demonstrated here are the parameters
of the FSPS generated galaxies within the +0.1 UV] box of template 12 subsample (n = 4731).

From Figure 3.8 we can deduce some simple relationships about the covariance of

these parameters.

* The amount of dust is higher for younger galaxies. This is typically true as young
galaxies with this color are forming new stars and have not had time to shed their
dust.

* Younger galaxies have higher Lz /Ly luminosity ratios which is consistent with the

fact that these galaxies often contain more infrared emitting dust.

* Low values of SFH e-folding time produces dustier galaxies. A low Tsry leads to
more rapid star formation, which is often correlated with dust production and ac-

cumulation.

With this kind of covariance evaluation one has to be careful with the interpretation
of the histograms. These histograms should not be interpreted as true distributions for
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these free parameters, as they do not say much about the distribution but more about the
sampling adopted.

Upon validating the covariances the generated template with the highest luminosity
ratio (Ljg /Ly ~ 60) within the +0.1 UV] box around the template of interest was picked
out. This template was added to the template set to replace 12th template and the SED
tits were performed again with this new template set, XFSPS-12M .

z
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FIGURE 3.9: (Left) XFSPS-12M template fit excluding IR data. (Right) XFSPS-12M template fit
including IR data.

The added maximum Ljr/Ly generated template was used in 11/33 fits. However,
only 1/11 fits (AGS36 Figure 3.9) used the maximum Ljgr /Ly template when fitting with
IR data and without IR data. The rest of the 10/11 fits (Appendix A Figure A.8) only
use the added maximum L;g/Ly template when the IR data is not included, and then
it is discarded again when IR data is included. Note that throughout this study, when
stating that IR data is included etc. this means Super-deblended data (MIPS 24um, PACS
70um /100pm /160pum, SPIRE 250um /350pm /500pum) and the 1.1mm ALMA data, with the
exception of the synthetic photometry section IR data means up to the 500um SPIRE.

Even in the 11/33 cases where the maximum L;g/Ly template is used the fits with
this XFSPS-12M set do not change notably compared to the fits with the XFSPS-120 set
(Figure 3.4), and 10/11 fits using the maximum Ljgr /Ly template still underestimate the
1.Imm flux when IR data is excluded. Generating FSPS templates with varying stellar
population ages, dust opacities, and SFH e-folding times, and adding higher L;g/Ly
templates does not seem to solve the fit problems in the infrared where the Herschel,

Spitzer, and ALMA fluxes are still underestimated.
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3.5.2 Infrared templates

As the FSPS models could not account for the measured FIR fluxes we resorted to another
set of 10 infrared dust models by Magdis et al. 2012 . These templates are based on the
dust models by Draine and Li 2007 *, which assumes the dust population to be a mixture
of carbonaceous and amorphous silicate grains. Additionally, the dust population is split
into two components in terms of the heating mechanism. The first component comprises
the majority of the dust population and is present in the diffuse ISM where it is heated
by the interstellar radiation field, with a constant intensity Umin. The smaller fraction, v,
consists of dust in environments where the interstellar radiation field is more intense such
as photodissociation regions, with intensities ranging from Umin to Umax. Nine of the ten
Magdis et al. 2012 % templates each represent a redshift range, while the last template is

a starburst template universal for all redshifts.

IR template 1: z = 0 — 0.025. IR template 6: z = 1.325 — 1.725.

IR template 2: z = 0.05 — 0.275. IR template 7: z = 1.75 — 2.25.

IR template 3: z = 0.3 — 0.6250. IR template 8: z = 2.27 — 3.0.

IR template 4: z = 0.65 — 0.975. IR template 9: z > 3.0.

IR template 5: z = 1.0 — 1.30. IR template 10: Universal starburst.

These 10 infrared templates were used in addition to the XFSPS-120 set but where
dust emission of the XFSPS-120 had been turned off to ensure the 10 IR templates were
used to fit the infrared. In contrast to the XFSPS-120 templates, which are defined from
9.1nm to 1cm, the 10 infrared templates are only defined in the 1ym to 1cm regime. While
reproducing the FIR SEDs more accurately when fit with UV-optical and IR data, this set
was prone to extrapolation errors as illustrated on Figure 3.10 (and the rest of the sample
Appendix A Figure A.8). This caused artificially high model values when EAZY tried
to automatically extrapolate the infrared templates to shorter wavelengths < 1um where

they were not initially defined
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FIGURE 3.10: SED fits including IR data using XFSPS-1210R including the infrared Magdis et al.
2012 %8 templates. The fits in the IR are clearly improved compared to fits with the XFSPS-120.

As a countermeasure a range of different extrapolation methods were tested < 1um
to correct this extrapolation error. The extrapolation and truncation schemes explored
are discussed in detail in Appendix A section A.3. The final set of templates devised
following considerations regarding infrared luminosity and energy absorbed, along with
minimization of the IRAC band deviation was the XFSPS-1210PAH template set. With
the XFSPS-1210PAH, the SED fits were able to reproduce the FIR SED for the majority of
the sample when IR data was included, Figure 3.11.
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FIGURE 3.11: SEDs fit with the XFSPS-1210PAH template set including Super-deblended and
1.Imm ALMA infrared data.

The high quality of the SEDs is also reflected by the photometric redshift estimates
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which are in overall agreement with the redshift reported by Franco et al. (Figure 3.12a).
Additionally, Figure 3.12b show the majority of 1.Imm model fluxes are reproduced
within a factor of 2 of the ALMA measured flux.

Including IR data and without energy balance )
6 Including IR data and without energy balance
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FIGURE 3.12: 3.12a) Comparison of the Franco et al. redshifts and EAZY redshifts from the XFSPS-
1210PAH fits including infrared data. 3.12b) Comparison of the measured ALMA fluxes and the
modelled 1.1mm fluxes from the fits with the XFSPS-1210PAH template set including IR data.

The problem with using the IR templates at optical wavelengths is that they are used
at the expense of dustier stellar FSPS templates as can be seen on the SEDs produced Fig-
ure 3.11 where the IR templates (labelled magdis_norm_ ... .txt) spills into the 8um and
5.8um IRAC channels 3 and 4. This unphysical weighing of the IR template at optical
wavelengths means that the energy absorbed decreases such that there no longer is an al-
most one-to-one relationship between the infrared luminosity, Lir , and energy absorbed.
Furthermore, the infrared templates themselves are not energy balanced as the fitted PAH
component has merely been attached to the FIR component with no scaling to ensure any
relationship between the energy absorbed and the infrared luminosity. In other words,
even though the XFSPS-1210PAH set provides almost flawless SED fits for the sample,
the energy balance is broken when using the IR templates.

3.5.3 Energy Balance

Ideally, we would like to have a template set that can produce good fits to the data and
still be energy balanced. Imposing this criteria of energy balance, we have to look for
another template set which is representative our sample of dusty galaxies. However, we
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can still use the XFSPS-1210PAH set as a reference to how the fits should ideally look and
what kind of Ljr values we should expect. Using EAZY, Gabriel Brammer generated
a new set of 12 templates including 10 XFSPS templates and 2 starbursting galaxies to
represent possible extreme cases within our sample. The infrared regime of the 10 XFSPS
templates were replaced by Magdis et al. 2012% template #9 which was scaled to the
energy absorbed value to ensure energy balance. This energy absorbed is determined
by calculating the Calzetti model for the given tg,s, which is then applied to the SED,
and the energy absorbed is then the difference in the integrated energy of the attenuated
and unattenuated SED. In the following this set of templates is dubbed the XFSPS-125B.
Figure 3.13 shows comparisons of Ljg values and SED fits with the XFSPS-1210PAH (left
subplots of each pair) and with the XFSPS-125B (right subplots of each pair).
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FIGURE 3.13: Side-by-side SED fits including IR data (Super-deblended and 1.1mm ALMA) with
the left fit of each pair being with the XFSPS-1210PAH set and the right fit of each pair being with
the XFSPS-12SB template set.

The new XFSPS-12SB set provides good fits with a quality comparable to that of the
XFSPS-1210PAH, when FIR data is included and only with a few exceptions. The new fits
do however deviate slightly in terms of infrared luminosity (Equation 2.11) and 1.1mm

flux, where the XFSPS-125B generally produce lower values.
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FIGURE 3.14: 3.14a) Comparison of IR luminosities from the XFSPS-125B and XFSPS-1210PAH
fits including IR data. The inset plot shows a subset of outliers. 3.14b) Comparison of the model
1.Imm fluxes from fits with the XFSPS-125B and XFSPS-1210PAH set including IR data.

While the Lig and 1.1mm fluxes are slightly off, the XFSPS-12SB performs much bet-
ter in terms of Ljr/energy_abs which is down to a simple factor (median ~ 2.9), com-
pared to an order of magnitude (median ~ 14.7) with the XFSPS-1210PAH. Similar to the
XFSPS-1210PAH set the photometric redshift estimates from the XFSPS-125SB set are also

in agreement with the Franco et al. reported redshifts.
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FIGURE 3.15: 3.15a) Comparison of the Franco et al. redshifts and EAZY redshifts from the XFSPS-
12SB fits including infrared data. 3.15b) Comparison of the measured ALMA fluxes and the mod-
elled 1.1mm fluxes from the fits with the XFSPS-12SB template set including IR data.
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While a portion of the 1.Imm modeled fluxes are underestimated compared to the
ALMA flux, a large fraction of 1.Imm modeled fluxes are still in agreement with the
ALMA fluxes within a factor of 2. This is a significant improvement from the original
XFSPS-120 set imposing energy balance where the FIR SED was systematically underes-
timated even when Super-deblended data was included.

3.6 Chapter summary

Initially fitting the catalogue containing 3D-HST data up to the 8um IRAC channel 4,
with the default XFSPS-120 template showed a significant underprediction of the FIR
SED and the 1.1mm flux values. Upon trying to improve the SED fits, Super-deblended
catalogue data (MIPS 24um, PACS 70um /100um /160pum, SPIRE 250um /350pm /500um1)
was included for cross-matched sources. For the 20 sources with cross-matched Super-
deblended data, the FIR SED still seemed to be systematically underestimated when fit-
ting with the XFSPS-120.

An attempt was made to solve this problem by generating 1 million galaxy templates
with FSPS with varying stellar population ages, dust opacities, and SFH e-folding times.
We then sought to replace the most used dusty template #12 of the XFSPS-120 set with
the FSPS template from the generated sample which had the highest L;z /Ly ratio but
approximately same UV] color. This new XFSPS-12M set was then used to fit the data,
but fits showed little to no usage of the replacement template, and therefore also no real
improvement to the SED fits compared to the XFSPS-120 set.

As no improvement was found with the FSPS generated templates, a different ap-
proach was taken to add 10 IR templates from Magdis et al. 2012 %® which could be used
in the FIR. Following extrapolation and truncation methods explored in Appendix A sec-
tion A.3, this XFSPS-1210PAH set produced high quality FIR fits, but suffered from the
lack of energy balance, which was initially desired.

To impose energy balance another template set including two starbursting templates
was devised (XFSPS-125B). Including FIR data, the XFSPS-12SB set produced high quality
tits in many cases comparable to the XFSPS-1210PAH fits (Figure 3.13), while still impos-

ing energy balance.

The key take-aways from this exercise are the following.

* We have developed two template sets; One imposing energy balance (XFSPS-125B)
and one not imposing energy balance (XFSPS-1210PAH).

* Both template sets are able to reproduce photometric redshifts in agreement with
the Franco et al. values when IR data is included.
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One may keep meticulously optimizing the template set to improve the SED fits, how-
ever in the end we may be limited by the individual morphology of each galaxy as will
be elaborated further on in the coming chapter.
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Chapter 4

Results

Having developed a set of SPS models that can produce good fits to the DSFG SEDs of
the 33 galaxies of the GOODS-ALMA test sample, we turn to the real test we set out to
do in this section. Namely, evaluating the constraint of energy balance when only fitting
UV-optical data. To execute this test we need to take a closer look on the morphology of
the galaxies in the sample.

At the end of this section we will produce synthetic maps covering the same region
as the 69arcmin? 1.lmm GOODS-ALMA map using the optimized SPS models of the
XFSPS-12SB set to test the robustness of the energy balance constraint.

4.1 Galaxy structure and morphology

We start off by investigating the structure and morphology of each AGS galaxy and how
it may affect the SED fitting. From the provided photometric GOODS-ALMA mosaic map
(Goémez-Guijarro et al. in prep) we compute the histogram by binning the data using the
Freedman Diaconis Estimator, and determine the RMS sensitivity (¢ ~ 0.085m]y/beam)
by fitting a gaussian to the histogram pixel distribution (Figure 4.1).
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FIGURE 4.1: Left) The Franco et al. GOODS-ALMA map with the position of the AGS highlighted
by 8arcsec circles. Right) The binned pixel distrubution of the GOODS-ALMA map along with the
best fit gaussian.

With the GOODS-ALMA mosaic and photometric F160W 3D-HST data we can closely
inspect each individual galaxy in close-up cutouts of 1.8” x 1.8”. The right subplot of
Figure 4.2 shows the first cutout of the raw archive F160W 3D-HST mosaic. A very dis-
tinct offset between the ALMA contours and the 3D-HST counterpart is clearly visible,
and multiple AGS sources showed a similar offset. This suspicious systematic offset had
us doubting the robustness of the astrometry of the 3D-HST data and F160W mosaic.
Franco et al. 2020°? describe a similar global systematic offset of ARA = —96 + 83mas
and ADec = 252 £ 107mas derived from 375 HST v2.0 sources common to the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS) Data Release 2 (Flewelling
etal. 2016 ”"). Along with this global correction they derive an additional local calibration
error varying with position (largest at the mosaic edges) which was introduced when the
HST v2.0 mosaic was built.

With this correction in mind we reviewed the astrometry of the mosaics. Gabriel
Brammer found a non-negligible global offset between the 3D-HST mosaics and the GOODS-
ALMA astrometric frame and aligned the 3D-HST mosaics to the Pan-STARRS/GAIA
frame as was done by Franco et al. 2020 %’ with the HST v2.0 mosaic. The cutout follow-
ing this astrometric correction is illustrated on the left subplot of Figure 4.2 and shows a

significant improvement in the alignment of sources.
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FIGURE 4.2: Left) Example F160W cutout of galaxy with associated ALMA contours after astro-
metric correction. Right) The same galaxy with its associated ALMA contours before astrometric
correction.

Having corrected the 3D-HST mosaics we examined the morphology of each galaxy
by creating improved aligned cutouts of 1.8” x 1.8” and larger 10” x 10” centered on the
GOODS-ALMA position reported by Franco et al. 2020 %", Figure 4.3,
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TS
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FIGURE 4.3: Galaxy cutouts of AGS galaxies. The top row of each figure shows 10x10 arcsecond
cutouts centered on the ALMA source position of respectively F160W mosaic, GOODS-ALMA
mosaic, and F160W mosaic with ALMA contours. The bottom row of each figure displays the
same, but zoomed to a 1.8x1.8 cutout. The straight marker denote the position of the 1.1mm
ALMA source and angled markers denote the position of the 3D-HST counterpart.

By closer inspection of each individual galaxy it is apparent that the contours of sev-
eral sources are not perfectly aligned with their respective 3D-HST counterpart even after
applying the astrometric correction. It is then indeed valid to question the association of
the sources. But even with this misalignment, they may still be the same galaxy. As an
example we refer to the local starburst galaxies e.g. the merging Antennae Galaxies (NGC
4038/ 4039), Figure 4.4.
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FIGURE 4.4: The Antennae Galaxies. Credit: ESA /Hubble & NASA

In this particular example we see that even within the merger, there are regions where
dust is significantly more prevalent than others. If an optical HST measurement is taken
at a bluer and dust-free region, and an ALMA 1.1mm measurement is taken in a much
dustier region, offset from the position of the HST measurement, the blue SED data will
suggest a dust-poor galaxy and the red SED will suggest a dust-rich galaxy. This inconsis-
tency with the optical and IR data can cause difficulties trying to impose energy balance
which can then produce bad fits. In this case the fitting code may not be at fault, but
rather the data is inconsistent.

Figure 4.5 shows the resulting SED fit with the XFSPS-125B along with contoured
F160W cutouts to evaluate whether or not it is reasonable to assume energy balance for
these AGS galaxies.
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FIGURE 4.5: SED fits with the XFSPS-12SB template set excluding infrared data, along with 1.8x1.8
arcsecond F160W cutouts and ALMA contours. The separation between ALMA source and 3D-
HST source is given by the value Aysr in the top left corner of the F160W cutout.

For some sources with weaker SNR contours (e.g. AGS30 and AGS38) it is clear that
the offset from the HST counterpart may be having an effect on the SED predictions as
the assumption of energy balance is invalidated. Even for stronger sources with higher
SNR contours (AGS31 and AGS33) there are cases where the morphologies do not line up

1200

1900
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creating difficulties for the SED fitting, implying that the offset plays a limiting role in our
prediction of the FIR SED. Another limiting trait may be identified by inspecting AGS31,
which Franco et al. 2020 *’ argues shows morphological characteristics of a merger in the
form of large tidal tails. This might mean that complex morphologies may also have an
effect on the FIR SED fit when using energy balance and UV-optical data. However with
none of these limiting traits, e.g. with a simple point-like compact morphology and a
small spatial offset (AGS3, 6, 21, 32) we are able to produce good FIR SEDs and 1.1mm

predictions with energy balance.
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FIGURE 4.6: 4.6a) Ratio of energy balance XFSPS-125B modeled 1.1mm fluxes to 1.lmm ALMA
fluxes versus spatial separation between 1.1mm ALMA source and HST H-band counterpart with
UV-optical data and 4.6b) including IR data (Super-deblended and 1.1mm ALMA).

The spatial offset effect is more clearly illustrated on Figure 4.6a by comparing the flux

ratio FRESTS-1250 / pALMA

how the 1.1mm flux is more accurately reproduced when including IR constraints, as the

with the spatial separation. It can also be seen on Figure 4.6b

majority of sources are reproduced within a factor of 2 of the ALMA flux and all sources
with a < 0.1arcsec separation are within a factor of 2.

The same comparison of predicted flux and spatial offset can be done without impos-
ing energy balance by fitting with the XFSPS-1210PAH set.
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FIGURE 4.7: 4.7a) Ratio of XFSPS-1210PAH (not imposing energy balance) modeled 1.1mm fluxes

to 1.Imm ALMA fluxes versus spatial separation between 1.lmm ALMA source and HST H-

band counterpart with UV-optical data and 4.7b) including IR data (Super-deblended and 1.1mm
ALMA).

Figure 4.7 shows how predictions excluding energy balance and IR data lacks the con-
straints to accurately predict the 1.1mm flux and FIR SED. Meanwhile the fits including
IR constraints are able to reproduce the fluxes of almost all sources within a factor of 2 of
the ALMA fluxes.

In general the SED fits excluding IR constraints produce significantly different 1.1mm
fluxes compared to fits including IR constraints. One might worry that the main driver
in the differently predicted FIR may come from redshift differences when modeling with-
/without IR data.
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FIGURE 4.8: (Left) Photometric redshift estimate comparison between UV-optical fits and UV-
optical-IR (Super-deblended and 1.Imm ALMA) fits with the energy balanced XFSPS-125B set
and (Right) with the XFSPS-1210PAH set not imposing energy balance.
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Figure 4.8 does however dismiss any redshift degeneracy when fitting with/without
IR data. The difference in the predicted FIR may lie in systematics within the data set, e.g.
shallow and large beam size IRAC channel 3/4 data is weighted too much in UV-optical
tits as these fits are very sensitive to the limited data available, thus strongly affecting the
FIR SED. Essentially the question is why the code is not picking the best UV-optical-IR
solution when fitting the UV-optical range.

Section summary

In this section we have investigated the robustness of the energy balance principle within
our sample of DSFGs by fitting UV-optical and UV-optical-IR data. The take-aways from

this analysis are.

* Energy balance does not work for UV-optical fits where the 1.lmm ALMA source
and HST H-band counterpart are spatially disconnected.

¢ The morphology also seems to play a role, as complex morphologies, like merging
traits in the form of tidal tails, produce bad UV-optical data fits with energy balance,

even when the offset is small.

¢ The few good UV-optical fits are produced for sources with a small spatial offset
and a compact HST H-band counterpart

* Energy balance does seem to work for fits including IR constraints, which repro-
duced the FIR SED more accurately and estimated the majority of 1.1mm fluxes
within a factor of 2 of the ALMA fluxes.

We can generalize this methodology to try and predict what the 1.1mm FIR Universe
looks like according to EAZY when imposing energy balance and providing UV-optical
data or UV-optical-IR (up to 500um SPIRE) constraints.

4.2 The Universe according to EAZY: Synthetic photome-
try

To determine the Universe predicted by EAZY we aim to produce a 1.Imm synthetic
map, comparable to the real 69arcmin? 1.lmm GOODS-ALMA map provided, Gémez-
Guijarro et al. in prep, Figure 4.9. It is worth noting that the provided map is not identical
to the map presented in the Franco et al. papers, and thus not with the same depth. This is
particularly visible for sources of the Franco et al. 2020 *° Supplementary Catalog where
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IRAC and VLA was used to crossmatch and extend the source detection to lower SNR.

These sources appear very faint on the map provided due to the extra lack of depth.
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FIGURE 4.9: The 69arcmin? GOODS-ALMA field by Franco et al. with the position of each AGS
source highlighted. Blue circles represent AGS sources without Super-deblended IR data, and red
circles represent AGS sources with crossmatching Super-deblended IR data.

In order to generate the synthetic maps we determine all sources from the 3D-HST
catalogue overlapping with the 69arcmin? 1.1mm GOODS-ALMA map and use EAZY to
fit all these galaxies and extract the predicted 1.1mm model flux. First a subcatalogue of
sources with optical 3D-HST data cross-matched (within 1 arcsec) with Super-deblended
IR (MIPS 24um, PACS 70um/100pum /160um, SPIRE 250um /350pum /500um) data is pro-
duced.

When referring to synthetic maps excluding/including IR data we now mean UV-
optical only or UV-optical-IR data (up to the 500um SPIRE band and excluding the 1.1mm
ALMA data as that is what we are trying to predict) in this section 4.2.
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FIGURE 4.10: Left) All sources of the 3D-HST catalogue superimposed on the GOODS-ALMA
map. Right) All sources of the Super-deblended catalogue superimposed on the GOODS-ALMA
map.

Figure 4.10 shows all sources of the 3D-HST catalogue overlaid on the 1.1mm GOODS-
ALMA map, and all the Super-deblended sources on top of the 1.lmm map. The blue map
of 3D-HST sources shows several dense patches of sources, one concentrated on top of the
1.Imm GOODS-ALMA map. This dense patch consists of four 4.7 arcmin Hubble Ultra
Deep Field survey (HUDF) pointings, and with ~ 620 sources/arcmin? they are twice as
dense as the rest of the Franco et al. GOODS-ALMA field.

The synthetic map is created by initializing a Python array corresponding to the same
size and shape as the given GOODS-ALMA map. This empty array is then filled with
gaussian noise, sampled from the Figure 4.1 pixel distribution of the GOODS-ALMA map
with ogvms ~ 0.085m]y/beam and a mean of ~ Om]Jy/beam. All sources that fall within
the 1.1mm GOODS-ALMA map are compiled to a new catalogue and fit with EAZY and
the XFSPS-12SB set and their 1.1mm model flux is extracted. This flux is then convolved
with the PSF (by multiplication). The PSF has been cut in a 50 x 50 pixel crop around the
center and it has been normalized to the peak value, as Franco et al. 2020 %" report peak

flux values, we stick to this convention.
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FIGURE 4.11: The ALMA PSF image.

Following the source convolution by the PSF, the source is placed on top of the empty
noise map. This addition of sources is done in a simple FOR loop iterating over all ob-
jects in the catalogue. Once all sources were placed this procedure was repeated for the
catalogue with cross-matched Super-deblended FIR data. Both synthetic maps were vi-

sualized on a plot with the same normalization Figure 4.12.

Nogy = 22190: (Niwen 510 = 535, NESS | =0, NASS_ = 25) Nog = 793: (Ngze 10 =25, NiE, 14 =13, N2, , = 26)
No Clipping No Clipping
UV data UV+IR data

-27°45' | -27°45' 4

Declination

50' 4 50' 4

55'4 F 55' 4

3"33m00* 32M45° 30° 15° 00° 3"33‘”’005 32’"‘45S 365 1‘5S 0(‘35

FIGURE 4.12: (Left) Synthetic map generated using UV-optical data only and (Right) Including FIR
data

From Figure 4.12 we clearly see that the UV-optical-IR synthetic map looks more ac-
curate and comparable to the GOODS-ALMA map, as it is significantly dimmer when IR
data up to the 500pm SPIRE band is included. However, when IR data is excluded and
only optical data up to the 8um IRAC band is fit, the Universe looks much brighter. This
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is in stark contrast to what we found on Figure 3.15b where the XFSPS-12SB set was un-
derpredicting the 1.1mm flux for the most part, whereas now the synthetic map visually
points to an overestimation of 1.1mm sources.

With this strange excess brightness on the UV-optical map, we focus our efforts on
improving this map by exploring a range of selection criteria for the UV-optical synthetic
map, which will lastly also be applied to the UV-optical-IR map for possible improve-

ments.

4.2.1 Sample inspection and selection

Particularly the HUDF region of the UV-optical map seems to produce an excess of bright
sources at 1.1mm, and upon inspection of the output SEDs and the corresponding red-
shifts we find 337 sources redshifted to the very end of the redshift grid with z ~ 5.95
whereof 161 of them are within the HUDF, and 57 /161 in the HUDF have SNR > 2 on the
synthetic map. Figure 4.13c shows 13 of these galaxies in the HUDF exhibit SNRs beyond

fl.lmm / Trms > 1000.
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FIGURE 4.13: 4.13a, 4.13b) The SEDs of the two blue sources are shown above with SNR

framm/ Orms ~ 28949 and ~ 42991. 4.13c) 4x4 arcmin close-up of the synthetic map centered on

the HUDF (RA,Dec =53.1625°, —27.7836°) with 13 sources marked with z ~ 5.95 and SNR > 1000.
center . 4.13d) Synthetic map after removing all sources with a faulty z ~ 5.95.
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FIGURE 4.14: Left) SEDs of two sources with high SNR and overestimated photo-z compared to
the reported spec-z. Right) Synthetic map with location of sources marked

Common for all of them are the very broad posterior redshift probability distribution,
and for many of these sources the constraints on the UV-optical SED are poor due to the
mediocre data with SNR < 2. Removing the 337 false sources with z ~ 5.95 does however
not solve the problem entirely, as shown on Figure 4.13d. This suggests that there are
many intermediary sources where the source redshift may have still been overestimated
but not all the way up to the redshift grid limit.

Two such intermediary cases are highlighted on the synthetic map on Figure 4.14b.
Their posterior redshift probability distribution are shifted to higher redshifts compared
to the spectroscopic redshifts reported as seen on Figure 4.14a. With many faulty red-
shifts at intermediary values it would be tedious to identify and correct/remove each one
among ~ 22000 sources. While the removal of sources placed at the redshift grid limit
z ~ 5.95 does improve the synthetic map slightly, there is still an abundance of bright
spurious sources. From Figure 4.13a and Figure 4.13b we can identify another common
trait of these bad fits, namely the large errors on their 1.1mm fluxes. As only the mod-
elled 1.1mm flux value is extracted and multiplied by the PSF to be placed on the map,
this value can be highly uncertain as its error may be larger than the actual modelled
1.Imm flux by orders of magnitude. Thus the source may not even be visible on the
map if the actual flux value is in the lower end of this range. Instead of clipping the
sources at the redshift grid limit, a SNR selection is made to only include sources with
f1amm/ 01.1mm > 3, which is slightly below the sample median (f1 1m/ 01.1mm ) median =~ 4,
to not unnecessarily reduce the sample too much. As the clipping at the redshift grid

limit was insufficient we also allow for more flexibility and extend the redshift grid to
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z = 12 so we can also compare with the reported photo-zs catalogued in the 3D-HST cat-
alogue with the same redshift grid limit. Extending the redshift grid to z = 12 does not
affect the redshift estimate of the majority of the AGS sample, only AGS34 and AGS35 are
redshifted to respectively zagszs ~ 6.36 and zxgs3s ~ 11.82 (Appendix B Figure B.1).
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FIGURE 4.15: Left) Synthetic map excluding IR data with sources clipped by fi1mm/011mm > 3.
Right) Synthetic map including IR data with sources clipped by fi 1mm/1.1mm > 3

The SNR clipping, f11mm/01.1mm > 3, cuts 9384 objects eliminating a great amount of
excess brightness particularly in the HUDF region, improving the synthetic map consid-
erably as illustrated on Figure 4.15. However with 88 sources remaining with SNR > 10

(as indicated by the Ny = 88 value) there are still too many false sources com-
;.1m;n >10

pared to the GOODS-ALMA map, where just the AGS sources are detected. Upon SNR
clipping 5/33 AGS sources with uncertain modeled 1.1mm fluxes are removed (AGS?,
27, 32, 33, 34) along with the spurious sources. Two of the remaining spurious sources
following the clipping are marked on Figure 4.16b and their SEDs (Figure 4.16a) show a
lack of constraining data in the optical.
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FIGURE 4.16: Left) SEDs of two sources with high SNR and overestimated photo-z. Right) Syn-
thetic map with location of sources marked

To improve the map we can add an additional selection criteria requiring the object

to have at least 10 data points with SNR > 2 e.g. N fobs

> 10. This cuts another 2838

sources leaving 9968 objects added to the synthetic map (F1gure 4.17a).
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With this selection Ny, 210 = 30 bright sources with SNR > 10 remain. Unfortu-

nately they are not all 33 AGS sources, as just 21 AGS sources have fi 1, /0rms > 2 and
only 7 of them fi 1,/ orMms > 10. It is also worth noting that imposing this extra selection
criteria does not remove any additional AGS sources apart from the 5 already cut from
the SNR clipping.

We can examine the sample as a whole by comparing the output photometric redshifts
with the reported 3D-HST catalogue photometric redshifts as shown on Figure 4.17b.
It appears that some fitted objects have large errors on their redshift estimate as also

previously noted. Instead of clipping by Ny, o 10 we can try clipping the sample

2
for sources where the photometric redshift error is below 20%, e.g. Oz max < 20%. With

SNR clipping f1.1mm/01.1mm > 3 and redshift error clipping 0 yax < 20%, we can produce
another quality map with 7401 sources remaining, Figure 4.18a.
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FIGURE 4.18: 4.18a) Synthetic map excluding IR data clipped by fi1mm/011mm > 3 and 0z max <
20%. 4.18b) Comparison of XFSPS-12SB fits output redshift with 3D-HST catalogue redshift with

The photometric redshift comparison, Figure 4.18b, also has a spread, down from ¢ =
0.0255 to o = 0.0180. The 03,uax < 20% clipping does however remove 2 more AGS
sources (AGS18, 24) in addition to the 5 removed by the SNR clipping.

Compared to the N {:M - > 10 clipping, the 03 max < 20% increases the number of

obs
bright sources to Ny,
“RMS

a last attempt was made to also include the selection criteria Ny, , > 10. Now clipping

Tobs

= 49. To prevent this undesirable increase in bright sources
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by SNR, solid data points, and maximum redshift error (f1.1mm/01.1mm > 3, N fubs > 10,

Oz max < 20%), we can produce a synthetic map with fewer false sources Flgure 4.19a.
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FIGURE 4.19: 4.19a) Synthetic map excluding IR data clipped by fi 1mm/01.1mm > 3, N fobs o, > 10,

and 03 ax < 20%. 4.19b) Comparison of XFSPS-12SB fits output redshift with 3D- HST catalogue
redshift with f1 1,/ 01.1mm > 3, Ny, > 10, and 07, jax < 20% clipping
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Still 6841 sources remain when comparing the redshifts, and the spread has also been
improved to ¢ = 0.0179, Figure 4.19b.

The correction of the synthetic map following these three selection methods is clearly
seen when comparing the mock map without any selection and with f1 1, /01.1mm > 3,
Ny, o > 10 and 03 jax < 20% clipping, Figure 4.20.

Tobs



Chapter 4. Results 73

-27°46'

47

Declination
B
~
-
L ]
Declination

48'

49’ . . : 49'
3h32mg0s 36° 325 285 245 3h32m40s 365 328 285 24°
Right Ascension Right Ascension

(A) (B)

FIGURE 4.20: 4.20a) A mock map close-up showing part of the HUDF region and along with 6
AGS sources before employing any selection methods. 4.20a) Close-up after employing the three
selection criteria f1.1mm/1.1mm > 3, Ny, > 10 and 07 jmax < 20%.
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Though some spurious sources like the sources displayed on Figure 4.14a remain even
after applying all three selection criteria, the synthetic UV-optical mock map is signifi-
cantly improved under these selections.

For an easier overview of the AGS sources removed we refer to Table B.1 on Ap-
pendix B for a list of sources removed under the different selection schemes for the UV-
optical synthetic map. Similarly Table B.2 on Appendix B provides the same information
for the synthetic UV-optical-IR map.

A clear overview of the synthetic maps produced and the improvement of the photo-

metric redshift on the redshift comparison plot is displayed on Figure 4.21.
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4.3 Chapter summary

In this chapter we have used the optimized XFSPS-12SB set of SPS models with energy
balance to produce synthetic maps excluding and including IR data constraints up to the
500um SPIRE. Following clipping criteria to exclude uncertain sources and sources with
poor UV-optical data, we were able to produce reasonable maps in agreement with the
GOODS-ALMA map by Gémez-Guijarro et al. in prep.

The key take-aways from this chapter is the following.

* Energy balance is able to predict the 1.1mm Universe given UV-optical-IR data up
to the 500pm SPIRE band.

* Energy balance seems to also reasonably predict the FIR of the general population of
galaxies in the 1.1mm Universe given only UV-optical data, with the right selection

criteria to remove uncertain sources with poor UV-optical data.

* A few spurious sources are still present on the synthetic maps. Presumably due to
the lack of an SPS model template with the correct red colors in the UV-optical to fit

more regular galaxies rather than extremely DSFGs.
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Chapter 5
Discussion

Throughout this study we have seen how imposing energy balance seems to work at
reproducing the FIR SED of DSFGs when fitted with IR data (from UV-optical to 1.1mm
ALMA data). If only UV-optical data is included the energy balanced fits only work
for ALMA sources with compact well-aligned HST H-band counterparts. Generalizing
this methodology to fit the entirety of the 69arcmin? GOODS-ALMA field, we find that
energy balanced fits produce reasonable 1.Imm synthetic maps comparable to the real
GOODS-ALMA field regardless of fitting UV-optical data or UV-optical-IR data (up to
500um SPIRE). In this section a discussion of the strengths, weaknesses and application

of this energy balancing technique carried out.

5.1 Underestimating the FIR of DSFGs

We have seen how the energy balanced fits are able to reproduce 1.1mm fluxes within a
factor of 2 of the reported ALMA fluxes when given UV-optical data and IR constraints
(Super-deblended and 1.1mm ALMA data). When excluding IR constraints energy bal-
ance fails at predicting the FIR SED and 1.1mm flux from just UV-optical data. While the
spatial offset and morphology was identified as possible factors to this underestimation,
an evaluation of the photometric redshifts was conducted to ensure that the underestima-
tion was not due to redshift ambiguities when excluding/including IR data. However,
redshift estimates were shown to be almost identical, ruling out the redshift as driver of
this underestimating effect. The factor causing this underestimation of the FIR SED is still
uncertain. There may be hidden systematic errors in the catalogue data, e.g. from obser-
vations in shallow IRAC channels with a large beam size weighing the SED fit down. As
the fits are very sensitive to the UV-optical data, when excluding IR constraints, a small
deviation or error in the catalogue data may be crucial to the FIR SED fit. It is still uncer-
tain what causes the code to not choose the same best fit template combination regardless
of fitting UV-optical or UV-optical-IR data. This leaves room for future investigations into

which exact component is causing the underestimation of the FIR SED of DSFGs.
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As already alluded to, the UV-optical fits are very sensitive to systematics in the UV-
optical data, which poses a challenge for HST-dark sources which can easily be falsely as-
sociated contaminating the sample. The GOODS-ALMA DSFG sample catalogue used in
this study contains such HST-dark galaxies (AGS4, 11, 15, 17, 24, 25 of the Franco et al. pa-
pers) which we have argued may be falsely associated with a bright neighbouring galaxy.
A prime example of this is AGS15 which we found had an estimated z 45515 = 0.82f8:829
while Zhou et al. 2020 ! in a very recent follow-up study found z4"% . = 3.472 by spectral
deconfusion (subtracting nearby neighbours etc.) to deblend the real H-band counterpart.
Additionally, Zhou et al. were able to obtain spectroscopic redshifts zi@éﬁl = 3.556 and
z4hol . = 3.467 by identifying the CO(6-5) line. They also performed 4 million Monte
Carlo simulations to determine a slim 0.4% chance of 4/6 HST-dark galaxies randomly

falling into the same 5arcmin?

area. Interestingly, Zhou et al. found 4/6 HST-dark galax-
ies (AGS11, 15, 17, 24) to be part of a protocluster in virialization previously identified
by Franck and McGaugh 2016 ?>. Moreover, AGS24 is the most massive galaxy in the
GOODS-ALMA field with no AGN and z > 3, suggesting it may be a candidate BCG in
formation. Nevertheless, the Zhou et al. study demonstrates how confusion of sources
may lead to false associations, emphasizing the need for deep high resolution data to
avoid sample contamination. Such extraordinary capabilities are expected to become
available with the launch and commencement of new facilities such as the JWST, which
will provide high resolution data to more accurately deblend sources and avoid false as-

sociations.

5.2 Predicting the 1.1mm GOODS-ALMA map from syn-
thetic photometry

Upon deriving an optimal template set to fit the sample of DSFGs, this set was utilized to
construct a synthetic mock map comparable to the GOODS-ALMA map from Franco et al.
While the clipping of uncertain sources and sources with poor UV-optical data produces
reasonable maps with energy balance, a few spurious sources are still present. These
spurious sources presumably arise from EAZY mistaking old optically red low-z sources
for high-z dusty sources due to the two-fold dust-age degeneracy, ramping up their FIR
emission and sending them to artificially high redshifts. A possible approach to deal with
this misidentification would be to optimize the template set by possibly adding a template
with the correct red colors in the optical to handle this type of galaxy. Another approach
would be to include an additional form of prior to break this degeneracy, however this is

not possible in the current version of EAZY.



Chapter 5. Discussion 78

With software and computational methods being a central aspect of this study, I have
also discovered the importance of a cautious approach to numerical results, as hidden
coding bugs may falsely alter the output. An example of this was found in EAZY version
0.2.0-48-gf9540fb where a bug with the template error function was affecting the output
SED by producing negative fluxes when extrapolated to long infrared wavelengths. This
bug was patched, but it remains a reminder of the necessity of a cautious approach, as is
required with any other software like EAZY in constant development.
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Chapter 6
Conclusion

With the inception of this project, the central question we sought to answer was whether
the principle of energy balance was valid for DSFGs, and if it could be applied to predict
their FIR SED from UV-optical data. To tackle this issue a test sample of DSFGs from a re-
cent 69arcmin? 1.1lmm GOODS-ALMA survey was utilized to fit SEDs and optimize SPS
models to be representative of this galaxy type. The resulting SED fits produced by the
optimized XFSPS-125B set found that energy balance could indeed be imposed to repro-
duce the FIR SED when fitting UV-optical-IR data. When IR constraints were excluded
energy balance showed a systematic underestimation of the FIR SED for the majority of
the sample DSFGs. Only a small fraction of sources had their FIR SED successfully pre-
dicted by fits with UV-optical data. These successful sources had compact HST H-band
counterparts and co-spatial 1.1mm ALMA dust emission.

Using the XFSPS-12SB energy balanced template set a pair of synthetic 1.1mm maps
were produced to compare with the observed GOODS-ALMA field. Excluding uncertain
catalogue sources with poor UV-optical data, we were able to produce synthetic maps in
agreement with the GOODS-ALMA field in both cases when fitting UV-optical data and
UV-optical-IR (up to 500um SPIRE) data. This implied that the energy balance principle
works reasonably when also fitting more regular galaxies compared to the extremely DS-
FGs of the test sample. However a few spurious sources still remained and we argued
that another optimization of the template set could be conducted to include a template
with the correct red colors in the UV-optical for optically red low-z galaxies such that they
are not mistaken for dusty high-z galaxies.

To summarize the key findings of this study.

¢ Energy balance is not able to predict the FIR SED of DSFGs in the absence of IR con-
straints, with the exception of sources where the 1.1mm ALMA dust emission and
HST H-band counterpart are co-spatial and the morphology of the H-band counter-

part is compact.
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¢ In the presence of IR data (Super-deblended and 1.1mm ALMA), energy balance is
able to reasonably reproduce the FIR SED.

¢ The factor causing the underestimation of the FIR SED when comparing fits with
only UV-optical data and UV-optical-IR data (Super-deblended and 1.1mm ALMA)
is not a redshift degeneracy, but rather a hidden systematic in the data or code.

¢ Upon generation of synthetic GOODS-ALMA maps it seems that the general pop-
ulation of galaxies is well-fit, successfully reproducing the FIR Universe when im-
posing the energy balance principle. This implies that it is possibly just the extreme
cases of DSFGs that strongly challenge this approach.

Throughout the progression of this study we have effectively optimized the SPS mod-
els to make them more representative of the DSFG type, thus assisting the EAZY photo-
metric redshift code and its ability to produce high quality SEDs to infer the properties of
DSFGs, and essentially predict the FIR Universe.

Upon future improvements such as optimizing the SPS models to mitigate the un-
derprediction of the FIR SED when fitting UV-optical data, this methodology could have
many useful applications. The new procedure presented in this thesis could potentially be
used to facilitate the discovery of new dusty star forming galaxies predicted from large-
scale cosmological surveys by upcoming facilities. This could essentially be used to infer
the properties of DSFGs in bulk to constrain the cosmic star formation history helping us

understand the Universe as a whole.
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The quality of the SED fitting improves when including additional infrared Super-deblended
and ALMA 1.1mm data to the fit. However, a slight shift and a gap between model and
observations is still present when fitting with the default XFSPS-120.
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FIGURE A.1: SEDs fit with the XFSPS-120 template set including Super-

deblended and 1.1mm ALMA infrared data.
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FIGURE A.2: SEDs fit with the XFSPS-12M template set including Super-
deblended and 1.Imm ALMA infrared data. Only fits using template #12
replacement are shown.
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A.3 Extrapolation and truncation schemes

The first method adopted for the truncation of the IR templates was a simple truncation
directly to 0 below 1um and to 9.1nm (Figure A.3) which is the starting point of the XFSPS-
120. The fits with this new set with IR templates truncated to 0, dubbed the XFSPS-
1210Z, is shown on the right plot of Figure A .4a, and it is clearly evident that the fitting
using this truncation to zero eliminated the extrapolation error at shorter wavelengths
and improved the fit in the FIR by closing the gap between observations and fit.

—— xfsps_QSF_12_v3_nodust_001.dat
10-2 xfsps_QSF_12_v3_nodust_002.dat
—— xfsps_QSF_12_v3_nodust_003.dat

—— xfsps_QSF_12_v3_nodust_004.dat
g xfsps_QSF_12_v3_nodust_005.dat
| — xfsps_QSF_12_v3_nodust_006.dat
xfsps_QSF_12_v3_nodust_007.dat
xfsps_QSF_12_v3_nodust_008.dat
xfsps_QSF_12_v3_nodust_009.dat
xfsps_QSF_12_v3_nodust_010.dat

— xfsps_QSF_12 v3_nodust 01l.dat
xfsps_QSF_12_v3_nodust 012.dat

1074

—— gm_templ_zerotrunc_1.txt
—— gm_templ_zerotrunc_2.txt
gm_templ_zerotrunc_3.txt

—— gm_templ_zerotrunc_4.txt

f lerg s lem 2471

gm_templ_zerotrunczs txt
gm_templ_zerotrunc_6.txt
gm_templ_zerotrunc_7.txt

gm_templ_zerotrunc_8.txt
—— gm_templ_zerotrunc_9.txt
gm_templ_zerotrunc_10.txt

1077

10! 100 100 10
A [um]

FIGURE A.3: XFSPS-1210Z templates the Magdis et al. 2012% templates extrapolated to wave-
lengths below 1um by direct truncation to zero.
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An important quantity of interest is the infrared luminosity. For the SED fits the in-
frared luminosity was determined by first determining the rest frame luminosity, Equa-
tion 2.10, and then integrating the rest frame luminosity from 8um to 1000um, as in Equa-
tion 2.11. Along with energy absorbed these two quantities should ideally be close to
equal or within a small factor, as the output infrared luminosity should be closely re-
lated to the stellar radiation absorbed in the optical. The right plot of Figure A.4 illus-
trates this close relationship when fitting with the XFSPS-120 set as the infrared lumi-
nosity to energy absorbed values range from LfRF SPS=120 /onergy_absxrsps_120 ~ 1 — 4.
However, when fitting with the XFSPS-1210Z the Lﬁf SPS—1210Z energy_absxrspsi210z be-
comes larger than the XFSPS-120 values, Lflf SPS—120 energy_absxrsps—_120, by up to 3
orders of magnitude. The left Figure A.4 tells us that this is partly due to the increase in
Lxrsps—1210z, which is expected when we close the gap between data and model com-
pared to fits with XFSPS-120. But the increase in Lxrsps—_1210z is not close to the factor of

e.g. 3-4 we would expect from the left fit to the right fit of Figure A.4a. Thus to explain
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an increase in Lxrsps—_12107/energy_absxrsps—1210z the energy absorbed must decrease.
This is surely unexpected as the energy absorbed is dominated by stellar light absorbed
in the UV-optical where EAZY should be using the same XFSPS-120 templates, when
titting with XFSPS-1210Z.

When adding the IR templates to the template set, what might lower the energy ab-
sorbed and cause this discrepancy between infrared luminosity and energy absorbed? To
answer this question we redo the fits without the infrared Spitzer, Herschel and ALMA
data constraints. By doing so we expect EAZY to use the same templates for the XFSPS-
1210Z and XFSPS-120 template fits as only the optical region has data to be fit, and the
additional IR templates are truncated to 0 at short wavelengths.
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FIGURE A.5: Fits excluding far infrared data. (Left) SED fit using the XFSPS-120. (Right) SED fit
using the XFSPS-1210Z.

When excluding the infrared data we see that the fits with XFSPS-1210Z and XFSPS-
120 pick more or less the same FSPS templates to fit the optical data. But two additional
issues appear - 1) the truncated IR templates are still used, and 2) there is now a distinct
deviation in the IRAC bands between observations and fit (Figure A.5).

The solution to this issue is not immediately obvious, but as with the XFSPS-1210R
we presume that the problem might originate from a coding extrapolation error, presum-
ably due to the drastic extrapolation to shorter wavelengths by directly truncating the IR
templates to zero. The first attempt at solving this deviation from the observations was
tried by employing a different method for extrapolating and truncating the IR templates.
Figure A.6a shows the first attempt at truncating the templates using a polynomial exten-
sion to the 9.1nm starting point of the FSPS templates. The polynomial truncation of this
XFSPS-1210P template set corrects the IRAC band deviation significantly as shown on the
right of Figure A.6b compared to the direct truncation to 0 on the left of Figure A.5.
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1um using a polynomial.
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(B) SED fits excluding IR data (Left) with the XFSPS-1210Z set with infrared templates truncated to
zero and (Right) the XFSPS-1210P set with infrared templates extrapolated to shorter wavelengths
using a polynomial.

FIGURE A.6

Even though the XFSPS-1210P corrects the IRAC band deviation to some extent, one
might worry that the sudden change to a polynomial drop off below 1um might still
cause problems. To tackle this problem an attempt was made to smoothen the IR tem-
plates by starting the extrapolation earlier, such that they would drop off rapidly below
~ 3um. Instead of polynomially truncating the templates below 1um, Gabriel Brammer
smoothened and extrapolated the 10 IR templates to shorter wavelengths by attaching the
PAH component from the Compiégne et al. 2011 *® dust model, which drop off rapidly at
short wavelengths. Additionally the infrared bump of the IR templates was fit by a range
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of modified blackbodies.
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(B) SED fit with the XFSPS-1210PAH excluding IR data

FIGURE A.7

These XFSPS-1210PAH IR templates (Figure A.7a) drop off more rapidly and provide a
better fit in the IRAC bands (Figure A.7b) where IRAC measurements now fall within the
68% confidence interval, as opposed to previous truncation attempts of the IR templates.
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FIGURE A.8: SEDs fit with the XFSPS-1210R template
deblended and 1.1mm ALMA infrared data.
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Appendix B

Predicting the 1.1mm Universe

When changing the EAZY upper redshift grid limit from zypper = 6 t0 Zupper = 12, the
redshifts of the AGS DSFGs remain mostly the same, with the exception of two sources:

AGS34 and AGS35.
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FIGURE B.1: (Left) EAZY SED fits of AGS34 and AGS35 with a redshift grid
limit of zypper = 6 compared to (Right) with a redshift grid limit of zypper = 12

These two sources are sent to artificually high redshifts, as the EAZY code seems
extend the posterior redshift probability distribution to even higher redshifts.
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ID None SNR3 SNR3&N10 SNR3&Z20 SNR3&N10&Z20 {;“ﬂ fglﬂ

1.1mm RMS
AGS1 v v v v v 17.08 9.90
AGS2 v v v v v 3792 32.63
AGS3 v v v v v 64.20 25.53
AGS54 v v/ v v v 17.24 28.67
AGS5 v v v v v 12.57 87.15
AGS6 v v v v v 18.67 12.13
AGS7 v/ X X X X 285 18.90
AGS8 v v v v v 21.69 4.02
AGS9 v v v v v 8.18 5.15
AGS10 v v v v v 19.88 8.29
AGS12 v v v v v 11.16 6.39
AGS13 v v v v v 48.48 29.61
AGS15 v v v v v 21.69 0.00
AGS17 v v/ v v v 45.53 2.82
AGS18 v v/ v X X 18.26 3.29
AGS20 v v v v v 13.63 6.31
AGS21 v v v v v 4.65 6.96
AGS23 v v v v v 843 421
AGS24 v v v X X 14.45 0.63
AGS26 v v v v v 18.64 5.87
AGS27 v X X X X 015 0.37
AGS28 v v v v v 12.70 3.62
AGS29 v v v v v 6.05 0.83
AGS30 v v v v v 319  0.02
AGS31 v v/ v v v 326 271
AGS32 v X X X X 280 12.86
AGS33 v X X X X 281 3.64
AGS34 v X X X X 1.10  8.20
AGS35 v v v v v 12.64 1830.29
AGS36 v v v v v 17.52  0.82
AGS37 v v v v v 3.84 220
AGS38 v v v v v 519 0.61
AGS39 v v v v v 66.34 1.23
#Clipped 0 5 5 7 7

TABLE B.1: Clipped sources for the synthetic map without IR
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ID None SNR3 SNR3&N10 SNR3&Z20 SNR3&N10&Z20 (ffii—zz ng—m”g‘
AGS1 4 4 v 4 v 100.37 13.74

AGS3 v

\

v

\

v 87.79  30.67

AGS5

N
N
N
N
N

70.55  36.30

AGSS8 v 4 v 4 4 64.82 11.43
AGS9 v 4 v 4 4 1439 497
AGS10 v v v v v 54.55 2348
AGS12 v 4 v 4 4 64.61 835
AGS13 v 4 v 4 4 7111  16.04

AGS18 v/

N
N
N
N

2194 725

AGS23 v/

N
N
N
N

30.97 3.94

AGS26 v

i
N
i
N

97.03  8.18

AGS28 v

N
N
N
N

37.56  5.87

AGS31 4 4 v v 4 20.65 4.52

AGSR2. v XXX X 265 1286
AGS33 v v v v v 10.87  3.77
AGS34 v v v v v 13.10  3.69
AGS35 v 4 v 4 4 35.50 1017.99
AGS36 v v v v v 2381 021
AGS37 v v v v v 59.84 9.23
AGS38 v 4 v v 4 30.64 1.56
AGS39 v v v v v 51.38  19.40
#Clipped 0 3 3 4 4

TABLE B.2: Clipped sources for the synthetic map including IR. Colored rows
do not have FIR Super-deblended data.
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