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Abstract

Marine biogeochemistry poses a set of nonlinear coupled problems. Biogeochemistry
covers a large variety of components, each with varying importance in different regions.
This raises an issue for the models of providing functionality for many possible combina-
tions of actively tracked components and the dynamical systems between them with as
little overhead as possible. When models provide multiple configuration options, they must
maintain each combination of possible options, which in many models has lead to complex,
difficult to maintain code structures. This limits the availability of the model for new
users and may require significant introduction times. I propose a different model design,
which is able to accommodate configuration options without the combinatorial problems
of other designs, and allows for easy addition of new features without the risk of break-
ing existing functionality. The design is implemented as a module to the ”Versatile Ocean
Simulation in Pure Python”, Veros. I discuss the design choices and requirements for a
modern, approachable biogeochemistry simulation model, and present results produced by
the implemented design. Finally I simulate a weakening of the Atlantic meridional over-
turning circulation and analyze the results on global biogeochemistry.

1 Introduction
Veros is a modern general circulation model, which aims to be easy to use by both students
and researchers while supporting a multitude of configurations for realistic or idealized setups
(Häfner, Jacobsen, Nuterman, et al., 2018). This project extends the functionality of Veros to
additionally support simulations of biogeochemistry, which is a requirement for climate research
as well as modelling of natural systems. The successful implementation follows the vision of
Veros by being easy to use, verify and modify.

Biogeochemistry forms part of several global circulation systems. Plankton species are re-
sponsible for production and consumption of nutrients like phosphate and nitrate as well as car-
bon species which are relevant in respect to absorption and out gassing of carbon dioxide and is
of importance to climate research. Biogeochemistry is also important for research in ecosystems,
and oil prospecting, and as an interdisciplinary discipline useful in several fields including but not
limited to atmospheric sciences, biology, and oceanography. Models working within those fields
may thus be expected to provide capabilities in the area of biogeochemistry. A successful model
is able to accommodate contributions by contributers from multiple different backgrounds with
differing requirements and easily allow users to create and use simulations. The model should
facilitate contributions and use by experts as well as students. Biogeochemistry is implemented
in several current global simulation models like University of Victoria Earth System Climate
Model (UVic ESCM 2018). These models have grown over several years, allowing for increasingly
complex model configurations while maintaining speed and correctness. As the models have
grown and functionality has been added, it has become necessary to support several different
configuration options. This has in some cases made the code base hard to maintain and extend,
because any extension must be added to each of the possible combinations of configuration op-
tions. Frequently this results in the same variable being updated by nearly identical equations
in multiple locations within the code. Such examples makes the model hard to maintain and
reduces the accessibility to new users and contributers. The solution proposed in this project
and implementation in Veros is a complete modularization, which describes every interaction
between tracers as a rule and the full dynamics of the system as a set of rules.
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In order to adhere to Veros’ focus on simplicity, usability and adaptability, the biogeochem-
istry module facilitates constructing complex model setups with multiple tracers with dynamic
interactions tailored for a specific environment without disrupting the simplicity of more basic
setups.

While the dynamics of the biogeochemistry module follow the mathematical description of
the implementation in UVic ESCM(A. Schmittner, A. Oschlies, et al., 2005; Andreas Schmittner,
2018), the programmatic implementation has been redesigned to allow for extensibility without
reducing readability and at the same time provide simple configuration for users.

This project describes the implementation of the biogeochemistry module in Veros and how
it separates tracer interactions from the logical model structure in order to keep readability and
maintainability as well as allowing for easy extension of the model or selecting the configuration
required for a desired simulation. I discus considerations in designing the model in terms of
manageability and performance. The model design is intended to be easy to use for students or
contributers with limited programming experience while being powerful and extensible for users
with high demands.

The model is evaluated in its correctness by comparing the output of a 400 year simulation
to known datasets, and performing a simulation, which weakens the Atlantic Meridional Over-
turning Circulation.

All code used to produce the biogeochemistry module described in this document is available
at https://github.com/SteffenRandrup/Veros/tree/mobi

2 The NPZD model
The Nutrients-Phytoplankton-Zooplankton-Detritus model, from here on referred to as the
NPZD model, describes the growth patterns of phytoplankton and zooplankton given nutrients
and the buildup of detritus, dead organic matter, produced from the dying plankton, which in
turn is remineralized into nutrients. Figure 1 presents a graphical representation of the internal
dynamics of the biogeochemical system.

The underlying mathematical description of ocean biogeochemistry for the NPZD model
implemented in Veros follows that of UVic ESCM (Andreas Schmittner, 2018). In this section
I introduce the model, its components, and internal dynamics. Concentrations of each of the
components included in the NPZD model are tracked in every cell in the Arakawa C-Grid, which
Veros uses for its tracer variables. A tracer is the collection of concentrations of a model variable
within each cell in the grid. In figure 1 tracers are marked with ellipses. As in UVic ESCM the
time evolution of any tracer consists of two parts: Physical transport and biological activity.
Transport and the internal biological dynamics may be separated from each other, which allows
treating each separately.

∂Ci

∂t
= Ti + Si (1)

Ci is the concentration of tracer i, Ti is turbulent terms, Si is the change in concentration due
to biological activity which in the following may be referred to as source-minus-sink. Equation
1 applies within a single cell and the full grid. The transport term, Ti, uses the general scheme
for temperature and salinity transport already present in Veros, which supports advection and
isopycnal diffusion as used for this project as well as multiple other diffusion schemes and
IDEMIX (Häfner, Jacobsen, Eden, et al., 2018). The bigeochemistry module also supports
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Figure 1: Auto-generated figure of the NPZD dynamics considers mortality, grazing, recycling,
primary production and sinking

omitting physical transport for individual tracers, which may be desirable in advanced model
configurations as described in section 7.

The mathematical description of the biogeochemistry extension to Veros follows that of UVic
ESCM, but the implemented model differs significantly. The design is based on an observation,
that the dynamics are confined to a closed system, which always carries change in tracers from
one tracer to another, represented by the arrows in figure 1. The implementation details of
the biogeochemistry module requires creating rules for each interaction between tracers. This
concept is explained in detail in section 6. In this section, I will describe the biogeochemical
system by the changes to each tracer as the conversion of one tracer to another. In doing so, I
will provide Python functions illustrating the modelled behaviour. The functions form the basis
of the mentioned rules. They return Python dictionaries who’s keys are the names of the tracers
being changed. The value belonging to that key is the time derivate of the tracer concentration.
By including the functions, I will show, that it is possible to describe every interaction as a
flow from one tracer to another. In section 6 I will argue, why this approach is better than
other current model designs. The presented functions are included as is from the current code
base. They include references to variables, which are calculated elsewhere to avoid duplicate
computations and allowing them to be available for diagnostics. The calculations involved in
getting these variables are as presented in the surrounding description.

Each of the tracers in the model interact with each other, one tracer acts as the source of
growth in the other, the sink. Most of the dynamics happen within a single grid cell and is
thus independent of the concentrations of tracers in other cells. Exceptions to this are: Material
sinking to the bottom will gain material from the cell above and lose material to the cell below.
This doesn’t influence the dynamics directly, but provides an additional contribution to the
development of the tracer. The other exception is primary production. Primary production is
the growth of phytoplankton by photosynthesis and nutrient consumption. Because biological
tracers and water attain part of the incoming photosynthetically active radiation, the primary
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production in a cell is influenced by the concentration of light attenuating tracers in cells above
it. (Andreas Oschlies and Garçon, 1999; A. Schmittner, A. Oschlies, et al., 2005; Andreas
Schmittner, 2018)

In the following the source-minus-sink of the tracers in the NPZD model will be described.
I will build the full interaction set gradually by describing the interactions of a single tracer
one at a time. I will denote the tracers as follows: Phosphate is PO4, detritus is denoted D, P
is for phytoplankton and zooplankton is Z. Grazing by zooplankton on other tracers behaves
identically for every tracer and will be presented as G(X), where X is the tracer being grazed
upon. The grazing behaviour is described in section 3. RY :Z is the Redfield ratio of Y to Z.
The Redfield ratio is a presumed fixed average ratio between presence of elements in the ocean
(Martiny, Vrugt, and Lomas, 2014). While describing the effects of the rules, I will provide code
samples for adding the functionality to the biogeochemistry model in Veros. I will expand upon
the reasoning behind the model design in section 6.

Starting with phosphate, concentration can increase from remineralization of detritus given
by a temperature dependant remineralization rate multiplied by the concentration of detritus,
µDD. Remineralization is the effect of a microbial loop which consumes dead organic matter
and produces nutrients (A. Schmittner, A. Oschlies, et al., 2005).

The model describes this process as a conversion of detritus to phosphate. As the process of
remineralization is common among several recycling processes, a general recycling function has
been created, which is shown in listing 1.

Listing 1: General recycling

1 @veros_method(inline=True)
def recycling(vs, plankton, nutrient, ratio):

3 """Plankton or detritus is recycled into nutrients"""
return {nutrient: ratio * vs.recycled[plankton], plankton: - vs.recycled[plankton]}

The general recycling function reuses a variable storing the amount of recycled material for
the tracer in question. This amount has been pre-calculated, as it is useful in other nutrient
recycling calculations. For detritus it is calculated as µD0 · bcTD. With T the temperature in
the cell and b and c being model settings modifying the temperature dependence. In section 8
I will further explain the recycling methods for different tracers and how I have designed the
biogeochemistry module to allow easy modification for other tracers. The function for the rule
describing the remineralization process can then be created like in listing 2.

Listing 2: Remineralization of detritus to PO4

@veros_method(inline=True)
2 def recycling_to_po4(vs, plankton, phosphate):

"""Recycling to phosphate is scaled by redfield ratio P to N"""
4 return recycling(vs, plankton, phosphate, vs.redfield_ratio_PN)

When a function like listing 2 has been created, it must be registered in Veros as a rule, as
done in listing 4, and activated to work in the dynamical system. I will present the concept of
creating, registering, and activating rules in section 6. In the following it is assumed that every
function presented is registered as a rule and activated.
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Zooplankton produces phosphate by excreting a fraction of what it consumes by cellular
respiration and waste dumping which is then modelled as being instantly available as nutrients
(A. Schmittner, Gruber, et al., 2013).

Listing 3: Zooplankton excretion

@veros_method(inline=True)
2 def excretion(vs, zooplankton, nutrient):

"""Zooplankton excretes nutrients after eating. Fecal matter, breathing..."""
4 return {zooplankton: - vs.excretion_total, nutrient: vs.redfield_ratio_PN * vs.

excretion_total}

Fast remineralization of phytoplankton via microbial effects contributes to phosphate growth
by remineralizing part of the phytoplankton population at a rate of µPtP (Kvale et al., 2015).
The rule to describe fast recycling of phytoplankton builds on the same recycling function as
remineralization of detritus, listing 2, only the rule describing the interaction specifies phyto-
plankton as the source rather than detritus. Therefore the same function can be used when
registering two different rules which specify each their source and sink.

Listing 4: The same function can be used in multiple rules

register_npzd_rule(vs, 'remineralization', (recycling_to_po4, 'detritus',
2 'po4')) # register remineralization rule for detritus -> po4

register_npzd_rule(vs, 'fastrecycling', (recycling_to_po4, 'phytoplankton',
4 'po4')) # rule for fast recycling of phytoplankton to po4

Phosphate concentration decreases from production of phytoplankton via photosynthesis at
a rate of J · P which will be described further in section 3.2. The function to describe the
interaction, once the primary production has been calculated, is similar to that of the other
functions, I have created so far.

Listing 5: Primary production

@veros_method(inline=True)
2 def primary_production(vs, nutrient, plankton):

"""Primary production: Growth by consumption of light and nutrients"""
4 return {nutrient: - vs.redfield_ratio_PN * vs.net_primary_production[plankton],

plankton: vs.net_primary_production[plankton]}

Combining the contributions to the consumption and production of phosphate creates an
equation for the source-minus-sink for phosphate. Example 1 in section 6 describes how the
rules set constructs the full source-minus-sink equations.

S(PO4) = RP :N (µDD + γ1(1− geZ) (G(P ) +G(Z) +G(D))− JP + µPtP ) (2)

The decrease in phosphate by primary production is balanced by an increase in phytoplank-
ton. Because this interaction was already added in listing 5, the corresponding source-minus-sink
term for phytoplankton is already in the model.

The phytoplankton population size decrease by mortality due to old age, diseases, fatal
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damage etc. of the plankton turning it into detritus at a rate µPP . Concentrations are also
reduced by grazing by zooplankton. Part of the phytoplankton is immediately recycled to
nutrients in fast recycling µPtP as previously mentioned. For a full equation for source minus
sink of phytoplankton the remaining two terms must be added. The full equation becomes that
of equation (3) while the two terms, which have not yet been turned into function are presented
in listings 6 and 7

S(P ) = JP − µPP −G(P )− µPtP (3)

Listing 6: Grazing on phytoplankton

@veros_method(inline=True)
2 def grazing(vs, eaten, zooplankton):

"""Zooplankton grows by amount grazed, eaten decreases by same amount.
4 Zooplankton growth is reduced by rules for excretion and sloppy feeding.

The actual zooplankton growth is available in vs.digested"""
6 return {eaten: - vs.grazing[eaten], zooplankton: vs.grazing[eaten]}

Listing 7: Phytoplankton mortality

@veros_method(inline=True)
2 def mortality(vs, plankton, detritus):

"""All dead matter from plankton is converted to detritus"""
4 return {plankton: - vs.mortality[plankton], detritus: vs.mortality[plankton]}

The zooplankton population’s only source of growth is grazing. It may graze on phyto-
plankton, detritus and even itself. Grazing is not entirely efficient. Only a fraction γ1 of the
grazed amounts are ingested. The remaining fraction is lost by sloppy feeding to detritus. Of
the ingested material a fraction, geZ , induces growth in the zooplankton population and the
remaining fraction is converted to nutrients. I described this process in the source-minus-sink
description for phosphate. Like phytoplankton, zooplankton may die from old age, disease, and
physical damage, but is modelled with a quadratic mortality rate, µZZ

2.

S(Z) = γ1 · geZ (G(P ) +G(Z) +G(D))− µZZ
2 −G(Z) (4)

The function for describing zooplankton mortality is implemented exactly like the one for
phytoplankton, because mortality calculations are pre-calculated for use in multiple rules.

The rule for zooplankton grazing on itself should be implemented like the other grazing rule,
however the increase and decrease in population is balanced out. Therefore zooplankton grazing
on other zooplankton causes a net decrease in concentration, which is accounted for in the rule
for excretion and for sloppy feeding.

The two plankton concentrations decreased by mortality of the plankton. This is reflected
in the detritus calculations. As was described for zooplankton, some of the grazed material is
not ingested by the zooplankton. In stead it is converted to detritus by sloppy feeding. In order
to complete the description, this final term must be included.
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Listing 8: Sloppy feeding

@veros_method(inline=True)
2 def sloppy_feeding(vs, zooplankton, detritus):

""" When zooplankton graces some amount is not ingested. This is converted
4 to detritus """

sloppy_sum = sum(vs.sloppy_feeding.values())
6 return {zooplankton: - sloppy_sum, detritus: sloppy_sum}

The recycling of detritus contributes to increase in nutrient concentration and must be
matched by a decrease in detritus concentration. The last term of the detritus source-minus-
sink represents sinking of the detritus. Unlike the other tracers detritus falls towards the ocean
bottom. The sinking speed wD increases with depth. Sinking is described further in section 2.1.
The source-minus-sink equation for detritus is then:

S(D) = µPP + (1− γ1) (G(P ) +G(Z) +G(D)) + µZZ
2 − µDD −G(D) + wD

∂D

∂z
(5)

The dynamics of the NPZD model described in equations (2) to (5) and the code listings
in this section are depicted in figure 1, which has been generated from the rules describing the
interactions between tracers as described in this section.

In section section 4 I will extend the model by a carbon cycle. In doing so, the presented
equations for the dynamics will be extended by additional terms, but the dynamics and the
functions describing it defined in this section do not change. The power of the implemented
design lies in allowing for easy extension without reference to implementation details of other
parts.

2.1 Sinking of tracers
Most tracers considered in the biogeochemistry module are considered neutrally buoyant. If the
transport terms were not applied, every cell would be independent. However, such an assumption
is not always valid. Some tracers need to sink towards the ocean bottom. For the purposes of
this work it is convenient to only treat detritus as such. Sinking of detritus is described by its
sinking speed and the size of the grid cells.

Consider the amount of detritus in a cell as a box with volume A · dz. During time dt the
distance the box sinks wD · dt, with wD the sinking speed of detritus. The fraction of the box,

which has moved from cell i to cell i− 1 below is then min
(
1,
wDdt

dz

)
. Since the module tracks

concentration of tracers, not absolute value, and has a grid with variable depths of cells, the
concentration exported from layer i to layer i − 1 must be scaled by their respective volumes.
The exported concentration from layer i during the time dt is then calculated as

export(Ci) = Ci
wD

dzi
dt (6)

Exported material from layer i+ 1 is imported into layer i below.

import(Ci) = export(Ci+1)
Adzi+1

Adzi
= export(Ci+1)

dzi+1

dzi
(7)
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At the surface import is set to 0 and at the bottom export is set to 0. The amount, that would
have been exported, had there been a layer below, is then remineralized fully into nutrients.

For detritus the sinking speed increases by depth until a maximum depth, mwz, at which
point the speed remains constant.

wD = wD0 +mw · min (zw,mwz) (8)
wD0 is the surface sinking speed, mw the increase in speed with depth, zw the depth at the

top of the grid box, and mwz the depth below which the sinking speed remains constant.
The derivation has considered detritus explicitly, but is valid for any tracer.

Cidzi+1

dzi

dzi+1

Figure 2: Sinking of tracer with concentration Ci should be scaled by layer depth

3 Growth limitations
The model description in section 2 explained the terms in the source-minus-sink equations in
general terms in order to explain the concept of carrying tracer concentrations between a source
and sink. In this section I further explain, what is included in each term.

Many of the parameters used in the biogeochemistry module are temperature dependant.
For example the remineralization rate of detritus and fast recycling rate of phytoplankton both
are. They each present a base rate controlled by the temperature dependent factor bcT . The
remineralization rate of detritus is thus calculated as µD = µD0 · bcT , where b and c are model
parameters for tuning the temperature dependence and T is temperature. For the fast recycling
rate of phytoplankton, the equation is similar. µP = µP0 · bcT . This form of temperature
dependence is also used in the calculations for primary production and zooplankton grazing.

Whereas the remineralization and fast recycling rates are only controlled by temperature,
primary production and grazing are controlled by additional factors.

3.1 Zooplankton
Zooplankton grazing is partly temperature dependent but is also dependent on the availability
of prey. A preference for each type of prey is assigned, such that the sum of preferences is 1.
Grazing on each type of prey then scales with the concentration of the prey and the preference
for grazing on it. equation (9) shows the full equation for calculating the grazing factor G(X)
on prey X.

G(X) = µmax
Z ZX

ψX∑
i

ψipreyi + kZ
(9)

ψX is the preference for zooplankton to eat prey of type X. The denominator represents all
the available prey scaled by the preference factor plus the half-saturation constant. µmax

Z , the
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limiting factor is a temperature dependant measure of the maximum potential grazing rate. The
temperature dependence is similar to that of the other temperature dependent terms, although
it is capped at a maximum temperature of 20 degrees Celsius.

µmax
Z = µZb

cmin{20,T} (10)
Additionally, the zooplankton growth is limited by its ability to assimilate prey and how much

of the ingested prey is converted to growth of zooplankton. These limitations were presented in
the previous section.

3.2 Primary production
The growth rate for phytoplankton is dependent on three factors: Availability of photosynthet-
ically active radiation, temperature and presence of nutrients. The calculations of the effective
growth rate are split into two parts. The first part considers only light limited growth, that is
the absence of light is the primary limiting factor in plankton growth. Shortwave radiation in-
tensity is given as input to the biogeochemistry model. For plankton growth below the surface,
the downward portion of the incoming radiation is the effective available radiation for primary
production. As light reaches the atmosphere-ocean boundary, it is refracted and alters the effec-
tive downward component. This is dependent on the angle of incidence and refractive index of
the ocean-atmosphere boundary. The refractive index is fixed at n = 1.33, whereas the angle of
incident light varies throughout the year and by latitude. The declination of the incident light,
δ is determined by equation (11).

δ = sin
((

t

1y
mod 1− φ

)
· 2π
)
· ε (11)

Here t is model time, φ shifts the time of year, at which the declination will reach its extremes to

the equinoxes on 21 March
(
t

1y
= 0.22

)
and 21 September. The calculations must also consider

Earth’s obliquity, ε = 23◦ ≈ 0.4, which scales the effective declination. Knowing the declination,
the effective vertical coordinate ẑ which takes refraction into account may be calculated.

ẑ = z
√

1− (1− cos2 max (−1.5min (1.5, y)− δ) /n2) (12)

With n = 1.33 the index of refraction relating the angle of incidence in air to the angle of
incidence in water.

As light passes through the water column a fraction of it is retained by the water. Phyto-
plankton also blocks light as it absorbs it for primary production. The configurations described
in this project do not include any other light attenuating tracers and can be described by equa-
tion (13). However the model is designed for easy extension and allows any tracer to attenuate
or block light, therefore the general model description is that of equation (14). Section 8 de-
scribes how the model adds flexibility of additional tracers to attenuate light.

I = Iz=0 exp

−kwẑ − kc

ẑ∫
0

Pdz

 [1− ai] (13)

ai is the fractional ice cover. As Veros does not yet have a sea ice model, ai is set to 1 where
the sea surface temperature is less than −1.8◦C and temperature forcing is negative. The
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amount of available shortwave radiation at depth z for any model setup with tracers Tj and
light attenuation factor kj is then.

I = Iz=0 exp

−kwẑ −
∑
j

kj

ẑ∫
0

Tjdz

 [1− ai] (14)

The effective primary production rate J is calculated in two parts. One where nutrient
availability is the primary limiting factor, and one where the absence of photosynthetically
active radiation acts as the main limiting factor to growth. Generally any nutrient (N) with
half-saturation constant kN consumed by the plankton provides a limiting factor of N

kN +N
.

The NPZD model in section 2 only contains one nutrient, PO4. When nutrient N has the
smallest limiting factor of all the nutrients, the effective primary production rate becomes

J(I,N) = min
(
JI , Jmax

N

kN +N

)
(15)

Jmax is the light-saturated growth, which depends only on temperature. It takes on the same
form as the temperature dependence terms defined for other temperature dependent terms

Jmax = abcT (16)

Where a is the maximum growth rate of the phytoplankton type. The light-limited growth takes
the form of

JI =
JmaxαI[

J2
max + (αI)2

]0.5 (17)

Here α is the initial slope of the photosynthesis-irradiance curve.
To complete the calculation of the primary production equation (15) is averaged over depth

during a triangular shaped diurnal cycle (A. Schmittner, A. Oschlies, et al., 2005).

Javg
I =

1

∆z · 24h

z+∆z
2∫

z−∆z
2

24h∫
0

JIdzdt

=
GD

kw∆z

[
Φ

(
2GI

GD

)
− Φ

(
2GI

GD

e−(kw+kcP )∆z

)]
(18)

Where ∆z is the layer depth. The length of days changes throughout the year, and so considering
days with sunlight of fractional time d = arccos (− tanφ tan δ) the growth is then GD = Jmaxd.
The function Φ(u) is given by

Φ(u) = ln
(
u+

√
1 + u2

)
−
(√

1 + u2 − 1
)
/u (19)

4 Carbon
As described in section section 2 phosphate is produced by remineralization of detritus, fast
recycling of phytoplankton and excretion by zooplankton. Phosphate is consumed by growing
phytoplankton in primary production.
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The same arguments apply to the production and consumption of dissolved inorganic car-
bon, DIC. In the case of DIC however, a few other processes must also be considered. When
plankton is remineralized a portion of the nutrients produced is calcium. Calcium bonds with
carbonate to produce calcium carbonate, CaCO3. The production of calcium carbonate reduces
the concentration of DIC. An external source of carbon is the solution of carbon dioxide from
the atmosphere into the ocean surface layer. The flux of carbon over the ocean-atmosphere
boundary is described in detail in section 5. The flux is among other factors dependent on the
alkalinity of the ocean. Therefore both alkalinity and DIC are tracked. Production of calcium
carbonate removes carbonic acid, a double proton acceptor, causing a reduction in alkalinity
twice that of the reduction in DIC. With the setup described until now, it is not possible to
make a full description of the calcium carbonate concentrations. However it is possible to de-
scribe the effects of the involved tracers on the CaCO3 concentration and how this reduces or
increases the concentration of DIC and alkalinity.

CaCO3 is modelled as being produced in the same processes as detritus. A ratio of the
plankton lost to mortality is remineralized to calcium, which then produces calcium carbonate
using available DIC. Plankton lost to sloppy feeding by zooplankton is likewise remineralized,
producing calcite.

The calcite production may then be written as as equation (20) with Capr the calcium
production ratio

Pr(CaCO3) = (µP + µzZ + (1− geZ) (G(P ) +G(Z)))Capr ·RC:N (20)
The produced calcium carbonate forms calcite and sinks. After formation it is later dissoluted

and again added to DIC and alkalintiy. The dissolution happens faster at depth, which is
modelled without tracking the concentration of CaCO3 explicitly by redistributing the produced
calcite according to equation (21) (A. Schmittner, Gruber, et al., 2013).

Di(CaCO3) =

∫
Pr(CaCO3)dz ·

d

dz

(
e−z/dCaCO3

)
(21)

equation (21) preserves the total produced calcite, but distributes it in larger amounts towards
the ocean bottom.

The source-minus-sink of CaCO3 can then be set to

S(CaCO3) = Pr(CaCO3)−Di(CaCO3) (22)

Which can be included in the source-minus-sink equations for DIC and alkalinity

S(DIC)base = RC:N (µDD + γ1(1− geZ) (G(P ) +G(Z) +G(D))Z − JP + µPtP ) + FCO2 (23)

S(DIC) = S(DIC)base − S(CaCO3) (24)

S(Alk) = −S(DIC)base − 2S(CaCO3) (25)
The dissoultion and production of CaCo3 effectively redistributes it. The production removes

DIC and alkalinity at locations, where calcite is created as described by equation (20), which
would be primarily near the surface layer where phytoplankton and zooplankton are present.
This effectively removes DIC and alkalinity at the upper layers.
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The produced calcite is dissolved in larger amounts at lower depths as described by equa-
tion (21). The two processes described effectively removes DIC from the surface and adds it
back at lower depths. When CaCO3 is not tracked explicitly, the CaCO3-tracer only represents
the amounts produced, which is then used in calculating the dissolved amounts for every level.
The tracer must then be reset after each time step. This process and reasoning behind is de-
scribed further in section 7.

When all the rules for the described processes have been created, the graph in figure 1 is
extended to figure 3. Note that the dynamics described by figure 1 is still present in the updated
graph.
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zooplankton

Grazing

po4

Remineralization Bottom remineralization DIC

Remineralization Bottom remineralization

phytoplankton

Mortality

Grazing

Fast recycling

Fast recycling

MortalitySloppy feeding
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Primary production
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Changes in DIC reflected in ALK
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Production of calcite

Production of calcite

dissolution

dissolution

reset

co2

Atmosphere exchange

Figure 3: Auto-generated graph of the implemented dynamics of the carbon cycle

5 CO2 exchange between ocean and atmosphere
In this section I will describe part of the global carbon cycle relating to CO2 gas exchange
between the ocean and atmosphere. The section includes estimates of equilibrium constants for
multiple chemical reactions, which are calculated using recommendations based on experimental
data. The sources do not provide accurate measures but rather approximations which assume a
certain set of units. I will continue this assumption but make a note when appropriate. The units
used are for temperature degrees Kelvin, for salinity PSU, for equilibrium constants mol kg−1.

One part of the global carbon cycle is the exchange of carbon dioxide between the ocean
surface layer and the atmosphere. The transfer rate is dependent on the difference of partial
pressure of CO2 in the ocean and atmosphere. When solluted in water the carbon dioxide takes
part in the ocean carbon chemistry resulting in a equilibrium problem, which can be solved
numerically (Dickson and Goyet, 1994).

5.1 Gas exchange
The flux of CO2 over the ocean-atmosphere boundary may be represented by the gas transfer
coefficient relating the partial pressure difference of CO2 in the ocean and atmosphere (Wan-
ninkhof, 1992).

F = k (pCO2water − pCO2air) (26)
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The gas transfer coefficient, k, is a measure of transfer speed over the ocean-air interface. It
is often estimated from the square of the mean wind speed, because it fits experimental results
reasonably well, although there is not an intimate link between gas transfer rate and wind speeds
(Wanninkhof, 1992).

k = 0.337 · 0.75u2 (Sc/660)−1/2 (27)

The first factor in equation (27) is a scaling factor, u is the average wind speed and Sc is
the Schmidt number. 660 is the Schmidt number for CO2 in seawater at 20 ◦C.

The Schmidt number is defined as the kinematic viscosity of water divided by the diffusion
coefficient of the gas. The value is estimated from a polynomial in sea surface temperature, T ,
in degrees Celsius with coefficients as presented by (Wanninkhof, 1992).

Sc(CO2) ≈ 2073.1− 125.62T + 3.6276T 2 − 0.043219T 3 (28)

With a description of how to calculate the flux of CO2 gas over the ocean-atmosphere in-
terface, the partial pressure pCO2 in the atmosphere and the ocean should be calculated. In
the ocean, it can often be difficult to directly measure the concentration of aqueous CO2 as it
quickly establishes an equilibrium with H2CO3 displaying similar properties making it hard to
distinguish them(Dickson and Goyet, 1994). They are therefore grouped together as [CO2

?].
CO2 concentration in the atmosphere is commonly referenced in units of ppmv and is the unit
used by Veros, which isn’t directly comparable to [CO2

?] and must therefore be converted to a
number comparable to [CO2

?]. This may be done like equation (29) as described in (Andreas
Schmittner, 2018; Weiss, 1974).

[CO2
?](g) = [CO2]ppmv · f · Patm (29)

With Patm the atmospheric pressure and f estimated by

ln f = −162.8301 +
218.2968

T/100
+ 90.9241 ln (T/100)− 1.47696 (T/100)2

+ S (0.025695− 0.025225 (T/100)) + 0.0049867 (T/100)2 (30)

It is not feasible to track the concentrations of each individual species of the carbon dioxide
system for performance reasons, and because they can be difficult to measure directly. It is
however possible to obtain a complete description of the carbon dioxide system knowing just
2 of 4 parameters: Total dissolved inorganic carbon, alkalinity, fugacity of CO2 in equilibrium
with sea water and total hydrogen ion concentration (Dickson and Goyet, 1994)

5.2 Ocean carbon chemistry
The oceanic carbon chemistry consists for the purpose of this work of a series of equilibria, which
must be reached simultaneously in order to have a proper description of the CO2 dissolved in
the ocean.

When gaseous CO2 is dissolved in seawater it reacts with water to form carbonic acid, which
then dissociates to form bicarbonate and carbonate in the reactions described by equations (32)
and (34)
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CO2(g) CO2(aq) (31)
CO2(aq) + H2O(l) H2CO3(l) (32)

H2CO3(aq) H(aq)
+ + HCO3

−
(aq) (33)

HCO3
−
(aq) H(aq)

+ + CO3
2−

(aq) (34)

As it is difficult to analytically distinguish between CO2(aq) and H2CO3(aq) it is convenient
to group them together as CO2

?. Redefining equations equations (31) to (33) in terms of CO2
?.

Which have the following equilibrium relationships:

k0 =
[CO2

?]

f(CO2)
(35)

k1 =
[H+][HCO3

−]

[CO2
?]

(36)

k2 =
[H+][CO3

2−]

[HCO3
−]

(37)

With f(CO2) the fugacity of atmospheric CO2. Fugacity is related to partial pressure, but
takes the non-ideality of the gas into account.

Neither of the unknowns in the equilibrium equations mentioned are being tracked in the
model because they are non-conservative (Dickson and Goyet, 1994). However the model does
track dissolved inorganic carbon as defined by equation (38) and total alkalinity, which is defined
as the number of moles of hydrogen ion equivalent to the excess of proton acceptors over proton
donors in one kilogram sample (Dickson and Goyet, 1994)

DIC = [CO2
?] + [HCO3

−] + [CO3
2−] (38)

With [OH– ] the concentration of the hydroxide ion and [B(OH)4– ] is the concentration of
the borate ion.

Alk = [HCO3
−] + 2 [CO3

2−] + [B(OH)4
−] + [OH−] + [HPO4

2−] + 2 [PO4
3−]

+ [SiO(OH)3
−] + [NH3] + [HS−]− [H+]− [HSO4

−]

− [HF]− [H3PO4] + minor acid or base species (39)

The concentrations of borate, [B(OH)4
– ], sulfate, [HSO4

– ], flouride, [HF] may all be esti-
mated by the salinity (Dickson and Goyet, 1994)

Silicate, [SiO(OH)3– ], and phosphorous ions [HPO4
2– ], [PO4

3– ], [H3PO4] are assumed to be
constant for the simulations described here (Andreas Schmittner, 2018).

The equilibrium balances which must be reached for the balance between DIC and alkalinity
to be achieved are listed below. Above the balance arrows, I have listed the corresponding
equilibrium constants.
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[CO2]
k1

[H+] + [HCO3
−]

[HCO3
−]

k2
[H+] + [CO3

2−]

[H3PO4]
k1p

[H+] + [H2PO4
−]

[H2PO4
−]

k2p
[H+] + [HPO3]

[HPO4
2−]

k3p
[H+] + [PO4]

[Si(OH)4
−]

ksi
[H+] + [SiO(OH)3]

[H2O]
kw

[H+] + [OH−]

[HSO4]
ks

[H+] + [SO4]

[HF] kf
[H+] + [F]

[HBO2]
kb

[H+] + [BO2]

If the equilibrium constants for the equilibria above are known, it is possible to express the
equilibrium concentrations of the terms in equation (39) as functions of the [H+] concentration,
which I will later present how to determine numerically. The concentrations in the alkalinity
equation may then be determined as below (Dickson and Goyet, 1994).
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[HCO3−] =
DIC · k1 [H+]

[H+]2 + k1[H+] + k1 k2
(40)

[CO3
2−] =

DIC · k1 k2

[H+]2 + k1 [H+] k1 k2
(41)

[B(OH)4
−] =

Btotal

1 + [H+] / kB
(42)

[OH−] =
kw

[H+]
(43)

[H3PO4
−] =

Ptotal[H+]3

[H+]3 + k1p [H+]2 + k1p k2p [H+] + k1p k2p k3p
(44)

[H2PO4
−] =

Ptotalk1p [H+]2

[H+]3 + k1p[H+]2 + k1p k2p[H+] + k1p k2p k3p
(45)

[HPO4
2−] =

Ptotalk1p k2p[H+]

[H+]3 + k1p[H+]2 + k1pk2p[H+] + k1pk2pk3p
(46)

[PO4
3−] =

Ptotalk1pk2pk3p

[H+]3 + k1p [H+]2 + k1pk2p[H+] + k1pk2pk3p
(47)

[SiO(OH)3
−] =

Sitotal

1 + [H+]/kSi
(48)

[HSO4
−] =

Stotal

1 + kS / [H+]free
(49)

[HF] = Ftotal

1 + kF / [H+]
(50)

As mentioned Btotal, Stotal and Ftotal are assumed to be scaling with salinity(Morris and
Riley, 1966; Uppström, 1974) and Sitotal, Ptotal are assumed constant

Btotal ≈ 0.0023
S

10.811 · 1.80655
(51)

Stotal ≈ 0.14
S

96.062 · 1.80655
(52)

Ftotal ≈ 0.000067
S

18.9984 · 1.80655
(53)

Sitotal ≈ 7.6875 · 10−3mol/m3 (54)

Ptotal ≈ 0.5125 · 10−3mol/m3 (55)

It is possible to obtain a complete description of the carbon dioxide system given temperature
and pressure, provided that the following is known:

• The solubility constant for CO2 in sea water, k0
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• The equilibrium constants for each of the acid/base pairs assumed to be present

• The total concentration of all non-CO2 acid/base pairs

• The values for two of the CO2 related parameters: total dissolved inorganic carbon, DIC,
total alkalinity, Alk, fugcaity of CO2, concentration of hydrogen ions, H+ often given by
pH = – log 10([H+])

The solubility constant for CO2 in sea water, k0, is related to the fugacity by

k0 =
[CO2

?]

f(CO2)
(56)

Which may be estimated from temperature and salinity(Weiss, 1974)

ln k0 ≈ 93.4517

T/100
−60.2409+23.3585+ln (T/100)+S+(0.023517−0.023656T/100+0.0047036(T/100)2)

(57)
Note that as mentioned in the beginning of this section, concentration is given in mol/kg,

temperature is in kelvin, salinity in PSU.
The equilibrium constants for each of the acid/base pairs assumed present may be estimated

from other tracked quantities. I have used the implementation from (Andreas Schmittner, 2018),
which cites different sources for each estimated equilibrium constant. Some of the approxima-
tions rely on ionic strength in salt, IS, calculated by

IS = 19.924S
1

1000− 1.005S
(58)
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log 10 k1 = log 10
[H][HCO3]

[H2CO3]
(59)

≈ −
(
3670.7/T − 62.088 + 9.7944 lnT − 0.0118S + 0.000116S2

)
(60)

log 10 k2 = log 10
[H][CO3]

[HCO3]
(61)

≈ −
(
1394.7/T + 4.777− 0.0184S + 0.000118S2

)
(62)

ln k1p = ln [H][H2PO4]

[H3PO4]
(63)

≈ −4576.752/T + 115.540− 18.453 lnT + (−106.736/T + 0.69171)
√
S

+ (−0.65643/T − 0.01844)S (64)

ln k2p = ln [H] [HPO3]

[H2PO4]
(65)

≈ −8814.715/T + 172.1033− 27.927 lnT
+ (−160.340/T + 1.3566)

√
S + (0.37335/T − 0.05778)S (66)

ln k3p = ln [H] [PO4]

[HPO4]
(67)

≈ −3070.75/T − 18.126 + (17.27039/T + 2.81197)
√
S

+ (−44.99486/T − 0.09984)S (68)

ln kSi = ln [H][SiO(OH)3]

[SI(OH)4]
(69)

≈ −8904.2/T + 117.400− 19.334 lnT + (−458.79/T + 3.5913)
√
IS

+ (188.74/T − 1.5998)IS + (−12.1652/T + 0.07871)IS2 + ln (1− 0.001005S) (70)
ln kw = ln [H][OH] (71)

≈ −13847.26/T + 148.9802− 23.6521 lnT + 118.67/T − 5.977

+ 1.0495 lnT
√
S − 0.01615S (72)

ln kS = ln [H] [SO4]

[HSO4]
(73)

≈ −4276.1/T + 141.328− 23.093 lnT + (−13856/T + 324.57− 47.986 lnT )
√
IS

− 2698/TIS1.5 + 1776/TIS2 + ln(1− 0.001005S) (74)

ln kF = ln [H][F]
[HF]

(75)

≈ 1590.2/T − 12.641 + 1.525
√
IS + ln(1− 0.001005S) (76)

ln kB = ln [H][BO2]

[HBO2
(77)

≈ (−8966.90− 2890.53
√
S − 77.942S + 1.728S1.5 − 0.0996S2)/T

+ (148.0248 + 137.1942
√
S + 1.62142S) + (−24.4344− 25.085

√
S

(78)

Knowing total alkalinity and DIC, it is possible to calculate [H+] by rearranging equation (39)
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and solving the resulting equation in [H+] using a Newton-Raphson numerical solver. The
average pH at sea surface is approximately 8. Hence a good first estimate for the solution is
[H+] = 10 −8.

When [H+] is known [CO2
?] is calculated by

[CO2
?] =

DIC · [H+]2

[H+]2 + k1[H+] + k1k2
(79)

5.3 Numerical implementations
Having calculated the concentrations of relevant acid and base pairs, it is then left to solve the
function in [H+] for which it is possible to analytically find a first derivate. I will first define the
function to be optimized, f , and then its derivative in [H+] along with a few numbers to help
simplifying the equations.

f = [HCO3]+[CO3]+[BH]+[OH]+[HPO4]+2 [PO4]+[Si]− [H+]free − [HSO4]− [HF]− [H3PO4]−Alk
(80)

a = [H+]3 k1p + [H+]2 k1pk2p + [H+] k1pk2pk3p

b = [H+]2 + k1 [H+] + k12 [H+]

c = 1 + Sitotal / kS + [HF] / kF

da = 3 [H+]3 + 2 k1 [H+] + k1 k 2
db = 2 [H+] + k1

f =k1 [H+]DIC / b + 2 DIC k1 k2 / b + [B]total / (1 + [H+] / kB) +

k2 / [H+] + Ptotal k1pk2p [H+] / a + 2 Ptotal

k1pk2pk3p / a + Sitotal / (1 + [H+] / kSi)− [H+] / c −
Stotal / (1 + kS / ([H+] / c))− Ftotal / (1 + kF / ([H+] /

c))− Ptotal [H+]3 / a − Alk

With the derivative, df , in [H+]

df = ((k1 DIC · b)− k1 [H+]DIC db) / b2 − 2 DIC k1 k2 db / b2 −
Btotal / kB / (1 + [H+] / kb)

2 − kw / [H+]2 + (Ptotal

k1pk2p (a − [H+] da)) / a2 − 2 Ptotal k1pk2pk3p da / a2

− Sitotal / kSi / (1 + [H+] / kSi)
2 − 1 / c − Stotal / (1 + kS /

([H+] / c))2 (kS c / [H+]2)− Ftotal / (1 + kF / ([H+] /c))2 (kF c
/ [H+]2)− Ptotal [H+]2 (3 a − [H+] da) / a2
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The roots of f , are where a chemical balance will be found which allows determining [CO2
?].

To find the roots of f I employ a Newton-Raphson solver with bisection within a bounded interval
following the reference of (Andreas Schmittner, 2018). Whenever the Newton-Raphson step
would take the solution out of bounds or if the Newton-Raphson is not reducing the size of the
solution bound sufficiently fast the solver takes a bisection step. The implementation is based
on the rtsafe function from Numerical Recipes (Press, 2002). Equations (81) and (82) are used
to determine if a potential solution is out of bounds or not decreasing fast enough respectively.

The solver first calculates the function values at the endpoints and determines which is the
lower bound, and which is the higher by orienting the search such that the function value at
the lower bound is negative. There is no error handling for the case where both endpoints have
positive or both negative values as the input should be provided by the model with safe values.
In the rtsafe implementation from Numerical Recipes, the first guess for a solution, is halfway
between the endpoints. I use the same guess for the first iteration during the first time step,
but any subsequent guesses will be the solution from the previous calculation. By using this
technique I have reduced the number of iterations required to find a solution with the desired
accuracy. An iteration consists of the following steps: The function value is determined. If
the resulting solution would be out of range, or the absolute function value isn’t decreasing
fast enough, the corresponding step would be a bisection with a step size half the distance
between the endpoints. If the Newton-Raphson step is within range, it is performed. Then
the step size is compared to a predetermined accuracy. If the step size is smaller, it found an
acceptable solution. If not, adjust the endpoints such that if the function value of the current
attempted solution is above zero, set the function value as the upper limit. Otherwise set the
function value as the lower limit. Then start a new iteration.

When a solution has been found, it is a reasonable estimate of the solution at the next time
step. Therefore I reuse the solution as the initial guess and set the endpoints corresponding to
the shortest distance to either of the two initial assumed safe boundaries but keeping a minimum
boundary width. The implementation in UVic ESCM keeps the boundaries at ±05pH of the
initial guess. In section 12 I explain the reason for implementing a different solution.

Some of the cells in the data grid are land. Therefore calculating the flux of CO2 between the
atmosphere and ocean surface could be pointless and may even be expensive computationwise.
Therefore a mask is applied to the array to ensure, the solver only searches for solutions where it
matters. Furthermore, the mask is updated dynamically, such that the solver stops calculating
in cells, where a solution has already been found.

To determine whether the solution at x is out of bounds set by xlow to xhigh the following is
tested

((x− xhigh)df(x)− f(x)) · ((x− xlow) · df(x)− f(x)) > 0 (81)

Another reason to bisect may be, if the absolute function value isn’t decreasing fast enough
determined by the condition

|2 · f(x)| > |dxold · df(x)| (82)
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6 Rule based model
In sections 2 and 3 I covered the dynamics of the ocean biogeochemical system. I argued that
an increase in the concentration of one tracer can be combined with a decrease in another. In
some cases the transaction is split up, such as when zooplankton consumes phytoplankton, the
zooplankton grows but also excretes nutrients and some of the consumed phytoplankton is lost to
sloppy feeding as detritus, but there is a flow from the phytoplankton tracer to the zooplankton
tracer and other flows from the zooplankton to nutrients and detritus. For every interaction
between tracers it is possible to define a flow of concentration from one tracer to another. Such
a flow corresponds to each arrow in figure 1.

I showed, that it is possible to define a function between any two interacting tracers, which
returns the change in each tracer due to the dynamic described by the function. That means,
that for each term in the source-minus-sink equation for any of the tracers in the model, it is
possible to define a function returning the decrease in the source and increase in the sink. I
define the tuple consisting of the function, name of the source, and name of the sink as a rule.
By defining rules for every node in the interaction graph in figure 1, I have simultaneously
created terms in the source-minus-sink equations for the nodes connected by the edge. In the
example below, I am demonstrating, how to construct rules for the interaction set relating to
phytoplankton in the basic NPZD model.

Example 1: Using rules to build dynamics
The graph below shows the interaction set for phytoplankton - a subset of the dynamics in

a complete model.
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The same dynamics may be expressed with the source-minus-sink equations. The labels
above each term correspond to a label on the graph above.

S(P ) = −
Grazing

G(P ) −
Mortality

µPP −
Fast_recycling

µPtP +
Primary_production

JP

S(PO4) =
Primary_production

−RP :NJP +
Fast_recycling

RP :NµPtP

S(Z) =
Grazing

γ1G(P )

S(D) =
Mortality

µPP

This may be built in the model by creating functions representing the edges of the graph.
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@veros_method(inline=True)
2 def grazing(vs, eaten, zooplankton):

""" Zooplankton grows by amount digested, eaten decreases by amount grazed """
4 return {eaten: - vs.grazing[eaten], zooplankton: vs.grazing[eaten]}

6 @veros_method(inline=True)
def mortality(vs, plankton, detritus):

8 """ All dead matter from plankton is converted to detritus """
return {plankton: - vs.mortality[plankton], detritus: vs.mortality[plankton]}

10

@veros_method(inline=True)
12 def recycling(vs, plankton, nutrient):

""" plankton or detritus is recycled into nutrients """
14 return {nutrient: vs.redfield_ratio_PN * vs.recycled[plankton], plankton: - vs.

recycled[plankton]}

16 @veros_method(inline=True)
def primary_production(vs, nutrient, plankton):

18 """ Primary production: Growth by consumption of light and nutrients """
return {nutrient: - vs.redfield_ratio_PN * vs.net_primary_production[plankton],

plankton: vs.net_primary_production[plankton]}
20

register_npzd_rule(vs, 'example_grazing', (grazing, 'phytoplankton', 'zooplankton'),
label='Grazing')

22 register_npzd_rule(vs, 'example_mortality', (mortality, 'phytoplankton', 'detritus'),
label='Mortality')

register_npzd_rule(vs, 'example_fastrecycling', (recycling, 'phytoplankton', 'po4'),
label='Fast recycling')

24 register_npzd_rule(vs, 'example_primary_production', (primary_production, 'po4', '
phytoplankton'), label='Primary production')

Every rule corresponds to an edge in the graph. It consist of a source and a sink and a
function relating growth in the sink to the decrease in the source. As rules are selected in
Veros, the graph and equation set is built by the contents of the rule.

Example 1 introduces the concept of registering rules. Separating the registration of rules
from activation of rules forms the basis of the flexibility and ease of use of the model. The
process of adding rules, thereby changing the behaviour of the model should be doable without
knowledge of how other users are configuring their model setups. Furthermore any rule could be
used in several configurations. Therefore when defining a new rule, it is made available in a list
containing all rules. When a user wants to include a rule, it must be explicitly selected in the
setup configuration file. An extension modifying the behaviour of an existing rule would therefore
not edit the existing rule directly but rather write a new rule specifying the new behaviour.
Since the results of a rule are calculated in a single function, simple extensions of a rule may
choose to call the original function and provide its own calculations on top. A more complex
edit for defining significantly modified behaviour should define a new function for specifying its
behaviour. By collecting all defined rules in a single collection and separately specifying which
rules to activate, I have facilitated constructing highly specialized configurations and general
behaviour in the same code base without reducing readability of the control structure or any
single component of the dynamics. This is because the execution of rules is done independently
of every other rule at fixed locations, which contributers writing rules will not be required to
modify. In order for rules to provide adequate flexibility, I have added the option to specify
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during the registration of rules, where in the grid the rule should apply to as well as when in
the execution order to apply the rule. Not in terms of ordering execution of rules in time, but
to specify if the rule should be applied before the main loop, during or after. Figure 4 shows
the difference between registered rules and selected rules.

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Rule 1

Rule 3

Rule 4

Rule 7

Rule 6

Registered rules Selected rules
Pre rules

Primary rules

Post rules

Figure 4: On the left are all rules, which are registered in Veros. Rules with gray background
were not selected for activation. Upon starting the biogeochemistry module, selected rules
are separated into execution groups. Each group is applied at different points during model
evaluation.

When a rule is applied, it is done so at the point specified during registration. The result of
every rule in the execution group is evaluated before adding the result to tracer values as shown
in listing 9. I will expand upon the use of execution groups in section 7.

Listing 9: Applying rules

# Each rule group is evaluated like
2 rule_results = [(rule.function(vs, rule.source, rule.sink), rule.boundary) for rule in
vs.npzd_rules]

4

# Then the tracers are updated
6 for rule, boundary in rule_results:

for tracer, update in rule.items():
8 vs.npzd_tracers[tracer][boundary] += update

A rule as described contains four entities: A name, a function, the name of the source, and
the name of the sink. But as shown in listing 10, it is possible to add additional information. A
rule can specify an execution group. The execution group is identifying, when in the execution
order, the rule is evaluated. A rule can belong to the primary execution group. This is the
default, which is evaluated at every time step for biogeochemistry. This group has access to the
most recently updated values of diagnostic parameters, and determines the primary interaction
of the system. Rules may also specify membership of the PRE or POST groups. PRE rules
are evaluated before the evaluation of time steps, and the POST rules are evaluated afterwards.
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The PRIMARY rules should return time derivative updates and follow the source-minus-sink
descriptions of previous sections, whereas the PRE and POST rules are intended for smoothing
or clean-up and are therefore better suited as absolute additions.

The boundary parameter specifies the cells the rule applies to. For example the SURFACE
boundary is useful in implementing atmosphere exchanges, since the results of such a rule is
added to the surface layer. The BOTTOM boundary applies the results to the cells in the ocean
bottom layer, not the bottom grid layer. If no boundary is specified, the rule applies to every cell.
Internally the boundaries are implemented as python slices. If an extension requires working on
a different boundary, a new slice or mask can be created and added to the python dictionary
storing boundaries. I decided against allowing setting the boundary slice directly in the rule
creation to keep the rule creation format consistent and to have a single location to look up
available boundaries. Finally, rules can set a label. This label is not an identifier, but is shown
in the auto generated graphs. I chose to construct the rules as named tuples for two reasons.
One is it makes the code more readable to read rule.function(rule.source, rule.sink) compared
to rule[0](rule[1], rule[2]). The other is, it allows for extending rule tuples to contain more fields
without worrying about order.

In listing 10 I provide a full example of registering a rule in Veros’ biogeochemistry module.
The example uses a template to represent common functionality for calcite production by differ-
ent species, which is used in the actual rule function. The rule is then registered with a name,
function, source, sink, label, execution group and boundary to explicitly state the intended be-
haviour. Finally the rule is selected in the npzd.yaml configuration file.
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Listing 10: Defining and selecting an extensible rule

# npzd_rules.py
2 # This rule is a template for calcite production with different plankton types

# or detritus
4 @veros_method(inline=True)

def calcite_production(vs, plankton, DIC, calcite):
6 """ Calcite is produced at a rate similar to detritus

Intended for use with a smoothing rule
8 If explicit tracking of calcite is desired use

rules for the explicit relationship
10 """

12 # changes to production of calcite
dprca = (vs.mortality[plankton] + vs.grazing[plankton] *

14 (1 - vs.assimilation_efficiency)) * vs.capr * vs.redfield_ratio_CN

16 return {DIC: -dprca, calcite: dprca}

18

# This rule uses the template to calculate the explicit calcite production by
20 # phytoplankton

@veros_method(inline=True)
22 def calcite_production_phyto(vs, DIC, calcite):

""" DIC is consumed to produce calcite. How much depends on the mortality
24 and sloppy feeding of and on phytoplankton and zooplankton

"""
26 return calcite_production(vs, 'phytoplankton', DIC, calcite)

28 # npzd.py
# Register the rule along with when and where to execute it

30 register_npzd_rule(vs, 'npzd_carbon_calcite_production_dic', # selectable name
(calcite_production_phyto, 'DIC', 'caco3'), # (function, source, sink)

32 label='Production of calcite', # optional but recommended for graph
boundary='NONE', # optional, SURFACE, BOTTOM or everything

34 group='PRIMARY') # optional, default is 'PRIMARY'

36 # npzd.yaml
# Select the rule for use

38 npzd:
selected_rules:

40 - "npzd_carbon_calcite_production_dic"
...

42 ...

For ease of use and in order to categorize related rules, Veros allows specifying rule collec-
tions as a single rule containing related rules, which allows the user to get a tested configuration
without having to pick each individual rule. Once a set of rules has been tested and found to
be working correctly, they should not change between model setups intending to use the same
configuration. Therefore I recommend creating a configuration file with the selected configu-
ration as in listings 11 and 12. This configuration is portable between model setups, such as
developing locally on a low resolution model and running a higher resolution model with the
same dynamics on a more powerful machine. If the user does not want to manage multiple files,
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it is also possible to specify the selected rules directly in the launch file for the Veros simulation
like any other model variable by specifying the contents of the list vs.selected_tracers. A con-
figuration file, which selects rules for a basic NPZD simulation and additional rules for a carbon
cycle looks like:

Listing 11: Rule setup for carbon cycle using rules

npzd:
2 selected_rules:

- 'group_npzd_basic'
4 - 'group_npzd_carbon'

The same rules can be selected individually by selecting each by name. Selecting collections
of rules allows for easy to manage configuration files. Selecting each rule individually allows
for full, explicit control of which rules are activated. Which is especially useful during model
development, as it allows for easy activation/deactivation of individual rules.

Listing 12: Rule setup with explicit rule selection

npzd:
2 selected_rules:

- 'npzd_basic_phytoplankton_grazing',
4 - 'npzd_basic_phytoplankton_mortality',

- 'npzd_basic_phytoplankton_fast_recycling',
6 - 'npzd_basic_phytoplankton_primary_production',

- 'npzd_basic_zooplankton_grazing',
8 - 'npzd_basic_zooplankton_excretion',

- 'npzd_basic_zooplankton_mortality',
10 - 'npzd_basic_zooplankton_sloppy_feeding',

- 'npzd_basic_detritus_remineralization',
12 - 'npzd_basic_detritus_grazing',

- 'npzd_basic_detritus_bottom_remineralization'
14 - 'npzd_carbon_flux',

- 'npzd_carbon_recycling_detritus_dic',
16 - 'npzd_carbon_primary_production_dic',

- 'npzd_carbon_recycling_phyto_dic',
18 - 'npzd_carbon_excretion_dic',

- 'npzd_carbon_dic_alk',
20 - 'npzd_carbon_calcite_production_dic',

- 'npzd_carbon_calcite_production_alk',
22 - 'npzd_carbon_post_distribute_calcite_alk',

- 'npzd_carbon_post_distribute_calcite_dic',
24 - 'npzd_carbon_detritus_bottom_remineralization',

- 'pre_reset_calcite',

A model design like UVic ESCM would calculate the terms of the equations of dynamics
individually and then add them up in equations like equation (3). A rules based model defines a
collection of rules or functions over which it iterates, evaluating the rules and adding the results
to the tracers defined by the rule to produce the same result.

When multiple configuration options are available, it is necessary to check which combination
of options have been selected in order to construct the correct source-minus-sink equations. As
the number of configuration options grows, so does the amount of combinations of configurations,
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which makes the code base difficult to maintain and reduces readability. By defining an iterable
collection of rules, the control structure remains the same. The rules are defined once, separate
from the flow of evaluation. Each rule is evaluated once and may be inspected separately from
the selected configuration combination.

The tracers in the biogeochemistry module of Veros share some common behaviour. Every
tracer must be set to have a minimum value at every time step in order to avoid negative
concentrations and some tracers sink from one vertical level to the one below. To accommodate
the similarity a reference to every biogeochemistry tracer is stored in a Python dictionary,
which is iterable allowing for common procedures on the tracers. Before registering the tracers,
they are defined as objects, which contain the concentration in every cell of the grid as well
as additional information about the tracer. This is explained in further detail in section 8.
When adding a new tracer to the model, it is then only required to register the tracer in the
NPZD tracer collection. The registered tracer is then automatically transported by advection
and diffusion, it is always ensured a minimum concentration, and the tracer is shown by name
in an auto generated interaction graph like figure 3. Common operations applied to a subset of
tracer collection like sinking or absorbing light may be performed by iteration over the tracers
relating to that operation. This approach and its advantages and alternatives are described in
further detail in section 8.

The list of all rules fully describes the dynamics of the biogeochemistry module with the
exclusion of tracer transport. The list of rules for a basic NPZD model like the one described
in section 2 may be extended by rules corresponding to the description in section 4 to allow for
a carbon cycle or it could be extended with rules for a calcium cycle or both.

As more configurations are needed, the user is left with a tree of conditions for which rules
should be active, leaving only a slightly improved situation from the model design I intended to
improve upon. The chosen solution is to store all available rules in a single list and allow the
user to provide a list with identifiers for the rules to activate. A complex configuration would
contain a large number of active rules. Therefore I also allow collections of rules to be activated.
Once a collection has been tested and is expected to be reused, it may be stored as a list of the
active rules. Users wanting to build models extending the saved configuration then select the
rule group and any additional rules.

Veros provides configuration for common model setups like a basic NPZD model with phos-
phate as the only nutrient, and a carbon cycle with atmosphere-ocean gas exchange. Each can
be enabled selecting the rule group and setting a flag to add the required tracers.

It is even possible to inject rules or tracers during execution by appending to the lists should
it be required, although I discourage this practice, because it obscures the modelled behavior.

7 Explicit and smoothed representation
In section 6 I described how the rule structure of the biogeochemistry module in Veros works.
The described structure demands that any change to a tracer should be fully describable by one
rule with a distinct source and sink. It has also been assumed, that the process described by
the rule is contained within the same grid cell. The biogeochemistry module has three places
in which to add rules: Pre rules, inner rules and post rules. The pre rules are executed first.
The pre rule set is intended for updates, that only need to occur once per tracer time step and
has to happen before the other rules. An example of such a rule could be carbon exchange
between the ocean surface layer and the atmosphere. If the model does not explicitly track the
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concentration of calcium carbonate, then one evaluation of the exchange per tracer time step
may prove sufficient.

The primary interaction rules should be placed in the inner rule set. The rules placed here
will be performed a number of times, nbio, based on the selection of time step length defined for
the simulation. In a closed, explicitly described system, the rules in the inner rule set should
give a complete description of the biogeochemical dynamics.

When the execution of the inner rules complete, the final rule set, the post rules, are activated
once. These rules define actions, which should occur only once per time step and must happen
after the dynamics of the overall tracer time step are completed. For example I described a rule
in section 2 where detritus should be remineralized as it falls through the ocean bottom. This
could be handled in the inner rules, but a configuration could require the detritus to stay at the
bottom until completion of the time step at which point it is remineralized. By defining a post
rule rather than an inner rule, it can collect the detritus at each step in the primary execution
loop until the completion of the overall tracer time step and then remineralize the detritus to
nutrients.

As noted in the beginning of this section any interaction between tracers has thus far required
a distinct source and sink and a single function describing the flow between them. It is however
possible to not define the flow from one tracer in one grid cell to another tracer in the same cell
but to collect a contribution by multiple sources which is then redistributed by a predetermined
statistical measure throughout the grid smoothing the gathered state update. This type of
interaction representation will be called smoothing representation
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Figure 5: State updates in a vertical column may be smoothed over the entire column using a
smoothing rule

The default rule configurations provided by Veros have been written to use smoothing rules
in the carbon cycle. In the carbon cycle CaCO3 contributes to the alkalinity of the ocean and
dissolved inorganic carbon through production and dissolution as described in section 4. It is
possible to explicitly represent CaCO3 as a tracer and updates to it as rules, however if an
experiment is only interested in the dissolution and production and the effect on existing tracers
in the model, it may be convenient to leave out a full description of calcite and only store a
variable to collect state updates by dissolution and production. Without explicitly tracking the
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calcite throughout the cycle, the collected state update must be redistributed by a predefined
measure. This is a smoothing representation.

For the actual representation in Veros, I defined a tracer to collect the state updates and
registered it in the tracers collection, as I would any other tracer, but I set a flag, such that it
is not included in the physical transport, saving some compute time. I then defined rules for
the production of calcite consuming DIC and alkalinity. These rules were added to the inner
rule set, such that calcite is produced at every bio time step. I then defined two additional
rules describing the dissolution of CaCO3 into DIC and alkalinity. These rules sum up the
produced CaCO3 in vertical columns and redistribute it vertically according to the description
in equation (21). The rules were added to the post rule set. By this procedure CaCO3 will build
up during the internal dynamics and is then redistributed afterwards. Finally I added a rule to
the pre rules set in order to reset the CaCO3 state tracer. Although recent versions of Python
guarantee dictionary order is the same as insertion order, it is better to explicitly reset the state
tracer than to rely on a rule implicitly resetting it.

When creating a smoothing rule, which consists of several individual rules, it should be
created as a collection of rules, because the defined functionality only works for the collective
behaviour of all rules in the collection. If other users were to use the smoothing rule. They
should only be aware of the overall purpose of the smoothing rule, not its components.

Listing 13: Register a smoothing rule as a rule group

1 register_npzd_rule(vs, 'smoothing_calcite_production',
['pre_reset_calcite',

3 'npzd_carbon_calcite_production_dic',
'npzd_carbon_calcite_production_alk',

5 'npzd_carbon_post_distribute_calcite_dic',
'npzd_carbon_post_distribute_calcite_alk'])

7 # Registering rules groups does not accept labels, boundaries or groups
# That is left for the individual rules

By defining a smoothing rule, I have avoided requiring a complete description of CaCO3 in
order to use its effect on the carbon cycle.
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8 Object Representation
In the previous sections, I mentioned that every tracer has a set of properties related to it such
as mortality rate for plankton or whether or not it blocks light or it is necessary to transport the
tracer i.e. whether it is a temporary storage tracer such as CaCO3 in the configuration without
explicit calcifiers I used in section 4.

As mentioned in section 6 every tracer is stored in a Python dictionary, which allows access-
ing it by name. This can be useful, when calculating variables, which may be used in multiple
rules. For example to calculate the amount of recycled material of all tracers, it would be suffi-
cient to iterate over a collection of recycling rates and multiply it onto the concentrations of the
corresponding tracers. However, handling cases which should not follow the convention set by
other tracers becomes increasingly difficult as the number of tracers increase and requirements
diverge. An example of such an exception is zooplankton mortality. Other plankton types
display mortality scaling linearly with their concentrations. Zooplankton on the other hand
is modelled with quadratic increase in mortality which would require additional configuration
in the logical structure of the model calculations. Creating classes for the tracers allows repre-
senting different behavioural patterns in mortality, primary production and recycled tracers by
implementing methods differently while inheriting common behaviour. Tracers which behave
with a common pattern but at different rates may simply be instantiated with different rate
parameters. This is exemplified in listing 14.

Variables in Veros are stored in multidimensional Numpy arrays. The tracers in the biogeo-
chemistry module are no exception to this. The base tracer class inherits from numpy.ndarray
which makes it interoperable with any regular Numpy array for array operations and allows it
to be used in accelerated calculations with the Bohrium backend without any additional modi-
fication. The new tracers are different in that they carry attributes and may implement meth-
ods for the pre-calculations of results for use in rules. In order to make use of the diagnostics
provided by Veros for snapshotting and averaging, any biogeochemistry tracer should be instan-
tiated with a Veros variable. The tracer object then acts as a view onto the variable allowing
complete interoperability with other parts of Veros such as the diagnostics modules.

By creating classes I have effectively created a container for storing all relevant information
about a tracer, which may easily be created, retrieved and extended. The example in listing 14
demonstrates extending an existing Plankton class by overriding the mortality method as well as
instantiating similar objects with different parameters. The simplest class, NPZDObject, defines
attributes for whether or not to transport the tracer which defaults to True, a light attenuation
factor with default value 0, and an option to define a sinking speed. The Plankton class inherits
from the NPZDObject class and defines methods for mortality and recycling. Inheritance allows
for easily creating different model tracers, and focusing on the differences, which makes the
tracer unique.
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Listing 14: Creating and extending model tracers

class Zooplankton(Plankton):
2 """ Zooplankton is like Plankton but with quadratic mortality rate and grazing"""

4 # __init__ not shown

6 @veros_method(inline=True)
def mortality(self):

8 return self.mortality_rate * self ** 2

10 # Grazing method not shown

12 # Instatiate the zooplankton object from the created Zooplankton class
zooplankton = Zooplankton(vs.zooplankton, 'zooplankton',

14 max_grazing=vs.maximum_grazing_rate,
grazing_saturation_constant=vs.saturation_constant_Z_grazing,

16 assimilation_efficiency=vs.assimilation_efficiency,
growth_efficiency=vs.zooplankton_growth_efficiency,

18 grazing_preferences=vs.zprefs)

20 # Instatiate phytoplankton object
# Note, the Phytoplankton class is not shown. It defines a method for primary production

22 phytoplankton = Phytoplankton(vs.phytoplankton, 'phytoplankton',
light_attenuation=vs.light_attenuation_phytoplankton,

24 growth_parameter=vs.maximum_growth_rate_phyto,
recycling_rate=vs.fast_recycling_rate_phytoplankton,

26 mortality_rate=vs.specific_mortality_phytoplankton)

28 # Instatiate coccolithophore object which is similar to phytoplankton
# but with different recycling rate

30 cocco = Phytolankton(vs.coccolithophore, 'coccolithophore', # veros variable and name
light_attenuation=vs.light_attenuation_phytoplankton,

32 mortality_rate=vs.mortality_rate_phytoplankton,
recycling_rate=vs.recycling_rate_coccolithophore, # different rate

34 growth_parameter=vs.maximum_growth_rate_coccolithophore) # different
rate

The methods defined by the classes calculate numbers which are used in multiple rules. The
methods follow a naming structure, which allows any object to define methods with one of these
names. For example mortality for any tracer is calculated by checking if the tracer has a method
named mortality, and if it does, it is called and the result is stored in a dictionary with key the
name of the tracer. This approach has a slight overhead in checking tracers for attributes they
may not have at every time step. The overhead is not considered large as the configurations
described in this thesis do not manage a large amount of tracers, and the approach has been
kept in order to preserve the readability of the code base. Should the overhead prove to be
significant, it would be possible to check which tracers contain a certain method and store the
names in a list during registration. When the model is running, it will then access the tracers
by the names stored in the lists.

The biogeochemistry module features automatic generation of graphs displaying interactions
between tracers by selected rules. Every rule defined may specify an optional description of itself,
which is displayed on the graph. Similarly the tracer objects can store additional metadata
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like a description of the object, a symbol or name to be used in the graphs or other auxiliary
information.

8.1 Evaluation structure
With the concept of rules introduced in section 6 and the different points, they can be executed
at, presented in section 7 along with the object methods from section 8 I have created building
blocks for the biogeochemistry module. The biogeochemistry is split from the physical transport.
They are calculated separately and the results are added to the tracer values for the next time
step. The transport uses the general transport scheme in Veros, using advection and isopycnal
diffusion. The biogeochemistry is calculated as follows:

1. Calculate biogeochemistry

(a) Update variables which only depend on time dependent values from other Veros
modules

(b) Evaluate pre rules and update tracers

(c) Ensure minimum concentrations of updated tracers and set flags

(d) Enter biogeochemistry loop

i. Evaluate object methods for primary production, mortality, recycling etc.
ii. Reduce light availability by light attenuation factors and concentrations of

tracers
iii. Calculate import - export for sinking tracers - but don’t update
iv. Evaluate primary rules and update tracer values
v. Update tracer values from import - export and remineralize tracers passing

through the ocean bottom
vi. Ensure minimum concentrations and set flags

(e) Evaluate post rules and update tracers

(f) Ensure minimum concentrations of updated tracers

2. Calculate physical transport which updates tracers in next time step

3. Add tracer updates from biogeochemistry calculations to next time step

In appendix B I provide a simplified code example showing the evaluation structure.
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9 Design choices
The initial goal of this work was to reimplement the functionality of the npzd implementation of
UVic ESCM written in Fortran (Andreas Schmittner, 2018) into Veros. UVic ESCM has been
used in multiple publications with great model accuracy and remains a good option for simu-
lating biogeochemistry while providing more functionality than Veros. This section describes
why and how the biogeochemistry implementation in Veros has diverged from the UVic ESCM
implementation. I will outline several previous iterations of the model design leading up to the
final implementation described in previous sections. In describing each iteration, I will empha-
size the need for an alternative design and my solution to the problem.

In the Fortran implementation in UVic ESCM, every tracer is defined as a single variable as
well as every term contributing change to it. This means that the model contains several lines of
code displaying similar functionality only with a parameter changed. The common approach to
simplifying such a code base is to define functions, however as shown in section 6, the functions
for common behaviour is exceedingly simple, once the common pre-calculated terms have been
calculated. Defining functions for this, does not in itself reduce the complexity of the code base.

Another issue is that common for all tracers in the model is that they need to maintain a
minimum concentration as well as a flag specifying whether the concentration has been reset
in the current time step. This requires at least two lines of code per tracer at every location,
the tracer needs to be reset. At the time of writing with the current functionality just ensuring
minimum tracer concentration before evaluating the first time step in UVic ESCM as present at
(Andreas Schmittner, 2018) requires 101 lines of code. The iterative approach in Veros, which I
will describe below, requires 3 lines of code and remains at 3 lines even when adding additional
tracers to the model. Similar arguments may be applied to calculations of grazing, primary
production, mortality and recycling rates.

This lead to the first implementation of biogeochemistry in Veros. Every tracer is stored in
a python dictionary. Therefore operations such as resetting tracer concentrations to a minimum
value could be completed by iterating over the dictionary of tracers. The process of calculating
grazing, mortality and recycling were similarly simplified by maintaining python dictionaries of
the corresponding grazing preferences and rates for mortality and recycling as shown in listing 15.
The dictionary approach has the advantage of making it easy to add new recyclable tracers
or other functionality to the model without having to define the behaviour multiple times.
This meant it was possible to separate which tracers were in the model from the evaluation
structure. That is an advantage in terms of readability and maintainability, because the logical
structure now only contains the description of an action once, and it does not need to check
whether a certain configuration of tracers is active. Furthermore I gain the advantage of having
each of the terms in the source-minus-sink equations stored in a common structure, which is
made available to the diagnostics module and can be output to a file, again without having to
check for active configurations.
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Listing 15: Maintaining dictionaries for rates

vs.recycling_rates = {'detritus': vs.recycling_rate_detritus,
2 'phytoplankton': vs.recycling_rate_phytoplankton}

4 # The Dictionary can easily be extended if necessary
vs.recycling_rates['diazotroph'] = vs.recycling_rate_diazotroph

6

...
8

# Dictionaries are iterable. By storing rates we don't need to
10 # peform checks on the presence of a tracer at runtim

for tracer, rate_factor in vs.recycling_rates.items():
12 vs.recycled[tracer] = rate_factor * vs.temporary_tracers[tracer]

14 ...

However the described approach does not handle the possibility for tracers to display differ-
ing behaviour. For example as described in section 2, zooplankton is modelled with a quadratic
mortality rate, whereas every other tracer is modelled with a linear mortality rate. The dictio-
nary approach does not allow for such behaviour. With the configurations described in sections 2
and 4, the quadratic mortality rate for zooplankton could be handled by inserting a single line
multiplying the recycling rate by the zooplankton concentration again.

Listing 16: Zooplankton mortality rate

vs.recycled['zooplankton'][...] *= vs.temporary_tracers['zooplankton']

Doing so does not slow down the model evaluation or make it harder to read, but it does
show, that the described approach is not flexible enough to handle functionality, which would
differ from the assumed general behaviour by more than just the value of factors. This became
obvious when I extended the model by adding a nitrogen cycle and calcifiers. I have left out the
description of those thus far, as they were not relevant to the experiment described in section 13,
and the code has not been rewritten to support the rule based model described in section 6. In
section 9.1 I will describe the possibility of adding such functionality back into Veros.

It should also be noted, that I in section 2 described the sinking of tracers and how they
are remineralized at the bottom. That is the amount of the tracer, which would have sunk
through the bottom of the cell at the ocean floor is remineralized into nutrients. There are
two reasons why that does not fit well within the model setup which asserts common behaviour
of tracers for all configurations. For one assuming the sinking amount relates to how much is
remineralized at the bottom, is likely to change in more advanced setups. Secondly specifying
which tracers the sinking material remineralizes to and in which amounts becomes hard to
manage within the framework of iterating over dictionaries. It becomes necessary to consider
the active configuration in order to determine how to remineralize at the bottom.

I have now described how a model iterating over python dictionaries of tracers and related
parameters may provide a structure, which is more manageable for configurations displaying
common behaviour such as the ones described in this work, compared to reference designs.
With the structure described so far in this section, the model loses some flexibility compared to
reference models. There are two remaining issues to solve: 1. Handling tracers showing different
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behaviour in the overall logical structure such as having different recycling rates or primary
production. And 2. Avoiding having to check for the current active configuration, which is
also an issue in other current models. My solution to solving problem 1 is to define classes
for the model tracers. The classes then define attributes and methods for the tracer who’s
functionality they represent. In section 8 I covered the implementation details and expand
upon the reasoning for each design choice. The main points were: 1. It becomes possible to
define varying behaviour within the framework of pre-calculating values for mortality, primary
production etc. which are added to calculate the final contribution to each tracer. 2. Classes
are extendible, which allows contributers to easily add functionality without having to copy or
rewrite existing code.

With the addition of classes to describe tracers as objects, the biogeochemistry module in
Veros has become as flexible as comparable models while being easier to maintain. There is still
one issue to with the design as described: It is necessary to check the current active configuration.
While that is not a big issue for the two options described in this thesis, a basic NPZD setup
with or without a basic carbon cycle. In fact it would be possible to only have a single check for
the active configuration. To see why it is desirable not having to know the active configuration,
consider a model which not only supports the two configurations described in this work, but also
a nitrogen cycle, a calcium cycle, oxygen and iron as well as isotopes. Those are requirements for
similar, larger models such as UVic ESCM. Some users may want a certain small set of tracers
in order to save computation time, while others need the full capabilities of the model.

If it is necessary to check whether an options is set or not to chose the correct terms of an
equation, and these terms themselves depend on other setting of other options, it is a combina-
torial problem of creating the correct equations with the correct terms. The more options, the
model has, the more possible combinations may influence the equations describing the model. If
this is implemented using condition statements, the model may become difficult to maintain, as
it lends itself to duplicate definitions and requires outside contributers to know, where to extend
or even understand the logical structure.

With an example from UVic ESCM I may demonstrate why I find it important to not rely
on checking the active configuration. On the left hand side of Figure 6 is a screenshot of part
of npzd_src.F. The font size was reduced to 2px before taking the screenshot in order to fit the
code sections where the biodetr varible is updated. The locations where the update happens
are highlighted in yellow. The code itself is not intended to be readable. On the right hand
side is an exert of the same code in a readable size. Note that in order to update the variable
biodetr, it was deemed necessary to check the selected options in order to see, which terms
should be added. As can be seen from the yellow markings, it was decided to perform the
update in several locations. The updates do not build on top of each other. It is expected that
only one of the updates occur for any configuration. It may be seen from the code snippet, that
the equations are quite similar with only a few modifications. Such a structure is difficult to
maintain, because every edit would have to be done in each of the marked locations. Thus a
contributer would have to know all the possible configurations and perform their development
across all of them.

My solution to the problem of checking for active configurations is to define rules for the
interactions between tracers. The rules return an increase or decrease in one tracer and corre-
sponding increase or decrease in another tracer. I described the strategy and implementation
details in section 6. Rules allow building dynamics, which extend each other, which means that
a collection of rules describe the full dynamics of the system. If another set of rules were chosen,
they would describe different dynamics. A rule is a building block of the model and it is the
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1 # if defined O_kk_ballast
...

3 biodetr = biodetr + dtbio*((1.-bapr)*((1.-dfr)*morp +
sf + morz)

& - remi - graz_Det - expo + impo
5 & + (1.-bapr)*morp_D*(redntp/diazntp)
# if defined O_npzd_caco3

7 & + (1.-bapr)*(1.-dfr)*morp_C
# endif

9 & + remi_B)
# else

11 biodetr = biodetr + dtbio*((1.-dfr)*morp + sf + morz -
remi

& - graz_Det - expo + impo + morp_D*(redntp/diazntp)
13 # if defined O_npzd_caco3

& + (1.-dfr)*morp_C
15 # endif

& )
17 # endif

Figure 6: Left: Locations highlighted in yellow in npzd_src.F from UVic ESCM where the vari-
able representing detritus, biodetr, is updated. Right: Code example from npzd_src.F showing
almost identical equation sets to update biodetr being separated by configuration checks.

collection of selected rules, which specify the system behaviour. The active rules are stored in
a list and iterated upon. This allows for having no checks for the active configuration in the
logic structure. Therefore, there is only one location in which tracers are updated and when
adding functionality, the developer should only be concerned with the function being developed.
If a completely different functionality is desired, which cannot be modeled by extending existing
classes or adjusting parameters, the user can define a new function with the desired functional-
ity and add it to the selected rules and optionally not select any rules, which it replaces. Since
rules contain functions, it is possible to use the defined functions in multiple rules or create tem-
plates to be used in several rules. By describing biogeochemistry with rules rather than hard
coding functionality, Veros gains great flexibility while being easy to use, read and extend as
presented in section 6.
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Table 1: Comparison of advantages and disadvantages of previous implementations

Idea Advantages Disadvantages
Reference Full source-minus-sink equa-

tions are visible in code
Duplicate code. Large num-
ber of configuration checks.
Hard to read.

Dictionaries only Compact, readable code.
Easy to add new trac-
ers. Full source-minus-sink
visible

Inflexible, adding functional-
ity outside the assumed be-
haviour may result in many
configuration checks making
it hard to read.

Classes and dictionaries Same as above, but with
variability stored within the
tracer object. Can im-
plement methods differently.
Possibility of storing meta-
data on objects

May still require configura-
tion check. Dynamics limited
to fixed framework.

Rules, classes and dictionaries Full flexibility, easy to ex-
tend. Interaction graphs.
Every rule and object avail-
able for diagnostics

Must refer to diagnostics
to see full source-minus-sink
equation

9.1 Flexibility in model extension
The need for the flexibility in biogeochemistry may not appear obvious based on sections 2
and 4, and I have thus far only provided general ideas as to why it would be needed. In this
section, I will describe possible extension to the biogeochemistry module and suggestions as to
how to implement them.

The final design of the biogeochemistry module was based on the need for a flexible, exten-
sible model, which became apparent, when I implemented Calcium and Nitrogen cycles. Those
additional model configurations were not tested with the updated model design, as they were
not necessary to conduct the experiment in section 13.

CaCO3 is described implicitly by a smoothing rule in the current configuration. That is
CaCO3 itself is not explicitly tracked. It serves as a placeholder to store the calcite produced
by phytoplankton and zooplankton and at the end of the time step, the contents are added up
and smoothly distributed according to equation (21). That works for my purposes as the effect
of calcite on the system. For more accurate simulations it may be required add to know the
concentrations of CaCO3 in any cell and redefine the dissolution and remineralization of calcite
to work in individual cells rather than as a smoothing rule. In order to do that, it would be
required to add a sinking speed to calcite and add an additional type of phytoplankton, coc-
colithophores, which replaces other phytoplankton in the production of calcite during death.
Generally, coccolithophores behave similar to the already implemented phytoplankton. To add
coccolithophores it would therefore be sufficient to instantiate an object of the phytoplankton
class with appropriate parameters for mortality rates etc. It would be sufficient to reuse the
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existing rules for phytoplankton, adjust parameters and register them with a new name. The
rules for CaCO3 production and dissolution would have to be modified, as the smoothed dis-
tribution no longer applies. The existing smoothing rule would have to be removed from the
selected rule set and replaced by rules for dissolution and production. The bulk of the work in
adding coccolithophore functionality has already been done, only the addition of rules for pro-
duction and dissolution would have to be created.

detritus

coccolithophores

zooplankton po4

M
ortality

G
razing

F
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Primary production

Figure 7: Coccolithophores behave in many ways like ordinary phytoplankton. Adding the
plankton type to Veros requires adding an instance of the phytoplankton class and creating new
rules adapted for use with coccolithophores.

The addition of a Nitrogen cycle introduces one additional type of plankton, diazotrophs,
and 3 additional nutrient tracers, NO3, DON dissolved organic nitrogen, DOP dissolved organic
phosphate. Again diazotrophs are mostly similar to the already implemented phytoplankton.
Unlike coccolithophores it is needed to extend the Plankton class. It would be required to create
a new method for primary production, which limits growth compared to phytoplankton. It would
also be necessary to replace existing rules, as consumption of PO4 should now only occur, when
it is present in higher quantities than DOP. Had I had to implement such functionality without
the rule model, I would have had to include conditions every time a calculation would involve
the phytoplankton tracer or DOP. Rules should be added for diazotrophs similar to those of
phytoplankton and additional added for the consumption of NO3 and DON. The nitrogen cycle
(figure 27 in Appendix A) as implemented in UVic ESCM, also adds bottom denitrification,
which requires adding a post rule smoothing results from previous calculation.

Each of these additions are possible to add on top of the basic NPZD setup. By facilitating
the rule model, I have made it possible to easily extend the functionality with a new plankton
type as in the CaCO3 cycle. It is possible to modify behaviour as shown with the Nitrogen cycle
by creating new rules for the modified behaviour and selecting them, rather than the rules, they
replace.

The addition of each of these extensions will result in extended dynamics, which are shown
with graphs auto-generated by the diagnostics module in Appendix A. Each of the configurations
can be run with Veros without checking for which rules or tracers are active.

It should be noted, that these examples are not added to the current Veros release. They
serve as examples of extension and the need for a flexible model setup.
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10 Diagnostics
Combining equations (2) to (5) and following the description in section 6 it can be seen, that
since every change to a tracer in the basic model of section 2 is balanced by a corresponding
change in another tracer. That is, the NPZD dynamics as described in this thesis is a closed
system. Therefore it is possible to define a conserved measure. I chose the total phosphorus
as the conserved property, because it is present in either of the described configurations and is
fully described by the dynamics:

Ptotal =

∫∫∫
(RP :NP +RP :NZ +RP :ND + PO4)dxdydz (83)

The conserved property may be monitored from the diagnostics module. I could have defined
it in terms of any of the other tracers, and should the model be extended with additional tracers,
the conserved measure would have to be updated.

Ptotal =

∫∫∫ (∑
i

fiTi

)
dxdydz (84)

With Ti, and fi the tracer and phosphate concentration factor for the tracers in the model. It
may be convenient during development to also monitor total carbon in a similar fashion, although
it is not conserved when including carbon exchange with the atmosphere, since there is currently
no atmosphere component in Veros and the atmospheric CO2 concentration is assumed constant.

One thing to be aware of when monitoring total PO4 is, that the biogeochemistry module
asserts a minimum tracer concentration. This assures, the model never carries negative tracer
values, but when each rule is evaluated the contributions to each tracer is added up, and the
total reduction in a tracer may rise beyond the present concentration in any cell. During the
main biogeochemistry loop, every tracer concentration is checked after each evaluation of the
loop. When a tracer concentration drops below zero, a flag is set marking the cell as depleted.
The concentration in the cell is then set to a minimum value and the cell is excluded from
calculations which consumes it causing reductions during the remaining loop iterations for the
time step. By excluding the depleted cells from calculations the cells may maintain a minimum
concentration without disturbing the total amount of phosphate. The only time total phosphate
can be changed is the bio time step when a tracer concentration in a cell is brought below 0.
By keeping the time step size low, such drops below zero concentration may be reduced at the
cost of evaluation time. I have found, that bio step size below 6 hours maintains concentration
in a calculation scheme without physical transport within a grid of 4 degrees separation. The
transport does not guarantee exact conservation of total phosphate. (Kvale et al., 2015; A.
Schmittner, Gruber, et al., 2013) which implements the same dynamics recommend a time step
shorter than 3 hours. UVic ESCM does not conserve tracers exactly during transport either
(A. Schmittner, A. Oschlies, et al., 2005). If a model setup requires adding phosphate forcing,
that would have to be accounted for in equation (84).

Veros supports the notion of diagnostics modules. That is a class who’s diagnose method is
called at a user determined interval. The intention of the diagnostics is to provide information
during model evaluation to the user as well as saving data for later inspection. (Häfner, Jacob-
sen, Nuterman, et al., 2018) There are built-in options for snapshotting values and averaging
which are both useful for the biogeochemistry as well as diagnostics for overturning and energy
conservation. I have created a diagnostics class specifically for the biogeochemistry functional-
ity. This class is responsible for creating the interaction graphs shown in this work. The graphs
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are created by displaying the registered tracers as nodes with the name specified during regis-
tration. Each of the active rules are drawn as edges between the source and the sink, which
were registered during rule creation. Each edge is labelled with a label which can optionally
be set when creating the rule. The edges display whether the rule is a PRE rule, a PRIMARY
rule or a POST rule. PRE rules are displayed with dotted arrows, PRIMARY rules with solid
arrows and POST rules with dashed arrows.

The diagnostics class also allows for monitoring total phosphorus as described by equa-
tion (84). Since the change in total phosphorus should remain 0 in a closed model, like the
one described, it is useful to enable this value during development of additional rules. If further
tracers are added to the model,the diagnostics should be updated to reflect that change.

The diagnostic also provides the option for printing results of calculated values used in rules
such as primary production, excretion, mortality, recycling, etc. These can be printed for any
desired tracer. Having such an option provides users with the ability to monitor individual terms
in the source-minus-sink equations for a specific set of defined tracers, which may be helpful
during development of added functionality. If so desired, it is also an option to save snapshots
of these values. Finally the biogeochemistry diagnostics allow evaluation of a selection of rules
allowing their output to be monitored. This acts as an extension of the ability to individually
select rules. By monitoring individual rules, it is possible to monitor their effects on a larger,
interconnected model setup.

11 Employing a user kernel
The CO2 flux calculations use a Newton-Raphson solver in every surface grid cell. When using
a solution in pure Numpy it would be required to perform the calculations in every cell until
all cells had reached a solution or exceeded the maximum allowed iterations. Should a few cells
require more iterations than the bulk, it would cause a large amount of wasted calculations.
Furthermore attempting to calculate such a flux over land would be meaningless.

It is possible to reduce the amount of cells active in the calculations by applying a mask
to the grid indicating which cells are done calculating starting by masking out any land cells.
As the calculations progress any cell with a sufficiently accurate solution would be marked
complete and excluded from further calculations. A potential problem with this approach is,
that masking arrays is handled by Numpy, which means that when using the Bohrium backend
for Veros, the data set would require syncing from Bohrium to Numpy, which is an expensive
operation. Numpy performs the masking single threaded, which means there is a potentially
large performance loss as the model grows. A solution to the problem is to write a user kernel
for Bohrium, which is aware of the mask and can skip the masked cell without syncing to
Numpy. A masked, bounded Newton-Raphson solver could be useful for others. Therefore I
decided to write such a user kernel and compare the performance of a pure Numpy solution,
a Bohrium accelerated version of the Numpy solution and the custom user kernel. The results
are presented in figure 8. When using the Numpy backend, there is no significant difference in
performance between using the masked and unmasked solvers. The Bohrium backend however
performs worse in the flux calculations in both cases with the masked solver significantly worse
than the unmasked. This justifies the need for a user kernel. When indexing Numpy arrays
with a mask, Bohrium uses Numpy itself to do the indexing, which means it must copy the data
back and forth between Bohrium and Numpy. This is the cause of the decreased performance. I
wrote a kernel for OpenMP, which works by skipping cells, which have been marked completed.
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This eliminates the need for syncing to Numpy and regains the benefits of using the Bohrium
backend. Since the kernel was written for OpenMP, there is no additional performance gain
from the kernel when using Cuda or OpenCL with Bohrium unlike the remaining parts of the
code, which can be automatically parallelized which can also be seen in the figure.
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Figure 8: Benchmarks of the biogeochemistry module on a 128 × 64 × 45 grid for 2880 time
steps average of 3 runs. Lower is better. The machine in use had an Intel Xeon E5-2650 CPU
with 12 cores @ 2.2 GHz and an NVIDIA P100 GPU.

Implementation of the flux calculations in Veros is based on a reference implementation in
UVic ESCM (Andreas Schmittner, 2018) which bases its implementation on the rtsafe method
from Numerical Recipes (Press, 2002). Rtsafe is a Newton-Raphson solver with boundaries,
which performs a bisection step rather than the Newton-Raphson step if the Newton-Raphson
step would take the solution out of bounds. The recommendation listed in the UVic ESCM code
(Andreas Schmittner, 2018) is to initially set the boundaries at oceanographic safe values of
[H+]max = 10−6, [H+]min = 10−10 and reuse the result of the previous run to set the boundaries
for the next run corresponding to pH ± 0.5. With the pH values defined as − log10 [H+]. The
initial guess for a solution is placed in the middle between the boundaries. Reusing the previous
result as initial guess for the next iteration often aids in fast convergence. Hence the idea of
basing the boundaries on the previous result is sound. However the way it is done based on the
pH-value shifts the initial guess towards the boundaries, 10<x,y> 6=< 10x, 10y >. To preserve the
previous result as initial guess, I use a slightly different approach. I set the boundary width to
be twice the shortest distance from the previous result to either safe boundary but at minimum

43



1/5 of the distance between the safe boundaries. The actual minimum boundary width does
not affect the convergence rate significantly. Its purpose is to prevent a cell getting stuck at
one of the boundaries with too small boundary distance causing it to converge on an incorrect
value. By reusing the previous result as initial guess, a large part of the cells will already be at
a sufficient degree of accuracy before the first iteration. On a 128× 64 grid with time step size
3300 s half the cells completed the rtsafe routine in the first iteration. The following iterations
had less than 1500 cells remaining, which usually completed within the second iteration. When
using boundaries based on pH-value the average required number of iterations increases to 6
with most cells active until the final iteration.
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12 Model evaluation
In order to evaluate the validity of the implemented model I compare the output of a 400 year
simulation with measurements from the Global Data Analysis Project, GLODAP, data set (Key
et al., 2004) for DIC and Alkalinity, and data sets from the Sea-Viewing Wide Field-of-view
Sensor project, SeaWIFS, (Group, 2015) for phosphate and phytoplankton.

The results shown in this section are from a coarse resolution simulation with a 90 × 40 ×
15 points grid. Because of the coarse resolution it does have some issues resolving certain
aspects of the global circulation, which affects the biogeochemical system. For example with this
resolution upwelling on the pacific equator is weak. The chosen model parameters were selected
to compensate for that. The minimum vertical diffusivity, κmin

H , was set to 7 × 10−5 m2 s−1 and
the detritus sinking speed was set at 2 m d−1. The remaining model parameters were selected
to fit measurements as accurate as possible.

Table 2: Model parameters

Parameter Symbol Value Units
Light attenuation through phytoplankton kc 0.047 m−1/(mmol3)−1

Light attenuation through water kw 0.04 m−1

Maximum growth rate a 0.23 d−1

Specific mortality rate µP 0.035 d−1

Fast recycling rate (microbial loop) µPt 0.025 d−1

Half saturation constant for N uptake kN 0.7 mmol m−3

Assimilation efficiency γ1 0.5
Maximum grazing rate at 20 ◦C g 0.13 d−1

Growth efficiency geZ 0.6
Mortality νZ 0.06 mol−2 d−1

Detritus remineralization rate νD 0.09 (mmol/m3)−2/d
Detritus base sinking speed wd0 2 m d−1

Detritus sinking speed increase with depth mw 0.02 m d−1 m−1

Detritus maximum depth for speed increase mwz 1000 m
Calcite dissolution depth dCaCO3 1500 m
c c 1 ◦C−1

b b 1.038
Carbonate to carbon production ratio Capr 0.022

Parameters set for the simulation are presented in table 2. For initial conditions I used
a uniform distribution of nutrients and detritus with concentrations for PO4 of 2.5 mmol m−3,
2300 mmol m−3 for DIC and 2400 mmol m−3 for Alkalinity with the concentration of detritus at
1 × 10−4 mmol m−3. Surface concentration of phytoplankton was initially set at 0.14 mmol m−3

and 0.014 mmol m−3 for zooplankton both with an e-folding depth of 100 m. External input to
the model for heat fluxes, freshwater fluxes and shortwave radiation are using climatological
monthly mean values from the CORE.2 Global Air-Sea Flux Dataset (CORE.2 Global Air-Sea
Flux Dataset 2008).
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12.1 Results
The geographical distribution of phytoplankton is determined by the availability of nutrients
and light. Therefore the model should produce the largest populations in areas with upwelling
near the surface: The Southern ocean and northern parts of the Pacific and Atlantic oceans as
well as in the Eastern equatorial pacific. Detritus and zooplankton should be present at the
same locations, because zooplankton grazes on phytoplankton, and detritus is produced in areas
with phytoplankton and zooplankton. As detritus sinks, it will have a presence at deeper levels
and zooplankton will follow. The SeaWIFS project provides annual means of measurements of
chlorophyll A concentration from satellite measurements. This data is shown in figure 9 along
with modelled concentrations. The data set contains large variability between measured points.
Therefore the color scheme was chosen such, that the figure displays distinct spacial features. In
particular I wanted to be able to display equatorial concentrations. This means that in certain
areas, the concentration reaches the maximum color scale. For the modelled concentration
I selected a slightly different color scale, which would display the modeled overestimation of
equatorial plankton concentration. The plankton concentration in mmol m−3 is converted to mg
chlorophyll m−3 by multiplying the plankton concentration by 1.59 mg mmol−1 (A. Schmittner,
A. Oschlies, et al., 2005). The plankton concentration is taken as the mean concentration of the
upper 850 m, as the phytoplankton population is confined to this area as shown in figure 13.

Figure 9: Left: Chlorophyll a concentration as measured by SeaWIFFS. Right: Veros model
output from a 4deg resolution model for phytoplankton converted to chlorophyll A

The SeaWIFS measurements show an increased chlorophyll concentration in areas with up-
welling north of 35 °N and south of 35 °S. This is also evident in the simulated data. The
measurements also show a population along the equator in both the Pacific Ocean and the
Atlantic Ocean. I have been able to reproduce the presence at the equator, but the simulated
concentration is too high. The model parameter set was chosen in such a way, that there would
be a phytoplankton surface population at the equator. This parameter choice should compen-
sate for the difficulty for the low resolution simulation to produce upwelling along the equator.
Chlorophyll measurements from the SeaWIFS project are based on images of the surface and
comparing a mean concentration of the upper 850 m may be a too large depth. As the plankton
distribution is largest near the surface, integrating over lower depths provide larger mean con-
centrations, which could indicate the phytoplankton concentration is even further exaggerated.

Figure 10 displays vertical integrals of the tracers from the sea surface to 300 m depth divided
by the integration depth to provide a mean concentration.
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Figure 10: 300m vertical integrals of yearly averaged concentrations for Veros tracers
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Looking at both the surface level in figure 11 and 300 m concentrations the geographical
distribution of plankton is similar to the vertical integrals, as the highest concentrations are at
the surface. In the same figure it may also be seen that the phytoplankton growth is confined
to areas with phosphate near the surface. This phosphate distribution is consistent with the
measured surface concentration shown on the right hand side in figure 12.

It may also be useful to consider the mean concentration of tracers at vertical levels as shown
in figure 13. The zooplankton and phytoplankton distributions are confined to the surface
layers, which is also reflected in the phosphate concentration. Phosphate is being consumed
in regions with phytoplankton and remains at a concentration around 2.4 mmol m−3 at depth.
DIC is consumed by phytoplankton and produced by remineralization. Further amounts of
DIC are removed from the surface and redistributed towards the bottom by the formation and
dissolution of calcite. There is also a contribution to surface concentration by the exchange of
carbon dioxide with the atmosphere. However the increased deposit of CO2 in some areas will
be balanced by release in other areas. As described in section 4 CaCO3 redistributes with a
larger amount closer to the bottom causing a net decrease at the surface and net increase at
depth. This contribution is twice as large for alkalinity as it is for DIC, which results in a more
pronounced gradient for alkalinity. Detritus is produced in areas with plankton and is expected
to follow the phytoplankton and zooplankton distributions. As detritus also sinks, the vertical
distribution is dragged downwards

Similar conclusion may be drawn from the zonal averages presented in figure 14, which
furthermore shows the increased nutrient content regions with upwelling and how the plankton
distribution follows.

The PO4 concentration generally matches measurements. The surface distribution as mea-
sured by the SeaWIFS project, figure 12, show the largest concentration around 60 °S and in
the northern Pacific. This is also present in the simulated data. Additionally there should be
a smaller elevated concentration in the eastern equatorial Pacific. With the chosen parameters,
I was not able to produce that concentration in the surface layer, but it may be seen in lower
layers in figure 10
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Figure 11: Yearly mean surface concentrations of Veros tracers
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Figure 12: Left: Zonal averages of reference data sets. Right Surface concentrations of reference
data.

Phytoplankton concentration is the primary source of growth in zooplankton, and contributes
to detritus concentration as well. Therefore its distribution is of importance to the distribution
of the other tracers.

The phytoplankton distribution follows expectations in that it is present in larger concentra-
tions at high latitudes and in equatorial regions with upwelling of nutrients. In the intermediate
regions between the polar regions and the equator in the Pacific ocean, large gyres remove nu-
trients and plankton from the surface layers, which limits plankton growth. As zooplankton and
detritus are both strongly dependent on phytoplankton to sustain their populations, they are
distributed accordingly with slightly deeper presence due to detritus sinking. This distribution
again is according to expectation. With the presented parameter configuration, the phytoplank-
ton concentration is generally too high in particular at the equator, but matches expectations
in spacial distribution. The increased population also causes an increase in zooplankton and
detritus concentrations. Since phyto- and zooplankton mortality are the sole modelled drivers
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Figure 13: Mean concentrations of model tracers at each vertical level along with GLODAP and
SeaWIFS measurements where available.
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Figure 14: Zonally averaged tracer concentrations
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of CaCO3 redistributions, which influences DIC and Alkalinity by removing additional material
at the surface and adding it back at depth, a too large surface plankton population causes a
reduction in surface concentration for those tracers as evident in figure 13.

Figure 14 presents zonal averages of tracer profiles. As may be expected the plankton
tracers are primarily distributed towards the surface where there is light. As for PO4, DIC
and Alkalinity they all display higher concentrations in areas with upwelling in regions north of
50 °N and south of 50 °S as well as in the equatorial region between 10 °S and 10 °N From the
same plots, a reduced concentration in the shallower region north of 70 °N which is also present
in the GLODAP measurements. For PO4 the zonal average follows the SeaWIFS data set.

The average concentration in each of the model layers are depicted in figure 13. Although the
zonal average for PO4 is reasonable, the vertical profile shows an overestimated concentration
at 1000 m depth and a decreasing concentration above.

The low surface phosphate concentration along the equator suggests, that the phytoplankton
population is reliant on replenishing of the phosphate concentration from below, which was the
purpose of increasing the minimum vertical diffusivity, κmin

H , at 7 × 10−5 m2 s−1. This was chosen
over the default value for the 4deg Veros model of κmin

H = 2 × 10−5 m2 s−1, because the model
could not accurately replicate upwelling in the equatorial region with lower minimum vertical
diffusivity. The too large nutrient concentrations in the Southern Ocean may be attributed to
the larger diffusivity.

The sinking speed of detritus could also be used to regulate the phosphate distribution, as it
affects the vertical distribution via remineralization. Modifying parameters for phytoplankton
mortality or its fast recycling rate also influence the population size and nutrient distribution.

In figure figure 13 the alkalinity gradient caused by the production and dissolution of calcium
carbonate is too large, which as mentioned to an extend was expected by the large plankton
concentration. I am not able to reproduce the increased surface alkalinity in the Atlantic Ocean
the GLODAP measurements show. This affects the global mean and therefore the part of the
deviation from measurements. DIC follows the measurements from GLODAP well, except for a
generally increased concentration below the calcite dissolution depth at 1500 m and decreased
concentration above. This same pattern of may be seen for Alkalinity.

To fit the vertical DIC and Alkalinity concentrations, it is also possible to adjust the calcium
to detritus production ratio, which adjusts, how much calcium is remineralized from dying
plankton. Reducing this ratio adjusts the gradient of the vertical profile shown in figure 13
closer to the measurement data. However since the modelled phytoplankton concentration is
overestimated and the plankton mortality is responsible for the CaCO3 redistribution, a better
focus for increasing the model accuracy would be to reduce the plankton concentration.

Other simulations with different parameter sets gave results with significantly reduced or
nearly depleted surface concentrations of both phosphate and phytoplankton (not shown). When
running the model with a higher spacial resolution, it is not needed to increase the vertical
background diffusivity to recreate upwelling along the equator. This in turn generally reduces
the surface nutrient and plankton concentration. Both indicative, that it may be possible to
further optimize the parameter set.

Figure 15 shows the geographical regions with CO2 absorption and release as compared to
measurement data. At the top of the figure are filled contour maps of the flux. On the bottom
are zonally averaged values. The left hand side of the figure is modelled values from Veros, and
on the right are measurement data. The CO2 flux is generally consistent with the data from
(Takahashi et al., 2009). Although there is increased upwelling of DIC in the Southern ocean,
which causes an exaggerated flux into the atmosphere. The flux is shown with positive values
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indicating a flux from the ocean into the atmosphere.
The zonal averages for DIC and PO4 indicate, that there is increased nutrient transport to the

Southern ocean. This in turn causes an elevated CO2-flux as well as higher plankton population
in the area. Since the simulation was run with an atmospheric CO2 concentration of 280 ppmv
comparable to preindustrial values, and the reference data are from more recent measurements,
the simulation can show a higher degree of outgassing than the reference measurements.

Figure 15: CO2 flux over the ocean-atmosphere boundary. Left: Model output, Right: Reference
data from (Takahashi et al., 2009) Top: Contours of flux, Bottom: Zonally averaged flux. The
reference image is from (Andreas Schmittner et al., 2008). The zonally averaged reference data
is shown with the black line. The red line is UVic ESCM output.
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13 AMOC Collapse
The Atlantic Meridional Overturning Circulation [AMOC] is subject to research due to its
influence on global climate. The AMOC asserts large control over heat transport and storage
of chemical species, and has been involved in climatic temperature changes of several degrees
Celsius over the course of a few decades. (Kuhlbrodt et al., 2007)

In this section I describe an experiment, in which the AMOC is weakened by introducing a
freshwater flux in the North Atlantic reducing the salinity. I then analyse the resulting effects
on the global biogeochemistry.

The AMOC consists of four parts. Upwelling from depth to near the ocean surface, surface
currents transporting light water towards higher latitudes, deep water formation sites where
water density increases and sinks, deep ocean currents which close the circulation.(Kuhlbrodt
et al., 2007)

Wind and tides generate turbulent mixing. Mixing of heat lightens water masses at depth,
allowing them to rise at low latitudes. The resulting surface water mass is then transported
northward. Due to atmospheric cooling and ice formation, which rejects salt, the water parcels
increase in density causing them to sink and disperse. The result is increased deep water mass
and a resulting meridional density gradient between high and low latitudes. The circulation is
illustrated in figure 16.

S N

Wind driven
upwelling

Wind

Deep water
formation

Figure 16: Simple schematic of the AMOC

Adding freshwater fluxes in the northern Atlantic can weaken the circulation by reducing
the salinity increase due to freezing water and thereby the density increase, which is responsible
for water parcels sinking. Without this part of the circulation the density gradient is reduced
and the circulation weakened.

The AMOC carries large amounts of nutrients from deep waters to the surface, which is nec-
essary for plankton survival. Without influx of nutrients to the surface layers, plankton popula-
tions would consume the available nutrients until depletion or until a smaller, stable population
size is reached. The formed detritus then sinks towards the bottom to be remineralized. When
the circulation is weak, deep water nutrients would remain trapped.
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13.1 Model setup
The Veros model was first initialized with the same conditions as in section 12. The model then
simulates 200 years to reach a state representable of current ocean conditions. With that result
as initial conditions, I then simulated additional 200 years as a control experiment. With the
results of the first 200 years as initial conditions the experiment was conducted again this time
including a freshwater flux north of 50N and between -100W and 50E by reducing the sea surface
salinity by 1 PSU in the salinity forcing calculations. The area is shown in figure 17 It should
be mentioned, that I only changed the salinity in the affected region and not any of the other
model tracers, although these would also have been affected by a freshwater flux. I intended
only to weaken the AMOC without modifying other parts of the model, therefore changing the
salinity was sufficient.

Figure 17: In the yellow area the sea surface salinity was modified to cause a collapse of the
AMOC

13.2 Results
After introducing the freshwater flux, the deep water southward transport should be limited in
the weakened circulation with one of the drivers limited. This is evident in figure 18. With
a weakened AMOC the surface currents carrying light warmer water to higher latitudes are
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Figure 18: Meridional transport for the control experiment (left) and the AMOC collapse ex-
periment (right). The southward transport below 1km is reduced when collapsing the AMOC.

also weakened and have limited ability to transport heat. This causes a reduction in surface
temperature in the North Atlantic as seen in figure 19. This reduced heat transport from the
Southern to the Northern hemisphere is often seen in simulations which collapse the AMOC
(Brown and Galbraith, 2016). With reduced transport is typically found an increased surface
temperature around 30 °S. I found a similar temperature anomaly in the Southern Atlantic in
figure 19.

Figure 19: Mean difference in surface temperature in the upper 220 m between the reduced
AMOC simulation and control experiment after 200 years of simulation. The sea surface tem-
perature in the North Atlantic is significantly reduced. Left: Mean difference by latitude

With lower temperature and limited nutrient resupply the plankton concentration subse-
quently reduced as shown for phytoplankton in figure 20. As the formed detritus sinks before
being remineralized and there is no overturning to bring the nutrients back up, the nutrients
are effectively moved from the surface to depths further limiting plankton growth. This is con-
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Figure 20: The mean phytoplankton concentration in the upper 220 m is reduced after the
weakening of the AMOC due to a reduction in temperature and nutrients. Left: Mean difference
in concentration by latitude.

sistent with similar experiments (Nielsen et al., 2019). The reduced surface DIC is shown in
figure 21, and a zonal average of difference between the experiment and control is shown in fig-
ure 22.

Figure 21: After a collapsed AMOC surface nutrients are reduced in the North Atlantic. Left:
Mean difference in DIC concentration by latitude

Reduced surface DIC and temperature both contribute to a reduction in the CO2 partial
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Figure 22: Zonally averaged difference in DIC concentration 200 years after after collapsing the
AMOC. The concentration of DIC is reduced in the upper 1km and increased in the abyss.

pressure in the surface layer, which results in an increased flux of CO2 from the atmosphere
into the ocean immediately south of Iceland and outflux southwest of that area at around 45 °N
shown in figure 23. This is consistent with results from (Nielsen et al., 2019), although they find
an additional outflux North of Scandinavia, which is not present in this simulation, but they did
collapse the AMOC by changing the Nothern Hemisphere insolation rather than introducing a
freshwater flux. After introducing the freshwater flux and reducing surface salinity, there is
an immediate drop in pCO2 in the affected area. This causes an increased flux of CO2 into
the ocean. Reducing salinity will effect the approximated equilibrium concentrations described
in section 5 and therefore the calculated pCO2 and CO2-flux. The difference in mean pCO2
does reduce with simulation time as a result of larger influx. The chosen parameter set did, as
described in section 12, cause an elevated surface phytoplankton population. With the reduction
in the plankton population, the additional carbon bound in the plankton is released in the North
Atlantic depths causing a larger difference in DIC than other similar experiments.
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Figure 23: The CO2 flux after a reduction in AMOC strength transports additional gas into the
North Atlantic ocean as a response to the lowered DIC and temperature

14 Conclusion
In this project I have implemented a module for biogeochemical simulations in the general
circulation model Veros. The module is designed for ease of use for a general user as well as
model developers.
For a general user I introduce a simple configuration file in which the user may select which
tracers should be available in the model along with a set of interactions between them. Inter-
actions are represented by rules, which are documented by the developer and specify between
which tracers they work, where they work geographically as well as when in the execution order
they work. I also introduced sets of rules for common interaction sets, which are enabled the
same way as single rules.
Users wishing to extend the functionality of the module are only required to write rules for the
dynamics they intend to represent without having to introduce it in every possible configuration
tree.

To represent tracers in the model the biogeochemistry module in Veros differs from its
main inspiration, the npzd module in UVic ESCM, in that tracers are created as classes which
contain attributes relevant to the tracer. Other models maintain separate variables for tracer
concentrations and each of the attributes relevant to the tracer. By creating classes for the trac-
ers I allow for creating tracers with similar behavior with different parameters by instantiating
objects with the different parameters. Furthermore it is possible to store additional metadata,
which would have been difficult to relate to the correct tracer in other models.

The combination of tracers as objects and interactions between them as rules allows Veros to
graphically display the active configuration of the model. This is helpful in development as well
as tool for displaying intended behaviour. Metadata in objects and rules is presented directly
in the graph.

The design allows for building several specialized configurations with rules and tracer classes
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as building blocks without introducing configuration checks or duplicate code, which keeps the
logical structure readable and maintainable allowing users to focus on implementing features
relevant to their needs without risking breaking existing functionality or reimplement the feature
for every possible configuration option while keeping the evaluation structure clean.

I used the implemented model to reproduce present day measurements by running a 400 year
simulation starting from uniform nutrient distributions and exponentially decreasing plankton
distributions. Model parameters were used to fit the output to measurements. That output was
used as the base for a simulated collapse of the Atlantic Meridional Overturning Circulation. I
conclude a weakening of the AMOC would result in reduced primary production and a redistri-
bution of nutrients from the surface into the abyss.

In conclusion I was able to create a powerful, easy to use biogeochemistry module for Veros,
which adheres to the vision of Veros by being accessible, easy to use, easy to verify and easy to
modify. The module produced produced results representative of modern day measurements.
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A Figures with extended dynamics
Each of these figures represent a configuration option, which includes one or more circuits. They
are all working within the logical structure of the model as presented. They are constructed as
rules and require no conditionals within the structure.
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Figure 24: A minimal configuration including coccolithophores, which tracks calcium carbonate
explicitly
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Figure 25: Interaction diagram for a basic NPZD setup including nitrogen fixing diazotrophs. A
configuration like this would require selecting different rules for the basic NPZD functionality,
but the structure of model evaluation and rule selection remain the same.
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Figure 26: Configured with basic NPZD functionality, a carbon cycle, calcifiers and a Nitrogen
cycle.
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Figure 27: Nitrongen cycle without a carbon cycle. It extends the basic NPZD configuration.
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B Simplified overview of evaluation structure
Below is a simplified overview of the biogeochemistry model structure. I have left out the actual
calculations in order to provide a readable overview of when and where rules and object methods
are evaluated.

1
# work on a copy of results to avoid overwriting

3 tracers = vs.npzd_tracers.copy()

5 # Update variables, which only depend on time dependent values from other
# Veros modules

7 calculate_from_model_input(vs.temp, vs.salt)

9 # Evaluate pre rules
pre_results = [rule.function(rule.source, rule.sink) for rule in vs.pre_rules]

11 for res in pre_results:
for key, value in res:

13 vs.tracers[key] += value

15 # Ensure minimum concentrantions of updated tracers and set flags
reset_tracers(pre_results.keys)

17
# Primary bio loop

19 for n in range(n_bio):
# store copy of swr from veros variable

21 shortwave_radiation = vs.shortwave_radiation.copy()

23 # Object methods
for name, object in tracers.items():

25 # perform all object methods
if hasattr(object, 'primary_production'):

27 primary_production[name] = object.primary_production()

29 if hasattr(object, 'mortality'):
mortality[name] = object.mortality()

31
# etc.

33
# block light

35 if hasattr(object, 'light_attenuation'):
shortwave_radiation *= exp(- object.light_attenuation *

37 object.cumsum())

39 # Calculate import - export for sinking tracers
if hasattr(object, 'sinking_speed'):

41 import_minus_export[name] = calc_export(object)

43 # evaluate primary rules
primary_results = [rule.function(rule.source, rule.sink) for rule in vs.primary_rules]

45 for res in primary_results:
for key, value in res:

47 tracers[key] += value * vs.dt_bio

49 # add import-export to tracer
for key, value in import_minus_export:

51 tracers[key] += value

53 # ensure minimum concentrations
reset_tracers(primary_results.keys)

55
# Evaluate post rules and update tracers

57 post_results = [rule.function(rule.source, rule.sink) for rule in vs.post_rules]
for res in post_results:

59 for key, value in res:
tracers[key] += value

61
# reset updated tracers

63 reset_tracers(post_results.keys)

65 # return only difference in calculations
return tracers - vs.npzd_tracers

67

69 def npzd():
# Get results from physical transport

71 transport_results = transport_tracers(npzd_tracers)
# Get results from biogeochemistry

73 bgc_results = biogeochemistry()

75 # Add results to tracers
for tracer in npzd_tracers:

77 tracer += transport_results + bgc_results

79 # Ensure minimum concentration
reset_tracers(npzd_tracers)
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C Abbreviation list
• NPZD = Nutrients, Phytoplankton, Zooplankton, Detritus

• BGC = Biogeochemistry

• DIC = Dissolved Inorganic Carbon

• DOP = Dissolved Organic Phosphorus

• DON = Dissolved Organic Nitrogen

• PAR = Photosynthetically active radiation

• AMOC = Atlantic Meridional Overturning Circulation

• UVic ESCM = University of Victoria Earth System Climate Model
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