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Abstract

In 2003 bedrock was reached at the NorthGRIP drill site, located at 75.12◦N,
42.32◦W. The recovered ice core contains an unbroken climate record reach-
ing back to the Eemian warm period [North Greenland Ice Core Project
Members, 2004]. In this thesis a new timescale for the ice core is derived
using a two-dimensional flow model. The flow of the ice in the vicinity of the
drill site is simulated with a modified Dansgaard-Johnsen model. Several
unknown input parameters are estimated through a Monte Carlo inversion
of the flow model. Observed internal radio-echo horizons in the ice are
used to constrain this inversion. The derived timescale assigns an age of
126,500 years to the bottom of the ice at NorthGRIP. This ice is estimated
to have been deposited 48 km upstream from the drill site. The inversion
of the model reveals changing melt rates along the flow line leading to the
NorthGRIP drill site. The melt rate at the NorthGRIP site is estimated to
4.1±0.5 mm/yr, which is the lowest value revealed in the area studied in
this thesis.
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Chapter 1

Introduction

The Greenland Ice Sheet constitutes a unique high resolution archive of cli-
mate information. A snow layer deposited on the surface in a given year is
subsequently buried by the snow falling during the following years. As the
layer sinks down it is slowly compressed to ice, and except for postdeposi-
tional smoothing by diffusional processes, its chemical and isotopic compo-
sitions are preserved. The isotopic composition contains information on the
atmospheric temperature at the time of condensation [Dansgaard, 1964],
and on the source region of the precipitation [Johnsen et al., 1989]. Dust
content, acidity, and the concentrations of various ions give information
about storminess, volcanic eruptions, and the chemical composition of the
atmosphere, respectively. Furthermore, the ice contains small bubbles of air
that serve as sealed samples of past atmospheres. Thus the study of ice
cores recovered from the ice sheet provide valuable information on the past
climate of the Earth.

The first time bedrock was reached at an ice core drill site in Greenland
was in 1966 at Camp Century in Northern Greenland. Since then, several
deep ice cores have been drilled through the ice sheet. Fig. 1.1 shows the
location of six drill sites in Greenland where climate records reaching far
back in time have been obtained. This thesis deals with the dating of the
ice core from NorthGRIP.

The background for the NorthGRIP project began with the drilling of the
GRIP and GISP2 ice cores in Central Greenland in the early nineties. Be-
cause these two cores were drilled only 28 km apart, they were expected
to contain similar climatic information. This held good in the upper 90 %
of the cores, but below that their climate records began to differ signi-
ficantly. It was later concluded that layers older than 105,000 years were
disturbed by folding caused by the ice flowing over the relatively uneven
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Figure 1.1: The location of six important ice core drill sites in Greenland.
Map: S. Ekholm, Danish National Survey and Cadastre.
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bedrock [Johnsen et al., 1997]. This means that even though the Central
Greenland ice cores contain ice from the previous interglacial period – the
Eemian (115,000–130,000 years ago) – the chronology of the layers has been
broken. Because an undisturbed climate record containing the Eemian and
the onset of the glacial period may contribute significantly to the under-
standing of the behaviour of the present and future climate, it was decided
to drill a new core at a location where the conditions were optimal for finding
old undisturbed ice. This site was selected according to three criteria:

• It should be located on an ice ridge to ensure minimal horizontal ve-
locity and thereby minimal need to correct for upstream effects.

• The bedrock should be flat in order to minimize flow induced distur-
bances.

• The accumulation rate should be low in order to find the Eemian layer
as high above bedrock as possible, but not so low that the pressure
melting temperature is reached at the bottom.

In 1996 drilling was initiated at the NorthGRIP drill site located 75.10◦N
and 42.32◦W, 316 km NNW of GRIP. The ice in the area flows along a
NNW-trending ice ridge from GRIP towards NorthGRIP. The surface ve-
locity at NorthGRIP is 1.3 m/yr [Hvidberg et al., 2002], the ice thickness is
3085 m, and the present mean annual temperature and accumulation rate
are -31.5◦C and 0.193 m/yr, respectively. Before the drilling was initiated
models predicted the Eemian layer to be located at depths of 2750–2850 m
[Dahl-Jensen et al., 1997]. However, by the end of the 2001 season a depth
of 3001 m was reached, and there was no sign of the Eemian. Furthermore,
the basal layers did not thin as expected. It was now clear that an unex-
pectedly high geothermal heat flux raised the temperature to the pressure
melting point at the bottom. Basal melting had eaten away the oldest lay-
ers and prevented the layers from thinning towards zero at bedrock, as they
would have if there had been no melting. In 2003 Eemian ice was encoun-
tered immediately above bedrock, but a complete Eemian record was not
obtained. However, the unexpectedly high layer thickness in the bottom
part of the core offers a unique opportunity to study the transition from the
Eemian to the glacial period in very high resolution.

The information contained in the NorthGRIP ice core may contribute sig-
nificantly to our understanding of the climate system. In order to interpret
the climatic information in an ice core it is crucial to establish a depth-age
relationship for the core. This is normally not straight forward, since the
flow conditions in a given area may have changed significantly during time.
In the upper part of an ice core, dating is most precisely done by counting
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annual layers, which may be identified from annual variations in the stable
isotope composition, in the dust content, and in the concentration of differ-
ent ions in the ice. This counting process is very laborious, and with depth
it gets increasingly difficult to distinguish the layers. Ice flow modelling is
therefore the preferred tool for dating old ice from the ice cores. Johnsen
et al. [2001] derived the ss09sea timescale for the GRIP ice core by using
a one-dimensional flow model constrained by two tie points. This timescale
has been transferred to the NorthGRIP ice core by cross-dating the climate
records. Thus the existing timescale for the NorthGRIP ice core relies com-
pletely on the GRIP dating.

The aim of this thesis is to develop a new timescale for the NorthGRIP
ice core, that is less dependent on the ss09sea dating. The approach will
be to simulate the flow in the NorthGRIP area with a simple flow model.
Several of the flow model parameters – for instance the melt rate – are
unknown. Estimates for these parameters can be obtained through an in-
version of the flow model, but a set of observed depth-age horizons is needed
in order to constrain the inversion. For this purpose I use layers of equal age
revealed by radar images. The layers are dated from their observed depths
in the NorthGRIP ice core using the ss09sea chronology. From the estimated
model parameters a new depth-age relationship is calculated using the flow
model. The structure of the thesis is outlined below.

Chapter 2 gives background information on the structure of the Greenland
Ice Sheet. In the first part of the chapter some basic concepts of glaciology
are presented, while the cause and nature of the internal layers observed in
radar images of the ice sheet are introduced in the second part.
Chapter 3 deals with ice flow modelling. The flow model and the input it
requires are described.
Chapter 4 is an introduction to inverse Monte Carlo theory, that will be
used to invert the flow model. Relevant probability density concepts and
concepts from inverse theory are defined, and the inverse Monte Carlo algo-
rithm is deduced.
Chapter 5 introduces the radio-echo data used to constrain the inversion
of the flow model.
Chapter 6 gathers the information on the physical system at hand and
gives an outline of the algorithm used for this particular Monte Carlo inver-
sion.
Chapter 7 presents the results of the present work.
Chapter 8 sums up the main conclusions of this thesis.
Chapter 9 makes a few suggestion for future work with similar models.



Chapter 2

Background

This chapter consists of two parts. The first part introduces a few basic
glaciological concepts, while the second part gives an overview of the nature
of the internal layers that are revealed in the ice by radio-echo sounding.

2.1 A Short Introduction to Glaciology

2.1.1 Densification

Newly fallen snow has a density of 50–70 kg/m3 [Paterson, 1994]. Each
layer of snow that falls on the Greenland ice cap is buried by the following
snow falls, and as it sinks down into the glacier it is gradually compressed
to ice by the weight of the overlying layers. At first the density changes
are primarily caused by rounding and settling of the individual grains, but
later the most dominant processes are recrystallisation and deformation. At
a density of 830 kg/m3 the interconnecting air passages are closed off and
air is now only present in closed bubbles. A further increase in density to
917 kg/m3 happens when the air in the bubbles is compressed. The stage
between snow and ice is called firn, and the transition from firn to ice hap-
pens when the air passages are closed off. The rate of transformation from
snow to ice depends on temperature and accumulation rate and is thus site
specific. In Central Greenland the transition from firn to ice is typically
found at a depth of about 70 m [Paterson, 1994]. A plot of the measured
density versus depth at NorthGRIP is shown on the left in Fig. 2.1.

In ice flow models the ice equivalent thickness is often used. This is the
thickness a layer would attain if it were compressed to ice. By using ice
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Figure 2.1: Left: The density profile for the upper 100 m at NorthGRIP. The pore close
off density of 830 kg/m3 is seen to be reached at a depth of about 80 m. At 100 m depth
the density of glacier ice, 917 kg/m3 has not yet been reached. Right: The temperature
profile from the NorthGRIP borehole. The temperature at the base is at the pressure
melting point, -2.4◦C. The coldest temperatures are found in the middle of the ice sheet,
where the cold ice from the Last Glacial Maximum (LGM) is located.

equivalent thicknesses, the densification in the firn layer is ignored. This
can only be done if accurate results are not needed for the top part of the
ice. In this thesis the focus is on the deep ice, so ice equivalent thicknesses
will be used. The air column in the firn in the NorthGRIP area has been
estimated to 25 m [D. Dahl-Jensen, pers. comm.]. Thus the ice equivalent
ice thickness at NorthGRIP is 25 m lower than the observed thickness of
3085 m, namely 3060 m.

2.1.2 Temperatures

Temperature profiles from the Greenland Ice Sheet are known from borehole
measurements. After the drilling is finished, the liquid filled hole is left to
equilibrate for a couple of seasons. The temperature is then measured with
very high accuracy by lowering a logging instrument down into the borehole.
The warmest temperatures of the ice sheet are found at the base, because
geothermal heat from the bedrock raises the temperature here. Within the
glacier, heat is produced by ice deformation, and heat transport is domi-
nated by the downward advection of cold ice from the surface. The surface
temperature is determined by the climate, and because ice is a poor heat
conductor, remnants of the mean annual surface temperature is preserved
in the ice as it sinks down through the ice sheet. Thus past surface tem-
peratures can be found by inversion of the measured borehole temperature
profiles [Dahl-Jensen et al., 1998]. The right side of Fig. 2.1 shows the mea-
sured temperature profile at NorthGRIP. It is seen that the temperature
reaches the pressure melting point of -2.4◦C at the bottom.
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2.1.3 δ
18O

More than 99 % of the molecules in natural water are H2
16O, but small

amounts of isotopically heavier components like H2
18O are also found. The

content of H2
18O in a water (or ice) sample is given by the δ-value of the

sample:

δ18O =
Rsample − RSMOW

RSMOW
, R =

[18O]

[16O]
, (2.1)

where SMOW is a Standard Mean Ocean Water. Small differences between
the vapour pressure of the components causes the H2

18O-molecule evaporate
with slightly more difficulty and condense with slightly more ease than the
H2

16O-molecule. This leads to a fractionation for evaporation and precipi-
tation processes [Dansgaard, 1964]. Thus as an air mass cools and precipita-
tion is formed, the the remaining vapour will get increasingly more depleted
in H2

18O as precipitation forms. The amount of precipitation formed since
the last uptake of water depends on the temperature gradient between the
source region and the place of deposition. Because temperatures are much
more stable over the ocean than over the ice, the content of H2

18O in the
ice is strongly dependent on the temperature over the ice. It follows that
measuring the δ18O-value along the core gives information on past temper-
atures over the ice. The δ18O curve for the NorthGRIP ice core is shown in
Fig. 3.5.

2.1.4 Ice Crystal Structure

The H2O molecule is shaped like a regular tetrahedron with the oxygen
atom in the middle (see Fig. 2.2). The molecule has 10 electrons – eight
from the oxygen atom and one from each of the hydrogen atoms. Two
electrons from the oxygen atom are located close to the oxygen nucleus in
the s-shell. The remaining eight electrons are kept in eccentric orbits, which
radiate tetrahedrally from the oxygen nucleus. Two of these orbits contain
a hydrogen nucleus (a proton). The electrons do not screen all the positive
charge from these, and since there is an excess negative charge in the two
orbits with no protons, the ice molecule has two corners with positive charge
and two with negative charge. The molecules arrange themselves in layers
of hexagonal rings held together by hydrogen bonds between to corners of
opposite charges. Thus each molecule is surrounded by four others. The
plane of such a layer is called the basal plane of the crystal and the normal
to the basal plane is called the c-axis or the optical axis of the crystal.
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Figure 2.2: Left: The H2O molecule. The oxygen and hydrogen atoms are indicated
by red and black dots, respectively. The four eccentric electron orbits are shown as grey
ellipses. The angle between two electron orbits is 104.5◦. Right: The hexagonal structure
of an ice crystal. The red dots indicate the positions of the oxygen atoms. The 104.5◦ angle
between the electron orbitals make it impossible for the 6 oxygen atoms in a hexagonal
ring to be in the exact same plane. This is indicated by the different sizes of the dots
in the figure. The plane of the smaller dots is shifted 0.0923 nm from that of the larger
dots. This displacement is small compared to the spacing of 0.276 nm between basal layers
[Paterson, 1994].

Figure 2.3: If there is a stress component parallel to the basal planes of the crystal, it
will deform by gliding on the basal planes.

2.1.5 Deformation of Ice

Ice is a quasi-viscous material and it deforms under applied stress. Labora-
tory studies have revealed that a single ice crystal deforms by gliding on its
basal planes (see Fig. 2.3). The gliding is facilitated by the movement of
small linear defects in the crystal structure (dislocations). If the crystal is
oriented unfavourably for basal gliding – i.e. if there is no stress component
parallel to the basal plane – it can still deform, but the stress needed is 100
times higher than that required for basal gliding [Paterson, 1994].

Polycrystalline ice is called isotropic if the c-axes of the crystals are ran-
domly oriented. In isotropic ice, some crystals are oriented favourably for
basal gliding and others are not. This means that polycrystals deform much
more slowly than single crystals. The deformation of polycrystalline ice is a
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Figure 2.4: Schmidt diagrams for isotropic ice (left), the fabric resulting from simple
shear (middle), and the fabric resulting from uniaxial compression confined in the x-
direction (right). The x− and y-axes are indicated in the figure. The z-axis is pointing
out of the paper (it is a right-handed coordinate system).

balance between several processes: Dislocation glide, rotation of crystals to
make them more optimal for dislocation glide, crystal growth, and dynamic
recrystallization. The result of this is that the crystal orientation fabric of
the ice changes with depth. In the top of the ice sheet the crystal orientation
is random, but as the ice sinks down it is deformed and the rotation of the
crystals leads to the formation of an anisotropic fabric. The type of fabric
formed depends on the stress conditions at the site. Generally the c-axes of
the crystals rotate towards an axis of compression and away from an axis
of extension. Simple shear which is often encountered near the bed in ice
sheets, leads to a fabric where the c-axes are close to the vertical. This is
called a strong single maximum fabric. At NorthGRIP the principal sur-
face strain rates have been determined from strain net measurements (see
Fig. 3.1) to ε̇1 = (−0.4 ± 0.6) · 10−5 yr−1 and ε̇2 = (7.1 ± 0.6) · 10−5 yr−1

along and transverse to the ridge, respectively [Hvidberg et al., 2002]. The
vertical compression is almost balanced by horizontal stretching transverse
to the ridge. Thus the stress regime in the upper part of the ice sheet in
the NorthGRIP area resembles confined uniaxial compression. This stress
configuration leads to a fabric with a single maximum, which is elongated
in the confined direction.

The crystal fabric of a polycrystalline aggregate of ice can be represented by
a Schmidt diagram. A Schmidt diagram is the equal-area projection onto
the plane of the points of intersection between a sphere and the c-axes when
these pass through the centre of the sphere. Schmidt diagrams for isotropic
ice and for the fabrics produced by simple shear and confined compression,
respectively, are shown in Fig. 2.4.
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2.1.6 Ice Flow

The deformation of polycrystalline isotropic ice is often described by an
empirical relation known as Glen’s flow law [Glen, 1955]

ε̇ij = Aτn−1
e τij , (i, j = x, y, z). (2.2)

ε̇ij is the strain rate tensor, τe is the effective shear stress, τij is the deviatoric
stress tensor, n is a constant, and A depends on the in situ conditions. The
value of n is not well known, but the most widely used value for ice modelling
is n = 3 [Paterson, 1994]. The variation of A with temperature T follows
the Arrhenius relation

A = A0 exp

(

−E

RT

)

, (2.3)

where A0 is independent of temperature, R = 8.314 J/(mol·K) is the gas
konstant, and E is the activation energy for deformation.

The development of an anisotropic fabric with depth significantly affects
the ice flow. In the case of a strong single maximum fabric which is often
encountered in the ice sheet, the ice gets “harder” for vertical compression
and “softer” for simple shear because most crystals are oriented with their
basal planes close to the horizontal. Glen’s law is ill suited to describe
the flow of anisotropic ice. Several flow laws for anisotropic materials have
been published e.g. Johnson [1977] and Azuma [1994]. These models are
complicated compared to Glen’s law.

Ice flow laws like the ones mentioned above are used in general models of
the ice sheet. In this thesis a different approach is adopted, because we have
detailed knowledge about the accumulation rate, the bedrock- and surface
topography, and the horizontal surface velocity in the area of interest. This
makes it possible to use a model specially tuned to these conditions. A
model called the Dansgaard-Johnsen model has proven to be very useful. In
this study a modified version of the Dansgaard-Johnsen model is used. This
model is presented in Chapter 3.

2.2 Internal Layers in Ice

Since the early 1960s airborne radio-echo sounding (RES) has been used
to obtain information on ice thicknesses of smaller glaciers as well as the
Greenland and Antarctic ice sheets, see Gogineni et al. [1998] for a historical
overview. In addition to the ice surface and the bedrock, a number of internal
layers in the ice are often seen in the recovered radar images (see Fig. 5.2). In
Greenland these layers can be traced continuously for hundreds of kilometers
[Gudmandsen, 1975, Chuah et al., 1996].
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2.2.1 The Basic Equations

The internal layers appear on the images because they reflect a larger part of
the radar waves than the surrounding ice. For an ice layer of thickness l and
admittance Y + ∆Y embedded in ice of admittance Y , the power reflection
coefficient R is given by Paren and Robin [1975] as

R = 4 sin2

(

2πl

λm

)

·









1

2

∆Y

Y









2

, (2.4)

where λm is the wavelength of the radar in ice. Since

Y = iωC0ǫ, (2.5)

where i denotes the imaginary unit, ω is the angular frequency, C0 is the
geometrical capacitance, and ǫ is the complex permittivity of the ice. Eq.
(2.4) may be rewritten as

R = 4 sin2

(

2πl

λm

)

·









1

2

∆ǫ

ǫ









2

. (2.6)

It is seen from Eq. (2.6) that layers of different power reflection coefficients
must have different complex permittivities. Thus the studies of the complex
permittivity of the ice may provide valuable information on the nature of
the observed layers. The complex permittivity is given by

ǫ = ǫ′ + iǫ′′, (2.7)

where ǫ′ is the dielectric constant and ǫ′′ is the relative loss factor. This may
also be written as

ǫ = ǫ′(1 − i tan δ), (2.8)

where

tan δ =
ǫ′′

ǫ′
=

σ

ωǫ0ǫ′
. (2.9)

δ is the phase angle between the displacement current and the total cur-
rent in an alternating electric field, σ is the dielectrical conductivity (not
to be confused with the direct current conductivity σd.c., though this con-
tributes to σ), and ǫ0 is the permittivity of free space. tan δ is known as
the “loss tangent” because it describes the absorption of electromagnetic
energy in the ice. From Eq. (2.8) it is seen that ǫ will be affected by
changes in either the dielectric constant ǫ′ or in the loss tangent [Evans, 1965,
Bogorodsky et al., 1985].
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2.2.2 The Cause of Increased Reflection

There has been some dispute as to the cause of the changes in ǫ. Sev-
eral authors conclude that the most likely cause of the shallow reflectors is
changes in ǫ′ due to density changes [Harrison, 1973, Paren and Robin, 1975,
Clough, 1977], but Hammer [1980] and Hempel et al. [2000] find that
changes in loss tangent caused by raised impurity levels from volcanic fall
out is the best explanation. As to the deep reflectors there seems to be a
general agreement that density changes alone can not explain the strength
of the observed reflections [Harrison, 1973, Paren and Robin, 1975]. Paren
and Robin [1975] find that changes in loss tangent is the most likely expla-
nation for the deep reflectors. This is supported by the works of Hammer
[1980], Millar [1981], and Hempel et al. [2000], who find that reflectors and
layers of increased acidity from major volcanic events are found at the same
depths, and that the resulting changes in loss tangent are sufficient to ex-
plain the observed power reflection coefficients. However, Harrison [1973]
and Fujita and Mae [1994] argue that the primary cause of the deep re-
flectors is changes in ǫ′ due to changes in crystal orientation. Fujita et al.
[1999] used the fact that the loss tangent – but not the dielectric constant
– is frequency dependent to estimate the relative importance of changes in
these two parameters. Through a two-frequency radar experiment carried
out in East Antarctica they found that changes in the loss tangent dominate
at intermediate depths while changes in fabric dominate at greater depths.

Fig. 2.5 shows the NorthGRIP ECM (electrical conductivity measurement)
curve, the radio-echo image and the NorthGRIP δ18O curve on the same
depth scale. The reflecting layers are seen to coincide with major changes
in the ECM level, which again coincide with abrupt changes in the climate
curve (the δ18O curve). The ECM curve is a measure of the direct conduc-
tivity of the ice. Thus NorthGRIP data indicate that the deep reflectors
are caused by varying impurity content in connection with abrupt climate
changes.

2.2.3 Interpretation of the Layers

Even though there is disagreement on the cause of the permittivity changes
of the internal reflectors, there is a general consensus that they represent for-
mer deposition surfaces [Gudmandsen, 1975, Bogorodsky et al., 1985]. This
means that they are layers of equal age – isochrones. Thus the radar images
may provide valuable information on the ice flow pattern throughout the ice
sheet. Indeed, if layers have been dated from their observed depths in an ice
core, knowledge on the depth-age relationship can be invoked at locations
far from the drill site by following the internal layers. This information may
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Figure 2.5: Left: The ECM curve for the lower part of the NorthGRIP ice core.
Middle: The radio-echo image. Right: The lower part of the δ18O curve from North-
GRIP. The red lines indicate isochrones observed in the radio-echo image. These are seen
to coincide with major changes in the ECM level connected to abrupt climate changes.
Figure from D. Dahl-Jensen [pers. comm.]

help in deciding new locations for deep ice core drilling as was the case with
the NorthGRIP drill site [Dahl-Jensen et al., 1997]. In the present study the
layers will be used to constrain a Monte Carlo inversion of the flow model
used to simulate the flow in the vicinity of NorthGRIP.



Chapter 3

Modelling the Ice Flow

3.1 The Flow in the NorthGRIP Area

In the period 1996–2001 a strain net was established around the North-
GRIP drill site (see Fig. 3.1). The surface velocity was determined to
1.329± 0.015 m/yr along the ridge, and the principal surface strain rates to
ε̇1 = (−0.4±0.6) ·10−5 yr−1 and ε̇2 = (7.1±0.6) ·10−5 yr−1 along and trans-
verse to the ridge, respectively (cf. Section 2.1.5) [Hvidberg et al., 2002].
The horizontal velocity is almost constant along the ridge.

As a result of the horizontal velocity, the ice found in the NorthGRIP ice
core was not deposited at the site. It fell as snow upstream from NorthGRIP
and was then transported along the ridge. The deeper a layer is found in the
core, the longer is the horizontal distance it has travelled. Dahl-Jensen et
al. [2003] estimated that the ice found at a depth of 2850 in the NorthGRIP
ice core was deposited 50 km upstream from the drill site. The melt rate is
believed to vary along the flow line (cf. Chapter 5). This implies that the
ice found in the NorthGRIP ice core has experienced different melt rates
during the past. Thus a one-dimensional flow model will not suffice when
a dating of the ice core is wanted. A two-dimensional model is required in
order to incorporate the varying melt rates along the line.

3.2 The Flow Model

In the present study a simple two-dimensional model is used to simulate the
flow along the ice ridge in the vicinity of NorthGRIP. For this purpose a
coordinate system with the x-axis along the ridge pointing in the direction

14
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Figure 3.1: Observed surface velocities around the NorthGRIP drill site (75.10◦N,
42.32◦W). Figure from Hvidberg et al. [2002].

of the flow, and the z-axis pointing upwards is adopted. The origin of this
coordinate system is placed at GRIP at sealevel. This study has been lim-
ited to concern a 100 km section of the ridge starting 80 km upstream from
NorthGRIP and ending 20 km downstream.

The model that will be used to simulate the flow along the ridge is a
Dansgaard-Johnsen type model [Dansgaard and Johnsen, 1969]. This model
was originally developed to model the time scale for the Camp Century drill
site in Northern Greenland (see Fig. 1.1). It is widely used because it pro-
vides good results and has few model parameters. At Camp Century the ice
is frozen to the bed, so the original model does not account for basal melting
and sliding. In order to use the model for the flow in the NorthGRIP area
where melting is known to occur, it has been modified to account for these
two things.

The Dansgaard-Johnsen model is based on the assumption that the horizon-
tal velocity is constant from the surface down to a height h above bedrock.
From here it decreases linearly to the sliding velocity at the bottom (see Fig.
3.2)

u(x, z) =

{

usur(x) z ∈ [h, H]
usur(x)

(

FB + (1 − FB) z
h

)

z ∈ [0, h[
, (3.1)
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Figure 3.2: The horizontal velocity profile assumed in the Dansgaard-Johnsen model.

where u is the horizontal velocity, usur is the horizontal surface velocity, H
is the ice thickness in ice equivalent, z is the ice equivalent height above
bedrock, and FB = ubed

usur
is the fraction of basal sliding. h is called the kink

height.

If the ice is assumed to be incompressible we can use the continuity equation

∂u

∂x
+

∂w

∂z
= 0 ⇔

∂w

∂z
= −

∂u

∂x
, (3.2)

where w is the vertical velocity. Differentiation of Eq. (3.1) gives

∂w

∂z
= −

∂u

∂x
=

{

−∂usur

∂x
z ∈ [h, H]

−∂usur

∂x

(

FB + (1 − FB) z
h

)

z ∈ [0, h[
. (3.3)

The vertical velocity can now be calculated by integration of Eq. (3.3)

w(z) =

{

wb −
∂usur

∂x

(

z − 1
2h (1 − FB)

)

z ∈ [h, H]

wb −
∂usur

∂x

(

FBz + 1
2 (1 − FB) z2

h

)

z ∈ [0, h[
, (3.4)

where wb is the basal melt rate (the vertical velocity at the base). Volume
conservation on an ice column (See Fig. 3.3) gives:

∂H

∂t
= a + wb −

∂(H · umean)

∂x
, (3.5)

where t is time, a is annual ice equivalent accumulation, and umean is the
mean horizontal velocity over the entire height of the ice column. umean is
found by integration of Eq. (3.1), such that
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Figure 3.3: Conservation of volume on an ice column.

umean =
1

H

∫ H

0
u(z)dz ⇒ H · umean = usur(H −

1

2
h(1 − FB)). (3.6)

Inserting Eq. (3.6) into Eq. (3.5) gives

∂H

∂t
= a + wb −

∂usur

∂x
(H −

1

2
h(1 − FB)). (3.7)

Assuming constant ice thickness during time
(

∂H
∂t

= 0
)

, the following ex-

pression for ∂usur

∂x
is found from Eq. (3.7)

∂usur

∂x
=

a + wb

H − 1
2h(1 − FB)

. (3.8)

From Eqs. (3.1), (3.4), and (3.8) it is seen that in order to calculate the
velocity at a given point in the ice cap, the following parameters must be
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known: The horizontal surface velocity usur, the kink height h, the fraction
of basal sliding FB, the ice thickness H, the basal melt rate wb, and the
accumulation rate a. In the following, all parameters except the latter are
assumed to be independent of time. Furthermore the basal melt rate is
assumed to be constant over intervals of 8 km, and the kink height and the
fraction of bottom sliding are assumed linearly dependent on the basal melt
rate:

h = α · wb + h0 (3.9)

and

FB = β · wb + FB0. (3.10)

When the ice is frozen to the bed (wb = 0) there will be no basal sliding.
Thus FB0 = 0 and Eq. (3.10) is reduced to

FB = β · wb. (3.11)

The parameters α, h0, and β are unknown and will be determined through
a Monte Carlo inversion of the flow model. H is known from radio-echo
sounding measurements [Chuah et al., 1996, Gogineni et al., 1998, Gogineni
et al., 2001, Kanagaratnam et al., 2001], and usur(x) is known from the
NorthGRIP strain net measurements [Hvidberg et al., 2002]. Estimates of
the present accumulation rates along the line a(tpresent, x) have been made
from shallow core studies [Dahl-Jensen et al., 1997]. Fig. 3.4 shows a plot
of H, usur, and a. In the following it will be assumed that the ratio between
the accumulation at NorthGRIP and that at other locations along the flow
line has remained unchanged during time, that is

a(t, x) = a(t, xNGRIP) ·
a(tpresent, x)

a(tpresent, xNGRIP)
. (3.12)

a(t, xNGRIP) is calculated from the accumulation model presented in the
following section.

3.3 The Accumulation Model

The modified Dansgaard-Johnsen model presented above requires the accu-
mulation rate history as input. The past accumulation rates are calculated



3.3 The Accumulation Model 19

260 280 300 320 340
0.19

0.2

0.21

a 
(m

 ic
e/

yr
)

260 280 300 320 340
0

1

2

u su
r (

m
/y

r)

260 280 300 320 340
3000

3100

3200

Distance from GRIP along the flow line (km)

H
 (

m
 ic

e)

Figure 3.4: From the top: The surface velocity, the present annual accumulation rate,
and the ice thickness along the ice ridge. The position of the NorthGRIP drill site is
indicated by the blue line.

using a model of the same type as the one used by Johnsen et al. [1995] to
date the GRIP ice core: The time dependent ice equivalent accumulation
rate a(t) is calculated from the measured δ18O-values

a(t) = a0 · e
k2(δ18O(t)−δ18Ow)+ 1

2
k1(δ18O(t)2−δ18O2

w) (3.13)

k1 =
c1 − c2

δ18Ow − δ18Oc
, k2 = c1 − δ18Ow · k1, (3.14)

where a0 = 0.193 m/yr is the present ice equivalent accumulation rate at
NorthGRIP, and δ18Ow = −35.2 0/00 and δ18Oc = −42 0/00 are typical δ18O
values for warm and cold climate at NorthGRIP, respectively. c1 and c2

denote the relative slopes of a in warm and cold climate, respectively:

c1 =
1

a

∂a

∂δ18O









δ18Ow

c2 =
1

a

∂a

∂δ18O









δ18Oc

. (3.15)

The parameters c1 and c2 are unknown and will be determined by the Monte
Carlo inversion.

The 18O content of the ice from the ice core has been measured relative
to the SMOW standard (Standard Mean Ocean Water). During the glacial
period massive amounts of water were stored as ice on the continents caus-
ing a eustatic sealevel lowering of the order of 120 m compared to present
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Figure 3.5: The measured NorthGRIP δ18O record plotted on the ss09sea timescale in
50 years resolution. [Johnsen et al., 2001].

conditions [Fairbanks, 1989]. Since the water was removed from the oceans
by evaporation, the δ18O value of the ocean water was positive during the
glacial period as opposed to 0 at present. Waelbroeck et al. [2002] have
derived past changes in sealevel and ocean δ18O from benthic foraminifera.
These ocean δ18O values have been used to correct the measured NorthGRIP
δ18O curve for the effect of the changes in ocean δ18O.

The timescale used for the δ18O curve is the ss09sea timescale, that was
developed for the GRIP ice core and then transferred to the NorthGRIP ice
core [Johnsen et al., 2001]. Fig. 3.5 shows the NorthGRIP δ18O curve plot-
ted on this timescale. It is seen that the ss09sea chronology predicts an age
of 123 kyr (kiloyears) at the bottom at NorthGRIP. Thus the accumulation
history obtained from the model described above reaches 123 kyr back in
time

3.4 Computational Approach

This model is used to simulate the flow along the line in the following way:
A modelled isochrone is started at the surface 123 kyr ago and followed as
it sinks down through the ice sheet. For every time step the position of the
modelled isochrone is stored.

If all the input parameters to the flow model were known, a timescale for
the ice could be derived directly from the model, but as described in this
chapter, 18 input parameters are unknown: α, h0, β, 13 values for the melt
rate, and c1 and c2. These parameters will be determined from a Monte
Carlo inversion of the flow model. This inversion technique and its direct
application to the problem at hand are described in the next chapters.

A one-dimensional version of the flow model presented above is obtained
by disregarding the horizontal velocity component. This one-dimensional
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model will also be inverted in order to illustrate the advantages of using af
two-dimensional model.



Chapter 4

Monte Carlo Inversion

Theory

Several model parameters for the model presented in the previous chapter
are unknown, and I wish to derive estimates for them by using a Monte
Carlo method to invert the flow model. This chapter gives an introduc-
tion to inverse Monte Carlo theory. Relevant concepts of inverse theory
and probability densities are described and the Monte Carlo algorithm is
deduced.

4.1 Inverse Problems

Consider a system described by a model with a finite number of model
parameters and by data obtained by observing the system. Ignoring the
measuring noise, the relationship between data and model parameters can
be expressed as

d = g(m), (4.1)

where d ∈ R
m and m ∈ R

n are vectors containing the exact data and the
model parameters, respectively, and g is a vector operator representing the
model. The problem of solving Eq. (4.1) for the data vector d is called the
forward problem: Given a model with known model parameters the data are
predicted. However, in geophysics it is more often the case that the data are
known from measurements and the model parameters are unknown. In that
case Eq. (4.1) needs to be solved for m. This is called the inverse problem:
Given a model and observed data the model parameters are calculated. The
inverse problem can be expressed as

m = g−1(d), (4.2)

22
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Figure 4.1: The mapping of the model vector m from the model space M into the data
vector d in the data space D by the operator g. The inverse operator g−1 performs the
opposite mapping.

where g−1 is the inverse of the operator g in Eq. (4.1). If the vectors d

and m are considered as points in the data space D and the model space
M, respectively, the operator g performs a mapping from M into D. The
dimensions of D and M need not be the same, and generally they are not.
In order to solve the inverse problem in Eq. (4.2) we need to construct
the inverse operator g−1 which performs the mapping from D into M (see
Fig. 4.1). Simple linear inverse problems may be solved using damped
least squares or singular value decomposition [Menke, 1989]. However, most
geophysical problems are not simple, and it is often impossible to construct
the inverse operator g−1. Indeed, sometimes even the relation g is not given
explicitly but exists only in form of a numerical algorithm. In that case the
inverse problem must be solved in another way, e.g. by the Monte Carlo
method. In order to explain the Monte Carlo method, some concepts from
probability theory are introduced below.

4.2 Introducing Probability Densities

In the following all expressions for probability density functions will be given
without a possible multiplicative constant.

In Section 4.1 we ignored the measurement noise and considered only the
exact theory (4.1). Accounting for the noise Eq. (4.1) becomes

dobs = g(m) + n (4.3)

where dobs ∈ R
m and n ∈ R

m are vectors containing the observed data
and the noise, respectively. As measurements can never provide us with
the exact data vector it is not practical to view d and m as points in D
and M. A better approach is to work with a probability density function
ρ(d, m) in the system space S given by the Cartesian product of the data
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and model spaces. All a priori information – all the information we have
before any mathematical analysis – is contained in ρ, which is called the
a priori probability density function. A priori information consists of the
observed data, their uncertainties and constraints on the model parameters
[Tarantola and Valette, 1982]. The case of no a priori information is repre-
sented by the null information function µ. The concept of null information
is best illustrated through two examples:

1. Assume that we wish to determine the position of the highest point on
the Greenland ice sheet from satellite altimeter data. The probability
function µ1 containing the least information on the location of the
highest point must be one that assigns the same probability dP to
any area increment dA no matter where on the ice sheet it is located:
dP = constant · dA. Using Cartesian coordinates dA = dxdy, and the
null information function becomes µ1 = const.

2. Now assume we want to measure the wavelength λ of a ray of elec-
tromagnetic radiation. Let µλ(λ) be the null information function for
the wavelength. The frequency ν of the radiation is given by ν = c/λ,
where c is the speed of light. If µν(ν) denote the null information
function for the frequency we have

µν(ν) = µλ(λ)









dλ

dν









=
c

ν2
µλ(λ). (4.4)

As λ and ν are equivalent parameters their null information functions
must have the same form. From Eq. (4.4) we then have µλ(λ) = constant

λ

and µν(ν) = constant
ν

.

Variables with constant null information functions are called Cartesian.
Through a simple change of variables from λ and ν to log λ and log ν the
variables from Example 2 become Cartesian.

The theoretical relationship g between the data and the model parame-
ters is not exact but merely a simplified description of the real world. Even
given the model parameters m, we are not able to calculate the true values
for d. We therefore replace the exact theory with a theoretical probability
density function θ(d, m). This may be interpreted as “putting error bars on
the exact theory” [Tarantola and Mosegaard, 2000].

All our information is now contained in the probability density functions
ρ and θ. A new state of information is given by the conjunction of these

σ(d, m) =
ρ(d, m)θ(d, m)

µ(d, m)
. (4.5)
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σ is the a posteriori probability density function. The a posteriori marginal
probability density functions are given by

σd(d) =

∫

ρ(d, m)θ(d, m)

µ(d, m)
dm (4.6)

and

σm(m) =

∫

ρ(d, m)θ(d, m)

µ(d, m)
dd, (4.7)

where σd and σm are the a posteriori probability density functions in D and
M, respectively. Eq. (4.6) solves the general forward problem and Eq. (4.7)
solves the general (non-linear) inverse problem [Tarantola and Valette, 1982].

4.3 The Likelihood Function

Assume we have a data set d and a non-linear model with model parameters
m, and that the a priori information and theoretical knowledge are contained
in ρ(d, m) and θ(d, m), respectively. We seek a posteriori information on
the model parameters. Thus we need to solve Eq. (4.7). If the a priori
information on d and m is independent we have

ρ(d, m) = ρd(d)ρm(m) (4.8)

and
µ(d, m) = µd(d)µm(m). (4.9)

The theory g puts no constraints on m. Therefore we have

θ(d, m) = θ(d|m)µm(m), (4.10)

where θ(d|m) is the conditional theoretical probability density function,
that is, the theoretical probability density function for d given m. From
Eqs. (4.7), (4.8), (4.9), and (4.10) we get

σm(m) = ρm(m)

∫

ρd(d)θ(d|m)

µd(d)
dd. (4.11)

Defining the likelihood function

L(m) ≡

∫

ρd(d)θ(d|m)

µd(d)
dd (4.12)

we have
σm(m) = ρm(m)L(m). (4.13)

The likelihood function can be interpreted as a measure of the agreement be-
tween the observed data and the data calculated from the model parameters
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[Mosegaard, 1998]. Assuming Gaussian uncertainties the likelihood function
takes the form

L(m) = e−S(m), (4.14)

where S(m) is the misfit function given by

S(m) =
1

2

∑

i

(di − gi(m))2

s2
i

(4.15)

Here si denotes the uncertainty on a data point di.

4.4 The Inverse Monte Carlo Algorithm

The general inverse problem is now reduced to determining ρm(m) and
L(m) over the entire model space, but as this is usually of high dimension
it may be a considerable task. Moreover, evaluation of g(m) may only
be possible through a time consuming numerical algorithm. However, the
necessary amount of work can be considerably reduced if a Monte Carlo
method is used. A Monte Carlo method is an algorithm that uses random
numbers to solve a computational problem. More precisely, we will construct
a random walk that samples the model space according to the a posteriori
distribution σm (importance sampling). A random walk is characterized
by the conditional transition probability P (mi|mj) that the next step will
take us to mi if we are currently at mj. The unconditional probability
P (mi, mj) that the next step will be from mj to mi is given by

P (mi, mj) = P (mi|mj)p(mj), (4.16)

where p is the equilibrium probability of the random walk [Mosegaard and
Tarantola, 1995]. The equilibrium probability is unique if it is possible for
the random walk to go from any one point in the model space to any other
in a sufficient amount of steps [Feller, 1970].

Our goal is to construct a random walk with equilibrium probability density
σm. Assume that after a number of steps the equilibrium has been reached.
We want to maintain this equilibrium if we keep walking, that is we require
microscopic reversibility

P (mi|mj)σm(mj) = P (mj|mi)σm(mi). (4.17)

From this and Eq. (4.13) we get

P (mi|mj)ρm(mj)L(mj) = P (mj|mi)ρm(mi)L(mi). (4.18)

This requirement is met if we choose P (mj|mi) proportional to ρm(mj)L(mj)
[Mosegaard, 1998].
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Assume that we have a random walk that equilibrates at the a priori prob-
ability density ρm. We will now modify this random walk to sample the a
posteriori probability density σm instead. As opposed to accepting every
step suggested by the random walk and thereby sample the a priori prob-
ability density, we will sometimes discard the step and stay where we are.
We will use the Metropolis criterion

Paccept = min

(

1,
L(mi)

L(mj)

)

(4.19)

to decide whether or not to take the step from mj to mi: If the likelihood
of the suggested model mi is higher than or equal to that of the current
model mj the step is accepted. Otherwise the step is accepted with the

probability L(mi)
L(mj ) . It can be shown that this new random walk samples the

a posteriori probability density [Mosegaard and Tarantola, 1995].

The specific random walk used in the inversion of the flow model, that
simulates the flow in the area around NorthGRIP, is derived in Chapter 6.



Chapter 5

The Observed Data

In order to perform a Monte Carlo inversion of the flow model presented
in Chapter 3, a set of known depth-age horizons is needed. As described
en Section 2.2.3, the internal layers constitute such a set. The data used
in this thesis is from a RES profile along the NNW-trending ice ridge
from GRIP to NorthGRIP (see Fig. 5.1). The data were collected by
the University of Kansas in 1999 [Chuah et al., 1996, Gogineni et al., 1998,
Gogineni et al., 2001, Kanagaratnam et al., 2001]. The profile was mea-
sured with their coherent radar system, which operates at a center frequency
of 150 MHz. The radar transmits a pulse with a duration of 1.6 µs and a
peak power of 200 W. The depth resolution in ice is 5 m and the horizontal
resolution is 160 m [University of Kansas, RSL]. The system was operated
from a NASA P-3 aircraft equipped with GPS receivers. Fig. 5.2 shows the
radar image obtained along the ice ridge in 1999. It is seen from Fig. 5.1
that the RES profile does not run right past the NorthGRIP drill site, but
passes it a few kilometres to the East. In 2003 the University of Kansas
obtained a 19.3 km long RES profile that runs right past the drill site, and
is parallel to the 1999 line. The radar image obtained along the 2003 line is
seen in Fig. 5.3.

A comparison of the radar images from the two lines shows that though the
overall structure of the layers is very similar in the two images, the layers are
located up to several tens of meters deeper in the 2003 profile than in the
1999 profile (see Fig. 5.4). This is significant because the ss09sea depth-age
relationship at NorthGRIP is used to date the fixpoints (the isochrones), and
a difference in depth of several tens of meters corresponds to a significant
difference in age. For the case of the lowest isochrone there is a difference
of 25 m between the depth at the drill site and that at the point on the
1999 line, which is closest to it. This corresponds to an age difference of
1.8 kyr. To overcome this problem the 1999 line has been diverted towards

28
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Figure 5.1: Left: The location of the 320 km long RES profile. The GRIP and North-
GRIP drill sites are marked by the green and blue asterisk, respectively. Middle: Close
up of the figure to the left. Note that the profile does not pass right through NorthGRIP
but passes a couple of kilometres East of the site. Right: The data line used in this
study. The line has been diverted towards NorthGRIP. In the dotted parts of the line
interpolated values have been used.

Figure 5.2: RES profile measured along the NNW-trending ice ridge from GRIP to
NorthGRIP. The ice surface and the bedrock are marked in red. The NorthGRIP ice core
is shown in blue and the dashed white lines indicate the beginning and the end of the 100
km long interval used in this work. The arrows to the right indicate a gap with weak or
no reflectors. Data from [Chuah et al., 1996, Gogineni et al., 1998, Gogineni et al., 2001,
Kanagaratnam et al., 2001].
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Figure 5.3: The 2003 RES profile that runs right past the NorthGRIP drill site. The
drill site is located at x=0. The direction towards GRIP is to the left in the picture.

NorthGRIP in the vicinity of the drill site. This is done by replacing 19.3 km
of 1999 data with the 2003 data in the vicinity of NorthGRIP. In each end
of the replaced section a smooth interpolation between the two data sets is
made over ∼6 km. The adopted data line is depicted on the right in Fig. 5.1.

Fig. 5.2 shows some prominent features. One is the gap with very weak
or no reflectors found at NorthGRIP elevations of 900–1400 m. The gap is
found in ice deposited around 20 kyr ago during the Last Glacial Maximum
[Dahl-Jensen et al., 1997], and it is seen in most RES profiles from Green-
land [Riishøjgaard, 1989]. The reason for the gap could be that the signals
from volcanic eruptions are masked by the alkalinity of the ice from this pe-
riod [Hempel et al., 2000]. Another important observation from Fig. 5.2 is
that the layers are undulating along the line. The amplitude of the undula-
tions is increasing with depth. This implies that the undulations can not be
caused by accumulation variations along the line. Because the undulations
have amplitudes of up to several hundred meters, bedrock topography also
fails as a possible explanation. Most likely, the undulations are caused by
changes in the basal melt rate along the line. The higher the melt rate is,
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Figure 5.4: The depths of the isochrones in the 1999 profile (black) and in the 2003
profile (green). The bedrock is shown in red.

the further will the isochrones be dragged down. Notice that NorthGRIP is
located at a spot where the isochrones are waving up. This site was chosen
in order to have the Eemian ice located as far above bedrock as possible in
the ice core [Dahl-Jensen et al., 1997]. About 200 km from GRIP a region
of highly disturbed layers is seen. The disturbances are caused by very high
melt rates [Fahnestock et al., 2001]. This is actually the region where the
great ice stream covering most of North East Greenland has its offspring
[Fahnestock et al., 2001].



Chapter 6

Inversion of the Flow Model

The system at hand is described by the modified Dansgaard-Johnsen model,
its parameters, and the observed data presented above. This chapter de-
scribes the a priori information, explains the precise use of the data set, and
gives and outline of the algorithm used for this specific problem.

6.1 A Priori Information

The a priori knowledge in the data space D consists of the depths and ages
of the internal layers (the data points) and the corresponding uncertainties.
The model parameter vector is given by

m = [c1, c2, α, h0, β, wb1, wb2, wb3, · · · , wb13]. (6.1)

The a priori information on the model parameters consists of intervals that
each parameter is confined to. The constraints on α and h0 are given through
h and those on β are given through FB (cf. Eqs. (3.9) and (3.11)). The
intervals are given in Table 6.1.

32
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Parameter Lower Boundary Upper Boundary

c1 ( 0/00
−1) 0.04 0.3

c2 ( 0/00
−1) 0.04 0.3

wb (m/yr) 0 0.05

h (m) 200 2800

FB 0 1

Table 6.1: The intervals to which the values of the model parameters are

confined. The constraints on α and h0 are given through constraints on h,

and those on β are given through constraints on FB .

6.2 Choosing the Fix Points

As mentioned above the depths and ages of the ss09sea-dated isochrones con-
stitute the observed data. It is seen from Fig. 5.2 that numerous isochrones
can be distinguished on the RES images. Thus it is possible to create a vast
data set from these images. However, if such a large data set is used in the
search for the parameters of the flow model, the system would be completely
tied to the ss09sea dating, and only a minimal amount of new information
would be gained from the present analysis. Thus we will choose a number
of data points that is sufficient to gain information on the model param-
eters, but not so large that the analysis is tied too strictly to the ss09sea
dating. I have decided to use five fix points for the inversion, four of which
are given depth-age relationships. The first three are constituted by the
isochrones ss09sea-dated to 3.6, 14.6, and 45.8 kyr BP (BP here meaning
before 2000 A.D.). These layers have been carefully selected according to
the following criteria:

• The data set must contain points from the Holocene as well as the
glacial period.

• The layers must be easily distinguishable from the surrounding layers
in the RES images.

The Holocene and glacial periods are represented by the 3.6 kyr and the
45.8 kyr isochrones, respectively. The 14.6 kyr isochrones marks the onset
of the Bølling interstadial.1 These three isochrones are indicated on the

1An interstadial is a relatively short-lived period with thermal improvement during a
glacial period. 25 interstadials have been observed in Greenland during the past glacial
period. Bølling constitutes Greenland Interstadial 1.
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Figure 6.1: The depths of the chosen isochrones are indicated on the δ18O curve. The
ss09sea age in kyr BP is indicated for each isochrone.

δ18O curve on Fig. 6.1 and they are shown as solid white lines on the
radar image in Fig. 6.2. The fourth depth-age fix point is the age at the
bottom at NorthGRIP. This fix point is indicated by the white asterisk in
Fig. 6.2. Finally, a fifth fix point with no constraints regarding the dating
is introduced: A weak isochrone near bedrock is visible in the radar images,
and the shape of this layer is used to further constrain the analysis. Strictly
speaking, this fifth fix point is not a data point since it does not relate depth
and age. However, it is a good way to constrain our analysis: If the shape
of a modelled layer at this depth (regardless of the age) does not resemble
that of the observed isochron, the values used for the model parameters can
not be good estimates. This lower isochrone is shown as the dashed white
line in Fig. 6.2.

6.3 Accounting for Uncertainties

The uncertainty on the depth of an isochrone is a result of the limited reso-
lution of the radar used to recover the data. This uncertainty is accounted
for through the likelihood function, Eq. (4.15). However, there is also an
uncertainty on the dating of the ice core. This is accounted for by calculat-
ing two misfits for the depth-age fix points – one for the depth (the shape)
of the isochrone and one for the age. The fix points and the uncertainties
are given in Table 6.3.
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Figure 6.2: The section of the 1999 RES profile used in the present study. The three
solid white lines indicate the isochrones of ages 3.6 kyr, 14.6 kyr, and 45.8 kyr. These
are used as fixed depth-age horizons in the Monte Carlo inversion. The dashed white line
indicates the deep layer used to further constrain the model. Only the shape of this layer
is regarded in the analysis – no fixed age has been assigned to it. Finally, the age at the
bottom at NorthGRIP is used as a fix point. This is indicated by the white asterisk.

Fix point Depth at NGRIP ss09sea-age

Holocene Isochrone 637±10 m 3.6±0.05 kyr

Bølling Isochrone 1602±10 m 14.6±0.5 kyr

Glacial kyr Isochrone 2188±10 m 45.8±2 kyr

Lower Isochrone 2617±10 m Not used

Bottom 3085±10 m 123±2 kyr

Table 6.2: The depths and ss09sea-ages of the selected fix points.

6.4 Creating the Random Walk

As the a priori information on the model parameters only consists of an
interval for each parameter, it is straight forward to construct a random
walk that samples the a priori probability density ρm in the model space.
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It merely has to pick each value in the interval with equal probability. By
accepting or rejecting the suggested step using the Metropolis criterion from
Eq. (4.19) this walk is modified to sample the a posteriori probability density
σm instead. In every step each model parameter is altered by a uniformly
distributed random value. The maximum change in value is given by a step
length for each parameter. The step lengths are chosen in order to get a
reasonable acceptance rate for the random walk. If the step length is chosen
too small the search of the model space will proceed very slowly, and if it
is chosen too big a large number of steps will be rejected. As the misfit
gets smaller the step length is gradually reduced in order to maintain the
acceptance rate. The initial step lengths are shown in Table 6.3.

Parameter c1 ( 0/00
−1) c2 ( 0/00

−1) α (yr) h0 (m) β (yr/m) wb (m/yr)

Step Length 0.002 0.002 1000 100 1 0.001

Table 6.3: The initial step lengths for the model parameters.

Now we have all the tools we need to solve the problem. The algorithm is
outlined below:

1. Make a guess as to the values of m

2. Run the forward model

3. Calculate the misfit S(m)

4. Perturb the model m
--

mtest

5. Run the forward model with the perturbed model parameters mtest

6. Calculate the new misfit S(mtest)

7. Accept or reject the perturbed model according to the Metropolis cri-
terion.

8. Repeat from step 4

Every time the forward model is run, a modelled isochrone is followed as
it sinks down through the ice sheet. The better this modelled isochrone
matches the shapes and ages of the observed isochrones, the smaller is the
misfit. The accepted model parameters are stored, and after sufficiently
many steps by the random walk, the set of accepted model parameters



6.4 Creating the Random Walk 37

represent the a posteriori probability density. The random walk must be
continued until there is no trend in the misfit, and doubling the number
of accepted models will not change the histograms for the accepted model
parameters significantly. The mean of all the accepted values of a model
parameter can then be regarded as a posterior-probability weighted mean.
Running the forward model with these mean values for the parameters will
result in the desired timescale (the relation between depth and age).

Because the ss09sea-dated δ18O curve is used to obtained the accumula-
tion history at NorthGRIP, the derived timescale will inevitably depend on
the ss09sea dating. In order to minimize this dependance a second Monte
Carlo inversion of the flow model is performed. In this second inversion the
timescale derived from the results of the the inversion is used instead of
the ss09sea timescale to calculate the accumulation history and to date the
fix points. The results from the second inversion are presented in the next
chapter.



Chapter 7

Results and Discussion

7.1 The Model Parameters

7.1.1 The Basal Melt Rate, wb

As described in Section 3.2 the 100 km long section of the ice ridge between
GRIP and NorthGRIP investigated in this study was divided into 13 inter-
vals of 8 km (except the very first interval which is only 4 km). The melt
rate was assumed to be constant within each of these intervals. The Monte
Carlo inversion reveals estimates of the melt rates in the intervals. Because
the effect of basal melting increases with depth, the deep fix points are very
important for the determination of the melt rate. At a depth of ∼2 km the
modelled isochrone has typically moved ∼20 km along the ridge, and thus
left the three first melt rate intervals (see Fig. 7.3). This means that the
inversion has not had any constraints in the deep part of the ice for the
first 20 km of the line, and the melt rate estimates obtained for that area
can not be considered reliable. Fig. 7.1 shows histograms of the accepted
melt rates in the remaining 10 intervals. All these histograms show strong
single maxima, which indicates that the melt rates in these intervals are
well determined by the inversion. The variation of the melt rate along the
line is depicted in the upper panel of Fig. 7.2. The values vary between
4.1±0.5 mm/yr and 10.4±1.1 mm/yr. The lowest value along the line is
found at NorthGRIP.

In the vicinity of NorthGRIP the line of data was diverted towards the
drill site (cf. Chapter 5). In the zone 308–315 km from GRIP the used
depths of the isochrones are interpolations between the 1999 and 2003 pro-
files (cf. Fig. 5.1). Upstream from NorthGRIP the isochrones are located
up to several tens of meters deeper in the 2003 profile than in the 1999

38
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Figure 7.1: The a posteriori probability distributions for the melt rates in the last 10
intervals along the line. The distance from GRIP is given above each histogram. The
histogram for the interval containing NorthGRIP is shown in blue. The mean value and
standard deviation are given above each distribution.
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Figure 7.2: From the top: Melt rate, geothermal heat flux, kink height, and bottom
sliding along the flow line. The solid line is the mean value of the parameter, and the
dotted lines represent one standard deviation to either side of the mean value. The blue
line indicates the position of NorthGRIP.
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Figure 7.3: The solid black lines indicate the modelled isochrone at different times. The
surface and bottom of the ice are marked in red. The dotted lines indicate the melt rate
intervals. It is seen that the modelled isochrone has left the first three intervals before it
reaches large depths.
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Figure 7.4: Above: The lowest isochrone from the radar data set used in this study.
Below: The melt rates along the line found from the Monte Carlo inversion. Notice the
reversed vertical axis. NorthGRIP is indicated by the blue line.

profile. Consequently, an artificial contribution to the dip of the isochrones
is created in the interpolation zone. Thus we expect the melt rate found for
the intervals 304–312 km and 312–320 km to be somewhat overestimated.
In the interpolation zone downstream from NorthGRIP (334–340 km) the
differences between the depths of the deep isochrones in the two profiles are
of the order of a few meters (see Fig. 5.4), and the moving of the flow line
is not believed to have had a significant effect on the obtained melt rates in
this area.

Fig. 7.4 shows a comparison between the shape of the lowest isochrone
and the variation of the melt rate along the line – notice the reversed verti-
cal axis for the melt rate plot. The two curves show very similar patterns,
but the isochrone curve is shifted a little bit to the right. The shift can be
explained by the horizontal flow velocity of the ice. The features created by
the melt rate at a given place is carried with the ice along the line. The
observations from Fig. 7.4 support the assumption that the shape of the
isochrones is related to variations in the melt rate.

When the melt rate is known, the amount of heat used to melt the ice, Qmelt,
can be calculated using the relation

Qmelt = ρwbL, (7.1)

where ρ and L are the density and the latent heat of the ice, respectively.
The amount of heat transported through the ice at the base, Qice, is given
by

Qice = −K
∂T

∂z
, (7.2)
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where K is the thermal conductivity of ice, and ∂T
∂z

is the temperature
gradient at the base. Using Qice=70 mW/m2 [North Greenland Ice Core
Project Members, 2004] and the basal melt rates found in this study, the
geothermal heat flux Qgeo along the line is calculated from the relation

Qgeo = Qmelt + Qice. (7.3)

The obtained values are between 110±5 mW/m2 and 171±10 mW/m2 (see
Fig. 7.2). The lowest value is found at NorthGRIP. As the geothermal heat
flux is calculated from the obtained melt rates we expect a positive artificial
contribution to the geothermal heat flux in the 304–312 km and 312–320 km
intervals. The geothermal heat flux in the NorthGRIP area is considerably
larger than that at GRIP. At GRIP there is no basal melt and the geothermal
heat flux can be calculated directly from the observed temperature gradient
at the base. This reveals a value of 51 mW/m2 [Dahl-Jensen et al., 1998],
which is a typical value for Precambrian shield, that is believed to cover
most of Greenland. The high values of Qgeo found in this study are atypical
for Precambrian shield.

7.1.2 The Kink Height, h

Fig. 7.5 shows the a posteriori probability distribution for the remaining
five model parameters. The kink height h was tied linearly to the melt rate,
with using the parameters α and h0 (cf. Eq. (3.9)). The distribution for h0

shows a strong single maximum at 1848±128 m, while the value of α is not
well determined by the inversion, since the uncertainty is of the same order
as the value itself (see Fig. 7.5). However, if we for each set of accepted
model parameters calculate the value of h from Eq. (3.9), the distributions
of h for each melt rate interval all show a strong single maximum. Because
the contribution to h from h0 is considerably larger than that from α and
wb, the ill determined nature of α has little effect on the value of h. The
histogram for h for the interval containing NorthGRIP is shown in Fig. 7.6.
The obtained values of h are between 1869±123 m and 1902±121 m (see
Fig. 7.2). The artificially high melt rate in the interpolation zone may lead
to an artificially high value of h in that area, but as the effect of the melt
rate on h is little, the overestimation is believed to be small.

7.1.3 The Fraction of Basal Sliding, FB

The mean value of β is 11.5±3.6 yr/m, but the histogram shows two separate
maxima at 8.2 yr/m and 13.9 yr/m (see Fig. 7.5). Because FB is calculated
from β using Eq. (3.11) the ambiguity in β might be present in FB also.
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Figure 7.5: The a posteriori probability distributions for the model parameters. The
mean and standard deviation for each parameter is given above the distribution. c1 and
c2 are the parameters of the accumulation model, while α and h0 are used to calculate the
kink height h from the melt rate. β links the fraction of bottom sliding, FB , to the melt
rate.
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Figure 7.6: The histogram for the values of h for the interval containing NorthGRIP
(320–328 km). The histograms for the other intervals along the line look very similar.
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Figure 7.7: The histograms for the calculated values of FB along the line. The mean
value and standard deviation are given above each distribution, and the distance of the
melt rate interval from GRIP is indicated above each plot. The Interval containing North-
GRIP is shown in blue. It is seen that the histograms for the last three intervals have
double peaks.

The histograms for the values of FB for each melt rate intervals show, that
this is mainly the case for the last three intervals (see Fig 7.7). Thus the
ambiguity is only present downstream from the drill site, and has therefore
not affected the dating of the core. The obtained values for FB vary between
0.047±0.014 and 0.118±0.033 along the line (see Fig. 7.2). As for the case
of h the artifact from the melt rate in intervals 304–312 km and 312–320 km
may cause an overestimation of the fraction of sliding in this interval.

7.1.4 The Accumulation History

The parameters c1 and c2 of the accumulation model are estimated to
0.0485±0.0043 0/00

−1 and 0.259±0.021 0/00
−1, respectively, but the histogram

for c2 is not very smooth (see Fig. 7.5). The resulting accumulation his-
tory for NorthGRIP is shown in Fig. 7.8. The mean accumulation rate
in the Holocene is found to be 0.199 m/yr, which is close to the observed
0.193 m/yr. According to the obtained accumulation history for NorthGRIP,
the accumulation rate was as low as 0.05 m/yr during the Last Glacial Max-
imum 20 kyr ago (the coldest part of the glacial period). This value is only
25 % of the Holocene value. This large temporal variation in the accumula-
tion rate illustrates the importance of using a time dependent accumulation
model when establishing a timescale for the NorthGRIP ice core.
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Figure 7.8: The accumulation history for NorthGRIP calculated with c1=0.0485 0/00
−1

and c2=0.259 0/00
−1.

7.2 Correlation Between the Parameters

The system at hand is highly non-linear and correlations between the pa-
rameters are expected. The correlation matrix is plotted in Fig. 7.9. It is
seen that the strongest correlation is between c1 and c2. The correlation
coefficient is calculated to 0.77. This strong correlation suggests that the
same information is contained in the two parameters. Therefore one could
consider eliminating one of the parameters in the accumulation model and
thus having one less parameter to determine. In this study, however, both
parameters were used. A scatter plot of the accepted values of c1 and c2 is
found in Fig. 7.10. The points are seen to fall close to a straight line.

c2 and h0 are negatively correlated with a correlation coefficient of -0.37.
The correlation between the two parameters can be understood by consid-
ering the effects of the accumulation rate (represented by c2) and the kink
height (represented by h0) on the layer thickness profile. A decrease in c2

causes an increase in the accumulation rate for most of the period, and in-
creased accumulation leads to higher layer thicknesses. An increase in h0

corresponds to an increase in h, which leads to thinner layers. Thus changing
c2 and h0 in opposite directions maintains the layer thickness profile.

7.3 The New Timescale

A new timescale for the NorthGRIP ice core is established by running the
forward model with the parameters obtained from the second Monte Carlo
inversion. Fig. 7.11 shows the depth-age relationship found from the first
inversion in green and that from the second inversion in blue. The depth-
age relationship from the ss09sea timescale is shown in red for comparison.
Fig. 7.12 shows the δ18O curve plotted on ss09sea timescale (red) and on the
timescale obtained in this study (blue). It is seen that the new timescale
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Figure 7.11: The depth-age relationship from the first (green) and the second (blue)
inversion of the flow model presented in Chapter 3. The red curve shows the ss09sea
timescale for comparison.

assigns younger ages to the glacial period and older ages to the Eemian
period compared to the ss09sea timescale. The new timescale assigns an
age of 126.5 kyr to the bottom of the core. This is 3.5 kyr older than the
ss09sea age of 123 kyr. The new dating indicates a slower transition from the
warm Eemian temperatures to the cooler intermediate temperatures reached
just before the onset of Greenland Interstadial 25. According to the ss09sea
timescale this transition takes seven kyr, but according to the new timescale
it takes 12 kyr. The older dating of the bottom ice indicates that the core
contains a larger part of the Eemian than previously assumed.

Fig. 7.13 shows the trajectories of ice found at the depths of the fix points
in NorthGRIP ice core. The ice at the bottom at NorthGRIP has travelled
a horizontal distance of 48 km. This ice was deposited 276 km from GRIP,
which is well within the 100 km section treated in this study. The unreliable
melt rate estimates for the first 20 km of the section is therefore not believed
to have affected the timescale derived for the NorthGRIP ice core.
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Figure 7.12: The NorthGRIP δ18O curve in 50 years resolution plotted on the ss09sea
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Figure 7.13: The travel paths (dotted lines) of the ice presently found at depths of
637 m, 1602 m, 2188 m, 2617 m, and 3085 m at NorthGRIP. The basal ice has travelled a
horizontal distance of 48 km. The isochrones used to constrain the Monte Carlo inversion
are shown as solid lines. The NorthGRIP ice core is indicated in blue and the surface and
the bedrock in red.
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7.4 Discussion of Assumptions

The accumulation rate model is built on the assumption that a positive cor-
relation exists between the accumulation and the δ18O values. This assump-
tion is supported by observations from Central Greenland: Dahl-Jensen et
al. [1993] found a strong positive correlation between past accumulation
rates and δ18O values at the GRIP site.

The ratio between the accumulation rate at NorthGRIP and that at other
locations along the flow line was assumed constant in time. At present
the ratio of the accumulation at NorthGRIP to that at GRIP is 83 %, but
Grinsted and Dahl-Jensen [2002] found that this ratio was as low as 66 %
during the glacial period. This indicates that the accumulation ratio at
other places along the line may also have changed in time. Consequently the
assumption of unchanged accumulation pattern along the line during time
may be poor. The results from Grinsted and Dahl-Jensen [2002] indicate
that the accumulation pattern seen today in the area between GRIP and
NorthGRIP was more pronounced during the glacial period. If this is the
case, the accumulation rates used upstream from NorthGRIP in this model
are slightly overestimated for the glacial period. An overestimation of the
accumulation rate leads to overestimated vertical velocities and consequently
younger ages with depth.

By comparing the climate records from cores from different sites in Green-
land North Greenland Ice Core Project members [2004] find that the ice
thickness in Northern Greenland during the Eemian was within 100 m of
the current thickness. Furthermore, Letréguilly et al. [1991] used a three-
dimensional time-dependent ice sheet model to simulate the evolution of the
Greenland Ice Sheet during the last 150 kyr, and they found that the ice
thickness in Central Greenland was almost unchanged during this period.
Thus the assumption of constant ice thickness in time seems reasonable.

The melt rate was also assumed to be constant in time. However, the tem-
perature at a given depth in the ice cap depends on the surface temperature
at the time the layer was formed (cf. Section 2.1.2). This and the chang-
ing accumulation cause the advection of cold ice to the bottom to change
with time. The geothermal heat flux does not change considerably on this
timescale. Therefore the melt rate will change in time (cf. Eq. (7.3)).
The temporal variation of the melt rate could be accounted for by using
a thermo-mechanical model, but incorporating this into the Monte Carlo
inversion would make the computations too slow.
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Figure 7.14: Observed (black) and modelled (red) isochrones. The modelled isochrones
reproduce the large scale undulations of the observed isochrones.

7.5 Comparison With Observations

The modelled isochrones are shown together with the observed ones in
Fig. 7.14. It is seen that the modelled isochrones capture the large scale
wickles of the observed isochrones. The 8 km resolution in the melt rate
makes it impossible for the model to capture the small scale undulations. It
is concluded that the model is able to reproduce the observed data well.

7.6 The One-Dimensional Model

By disregarding the horizontal velocity component the two-dimensional model
presented in Chapter 3 is reduced to a one-dimensional model. The com-
putation time is significantly shorter for the one-dimensional model. By
comparing the results from the inversions of the one- and two-dimensional
models, the advantages of the two-dimensional model may become apparent.

The results of the inversion of the one-dimensional version of the model is
seen in Fig. 7.15. No well defined values are found for c1 and c2, but c1 is very
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Figure 7.15: The histograms for the accepted model parameters for the one-dimensional
model.

close to zero and c2 tends to be larger than the result for the two-dimensional
model. The resulting accumulation rates during the Last Glacial Maximum
are as low as 0.02 m, which is highly unlikely. This unrealistic accumulation
history is a result of not taking the upstream effects into account.

The melt rate is found to be 6.6±0.1 mm/yr, which is close to the mean
of the melt rates obtained along the line with the two-dimensional model.
The timescales from the one- and two-dimensional models are very similar,
but close to the bottom there are significant differences (see Fig. 7.16). The
one-dimensional model dates the bottom ice to 121 kyr BP – 5.5 kyr younger
than the two-dimensional model. This younger age at the bottom is caused
by the higher melt rate at NorthGRIP.

The δ18O curve is plottet in black on the timescale from the one-dimensional
model in Fig. 7.12. The transition from the warmest of the Eemian to the
onset of Greenland Interstadial 25 takes 10 kyr.

Even though the differences between the timescales from the one- and two-
dimensional models are smaller than I had anticipated I believe it is worth
taking the extra trouble to use the two-dimensional model. Especially for
the bottom part of the core the results from the two-dimensional model are
more reliable, because the ice found here has travelled the longest horizontal
distance (cf. Fig. 7.13). Furthermore, the inversion of the two-dimensional



7.6 The One-Dimensional Model 52

0 20 40 60 80 100 120

0

500

1000

1500

2000

2500

3000

Age (kyr)

D
ep

th
 (

m
)

2D
1D

Figure 7.16: The depth-age relationship found from inversion of the 2-dimensional model
(blue) and the 1 dimensional version (red), respectively.

model gives knowledge on the conditions in the area, e.g. estimates of the
variation of the melt rate along the line.



Chapter 8

Conclusion

A modified Dansgaard-Johnsen model was used to simulate the flow along
a 100 km section of the ice ridge between GRIP and NorthGRIP. The flow
model was successfully inverted using a Monte Carlo method. This revealed
estimates for 18 input parameters. Disregarding the first 20 km of the
section where the inversion was insufficiently constrained, the parameters
were generally well determined by the inversion.

The melt rate at NorthGRIP was estimated to 4.1±0.5 mm/yr. As expected,
the melt rate was found to vary along the line of investigation. The wickles
of the deep isochrones were found to follow the melt rate pattern, but the
features were shifted along the ridge. This is can be explained by the ice
flowing along the ridge. The ice at the bottom was found to have been
deposited 48 km upstream from the drill site.

The geothermal heat flux was determined to 110±5 mW/m2 at NorthGRIP.
Both upstream and downstream from the site the value is higher.

A new timescale for the NorthGRIP ice core was established from the es-
timated parameters. This new timescale assigns an age of 126.5 kyr to the
ice at the bottom – 3.5 kyr older than the ss09sea age. It predicts a much
slower temperature decline at the end of the Eemian period than the ss09sea
model (12 kyr compared to 7 kyr).

A one-dimensional version of the flow model was also inverted. The resulting
timescale was surprisingly similar to that obtained by the two-dimensional
model, but the accumulation history obtained from the one-dimensional
model showed unrealistically low accumulation rates during the glacial. This
is the result of not accounting for the change in conditions upstream from
the drill site. The two-dimensional model is believed to provide more reliable
results – especially in the deep part of the core.
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The advantage of the new model compared to the ss09sea model is that it
accounts for the enhanced melting upstream from the drill site. It should be
emphasized that this model was developed with the purpose of dating the
ice found deep in the NorthGRIP ice core.



Chapter 9

Outlook

An obvious next step would be to improve the model by allowing several
parameters and not just the accumulation rate to vary with time. Account-
ing for the temporal changes in melt rate and accumulation pattern along
the line would raise the credibility of the model results.

In the lower part of the ice sheet the ice is strongly anisotropic, which
affects the flow significantly. The fabric at a given depth can be determined
from studying thin sections from the ice core under crossed polaroids. The
model presented in this thesis may be modified to account for the change of
fabric with depth.

The shape of the deep isochrones was seen to follow the melt rate pattern.
That indicates that the shape of the isochrones as seen on the radar images
can be used to infer the amount of melt under the ice in Greenland. This
would contribute significantly to the understanding of the mass balance of
the Greenland Ice Sheet.
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and White, J. (2001). Oxygen isotope and palaeotemperature records from six
Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and
NorthGRIP. Journal of Quarternary Science, 16(4):299–307.

[Johnsen et al., 1989] Johnsen, S. J., Dansgaard, W., and White, J. W. C. (1989).
The origin of arctic precipitation under present and glacial conditions. Tellus,
41B(4):452–468.

[Johnson, 1977] Johnson, A. F. (1977). Creep characterization of transversely-
isotropic metallic materials. J. Mech. Phys. Solids, 25:117–126.

[Kanagaratnam et al., 2001] Kanagaratnam, P., Gogineni, S. P., Gundestrup, N.,
and Larsen, L. (2001). High-resolution radar mapping of internal layers at
the North Greenland Ice Core Project. Journal of Geophysical Research,
106(D24):33799–33811.
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