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Abstract

Topological qubits are an area of great interest in quantum computing, as such a system
would be more stable than using trapped quantum particle. One possible methods of
creating these, is through the use quasiparticle Majorana fermions, which are amongst
others places hypothesised to exist in p-wave superconductors. While no single material is
known to be a p-wave superconductor, such a system might be present in a thinfilm made
of a superconductor (SC), a ferromagnetic insulator (FI) and a semiconductor (SM) with
a strong spin-orbit coupling. To test these films, polarized neutron reflectometry (PNR) is
a useful tool as it be used to detect determine the magnetization in the different layers of
the film. We have in this project used PNR to test samples composed of InAs (SM), EuS
(FI) and Pb (SC) in order to determine wether they exhibit the conditions necessary for
a p-wave superconductor. While we do find the presence of a magnetic field in the InAs
layer, we cannot definitively determine whether these system exhibits the conditions of a
p-wave superconductor.
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1 Introduction

In 1985Richard Feynmann theorized about the possibility of creating bits the size of atoms,
and thereby introducing the concept of quantum computation [3]. One of the biggest
obstacles to overcome in building a large scale quantum computer, is the controlling
of errors, as small perturbations can cause the system to decohere. As such we are
interested in finding a way, to create a system of qubits that are more stable, even on larger
scales. One theoretical solution, is a so called topological quantum computer, where in
the qubits would be composed of quasiparticle Majorana fermions. Majorana fermions are
particles which are their own anti-particles. While there currently is no know elementary
particles which are Majora fermions (MF), they are expected to exist as a quasiparticle
excitation of certain condensed matter system. As Majorana fermions in such a system are
non-abelian anyons, they have the exchange statistics necessary for topological quantum
computing [32]. As a Majorana fermion in a condensed matter system is its own whole, it
must be composed of a superposition of an electron and a hole state. As the wavefunctions
of the Boguliubov quasiparticles in superconducting systems have both an electron and
a hole component, it is logical to search for MF excitations in such systems. However
while the condition for MF excitations, are not met in normal s-wave superconductors,
where the Cooper pairs are formed of electrons with opposite spin projections (a singlet
paring), they are likely to be met in spinless superconducting systems with triplet pairing,
so called p-wave superconductors. While existence of p-wave superconductor, has never
been experimentally observed, Majorna Fermion are topologically invariant, and should
therefore exist in systems with similar properties to a p-wave superconductor. A system
of p-wave superconductivity may be achieved in a semiconductor system, when brought
into tunneling contact with a superconductor. The strong spin orbit coupling results in a
momentum dependent band splitting. Furthermore by coupling the semiconductor with a
ferromagnetic insulator, the Zeeman splitting lifts the degeneracy resulting in a spinless
triplet pairing of electrons.

In this project we have created a thin film, composed of Indium Arsenide (semiconductor),
Europium Sulfide (ferromagnetic insulator) and lead (superconductor). Using neutron
reflectometry, wewill examine whether the proximity effect, results in amagnetic coupling
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Chapter 1. Introduction

inside the semiconductor. We find the presence of a magnetization in the semiconducting
layer, which seems to be affected by the presence of superconductivity in the lead layer.
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2 Theoretical Background

2.1 Superconductivity

Unlike normal conductivity of electrons which comes from the valence electrons ability
to move more or less freely through a lattice of ions, superconductivity arises from the
formation of Coopers pairs, mediated by some kind of bosons. We will here give a short
introduction, on some of the basics regarding superconductivity that is relevant, for our
project. This section is based on the textbooks [6, 17, 25, 47]

2.1.1 Formalism

Due to its convenience when regardingmany body systems, we will be using the formalism
of second quantization in this section. In this language we ask how many particles there
are in each state, instead of the state of the individual particles. Consider the electron state
ψk,σ(r), where k is the momentum and σ is the spin of the electron. We start by defining
the creation operator c†k,σ, which create a state of an electron, in a plane or Bloch wave,
with the quantum number (k, σ), and the annihilation operator ck,σ which destroys such
a state. Taking into account that the electrons follow the Pauli exclusion principle, we
postulate the following anti-commutation relation:

{ck,σ, c†k′,σ′} = δk,σδk′,σ′ (2.1)

In this formalism, the occupation number of a state is the given by the number operator
nk,σ = c†k,σck,σ.

We now consider a Fermi gas of non-interacting electrons. The Hamiltonian of such a
system is then given as a sum of the energy of the individual states εk,σ, multiplied with
the number operator of said state:

H =
∑
k,σ

εk,σc
†
k,σck,σ (2.2)

3



Chapter 2. Theoretical Background

For free electrons the energy is given by:

εk =
~2k2

2m
(2.3)

As electrons are fermions, the probability that a state of a given energy ε will be occupied
is given by the Fermi-Dirac distribution:

f(ε) =
1

e(ε−µ)/kBT + 1
(2.4)

With µ being the chemical potential, which is found from the requirement that the density
of electrons per unit volume is:

N

V
=

2

(2π)3

∑
n

∫
1

e(εnk−µ)/kBT
d3k (2.5)

Where the factor 2 comes from the assumption that the energies εk are independent of the
spin state, giving us two allowed values for each value of k and n are the electron bands.
By taking the ground state of the system (T → 0), we then define the Fermi energy εF as
being the value of the topmost filled state. If we represent the occupied states as point in a
sphere in k-space, then the Fermi energy will be the energy at the surface, and we define
the magnitude of that wavevector at the surface as the Fermi vector, see fig.. The Fermi
energy is then:

εF =
~2

2m
k2
F (2.6)

where kF for a system of N free electrons is given as kF = (3π2N
V

)1/3. Furthermore we
also define the density of statesD(ε) = dN

dε
, which is the number of states per unit energy

range, which for a free Fermi gas is:

D(ε) =
dN

dε
=

V

2π2
(
2m

~2
)3/2 · ε1/2 =

3N

2ε
(2.7)

2.1.2 Cooper Pairs

The first microscopic theory of superconductivity was published by Bardeen, Cooper and
Schrieffer in 1957 [7], and is called the BCS theory. It is build upon a few key ideas, the
most important being the existence of an effective attractive potential, between electrons
near the Fermi surface. The attractive potential between electrons comes from the electron-
phonon interaction with the crystal lattice [6]. As shown in fig 2.1, an electron in the state
ψk,σ can excite a phonon with crystal momentum ~q, leaving the electron in the state ψk′,σ

with k′ = k− q. This phonon can then be absorbed by another electron which picks up

4



2.1. Superconductivity

Figure 2.1: Feynman diagram of the an
electron exciting a phonon [6]

Figure 2.2: Electron lying with in ~ωD
of the Fermi surface, can form Cooper
Pairs. [6]

the momentum ~q. The resulting momentum transfer results in an effective interaction
between the two electrons.

Veff(q, ω) = |gq,|2
1

ω2 − ω2
D

(2.8)

which is simplified to:
Veff(q, ω) = |geff |2

1

ω2 − ω2
D

(2.9)

where geff is a constant and ωD is the Debye frequency of the phonons. As we can see
Veff(q, ω) results in an attractive interaction when ω < ωD. As the temperatures of interest
for superconductivity is very small, we are in the regimewhere ~ωD � kBT . We therefore
assume the simple form

Veff = |geff |2 ω < ωD (2.10)

The Hamiltonian, for the electron-electron interaction then becomes:

H = −|geff |2
∑

c†k+q,σc
†
k′−q,σ′ck,σck′,σ′ (2.11)

where the sum is over all values of k, σ,k′, σ′ and q with the restriction, that the electron
energies are within ~ωD of the Fermi surface [6].
Now the presence of this attraction between electrons doesn’t mean that there is an effective
attractive potential, but combined with effects that reduce the Coulomb repulsion between
the electrons, such as screening, it is possible to achieve a situation with an effective
attraction between electron near the Fermi surface resulting in Cooper pairs, see fig.
2.2 [6, 17].
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Chapter 2. Theoretical Background

2.2 Majorana Fermions

As adressed in ch. 1 Majorana fermions (MF) are fermionic particles which are their
own anti-particles. So far no known elementary particles are their own anti-particles.
Majorana fermions are however in likely to exist as quasiparticle excitation in certain
condensed matter systems, this being electron systems with a fermisurface, where the MF
would be a quasiparticle with its "own hole" [32]. A MF is in a sense half a fermion,
meaning any fermionic state could be described as a superposition of two MFs. For a
normal fermion this is simply a mathematical operation whereby the fermion is split up
into a real and an imaginary part. This splitting has no physical consequences, as the
two MFs are spacially localized close to one another, overlap and cannot be addressed
individually. The MFs we are looking for in this project, are fermionic states that each can
be described as a superposition of two MFs that are spatially separated (or prevented from
overlap in some other manner). As theMF is it own hole, it must be an equal superposition
of an electron and a hole state. Therefore is makes sense to look for such an excitation
in superconducting systems, where the wave function of the Bogoliubov quasiparticle has
both an electron and a hole component. In most common superconductors, the Cooper
pairs are formed of two electrons with opposite spin (forming a singlet state), this type of
paring is called s-wave, and the annihilation operator of its Bogoliubov quasiparticle is:

b = uc†↑ + vc↓ (2.12)

where cσ annihilates a fermionwith spin projection σ =↑, ↓. TheMF having equal electron
and hole components will instead have an annihilation operator:

γ = uc†σ + u∗cσ (2.13)

Which is hermitian so γ = γ† and in contrast to the s-wave operator have equal spin
projections. Now such quasiparticles don’t occur in most superconductors, however
isolated MFs might occur in vortices and on edges of effectively spinless superconducting
systems with triplet pairing. For a one dimensional superconducting system this is called
p pairing symmetry and for a two dimensional system it is px± ipy. Below we will look at
why MF’s should be present, and how such systems might be created. Most of this section
is based on [32].
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2.2. Majorana Fermions

2.2.1 Majorana Fermions in a p-wave superconductor

If we imagine that we have a 1 dimensional tight-binding chain with p-wave supercon-
ducting pairings, then the Hamiltonian of such a system would be:

Hchain =
N∑
i=1

(−µc†ici) +
N−1∑
i=1

(−t(c†ici+1 + c†i+1ci) + ∆cici+1 + ∆∗c†ic
†
i+1) (2.14)

Where ci is the annihilation operator acting on site i and c†ici = ni is the number operator.
Also µ is the chemical potential, t is the hopping amplitude, and ∆ = |∆|eiφ is the
superconducting gap, with all three assumed to be independent of sites. We can then
choose the superconducting phase φ to be zero so that ∆ = |∆|. It should be noted
that we have left out the spin orientation, since we only consider one value of the spin
orientation. Our p-wave superconductor consist of pairings of electrons with the same
spin orientation, as opposed to the normal s-wave which pairs electrons with opposite
spin. We now introduce Majorana operators by splitting the fermion operators into a real
and an imaginary part, as mentioned above:

ci =
1

2
(γi,1 + iγi,2) (2.15a)

c†i =
1

2
(γi,1 − iγi,2) (2.15b)

where γi,j are Majorana operators on site i. That they indeed are Majorana operators, can
be show by inverting them:

γi,1 = c†i + ci (2.16a)

γi,2 = i(c†i − ci) (2.16b)

Which are obviously hermitian, γ† = γ, and hence they are Majorana operators. Now if
we set t = |∆| = 0 and µ < 0 then the Hamiltionian becomes:

Hchain =
−iµ

2

N∑
i=1

(γi,1γi,2 + 1) = −µ
N∑
i=1

c†ici (2.17)

Where the fermions on each site is simply split up into pairs of Majorana operators as
seen in the upper panel of figure 2.3. However if we set µ = 0 and t = |∆| > 0, then the
Hamiltonian becomes:

Hchain = −it
N−1∑
i=1

γi,2γi+1,1 (2.18)

7



Chapter 2. Theoretical Background

Figure 2.3: Sketch of Kitaev’s 1D p-wave superconducting chain. Upper panel: Fermion
operators on site i are split into two Majorana fermions, γi,1 and γi,2. Lower panel: At
µ = 0 and t = ∆, the Majoran fermions, pairs with a neighboring site γi+1 and γi,2,
leaving two unpaired Majorana fermions at γ1,1 and γN,1, which can combine to form a
zero energy, highly non-local fermion operator c̃M [32]

Where we now end up with a situation where the Majorana operators are paired on
neighboring sites as seen in figure 2.3. We can go back to a fermionic representation, by
creating a new fermion operator c̃i = (γi+1,1 + iγi,2)/2, which pairs Majorana operators
on neighboring site, and from which we get that −γi,2γi+1,1 = 2c̃i

†c̃i = 2ñi, so eq. 2.18
becomes:

Hchain = 2t
N−1∑
i=1

c̃i
†c̃i (2.19)

So c̃i and c̃i† are the annihilation and creation operators corresponding to the eigenstates,
and the energy cost of making a c̃i fermion is 2t. What is special about this case is that
the Majorana operators γ1,1 and γN,2 at each end of the chain, is missing from eq. 2.18.
These two state can be combined into the fermionic state:

c̃M =
1

2
(γN,1 + iγ1,1) (2.20)

Which is a higly non-localized state, as the Majorana operators are on opposite ends of
the chain, see fig 2.3. Furthermore, this state requires zero energy, as the fermion operator
is not present in the Hamiltonian. So the Hamiltonian 2.2.1 allows for an odd number
of quasiparticles at zero energy cost, and so the ground state is two-fold degenerate
corresponding to having an even or odd number of electrons in the superconductor,
corresponding to the eigenvalue of the zero energy fermion ñM = ˜cM

†, ˜cM = 0(1), for an
even or odd number of electrons. While we have only argued for the case where µ = t, it
can be shown that the Majorana end states, are present as long as |µ| < 2t [24]. In two
dimensions, similar effects are present [4, 5, 41, 42] but their description becomes more
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2.2. Majorana Fermions

tedious, and is not really relevant for this project. The Hamiltonian for the continuum
version of the 1D and 2D p-wave superconductor are:

H1D =

∫
Ψ(x)†(

px
2

2m
− µ)Ψ(x) + Ψ(x)|∆|eiφ(px)Ψ(x) + h.c. dx (2.21a)

H2D =

∫
Ψ(r)†(

p2

2m
− µ)Ψ(r) + Ψ(r)|∆|eiφ(px ± ipy)Ψ(r) + h.c. dr (2.21b)

Where Ψ(r)† is the real space creation operator, m is the effective mass of the electrons,
h.c. is the hermitian conjugate and the superconducting phase φ has been reintroduced.
Now all we need is the realization of a p or px ± ipy -wave superconductor.

2.2.2 Proximity induced superconductivity

Instead of looking for a material that would be a p or px ± ipy-wave superconductor, we
will instead look for a way to engineer such a pairing in a semiconductor, via proximity
induced superconductivity. Recent works suggests [5, 32] that a p-wave superconductor,
similar to the Kitaev toy model, can be engineered with three simple components: A 1
dimensional semiconducting wire with a strong spin-orbit coupling, a conventional s-wave
superconductor, and a magnetic field perpendicular to to SC surface. The basic layout can
be seen in 2.4. By putting our semiconductor and superconductor in close proximity to

Figure 2.4: Basic sketch for engineering topological superconductivity in a 1D semicon-
ductor with strong spin-orbit coupling. [5]

one another, it becomes possible for electrons to tunnel between these two system. As a
result, the electrons in the semiconductor will feel a "proximity induced" superconducting
pairing field, the strength of which depends on the superconductor, the semiconductor and
the interface between the two. The total Hamiltonian of this system of a semiconductor

9



Chapter 2. Theoretical Background

with superconductivity can be described by the Hamiltonian:

H = H0 +H∆ (2.22)

Neglecting electron–electron interactions our semiconductor systemH0 is:

H0 =
∑
σ=↑,↓

∫
Ψ†σ(r)H0(r)Ψσ(r)dr (2.23)

Where Ψ†σ(r) creates an electron with spin σ =↑, ↓ at the position r. The Hamiltonian
H0(r) is the first quantization single particle Hamiltonian, which for our wire, assuming
a Rashba spin-orbit coupling and that the chemical potential is tuned to a regime where
only a single 1D subband is occupied, and with ~ = 1, takes the form:

H0 = − ∂2
x

2m
− µ− iα(∂xσy) + EZσz (2.24)

Where m is the effective electron mass, α ≥ 0 is the strength of the Rashba spin-orbit
coupling whitch favors aligning the spins in the y axis, σy, σz are Pauli spin matrices, and
EZ = −1

2
gµBBz is the Zeeman energy associated with the magnetic field Bz applied in

the z direction. With µB being the Bohr magneton, and g the Landé g-factor. It is only the
magnetic field component which is orthogonal to the spin-orbit field, which will induce
topological superconductivity..
The second term in 2.22 is the superconducting paring effectH∆, which we simply include
as a phenomenological Hamiltonian:

H∆ =

∫
(Ψ↓(r)∆(r, r′)Ψ↑(r

′) + h.c)drdr′ (2.25)

With ∆(r, r′) being the superconducting gap inside the semiconductor, which induces a
singlet pairing between electrons of opposite spin. To include both the electrons and the
holes, we now introduce the four component Nambu spinor:

Ψ̄(r) =


Ψ↑(r)

Ψ↓(r)

Ψ†↓(r)

−Ψ†↑(r)

 (2.26)

We can then write 2.22 in the BdG form:

H =
1

2

∫
Ψ̄†(r)[H̄0(r)δ(r− r′) + ∆̄(r, r′)]Ψ̄(r)drdr′ (2.27)

10



2.2. Majorana Fermions

where

H̄0(r) =

(
H0(r) 0̂σ

0̂σ −σyH∗0 (r)σy

)
(2.28a)

∆̄(r, r′) =

(
0̂σ ∆(r, r′)1̂σ

∆̄∗(r, r′)1̂σ 0̂σ

)
(2.28b)

Which are both 4 × 4 matrices, as H0(r) is a 2 × 2 and 0̂ and 1̂ are the zero and unit
matrices in spin space. The term −σyH∗0 (r)σy is the time reversal of H0(r), and appears
because holes are time-reversed electrons. The excitation spectrum of eq 2.27, is found
by solving the Bogoliubov-de Gennes equation, for the four component eigenstate Φ̄i(r):

H̄0(r)Φ̄i(r) +

∫
∆̄(r, r′)Φ̄i(r

′)dr′ = EiΦ̄i(r) (2.29)

resulting in the Hamiltonian:
H =

1

2

∑
i

EiΨ
†
iΨi (2.30)

with
Ψi =

∫
Φ̄i(r) · Ψ̄(r)dr (2.31)

By explicitly including the hole states we doubled the dimensions of the Hamiltonian,
which results in an artificial doubling of the eigenstates. There must then be some
symmetry relation between the eigenstates so that the number of independent solutions
remains unchanged. This symmetry is the electron-hole symmetry, which has the operator

P = CK = τy ⊗ σyK (2.32)

Where K is the operator for complex conjugation, C is the charge conjugate and τi are the
Pauli matrices in electron-hole space, with the resulting Kronecker product τi ⊗ σi, being
a 4× 4 matrix. It can then be shown that:

PHP † = −H (2.33)

So if Φ̄i(r) and Ψi are solutions with positive energy, then there is also a solutions Φ̄j(r)

and Ψj with energy Ej = −Ei, satisfying Φ̄j(r) = P Φ̄i(r) and Ψj=Ψ†i . As a result,
creating a Bogoliubov quasiparticle with energy E or removing one with energy −E are
indentical operations.

To see how all of this results in topological superconductivity in our wire, we start by
first considering the case where ∆ = 0. If both EZ = 0 and α = 0, we end up with
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Chapter 2. Theoretical Background

a dispersion with a single spin degenerate parabolic band. Looking at fig 2.5(a) we see
that when α 6= 0, we end up with two parabolas that are shifted along the momentum
axis, each by kSO = mα and down in energy by ESO = mα2/2, the spin-orbit energy,
corresponding to the spin projection along the axis of the spin-orbit coupling, which in
this case is the y-axis.

Figure 2.5: Bandstructure of a spin-orbit coupled nanowire, with magnetic field induced
Zeeman splitting EZ and superconductivity pairing term ∆. (A) The two bands are
split depending on their spin polarization (red arrows). (B) The applied magnetic field,
creates and energy gap between the two bands at kx = 0, so there is a region without
spin degeneracy, where each band holds only one spin direction, that is dependent on
momentum. (C) The ∆ is turned on, resulting in a doubling of the number bands. When
∆ is small we have a superconducting gap associated with Majorana edge states. (D) ∆
increases to the point where EZ =

√
∆2 + µ2 and the gap closes.

No spinless regime is possible here as the energy spectrum always supports an even number
of Fermi points for any µ. However this changes by turning on the magnetic field so that
EZ > 0. The dispersion relation then becomes:

E± =
k2
x

2m
− µ±

√
α2k2

x + E2
Z (2.34)

This turns the crossing at zero momentum into an anti crossing by creating an energy gap

12



2.2. Majorana Fermions

of size 2EZ , see fig 2.5(b). Because there is only one effective spin direction, placing µ
within this gape makes it possible to induce "spinless" superconductivity via the proximity
effect. Note that the direction of the spin depends on the momentum kx, which is good, as
the pairing term in 2.25 only couples components of the spin which are antiparallel.
We now induce superconductivity in our semiconductor, by turning on the superconducting
pairing term ∆ 6= 0. The resulting solutions to the Bogoliubov-de Gennes equation is
then:

E2
± = (

k2
x

2m
− u)2 + α2k2 + E2

Z + ∆2 ± 2

√
E2
Z∆2 + (

k2
x

2m
− u)2(E2

Z + α2k2
x) (2.35)

This results in a doubling of our bands, albeit without changing the number of solutions,
given than positive and negative energy solutions are identical. When ∆ is small we get
a superconducting gap that is topological and associated with Majorana edge states, as
long as the chemical potential is in the spinless regime EZ > µ, see fig 2.5(c). As ∆

increases the gap at zero momentum becomes smaller, until we reach the point where
EZ =

√
∆2 + µ2 at which point the gap is closed, fig 2.5(d). Increasing ∆ further,

reopens the gap, but now in a non-topological superconducting state. As such the criteria
for topological superconductivity is:

EZ >
√

∆2 + µ2 (2.36)

To see that we have topological superconductivity when this criteria is fulfilled, we try
to map the topological phase onto the spinless p-wave superconductor given in 2.2.1(a).
We consider the limit Ez � ESO,∆ and µ = 0. Here the large magnetic field results
in the spins in each band being nearly completely polarized, and since the energy gap is
large we can ignore the higher band, and consider a single band model instead. We define
Ψ−(x) as the annihilation operator for electrons at position x in lower band. As the bands
are nearly spin polarized in the direction of the magnetic field, Ψ−(x) ≈ Ψ↓(x), then to
leading order the Hamiltonian becomes:

Heff =

∫
Ψ†−(x)(

k2
x

2m
+ Ez)Ψ−(x) + i

2α

Ez
∆Ψ−(x)kxΨ−(x)dx (2.37)

Which is equivalent to eq 2.21(a). From the above, it is clear that as significant Zeeman
splitting must necessarily be induced in the wire. This is challenging, as a large magnetic
field applied across the entire setup, risk destroying the superconductivity in our s-wave
superconductor. Therefore we will instead attempt to induce magnetization by creating a
semiconducting wire that has both a superconducting layer and a ferromagnetic insulator
layer grown onto it as suggested in [33].
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Chapter 2. Theoretical Background

2.3 Magnetism

In this section we will look at the basics of magnetic ordering and ferromagnetism in
solids. As we are focusing on magnetic insulators, we will focus on material where the
magnetic moments are localized and interact via exchange interaction. Most of this section
is based on [39].

2.3.1 Overview of Magnetism

The magnetic moment µ is the fundamental object of magnetism. The intrinsic magnetic
moment of an atom or an ion, is dependent on the total angular momentum J of the
electrons, which itself is a sum of the orbital angular momentum L and the spin angular
momentum S of the electrons:

J = L + S (2.38)

The magnetic moment of an atom or ion, and the then gives by:

uJ = −gJµBJ (2.39a)

2.3.2 Ferromagnetism

A ferromagnet has a spontaneous magnetization even in zero applied magnetic field. We
are first going to derive a method for describing a ferromagnetic system in a similar fashion
to a paramagnet in an applied magnetic field, and then we will use this model to derive
some of the thermodynamic properties a ferromagnet, such a the critical temperature for
spontaneous magnetiztion.
For a ferromagnet in an applied magnetic field B the system can be described by the
Heisenberg Hamiltonian:

H = −
∑
ij

JijSi · Sj + gJµB
∑
j

Si ·B (2.40)

Where the first term on the right is the Heisenberg exchange energy, with Jij being the
exchange constant between the spin on ith and the spin on the jth site, which for for nearest
neighbouring sites is positive for ferromagnetic alignment. The second term on the right
is Zeeman energy of the external field acting on the spin at site i. Note that the term "spin"
here is a bit misleading since the projection of Si and Sj in the z-direction can take any
number mj of the total angular momentum J. In order to make progress we make use of
the mean field approximation. We assume that the interaction between the spin on site i

14



2.3. Magnetism

and its neighboring spins, can be described by the molecular field:

Bmf =
2

gJµB

∑
j

JijSj ≈
2〈S〉
gJµB

∑
j

Jij (2.41)

Were we in the last term has replaced the spin Sj with its average value 〈SJ〉 = 〈S〉. The
exchange part of the Hamiltonian for the spin on site i can then be written as:

Hi = −2Si ·
∑
j

JijSj ≈ −gJµBSi ·Bmf (2.42)

The total effective the effective Hamiltonian can be written as:

H = −gµB
∑
i

Si · (B + Bmf ) (2.43)

which is similar to the Hamiltonian for a paramagnet in a magnetic field. Now since the
magnetization of an ensemble of magnetic moments is equal to the average moment per
unit volume, and the magnetic moment is related to the spin, we get:

M = n〈µ〉 = ngJµB〈S〉 (2.44)

were n i the number of magnetic moments per unit volume. The molecular field is then
given by

Bmf =
2

ng2
Jµ

2
B

(
∑
j

Jij)M = λM (2.45)

were the constant λ parameterises the strength of the molecular field. We are now able
to treat the problem as if we were dealing with paramagnet placed in a magnetic field
Btot = B + Bmf . We let the external magnetic field point in the z-direction, B = Bẑ,
and assume that the magnetic moments and the molecular field lie in the direction of the
external field. The energy of the magnetic states is then given by

EmJ
= −mJgJµBBtot (2.46)

the partition function is then

Z =
J∑

mJ=−J

exp (−EmJ
/kBT ) =

J∑
mJ=−J

exp (mJgJµBBtot/kBT ) (2.47)
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Chapter 2. Theoretical Background

setting x = gJµBBtot/kBT the average value ofmJ is then:

〈mJ〉 =
M

ngJµB

∑J
mJ=−J mJ exp (mJx)∑J
mJ=−J exp (mJx)

=
1

z

∂Z

∂x
(2.48)

This leads to the magnetization being:

M = ngJµB〈mJ〉 =
ngJµB
Z

∂Z

∂B

∂B

∂x
= nkBT

∂ lnZ

∂B
(2.49)

As the partition function is a geometric series it can be rewritten to

Z =
sinh((2J + 1)x

2
)

sinh(x
2
)

(2.50)

and substituting y = xJ we find that

M = nkBT
∂ lnZ

∂B
= MsBJ(y) (2.51)

whereMs = ngJµBJ is the saturation magnetization, that is the maximum magnetization
that can be obtained by all the magnetic moments being aligned, and BJ(y) is the Brillouin
function:

BJ(y) =
2J + 1

2J
coth(

2J + 1

2J
y)− 1

2J
coth(

y

2J
) (2.52)

Which goes from−1 as y ↔ −∞ to +1 as y ↔∞. Now if we set B = 0↔ Btot = Bmf

the magnetization becomes:

M = MsBJ(
gJµBJBmf

kBT
) = MsBJ(

gJµBJλM

kBT
) (2.53)

For low temperatures the molecular field will align the magnetic moments, but the align-
ment of the magnetic moments is what gives rise to the molecular field in the first place.
As the temperature is raised, the thermal fluctuations of the magnetic moments causes
the magnetization to progressively decrease until, and at a critical temperature TC the
magnetization is zero. This is called the Weiss model of ferromagnetism. Now due to
the "chicken and egg" situation of the relationship between the molecular field and the
alignment of the magnetic moments we need to solve the equations

M

Ms

= BJ(y) (2.54a)

y =
gJµBJ(B + λM)

kBT
(2.54b)
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2.3. Magnetism

simultaneously, this can not be solved analytically, but it can be solved numerically or
graphically.

Figure 2.6: (Left) The graphical solution for 2.54a and b, at B = 0. (Right) The mean
field magnetization for J = 1

2
as a function of temperature, caluclated at varying values

of the applied field B. Phase transition occurs only when B = 0 [39]

We start with the case where the applied field B = 0, then M = kBTy/gJµBJλ. As
illustrated to the left in fig 2.6, the straight line produced by plotting M against y has a
gradient which is proportional to the temperature T . By plotting the Brillouin function
against we can find simultaneous solution to eqs. 2.54(a) and 2.54(b) at the points where
the line and the Brillouin function intercept. For the high temperature case, the only
simultaneous solution is at y = 0 andMs = 0, and a such we have no magnetization. On
the other hand, we see that at low temperatures we get three solutions, one at Ms = 0

and two for Ms at ± some non-zero value. It turns out that when the gradient of the
line is than that of the Brillouin function at origin, the non-zero solutions are stable while
the zero solution is unstable. Therefore when the system is below a critical value TC a
non-zero magnetization occurs, which grows as the material is cooled. We therefore get
a magnetized material even in the absence of an external field, and it is this spontaneous
magnetization which is characteristic of ferromagnetism. The transition temperature, or
Curie temperature as it is also called, TC , can be found when the gradient of the line
M = kBTy/gJµBλMs and the curveM = MsBJ(y) are equal at the origin. For small y
the Brillouin function can be approximated to BJ(y) = (J + 1)y/3J + O(y3), an so the
Curie temperature is then defined by:

TC =
gJµB(J + 1)λMs

3kB
(2.55)

The molecular field is then equal to:

Bmf = λMs =
3kBTC

gJµB(J + 1)
(2.56)
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Chapter 2. Theoretical Background

which means that for a ferromagnet with J = 1
2
and TC ∼ 103K, Bmf ∼ 1500T , which

is an enormous field, and reflects the strength of the exchange interactions.

So far we have assumed that the external magnetic field is zero. If we now add an
external magnetic field, its effect is the that the straight line in fig 2.6 get shifted to the
right, and so for all temperatures we have a non-zero magnetization thereby removing the
phase transition as seen in the on the right in fig 2.6. This means that for a ferromagnet in
a magnetic field, there is always an energetic advantage to line up the magnetic moments
with the magnetic field, resulting in a non-zero magnetization in the same direction as the
field. It is worth noting that our model assumes a completely isotropic system, which in
reality is unrealistic. These anisotropies means that a real system, even without an external
magnetic field will have preferred direction of its magnetization.

2.3.3 Ferromagnetic thin films

So far we have looked at the bulk properties of the magnetic material, that is deep inside of
sufficiently large structures. In our case, however, we are dealing with a thin magnetic film
deposited on a non-magnetic substrate, which will change some of the properties. First,
while there is a constant magnetization within the film, this deviates at the surfaces, as can
be seen in fig 2.7. The free surface at the top will experience and increase in magnetization
due reduced coordination numberwhichmeans amore atomic-like behavior is present [31].
On the other hand at the bottom, and at the top if we put a non magnetic layer on top of
the ferromagnetic layer, the interface between the ferromagnetic layer and the substrate, or
capping layer, result in a reduction in magnetic moments, due to the hybridization between
the electronic states of the atoms of the ferromagnetic film and the interface layer.

Figure 2.7: Illustration of the variation of the magnetic momentm per atomic layer near
an interface with a substrate and near the surface at both T = 0 and T > 0 [31].

Due to the fewer neighbours on the surface spins, we get a reduction of the Bmf . This
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2.3. Magnetism

reduction in magnetization doesn’t just happen at the surface layer, but in several layers
near the surface.

Influence by Anisotropies

Amaterial can have many different anisotropies, all of which can typically be combined to
a constant K. In a thin film, however, the broken symmetry at the interface results in the
effective constant being divided in two parts, with one describing the volume contribution,
and the other the surface contribution.

Keff = KV +
2KS

d
(2.57)

Figure 2.8: The Magnetic anisotropy in a thin film layer of Co, in a Co/Pd multilayer, as
a function of the thickness dCo. KV can be determined from the slope. The zero crossing
amounts to 2KS. [31]

With KV being the volume dependent anisotropy constant and KS being the surface
dependent anisotropy constant, where the factor of two is because there are two surfaces,
and d is the thickness of the magnetic system [31]. The influence of this surface anisotropy
results in the so called "spin reorientation transition". As shown in figure 2.8, where the
function d ·Keff(d) = d ·KV + 2KS has been plotted, KV , which has a negative value,
dominates for thick films, causing the magnetization to being in the plane of the film.
However the relative amount of the surface contribution, increases as thickness d decrease,
until the thickness comes below a critical value, dc which result in a spin reorientation
transition, which causes the magnetization to be perpendicular to the plane. So if we want
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Chapter 2. Theoretical Background

our thin film to be magnetized in the plane we need to apply an external magnetic field.

2.4 Coexisting superconductivity and ferromagnetism

The creation of our topological superconductor relies on two things: The induction of
superconductivity in our semiconductor, and the spin splitting of the Cooper pairs, induced
by a magnetic field. The penetration of the superconducting state into a normal metal,
also called the proximity effect, is a well established phenomena [13, 16, 26, 37]. If a
superconductor is put in contact with a normal metal (S|N), a superconducting state will
arise in the in the normal metal. This state is characterised by the coherence length in the
normal state (N), ξN = νF/2πT in the clean limit, and ξN =

√
DN/2πT in the dirty limit,

where νF is the Fermi velocity, and DN is the diffusion coefficient. The clean limit refers
to the case where the superconducting coherence ξS is much smaller than the electron
mean free path l, ξ � l and the dirty limit is the case where it is much biiger ξ � l. There
are different ways to describe this proximity effect. One is the Ginzburg-Landau approach
and makes use of the boundary conditions at the S-N interface [16, 26], and result in the
superconducting order parameter existing beyond the boundary of the superconductor, and
decays into N, see fig 2.9 (a).

Figure 2.9: Illustration of the behavior of the superconducting order parameter at the
interface between a superconductor and a normal metal and at the interface between a
superconductor and a ferromagnet. [13]

Another description is the tunneling model [26, 34], where superconducting state in N
comes from the Cooper pairs tunneling into the normal metal. Here it is assumed that the
superconducting ordering parameter is constant, so this model assumes that the thickness
of N is smaller than ξN .
So the problem of inducing superconductivity in our semiconductor is solved, all that
remains is the spin splitting. Superconductivity and ferromagnetism are inherently antag-
onistic phenomena [10,13,20]. There are two mechanisms which causes this antagonism.
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2.4. Coexisting superconductivity and ferromagnetism

The first is related to the magnetic field, which below a critical value will be expelled
by the Meissner effect, and above it suppresses the superconducting state. The second
mechanism is the paramagnetic effect. An attraction between electrons creates Cooper
pairs in a singlet state, whereas the exchange field of a ferromagnet wants to align the spins
corresponding to a triple state. Therefore, if the Zeeman energy of a Cooper pair in the
exchange field exceed the coupling energy, the superconducting state is destroyed. In the
case of a pure paramagnetic effect, the critical field Hp can be found from by comparing
the energy gain from spin polarization in the normal state,

∆EN = −χn
H2

2
(2.58)

and the superconducting condensation energy,

∆ES = −N(0)
∆2

0

2
(2.59)

where χn = gµBN(0) is the spin susceptibility of the normal metal, µB is the Bohr
magneton, the g-factor is 2, N(0) is the density of state at the Fermi level, and ∆0 =

1.76kBTC is the superconducting gap energy at T = 0 [13]. Setting ∆EN = ∆ES we
find the paramagnetic limit at T = 0.

Hp(0) =
∆0√
2µB

(2.60)

So as there is a region of field, below Hp(0) where a coexistence of spin-splitting and
superconductivity is possible.

2.4.1 SC - FMI - SM structure

Now while previous work has been done on SC-SM-FMI structures [41], and our group
has previously done work on a FMI-SM structure [29], we will in this project instead test
a Superconductor-Ferromagnetic Insulator-Semiconductor heterostructure, see fig 2.10,
based on [33]. In this situation the ferromagnetic insulator should besides inducing
a magnetization in the semiconducting layer, also act as a barrier resulting in a spin-
asymmetric tunneling of electrons from the superconductor, into the semiconducting
layer, thereby increasing the spin splitting field inside the semiconductor.
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Chapter 2. Theoretical Background

Figure 2.10: A schematic of an SC-FMI-SM hetereostructure, here the ferromagnetic
insulator acts as a barrier, resulting in a spin-asymmetric tunneling of electrons from the
superconductor, which should increase the spin-splitting field in the semiconductor.
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3 Polarized Neutron Reflectometry

Polarized neutron reflectometry (PNR) is useful to probe the properties of materials inside
a thin film of stratified media, such as the magnetization, composition and the thickness
of each media. In this section we will explain how the reflection from an interface is
dependent not only on the choice of media, bus also the materials below it, the thickness
of the individual materials, the roughness of their interface and even any magnetization
that may be present. We will also give a short explanation of how the measured result
from an PNR experiment can be used to calculate these different parameters. Most of this
section is based on [27] and [30], while 4.2.5 is based on [53].

3.1 Neutron basics

The neutron is an electrically neutral particle with a mass about mn = 1.675 · 10−27kg.
While electrically neutral, it still possesses a magnetic moment [27]:

µn = γµNσ = γ
e~

2mp

σ (3.1)

where γ = −1.913 is the gyromagnetic ratio, µN is the nuclear magneton and σ is the
spin state of the neutron. As we can see from γ having a negative value, the magnetic
moment of the neutron couples anti parallelto its spin, which has a value of S = 1/2.
As the neutron interacts with the nuclei via the strong nuclear force and with magnetic
moments via the electromagnetic force, the reflection from a material is determined not
just by the nuclei of the material, but also by its magnetism.
As a consequence of quantum mechanics, the neutron, like all other particles with a non-
zero rest mass, has both particle and wave properties, and has, given a constant velocity v,
a corresponding de-Broglie wavelength given by:

λ =
2π~
mv

(3.2)
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Chapter 3. Polarized Neutron Reflectometry

In neutron scattering, the neutron is often described by the wave vector k or wave number
k:

k =
mnv

~
and k =

2π

λ
(3.3)

Assuming the neutrons to be non-relativistic, we can then give the kinetic energy of the
neutron as:

E =
~2k2

2mn

(3.4)

3.2 Reflectometry

It is well known that the reflection of light from a surface is caused by the change in the
refractive index at the interface. If a beam of parallel white light is sent onto the surface
of a thin film, the interference between the light reflected at the top surface and the bottom
surface, will cause spectral colors to appear, and one can use the reflection to measure
the thickness of the film. The reflection of both X-rays and neutrons are also governed by
the same laws as light, but with different refractive indices. As neutrons are scattered by
nuclei, the refractive index is determined not only by the density of nuclei, but also by how
strongly the neutrons scatter off the nuclei. The ability to scatter neutrons differs not just
from elements to elements but also from different isotopes, and is given by the quantity
called the scattering length, bj . The refractive index of a material is then dependent on
the scattering length density of nucleus comprising the material and the wavelength of the
neutrons [15].

3.2.1 Refractive index

Using Snell’s law n1sin(θ1) = n2sin(θ2), we can see that the refractive index of a medium
is equal to nm = λ0

λm
= km

k0
, the refractive index of a neutron wave can then be found by

solving the Schrödinger equation for the neutron wave motion:

~2

2mn

d2ψ

dr2
+ (E − V )ψ = 0 (3.5)

Where E is the total energy of the neutron and V is the spatial average of the neutron
potential V (r). A neutron propagating in a medium will experience the average scattering
length of all the nuclei in the material. The potential for the interaction of a neutron with
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a nucleus is given by the Fermi pseudo potential:

Vj(r) =
2π~2

mn

bjδ(r− rj) (3.6)

and so the average potential becomes:

V =
1

volume

∫
V (r) dr =

2π~2

mn

Nb (3.7)

where Nb =
∑
j

njbj
volume

is the scattering length density, nj is the number of nucleui j

and the bj its scattering length.
Rewriting (3.5) in terms of the wave number k we get:

~2

2mn

d2ψ

dr2
+ k2ψ = 0 (3.8)

where
k2 =

2m

~2
(E − V ) (3.9)

and as the mean potential experienced by a neutron in vacuum is equal to zero, V = 0,
while the total energy E is conserved, we get that:

k2
0 =

h2

2m
E = (

2π

λ
)2 (3.10)

and
k2
m =

2m

~
(E − 2π~2

m
Nb) =

2m

~
E − 4πNb = k2

0 − 4πNb (3.11)

resulting in:

n2 =
k2
m

k2
0

= 1− 4πNb

k2
0

= 1− 4πNb

(2π/λ0)2
= 1− λ2

0

π
Nb (3.12)

with the refractive index often Taylor expanded to n ≈ 1− λ20
2π
Nb [27] [15].

3.2.2 Reflection from a flat interface

The potential for a wave changes at the interface between media, resulting in the wave
front of the incident wave gets split up into a reflected and a transmitted, or refracted, part
as illustrated in figure 3.1(a). The incident wave is described by the wavevector ki and
subtends an angle θi with the interface, while the reflected part of the wave is described
by the wavevector kr and subtends an angle θr. In the case we are looking at the incident
angle equals the reflected angle θi = θr and the momentum transfer is normal to the
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Figure 3.1: Schematics of (a) an incident neutron wave k1 being split into a reflected kr

and a refracted kt wave at the interface between to media. (b) Graph of the scattering
length density along the normal to the surface. (c) Calculated specular neutron reflectivity
as function of the momentum transfer vector q = kr−ki, for an air/silicon interface. [27]

interface, also called specular scattering. Furthermore part of the wave can be transmitted
with the angle θt and wavevector kt. As the wave only changes in the direction normal to
the surface, the z direction, the problem becomes one dimensional. As such we plot the
scattering length density as a function of the depth, z, in the sample, as seen in figure 3.1(b).

In order to find the reflection and the transmission of the neutron beam, we solve the
Schrödinger equation for each medium [30].

~2

2m
∇2ψ1 + (E − V1) = 0 (3.13a)

~2

2m
∇2ψ2 + (E − V2) = 0 (3.13b)

Which have the solutions:

ψ1 = ψ0
i e
−i(kxx+kyy+ki,zz) + ψ0

re
−i(kx+ky−ki,zz) (3.14a)

ψ2 = ψ0
t e
−i(kxx+kyy+kt,zz) (3.14b)

Note that kr,z = −ki,z, and that kx and ky is the same for both the incident, reflected and
transmitted wave. As the boundary condition we have continuity of both the waveψ1 = ψ2

and of its derivative dψ1

dz
= dψ2

dz
at the interface, z = 0, resulting in;

ψ0
i + ψ0

r = ψ0
t (3.15a)
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− ki,zψ0
i + ki,zψ

0
r = −kt,zψ0

t (3.15b)

Solving these two equations we get:

ψ0
r =

ki,z − kt,z
ki,z + kt,z

ψ0
i = rψ0

i (3.16a)

ψ0
t =

2ki,z
ki,z + kt,z

ψ0
i = tψ0

i (3.16b)

With r and t being the Fresnel coefficients for respectively reflection and transmission. In
an experiment when we measure the reflectivity, what we measure is the intensity of the
incoming neutron beam versus the reflected beam, and so the reflectivity is defined as:

R(qz) =
Ir(qz)

Ii
=
|ψ0
r |2

|ψ0
i |2

= |r|2 (3.17)

Where instead of giving the reflectivity as a function of the angle, we have defined it as
a function of the wave vector transfer qz = 4π sin(θi)

λ
= 2kz, and so |r|2 = | qi,z−qt,z

qi,z+qt,z
|2. A

simulation of the reflectivity for an air/silicon interface as function of qz is can be seen in
figure 3.1(c). As one can see the figure shows a small range where there is total reflection
i.e. R(qz) = 1. Rewriting eq. 3.11 in terms of qz we get:

qi,z =
√
q2

0,z − 16πNb1 (3.18a)

qt,z =
√
q2

0,z − 16πNb2 =
√
q2
i,z − 16π(Nb2 −Nb1) (3.18b)

From this we see that when q2
i,z ≤ 16π(Nb2 −Nb1), then qt,z is imaginary and then r = 1

resulting in total reflection. The critical edge is defined as the largest q where r = 1:

qc =
√

16π(Nb2 −Nb1) (3.19)

And so the reflectivity can be written as [15]:

R = |r|2 =

∣∣∣∣∣qi,z − (q2
i,z − q2

c )
1/2

qi,z + (q2
i,z − q2

c )
1/2

∣∣∣∣∣
2

(3.20)

3.2.3 Reflection from a stratified media

So far we have only looked at reflection from a single layered interface. On the other hand
if we have a stratified media, a material with numerous layers of thin films like the one
we are examining, there are multiple interfaces in our medium, which end up affecting the
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(a) (b)

Figure 3.2: Reflection from a multilayered sample. (a) The schematics of the four waves
interacting at an interface. (b) The numbering system of a multilayered sample. [27]

overall reflection. Looking at figures 3.2 (a), we see that besides the reflected wave, the
refracted wave and the incident wave from above the interface, an additional wave from
below the surface must also be taken into account. This second wave, is the reflected wave
from the layers deeper in the surface, so it is only at the interface deepest in the sample
that the second incident wave don’t need to be considered. The phase and amplitude of
this second incident wave is modified by the path length through film and so it depends on
the thickness d of the film, resulting in the amplitude of the wave being modified by the
factor:

aj = e−2ikjzdj = e−iqjzdj (3.21)

The waves reflected at different interface in the sample, will interfere with one another,
causing fringes in the reflection, as seen in figure 3.3(a), with the number of fringes
increases with d. In order to get the actual reflection from our sample, we then need to
sum up the reflection from each layer in the sample. This can be done in two ways, here
we focus on what is called the recursive method. We number our sample similar to figure
3.2(b), so that the reflection for interface j is described as the reflection between medium
j − 1 and j, and the waves have same number as their medium. The reflection from the
last interface N is simply the Fresnel coefficient multiplied by the amplitude factor:

rN−1,N =
kN−1,z − kN,z
kN−1,z + kN,z

e−2ikN−1dN−1 = fN−1,NaN−1 (3.22)
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The reflected wave is then included in the calculation of the reflection from the next
interface j = N − 1, through a recursion formula:

rj−1,j =
fj−1,j + fj,j+1aj
1 + fj−1,jfj,j+1aj

(3.23)

This recursion is then performed all the way up to the top layer r0,1, which then gives us
the total reflection:

R = |r0,1|2 (3.24)

This is know as the Parrott formalism.

(a) (b)

Figure 3.3: Reflection from multilayered sample calculated in python. (a) The calculated
reflection from two samples, consisting of a film of iron (Fe), on silicon (Si), with different
thickness of Fe. Note that the 200 Å sample has two minima for every one of the 100 Å.
The distance between the fringes is 2Pi

d
(b) Calculated reflection from 200 Å Fe/Si sample,

with different values of roughness. Note the effect of the roughness becomes bigger as qz
increases.

3.2.4 Reflection from a rough interface

So far we have assumed that the reflection happens from perfect interfaces. Unfortunately
interfaces are never perfect, and in reality our scattering length density will not take the
form of a step function like in figure 3.1(b). Instead it will be more continuous either
due to grading across the interface or roughness of the interface, something which we
can not distinguish between with specular reflection. In order to take account for the
roughness and grading of the interface, we use make use of a method devised by Croce
and Névot [36]. A model for the sample is constructed like before, but now we assume
that each interface have a Gaussian profile in z. Applying a Fourier transformation over

29



Chapter 3. Polarized Neutron Reflectometry

the interface, then modifies the Fresnel coefficient to:

fj−1,j =
kj−1,z − kj,z
kj−1,z − kj,z

e−2kj1kjσ
2
j (3.25)

Where σj is the width of the Gaussian profile for the jth interface. This equation can be
substituted directly with the Fresnel equation as previously given. As can be seen in figure
3.3(b) the roughness decrease the reflectivity, with larger decrease as qz increases.

3.2.5 Reflection from a magnetic interface

(a) (b)

Figure 3.4: Reflection from a magnetic material. (a) The orientation of the magnetization
M of the sample, relative to the applied field H, determines the proportion of spin-
flip and non spin-flip scattering [21]. (b) The reflection from a magnetic material with
magnetization and applied field parallel to the surface.

So far we have assumed that the only interaction between the neutrons and the reflective
material is the nuclear interaction. However, as the neutron possesses a spin and a resulting
intrinsic magnetic moment, its reflection may also depend on the orientation of the spin.
This is for instance the case when the neutron scatters off amagneticmaterial. The addition
of the magnetization changes the potential experienced by the neutron so it becomes:

V = Vn + Vm = Vn ∓ µB (3.26)

Where B = µ0M is magnetic induction vector and µ = µnσ is the magnetic moment of
the neutron, with σ being a linear combination of the Pauli matrices, and µn = −1.913µN .
In a PNR experiment an external B field will be applied and it is that which we define
the polarization of the neutron along. In our experiment the B-field is applied parallel
to the surface of our sample, similar to figure 3.4(a), so we have the neutron polarized in
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the x-direction, and the depth of our sample in the z-direction. The ∓ in equation 3.26 is
negative (positive) if the spin of the neutron is parallel (anti-parallel) to the applied field,
and so the value −µnB is positive, resulting in an increased potential. However, if the
magnetization has a component that is not parallel to the applied field, as in figure 3.4(ab),
then it is possible for the neutron to undergo a spin-flip, so for example an incident neutron
with a positive spin gets reflected with a negative spin. Writing equation 3.26 in matrix
form we get,

V = Vn ∓ µn

∣∣∣∣∣ Bx Bz − iBy

Bz + iBy −Bx

∣∣∣∣∣ (3.27)

where we assume that positive values of B, are from spins parallel to the field. For
simplicity, we define a magnetic scattering length density ρm similar to the neutron
scattering length density [53]:

ρm = C
J∑
i

Niµi = − mn

2π~2
µnµ0

J∑
i

Mi (3.28)

Where for the magnetic moment per formula unit µ, expressed in units of µB, C =

2.645 · 10−5Åµ−1
B . We then write the potential in terms of the scattering length density:

V =
2π~2

mn

∣∣∣∣∣ Nb + ρm,x ρm,z − iρm,y
ρm,z + iρm,y Nb − ρm,x

∣∣∣∣∣ (3.29)

Taking into account the spin dependence of the neutron and the spin dependence of the
scattering potential, the solution to the Schrödinger equtation becomes:

ψ = U+

∣∣∣∣∣10
∣∣∣∣∣ eik+,zz + U−

∣∣∣∣∣01
∣∣∣∣∣ eik−,zz (3.30)

Where |U+|2 + |U−|2 = 1, the vectors are the orientation of the spin and k±,z is the
z component of the wavevector for the different neutron spin state, which as previously
mentioned sees a change in the potential depending on its orientation:

k± =
√
k2

0 − 4π(Nb ± |ρm|) (3.31)

Which means that the magnetic material in effect is birefringent. In our experiment
we assume that the magnetization of our material is parallel to the applied field, so
the off-diagonal values in (3.29) are zero. Two measurements of the reflectivity are
then performed, one for spin-up U+ = 1, U− = 0 neutrons, and one for spin-down
U+ = 0, U− = 1. Comparing the reflectivity for spin-up R++ with the one for spin-down
R−− and the nuclear reflectivity, one can calculate the strength and depth profile of the
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magnetization in the sample. A theoretical calculation of a Fe/Si sample can be seen
in figure 3.4(b), as can be seen the reflection of spin-up neutron is bigger than the just
the nuclear reflection, while the reflection from the spin-down is smaller. It should of
course be remembered that the reflection at an interface is determined by the difference
in potential energy, of the the two media making up the interface, therefore it is possible
to have situation where neutron in the spin-down state, has a bigger reflection. Besides
normal spin-up and spin-down reflection, where we merely measure the reflectivity of a
neutron with a given spin, it is also possible to have situation where there is a spin-flip, so
for example an incoming neutron with spin-up hits the surface, and get flip to a spin-down
state. This spin-flip though is only induced by the components of the B-field, which are
perpendicular to the surface.

3.3 Analysis

Once we have conducted a PNR experiment, we need to analyse the data. This is done
using the computer program GenX [11]. In the program we create a starting model of our
sample, that is the we write the materials, with their scattering length density and their the
approximate thickness. The data sets from each of our measurements is then loaded in to
the program. For a PNR experiment, that means we have at least two reflection curves,
one for spin-up and one for down. The program simulates the theoretical reflection from
the given start values of our sample, and afterwards it can be used to fit the thickness of
each layer, the size of the magnetization and the roughness of the interfaces.
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4 Instruments

In this chapter the instruments that have been used in our polarized neutron reflectometry
experiments will be presented.

4.1 D17

D17 is a neutron reflectometer located at the Institut Laue-Langevin (ILL) in France [1],
where the neutron are provided by a high flux reactor, so we have a countinous neutron
source. D17 has a horizontal scattering geometry (vertical surfaces). At the sample
position, the white neutron beam flux is 6.9 · 109n · s−1 · cm−2, which combined with the
low instrumental background allows one to measure reflectivities down to 10−7. D17 can
operate in four modes, time of flight (TOF) (bottom of fig 4.1), monochromatic (top of fig
4.1) and polarized versions of the these twomodes. In our experiment we use the polarized
TOF mode. In the TOF mode a double chopper system with a variable phase is used to
transmit a neutron beam with a wavelength in the range of 2 to 30Å, and wavelength
dependent resolution of 0.5-20% (FWHM). The beam is then polarized, by moving a
supermirror S-bender into its path, see bottom fig 4.1, resulting in a large section of the
neutrons in the wavelength band from 4 to 20Å becoming polarized. The S-bender is
made of a stack Si wafers measuring 50mm(length)× 160mm(height)× 200µm(thick),
which are coated with an inverted m = 3.2 Fe/Si supermirror and 600nm thick Gd
absorption layer. These waifers are bent into a symmetric S shape with a radius of
curvature of 10m. This S-bender is placed in a permanent magnet assembly, which
provides a vertical field strength of 500G at the exit of the device. The direction of
polarization of the neutron, both before and after the sample, can be manipulated with
the adiabatic radio frequency spin flippers (RF) [40]. In case of specular scattering the
polarization analysis is performed by a m = 3.2 Fe/Si supermirror coating on a 1cm
thick absorbing borofloat substrate in reflection geometry. At the sample position, the
sample is placed in a crymoagnet, used for cooling and applying a small magnetic field.
The measurable q range is 0.002Å−1 < q < 2Å−1. The specifications can be seen in
table 4.1. The m value mentioned for the Fe/Si multilayer, is the relation between the
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critical scattering vector qc of a multilayer, and the critical scattering vector of Nickel
qc,Ni = 0.0217Å−1 [27]. So the critical scattering vector for the Fe/Si multilayer is:

qc = mqc,Ni (4.1a)

qc,Fe/Si = 3.2 · 0.0217Å−1 = 0.06944Å−1 (4.1b)

D17 Specifications
Mode Polarized TOF
Chopper spin rate 550 - 3000 rpm
Chopper separation 75mm
Chopper phase 0-20 deg
Incident wavelength 4-20Å
q range 0.002Å−1 < q < 2Å−1

Resolution 0.5-20% (FWHM)
Polarizer Fe/Si multilayer S-bender
Polarisation analysis Polarizing Fe/Si mirror analyzer.
White beam flux 9.6 · 109n · s−1 · cm−2

Beam area at sample 6× 50mm (width × height)

Table 4.1: Table of specifications for D17, relevant for the performed experiment. Values
are taken from [1].

4.2 POLREF

POLREF is a neutron reflectometer located at ISIS in England [2]. The neutrons are
provided via spallation, so it is a pulsed neutron source. Like D17 it uses time of flight
to determine the wavelength band of the neutrons. The specifications can be seen in table
4.2, and an outline can be seen in fig 4.2.

POLREF Specifications
Mode Polarized TOF
Incident Wavelength 0.9 - 15Å
Resolution 3-10% (FWHM)
White beam flux ∼ 107n · s−1 · cm−2

Beam area at sample 60× 30mm (H × V)

Table 4.2: Table of specifications for POLREF, relevant for the performed experiment.
Values are taken from [22].
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Figure 4.1: Schematic of D17, taken from [1]. We are using the TOF mode.

Figure 4.2: Outline of POLREF, taken from [22].
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5 Samples

In this section we will give a description of the two samples on which we have performed
our experiments. The samples have been created by Y. Liu at University of Copenhagen.
We have two samples: Qdev1001 and Qdev1002. Both samples are about 20mm× 20nm

and consist of a substrate of indium arsenide (InAs), a semiconductor, then a layer of
europium sulfide (EuS), a ferromagnetic insulator with Tc = 16.5K, and at saturation
it has a magnetic moment per formula unit of m = 6.9µB

(5.969Å)3
[39], then a layer of lead

(Pb), a bulk type 1 superconductor with Ts = 7.2K, a penetration depth of λ = 87nm, a
coherence length of ξ = 39nm and a critical field of Hc = 803.4Oe [6, 14], and then a
layer of Al2O3, which is a cap layer which is there to protect the sample from oxidization
and environmental impurities. A schematic of the samples can be seen in 5.1a. The initial
size of the layers was obtained using high-resolution transmission electron microscopy
(HRTEM), an example of which can be seen in fig 5.1b.

(a)
(b)

Figure 5.1: (Left)A schematic representation of the the samplesQdev1001 andQdev1002,
the thickness of each layers is based on HRTEMmeasurements. (Right) A HRTEM image
of Qdev1001.
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5.1 Crystal structure and scattering lenght denisty

It is important that we know the scattering length densities (SLD) of the different materials,
for our PNR experiment. While the SLD for Al2O3 is taken from [53], the rest has been
calculated using the crystal structure [?, 25], and the scattering length for the different
nuclei [43]. The results are shown in table 5.1.

Al2O3 Pb EuS InAs
Structure FCC Cubic rock salt (Fm3m) Zinc blende (F43m)
Lattice parameter [Å] 4.95 5.969 6.048
SLD [×10−6Å−2] 5.21 3.10 1.893 1.925

Table 5.1: Crystal structure, and scattering length densities for materials in the samples.
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6 Results

In this section we will present the data that have been gathered from our polarized neutron
reflectometry experiments on and the two samples. Furthermore, we will also present the
results of our data fits.

6.1 Qdev1001

The experiment on the sample Qdev1001 was conducted on D17, at ILL, by M. Tripathi
and K. Dalal from the University of Copenhagen, and T. Saerbeck, first responsible on
D17. Using time of flight, the instrument sent out of a beam of polarized neutrons with
a wavelength in the range λ = 2-27Å, which at the sample position have a beam area of
20mm× 6mm.
The sample was mounted on a holder, see fig 6.1, pre-aligned at room temperature, and
then cooled to 2K in a cryomagnet, at 0T. Once a temperature of 2K had been reached, the
alignment was checked and the measurements could start. The measurement was done in a
0.1T applied magnetic field, aligned with the polarization of the neutrons, in the x-axis, so
the field lies with the surface. This was is done to ensure an alignment of all the magnetic
moments in the europium sulfide layer, are in the same direction.

Figure 6.1: The sample Qdev1001, mounted in a holder.

Measurements on the sample were done at two beamtimes, the first starting on 11/08/2020
and the second starting on 4/08/2021. At the first beamtime measurements were taken at
temperatures of 2K, 8K, 12K 20K, 50K and 300K all at 0.1T. On the second, measurements
were taken at 2K and 8K, in order to ensure that the sample were not degraded. Then
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6.1. Qdev1001

measurements were taken 6K and 7K. Measurements were also taken for at an applied
field of 0.25T and 1T, both at 2K. The data are plotted in fig. 6.2

(a) (b)

(c) (d)

(e) (f)

Figure 6.2

Looking at the plots of the data, fig 6.2, we can clearly see that for temperatures from
less than 16K, (6.2a-6.2e) the reflection of neutrons with a spin-down polarization R−− is
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(g) (h)

(i) (j)

(k) (l)

Figure 6.2: Plots of the data form the PNR experiment conducted on Qdev1001. Plot a-h
shows the reflection for different temperatures with an applied field of B = 0.1T, while
i-l compares different magnetization and different temperatures. The simulated profile of
the long range version of model 2, as described later, is also plotted.

stronger than the reflection of neutrons with a spin-up polarizationR++. At the same time
we see that for temperatures above 16K (6.2f-6.2h) the reflection is the same for both spin
orientation, but also for for all three temperatures 6.2j. This is fitting with the presence
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of ferromagnetism, below the Curie temperature of EuS. Comparing data from above and
below the Curie temperature, TC = 16.5K, fig 6.2k, we can see a significant change in
the reflection, between the ferromagnetic, and the paramagnetic state. We can also see
minor difference between the reflection for T = 12K, where we are in the ferromagnetic
regime of EuS, but above Tc for Pb, and the reflection for T = 8K were we are near Tc,
and T = 2K where we are below Tc.

6.1.1 Models and simulations

In order to determine the structure of the sample the we will be using fitting the data with
GenX. By creating a model of the sample, the program simulates the theoretical reflection
and compares it to the given data. By letting the program run, it can then fit the different
parameters of the sample to the data, in order to determine the structure. Now as it is a
simulation, the program uses a model of the instrument, see fig 6.3, which we have to set
based on the instrument used for the experiment. In this case we set the wavelength of the
neutrons to λ = 5Å, and uses polarized neutrons as a probe.

Figure 6.3: The instrument setting for Qdev1001.

We start by first fitting the structure of the sample, using a χ2 fit, from our data taken at
20K, 50K and 300K, where we determine the thickness d of the layers and the roughness
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σ of the interfaces. Furthermore, due to the Al2O3 layer being very thin, and not perfect,
but in fact may consist of island deposits, we also fit the scattering length b for Al2O3. The
results can be seen in table 6.1.

Structure (χ2 = 4.7262)
Parameter Values Error
σAl2O3[Å] 12.14 (−8.417 · 10−7, 0.1998)
dAl2O3[Å] 18.68 (−7.069 · 10−7, 0.1999)
bAl2O3[fm] 9.912 (−0.09994, 7.719 · 10−6)
σPb[Å] 2.00 (−1.438 · 10−6, 4.505)
dPb[Å] 736.00 (−3.345, 3.090)
σEuS[Å] 4.6924 (−2.248, 2.848)
dEuS[Å] 33.915 (−5.514, 5.172)
σInAs[Å] 2.00 (−1.854 · 10−5, 4.999)

Table 6.1: The structure values of Qdev1001. Note that this is only fitted from the data
taken at 20K, 50K and 300K. Note that the error values are the lower and upper values of
the errorbars. The large differences in the values, for example σPb where the errors are
(−1.438 · 10−6, 4.505) arises when the fitted parameter has a value very close to either the
lower or upper boundaries of the fit, in this case it is close to the lower boundary

Keeping these values constant, we now fit 4 different models. In the first model, model
1, we assume that there is only a temperature dependent magnetism in the EuS layer, and
that apart from the superconducting screening field in Pb, that the rest of the layers are
non-magnetic, see far left fig 6.4. The result of this fit can be seen in table 6.2. Now
despite the critical field for lead being Tc ≈ 0.8mT we assume that due to the small size of
the layer, we can treat it as a type II superconductor, and that therefore superconductivity
is not broken by the applied field, for values of B = 0.1T and B = 0.25T, and it will
first get broken at B = 1T. Unlike other parameters, the superconducting screening fields
are calculated by hand, MPb,0.1T = −0.26[ ˚µB/FU], MPb,0.25T = −0.651[ ˚µB/FU], and
applied as constant parameters in the fit.
Based on what we have learned in our theory, and what we are hoping to achieve, the next
3 models are fitted with the assumption of magnetism, outside EuS. In model 2, middle
left fig. 6.4, we assume that some of the magnetism in EuS leaks into InAs and creates a
layer of magnetization in the top of InAs, and in model 3, middle right fig. 6.4, we assume
there is magnetism leaking into Pb, thereby creating a small layer of magnetization in the
bottom of Pb. In the fourth model, far right fig.6.4, we assume that magnetism leaks into
both InAs and Pb. Now again, as we have seen in our theory, it is possible, that if there is
a magnetic proximity effect, that it is either long range, where the induced magnetization
will go far into the other layers, or short range, where the induced magnetization will only
be present in the first few unit cells. As such we have made two fit for each model. One
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Figure 6.4: The different models that we test. (Far left) In model 1 we assume there is
only magnetization in the EuS layer. (Middle left) In model 2 we assume a magnetization
in both the EuS layer and some that leaks in to the top of the InAs layer. (Middle right) in
model 3 assume that besides the magnetization in EuS, some leaks into bottom of the Pb
layer. (Far right) in model assume that magnetization leaks into botht InAs layer and the
Pb layer. Note that whileM = 0 for lead, there is stil a small screening field, which have
been taken into account.

where we set no upper limit on the thickness of the magnetic layers, and one where we
assume that the magnetic layers is at maximum 5 unit cells thick. The result can be seen
in table 6.3, 6.4 and 6.5

Model 1 (χ2 = 50.095)
Parameter Values Errors
σM,EuS[Å]2K 1.5182 (−3.139, 1.310)
σM,EuS[Å]2K, 0.25T −3.0000 (−4.135 · 10−7, 9.999)
σM,EuS[Å]2K, 1T 0.97797 (−3.645, 4.033)
σM,EuS[Å] 6K 0.22799 (−3.105, 4.416)
σM,EuS[Å] 7K −0.48620 (−2.478, 4.849)
σM,EuS[Å] 8K −9.4503 · 10−3 (−2.922, 2.417)
σM,EuS[Å] 12K 0.70184 (−3.693, 4.957)
MEuS[ ˚µB/FU] 2K 5.9613 (−0.5605, 0.6026)
MEuS[ ˚µB/FU] 2K, 0.25T 3.0000 (−5.495 · 10−9, 2.393)
MEuS[ ˚µB/FU] 2K, 1T 6.4451 (−0.6144, 0.6659)
MEuS[ ˚µB/FU] 6 5.1224 (−0.3737 , −0.3784)
MEuS[ ˚µB/FU] 7K 4.8291 (−0.7557, 0.7613)
MEuS[ ˚µB/FU] 8K 4.7978 (−0.5176, 0.4982)
MEuS[ ˚µB/FU] 12K 4.2905 (−0.7509, 0.5996)
σM,InAs[Å] 2K −2.0000 (−0.9925, 8.389)
σM,InAs[Å] 2K 0.25T −1.9992 (−0.9940, 8.821)
σM,InAs[Å] 2K 1T 2.7960 (−2.994, 3.037)
σM,InAs[Å] 6K −1.9995 (−0.9933, 8.435)
σM,InAs[Å] 7K −2.0002 (−0.9979, 8.754)
σM,InAs[Å] 8K −1.9997 (−0.9917, 8.639)
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σM,InAs[Å] 12K −2.0025 (−0.9967, 8.958)

Table 6.2: The fitted parameter values for model 1 for Qdev1001.

Model 2
Long Range (χ2 = 37.936) Short Range (χ2 = 41.206)

Parameter Values Errors Values Errors
σM,EuS[Å] 2K 0.94807 (−0.7717, 0.7278) 2.2987 (−1.516, 0.6997)
σM,EuS[Å]2K, 0.25T −2.0000 (−4.178 · 10−7, 6.999) −2.0000 (−1.933 · 10−5, 4.999)
σM,EuS[Å]2K, 1T 1.5820 (−0.8246, 1.118) −0.37526 (−1.049, 1.025)
σM,EuS[Å] 6K 0.49505 (−0.9839, 0.9255) 2.1537 (−3.997, 0.5497)
σM,EuS[Å] 7K −1.6554 (−0.9381, 0.6991) 2.0170 (−0.8708, 0.9469)
σM,EuS[Å] 8K 0.29440 (−0.8784, 1.206) 2.3146 (−3.832, 0.6705)
σM,EuS[Å] 12K 0.65300 (−0.7842, 1.175) 0.51828 (−1.223, 1.126)
MEuS[ ˚µB/FU] 2K 5.4122 (−0.2852, 0.2553) 6.1072 (−0.2752, 0.3167)
MEuS[ ˚µB/FU] 2K, 0.25T 3.0000 (−3.5341̇0−8, 1.491) 3.0000 (−1.251 · 10−7, 2.706)
MEuS[ ˚µB/FU] 2K, 1T 6.7889 (−0.5496, 0.5661) 6.3455 (−0.5127, 0.4317)
MEuS[ ˚µB/FU] 6 4.5334 (−0.3864, 0.5984) 5.1014 (−0.5412, 0.5967)
MEuS[ ˚µB/FU] 7K 4.2367 (−0.2268, 0.7376) 4.7607 (−0.3725, 0.3795)
MEuS[ ˚µB/FU] 8K 4.0844 (−0.08225, 0.7667) 4.7721 (−0.5369, 0.4696)
MEuS[ ˚µB/FU] 12K 4.3453 (−0.3116, 0.5368) 4.2983 (−0.2393, 0.2416)
σM,InAs[Å] 2K 1.8076 (−0.9562, 1.404) 3.7710 (−5.682, 0.2286)
σM,InAs[Å] 2K 0.25T 10.000 (−12.00, 4.338 · 10−6) −1.9955 (−4.533 · 10−3, 8.994)
σM,InAs[Å] 2K 1T −0.054187 (−1.754, 6.010) −2.0085 (−0.9860, 8.959)
σM,InAs[Å] 6K −1.9982 (−1.792 · 10−3, 11.99) 2.6393 (−2.700, 1.732)
σM,InAs[Å] 7K −1.9996 (−4.096 · 10−4, 11.99) 2.3013 (−1.124, 1.427)
σM,InAs[Å] 8K −1.9995 (−5.196 · 10−4, 9.269) 3.3651 (−1.622, 1.939)
σM,InAs[Å] 12K −1.9812 (−0.01877, 11.98) −1.9952 (−7.730, 6.207 · 10−7)
dM,InAs[Å] 85.842 (−26.63, 16.72) 25.000 (−4.576, 4.458)
MInAs[ ˚µB/FU] 2K −1.3178 (−0.6100, 0.5307) −0.74364 (−0.7025, 0.9328)
MInAs[ ˚µB/FU] 2K, 0.25T −3.8473 (−0.4354, 0.7054) −5.0000 (−1.822 · 10−7, 2.840)
MInAs[ ˚µB/FU] 2K, 1T 0.99328 (−0.8202, 0.6578) 0.54222 (−0.7959, 1.190)
MInAs[ ˚µB/FU] 6 −1.2800 (−0.8868, 0.9440) −0.94733 (−0.7907, 0.6997e)
MInAs[ ˚µB/FU] 7K −1.3090 (−0.6265, 0.6625) −1.0382 (−0.9372, 1.204)
MInAs[ ˚µB/FU] 8K −1.5473 (−0.7626, 0.5578) −1.1242 (−0.7346, 0.7813)
MInAs[ ˚µB/FU] 12K 0.12692 (−0.7726, 0.9397) 0.051548 (−1.244, 1.526)
σM,InAs−Sub[Å] 2K 57.000 (−6.563, 7.042) 2.4999 (−4.996, 5.437 · 10−5)
σM,InAs−Sub[Å] 2K 0.25T 51.630 (−8.574, 8.122) 2.5000 (−5.000, 1.558 · 10−5)
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σM,InAs−Sub[Å] 2K 1T 70.000 (−69.99, 1.431 · 10−5) 2.5000 (−4.999, 2.831 · 10−5)
σM,InAs−Sub[Å] 6K 54.787 (−10.26, 9.294) 2.5000 (−5.000, 3.953 · 10−5)
σM,InAs−Sub[Å] 7K 56.721 (−43.11e, 13.26) −2.4999 (−8.064 · 10−5, 5.000)
σM,InAs−Sub[Å] 8K 56.641 (−22.97, 10.91) −2.5000 (−1.207 · 10−5, 5.000)
σM,InAs−Sub[Å] 12K 58.477 (−6.039, 6.368) 2.4977 (−4.995, 2.308 · 10−3)

Table 6.3: The fitted parameter values for model 2 for Qdev1001.

Model 3
Long Range (χ2 = 51.276) Short Range (χ2 = 52.095)

Parameter Values Errors Values Errors
σM,Pb[Å] 2K 4.9999 (−4.999, 8.103 · 10−5) 2.5000 (−4.499, 1.667 · 10−5)
σM,Pb[Å]2K, 0.25T 0.0050263 (−5.012 · 10−3, 4.993) 0.0034472 (−1.964, 2.486)
σM,Pb[Å]2K, 1T 0.012415 (−1.238 · 10−2, 4.986) 0.0031064 (−1.977, 2.477)
σM,Pb[Å] 6K 0.013854 (−1.385 · 10−2, 4.985) 2.5000 (−4.493, 8.856 · 10−6)
σM,Pb[Å] 7K 0.0048816 (−4.879 · 10−3, 4.995) 2.5000 (−4.499,2.714 · 10−6)
σM,Pb[Å] 8K 5.0000 (−4.995, 5.499 · 10−3) 2.5000 (−4.499, 9.517 · 10−6)
σM,Pb[Å] 12K 0.018642 (−1.862 · 10−2, 4.981) 0.0053161 (−2.005, 2.493)
dM,Pb[Å] 24.658 (−3.986, 3.828) 21.000 (−5.151, 5.203 · 10−8)
MPb[ ˚µB/FU] 2K −1.2690 (−7.758 · 10−2, 0.6536) −1.0316 (−0.3318, 0.6016)
MPb[ ˚µB/FU] 2K, 0.25T −4.0000 (−1.276 · 10−6, 2.071) −4.0000 (−4.158 · 10−8, 2.327)
MPb[ ˚µB/FU] 2K, 1T −1.1707 (−0.3738, 0.9635) −1.2912 (−0.2368, 0.6270)
MPb[ ˚µB/FU] 6 −2.4873 (−0.4384, 1.026) −2.0696 (−0.2494, 0.9741)
MPb[ ˚µB/FU] 7K −2.5230 (−0.4104, 0.9298) −2.1727 (−0.1595, 1.003)
MPb[ ˚µB/FU] 8K −1.4883 (−0.2567, 0.9127) −1.2751 (−0.7507, 0.6565)
MPb[ ˚µB/FU] 12K −0.32224 (−0.3053, 0.7211) −0.29907 (−0.5671, 0.9338)
σM,EuS[Å] 2K 9.4585 (−4.186, 0.4993) 7.0000 (−3.356, 1.461 · 10−6)
σM,EuS[Å]2K, 0.25T 7.2959 (−9.276, 2.684) 3.4264 (−5.419, 3.538)
σM,EuS[Å]2K, 1T 10.000 (−4.545, 1.461 · 10−5) 7.0000 (−4.186, 3.312 · 10−6)
σM,EuS[Å] 6K 8.5333 (−2.340, 1.316) 7.0000 (−4.042, 1.817 · 10−6)
σM,EuS[Å] 7K 6.999 (−3.463, 1.620) 7.0000 (−4.652, 6.325 · 10−7)
σM,EuS[Å] 8K 9.7252 (−4.453,0.2748) 7.0000 (−4.956, 3.356 · 10−7)
σM,EuS[Å] 12K 8.2336 (−4.524, 1.638) 7.0000 (−8.482, 1.088 · 10−6)
MEuS[ ˚µB/FU] 2K 6.9274 (−0.8601, 7.839 · 10−2) 6.6413 (−0.6251, 0.3318)
MEuS[ ˚µB/FU] 2K, 0.25T 3.0000 (−4.183 · 10−7, 2.727) 3.0000 (−1.016 · 10−7, 2.360)
MEuS[ ˚µB/FU] 2K, 1T 7.6894 (−1.017, 5.269 · 10−2) 7.5624 (−0.6468, 0.4120)
MEuS[ ˚µB/FU] 6 5.8386 (−1.344, 0.5158 ) 5.7932 (−0.8411, 0.1934)
MEuS[ ˚µB/FU] 7K 5.3153 (−0.7719, 1.010) 5.3523 (−1.121, 0.3170)
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MEuS[ ˚µB/FU] 8K 5.4854 (−0.8354, 5.627 · 10−2) 5.2551 (−0.7428, 0.4625)
MEuS[ ˚µB/FU] 12K 4.9086 (−1.163, 0.6350) 4.7846 (−0.8526, 0.3509)
σM,InAs[Å] 2K 0.83432 (−2.524, 3.271) 1.6031 (−3.592, 3.971)
σM,InAs[Å] 2K 0.25T −1.9954 (−4.615 · 10−3, 11.99) 1.9955 (−4.465 · 10−3, 8.992)
σM,InAs[Å] 2K 1T 3.9313 (−1.378, 2.346) 7.0000 (−8.997, 1.854 · 10−6)
σM,InAs[Å] 6K 10.000 (−11.99, 7.517 · 10−6) 7.0000 (−9.000, 4.132 · 10−6)
σM,InAs[Å] 7K 10.000 (−12.00, 1.8300 · 10−5) 7.0000 (−8.985, 2.636 · 10−6)
σM,InAs[Å] 8K −1.9797 (−2.031 · 10−2, 10.910) 1.0809 (−0.8808, 3.422)
σM,InAs[Å] 12K −1.9984 (−1.628 · 10−6, 11.99) 1.9984 (−1.623 · 10−3, 8.960)

Table 6.4: The fitted parameter values for model 3 for Qdev1001.

Model 4
Long Range (χ2 = 37.838) Short Range (χ2 = 47.483)

Parameter Values Errors Values Errors
σM,Pb[Å] 2K 9.9999 (−9.999, 1.611 · 10−7) 0.0021 (−2.116 · 10−3, 2.498)
σM,Pb[Å]2K, 0.25T 9.9999 (−10.00, 1.938 · 10−6) 2.4999 (−2.500, 2.349 · 10−6)
σM,Pb[Å]2K, 1T 0.0070 (−7.097 · 10−3, 9.990) 2.4999 (−2.500, 5.676 · 10−4)
σM,Pb[Å] 6K 0.0367 (−3.667 · 10−2, 9.962) 0.01422 (−1.418 · 10−2, 2.481)
σM,Pb[Å] 7K 0.0083 (−8.328 · 10−3, 9.970) 0.0133 (−1.337 · 10−2, 2.486)
σM,Pb[Å] 8K 0.0020 (−2.062 · 10−3, 9.993) 0.0040 (−4.036 · 10−3, 2.494)
σM,Pb[Å] 12K 0.0183 (−1.838 · 10−2, 9.973) 0.0066 (−6.663 · 10−3, 2.493)
dM,Pb[Å] 25.3562 (−4.849, 0.1212) 15.9168 (−3.498, 5.060)
MPb[ ˚µB/FU] 2K −1.2115 (−0.1744, 0.3940) −0.7201 (−0.7615, 0.1197)
MPb[ ˚µB/FU] 2K, 0.25T −3.999 (−4.488 · 10−8, 1.811) −1.5507 (−2.437, 0.3578)
MPb[ ˚µB/FU] 2K, 1T −0.6302 (−0.5148, 0.4123) −2.6733 (−0.4593, 1.411)
MPb[ ˚µB/FU] 6 −2.1410 (−0.4538, 0.4299) −1.4899 (−0.3032, 1.080)
MPb[ ˚µB/FU] 7K −2.1983 (−0.3316, 0.4462) −1.4440 (−0.3365, 1.549)
MPb[ ˚µB/FU] 8K −1.9582 (−0.2247, 0.2817) −0.5005 (−0.6628, 0.5381)
MPb[ ˚µB/FU] 12K −0.2146 (−0.2520, 0.3438) −0.2598 (−0.9850, 0.8367)
σM,EuS[Å] 2K 6.9999 (−2.944, 1.394 · 10−6) 8.2477 (−2.381, 1.734)
σM,EuS[Å]2K, 0.25T 4.4424 (−1.637, 3.356 · 10−3) −1.9999 (−7.323 · 10−6, 12.00)
σM,EuS[Å]2K, 1T 6.9999 (−4.168, 1.519 · 10−6) 8.4789 (−2.197, 1.519)
σM,EuS[Å] 6K 6.9999 (−4.386, 3.164 · 10−6) 7.8492 (−3.051,0.6739)
σM,EuS[Å] 7K 6.9999 (−4.264e, 2.625 · 10−6) 7.5265 (−3.524, 1.791)
σM,EuS[Å] 8K 6.9999 (−3.753, 1.595 · 10−6) 7.7834 (−1.106, 1.205)
σM,EuS[Å] 12K 6.9999 (−8.980, 5.312 · 10−9) 7.9233 (−4.602, 1.993)
MEuS[ ˚µB/FU] 2K 5.8070 (−0.1701, 0.5321) 6.8701 (−5.684 · 10−2, 1.196)
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MEuS[ ˚µB/FU] 2K, 0.25T 3.0000 (−2.524 · 10−6, 2.049) 3.0000 (−3.031 · 10−6, 2.749)
MEuS[ ˚µB/FU] 2K, 1T 7.3141 (−0.4231, 0.2127) 8.7426 (−1.514, 0.2545)
MEuS[ ˚µB/FU] 6 5.1313 (−0.1830, 0.6216) 6.6916 (−0.8133, 2.869 · 10−2)
MEuS[ ˚µB/FU] 7K 4.6863 (−0.1723, 0.3726) 6.2243 (−1.470,0.3526)
MEuS[ ˚µB/FU] 8K 4.7489 (−0.1027, 0.5627) 5.0381 (−0.2041, 0.5129)
MEuS[ ˚µB/FU] 12K 4.7519 (−0.3001, 0.4603) 4.9123 (−0.7769, 0.5395)
σM,InAs[Å] 2K 2.4103 (−0.5213, 2.133) 5.7250 (−0.4058, 3.552)
σM,InAs[Å] 2K 0.25T 9.9999 (−11.99, 9.502 · 10−7) −1.9988 (−1.196 · 10−3, 11.99)
σM,InAs[Å] 2K 1T 1.9661 (−0.9056, 1.513) 9.9048 (−5.460, 9.177 · 10−2)
σM,InAs[Å] 6K 9.9999 (−6.310, 2.383 · 10−7) 9.9999 (−4.243, 1.785 · 10−5)
σM,InAs[Å] 7K 9.9999 (−11.50, 1.875 · 10−6) 9.9999 (−6.304, 7.093 · 10−6)
σM,InAs[Å] 8K 9.9999 (−6.005, 1.498 · 10−8) 4.9903 (−1.127,2.253)
σM,InAs[Å] 12K −1.9812 (−4.756 · 10−3, 11.99) 2.6890 (−4.686, 7.158)
dM,InAs[Å] 138.5551 (−27.44, 2.253 · 10−2) 24.9999 (−5.435,8.245 · 10−8)
MInAs[ ˚µB/FU] 2K −1.3777 (−0.4377,0.5791) −2.2018 (−0.5079, 0.9489)
MInAs[ ˚µB/FU] 2K, 0.25T −3.4197 (−0.4875, 0.1517) -4.9999 (−6.748 · 10−8, 2.630)
MInAs[ ˚µB/FU] 2K, 1T 0.6679 (−0.5739, 0.8884) 0.1915 (−0.2720, 0.9332)
MInAs[ ˚µB/FU] 6 −1.4675 (−0.6323, 0.6500s) −2.9609 (−0.4961, 1.072)
MInAs[ ˚µB/FU] 7K −1.4881 (−0.3466, 0.3405) −2.5878 (−0.7607, 1.076)
MInAs[ ˚µB/FU] 8K −1.6887 (−0.3583, 0.4317) −1.1242 (−0.7346, 0.7813)
MInAs[ ˚µB/FU] 12K −0.0312 (−0.4871, 0.3058) −0.6282 (−0.9772, 0.8737)
σM,InAs−Sub[Å] 2K 64.3908 (−22.94, 5.258) 9.9999 (−9.997, 3.858 · 10−6)
σM,InAs−Sub[Å] 2K 0.25T 69.9999 (−68.86, 1.359 · 10−5) 9.9999 (−9.996, 4.283 · 10−7)
σM,InAs−Sub[Å] 2K 1T 69.9999 (−69.97, 9.649 · 10−5) 9.9999 (−9.998, 2.893 · 10−5)
σM,InAs−Sub[Å] 6K 59.6864 (−6.537, 6.392) 9.9999 (−10.00, 2.665 · 10−6)
σM,InAs−Sub[Å] 7K 63.4830 (−63.35, 6.517) 9.9999 (−10.00, 7.413 · 10−6)
σM,InAs−Sub[Å] 8K 66.6448 (−41.25, 3.140) 9.9999 (−9.993,7.586 · 10−7)
σM,InAs−Sub[Å] 12K 69.9982 (−70.00, 1.745 · 10−3) 0.0197 (−1.972 · 10−2, 9.969)

Table 6.5: The fitted parameter values for model 4 for Qdev1001.

With a model of the system, a scattering length density through out the system can be
determined, these are a bit easier to compare which gives us a more visual representation
of our the parameters the model, an example of which can be seen in fig. 6.5, where we
have plotted the SLD, as a function of the depth (z), of the sample.
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Figure 6.5: SLD for the different models of sample Qdev1001, at 2K. The solid lines are
the total SLD, while the dashed lines are the magnetic SLD. We see can see that model 2
and 4 has a magnetization in the InAs layer. Note that the top of sample (Al2O3) start to
the right of the plot, while the left of the plot is the bottom InAs, of the sample.

6.2 Qdev1002

The experiment on the sample Qdev1002, was conducted on POLREF, at ISIS by Y. Liu
and Peter Krogstrup at University of Copenhagen, starting on 13/02/2020. The incident
beam have a wavelength in the range λ = 0.9Å-15Å, which at the sample position have
a beam area of 60mm × 30mm. Similar to before, the sample was mounted on a holder,
then placed inside a cryomagnet, and aligned. Like before the measurement was done
in an applied magnetic field of B = 0.1T. Measurements on the sample were taken at
temperatures of 2.9K, 4K, 8K, 12K and 20K all at 0.1T.

6.2.1 Models and simulations

Like before we used GenX to determine the structure of the sample. This settings for the
model of the instrument can be seen in fig. 6.7.
We fit our sample the same way we did Qdev1001. Starting with fitting the structure of
the sample, from the 20K data. The result can be seen in table 6.6. Again the magnetic
screening field is calculated by hand.
Next we fit our data to the 4 models that we test. Starting with model 1 where we assume
that magnetization is only present in the EuS layer. These are fitted with the structure
values we first found. The results can be seen in table 6.7, 6.8, 6.9 and 6.10 .
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Plots of the data form the PNR experiment conducted on Qdev1002.
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Figure 6.7: The instrument setting for our experiment on Qdev1002

Structure (χ2 = 3.2937)
Parameter Values Error
σAl2O3[Å] 1.00 (−3.843 · 10−10, 6.736)
dAl2O3[Å] 14.692 (−2.265, 5.903)
bAl2O3[fm] 7.325 (−2.265,5.903)
σPb[Å] 2.00 (−8.162 · 10−11, 7.826)
dPb[Å] 758.918 (−8.460, 5.190)
σEuS[Å] 3.819 (−1.775, 5.072)
dEuS[Å] 56.607 (−10.21, 11.47)
σInAs[Å] 2.0 (−2.731 · 10−10, 7.988)

Table 6.6: The structure values of Qdev1002. Note that this is only fitted from the data
taken at 20K.
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Model 1 (χ2 = 9.1191)
Parameter Values Errors
σM,EuS[Å] 2.9K 4.7394 (−6.610, 3.240)
σM,EuS[Å] 4K 4.1371 (−2.904,4.106)
σM,EuS[Å] 8K 3.2068 (−2.696, 3.229)
σM,EuS[Å] 12K 2.3164 (−4.256 ,6.668)
MEuS[ ˚µB/FU] 2.9K 6.3244 (−0.5465, 0.4743)
MEuS[ ˚µB/FU] 4K 6.1513 (−0.3737 , −0.3784)
MEuS[ ˚µB/FU] 8K 5.4302 (−0.2673, 0.3251)
MEuS[ ˚µB/FU] 12K 4.5595 (−0.3648, 0.4540)
σM,InAs[Å] 2.9K −2.00 (−1.598 · 10−5 , 10.47)
σM,InAs[Å] 4K −2.00 (−2.463 · 10−5, 10.98)
σM,InAs[Å] 8K −2.00 (−4.234 · 10−6 , 10.75)
σM,InAs[Å] 12K −2.00 (−6.173 · 10−6 , 11.99)

Table 6.7: The fitted parameter values for model 1 for Qdev1002.
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Model 2
Long Range (χ2 = 7.0278) Short Range (χ2 = 8.8348)

Parameter Values Errors Values Errors
σM,EuS[Å] 2.9K 3.3255 (−1.593, 1.755) 7.3818 (−5.836, 1.004)
σM,EuS[Å] 4K 3.4475 (−1.984 , 1.807) 7.1607 (−3.552, 2.287)
σM,EuS[Å] 8K 2.3345 (−1.453 , 1.510) 7.3226 (−4.411, 2.555)
σM,EuS[Å] 12K 2.4030 (−2.798 , 1.999) 3.0919 (−4.576, 4.458)
MEuS[ ˚µB/FU] 2.9K 5.3451 (−0.4872, 0.5881) 6.7353 (−0.6038, 0.1900)
MEuS[ ˚µB/FU] 4K 5.1662 (−0.3876 , 0.5931) 6.4593 (−0.4450, 0.1228)
MEuS[ ˚µB/FU] 8K 4.3823 (−0.3086, 0.2907) 5.7678 (−0.5010, 0.03356)
MEuS[ ˚µB/FU] 12K 4.5558 (−0.2361, 0.3592) 4.5766 (−0.2020, 0.5303)
σM,InAs[Å] 2.9K 1.5501 (−2.268, 4.324) 6.6325 (−8.520, 1.941)
σM,InAs[Å] 4K −0.30959 (−3.328, 3.801) 5.3970 (−8.420, 1.803)
σM,InAs[Å] 8K −1.5513 (−2.372, 3.694) 6.5650 (−9.734, 0.4413)
σM,InAs[Å] 12K −4.0000 (−1.994 · 10−6, 13.49) −3.9951 (−4.867 · 10−3, 13.99)
dM,InAs[Å] 114.01 (−35.53, 34.78) 25.000 (−17.09, 1.807 · 10−7)
MInAs[ ˚µB/FU] 2.9K −2.0707 (−0.5524, 0.5930) −1.3996 (−0.3685, 2.165)
MInAs[ ˚µB/FU] 4K −2.0109 (−0.5598, 0.4974) −1.3819 (−0.7449, 1.038)
MInAs[ ˚µB/FU] 8K −2.0745 (−0.6951, 0.6060) −1.7007 (−0.3514, 1.328)
MInAs[ ˚µB/FU] 12K −0.017320 (−0.4051, 0.3419) −0.12255 (−1.588, 05847)
σM,InAs−Sub[Å] 2.9K 76.190 (−22.70, 12.38) 3.0000 (−2.999, 2.089 · 10−5)
σM,InAs−Sub[Å] 4K 75.900 (−7.898, 7.891) 3.0000 (−2.998, 2.418 · 10−5)
σM,InAs−Sub[Å] 8K 72.646 (−24.23, 17.05) 3.0000 (−2.997, 4.670 · 10−5)
σM,InAs−Sub[Å] 12K 90.000 (−89.97, 1.031 · 10−5) 2.9999 (−3.000, 1.229 · 10−4)

Table 6.8: The fitted parameter values for model 2 for Qdev1002.
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Model 3
Long Range (χ2 = 9.1278) Short Range (χ2 = 9.4508)

Parameter Values Errors Values Errors
σM,Pb[Å] 2.9K 0.0010 (−1.069 · 10−3, 9.967)) 0.0065 (−6.388 · 10−3, 9.991)
σM,Pb[Å] 4K 0.0030 (−2.989 · 10−3, 9.986) 6.9999 (−6.994, 5.240 · 10−5)
σM,Pb[Å] 8K 0.0023 (−2.342 · 10−3,9.997) 6.9999 (−6.998, 2.614 · 10−5)
σM,Pb[Å] 12K 0.0106 (−1.055 · 10−2, 9.988) 6.9999 (−7.000, 1.946 · 10−5)
dM,Pb[Å] 42.9960 (−17.22,5.026) 5.0000 (−2.560 · 10−5, 14.41)
MPb[ ˚µB/FU] 2.9K −0.4085 (−0.3547, 0.2777) 0.5134 (−1.666, 1.493)
MPb[ ˚µB/FU] 4K −0.4169 (−0.4068, 0.3541) −0.5415 (−1.866, 1.205)
MPb[ ˚µB/FU] 8K 0.4533 (−0.4029, 0.4284) −0.8057 (−1.550, 1.410)
MPb[ ˚µB/FU] 12K −0.07349 (−0.4026, 0.3178) −0.6580 (−2.837,1.855)
σM,EuS[Å] 2.9K 6.4039 (−1.797, 1.009) 4.3690 (−3.141, 2.458)
σM,EuS[Å] 4K 5.8637 (−4.759, 3.726) 4.5482 (−3.794, 2.640)
σM,EuS[Å] 8K 5.3052 (−1.828, 2.814) 3.9657 (−3.076, 3.245)
σM,EuS[Å] 12K 3.9560 (−2.253, 2.952) 3.9221 (−3.288, 3.928)
MEuS[ ˚µB/FU] 2.9K 6.3498 (−0.2576, 0.3340) 6.2406 (−0.3030, 0.3622)
MEuS[ ˚µB/FU] 4K 6.1659 (−0.4475, 0.3559) 6.1849 (−0.2901, 0.4040)
MEuS[ ˚µB/FU] 8K 5.4205 (−0.3359, 0.417) 5.4811 (−0.3136, 0.5530)
MEuS[ ˚µB/FU] 12K 4.5866 (−0.2168, 0.1992) 4.6473 (−0.1859, 0.3460)
σM,InAs[Å] 2.9K −3.8707 (−0.1265, 10.16) −3.9991 (−8.343 · 10−4, 10.42)
σM,InAs[Å] 4K −3.9999 (−5.591 · 10−6, 10.99) −3.9997 (−2.376 · 10−4, 10.39)
σM,InAs[Å] 8K −3.9999 (−1.954 · 10−6, 11.86) −3.9998 (−1.187 · 10−4, 10.88

σM,InAs[Å] 12K −3.9999 (−1.840 · 10−5, 13.99) −3.9993 (−6.814 · 10−4, 13.95)

Table 6.9: The fitted parameter values for model 3 for Qdev1002.

53



Chapter 6. Results

Model 4
Long Range (χ2 = 6.4359) Short Range (χ2 = 8.6691)

Parameter Values Errors Values Errors
σM,Pb[Å] 2.9K 17.726 (−6.110, 2.356) 7.9840 (−7.983, 2.015)
σM,Pb[Å] 4K 25.000 (−24.99, 5.538 · 10−7) 9.8850 (−9.884, 0.1150)
σM,Pb[Å] 8K 25.000 (−24.99, 1.454 · 10−6) 9.3454 (−9.328, 0.6544)
σM,Pb[Å] 12K 2.8633 · 10−3 (−2.856 · 10−3, 24.98) 9.9997 (−0.1000, 2.060 · 10−4)
dM,Pb[Å] 45.065 (−11.36, 11.77) 4.0000 (−9.677 · 10−5, 4.755)
MPb[ ˚µB/FU] 2.9K −0.85629 (−0.1413, 0.2400) 3.0064 (−2.703, 0.3401)
MPb[ ˚µB/FU] 4K −0.88671 (−0.2168, 0.4313) 1.9022 (−1.335, 0.9424)
MPb[ ˚µB/FU] 8K −0.97066 (−0.1429, 0.2507 1.8902 (−1.773, 0.7222)
MPb[ ˚µB/FU] 12K −7.7654 · 10−2 (−0.2305, 0.2000) −0.8253 (−1.506, 0.7190)
σM,EuS[Å] 2.9K 7.6594 (−3.969,2.128) 5.7116 (−2.742, 2.433)
σM,EuS[Å] 4K 7.2679 (−2.093, 2.374) 5.5900 (−2.127, 2.014)
σM,EuS[Å] 8K 6.7903 (−1.484, 1.851) 5.7094 (−1.733, 3.631)
σM,EuS[Å] 12K 4.0062 (−2.218, 1.891) 4.5920 (−0.1275, 3.004)
MEuS[ ˚µB/FU] 2.9K 5.2287 (−0.3280,0.5129) 6.1556 (−0.1186,0.2451)
MEuS[ ˚µB/FU] 4K 4.9589 (−0.2080, 0.3117) 6.0885 (−0.2294, 0.1404)
MEuS[ ˚µB/FU] 8K 4.1408 (−0.1264, 0.2758) 5.3585 (−0.1887, 0.4013)
MEuS[ ˚µB/FU] 12K 4.5598 (−0.1264, 0.2758) 4.6642 (−5.380 · 10−2, 0.4726)
σM,InAs[Å] 2.9K 2.6665 (−2.864, 2.278) 3.9876 (−6.864, 1.335)
σM,InAs[Å] 4K 0.31180 (−3.662, 3.781) 3.2587 (−4.840, 3.410)
σM,InAs[Å] 8K −0.42566 (−2.420, 2.438) 4.5033 (−3.913, 2.248)
σM,InAs[Å] 12K −4.0000 (−1.252 · 10−5, 13.29) −1.0841 (−2.912, 8.408)
dM,InAs[Å] 150.05 (−29.55, 17.33) 24.9999 (−18.94, 4.649 · 10−6)
MInAs[ ˚µB/FU] 2.9K −2.1943 (−0.5452, 0.7243) −1.5293 (−2.496, 1.088)
MInAs[ ˚µB/FU] 4K −2.1661 (−0.3998, 0.3413) −1.5532 (−2.253, 0.8374)
MInAs[ ˚µB/FU] 8K −2.1789 (−0.3018, 0.3725) −1.8880 (−2.858, 6.358)
MInAs[ ˚µB/FU] 12K −5.4001 · 10−2 (−0.2426, 0.2227) −0.1258 (−1.945, 0.9187)
σM,InAs−Sub[Å] 2.9K 68.243 (−10.90, 10.06) 9.9999 (−9.995, 7.650 · 10−6)
σM,InAs−Sub[Å] 4K 68.453 (−14.29, 13.84) 9.9999 (−9.995, 2.002 · 10−5)
σM,InAs−Sub[Å] 8K 62.409 (−10.43, 10.34) 9.9999 (−9.999, 3.757 · 10−7)
σM,InAs−Sub[Å] 12K 90.000 (−8.997, 1.457 · 10−5) 9.9998 (−9.999, 1.002 · 10−4)

Table 6.10: The fitted parameter values for model 4 for Qdev1002.
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7 Discussion

In this chapter, we will discuss the result of the previous section. We will be comparing
the 4 models, to see which one fit the best with our data. Afterwards, we will look at the
best model, and try and determine what we actually see.

7.1 Qdev1001

We start by looking at the χ2 values of our fitted models for the sample Qdev1001. These
can be found in table 7.1. From these we can quickly see two things. First, that we can
discard model 1 and 3, (see fig 6.4 for reference), as their χ2 values are significantly higher
than the ones for model 2 and 4. Similarly, for the model 2 and 4, we can then see that the
proximity effect is long range rather than short range, based on the χ2 values, combined
with the fact, that in the short range fits, the thickness reaches the maximum allowed value,
of 25Å. Now to compare in between models 2 and 4, it should be noted that although
model 4, perform slightly better than model 2, there are extra degrees of freedom included
in model 4. Therefore we will say that small difference in χ2 value, is simply not enough
to justify it. Based on this discussion, we can argue that the magnetic and crystal structure
associated with model 2 provides the best resemblance to our experimental results.

χ2 values
Model Long range Short range
Structure 4.7267
Model 1 50.095 (27.689)
Model 2 37.936 (23.228) 44.730 (26.558)
Model 3 51.276 (31.629) 52.095 (32.112)
Model 4 37.838 (26.047) 47.483 (29.114)

Table 7.1: The chi-square values of the fits, for Qdev1001. The structure fit, is the one
where we fitted the data taken at 20K, 50K and 300K. The values in parenthesis are the
values excluding the data taken, with an applied B-field of 0.25T.

The question now, is of course what exactly our model shows. We start by looking at the
magnetization in the EuS layer, see table 6.3. As we have discussed previously, the Curie

55



Chapter 7. Discussion

temperature of EuS, is Tc ∼ 16.5K, and the superconducting ordering temperature of Pb,
is Ts ∼ 7K, but while lead is normally a type 1 superconductor which has a sharp transition
at superconducting ordering temperature, but as we have mentioned before, in the thin
limit it behaves more like a type 2 superconductor, which has a more gradual transition. At
12K, where we are below the Curie temperature of EuS, but not yet at a temperature where
the there should be magnetic saturation, we get a magnetization ofM12K = 4.3453µB/FU.
Looking at the result for 2K, where we should have reached magnetic saturation, we have
a magnetization of M2K = 5.4122µB/FU, in the presence of an 0.1T applied magnetic
field. Looking at the rest of the data though, we see something interesting. The first thing
is that, when we decrease the temperature from 12K to 2K, the value for the magnetization
at 12, 8K, 7K and 6K, areM12K = 4.3453,M8K = 4.0844µB/FU,M7K = 4.2367µB/FU

and M6K = 4.5334µB/FU. Now from this, it seems like there is a suppression of the
magnetization from the superconductor, near the ordering temperature of lead. To confirm
this behavior, we have done the experiment in presence of a 1T applied magnetic field,
which is higher than the critical magnetic field of lead. We observe an EuS magnetization
ofM2K,1T = 6.7889µB/FU. This shows clearly, that when we are in a state where lead is
not in superconducting state, we see an increase in the magnetization of EuS at 2K. Both
of these results indicates, that the superconductivity of lead, modifies the magnetization
in the EuS layer.

Turning now to the InAs layer, we see again, that the superconductivity, seem to affect
the magnetization. From the fit we get that there should be a magnetic layer of thickness
dM,InAs = 85.842Å where the magnetization is decreasing when we go deeper in the
InAs layer, as can be seen from fig 7.1, and from the large values of the magnetic
roughness. Interestingly we have seen the effect of superconducting ordering in the values
of the InAs magnetization. The values of the InAs magnetization when the lead is in the
superconducting, that is 8K, 7K, 6K , and 2K, areMInAs,8K = −1.5473µB/FU,MInAs,7K =

−1.3090µB/FU,MInAs,6K = −1.2800µB/FU andMInAs,2K = −1.1378µB/FU. Whereas
the values of the InAs magnetization when lead is not in the superconducting state, that is
12K and 2K with an 1T applied field, areMInAs,12K = 0.12692µB/FU andMInAs,2K,1T =

0.99328µB/FU. The thing of note is of course the negative values, which indicates a
magnetization opposite to the one in the EuS layer, and which are only present in a
superconducting regime. A plot of the magnetization values can be seen in fig 7.2(a).

Now it is worth mentioning that we have not included the data taken at 2K with an applied
B-field of 0.25T. But looking at it, we see that we get result that are very different, and
seemingly unrelated to the other data, such as the magnetization in EuS beingM2K,0.25T =

3µB/FU. The probable explanation for this, is that the data for 0.25T only goes up to
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7.2. Qdev1002

Figure 7.1: SLD for model 2 at 2K. We can clearly see that the magnetization decreases
as we go deeper into the InAs layer.

q-values around 0.08Å−1 while the rest of the data goes to around 0.2Å−1. This means
the data is no very useful, or reliable, as what we are looking for is more observable at
larger q-values. The result of the this can be seen in fig. 6.2i which shows that the data for
0.25T is not fitted very well. In fact if we discard the 0.25T data, as can be done without
affecting the result of our fits, we get markedly improved χ2 values, for all our models.

(a) (b)

Figure 7.2: The values of the magnetization in EuS and InAs for our two samples, (a)
Qdev1001 and (b) Qdev1002

7.2 Qdev1002

We now turn to the sample Qdev1002. Similar to Qdev1001, we can discard model 1 and
model 3, and we can choose the long range models, based on the χ2 values, see table 7.2.
Here we again also see a slightly smaller χ2 value for model 4, than for model 2, but again
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because of the increased number of degrees of freedom, wewill choose model 2. While we
do not have any data for an applied B-field larger than 0.1T, we do see the same suppression
in the magnetization in the EuS layer, as we enter the superconducting regime. Again we
also see a magnetic layer in InAs, here with a thickness of dM,InAs = 114.01Å. Now in
Qdev1002 we do see a slight difference in comparison to the results of Qdev1001. While
we still get a magnetization in the InAs layer, with direction opposite to the magnetization
in the EuS layer, in the superconducting regime, it is here larger than the one we see
in Qdev1001. Furthermore, while the InAs layer in Qdev1001, had a magnetization of
almost 1µB/FU at 12K, in the same direction as the magnetization in EuS, here it is,
MInAS,12K = −0.017320µB/FU, opposite the direction in the EuS layer, and very small.
A plot of the magnetization values can be seen in fig. 7.2(b).

χ2 values
Model Long range Short range
Structure 3.2937
Model 1 9.1191
Model 2 7.0278 8.8348
Model 3 9.1278 9.4508
Model 4 6.4359 8.6691

Table 7.2: The chi-square values of the fits, for Qdev1002 The structure fit, is the one
where we fitted the data taken at 20K.

Comparing the two samples, it is difficult to say what exactly is the cause for the difference,
but it is presumably related to the different thicknesses of the their EuS layer, especially
the fact that Qdev1001 has a thickness that is smaller than the superconducting coherence
length of lead ξPb = 39nm while Qdev1002 has ans a thickness that is larger than the
coherence length, and the roughness of their interfaces, is very similar. We can however
say, that in both of them, we see the presence of a magnetic field in the InAs layer,
which seems to be affected by the superconductivity of the lead layer. Now whether this is
related to a spin-asymmetric tunneling from the lead layer into the InAs layer, as suggested
in [33], or something different, is difficult to say. Moreover it seems clear that we have
magnetization outside the EuS layer, and that it is not just related to the magnetization of
the EuS layer, but also affected by the superconductivity.
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8 Conclusion

We have investigated semiconductor-ferromagnetic insulator-superconductor (SM-FMI-
SC) heterostructures, to explore the possibility of magnetic proximity effect at the SC-FMI
and the FMI-SM interfaces.
In the present work, we have usedmolecular beam epitaxy grown samples InAs(substrate)-
EuS-Pb(70nm)-Al2O3(2nm), where the EuS thicknesses are varied. Polarized neutron
reflectometry is used to determine the layer structure as well as to understand how the
depth profile of the magnetization changes across the magnetic and superconducting
ordering temperatures.
The ferromagnetic ordering temperature for EuS is 16.5K and the superconducting tran-
sition temperature for Pb is 7.2K. We have used PNR data at temperature values above
both the ordering temperatures (T = 20K, 50K, 300K) to determine the thickness and
roughness of the individual layers. We have further recorded PNR data while sweeping
the temperature in a close range of ordering transitions of EuS and Pb and, varying the
applied magnetic field value across the critical field of superconducting Pb. The measured
data is analyzed by comparing the experimental reflectivity profiles with the simulated
profiles generated from different possible magnetic structures and, the χ2 values are used
to determine the most suitable magnetic model.
We have noticed that the magnetization in the EuS layer was affected by the presence
of superconductivity in the Pb layer. We observed a significant decrease in EuS mag-
netization during the onset of superconductivity in Pb at 8K. We further observed that
the saturated EuS magnetization (T = 2K) was enhanced from MEuS = 5.4122µB/FU

to MEuS = 6.7889µB/FU, when applied field was increased beyond the critical field of
superconducting Pb. We also saw that this effect does not seem to be dependent on the
thickness of the EuS layer.
Furthermore, we noticed the presence of induced magnetization in the InAs layer, which
was affected by both the thickness of the EuS layer, and the superconductivity in the
Pb layer. In first sample, with EuS thickness of dEuS ∼ 3.4nm, we noticed a magnetic
layer in the InAs, with thickness of dInAs ∼ 8.5nm, while in the second sample, with
an EuS layer of thickness dEuS ∼ 5.6nm, we observed a magnetic layer in the InAs of
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thickness dInAs ∼ 11.4nm. We found that, when Pb is superconducting, the magnetization
in the InAs layer is oriented along the opposite direction of the magnetization in the
EuS, for both of the samples. However, for the temperature and field values when Pb is
not superconducting, we observed that the two samples behave differently. For the first
sample with thinner EuS layer (dEuS ∼ 3.4nm), the magnetization is orientated in the
same direction as the magnetization in the EuS layer, whereas for the second sample with
a thicker EuS layer( dEuS ∼ 5.6nm), the magnetization remains oppositly aligned with
respect to the magnetization in the EuS layer. These results are aligned with the possibility
of spin-asymmetric tunnelling from superconducting Pb layer into InAs layer, as described
in ref [33].

8.1 Outlook

As we have determined that there is magnetization in the semiconducting layer of our
heterostructure that seem to be affected by the presence of superconductivity, it seems
logical to examine this effect in the temperature range slightly above the critical temper-
ature, to determine whether the superconductivity actually affects this proximity effect.
In the same manner would it be helpful to collect data with an applied magnetic field
with varying values around the superconducting critical field. It would furthermore be
of interest to investigate SC-SM-FMI-SM heterostructures to compare the difference. At
last, in order to take more clear data, that would make it easier to distinguish between
the potential models, it would be helpful to create multilayer version of our SC-FMI-SM
hetereostructure, as that will make the contrast more clear. Last as we have only done
specular non spin-flip reflectometry on out sample, which can only determine the part of
the magnetization that is in the plane of the sample, it would be useful to use spin-flip
reflectometry, as is can determine the magnetization perpendicular to the surface. From a
theoretical perspective, it would be helpful, to have a numerical Green’s function analysis
of the our system.
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