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Abstract

This thesis proposes an efficient protocol based on [1] to demonstrate the non-Abelian nature of

Majorana bound states through charge-transfer processes using a quantum dot. We take into account

systematical errors in the parameters of the Hamiltonian. Importantly, these errors split the ground

state degeneracy and introduces relative dynamical phases between even and odd parity sectors.

By winding the superconducting phase, we are able to effectively cancel the dynamical phases of

subsequent charge-transfer processes, mitigating this main source of error. Further, we study the

dynamics of the charge-transfer process through adiabatic perturbation theory [2]. Our findings show

promising improvements compared to controlling the dot level energy linearly, suppressing transitions

and dynamical phases at a substantially shorter time scale. We also discover a subtle correction to the

adiabatic condition predicted by adiabatic perturbation theory due to its expansion parameter being

dimensionful. We resolve this issue in our particular example by formulating the relevant dimensionless

expansion parameter and discuss its implications. We support all of the above results numerically.

Finally, in two smaller projects, we study multi-qubit gates in similar charge-transfer systems and

manipulations of Majorana bound states in tunnel coupling-space.
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Chapter 1

Introduction

In this thesis, we give a theoretical study of the manipulation of Majorana bound states in 1D systems

with the aim of demonstrating their non-Abelian exchange statistics. In what follows, we give a non-

technical overview to introduce concepts which are used throughout and motivate the present work.

Then, in Sec. 2, we supplement with the mathematical details by reviewing selected parts of the

foundational literature on Majorana bound states and thus sets the scene for the main body of the

thesis. Here, in Sec. 3, we introduce and refine a protocol suggested by Flensberg [1] which utilizes

quantum dots to manipulate Majorana bound states through adiabatic charge-transfer processes. In

Sec. 4, we continue by studying the charge-transfer process with adiabatic perturbation theory before

testing the predictions numerically in Sec. 5. In these two chapters, we aim to describe the optimal

control of the quantum dot in a charge-transfer process and protocols which are robust against errors

in the system parameters. After this main narrative, two smaller projects are discussed. In Sec. 6,

we describe a charge-transfer device capable of performing rotations of more than two Majoranas

and examine how the complexity of the device increases with the number of Majoranas undergoing

the rotation. In Sec. 7, we instead consider how manipulation of Majoranas can be performed by

changing tunnel couplings adiabatically and propose a protocol which can demonstrate the non-

Abelian exchange statistics with this idea. Finally, in Sec. 8 we conclude on the thesis and discuss

what future work remains in the effort to demonstrate the non-Abelian nature of Majorana bound

states.

1.1 What we talk about when we talk about Majoranas

The condensed matter analogue of the Majorana fermion from particle physics is different in a few

fundamental ways. Majorana fermions was originally hypothesized in 1937 by Ettore Majorana as a

class of elementary particles which are their own antiparticles [3]. The aim of this description was to

circumvent the need for introducing antiparticles to neutral elementary particles such as the neutrino.

Whether the neutrino is a Majorana fermion remains an open question in particle physics and it is

unknown if Nature exploits this mathematical possibility of self-conjugate elementary particles [4].

Two important aspects that distinguish the condensed matter version of Majorana’s fermions, are

that they are quasiparticle excitations which are not fermionic but rather constitutes half a fermion

degree of freedom [5]. For this reason, the terms Majorana zero-modes or Majorana bound states are

used instead. Though often used synonymously, we will make an effort to distinguish these terms to

1



2 CHAPTER 1. INTRODUCTION

avoid ambiguity. In the present thesis, we will also simply use Majoranas for short. What remains

of Majorana’s original idea is that also the Majoranas in condensed matter systems are their own

antiparticles. Several interesting results follow from this property: Being a self-conjugate quasiparticle,

the Majorana must be an equal superposition of an electron and a hole. In a particle-hole symmetric

system, the electron has excitation energy E while the hole has energy −E compared to the Fermi

level, so to stay invariant after a transformation that interchanges electrons and holes, the energy

must be zero [6]. This reasoning also explains the name Majorana zero-mode. It is, however, possible

to couple Majorana zero-modes and split their energy such that they lose their zero-mode status.

Consequently, we relax the use of “Majoranas” to not necessarily imply zero energy.

On a mathematical level, it is always possible to decompose fermionic creation and annihilation

operators into two Majorana operators. Typically, this procedure is a simple change of basis without

any physical implication as pairs of Majorana operators descending from the same fermion couple

strongly due to their inherent proximity. For this reason, individual Majorana operators do not usually

represent distinguishable physical modes. Interestingly, for certain Hamiltonians, single Majorana

operators decouple entirely and thus become exact zero-modes [7]. The Majorana zero-modes are in

these cases exponentially localized at the boundaries of the phase that support them. As boundaries or

defects are typically separated, the Majorana zero-modes are as a result isolated. It is the bound and

physically distinguishable states of these unpaired Majorana operators we talk about when we talk

about Majoranas. It is also this property of Majoranas that has given them the moniker Majorana

bound states. We use “Majoranas” to refer to the bound states as they resemble physical objects

more so than the Majorana zero-modes. If the Majorana bound states are weakly coupled, their

energy will be only slightly split making them near zero-modes. In this case it is still meaningful

to talk about the Majorana bound states despite them not being exact zero-modes. Additionally, if

several Majorana bound states are coupled the system may still retain Majorana zero-modes. These

do in general not coalesce with the Majorana bound state but are spread over all of the states in the

system resulting in a slight distinction between Majorana bound state and Majorana zero-mode. As

the Majorana operators constitute half a fermion, the notion of occupancy of a Majorana bound state

or zero-mode is meaningless. To speak of occupancy, we need an additional Majorana zero-mode to

form a fermionic state. It is this non-local, zero energy fermion formed by two Majorana zero-modes

that is an actual Dirac fermion and may rightfully be called the Majorana fermion of a condensed

matter system. The properties of this non-local fermion and its constituent Majoranas are of immense

interest in the context of topological quantum computing as we will briefly discuss in the next section.

1.2 Topology and prospects in quantum computing

Since the Majoranas each constitute half a fermion, there is always an even number of Majoranas

in the systems harboring them. This fact of nature is related to the properties of being located at

defects and having zero energy by the overarching concept of topological phases of matter [8, 10].

The emergence of Majoranas is related to both the systems spatial topology and the topology of its

underlying phase of matter. We exemplify how the geometry of a system determines the number

of Majoranas by considering a 1D wire. For such a system, the Majoranas are located at the two

endpoints of the wire. The property of having two physical endpoints holds regardless of the exact

geometry of the wire which we can imagine bending and twisting while maintaining the ends and thus

the Majoranas. Contrary, bonding the two ends to form a loop or cutting the wire in half to make
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two wire segments are topologically distinct from having a single wire and the number of Majoranas

change accordingly. For the loop, the two Majoranas fuse and disappear as individual states while

the cutting procedure makes two new Majoranas at the two new endpoints created. In this manner,

the number of Majoranas can be understood as a topological invariant which is robust against the

particular shape of the wire and where pairs of Majoranas can be created or removed only by changing

the entire topology of the system. We also note that the cutting or bonding procedure always changes

the number of Majoranas by two in agreement with the statement that Majoranas are created and

destroyed in pairs. Universally, edge states appear in topological systems and this is embodied in

the bulk-boundary correspondence relating the topology of the bulk (i.e. the phase of matter) to

the existence of states living at the boundaries (which depends on the spatial topology as described).

Following this correspondence, it is only certain topological phases which host Majorana. We can

understand this notion of a phase exhibiting topological properties through the following example. In

the very simplest case we can imagine the two energy bands of a non-degenerate, twolevel Hamiltonian.

If the parameters of the Hamiltonian are continuously varied while maintaining the gap between the

two bands, then the Hamiltonians determined by the given path in parameter space are topologically

equivalent and resulting phase is unchanged. Alternatively, if a path in parameter space makes the

two bands cross, such that the gap closes and reopens, at a given value of the parameters, then a

topological phase transition occurs that distinguishes the phases before and after the crossing. The

closing and reopening of the gap is a general defining characteristic of a topological phase transition

[8]. We understand the nomenclature of topological in this context as the phase being dependent only

on whether a crossing of the bands has occurred and not the intricate details of the exact shape of the

energy bands and how those might depend on the smooth variation of parameters. Mathematically,

a topological invariant changes at the described phase transition and indexes the particular phases.

This is in contrast to the thermodynamic phase transition understood through spontaneous symmetry

breaking and the free energy in Landau theory. In a topological phase transition, no symmetry

is broken and the symmetries are rather used to classify the possible topological phases. In this

classification, Majoranas can only exist in topological phases with particlehole symmetry which in

turn protects and pins their energy to zero. [6, 8].

A pair of Majoranas constitute a fermionic level and a pair of fermions constitute a boson. Ex-

amples of the latter are Cooper pairs undergoing Bose-Einstein condensation in the superconducting

state or simply a spin triplet having spin 1. Beside spin and Pauli exclusion, bosons and fermions

also have distinct exchange statistics being respectively symmetric (+1) and antisymmetric (−1) un-

der exchange. Then, the natural question is; how do Majoranas behave under exchange being “half a

fermion”? In short, Majoranas are anyons and the anyonic wave function can take on any phase under

exchange rather than just −1 or −1. Specifically, Majoranas are non-Abelian anyons meaning that the

phase gained under exchange can be matrix-valued [9]. This implies that the levels are degenerate and

exchanging Majoranas produce a rotation within the degenerate manifold. The non-Abelian phase

acquired does not depend on the dynamics of the exchange and can consequently be understood in

terms of the geometric phase. The non-Abelian exchange statistics is an exotic feature of Majoranas

which lays the foundation of topological quantum computing [11]. Interpreting the states in the de-

generate level as a qubit, the exchange, or braiding, of Majoranas manipulates the states and thus

acts as a quantum gate on the qubit. These qubit gates are topologically protected meaning their

operation is exact and robust against local noise. The reason hereof is that the outcome of topological

quantum gates only depend on which Majoranas have been braided and not how. Unfortunately, the
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set of topologically protected quantum gates is not universal and needs to be supplemented by a non-

protected single-qubit and two-qubit gate to accomplish universal quantum computing. In addition, a

quantum computer based only on the set of topologically protected gates can be simulated efficiently

on a probabilistic classical computer even though it encaptures phenomenas such as entanglement

and superposition which are inherently quantum mechanical [12]. Experimentally, it is challenging

to physically move the Majoranas to perform a real-space braiding. Instead, promising possibilities

are braidings in a parameter-space where adiabatic control of a parameter in the Hamiltonian effec-

tively corresponds to a real-space braiding. Although tantalizing, we do not attempt to describe the

longterm ambition of universal topological quantum computing in this thesis. Instead, we focus on

the demonstration of the non-Abelian nature of Majoranas which is expected to be a feasible exper-

imental achievement on a substantially shorter time scale. It provides unmistakable confirmation of

the presence of Majoranas in experiment. This is in itself an important result which exhibits the

tremendous experimental advancements and enables further studies of the rich and exotic physics of

Majoranas. To demonstrate their non-Abelian nature, the Majoranas must be manipulated in largely

the same way as quantum computer would. For this reason, much of the language used in quantum

computing will also be used here and parallels will be drawn to qubits, gates, etc. when relevant.

1.3 Where to find Majoranas

Being half an electron and half a hole, it is natural to search for Majoranas as quasiparticles in super-

conducting systems where the excitations are Bogoliubov quasiparticles which have both electron and

hole components. In conventional s-wave superconductors, the Bogoliubov excitations are in general

not an equal superposition of electrons and holes and the electron and hole parts have opposite spin

due to Cooper pairs consisting of time reversed electron states [5]. For this reason, additional pieces

are needed to engineer a topological superconductive state that hosts Majoranas. It turns out that

strong spin-orbit coupling and an applied magnetic field are essential ingredients in this recipe as they

gap out a spin degree of freedom while still supporting s-wave superconductivity through momentum

dependent spin orientation [13, 14, 15]. In this sense, understanding the properties of Majoranas have

paved the way to the discovery of new topological systems exhibiting superconductivity. The first

experimental signatures of Majoranas was measured in 2012 where a somewhat robust zero energy

bound state was observed in a proximitized nanowire [16]. Here, an InSb nanowire was used due to

its strong spin-orbit coupling. The InSb wire is by itself a semiconductor but it was proximitized

by bringing it into contact with a superconducting electrode (NbTiN). Since then, much research

has accumulated evidence in favor of the midgap states being Majoranas, however, their non-Abelian

exchange statistics remain to be demonstrated. Doing this will enable us to distinguish whether the

zero energy states are fermionic subgap states or true Majoranas [17]. This thesis attempts to pro-

vide relevant protocols which may be realized in experiment to distinguish if the midgap states are

non-Abelian and thus Majoranas.



Chapter 2

Models of Majorana bound states

This chapter gives a brief review of the Kitaev chain [7] and Oreg et al. [14]. These papers, along

with Lutchyn et al. [15], are essential for understanding the appearance of Majorana bound states in

1D systems. In addition, we discuss braiding of Majoranas following Ivanov [18]. We begin by giving

an overview our Majorana nomenclature:

Majorana summary

� Majorana operators - Operators γi that obey the Clifford algebra {γi, γj} = 2δij and

fulfills γ = γ† and γ2 = 1. Any two Majorana operators can be combined to form

fermionic annihilation and creation operators c† = 1
2 (γ1− iγ2) and c = 1

2 (γ1 + iγ2). Since

it takes two Majorana operators to form a fermionic operator, they always come in pairs.

In this sense, they constitute half a fermionic degree of freedom.

� Majorana bound states - Exponentially localized states represented by Majorana oper-

ators. The bound states are located at interfaces between topologically distinct phases

and their appearance is topologically protected. In a 1D system they are found at the

endpoints and consequently they are spatially separated. The Majorana bound states

are non-Abelian anyons and do not obey fermionic exchange statistics. Their exchange

instead multiplies a matrix-valued phase to the wave function. For short, we refer to the

Majorana bound states and their underlying Majorana operators as “Majoranas”.

� Majorana zero-modes - Topologically protected zero energy modes that are represented

by Majorana operators which commute with the Hamiltonian [H, γ] = 0. Uncoupled

Majorana bound states are also Majorana zero-modes. Generally, coupling Majorana

bound states result in splitting the energy and potentially spreading the remaining zero-

modes over the bound states.

� Majorana fermions (in CM) - The non-local fermionic states formed by two Majorana

zero-modes. Due to the non-local nature of this Dirac fermion, it is protected against

local noise. This fact makes the Majorana fermions sought after in the context of quan-

tum computing as they constitute noise-protected qubits. The anyonic properties of the

underlying Majorana zero-modes also permits protected quantum gates to manipulate

the qubits, however, these are not sufficient for universal quantum computing.

5
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2.1 The Kitaev chain

The Kitaev chain is the simplest 1D model which support Majorana bound states at its edges [7].

Being simple is its virtue as the appearance of Majoranas is a topological property that does not

depend on the intrinsic details of the system [8]. In other words, also more physically realistic models

will harbor Majoranas as long as they are in the same (Altland-Zirnbauer) symmetry class and their

properties essentially correspond to the much simpler Kitaev chain.

The Kitaev chain is a tight binding model of a spin-polarized superconductor,

H = −µ
L∑
j=1

(c†jcj −
1

2
)− t

L∑
j=1

(c†jcj+1 + c†j+1cj) + ∆

L∑
j=1

(cjcj+1 + c†j+1c
†
j), (2.1)

with chemical potential µ, hopping amplitude t and superconducting pairing ∆. The first sum rep-

resents the on-site energy, the second sum is the nearest neighbor hopping and the third is the

superconducting pairing term. If the superconducting phase φ is non-zero, the fermionic operators

can be transformed by letting cj → cje
−iφ/2 to gauge away this phase. The fermionic creation and

annihilation operators c†j and cj can be decomposed in terms of their real and imaginary parts

c†j =
1

2
(γ2j−1 − iγ2j), cj =

1

2
(γ2j−1 + iγ2j), (2.2)

where γi are Majorana operators obeying

γ2
i = 1, γ†i = γi, {γi, γj} = 2δij . (2.3)

In terms of the Majorana operators, two distinct phases can be observed. The topological trivial

phase, depicted in Fig. 2.1a, occurs when the pairing between Majorana operators originating from

the same site cj is dominating. The topologically non-trivial phase, depicted in Fig. 2.1b, appears in

the case where the pairing between Majorana operators of adjacent sites is dominating. In this phase,

an isolated zero energy Majorana bound state is found at each end of the chain. To see this at the

level of the Hamiltonian, consider the case t = ∆ > 0, µ = 0, and rewrite eq. (2.1) in terms of the

Majorana operators

H = it
∑
j

γ2jγ2j+1. (2.4)

The Majorana operators γ1, γ2L do not appear in the Hamiltonian and they can be combined in a non-

local fermionic annihilation operator d = (γ1+iγ2L)/2. The energy of occupying d†d̃ = 1/2(1+iγ1γ2L)

is zero due to γ1, γ2L commuting with the Hamiltonian and as a consequence the ground state is doubly

degenerate. The degenerate ground states can be distinguished by the Hermitian operator iγ1γ2L as

· · ·
γ1 γ2 γ3 γ4 γ2L−1 γ2L

a)

· · ·
γ1 γ2 γ3 γ4 γ2L−1 γ2L

b)

Figure 2.1: a) Pairing of Majorana operators originating from the same site cj yields the topological

trivial phase. b) The topological non-trivial phase occurs when Majorana operators of adjacent cj ’s

pair up. In this case there are two isolated zero energy Majorana bound states located on each end

of the chain.
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they have eigenvalues ±1 for being unoccupied and occupied respectively. It is this degenerate ground

state that is sought after in the context of quantum computation since the non-local nature of this

qubit offers protection from local noise.

The topological qualities of the system are explicit if we go to a continuum model with periodic

boundary conditions and consider the Fourier transform of eq. 2.1. According to the bulk-boundary

correspondence, we do not expect Majorana bound states since there are no edges in this model.

Nonetheless, the model will help us understand the topological phase and it becomes clear that it

does not dependent on the exact tuning of parameters t,∆ > 0, µ as in the example of Fig. 2.1b. We

use the Fourier transformed fermionic operators,

cj =
1√
L

∑
k

c(k)eikj , c†j =
1√
L

∑
k

c†(k)e−ikj . (2.5)

By also using 1/L
∑
j e
i(q−q′)j = δq,q′ we get

H − µL

2
=
∑
k

c†(k)(−µ− 2t cos(k))c(k) +
∑
k

i∆ sin(k)(c(k)c(−k) + c†(k)c†(−k)), (2.6)

or equivalently, in the Bogoliubov-de-Gennes formalism,

H − µL

2
=

1

2

∑
k

C†(k)HBdG(k)C(k), HBdG(k) = −∆ sin(k)τy − (µ+ 2t cos(k))τz, (2.7)

where C† = (c†(k), c(−k)) and τi are the Pauli matrices acting on the electron/hole-space. We are

interested in the energies of the Bogoliubov-de-Gennes Hamiltonian as the topological phases are

separated by a gap closing/reopening dependent on the parameters µ, t, ∆. In general, the energies

of a two-band model H = h01 + h · τ are given by

E± = h0 ± |h|, (2.8)

which can be seen by squaringH−h01. Evidently, a gap closing/reopening occurs if and only if |h| = 0.

In the case of the Kitaev chain, this happens for hy = −∆ sin(k) = 0 and hz = −(µ + 2t cos(k)) = 0

hz

hy

∆

µ2t

Figure 2.2: Two ellipses representing two topologically distinct Hamiltonians with different sets of

parameters (µ, t,∆). The orange ellipse corresponds to a topologically trivial phase which can imme-

diately be recognized as the red origin lies outside the ellipse. Likewise, the blue ellipse encloses the

origin and corresponds to the non-trivial phase. We can imagine lowering µ such that the rightmost

point of the ellipse comes in contact with the origin. At this point, the gap closes and a topological

phase transition occurs. If we continue lowering µ, the orange ellipse will eventually enclose the origin

as the blue ellipse does.
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having the solution k = π, µ = 2t for positive µ, t. We have already identified the phase 2t > µ

as the topologically non-trivial phase supporting Majorana bound states. This topological transition

can also be understood geometrically in the (hz, hy)-diagram of Fig. 2.2. Here, an ellipse centered at

hz = −µ is traced out when k runs from 0 to 2π. The topological index that changes at the transition

is the winding of the origin. For |µ| > |2t| the origin is not enclosed by the ellipse which is counted as

zero winding and the phase is topologically trivial. Contrary, for |2t| > |µ| the ellipse winds around

the origin once as k runs from 0 to 2π corresponding to the topologically non-trivial state.

In general, the Majorana bound states are not localized to γ1 or γ2L as is the case in Fig. 2.1b.

Instead, they are represented by a linear combination of all the Majorana operators γi but with

exponentially decaying coefficients such that the Majorana bound states remain localized and have

zero energy. This also implies that the overlap of the two Majorana bound states is exponentially

suppressed by the ratio of the length of the chain to the typical localization length of the bound states.

This is needed for the corresponding Majorana operators to anticommute. In what follows, we will see

this exponential localization of Majorana bound states when we review a model predicting Majoranas

in a physically realizable nanowire system.

2.2 Realizing Majorana bound states in nanowires

The first proposed physically realizable 1D model that have a topological non-trivial phase with

Majorana bound states are found in Oreg et al. [14] and Lutchyn et al. [15]. They propose that

Majoranas may be found in nanowires similar to the Kitaev chain rather than in surface vortices

on topological insulators as in the earlier Fu-Kane model [13]. We will follow the approach of [14].

The first experimental signatures of Majoranas was observed just two years after the proposal of this

model.

In view of the Kitaev chain, it appears that a system hosting Majorana bound states must be

spinless. This is in contrast to conventional (s-wave) superconductivity where electrons of opposite

spin (and momentum) combine in Cooper pairs. Perhaps surprisingly, it turns out that Majorana

bound states can indeed appear in spinful s-wave systems. The system, however, must be helical; the

property of having correlation between spin and momentum. Such a helical system has features of

both being spinful and spinless, in the sense that both spin up and spin down electrons are present

but there is no spin degree of freedom as the spin is tied to the momentum. In the following, we study

such a helical system and see how it can host s-wave pairing while also being effectively spinless for

the Majorana bound states to appear.

Take the Hamiltonian

H =
1

2

∫
dy Ψ†(y)H(y)Ψ(y), (2.9)

where Ψ† = (ψ†↑, ψ
†
↓, ψ↓,−ψ↑) is in Nambu representation and ψ↑/↓(y) annihilates spin-up/down elec-

trons at position y. In this basis, we consider a Bogoliubov-de-Gennes Hamiltonian given by

H(y) =

[
p2

2m
− µ(y)

]
τz + upσzτz +B(y)σx + ∆(y)τx, (2.10)

where σi, τi are Pauli matrices acting on the spin and particle-hole space respectively. The Hamil-

tonian describes a quantum wire in the y-direction with controllable chemical potential µ(y). The

wire is assumed to have strong spin-orbit coupling u throughout its length and proximity-induced
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p

E(p)

µ = 1

µ = 2

µ = 0

Figure 2.3: Excitation spectrum for different values of µ. The energy scale is set by mu2/2 and the

momentum scale is set by mu. With these scales B = 5 and ∆ = 4 has been chosen in the figure.

For µ = 0 we are in the B-dominated phase (cyan). Increasing µ to µ = 1 results in a gap closing

at p = 0, signaling a topological phase transition (blue). Further increasing µ reopens the gap again

(red).

superconductivity of strength ∆(y). In addition, an external magnetic field B(y) is pointing in the

x-direction which is perpendicular to the wire and the spin-orbit coupling.

As discussed, the Majorana bound states require that there is no spin degree of freedom in the

system. By applying a large magnetic field over the wire, the spin direction of the electrons parallel

to the B-field is singled out due to Zeeman splitting, and the wire is in this regard effectively spinless.

In spin bases perpendicular to the B-field, the electrons continue to have both up and down spin

components. The strong spin-orbit coupling will correlate the momentum and the spin, in a basis

perpendicular to the B-field, such that positive momentum corresponds predominantly to spin up

and negative momentum corresponds predominantly to spin down. The system is now helical. The

spin up electrons can then pair with spin down electrons as they have opposite momentum due to the

spin-orbit coupling. This pairing results in conventional s-wave superconductivity. At the edges of

this effectively spinless superconducting phase, we expect the Majorana bound states to be found, as

is the case for the Kitaev chain. In order to investigate the possible phases, we take the parameters

µ,∆, B to be constant and calculate the spectrum. Squaring H gives

H2 − ξ2 − (up)2 −B2 −∆2 = 2ξupσz + 2ξBσxτz + 2B∆σxτx, (2.11)

where ξ = p2/2m−µ. Squaring again uncovers the eigenenergies as the resulting matrix is proportional

to the identity

(H2 − ξ2 − (up)2 −B2 −∆2)2 = (2ξup)2 + (2ξB)2 + (2B∆)2

⇒ E2
± = ξ2 + (up)2 +B2 + ∆2 ± 2

√
(ξup)2 + (ξB)2 + (B∆)2. (2.12)

At p = 0 the spectrum is gapped with the lowest energy solution E0 being

E0 = |B −
√
µ2 + ∆2|. (2.13)

This gap can be either B-dominated B2 > µ2 +∆2 or pairing dominated B2 < µ2 +∆2 corresponding

to two different topological phases. Thus changing any one of µ,∆, B along the wire may result in a

the gap closing and reopening and consequently facilitating an interface between topologically distinct

phases, see Fig. 2.3. Here, an abrupt change of µ at y = 0 will be considered. Imagine a wire with

left (y < 0) segment in the pairing dominated phase and right (y > 0) segment in the B-dominated
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phase. The magnetic field is larger than the superconductive pairing B > ∆ throughout the wire. In

the right segment µ = 0 is assumed, and in the left segment a large µ results in a pairing dominated

phase µ2 > B2 −∆2.

The Majorana bound states are expected to be exponentially localized at the interface so we use

the ansätze ψ(l) ∝ exp
(
k(l)y

)
and ψ(r) ∝ exp

(
−k(r)y

)
for the left and right segments respectively with

Re(k(r)),Re(k(l)) > 0. Since we are interested in the behavior of the gap closing at p = 0, we linearize

the Hamiltonian in p. By using the ansatz for the right segment, we get the Hamiltonian for y > 0,

H(r) = ik(r)uσzτz +Bσx + ∆τx. (2.14)

By squaring twice and looking for zero energy solutions with Re(k(r)) > 0 gives the result

k
(r)
± u = B ±∆. (2.15)

Rotating H(r) by U† = 1/2(1− iσy)(1− iτy) sends σx, τx → σz, τz and σz, τz → −σx,−τx and results

in

UH(r)U† = ik(r)uσxτx +Bσz + ∆τz =


B + ∆ 0 0 i(B ±∆)

0 −B + ∆ i(B ±∆) 0

0 i(B ±∆) B −∆ 0

i(B ±∆) 0 0 −B −∆

 . (2.16)

This matrix can be seen to have one zero energy eigenstate for both the + and the − solution;

φ
′(r)
+ = 1/

√
2eiπ/4(−i, 0, 0, 1)T , φ

′(r)
− = 1/

√
2eiπ/4(0,−1, i, 0)T . Transforming back using φ = U†φ′

gives

φ
(r)
+ =

1

2
(1,−i,−i, 1)T , φ

(r)
− =

1

2
(1,−i, i,−1)T (2.17)

Now that we have found the eigenstates for the right segment, we can turn to the left segment. Using

the ansatz, the Hamiltonian in this case becomes

H(l) = −ik(l)uσzτz − µτz +Bσx + ∆τx. (2.18)

Squaring twice and looking for the zero energy solutions gives a quadratic equation for (k(l)u)2

0 = (k(l)u)4 − 2(B2 + ∆2 − µ2)(k(l)u)2 + (µ2 + ∆2 −B2)2

⇒ k
(l)
± u = ∆±

√
B2 − µ2. (2.19)

There is no benefit of rotating Hl by U† because of the µ-term. Instead, write out Hl in as a sum of

the ∆-term and the B-term

Hl = ∆


−i 0 1 0

0 i 0 1

1 0 i 0

0 1 0 −i

 (2.20)

+B


−µ/B ∓ i

√
1− µ2/B2 1 0 0

1 −µ/B ± i
√

1− µ2/B2 0 0

0 0 µ/B ± i
√

1− µ2/B2 1

0 0 1 µ/B ∓ i
√

1− µ2/B2

 .

It is straightforward to see that the first term has zero energy eigenvectors φ
(∆)
1 = (1, 0, i, 0)T , φ

(∆)
2 =

(0, 1, 0,−i)T , meaning that the zero energy eigenvectors of Hl must be a linear combination of the
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form φ
(l)
± = λ1φ

(∆)
1 +λ2φ

(∆)
2 . The second term of the above equation is block diagonal and if (1, α±)T

is a zero energy eigenvector of the upper left block, then (−α∓, 1)T is a zero energy eigenvector of

the lower right block. It is easy to find that α± = µ/B ± i
√

1− µ2/B2 gives the desired zero energy

solution and that φ
(B)
± = 1/2(1, α±, i,−iα−1

∓ )T is a zero energy eigenvector for the B-matrix. Compare

it with the solution φ
(l)
± found for the ∆-matrix

1

2


1

α±

i

−iα−1
∓

 = λ1


1

0

i

0

+ λ2


0

1

0

−i

 . (2.21)

The two solutions are commensurable for λ1 = 1/2, λ2 = α±/2 if α−1
∓ = α±, which is indeed the case

α−1
∓ =

1

µ/B ∓ i
√

1− µ2/B2
=

µ/B ± i
√

1− µ2/B2

(µ/B ∓ i
√

1− µ2/B2)(µ/B ± i
√

1− µ2/B2)
= α±, (2.22)

as the last denominator is one. In conclusion, the zero energy solutions for the left segment is

φ
(l)
± = 1/2(1, α±, i,−iα±)T , α± = µ/B ± i

√
1− µ2/B2. (2.23)

We need to match the wave functions for the left and right segments at y = 0 such that the Majorana

bound state wave function is continuous while also
∫

dy Ψ†(y)φ(y) =
∫

dy (Ψ†(y)φ(y))† is a Majorana

operator. Wave function matching L+φ
(l)
+ + L−φ

(l)
− = R+φ

(r)
+ +R−φ

(r)
− gives the following equations

for the complex coefficients L±, R±

L+ + L− =R+ +R−, (2.24)

L+α+ + L−α− =− i(R+ +R−), (2.25)

i(L+ + L−) =i(R− −R+), (2.26)

−i(L+α+ + L−α−) =R+ −R−. (2.27)

The first and third equation gives R+ = 0 and L+ + L− = R− while the second and fourth equation

is identical for R+ = 0. Demanding that Ψ†(y) exp
(
−k(r)
− y

)
R−φ

(r)
− is Hermitian gives R∗− = R− and

we choose R− = 1. We can now solve for L± in the equations L+ +L− = 1 and L+α+ +L−α− = −i
which give

L± = ± α∓ + i

α+ − α−
. (2.28)

Finally, the wave function of the Majorana bound state can be written (up to a real normalisation

factor)

φ(y) =

L+ exp
(
k

(l)
+ y
)
φ

(l)
+ + L− exp

(
k

(l)
− y
)
φ

(l)
− y < 0

exp
(
−k(r)
− y

)
φ

(r)
− y > 0

. (2.29)

The solution is constructed such that Ψ†(y)φ(y) = (Ψ†(y)φ(y))† holds for each y > 0. It is straight-

forward, but tedious, to check that the this is also the case for y < 0.

In experiment, one of the critical errors influencing the Majoranas is quasiparticle poisoning. It

is an error changing the parity of the system and its origin may come from inside the system or the

outside environment. An electron from the environment may enter the nanowire and thus changes the

occupancy of the Majorana fermion. This can be combated by introducing a large charging energy

to the nanowire, preventing electrons from settling in the Majorana system. Quasiparticle poisoning
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from within the system is also possible with two different mechanisms. One is the excitation of an

electron with its subsequent relaxation in the Majorana state. Alternatively, trivial subgap states

may also exchange occupancy with the Majoranas. Both of these possibilities can be prevented by

inducing a large superconducting gap. We do not take these errors into account in the present work

but instead refer the reader to [19]. We continue by studying the Majoranas as non-Abelian anyons

and their braiding.

2.3 Braiding Majoranas and their anyonic properties

We continue by discussing the real-space braiding of Majoranas and show their non-Abelian exchange

statistics. Following Ivanov [18], we begin by considering Majoranas in a 2D system, rather than in

1D, as this is conceptually simpler. The results from the 2D case also applies to networks of 1D wires

where Majoranas can be interchanged in much the same manner.

Majoranas can be found on the surface of certain topological insulators with proximity induced

superconductivity [13]. Here, they reside in the centers of vortices which winds the superconducting

phase by 2π. The exact circumstances of the appearance of Majoranas is for the present discussion

not relevant as the treatment is entirely general. We use that the vortices harboring the Majoranas

winds the superconducting phase and how the Majoranas respond to this winding. Recall that the

fermionic operators can gauge away the superconducting phase by letting c̃ = e−iφ/2c. When the

superconducting phase transforms as φ→ φ+ 2π, the fermionic operators acquire a sign,

c̃ = ce−iφ/2 → −ce−iφ/2 = −c̃, (2.30)

and likewise for the creation operator. The same also applies to Majoranas as they are linear combi-

nations of the fermionic operators,

γ → −γ, (2.31)

for φ→ φ+ 2π.

γ1

γ2

=

−γ1

γ2

γ1 γ2

−γ1 γ2
t

a) b)

Figure 2.4: a) Exchanging two Majoranas results in exactly one crossing of the branch cuts indicated

by dashed lines. In this example γ2 crosses the branch cut and its phase jumps by π as it takes the

place of γ1. We have a choice when choosing the branch cuts. Had we drawn the cuts to the left

rather than to the right, γ2 would change sign instead of γ1 and this is simply a choice of convention.

b) The corresponding braid of world lines in a braid diagram with the time along the second axis.
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In other words, the phase of the Majoranas experience a winding of π when the superconducting

phase winds 2π. Due to this winding, we need to insert branch cuts to keep the superconducting

phase single-valued. When a Majorana crosses such a branch cut it changes sign as its phase jumps

by π. In Fig. 2.4a, we illustrate that upon exchange of two Majoranas one will cross a branch cut

and its sign will flip. The corresponding braid is shown in Fig. 2.4b. The associated operator when

interchanging, or braiding, two Majoranas γi and γi+1 thus is

Ti =

γi → γi+1,

γi+1 → −γi,
(2.32)

leaving other possible Majoranas invariant. Note that performing this operation twice flips the sign

of both Majoranas and thus also flips the sign of the associated fermion. This is in agreement with

the exchange statistics of spin-1/2 particles. At this point we can imagine having 2n Majoranas

which we may try to braid as in Fig. 2.4b. We perform operations on adjacent pairs of Majoranas by

braiding them. These operations form a group called the braid group B2n with group elements Ti,

i = 1, 2, . . . , 2n− 1. The defining relation of the braid group is shown in Fig. 2.5,

TiTi+1Ti = Ti+1TiTi+1. (2.33)

=

Ti

Ti+1

Ti

Ti+1

Ti

Ti+1

Figure 2.5: Braid diagram of the defining relation of the braid group.

The braid group has different representations and each representation corresponds to different classes

of particles. The one-dimensional representation is the simplest and includes the exchange statis-

tics of fermions, bosons and Abelian anyons [10]. The Majoranas, being non-Abelian, obey higher-

dimensional representations and we can write the group elements using the Majorana operators,

Bi =
1√
2

(1 + γiγi+1), (2.34)

adhering to the same defining relationBiBi+1Bi = Bi+1BiBi+1 while being non-commutative [Bi, Bi+1] =

γiγi+2. These are unitary operators transforming Majoranas as in eq. (2.32). This is an idealized

mathematical description of the exchange of Majoranas. Physically, errors occur if the Majoranas

overlap significantly or if their exchange is not performed adiabatically. The latter may result in

exciting the states such that they leave the degenerate manifold. We postpone the discussion of such

errors and continue in the idealized case and consider how the degenerate ground states change under

braiding. A fermionic state formed by γ1 and γ2 has annihilation operator d1 = 1
2 (γ1) and number

operator d†1d1 = 1/2(1 + iγ1γ2). We represent it the unoccupied state by |0〉M12 and the occupied

state by |1〉M12 = d†1 |0〉M12. These states are eigenvectors of iγ1γ2 with eigenvalues ∓1 respectively.

Braiding γ1 and γ2 amounts to a simple phase shift,

B1 |0〉M12 =
1√
2

(1 + γ1γ2) |0〉M12 =
1√
2

(1 + i) |0〉M12 . (2.35)
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No physical change is imparted upon the state as the phase can not be measured. For this reason we

need more than two Majoranas be able to demonstrate their non-Abelian exchange statistics. Include

now an additional pair of Majoranas γ3, γ4 with occupation states |0〉M34 and |1〉M34 = d†2 |0〉M34.

Braiding γ2 and γ3 now changes the occupancy of the states. Take for example the |0〉M12 |0〉M34

state,

B23 |0〉M12 |0〉M34 =
1√
2

(1 + i(d†1− d1)(d†2 + d2)) |0〉M12 |0〉M34 =
1√
2
|0〉M12 |0〉M34 +

i√
2
|1〉M12 |1〉M34 ,

(2.36)

which can be statistically distinguished from |0〉M12 |0〉M34 by occupancy measurements. Applying

B23 again gives

B2
23 |0〉M12 |0〉M34 = |1〉M12 |1〉M34 , (2.37)

up to a phase. This is in accordance with the superconducting system conserving parity due to

particle-hole symmetry. Physically, this is the case since the Majorana fermions are occupied with

electrons from a broken Cooper pair. In general, any sequence of braid operations can be applied

to the Majorana system where each topologically distinct braid corresponds to a distinct unitary

acting on the state. Interpreting the two states in this system as a qubit, |0〉 = |0〉M12 |0〉M34 and

|1〉 = |1〉M12 |1〉M34, we can understand the double-braid as a NOT-gate which can be represented by

σx. This quantum gate is topologically protected in the sense that it depends only on the exchange

of Majoranas and not the detailed circumstances of path that they have undergone. In this way, it is

protected from perturbations to the path provided that the Majoranas do not overlap. Further, the

gate is exact as the outcome does not depend on tuning any systems parameters. The quantum gates

that can be constructed with a similar braiding procedure are the single-qubit Clifford gates consisting

of the Pauli matrices and their squareroots [9]. They do not constitute an universal set of quantum

gates but do support intrinsically quantum mechanical aspects such as superposition of the qubit.

The Clifford gates can be supplemented by a non-protected two-qubit gate to reach a set of universal

of quantum gates. Additionally, an interesting result, the Gottesman-Knill theorem [12], states that a

quantum computer based on the Clifford gates can be efficiently simulated by a probabilistic classical

computer despite its inherently quantum mechanical structure.

We learn that it is essential for a protocol demonstrating the non-Abelian exchange statistics of

Majoranas to measure the occupancy in one basis and perform the braiding in another. At least four

Majoranas are needed for this purpose but only the braiding between two of these is necessary. In

addition, performing the braid a number of times gives different occupation of the final state. In 1D

these types of real-space braidings can also be performed if the geometry of the wires are suitable

[20]. Of course, in a single wire the Majoranas can not be moved past each other if we naively try

to braid them in this manner. Instead, we can imagine a T-shaped junction where one Majorana

is moved from the left endpoint to the bottom of the middle leg. Then, the Majorana at the right

end can be moved through to the left and the Majorana deposited at the bottom of the middle leg

can be moved to the right endpoint completing the exchange. The Majoranas are envisioned to be

moved by adjusting the boundary between topological phases by controlling a large number of gate

electrodes. This is impractical in experiments. For this reason, proposals that try to implement a

braiding protocol for Majoranas typically aim to braid in a different space than real-space [9]. Braiding

in a parameter-space can result in the same unitary operators acting on the Majoranas without moving

them. Another advantage is that these operations are not restricted to the Clifford gates and may

even constitute a universal set of gates. The downside is that the operations are no longer protected
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by topology as they depend on the parameters. However, the operations continue to be a geometric

rather than a dynamical phenomena which upholds some of the error-protection. It is difficult to say

which implementation of a possible future topological quantum computer is optimal. On a shorter

time horizon, it is believed that the parameter-space braiding is more suitable for demonstration of the

non-Abelian exchange statistics of Majoranas. In the remainder of this thesis we consider two kinds

of parameter-space braiding ideas. Primarily, we focus on the charge-transfer process where charge is

transferred from a quantum dot to a Majorana system by adiabatically adjusting the level energy of

the dot. Towards the end, we also discuss a protocol based on braiding in a tunnel coupling-space.

Here, braiding-like operations can be performed by adiabatically varying the tunnel couplings between

a number of Majoranas and single quantum dot. We begin this narrative by reviewing a conceptually

simple charge-transfer protocol in the next chapter.
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Chapter 3

Detecting Majorana bound states

through charge-transfer

In the last decade, much experimental effort has been directed towards realizing and measuring the

existence of Majorana bound states [16, 17]. With these experiments, many signatures of Majoranas

has been observed. A conclusive fingerprint of the states being true Majoranas would be to demon-

strate their non-Abelian exchange statistics. In this chapter, we review a proposal by Flensberg [1]

where the non-Abelian nature of Majoranas is tested through adiabatic charge-transfer processes.

This protocol relies on finely tuning and controlling the system parameters to avoid splitting the

ground state degeneracy and introduce relative dynamical phases between the even and odd parity

sectors. Following our review of [1], we take into consideration the effect of errors in the tuning of

the Hamiltonian parameters. By understanding the errors well, we can propose an efficient protocol

which is experimentally simpler and to some extend alleviates systematical errors in the parameters.

In the two subsequent chapters, we consider errors due to the charge-transfer process not being entirely

adiabatic and test the proposed protocol numerically.

3.1 Reviewing a charge-transfer protocol

Following Flensberg [1], we begin by studying a simple system consisting of a spin-polarized quantum

dot (with fermionic annihilation operator c1) coupled to a Majorana bound state (with Majorana

operator γ1), see Fig. 3.1. We assume that the dot is spin-polarized due to the strong Zeeman field

required to facilitate the topological phase, leaving a single dot level. There is a second Majorana

bound state γ2 which together with γ1 forms a basis for a fermionic annihilation operator d1 =

1/2(γ1 + iγ2). The coupling between the dot and Majorana bound state is v1 and the dot level energy

D1 M1 M2
v1

Figure 3.1: Illustration of the setup which the Hamiltonian of eq. (3.1) describes. The quantum dot

D1 (green) is coupled to the Majorana bound state M1 (red) with strength v1. The Majorana bound

states are located at the ends of the topological superconductor (blue).

17
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ε is controllable. The effective Hamiltonian describing the system is

H1 = εc†1c1 + (v∗1c
†
1 − v1c1)γ1. (3.1)

The underlying idea is conceptually simple; since the Hamiltonian preserves parity, we can adiabat-

ically change the occupation of the dot by tuning ε and thereby change the parity of the Majorana

bound states. The even and odd parity states of the system are {|0〉D1 |0〉M12 , |1〉D1 |1〉M12} and

{|0〉D1 |1〉M12 , |1〉D1 |0〉M12} with subscript D1 and M12 denoting the dot and Majorana system re-

spectively. The Hamiltonian is in this basis given by

Hρ
1 =

(
0 v1

v∗1 ε

)
, (3.2)

for both even ρ = − and odd ρ = + parity. The ground state energy then is

Eρ1 = ε/2−
√

(ε/2)2 + |v1|2, (3.3)

which is doubly degenerate. Consider the system to be in a ground state for ε/|v1| → ∞, i.e. the dot

is unoccupied,

|i〉 = |0〉D (α |0〉M12 + β |1〉M12). (3.4)

During a process where ε/|v1| is changed adiabatically from ∞ to −∞, the dot is filled and the state

of the system is

|p〉 = a(ε) |0〉D (α |0〉M12 + β |1〉M12) + b(ε) |1〉D (α |1〉M12 + β |0〉M12), (3.5)

which is a snapshot ground state v1a(ε) = Eρ1b(ε). A key point is that the Majorana system is

degenerate throughout the process such that there is no relative dynamical phase obtained between

the two parity states. As the Hamiltonian is identical for the even and odd parity sectors, also the

relative geometric phase is zero. At the end of the process, the dot has been emptied (b = 1), yielding

the final state,

|f〉 = |0〉D (α |1〉M12 + β |0〉M12). (3.6)

The total operation on the Majorana system after the process is

|i〉M12 = α |0〉M12 + β |1〉M12 → |f〉M12 = α |1〉M12 + β |0〉M12 , (3.7)

corresponding to

|f〉M12 = γ1 |i〉M12 . (3.8)

The physical process of filling or emptying the dot thus results in the operator γ1 acting on the

Majorana state. Interpreting the two states of the Majorana system as a qubit, the bit is flipped

corresponding to a NOT-gate. Errors can occur in the quantum dot, changing its occupancy to the

coupling to the environment. Contrary to the parity errors in the Majorana system, parity errors on

the dot are easy to detect. By measuring the charge on the dot, we can deduce if any errors have

occurred or whether the dot is in its desired state.

We will now turn to an extended setup and see how a device with increased complexity translates

to the complexity of the operations on the Majorana system. Consider also coupling the dot to

the second Majorana bound state γ2 with strength v2, see Fig. 3.2. This introduces an additional
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M1

D1

M2

v1 v2

Φ

Figure 3.2: Illustration of two Majorana bound states (red) coupled to a quantum dot (green). The

phase between v1 and v2 can be controlled by a magnetic flux Φ. This setup enables all 2-Majorana

rotations exp(∆θγ1γ2) to be performed on the Majorana system.

coupling term to the Hamiltonian of eq. (3.1) of the form (v∗2c
†
1−v2c1)γ2 which results in the following

Hamiltonian matrix,

Hρ
12 =

(
0 vρ

(vρ)∗ ε

)
, (3.9)

where vρ = v1 + ρ i v2 for the even and odd cases which breaks the degeneracy of the ground state.

We will study this Hamiltonian and the associated charge-transfer process in detail throughout the

thesis. We choose a gauge which parameterizes the couplings through the real coefficients v, θ, φ,

v1 = v cos(θ)eiφ/2, v2 = v sin(θ). (3.10)

The magnetic flux Φ through the horseshoe-shaped superconductor in Fig. 3.2 controls the phase

difference φ = Φ/(h/(2e)). To find the eigenenergies, we write the Hamiltonian matrix in terms of

the Pauli matrices,

Hρ
12 =

ε

2
1 + Re[vρ]σx − Im[vρ]σy −

ε

2
σz (3.11)

The energy of the even and odd ground states are (see eq. (2.8)),

Eρ± = ε/2±
√

(ε/2)2 + |vρ|2 = ε/2±
√

(ε/2)2 + v2(1 + ρ sin(2θ) sin(φ/2)), (3.12)

where all parameters are taken to be controllable. Imagine tuning the phase difference to φ = 2πn

with n integer (corresponding to the fraction v1/v2 being real) such that the degeneracy between the

even and odd sectors is recovered. The degeneracy of the ground state is important as it ensures that

no relative dynamical phase is gained between the even and odd sectors. The role of the geometric

phase will be covered in Sec. 3.2. Using that v1/v2 is real while rewriting the Hamiltonian in terms

of c̃1 = c1 exp(iφ/2) yields

H12 = εc̃†1c̃1 + v(c̃†1 − c̃1)γ12, (3.13)

with

γ12 = cos(θ)γ1 + sin(θ)γ2, (3.14)

being a new Majorana operator. The Hamiltonian is now on the same form as eq. (3.1) so the previous

treatment also applies here. Emptying or filling the dot adiabatically corresponds to applying the

operator γ12 on the Majorana system. This operation is far more capable than the bit flip produced
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M1

D1

M2

D2

M3 M4

D3
v1 v2 v3 v4 v5 v6

Figure 3.3: Illustration of a setup where all unitary operations can be performed on the qubit consisting

of the four Majorana Bound states (red) by adiabatically emptying and filling the quantum dots

(green). This device can also be used to show that the operations are non-Abelian verifying that the

sub gap states are in fact Majorana.

by γ1 due to θ being controllable. By applying γ12 twice with different, but still real, ratios |v1|/|v2|,
the resulting operator takes the form

γ12γ
′
12 = (cos(θ)γ1 + sin(θ)γ2)(cos(θ′)γ1 + sin(θ′)γ2) = cos(∆θ) + sin(∆θ)γ1γ2 = exp(∆θγ1γ2),

where ∆θ = θ′ − θ. The possible operations which can be made on the Majorana system are thus all

2-Majorana rotationsexp(∆θγ1γ2). By tuning ∆θ = π/4 we perform the braiding operation on the

Majoranas,

exp
(π

4
γ1γ2

)
=

1√
2

(1 + γ1γ2). (3.15)

This operation is not topologically exact as it depends on the tuning of θ and φ. It is, however,

possible to produce a much richer set of operation on the Majorana system for this reason. The

Majorana operators can be represented by Pauli matrices acting on the two-level Majorana system

{|0〉M12 , |1〉M12} by

γ1 = σx, γ2 = σy, γ1γ2 = iσz. (3.16)

Thus, the 2-Majorana rotation exp(∆θγ1γ2) = exp(i∆θσz) corresponds to a rotation with angle θ

around the z-axis on the Bloch sphere of the Majorana system. The entire Bloch sphere can be

covered if the system is slightly extended such that also rotations around the x-axis can be performed.

Having introduced two additional Majorana bound states γ3 and γ4 (with annihilation operator d2),

a qubit may now be defined through four Majorana bound states in the subspace of even parity

{|00〉 , |11〉} where |11〉 = d†1d
†
2 |00〉 = d†1d

†
2 |0〉M12 |0〉M34. Additionally, another quantum dot D2

(with annihilation operator c2) couples to γ2 and γ3 with couplings v3, v4 respectively, see Fig. 3.3.

By emptying and filling D2 in the same manner as D1, a rotation on the Bloch sphere about the x-axis

can now be performed as γ2γ3 = iσx when acting on a state |α〉 in the even subspace

γ2γ3 |α〉 = i(d†1 − d1)(d†2 + d2) |α〉 = i(d†1d
†
2 + d2d1) |α〉 = iσx |α〉 . (3.17)

In conclusion, by manipulating D1 and D2 as described, corresponds to rotations around the x- and

z-axes. Combining these two kinds of operations covers the entire Bloch sphere and thus all unitary

operations can be performed on the Majorana qubit system. We can use these unitaries to demonstrate

the non-Abelian nature of Majoranas. In [1] such a protocol is proposed. First, pairs of Majoranas

are initiated in the state |0〉. This can be achieved by splitting the even and odd ground state energies
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by adjusting φ and let the system relax to the overall ground state. Measuring the charge on the dot

and tuning its energy |ε| >> v confirms that the Majoranas has reached their desired initial state.

We will not go into details about the charge-measurement procedure here but instead refer the reader

to Munk et al. [21] for a thorough treatment or Sec. 7.2 for a brief introduction. Relevant to the

present discussion is that we assume that the charge-measurement is projective to a subspace with

definite parity. In addition, we take the charge-measurement to be weak such that it is the time-

averaged charge within each parity subspace that is measured. In this way, the occupancy of a pair

of Majoranas can be deduced by measuring the charge of the dot. Continuing with the protocol, we

use non-commuting operators defined by

Fi =
1√
2

(γi + γi+1), (3.18)

which corresponds to the ideal situation θ = π/4, or equivalently |vi| = |vi+1|. Applying the operators

F1, F2, F3 on an initial state |00〉 in different order displays the non-Abelian nature of the Majorana

bound states,

F1F2F2F3 |00〉 = |11〉 , (3.19)

F2F1F3F2 |00〉 = |00〉 . (3.20)

The above equalities hold up to a phase. An occupation-measurement of the Majorana system can

then distinguish between the order of the two sequences. If the zero energy states are not Majorana

bound states, but rather trivial sub gap states, then the emptying and filling of the dot would result

in Abelian operations on the zero energy states. The above protocol depends on the fine tuning of

the system parameters φ, θ and the adiabatic control of ε. In experiment, such a protocol would

require to perform the initialization-operation-measurement-cycle repeatedly to be able to confidently

distinguish the order of operations statistically. In the remainder of this chapter, we study the effects

of systematical errors in φ, θ before considering the adiabatic control of the dot level energy in 4.1. We

assume throughout that the system parameters can be tuned precisely but not accurately. For this

reason, we consider only the systematical errors and not the statistical errors. Understanding these

errors enable us to propose a more refined protocol which mitigates the effect of the errors.

3.2 The effect of systematic errors in the coupling parameters

A statistical error in θ has straightforward implications as it merely results in shifting the weights

given to γ1 and γ2 in cos(θ)γ1 +sin(θ)γ2, moving it a way from the ideal situation θ = π/4. Errors in φ

are on the other hand more involved. If we have not tuned the system to φ = 2πn, the different parity

states are not degenerate and a relative dynamical phase is gained between the even and odd sectors

whose effect we study later in this section. The errors in φ also influences the relative geometric phase

and we study this effect first. To understand implications of φ 6= 2πn, we will view the operation on

the Majorana system as giving different phases to the even and odd states. By rewriting in terms of

the fermionic operators,

cos(θ)γ1 + sin(θ)γ2 = eiθd†1 + e−iθd1. (3.21)

We can understand d†1 and d1 as acting on the even or odd parity sector if we also consider the

operation on the dot. To exemplify, let the initial state in our consideration be

|i〉 = |0〉D1 (α |0〉M12 + β |1〉M12), (3.22)
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Filling the dot adiabatically corresponds to using the operator c†1, and due to parity conservation, we

must act with d†1 on |0〉M12 and d1 on |1〉M12. In this manner, d†1 is assigned to the even sector acting

on |0〉D1 |0〉M12. Likewise, d1 is assigned to the odd sector. Thus, the total operator acting on the

initial state is,

|f〉 = P↑ |i〉 , P↑ = c†1(d†1 + d1), (3.23)

giving the final state |f〉 = |1〉D1 (α |1〉M12 +β |0〉M12). The index ↑/↓ denotes filling and emptying the

dot respectively. In addition, we will use U↑(φ, θ) to denote the part of P↑ that acts on the Majorana

system. In this case, we have U0
↑ (φ = 2πn, θ = 0) = d†1 + d1. Note that if we had started in |1〉D1 and

emptied the dot by applying c1, we would instead assign d†1 to the odd sector and vice versa. In this

case, the operator acting on |i〉 would be P↓ = c1(d†1 +d1) with the Majorana part U0
↓ (φ, θ) = U0

↑ (φ, θ).

This is the same story leading up to eq. (3.8) where the even and odd Hamiltonians are identical and

no relative geometric phase is gained. In the case of one dot coupled to two Majoranas as in Fig. 3.2,

the even and odd state acquires different geometric phases amounting to a relative geometric phase

θG↑ when filling the dot. The relative geometric phase may depend on θ, φ so we need to assign the

phase θG↑ (φ, θ)/2 to the even state and −θG↑ (φ, θ)/2 to the the odd state. As an operator, we attach

these phases to the relevant fermionic operators, d†1 for the even part and d1 for the odd,

MG
↑ (φ, θ) = eiθ

G
↑ /2d†1 + e−iθ

G
↑ /2d1, (3.24)

taking into account φ 6= 2πn. Compare this operator to eq. (3.21). When emptying the dot, the geo-

metric phases are reversed. The even state acquires −θG↑ (φ, θ)/2 and the odd state acquires θG↑ (φ, θ)/2.

This is canceled by the fact that d1 now is assigned to the even sector and vice versa. For this rea-

son, the operator acting on the Majorana system is identical when filling and emptying the dot

UG↓ (φ, θ) = UG↑ (φ, θ), despite the geometric phase changing sign. We continue by computing the

geometric phases for the even and odd ground states to determine the general operator M(φ, θ). The

snapshot eigenstates of the Hamiltonian in eq. (3.9) is,

∣∣Ψρ
±(t)

〉
=

1√
(Eρ±(t))2 + |vρ|2

(
vρ

Eρ±(t)

)
. (3.25)

We have chosen a different gauge for each parity such that the snapshot eigenstates are on the form

(eia cos b(t), sin b(t))T . In an adiabatic process taking time T , we remain in the snapshot eigenstates

and acquire a geometric phase given by,

θG = i

∫ T

0

dt 〈Ψ(t)| d

dt
|Ψ(t)〉 . (3.26)

By straightforward calculations we get,

θG = i

∫ T

0

dt(e−ia cos b(t), sin b(t))

(
−eiaḃ(t) sin b(t)

ḃ(t) cos b(t)

)
= 0, (3.27)

which vanishes. When emptying or filling the dot, no geometric phase is gained for a given parity

using this gauge. However, the gauge choice is different for each parity and this amounts to a relative

geometric phase between the even and the odd ground states. Taking the example of filling the dot,

the ground states at t = 0 are subject to ε/|vρ| → ∞ and as a result Eρ−(0)→ 0, giving,

∣∣Ψρ
−(0)

〉
→

(
vρ/|vρ|

0

)
. (3.28)
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The relative phase θG(t = 0) between these two states is found through

tan
(
θG(0)

)
=

Im[
〈
Ψ+
−(0)

∣∣Ψ−−(0)
〉
]

Re[
〈
Ψ+
−(0)

∣∣Ψ−−(0)
〉
]

= − tan(2θ) cos(φ/2). (3.29)

Similarly, after the process, at t = T , the energy is Eρ−(T )/|vρ| → −∞ and the ground states are∣∣Ψρ
−(T )

〉
= (0, 1)T . Consequently, at time t = T the relative phase between the even and odd snapshot

ground states is zero,

θG(T ) = 0. (3.30)

The accumulated relative geometric phase between the even and the odd ground states when filling

the dot thus is

θG↑ (φ, θ) = θG(T )− θG(0) = arctan[tan(2θ) cos(φ/2)]. (3.31)

If we instead empty the dot, the geometric phase is reversed, θG↓ (φ, θ) = −θG(T ) + θG(0) = −θG↑ . As

discussed, the resulting operation performed on the Majorana system is the same in either case,

UG↑ (φ, θ) = eiθ
G
↑ /2d†1 + e−iθ

G
↑ /2d1 = cos

(
θG↑ /2

)
γ1 + sin

(
θG↑ /2

)
γ2, (3.32)

which simplifies to the known result cos(θ)γ1 + sin(θ)γ2 for φ = 0.

Understanding the operation on the Majorana system by evolving the even and odd sectors with

different phases is very useful. It has enabled us to compute the effect of systematic errors in φ. This

would not have been possible with the picture used in [1] where the Majorana operator γ12 only in

the ideal situation φ = 2πn factors out, see eq. (3.13). In the remainder of this section, we exploit

that we can treat the the dynamical phase on equal footing with the geometric phase. We use this

to determine the effect of the relative dynamical phase induced by the degeneracy split between the

even and odd parity sectors when φ 6= 2πn. We begin again with the example where the dot is filled

adiabatically in a time T and introduce the dimensionless time-parameter s = t/T . The relative

dynamical phase between the even and odd ground states is in this case

θD↑ (φ, θ) = −T
∫ 1

0

ds (E−−(s)− E+
−(s)), (3.33)

which is a dynamical quantity dependent on the time it takes to perform the operation. Since θD↑

increases with T and the adiabatic condition assumes that T is large, it is important to minimize

the dynamical phase in other ways. It is also useful to introduce the dimensionless dot level energy

x = ε/(2v). In Sec. 4.1, we argue that it is optimal to control the dot level energy during the

charge-transfer process according to

ẋ(s) = ±Ωη(x(s)2 + 1)η/2, (3.34)

since it is a power of the energy gap between ground state and excited state. Here, the dot denotes a

derivative with respect to the dimensionless time s. The real constant Ωη is determined through the

initial condition of the differential equation and the sign (+/−) corresponds to emptying/filling and η

is a real parameter. In Sec. 4.2, we compute Ωη, see eq. (4.44). This ansatz is relevant as it enables us

to replace the integral over time with an integral over the dimensionless dot level energy. Expanding

the relative dynamical phase to leading order in sin(2θ) sin(φ/2) � 1 and rewriting in terms of x, ẋ,

we find
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θD↑ (φ, θ) = − sin(2θ) sin(φ/2)Tv

∫ ∞
−∞

dx
1

ẋ
√
x2 + 1

= − sin(2θ) sin(φ/2)
Tv

Ωη

√
πΓ(η/2)

Γ((η + 1)/2)
,

(3.35)

for η > 0.

If η ≤ 0, the integral diverges and this puts a bound our choice of reasonable η. Contrary to the

geometric phase, the dynamical phase does not pick up a relative sign when emptying the dot since

the above integrand is even and so θD↑ = θD↓ = θD. This introduces a distinction in the operations on

the Majorana system depending on whether the dot has been filled or emptied. When filling the dot,

we attach the phases θD/2 and −θD/2 to d†1 and d1 respectively in addition to the geometric phases.

This gives the total operator acting on the Majorana state during a process where the dot is filled,

U↑(φ, θ) = ei(θ
G
↑ +θD)/2d†1 + e−i(θ

G
↑ +θD)/2d1 = cos

(
(θG↑ + θD)/2

)
γ1 + sin

(
(θG↑ + θD)/2

)
γ2. (3.36)

When the dot is emptied, the phases θD/2 and −θD/2 is instead attached to d1 and d†1 respectively,

U↓(φ, θ) = ei(θ
G
↑ −θ

D)/2d†1 + e−i(θ
G
↑ −θ

D)/2d1 = cos
(
(θG↑ − θD)/2

)
γ1 + sin

(
(θG↑ − θD)/2

)
γ2. (3.37)

The dynamical phase results in U↑(φ, θ) 6= U↓(φ, θ) breaking the symmetry between the operators

when filling and emptying the dot. With these operators, we can reverse the effect of the geometric

phases but the dynamical phases accumulate. Interestingly, both the geometric and dynamical phases

changes signs when φ→ φ+ 2π. For the geometric phase,

θG↑ (φ+ 2π, θ) = arctan[tan(2θ) cos(φ/2 + π)] = − arctan[tan(2θ) cos(φ/2)]

= −θG↑ (φ, θ), (3.38)

and for the dynamical phase,

θD(φ+ 2π, θ) = − sin(2θ) sin(φ/2 + π)
Tv

Ωα

√
πΓ(α/2)

Γ((α+ 1)/2)
= sin(2θ) sin(φ/2)

Tv

Ωα

√
πΓ(α/2)

Γ((α+ 1)/2)

= −θD(φ, θ), (3.39)

since they both depend sinusoidally on φ/2. In experiment, φ can be wound by 2π using the magnetic

flux through the device. The change in magnetic field that accomplishes this winding depends on the

geometry of the device and must be determined experimentally for the given sample. Performing this

extra step is worthwhile as it enables a protocol where the dynamical phases can be canceled due to

this sign flip. Therefore, we have now four fundamental operators. We produce a summary of the four

fundamental operators and the associated relative phases gained between the even and odd ground

states,

U↑(φ)←→ θG↑ + θD, (3.40)

U↓(φ)←→ −θG↑ + θD, (3.41)

U↑(φ+ 2π)←→ −θG↑ − θD, (3.42)

U↓(φ+ 2π)←→ θG↑ − θD. (3.43)

The explicit dependence on φ, θ has been suppressed unless where relevant. This overview also presents

a quick method for determining the resulting operator acting on a pair of Majoranas from several
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charge-transfer processes. By keeping track of the signs of the geometric and dynamical phases, we

can simply add up the contributions from each process and assign the resulting phase to the even

and odd states. We will use this method and the four fundamental operators in the next section to

construct a protocol that efficiently demonstrate the non-Abelian exchange statistics of the Majoranas.

By having all four combinations of (±θG↑ ± θD) we can propose a protocol where the dynamical phase

of subsequent operations will be canceled.

3.3 Introducing an efficient protocol

In the protocol suggested in [1], errors was not included. In this section, we propose a protocol which

relies on fewer operations and tries to cancel the main source of error; the relative dynamical phase

between the even and odd parity sectors. In the previous section, we have learned that there are

contributions from both the geometric phase and the dynamical phase. It is the geometric phase that

produces the non-Abelian effects associated with the Majoranas. The dynamical phase results in trivial

effects reducing the visibility of the non-Abelian effects. For this reason, we should ideally design a

protocol where the dynamical phase appears minimally. In Sec. 2.3, we have seen that Majorana

non-Abelian statistics can be demonstrated by performing operations on the M23 Majoranas if we

measure in the M12/M34-basis. Consequently, it is useful to change the basis to the M23/M14-

basis when understanding the result of the operations on M23. We will call the M23/M14-basis

the operation-basis as opposed to the measurement-basis of M12/M34. The fermionic annihilation

operators in the operation-basis are

d̃1 =
1

2
(γ2 + iγ3), d̃2 =

1

2
(γ1 + iγ4). (3.44)

We define the occupancy states in the operation-basis as∣∣∣00̃0
〉

= |0〉D2

∣∣0̃〉
M23

∣∣0̃〉
M14

, (3.45)∣∣∣11̃1
〉

= c†2d̃
†
1d̃
†
2

∣∣∣00̃0
〉
. (3.46)

Note that no changes are made to the basis of the dot. The creation and annihilation operators in

the operation-basis are related to the measurement-basis d1 = 1
2 (γ1 + iγ2), d2 = 1

2 (γ3 + iγ4) through

d1 =
1

2
(d̃2 + d̃†2) +

i

2
(d̃1 + d̃†1), (3.47)

d2 =
1

2
(d̃2 − d̃†2)− i

2
(d̃1 − d̃†1). (3.48)

We can relate the states in the measurement-basis to the states in the operation-basis. One way of

deducing their relation is to use d1 |00〉 = 0 and d2 |00〉 = 0 and use the ansatz |00〉 = a
∣∣∣0̃0
〉

+b
∣∣∣0̃1
〉

+

c
∣∣∣1̃0
〉

+ d
∣∣∣1̃1
〉

, omitting the state of the dot. We find for the Majorana states,

d1 |00〉 =
1

2
(d̃2 + d̃†2 + id̃1 + id̃†1)

(
a
∣∣∣0̃0
〉

+ b
∣∣∣0̃1
〉

+ c
∣∣∣1̃0
〉

+ d
∣∣∣1̃1
〉)

(3.49)

=
1

2

(
(b+ ic)

∣∣∣0̃0
〉

+ (ib− c)
∣∣∣1̃1
〉

+ (a+ id)
∣∣∣0̃1
〉

+ (ia− d)
∣∣∣1̃0
〉)

= 0, (3.50)

d2 |00〉 =
1

2
(d̃2 − d̃†2 − id̃1 + id̃†1)

(
a
∣∣∣0̃0
〉

+ b
∣∣∣0̃1
〉

+ c
∣∣∣1̃0
〉

+ d
∣∣∣1̃1
〉)

(3.51)

=
1

2

(
(b+ ic)

∣∣∣0̃0
〉

+ (c+ ib)
∣∣∣1̃1
〉

+ (−a− id)
∣∣∣0̃1
〉

+ (ia− d)
∣∣∣1̃0
〉)

= 0, (3.52)
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and thus b+ ic = b− ic = 0 implying b = c = 0 and a+ id = 0 giving a = 1/
√

2 and d = i/
√

2. Using

d†1 and d†2 expressed in the operation-basis we can build the rest of the states,

|00〉 =
1√
2

(∣∣∣0̃0
〉

+ i
∣∣∣1̃1
〉)

, (3.53)

|01〉 =
1√
2

(∣∣∣0̃1
〉

+ i
∣∣∣1̃0
〉)

, (3.54)

|10〉 =
1√
2

(∣∣∣0̃1
〉
− i
∣∣∣1̃0
〉)

, (3.55)

|11〉 =
1√
2

(∣∣∣0̃0
〉
− i
∣∣∣1̃1
〉)

. (3.56)

In the protocol in eqs. (3.19) and (3.20), we can experimentally distinguish between the states |00〉 and

|11〉. In the operation-basis, we see that |00〉 and |11〉 corresponds to different relative phases between∣∣∣0̃0
〉

and
∣∣∣1̃1
〉

. It is exactly the relative phase between
∣∣∣0̃0
〉

and
∣∣∣1̃1
〉

we affect in the charge-transfer

process with M23. To see this, we assume to initialize in the state

|000〉 =
1√
2

(∣∣∣00̃0
〉

+ i
∣∣∣01̃1

〉)
. (3.57)

Here,
∣∣∣00̃0

〉
is considered even as the joint parity of D2 and M23 is even. Accordingly, it evolves with

the Hamiltonian describing even parity and acquires the phase we associate with the even sector during

the charge-transfer process. Likewise,
∣∣∣01̃1

〉
is subject to the time-evolution of the odd Hamiltonian.

Algebraically, filling the dot results in

|000〉 → c†2

(
ei(θ

G
↑ +θD)/2d̃†1 + e−i(θ

G
↑ +θD)/2d̃1

) 1√
2

(∣∣∣00̃0
〉

+ i
∣∣∣01̃1

〉)
(3.58)

→ 1√
2

(
ei(θ

G
↑ +θD)/2

∣∣∣11̃0
〉

+ ie−i(θ
G
↑ +θD)/2

∣∣∣10̃1
〉)

, (3.59)

which introduces the relative phase θG↑ + θD between the even and odd states. We may now use the

summary in eqs. (3.40)-(3.43) to formulate a good protocol where the order of operations can be

clearly distinguished by occupation measurements. We begin by focusing on the geometric phase as

this is the effect we are interested in. We notice that we can add and subtract the geometric phase

from subsequent operations by using U↑ and U↓,

U↓(φ, θ)U↑(φ, θ)←→ (−θG↑ + θD) + (θG↑ + θD) = 2θD, (3.60)

U↑(φ, θ)U↑(φ, θ)←→ (θG↑ + θD) + (θG↑ + θD) = 2θG↑ + 2θD. (3.61)

We should also keep in mind the physical restriction of not being able to fill the dot twice in a row

but must alternate between filling and emptying. This disqualifies the second of the above equations

but it can be salvaged by inserting an operator such as γ2 = U↑/↓(φ, θ = 0) = d̃†1 + d̃1 where the dot

can be emptied. The upside of using γ2 in the protocol is that it does not depend on tuning φ or θ.

Using γ2 gives the physically relevant protocol,

γ2U↓(φ, θ)U↑(φ, θ)←→ (−θG↑ + θD) + (θG↑ + θD) = 2θD, (3.62)

U↑(φ, θ)γ2U↑(φ, θ)←→ (θG↑ + θD) + (θG↑ + θD) = 2θG↑ + 2θD. (3.63)

It is clear that U and γ2 does not commute. The difference is most pronounced when 2θG↑ = π which

in the ideal case φ = 2πn corresponds to θ = π/4. Acting with these operators on the initial Majorana

state in measurement-basis gives
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γ2U↓(φ, θ)U↑(φ, θ) |00〉 = cos
(
θD
)
|01〉 − i sin

(
θD
)
|10〉 , (3.64)

U↑(φ, θ)γ2U↑(φ, θ) |00〉 = cos
(
θG↑ + θD

)
|01〉 − i sin

(
θG↑ + θD

)
|10〉 . (3.65)

In the ideal situation θG↑ = π/2, θD = 0, we would measure |01〉 for the first order of operations

and |10〉 for the second order, distinguishing between the two sequences of operations. Even when

the parameters φ, θ are only slightly deviating from the ideal case, the dynamical phase might still

be significant since it depends on the time scale of the process in addition to the parameters in the

Hamiltonian. This restricts the range of the parameters where the final states of the two orders

can be distinguished statistically by repeating the protocol. By also using the φ-flipped operators

U↑/↓(φ+ 2π, θ) it is possible to have the dynamical phases of subsequent operations canceling. Here,

we exploit that the φ-flip, φ→ φ+ 2π, changes the sign of the dynamical phase. Consider in this case

the corresponding relative phase,

γ2U↓(φ+ 2π, θ)U↑(φ, θ)←→ −(−θG↑ + θD) + (θG↑ + θD) = 2θG, (3.66)

U↑(φ+ 2π, θ)γ2U↑(φ, θ)←→ −(θG↑ + θD) + (θG↑ + θD) = 0, (3.67)

where the last of the U -operators have been φ-flipped, canceling the dynamical phases and leaving

only the geometric phases. In the measurement-basis, the outcome of the operations in eqs. (3.66)

and (3.67) are

γ2U↓(φ+ 2π, θ)U↑(φ, θ) |00〉 = cos
(
θG↑
)
|01〉 − i sin

(
θG↑
)
|10〉 , (3.68)

U↑(φ+ 2π, θ)γ2U↑(φ, θ) |00〉 = |01〉 . (3.69)

The benefit of performing the φ-flip is evident. By canceling the dynamical phase, the second order of

operations gives the result |01〉 regardless of the parameters. In the ideal case θG↑ = π/2, the outcome

of the two sequences is different. Close to the ideal case, the two sequences can be distinguished

statistically, however, the outcome is identical for θG↑ = nπ so experiments should be tuned away from

this point.

We have proposed two similar protocols in eqs. (3.64-3.65) and (3.66-3.67) which can exhibit the

non-Abelian nature of Majoranas. Compared to the protocol in [1], our protocol has a few advantages.

The protocols need only to perform operations on the M23 Majorana pair instead of all three pairs.

The number of operations is three rather than four with one being the parameter independent γ2-

operation. Noticeably, the second protocol described in eqs. (3.66-3.67) includes an additional initial

step. By determining the change in magnetic flux that results in a winding of the coupling phase φ by

2π, the second protocol can cancel the contribution from the dynamical phase. This trick broadens

the range of parameters for which the protocol can confidently show the non-Abelian nature of the

Majoranas as we show numerically in Sec. 5. If φ is not wound by 2π exactly, but rather is offset by

a small amount δφ to φ + 2π + δφ, the φ-flip-trick suppresses the dynamical phase to a value of the

order δφ which is still a significant improvement if δφ � 1. At this point, we have addressed two of

the four parameters in the Hamiltonian. Having covered the coupling parameters φ, θ we are left with

the dot level energy ε and coupling strength v. So far we have simply assumed that the control of ε

is completely adiabatic and not taken into account the errors that may arise when emptying or filling

the in finite time. The relevance is two-fold; errors due to non-adiabaticity may result in exciting the

system out of the ground state manifold which corrupts the protocol. On the other hand, we need also
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to minimize the dynamical phase. As a consequence, the time scale of the emptying/filling-process

should be long enough to suppress the excitations but still sufficiently short to minimize the dynamical

phase. In this context, the coupling strength v plays a subtle but important role. In the next chapter,

we review the framework of adiabatic perturbation theory due to Rigolin et al. [2] and use it to asses

the corrections due to non-adiabatic errors. Following in Sec. 4, we test our predictions from adiabatic

perturbation against a numerical simulation.



Chapter 4

Adiabatic perturbation theory

In the charge-transfer operation described in Sec. 3.1, several assumptions are made which might

require to fine tune the device. We have discussed the possible issues of tuning the tunnel couplings

between Majoranas and the dot in the previous chapter. In this chapter, we analyze the issues due

to a non-adiabatic dot level evolution. We imagine the dot level energy to be controlled slowly in

experiment to secure that the system evolves adiabatically and remains in the ground state manifold.

The gap between the ground state and the excited state depends heavily on the particular value of ε(t)

during the charge-transfer process. For this reason, the dot level energy can be changed faster when

the gap is large but needs to change slower when the gap is smaller. This is important as we need

also to keep in mind that the undesired dynamical phase grows with the time T it takes to complete

the process. This competition between adiabaticity and minimization of the dynamical phase raises

two questions: 1) What is the optimal time scale of the charge-transfer process and 2) how should

the dot level energy be controlled as a function of time? To answer these questions, we will first

develop adiabatic perturbation theory following Rigolin et al. [2]. This is a perturbation theory in the

small quantity 1/T which we will then apply to the charge-transfer process to calculate the first order

corrections in 1/T . This treatment will give rise to some slightly subtle details about the perturbation

theory not being expanded in a dimensionless parameter rendering the results erroneous. In the

last section of this chapter, we try to amend these issues by formulating the relevant dimensionless

expansion parameter for the charge-transfer process.

4.1 Deriving adiabatic perturbation theory

We begin the derivation of adiabatic perturbation theory by studying a non-degenerate n-level quan-

tum system before specializing to the two-level case. Let us consider a generic time-dependent Hamil-

tonian H(t) evolving states |Ψ(t)〉 according to the Schrödinger equation,

i
1

T

d

ds
|Ψ(s)〉 = H(s) |Ψ(s)〉 , (4.1)

where s = t/T and T is the characteristic time scale of the Hamiltonian. The instantaneous eigenen-

ergies are assumed non-degenerate and are given by

H(s) |n(s)〉 = H(s)En(s), (4.2)

where |n(s)〉 are the snapshot eigenstates in this chapter. The adiabatic theorem states that if a the

system starts out in a state |n(s = 0)〉, then the system remains in that snapshot eigenstate |n(s)〉

29
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throughout the time evolution, given that the characteristic time scale of the Hamiltonian T is much

larger than the energy separation between En and the rest of the spectrum, i.e. T � |Ei − En|−1.

The aim is now to develop an adiabatic perturbation theory in the small quantity 1/T from which the

first order corrections to the adiabatic approximation can be derived. A further benefit of adiabatic

perturbation theory is that it states the condition for the adiabatic theorem precisely and rigorously.

The main difficulty is to find an ansatz for the state |Ψ(s)〉 which factors out the highly oscillatory

dynamical phases e−iTωn(s) and secondly, the geometrical phases eiγn(s). In terms of the rescaled time

s, the dynamical and geometric phases are given by

ωn(s) =

∫ s

0

ds′ En(s′), (4.3)

γn(s) = i

∫ s

0

ds′ 〈n(s′)|ṅ(s′)〉 , (4.4)

where the dot denotes d
ds . An appropriate ansatz is given in [2],

|Ψ(s)〉 =

∞∑
p=0

1

T p

∑
n,m=0

e−iTωm(s)eiγmb(p)nm(s) |n(s)〉 , (4.5)

where b
(p)
nm(s) are complex valued time dependent coefficients. With this ansatz, the number of coeffi-

cients has been expanded from the original N degrees of freedom in the Schrödinger equation to N2

coefficients for each order in the perturbation theory p. We will later use this redundancy to enforce

restrictions on the coefficients. The object of the adiabatic perturbation theory is to find expressions

for these coefficients. The p = 0 term in eq. (4.5) descirbes the adiabatic evolution, whice gives a con-

straint to the zeroth order coefficients. Demanding that the system evolves according to the snapshot

eigenstates implies

b(0)
nm(s) = 0 for n 6= m. (4.6)

A further implication is that the initial state is described by the adiabatic theorem, meaning∑
m=0

b(p)nm(0) = 0 for p ≥ 1. (4.7)

By inserting the ansatz into the Schrödinger equation of eq. (4.1) and left multiplying with 〈k(s)|
while using orthonormality of the snapshot eigenstates, we get∑
m=0

∞∑
p=0

1

T p
e−iTωm(s)eiγm

(
iT∆km(s)b

(p)
km(s) + ḃ

(p)
km(s)−Mmm(s)b

(p)
km(s) +

∑
n=0

Mkn(s)b(p)nm(s)

)
= 0,

(4.8)

where ∆nm(s) = En(s)− Em(s) and Mnm(s) = 〈n(s)|ṁ(s)〉. The 1
Tp iT∆km(s)b

(p)
km(s) term seems to

be divergent for 1/T → 0, but due to the constraints of the zeroth order coefficients it remains finite.

To see this, rewrite the term as

∞∑
p=0

1

T p
iT∆km(s)b

(p)
km(s) = iT∆km(s)b

(0)
km(s) +

∞∑
p=0

i

T p
∆km(s)b

(p+1)
km (s). (4.9)

The apparent diverging term has been separated from the sum. Now it is clear that for k = m

it vanishes due to ∆kk(s) = 0 while for k 6= m it vanishes due to the constraint from eq. (4.6).

Substituting back in gives∑
m=0

∞∑
p=0

1

T p
e−iTωm(s)eiγm

(
i∆nm(s)b(p+1)

nm (s) + ḃ(p)nm(s)−Mmm(s)b(p)nm(s) +
∑
k=0

Mnk(s)b
(p)
km(s)

)
= 0,

(4.10)
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where n and k has been interchanged. We impose that the above condition is fulfilled order by order

in 1/T and further demand the condition is satisfied also for each m. We have freedom to choose the

latter as we have introduced additional degrees of freedom from the ansatz. The coefficients can be

calculated recursively from the resulting equations

i∆nm(s)b(p+1)
nm (s) + ḃ(p)nm(s) +Wnm(s)b(p)nm(s) +

∑
k=0
k 6=n

Mnk(s)b
(p)
km(s) = 0, (4.11)

where Wnm(s) = Mnn(s)−Mmm(s) has been introduced. This is a key result from [2]. The coefficients

can now be calculated for n 6= m as

b(p+1)
nm (s) =

i

∆nm(s)

ḃ(p)nm(s) +Wnm(s)b(p)nm(s) +
∑
k=0
k 6=n

Mnk(s)b
(p)
km(s)

 . (4.12)

For the n = m case, both ∆nm(s) and Wnm(s) vanishes and we must integrate eq. (4.11) for p + 1.

This yields

b(p+1)
nn (s) = b(p+1)

nn (0)−
∑
k=0
k 6=n

∫ s

0

ds′ Mnk(s′)b
(p+1)
kn (s′). (4.13)

Here, b
(p+1)
nn (0) is related to all the other (p + 1)-order coefficients through eq. (4.7) which is then

determined by the equation for n 6= m. Inserting the equation for b
(p+1)
kn (s′) in the integrand gives

b(p+1)
nn (s) =−

∑
k=0
k 6=n

b
(p+1)
nk (0)− i

∑
k=0
k 6=n

∫ s

0

ds′
Mnk(s′)Wkn(s′)

∆kn(s′)
b
(p)
kn (s′) (4.14)

− i
∑
k=0
k 6=n

∫ s

0

ds′

Mnk(s′)

∆kn(s′)
ḃ
(p)
kn (s′) +

∑
m=0
m 6=k

Mnk(s′)Mkm(s′)

∆kn(s′)
)b(p)mn(s′)

 .

Using this equation alongside eq. (4.12) enables us to compute the time dependent coefficients to a

given order in 1/T while only using the eigenenergies and eigenstates of the Hamiltonian.

At this point, we specialize to the relevant case of the two-Majorana charge-transfer system. The

even and odd sectors can each be described as a two level system in a gauge with no geometric phase

which implies Wnm(s) = 0. We further assume that the initial state is the ground state and calculate

the first order correction in 1/T . Starting in the ground state corresponds to the initial condition

1∑
m=0

b(0)
nm(0) = δn0. (4.15)

Using the initial condition and that the zeroth order coefficients are non-dynamical in eq. (4.12) (the

n 6= m case) gives

b
(1)
01 (s) = 0, (4.16)

b
(1)
10 (s) = i

M10(s)

∆10(s)
. (4.17)
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Similarly, for the n = m case in eq. (4.14) we get

b
(1)
00 (s) = i

∫ s

0

ds′
|M10(s′)|2

∆10(s′)
, (4.18)

b
(1)
11 (s) = −iM10(0)

∆10(0)
. (4.19)

Here it has been used that Mnm = −M∗mn which can be seen by taking the derivative wrt. s of the

orthonormality relation,

〈n(s)|m(s)〉 = δnm =⇒Mnm(s) = −M∗mn(s). (4.20)

Having computed the first order coefficients we can now write down the time dependent state up to

first order in adiabatic perturbation theory

|Ψ(s)〉 = e−iTω0(s)

(
1 +

i

T

∫ s

0

ds′
|M10(s′)|2

∆10(s′)

)
|0(s)〉

+
i

T

(
e−iTω0(s)M10(s)

∆10(s)
− e−iTω1(s)M10(0)

∆10(0)

)
|1(s)〉 . (4.21)

Demanding that the first order contributions are small gives the exact condition for the application

of the adiabatic theorem,

1

T

∫ s

0

ds′
|M10(s′)|2

∆10(s′)
� 1, (4.22)

1

T

∣∣∣∣e−iTω0(s)M10(s)

∆10(s)
− e−iTω1(s)M10(0)

∆10(0)

∣∣∣∣� 1. (4.23)

These are the main points of [2]. In the system consisting of two Majoranas coupled to a dot, there

are additional energy scales which need to be compared to the dimensionful expansion parameter

1/T . Additionally, the way ε(t) is controlled also introduces a dimensionless parameter relevant to

the proper dimensionless expansion parameter. These aspects are not covered by the original work

of [2] and give rise to some subtleties, challenging that eqs. (4.22) and (4.23) are the only relevant

conditions in our case. We address this in Sec. 4.3 but begin with applying adiabatic perturbation

theory as derived above to the two-Majorana charge-transfer system, to understand how it works.

4.2 Investigating adiabatic perturbation theory

In this section we apply adiabatic perturbation theory to the two-Majorana charge-transfer system

depicted in Fig. 3.2. This is an exercise in doing adiabatic perturbation theory where we disregard

the subtleties arising from the expansion parameter 1/T being a dimensionful quantity. For this

reason, the following results should be applied with care. We use this section as a stepping stone

leading up to the next section where we formulate adiabatic perturbation theory in dimensionless

parameters. We consider the process where the dot is filled during a time T . We assume that the

process is symmetric with the initial dot level energy being ε(s = 0) = ε0 and the final level energy

being ε(s = 1) = −ε0. We take the dimensionless quantity x0 = ε0/(2v) � 1 to be large so a charge

is transferred from the Majoranas to the dot. This is a large dimensionless parameter which may

also influence the perturbation theory and we also postpone much of this discussion to the the next
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section. We continue by reminding ourselves of the present situation. The instantaneous eigenenergy

equations for the even (ρ = −) and odd (ρ = +) sectors in dimensionless quantities are

1

v
Hρ(s) |nρ(s)〉 = Xρ

n(s) |nρ(s)〉 , 1

v
Hρ(s) =

(
0 vρ/v

(vρ/v)∗ 2x(s)

)
, (4.24)

with dimensionless eigenenergies

Xρ
n(s) = x(s)±

√
x(s)2 + |vρ|2/v2), (4.25)

expressed in terms of the dimensionless dot level energy x(s) = ε(s)/(2v) and |vρ|2/v2 = 1 +

ρ sin(2θ) sin(φ/2). The ground state energy is indexed by n = 0 corresponding to the (−) solution

while the excited state is indexed by n = 1 and uses (+). The corresponding eigenstates are

|nρ(s)〉 =
1√

Xρ
n(s)2 + |vρ|2/v2

(
vρ/v

Xρ
n(s)

)
, (4.26)

The energy difference between the ground states and excited states for each parity, ∆ρ
10(s), and Mρ

10(s),

which is dimensionless, are the building blocks for adiabatic perturbation theory and relevant for us to

compute. The energy difference has not been made dimensionless as it needs to carry a dimension to

counter the dimensionful expansion parameter. To leading order in sin(2θ) sin(φ/2) � 1, the energy

difference is independent of ρ and we drop this superscript,

∆10(s) = 2v
√
x(s)2 + 1. (4.27)

To calculate Mρ
10(s), we take the derivative with respect to s of the snapshot eigenstate, eq. (4.24),

and left multiply with 〈mρ(s)| to get

Mρ
nm(s) =

〈nρ(s)| 1
v Ḣ

ρ(s) |mρ(s)〉
∆mn(s)/v

. (4.28)

By direct computation,

〈1ρ(s)| 1
v
Ḣρ(s) |0ρ(s)〉 =

2ẋ(s)Xρ
0 (s)Xρ

1 (s)√
|vρ|4/v4 + |vρ|2/v2(Xρ

0 (s)2 +Xρ
1 (s)2) +Xρ

0 (s)2Xρ
1 (s)2

. (4.29)

Since Xρ
0 (s) and Xρ

1 (s) are the eigenvalues of 1
vH

ρ(s), the above equation can easily be simplified

using

Xρ
0 (s)2 +Xρ

1 (s)2 = tr

[
1

v2
Hρ(s)2

]
= tr

[
|vρ|2/v2 2x(s)vρ/v

2x(s)(vρ/v)∗ |vρ|2/v2 + 4x(s)2

]
= 2|vρ|2/v2 + 4x(s)2,

(4.30)

Xρ
0 (s)Xρ

1 (s) = det

[
1

v
Hρ(s)

]
= det

[
0 vρ/v

(vρ/v)∗ 2x(s)

]
= −|vρ|2/v2. (4.31)

Inserting these gives

〈1ρ(s)| 1
v
Ḣρ(s) |0ρ(s)〉 =

−2ẋ(s)|vρ|/v√
tr
[

1
v2H

ρ(s)2
]
− 2 det

[
1
vH

ρ(s)
] =
−2ẋ(s)|vρ|/v

∆10(s)/v
, (4.32)

where it has been used that ∆ρ
10(s)/v =

√
(Xρ

1 (s)−Xρ
0 (s))2 =

√
tr
[

1
v2H

ρ(s)2
]
− 2 det

[
1
vH

ρ(s)
]
. For

Mρ
nm(s), we finally get

Mρ
nm(s) =

−ẋ(s)|vρ|/v
2(x(s)2 + 1)

. (4.33)
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We are now ready to calculate the first order corrections in 1/T . We begin by considering the ground

state only and then we consider transitions. To this order in adiabatic perturbation theory, the even

and odd ground states evolve according to eq. (4.21) in the process where the dot is filled,

|0ρ(0)〉 −→ e−iTω
ρ
0 (s)eiA

ρ(s) |0ρ(s)〉 , (4.34)

where it has been used that 1 + x ≈ ex since

Aρ(s) =
1

T

∫ s

0

ds′
|Mρ

10(s′)|2

∆10(s′)
, (4.35)

is assumed small, see eq. (4.22). Note that the correction phase Aρ(s) is not a new quantum phase

but rather a correction to the existing dynamical and geometric phases arising since the evolution is

not entirely adiabatic. Substituting the expressions for ∆10(s) and Mρ
10(s) gives,

Aρ(s = 1) =
|vρ|2/v2

8Tv

∫ 1

0

ds
ẋ(s)2

(x(s)2 + 1)5/2
=
|vρ|2/v2

8Tv

∫ 1

0

ds L(x, ẋ). (4.36)

Minimising this phase is a variational problem reminiscent of Lagrangian mechanics. Here, the cor-

rection phase acts as a kinetic action. Since the Lagrangian in this case does not depend explicitly on

time, we can use the Beltrami identity,

C = ẋ
dL
dẋ
− L (4.37)

where C is a constant dependent on initial conditions. In classical mechanics, C would correspond to

the energy in a conserved system, and since the Lagrangian only has a kinetic term, we have

L(x, ẋ) = C −→ ẋ(s) = ±
√
C(x(s)2 + 1)5/4, (4.38)

where filling the dot would correspond to the (−) solution. It becomes relevant to study a slightly

generalized version of this differential equation. In Sec. 3.2, we considered

ẋ(s) = ±Ωη(x(s)2 + 1)η/2, (4.39)

which would correspond to η = 5/2 in the present case. It is worthy to note that the rate of change

of the dot level energy is proportional to the energy gap to some power. This is a good ansatz as

it captures the correspondence of going fast/slow when the gap is large/small. The solution to the

η-dependent first order non-linear differential equation in eq. (4.39) is

Kη − Ωηs = x(s)F

(
1

2
,
η

2
;

3

2
;−x(s)2

)
, (4.40)

with Kη being a constant of integration and F (a, b; c; z) is the Gauss hypergeometric function defined

by

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)n!
zn, for |z| < 1. (4.41)

Inserting the initial condition x(s = 0) = x0 = ε0/(2v) determines Kη. Since x0 � 1, the right hand

side is expanded in powers of 1/x0. To do this, the transformation formula for the hypergeometric

function is used,

F (a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−aF (a, a−c+1; a−b+1; 1/z)+(a↔ b), for | arg(−z)| < π, (4.42)
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yielding,

Kη =

(
Γ( 3

2 )Γ(η−1
2 )

Γ(η2 )
+

Γ( 3
2 )Γ( 1−η

2 )

Γ( 1
2 )Γ( 3−η

2 )
x1−η

0

)(
1 +O(x−2

0 )
)
≈


√
πΓ( η−1

2 )

2Γ( η2 ) , for η > 1,

x1−η
0

1−η , for η < 1.
(4.43)

Importantly, for η < 1, the leading contribution in x0 is Kη ∼ x1−η
0 which is large. Eventually, this

leads the condition η > 1 in order to avoid large non-adiabatic corrections. This is similar to the

bound η > 0 which prevents the dynamical phase from also growing large with x0, see eq. (3.35). The

symmetry of the process implies x(1/2) = 0 and this determines the constant Ωη through Ωη = 2Kη,

giving,

Ωη ≈


√
πΓ( η−1

2 )

Γ( η2 ) , for η > 1,

2 sinh−1(x0), for η = 1,

2
1−ηx

1−η
0 , for η < 1,

(4.44)

to leading order in 1/x0. The limiting case η = 1 has also been included where the solution to eq.

(4.39) is simply x(s) = sinh
(
Ωη=1( 1

2 − s)
)
. Here, Ωη=1 is logarithmically diverging with x0. We may

now continue with computing the correction phase. For general η, we can not use the Beltrami identity

but can instead compute the integral by substituting ds = dx/ẋ. We find

Aρη(1) =
Ωη|vρ|2/v2

8Tv

∫ x0

−x0

dx
1

(x2 + 1)
5−η
2

≈
√
πΓ( 4−η

2 )

8Γ( 5−η
2 )

Ωη
Tv
|vρ|2/v2, (4.45)

for both filling and emptying and to leading order in 1/x0. Here, we have an upper bound η < 4 as

the integral over x will otherwise diverge with x0 →∞. In the present case, where η = 5/2, we find

Aρ
η= 5

2

(1) =
4π3|vρ|2/v2

Γ( 1
4 )4Tv

, (4.46)

where 4π3

Γ(1/4)4 = 0.717770 . . .. Demanding that Aρ
η= 5

2

(1) must be small results in

Tv � 1, (4.47)

which is what we would expect from the adiabatic theorem as v represents the smallest gap during

the process. For general η we need to enforce

Tv � Ωη, (4.48)

to keep Aρη(1) � 1. If η < 1, then Ωη ∼ x1−η
0 which is large in our model, demanding the time scale

to be even slower. This implies that besides relating T to a relevant energy scale, which in our case is

v, we need also a dimensionless parameter which describes the way we are performing the adiabatic

transport. In our situation, Ωη is the relevant parameter describing our choice of adiabatic transport

and it may be large due to its dependence on x0 for η < 1. The parameter x0 = ε0/(2v) is the ratio

between the largest gap and the smallest gap in the process, and in this way, the adiabatic condition

has knowledge of all relevant energy scales. Physically η < 1 corresponds to going relatively slower

when the gap is large compared to when the gap is small. This is clearly an unsound course of action if

adiabaticity is desired. Note that controlling the dot linearly ẋ = const. corresponds to choosing η = 0

and that this is outside η > 1. In the next section, we show that the relevant expansion parameter for
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the adiabatic perturbation theory in this setup is Ωη/(Tv) and find the strictest upper bound on η.

We continue this section by considering the second of the two conditions for adiabaticity, eq. (4.23).

This equation describes the transition to the excited state. Since the process is symmetric we have
Mρ

10(0)
T∆10(0) =

Mρ
10(1)

T∆10(1) and we consider the former,∣∣∣∣ Mρ
10(0)

T∆10(0)

∣∣∣∣� 1, (4.49)

xη−3
0 |Ωη||vρ|/v

4Tv
� 1, (4.50)

to leading order in 1/x0. For η < 1 the restriction is Tv � x−2
0 which is less strict than Tv � 1. For

η > 1 on the other hand, Tv � xη−3
0 , setting a stricter bound from above 1 < η ≤ 3 as the relevant

range for η. Specifically, for the optimal value η = 5/2, we get∣∣∣∣ Mρ
10(0)

T∆10(0)

∣∣∣∣ =

√
2π3|vρ|/v

Γ( 1
4 )2Tv

√
x0

(4.51)

For values of η within the bound, the transition amplitude is further suppressed by 1/
√
x0. Physically,

it makes sense that a large gap prevents transitions to the excited state and hints to us that we can

choose η such that the transition may be neglected. Mathematically, it is a result of the correction

phase depending on the entire path through the integral whereas the transition amplitude only depends

on the initial and final values. Choosing η > 1 corresponds to changing the dot level energy relatively

quicker when the gap is larger as compared to when the gap is smaller and this leads to transitions.

In this way, our analysis shows that the trade-off leading to the bound 1 < η < 3 can again be

understood as the balance between going fast/slow and having transitions/phases. In addition, we

have learned that it is relevant to control the rate of change of the dot level energy proportional to the

energy gap to some power as this captures the effect of going fast/slow when the gap is large/small.

We have also found that the time scale of the process should be compared to the smallest gap and

a parameter determined by how we perform the adiabatic transport. This parameter may depend

on the ratio between the smallest and largest gap and can therefore be significant. Furthermore, it

appears to be possible to suppress transitions focusing our attention to the correction phase. We

are left in a situation where we wish to simultaneously minimize the relative dynamical phase, which

is proportional to Tv/Ωη, and the non-adiabatic corrections growing with Ωη/(Tv). We may be

able to resolve this issue by noting that the relative phases between the even and the odd states

are further suppressed by sin(2θ) sin(φ/2) and it may therefore be possible to choose Ωη/(Tv) ∼ 1

given that transitions can be suppressed by 1/x0. In the next section, we explore the possibility of

choosing Ωη/(Tv) ∼ 1 while finally resolving the outstanding issues arising from expanding adiabatic

perturbation theory in the dimensionful 1/T .

4.3 The dimensionless adiabatic expansion parameter

The dimensionality of the expansion parameter 1/T leaves the coefficients b
(p)
nm(s) dimensionful. Con-

sequently, we can not trust that higher order coefficients are smaller than lower order coefficients.

Naively, this can be solved by expanding in 1/Tv but the large, dimensionless gap-ratio x0 may

also play a significant role. In the previous section, we saw how x0 could help suppress the transition

amplitude but also implied the bound 1 < η < 3. In this section, we take into account both the dimen-

sionality captured by v and the contributions from Ωη which represents our choice when controlling
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the dot level energy. When doing so, we find a stricter adiabatic condition which was overlooked in

[2] but is latent in adiabatic perturbation theory.

Since adiabatic perturbation theory is built out of three components, d
ds , ∆nm(s), Mnm(s) (as-

suming Wnm(s) = 0), it is relevant to understand how they behave for x→ x0,

d

ds
= ẋ

d

dx
−→ Ωηx

η−1
0 , (4.52)

∆nm(s) = 2v
√
x(s)2 + 1 −→ vx0, (4.53)

Mnm(s) =
−ẋ(s)

2(x(s)2 + 1)
−→ Ωηx

η−2
0 . (4.54)

To ensure that the perturbation theory is tractable, implying that the ordering in p is meaningful, we

need to enforce
b
(p+1)
nm (s)

T p+1
.
b
(p)
nm(s)

T p
. (4.55)

We will use this condition along with eqs. (4.12) and (4.14) relating a p + 1-order coefficient to

coefficients one order lower. We begin with the n = m case of eq. (4.14),

b(p+1)
nn (s) = −

∑
k=0
k 6=n

b
(p+1)
nk (0)− i

∑
k=0
k 6=n

∫ s

0

ds′

Mnk(s′)

∆kn(s′)

d

ds′
b
(p)
kn (s′) +

∑
m=0
m 6=k

Mnk(s′)Mkm(s′)

∆kn(s′)
)b(p)mn(s′)

 .

(4.56)

Applying the tractability condition of eq. (4.55) to the above equation results in two restrictions from

the integrals,

∫ x

−x0

dx′
Ωη
Tv

1

(x2 + 1)
3−η
2

d

dx′
b
(p)
kn (x′) . b(p)nm(x) −→


Ωη
Tvx

η−3
0 . 1 for η > 3,

Ωη
Tv . 1 for η < 3,

(4.57)

∫ x

−x0

dx′
Ωη
Tv

1

(x2 + 1)
5−η
2

b(p)mn(x′) . b(p)nm(x) −→


Ωη
Tvx

η−4
0 . 1 for η > 4,

Ωη
Tv . 1 for η < 4,

(4.58)

having rewritten in terms of x instead of s. For the integrals to be convergent for x0 → ∞, we

must choose η < 3. If we do not make this choice, we have a stricter condition for adiabaticity

Ωη/(Tv) . x3−η
0 . Note that the η < 4 condition from the second equation corresponds to the same

bound found for the correction phase in the previous section. The stricter bound η < 3 appears

since we are doing a more general treatment here, taking into account also the higher order terms.

Furthermore, when choosing η < 3 we find the condition Ωη/(Tv) . 1 which we have already discussed:

The largeness of Ωη ∼ x1−η
0 for η < 1 is undesirable as it requires Tv � x1−η

0 . For these reasons we

have the bound 1 < η < 3 but as we will see now, we must further restrict this range. Continuing

with the n 6= m case of eq. (4.12), we get

b(p+1)
nm (s) =

i

∆nm(s)

(
d

ds
b(p)nm(s) +Mnm(s)b(p)mm(s)

)
, (4.59)

Demanding that the perturbation theory is tractable (eq. (4.55)) then gives,

1

T∆nm(s)

d

ds
. 1 −→ Ωη

Tv
xη−2

0 . 1, (4.60)

Mnm(s)

T∆nm(s)
. 1 −→ Ωη

Tv
xη−3

0 . 1, (4.61)



38 CHAPTER 4. ADIABATIC PERTURBATION THEORY

Here, we should bound η ≤ 2 and this was not captured by the conditions (4.22) and (4.23). Note that

the second of the above equations corresponds to the η ≤ 3 bound from the previous section when

calculating the transition amplitude. These equations also show that η < 2 suppresses the n 6= m

coefficients and thus the transitions to the excited states. We have now the final bound on η,

1 < η ≤ 2. (4.62)

This bound has some important consequences for the results in the previous section. Here, we found

that η = 5/2 was an optimal choice for adiabaticity for the case where only first order corrections in

1/T were considered, eq. (4.36). Noting that this choice is outside the above bound, we can conclude

that terms higher order in p can become more significant than the first order corrections, leaving the

validity range of the adiabatic expansion. This issue can be cured by either choosing Tv � x
1/2
0 or

simply by choosing η within the bound. To minimize the effect of the environment, it is desirable to

have a short time scale T . For this reason, it is optimal to choose η within the bound in eq. (4.62).

This treatment show that it is important to be conscious of what is regarded as the small adiabatic

parameter. If 1/(Tv) � 1 is chosen, then the bound 1 < η ≤ 2 follows. If instead Ωη/(Tv) � 1 is

chosen, the lower bound is incorporated in the parameter and η ≤ 2 remains. The upper bound can

also be included in the parameter through xη−2
0 Ωη/(Tv) � 1 for η > 2. Regardless of which of the

three possible adiabatic parameters is used, the conclusion is the same: We should choose 1 < η ≤ 2

to avoid needing to slow down the the time of the process due to x0.

Ideally, we should minimize the relative dynamical phase while maintaining an adiabatic trans-

port. These statements appears to be contradicting as it requires Ωη/Tv ∼ 1, leaving the adiabatic

regime. This may be possible as we are only interested in the relative phases which are suppressed

by sin(2θ) sin(φ/2) and since the transition amplitude can be suppressed by 1/x0. Despite leaving

the adiabatic regime, we may still use the results from adiabatic perturbation theory to guide our

choices. Controlling the dot level energy according to ẋ = ±Ωη(x2 +1)η/2 while adhering to 1 < η ≤ 2

is the main point we draw from adiabatic perturbation theory. Outside this bound we need to en-

force Tv ∼ x1−η
0 or Tv ∼ xη−2

0 instead of the less restrictive Tv ∼ 1. Adiabatic perturbation theory

further predicts that the transition amplitude is suppressed by x0 for η < 2. It can also be sup-

pressed/enhanced by choosing Ωη/(Tv) ≶ 1 but this has a cost for the relative phase. In the next

chapter, we test the predictions of adiabatic perturbation theory numerically.



Chapter 5

Simulating the protocols and the

charge-transfer process

In this chapter, we test the predictions from the previous chapters numerically. We simulate the

time-dependent Schrödinger equation by time evolving states iteratively. We begin by reviewing

our implementation of this time evolution. Then, we simulate a single charge-transfer process to

determine the optimal values of η and the time scale of the process T . Having decided how to perform

the charge-transfer process, we simulate the two protocols of Sec. 3.3 and compare to the theoretical

predictions.

5.1 Implementation of the time evolution

When simulating the charge-transfer process, we are going to consider the filling of the dot. The even

and odd ground state (see eq. (4.26)) are evolved with the time-dependent Hamiltonian through,

|Ψρ(sN )〉 = exp[−iTHρ(sN )δsN ] . . . exp[−iTHρ(s2)δs2] exp[−iTHρ(s1)δs1] |0ρ(s1)〉 , (5.1)

where the time evolution is divided into N time intervals, Uρi = exp[−iTHρ(si)δsi]. The array of time

intervals δsi is determined through an array of evenly spaced energies xi = x(si) = ε(si)/(2v) from

x0 to −x0 with spacing δx = 2x0

N ,

δsi =
δx

ẋi
=

δx

Ωη(x2
i + 1)η/2

. (5.2)

Here, we have used the ansatz in eq. (4.39). We recall that the Hamiltonian matrix is given by

Hρ(si) =

(
0 vρ

(vρ)∗ ε(si)

)
= vxi1 + v

√
x2
i + |vρ/v|2 (n̂ρ · σ), (5.3)

with n̂ρ = (Re vρ/v,− Im vρ/v,−xi)/
√
x2
i + |vρ/v|2 a unit vector and σ the vector of Pauli matrices.

The term proportional to the identity only gives a common phase and will be left out. The i’th time

evolution operator now becomes

Uρi = exp

[
−iTv

Ωη

√
|vρ/v|2 + x2

i

(x2
i + 1)η/2

δx (n̂ρ · σ)

]
= cos θρi 1− i sin θρi (n̂ρ · σ), (5.4)

39
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having introduced

θρi =
Tv

Ωη

√
|vρ/v|2 + x2

i

(x2
i + 1)η/2

δx. (5.5)

It is a good approximation to divide the time evolution into N iterations when θρi � 1. Assuming

Ωη/(Tv) ∼ 1 implies N � x2−η
0 and N � x0 for i = 1 and i = N/2 respectively. As an example, if

x0 = 100 we could choose N = 104 for η ≥ 1. It gets harder to simulate the charge-transfer process

for smaller values of η. To get the same precision for η = 0, we need N = 106. The η = 0 case

is interesting as it corresponds to controlling the dot level linearly. In the next section, proceed by

discussing the results from the simulations of the charge-transfer process.

5.2 Simulating the charge-transfer process

The simulation of the charge-transfer process evolves the even and odd ground states (see eq. (4.26))

according to

|0ρ(s1)〉 → |Ψρ(sN )〉 = αρeρiθ
G
↑ /2+δθρ0 |0ρ(sN )〉+ βρeδθ

ρ
1 |1ρ(sN )〉 , (5.6)

where θG↑ is the zeroth order geometric phase of eq. (3.31), δθρ0/1 are the phase of the even and odd

ground/excited state and |βρ|2 are the transition amplitudes to the even and odd excited states. We

begin by investigating how x0 influences the transition amplitude and compare it to the predictions

of adiabatic perturbation theory. In Fig. 5.1, we have plotted the transition amplitude of the even

sector |β−|2 as a function of η in the range η = [1; 3]. The plot contains 1000 equidistant samples of η

in this range for each value x0 = 10, 30, 100 with N = 104 iterations in the time evolution. We have

chosen Ωη/(Tv) = 1, θ = π/4 and φ = 2π/100 in this example.
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Figure 5.1: Plot of the even transition amplitude

|β−|2 as a function of η for different values of x0.

A large x0 suppresses the amplitude of oscillations

for η ≤ 2.

|β−|2 δθ−0 − δθ
+
0 T

η = 0 3.7 · 10−3 −0.66 rad 263 ns

η = 2 2.9 · 10−5 −0.12 rad 4.14 ns

Table 5.1: Comparison between transition ampli-

tudes, relative phases between the even and odd

ground state and the time scale of the charge-

transfer process for η = 0 and η = 2 when

Ωη/(Tv) = 1/2. Other relevant parameters in this

example: x0 = 100, θ = π/4, φ = 2π/100 and

N = 106. The period of the process T has been

calculated using ε0 = 0.2 meV, the typical magni-

tude of the induced gap.

We see that increasing the value of x0 suppresses the amplitude of the oscillations for η < 2. This

is in qualitative agreement with the predictions from adiabatic perturbation theory. The finer details

of these oscillations and their offset is not described well by adiabatic perturbation theory as we are

on the boundary of the adiabatic regime Ωη/(Tv) = 1. Additionally, we see that the behavior of the
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Figure 5.2: Plots of the dependence of the transition amplitude and relative phase on the parameter

η for Ωη/(Tv) = 2, 1, 1/2. The transition amplitude |βρ|2 is suppressed by Ωη/(Tv) < 1 while

Ωη/(Tv) > 1 suppresses the relative phase δθ−0 − δθ
+
0 . Overall, there is qualitative agreement with

the theoretical predictions of Sec. 4.3.
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amplitude is markedly different for η < 2 compared to η > 2. This is in good agreement with the

prediction that we are outside the validity range of adiabatic perturbation theory for η > 2 unless

Ωη/(Tv) . x2−η
0 is chosen. This behavior is also seen in the panels of Fig. 5.2, especially for the

transition amplitudes. In this figure, we have plotted the even and odd transition amplitudes |βρ|2 in

the left column and the error to the zeroth order relative geometric phase between the even and the

odd ground states δθ−0 − δθ
+
0 in the right column. This error phase is the relative phase computed

in the simulation where the zeroth order geometric phase of eq. (3.31) has been subtracted. In these

plots, the range is η = [0; 5] with 1000 samples and the adiabatic parameter is Ωη/(Tv) = 2, 1, 1/2

for the top, middle and bottom rows respectively. Additional parameters are x0 = 100, θ = π/4,

φ = 2π/100 and N = 105. Comparing the amplitude plots in the left column, we notice an important

characteristic. The adiabatic parameter Ωη/(Tv) can suppress the transition amplitude greatly for

η < 2. Unlike x0, which only suppresses the amplitude of oscillations, Ωη/(Tv) suppresses the offset

of the oscillations. This effect appears to be very sensitive to the adiabatic parameter as Ωη/(Tv)

only varies with a factor of four between the top and the bottom panels but the transition amplitude

drops by several orders of magnitude. This is in qualitative agreement with adiabatic perturbation

theory as exact dependence on Ωη/(Tv) cannot be captured for Ωη/(Tv) ∼ 1. When studying the

error phase in the right column, we notice two aspects. The first is that the error phase follows the

general trend of the zeroth order dynamical phase from eq. (3.35). This is especially clear in the lower

right panel where the non-adiabatic corrections are suppressed by Ωη/(Tv) < 1 compared to the top

right panel where Ωη/(Tv) > 1. The second aspect to notice is that the error phase’s dependence

on Ωη/(Tv) is approximately linear due to the dynamical phase depending linearly on Ωη/(Tv). For

this reason, the error phase δθ−0 − δ
+
0 does not depend as dramatically on Ωη/(Tv) as the transition

amplitudes. These facts combined with the φ-flip protocol (3.66-3.67), where the relative dynamical

phases cancel, suggest that it is beneficial to take advantage of the large suppression of the transition

amplitude for Ωη/(Tv) < 1. The trade-off for the error phase is comparatively small and the φ-flip

protocol cancel much of the dynamical contribution. When considering the bottom panels of Fig.

5.2, we also advocate for using η = 2 as the relative phase is slightly smaller for higher η while the

transition amplitude is suppressed in the entire range 1 < η ≤ 2. To demonstrate the benefits of these

choices, we have produced an example in Tab. 5.1 which compares controlling the dot level energy

linearly (η = 0) to controlling the rate of change of the level energy proportional to the gap (η = 2).

These two cases corresponds to

x(s) =

2x0

(
1
2 − s

)
, for η = 0,

tan
(
2 atan(x0)

(
1
2 − s

))
, for η = 2,

(5.7)

solving the differential equation in eq. (4.39). Since Ωη/(Tv) = 1/2 is chosen, the transition amplitude

is suppressed in both cases yet the η = 2 case is smaller by two orders of magnitude. Also the error

phase is smaller by a factor of 5 in favor of η = 2. Impressively, the η = 2 case performs better

than η = 0 while the time scale is 60 times shorter. The time scale T has been calculated through

T = 2Ωη/v using eq. (4.44) and ε0 = 0.2 meV. This value has been chosen as it corresponds to the

induced gap in experiments. Using this and x0 = 100, we additionally find v = 1 µeV for the coupling

strength.

The simulations have confirmed the trade-off between transition amplitude and relative dynam-

ical phase. In addition, we also witness the breakdown of adiabatic perturbation theory for η > 2

as predicted. Perhaps surprisingly, the transition amplitude appears to be strongly suppressed by
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Ωη/(Tv) < 1 when x0 � 1 while the relative phase follows the general trend of the zeroth order

relative dynamical phase. These insights are useful when determining how to control the level energy

in the charge-transfer. As demonstrated, we may suppress the transition amplitude with a compar-

atively small cost in the relative phase. Since the error phase found in the simulations follows the

general trend of the relative dynamical phase, we can expect to be able to cancel the contributions

using the φ-flip protocol. In the next section, we apply the set of parameters η = 2 and Ωη/(Tv) = 1/2

suggested by the simulation of the single charge-transfer process to simulations of the protocols in

Sec. 3.3.

5.3 Simulating the protocols

We simulate the protocols as three consecutive charge-transfer processes of the D2/M23-system, see

Fig. 3.3. The three processes all have the same time scale T given by the choice of parameters

Ωη/(Tv) = 1/2, x0 = 100 and η = 2. What distinguishes the three processes are the coupling param-

eters θ and φ. We model the change in the coupling parameters between the single charge-transfer

processes to be instant with no effect on the states in accordance with the sudden approximation.

We wish to investigate the range for which each protocol can confidently distinguish the two orders

of operations statistically. For this reason, we will need to sample and compare many different val-

ues of (φ, θ). The even and odd ground states have a very slight dependence on these parameters

which is suppressed by 1/x0. We took this dependence into account in the previous simulation but

it is appropriate to neglect it here. We imagine that the initial states are prepared identically in

the measurement-basis (M12/M34) and not in the operation-basis (M23/M14). This may give a very

slight discrepancy but most important is that the preparation is consistent. This also applies to the

simulation where we use the same initial states for all pairs (θ, φ) such that the final results are easy

to compare. Algebraically, this simply corresponds to letting x0 → ∞ in eq. (4.26) for the initial

states giving |i〉 = (1, 0)T for both the even and odd sector in the D2/M23-basis. Due to the large

suppression of the transition amplitude found in the previous section, we also neglect these effects.

This setup makes the simulation relatively simple to perform. The three consecutive charge-transfer

processes evolve the states according to Sec. 5.1. The result of the simulation is relevant to understand

in both the operation-basis and in the measurement-basis,(
1

0

)
−→ e−iρθ

S

(
0

1

)
(D2/M23-basis), (5.8)

|00〉 −→ f |01〉+ g |10〉 (measurement-basis), (5.9)

where θS(φ, θ) is half the relative phase introduced between the even and odd states in the operation-

basis and f(φ, θ), g(φ, θ) are the coefficients to |01〉 and |10〉. As shown in Sec. 3.3, the relative

phase in the operation-basis is related to the amplitude in the measurement-basis. In this case, the

correspondence is

|g|2 = sin2(θS). (5.10)

We will also compare to the theoretical predictions from the protocols. We remind ourselves of the

first protocol in eqs. (3.64-3.65),

γ2U↓(φ, θ)U↑(φ, θ) −→ |g|2 = sin
(
θD
)2
, (5.11)

U↑(φ, θ)γ2U↑(φ, θ) −→ |g|2 = sin
(
θG↑ + θD

)2
, (5.12)
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(a) Simulation of γ2U↓(φ, θ)U↑(φ, θ). (b) Theory for γ2U↓(φ, θ)U↑(φ, θ).

(c) Simulation of U↑(φ, θ)γ2U↑(φ, θ). (d) Theory for U↑(φ, θ)γ2U↑(φ, θ).

(e) Simulation of γ2U↓(φ+ 2π, θ)U↑(φ, θ). (f) Theory for γ2U↓(φ+ 2π, θ)U↑(φ, θ).

(g) Simulation of U↑(φ+ 2π, θ)γ2U↑(φ, θ). (h) Theory for U↑(φ+ 2π, θ)γ2U↑(φ, θ).

Figure 5.3: The first/second protocol is presented in the top/bottom four panels. There is good

agreement between the theoretical predictions (right column) and the numerical data (left column)

outside the regions near (φ = ±π, θ = π/4). The ideal region near (φ = 0, θ = π/4) is larger in the

bottom four panels compared to the top panels due to the cancellation of the dynamical phases.
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and of the second protocol, which utilizes the φ-flip,

γ2U↓(φ+ 2π, θ)U↑(φ, θ) −→ |g|2 = sin
(
θG↑
)2
, (5.13)

U↑(φ, θ)γ2U↑(φ, θ) −→ |g|2 = 0, (5.14)

with θG↑ (φ, θ) and θD given by eqs. (3.31) and (3.35). Note that we have assumed that the value of

(φ, θ) does not change between subsequent operations and that γ2 corresponds to θ = 0. In Fig. 5.3, we

have produced color maps of the amplitude |g|2 for the first and second protocol from the simulation

and the theoretical prediction. On the first axes, we have φ = [−2π; 2π] while cos(θ)
2

= [0; 1] is on the

second axes. The color map consists of 200× 200 evenly distributed pairs (φ, cos(θ)
2
) with N = 3000

iterations for each single charge-transfer process. We observe good agreement between simulation

(left column) and theory (right column) for both order of operations and for both protocols. The only

discrepancies are in the regions around (φ = ±π, θ = π/4). This is to be expected as we have assumed

sin(2θ) sin(φ/2) � 1 in the theoretical prediction. The amplitude |g|2 represents the probability

of measuring the state |10〉 after a given order of operations. Experimentally, this probability can

be found statistically by repeating the protocol. In principle, the two orders of operation can be

distinguished for all (φ, θ) where there is a measurable difference between the probabilities of the two

orders of operation. We focus on the regions around the optimal situation (φ = 0, θ = π/4) and begin

by considering the first protocol in Fig. 5.3. Here, we see that the relevant yellow center region in

panels c) and d) is narrow along the first axis and wide along the second axis. The same is true for

the black center region in panels a) and b). This implies that the corresponding range of φ, where

there is a large difference between the sequences, is small. Conversely, the range of θ is large. In the

second protocol presented in the bottom four panels, we have an entirely different picture. Due to

the cancellation of the relative dynamical phase resulting from the φ-flip, the errors associated with

φ are suppressed. In panels e) and f), the central yellow region is wide along the first axis, meaning

that a wide range of φ can be used. Especially in panels g) and h), we see the benefit of canceling the

dynamical phase compared to panels a) and b), being virtually independent of the parameters. We

have thus demonstrated the two proposed protocols and the advantages of the φ-flip numerically. To

perform the φ-flip protocol, knowledge of the change in magnetic fields that winds φ by 2π is required.

In experiment, this can for example be deduced through the process γ2U↓(φ, θ)U↑(φ, θ), see panels

a) and b). By fixing a value θ and varying φ, a horizontal line cut is made in the color map. By

repeating the process for different values of φ the probability of measuring |10〉 is determined along

this line. Due to the 2π periodicity of the peaks, the corresponding change in the magnetic field is

derived. This chapter concludes the main narrative of the thesis. We proceed in the next two chapters

with two smaller, supplementing projects before concluding with our final remarks.
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Chapter 6

Two-qubit gates and scalability

The experimental path to show the non-Abelian properties of Majorana bound states has been chal-

lenging but shows great promise. The future of the long term ambition of a Majorana-based universal

quantum computer is on the other hand difficult to foresee. In this chapter, we try to shed light on the

possibilities in constructing charge-transfer devices which can perform multi-qubit gates. Specifically,

we focus on the 4-Majorana rotation necessary for simulating interacting quantum systems evolved

by quartic Hamiltonians. We begin this chapter by studying the general mathematical characteristics

of 4-Majorana rotations before we discuss how to implement the 4-Majorana rotation on the level of

the Hamiltonian. In the final section of this chapter, we explore higher-order Majorana rotations and

their scalability.

6.1 A notation for Majorana operations

A fermionic quantum system with quartic interactions of the general form c†c†cc can be written in

terms of Majorana operators as,

Hquartic =
∑
i,j,k,l

Aijklγiγjγkγl, (6.1)

where A∗ijkl = Aijkl. The time evolution operator consequently is,

Uquartic(t) = exp(−itHquartic) = exp

−it ∑
i,j,k,l

Aijklγiγjγkγl

. (6.2)

To simulate such a quantum system, it is required to perform the 4-Majorana rotation,

eiθγ1γ2γ3γ4 = cos θ + i sin θγ1γ2γ3γ4. (6.3)

Inspired by Sec. 3.1, we aim to construct the 4-Majorana rotation from simpler unitaries. Here, the

2-Majorana rotation eθγ1γ2 was the product of aγ1 + bγ2. We will first consider the mathematical

restrictions present when trying to construct these 4-Majorana rotations from simpler unitary opera-

tions. Later, we will be concerned with how these can be physically realized. A first idea to effectively

produce the 4-Majorana rotation is to try to make products of Hermitian, unitary operators of the

form

aγ1 + bγ2 + cγ3 + dγ4. (6.4)

47
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The structure of the Majorana operators here is 1 + 1 + 1 + 1. In the same notation, the 4-Majorana

rotation can be expressed as 0 + 4. The question whether products of the above operator results in a

general 4-Majorana rotation, can now be framed as

(1 + 1 + 1 + 1)n
?
= 0 + 4. (6.5)

In the same way, the 2-Majorana rotation can be expressed as 1(1 + 1) = (1 + 1)2 = 0 + 2. However,

the above equality does not hold. For the 1 + 1 + 1 + 1 operator to be unitary, all of the coefficients

must be real due to the algebraic properties of the Majoranas. However, the coefficient to the 4 in

the 0 + 4 operator is imaginary. Thus, no product of 1 + 1 + 1 + 1 operators can give a 4-Majorana

rotation. Similar to the 1 + 1 operation, the 1 + 1 + 1 + 1 operation is due to a quadratic Hamiltonian.

For this reason, the result (1 + 1 + 1 + 1)n 6= 0 + 4 is not surprising as it would otherwise imply

that quartic Hamiltonians can be simulated by quadratic ones. We can also understand this result

differently: The 0 + 4 operation depends on the parity of iγ1γ2 = ± and iγ3γ4 = ±, amounting

to four different combinations. The quadratic Hamiltonians resulting in 1 + 1 or 1 + 1 + 1 + 1 can

only distinguish between the overall even and odd parity sectors which is not sufficient for the 0 + 4

operation. Having concluded that we cannot perform the 4-Majorana rotation by a simple extension

of the 1 + 1 operation, we must reconsider our strategy. We begin by making our notation for the

Majorana operations precise:

Rules

1. Majorana blocks are products of Majorana opera-

tors. A number represents the length of the Majo-

rana block. Majorana blocks of length 4n+ 1 have

real coefficients and blocks of length 4n + 3 have

imaginary coefficients such that both are Hermi-

tian. Individual Majorana operators in a block of

odd length are numbered in consecutive order.

2. Operators of the first kind are Hermitian and uni-

tary, and are build from Majorana blocks of odd

length. Addition (+) adds blocks and does not re-

set the numbering of the Majorana operators.

3. Operators of the second kind are products of an

even number of operators of the first kind. Whether

the coefficients of even numbers are real or imag-

inary and the numbering of individual Majoranas

can be deduced by its relation to operators of the

first kind.

Examples

1→ γ1,

3→ iγ1γ2γ3

1 + 3→ aγ1 + ibγ2γ3γ4,

3 + 1→ iaγ1γ2γ3 + bγ4.

0 + 4 = 1(1 + 3) = a+ ibγ1γ2γ3γ4,

2 + 2 = 1(3 + 1) = iaγ2γ3 + bγ1γ4.

These rules are formulated on the following considerations. We are interested in two classes of op-

erators: 1) Operators that we hope to be directly physically executable by emptying or filling of a

quantum dot once. 2) Those which are products of the first kind and thus rely on emptying and

filling the dot multiple times, specifically the 2n-Majorana rotation. The first kind are both Her-

mitian and unitary whereas the second kind are in general only unitary. To obtain Hermiticity, the
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coefficients of 0, 1, 4, 5, . . . must be real and for 2, 3, 6, 7, . . ., the coefficients must be imaginary due

to the algebraic properties of the Majoranas. Unitarity is then ensured by the anticommutation of

the different Majorana blocks. It is only Majorana blocks (products of Majorana operators) of odd

length that anticommute. This implies that blocks of even length can only be constructed as products

of an even number of operators of the first kind. Unitarity of the second kind of operators restricts

the coefficients of the Majorana blocks of even length but these are not necessarily general. In all

situations, they can be deduced with the existing rules by multiplying the first kind of operators.

With the notation, we are now positioned to construct the 4-Majorana rotation. To do this, we

partition four into odd numbers to get the allowed operators of the first kind. This can be done in

two ways, 1 + 1 + 1 + 1 and 1 + 3. In no way can 1 + 1 + 1 + 1 be used to achieve 0 + 4 due to the

restrictions of the coefficients. Instead, we must use 1(1 + 3) = 0 + 4. Likewise, for a 6-Majorana

rotation 0 + 6, we can partition six as 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 3, 3 + 3, 1 + 5 and

straightforwardly get 3(3 + 3) = 0 + 6 or 1(1 + 5) = 0 + 6. As with (1 + 1 + 1 + 1)n 6= 0 + 4, we do in

general not expect sums of more than two blocks to be able to produce the 2n-Majorana rotations.

This can again be understood as the Hamiltonians leading to 1 + 1 + 1 + 1 + 1 + 1 or 1 + 1 + 1 + 3

not being capable of distinguishing between the parities of iγ1γ2, iγ3γ4 and iγ5γ6. For an operator

of the first kind, say 3 + 3, there is overall parity conservation while the first 3 depends on iγ1γ2

and the second 3 depends on iγ5γ6. This example also generalizes to higher-order rotations and show

that only operators of the first kind consisting of two blocks, can be used to build the 2n-Majorana

rotations. Interestingly, since the 3’s correspond to a quartic Hamiltonian and 3(3 + 3) = 0 + 6, sextic

Hamiltonians can be simulated using quartic ones. In general, we have the relation n + n = 0 + 2n

implying that Hamiltonians with interactions of order 2n can be simulated by interactions of order

n + 1. In the final section of this chapter, we show how a quartic Hamiltonian effectively reduces to

the relevant n+ 1 order Hamiltonian. As an intermediate step, we continue in the next section with

theorizing the corresponding Hamiltonians capable of performing these operations, having understood

the fundamentals of these higher-order rotations.

6.2 Hamiltonians and physical realizations

In this section, we study how the operators of the first kind can be implemented in physical Majorana

systems. We begin with the 1 + 3 operator and later see how all other operators of the first kind

generalize from this. Extending the ideas from Sec. 3.1, our first guess is that the Hamiltonian

H = εc†1c1 + (v∗1c
†
1 − v1c1)γ1 + (v∗2c

†
1 − v2c1)iγ2γ3γ4, (6.6)

can be written in the form

H = εc̃†c̃+ v(c̃† − c̃)
[
|v1|
v
γ1 +

|v2|
v
iγ2γ3γ4

]
, (6.7)

such that empty or filling of the dot corresponds to performing a 1 + 3 operations on the Majorana

system. To see that this is indeed the case, we consider the Hamiltonian matrices in the basis

{|000〉 , |110〉}, {|011〉 , |101〉}, {|001〉 , |111〉}, {|010〉 , |100〉} with |111〉 = c†d†1d
†
2 |000〉 and |000〉 being

short hand for |0〉D |0〉M12 |0〉M34,

Hσ =

(
0 vκ

(vκ)∗ ε

)
, (6.8)
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D1

D2

D3

M34 M2M1

J

J

J

J

u

w

v1

Figure 6.1: Model of the Hamiltonian in eq. (6.10). Light blue denotes the topological superconductor

which houses the Majorana states. The Majorana state M1 is coupled to the quantum dot D1. Dots

D2 and D3 are either inert or have the opposite occupation of D1, depending on the occupation of

M34. The Majorana state M2 is coupled to D2 and D3 with couplings −v∗2 , v∗2 respectively. This

setup can perform a general 4-Majorana rotation on the Majorana system by adiabatically filling and

emptying D1.

with vκ = v1 + κv2 and κ = ± labeling whether the parity of the dot is the same (+) or different

(-) compared to the parity of the Majorana system. The Hamiltonian matrix decomposes into four

2-by-2-blocks as the overall parity and the parity of the M34-fermion is conserved. The ground state

energies are identical to those of the two-Majorana system in Fig. 3.2,

Hκ = ε/2−
√

(ε/2)2 + v2 + κ sin(2θ) sin(φ/2), (6.9)

where again v2 = |v1|2 + |v2|2 and φ = 2Arg(v1/v2). Following the reasoning from Sec. 3.1, v1/v2 can

be tuned real such that the ground state is fourfold degenerate. Using this while rewriting in terms

of c̃ = c1 exp(i arg v1) we reach eq. (6.7) as expected. This is a step towards designing a physically

realizable setup in which the 1 + 3 operation can be executed. However, the Hamiltonian discussed

here does not have a direct physical representation due to the (v∗2c
†
1 − v2c1)iγ2γ3γ4 term. This term

can be interpreted as coupling the quantum dot to γ2 with the sign of the coupling depending on the

occupation of the M34 Fermion, iγ3γ4 = d†2d2−d2d
†
2. We seek to describe a device whose Hamiltonian

effectively reduces to eq. (6.6). To achieve this, consider the setup illustrated in Fig. 6.1. Here, the

occupation of the quantum dot D1 is controllable with the level energy ε as previously. It is coupled

to a Majorana bound state M1 with tunable coupling v1 while being strongly coupled to two other

dots D2 and D3. The two dots are each coupled to a Majorana operator M2 with couplings u and w.

There is also another pair of Majorana bound states M34 which is strongly coupled to the dots D2

and D3. The idea is to have the occupancy of D2 and D3 anti-mirrored to that of D1 while also being

correlated with the occupancy of the Majorana fermion M34. A process where D1 is emptied would

then fill either D2 or D3 depending on the occupation of M34. Having the couplings between D2/D3

and M2 to differ by a sign, will effectively implement the occupation dependent coupling between D1

and M2. The setup in Fig. 6.1 corresponds to the Hamiltonian,
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H = H0+J1n1n2 + J2n1n3 (6.10)

+J3(1− n1)(1− n2) + J4(1− n1)(1− n3)

+J5n2(1 + iγ3γ4) + J6n3(1− iγ3γ4),

with,

H0 = εn1 + (v∗1c
†
1 − v1c1)γ1 + (u∗c†2 − uc2)γ2 + (w∗c†3 − wc3)γ2. (6.11)

For simplicity, the level energy of D2 and D3 is tuned to zero. The three dots each have fermionic

annihilation operators c1, c2, c3 and corresponding number operators ni = c†i ci. The first term in H0

describes the tunable dot level energy of D1 while the three remaining terms describe the couplings

between the three dots and M1 and M2. The Ji’s are similar in magnitude, fixed and large compared

to the couplings v1, u, w. The first four J-terms energetically favours dots D2 and D3 to have the

opposite occupancy of D1. The last two J-terms penalizes having D2 and D3 occupied at the same

time, while the occupancy of M34 determines whether D2 or D3 is occupied. The J-terms thus favors

some states over others. An overview of the energies associated with different occupancies are given

in Table 6.1. Imagine now the following process; initialise the dots in the ground state for ε → −∞,

|1〉D1 |0〉D2 |0〉D3 = |100〉, and M34 in a superposition state, see the bottom panels in Tab. 6.1. The

ground state energy is ε regardless of the occupation of M34. Empty D1 by changing ε adiabatically to

ε→∞ (or at least ε & 2Ji). For M34 unoccupied, the ground state is now |010〉 with energy J4 from

the J-terms, see the top panels of Tab. 6.1. Likewise, for M34 occupied, the ground state is |001〉 with

energy J3. The ground states are degenerate for J3 = J4 which implies that no relative dynamical

phase will be developed between states with different occupancy of M34. If M34 is initialized in some

state α |0〉M34 + β |1〉M34, then the process of emptying the dot results in

|100〉 (α |0〉M34 + β |1〉M34)→ α |010〉 |0〉M34 + β |001〉 |1〉M34 (6.12)

The dots D2 and D3 are thus either inert in this process or continue to have opposite occupancy of

D1, depending on the occupancy of M34. At the level of the Hamiltonian, the ground states of eq.

(6.10) can be projected out by replacing,

c2 → c†1
1

2
(1− iγ3γ4), c3 → c†1

1

2
(1 + iγ3γ4), (6.13)

|0〉D1 |0〉M34 |0〉D2 |1〉D2

|0〉D3 J3 + J4 J4

|1〉D3 J3 + 2J6 2J6

|0〉D1 |1〉M34 |0〉D2 |1〉D2

|0〉D3 J3 + J4 J4 + 2J5

|1〉D3 J3 2J5

|1〉D1 |0〉M34 |0〉D2 |1〉D2

|0〉D3 0 J2

|1〉D3 J1 + 2J6 J1+J2+2J6

|1〉D1 |1〉M34 |0〉D2 |1〉D2

|0〉D3 0 J2 + 2J5

|1〉D3 J1 J1+J2+2J5

Table 6.1: The energies coming from the J-terms of all the sixteen states. The ground states are

highlighted for each configuration of the occupancies of D1 and M34.
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and thereby arriving at the effective Hamiltonian,

Heff = εc†1c1 + (v∗1c
†
1 − v1c1)γ1 +

(
−u+ w

2
c†1 +

u∗ + w∗

2
c1

)
γ2 +

(
u− w

2
c†1 −

u∗ − w∗

2
c1

)
iγ2γ3γ4.

(6.14)

Tuning u = −w = v∗2 , brings the effective Hamiltonian to the form of eq. (6.6). We have thus showed

that the Hamiltonian in eq. (6.10) effectively reduces to the desired form in eq. (6.10) needed for the

1 + 3 operation to be executed in the charge-transfer process. In the following section, we consider

systems for higher-order Majorana rotations.

6.3 Scalability of Majorana rotations

The two-Majorana system depicted in Fig. 3.2 can execute the 2-Majorana rotation. It is a funda-

mentally simpler setup than Fig. 6.1 which is capable of performing the 4-Majorana rotation. This

device proposal is still early in its conception and it is difficult to say if or when it is experimentally

feasible to manufacture. However, it is still natural to ask whether it is always the case that the device

complexity and structure increases also for higher-order Majorana rotations. We start by considering

the 6-Majorana rotation 0 + 6. To execute this operation, we must either be able to perform the

3 + 3 operation or the 1 + 5 operation. In the previous section, we saw how a 3-operation can be

accomplished. To perform the 3+3 operation, we can simply introduce additional dots and Majoranas

and couple M1 to D1 in the same manner as M2 is coupled to D1 in Fig. 6.1. This addition does not

change the fundamental complexity of the setup but rather introduces more of the same. This does

not appear to be true for the 1 + 5 operation. Note that being able to execute a 5-operation is more

powerful than a 3-operation as the 5 + 5 operation can produce the 10-Majorana rotation by applying

it twice. The 5-operation requires a coupling dependent on the parity of two Majorana Fermions. In

Fig. 6.2, the setup capable of executing the 1 + 3 operation has been extended to enable the 1 + 5

operation. Here, six additional quantum dots are introduced alongside a third pair of Majorana bound

××

+

−

+
−

−
+

Figure 6.2: Sketch of a setup in which the 1 + 5 operation can be executed. Crosses represent single

Majorana bound state while squares represent Majorana pairs. Quantum dots are denoted by circles.

Dashed lines are used for couplings between dots and Majorana bound states. Solid lines between dots

represent anti-mirrored occupancy while the solid lines between dots and Majorana pairs denote the

occupancy dependent coupling that appeared previously. The signs indicate whether the dots couple

to the occupied or unoccupied Majorana Fermion. The box can be coupled to a copy of itself and in

this way can any number of Majorana Fermions be coupled to the system in a scalable manner.
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states. The occupancy of connected dots are anti-mirrored as was previously the case with D1, D2

and D3. The third pair of Majorana bound states are connected with the four middle layer dots in

the same occupancy dependent fashion as was the case with M34 and D2 and D3. The four middle

layer dots has knowledge of the occupancy of the two middle Majorana Fermions. This information

is condensed in the two dots in the rightmost layer such that occupancy of these dots depends on

the combined parity of the two middle Majorana Fermions. Coupling these dots to the rightmost

Majorana bound state now gives the sought after parity dependent coupling between the leftmost dot

and the rightmost Majorana bound state. The device complexity has again increased. The idea is

that what is contained in the box of dotted lines in Fig. 6.2 is a building block which appends an

additional pair of Majorana bound states. By replicating the box and inserting it between the existing

box and the rightmost Majorana bound state, a system capable of performing a 1 + 7 operation has

now been achieved. Repeating this procedure will in principle allow us to design setups in which any

operator of the first kind can be performed.
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Chapter 7

A tunnel-braiding protocol for

Majoranas

We have previously seen how to execute braiding-like operations on Majoranas using charge-transfer

processes. A different method for performing operations on the Majoranas is through tunnel braiding.

Like the charge-transfer process, the tunnel braiding is a braiding in a parameter-space; in this case,

the space of tunnel couplings between a number of Majoranas and quantum dot. In this chapter,

we use ideas from [22] to develop a protocol for demonstrating the non-Abelian nature of Majorana

bound states. This is very similar to the charge-transfer protocols discussed previously. Instead of

the charge-transfer process, it is replaced by the tunnel-braiding. This proposal has advantages and

disadvantages compared to the charge-transfer protocols as we will see.

7.1 Basics of tunnel braiding

We begin this study by considering the system consisting of a quantum dot (with annihilation operator

c = 1/2(γa + iγb)) coupled to four Majorana bound states γ1, γ2, γ3 and γ4,

H1234 = εc†c+

4∑
i=1

(v∗i c
† − vic)γi, (7.1)

with ε being the dot level energy and vi are the tunnel couplings between the Majoranas and the dot.

It is relevant to express the dot in terms of its Majorana operators,

H1234 =
ε

2
+
i

2
εγaγb +

i

2

4∑
i

aiγaγi +
i

2

4∑
i

biγbγi, (7.2)

where ai = 2 Re(vi) and ai = 2 Im(vi). In the basis φ† = (γa, γb, γ1, γ2, γ3, γ4), we can rewrite the

Hamiltonian as

H1234 −
ε

2
= φ†H1234φ, H1234 =

i

2



0 ε1 a1 a2 a3 a4

−ε1 0 b1 b2 b3 b4

−a1 −b1 0 0 0 0

−a2 −b2 0 0 0 0

−a3 −b3 0 0 0 0

−a4 −b4 0 0 0 0


. (7.3)
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In the special case where the coupling vectors a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4) are zero, there

are four Majorana zero-modes corresponding to the four Majorana bound states. When the coupling

vectors are non-zero, this degeneracy splits, however, two Majorana zero-modes remain. These are

spread over the four Majorana bound states. To see this, we look for zero energy solutions,

H1234q = 0, q = (q1, q2, c)T , c = (c1, c2, c3, c4)T . (7.4)

This leads to the equations,

εq2 + a · c = 0, (7.5)

−εq1 + b · c = 0, (7.6)

q1a + q2b = 0. (7.7)

In general, we do not expect a and b to be parallel. Consequently, the third of the above equations

imply that q1 = q2 = 0 and we have a ·c = 0 and b ·c = 0. Since the coupling vectors a and b and the

vector c are 4-dimensional, there are two normalized, linearly independent solutions cα and cβ which

are perpendicular to both a and b. These two solutions correspond to two Majorana zero-modes

spread over the Majorana bound states,

γα = cα1 γ1 + cα2 γ2 + cα3 γ3 + cα4 γ4, (7.8)

γβ = cβ1γ1 + cβ2γ2 + cβ3γ3 + cβ4γ4. (7.9)

We can braid these two Majorana zero-modes by adiabatically controlling the coupling vectors a and

b. To see this graphically, consider b, cα and cβ in the 3-dimensional subspace perpendicular to a:

cα

cβ

b

+
cα

cβ

−b
=

cβ

−cα

b

cα

cβ

b

+
−cα

cβ

−b
=

−cβ

cα

b

Figure 7.1: Illustration of the tunnel braidings cα → cβ , cβ → −cα and cα → −cβ , cβ → cα

depending on the order of operations. The gray planes represent the rotation plane of the b-vector.

Here, we imagine the three vectors to be fixed with respect to each other while their common endpoint

is fixed to the origin. Then, we can rotate b → −b in the b-(cα − cβ)-plane such that cα → cβ and
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cβ → cα. We can then rotate −b→ b in the b-cα-plane which brings back b to its original position

and takes cα → −cα. In total, the operation corresponds to cα → cβ , cβ → −cα and similarly for the

associated Majorana zero-mode operators. If we instead reverse the order of operations, the resulting

operation is cα → −cβ , and cβ → cα which corresponds to braiding the other way around. Having

demonstrated the braiding in tunnel-space, we have the sufficient ingredients for demonstrating the

non-Abelian behavior of Majoranas. A benefit of the tunnel-braiding compared to the charge-transfer

process is its inherent degeneracy which does not rely on the tuning of a parameter in the Hamiltonian.

A downside is that the operation on the Majorana system depends on the path in parameter-space

as opposed to the charge-transfer process. In practice, it might be difficult to control the coupling

vectors to the precision in the example in Fig. 7.1. Instead, we can imagine the tip of b to follow any

closed loop such that it returns to its original position. In this situation, the Majorana vectors and

operators generally transform as

γα → cos(θ)γα + sin(θ)γβ , (7.10)

γβ → cos(θ)γβ − sin(θ)γα. (7.11)

By performing multiple loops, the rotation angles θ accumulate. In this way, braiding can be built

from a large number of small loops in tunnel-space. Notice that reversing the orders of operations

in the example in Fig. 7.1, corresponds to going the other way around the loop traced by the tip

of b. In conclusion, there is only a difference in the direction of the loop and not in which order

different loops are performed. This is similar to the way the relative angle between the even and

the odd ground states accumulate in Sec. 3.3. To also include the non-commutativity of successive

loops, additional Majoranas should be included. By also coupling Majoranas γ5 and γ6 to the dot, the

coupling vectors a and b are now 6-dimensional, leaving four linearly independent Majorana vectors

perpendicular to a and b. Braids between these four Majorana zero-modes can be accomplished by

perform loops in the tunnel-space in the same manner as in Fig. 7.1. Being able to braid different pairs

of Majoranas results in the loops being non-commuting. In the next section, we propose a protocol

to demonstrate the non-Abelian nature of Majoranas using the simpler 4-Majorana setup rather then

the 6-Majorana setup. We use the 4-Majorana setup as an example while its role may also be played

by the 6-Majorana setup.

7.2 The tunnel-braiding protocol

This protocol will follow the same overall recipe as the charge-transfer protocols: 1) Initialize in the

measurement-basis, 2) perform the braiding-like processes in the operation-basis and 3) measure the

change in the Majorana system in the measurement-basis. In the previous section, we considered

the main idea of step 2) and we continue in this section by adding steps 1) and 3). Coupling the

quantum dot to the four Majoranas partly breaks the degeneracy, leaving two effective Majorana

zero-modes. It is these zero-modes, we braid in the operation-basis. Consequently, we need two

additional Majoranas to construct the measurement-basis. The total is now four Majorana zero-

modes. To initialize the Majoranas, we need at least one additional quantum dot to break half of the

degeneracy. For these reasons, we consider the geometry in Fig. 7.2 consisting of six Majorana bound

states and two quantum dots. The two dots D1 and D2 have level energies ε1 and ε2 respectively. We

can now state our proposed protocol.
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The tunnel-braiding protocol

1. Initialization: The Majorana system is initialized by turning on the couplings

u1, u2, v3, v4, v5 and turning off the couplings v2 and v6. As default, we will keep v6 = 0

throughout. The even and odd ground state energies in the D1/M12-system will in gen-

eral be split and the system settles in its overall ground state. We take the parity of

the D1/M12-system to be even in this case. In the D2/M3456-system, the even and odd

ground states are degenerate. By waiting a long time, also this system will settle in a

definite parity ground state through its coupling to the environment. We also take the

parity of this system to be even. We have now initialized the system. Before continuing

with the operations, we need to decouple D1 from M1 and M2 by letting v1 = v2 = 0.

The next steps in the protocol become conceptually simpler if we first imagine tuning its

level energy ε1 → ∞ such that the dot is emptied and the M12-system is left in a state

of definite occupancy. After the dot has been decoupled, its level energy can be turned

back to its original value, while it remains empty in its ground state.

2. Braiding: The operation on the Majorana system begins by coupling M2 to D2 by

adiabatically turning on v2. Then, we can perform arbitrary loops in the tunnel coupling-

space by cyclically controlling the coupling parameters. By repeating the loops, we

can accumulate the braiding-like operation. If also M6 is coupled to D2 through v6,

different loops in the parameter-space do not commute as three Majorana zero-modes

are being braided. When the tunnel-braiding is complete, the tunnel couplings should

be restored to their original value, in particular v2 = 0. This procedure braids M2 with

the other Majorana zero-mode distributed across M345 changing the occupancy of the

M12-fermion.

3. Measurement: We can now measure the joint parity of the D1/M12-system by first

restoring the tunnel couplings v1 and v2 and then measure the charge on D1. Ideally,

the tunnel couplings should be turned on instantly. The continuous charge-measurement

collapses the subsystem to a state with definite parity. Thus, the measurement can detect

the change in occupancy of the M12-fermion as the dot has remained empty in its ground

state.

We continue this section by providing a few mathematical details of the protocol. Having initialized

the Majoranas in the even sectors, the M12-system is in the state |0〉M12. We call the Majorana zero-

mode spread over M234 for M0. The initial state of the M3456-system can thus be expressed as |0〉M06.

Performing the tunnel braiding on M2 and M0 results in a final state α |0〉M12 |0〉M06 +β |1〉M12 |1〉M06

as the overall parity of the system is conserved. We are interested in the occupancy of the M12-fermion

which can be determined by measuring the charge of D1 when it is coupled to M1 and M2 [21]. In

terms of the states in this subsystem, the tunnel-braiding has the effect

|0〉D1 |0〉M12 → |0〉D1 (α |0〉M12 + β |1〉) , (7.12)

assuming that the sudden approximation can be used when the dot is coupled to the Majoranas. This

state is not a ground state due to the energy splitting between the even and odd sectors. Since the

charge-measurement is assumed to be a weak measurement in continuous time, the time evolution of
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Figure 7.2: Device proposal for demonstrating the non-Abelian exchange statistics through tunnel-

braiding. The single-level quantum dot D2 mediates a coupling between the Majorana bound states

M2, M3, M4 and M5. By also coupling M6 to D2 enables the non-commuting braids of three Majorana

zero-modes.

these states are relevant. We begin by reminding ourselves of the familiar Hamiltonian, eigenenergies

and eigenstates of the D1/M12-system,

Hρ =

(
0 vρ

(vρ)∗ ε1

)
, Eρ± =

ε1

2
±
√(ε1

2

)
+ |vρ|2,

∣∣Ψρ
±
〉

=
1√

(Eρ±)2 + |vρ|2

(
vρ

Eρ±

)
, (7.13)

with vρ = v1 + ρiv2 and |vρ|2 = v2 + ρ sin(2θ) sin(φ/2) in the parameterization v1 = v cos(θ)eiφ/2,

v2 = v sin(θ). In this basis, the states |0〉D1 |0〉M12 and |0〉D1 |0〉M12 both correspond to (1, 0)T . To

include the time evolution we express this state in terms of the eigenstates,

|0〉D1 |0(1)〉M12 =

(
1

0

)
=

1

vρ(Eρ+ − E
ρ
−)

[
Eρ+

(
vρ

Eρ−

)
− Eρ−

(
vρ

Eρ+

)]
, (7.14)

for both the even and odd parities. We may now simply append the time evolution factor to each

state to get the time evolved states,

|ψρ(t)〉D1,M12 =
1

vρ(Eρ+ − E
ρ
−)

[
Eρ+e

−iEρ−t

(
vρ

Eρ−

)
− Eρ−e−iE

ρ
+t

(
vρ

Eρ+

)]
. (7.15)

The probability of measuring full occupancy of the dot as a function of time for a given parity sector

is

| 〈1|D1 〈0(1)|M12 |ψ
ρ(t)〉D1,M12 |

2 = 4

∣∣∣∣ Eρ+E
ρ
−

vρ(Eρ+ − E
ρ
−)

∣∣∣∣2 sin2

(
Eρ+ − E

ρ
−

2
t

)
(7.16)

By taking the time average and rewriting in terms of x = ε1/(2v) and λρ = ρ sin(2θ) sin(φ/2), we get

Oρ =
1 + λρ

2(x2 + 1 + λρ)
, (7.17)
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for the occupancy which is related to he charge-measurement through Cρ = eOρ where e is the charge

of the electron. In the ideal situation x = 0 and λ = 1, the charge-measurement yield C− = 0 and

C+ = e/2 for the even and odd cases, distinguishing the two possibilities maximally. In conclusion, the

charge-measurement of the dot can determine the occupancy of the M12-fermion. When measuring

|0〉D1 (α |0〉M12 + β |1〉), the state is collapsed to |0〉D1 |0(1)〉M12 with probability |α|2(|β|2) yielding a

measurement outcome C−(+).



Chapter 8

Conclusion and outlook

In this thesis, we have studied the charge-transfer process of [1] in detail. The aim is to demonstrate

the non-Abelian statistics of Majorana bound state. To perform the the charge-transfer process a

single level quantum dot is weakly coupled to a Majorana system. By controlling the dot level energy

adiabatically, charge can be transferred to the Majorana system, changing its parity. Due to the non-

Abelian characteristics of the Majorana bound states, the operations performed by consecutive charge-

transfer processes does not commute. By measuring the parity of the combined Majorana/dot-system

through a charge-measurement of the dot, the order of operations can be distinguished, demonstrating

the non-Abelian nature of Majorana bound states. The work in this thesis takes into account the

errors in the coupling parameters between the dot and the Majorana bound states. In experiment,

these parameters need to be tuned to achieve visibility of the non-Abelian effects. The main source

of visibility reduction comes from the relative dynamical phase gained between the even and odd

parity sectors of the Majorana/dot-system due to the ground state degeneracy being split when the

parameters are not ideally tuned. The non-Abelian effects are associated with the relative geometric

phase acquired between the even and odd parity sectors during the charge-transfer process. By

studying the dependence of the coupling parameters on the dynamical and geometric phases we are able

to propose an efficient protocol for demonstrating the non-Abelian statistics of Majorana bound states.

Our proposal has advantages compared to the protocol suggested in [1]: 1) We need to manipulate

only one pair of Majorana bound states, requiring only three operations. 2) The dynamical phases

between consecutive charge-transfer processes can be canceled, achieving maximal visibility of the non-

Abelian effects. The cancellation of the dynamical phases rely on winding the superconducting phase

in the system by π. This can be achieved in experiment by controlling the magnet field through the

device. In a numerical simulation of the time-dependent Schrödinger equation, we test the proposed

protocol and find good agreement with the theory. In future experiments, it will be interesting to see

if these results translate well to the experimental scene and if they can be used to demonstrate the

non-Abelian statistics of Majoranas.

Another important aspect of the charge-transfer process is the adiabatic control of the dot level

energy. To investigate the effects of non-adiabatic corrections, we apply adiabatic perturbation theory

[2]. The two primary modes of errors due to non-adiabaticity are transitions out of the ground state

manifold and corrections to the relative phases between the even and odd parity sectors. Using

adiabatic perturbation theory and numerical simulations of the charge-transfer process, we find that

it is optimal to control the rate of change of the dot level energy proportional to the energy gap
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separating the ground state and the excited state. Comparing to simply controlling the dot level

energy linearly, we find improvements in the suppression of both the transition amplitude and the

corrections to the relative phase at a much shorter time scale of the process. It is beneficial for

the time scale to be short to reduce the effects of the coupling to the environment. While applying

adiabatic perturbation theory, we discover a subtle detail due to the adiabatic expansion parameter

being dimensionful. For the charge-transfer system, we define the relevant dimensionless expansion

parameter in adiabatic perturbation theory. For future work, it will be relevant to generalize the

dimensionless expansion parameter and recast adiabatic perturbation theory in entirely dimensionless

quantities. This may bring insights into how adiabatic transport is optimally performed and give

the rigorous conditions for the adiabatic approximation. These result will in general be useful when

studying manipulations of Majorana systems as adiabatic control of the system is often assumed.

In the first of the two smaller projects, we consider simultaneous manipulation of more than two

Majorana bound states using charge-transfer. We introduce a shorthand notation for different types

of operations on Majorana systems and use it to determine how to perform operations on 4 Majorana

bound states. We propose a device capable of performing this operation and study its Hamiltonian.

We also consider how to perform all other operations on a Majorana system by extending the setup.

This project is still early in its conception and much future work still remains, especially when it

comes to concrete physical implementations.

In the second of the smaller projects, we consider braiding in a tunnel coupling-space as a path

to demonstrating the non-Abelian statistics of Majorana bound states. Instead of the charge-transfer

process, by coupling four Majorana bound states to a quantum dot, the two remaining Majorana

zero-modes can be braided through adiabatic control of the coupling parameters. We show this at

a proof-of-concept level. We propose an initialization and measurement protocol while leaving the

details of the tunnel-braiding for future work.
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