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Abstract

Over the past few decades, the field of quantum information has experienced an increasing
interest owing to a wide range of new ideas and promising applications for future technolo-
gies. Based on the laws dictated by quantum mechanics, various protocols and quantum
algorithms has been developed with the ability to solve problems more efficiently than its
classical counterpart. In order to realize most of these proposals an essential tool is re-
quired, namely quantum entanglement.
In this thesis, the main ingredients towards spin-multiphoton entanglement will be pre-
sented, employing time-bin encoded photonic qubits and a hole-spin residing in a solid-state
quantum dot embedded in a photonic crystal waveguide.
A theoretical introduction to spin manipulation schemes will be given, along with an out-
line of the photonic nanostructure making the positive trion X+ a promising candidate
for spin-photon entanglement. The main focus of the thesis concerns the creation and de-
tection of the photonic qubits, using a self-stabilizing interferometer with the ability to
scale the number of photons employed in an entanglement sequence. The quality of the
single-photon emitter will be assessed by two parameters; the single-photon purity and the
indistinguishability. The former yields a single-photon purity of g(2)(0) = 0.018 ± 0.003,
while the latter demonstrates visibilities up to V = 95.5 ± 0.7 %, making the quantum
dot a source of high-quality photons. All findings are presented in the context of an ideal
multi-partite entanglement protocol generating GHZ- and one-dimensional Cluster-states.
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Chapter 1

Introduction

Some of the most central and widely used theories in the field of physics, such as Newton’s
Mechanics or Einstein’s Relativity, were mostly formulated by individuals. The development
of Quantum Theory however, has been an ongoing venture lead by many great physicists.
Particularly, during the last century numerous new discoveries has been made, including the
probabilistic and quantized nature of systems at atomic scale - hence the name Quantum
Mechanics. These new ideas initiated a paradigm shift in physics, where light now could
be understood as quanta called photons, atoms having discrete energy levels and the fact
that light-matter interactions are quantized.

In more recent years, starting around the early 1980s, proposals have been made whereby
the use of quantum mechanical phenomena such as the superposition principle and entangle-
ment could be utilized to make a quantum computer, which potentially could solve various
problems more efficient than its classical counterpart [1]. A such device would operate on
the principles of quantum mechanics, replacing the classical bit with a quantum bit, also
known as a Qubit - a two-level quantum system. Many promising candidates have been
considered, including Ion Trap Qubits, Superconducting Qubits and Quantum Dots (QDs)
[1] - the latter being investigated in this thesis. Utilizing this modern technology governed
by the laws of quantum mechanics, quantum cryptography1 and quantum algorithms2 has
been proposed, enabling methods of secure data transfer and faster data processing [4].

Key ingredient towards realizing almost any operational quantum information processing
system is the ability to manipulate, store and transfer information. As already alluded
to, QDs have demonstrated to be useful candidates in this endeavour [5]. Utilizing the
spin-state of an electron or hole residing in a QD, naturally constitutes a two-level quan-
tum system, which can be manipulated through optical techniques [6]. However, realizing
long distance quantum communication requires a robust way of transferring information,
an obstacle which can be solved using photons. Linking the ”stationary qubit”, i.e. the
spin-state in a QD, to a ”flying” qubit, i.e. single photons, forms a promising system for

1The first quantum cryptography protocol was presented by Charles Bennett and Gilles Brassard in
1984. It is more commonly known as the BB84-Protocol [2].

2Some of the most well known quantum algorithms include Shor’s integer factoring algorithm and
Grover’s search algorithm [3].
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applications in quantum communication [6]. Central to most of these applications is the
quantum phenomenon known as entanglement.

This thesis investigates the main ingredients towards spin-photon entanglement using time-
bin encoded photonic qubits and the spin degree of freedom of a QD embedded in a photonic
crystal waveguide. The theoretical framework for coherent spin manipulation will be in-
troduced along with an analysis of a Time-bin Interferometer used to generate and detect
the photonic qubits. These aspects will be presented in the context of an entanglement
protocol enabling multi-photon entangled states. Furthermore, the properties of the QD
operating as a single-photon source will be characterized, based on the single-photon purity
and indistinguishability.

The outline of this thesis is as follows:

• Chapter 2 : The theoretical background of the physical system containing the QD will
be presented. This includes an introduction to excitation and charging schemes, to-
gether with a derivation of the optical selection rules. Furthermore, a brief description
of the photonic nanostructure will be given with focus of the photonic crystal waveg-
uide in which the QD is embedded. Finally, the concepts behind optical spin pumping
and rotating will be reviewed, which makes up an essential part of the entanglement
protocol.

• Chapter 3 : This chapter seeks to give an introduction to quantum entanglement,
with focus on multi-partite entangled state such as the GHZ - and Cluster-states.
Furthermore, a protocol for sequential generation of time-bin entangled photons will
be review along with a paragraph addressing the obstacles towards entanglement
verification.

• Chapter 4 : A theoretical and experimental characterization of the Time-bin Interfer-
ometer is presented, with focus on its application towards the generation of photonic
qubits. The central figures of merit are derived, relating the main working principles
of the interferometer to the entanglement protocol.

• Chapter 5 : The properties of the optical excitation pulse will be investigated, followed
by a characterization of the single-photon source. The latter includes an estimation
of the single-photon purity using photon statistics together with an analysis of the
indistinguishability based on two-photon interference.

• Chapter 6 : The final conclusion and outlook is presented.
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Chapter 2

Theoretical Background of the
Physical System

This chapter seeks to give an introduction to a particular set of single-photon emitters,
namely solid-state quantum dots (QDs). The latter is embedded in a photonic crystal
waveguide which constitutes the physical system of the spin-qubit utilized for the entan-
glement protocol presented in this work. The advantageous properties of the photonic
environment will be addressed along with techniques to excite and charge the QD. The
final sections of this chapter includes a derivation of optical transition rules and spin ma-
nipulation schemes.

2.1 Introduction to Quantum Dots

A QD consists of several thousand atoms confined in a small dot-like shape spanning tens of
nanometers. Its optical properties resemble that of a single atom, resulting in the nickname
”artificial atom”. This work will investigate solid-state QDs comprised of Indium Arsenide
(InAs) dots embedded in Gallium Arsenide (GaAs). In comparison, both materials are
part of the III-V semiconductor group, having direct bandgaps and same zinc-blende crys-
tal structure [6].
The most common way of producing InGaAs QDs is through the Stranski-Krastanov
method, where so-called self-assembled QDs are grown. Employing molecular-beam epi-
taxy, a thin membrane of InAs, also known as the wetting layer, is transferred onto a flat
GaAs substrate [7]. After approximately 1.5 monolayers of InAs, the formation of small
InAs-islands randomly form on the GaAs surface [6], see Fig. 2.1 (a). This process is a con-
sequence of the mismatch in lattice constants between the two materials as InAs has a 7%
larger lattice constant than GaAs, which introduces strain to the local system. Eventually
islands of self-assembled QDs form, whereby the binding energy is minimized. Stranski-
Krastanov QDs are generally pyramid-shaped with spatial-dimensions ranging from 1− 10
nm in height and 10 − 70 nm in-plane. Due to different bandgap energies between the
QD and its surrounding medium, quantum confinement of electrons is achievable, yielding
discrete energy levels along the growth/z-direction, see Fig. 2.1 (b). This is analogous to
the well-known finite potential well. Typically, the wavelength of the low-energy transition
of InAs dots are around 850-1000 nm, depending on the size and specific composition [5].
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2.1. INTRODUCTION TO QUANTUM DOTS

Protecting the QDs from oxidation and unwanted interaction with the environment, a cap-
ping layer of GaAs is grown on top. Finally, the system is embedded into a p-i-n diode
structure, placing doped layers above and below the sample, allowing an electric field to be
applied across the QD [7]. This enables both deterministic charging of the QD and tuning
of resonance frequency due to the Quantum-confined Stark effect [8]. For good coherence
properties, most experiments using QDs are carried out at liquid helium temperatures (≈
4 Kelvin), thus reducing thermal noise including the suppression of phonon interactions.
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Figure 2.1: (a) Quantum dot consisting of a InAs dot embedded in GaAs. The flat layer in
between GaAs is the wetting layer (WL). (b) The formation of a potential well with discrete
energy levels in both the conduction- and valence-band due to the difference in bandgap-
energy between GaAs and InAs. ABB- and resonant-excitation illustrated by the blue and
red arrow, respectively. The former excites an electron residing in the surrounding material
and decays non-radiatively into the potential well. In both cases, a photon is emitted upon
recombination. Illustration on the left from Ref. [9], with slight modifications.

2.1.1 Excitation and Charging of Quantum Dots

Optical excitation of a QD can be achieved through various techniques, depending on the
frequency of the incoming light. In the case of an incident photon with a frequency match-
ing the energy difference between the valence- and conduction band, resonant excitation
is achievable, see Fig. 2.1 (b). During this process, an electron residing in the valence
band is excited to the lowest conduction band, creating an electron–hole pair [5]. Upon
recombination a photon is emitted, a process know as resonance fluorescence (RF). Due
to the larger bandgap energy of GaAs, the emitted photon can propagate freely through
the material. Increasing the excitation frequency further, the QD is excited to a higher
energy state, i.e. an excited excitonic state - a process known as quasi-resonant excitation
(or sometimes p-shell excitation - analogous to the convention in atomic physics).
Finally an above-band-gap (ABB) laser can be employed, shown as the blue arrow in Fig.
2.1 (b). Here the laser-frequency is comparable with the bandgap energy of the surrounding
material (GaAs in this case), thus exciting a nearby electron. Through non-radiative decay
the electron eventually falls back into the potential well of the QD.
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2.1. INTRODUCTION TO QUANTUM DOTS

The creation of an electron–hole pair is known as a neutral exciton X0, having lifetimes, i.e.
the average time before recombination, of approximately 1 ns in bulk [10]. Both ABB- and
resonant-excitation will be utilized for the entanglement protocol presented in this thesis.

Next to consider is the charging of a neutral QD, i.e. a system containing fully occu-
pied states in the valence band and an empty conduction band.
Loading the neutral QD with an additional electron in the conduction band, makes the
system negatively charged. Through optical excitation, one may excite an additional elec-
tron to the conduction band, creating a negative trion X−, consisting of two electrons and
a hole. Likewise, the system becomes positively charged, if an electron is removed from
the valence band of a neutral QD. This results in the creation of a positive trion X+ upon
excitation, composed of two holes and an electron. Experimentally, this can be realized
through the use of an ABB-laser and tuning the bias voltage VBias across the p-i-n diode
structure, briefly introduced in previous section.
A detailed description of the diode structure is beyond the scope of this thesis, however
the main idea in regards to QD charging can be understood by considering Fig. 2.2 (a).
Here, the energy level of the conduction band can be adjusted with respect to the Fermi
surface, by altering the bias voltage VBias across the QD [8]. Thus, lowering the conduction
band below the Fermi energy, enables a single electron to occupy the conduction band,
whereby the QD becomes negatively charged. Due to the Coulomb force additional elec-
trons are repelled, a phenomenon known as Coulomb Blockade [8]. However, increasing the
bias voltage further and thereby overcoming the coulomb blockade, the QD can be charged
with additional electrons. The same principle applies for positive charging, except the bias
voltage is lowered instead, thus raising the valence band above the Fermi energy level.
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Figure 2.2: (a) Charging scheme for a QD in a p-i-n diode structure. The QD is neutral,
when no external voltage is applied. Tuning the bias voltage VBias, and thereby altering
the energy bands in respect to the Fermi energy level EF , allows charging of the QD. (b)
Photoluminescence spectrum from the QD as a function of the applied bias voltages. The
positive trion X+ under consideration in this thesis can be optically excited in the range
of VBias ≈ 1.1 − 1.17 V, emitting photons at wavelengths around 945 nm. Figure (b) is
reproduced from Supplementary Material of Ref. [11], with slight modifications.
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2.1. INTRODUCTION TO QUANTUM DOTS

Figure 2.2 (b) shows the photoluminescence from the QD utilized in this thesis, where
the QD is excited by a laser tuned to its p-shell resonance at 924.4 nm1. Dependent on the
applied bias voltages, the spectrum of the photoluminescence changes. Looking closely, four
distinct plateaus emerge, three of them being of interests to the charging scheme discussed
above. Centered around VBias ≈ 1.2 V the X0 appears, while the X+ (X−) becomes visible
for lower (higher) voltages. Due to a larger effective dephasing time T ∗2 , the hole-spin, that
is X+, constitutes the physical system used for the entanglement protocol studied in this
work2. A further investigation of the X+ properties will be presented in Section 2.2.1.

2.1.2 Optical Transition and Selection Rules

Utilizing a QD as a single-photon source, requires knowledge about the optical transitions
and their respective selection rules. As a result, a slightly more comprehensive description
of the valence- and conduction-band is required.
In most III-V semiconductors the valence band is split into three degenerate sub-bands at
the Γ-point, i.e. for wavevector ~k = 0. Each band is defined by its total angular momentum
J and the corresponding z-projection Jz. Thus, transitions to the lowest conduction (C )
band (J = 1/2, Jz = ±1/2) are possible from

(i) The Heavy-hole (HH ) band (J = 3/2, Jz = ±3/2),

(ii) The Light-hole (LH ) band (J = 3/2, Jz = ±1/2),

(iii) The Split-off (SO) band (J = 1/2, Jz = ±1/2),
which are all depicted in Fig. 2.3. As a consequence of the spin-orbit interaction, the energy
of the SO-band is suppressed by the spin-orbit splitting energy ∆SO, thus partially lifting
the degeneracy3 [6]. In the following, the SO-band will be neglected, since it is non-crucial
for the further analysis.

Figure 2.3: Bandstructure for a QD as a function of the energy E and wavevector ~k. The
maximum (minimum) of the valence (conduction) band are located at the Γ-point, i.e. at
~k = 0. The degeneracy of the valence bands are lifted due to the spin-orbit splitting energy
∆SO and the strain induced in the QD, ∆HH−LH .

1See supplementary material in Ref. [11] for more information.
2Experiments reveal that the electron spin is more sensitive to the nuclear spin bath, having T ∗2 -times

of just a few nano-seconds [6].
3According to Ref. [12], the spin-orbit splitting energy is in the order of ≈ 0.34 eV for GaAs.
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2.1. INTRODUCTION TO QUANTUM DOTS

The remaining two bands (HH and LH ) are degenerate in bulk, but due to the induced
strain and strong vertical confinement in the QD, the degeneracy is lifted by ∆HH−LH > 10
meV [13], lowering the energy of the light-hole band as shown in Fig. 2.3. Thus, the mini-
mal energy transitions arise from the heavy-hole band located nearest to the Fermi level, to
the lowest conduction band. However, a small coupling to the light-hole band may occur,
known as hole-mixing4.

In order to derive the optical selection rules, the electron (or hole) wavefunction is re-
quired. In a heterojunction, such as InGaAs QD embedded in GaAs, the wavefunctions can
be derived using the envelope function formalism [14].
In this formalism the electron/hole wavefunction contains a rapidly varying Bloch function
modulated by an envelope function, the latter obeying the effective mass equation. The
Bloch functions arise from the periodic potential in the crystal lattice, while the envelope
function is a result of a slowly varying perturbation of the crystal lattice potential [5]. De-
noting the envelope function |Fn〉 and the Bloch function |un,k〉, the wavefunction of an
electron (or hole), is given by

|ψn〉 = |Fn〉 |un,0〉 |αn〉 , (2.1.1)

where the Bloch function is evaluated at ~k = 0, |αn〉 is the spin-state of the electron/hole
and the subscript n = {c, v} denotes the conduction- and valence-band, respectively.
Estimating the shape, i.e. the symmetry or parity, of the Bloch functions is sufficient in
regards to the selection rules. The Bloch functions possesses the same symmetry as the
atomic orbitals, meaning that the conduction band is formed from s-type orbitals (i.e. even
functions) while the valence band is formed from a linear combination of p-type orbitals [5].
Defining the electron’s wavevector to be oriented along the z-direction, the Bloch functions
(incl. spin-state) for the HH- and conduction-band are

|uHH,0〉z |αv〉 = |J = 3/2, Jz = 3/2〉 |↑〉 = − 1√
2

(|ux〉+ i |uy〉) |↑〉 , (2.1.2)

|ūHH,0〉z |ᾱv〉 = |J = 3/2, Jz = −3/2〉 |↓〉 = 1√
2

(|ux〉 − i |uy〉) |↓〉 , (2.1.3)

|uc,0〉z |αc〉 = |J = 1/2, Jz = 1/2〉 |↑〉 = |us〉 |↑〉 , (2.1.4)

|ūc,0〉z |ᾱc〉 = |J = 1/2, Jz = −1/2〉 |↓〉 = |us〉 |↓〉 , (2.1.5)

where |us〉 denotes functions with even parity in all directions, while |ux〉 and |uy〉 expresses
odd parity in the x/y-direction. Furthermore, |αn〉 and |ᾱn〉 indicate spin-up and spin-down,
respectively.
In the dipole approximation, the minimal-coupling Hamiltonian inducing optical transitions
can be written as [5]

Ĥ(~r0, t) = − q

me
p̂ · ~A(~r0, t), (2.1.6)

where p̂ = −i~∇ is the momentum operator and ~A(~r0, t) is the vector potential of the E-
field evaluated at position ~r0. Furthermore, q is the elementary charge and me the electron

4Hole-mixing will briefly be discussed at the end of this section. Otherwise, it will be neglected through-
out this thesis.
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2.1. INTRODUCTION TO QUANTUM DOTS

rest mass. The transition between two states is therefore given by

〈ψf | Ĥ(~r0, t) |ψi〉 ∝ 〈Ff |Fi〉 〈uf | p̂ · ~A(~r0, t) |ui〉 〈αf |αi〉 (2.1.7)
= 〈Ff |Fi〉 ~A(~r0, t) · 〈uf | p̂ |ui〉 〈αf |αi〉 , (2.1.8)

where the slowly varying envelope function is unaffected by the momentum operator, hence
only contributes to the transition amplitude. From Eq. 2.1.8 a general set of optical
selection rules appears

(i) The Envelope functions must have same parity,

(ii) The Bloch functions must have opposite parity,

(iii) Spin most remain unchanged.

In order to derive the specific selection rules for a given state, the matrix element 〈uf | p̂ |ui〉
requires further investigation. Thus, a few symmetry relations and definitions regarding the
momentum operator p̂ acting on the Bloch functions are useful. They can be summarized
to [12]

(1) 〈us| p̂i |uj〉 = 0, for i 6= j, (2.1.9)

(2) 〈us| p̂ |ui〉 = 〈us| p̂i |ui〉 ≡ P, (2.1.10)

(3) 〈us| p̂ |ūi〉 = 0, (2.1.11)

where i = {x, y, z} and P is the momentum matrix element, a quantity defined by the bulk
semiconductor. The second and third relation are directly related to (ii) and (iii) specified
in the general selection rules. The specific optical transition rules for a given spin-state
residing in the valence band, can now be derived.
For an electron with spin-up |↑〉 residing in the HH -band, the optical transition rule to the
conduction band is therefore given by

z〈αc, uc|Ĥ(~r0, t) |uHH , αv〉z ∝ −
1√
2
〈↑| 〈us| p̂(|ux〉+ i |uy〉) |↑〉 (2.1.12)

= − 1√
2

(〈us| êxp̂x + êyp̂y + êz p̂z(|ux〉+ i |uy〉)) (2.1.13)

= − 1√
2

(〈us| êxp̂x |ux〉+ 〈us| iêyp̂y |uy〉)) (2.1.14)

= − P√
2

(êx + iêy) , (2.1.15)

where êi={x,y,z} are Cartesian units vectors. From Eq. 2.1.15, the transition has a circularly
polarized dipole moment. In this particular case, the polarization is left-handed, σ+.
For spin-down |↓〉 the matrix element takes the form

z〈ᾱc, ūc| Ĥ(~r0, t) |ūHH , ᾱv〉z ∝
P√

2
(êx − iêy) , (2.1.16)
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2.1. INTRODUCTION TO QUANTUM DOTS

resulting in right-handed polarization, σ−. Additionally, due to the third selection rule
regarding spin-conservation, the following two transitions are not allowed

z〈ᾱc, ūc| Ĥ(~r0, t) |uHH , αv〉z = z〈αc, uc| Ĥ(~r0, t) |ūHH , ᾱv〉z = 0, (2.1.17)
since 〈↓|↑〉 = 〈↑|↓〉 = 0.

Until now, the derivation of the optical selection rules has been restricted to neutral exci-
tons. However, as discussed in Section 2.1.1, charging of QDs can be realized through e.g.
ABB-excitation. As a consequence of the Pauli exclusion principle, two quasi-particles with
same spin cannot occupy the same state in either the conduction or valence band.
Thus, in the ideal case where no hole-mixing occurs, the selection rules from the HH-band
can be summarized to

(i) |↑〉z
σ+
←→ |↑↓,⇑〉z and |↓〉z

σ−←→ |↑↓,⇓〉z , (2.1.18)

(ii) |⇓〉z
σ+
←→ |⇑⇓, ↓〉z and |⇑〉z

σ−←→ |⇑⇓, ↑〉z , (2.1.19)
for (i) an electron or (ii) a hole residing in the heavy-hole valence band [6], where ⇑ (⇓)
denotes hole spin-up(down). Hence, only vertical transitions are allowed, while the diago-
nal/cross transitions are suppressed, see Fig. 2.4 (a).
As a final remark, it should be noted, that including the LH-component from the valence
band, the diagonal transitions given by

|↑〉z ←→ |↑↓,⇓〉z and |↓〉z ←→ |↑↓,⇑〉z , (2.1.20)
are weakly allowed, due to hole-mixing [6]. In addition to this, the Zeeman splitting energy
∆Zm, induced by an external magnetic field, is much smaller than the heavy-light-hole
splitting (∆Zm � ∆HH−LH) for any realistic experiment [13]. It can thus be assumed,
that hole-mixing in independent of the magnitude of the B-field. A further analysis of
hole-mixing is beyond the scope of this thesis, and henceforth only transitions from the
HH-band will be considered.

|⇑⇓,↑〉

σ-σ+

|⇓〉

|⇑〉

|⇑⇓,↓〉

∆e

∆h

z

z

z

z

(a) Faraday geometry.

|⇑⇓,↑〉

yy

|⇓〉

|⇑〉

|⇑⇓,↓〉

∆e

∆h

y

y

y

y

x

(b) Voigt geometry.

Figure 2.4: Optical selection rules for a positive trion X+, with hole(electron) energy
splitting ∆h(∆e), due to an external magnetic field. (a) Selection rules in Faraday geometry,
where only the vertical transitions are allowed, using circular polarized light. (b) Selection
rules in Voigt geometry ( ~B = By), where the both vertical and diagonal transitions are
accessible by y- and x-polarized light, respectively.
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2.2. PHOTONIC NANOSTRUCTURES

Optical Selection Rules in Voigt Geometry

So far, the optical selection rules were derived with an underlying assumption of an out-of-
plane magnetic field oriented along with the Bloch functions, i.e. in the z/growth-direction
of the QD. This configuration is also known as Faraday geometry, lifting the otherwise
degenerate electron (or hole) pairs, due to the Zeeman-effect. However, the optical selection
rules depend on the orientation of external magnetic field. For the purposes of this work,
an in-plane magnetic field will be utilized, known as Voigt geometry. More precisely, the
B-field is oriented in the y-direction whereby the eigenstates of the spin in the y-basis
becomes a mixture of the eigenstates in the z-direction [6].
Consequently, the allowed transitions for a hole spin residing in the HH -valence band are
expressed by

|⇓〉y
y←→ |⇑⇓, ↓〉y and |⇑〉y

y←→ |⇑⇓, ↑〉y , (2.1.21)

for the vertical transitions, whereas the diagonal transitions are given by

|⇓〉y
x←→ |⇑⇓, ↑〉y and |⇑〉y

x←→ |⇑⇓, ↓〉y , (2.1.22)

using the formalism developed in previous section. These transitions are depicted in Fig.
2.4 (b), along with the energy level diagram of the X+.

In summary, the optical transitions rules in Voigt geometry differ from Faraday geometry
in two distinct ways. Firstly, the transitions are no longer accessible by circular polarized
light, but linear polarization has to be applied instead. Secondly and most importantly, the
diagonal transitions are now allowed. The latter will come in handy once spin-flip processes
has to be implemented, which will be discussed in Section 2.3, since it plays an important
role in regards to the pulse sequence utilized for spin-photon entanglement.

2.2 Photonic Nanostructures

A central advantage of self-assembled semiconductor QDs is the efficient integration into
photonic nanostructures. Numerous photonic nanostructures exists, including photonic cav-
ities and nanophotonic waveguides - the latter being of interest in this work. Embedding
semiconductor QDs into nanophotonic waveguides enables manipulation of light-matter in-
teractions and routing of photons [5], which forms a promising system for many applications.

The projected Local Density of Optical States (LDOS) is a central quantity affecting the
local light-matter interaction, including the spontaneous emission rate. In general, the den-
sity of optical states is a measure of optically accessible modes in a certain infinitesimal
frequency range, i.e. between ω and ω + dω. The LDOS is highly dependent on the orien-
tation of the transition dipole moment êd and the position of the emitter ~r0 in respect to
the photonic nanostructure. Mathematically, the LDOS defines the total number of optical
states at frequency ω, summarized over all available modes k with eigenfrequency ωk, which
takes the form

ρ(~r0, ω, êd) =
∑

k
|êd · ~u∗k(~r0)|2 δ(ω − ωk), (2.2.1)

10



2.2. PHOTONIC NANOSTRUCTURES

where ~uk(~r0) denotes normalized Bloch functions in which the electric field is expanded [5].
From Eq. 2.2.1, it becomes apparent that the LDOS is conditioned on the dipole moment
projected onto the direction of the electric field - hence the name. Based on the LDOS, an
expression for the spontaneous decay rate can be derived, which is proportional to

γrad(~r0, ω, êd) ∝ |〈u∗HH | r |uc〉|
2 |〈F ∗HH |Fc〉|

2 ρ(~r0, ω, êd), (2.2.2)

where 〈u∗HH | r |uc〉 is the dipole matrix element between the conduction- and HH -band,
while F denotes the slowly-varying envelope functions, previously introduced in Section
2.1.2. The resulting emission spectrum becomes Lorentzian, with a central frequency ω and
a Full-Width-of-Half-Maximum (FWHM) of γrad.
Thus, the ability to tailor and engineer photonic nanostructures and thereby modifying
the environment, i.e. LDOS, effectively alters the radiative process of the emitter. This
phenomenon is also known as the Purcell Effect and its significance to the decay rates of
the X+ will become apparent in the following section.

2.2.1 Photonic Crystal Waveguide

In general, a photonic crystal (PhC) consists of an inhomogeneous dielectric medium with
a periodic structure, effectively varying the refractive index on length scales determined by
the optical wavelength [5]. Typically, photonic crystals are made from semiconductor mate-
rials, e.g. Gallium Arsenide (GaAs) or Silicon (Si), having large refractive indices, n ≈ 3.5
[5]. Introducing periodic pattern of air holes (nair ≈ 1) into a N -dimensional (N = {1, 2, 3})
structure of e.g. GaAs, causes Bragg reflection - mimicking that of a Bragg mirror. Thus,
a certain range of frequencies are prevented from propagating, resulting in the creation of a
photonic bandgap. A more comprehensive description of PhCs can be found in Section III
of Ref. [5], however, this work will be restricted to a two-dimensional PhC - more precisely
a membrane of GaAs confined to the xy-plane, and hence no periodicity in the z-direction.

Introducing a 1D line-defect, i.e. a row of missing air holes, in the GaAs PhC membrane re-
sults in a Photonic Crystal Waveguide (PCW). The PCW allows for discrete modes, residing
within the photonic bandgap and thus confined due to the Bragg reflection, to propagate
along the line-defect. Placing an emitter inside the PCW is thus advantageous, since it
enables photon routing whilst enhancing the waveguide mode coupling, due to the photonic
environment.
The corresponding coupling efficiency is generally described by the so-called β-factor. Let-
ting γWG be the rate of spontaneous photon emission into the desired waveguide mode, the
β-factor reads

β(ω) = γWG

γWG + γLoss
, (2.2.3)

where γLoss = γng+γnrad is the total decay rate into undesired modes [5]. Here γng denotes
the decay rate into non-guided modes, while γnrad is the rate of intrinsic non-radiative
recombination. Near unity β-factors have been demonstrated for PCWs [15], which also
constitutes the physical setup enclosing the QD studied in this work - the topic of the
following section.
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2.2. PHOTONIC NANOSTRUCTURES

Positive Trion in a PCW

The QD used in this study is an InGaAs dot manufactured by the Stranski-Krastanov
method which is kept at 4 K using an attoDRY 1000 Cryostat from Attocube [16]. This
cryostat is equipped with vector magnet, whereby each component of the magnetic field
can be controlled individually5. In other words, one can choose between Faraday- or Voigt-
geometry by adjusting the vector magnet. Furthermore, one may alter the bias voltage due
to the p-i-n diode structure and hence charge the QD. Experimentally however, it turns out
that solely altering the bias voltage is not sufficient for the creation of X+. An ABB-laser
has to be employed, once the bias voltage is tuned to the right interval, recall Fig. 2.2
(b). In this particular case, the ABB-laser is tuned to a wavelength of 830 nm and applied
over a duration of 100 ns in order to initialise X+ whereby the electron closet to the Fermi
surface is removed from the local system.

The photonic nanostructure, in which the QD is embedded, consists of a two-sided PCW
with grating couplers at each end, see Fig. 2.5. The gratings enables in- and out-coupling
of the light propagating within the PCW. However, for the purposes of this work, the QD
is solely excited from above, i.e. free space excitation, focusing the laser directly onto the
QD. The corresponding selection rules for a positively charged QD in Voigt geometry has
already been studied in Section 2.1.2, but the effects of the PCW is yet to be investigated.
This has been done by M.H. Appel et al. [11] (2021), examining the spin-photon interface of
this specific QD. Thus, an extensive treatment on the properties and effects of the photonic
environment will be omitted here, as it is beyond the scope of this study.
Nonetheless, it is worth discussing one crucial figure of merit, namely the cyclicity - here de-
fined as the ratio between the decay rates of the x- and y-polarized linear dipoles, C = γy/γx.
In bulk these are identical, yielding a cyclicity of C = 1. However, as stated in Section
2.2 the photonic environment of the PCW may selectively enhance or suppresses the decay
rates - a property utilized in this work.

Figure 2.5: Scanning electron microscope image of a two-sided PCW, with grating couplers
at each end. The QD is excited from free space, while the QD fluorescence is collected by
the grating coupler on the left. The ideal orientation of the linear dipoles are shown in the
circular insert. Note, the color-coding of the linear dipoles is equivalent to the transitions
shown in Fig. 2.4 (b). Image: Ref. [11], with slight modifications.

5A total of ±5 T in the z-direction (out-of-plane) and ±2 T in x- and y-direction (in-plane) can be
achieved, while no more than a total of 2 T can be reached if either the x- or y-component is active.
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As it will become apparent in Section 2.3, Voigt geometry is required in order to perform
coherent spin rotations. As a consequence, vertical and diagonal transitions are accessible,
as opposed to Faraday geometry. Thus, if one wishes to drive a specific transition, without
the population decaying to an unwanted state, a high cyclicity is necessary.
From Ref. [11], the cyclicity of X+ is estimated to C(+) = γy/γx ≈ 15 in Voigt geometry,
making it a well-suited candidate for the entanglement protocol presented in the next Chap-
ter6. Along with the cyclicity, several other important properties of X+ are summarized in
Table 2.1, which will be introduced in the chapters to come.

Properties of Charged QD in PCW X+

Cyclicity, C = γy/γx C(+) = 14.7± 0.2
Lifetime of Charged QD, Γ Γ(+) > 16 µs
Radiative Decay Rate, γ0 γ

(+)
0 = (3.07± 0.06) ns−1

Effective Dephasing Time, T ∗2 T
∗(+)
2 = (21.4± 0.7) ns

Central Frequency, ν0 ν
(+)
0 = 317.23 THz

Linewidth (FWHM), ∆ν0 ∆ν(+)
0 = 1045 MHz

Ground state splitting, ∆h ∆(+)
h = 7.29 GHz

Spin Pumping Fidelity, FSP F
(+)
SP = 98.6%

Spin Rotation Fidelity, FSR,π F
(+)
SR,π = 91%

Table 2.1: This table provides an overview of the properties of the X+ embedded in a
PCW with an in-plane magnetic field in the y-direction. All values are from Ref. [11],
characterizing the specific QD utilized in this thesis.

2.3 Spin Manipulation and Dynamics

In this section, the main focus will be directed towards the manipulation and dynamics
of the hole-spin, which constitutes the ”stationary” qubit employed in the spin-photon
entanglement protocol presented in the following chapter. In the context of qubits, the
hole-spin |⇑〉 (|⇓〉) corresponds to logical |0〉 (|1〉) or vice versa. Thus, the state describing
the spin-qubit can be expressed by a superposition between the two ground states of the
X+, taking the form

|ψ〉 = cos(θ/2) |⇑〉+ sin(θ/2)eiφ |⇓〉 , (2.3.1)

where 0 ≤ θ ≤ π alters the probability amplitude and 0 ≤ φ < 2π defines the relative phase
between the two states. Geometrically, a two-level quantum system is typically represented
by a vector mapping out a sphere of unit radius - the so-called Bloch sphere, see Fig. 2.6.
The surface of the sphere corresponds to pure states, whereas the interior represents mixed
states7.

6See Section 3.3 for the specific protocol.
7Pure- and mixed-states will be introduced in Section 3.1.
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z

y

|⇓〉
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θ
|ψ〉

|⇑〉

|⇑〉+ |⇓〉
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|⇑〉- |⇓〉
√2

|⇑〉+ i|⇓〉
√2

|⇑〉- i|⇓〉
√2

Figure 2.6: A geometrical representation of the two-level spin-state using the Bloch sphere
(or sometimes in the context of optics, Poincaré sphere). The sphere has unit radius and
the total quantum state is given by |ψ〉, uniquely defined by θ and φ.

Crucial for any qubit is the ability to initialize, manipulate and read-out the given state.
The focus of this section is the realization of these processes, through the use of Optical Spin
Pumping (OSP) and Raman transitions. The former will be utilized for spin initialization
and read-out, while the latter enables spin rotation and thereby alter the amplitude and
phase parameter by rotating θ and φ, respectively.

2.3.1 Optical Spin Pumping

In this section the concept behind optical spin pumping will be presented, with special focus
on a positively charged trion X+ embedded in a PCW, since this constitutes the physical
system under consideration in this work. In Section 2.1.2 the optical transition rules were
discussed for both Faraday and Voigt geometry, the latter being employed in this thesis.

Applying an in-plane magnetic field, i.e. Voigt geometry, makes the vertical transitions
accessible by linear polarized light, while splitting the hole and trion levels due to the Zee-
man effect. Consequently, a four-level system appears, where the resulting energy levels
and transitions can be summarized by Fig. 2.7.

|⇑⇓,↑〉

γy

ω1

γy

ω2

γx

|⇓〉

|⇑〉

|⇑⇓,↓〉

∆e

∆h

Figure 2.7: Optical spin pumping for a positive trion X+ in Voigt geometry, with the
magnetic field oriented in the y-direction. Driving the low-energy transition (red) eventually
shelves the hole-spin in |⇓〉, as a result of a decay via the diagonal (green) path.
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Resonantly driving the low-energy transition, |⇑〉 → |⇑⇓, ↑〉, by y-polarized light8 pop-
ulates the trion state. Due to the cyclicity C = γy/γx ≈ 15 induced by the PCW, the trion
state |⇑⇓, ↑〉 is most likely to decay back to |⇑〉 with the decay rate γy. However, driving the
transition until the trion decays via |⇑⇓, ↑〉 → |⇓〉 effectively creates a three-level Λ-system,
where the |⇓〉 acts as a dark state. Ideally, the state is now shelved from any further in-
teraction and thus not accessible by the pumping laser. In similar way, pumping the high
energy transition shelves the opposite spin-state |⇑〉. Measuring the resonance fluorescence
from the driven transition, the timescale of the spin-pumping process can be extracted9.
Experimentally, OSP can be utilized for spin initialization, which in this work results in
the hole-spin being prepared and initialized in |⇓〉. From Table 2.1, this technique can be
performed with close to unity probability.

2.3.2 Coherent Spin Rotation

The ability to control and manipulate the spin-state is an essential tool towards realizing the
entanglement protocol presented in this thesis. Thus, this section will give an introduction
to Raman transitions, utilized for optical spin control between two ground states. Starting
with a three-level Λ-system, the goal is to derive a scheme for which only the ground states
{|g1〉 , |g2〉} are coupled, whereby the excited state {|e〉} works as an auxiliary (or interme-
diate) state. It will be shown, that under the right conditions, the Λ-system can therefore
effectively be reduced to a two-level system. In the context of the positive trion, the two
ground states correspond to {|⇓〉 , |⇑〉}, while the excited state is given by {|⇑⇓, ↑〉}.
Using Raman transitions for coherent spin rotations, both the vertical and diagonal tran-
sitions are required in order to couple the ground states. Thus, it is convenient to work in
Voigt geometry, as it makes both transition types accessible10.

Raman Transitions

In the physical system, forming a Λ-configuration, the ground states {|g1〉 , |g2〉} are coupled
to the excited state {|e〉} via two optical fields with angular frequency ωgn . Both frequencies
are far-off detuned by ∆n compared to the resonance frequency ω0gn of each transition, thus
avoiding to drive the population into the excited state, see Fig. 2.8. As a consequence, the
spontaneous emission from the excited state can be ignored, as it otherwise would destroy
the quantum coherence [17]. Furthermore, it is assumed that the ground state splitting
∆g is much smaller than the optical transitions, ∆g � ωgn , whereby the detunings ∆n are
roughly equal, δ = ∆2 − ∆1 ≈ 0. For simplicity, the excited state energy is set to zero,
Ee = 0.

8With respect to the PCW-coordinates system defined in Section 2.2.1, Fig. 2.5.
9For the purposes of this work, a pumping laser is applied over a duration of 200 ns.

10See the final paragraph of Section 2.1.2 for the optical selection rules in Voigt geometry.
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|e〉

Ω2

|g1〉

|g2〉∆g

∆1 ∆2
δ

Ω1

ΩER
Figure 2.8: Raman transitions for optical spin control in a three-level Λ-configuration. Two
far-off detuned frequencies ωgn , each with a Rabi-frequency Ωn, couples to an intermediate
state |e〉. Given proper conditions, the system can be reduced to an effective two-level
configuration consisting of |g1〉 and |g2〉, coupled by an effective Rabi-frequency ΩER.

Under these assumptions, the evolution and dynamics of the system can be derived11.
Having two monochromatic lasers, each with angular frequency ωgn , the combined E-field
in the Dipole approximation12 is given by

~E(t) = E1cos(ωg1t)ε̂1 + E2cos(ωg2t)ε̂2 (2.3.2)
= ~E(+)(t) + ~E(−)(t), (2.3.3)

where ε̂n is the unit-polarization vectors of the two fields with amplitude En and ~E(±)(t)
is the positive/negative rotation parts of the E-field, taking the form

~E(±)(t) = 1
2

(∑
n

Ene
(∓iωgn t)ε̂n

)
. (2.3.4)

With the energy of the excited state being zero, the 3-level Λ-system is described by the
Free Emitter Hamiltonian expressed as

Ĥ0 = −~ω0g1
|g1〉 〈g1| − ~ω0g2

|g2〉 〈g2| . (2.3.5)

Furthermore, the coupling between the emitter and optical field is given by the Interaction
Hamiltonian, which in the dipole approximation and Rotating-wave approximation13 (RWA)

11The following derivation is partially based on Section 6.1 in Ref. [17].
12In the dipole approximation, the spatial dependence of the optical field is ignored. This assumption is

based on the optical wavelength being much larger than the size of the atom(or, in this case the QD), and
thus any variations of the optical field over the length-scale of the atom is neglected.

13In the case where the resonance frequency ω0gn of the emitter and the optical frequency of the input
field ωgn fulfills the following requirement;

∣∣ωgn − ω0gn

∣∣ � ωgn + ω0gn , the rotating-wave approximation
can be assumed. In the context of the interaction between emitter, i.e. dipole operator d(±) ∼ e∓iω0gn t,
and optical field, the fast oscillating terms, i.e. e±i(ωgn +ω0gn )t are ignored (their average value set to zero),
while the slow oscillation terms, e±i(ωgn−ω0gn )t are kept. Physically, the fast oscillating terms corresponds
to absorption(emission) of a photon as the emitter decays(is excited). Thus, in Eq. 2.3.6 the two terms
d̂(±) · Ê(±) are left out.
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takes the form

ĤI = −d̂ · Ê

≈ −
(
d̂(+) · Ê(−) + d̂(−) · Ê(+)

)
,

(2.3.6)

where d̂ = −qr is the dipole operator, expressed by the charge q and position r̂. As for the
E-field, the dipole operator can be decomposed to a positive and negative part

d̂ = d̂(+) + d̂(−)

=
∑
n

〈gn| d̂ |e〉 σ̂gn,e +
∑
n

〈gn| d̂ |e〉 σ̂†e,gn ,
(2.3.7)

where σ̂gn,e = |gn〉 〈e| is the atomic annihilation operator and σ̂†e,gn = |e〉 〈gn| the creation
operator. Thus, the interaction Hamiltonian can be expressed by

ĤI =
∑
n

~Ωn

2
(
eiωgn tσ̂gn,e + e−iωgn tσ̂†e,gn

)
, (2.3.8)

where Ωn = − 〈e|d̂·ε̂n|gn〉En~ is the Rabi-frequency of the nth transition. This parameter
describes the strength of the emitter-field interaction and denotes the angular frequency
whereby the population oscillates between two states.
Finally, transforming into the rotating frame of the laser field, for which the E-field trans-
forms according to Ẽ(±)

n ≡ ~E
(±)
n e±iωgn t, enables the free emitter Hamiltonian to be written

as
H̃0 = ~∆1 |g1〉 〈g1|+ ~∆2 |g2〉 〈g2| , (2.3.9)

whereby the energy of the ground states are increased by a factor of ~ωgn . Consequently,
the interaction Hamiltonian simplifies to

H̃I =
∑
n

~Ωn

2
(
σ̂gn,e + σ̂†e,gn

)
. (2.3.10)

Thus, the combined Hamiltonian of the system, expressed in the rotating frame of the
applied field, takes the form

H̃ = H̃0 + H̃I

= ~∆1 |g1〉 〈g1|+ ~∆2 |g2〉 〈g2|+
∑
n

~Ωn

2
(
σ̂gn,e + σ̂†e,gn

)
.

(2.3.11)

The stage is now set, to look at the time-evolution of the system, by solving the time-
dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H̃ |Ψ(t)〉 , (2.3.12)

for which |Ψ(t)〉 represents the total state given by

|Ψ(t)〉 = cg1(t) |g1〉+ cg2(t) |g2〉+ ce(t) |e〉 , (2.3.13)
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where cn(t) are the time-dependent probability amplitudes for each eigenstate. Inserting
the total Hamiltonian into the time-dependent Schrödinger equation gives

i~
∂

∂t
|Ψ(t)〉 = ~∆1cg1(t) |g1〉+ ~∆2cg2(t) |g2〉

+ ~Ω1
2 (ce(t) |g1〉+ cg1(t) |e〉) + ~Ω2

2 (ce(t) |g2〉+ cg2(t) |e〉) .
(2.3.14)

Projecting onto with 〈g1|, 〈g2| and 〈e|, the equations of motion are given by

i~
∂

∂t
cg1(t) = ~Ω1

2 ce(t) + ~(∆1 −∆)cg1(t), (2.3.15)

i~
∂

∂t
cg2(t) = ~Ω2

2 ce(t) + ~(∆2 −∆)cg2(t), (2.3.16)

i~
∂

∂t
ce(t) = ~Ω1

2 cg1(t) + ~Ω2
2 cg2(t)− ~∆ce(t), (2.3.17)

where all energies are shifted by a factor of −~∆, where ∆ ≡ (∆1 + ∆2)/2. In the limit
of |∆| � Ωn, the excited state can adiabatically be eliminated, i.e. one may assumed that
ċe(t) = 0. Consequently, Eq. 2.3.17 can be expressed as

ce(t) = Ω1
2∆cg1(t) + Ω2

2∆cg2(t). (2.3.18)

Removing the energy shift of −~∆, the equations of motion can be reduced to

i~ċg1(t) = ~Ω1
2 ce(t) + ~∆1cg1(t)

= ~ΩER

2 cg2(t) + (~ωS,1 + ~∆1) cg1(t),
(2.3.19)

and

i~ċg2(t) = ~Ω2
2 ce(t) + ~∆2cg2(t)

= ~ΩER

2 cg1(t) + (~ωS,2 + ~∆2) cg2(t),
(2.3.20)

which now resemble that of a two-level system. Furthermore, ΩER is the Effective Rabi
frequency (or sometimes Raman frequency), while ωS,n is the optical AC-Stark shift

ΩER = Ω1Ω2
2∆ , ωS,n = Ω2

n

4∆ . (2.3.21)

As a result of the incident field, the energy levels are slightly shifted due to the Stark effect.
Taking this into account, the effective two-level system is said to be in resonance, if the
following condition is satisfied

δER ≡ δ + δS = 0, (2.3.22)
where δS = ωS,2 − ωS,1 denotes the effective detuning from the AC-Stark shift.
Finally, the equations of motion can hence be generated by the Effective Raman Hamilto-
nian, taking the form

ĤER =
∑
n

(~(∆n + ωS,n) |gn〉 〈gn|) + ~ΩER

2
(
σER + σ†ER

)
, (2.3.23)
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where σER = |g1〉 〈g2| and σ†ER = |g2〉 〈g1| is the Raman annihilation and creation operator,
respectively. Thus, given the proper conditions, a three-level Λ-system can effectively be
reduced to a two-level system. This technique can efficiently be employed for the coherent
spin rotations between the ground states |⇑〉 and |⇓〉. Previous studies has successfully
implemented this method into their experiments, revealing close to unity fidelities on π-
rotations with an effective Rabi-frequency of ΩER ≈ 150 MHz [18].

2.4 Summary

Various techniques and properties of the solid-state QD has be presented in this chapter. In
summary, the principles behind excitation and charging schemes has been review, followed
by a derivation of optical selection rules in different geometries, depending on the orientation
of the external magnetic field. The main focus has been directed towards a positively
charged trion state X+ embedded in a PCW. The latter enables high cyclicity in the order
of C(+) ≈ 15 between the low-energy transition |⇑〉 ↔ |⇑⇓, ↑〉 for an in-plane magnetic field,
i.e. Voigt geometry. In return, the diagonal transitions of the four-level energy diagram
are accessible, whereby coherent spin rotations can be implemented through the use of
Raman transitions. In short, the ability to control and manipulate the hole-spin while
utilizing the benefits of the photonic environment, i.e. the enhanced cyclicity, provides a
promising system towards realizing spin-photon entanglement. The latter is the subject of
the following chapter.
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Chapter 3

Quantum Entanglement

”I would not call that one but rather the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought.”[19]

— E. Schrödinger, 1935

In the quote above, Schrödinger is referring to the quantum mechanical phenomenon called
entanglement. In the following chapter the definition and applications of entanglement
will be reviewed. Furthermore, multi-partite entangled states will be introduced, includ-
ing Greenberger–Horne–Zeilinge (GHZ) and Cluster states. The experimental protocol for
multi-photon entanglement generation using a QD embedded into a nanostructure will be
presented, along with methods of certifying entanglement based on a limited number of
measurement settings.

3.1 Introduction to Quantum States

In quantum mechanics, a closed system is described by a state. Following Dirac notation,
a state is a vector, usually denoted |ψ〉, defined in the Hilbert space, H (or State space),
spanning the complex numbers, C.
In the case where a quantum system is completely known, the corresponding state is said to
be a pure state [20]. However, some quantum states are constructed by a statistical mixture
of pure state - also known as mixed states. A pure quantum states is thus represented by
a ray in the Hilbert space, while mixed states are described by the density matrix, ρ.

3.1.1 The Density Matrix

The density matrix (or density operator) is a useful tool to describe a system, where the
total state defining the entire system is only partially known. Suppose the system can be
decomposed into i-subsystems, each represented by |ψi〉 with a corresponding probability
pi, then the density matrix is defined as the sum over the outer product of the ensemble of
pure states {pi, |ψi〉}, which takes the form [20]

ρ ≡
∑
i

pi |ψi〉 〈ψi| , (3.1.1)
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3.2. QUANTUM ENTANGLEMENT AND MULTI-PARTITE STATES

where
∑
i pi = 1 for proper normalization. Any non-negative operator with unit trace

Tr[ρ] = 1, is a density operator [21]. From the definition of the density matrix, a system
described by a pure state fulfils the relation ρ2 = ρ. Using this formalism, it can be
determined if a system is in a pure- or mixed-state depending on the following criteria

Tr[ρ2] =
{

1 Pure state,
< 1 Mixed state.

(3.1.2)

The physical interpretation of the density matrix becomes more clear once the density
matrix elements ρn,m ≡ 〈n| ρ |m〉 are considered. Here, the diagonal elements ρn,m (for n =
m) provides the probability of being in the nth state, thus referred to as populations. On
the other hand, the off-diagonal elements ρn,m (for n 6= m) are known as coherences, as
they provide information about the relative phase between two different elements of the
density matrix [17].

The Reduced Density Matrix

In the analysis of a large quantum system, composed of multiple subsystem, it can often
be desirable to focus at a given subset of interest. Suppose two subsystems A and B makes
up a composite quantum system, spanning the Hilbert space H = HA ⊗HB, described by

ρAB = ρA ⊗ ρB, (3.1.3)

where ⊗ is the tensor product, then the reduced density matrix for system A takes the form

ρA ≡ TrB[ρAB] =
dB∑
j=1

(IA ⊗ 〈bj |) ρAB (IA ⊗ |bj〉) . (3.1.4)

where TrB is the partial trace over system B [20]. Furthermore, IA denotes the identity
operator of Hilbert space HA, while {|bj〉} are the basis vectors of subsystem B with the
dimensions dB = dimHB. Thus, this formalism provides a useful tool when investigating a
composite quantum system, where only a subsystem are to be examined.

3.2 Quantum Entanglement and Multi-Partite States

Quantum entanglement is often considered the ”most quantum-like” phenomenon in quan-
tum mechanics, having no classical analog. It can only be created, if the involving systems
interact with each other, and has many applications in the field of quantum information.
Perhaps some of the most notable applications include superdense coding ([22], [23]), quan-
tum teleportation [24] and quantum cryptography [25] e.g. quantum key distribution (QKD),
which in the area of quantum commutation traditionally involves Alice (the transmitter)
and Bob (the receiver). Each and every one of these subjects are very interesting, uncover-
ing new possibilities and technologies. This however, is unfortunately left to the reader to
explore, as it is outside the limits of this work1.

1For instance, see Ref. [4] or Ref. [20] for more information on the topics regarding Quantum Informa-
tion.
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3.2. QUANTUM ENTANGLEMENT AND MULTI-PARTITE STATES

Nevertheless, central to all these applications is the use of quantum entanglement between
various states. Thus, this section seeks to give an overview of both bipartite and multi-
partite entangled states, along with its properties - starting with the bare definition.

3.2.1 Definition of Quantum Entanglement

Quantum states are said to be entangled, if they are non-separable. In other words, given
two entangled subsystems A and B, quantum correlations will be demonstrated upon mea-
surement2. Mathematically, a bipartite quantum system of two pure states, |ψ〉A ∈ HA and
|ψ〉B ∈ HB, is thus entangled if and only if it cannot be written as a product state

|ψ〉AB = |ψ〉A ⊗ |ψ〉B , (3.2.1)

for |ψ〉AB ∈ HA ⊗HB. This definition can be extended to a more general statement, using
the density matrix formalism introduced in Section 3.1. Letting ρ(AB) denote the density
operator of a composite quantum system of two mixed states, it is said to be separable if
and only if it can be expressed as

ρ(AB) =
∑
i

piρ
(A)
i ⊗ ρ(B)

i , (3.2.2)

otherwise ρ(AB) is entangled [26]. This statement can be generalized to a N -partite state,
which is said to be fully separable if and only if

ρ =
∑
i

piρ
(1)
i ⊗ ...⊗ ρ

(N)
i , |ψ〉 = |ψ〉1 ⊗ ...⊗ |ψ〉N , (3.2.3)

for a mixed- and pure-state, respectively.
Furthermore, a pure bipartite quantum system is considered to be maximally entangled if
the reduced density operator of either subsystem is maximally mixed and hence proportional
to the identity operator [4]. An example of such states are the Bell states.

The Bell States

Perhaps the simplest and most renowned quantum states, containing two maximally entan-
gled qubits, are the four Bell states

∣∣Φ±〉AB = 1√
2

(|0A0B〉 ± |1A1B〉) , (3.2.4)

∣∣Ψ±〉AB = 1√
2

(|0A1B〉 ± |1A0B〉) , (3.2.5)

all being pure quantum states, i.e. the density matrix upholds ρ2
AB = ρAB. The reduced

density matrix however, is a mixed state as Tr[ρ2
{A,B}] < 1, meaning not all information can

be obtained about each subsystem A or B, as opposed to the complete system given by the
Bell states3 [20]. This counter-intuitive nature is yet an other striking feature of quantum
mechanics, revealing non-classical correlations of entangled quantum states.

2It should be noted, that even though two system are separable, that can still be correlated.
3See Appendix A.1 for a small derivation proving these claims.
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3.2. QUANTUM ENTANGLEMENT AND MULTI-PARTITE STATES

3.2.2 Multi-Partite Entangled Quantum States

Until now, entangled states involving only two particles has been considered. However,
numerous multi-partite entangled states can be constructed, like the W state4, Cluster
state and GHZ state. The focus in the thesis will be the generation of N -qubit Cluster-
and GHZ-states. Protocols has been proposed, employing multi-partite entangled states
such as the GHZ state for quantum communication [27] and quantum metrology [28], while
the Cluster states can be utilized for measurement-based quantum computation ([29], [30]).
These states are hence promising candidates for future applications in quantum information
processing.

Greenberger–Horne–Zeilinger (GHZ) State

The Greenberger–Horne–Zeilinger state (GHZ state) is a particular quantum state, which
involves N ≥ 3 subsystems. In the case of N qubits, the GHZ state takes the form

|GHZ(N)〉 = 1√
2

(
|0〉⊗N + |1〉⊗N

)
, (3.2.6)

where |0〉 and |1〉 represents the logical states of the qubits. Clearly, the simplest GHZ state
contains N = 3 qubits

|GHZ(3)〉 = 1√
2

(|000〉+ |111〉) , (3.2.7)

which can be considered a generalization of the Bell states, being maximally entangled as
well [26]. A remarkable characteristic of the GHZ state can be observed if one writes up
the reduced density matrix, tracing out one subsystem

ρ
(GHZ)
AB = TrC [ρ(GHZ)

ABC ] = TrC [|GHZ(3)〉 〈GHZ(3)|] , (3.2.8)

leaving the state ρ(GHZ)
AB fully separable, and hence no longer entangled5.

Cluster State

The Cluster state is an entangled quantum state that can be regarded as an ensemble
of qubits positioned in a d-dimensional lattice (d = 1, 2, 3) at site i ∈ Zd [31]. For the
purposes of this work, only one-dimensional Cluster states will be considered, to which the
generalized N -qubit state can be expressed as

|CS(N)〉 = 1
2N/2

N⊗
i=1

(
|0〉i σ

(i+1)
z + |1〉i

)
, (3.2.9)

applying the Pauli matrix σz =
(

1 0
0 −1

)
to the subsequent qubit (i+ 1), while σ(N+1)

z ≡ 1

being a convention. In contrast to the GHZ state, the Cluster state requires a minimum

4The W state is a three qubit entangled state of the form |W 〉 = 1√
3 (|001〉+ |010〉+ |100〉).

5In comparison, the reduced density matrix for the W state ρ(W )
AB = TrC [|W〉 〈W|], remains entangled

under this operation, making it more robust against losses [26].
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3.3. MULTI-PARTITE ENTANGLEMENT PROTOCOL

of N/2 local measurements for the state being completely disentangled - a figure of merit
defined by Briegel et al. (Ref. [31]) as its persistency of entanglement. In this sense, the
entanglement of the Cluster state is considered ”more” entangled than most known N -qubit
states, e.g. the GHZ states. Another term defined by Briegel et al., is the so-called maximal
connectedness, whereby a state is said to be maximally connected if any two qubits of a
quantum state deterministically can be projected into a Bell state by local measurements
on a subset of the other qubits. For a concrete example, consider the simplest two qubit
Cluster state taking the form

|CS(2)〉 = 1
2
[
(|0〉1 σ

(2)
z + |1〉1)(|0〉2 + |1〉2)

]
(3.2.10)

= 1
2 (|0〉1 |0〉2 − |0〉1 |1〉2 + |1〉1 |0〉2 + |1〉1 |1〉2) (3.2.11)

= 1√
2

(|0−〉+ |1+〉) , (3.2.12)

where the subscripts are omitted in the final expression and |±〉 = 1√
2 (|0〉 ± |1〉). This is

a maximally entangled state, where the latter forms a Bell state by unitary basis change;
{|−〉 , |+〉} → {|0〉 , |1〉}. Furthermore, if one considers the three qubit Cluster state

|CS(3)〉 = 1
23/2 (|000〉+ |100〉 − |001〉 − |101〉 − |010〉 − |011〉+ |110〉+ |111〉) (3.2.13)

= 1√
2

(|+0−〉 − |−1+〉), (3.2.14)

the latter forms a GHZ state up to local unitary transformations. It should be noted, that
for N > 3, the |CS(N)〉 is not equivalent to |GHZ(N)〉.
Having introduced the various multi-partite entangled states under consideration in this
thesis, the attention can now be directed towards the creation of such states, i.e. the
entanglement protocol.

3.3 Multi-Partite Entanglement Protocol

Based on the paper by K. Tiurev et al. [32], this section aims to present an entanglement
protocol that generates multi-photon entangled states, i.e. GHZ and Cluster states, while
being compatible with a QD embedded into photonic nanostructures. In other words, this
protocol leans on the working principle of a so-called photonic machine gun, that is a sys-
tem generating a steady stream of entangled photons, originally proposed by Lindner and
Rudolph [33].
In this work, the following protocol relies on the entanglement between a ”stationary” qubit
and stream of ”flying” qubits, realized by a hole-spin {|⇑〉 , |⇓〉} in a positive charged trion
X+ and the time-bin encoding of early/late photons {|e〉 , |l〉}. The creation, manipulation
and dynamics of the spin-qubit are examined in Chapter 2, while the generation of the
photonic-qubit will be introduced in Chapter 4.
Before considering the individual steps of the entanglement protocol, it can be divided into
three parts: (i) Initialization of the QD and its spin, (ii) the main sequence for entanglement
generation and (iii) final spin rotation and readout.
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3.3. MULTI-PARTITE ENTANGLEMENT PROTOCOL

Experimentally, the former is realized through the charging principle presented in Section
2.1.1 using an above-band (ABB) laser, while the spin is initialized via optical spin pumping
(OSP), described in Section 2.3.1. All coherent spin rotations performed in part (ii) and
(iii) are accomplished using Raman transitions, which is covered in Section 2.3.2. In Fig.
3.1 the pulse sequence is presented, along with an energy diagram for X+, showing the
corresponding transitions/rotations.

The ideal protocol for sequential generation of time-bin entangled photons are as follows:

(i) Spin Initialization:

0. Charge the QD to a positive trion X+ and initialize the hole-spin, using an
ABB-laser and OSP on the low energy transition |⇑〉 ↔ |⇑,⇓, ↑〉, respectively.

1. Rotate the ground state spin into an equal superposition |Ψ〉 = 1√
2 (|⇑〉+ |⇓〉),

using a π/2-rotation pulse on the |⇑〉 ↔ |⇓〉 transition.

(ii) Main Sequence:

2. Apply a π-pulse, which resonantly drives the optical transition |⇑〉 ↔ |⇑⇓, ↑〉,
resulting in the generation of a photon in the early time-bin |e〉 upon emission.

3. Flip the ground states {|⇑〉 , |⇓〉} by a π-rotation pulse.
4. Repeat step 2, thus generating a photon in the late time-bin |l〉.
5. • For GHZ state: Repeat step 3.

• For Cluster state: Apply a π/2-rotation around x or y axis (or the Hadamard
gate) between the two ground states {|⇑〉 , |⇓〉}.

6. Repeat steps 2-5 N -times to create a N -photon entangled state.

(iii) Spin Readout:

7. Rotate the spin by an arbitrary angle Φ ∈ {θ, φ} on the Bloch sphere (see Fig.
2.6), dependent on the basis to be measured, and perform the spin-readout, i.e.
pump the low energy transition (as in step 0).

Going through steps 0-5 of the protocol for the GHZ state, the initial state |Ψ〉i evolves as

|Ψ〉i
0−→ |⇓〉 , ABB and OSP (3.3.1)
1−→ 1√

2
(|⇑, ∅〉+ |⇓, ∅〉) , Spin rotating π/2-pulse (3.3.2)

2−→ 1√
2

(|⇑, e〉+ |⇓, ∅〉) , Optical π-pulse (3.3.3)

3−→ 1√
2

(|⇓, e〉 − |⇑, ∅〉) , Spin rotating π-pulse (3.3.4)

4−→ 1√
2

(|⇓, e〉 − |⇑, l〉) , Optical π-pulse (3.3.5)

5−→ 1√
2

(|⇑, e〉+ |⇓, l〉) , Spin-photon Bell state (3.3.6)
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3.4. ENTANGLEMENT DETECTION AND FIDELITY ESTIMATION

where |∅〉 denotes the photon vacuum state. Thus, going through the protocol ones effec-
tively creates a spin-photon Bell state, where {|⇑〉 , |e〉} and {|⇓〉 , |l〉} represent the logical
states |0〉 and |1〉, respectively.
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(a) Multi-partite Entanglement Protocol.
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Figure 3.1: (a) Pulse sequence for multi-partite entanglement protocol generating GHZ- and
Cluster-states. The time difference ∆τ ≈ 11.83 ns is set by the spatial difference between
the two paths of the Time-bin Interferometer (See Chapter 4), effectively creating an early
and late pulse. Repeating the main sequence (marked by the brackets) N -times, produces
a N + 1 qubit GHZ- or Cluster-state. (b) Corresponding energy diagram for the positively
charged trion, X+. The spin rotations are driven with an effective Rabi frequency ΩER

(orange), while the optical transition |⇑〉 ↔ |⇑⇓, ↑〉 are addressed by a laser with an angular
frequency ω1 (red).

3.4 Entanglement Detection and Fidelity Estimation

This section addresses some of the obstacles towards certifying and characterizing multi-
partite entanglement using only a limited number of measurement. Based on the latter, one
may determine the fidelity or construct a lower bound, dependent on the given quantum
state under consideration.

3.4.1 Fidelity of Quantum States

The fidelity is a way of quantifying the indistinguishably between two quantum systems.
In the case of two pure states |ψ〉 and |φ〉, the fidelity takes the form

F = |〈φ|ψ〉|2 , (3.4.1)

with the bounds 0 ≤ F ≤ 1. For F = 1 there is complete overlap and thus the two states
are identical [21]. If however, the systems are expressed by two density operators ρ and σ,
the fidelity is defined as [4]

F(ρ, σ) =
(

Tr
{√

ρ1/2σρ1/2
})2

, (3.4.2)
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being symmetric for ρ and σ, i.e. F(ρ, σ) = F(σ, ρ). This expression can be simplified,
given one of the two states is pure. Assuming ρ = |ψρ〉 〈ψρ| to be a pure state, the fidelity
can be reduced to

F(ρ, σ) = 〈ψρ|σ |ψρ〉 . (3.4.3)
Typically, experiments seek to create a pure multi-partite entangled state |ψρ〉, e.g. a GHZ-
or Cluster-state. However, due to noise and imperfections associated with all experiments,
the state produced will be a mixed state σexp, differing from the desired state. The challenge
is thus to reconstruct the density matrix σexp from experimental data and subsequently
quantify the fidelity using Eq. 3.4.3.

3.4.2 Fidelity Bounds

A complete characterization of a given quantum system requires a sequence of identical
measurements performed in various sets of bases. This process is also known as a quan-
tum state tomography, whereby the entire density matrix can be reconstructed, i.e. full
knowledge about the quantum state can be gained. However, the amount of resources re-
quired for the full quantum tomography scales exponentially with the number of particles
involved, and it is therefore very difficult and time consuming to perform, making it close
to impossible for a large system. Thus, one needs to explore alternative ways to quantify
the quantum state for realistic experiments.

The following paragraphs serves as a brief introduction to some of the alternative ways of
certifying multi-partite states. However, a comprehensive description is outside the scope
of this thesis, but the reader may find more information on this topic in Ref. [34].

Fidelity of the GHZ state

Following Gühne et al. [35] the fidelity of a N -qubit GHZ state can be determined using
only N+1 measurement settings, whereby the number of measurement scales linear opposed
to exponential. This is realised by N measurement settings on the x-y-plane of the Bloch
sphere, and one measurement setting in (σz)⊗N , i.e. the z-axis of the Bloch sphere. The
in-plane measurement should be performed according to the following relation

Mk =
[
cos

(
kπ

N

)
σx + sin

(
kπ

N

)
σy

]⊗N
, (3.4.4)

where k = 1, ..., N and σ{x,y,z} denotes the Pauli matrices.
An experimental demonstration of this particular measurement scheme can be found in
Ref. [36], aiming to produce a ten-photon GHZ-state and Ref. [37] seeking twelve-photon
entanglement. Based on the set of measurements, the corresponding fidelity can be derived,
whereby an genuinely multi-partite entangled state yields an average fidelity above one half,
F̄ > 1/2 [38]. Thus, this scheme provides a method of characterizing a multi-partite GHZ
state, using only limited number of measurement settings.

Fidelity of the Cluster state

Estimating the fidelity of Cluster states has proven more difficult and is currently a work in
progress by e.g. K. Tiurev et al. [39], examining the possibilities to provide a fidelity bound
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based on a limited number of measurement settings. However, an entanglement witness,
i.e. an indication of entanglement, can be extracted using only two measurement settings
independent on the number of qubits involved

(1) {σ(i)
x , σ(i+1)

z , σ(i+2)
x , σ(i+3)

z , ...}, (2) {σ(i)
z , σ(i+1)

x , σ(i+2)
z , σ(i+3)

x , ...}, (3.4.5)

where i denotes the qubit number [38]. Thus, a measurement sequence of this type projects
the qubits into the z- and x-basis by turn. A similar scheme can be applied to the
GHZ states, where the qubits are projected into the same basis in both sequences, i.e.
{σ(i)

x , σ
(i+1)
x , σ

(i+2)
x , σ

(i+3)
x , ...} and {σ(i)

z , σ
(i+1)
z , σ

(i+2)
z , σ

(i+3)
z , ...}, which resembles the mea-

surement settings introduced in previous paragraph.

3.5 Summary

Two types of multi-partite entangled states were introduced in this chapter, namely the
GHZ- and the Cluster-state. The fidelity of the former can be determined using N + 1
measurement settings, while the latter proves to be more demanding. However, one may
construct an entanglement witness based on only two measurement settings.
Both states can be realized through the use of the entanglement protocol given in Section
3.3, which depends on the principles introduced in Chapter 2, apart form the optical π-
pulses - these are the main subject of the next chapter.
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Chapter 4

Characterization of the Time-bin
Interferometer

The main focus of this chapter includes the theoretical analysis together with a physical
characterization of the time-bin interferometer (TBI), operating as a double-pass Franson
interferometer. In regards to the entanglement protocol, this chapter considers the creation
and manipulation of the time-encoded photonic qubits.
The workings of the TBI can be composed into two distinct parts: The excitation- and
detection-interferometer. The former creates the optical π-pulses used to excite the QD (as
discussed in Section 3.3), while the latter enables detection and analysis of the photonic
qubits, based on the spin-state of the QD.
Key applications and corresponding settings of the TBI will be presented, along with mea-
surements showing agreement between the physical model and the experimental setup.
A detailed description of the interferometer is given in Section 4.2 and 4.3, while a full
schematic drawing can be found in Appendix B.1.

4.1 Introduction to the Time-bin Interferometer

This section seeks to give a brief introduction to photonic qubits, with focus on time-bin
encoding. Furthermore, the Jones formalism will be presented, being central to the physical
analysis of the TBI.

4.1.1 Time-bin Encoded Qubits

As stated in the introduction of this thesis, one requires a robust way of transferring infor-
mation over a great distance in order to realize many applications proposed in the field of
quantum communication. To this aim, the photon naturally poses a suitable candidate, not
only due to its inherent speed, but also its ability to realize a two-level system in several
ways, e.g. encoding the information in its polarization {|H〉 , |V 〉}, frequency {|ω0〉 , |ω1〉} or
photon-number {|∅〉 , |1〉}. In this work however, the photonic qubit is time-bin encoded, i.e.
the information is encoded in the arrival time {|e〉 , |l〉}, where e(l) denotes the early(late)
photon. This method has a few advantages; for instance, given a photon is lost or other-
wise not detected, the corresponding state is not valid and can therefore be discarded, as
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opposed to the photon-number encoding. Here, a lost photon would influence the state -
it is hard to distinguish a vacuum state |∅〉 and the original state |1〉, if a photon was lost.
Furthermore, though polarization encoding is typically the method of choice in free-space
optics, due to the many ways of effective manipulation of the polarization, it is not very
convenient if ones wishes to use optical fibers. Even for polarization maintaining fibers, it
is difficult to preserve the correct polarization over a long distance. This however, is not
an issue if one uses the time-bin encoded method, making it well suited for fiber-based
applications.

4.1.2 Jones Formalism and Phase Retarders

A convenient way of expressing the polarization state of an electric field, is through the use
of the so-called Jones vector formalism (or Jones calculus). This formalism will be used to
characterize the performance of the TBI using classical fields, where fully polarized light1

is represented by a Jones vector, while linear optical components such as mirrors, lenses
and waveplates, are expressed by Jones matrices. For a given E-field the Jones vector has
the form

~E =
(
EH
EV

)
, (4.1.1)

where EH is the horizontal and EV is the vertical component. The Jones matrices MJ are
thus operators acting on the input vector, that is ~EOut = MJ

~EIn. Crucial for the analysis
of the TBI are the following matrices:

MLP(θ) = e−iπ/4
(

cos2(θ) cos(θ)sin(θ)
cos(θ)sin(θ) sin2(θ)

)
, (4.1.2)

MHWP(θ) = e−iπ/2
(

cos2(θ)− sin2(θ) 2sin(θ)cos(θ)
2sin(θ)cos(θ) sin2(θ)− cos2(θ)

)
, (4.1.3)

MQWP(θ) = e−iπ/4
(

cos2(θ) + isin2(θ) (1− i)sin(θ)cos(θ)
(1− i)sin(θ)cos(θ) icos2(θ) + sin2(θ)

)
, (4.1.4)

MABM(θ, φ,Φ) = e−iΦ/2
(

cos2(θ) + eiΦsin2(θ) (1− eiΦ)e−iφcos(θ)sin(θ)
(1− eiΦ)eiφcos(θ)sin(θ) eiΦcos2(θ) + sin2(θ)

)
, (4.1.5)

where MLP(θ) describes a Linear Polarizer (LP) with the angle of transmission at θ from
horizontal, MHWP(θ) (MQWP(θ)) denotes a Half-waveplate (Quarter-waveplate) with fast
axis angled at θ w.r.t. horizontal and finally MABM(θ, φ,Φ) corresponds to any arbitrary
birefringent material acting as phase retarder. The latter being described by the retardation
Φ between fast and slow axis, φ denotes the circularity (φ = 0 for linear retarders) and θ is
the angle between fast axis w.r.t. horizontal.
The final Jones matrix that needs introduction is that of the Beam-splitter (BS)

MBS =
(

t r′eiξ2

reiξ1 t′

)
, (4.1.6)

1For random/partial polarized light can be described using Mueller Calculus.
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4.1. INTRODUCTION TO THE TIME-BIN INTERFEROMETER

where {t, t′, r, r′} are real numbers describing the reflection/transmission amplitudes, while
{eiξ1 , eiξ2} denotes the phase difference between the reflected and transmitted part from a
given input port [40]. In the case of a perfect 50/50 BS, the amplitudes and phase param-
eters takes the following values: {t, t′, r, r′} = 1/

√
2 and {ξ1, ξ2} = π/2.

So far, the vector space has been restricted to two dimensions, namely the two basis states
for the polarization. However, including the two temporal modes, e.g. early and late mode,
gives a four-dimensional vector space. As a consequence, the E-field vector introduces at
the beginning of this section needs to be redefined. Given two temporal modes a and b,
with each their polarization degree of freedom (H or V ), the total E-field takes the form

~E =


aH
bH
aV
bV

 , (4.1.7)

which shall be used during the analysis of the detection interferometer (Section 4.3.1).

The Electro-Optic Modulator

At the centre of the detection interferometer is a resonant Electro-Optic Modulator (EOM).
This device enables polarization modulation of the incoming light, by applying an AC-
voltage across an optically active crystal within the EOM. As a result, the birefringence of
the crystal can be changed due to the Pockels effect. The refractive index for light polarized
parallel and perpendicular to the optical axis of the crystal can therefore be altered by vary-
ing the amplitude of the electric field [41]. In this particular setup, a resonant EOM from
QUBIG[42] with a Lithium Tantalate (LT) crystal angled at 45 degrees w.r.t. horizontal
is used. From Eq. 4.1.5 describing an arbitrary birefringent material, the corresponding
Jones matrix for the EOM reads

MEOM(Φ) = MABM(θ = 45o, φ = 0,Φ) = e−iΦ/2

2

(
1 + eiΦ 1− eiΦ
1− eiΦ 1 + eiΦ

)
. (4.1.8)

It is worth noting, that for Φ = ±π or Φ = ±π/2, the EOM acts as a half-waveplate
(HWP) or quarter-waveplate (QWP) angled at θ = ±π/4 w.r.t horizontal, respectively.
Furthermore, for Φ = 0 the identity matrix I is obtained, and thus no transformation is
performed. Experimentally however, the phase modulation Φ(t) is time dependent, as the
EOM is controlled by an AC-voltage. In this case, the phase modulation can be expressed
as

Φ(t) = Asin(ωt+ α), (4.1.9)

where A and ω are the modulation amplitude and frequency, while α denotes the phase
modulation in respect to Φ(t). These parameters can all be controlled experimentally,
dependent on the required phase retardation. Here A is proportional to amplitude of the
applied voltage, α is controlled electronically, while ω is fixed at half the frequency of the
pulse repetition rate of the Mira-laser2, ω = frep

2 ≈ 36 MHz. The latter allows for different
phase modulation of two subsequent pulses, which will become apparent in Section 4.3.

2For more information regarding the lasers employed in this thesis, see Appendix C.1 and Section 5.1.
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4.2. THE EXCITATION INTERFEROMETER

4.2 The Excitation Interferometer

The excitation interferometer is responsible for the creation of two temporally separated
pulses with equal intensity. This is realized by spitting a single optical pulse, generated
by the Mira-laser, into two paths; the short and the long path. In addition to this, the
relative phase between the two pulses is to be controlled, while keeping the other parameters
constant. The latter allows the photonic qubit to be measured in different bases, which will
be described in greater detail in Section 4.3.
The excitation interferometer is thus essential towards realizing the entanglement protocol,
as it creates the optical π-pulses utilized for the excitation of the QD - hence its name.

4.2.1 Theoretical Analysis of the Excitation Interferometer

Through the use of the Jones formalism, the appropriate settings of the excitation interfer-
ometer will now be derived, for which the intensity between the two pulses remains equal,
while sweeping the relative phase. A detail overview of the excitation interferometer is
presented in Fig. 4.1, where the most essential components are shown.
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Figure 4.1: Schematic drawing of the excitation interferometer for generation of early and
late pulses given a single pulse input. For simplicity, only the most relevant optical com-
ponents are included (see Fig. B.1 for complete overview). See main text for detailed
explanation of this setup.

Starting at the input of the excitation interferometer (FC2), the E-field is given by

~EIn =
(

0
1

)
, (4.2.1)

which is vertically polarized and for simplicity has unit amplitude. The pulse is divided into
two components at the BS; the early and the late pulse, separated by ∆τ ≈ 11.83 ns upon
recombining at PBS2, due to the spatial difference in the two paths of the interferometer.
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4.2. THE EXCITATION INTERFEROMETER

After the two pulses merge at PBS2, the E-field for the early and late pulse are

~EePBS = Ee
(

0
1

)
and ~ElPBS = eiχEl

(
1
0

)
, (4.2.2)

where the e(l) superscript denotes early(late) and Ee(El) is the transmission(reflection) of
the E-field by the BS. Energy conservation is assumed for the latter, |Ee|2 + |El|2 = 1.
Defining the phase of the short path to be zero, eiχ is the total phase accumulated during
the long interferometer path, since only the phase difference is relevant. Lastly, the wave-
plates in the long path (HWP2 and QWP3) are assumed to perfectly transform vertically-
to horizontally-polarized light.
Next to consider is the total transformation after PBS2 consisting of two waveplates QWP4
and HWP3, with a linear polarizer (LP) in between. The main object of interest is the ro-
tation of QWP4 and LP, since this configuration is the key ingredient fulfilling the require-
ments for the excitation interferometer. The angle of the final HWP is set to θHWP = θLP

2 ,
whereby the output polarization is kept horizontal at all times when coupling into the
fiber coupler. Thus, at the outcoupling of the excitation interferometer (at FC5), the final
transformation takes the form

MTot = MHWP

(
θLP
2

)
MLP(θLP)MQWP(θQWP) (4.2.3)

=
(1 + i

2

)(cos(θLP)− icos(θLP − 2θQWP) sin(θLP) + isin(θLP − 2θQWP)
0 0

)
,

(4.2.4)

for which the E-field and corresponding intensity for both the early and late pulse reads

EeOut = MTot ~E
e
PBS =

(1 + i

2

)
(sin(θLP) + isin(θLP − 2θQWP))Ee, (4.2.5)

ElOut = MTot ~E
l
PBS =

(1 + i

2

)
(cos(θLP)− icos(θLP − 2θQWP)) eiχEl, (4.2.6)

IeOut = |EeOut|
2 = |E

e|2

2
(
sin2(θLP) + sin2(θLP − 2θQWP)

)
, (4.2.7)

I lOut =
∣∣∣ElOut∣∣∣2 =

∣∣∣El∣∣∣2
2

(
cos2(θLP) + cos2(θLP − 2θQWP)

)
. (4.2.8)

So far it has been assumed, that the 50/50 BS and PBS work perfectly, which is quite good
assumption as the PBS experimentally has demonstrated an extinction ratio of at least
500, while the splitting ratio of the BS was found to be 49/51, i.e. close to ideal3. Under
this assumption, one can approximate Ee ≈ El, whereby the intensity difference can be
expressed as

∆IOut = IeOut − I lOut = sin2(θLP)− cos2(θLP − 2θQWP). (4.2.9)
For equal intensities, i.e. ∆IOut = 0, two solutions exist

(i) θQWP = π

4 + π

2n or (ii) θLP = θQWP + π

4 (1 + n), n ∈ Z, (4.2.10)

3The effects of the splitting ratio of the BS will be examined more closely in Chapter 5.
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yielding two configurations whereby the intensity between the two pulses is kept constant.
This concludes the first main result in this section. However, integrating the excitation
interferometer with the entanglement protocol requires a way of altering the relative phase
using one of the two settings in Eq. 4.2.10.

The phase difference δφ between the early and late pulse can be derived from

δφ = Arg(EeOut)−Arg(ElOut) (4.2.11)

where Arg() refers to the principal value of the argument applied to a complex number,
z = x + iy. Often, when computing the argument, the function atan2(y, x) = Arg(z)
is interchangeably used instead. In this case, the principal value is given in the range
−π < atan2(y, x) ≤ π, for which the function is defined as

atan2(y, x) =



arctan
( y
x

)
if x > 0,

arctan
( y
x

)
+ π if x < 0 and y ≥ 0,

arctan
( y
x

)
− π if x < 0 and y < 0,

+π/2 if x = 0 and y > 0,
−π/2 if x = 0 and y < 0,
undefined if x = 0 and y = 0.

(4.2.12)

In Fig. 4.2 a numerical calculation of δφ is shown, together with black contour lines for
∆IOut = 0. In accordance with Eq. 4.2.10, the vertical contour lines are represented by
the first solution (i), while the diagonal lines represent the second solution (ii). From this
figure is becomes clear, that only the first solution, i.e. θQWP = π

4 + π
2n satisfies the given

requirements as the relative phase can be controlled, oppose to the second solution where
it remains constant.

Figure 4.2: The phase difference between early and late pulse as a function of θQWP and
θLP for χ = 0. The black contour lines indicate where the intensity between the two pulses
are equal. For θQWP = π

4 + π
2n the intensity remains constant, while the phase is altered

by rotating θLP. All angles are in degrees.
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Thus, a simple solution appears; keep QWP4 constant at e.g. θQWP = π/4 and rotate
the linear polarizer θLP, whereby two temporally separated pulses with equal intensity are
created for which the relative phase can be controlled. This concludes the theoretical anal-
ysis of the excitation interferometer as all requirements towards to entanglement protocol
are met.

4.2.2 Physical Characterization of the Excitation Interferometer

Based on the theoretical analysis of the excitation interferometer, this section seeks to
quantify the performance of the actual setup, i.e. to what extent the theoretical model
agrees with the measurements carried out with the excitation interferometer. In other
words, characterizing the relative intensity and phase between the early and late pulse are
of main interest. However, an examination of the phase will be presented in Section 4.3.2
as it requires an introduction to the detection interferometer as well.

Intensity of the Early and Late Pulse

Letting Ie(I l) denote the intensity of the early(late) pulse, the visibility is defined as

V = Ie − I l

Ie + I l
(4.2.13)

ranging from −1 ≤ V ≤ 1. For V = 0 the pulses are of equal intensity, whereas for
V = 1(V = −1) only the early(late) pulse is visible. This parameter can be measured
directly by coupling the output fiber of FC5 to a photodetector, while keeping track of the
arrival time for each pulse. Experimentally, this is realised by the use of a Superconducting
nanowire single-photon detector (SNSPD) and a Time Tagger from Swabian Instruments
[43]. In order to keep the intensity low, the Mira-laser is greatly attenuated using neutral-
density (ND) filters. Thus, the visibility between the early and late pulse can be found
by measuring the total photon counts in each time-window as a function of the θQWP and
θLP. Specifically, the time-window is set to two nanoseconds centered at the middle of each
pulse, while the integration time is one second for each setting.
A measurement of this type is presented in Fig. 4.3 (a) by the two-dimensional color map,
where the black contour lines indicate the theoretically predicted settings for ∆I = 0, which
appears to align with the areas for V = 0. In order to investigate this further, Fig. 4.3
(b) shows the visibility as a function of the linear polarizer for θQWP = 45o (blue) and 90o
(red). The latter should ideally oscillate between V = ±1 by

∆IOut(θQWP = 90o, θLP) = −cos(2θLP), (4.2.14)

while the former should remain constant at V (θQWP = 45o, θLP) = 0 for all angles. However,
as the blue data set indicates, a small oscillation is still present for θQWP = 45o, whereby
both are fitted with a cosine. From this data, the average visibility gives V (θQWP = 45o) =
0.009 ± 0.029, meaning the ratio between the intensities is slightly shifted towards that of
the early pulse. The red curve however, yields a visibility of V (θQWP = 90o) = ±0.995 at
θLP = {90o, 180o}, indicating a good extinction ratio between the two pulses, i.e. the linear
polarizer transmits only the early(late) pulse for θLP = 90o(180o). In the entanglement
protocol however, only the settings for θQWP = 45o are of interest.
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There are basically two parameters, which influence the visibility, that is (i) the angle of the
θQWP and (ii) the coupling efficiency of each pulse into FC5. The first parameter is clearly
shown in Fig. 4.3 (b) as the visibility varies from V ≈ 0 to V ≈ ±1 as θQWP is rotated by
45 degrees. Thus, finding the optimal angle of the QWP is crucial. Lastly, the combined
loss for each of the two excitation paths may vary, which ones needs to take into account.
It turns out the long interferometer arm has a loss of 6-8% compared to the short path.
This is expected, as the long path consists of several optical components, mainly lenses
ensuring the laser remains collimated, while none are present in the short path. Varying
the coupling efficiencies for each pulse can thus compensate for this additional loss.
In practice this results in the early(late) pulse having a coupling efficiency of ≈ 80%(87%) at
FC5. In other words, any deviation from θQWP = π

4 + π
2n will hence increase the amplitude

of the visibility, while unbalanced coupling efficiencies alters the mean. The combination
of these parameters are the main reason for the oscillation shown by the blue curve in Fig.
4.3 (b).

(a) Visibility as a function of θQWP and θLP. (b) Visibility for θQWP = 45o (blue) and 90o (red).

Figure 4.3: Experimental data: (a) The visibility as a function of the θQWP and θLP. The
black contour lines presents the theoretical solution, whereby the relative intensity between
the early and late pulse remains constant, i.e. V = 0. (b) The visibility as a function of
θLP for two settings of QWP4, each fitted with a cosine. For θQWP = 45o (blue) a slight
deviation from V = 0 is present, due to imperfection in the experimental setup. Notice the
varying scaling of the left/right y-axis.

4.3 The Detection Interferometer

The second part of the TBI consists of the so-called detection interferometer, responsible
for the detection of the photons emitted by the QD upon relaxation.
Before going into the theoretical analysis, an essential part of the detection interferom-
eter requires an introduction, namely the various time-bins and corresponding detection
patterns. So far, the QD is said to emit a photon in two temporal modes, i.e. the early
and late time-bin. This, however, requires some clarification once the photons propa-
gate through the detection interferometer. Due to the fact that both the excitation- and
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detection-interferometer share the same two paths4, i.e. the short and the long path, a total
of three time-bins are created in the detection interferometer, composed of four temporal
modes. In terms of the photons arriving (e)arly or (l)ate in each interferometer, those are
as follows:

|e〉 : {e, e}, |m〉 : {e, l}+ {l, e}, |l〉 : {l, l}.

Here the early(late) time-bin |e〉 (|l〉) corresponds to the short(long) path being taken in
both interferometers, while the middle time-bin |m〉 corresponds to the short(long) path
being taken in the excitation interferometer, and the long(short) path during the detection
interferometer. In terms of the Bloch sphere, one may regard the |e〉 and |l〉 time-bin as the
poles, while the middle time-bin |m〉 corresponds the equator as it consists of a superposition
between |e〉 and |l〉.
Suppose there is a given setting, where each photon has an equal probability of taking
the short or long path in the detection interferometer, thus 50% will go to the middle
time-bin and 25% to the early and late time-bin - this setting will henceforth be known as
passive switching. However, if one can choose whether the first and second photon should
take either the short or long path, routing of photons into a desired time-bin is feasible, i.e.
active switching. This principle is illustrated in Fig. 4.4, where the black line represents the
passive switching. Following the Bloch sphere analogy, the green dashed line corresponds
to active switching conducting measurements in the z-basis, while the blue dotted line
corresponds to measurements performed in the x- and y-basis, i.e. around the equator. The
main difference between to two methods is therefore the efficiency in which measurements
can be executed by projecting the photonic qubits into a given basis. Experimentally this
is realized by a QWP and an EOM, which will be explained in the next section.

t

P

e〉| l〉|m〉|

Active, {x, y}

Passive
Active, {z}

25%

50%

Figure 4.4: Illustration showing the difference between active- and passive-switching for the
three time-bins. In the case of passive switching, the photon has an equal probability of
taking either the short of long path of the detection interferometer. For active switching
however, the photons are deterministically routed towards the desired time-bin.

Finally, is should be noted that sharing the same optical paths in both the excitation-
and detection-interferometer, has the advantage of making it self-stabilizing. This means,
any spatial change in the long or short path due to temperature variations or drifts in
the position of the optical components does not affect the re-interference in the detection

4Once more, see Appendix B.1 for complete overview of the TBI.
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interferometer. This assumption is only valid in the case where the spatial variations are
on a timescale longer than the time it takes for the light to propagate through both parts
of the TBI. As the latter is performed in the order of nanoseconds, this assumption should
be accurate5.

4.3.1 Theoretical Analysis of the Detection Interferometer

This section seeks to investigate the working principles of the detection interferometer in
the same manner as were the case of the excitation interferometer. However, there are a few
changes as one has to keep track of both the polarization and the temporal modes whereby
the basis vector needs to be expanded to a four-dimensional vector space (see Eq. 4.1.7
for the new basis vector). Furthermore, in the classical Jones formalism utilized so far, the
vector elements are proportional to the electric field, while the absolute square yields the
intensity. For the entanglement protocol however, the input of the detection interferometer
consists of single photons emitted by the QD. In this case, there is an important difference to
the interpretation of these, that is the former being proportional to the probability amplitude,
whereas the latter yields the probability of detection. Nevertheless, in order to keep the same
notation and formalism used in the previous analysis, the classical Jones formalism will be
utilized for this derivation and subsequently reinterpreted.

(a) Detection Interferometer. (b) Zoom-in at BS.

Figure 4.5: (a) Schematic drawing of the detection interferometer showing the most essential
parts. Light is coupled into the interferometer from the left, where the beam once more
is split into two paths at PBS2. For full overview, see Fig. B.1 in Appendix B.1. (b) A
zoom-in on the BS, showing the corresponding phase- and loss-parameters {φ, η} based on
the path taken.

Following Fig. 4.5 (a), two etalons (ET) are placed at the beginning of the detection
interferometer. These are used for frequency filtering6, narrowing the spectral bandwidth
to 1.91 GHz around the central frequency of the low energy transition of the QD, i.e.
|⇑〉 ↔ |⇑⇓, ↑〉. The etalons are followed by two waveplates, enabling polarization control
for maximal transmission by PBS1. Hereafter, the E-field can be decomposed into an early

5An estimate on the actual stability will be given in Section 4.3.2.
6A more detailed description of the etalons, see Appendix C.2.
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and late part, each being horizontally polarized

~E2In = ce · ~EeIn,H + cl · ~ElIn,H = ce ·


1
0
0
0

+ cl ·


0
1
0
0

 =


ce
cl
0
0

 , (4.3.1)

where the coefficients ce and cl are given in Eqs. 4.2.5 and 4.2.6, respectively.

Next is the QWP2 and EOM, which is crucial to the detection interferometer as it en-
ables the passive- and active-switching schemes by modulating the polarization and hence
altering the amount of transmitted/reflected light by the following PBS. The concepts and
workings of both the EOM and the switching schemes has previously been covered in Sec-
tion 4.1.2 and at the beginning of this section. Thus, the total transformation due to the
QWP and EOM yields7

MEQ(Φ{e,l}, θ) =


C(Φe)cHH(θ,Φe) 0 C(Φe)cV H(θ,Φe) 0

0 C(Φl)cHH(θ,Φl) 0 C(Φl)cV H(θ,Φl)
C(Φe)cHV (θ,Φe) 0 C(Φe)cV V (θ,Φe) 0

0 C(Φl)cHV (θ,Φl) 0 C(Φl)cV V (θ,Φl)

 ,
(4.3.2)

where Φ{e,l} denotes the retardation between the fast and slow axis of the EOM at the
time of the early and late mode created in the excitation interferometer, while θ corre-
sponds to the rotation of QWP2. The matrix coefficients express the degree of polarization-
transformation induced by QWP2 and the EOM

cHH(θ,Φ) = (1− icos(2θ))cos(Φ/2) + sin(2θ)sin(Φ/2), (4.3.3)
cHV (θ,Φ) = (i+ cos(2θ))sin(Φ/2)− isin(2θ)cos(Φ/2), (4.3.4)
cV H(θ,Φ) = (i− cos(2θ))sin(Φ/2)− isin(2θ)cos(Φ/2), (4.3.5)
cV V (θ,Φ) = (1 + icos(2θ))cos(Φ/2) + sin(2θ)sin(Φ/2), (4.3.6)

C(Φ) = ei(π/4−Φ)
√

2
, (4.3.7)

where the first(second) subscript denotes the polarization of the incoming(outgoing) light,
e.g. cHV (θ,Φ) yields to what extent the polarization is converted from horizontally into
vertically. Thus, one can directly choose the basis of measurement by modulating the
effective retardation of the QWP and EOM, which can be realised in various ways. However
there are basically two methods

(i) Set θ = π/2 and let the EOM work as a half-waveplate, i.e. Φε = π · ε,

(ii) Set θ = π/4 and let the EOM work as a quarter-waveplate, i.e. Φε = π/2 · ε,

for ε = 1. This parameter denotes the imperfections associated with the EOM8.
Consequently, the greater the retardation between the fast and slow axis of the EOM, the

7This transformation in derived in Appendix B.2.
8The ε-parameter will be derived and described at the end of this section.
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higher voltage is required. Thus, assuming the effective retardation is linear with the am-
plitude, the (ii) method requires only half the voltage compared to method (i).

Dependent of the retardation of the QWP and EOM, the incident light is once more split
into two paths at PBS2. As for the excitation interferometer, an additional phase χ′ is
introduced for the long path. If the TBI is truly self-stabilizing, the difference between χ
and χ′ should remain constant, i.e. d

dt(χ − χ
′) = 0. The corresponding operator, together

with a PBS angled at 90 degrees w.r.t the incident beam, reads

MPL =


1 0 0 0
0 1 0 0
0 0 eiχ

′ 0
0 0 0 eiχ

′

 , MPBS =


tH irH 0 0
irH tH 0 0
0 0 tV irV
0 0 irV tV

 . (4.3.8)

Given a perfect PBS, i.e. {tH , rV } = 1 and {tV , rH} = 0, the E-field after PBS2 is

~E2 = MPLMPBSMEQ ~E2In (4.3.9)
= ~Ee2H + ~El2V (4.3.10)

=


C(Φe)cHH(θ,Φe,ε)ce
C(Φl)cHH(θ,Φl,ε)cl

0
0

+


0
0

C(Φl)cHV (θ,Φl,ε)eiχ
′
cl

C(Φe)cHV (θ,Φe,ε)eiχ
′
ce

 , (4.3.11)

where vertically polarized light is assumed to transform perfectly into horizontally polarized
during the long path. Thus, keeping track of the polarization is henceforth obsolete, since
non of the remaining optical components are polarization depended. With this in mind,
only the temporal modes are of interest at this point.

So far, only (e)arly and (l)ate mode has been considered. However, during the detection
interferometer, a total of four temporal modes will be created as discussed in the begin-
ning of this chapter. Thus, a changed of basis is required, keeping track of the temporal
modes instead of the polarization. A such transformation is given by the following matrix,
represented by the new basis {ESS , ESL, ELS , ELL}

MTP =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , (4.3.12)

where the subscripts SS, SL/LS and LL denotes the short and long path for the excitation
and detection interferometer, respectively. The E-field before the final BS is therefore
expressed by

~E2el = MTP
~E2 =


C(Φe)cHH(θ,Φe,ε)ce

C(Φe)cHV (θ,Φe,ε)eiχ
′
ce

C(Φl)cHH(θ,Φl,ε)cl
C(Φl)cHV (θ,Φl,ε)eiχ

′
cl

 =


EeSS
EmSL
EmLS
ElLL

 . (4.3.13)
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Lastly, the mapping of the BS to Detector 1 (D1) and Detector 2 (D2) is required. Letting
ηij denote the accumulated loss, where the subscripts i = {S,L} represents the Short/Long
interferometer path and j = {1, 2} denotes D1/D2, a total transformation can be con-
structed. Consequently, the matrix describing the transformation of the 50/50-BS and the
corresponding loss-parameter is given by

MBS(ηij , φ{1,2}) = 1√
2



ηS1 0 0 0
ηS2e

iφ2 0 0 0
0 ηL1e

iφ1 ηS1 0
0 ηL2 ηS2e

iφ2 0
0 0 0 ηL1e

iφ1

0 0 0 ηL2


, (4.3.14)

where 0 ≤ ηij ≤ 1 and φ{1,2} denotes the angle of incidence for the two paths, usually set
to φ = π/2 by default. As a general rule of thumb, it is expected that ηL < ηS , since more
optical components are present in the long path. The loss-parameters are displayed in Fig.
4.5 (b), which can be measured directly in the laboratory.
Including the final transformation MBS, the E-field at the two detectors read

~ED1,2 =



EeD1
EeD2
EmD1
EmD2
ElD1
ElD2


= MBS(ηij , φ{1,2}) ~E2el. (4.3.15)

Taking the absolute square of each vector element of ~ED1,2 gives the intensity for a given
temporal mode and detector. However, once the entanglement protocol is enabled, the
E-field and intensity are not of interest, but instead the probability amplitude and corre-
sponding probability of photon detection. Thus, converting the E-field calculated in Eqs.
4.2.5 and 4.2.6 into probability amplitudes for the early and late pulse, the total state after
the excitation interferometer is given by

|Ψ〉e = ce |ψ〉e + cl |ψ〉l =


ce
cl
0
0

 , (4.3.16)

where the probability amplitude for the early and late pulse are expressed by the coefficients

ce =
(1 + i

2

)
(sin(θLP) + isin(θLP − 2θQWP)) , (4.3.17)

cl =
(1 + i

2

)
(cos(θLP)− icos(θLP − 2θQWP)) eiχ, (4.3.18)

fulfilling the normalization requirement, |ce|2 + |cl|2 = 1. Applying all the transformation
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matrices derived in this section, the final state of the detection interferometer reads

|Ψ〉D1,2
= MBS(ηij , φ{1,2} = π/2)MTPMPLMPBSMEQ(Φ{e,l},ε, θ) |Ψ〉e ⇒ (4.3.19)

|1eD1
, ∅eD2

〉
|∅eD1

, 1eD2
〉

|1mD1
, ∅mD2

〉
|∅mD1

, 1mD2
〉

|1lD1
, ∅lD2

〉
|∅lD1

, 1lD2
〉


= 1√

2



ηS1C(Φe)cHH(θ,Φe,ε)ce
iηS2C(Φe)cHH(θ,Φe,ε)ce

−ηL1C(Φe)cHV (θ,Φe,ε)eiχ
′
ce + ηS1C(Φl)cHH(θ,Φl,ε)cl

iηL2C(Φe)cHV (θ,Φe,ε)eiχ
′
ce + iηS2C(Φl)cHH(θ,Φl,ε)cl

−ηL1C(Φl)cHV (θ,Φl,ε)eiχ
′
cl

iηL2C(Φl)cHV (θ,Φl,ε)eiχ
′
cl


, (4.3.20)

expressing the probability amplitude of single photon detection at each detector {D1, D2}
and time-bin {|e〉 , |m〉 , |l〉}. This relation contains all the information of the TBI and
concludes the derivation of the detection interferometer using the Jones formalism. The
remaining part of the section investigates the probabilities in each detector under the influ-
ence of the passive- and active-switching scheme using the EOM. However, before this can
be derived, the imperfections of the latter has to be examined more closely.

Limitations and Imperfections of the EOM

In the case where no voltage is applied across the EOM, no transformation should occur. It
turns out, that experimentally this is not the case. It seems there is some arbitrary trans-
formation in the system even when the EOM is off, which also affects the transformation
once the EOM is turned on. Unfortunately, it has not been possible to identity the cause of
the behaviour. It should therefore be emphasised, that the model presented in this section
is not universal, as it cannot describe the EOM perfectly. In fact, this model assumes the
EOM operating as a half-waveplate, while its imperfections are to be derived under the
assumption of a quarter-waveplate. Nevertheless, this approach shows strong agreement
between the mathematical model and the experimental results presented at the end of this
chapter. This could be evidence of an intrinsic phase-retardation in the EOM, which is not
accounted for in this simplified model.

In Table 4.1 the settings of the EOM and QWP for active switching are shown. For passive
switching, the EOM is turned off and ideally the QWP is set to θQWP = π/4, hence reflect-
ing and transmitting equal amounts by the following PBS. However, due to the intrinsic
phase-retardation of the EOM, this angle was experimentally found to be θQWP ≈ 62o.

Active Switching (i) Method (ii) Method
Basis θQWP Φe Φl θQWP Φe Φl

x- or y-basis π/2 π 0 π/4 -π/2 +π/2
z-basis π/2 0 π π/4 +π/2 -π/2

Table 4.1: The ideal settings of the QWP2 and EOM for different measurements bases while
the active switching scheme is enabled.

Besides the intrinsic phase-retardation of the EOM, a limiting factor is the extinction
ratio, i.e. how well it transforms one polarization into another. In the data sheet from
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QUBIG [42], the manufacturer claims an AC extinction ratio of 1:26. For this particular
setup, the ratio was measured to be 1:20, i.e. slightly lower than reported. In order to
include this imperfection, an error term ε is introduced, which alters the phase parameters
Φl and Φe and thereby simulates the effects of the finite extinction ratio

Φe,ε = Φe · ε, and Φl,ε = Φl · ε, 0 ≤ ε ≤ 1. (4.3.21)

The ε-parameter can be found by taking the ratio between the coefficients given in Eqs.
4.3.3 - 4.3.6 for the same temporal mode and tuning the EOM as a quarter-waveplate, i.e.
(ii) method. For instance, looking at the early mode entering the detection interferometer,
ε can be found by ∣∣∣∣∣ cV V (θ,Φe,ε)

cV H(θ,Φe,ε)

∣∣∣∣∣
2

=
∣∣∣∣∣cHH(θ,Φe,ε)
cHV (θ,Φe,ε)

∣∣∣∣∣
2

= Re ⇒ ε = 0.72, (4.3.22)

where Re = 20 is the experimentally determined extinction ratio, θ = π/4 and Φe,ε = π/2 ·ε
(i.e. measurement performed in z-basis). For the x- or y-basis one needs to take the
reciprocal value, as the opposite transformation is required. The same applies for the late
mode. Thus, a relation between the extinction ratio Re and ε is established, which will be
used to derive the probabilities in each detector and time-bin using Eq. 4.3.20. Furthermore,
all of the following probabilities are henceforth derived using the (i) method presented in
Table 4.1.

Active Switching - Measurements Performed in x- or y-basis

A measurement performed in the x or y-basis using the active switching scheme results
in early(late) photons created by QD upon emission being reflected(transmitted) to the
long(short) path of the detection interferometer. Thus, photons arrive in the middle time-
bin. From Table 4.1, measurement performed in the x- or y-basis are given by

x- or y-basis: θ = π/2, Φe = π, Φl = 0, (4.3.23)

Inserting these values into Eq. 4.3.20, the probabilities of detecting a photon can be cal-
culated. In the case of an ideal system with no losses or imperfections, the probabilities of
photon detection are simplified to

PmD1 =
∣∣∣〈1mD1 , ∅

m
D2

∣∣Ψ〉
D1,2

∣∣∣2 = 1
2 |ce − icl|

2 , (4.3.24)

PmD2 =
∣∣∣〈∅mD1 , 1

m
D2

∣∣Ψ〉
D1,2

∣∣∣2 = 1
2 |ice − cl|

2 , (4.3.25)

for the middle time-bin, while the early and late yield P eD1 = P eD2 = P lD1 = P lD2 = 0, as
expected. However, under the assumption of a lossy BS, non-unity coupling efficiencies and
an imperfect EOM, the probabilities for the middle time-bins are expressed by

PmD1,ε = 1
4

∣∣∣(1− i)Φ(ε, χ′)ηL1ce + i
√

2ηS1cl
∣∣∣2 , (4.3.26)

PmD2,ε = 1
4

∣∣∣(1 + i)Φ(ε, χ′)ηL2ce +
√

2ηS2cl
∣∣∣2 , (4.3.27)
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while the early and late time-bins are given by

P eD1,ε = 1
2 |Θ(ε)ηS1ce|2 , P eD2,ε = 1

2 |Θ(ε)ηS2ce|2 , (4.3.28)

P lD1,ε = 0, P lD2,ε = 0, (4.3.29)

where the functions Θ(ε) and Φ(ε, χ′) read

Θ(ε) = cos
(
πε

2

)
e
π
4 i(1−4ε), Φ(ε, χ′) = sin

(
πε

2

)
e

1
4 i(π+4χ′−4πε), for 0 ≤ ε ≤ 1. (4.3.30)

Thus, the probabilities in each time-bin and detector varies as a function of QWP4 and LP
in the excitation interferometer since Θ(ε), Φ(ε, χ′) and ηij are constants defined by the
imperfections in the optical setup. The latter is found experimentally by measuring the
couplings efficiencies at each detector combined with the losses accumulated in the short
and long interferometer paths. Generally, the couplings efficiencies are around 80%, while
there is an additional 6-8% loss in the long interferometer path compared to the short.
The corresponding detection probabilities in the middle time-bin are presented by the two-
dimensional color map in Fig. 4.6 (a)-(b), showing each detector as a function of QWP4
and LP. Note, these are normalized to present the relative detection probability.

(a) Detector 1, Middle Time-bin. (b) Detector 2, Middle Time-bin.

(c) Detection Probabilities for θQWP = 45o.

Figure 4.6: Theoretical model with normalized detection probabilities: The probabilities
{PmD1,ε, P

m
D2,ε} of photon detection in detector {D1, D2} as a function of θQWP and θLP for

active switching in the middle time-bin using the x- or y-basis settings. Note the different
scaling of the colorbars. Imperfections of the optical setup yield: ηS1 = 0.84, ηS2 = 0.79,
ηL1 = 0.81, ηL2 = 0.76, ε = 0.72 and χ = χ′ = 0. All angles are presented in degrees.
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From Fig. 4.6 (c), a clear anti-correlation between the two detectors becomes visi-
ble, due to the alternating phase-difference induced by QWP4 and LP in the excitation
interferometer. Furthermore, there is a slightly larger probability of getting a photon in
Detector 1, as it has an better coupling efficiency, yielding a maximum(minimum) of 91%
(0.5%) at θLP = 155o(65o), while Detector 2 has a maximum(minimum) of 89% (0.4%) at
θLP = 65o(155o). The probabilities for the early time-bin are presented in Appendix B.3.

Active Switching - Measurements Performed in z-basis

Measurements carried out in the z-basis will result in photons arriving in the early and late
time-bins. Therefore, using the following settings provided in Table 4.1

z-basis: θ = π/2, Φe = 0, Φl = π, (4.3.31)

the probabilities of photon detection takes the form

P eD1,ε = 1
2 |ηS1ce|2 , P eD2,ε = 1

2 |ηS2ce|2 , (4.3.32)

PmD1,ε = 1
2 |Θ(ε)ηS1cl|2 , PmD2,ε = 1

2 |Θ(ε)ηS2cl|2 , (4.3.33)

P lD1,ε = 1
2
∣∣Φ(ε, χ′)ηL1cl

∣∣2 , P lD2,ε = 1
2
∣∣Φ(ε, χ′)ηL2cl

∣∣2 . (4.3.34)

For an ideal system the probabilities are reduced to the following simple expressions

P eD1 = P eD2 = 1
2 |ce|

2 , P lD1 = P lD2 = 1
2 |cl|

2 , (4.3.35)

for the early and late time-bin, while the middle yields PmD1 = PmD2 = 0, as expected.
In the case where imperfections are included, the corresponding figure showing the prob-
abilities of the early, middle and late time-bins are presented in Fig. B.3, Appendix B.3.
Here the same detection pattern emerges from all the time-bins, but with different proba-
bilities. Furthermore, Fig. B.5 in Appendix B.3 shows a data set using the EOM, which
reveals the same detection pattern as predicted from the model.

Passive Switching

While passive switching is enabled (the EOM is off), the photons arrive in all time-bins.
Therefore, using the following settings

Passive: θ = π/4, Φe = 0, Φl = 0, (4.3.36)

the probabilities of photon detection takes the form

P eD1 = 1
4 |ηS1ce|2 , P eD2 = 1

4 |ηS2ce|2 , (4.3.37)

PmD1 = 1
4

∣∣∣ηL1e
iχ′ce − iηS1cl

∣∣∣2 , PmD2 = 1
4

∣∣∣ηL2e
iχ′ce + iηS2cl

∣∣∣2 , (4.3.38)

P lD1 = 1
4

∣∣∣ηL1e
iχ′cl

∣∣∣2 , P lD2 = 1
4

∣∣∣ηL2e
iχ′cl

∣∣∣2 . (4.3.39)

45



4.3. THE DETECTION INTERFEROMETER

For an ideal system the probabilities for the middle time-bin are given by

PmD1 = 1
4 |ce − icl|

2 , PmD2 = 1
4 |ce + icl|2 , (4.3.40)

while P eD1 = P eD2 = 1
4 |ce|

2 and P lD1 = P lD2 = 1
4 |cl|

2 for the early and late time-bin.
This concludes the derivation of the detection probabilities using the active and passive
switching schemes, whereby the performance of the TBI is examined in the following section.

4.3.2 Physical Characterization of the Detection Interferometer

This section presents an overview of the detection interferometer, linking the theoretical
analysis with the experimental setup. This includes an examination of the relative phase
between the early and late pulse and a demonstration of active switching. Furthermore,
a way of estimating the stability of the TBI will be introduced. All characterizations are
performed using a coherent state.

Phase Control and Stability

During the theoretical analysis of the excitation interferometer is was found that rotating
the linear polarizer while keeping QWP4 constant at θQWP = π

4 + π
2n allowed for equal

intensity between the early and late pulse, while controlling the relative phase.
Experimentally, this can be verified by examining the middle time-bin. Operating the TBI
under passive switching allows the early and late time-bin to be examined as well - their
relative ratio should ideally remain constant, whereas the probability of photon detection
in the middle time-bin oscillates between the two detectors. The latter can be derived from
Eqs. 4.3.40, where the probability in each detector is proportional to PmD1 ∝ |cos(θLP)|2
and PmD2 ∝ |sin(θLP)|2. The corresponding oscillation is shown in Fig. 4.7 (a), where both
detectors are fitted with a sine-squared as a function of the linear polarizer for θQWP = 45o.

Figure 4.7: (a) Counts in the middle time-bin for each detector as a function of the angle
of the linear polarizer, θLP. The measurements are performed using passive switching
(QWP2 = 62.8o) in the detection interferometer and θQWP = π/4. The errorbars assumes
a Poisson-distribution, i.e. σ =

√
N , where N is to total counts for each setting. (b) The

ratio between the early and late time-bin in each detector.
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From the raw data, the maximum and minimum visibility using a classical field yields

Vmax(θLP = 48.5o) = 0.996± 0.001, Vmin(θLP = 136o) = −0.995± 0.001, (4.3.41)

whereas the corresponding fit gives

V f
max(θLP = 49.7o) = 0.979± 0.002, V f

min(θLP = 136o) = −0.987,±0.001. (4.3.42)

hence a slightly more conservative estimate. Furthermore, based on the corresponding an-
gles of θLP, the two middle time-bins are approximately 87o out of phase. This should
ideally be 90o, which could indicate a small imperfection in the optical setup. Additionally,
due to different coupling efficiencies and non-perfect passive switching, there are less counts
in the second detector. Comparing the total counts in each detector yields a difference of
≈ 5%, which agrees with the ηij-parameters given in previous section.

In the context of the entanglement protocol, it should be noted that altering the rela-
tive phase between the early and late pulse corresponds to a rotation on the x-y-plane of
the Bloch sphere. Hence, only a measurement performed in the middle time-bin allows the
photonic qubits to be projected onto the x- or y-basis.
Furthermore, the stability of the TBI can be evaluated by monitoring the angle of θLP
for either minimum or maximum visibility over a longer period of time. Leaving the TBI
untouched for six days revealed a shift of 4.9 degrees, i.e. a little less than one degree per
day. Putting this into the context of the theoretical section, this provides an estimate on
d
dt(χ − χ′), which relates the accumulated phase of the two interferometer paths to one
another. This parameter is sufficiently small for the implementation of the entanglement
protocol, which typically takes several hours, after which the characterization can be re-
peated.

Finally, ahead of each measurement where passive switching is enabled, a calibration of
QWP2 is required in order to counter-balance the intrinsic transformation of the EOM.
Ideally, there should be a point at which the ratio between counts in the early and late
time-bin equals one, i.e. D1(Ce/Cl) = D2(Ce/Cl) = 1. However, due to different coupling
efficiencies and losses in each path, one most find a compromise between each of the detec-
tors. The data presented in Fig. 4.7 were measured after a calibration of this type yielding
the following ratios: D1(e/l) = 1.037 and D2(e/l) = 0.951 for QWP2 = 62.8o. Using this
setting, the corresponding ratios in each detector are shown in Fig. 4.7 (b) as a function of
the linear polarizer. The average ratio between the early and late time-bin gives

RD1 = 1.038± 0.031, RD2 = 0.947± 0.027. (4.3.43)

Thus, slightly more counts are present in the early time-bin for Detector 1, while the
opposite behavior is shown in Detector 2, which is comparable with the QWP2 calibration.

Demonstration of Active Switching

The combination of the QWP2 and EOM allows for active switching in the detection inter-
ferometer. A demonstration of its efficiency is presented in Fig. 4.8, showing the detection
probabilities in the middle time-bin (using the x- and y-basis setting) as a function of QWP4
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and LP in the excitation interferometer. Each of the two waveplates are rotated stepwise
by 7.5 degrees, after which there is an integration time of one second. The counts from
every time-bin and detector are normalized to the total counts for each individual setting
of the waveplates, which yields the relative detection probabilities in each detector.
A distinct feature of the middle time-bin is the ”wave-like” detection pattern, which has
the same shape as the model predicts (see Fig. 4.6). This is a direct consequence of the
finite extinction ratio of the EOM, which in the model takes the form of the ε-parameter.
However, if the EOM would operate perfectly, i.e. having an infinite extinction ratio, the
corresponding detection pattern would consist of straight diagonal lines. For a complete
overview of all time-bins, see Appendix B.3.3.

(a) Detector 1, Middle Time-bin. (b) Detector 2, Middle Time-bin.

Figure 4.8: Experimental Data: The probabilities {PmD1, P
m
D2} of photon detection in de-

tector {D1, D2} as a function of θQWP and θLP for active switching in the middle time-bin
using the x- and y-basis settings. The data is normalized to all photon events for each
setting of the waveplates. All angles are presented in degrees.

Particularly interesting are the angles of θQWP = π
4 + π

2n, as they provide the means of
realizing the entanglement protocol, i.e. maintain equal intensity between the early and late
excitation pulses. Hence, examining the photon detection events at e.g. θQWP = π

4 gives a
measure of the efficiency of the active switching scheme, with varying coupling efficiencies
and losses for each detector and corresponding time-bin.
From the theoretical derivation, the detection probabilities for the middle time-bins are
given by Eqs. 4.3.26 and 4.3.27. These are depicted at the solid lines in Fig. 4.9 (a),
whereas each data-point corresponds to the detection probabilities for θQWP = π

4 , that is
the measurement presented in the previous figure (Fig. 4.8). The data set for the middle
time-bin yields a maximum(minimum) detection probability of 92.0 ± 0.8% (1.2 ± 0.1%)
at θLP = 157.5o(67.5o) for Detector 1, while Detector 2 has a maximum(minimum) of
88.4 ± 0.9% (0.6 ± 0.1%) at θLP = 67.5o(157.5o) whereby the two detectors are 90o out of
phase as expected. Based on the maximum probability in each detector, this measurement
demonstrates an average efficiency of 90.2± 0.6% for the active switching scheme.

The advantages of active switching become apparent if one considers the case of multiple
qubits, i.e. introducing a stream of photonic qubits to the entanglement protocol. Under
the assumption of an ideal system, the active switching enables deterministic routing of pho-
tons and the measurement basis of the photonic qubits may therefore be chosen directly by
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the settings of the EOM. This is shown in Fig. 4.9 (b), displaying the detection efficiency as
a function of the number of photonic qubits. The perfect EOM yields unit efficiency (blue)
while passive switching (yellow) routes half the photons through the long/short path. How-
ever, as the EOM has an finite extinction ratio of Re = 20, its efficiency reads 95% (red) if
no losses or other imperfections are included. Thus, if one wishes to perform measurements
using multiple photons, active switching is required as the detection efficiency otherwise
drops rapidly.

(a) Detection Probability, Middle Time-bin. (b) Efficiencies.

Figure 4.9: (a) The normalized detection probabilities {PmD1, P
m
D2} at θQWP = π

4 as a
function of θLP for active switching in the middle time-bin using the x- or y-basis settings.
The solid lines corresponds to Eqs. 4.3.26 and 4.3.27. (b) Detection efficiencies for active
and passive switching presented by the red and yellow lines, respectively.

4.4 Summary

The overall characterization of the TBI is best summarized by examining the excitation-
and detection-interferometer individually.
The excitation interferometer generates two optical pulses separated by ∆τ ≈ 11.83 ns,
where the intensity and relative phase are controlled by a QWP and linear polarizer. Ad-
justing the former to θQWP = π

4 + π
2n and sweeping the angle of the latter, alters the relative

phase between the two pulses, while keeping the intensity constant. These findings has been
verified experimentally, making the excitation interferometer a suitable system towards the
realization of the optical π-pulses used for resonant excitation in entanglement protocol.
The detection interferometer creates three time-bins {|e〉 , |m〉 , |l〉} upon the re-interference
of the photons emitted by the QD. The measurement-basis of the photonic qubits can be
altered by QWP2 and the EOM and hence project the photonic qubits into the x, y, or
z-basis using the switching schemes. The latter has been demonstrated experimentally and
provides the means to scale the number of photonic qubits in a given sequence. Further-
more, the self-stabilizing effect of the TBI has been presented and the classical visibility
was probed by a coherent state, yielding a visibility of V = 0.995± 0.001 between the two
detectors.
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Chapter 5

Characterization of the
Single-Photon Source

The quality of a single-photon source is mainly characterized by two parameters, namely
its purity and indistinguishability. The former relies on photon statistics to quantify the
performance of the emitter, i.e. assess the nature of the single-photons, while the latter is
based on two-photon interference to determine the overlap of two wave-packets. The aim
of this chapter is hence the investigation of those parameters, and how they readily can be
measured by the Time-bin Interferometer. However, a fundamental requirement for both
quantities is the resonant excitation of the QD, utilizing the optical pulses generated by the
Mira-laser. Consequently, this chapter begins with a characterization of the latter, focusing
on the optical π-pulses.

5.1 Characterization of the Excitation Pulse

The resonant excitation of X+, i.e. the optical π-pulses used to excite the low-energy
transition |⇑〉 → |⇑⇓, ↑〉, are generated by the Mira-laser [44]. The latter has a broad
bandwidth, emitting pulses of ≈ 4 ps duration with a repetition rate of frep ≈ 72 MHz.
However, in order to excite the correct transition, tuning the central frequency of the
excitation pulse along its bandwidth is an essential requirement.
This can be achieved using tunable frequency filters allowing one to narrow down the spectra
of the Mira-laser to make the optical excitation pulse compatible with the entanglement
protocol. In this section, two filter types are used; a Volume Bragg Grating (VBG) and
a custom made Pulse stretcher. The working principles of both devices are presented in
Appendix C.3 and C.4, respectively.
The aim of this section is thus to consider the effects of these frequency filters in regards
to the optical excitation of the low-energy transition, having a resonance frequency at
ν0 = 317.23 THz (945.03 nm), see Table 2.1.

5.1.1 Resonant Excitation of the Positive Trion

In order to investigate the performance of the optical excitation, one must consider its
ability to excite the correct transition. For the positive trion, the two vertical transitions
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5.1. CHARACTERIZATION OF THE EXCITATION PULSE

are of interest, namely (i) the low-energy transition |⇑〉 → |⇑⇓, ↑〉 and (ii) the high-energy
transition |⇓〉 → |⇑⇓, ↓〉 (see Fig. 2.7). The excitation of the former is utilized in the
entanglement protocol, however, dependent on the laser bandwidth the opposite transition
might be accessed as well. Consequently, the performance of the excitation pulse can be
probed by preparing either |⇑〉 or |⇓〉 through OSP (recall Fig. 2.7) and subsequently excite
the low-energy transition. In the ideal case, no emission is expected if the initial spin-state
was prepared in |⇓〉. The performance is thus quantified by the rejection ratio Rr, i.e. the
ratio between the emission coming from either of the two ground-states upon excitation.
The excitation scheme probing the rejection ratio can therefore be summarized to: (i) Pre-
pare the X+ using the ABB-laser, (ii) Initialize either |⇑〉 or |⇓〉 through OSP, (iii) excite
the low-energy transition using the pulsed Mira-laser.

Experimentally, this is realised by fine-tuning the bias-voltage across the QD to match
that of the low-energy transition, conditioned on the central wavelength determined by
either the pulse stretcher or VBG. For the positive trion, this means a central wavelength
around 945 nm (recall Section 2.1.1), which is measured using a spectrometer, yielding the
central wavelength and its bandwidth. However, one most correct for the response of the
spectrometer (the minimum resolution), to be sure the spectrometer itself is not the limiting
factor. The response of spectrometer is characterized using a monochromatic-laser tuned
to 945 nm, given a FWHM of 8.25±0.12 GHz. The latter is included in the data presented
in this section, that is, the bandwidths are extracted from the convolution between the
Mira-pulses and the response function of the spectrometer - both having a Gaussian shape.

The Pulse Stretcher

In contrast to the VBG, the central wavelength and the bandwidth can be modified using
the pulse stretcher (see Appendix C.4 for more information).
To analyse its effects in regards to the optical excitation, a total of eight different pulses are
employed, defined by their bandwidth and central wavelength. The latter should ideally
remain the same for all settings, but in practice this will vary slightly.
The effect of the pulse stretcher is best described by Fig. 5.1 (a), showing the photon
counts as a function of the excitation power1. The solid (dashed) lines corresponds to the
spin-state being prepared in |⇑〉 (|⇓〉) by OSP, while the coloring presents four different
settings. The corresponding Rr is presented in Fig. 5.1 (b), from which it can be observed
that the rejection ratio increases as the spectral bandwidth decreased. This correlation can
be explained by the finite splitting of the ground states ∆h = 7.29 GHz (see Table 2.1)
whereby the correct transition can be addressed with a higher degree of precision, owing to
the narrowing bandwidth.
This effect becomes more clear in Fig. 5.1 (c), showing the correlation between the band-
width and the rejection ratio, along with the maximum counts for each setting. Here,
the maximum(minimum) rejection ratio yields Rr = 23.9(2.5) at a bandwidth of 9.3(29.4)
GHz. However, as the bandwidth becomes more narrow, the more light is lost in the pulse
stretcher, resulting in a drop of the maximum photon count. For instance, consider the red
curve in Fig. 5.1 (a), having a bandwidth of 27.7 pm (9.3 GHz). The maximum power

1The actual excitation power is much lower - this merely serves as a reference, measuring parts of the
excitation pulse using a Powermeter.
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5.1. CHARACTERIZATION OF THE EXCITATION PULSE

achievable lies around 0.08 µW , and hence limited by the losses and inefficiencies of the
pulse stretcher setup2. This is an issue, since the narrow-band pulses cannot reach a full
π-pulse, which in this context results in the saturation of the photon counts presented in
Fig. 5.1 (a), where only the black and green curves reach a maximum.
In other words, the pulse stretcher provides a method to examine the correlation between
the spectral bandwidth and the rejection ratio. However, due to its inefficiency a VBG with
a fixed bandwidth is used instead.
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Figure 5.1: (a) Photon counts as a function of excitation power for a spin-state prepared in
|⇑〉 (solid-line) and |⇓〉 (dashed-line). (b) The corresponding rejection ratios at various exci-
tation powers. (c) Correlation between the rejection ratio and the FWHM of the excitation
pulse at the position where the power yields the maximum photon counts.

The Volume Bragg Grating

The VBG is a diffraction grating which filters a given frequency from a broad spectrum.
This device has a fixed bandwidth, which according to the manufacture OptiGrate, has a
FWHM of 30 pm at a central wavelength of 956.039 nm (i.e. the ”optimal” wavelength).
Nevertheless, as stated in Appendix C.3, the central wavelength of the diffracted light can
be controlled by altering the angle of incidence.
In this work, the angle of incidence yields a central wavelength of λC = 945.03 nm with
a FWHM = 38.9 pm (13.1 GHz). The corresponding photon counts as a function of the
excitation power is presented in Fig. 5.2 (a). The black(blue) lines represents measurements
using the long(short) path of the excitation interferometer to excite the QD. The dashed
black vertical lines mark an area where the photon counts saturates, corresponding to an
optical π-pulse. This interval ranges from 0.3 - 0.45 µW, giving an average rejection ratio
of Rr = 15.2± 3.1 (15.3± 4.9) for the long path (short path).
Increasing the excitation power even further, drives the population between the ground
state and the excited state of the two-level system, yielding the Rabi-oscillations shown in
Fig. 5.2 (b). If the laser frequency is at resonance, the probability of populating the excited
state oscillates as

Pe(t) = sin(ΩRt/2)2, (5.1.1)

2It was found that up to 98 % of the incident light was lost by the pulse stretcher setup, making it
impossible to achieve enough power with Mira-laser.
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5.1. CHARACTERIZATION OF THE EXCITATION PULSE

where ΩR is the Rabi-frequency [45]. The fitted curve in Fig. 5.2 (b) corresponds to Eq.
5.1.1, showing a clear oscillation in the photon counts as a function of the excitation power.
Thus, a π-pulse can be realised for excitation-powers at ≈ 0.3 µW with a weighted average
rejection ratio of Rr = 15.2± 2.6.

(a) Photon Counts and Rejection Ratios. (b) Rabi Oscillation.

Figure 5.2: (a) Photon counts as a function of excitation power for a spin-state prepared
in |⇑〉 (solid-line) and |⇓〉 (dashed-line). The two vertical lines mark the interval, whereby
the average rejection ratio of both interferometer paths gives Rr = 15.2 ± 2.6. (b) Rabi-
oscillations as a function of the excitation power. The fitted curved is given by Eq. 5.1.1,
presenting the population of the excited state in a two-level system.

Bandwidth and Pulse Duration

Varying the spectral bandwidth alters the duration of the excitation pulse as these are
inversely proportional to one another. Assuming a Gaussian pulse shape, the relation
between the FWHM of the spectral bandwidth ∆λ and the corresponding pulse duration
∆T , is given by

∆T = λ2
C · G

∆λ · c , (5.1.2)

where λC denotes the central wavelength, G = 0.441 is the time-bandwidth product for a
Gaussian pulse and c is the speed of light in vacuum. Inserting the values determined by
the VBG, yields a pulse duration of ∆T = 33.8 ps.

From Ref. [11], the radiative decay rate of the X+ is γ(+)
0 = (3.07 ± 0.06) ns−1 (see

Table 2.1). The corresponding lifetime τ (+)
0 is therefore

τ
(+)
0 = 1

γ
(+)
0

= 326± 6 ps, (5.1.3)

i.e. an order of magnitude larger than the pulse duration. Ideally, ∆T � τ
(+)
0 to avoid

re-excitation errors induced by a long excitation pulse. Consequently, there is a constant
trade-off between a large rejection ratio and a small probability of re-excitation. The latter
could potentially result in two photons being emitted from the same excitation pulse and
hence affect the purity of single-photon source.
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5.2. SINGLE-PHOTON PURITY

5.2 Single-Photon Purity

A two-level quantum system should ideally emit single photons if resonantly excited. The
quality of the single-photon emitter can hence be determined by looking at the photon
statistics, i.e. examining the correlations between a continuous stream of photons generated
by the single-photon source. Experimentally, this is realized through the use of a beam-
splitter, dividing the light into two separate detectors {D1, D2}, each recording the arrival
time of the photon events. Comparing events occurring at times t in one detector and t+ τ
in the opposite detector, allows one to evaluate the normalized second-order correlation
function defined by

g(2)(t, τ) = 〈â
†(t)â†(t+ τ)â(t+ τ)â(t)〉

〈â†(t)â(t)〉2 , (5.2.1)

where â†(â) is the creation(annihilation) operator of the optical mode [5]. Especially the
case where the time-delay is zero, i.e. τ = 0, is of great interest. For Fock-states (or
number-states) the second-order correlation function takes the form

g
(2)
F (τ = 0) = 1− 1/n, for n ≥ 1, (5.2.2)

where n is the photon number. Hence, the ideal single-photon source yields g(2)
F (τ = 0) = 0,

which is outside the classical bound of g(2)(τ = 0) ≥ 1, and therefore a non-classical
phenomenon [45]. In addition to this, a Coherent-state gives g(2)(τ = 0) = 1, while a single
mode Thermal-state reads g(2)(τ = 0) = 2. Thus, determining the second-order correlation
function yields a technique of quantifying the photon statistics and hence estimate the
single-photon purity along with a method of distinguishing various quantum states.

5.2.1 Experimental Analysis of Single-Photon Purity

The single-photon purity can be assessed by the use of a Hanbury Brown and Twiss (HBT)-
like setup [46], measuring the correlation between two separate detectors, each placed at
the output port of a 50/50 beam-splitter. Fortunately, the TBI meets these requirements
whereby a HBT-measurement readily can be implemented without any further alterations
to the existing setup. Ideally, the early and late time-bins created by the detection interfer-
ometer (recall Fig. 4.4), contains single-photon events whereas events caused by two-photon
interference makes up the middle time-bin. Consequently, operating the detection interfer-
ometer under passive switching allows one to perform correlations measurements in both
the early and late time-bins separately, while simultaneously conduct a HOM-measurement
on the middle time-bin. The latter will be introduced in Section 5.3.
Once more, the Time Tagger from Swabian Instruments [43] is employed to keep track of the
time-bins. This device records the timetags of each event triggered by the Superconducting
nanowire single-photon detectors (SNSPDs), enabling high precision time-resolution at the
order of pico-seconds. A continuous stream of photons are generated by the resonant excita-
tion of the pulsed Mira-laser, from which a histogram of the coincidence counts between the
two detectors can be constructed, one for each time-bin. However, only the early and late
time-bins are of interest in this analysis. The normalized second-order correlation function
can thus be obtained from the correlations at times τ = 0 and τ → ∞, where the latter
provides a means of normalization, i.e. all information in regards to the first event is gone.
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5.2. SINGLE-PHOTON PURITY

For this analysis two different excitation schemes are implemented; (i) the ”Non-Entanglement
sequence” and (ii) the ”Entanglement sequence”, see Fig. 5.3 (a). The difference lies in
the preparation of the spin-state utilizing the principles of OSP (recall Section 2.3.1). The
former pumps the high-energy transition |⇓〉 → |⇑⇓, ↓〉 shelving the hole-spin in |⇑〉 directly
(see Fig. 5.3 (b)), while the latter drives the low-energy transition |⇑〉 → |⇑⇓, ↑〉 shelving
the hole-spin in |⇓〉, following by a π-rotation of the hole-spin, i.e. rotating into |⇑〉. The
outcome is the same, however it is two different techniques, whereby the influence of the
spin-rotation may be examined in regards to the single-photon purity. Since spin-rotations
constitutes an essential part of the entanglement protocol, the ”Entanglement sequence”
resembles that of the protocol - hence its name. Common for both schemes are the ini-
tialization of X+ at the beginning of each sequence using an ABB-laser for 100 ns and the
optical excitation of the low-energy transition by the Mira-pulses generated in the TBI.
Moreover, each scheme is repeated every Trep = 606 ns over a duration of several minutes3,
whereby the coincidence counts for the early and late time-bin are found by analysing the
entire stream of photons as described in Section 5.2.
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Figure 5.3: (a) Two different pulse sequences used for the characterization of the single-
photon source. Sequence (i) pumps the high-energy transition, initializing the hole-spin
directly into |⇑〉, while (ii) pumps the low-energy transition and applies an additional spin-
rotation. (b) Energy diagram of X+, showing the various optical transitions and rotations.

Each time-bin is associated with a given integration window, i.e. a time-interval that
defines its length and position. These are presented in Fig. 5.4 (a), showing a histogram
of the total counts in each time-bin for the non-entanglement sequence, where the vertical
red line marks the beginning of the integration window while the black lines show various
integration-lengths, i.e. ranging from 0.5 to 3 ns. For comparison, the middle time-bin is
included as well.
It turns out that g(2)(τ = 0) is quite sensitive to the integration window, which is clearly
visible in Fig. 5.4 (b), where sequence (i) (sequence (ii)) is shown as the blue (red) graphs,
while the early (late) time-bin are presented as dashed (solid) lines. Here it can be observed,

3The repetition time Trep is fixed to 606 ns, corresponding to the duration of one repetition in the
entanglement protocol presented in Section 3.3. The repetition time has been found experimentally and it
includes the duration of the ABB-laser, OSP, spin-rotations and optical excitation.
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that the (ii) sequence yields a generally larger g(2)(τ = 0), especially at the narrow (0.5
ns) and wide (3 ns) integration window. The latter could be explained by the integration
window exceeding the pulse area (see Fig. 5.4 (a)) whereby the signal-to-noise ratio (SNR)
decreases in the presence of any potential noise, e.g. laser scattering. This will be examined
more closely in the following paragraph discussing impurities caused by laser background
and the resulting affect on the single-photon purity.

(a) Histogram showing the distribution of the
three time-bins.

(b) g(2)(τ = 0) at varying integration windows.

Figure 5.4: (a) Histogram showing the three time-bins and corresponding integration win-
dows. The red line marks the beginning, while the black lines indicate the end of each
window. (b) g(2)(0) dependence for the two pulse sequences at varying integration lengths.

The data presented in 5.4 (b) is found by analysing the two-photon correlation his-
togram, employing the Swabian Time Tagger. An example is shown in Fig. 5.5 (a) for
sequence (i), using an integration window of 1.5 ns, which accounts for 85% of the entire
counts in each time-bin. The small peak at Trep = 0, see Fig. 5.5 (b), presents the coinci-
dence counts at τ = 0, while Fig. 5.5 (c) shows the coincidences at Trep = 1.

Taking the ratio of the coincidence counts at Trep = 0 and Trep → ∞ yields the single-
photon purity4. Thus, given an integrating window of 1.5 ns, the normalized second-order
correlation at τ = 0 reads

(i) Sequence: g(2)
e (0) = 0.0196± 0.0034, g

(2)
l (0) = 0.0175± 0.0033, (5.2.3)

(ii) Sequence: g(2)
e (0) = 0.0361± 0.0106, g

(2)
l (0) = 0.0206± 0.0085, (5.2.4)

where the uncertainties are estimated using error-propagation assuming Poisson-distributed
noise, i.e. σ =

√
N , where N is to total counts for each time-bin. In regards to Fig. 5.4

(b), this yields the best single-photon purity for both time-bins and sequences. The values
obtained in the non-entanglement sequence are comparable with previous work by Uppu et
al. [47], demonstrating a single-photon purity of g(2) = 0.015±0.005 using a QD embedded
in a PCW. Furthermore, the coincidence counts in the late time-bin is on average 7.7 %
lower than the early time-bin and hence comparable with the finite cyclicity of the X+,
which in theory should give a reduction of approximately 7 %.

4In this analysis, Trep →∞ corresponds to coincidence counts further than 30 · Trep ≈ 18.18 µs away.
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Figure 5.5: (a) Two-photon coincidence counts in the early and late time-bin (TB) for the
(i) sequence with an integration window of 1.5 ns. (b) A histogram with a greater time-
resolution, showing the coincidence counts around Trep = 0 and (c) Trep = 1. The plotting
range of (b) and (c) corresponds to 6.06 ns.

Impurity

Altering the bias voltage allows one to tune the QD in and out of resonance (see Section
2.1.1). Consequently, performing an experiment where the QD is off-resonance with the
excitation laser, i.e. the Mira-pulses, provides a method to investigate the background
scattering into the waveguide-mode. Naturally, the latter should be at a minimum for an
ideal system containing a single-photon source. Thus, the impurity quantifies the ratio
between the single-photon counts in the resonant and non-resonant case

I ≡
∑
Cnres∑

Cres −
∑
Cnres

, (5.2.5)

where (
∑
Cnres)

∑
Cres is the total counts for (non)-resonant excitation. The impurity of

the previous measurements is presented in Fig. 5.6, where the total counts in each time-bin
was found for both the resonant and non-resonant case. On average, the entanglement
sequence yields a slightly larger impurity compared to the non-entanglement sequence

I(i) = 0.0025± 0.0004, I(ii) = 0.0037± 0.0006, (5.2.6)

which could be a contributing factor to the g(2)-analysis.
Following Kako et al. [48], the single-photon purity can be related to the impurity by

g(2)(τ = 0) ≈ 2I − I2, (5.2.7)

under the assumption of a statistical mixture between the single-photon source and a small
contribution from the background, following poissonian statistics. Inserting the impurities
found in Eq. 5.2.6 into this relation, provides a method to investigate its affect on the
single-photon purity in each sequence

g
(2)
(i) (τ = 0) ≈ 0.0050± 0.0008, g

(2)
(ii)(τ = 0) ≈ 0.0074± 0.0012. (5.2.8)
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Thus, comparing these values to the single-photon purities obtained in Eqs. 5.2.3 - 5.2.4, the
contribution from the impurity is generally more predominant in the entanglement sequence,
which may originate from the additional π-rotation of the ground states. However, based
on this analysis, the impurity is not the limiting factor, whereby one cannot eliminate other
parameters like re-excitation errors caused by the optical excitation pulses.

Figure 5.6: Impurity as a function of the integration window. The impurity of the entan-
glement (non-entanglement) sequence is shown by the red(blue) lines.

Blinking

Photon-bunching at long timescales (100 ns or longer) can be assigned to a phenomenon
known as blinking5. This process affects the emission of QD resulting in a bunching effect
that can be observed in the g(2)-analysis, where an increase in the two-photon coincidence
counts (CC) is visible around both sides at Trep = 0. This effect is clearly illustrated in Fig.
5.7 (a), presenting the histogram from the previous measurement with larger timescales.

Fitting an exponential function to the normalized CC, i.e. normalized to the average CC
obtained further than 30 · Trep away, yields the timescale of the blinking process τB, see
Fig. 5.7 (b). Thus, taking the average value obtained from both time-bins give

τ̄B = (0.36± 0.02) Trep = 218± 14 ns, (5.2.9)

which demonstrates the need to normalize g(2)(τ = 0) at τ →∞ in order to determine the
single-photon purity correctly.

5Blinking may arise from uncontrolled spin-flips processes or tunneling of carriers [5].
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(a) Histogram of coincidence counts at longer timescales.
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Figure 5.7: (a) Two-photon CC in the early and late time-bin (TB) for the (i) sequence
with an integration window of 1.5 ns. The time scaling is widened to display the effects
of blinking. (b) Exponential fit to the normalized CC, whereby the normalization factor is
calculated by the average CC over 30 repetitions away from τ = 0.

5.3 Photon Indistinguishability

Highly indistinguishable photons are fundamental for most applications in quantum infor-
mation processing and is therefore an essential figure of merit for an ideal single-photon
source. The degree of indistinguishably can be quantified by measuring the Hong-Ou-
Mandel (HOM) interference [49], i.e. extracting the visibility from two photons interfering
at a BS. Thus, reviewing the transformation of the latter in context of two incident photons
is a good starting point towards the characterization of indistinguishability.

Following the notation presented in Section 4.1.2, the quantum-mechanical input-output
relation of a BS reads [

â3
â4

]
=
(

t r′eiξ2

reiξ1 t′

)[
â1
â2

]
, (5.3.1)

where â{1,2}(â{3,4}) are the two input(output) modes. The annihilation/creation operators
obey the commutation relations, given by

[âi, âj ] =
[
â†i , â

†
j

]
= 0,

[
âi, â

†
j

]
= δij , (5.3.2)

where δij is the Kronecker delta function. For a lossless 50/50 BS, the “inverse” relations
involving the creation operators takes the form

â†1 = 1√
2

(
â†3 + iâ†4

)
, â†2 = 1√

2

(
iâ†3 + â†4

)
, ξ{1,2} = π/2, (5.3.3)

where the creation operator transforms a Fock-state according to â† |n〉 =
√
n+ 1 |n+ 1〉.

The output of two identical photons arriving simultaneously at each input port of the BS
is hence given by
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|1〉1 |1〉2 = â†1â
†
2 |∅〉1 |∅〉2

BS−→ 1
2
(
â†3 + iâ†4

) (
iâ†3 + â†4

)
|∅〉3,4 (5.3.4)

= i

2
(
â†3â
†
3 + â†4â

†
4

)
|∅〉3,4 (5.3.5)

= i√
2

(|2〉3 |∅〉4 + |∅〉3 |2〉4) . (5.3.6)

Consequently, both photons merge together into the same output port and thus arrive in
pairs - a phenomenon known as photon-bunching. This effect is only visible if the photons
are identical or indistinguishable, i.e. having the same polarization, frequency and tempo-
ral(spatial) mode. Should the two photons be distinguishable, e.g in terms of polarization,
there are an additional two transformations which may occur, namely the cases where both
photons are transmitted or reflected. As a direct consequence, one may probe the degree of
indistinguishability by examining the coincidence counts between two detectors for a con-
tinuous steam of photons; truly indistinguishable photons will not trigger any coincidences,
while distinguishable photons lead to coincidences between the detectors.

5.3.1 Experimental Analysis of Photon Indistinguishability

Experimentally, there are several configurations allowing one to examine the two-photon
interference. In most cases however, the basic principle can be described by a balanced
Mach-Zehnder Interferometer, i.e. a BS converting a single input into two paths with equal
lengths, which are interfered at a second BS followed by two detectors at each output. Thus,
the photon indistinguishability can be measured by examining the middle time-bin created
by the TBI, as this provides a means of investigating the two-photon interference. The
data presented in this section is hence extracted from the same measurements as presented
in Section 5.2.1, due to the properties of passive switching, though the analysis is slightly
different.

The level of indistinguishability is quantified by the HOM visibility, which usually is defined
by the ratio between the minimum and maximum coincidence counts [50]

VHOM = 1− Cmin
Cmax

, 0 ≤ V ≤ 1, (5.3.7)

at varying arrival-times for one of the two photons interfering at the BS. However, as the
arrival time of the photons in the TBI is fixed, i.e. the length of either the short or long
interferometer path cannot be changed, an alternative approach is required.
Letting

∑
C(m)(τ = 0) denote the total sum of coincidence counts in the middle time-bin

at τ = 0, the visibility for the TBI is found by

VHOM = 1−
∑
C(m)(τ = 0)∑

C̄(el)(τ = ±∆τ)
, (5.3.8)

where ∆τ ≈ 11.83 ns is given by the spatial difference of the short and long interferometer
path while the denominator is defined as∑

C̄(el)(τ = ±∆τ) ≡
∑
C(e)(τ = −∆τ) +

∑
C(l)(τ = +∆τ)

2 , (5.3.9)
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5.3. PHOTON INDISTINGUISHABILITY

i.e. the average coincidence counts for the early and late time-bins at τ = ±∆τ .
Intuitively, this can be understood by considering Fig. 5.8, showing the photon-emission
from two subsequent excitations created from two pulse-sequences separated by Trep. The
early(late) photon ei(li) comes from the optical excitation of the early(late) pulse generated
by the excitation interferometer.

t

∆τ∆τ
Trep

l2e2l1e1

Figure 5.8: Stream of photons going to the detection interferometer. Here ei(li) denotes
the early(late) photons created from the optical excitation of the ith excitation pulse. The
repetition time of the excitation pulse is Trep, while ei and li are separated by ∆τ .

Going through the detection interferometer, the photons can take either the (S)hort or
(L)ong path, e.g. (e1, S) denotes the early photon from the first pulse taking the short path
of the detection interferometer. Thus, the following coincidences between Detector 1 and
Detector 2 are (ideally) possible, each having the same probability using passive switching:

• Coincidence at τ = 0:

|m〉 : {
1. Event︷ ︸︸ ︷
(e1, L),

2. Event︷ ︸︸ ︷
(l1, S)}︸ ︷︷ ︸

Coincidence pair

+ {
1. Event︷ ︸︸ ︷
(e2, L),

2. Event︷ ︸︸ ︷
(l2, S)}︸ ︷︷ ︸

Coincidence pair

, (5.3.10)

which only occurs if the photons are distinguishable. Otherwise, photon-pair goes to
the same detector.

• Coincidence at τ = ±∆τ :

|e〉 : {(e1, S), (l1, S)}+ {(e2, S), (l2, S)}, (5.3.11)
|l〉 : {(e1, L), (l1, L)}+ {(e2, L), (l2, L)}, (5.3.12)

where the early(late) time-bin |e〉 (|l〉) results in coincidence at τ = −∆τ(+∆τ). These
coincidences do not rely on two-photon interference as they are temporally separated.
Thus, the indistinguishability of photons interfered in the middle time-bin can be
extracted using these time-bins as reference (or normalization).

As a result of the possible combinations of coincidence pairs, the HOM visibility can be
found using Eq. 5.3.8, as it yields the ratio between the coincidences in the middle time-bin
and the two adjacent time-bins. Note, the sum of coincidence pairs in the early and late
time-bin gives twice the combinations compared to the middle time-bin, hence the factor
of two in the denominator of Eq. 5.3.9.

The two-photon correlation histogram between the middle time-bin and the stream of pho-
tons is shown in Fig. 5.9 (a). In contrast to the previous analysis of the single-photon
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5.3. PHOTON INDISTINGUISHABILITY

purity presented in Section 5.2.1, this analysis is conditioned on a two-fold coincidence be-
tween the middle time-bin and any other event prior or posterior to the latter. As a direct
consequence, coincidences at τ = ±∆τ are accessible, which is shown in Fig. 5.9 (b).
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Figure 5.9: (a) Two-photon coincidence counts between the middle time-bin (defined by
an integration window of 1.5 ns) and the stream of photons for the (i) sequence. (b) A
histogram with a greater time-resolution, showing the coincidence counts around Trep = 0
for the early, middle and late time-bin, respectively. Each time-bin is marked by the vertical
dashed lines. (c) The HOM visibility for both sequences as a function of the integration
window of the middle time-bin.

Following Eq. 5.3.8, the total coincidence counts for each time-bin around Trep = 0 are
extracted, whereby the corresponding visibility for the two sequences, given an integration
window of 1.5 ns, reads

(i) Sequence: VHOM = 0.9046± 0.0122, (5.3.13)
(ii) Sequence: VHOM = 0.8778± 0.0286, (5.3.14)

while the HOM visibility for varying integration windows are presented in Fig. 5.9 (c). As
were the case for the analysis of the single-photon purity, the highest visibility appears at
1.5 ns, while the narrow and large integration windows yield a lower visibility.
So far, the analysis is based on the ideal case, where all coincidence pairs at τ = 0 are
events of the type presented in Eq. 5.3.10. However, if two photons were to come from
the same excitation, one would not be able to distinguish between these coincidence events
and actual two-photon interferences. In other words, the single-photon purity affects the
visibility - an imperfection which one can rectify if the purity is determined.

Intrinsic Indistinguishability

The degree of indistinguishability defined by Eq. 5.3.8, provides a basic, yet slightly incom-
plete estimate of the visibility, as limitations and imperfections of the experimental setup
are not taken into account. Following Santori et al. [51], the HOM visibility is affected by
a total of three parameters

62



5.3. PHOTON INDISTINGUISHABILITY

(i) The reflection (R) and transmission (T ) coefficients of the BS (and PBS),

(ii) The classical interference fringe contrast VC ≡ (1− ε),

(iii) The purity of the single-photon source g(2)(τ = 0).

The latter was quantified in Section 5.2 (Eqs. 5.2.3 - 5.2.4), providing an estimate on
the single-photon purity using both the early and late time-bin. The second parameter
can be extracted from Section 4.3.2, yielding a lower bound on the classical visibility by
VC = (1 − ε) = 0.995 ± 0.001 (from Eq. 4.3.41). Finally, the performance of BS used in
this particular setup was characterized, demonstrating a reflection(transmission) coefficient
of R = 0.513 (T = 1 − R = 0.487). In contrast to Ref. [51], the splitting ratio of PBS2
has to be considered as well. However, under passive switching the PBS acts as a 50/50
BS, where the splitting ratio is mainly dominated by the loss in the long interferometer
path. Thus, one can approximate the reflection(transmission) coefficient of the PBS to
RP = 0.485 (TP = 0.515), assuming a loss of 6 %.
Based on these parameters, the intrinsic or corrected visibility can be derived, removing
any imperfections introduced by the experimental setup.

Following Ref. [51], the sum of all coincidence counts in the middle time-bin at τ = 0
is proportional to∑

Cm(τ = 0) ∝
[
(RPTPR2 +RPTPT

2)(1 + 2g)− 2(1− ε)2RPTPRTV
]
, (5.3.15)

while the corresponding coincidence counts in the early and late time-bin takes the form∑
Ce(τ = −∆τ) ∝

[
T 2
PTR(1 + 2g) +R2

PRT
]
, (5.3.16)∑

C l(τ = +∆τ) ∝
[
T 2
PTR+R2

PRT (1 + 2g)
]
, (5.3.17)

all having the same factor of proportionality. Based on Eq. 5.3.9, the average coincidence
counts in the early and late time-bin is thus∑

C̄(el)(τ = ±∆τ) ∝ RT (R2
P + T 2

P )(g + 1), (5.3.18)

whereby the influence of the parameters (i)-(iii) can be determined using Eq. 5.3.8, under
the assumption of a perfect visibility (i.e. V = 1)

VPHOM = 1−
∑
C(m)(τ = 0,V = 1)∑
C̄(el)(τ = ±∆τ)

(5.3.19)

= 1− RPTP
[
(2g + 1)(R2 + T 2)− 2RT (1− ε)2]
RT (R2

P + T 2
P )(g + 1)

. (5.3.20)

In the case of an ideal system, i.e. RP = TP = R = T = 1/2, ε = 0 and g = 0, no
corrections are required, which means that VPHOM = 1. However, imperfections caused
by any of the three parameters listed above, affects the measurements characterizing the
actual indistinguishability of the emitted photons, making VPHOM < 1. For this particular
setup, the dominant factor is the single-photon purity, which becomes clear from Table 5.1,
showing the impact of each individual parameter.
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5.3. PHOTON INDISTINGUISHABILITY

Corrections to the Visibility Impact on VPHOM
(i) Unbalanced Splitting Ratio 0.14 %
(ii) Classical Interference Contrast 0.99 %
(iii) Single-photon Purity 3.44 - 12.15 %

Table 5.1: Corrections to the HOM visibility by each of the three parameters. The range of
the single-photon purity is calculated using the lowest(highest) value of g(2) = 0.0175 (g(2) =
0.0647), derived in previous section.

The intrinsic HOM visibility can therefore be expressed by

VIHOM = VHOM
VPHOM

, (5.3.21)

correcting for the limitations and imperfections of the experimental setup. This relation
can thus be utilized to evaluate the intrinsic indistinguishability of the photons emitted
by the QD. From the single-photon purities derived in Eqs. 5.2.3 - 5.2.4 and the HOM
visibilities from Eqs. 5.3.13 - 5.3.14, the intrinsic HOM visibilities for each sequence is

(i) Sequence: VIHOM = 0.9500± 0.0137, (5.3.22)
(ii) Sequence: VIHOM = 0.9371± 0.0330, (5.3.23)

for an integration window of 1.5 ns. Here, the single-photon purity in the middle time-bin
is derived from the weighted average of g(2)

e (τ = 0) and g
(2)
l (τ = 0). The same derivation

is completed for the other integration windows, shown in Fig. 5.10. Ideally, the intrinsic
HOM visibility should remain constant for all integration windows, which is true within the
limit of the errorbars.
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Figure 5.10: The intrinsic HOM visibility for both sequences as a function of the integration
window of the middle time-bin.

Finally, a weighted average for each sequence, based on the visibilities presented in Fig.
5.10, yields

(i) Sequence: V̄IHOM = 0.9551± 0.0067, (5.3.24)
(ii) Sequence: V̄IHOM = 0.9535± 0.0167, (5.3.25)
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which quantifies the indistinguishability of the emitted photons. These finding are also
comparable with previous work, demonstrating an intrinsic visibility of V = 96± 2% [47].
As this point, the indistinguishability is primarily limited by the interaction between phonons
and the QD, which is unavoidable due to the solid-state nature of the system. These pro-
cesses are often occurring at timescales much faster than the radiative decay and are highly
dependent on the temperature. Thus, going to lower cryogenic temperatures (T < 4 K)
could potentially improved the indistinguishability, as the pure-dephasing processes induced
by phonon-interactions are suppressed even further [5].

5.4 Summary

This chapter included an examination of the optical excitation pulse, having a central wave-
length of λC = 945.03 nm with a 38.9 pm bandwidth. The latter corresponds to a pulse
duration of ∆T = 33.8 ps, being an order of magnitude smaller than the radiative lifetime
of the positive trion. Additionally, the rejection ratio between the two vertical transitions
|⇓〉 → |⇑⇓, ↓〉 and |⇑〉 → |⇑⇓, ↑〉 was found to be Rr = 15.2± 2.6, quantifying the ability to
excite the correct transition, i.e. low-energy transition of the X+.

Furthermore, the single-photon purity was examined using the early and late time-bins
generated by the TBI, while the two-photon interference of the middle time-bin provided
a method the investigate the indistinguishability. Both parameters were probed by two
different excitation schemes, relying on the hole-spin being prepared directly through OSP
or a combination of OSP and optical spin-rotations.
The single-photon purity was analysed by the second-order correlation function, demon-
strating purities down to g(2)(0) = 0.0175±0.0033, while the indistinguishability was quan-
tified by the two-photon interference of the middle time-bin, yielding an average visibility
of V̄IHOM = 95.51± 0.67% (95.35± 1.67%) for the (i) and (ii) sequence, respectively.
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Chapter 6

Conclusion

In this thesis, the main ingredients towards spin-multiphoton entanglement has been pre-
sented, based on the interaction between time-bin encoded photonic qubits and a hole-spin
residing in a solid-state quantum dot embedded in a photonic crystal waveguide.

The efficient integration between the positively charged trion X+ and the photonic nanos-
tructure has proven a promising system towards spin-photon entanglement, owing to the
advantageous properties of the photonic environment, including an enhanced cyclicity of
the optical transition addressed in this work [11]. Successful implementation of optical
spin manipulation schemes such as optical spin pumping and coherent spin control through
Raman transitions, make the two ground states {|⇓〉 , |⇑〉} of the X+ ideal for realizing a
”stationary” qubit.
The framework for generating and detecting time-bin encoded photonic qubits has been
presented, employing the excitation- and detection-interferometer, respectively. By design,
both interferometers share the same optical paths, making the Time-bin Interferometer
self-stabilizing and hence optimal for long measurement sequences. The principles behind
passive- and active-switching has been studied, demonstrating the ability to efficiently scale
the number of photonic qubits in each entanglement sequence. Consequently, the Time-bin
Interferometer satisfies all the requirements towards a robust system, capable of creat-
ing and analyzing the ”flying” qubits, based on the arrival time in the three time-bins
{|e〉 , |m〉 , |l〉}.
A characterization of the single-photon emitter has been conducted, probing the nature of
the photons utilized as photonic qubits. The single-photon purity was quantified through a
second-order correlation measurement, examining the photon statistics in the early and late
time-bins, yielding a purity of g(2)(0) = 0.0175 ± 0.0033. Additionally, the indistinguisha-
bility was measured by the two-photon interference in the middle time-bin, demonstrating
an intrinsic visibility up to VHOM = 95.51 ± 0.67 %, making the quantum dot a source of
high-quality photons.
In conclusion, this thesis has presented all the essential components to successfully imple-
ment the entanglement protocol generating multi-photon entangled states such as the GHZ-
and Cluster-state.
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Outlook

The current setup allows multiple photonic qubits to be projected into the x, y, or z-basis,
which is sufficient to analyse the GHZ state and measure its fidelity (see Section 3.4). How-
ever, to characterize the Cluster states the measurement basis has to be switched between
each subsequent photonic qubit, i.e. a measurement sequence like {σ(1)

x , σ
(2)
z , σ

(3)
x , σ

(4)
z , ...}.

Thus, in order to fully analyze the multi-photon Cluster state a second EOM should be
implemented, which would allow one to switch projection basis from one photonic qubit
to another. It should be noted, that only switching between z-basis and x- or y-basis is
possible with an additional EOM. The current setup cannot switch between x- and y-basis
for two subsequent photons, as these are defined by the waveplates of the excitation inter-
ferometer.

A further optimization of the single-photon purity and indistinguishability would poten-
tially increase the fidelity of the multi-photon states. As mentioned in the final paragraph
of Section 5.3.1, the indistinguishability is mainly limited by phonon interactions. Thus,
cooling the sample to lower cryogenic temperatures would strongly suppress the latter. Re-
ducing the impurity or possible re-excitation errors can enhance the single-photon purity,
which may be achieved by modifying the spatial profile or altering the duration of the ex-
citation pulse. Additionally, high photon transmission and detection efficiencies is crucial
towards deterministic multi-photon entanglement generation. However, the efficiency of
the setup is strongly limited by the collection optics. Further improvements might include
a one-sided photonic crystal waveguide which would double the current collection efficiency.

While this thesis was written, indications of the spin-photon entanglement has been demon-
strated, using the Time-bin Interferometer and the spin-photon interface presented in this
work. These measurements were conducted under passive switching and hence no EOM
was utilized to modulate the polarization of the incident photons of the detection inter-
ferometer. Increasing the number of photons will inevitably require the implementation of
the active switching scheme, as it enhances the probability of projecting the multi-photon
states into the right bases (see final section of Chapter 4).
Consequently, additional spin-photon entanglement experiments will reveal how far this
protocol may be extended and it will be truly interesting to see the number of entangled
photons one can generate using the experimental setup presented in this thesis.
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Appendix A

Entangled Quantum States

A.1 The Bell States

Through the derivation of the density matrix and the reduced density matrix, it can be
shown that the Bell states are in fact maximally entangled and pure. As an example,
consider the following Bell state compose of subsystem A and B∣∣∣Φ+

〉
AB

= 1√
2

(|0A0B〉+ |1A1B〉) , (A.1.1)

in which case the density matrix takes the form (omitting the A and B labels)

ρΦ+ =
∣∣∣Φ+

〉〈
Φ+
∣∣∣ (A.1.2)

= 1
2 (|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|) (A.1.3)

= 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , (A.1.4)

where each qubit are represented by the two-dimensional basis {|0〉 , |1〉}, whereas the basis
for the matrix representation is given by {|00〉 , |01〉 , |10〉 , |11〉}. The reduced density matrix
for subsystem A can be now be derived, using Eq. 3.1.4

ρA =
2∑
j=1

(Ia ⊗ 〈bj |) ρΦ+ (Ia ⊗ |bj〉) (A.1.5)

= 1
2

(
1 0
0 1

)
. (A.1.6)

Thus, the corresponding Bell state is in fact a pure maximally entangled state, as Tr[ρ2
Φ+ ] =

1 and ρA = 1
2I, while the subsystem is a maximally mixed state. It goes without saying,

that this derivation can be carried out for all the remaining Bell states, giving the same
result.
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Appendix B

Time-bin Interferometer

B.1 Full Overview of Experimental Setup
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Figure B.1: Schematic drawing of the Time-bin Interferometer for generation and detec-
tion of early and late pulses given a single pulse input. The blue(red) lines represent the
excitation(detection) path starting at fiber coupler FC2(FC1). The excitation path ends at
FC5 going to the sample, while the detection path goes to Detector 1 or 2, i.e. FC3 or FC4.
Short and long path are defined as the distance between BS and PBS2.
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B.2. DERIVATION OF QWP-EOM TRANSFORMATION

B.2 Derivation of QWP-EOM Transformation

Crucial for the analysis of the detection interferometer is the QWP-EOM transformation,
which enables the passive/active switching of the measurements basis for the photonic
qubits. The following derivation is based on Eqs. 4.1.4 and 4.1.8, describing the Jones
matrix for the QWP and EOM, respectively.

The total transformation of horizontally polarized light due to a QWP and EOM reads

MEQ(Φ, θ) ~EH = MEOM(Φ)MQWP(θ)
[
1
0

]
(B.2.1)

= ei(π/4−Φ)
√

2

[
(1− icos(2θ))cos(Φ/2) + sin(2θ)sin(Φ/2)
(i+ cos(2θ))sin(Φ/2)− isin(2θ)cos(Φ/2)

]
, (B.2.2)

which is the case in this particular setup, as the input will be horizontally polarized due to
PBS1. For vertically polarized light however, the following transformation occurs

MEQ(Φ, θ) ~EV = MEOM(Φ)MQWP(θ)
[
0
1

]
(B.2.3)

= ei(π/4−Φ)
√

2

[
(i− cos(2θ))sin(Φ/2)− icos(Φ/2)sin(2θ)
(1 + icos(2θ))cos(Φ/2) + sin(2θ)sin(Φ/2)

]
. (B.2.4)

Extending this formalism to the four-dimensional vector space introduced by Eq. 4.1.7, the
matrix accounting for the QWP and EOM given an arbitrary polarization takes the form

MEQ(Φ{e,l}, θ) =


C(Φe)cHH(θ,Φe) 0 C(Φe)cV H(θ,Φe) 0

0 C(Φl)cHH(θ,Φl) 0 C(Φl)cV H(θ,Φl)
C(Φe)cHV (θ,Φe) 0 C(Φe)cV V (θ,Φe) 0

0 C(Φl)cHV (θ,Φl) 0 C(Φl)cV V (θ,Φl)

 ,
(B.2.5)

where the coefficients express the degree of polarization-transformation performed by this
ensemble

C(Φ) = ei(π/4−Φ)
√

2
, (B.2.6)

cHH(θ,Φ) = (1− icos(2θ))cos(Φ/2) + sin(2θ)sin(Φ/2), (B.2.7)

cHV (θ,Φ) = (i+ cos(2θ))sin(Φ/2)− isin(2θ)cos(Φ/2), (B.2.8)

cV H(θ,Φ) = (i− cos(2θ))sin(Φ/2)− isin(2θ)cos(Φ/2), (B.2.9)

cV V (θ,Φ) = (1 + icos(2θ))cos(Φ/2) + sin(2θ)sin(Φ/2). (B.2.10)

In order to keep track of the temporal modes, Φ{e,l} denotes the retardation between the
fast and slow axis of the EOM at the time of the early and late mode, while θ corresponds
to the rotation of the QWP2.
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B.3. PHOTON DETECTION PROBABILITIES

B.3 Photon Detection Probabilities

The following figures show the relative detection probabilities for a photon in either Detector
1 (D1) or Detector 2 (D2) in the three time-bins {|e〉 , |m〉 , |l〉}, as a function of QWP4 and
LP in the excitation interferometer. Section B.3.1 and B.3.2 presents the theoretical model
for active switching, while Section B.3.3 and B.3.4 shows a measurement using the EOM
for photon routing.

B.3.1 Theoretical Model for Active Switching in x- or y-basis

The probabilities derived in Eqs. 4.3.26 - 4.3.29 at the end of Section 4.3.1 are shown in Fig.
B.2. Ideally, photons should only be routed towards the middle time-bin. However, as this
model includes the relative losses and imperfections, where will be a small probability of
photon detection in the early time-bin. The late time-bin is not included, as it is zero for all
combinations of θQWP and θLP. Note, the probabilities shown in Fig. B.2 are normalized,
such that each waveplate setting yields unity probability.

Figure B.2: Theoretical Model: The normalized probability of photon detection in D1 and
D2 as a function of θQWP and θLP for active switching using the x- or y-basis settings. Note
the different scaling of the colorbars. Imperfections: ηS1 = 0.84, ηS2 = 0.79, ηL1 = 0.81,
ηL2 = 0.76, ε = 0.72 and χ = χ′ = 0.
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B.3. PHOTON DETECTION PROBABILITIES

B.3.2 Theoretical Model for Active Switching in z-basis

Figure B.3 presents the probabilities derived in Eqs. 4.3.32 - 4.3.34 at the end of Section
4.3.1. Ideally, photons should only be routed towards the early and late time-bin. However,
as this model includes the relative losses and the imperfection of the EOM, where will be a
small probability of photon detection in the middle time-bin. In contrast to Fig. B.2, the
same detection pattern emerges for all detectors and time-bins.

Figure B.3: Theoretical Model: The normalized probability of photon detection in D1 and
D2 as a function of θQWP and θLP for active switching using the z-basis settings. Note
the different scaling of the colorbars. Imperfections: ηS1 = 0.84, ηS2 = 0.79, ηL1 = 0.81,
ηL2 = 0.76, ε = 0.72 and χ = χ′ = 0.
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B.3. PHOTON DETECTION PROBABILITIES

B.3.3 Experimental Data for Active Switching in x- or y-basis

Figure B.4 presents a measurement showing the detection probabilities in the x- or y-basis
as a function of θQWP and θLP.
In comparison with the theoretical model in Fig. B.2, the two detection patterns are similar
in appearance. Especially the late time-bin corresponds very well with the model, predicting
a probability of zero. Furthermore, the wave-like appearance of the middle time-bin is a
direct consequence of the finite extinction ratio of the EOM, which in the model takes the
form of the ε-parameter.

Figure B.4: Experimental Data: The normalized probability of photon detection in D1 and
D2 as a function of θQWP and θLP for active switching using the x- or y-basis settings. Note
the different scaling of the colorbars. The relative losses and coupling efficiencies are given
by the ηij-parameter: ηS1 = 0.84, ηS2 = 0.79, ηL1 = 0.81, ηL2 = 0.76.
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B.3. PHOTON DETECTION PROBABILITIES

B.3.4 Experimental Data for Active Switching in z-basis

Figure B.5 presents a measurement showing detection probabilities in the z-basis as a func-
tion of θQWP and θLP. The dot-shaped pattern shows agreement between the experimental
setup and the theoretical model. The probability in Detector 1 is generally larger due to
better coupling efficiency, while the same is true for the early time-bins due to fewer optical
components in the short interferometer path.

Figure B.5: Experimental Data: The normalized probability of photon detection in D1 and
D2 as a function of θQWP and θLP for active switching using the z-basis settings. Note the
different scaling of the colorbars. The relative losses and coupling efficiencies are given by
the ηij-parameter: ηS1 = 0.84, ηS2 = 0.79, ηL1 = 0.81, ηL2 = 0.76.
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Appendix C

Experimental Equipment

This appendix seeks to give a brief introduction to some of the optical components and
devices presented in this work.

C.1 Lasers

A total of four lasers are employed in this work, each utilized for the realization of the
entanglement protocol. In Table C.1 a list of these lasers are presented, along with its
properties.

Types of Lasers Central Wavelength/Frequency Duration Applied for
Laser Diode 830.00 nm (361.20 THz) 100 ns Above-Band Excitation
DL-Pro 945.03 nm (317.23 THz) 200 ns Optical Spin Pumping
CTL ∆ ≈ 260 GHz tens of ns Spin Rotation
Mira 945.03 nm (317.23 THz) tens of ps Optical Excitation

Table C.1: List of lasers and their applications for the entanglement sequence. Here ∆
denotes the detuning from the central frequency.

• The Laser Diode: The laser diode or the above-band laser has a central wavelength
fixed at 830 nm, and is only used for above-band excitation of the QD, hence the
name.

• The DL-Pro: Tunable Diode Laser from Toptica Photonics. Wavelength ranging from
915-985 nm. Utilized for OSP around a central wavelength of 945.03 nm.

• The CTL: The Continuous Tuneable Laser (CTL) has a range of 915-985 nm with
a narrow bandwidth. Utilized for spin-rotations in the entanglement protocol, and
hence detuned from the resonance frequency.

• The Mira-Laser: The Mira 900 Ti:sapphire laser, enables the emission of ultra-short
pulses at a wavelength of approximately 700-1000 nm [44]. The central wavelength,
used for optical excitation, is adjusted to 945.03 nm, while the pulse repetition rate
is frep ≈ 72 MHz.
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C.2. ETALONS

C.2 Etalons

Two etalons (ET1 and ET2) are placed at the input of the detection interferometer. If
mounted correctly, each etalon allows narrow frequency filtering with a bandwidth of 3
GHz. A temperature controller is attached to both devices, whereby the central frequency
of transmission can be adjust by modulating the temperature. The goal is thus to match the
central frequency of both etalons with the resonant frequency of the low energy transition
of the QD, i.e |⇑〉 ↔ |⇑⇓, ↑〉. Using two etalons allows for an even narrower filter, whereby
most unwanted light is blocked, i.e. reflections and emissions from non-resonant transitions.
The transition spectra of the first etalon is shown Fig. C.1, fitted with a lorentzian curve
(black). Furthermore, the combination of both the first and second etalon is presented as
well (red). The central frequency and FWHM are summarized in Table C.2, revealing a
FWHM of 1.91 GHz for two etalons in series.

Etalons Central Frequency FWHM
ET1 317.2365 THz 3.11 GHz
ET1 + ET2 317.2365 THz 1.91 GHz

Table C.2: Properties of the two etalons. Note: The central frequency of transmission is
slightly higher than the 317.23 THz as previously stated. Experimentally, is was found that
a higher bias voltage (resulting in a higher frequency) improved the spin-initialization.

However, placing multiple etalons will contribute to the overall losses of the system,
as some fraction will not be transmitted. The efficiency of each etalon can be derived by
comparing the intensity in front and after each device. Using a powermeter, the first etalon
(second etalon) was found to have an efficiency of 92.8 % (97.1 %), given a total efficiency
of 90%.

Figure C.1: Characterization of the two etalons ET1 and ET2. Each dataset is fitted with
a lorentzian curve, giving a central frequency and a FWHM. Putting two etalons in series
narrows the FWHM to 1.91 GHZ, while the FWHM of the first etalon ET1 is 3.11 GHz.
The central frequency remains constant at 317.2365 THz for both cases.
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C.3. VOLUME BRAGG GRATING

C.3 Volume Bragg Grating

A Volume Bragg Grating (VBG) is a diffraction grating with a periodic modulation of
the refractive index, see Fig. C.2. Dependent on the orientation of this device, it either
transmits or reflects an incident beam if the Bragg’s condition is meet

λB = 2n̄Λcos(θ + φ), (C.3.1)
where λB is the diffracted wavelength, n̄ is the average refractive index of the material and
Λ is the grating period [12]. Furthermore, θ is the angle between incident beam with respect
to the normal of the entrance surface N, while φ denotes the angle between the latter and
the grating vector g. The VBG works as either a transmission- or reflection-grating for
φ = π/2 and φ = 0, respectively. The latter being the case in this work.
Consequently, altering the angle of θ tunes the central wavelength of the reflected light λB,
i.e. one may selectively choose a particular wavelength from a broad spectrum.

Λ

λB

θ

g
N

Figure C.2: Schematic drawing of a VBG for φ = 0. The incident beam gets diffracted,
reflecting and transmitting different wavelength dependent on the angle θ.

The VBG utilized is this work is manufactured by OptiGrate, promising an diffraction
efficiency of 95% and a FWHM of 0.03 nm at a central wavelength of 956.039 nm.

C.4 Pulse Stretcher

The basic principle of the pulse stretcher can be understood by considering Fig. C.3. The
incident beam propagates through a beam expander (BE) followed by a diffraction grating.
The latter separates the beam into different wavelengths, which can be selected by the
following slit. In other words, the position of the slit determines the central wavelength of
the outgoing beam, while the slit-width alters the spectral bandwidth. Consequently, the
temporal bandwidth of the outgoing pulse is stretched - hence the name.

SlitBE Grating Lens

M
ir
ro
r

Figure C.3: Schematic drawing of the pulse stretcher.
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