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Abstract

The recently developed universal Lindblad equation is employed in predicting and quan-
tizing the noise incumbent upon a system of two coupled superconducting qubits, as well
as a system of four qubits modelled as a Heisenberg chain. Additionally the evolution
of said systems are numerically simulated using the stochastic Schrödinger equation.
The numerical data suggest that the coupling between qubits will cause the noise to
spread from qubit to qubit eventually causing errors that are not restricted to affect
only one qubit but several qubits at once, depending on the nature of the coupling.
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Chapter 1

Introduction

Over the last couple of decades the publication rate on quantum computing has been
steeply increasing, and research within the field is widely supported by government
investments and technological businesses[1]. The reason for the ongoing interest in
quantum computation can be attributed to different factors. For example, a quan-
tum computer can significantly reduce the complexity of certain computational tasks
compared to its classical counterpart[2, 3]. Additionally, the development of quantum
computers may even prove a necessity in order to maintain the ongoing progress in com-
putational power. If the number of transistors per square inch on integrated circuits in
classical computers continues to grow, then eventually the components will reach such
small scales, that quantum effects will start to dominate[2, 4].

The building blocks of quantum computers are the quantum mechanical version
of classical bits, called qubits. Whereas a bit can attain either the value 0 or 1, the
quantum mechanical phenomenon of superposition enables the qubit to be both 0 and 1
at the same time. This is the main cause for their computational superiority mentioned
above. Hence, any quantum system that allows for the isolation of a 2-dimensional
subspace qualifies as a qubit, and several candidates for a working qubit have been
suggested so far. Among these are trapped ions [5] and electron spins in quantum dots
[6].

Another type of qubit which will be at the focus of this thesis is the superconducting
circuit qubit. While the Hamiltonians describing the qubit system in principle can
be effectively the same for different types of qubits, the sources of noise incumbent
upon the different types of systems presumably differ in general. When noise from
the environment is taken into account in the study of a quantum system it is usually
referred to as an open quantum system. For reasons that will be clarified in Sec. 3.2
an efficient description of the evolution of open quantum systems is the equation of
motion for the density matrix describing the system, otherwise known as a master
equation. The most general form of a master equation describing a system undergoing
Markovian evolution (to be defined in Sec. 3.1) is the Lindblad form which employs the
so-called ”jump operators” (to be further described in Chapter 4) which describes the
dissipation of the system[7, 13]. Up until recently there was no known viable Lindblad
form master equation to describe systems with a very fine energy level structure. For
instance, the quantum optical master equation (QOME) imposes stringent conditions
on the level structure of the system for which it acts as a good description of the system
dynamics[12, 14]. In the case of coupled qubits it is easy to conceive of an energy level
structure similar to that of a Heisenberg model spin chain, which has the implication
that the energy level spacing is exponentially suppressed in the number of spins (or
qubits). Hence, the QOME might not be a viable option for the description of coupled
qubits. Luckily, in [8] they derive a Lindblad form master equation which they refer to
as the universal Lindblad equation (ULE), due to the fact that no assumption about
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CHAPTER 1. INTRODUCTION 5

the system is made throughout its derivation. Hence the ULE can safely be applied to
any system regardless of its energy level structure, as long as its evolution is Markovian.
As such the ULE will be employed in the study of the superconducting qubits in this
thesis. The objective is to ascertain the nature of the noise incumbent on a small system
of two coupled superconducting qubits as well as the evolution this noise gives rise to
as predicted by the ULE. Such a system was recently experimentally realized in [29],
where they among other things attempt to estimate the ”jump operators” that arise
from various noise channels (”noise channels” will be defined in Chapter 3).

The thesis is structured accordingly: in Chapter 2 a general description of qubits
and the noise and errors they may experience is presented, along with how a multi-
qubit system may be programmed conveniently. Additionally, superconducting qubits
are expounded upon more particularly with how they may be engineered physically.
Chapter 3 concerns the evolution of open quantum systems. Specifically Markovian
evolution is in focus and the requirements necessary for the evolution to be considered
Markovian. Chapter 4 provides a thorough review of the results pertaining to the ULE
derived in [8]. It also presents the QOME and compares these two Lindblad master
equations. Finally, there is a demonstration of how the evolution of a quantum system
according to the ULE may be efficiently simulated using the stochastic Schrödinger
equation (SSE). Chapter 5 presents several results of a simulation of two coupled su-
perconducting qubits, and Chapter 6 presents a few results of a simulation of a system
of four qubits modelled as a closed Heisenberg chain. Finally, Chapter 7 concludes the
thesis. Besides the main text there are two appendixes. App. A provides some of the
minute details of the derivations of the master equations presented in the main text,
and App. B contains a derivation of the correlation and spectral functions for a bath
of electromagnetic modes of both discrete and continuous spectra.



Chapter 2

Generally on qubits

A qubit is simply a two-level system such as a spin-1/2 particle, where the ground state
and excited state will be denoted |0〉 and |1〉 respectively. Hence, the most general
normalized pure state for a qubit can be expressed as α |0〉+β |1〉, with |α|2 + |β|2 = 1.
The matrix representation of these states is chosen such that:

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. (2.1)

Evidently the Hilbert space of a single qubit is 2-dimensional, and so its density matrix
ρ is a 2× 2-matrix. The density matrix will be more closely defined in Sec. 3.2. Suffice
it say now that it is a Hermitian matrix describing the state of a system. Observe that
any Hermitian 2 × 2-matrix has four real parameters, so generally this density matrix
can be expressed:

ρ =

[
a c− id

c+ id b

]
, with a, b, c, d ∈ R. (2.2)

As such it can be expanded in terms of the identity and the Pauli matrices: {1, σx, σy, σz}[30].
Recalling that the trace of the density matrix is 1, the general expansion can be written:

ρ =
1

2
(1 + P ·~σ) , where P =

PxPy
Pz

 and ~σ =

σxσy
σz

 , (2.3)

because the trace of each Pauli matrix is zero (1 being the identity matrix). The vector
P has real entries and is often referred to as the Bloch vector. It can be used as a visual
representation of the quantum state of the two-level system as is shown in Fig. 2.1. For
pure states the Bloch vector has unit length and points onto the Bloch sphere. In this
case the pure state |ψ〉 can be expressed in terms of the polar angle θ and azimuthal
angle φ (see Fig. 2.1 for reference) as such:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (2.4)

For mixed states the Bloch vector points inside the Bloch sphere, and hence its length
is a measure of the purity of the state.

The matrix representation of the Pauli matrices is:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
. (2.5)

Sometimes the subscripts (1, 2, 3) are used instead of (x, y, z), and the subscript 0
signifies the identity σ0 = 1. Hence it follows that σaσb = δab1 + iεabcσc, where δab is
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CHAPTER 2. GENERALLY ON QUBITS 7

the Kronecker delta defined as: δab = 1 for a = b and δab = 0 otherwise. εabc is the
Levi-Civita symbol defined as: εabc = 1 if (a, b, c) is an even permutation of (1, 2, 3),
εabc = −1 if (a, b, c) is an odd permutation of (1, 2, 3), and εabc = 0 for repeated indices.
With this, and observing that the trace of the Pauli matrices is zero, it further follows:

〈σi〉 = tr [σiρ] = Pi. (2.6)

Since Pi is real, the Pauli operators represent observables of the system and so they can
conveniently be used to construct the Hamiltonian of the system. Usually the Pauli
operators represent the observable spin of a spin-1/2 particle, but as has just been
shown they are convenient to use for any general two-level system.

ϕ

θ

x

y

z
|0〉

|1〉

P

Figure 2.1: The Bloch vector P represents the state of a two-level system, where for pure
states it has unit length and points onto the Bloch sphere and for mixed states it points
inside the Bloch sphere. The point of the sphere’s intersection with the z-axis at z = 1
represents the state |0〉, and the opposite point at z = −1 represents |1〉 (this defines
the axis of quantization, and the z-axis is the common choice). Hence, all other points
on and inside the Bloch sphere not on the z-axis represents states in a superposition
of |0〉 and |1〉. The state represented by P in the figure is cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉
[23]. The code for this figure is provided at [27].

2.1 Programming qubits and qubit Hamiltonians

When programming a system consisting of several qubits there is a choice as to, how
the multi-qubit state is represented by a vector. In this thesis, the choice is as follows:
for a system of N qubits in the multi-qubit state |n0n1n2...ni...nN−1〉 (where each ni is
either 0 or 1 corresponding to the single qubit state |0〉 or |1〉 respectively) an integer
p is defined:

p = 1 +
N−1∑
i=0

2ini. (2.7)
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Then this state is represented by a 2N × 1 vector, where the pth entry is 1 and all other
entries are 0. For example, the state |110〉 has p = 4 and so:

|110〉 =



0
0
0
1
0
0
0
0


.

This definition determines how the multi-qubit Pauli matrices are defined. If σ
(j)
a rep-

resents the Pauli operator σa acting on the jth qubit (counting from the left in the
multi-qubit state ket) then this operator is given by the tensor product:

σ
(j)
a = 1⊗ · · · ⊗ σa ⊗ · · · ⊗ 1⊗ 1⊗ 1.

N j 3 2 1

Notice that the order of the operators in the tensor product is reversed compared to
the order of the multi-qubit state ket. This is a result of the choice of the vector
representation of the states. As an example, notice the difference between the matrix
representations of σ

(1)
x and σ

(2)
x for a system of two qubits:

σ(1)
x = 1⊗ σx =

[
1 0
0 1

]
⊗
[
0 1
1 0

]
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

σ(2)
x = σx ⊗ 1 =

[
0 1
1 0

]
⊗
[
1 0
0 1

]
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
This can be verified by using that the action of σ

(j)
x is to ”flip” the state of the jth

qubit. Hence, σ
(1)
x |00〉 = |10〉 and σ

(2)
x |00〉 = |01〉, which indeed is the case with the

definition above.
With that it is straight forward to define any Hamiltonian in terms of the Pauli

matrices, and most programming software has inbuilt functions for diagonalizing square
matrices and finding eigenvectors thereof.

2.2 Superconducting qubits

A superconducting qubit can be engineered as a small circuit consisting of a Josephson
junction running in parallel with a capacitor (see Fig. 2.2). A Josephson junction is
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made of two superconducting electrodes separated by a thin barrier, which give rise to
a current and voltage given by the Josephson equations[9, 23]:

I = Ic sin(φ) and V =
~
2e
∂tφ, (2.8)

where φ is referred to as the superconducting phase, and the critical current Ic is
the maximum supercurrent the junction can support before losing its superconducting
properties. The superconducting phase is given by the reduced flux φ = 2πΦ/Φ0, where
Φ is the flux due to the circuit, and Φ0 = h/2e is the superconducting magnetic flux
quantum[23]. Here the 2e reflects the Cooper-pair particles consisting of two bound
electrons (e being the elementary charge, the charge of an electron), which emerge
when the metal passes into the superconducting phase. The two relations above result
in the Hamiltonian:

H = 4ECn
2 − EJ cos(φ), (2.9)

where EC = e2/2CΣ, with CΣ = Cs +CJ being the total capacitance of the circuit, and
EJ = IcΦ0/2π. The energy EC is the charging energy required to add each electron of
the Cooper-pair to the island, and EJ is the Josephson energy[23]. The charge number
n is the number of Cooper-pairs on the island, given by Q/2e with Q being the total
charge on the island (the caption to Fig. 2.2 explains what is meant by ”the island”).

In connection with the quantum harmonic oscillator, as discussed in App. B.1, the
operators n and φ can be regarded as canonically conjugate variables, and so the first
term in the Hamiltonian Eq. (2.9) can be regarded as the kinetic energy, and the second
term the potential energy. The introduction of the Josephson junction has caused this
potential energy to take a cosinusoidal rather than a parabolic form, which means that
the energy levels are not equidistant, as shown in Fig. 2.2. The difference between
the ground state and the first excited state, ω01, is greater than the difference between
the first excited state and the second excited state, ω12. This anharmonicity of the
energy levels makes it possible to isolate the two lowest levels |0〉 and |1〉, forming a
computational subspace that effectively behaves as a qubit, simplyfing the Hamiltonian
to:

H =
ωq
2
σz, where ωq =

√
8EJEC − EC

~
. (2.10)

and ωq = ω01 is the qubit frequency, otherwise known as the splitting of the qubit[23].
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|0〉

|1〉

|2〉

E
n
er

gy

ω01

ω12

−π −π
2 0

π
2 π

φ

Figure 2.2: Left: a schematic of an example of a simple qubit circuit. The bottom of the
circuit is connected to the ground, and on the left is a Josephson junction symbolized by
a cross, and on the right is a capacitor symbolized by to parallel lines. The Josephson
junction and capacitor isolates the top of the circuit from the part connected to the
ground, forming an island with superconducting phase φ. Right: a sketch of the
potential energy spectrum due to the circuit on the left. The Josephson junction causes
the potential to have a cosinusoidal shape, making the energy levels anharmonically
spaced. This provides a computational subspace consisting of the two lowest energy
states |0〉 and |1〉 which effectively can be treated as a qubit. This figure is inspired by
[23].

In order to implement high-fidelity gate operations and store quantum information
in the qubit, it is favourable to be able to tune the qubit splitting[23, 26]. One way of
doing this is by replacing the single Josephson junction in the circuit in Fig. 2.2 with a
loop consisting of two parallel Josephson junctions as shown in Fig. 2.3, and threading
the loop with an external magnetic field resulting in a flux Φext. This external flux
reduces the effective critical current shared by the two Josephson junctions, and so by
varying Φext the Josephson energy EJ can be tuned. This makes it possible to control
the qubit splitting, and so an array of qubits can be brought into resonance with one
another allowing them to interchange energies when needed[23]. It can also be used to
implement a detuning between qubits in order to keep them out of resonance to avoid
this type of interaction. This tuning of the qubit frequency emulates the behavior of
a spin-1/2 particle in a magnetic field. By varying the strength of the magnetic field
the energy splitting between the spin-up and spin-down state of the particle can be
controlled. Specifically, the Josephson energy in Eqs. (2.9) and (2.10) is replaced by
the tunable effective Josephson energy[23]:

E ′J(φe) = 2EJ |cos(φe)| , where φe =
πΦext

Φ0

. (2.11)
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Φext

Figure 2.3: In order to tune the qubit splitting of the superconducting circuit qubit
in Fig. 2.2, the single Josephson junction can be replaced by a loop of two parallel
Josephson junctions as shown here. By threading the loop with a magnetic field the
splitting is decreased, and so by varying the magnetic flux Φext through the loop the
splitting can be controlled.

Another property of spin-1/2 particles, that it is favourable to have qubits emu-
lating, is the coupling of their spin[15]. There are different ways in which to couple
superconducting circuit qubits that lead to coupling along different axes, distinguishing
between longitudinal and transverse coupling compared to the quantization axis. One
way to achieve coupled circuit qubits is by connecting the islands of the qubits through
a capacitor Cg, as shown in Fig. 2.4 (a). This will give rise to a Hamiltonian of three
parts: H = H1 + H2 + Hint, where H1 and H2 are the separate Hamiltonians of the
two qubits given by Eq. (2.9) or effectively Eq. (2.10), and Hint is the Hamiltonian
describing the interaction of the two qubits given by[23]:

Hint = CgV1V2, (2.12)

where V1 and V2 are the voltage operators of the respective qubit islands. In the
weak coupling limit Cg � C1, C2, where C1 and C2 are the shunt capacitance for the
respective qubits, the interaction Hamiltonian effectively takes the form:

Hint = gσ(1)
x σ(2)

x , (2.13)

where g is the qubit-qubit coupling energy. This can be tuned by altering the geometry
of the capacitor, i.e. by changing its size or the distance between the capacitor plates.
The capacitive coupling may as well be chosen along the y-direction as long as it is
transverse to the axis of quantization, but an additional coupling of the qubits by
means of induction makes it possible to have the qubits coupled along both transverse
directions. Inductive coupling is achieved by moving two looped circuit qubits into close
proximity of each other, such that the magnetic field due to the looped current in the
one circuit induces a current in the other circuit and vice versa (see Fig. 2.4 (b)). This
gives rise to an interaction term in the Hamiltonian given by Hint = M12I1I2, where
M12 is the mutual inductance due to the two inductances L1 and L2, and I1 and I2

are the current operators of the respective circuits given by the Josephson current in
Eq. (2.8). Similarly to capacitive coupling in the weak coupling limit this Hamiltonian
effectively takes the form of Eq. (2.13), alternatively with the coupling along the y-
direction. The inductive coupling can also be tuned by moving the qubit circuits closer
or farther apart. The circuit loops may even be brought to overlap to further increase
the coupling.
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SC qubit
circuit 1

Cg
SC qubit
circuit 2V1 V2

(a) Capacitive coupling

SC qubit
circuit 1

L1
SC qubit
circuit 2

L2

(b) Inductive coupling

Figure 2.4: This figure illustrates how superconducting qubits can be coupled both (a)
capacitively and (b) inductively. Take note that L1 and L2 do not represent coils in the
circuits but simply the inductance due to the looped currents in the circuits.

2.3 Noise and errors on qubits

A quantum computer will inevitably interact with its environment which leads to the
decay of the quantum information stored in the qubits making up the device[31]. This
coupling of the qubits to the environment is what is referred to as noise, and noise leads
to logical errors in the information stored in the qubits. For examble, a qubit in the
state |0〉 can undergo a bit flip error when it experiences a certain type of noise which
takes it to the state |1〉, thus disrupting the information.

With the Bloch vector picture (see Fig. 2.1) of the state of a qubit it is convenient to
distinguish the types of noise that induce errors in the qubit state. In the qubit frame
the z-axis is longitudinal, and so longitudinal noise corresponds to errors acting with σz
on the qubit. The x− y plane is transverse in the qubit frame, and so transverse noise
corresponds to errors with σx or σy acting on the qubit[23]. Longitudinal noise leads to
pure dephasing of the qubit state, as the action of a noise operator proportional to σz
on the qubit destroys the information stored in the phase of the qubit state. Observe
for instance the action of the error operator σz on the state in Eq. (2.4):

σz |ψ〉 = cos

(
θ

2

)
|0〉 − eiφ sin

(
θ

2

)
|1〉

= cos

(
θ

2

)
|0〉+ ei(φ+π) sin

(
θ

2

)
|1〉 .

Hence, longitudinal noise causes the Bloch vector to precess about the z-axis as depicted
on the Bloch sphere in Fig. 2.5 (a). The polar angle θ, however, is left undisturbed by
longitudinal noise, and so the qubit’s polarization along the z-axis is intact.

Transverse noise, on the contrary, causes depolarization along the z-axis. This
occurs due to energy exchange with the bath and results in transitions between the
states |0〉 and |1〉. This is evident when considering a noise operator of the simple form
σx acting on the state |1〉: σx |1〉 = |0〉 (also depicted on the Bloch sphere in Fig. 2.5
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(b)). In [23] the provide a more thorough revision of noise on superconducting qubits
which has also been the main inspiration for this section.

ϕ

θ

x

y

z
|0〉

|1〉

P π

(a) Error σz acting on |ψ〉.

x

y

z
|0〉

|1〉
P

(b) Error σx acting on |ψ〉.

Figure 2.5: The error operators σz (a) and σx (b) acting on the state |ψ〉 in Eq. (2.4)
represented on the Bloch sphere.



Chapter 3

Evolution of open quantum systems

When constructing quantum systems to be used for logical computations, they should
ideally be closed systems so as to avoid unwanted correlations between the system and
its environment, which ultimately leads to logical errors. However, as it is not possible
to have local systems that are completely isolated from its surroundings, it is necessary
to understand how a system develops under the influence of uncontrolled interactions
with its environment, which will often be denoted the bath.

If HS and HB represent the Hilbert spaces of the system and the bath respectively,
then the Hilbert space of the composite system (otherwise referred to as the bipartite
system) is given by the tensor product HS ⊗HB.

3.1 Open quantum systems and Markovian evolution

In this section, general open quantum systems will be studied using as the foundation
a Hamiltonian that incorporates an entirely general system and bath:

H(t) = HS(t) +HB +HSB. (3.1)

Here HS(t) and HB are the Hamiltonians for the system and bath respectively, and HSB
describes the interactions between the system and bath. This part can be decomposed
as:

HSB =
√
γ
∑
α

XαBα, (3.2)

where Xα is a dimensionless Hermitian operator acting on the Hilbert space of the
system HS , and Bα is a Hermitian operator with units of [energy]1/2 acting on the
Hilbert space of the bath HB. The α-s label the different noise channels through which
the system and bath interact, and γ is an energy scale parametrizing the coupling
strength of these noise channels.The coupling is chosen to appear in a square root in
the Hamiltonian for convenience, because later

√
γ will appear in only even powers in the

master equations to be derived. This choice in turn means that the bath operators have
dimensions of [Energy]1/2, but this is a natural choice for a bath of a continuous energy
spectrum such as an Ohmic bath[8]. More information on Ohmic baths is provided in
Sec. 3.5.

There is a particular type of evolution of open quantum systems that will be the
cornerstone for all the systems that are studied in this thesis, and that is Markovian
evolution. Markovian evolution describes a process, where the future state of a system
is entirely determined by its present state, without reference to the system’s past. This
imposes some restrictions on the bath that the system is connected to, as will be shown
presently. Fig. 3.1 at the end of this section presents an example of two cases, where
a two-level system is connected to a bath of photonic modes, and at some distance
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CHAPTER 3. EVOLUTION OF OPEN QUANTUM SYSTEMS 15

from the system a mirror that perfectly reflects photons is located. In the one case
the bath consists of such a small number of photons, that a photon emitted from the
system can pass through the bath, be reflected on the mirror, and return to the system
re-exciting it to its prior state. If the system decays and emits a photon at time ti and
reabsorbs the same photon at time tf , then only knowing the state of the system at
a time t between ti and tf will not provide the information, that the system is about
to reabsorb a photon it emitted in the past. In that case it is necessary to know the
history of the system in order to make predictions about its future, and so this case
does not present a system described by Markovian dynamics.

In the other case the bath is full of photons, such that when the system decays at the
emission of a photon, there is a large probability that the system will have absorbed a
different photon from the bath, before the emitted photon has returned. Hence, in this
case it is possible to make predictions about the future of the system without knowing
its state in the past, as long as the statistical properties of the bath are available.

The only thing distinguishing the two cases is the statistics of the bath. From
this example one property that is instrumental to providing a ”good” Markovian bath
can be inferred, namely that the correlations of the bath should decay rapidly on the
timescale of system-bath interactions[8]. In the case of the ”bad” Markovian bath the
characteristic decay time of the bath correlations τ is comparable to or longer than the
time interval tf − ti, whereas in the other case it is much shorter τ � tf − ti. More
generally, the inequality τ � Γ−1 should be fulfilled, where Γ is the rate of system-bath
interactions. The parameters τ and Γ will be accurately defined later in Sec. 3.4.
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HS
HB

HS
HB

Figure 3.1: Top: a two-level system (green) decays at the emission of a photon (red
arrow) into a bath (blue) consisting of a small number of photons. On the far right
at some distance from the system is located a mirror that perfectly reflects incoming
photons. Since there are only a few photons in the bath, there is a very small probability
that any of these photons will re-excite the system, before the particular photon emitted
by the system will have travelled to the mirror and back to the system again, re-exciting
it itself. Hence, in this case the information stored in the system is not lost to the bath
but returns at a later time. This does not constitute Markovian evolution. Bottom:
here everything is the same except that there is a much larger number of photons in the
bath. Hence, the probability for any of these photons to re-excite the system is large,
and this essentially means that the information stored in the system is lost to the bath.

3.2 The density matrix and its evolution

The density matrix is an efficient choice for monitoring the evolution of an open quan-
tum system, because in addition to the information kept in a state ket it also incorpo-
rates information about how much is known about the system, and whether the system
is entangled with its environment. Entanglement of the system and bath makes the
state kets of the system and bath inseparable, such that the state ket of the system
cannot be isolated from the state ket of the bath. However, the bath can always be
traced out of the density matrix of the bipartite system, such that the reduced density
matrix of the system alone is given by ρ = trB[ρSB]. The state ket would be a sufficient
choice, if the system was guaranteed to be always in a pure state, but since that is only
truly possible for closed systems it is necessary to understand the behavior of mixed
ensembles.

A mixed ensemble denotes an ensemble where a fraction of the members are char-
acterized by |φ(i)〉 with relative population wi, and so the density matrix is constructed
as:

ρ(t) =
∑
i

wi |φ(i)(t)〉 〈φ(i)(t)| , (3.3)
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with the fractional populations obeying
∑

iwi = 1. Eq. (3.3) is the most general form
of a density matrix representing an ensemble that is undisturbed, and if for instance
wk = 1 and wi = 0 for all i 6= k then it is a pure ensemble. That the ensemble is
left undisturbed is manifested in the fractional populations being time-independent,
because they cannot change in this case ([10] p. 185). This is indeed the case when the
ensemble is the aforementioned bipartite system of the system and bath, because there
is nothing beyond that to influence the composite system. Note that the definition Eq.
(3.3) ensures that tr(ρ) = 1, and 〈ψ| ρ |ψ〉 ≥ 0 for any state |ψ〉, which is to say that
the density matrix is positive[30]. Furthermore, expectation values of an observable A
can be found as 〈A〉 = tr(Aρ).

To establish the evolution of the density matrix the time-derivative of Eq. (3.3) is
taken, using that the states |φ(i)〉 obey the Schrödinger equation:

∂tρ =
∑
i

wi
(
(∂t |φ(i)〉) 〈φ(i)|+ |φ(i)〉 (∂t 〈φ(i)|)

)
=− i

∑
i

wi
(
H |φ(i)〉 〈φ(i)| − |φ(i)〉 〈φ(i)|H

)
.

This leads to the von Neumann equation:

∂tρ(t) = −i [H(t), ρ(t)] . (3.4)

In the framework of the open quantum system discussed above the density matrix in
Eq. (3.4) is the one for the bipartite system ρSB, and the Hamiltonian is the composite
one in Eq. (3.1).

3.3 The Bloch-Redfield equation

The Bloch-Redfield (BR) equation is the first equation of motion for a density matrix
representing and open quantum system to be investigated in this thesis. For simplicity,
the derivation of the BR equation is made for only one noise channel such that there is
only one term in Eq. (3.2). The derivation is largely based on [8].

It is easiest to derive it in the interaction picture, where states and operators are
transformed by a rotation of frame according to the non-interacting part of the Hamil-
tonian HS(t) +HB. Then, in the interaction picture, the bipartite system evolves only
according to the interacting part of the full Hamiltonian ([11] p. 82):

H̃(t) =
√
γX̃(t)B̃(t). (3.5)

To make this transformation explicit it is given here for the system and the bath operator
respectively:

X̃(t) = eiHBtU †(t)XU(t)e−iHBt, where U(t) = T e−i
∫ t
0 dt′HS(t′) ([10] p. 71 and [11] p. 83),

with T denoting time ordering. Since HS(t) and X act on a different Hilbert space
than HB they obey [HS(t), HB] = [X,HB] = 0, and so the above reduces to:

X̃(t) = U †(t)XU(t). (3.6)
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For the same reason:

B̃(t) = eiHBtBe−iHBt.

As observed, in the interaction picture the bipartite system evolves according to (3.5)
which means that its density matrix obeys the following von Neumann equation:

∂tρ̃SB(t) = −i
[
H̃(t), ρ̃SB(t)

]
. (3.7)

Integration of this and plugging back in gives:

∂tρ̃SB(t) = −
∫ t

t0

dt′
[
H̃(t),

[
H̃(t′), ρ̃SB(t′)

]]
− i
[
H̃(t), ρ̃SB(t0)

]
. (3.8)

Now the Born approximation is employed by setting ρ̃SB(t′) ≈ ρ̃(t′) ⊗ ρB inside the
integral. This ensures that the system and bath are allowed to develop correlations to
first order in the spin-bath coupling parameter γ, but beyond that they are assumed
to be disentangled. The inclusion of higher order correlations is obtained by repeat-
edly integrating Eq. (3.7) and plugging into the above, but by keeping the coupling
sufficiently small the higher order correlations become negligible [12].

To obtain the master equation for the reduced density matrix of the system ρ̃(t) the
bath degrees of freedom are to be traced over, but first some assumptions about the
bipartite system are made. It assumed that at some arbitrary time in the remote past
the bath was in a steady state independent of the system. Choosing t0 to be in this
regime then ρSB(t0) = ρ(t0)⊗ ρB. Secondly, it is observed that each bath operator Bα

in Eq. (3.2) can, without loss of generality, be assumed to have vanishing expectation
values in the bath state ρB, because any nonzero expectation values can be eliminated
by appropriate redefinition of HS and Bα [8]. With these assumptions it follows that:

∂tρ̃(t) = −γ
∫ t

t0

dt′J(t− t′)
[
X̃(t), X̃(t′)ρ̃(t′)

]
+H.c., (3.9)

where J(t− t′) = trB[B̃(t)B̃(t′)ρB] is the two-point bath correlation function, and H.c.
implies addition of the Hermitian conjugate of the preceding. A proof of the above is
given in App. A.1.

The final step is to replace ρ̃(t′) in the integral by ρ̃(t), under the assumption that
the characteristic decay time of the bath correlation function is so short, that the density
matrix of the system is approximately stationary over this time, and taking the limit
t0 → −∞. The result of this is the BR equation:

∂tρ̃(t) = −γ
∫ t

−∞
dt′J(t− t′)

[
X̃(t), X̃(t′)ρ̃(t)

]
+H.c. (3.10)

This last approximation is referred to as the Markov approximation [8], because another
way to state the assumption is, that the evolution of the system at a given point in
time only depends upon the state of the system at the same time, and not the previous
history of the system. This is what is called Markovian evolution as described in the
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end of Sec. 3.1, and Eq. (3.10) is an example of this, as the density matrix on the
right-hand side is referred to only at the same time as that on the left-hand side. The
two approximations employed for the derivation above is collectively referred to as the
Born-Markov approximation, and this gives rise to a correction ξ(t) to Eq. (3.10). In
the next section it will be shown that this correction has a bound that is controlled by
the properties of the bath and the system-bath coupling γ.

Notice that Eq. (3.10) is an equation of motion for ρ(t) which depends only on
an observable system operator, the system Hamiltonian and the statistical properties
of the bath. Such an equation is often referred to as a master equation [8], and later
a particular form of Markovian master equations will be discussed. But first some
important properties of the bath will be investigated as these are necessary for the
discussion to follow.

3.4 Statistical properties of the bath

Aside from the system-bath coupling the most important factor in determining whether
or not the evolution of the system is well-described by Eq. (3.10) is the bath itself.
As long as the system-bath coupling is small, the BR equation is independent of the
configuration of the system, and so the only requirement for this master equation to
be valid (besides a small system-bath coupling) is that the bath is well-behaved from
a Markovian point of view. The main point of this section is to quantify what a well-
behaved bath constitutes.

The necessary statistical properties of the bath are all incorporated in the bath
correlation function:

J(t− t′) = trB

(
B̃(t)B̃(t′)ρB

)
, (3.11)

or equivalently its Fourier transform, the bath spectral function:

J(ω) =
1

2π

∫ ∞
−∞

dtJ(t)eiωt. (3.12)

The bath correlation function has a useful symmetric property that will be exploited
in the derivations to come. Consider its complex conjugate:

J∗(t− t′) = trB

([
B̃(t)B̃(t′)ρB

]†)
= trB

(
ρBB̃(t′)B̃(t)

)
= trB

(
B̃(t′)B̃(t)ρB

)
= J(t′ − t).

Here the cyclic property of the trace has been used along with the fact, that all the
operators above are Hermitian. This symmetry of the correlation function means that
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the spectral function is purely real. Observe:

J∗(ω) =
1

2π

∫ ∞
−∞

dtJ∗(t)e−iωt

=
1

2π

∫ ∞
−∞

dtJ(−t)e−iωt.

Now changing the variable of integration t→ −t:

J∗(ω) = − 1

2π

∫ −∞
∞

dtJ(t)eiωt

=
1

2π

∫ ∞
−∞

dtJ(t)eiωt

= J(ω).

Hence, its imaginary part must be zero.
Another function that stores all the same information as either of the above but will

prove to be more convenient is the jump correlator. The jump correlator is defined by
its Fourier transform g(ω) =

√
J(ω)/2π which in the time domain gives[8]:

g(t) =
1√
2π

∫ ∞
−∞

dω
√
J(ω)e−iωt, (3.13)

and hence:

g(ω) =
1

2π

∫ ∞
−∞

dtg(t)eiωt. (3.14)

Now that the spectral function is proven to be real it is straight forward to see, that the
jump correlator has the same symmetric property as the correlation function: g∗(t) =
g(−t). With this function two important quantities that characterize the evolution of
the system and bath can be defined. One of them is the energy scale

Γ = 4γ

[∫ ∞
−∞

dt |g(t)|
]2

, (3.15)

which sets an upper bound for the rate of bath-induced evolution of the system. Another
way to view this quantity is as the timescale of system-bath interaction Γ−1 as discussed
in the end of Sec. 3.1 in connection with Fig. 3.1. The other quantity is another
timescale:

τ =

∫∞
−∞dt |g(t)t|∫∞
−∞dt |g(t)|

, (3.16)

which provides a measure for the characteristic correlation time of the bath observable,
also discussed in Sec. 3.1. It can be thought of more intuitively as the memory time
of the bath, and as such a ”good” Markovian bath is one with a ”bad” memory, where
the correlation between bath observables decay rapidly with time(see Fig. 3.1 for a
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discussion of this). Hence, a small τ compared to Γ−1 is closely connected to the
Markov approximation employed between Eqs. (3.9) and (3.10).

In fact, these two quantities together provide a bound for the correction to the BR
equation, namely

||ξ(t)|| ≤ Γ2τ, (3.17)

where || · || denotes the spectral norm(see [8] for a proof of this bound). Notice that
the right-hand side of Eq. (3.10) scales linearly with γ whereas Γ2τ scales as γ2. This
means that if the integral over the jump correlator converges, it is in principle always
possible to find a small enough value of γ to keep the system’s evolution Markovian,
making Eq. (3.10) a good description of its dynamics. In [8] they also show that the
rate of change of ρ̃(t) in Eq. (3.10) with the correction ξ(t) is bounded according to

||∂tρ̃(t)|| ≤ Γ/2. (3.18)

Hence, Γ is strictly speaking not the rate of system-bath interactions but rather an
upper bound for this. Holding this together with the bound on ξ(t) suggests that
a sufficient condition for the Born-Markov approximation to be justified is Γτ � 1.
Hence, the dimensionless parameter Γτ provides a measure of ”Markovianity” for the
bath in question.

3.5 Examples of bath correlation and spectral functions

The bath correlation function (and hence the spectral function) can often be computed
for a specific bath with appropriate bath operators B̃. App. B is devoted to finding
the bath correlation and spectral function for an electromagnetic vacuum. This is
accomplished by first quantizing the electromagnetic field in order to find appropriate
bath operators to plug into Eq. (3.11), which turns out to be given by the electric
field operators in Eq. (B.18). For a continuous spectrum of electromagnetic modes this
leads to the following correlation and spectral function:

J(t− t′) =− π

β2~ε0c
1

sinh2
(
π
β~ [t− t′]

) , and (3.19)

J(ω) =
~
πε0c

ω

1− e−β~ω
. (3.20)

Here β = 1/kBT with kB being the Boltzmann constant and T the temperature of the
bath, ε0 is the vacuum permittivity, and c is the speed of light.

Notice that for large temporal separation the correlation function decays exponen-
tially on the characteristic time scale τ = β~/2π. This suggests that as a rule of thumb
the characteristic correlation time of the bath is inversely proportional to the bath’s
temperature. There is some intuition to this when once again interpreting τ as the
memory time of the bath. At small temperatures the bath is frozen, and few things
happen, and so each event stands out more clearly, and the bath is more likely to
”remember” what happens. On the other hand, at higher temperatures it is natural
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to expect the bath to be sort of chaotic with many things happening, and so it gets
harder to distinguish the events from each other, and the bath quickly ”forgets” what
has happened.

The bath spectral function J(ω) provides a measure of how well the bath exchanges
energy with the system, where ω is the amount of energy absorbed by the bath. Hence,
negative values of ω represents emission of energy from the bath into the system. Since
the expression above for J(ω) is injective and grows with increasing ω, then generally
for finite temperature the bath is more likely to receive energy than emit energy. This
asymmetry is due to the fact, that the system may spontaneously emit energy into
the bath, which is clearly not symmetric in frequency. This quantum mechanical ef-
fect distinguishes the spectral functions of quantum mechanical systems from that of
classical systems, for which the spectral function is symmetric in frequency[23]. Notice
specifically, that:

J(ω)

J(−ω)
= eβ~ω.

For positive ω this ratio is clearly larger than 1, but observe that for T →∞ the above
goes towards 1, and so for very hot baths it is equally likely to receive as to emit energy.
On the other hand, for T → 0 the ratio above diverges, suggesting that for a very cold
bath it is highly unlikely that it should emit any energy.

The bath described by Eqs. (3.19) and (3.20) is an example of an Ohmic bath, as
generally an Ohmic bath consists of a continuum of bosonic modes, where for large
frequencies the spectral function is linear in the frequency of the bosonic modes[25].
Hence, a more general spectral function for an Ohmic bath is:

J(ω) =
1

ω0

ω

1− e−βω
, (3.21)

where the energy scale ω0 is there to keep the spectral function dimensionless[8]. In order
to find the characteristic correlation time of the bath as in Eq. (3.16) it is necessary
to first find the jump correlator using Eq. (3.13). However, since the spectral function
above goes like ω for large frequencies, its Fourier transform will not converge. This can
be managed by introducing a cutoff frequency ωc (often denoted the ultraviolet cutoff)
under the assumption, that modes with frequencies above the cutoff frequency interact
very weakly with the system. This is not only analytically convenient but also physically
justified, as modes with a wavelength much short than the extent of the system will
interact very weakly with it. See Fig. 3.2 for a visual representation of this. Consider
for example a bath of phononic modes interacting with a superconducting qubit. In a
typical superconducting metal such as aluminum the speed of sound is on the order of
v = 5000 m/s, and a qubit can have an extent on the order of a few micrometers[26].
Hence, the ultraviolet cutoff can be estimated as ωc = 2πv/a, with a being the extent
of the qubit, giving a frequency cutoff of approximately 31 GHz.
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Strong interaction Weak interaction

Figure 3.2: This figure depicts a bosonic mode (red wave) interacting with a system
(green circle). The left side represents the situation, where the wavelength of the
bosonic mode is similar to or larger than the extent of the system resulting in a strong
interaction, whereas the right side represents the situation where the wavelength is
much shorter than the extent of the system resulting in a weak interaction.

There are different ways to introduce this cutoff. In the derivation of the correlation
function for the bath of electromagnetic modes in App. B.4 a polynomial suppression
is used in Eq. (B.29). In [8] it is introduced as a Gaussian decay, such that:

J(ω) =
1

ω0

ωe
− ω2

2ω2
c

1− e−βω
. (3.22)

Both of these models ensures that the spectral function goes smoothly to zero as the
magnitude of the frequency exceeds ωc. This also provides a well-behaved Fourier
transform, whereas a sharp cutoff at ω = ωc will result in long non-zero ”tails” in the
jump correlator making it a bad description of a Markovian bath.

The jump correlator can now be found numerically as a discrete Fourier transform of
g(ω) =

√
J(ω)/2π, where J(ω) is given by the spectral function above, by generating a

large set of data points of ω and corresponding g(ω), where the frequencies are linearly
spaced within an interval [−ωmax;ωmax], with ωmax � ωc, such that g(ωmax)� 1. This
ensures that most of the contribution from the integral in Eq. (3.13) is included in the
discrete Fourier transform.

In Fig. 3.3 numerically generated data show the relationship between various Marko-
vianity parameters and the temperature of the bath. The solid lines are with the ultra-
violet cutoff set to ωc = 50ω0 and the dashed lines with ωc = 200ω0. The data confirms
that the correlation time τ decays, as the temperature of the bath increases. However,
the energy scale Γ only decays up until some temperature where it starts to increase
(observe that the spectral function grows linearly with the temperature for large T ).
Comparing the solid and dashed lines suggests, that this turning point is governed by
the ultraviolet cutoff, and that the increase starts to happen as the temperature ap-
proaches the cutoff. In fact the quantity Γτ will eventually also start to increase as the
temperature grows, meaning that for a very hot bath the system-bath coupling needs
to be kept very small in order to keep the evolution of the system Markovian.

Notice that for large temperatures T � ω the bath spectral function is approxi-
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mately given by:

J(ω) =
T

ω0

e
− ω2

2ω2
c .

Hence it follows, that the temperature appears in first order in the expression for Γ Eq.
(3.15), which explains why Fig. 3.3 (a) exhibits a linear behavior of Γ as a function of
the temperature for large temperatures.

(a) Cutoff frequency ωc = 50ω0 (b) Cutoff frequency ωc = 200ω0

(c) Markovianity Γτ of the bath as a function
of the temperature for cutoff frequency ωc =
50ω0 (solid) and ωc = 200ω0 (dashed).

Figure 3.3: These plots show the relationship between various Markovianity parameters
and the temperature of the bath. The solid curves are for ωc = 50ω0 and the dashed
curves are for ωc = 200ω0.



Chapter 4

Master equation in the Lindblad form

For a quantum system that is described by Markovian evolution the most general form
of its equation of motion that is guaranteed to preserve the trace and positivity of the
density matrix is the so-called Lindblad form[13]:

∂tρ = −i [HS + Λ, ρ] +
∑
i

γi

(
LiρL

†
i −

1

2

{
L†iLi, ρ

})
. (4.1)

Here Λ is the Lamb shift that renormalizes the system Hamiltonian due to the inter-
action with the bath [8, 12], and Li is known as a jump operator with corresponding
energy scale γi parametrizing the coupling strength between the system and bath i.
Hence, the i-s here label the baths or equivalently the noise channels as the α-s in Eq.
(3.2). The jump operators are what govern the dissipation in the system’s evolution[8],
and comparison with the von Neumann equation (3.4) distinguishes the sum in the
above as what indeed describes the dissipation of the information stored in the system.

The above claims that since the BR equation (3.10) is a Markovian master equation
it can be cast in the Lindblad form, and there indeed exist different approximation
schemes that can be employed to this to obtain a master equation in the Lindblad form.
These different approximations may impose different restrictions on the system that
the resulting master equation can be applied to, and the main thing that distinguishes
different Lindblad master equations are the jump operators, as will be shown.

In the next section the well studied quantum optical master equation[13] will be
reviewed to show its limitations and to emphasise the benefit of the recently developed
universal Lindblad equation[8], which will be the subject of the following section and
the equation of motion on which the quantum systems studied in this thesis will be
modelled.

4.1 The quantum optical master equation

This section is reserved only for the presentation of the quantum optical master equation
for a single noise channel, and the approximation that is employed leading to it. The
explicit derivation of the equation is pushed to App. A.2.

The QOME in the Lindblad form for a single noise channel as derived in App. A.2
is given by:

∂tρ̃ = −i [Λ, ρ̃] + Lphρ̃L
†
ph −

1

2

{
L†phLph, ρ̃

}
+
∑
m6=n

(
Lmnρ̃L

†
mn −

1

2

{
L†mnLmn, ρ̃

})
,

(4.2)

Here there are two types of jump operators: the dephasing jump operator:

Lph =
√

2πγJ(0)
∑
m

Xmm |m〉 〈m| , (4.3)

25
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and the decay jump operators:

Lmn =
√

2πγJ(En − Em)Xmn |m〉 〈n| , (4.4)

with Xmn = 〈m|X |n〉. The action of the dephasing jump operator on the system
corresponds to noise disturbing the phase of the wave function describing the state of
the system, whereas the decay operators disturb the energy state of the system. In
language of qubit noise in Sec. 2.3 the dephasing operator causes pure dephasing, and
the decay operators cause depolarization of the qubit state.

Eq. (4.2) is derived from the BR equation (3.10), so aside from the implications
of the Born-Markov approximation, the rotating wave approximation (RWA) imposes
strict conditions on the systems for which Eq. (4.2) is a good model. By switching the
system operators back into the Schrödinger picture in the BR equation, the equation
of motion for the density matrix can be expressed as:

∂tρ̃ = −γ
∑
mnpq

Γpqe
i(Em−En+Ep−Eq)t

[
X̂mn, X̂pqρ̃

]
+H.c.,

where Γmn ≡
∫ ∞

0

dtJ(t)e−i(Em−En)t,

and X̂mn = |m〉 〈m|X |n〉 〈n|. The RWA is then invoked to discard the terms in the sum
where Em −En +Ep −Eq 6= 0, under the assumption that these terms oscillate so fast
that over the relaxation time of the bath they average out[12]. Another way to state this
is, that the smallest difference between energy differences of the system is assumed to be
much larger than the relaxation rate. Hence, the terms that remain for the development
of Eq. (4.2) are the ones where either m = n and p = q or m = q and n = p. However,
there may exist distinct m, n, p and q for which Em−En+Ep−Eq = 0, depending on the
system under investigation. For such a system there is no good argument as to why only
the terms discussed above should be kept, and it is necessary to be more careful when
discarding terms from the sum. But this requires information about the specific system
in question and would often be a problematic procedure for large systems. Besides, the
resulting master equation will in general be specific only to the system for which it is
derived, whereas Eq. (4.2) has a more general use. However, its application is restricted
to systems where no two distinct transitions give rise to the same energy exchange. In
other words, if a photon is observed to be emitted from the system, it should be possible
to tell exactly what decay occurred.

There are systems to which the QOME cannot be applied even with a rigorous
employment of the RWA, because when the energy levels become too dense, the rate of
system-bath interactions cannot be said to be much smaller than the energy spacing of
the system. An example of this is a spin-1/2 Heisenberg chain, as its level spacing is
exponentially suppressed in the number of spins[8]. This motivates the development of
a Lindblad master equation that does not impose any requirements on the structure of
the system in question.
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4.2 Derivation of the universal Lindblad equation

This section reviews the derivation of the ULE as it is presented in [8] while emphasiz-
ing certain calculations and approximations. In addition to this, a comparison to the
QOME will be made that is not provided in [8].

This Lindblad master equation is accurate on the same level of approximation as
the BR equation (3.10) (i.e. in the Markovian limit Γτ � 1), but unlike the QOME
(4.2), its validity does not depend upon the structure of the energy levels of the system.
As such it is referred to as the universal Lindblad equation. Once again the derivation
begins with the BR equation but provides a different approximation scheme that induces
errors of the same magnitude as the Born-Markov approximation used in deriving Eq.
(3.10)[8]. Starting from Eq. (3.10) means that the derivation will once again be for a
single noise channel (i.e. there is only one system-bath coupling term in Eq. (3.2)), but
later it will be generalized to an arbitrary number of noise channels.

The first step is to decompose the bath correlation function as a convolution in
terms of the jump correlator:

J(t− t′) =

∫ ∞
−∞

dsg(t− s)g(s− t′), (4.5)

With the definition of the jump correlator Eq. (3.13) it is straight forward to verify the
above simply by inserting. Hence, Eq. (3.10) can be expressed as:

∂tρ̃(t) ≈− γ
∫ t

−∞
dt′
∫ ∞
−∞

dsg(t− s)g(s− t′)
[
X̃(t), X̃(t′)ρ̃(t)

]
+H.c.

≈− γ
∫ ∞
−∞

dt′
∫ ∞
−∞

dsθ(t− t′)g(t− s)g(s− t′)
[
X̃(t), X̃(t′)ρ̃(t)

]
+H.c.

Here the Heaviside step function θ(t) (defined as θ(t) = 1 for t > 0, θ(t) = 0 for t < 0,
and θ(t) = 1/2 for t = 0) has been introduced to extend the integral to infinity. The
following function is introduced for convenience:

F(t, s, t′)[ρ̃] ≡ −γθ(t− t′)g(t− s)g(s− t′)
[
X̃(t), X̃(t′)ρ̃

]
+H.c. (4.6)

With that, integration of the master equation over a finite time interval from t1 to t2,
chosen such that t2 − t1 � τ , leads to:

ρ̃(t2)− ρ̃(t1) ≈
∫ t2

t1

dt

∫ ∞
−∞

dt′
∫ ∞
−∞

dsF(t, s, t′) [ρ̃(t)] . (4.7)

The bound on the rate of change of ρ̃(t) in Eq. (3.18) means that for |t − s| . τ , in
the Markovian limit Γτ � 1, the density matrix in the integral above can with good
approximation be replaced with ρ̃(s), as long as the magnitude of the difference of t
and s does not exceed τ considerably. This condition is supported by the fact, that
the jump correlator g(t − s) in Eq. (4.6) is strongly suppressed, when the magnitude
of its argument exceeds τ . In fact, for the same reason F(t, s, t′) is strongly suppressed
when the difference of any of its arguments exceeds τ . Hence, by the assumption that
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t2 − t1 � τ , it is fairly justified to exchange the limits of integration on t and s. Fig.
4.1 provides a visual representation supporting this argument.

s

t

t1

t2

τ

s

t

t1 t2

τ

Figure 4.1: This figure provides two pictures of the same coordinate system of the
temporal variables t and s. The faded red area is centered around t = s and its width
in the t-s plane is τ . When the distance to the line t = s increases, the red color fades
into white, representing the strong suppression of g(t − s) as |t − s| exceeds τ . The
shaded gray area is the region of integration for the two variables. On the left the limits
of integration are from t1 to t2 for t, and −∞ to ∞ for s, whereas on the right the
limits have been interchanged. Because of the strong suppression of g(t − s) outside
the shaded red area the main contribution to the integration is the red area within
the two dashed lines, and this area is approximately the same in both cases. Hence,
interchanging the limits of integration results in approximately the same value of the
integrals.

Accordingly, in the Markovian limit Eq. (4.7) can with good approximation be
rewritten as:

ρ̃(t2)− ρ̃(t1) ≈
∫ t2

t1

ds

∫ ∞
−∞

dt′
∫ ∞
−∞

dtF(t, s, t′) [ρ̃(s)] .

Taking the derivative with respect to t2 and relabelling the variables results in:

∂tρ̃(t) ≈
∫ ∞
−∞

ds

∫ ∞
−∞

ds′F(s, t, s′) [ρ̃(t)]

≈ −γ
∫ ∞
−∞

ds

∫ ∞
−∞

ds′θ(s− s′)g(s− t)g(t− s′)
[
X̃(s), X̃(s′)ρ̃(t)

]
+H.c.

Notice now, that the density matrix on the right-hand side enters as ρ(t) and not ρ(t′).
As such the equation is now Markovian, and the derivation of the ULE is nearly com-
plete; all that remains is to rewrite the above in the Lindblad form. This is rigorously
done in App. A.3, and the result is:

∂tρ̃(t) = −i
[
Λ̃(t), ρ̃(t)

]
+ L̃(t)ρ̃(t)L̃†(t)− 1

2

{
L̃†(t)L̃(t), ρ̃(t)

}
, (4.8)
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where the jump operator is given by:

L̃(t) =
√
γ

∫ ∞
−∞

dsg(t− s)X̃(s), (4.9)

and the Lamb shift:

Λ̃(t) =
γ

i2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′X̃(s)g(s− t)g(t− s′)X̃(s′)sgn(s− s′). (4.10)

The Schrödinger picture equation can be found by transforming the above as in Eq.
(3.6). Notice that the left-hand side can be rewritten as:

∂tρ̃(t) = ∂t
(
U †(t)ρ(t)U(t)

)
= U †(t)∂tρU(t) + iU †(t) [HS(t), ρ(t)]U(t).

Hence, applying the transformation gives:

∂tρ(t) = −i [HS(t) + Λ(t), ρ(t)] + L(t)ρ(t)L†(t)− 1

2

{
L†(t)L(t), ρ(t)

}
. (4.11)

Here it has been used that ρ̃(t) = U †(t)ρ(t)U(t) along with the unitarity of the time
evolution operator: U †(t)U(t) = U(t)U †(t) = 1. Hence, in the Schrödinger picture the
jump operator is given by:

L(t) =
√
γ

∫ ∞
−∞

dsg(t− s)U(t, s)XU †(t, s). (4.12)

Here it has been used that U(t)U †(s) = U(t, s). In a similar manner the Lamb shift
Eq. (4.10) can be expressed in the Schrödinger picture.

Before moving on there is an interesting thing to notice here, namely that there is
only one jump operator for the single noise channel in the ULE, whereas there are as
many jump operators as there are transitions in the QOME in Eqs. (4.3) and (4.4). In
order to further compare the two Lindblad master equations, the jump operator for the
ULE should be expressed in terms of a time independent system Hamiltonian:

L(t) =
√
γ

∫ ∞
−∞

dsg(t− s)e−iHS(t−s)XeiHS(t−s).

By inserting two complete sets of eigenstates of HS on either side of X, the above can
be rewritten as:

L(t) =
√
γ
∑
mn

∫ ∞
−∞

dsg(t− s)ei(En−Em)(t−s)Xmn |m〉 〈n| , where Xmn = 〈m|X |n〉 .

The integral above is just the Fourier transform of the jump correlater Eq. (3.14), so:

L = 2π
√
γ
∑
mn

g (En − Em)Xmn |m〉 〈n| . (4.13)
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This shows explicitly that the single jump operator for the ULE incorporates all the
transitions that the system operator X makes available, whereas there are individual
jump operators for each transition in the QOME. This emphasizes the issue with the
RWA used to derive Eq. (4.2) that makes this QOME a bad model for systems, where
the structure of the energy levels have distinct transitions of equal energy. Consider a
system of an energy level structure as in Fig. 4.2, where the difference of the two lower
levels is equal to the difference of the two upper levels: E1 − E0 = E3 − E2 ≡ ∆E. If
this systems starts out in a superposition of the two upper levels (|2〉+ |3〉)/

√
2, and a

photon is observed with the energy ωγ = E3−E1 = E2−E0, then the system will have
decayed, and the wavefunction collapses into the state (|0〉 + |1〉)/

√
2. The action of

the jump operators for the ULE will correctly capture this behavior, whereas the jump
operators for the QOME will collapse the wavefunction into either |0〉 or |1〉, losing the
superposition.

E

∆E

∆E

QOME

E0 |0〉

E1 |1〉

E2 |2〉

E3 |3〉

L02

|0〉

|1〉

|2〉

|3〉

ULE

|0〉

|1〉

|2〉

|3〉

L

|0〉

|1〉

|2〉

|3〉

Figure 4.2: This figure depicts the difference between the QOME and the ULE, when
jump operators from each master equation are applied to a specific system, consisting of
four energy states, starting in a superposition of the two upper energy levels, symbolized
by two fuzzy blue points. On the far left an energy scale shows, that the structure of
the energy levels is such, that the difference between the two lower levels is equal to
the difference between the two upper levels. In both cases the process depicted is the
emission of a photon with energy ωγ = E3−E1 = E2−E0, which will cause the system
to decay into a superposition of the two lower levels. QOME: the decay of the system
can be effected by either of the jump operators L02 or L13, given by Eq. (4.4). In this
example L02 is arbitrarily chosen, causing the system to decay into the ground state,
symbolized by a deep blue point. ULE: the jump operator L, given by Eq. (4.13),
effects the decay into a superposition of the two lower levels, as is physically accurate.
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4.3 The universal Lindblad equation for arbitrary number of
noise channels

In this section, the ULE will be generalized to an arbitrary number of noise channels
N . This is once again a review of some of the results derived in [8].

First of all, for N noise channels there are N2 bath correlation functions making up
an N ×N matrix J(t) with elements:

Jαβ(t− t′) = trB

(
B̃α(t)B̃β(t′)ρB

)
. (4.14)

This is the generalization of Eq. (3.11), where α and β label the N noise channels.
This gives rise to another matrix comprising the different bath spectral functions:

J(ω) =
1

2π

∫ ∞
−∞

dtJ(t)eiωt. (4.15)

Hence, each element Jαβ(ω) is the Fourier transform of the corresponding element in
J(t). In the same way, the matrices comprising the different jump correlators and their
Fourier transforms can be constructed, generalizing Eq. (3.13):

g(t) =
1√
2π

∫ ∞
−∞

dω
√

J(ω)e−iωt and g(ω) =

√
J(ω)

2π
, (4.16)

where the square root denotes the matrix square root, because the elements in J(ω) are
given by the matrix product: Jαβ(ω) = 1

2π

∑
λ gαλ(ω)gλβ(ω).

The quantities Γ and τ are defined from the generalized multi-channel jump corre-
later as:

Γ = 4γ

[∫ ∞
−∞

dt||g(t)||2,1
]

and τ =

∫∞
−∞ dt||g(t)t||2,1∫∞
−∞ dt||g(t)||2,1

, (4.17)

where || · ||2,1 denotes the L2,1 matrix norm[16]. In the case of a single noise channel,
where N = 1, the equations above reduce to the ones in Eqs. (3.15) and (3.16) as
required.

When the Markovianity parameters given by Eq. (4.17) obeys Γτ � 1, the density
matrix of the system evolves according to:

∂tρ̃(t) = −i
[
Λ̃(t), ρ̃(t)

]
+
∑
λ

(
L̃λ(t)ρ̃(t)L̃†λ(t)−

1

2

{
L̃†λ(t)L̃λ(t), ρ̃(t)

})
+ ξ′(t), (4.18)

where the correction is bounded according to ||ξ′(t)|| ≤ 2Γ2τ . The jump operators are
given by:

L̃λ(t) =
√
γ
∑
α

∫ ∞
−∞

dsgλα(t− s)X̃α(s). (4.19)
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Hence, the jump operator associated with noise channel λ is given by a sum over all
the noise channels. Finally, the lamb shift is given by:

Λ̃(t) =
γ

i2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′
∑
αβ

X̃α(s)X̃β(s′)φαβ(s− t, t− s′), (4.20)

where φαβ(t, s) are the matrix elements of φ(t, s) = g(t)g(−s)sgn(t− s).
The sum over noise channels in the jump operator Eq. (4.19) considerably com-

plicates the expression compared to that of a single noise channel. Especially because
the Fourier transform of the jump correlator gαβ(ω) can generally no longer be found
as simply the square root of the corresponding bath spectral function Jαβ(ω). How-
ever, if α and β label baths of different noise sources (such as charge noise and flux
noise in the case of superconducting qubits[23]) it is fairly justified to assume that the
baths or uncorrelated such that the their mutual correlation function Jαβ(t) = 0. α
and β may also label different noise channels to the same bath, in which case there
is no immediate reason to expect their correlation to be zero. Consider for example a
system of two qubits, where α labels a noise channel between the one qubit and the
bath, and β labels a noise channel between the other qubit and the bath. In that case
the correlation function is for the bath operators B̃(xα, t) and B̃(xβ, t

′). Thus α and β
respectively label the position of the qubits, and the correlation function does now not
only depend upon the temporal separation of the bath operators but also their spatial
separation: J(xα− xβ, t− t′). In App. B.4 it is explained that this correlation function
can with good approximation be assumed to decay very rapidly with the separation
xα− xβ. On the basis of these arguments it will be assumed that all the baths labelled
by the noise channels are independent, such that the matrix of correlation functions
J(t) is diagonal. This in turn means that g(t) is also diagonal, and so the sum over α
in the jump operator L̃λ Eq. (4.19) only has the one term where α = λ. I.e. the term
associated with the noise channel that the jump operator itself is representing.

4.4 Simulating open quantum systems using the ULE

As the ULE has now been obtained it is in principle possible to numerically simulate the
dynamics of open quantum systems using Eq. (4.18). As was pointed out in connection
with the QOME, the motivation for deriving the ULE was to develop a model for
predicting the behavior of systems like a spin-1/2 Heisenberg chain, where the level
spacing is exponentially suppressed in the number of spins, making the QOME invalid
for such a system. However, the Hilbert space of a system of N spins has a dimension
of 2N , which means that the simulation requires evolving a 2N × 2N density matrix.
Even for moderately sized systems such numerical computations become inconceivable
for most of today’s computers. Luckily, master equations in the Lindblad form can
be conveniently integrated using the stochastic Schrödinger equation, which merely
requires the evolution of a 2N × 1 state vector[8].

The SSE is a numerical technique for simulating open quantum systems described by
a Lindblad master equation. It is also referred to as the quantum trajectory or Monte
Carlo wavefunction method, because the objective is to propagate pure states in time
according to an effective Hamiltonian incorporating the dissipative process combined
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with quantum jumps described by the jump operators. The evolution of each of these
pure states gives rise to a collection of quantum trajectories, and by taking an average
of these trajectories, expectation values propagated by the Lindblad master equation
can be reconstructed[24].

The ULE in the Schrödinger picture can be expressed as (the dependence on time
is suppressed to avoid clutter):

∂tρ = −i
(
Heffρ− ρH†eff

)
+
∑
λ

LλρL
†
λ, (4.21)

with the effective Hamiltonian given by:

Heff = HS + Λ− i

2

∑
λ

L†λLλ. (4.22)

Please take note, that in all the simulations to be presented in Chapters 5 and 6 the
effect of the Lamb shift in the equation above has been ignored.

Now the pure state |ψ(t)〉 can be evolved a time step δt according to the effective
Hamiltonian. For a small enough time step this evolution can be expanded to first order
in δt:

|ψ(t+ δt)〉 ≈ (1− iHeffδt) |ψ(t)〉 . (4.23)

Since Heff is non-Hermitian the new state |ψ(t+ δt)〉 is not normalized, and so its norm
is given by:

〈ψ(t+ δt)|ψ(t+ δt)〉 ≈ 〈ψ(t)|
(

1 + iH†effδt
)

(1− iHeffδt) |ψ(t)〉

≈ 1− δt 〈ψ(t)| i
(
Heff −H†eff

)
|ψ(t)〉 ,

where the expression has been kept to first order in δt. From the above can be defined:

δp ≡ δt 〈ψ(t)| i
(
Heff −H†eff

)
|ψ(t)〉 = δt 〈ψ(t)|

∑
λ

L†λLλ |ψ(t)〉 ≡ δt
∑
λ

δpλ. (4.24)

Effectively, δpλ can be interpreted as the probability that the action described by the
jump operator Lλ occurs in the time interval from t to t+δt. Hence, δp is the probability
that any kind of quantum jump will occur in the time interval.

Now the procedure is to initiate a large number of systems in the same state ψ(t = 0),
and for each of these realizations a random number r1 is generated from a uniform
distribution in the interval [0; 1]. If r1 > δp then no jump occurs for the particular
trajectory in the particular time step, and the state is evolved according to the effective
Hamiltonian:

|ψ(t+ δt)〉 =
e−iHeffδt |ψ(t)〉

N
, where N =

√
〈ψ(t)| eiH†effδte−iHeffδt |ψ(t)〉,

keeping the state normalized.
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If on the other hand r1 ≤ δp then a jump occurs, and another random number r2 is
generated in the same way as r1. This time the interval [0; 1] is divided into sub-intervals
labeled by the noise channels λ, where the size of each section is proportional to δpλ/δp.
If r2 falls into the sub-interval labelled by m, then the quantum jump corresponding to
Lm occurs within the time step, and hence:

|ψ(t+ δt)〉 =
Lm |ψ(t)〉√
δpm/δt

. (4.25)

Once again
√
δpm/δt is there to keep the state normalized, and that this is so can be

inferred from Eq. (4.24).
This procedure is thus repeated an arbitrary number of times, and then expectation

values can be found for a particular time step by averaging over the states of the different
trajectories at that time step. Hence, the dynamics of the system can be predicted.

As an illustrative example, consider a single spin in a Zeeman field of strength B:

H = −BSz, (4.26)

with ground state |g〉 = |↑〉 and energy Eg = −B/2 and excited state |e〉 = |↓〉 and
energy Ee = B/2. The system is prepared in the spin-down state and connected to an
Ohmic bath as in Eq. (3.22) via the Pauli operator σx. This noise channel opens for
transitions between the spin-up and spin-down state of the system. Hence, a single one
of the trajectories described by the SSE will eventually decay into the spin-down state
either spontaneously or stimulated by the bath, but then there is a probability that the
bath will later stimulate an excitation of the system back into the spin-up state. This
behaviour will go on indefinitely for as long as the system is left alone. Fig. 4.3 (a)
shows a sketch of how a single trajectory might have evolved under the SSE, and Fig.
4.3 (b) shows how the average of many such trajectories might look.



CHAPTER 4. MASTER EQUATION IN THE LINDBLAD FORM 35

|↓〉

|↑〉

Time

(a) Single trajectory.

|↓〉

|↑〉

Time

(b) Average of several trajectories.

Figure 4.3: (a) A sketch of a single quantum trajectory evolving under the SSE. (b) A
sketch of many quantum trajectories evolving independently under the SSE with their
average shown in blue.

For a two-level system like that described by Eq. (4.26) it is no problem to compute
its evolution directly according to the ULE because of its small dimension. Fig. 4.4
shows the evolution of the expectation value of the Pauli operator σz for a system
prepared in its excited state and connected to a bath via the σx Pauli operator. The
parameters of the system are chosen accordingly: the strength of the Zeeman field is
B = 8ω0, the temperature of the bath is T = 2ω0, the ultraviolet cutoff is ωc = 100ω0,
and the system-bath coupling is γ = 0.02ω0. This leads to the values τ = 0.0034ω−1

0

and Γ = 1.3ω0, meaning that Γτ = 0.0043 ensuring Markovianity and the validity of the
ULE. The blue line is the evolution according to the SSE using the jump operator of the
ULE and it is the average of 10, 000 trajectories, and the red line is directly according
to the ULE. The curves agree very well upon visual inspection following an exponential
decay from the initial value towards its steady state population. However, there is
some discrepancy between the rate of relaxation and steady state population of the two
curves. The direct ULE gives ΓULE = 1.04ω0 as the relaxation rate, where the SSE
gives ΓSSE = 1.06ω0, and for the steady state population the ULE yields pULE = 0.964,
whereas the SSE yields pSSE = 0.963. This slight discrepancy can be attributed to the
fact, that whereas the direct application of the ULE results in a curve that truly follows
an exponential decay, the stochastic element of the SSE will cause the population to
saturate the steady state population at a finite time. After this saturation point has
been reached, the quantum jumps generated by the SSE on the individual trajectories
will cause small fluctuations of the average about the steady state population. The
values pertaining to the curve generated by the direct ULE are extracted from an
exponential fit, but due to this saturation caused by the SSE the curve generated hence
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has been truncated in order to provide better estimates for the relaxation rate and the
steady state population. The data of the SSE for times before 3ω−1

0 (ensuring only data
from before the saturation point) are used to extract the relaxation rate by finding the
logarithm of the expectation values and fitting to a straight line. Hence, the slope of the
line is the relaxation rate. The steady state population is found as the average of the
expectation values for times after 7ω−1

0 , ensuring that the saturation point is passed.
Another statistical error in the SSE arises from the fact that for a given time step

δt for a single trajectory, only the probability δp of a single quantum jump occurring
within δt is considered. The probability for two or more quantum jumps occurring
within δt is not taken into account, or rather it is assumed that δp is so small, that δp2

is negligible in comparison. Thus it is vital to keep δp sufficiently small in order to have
the SSE provide reliable results. The magnitude of δp is controlled by the system-bath
coupling γ but also the size of the time step δt. Hence, the smaller δt is chosen, the
more reliable are the results obtained from the SSE. On the other hand, the smaller δt
is, the higher the computational cost is. The data generated via the SSE in Fig. 4.4 is
for 10,000 time steps, hence the step size is roughly 10−3ω−1

0 .

Figure 4.4: This figure shows the similarity of data generated by direct application of
the ULE (red) and data generated by the SSE using the jump operators of the ULE
(blue).



Chapter 5

Two coupled superconducting qubits

This section presents the simulation of two coupled superconducting qubits modelled
on the ULE. Particularly the jump operators will be investigated to determine the type
of errors the bath induces on the qubits. In a conversation with one of the authors of
[29] the following model was suggested to represent the experimental setup used in that
work. Furthermore, some typical values for the different parameters of the model were
discussed.

The two circuit qubits can be set up and coupled, such that the effective Hamiltonian
describing the system can be written:

HS = −ωq
2
σ(1)
z −

ωq + d

2
σ(2)
z − g

(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

)
, (5.1)

where the splitting of the second qubit ω2 = ωq + d has a detuning d compared to the
first qubit ω1 = ωq. This detuning can be achieved by threading the loop of Josephson
junctions of each qubit by differing external fields as shown in Fig. 2.3. The tuning of
the qubit frequency is further discussed above Eq. (2.11). The coupling along the two
transverse axes x and y can be achieved by a combination of capacitive and inductive
coupling of the qubits as discussed in Sec. 2.2. The subscript on the Hamiltonian HS is
to emphasize, that the Hamiltonian above plays the role of the system Hamiltonian in
the framework of Eqs. (3.1) and (3.2). The suggested values for the parameters of this
model are: ωq ≈ 3− 6 GHz, d ≈ 0.7− 1 GHz, and g ≈ 10− 20 MHz. In the simulations
to follow they are chosen in various combinations with a little more freedom.

The situation under investigation for this system is, when the first qubit is coupled
to an Ohmic bath through a noise channel coupling transversely to the qubit, namely
σx. Hence, the system operator X in Eq. (4.19) is given by X = σ

(1)
x = 1 ⊗ σx. Since

the Hamiltonian is time independent the jump operator can be found using Eq. (4.13):

L = 2πγ
4∑

m,n=0

g(En − Em) 〈m|σ(1)
x |n〉 |m〉 〈n| , (5.2)

where the eigenstates {|0〉 , |1〉 , |2〉 , |3〉} and corresponding energies can be found by

37
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diagonalization of HS :

|0〉 = |00〉 with E0 = −ωq −
d

2
,

|1〉 =
1√

1 +
(
E1+d/2

2g

)2

(
|10〉 − E1 + d/2

2g
|01〉

)
with E1 = −

√
4g2 +

d2

4
,

|2〉 =
1√

1 +
(
E2+d/2

2g

)2

(
|10〉 − E2 + d/2

2g
|01〉

)
with E2 =

√
4g2 +

d2

4
,

|3〉 = |11〉 with E3 = ωq +
d

2
.

Here the eigenstates are expressed in terms of the multi-qubit basis states defined in
Sec. 2.1.

5.1 Hypothesis

A somewhat näıve expectation would be that the jump operator is confined to only
induce errors on the system on the first qubit alone and just through the transverse
coupling σ

(1)
x . However, considering the expression for the jump operator in Eq. (4.19)

there is reason expect the jump operator might be given by other types of coupling and
even two-qubit errors. This is because the system operator enters into the expression for
the jump operator as its interaction picture Heisenberg evolution X̃(s) = U †(s)XU(s),

and with the coupling term in HS this suggests that the system operator σ
(1)
x will evolve

into other Pauli operators. The Heisenberg equation of motion in the interaction picture
is given by ∂tX = i[HS , X]([10] p. 83), hence:

∂tσ
(1)
x = ωqσ

(1)
y − 2gσ(1)

z σ(2)
y . (5.3)

Here the commutation relation for the Pauli operators has been used([10] p. 169):
[σa, σb] = i2εabcσc. Since the system operator X enters into Eq. (4.19) in the integral
with the jump correlator g(t) it is only really evolved a short amount of time set
by the timescale τ , because beyond this the jump operator is strongly suppressed by
assumption, Hence, the integral hardly contributes when the magnitude of the argument
of g(t) is larger than τ . Because τ is assumed small, the equation of motion above

suggests that σ
(1)
x (τ) can be approximated as:

σ(1)
x (τ) = σ(1)

x + ωqτσ
(1)
y − 2gτσ(1)

z σ(2)
y . (5.4)

Eqs. (5.3) and (5.4) indeed suggest, that the jump operator will be a mix of different
types of errors, both single-qubit and two-qubit. They even suggest, that the amount
of two-qubit error relative to single-qubit error is approximately proportional to ωq/g.

In order to investigate exactly what kind of errors that the jump operator com-
prises, and to which extent the different errors are represented in the jump operator,
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it is convenient to expand the jump operators in terms of all possible combinations of
products of the Pauli matrices and the identity acting on the two qubits:

L =
4∑

i,j=0

χijσi ⊗ σj. (5.5)

As explained in Sec. 2.1 the first Pauli matrix from the right is the one acting on the
first qubit, and the next Pauli matrix from the right is acting on the second qubit,
etc. Hence, χij is the generally complex coefficient for σ

(1)
j σ

(2)
i . This is the operator

analogue of expanding the state ket of the system in terms of some basis (usually the
eigenbasis), and so by normalizing these coefficients such that:∑

ij

cij = 1, where cab =
|χab|2∑
ij |χij|

2 , (5.6)

then the cij can be interpreted as the probability with which the jump operator acts
like the corresponding combination of Pauli matrices on the system. It is straight
forward to generalize this to more qubits, but for two qubits these coefficients can be
expressed as a matrix. Fig. 5.1 shows, what kind of Pauli operator acting on the
first qubit each column of this matrix corresponds to, and what kind of Pauli operator
acting on the second qubit each row corresponds to. Furthermore, the blue areas
comprise coefficients corresponding to single-qubit errors, and the green area comprises
coefficients corresponding to two-qubit errors. With this grouping of the coefficients it
is straight forward to define the relative coefficient of single-qubit error and the relative
coefficient of two-qubit error as:

κ1 =
3∑
i=1

(c0i + ci0) and κ2 =
3∑

i,j=1

cij (5.7)

respectively.

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

1(1) σ
(1)
x σ

(1)
y σ

(1)
z

1(2)

σ
(2)
x

σ
(2)
y

σ
(2)
z

Figure 5.1: This figure shows, that each column of the coefficient matrix corresponds to
a certain Pauli operator acting on the first qubit, and each row corresponds to a certain
Pauli operator acting on the second qubit. The blue areas comprise coefficient corre-
sponding to single-qubit errors, and the green area comprises coefficients corresponding
to two-qubit errors.
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Now a generalization of what was used in Eq. (2.6) can be employed to find expres-
sions for the coefficients χij:

χij =
1

4
tr [σi ⊗ σjL] . (5.8)

Hence, it is straight forward to numerically find the relationship between the coefficients
cij and different parameters of the system and bath, such as the qubit-qubit coupling
or the temperature of the bath.

Using the above it can be shown that the only non-zero coefficients for the jump
operator in Eq. (5.2) are:

χ01 =
π
√
γ

4
(g01 + g02 + g10 + g20 + g13 + g23 + g31 + g32) ,

χ02 = i
π
√
γ

4
(−g01 − g02 + g10 + g20 − g13 − g23 + g31 + g32) ,

χ13 =
π
√
γ

4
(g01 − g02 + g10 − g20 − g13 + g23 − g31 + g32) ,

χ23 = i
π
√
γ

4
(−g01 + g02 + g10 − g20 + g13 − g23 − g31 + g32) ,

where the gij = g(Ei−Ej) are the jump correlators. In the weak coupling limit g � ωq
and for zero detuning it can be shown, that the ratio of two-qubit error to single-qubit
error inherent in the jump operator is approximately:

κ2

κ1

≈
(
g

ωq

)2

. (5.9)

This concurs with Eqs. (5.3) and (5.4) and the intuition that the stronger the qubits
are coupled to each other the faster they will mix with each other, and so the error
on the first qubit gets mixed into the second qubit. However, with a small coupling
between the qubits this effect is expected to be very subtle, since in that case g/ωq � 1.

5.2 Jump operator coefficients

Fig. 5.2 provides four plots showing the relationship between the coefficients κ1 and κ2

and different parameters of the system and bath. In order to keep the Markovianity
of the evolution sufficiently small, the system-bath coupling is chosen as γ = 0.1 kHz.
In all cases the cutoff frequency is chosen as 31 GHz, and in Figs. 5.2 (a), (b) and (c)
the temperature of the bath is set to 20 mK. This gives a Markovianity of Γτ ≈ 0.008
ensuring the validity of the ULE. In Fig. 5.2 (d), however, the Markovianity varies with
the temperature. The largest value it attains is Γτ ≈ 0.01 keeping the evolution fairly
Markovian.

All the plots unanimously confirm the expectation, that as the ratio g/ωq grows, the
part of the jump operator that acts as a single-qubit error κ1 decreases, and the part
acting as a two-qubit error κ2 increases. Observe additionally in Fig. 5.2 (a), that for
g = 100 MHz and zero detuning the ratio κ2/κ1 agrees well with the prediction in Eq.
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(5.9), as (g/ωq)
2 ≈ 0.0004 for these parameters. As expected the effect of two-qubit

error is very subtle, and the largest value of κ2 of all the data collected in the four figures
(which occurs in the extreme case of ωq = 0 and g = 100 MHz in Fig. 5.2 (b)) does not
even exceed 1.5 %. In [29] (although they do not show this explicitly) they do extract
some jump operators that exhibit two-qubit noise even for such a small coupling. They
provide data for some experimentally extracted jump operators for which κ2 is on the
order of 10−5, which is in the same region as what has been numerically generated
here for the qubit frequency ωq = 5 GHz and qubit-qubit coupling g = 20 MHz. For
instance, in Fig. 5.2 (a) the entire data series for κ2 with g = 20 MHz lie within the
range 1.46 · 10−5 − 1.60 · 10−5.

(a) (b)

(c) (d)

Figure 5.2: The coefficients κ1 (blue) and κ2 (orange) characterizing the proportions of
single- and two-qubit errors respectively (as defined in Eq. (5.7)) as a function of: (a)
detuning d, (b) qubit frequency ωq, (c) qubit-qubit coupling g, and (d) temperature
of the bath T .

A particularly interesting detail is the small kink in Fig. 5.2 (d), where for very
small temperatures the ratio κ2/κ1 grows with increasing temperature before it peaks
and then diminishes for still larger temperatures. The decrease is expected because as
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seen in Fig. 3.3 the characteristic bath correlation time τ is inversely proportional to the
temperature. Hence for growing temperature, τ decreases which gives the single-qubit
operator σ

(1)
x less time to evolve into a two-qubit operator as discussed above (see Eqs.

(5.3) and (5.4)). A possible explanation for this peak can be realized when considering
the plot for high temperatures and approaching T = 0, or in other words, considering
the behavior of the system as τ grows. For large T and small τ the operator σ̃

(1)
x (t) has

little time to develop into a two-qubit operator, but as the temperature decreases and
τ grows, σ̃

(1)
x has more and more time to develop into a two-qubit operator. However,

after some time the evolution will reach a turning point, at which σ̃
(1)
x will start to evolve

back into a single-qubit operator, before the jump correlator is sufficiently suppressed,
and it might be this turning point that the kink in Fig. 5.2 (d) reflects.

The validity of this explanation can be assessed by considering the interaction pic-
ture Heisenberg evolution of σ

(1)
x :

σ̃(1)
x (t) = eiHS tσ(1)

x e−iHS t, (5.10)

where HS is given by Eq. (5.1). Once again, this can be expanded in terms of the
Pauli matrices as in Eq. (5.5), only now the coefficients are time dependent. Thus the

evolution of κ1(t) and κ2(t) for σ̃
(1)
x can be found, and Fig. 5.3 (a) shows that these

coefficients have a sinusoidal evolution. The hypothesis is then, that there is a directly
proportional correlation between the time of the first peak in their evolution, which is
given by half of the period of the oscillation P1/2 (shown in red in the figure), and the
value of τ corresponding to the temperature of the peak, Tpeak, in Fig. 5.3 (b), which
shows the same data for the jump operator coefficients as Fig. 5.2 (d).

(a) Evolution of κ1 and κ2 for σ̃
(1)
x (t).

(b) κ1 and κ2 for the jump operator as a func-
tion of temperature.

Figure 5.3: (a) This shows the evolution of the single- and two-qubit error coefficients

κ1 and κ2 for σ̃
(1)
x with the time of the first peak indicated in red which is equal to half

of the period of the oscillation P1/2. (b) This presents the same data as Fig. 5.2 (d)
with the temperature of the peak Tpeak indicated in red. The hypothesis is, that this
peak is due to the first peak in the evolution on the left, and the effect of the subsequent
peaks in that evolution are suppressed by the decay of the jump correlator.
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The data shown in blue in Fig. 5.4 is generated by finding the temperature of
the peak in Fig. 5.3 (b) for different coupling strengths between the qubits, and then
converting this temperature to τpeak using Eq. (3.16). The data shown in orange is
found by fitting either of the sinusoidal curves in Fig. 5.3 (a) and extracting the period
of the oscillation. The time of the first peak is then half of this period P1/2, which is also
found for different coupling strengths between the qubits. The behavior of these two
sets of data contradicts the hypothesis, that the peak in Fig. 5.2 (d) is due to the first
peak in Fig. 5.3 (a). Additionally, the value of the τpeak is so much smaller than the
corresponding value of P1/2, that the jump correlator should have decayed sufficiently
to suppress any effect caused by the peak at P1/2. Hence it is concluded, that the origin
of this peak has a different explanation, as of yet unknown.

Since the coupling between the qubits is what motivated the expectation, that σ̃
(1)
x (t)

would evolve into two-qubit Pauli operators, it may be surprising to see, that the period
of the oscillation (or equivalently the frequency) in Fig. 5.3 (a) seemingly has a finite

limit for g → 0 as suggested by the data in Fig. 5.4. The expansion of σ̃
(1)
x (t) has the

same non-zero coefficients as the jump operator, and those corresponding to two-qubit
Pauli operators are given by:

c13 =
1

2
(α− β) [cos({E0 − E1}t)− cos({E0 − E2}t)] , and

c23 =
1

2
(α− β) [sin({E1 − E0}t) + sin({E0 − E2}t)] ,

where

α =
a

a2 + 1
with a =

E1 + d/2

2g
, and

β =
b

b2 + 1
with b =

E2 + d/2

2g
.

In the small coupling limit where g � d the energies E1 and E2 can be approximated
as:

E1 = −E2 ≈ −
d

2
− 4

g2

d
.

Plugging this into the coefficients above and employing some further simple approxi-
mations due to the small coupling limit leads to:

κ2 = 8
(g
d

)2
[
1− cos

({
d+ 8

g2

d

}
t

)]
. (5.11)

This shows that the frequency of the oscillation in Fig. 5.3 (a) does indeed have a finite
limit for g → 0 given by the detuning d. However, the amplitude vanishes as g → 0
which confirms the expectation, that σ̃

(1)
x (t) only develops two-qubit Pauli operators for

non-zero coupling between the qubits.
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Figure 5.4: The blue data show the relationship between the value of τ corresponding
to the temperature of the peak in Fig. 5.3 (b) and the qubit-qubit coupling. The orange
data show the relationship between the time of the first peak in Fig. 5.3 (a) and the
qubit-qubit coupling. The limit of P1/2 for g → 0 is indicated: π/d.

5.3 Evolution according to the SSE

For the simulations shown here the following parameters of the model are used (unless
otherwise stated): ωq = 4 GHz, d = 1 GHz, and g = 20 MHz. The temperature of the
bath is 20 mK, the cutoff frequency is ωc = 31 GHz, and the system-bath coupling is
γ = 0.1 kHz. This gives Γτ ≈ 0.008, indicating that the evolution of the system is well
described by the ULE.

Two qubits located in the same quantum device are expected to be subjected to
the same sources of noise. Hence in this section the two qubits will be connected via
their respective σx Pauli operators to the same bath (with the assumption that the
bath operators at the location of the respective qubits are uncorrelated by virtue of the
arguments stated at the end of Sec. 4.3). Hence, the jump operators are given by:

L1 = 2πγ
4∑

m,n=0

g(En − Em) 〈m|σ(1)
x |n〉 |m〉 〈n| , and (5.12)

L2 = 2πγ
4∑

m,n=0

g(En − Em) 〈m|σ(2)
x |n〉 |m〉 〈n| . (5.13)

The energy level structure due to the Hamiltonian in Eq. (5.1) is similar to that depicted
in Fig. 4.2, so here the expectation that the ULE will preserve superpositions between
eigenstates will be tested. This is conveniently done by monitoring the expectation
value of the following operators throughout the evolution:

O01 = |0〉 〈1|+ |1〉 〈0| , and (5.14)

O23 = |2〉 〈3|+ |3〉 〈2| . (5.15)
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The operator O01 is sensitive to superpositions between eigenstates |0〉 and |1〉, and O23

is sensitive to superpositions between eigenstates |2〉 and |3〉.
Fig. 5.5 shows the evolution of the expectation value of these two operators along

with the energy for the system starting in the eigenstate of O23 with eigenvalue 1:

|ψ23〉 =
1√
2

(|2〉+ |3〉) .

As the plot in the figure shows, the expectation value of O23 indeed starts at 1 before
oscillating between 1 and −1 while decaying towards 0 (the time series here does not
show the decay so well). Interestingly, the expectation value of O01 starts to develop
small oscillations as the system evolves. This suggests that the coherence of the state
is preserved across the transitions. This indeed confirms the expectation for the ULE
stated above, which is something that is not expected for the QOME as discussed in
connection with Fig. 4.2.

Figure 5.5: This is an average of 10,000 trajectories. It shows the evolution of different
expectation values of the system starting in the state |ψ23〉 = 1√

2
(|2〉+ |3〉). In the

top plot the eigenenergies of the system are indicated with dashed lines, and the green
curve shows the evolution of the expectation value 〈H〉.

Looking closely at Fig. 5.5 it appears that the energy increases which may be
surprising. The longer time series in Fig. 5.6 shows this initial increase as well but
eventually it decays all the way towards the ground state energy (not visible in the
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figure). This increase occurs because the action of either of the jump operators L1

and L2 on the initial state |ψ23〉 puts the system into a higher energy state. This is
confirmed by comparing the values of (see Eq. (4.25)):

〈ψinit|H |ψinit〉 and
〈ψinit|L†mHLm |ψinit〉

δpm/δt
,

where m is either 1 or 2. This means that each individual trajectory will most likely
receive energy from the bath at the beginning of their evolution. There is no physical
reason that it should be so, it may simply be the effect of the noise channels being
connected to the σx Pauli operator of each qubit. By introducing additional noise
channels to the qubits’ other Pauli operators a more truthful prediction of the system’s
evolution may be realized.

Figure 5.6: This shows the evolution of the energy of the system for the initial state
|ψ23〉. It is not visible here, but the energy eventually decays all the way to the ground
state energy.



Chapter 6

Heisenberg chain of four spins

As a final demonstration this chapter presents some data generated according to the
ULE and SSE for a system of qubits modelled as a Heisenberg chain of four spins with
periodic boundary conditions and no splitting at each site. Hence, the Hamiltonian is
given by:

HS = −g
4∑
i

~σi ·~σi+1. (6.1)

Here ~σ5 = ~σ1, such that the chain forms a closed loop. This ensures translational
symmetry from site to site such that a bath connected via a single noise channel to the
σx Pauli operator at a particular site will affect the overall evolution of the system in
the same way as if it had been connected to any other site.

Once again the noise channel is chosen as an Ohmic bath connected to σ
(1)
x . Since

all spins are in some way coupled to each other (either directly or via their neighboring
spins) it is expected that the jump operator will exhibit not only single- and two-qubit
errors but also three- and four-qubit errors. This is based on the intuition that when the
error has developed into the neighboring spins (as was seen in the preceding chapter) it
is from there developed into the last spin in the chain opposite to the one connected to
the bath. This can be ascertained by once again expanding the jump operator in terms
of combinations of Pauli operators and the identity as in Eq. (5.5), only this time with
tensor products of four Pauli operators, one for each site. Hence, κ1, κ2, κ3, and κ4 can
be defined similarly to Eq. (5.7) representing single-, two-, three-, and four-qubit error
respectively.

The data in Fig. 6.1 is simulated with spin-bath coupling given by γ = 0.01ω0,
bath temperature T = 2ω0, and cutoff frequency ωc = 100ω0. This yields Γτ ≈ 0.002
ensuring that the evolution is in the ULE regime. Fig. 6.1 (a) indeed shows that as
the coupling g between the qubits increases, the jump operator develops more multi-
qubit and less single-qubit error. In this setup the jump operator even comprises more
two-qubit than single-qubit error for large coupling. There is a considerable amount
of three-qubit error for larger coupling ending at 8.7 % for g = 40ω0. The amount of
four-qubit error is scarce but non-zero and reaches 0.99 % for large coupling.

Fig. 6.1 (b) shows the evolution of the expectation value of the projection operator
on the single-qubit state |0〉. This projection operator for the ith qubit is given by[28]:

P
(i)
0 =

1 + σ
(i)
z

2
. (6.2)

Hence, p
(i)
0 =

〈
P

(i)
0

〉
is the probability for finding the ith qubit in the state |0〉. The

evolution in Fig. 6.1 (b) is for g = 5ω0 and starts in the system’s most excited eigenstate

47
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which evidently is |1100〉. All four expectation values appear to oscillate about 0.5 with
diminishing amplitude as the qubits mix with each other.

(a) The coefficients κ1, κ2, κ3, and κ4 as a
function of qubit-qubit coupling.

(b) Evolution of the expectation value of the
projection operator on the single-qubit state
|0〉 for all four qubits starting in the system’s
most excited eigenstate |1100〉.

Figure 6.1: These data are generated according to the ULE for a closed Heisenberg
chain of four spins. In (b) the coupling is g = 5ω0.

Fig. 6.1 (a) shows that outside of the small coupling regime the ULE suggests
that the effect of multi-qubit noise is certainly not negligible. This could also have
been shown in Sec. 5.2 by allowing the qubit-qubit coupling g to approach or even
exceed the qubit frequency ωq, but then the results obtained might not have provided a
truthful picture of the model in Eq. (5.1). The argumentation for the structure of this
Hamiltonian was precisely based on the small coupling limit as discussed in connection
with Eq. (2.13). Hence, there is presently nothing that suggests that the Hamiltonian
in Eq. (5.1) would keep its form for large coupling. However, this does not eliminate
the suggestion that the more dramatic effects shown in Fig. 6.1 (a) actually occurs in
nature.
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Conclusion

In this thesis, the recently developed ULE was employed in predicting the evolution
of a system of coupled superconducting qubits and particularly the noise and errors
incumbent upon the qubits. It was shown that when a noise channel connects the
environment to a specific qubit in the system, then the ULE predicts that a coupling
between the qubits causes the noise to spread to the other qubits in the system. This
means that any error in the multi-qubit state caused by the noise is not restricted to
the one qubit connected to the bath. There is a probability that the noise channel will
cause errors that affect the neighboring qubits as well. In Secs. 5.1 and 5.2 it was shown
how the probability for various error events to occur can be quantified, and numerical
data were generated for a system of two coupled superconducting qubits. These data
indeed confirmed the intuition that when the coupling between the qubits increased, the
probability for an error event to be affecting the state of both qubits increased as well.
This prediction was further solidified by the numerical data generated for a system of
four qubits modelled as a closed Heisenberg chain in Chapter 6.

The evolution of the two-qubit system as predicted by the ULE was also numerically
simulated using the SSE, and the results obtained played a part in confirming the
superiority of the ULE to the QOME in describing the evolution of particular systems.
It was shown in Sec. 5.3 that the jump operators of the ULE preserves the coherence
of a superposition state across transitions, whereas the jump operators of the QOME
are expected to lose this information immediately due to their structure. This expected
behavior due to the QOME, however, remains to be shown. It is possible to numerically
simulate this in the same way as for the ULE, but take note of the increased intricacy
of applying the jump operators of the QOME to the SSE. As discussed in Sec. 4.2
there emerges only one jump operator in the ULE per noise channel, whereas there
emerges as many jump operators as there are energy transitions in the system in the
QOME per noise channel. These many jump operators due to the QOME make the
programming of the SSE considerably more laborious even for a small system of two
qubits. Hence, not only is the ULE superior in its universality, it even simplifies the
simulation of quantum systems using the SSE compared to the QOME.

While studying the theoretical effect of noise on superconducting qubits according to
the ULE in this thesis, only transverse noise due to an Ohmic bath has been considered.
A more complete picture can obtained by considering more carefully the type of noise
that is usually present in superconducting systems, and how this noise couples to the
qubits. In [23] they provide several examples of noise on superconducting qubits such
as charge noise and magnetic flux noise. They also suggest different spectral densities
as models for the baths that are the sources of the different types of noise, and whether
each type of noise couples transversely or longitudinally to the qubits (transverse and
longitudinal noise is discussed in Sec. 2.3).

Within the field of quantum error correction (QEC), which is the study of the pro-
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tection of quantum information from logical errors[31], there is the concept of noise (or
error) models. A noise model is a description of how a source of noise introduces logical
errors onto an array of qubits. For example, in [32] (where they analyze correlated
noise on a surface code) they define the ballistic noise model, which is where an error
event introduces logical errors on qubits in a straight line on a toric code. However,
the qubits on a toric code are not merely coupled along straight lines but in a much
more complicated fashion. It has been shown in this thesis, that the ULE predicts that
errors on an array of qubits will spread via the coupling between the qubits. Hence,
more realistic noise models may be achieved by tailoring it according to the jump op-
erators due to the ULE. The ULE is thus suggested as a tool for the future study of
noise models in QEC.
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Appendix A

Derivations of master equations

This appendix provides some of the smaller and more tedious details of the derivations
of the master equations presented in the main text of this thesis.

A.1 Derivation of the Bloch-Redfield equation

This section shows a part of the derivation of the Bloch-Redfield equation, specifically
how to get from Eq. (3.8) to Eq. (3.9).

The second term in Eq. (3.8) vanishes when inserting ρ̃SB(t0) = ρ̃(t0) ⊗ ρB (as
assumed for t0 being some arbitrary time in the remote past) and tracing over the
bath:

trB

([
H̃(t), ρ̃(t0)⊗ ρ̃B

])
=
√
γ
[
X̃(t), ρ̃(t0)

]
trB

(
B̃(t)ρB

)
.

Here the cyclic property of the trace has been exploited, and by assumption each bath
operator has vanishing expectation value, and so the above vanishes. What is left is:

∂tρ̃(t) = −
∫ t

t0

dt′trB

([
H̃(t),

[
H̃(t′), ρ̃SB(t′)

]])
= −γ

∫ t

t0

dt′trB

([
X̃(t)B̃(t),

[
X̃(t′)B̃(t′), ρ̃(t′)⊗ ρB

]])
.

Here the Born approximation has been employed, and on the left-hand side it was used
that ρ̃ = trB(ρ̃SB). Now begins the simplification of the commutator:[

X̃(t)B̃(t),
[
X̃(t′)B̃(t′), ρ̃(t′)⊗ ρB

]]
=
[
X̃(t)B̃(t), X̃(t′)ρ̃(t′)B̃(t′)ρB − ρ̃(t′)X̃(t′)ρBB̃(t′)

]
=X̃(t)X̃(t′)ρ̃(t′)B̃(t)B̃(t′)ρB − X̃(t)ρ̃(t′)X̃(t′)B̃(t)ρBB̃(t′)

− X̃(t′)ρ̃(t′)X̃(t)B̃(t′)ρBB̃(t) + ρ̃(t′)X̃(t′)X̃(t)ρBB̃(t′)B̃(t)

=X̃(t)X̃(t′)ρ̃(t′)B̃(t)B̃(t′)ρB − X̃(t′)ρ̃(t′)X̃(t)B̃(t′)ρBB̃(t)

+
(
X̃(t)X̃(t′)ρ̃(t′)B̃(t)B̃(t′)ρB

)†
−
(
X̃(t′)ρ̃(t′)X̃(t)B̃(t′)ρBB̃(t)

)†
Here it has been used that operators acting on different Hilbert spaces commute, and
that all of the operators above are Hermitian. Notice that the last two terms are just
the Hermitian conjugate of the first two terms which means that they can conveniently
be expressed as H.c. Now taking the trace over the bath and once again using the its
cyclic property reduces the above to:[

X̃(t), X̃(t′)ρ̃(t′)
]

trB

(
B̃(t)B̃(t′)ρB

)
+H.c.

Plugging this back in to Eq. (3.8) immediately leads to Eq. (3.9).
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A.2 Derivation of the quantum optical master equation

Starting from the Bloch-Redfield equation in Eq. (3.10) the first step is to switch the
system operators back to the Schrödinger picture and inserting two complete sets in
the eigenbasis of the system Hamiltonian (1 =

∑
m |m〉 〈m|, where HS |m〉 = Em |m〉),

which for simplicity will be assumed time-independent:

X̃(t) =eiHS tXe−iHS t

=
∑
mn

eiHS t |m〉 〈m|X |n〉 〈n| e−iHS t

=
∑
mn

ei(Em−En)tX̂mn, where X̂mn ≡ |m〉 〈m|X |n〉 〈n| .

Plugging this into Eq. (3.10) gives:

∂tρ̃ = −γ
∫ t

−∞
dt′J(t− t′)

∑
mnpq

[
ei(Em−En)tX̂mn, e

i(Ep−Eq)t′X̂pqρ̃
]

+H.c.

Here and in the following ρ̃ ≡ ρ̃(t) to avoid clutter. Changing the variable of integration
from t′ → t− t′ leads to:

∂tρ̃ = −γ
∑
mnpq

Γpqe
i(Em−En+Ep−Eq)t

[
X̂mn, X̂pqρ̃

]
+H.c., where

Γmn ≡
∫ ∞

0

dtJ(t)e−i(Em−En)t.

Now the rotating wave approximation is invoked by discarding terms in the sum where
Em − En + Ep − Eq 6= 0. This is based on the assumption, that the relaxation rate
of the bath is much smaller than both the temperature of the bath and the smallest
difference between energy levels of the system. The relaxation rate is governed by the
system-bath coupling parameter γ, so when this is sufficiently small the terms where
Em − En + Ep − Eq 6= 0 average to zero. The remaining terms are the ones where
either m = n and p = q, or m = q and n = p. Here it is assumed that no two
distinct transitions occur at the same frequency. Discarding the rest is easily done by
replacing the exponential in the sum with δmnδpq + δmqδnp− δmnδnpδpq, where δmn is the
Kronecker delta. The term δmnδnpδpq is subtracted to avoid counting the case where
m = n = p = q twice. Hence:

∂tρ̃ =− γ
∑
mnpq

(δmnδpq + δmqδnp − δmnδnpδpq) Γpq

[
X̂mn, X̂pqρ̃

]
+H.c.

=− γ

(∑
mn

Γnn

[
X̂mm, X̂nnρ̃

]
+
∑
mn

Γnm

[
X̂mn, X̂nmρ̃

]
−
∑
m

Γmm

[
X̂mm, X̂mmρ̃

])
+H.c.

The last sum can be cancelled with the terms in the second sum where m = n:

∂tρ̃ =− γ

(∑
mn

Γnn

[
X̂mm, X̂nnρ̃

]
+
∑
m 6=n

Γnm

[
X̂mn, X̂nmρ̃

])
+H.c.
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Now it is convenient to split Γmn in to its real and imaginary part such that Γmn =
1
2
Jmn + iSmn. With this definition, consider the terms of the second sum above and its

Hermitian conjugate counterpart:(
1

2
Jnm + iSnm

)[
X̂mn, X̂nmρ̃

]
+

(
1

2
Jnm − iSnm

)[
ρ̃X̂†nm, X̂

†
mn

]
=

1

2
Jnm

(
X̂mnX̂nmρ̃− X̂nmρ̃X̂mn + ρ̃X̂†nmX̂

†
mn − X̂†mnρ̃X̂†nm

)
+ iSnm

(
X̂mnX̂nmρ̃− X̂nmρ̃X̂mn − ρ̃X̂†nmX̂†mn + X̂†mnρ̃X̂

†
nm

)
.

The definition of X̂mn ensures that X̂†mn = X̂nm. Thus the above can be rewritten as:

1

2
Jnm

(
X̂†nmX̂nmρ̃− X̂nmρ̃X̂

†
nm + ρ̃X̂†nmX̂nm − X̂nmρ̃X̂

†
nm

)
+ iSnm

(
X̂mnX̂nmρ̃− X̂nmρ̃X̂

†
nm − ρ̃X̂mnX̂nm + X̂nmρ̃X̂

†
nm

)
=Jnm

(
1

2

{
X̂†nmX̂nm, ρ̃

}
− X̂nmρ̃X̂

†
nm

)
+ iSnm

[
X̂mnX̂nm, ρ̃

]
.

Similarly, consider the terms of the first sum:(
1

2
Jnn + iSnn

)[
X̂mm, X̂nnρ̃

]
+

(
1

2
Jnn − iSnn

)[
ρ̃X̂†nn, X̂

†
mm

]
=

1

2
Jnn

(
X̂†mmX̂nnρ̃− X̂nnρ̃X̂

†
mm + ρ̃X̂†nnX̂mm − X̂mmρ̃X̂

†
nn

)
+ iSnn

(
X̂mmX̂nnρ̃− X̂nnρ̃X̂

†
mm − ρ̃X̂nnX̂mm + X̂mmρ̃X̂

†
nn

)
.

For every term in the sum where m = a and n = b there is another term where m = b
and n = a, such that their sum can be rewritten as:

X̂†aaX̂bbρ̃+ ρ̃X̂†bbX̂aa + X̂†bbX̂aaρ̃+ ρ̃X̂†aaX̂bb =
{
X̂†aaX̂bb, ρ̃

}
+
{
X̂†bbX̂aa, ρ̃

}
,

and similarly for X̂aaρ̃X̂
†
bb and [X̂†aaX̂bb, ρ̃]. Additionally, the definition of Γmn ensures

that Jaa = Jbb. Using all this for the master equation gives:

∂tρ̃ = −γ

(∑
mn

(
1

2
Jnn

{
X̂†mmX̂nn, ρ̃

}
− JnnX̂nnρ̃X̂

†
mm + iSnn

[
X̂mmX̂nn, ρ̃

])

+
∑
m6=n

(
1

2
Jnm

{
X̂†nmX̂nm, ρ̃

}
− JnmX̂nmρ̃X̂

†
nm + iSnm

[
X̂mnX̂nm, ρ̃

]))
.

Now observe that

Jmn = Γmn + Γ∗mn =

∫ ∞
−∞

dtJ(t)ei(En−Em) = 2πJ(En − Em),
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by the definition of the bath spectral function Eq. (3.12). Hence Jmm = J(0), and so
by defining

Lph ≡
√

2πγJ(0)
∑
m

X̂mm

as the dephasing jump operator, and

Lmn ≡
√

2πγJ(En − Em)X̂mn

as the decay jump operators, the QOME can be cast in the Lindblad form:

∂tρ̃ = −i [Λ, ρ̃] + Lphρ̃L
†
ph −

1

2

{
L†phLph, ρ̃

}
+
∑
m6=n

(
Lmnρ̃L

†
mn −

1

2

{
L†mnLmn, ρ̃

})
.

A.3 Derivation of the universal Lindblad equation

The objective of this section is to express the ULE in Lindblad form starting from:

∂tρ̃(t) = −γ
∫ ∞
−∞

ds

∫ ∞
−∞

ds′θ(s− s′)g(s− t)g(t− s′)
[
X̃(s), X̃(s′)ρ̃(t)

]
+H.c.

The first step to this is to decompose the Heaviside step function into its symmetric
and anti-symmetric parts: θ(s − s′) = 1

2
+ 1

2
sgn(s − s′), where the sign-function has

been introduced: sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0, and sgn(0) = 0. To avoid
too lengthy equations, in the following the parts of the master equation connected with
the symmetric and anti-symmetric parts of θ(s − s′) will be treated separately. First,
all that is connected to the sign-function will be written out:

−γ
2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′sgn(s− s′)
[
g(s− t)g(t− s′)X̃(s)X̃(s′)ρ̃(t)

− g(s− t)g(t− s′)X̃(s′)ρ̃(t)X̃(s)

+ g∗(s− t)g∗(t− s′)ρ̃(t)X̃(s′)X̃(s)

− g∗(s− t)g∗(t− s′)X̃(s)ρ̃(t)X̃(s′)
]

= −γ
2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′sgn(s− s′)
[
g(s− t)g(t− s′)X̃(s)X̃(s′)ρ̃(t)

− g(s− t)g(t− s′)X̃(s′)ρ̃(t)X̃(s)

+ g(t− s)g(s′ − t)ρ̃(t)X̃(s′)X̃(s)

− g(t− s)g(s′ − t)X̃(s)ρ̃(t)X̃(s′)
]
.

Here it has been used that the jump correlator has the symmetric property g∗(t) = g(−t)
which is easily verified by complex conjugation of Eq. (3.13), keeping in mind that the
bath spectral function is real.
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Since the limits of integration of s and s′ are the same, these two variables can be
interchanged in any of the four terms above. Applying it to the last two terms and
using that sgn(t′ − t) = −sgn(t− t′) yields:

−γ
2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′sgn(s− s′)g(s− t)g(t− s′)
[
X̃(s)X̃(s′), ρ̃(t)

]
= −i

[
Λ̃(t), ρ̃(t)

]
.

Here, the Lamb shift Λ̃ is defined as:

Λ̃(t) =
γ

i2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′X̃(s)g(s− t)g(t− s′)X̃(s′)sgn(s− s′). (A.1)

Now for the other part of the master equation connected to the symmetric part of
θ(s− s′):

−γ
2

∫ ∞
−∞

ds

∫ ∞
−∞

ds′
[
g(s− t)g(t− s′)X̃(s)X̃(s′)ρ̃(t)

− g(s− t)g(t− s′)X̃(s′)ρ̃(t)X̃(s)

+ g∗(s− t)g∗(t− s′)ρ̃(t)X̃(s′)X̃(s)

− g∗(s− t)g∗(t− s′)X̃(s)ρ̃(t)X̃(s′)
]
.

Once again using that g∗(t) = g(−t) leads to:

− γ

2

∫ ∞
−∞

dsg∗(t− s)X̃(s)

∫ ∞
−∞

ds′g(t− s′)X̃(s′)ρ̃(t)

+
γ

2

∫ ∞
−∞

ds′g(t− s′)X̃(s′)ρ̃(t)

∫ ∞
−∞

dsg∗(t− s)X̃(s′)

− γ

2
ρ̃(t)

∫ ∞
−∞

ds′g∗(t− s′)X̃(s′)

∫ ∞
−∞

dsg(t− s)X̃(s)

+
γ

2

∫ ∞
−∞

dsg(t− s)X̃(s)ρ̃(t)

∫ ∞
−∞

ds′g∗(t− s′)X̃(s′)

= L̃(t)ρ̃(t)L̃†(t)− 1

2

{
L̃†(t)L̃(t), ρ̃(t)

}
,

where the jump operator is defined as:

L̃(t) =
√
γ

∫ ∞
−∞

dsg(t− s)X̃(s). (A.2)

Putting all this together gives the ULE in the interaction picture for a single noise
channel:

∂tρ̃(t) = −i
[
Λ̃(t), ρ̃(t)

]
+ L̃(t)ρ̃(t)L̃†(t)− 1

2

{
L̃†(t)L̃(t), ρ̃(t)

}
. (A.3)



Appendix B

Bath of electromagnetic modes

In this appendix the bath correlation function in Eq. (4.14) will be calculated for
the idealized physical example of electromagnetic modes in a 1-dimensional cavity.
But first it is instructive to think about what kind of correlation there might exist
between bath operators that give rise to different noise channels α and β. If for instance
α and β represent noise channels to different noise sources originating from distinct
sub-baths, it is fairly intuitive to assume that these sub-baths are independent and
have no correlation. If however α and β represent different localities within the same
bath, then there is no apparent reason why their correlation should vanish. In this
case the bath correlation function provides a measure of the spatial as well as a the
temporal correlation between the bath operators, and Eq. (4.14) can be thought of as
Jαβ(t− t′) = J(rα − rβ, t− t′). Such a correlation function will be derived here.

B.1 Quantization of the electromagnetic field

This derivation is inspired by Sec. 1.4.2 in [11].
In a 1-dimensional electromagnetic cavity (with no charge or current) the electric

field is completely determined by the vector potential A(r, t) ([11] p. 19). By choosing
Coulomb gauge ∇ ·A = 0 the vector potential obeys the wave equation ([17] p. 558):

∇2A− µ0ε0∂
2
t A = 0,

and the electric and magnetic fields are given by E = −∂tA and B = ∇×A respectively.
By assuming the bath to be of finite size L and to have periodic boundary conditions,

a solution to this equation is ([11] p. 20):

A(x, t) =
∑
k

(
Ake

i(kx−ωkt) + A∗ke
−i(kx−ωkt)

)
ŷ. (B.1)

Here Ak are the expansion coefficients determining the field strength, and the field is
assumed to be polarized in the y-direction and travelling along the x-direction. The
periodic boundaries demand that k = 2πn/L, where n ∈ Z, and ωk = c|k| with c =
1/
√
µ0ε0 being the speed of light in vacuum.

From Eq. (B.1) the electric and magnetic fields are determined:

E(x, t) = i
∑
k

ωk
(
Ake

i(kx−ωkt) − A∗ke−i(kx−ωkt)
)
ŷ and (B.2)

B(x, t) = i
∑
k

k
(
Ake

i(kx−ωkt) − A∗ke−i(kx−ωkt)
)
ẑ. (B.3)

Notice that |B| = |E|/c. Hence, with these expressions the classical Hamiltonian for
an electromagnetic field can be found as:

H =
1

2

∫ L

0

dx

(
ε0 |E(x, t)|2 +

1

µ0

|B(x, t)|2
)
. (B.4)

59



APPENDIX B. BATH OF ELECTROMAGNETIC MODES 60

The square of the electric field can be expressed as:

|E(x, t)|2 =
∑
kq

ωkωq

(
AkA

∗
qe
i[(k−q)x−(ωk−ωq)t] − AkAqei[(k+q)x−(ωk+ωq)t]

− A∗kA∗qe−i[(k+q)x−(ωk+ωq)t] + A∗kAqe
−i[(k−q)x−(ωk−ωq)t]

)
,

and similarly for the magnetic field, except that ωkωq is replaced by kq. Hence, the
integration over x amounts to solving integrals of the form:∫ L

0

dxei(k−q)x =

[
ei(k−q)x

i(k − q)

]L
0

=
ei(k−q)L − 1

i(k − q)
.

Since k and q are both integer multiples of 2π/L then so is their difference, and so the
above vanishes for k 6= q. However, for k = q the solution is non-trivial. By defining
δ ≡ k − q this can be solved using l’Hôpital’s rule[33]:

lim
δ→0

eiδL − 1

iδ
= lim

δ→0

iLeiδL

i
= L, and hence

∫ L

0

dxei(k−q)x = δk,qL,

where δk,q is the Kronecker delta.
Using all this for the Hamiltonian in Eq. (B.4) gives:

H =
L

2

[
ε0
∑
kq

ωkωq

(
δk,qAkA

∗
qe
−i(ωk−ωq)t − δk,−qAkAqe−i(ωk+ωq)t

− δk,−qA∗kA∗qei(ωk+ωq)t + δk,qA
∗
kAqe

i(ωk−ωq)t
)

+
1

µ0

∑
kq

kq
(
δk,qAkA

∗
qe
−i(ωk−ωq)t − δk,−qAkAqe−i(ωk+ωq)t

− δk,−qA∗kA∗qei(ωk+ωq)t + δk,qA
∗
kAqe

i(ωk−ωq)t
)]

=
L

2

[
ε0
∑
k

ω2
k

(
2|Ak|2 − AkA−ke−i2ωkt − A∗kA∗−kei2ωkt

)
+

1

µ0

∑
k

k2
(

2|Ak|2 + AkA−ke
−i2ωkt + A∗kA

∗
−ke

i2ωkt
)]
.

Here it has been used that ω−k = ωk, and using that k = ωk/c leads to:

H = 2ε0L
∑
k

ω2
k

([
ARk
]2

+
[
AIk
]2)

. (B.5)

Here the coefficients have been decomposed into its real and imaginary part: Ak =
ARk + iAIk. This shows that the electromagnetic field can be seen as being made up of a
collection of harmonic oscillators, where the harmonic oscillator of mode k is given by:

Hk = 2ε0Lω
2
k

([
ARk
]2

+
[
AIk
]2)

. (B.6)
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Each k then labels an independent degree of freedom for the bath. Now let Ak(t) =
Ake

−iωkt, such that:

ARk (t) = ARk cos(ωkt) + AIk sin(ωkt), and AIk(t) = AIk cos(ωkt)− ARk sin(ωkt).

Hence:

∂tA
R
k (t) = ωkA

I
k(t), and ∂tA

I
k(t) = −ωkARk (t). (B.7)

Eqs. (B.6) and (B.7) suggest that ARk and AIk are canonically conjugate variables except
for some constant λk, such that ÃIk = λkA

I
k is the true canonically conjugate variable

to ARk . Hence, they obey Hamilton’s equations ([18] p. 176):

∂Hk

∂ARk
= −∂tÃIk and

∂Hk

∂ÃIk
= ∂tA

R
k . (B.8)

These equations provide a solution for Hk given by:

Hk =
λkωk

2

(
ARk
)2

+
ωk
2λk

(
ÃIk

)2

=
λkωk

2

([
ARk
]2

+
[
AIk
]2)

. (B.9)

Comparing this with Eq. (B.6) identifies λk = 4ε0Lωk.
The canonically conjugate variables ARk and ÃIk obey the classical relation ([18] p.

198): [
ÃIk, A

R
q

]
PB

= −δkq, (B.10)

where the subscript PB denotes Poisson brackets ([18] p. 197). The canonical quan-
tization prescription is to replace the Poisson brackets by the quantum mechanical
commutator accordingly ([18] p. 201):[

ÃIk, A
R
q

]
PB
−→ 1

i~

[
ÃIk, A

R
q

]
. (B.11)

Hence, the commutation relation between the now quantum mechanical operators ARk
and AIk is: [

AIk, A
R
q

]
= −iδkq

~
4ε0Lωk

. (B.12)

By comparing Eq. (B.9) with the usual Hamiltonian for the harmonic oscillator in
terms of momentum and position, H = mω2x2/2 + p2/2m, the mass of mode k is
found as mk = λk/ωk. Hence, the bosonic creation and annihilation operators for the
electromagnetic mode k are defined as ([10] p. 89):

b†k =

√
λk
2~

(
ARk − i

ÃIk
λk

)
=

√
2ε0Lωk

~
(
ARk − iAIk

)
and (B.13)

bk =

√
2ε0Lωk

~
(
ARk + iAIk

)
. (B.14)
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In this particular example the creation operator b†k represents the creation of a photon
in mode k, and the annihilation operator bk represents the annihilation of a photon in
mode k. With these the variables ARk and AIk can be expressed as:

ARk =

√
~

8ε0Lωk

(
b†k + bk

)
and (B.15)

AIk = i

√
~

8ε0Lωk

(
b†k − bk

)
. (B.16)

Hence, the quantized expansion coefficients are given by:

Ak = ARk + iAIk =

√
~

2ε0Lωk
bk. (B.17)

Finally, plugging this into Eqs. (B.2) and (B.3) gives the quantized electric and mag-
netic fields:

E(x, t) = i
∑
k

√
~ωk
2ε0L

(
bke

i(kx−ωkt) − b†ke
−i(kx−ωkt)

)
ŷ and (B.18)

B(x, t) =
i

c

∑
k

√
~ωk
2ε0L

(
bke

i(kx−ωkt) − b†ke
−i(kx−ωkt)

)
ẑ. (B.19)

Before moving on, observe how the bath Hamiltonian can be expressed in terms of the
bosonic creation and annihilation operators:

b†kbk =
2ε0Lωk

~

([
ARk
]2

+
[
AIk
]2 − i [AIk, ARk ]) =

Hk

~ωk
− 1

2
.

Hence:

HB =
∑
k

Hk = ~
∑
k

ωk

(
b†kbk +

1

2

)
. (B.20)

Here the composition b†kbk counts the number of photons in mode k, sometimes called
the occupation number nk ([11] p. 13).

B.2 Derivation of the bath correlation function

Notice that the electric and magnetic fields of Eqs. (B.18) and (B.19) are perpendic-
ularly polarized. Hence, it is trivial to see that their correlation vanishes. It is also
apparent that the correlation between magnetic fields will be less than the correlation
between electric fields with the same spatial and temporal separation by a factor of
c2, and so it is sufficient to investigate the correlation function for two electric field
operators:

Jαβ(t− t′) = trB

[
Ẽ(xα, t)Ẽ(xβ, t

′)ρB

]
. (B.21)
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Observe that the electric field operator in Eq. (B.18) was derived in the Heisenberg
picture and so it directly translates into the interaction picture of the system and bath.

The density matrix can be written, with reference to statistical mechanics, as ρB =
e−βHB/Z, where Z = trB(e−βHB) is the partition function for the bath ([10] p. 189
and [19] p. 178). Before moving on a convenient property of the partition function is
presented here. First of all, the degrees of freedom of the bath are given by the modes
k and the occupation number of each mode nk. Hence, the eigenstates of the bath are
conveniently expressed in the occupation number basis which span out the Fock space
|n1, n2, n3, ..., nk, ...〉, such that([11] ps. 10-13):

b†kbk |n1, n2, n3, ..., nk, ...〉 = nk |n1, n2, n3, ..., nk, ...〉 . (B.22)

Thus, the partition function can be expressed as:

Z =
∑
n1n2...

〈n1, n2, n3, ..., nk, ...| e−β
∑
kHk |n1, n2, n3, ..., nk, ...〉

=
∑
n1n2...

〈n1, n2, n3, ..., nk, ...|
∏
k

e−βHk |n1, n2, n3, ..., nk, ...〉

=
∑
n1n2...

∏
k

〈nk| e−βHk |nk〉

=
∏
k

∞∑
nk=0

〈nk| e−βHk |nk〉

=
∏
k

Zk,

where Zk ≡
∑

nk
〈nk| e−βHk |nk〉 traces over the degrees of freedom solely in mode k.

Hence, the partition function can be expressed as a product of the partition functions
for the independent degrees of freedom of the bath ([19] pp. 122-3 and 180). Observe
furthermore, that([19] p. 181):

Zk =
∞∑

nk=0

e−β~ωk(nk+ 1
2) = e−β~ωk/2

∞∑
nk=0

(
e−β~ωk

)nk =
e−β~ωk/2

1− e−β~ωk
. (B.23)

For the last equality it has been used that the sum is a convergent geometric series,
because the value of the exponential is always less than one, as ωk is positive for all k.

The product of the electromagnetic field operators can be written as:

E(xα, t)E(xβ, t
′) =

~
2ε0L

∑
kq

√
ωkωq

[
bkb
†
qe
i(kxα−qxβ−ωkt+ωqt′) + b†kbqe

−i(kxα−qxβ−ωkt+ωqt′)

− bkbqei(kxα+qxβ−ωkt−ωqt′) − b†kb
†
qe
−i(kxα+qxβ−ωkt−ωqt′)

]
When tracing over the bath degrees of freedom the last two terms inside the sum vanish,
and the first two terms only contribute for k = q. This and the commutation relation
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of the annihilation and creation operators lead to:

Jαβ(t− t′) =
~

2ε0LZ
trB

(∑
k

ωk

[
ei(k[xα−xβ ]−ωk[t−t′])

+ 2 cos (k[xα − xβ]− ωk[t− t′]) b†kbk
]
e−βHB

)

Taking the trace yields:

Jαβ(t− t′) =
~

2ε0LZ

∑
n1n2...

∑
k

ωk

[
ei(k[xα−xβ ]−ωk[t−t′])+2 cos (k[xα − xβ]− ωk[t− t′])nk

]
×
∏
k′

e−β~ωk′(nk′+
1
2).

Here emerges a sum similar to the geometric series evaluated above:∑
nk

nke
−β~ωk(nk+ 1

2) = e−β~ωk/2
∑
nk

nke
−β~ωknk .

In fact its value can be found via the derivative of the geometric series:

∂

∂a

(∑
n

e−an

)
=

∂

∂a

(
1

1− e−a

)
⇒
∑
n

ne−an =
e−a

(1− e−a)2 . (B.24)

Hence, using Eq. (B.23) gives:∑
nk

nke
−β~ωk(nk+ 1

2) = e−β~ωk/2Z2
k .

Plugging this into the correlation function leads to:

Jαβ(t− t′) =
~

2ε0L

∑
k

ωk

[
ei(k[xα−xβ ]−ωk[t−t′]) + 2 cos (k[xα − xβ]− ωk[t− t′]) e−β~ωk/2Zk

]
.

Now observe:

e−β~ωk/2Zk =
e−β~ωk

1− e−β~ωk
=

1

eβ~ωk − 1
≡ nB(β~ωk),

where nB(β~ωk) is the Bose occupation factor for mode k. It is interpreted as the
number of photons occupying the kth mode([20] p. 8).

This gives the final expression for the correlation function of a bath of finite size L:

Jαβ(t− t′) =
~

2ε0L

∑
k

ωk

[
ei(k[xα−xβ ]−ωk[t−t′]) + 2 cos (k[xα − xβ]− ωk[t− t′])nB (β~ωk)

]
.

(B.25)
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B.3 The bath spectral function

Before finding the bath spectral function as the Fourier transform of Eq. (B.25) it is
convenient to split the sum over k into positive and negative k:

Jαβ(t− t′) =

~
2ε0L

(
∞∑
k=0

ωk

[
ei(k[xα−xβ ]−ωk[t−t′]) + 2 cos (k[xα − xβ]− ωk[t− t′])nB (β~ωk)

]
+

0∑
k=−∞

ωk

[
ei(−|k|[xα−xβ ]−ωk[t−t′]) + 2 cos (−|k|[xα − xβ]− ωk[t− t′])nB (β~ωk)

])
.

By using that ωk = |k|c and defining t̃ ≡ t − t′ and x̃ ≡ xα − xβ the above can be
rewritten as:

Jαβ
(
t̃
)

=
~

2ε0L

∞∑
k=0

ωk

[
e−iωk(t̃−

x̃
c ) + 2 cos

(
ωk

[
t̃− x̃

c

])
nB (β~ωk)

+ e−iωk(t̃+
x̃
c ) + 2 cos

(
ωk

[
t̃+

x̃

c

])
nB (β~ωk)

]
.

Hence, the bath spectral function is given by:

Jαβ(ω) =
~
ε0L

∞∑
k=0

ωk cos

(
ωkx̃

c

){
δ(ω + ωk)nB(β~ωk) + δ(ω − ωk)

[
1 + nB(β~ωk)

]}
.

(B.26)

This function can be interpreted as a measure of how well the bath exchanges energy
with the system, where the argument ω is the energy received by the bath. Notice
that it has peaks only at ω = ±ωk and is zero otherwise, i.e. it can only exchange and
amount of energy that corresponds to a valid photonic mode in the bath. Let ωi be a
positive energy corresponding to the ith mode and observe that:

J(ωi)

J(−ωi)
=

1 + nB(β~ωi)
nB(β~ωi)

= eβ~ωi .

Hence can be concluded that it is more likely that the system emits energy into the
bath rather than absorbs energy from the bath, especially in the case of a very cold
bath where β → ∞. In fact T = 0 yields nB(β~ωi) = 0, and Eq. (B.26) shows that
the bath can only receive energy in that case. Conversely, for T →∞ the system emits
and absorbs energy at an equal rate.

B.4 Continuous spectrum of modes

In most physical cases the bath is much larger than the system, and so it is natural to
allow the size of the bath to go to infinity: L → ∞. When this happens the photonic
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modes approach a continuum, and the sum over k can be converted into an integral
according to the prescription ([20] p. 10):

∞∑
k=0

→ 1

∆k

∫ ∞
0

dk, (B.27)

where ∆k is the distance between adjacent modes in k-space giving ∆k = π/L. Addi-
tionally, the variable of integration is conveniently changed using k = ωk/c:

Jαβ(ω) =
~
πε0c

∫ ∞
0

dωkωk cos

(
ωkx̃

c

){
δ(ω + ωk)nB(β~ωk) + δ(ω − ωk)

[
1 + nB(β~ωk)

]}
=

~ω
πε0c

cos

(
ωx̃

c

){
− θ(−ω)nB(−β~ω) + θ(ω)

[
1 + nB(β~ω)

]}
.

Here once again the step function θ(ω) has been introduced. The expression in the
curly brackets might suggest that the bath spectral function is not continuous in ω = 0,
but observe:

lim
ω→0+

Jαβ(ω) =
~
πε0c

lim
ω→0+

ωeβ~ω

eβ~ω − 1
=

~
πε0c

lim
ω→0+

eβ~ω + β~ωeβ~ω

β~eβ~ω
=

1

πε0cβ
and

lim
ω→0−

Jαβ(ω) = − ~
πε0c

lim
ω→0−

ω

e−β~ω − 1
= − ~

πε0c
lim
ω→0−

1

−β~e−β~ω
=

1

πε0cβ
.

Since these two limits are equal the step functions in the spectral function can be
replaced with an overall factor of 1/2. With that, the bath spectral function reduces
to:

Jαβ(ω) =
~ω
πε0c

cos
(
ωx̃
c

)
1− e−β~ω

. (B.28)

Now the correlation function for a continuous spectrum can be found as the Fourier
transform of the above, but this function clearly diverges for large ω, and so the im-
mediate Fourier transform will yield an unphysical result. It is therefore necessary to
define a cutoff frequency ωc, such that the spectral function is suppressed for frequencies
above this. Instead of a sharp cutoff in the limits of integration of the Fourier transform
it will be introduced as a smooth cutoff like so:

Jαβ(ω)→ ω2
c

ω2 + ω2
c

Jαβ(ω). (B.29)

This is not only analytically convenient, there is also physical justification for such a
procedure. As the frequency of a mode increases, its wavelength decreases, and the
wavelength determines what the mode can interact with. If the system interacting
with the bath is a hydrogen atom, then when the wavelength of the modes become
smaller than the diameter of the atom its interaction starts to decrease. If a denotes
the diameter of the atom, then the cutoff frequency can be estimated as ωc = 2πc/a.

The correlation function is thus given by:

Jαβ
(
t̃
)

=
~ω2

c

2πε0c

∫ ∞
−∞

dω [f(ω, s+) + f(ω, s−)] , where f(ω, s±) =
ω

ω2 + ω2
c

e−iωs±

1− e−β~ω
,

(B.30)
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and s± ≡ t̃± x̃/c. As such the integral can be evaluated simultaneously for s− and s+.
For s± < 0 f(ω, s±) tends to zero on a semi-circular contour in the upper half-plane,

in which case the value of the integral can be found by counter-clockwise integration
along this semi-circular contour. Its value is given by 2πi times the sum of the residues
of the poles in the upper half-plane([21] p. 592). In this region the integrand has simple
poles at ω = iωc and ω = i2πn/β~ for n ∈ {1, 2, 3, ...}(recall that f(ω, s±) is analytical
in ω = 0). The values of these residues are given by([21] p. 573):

R(iωc) = lim
ω→iωc

[(ω − iωc)f(ω, s±)] =
1

2

eωcs±

1− e−iβ~ωc
and

R

(
i
2πn

β~

)
= lim

ω→i 2πn
β~

[(
ω − i2πn

β~

)
f(ω, s±)

]
.

This last limit can be found by defining δ ≡ ω − i2πn/β~, so that ω = δ + i2πn/β~.
Hence:

R

(
i
2πn

β~

)
=

i2πn
β~

−4π2n2

β2~2 + ω2
c

e
2πns±
β~ lim

δ→0

δ

1− e−β~(δ+i
2πn
β~ )

=
i2πn

β2~2ω2
c − 4π2n2

e
2πns±
β~ .

And so the integral for s± < 0 is:∫ ∞
−∞

dωf(ω, s±) = 2πi

[
1

2

eωcs±

1− e−iβ~ωc
+
∞∑
n=1

i2πn

β2~2ω2
c − 4π2n2

e
2πns±
β~

]

= 2π

[
i

2

eωcs±

1− e−iβ~ωc
−
∞∑
n=1

2πn

β2~2ω2
c − 4π2n2

e
2πns±
β~

]
.

For s± > 0 f(ω, s±) tends to zero on a semi-circular contour in the lower half-plane,
and so the integral can be evaluated by clockwise contour integration along this semi-
circle. In this case its value is given by −2πi times the residues of the poles in the lower
half-plane. The poles here are at ω = −iωc and ω = −i2πn/β~. Similarly to before,
the residues are given by:

R(−iωc) =
1

2

e−ωcs±

1− eiβ~ωc
and

R

(
−i2πn

β~

)
=

−i2πn
β2~2ω2

c − 4π2n2
e−

2πns±
β~ .

Hence the integral for s± > 0 is:∫ ∞
−∞

dωf(ω, s±) = 2π

[
−i
2

e−ωcs±

1− eiβ~ωc
−
∞∑
n=1

2πn

β2~2ω2
c − 4π2n2

e−
2πns±
β~

]
.

Now the cutoff frequency can be got rid off again by allowing ωc →∞. In both cases,
s± > 0 and s± < 0, the first term in the brackets above vanishes due to the exponential
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decay with ωc. The sum is not so trivial. For terms with small n it is straight forward
to find the limit:

lim
ωc→∞

2πnω2
c

β2~2ω2
c − 4π2n2

e−
2πns±
β~ = lim

ωc→∞

2πn

β2~2 − 4π2n2/ω2
c

e−
2πns±
β~ =

2πn

β2~2
e−

2πns±
β~ .

Here the factor of ω2
c in the numerator comes from the correlation function as can be

seen in Eq. (B.30). For terms with large n, such that n ≈ β~ωc, the limit above is not
valid. However, in that case there is another exponential decay with ωc, and so these
terms have a vanishing contribution to the sum.

Using all this for the correlation function yields:

Jαβ(t̃) = − 2π

β2~ε0c

∞∑
n=1

(
ne−

2πn|s−|
β~ + ne−

2πn|s+|
β~

)
.

Adding the term where n = 0 to the sum contributes nothing, and so it can be evaluated
according to Eq. (B.24):

∞∑
n=0

ne−
2πn|s±|
β~ =

e−
2π|s±|
β~(

1− e−
2π|s±|
β~

)2 =
1(

e
π|s±|
β~ − e−

π|s±|
β~

)2 =
1

4 sinh2
(
π
β~ |s±|

) .
Finally, the correlation function is derived:

Jαβ(t− t′) = − π

2β2~ε0c

 1

sinh2
(
π
β~

∣∣∣t− t′ − xα−xβ
c

∣∣∣) +
1

sinh2
(
π
β~

∣∣∣t− t′ + xα−xβ
c

∣∣∣)
 .

(B.31)

An important observation to make here is, that this correlation function diverges at t−
t′ = ±(xα−xβ)/c. In other words, when the temporal separation of the electromagnetic
field operators is equal to the time it takes for a photon to traverse the spatial separation
of the field operators, then the correlation of the field operators diverges. This is in fact
perfectly natural, as what is being measured is the correlation of an electromagnetic
field operator with itself only some time and distance apart. This is a consequence of the
idealized model, namely a 1-dimensional cavity of electromagnetic modes, because the
fields transmit perfectly across a line without loss no matter the distance they travel.
This poses a problem for the ULE since for large spatial separations the bath will have
perfect correlations at non-zero times (xα − xβ)/c, and so the bath correlations cannot
be said to decay rapidly on the timescale of system-bath interactions Γ−1. Hence, the
correlation function in Eq. (B.31) represents a ”bad” Markovian bath.

In a more realistic physical setting, such as two superconducting qubits on a metallic
chip (the one located at rα, the other at rβ), the space is first of all 3-dimensional.
Hence, when an electromagnetic wave scatters off the one qubit, its amplitude will have
decreased by a factor of |rα − rβ| by the time it reaches the second qubit[22]. Besides,
there will typically be other impurities in the chip, which the wave will scatter off further
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weakening its field strength. For simplicity, in this thesis the correlation between bath
operators at different localities will on the basis of the arguments above be assumed to
have decayed so much with the distance that they are virtually uncorrelated compared
to the correlation of bath operators at the same locality. This assumption is the same
as the approximation that Jαβ(t − t′) = 0 for α 6= β, which means that the matrix
J(t) is diagonal, which in turn means that g(t) is diagonal. This greatly simplifies the
expression for the jump operator, as the sum over noise channels in Eq. (4.19) only has
one term, which is the term corresponding to the noise channel that the jump operator
is itself representing. This approximation is further supported by the fact, that for
t− t′ = 0 and large spatial separation |xα − xβ| the correlation function in Eq. (B.31)
decays exponentially with the separation on a characteristic decay length of β~c/2π,
which for room temperature is on the order of micrometers.
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