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Darkness

I had a dream, which was not all a dream.
The bright sun was extinguish’d, and the stars
Did wander darkling in the eternal space,
Rayless, and pathless, and the icy earth
Swung blind and blackening in the moonless air;
Morn came and went—and came, and brought no day.

Lord Byron (1788–1824), July 1816

Figure 1: J. M. W. Turner: The Eruption of the Soufriere Mountains in the
Island of St Vincent, 30 April 1812, 1815
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Abstract

A difficulty when studying data from ice cores, is the processes of densification
and diffusion throughout the firn column. These processes attenuates some of
the signal of the measured data, i.e. the water isotopic ratios or the chemical
compositions of the ice. This work focuses on restoring the most likely signal
in a given depth section of an ice core, through a method referred to as ’back-
diffusion’. This method attempts to restore a signal by back diffusing it with
an estimated diffusion length, σ. This diffusion length is affected by a number
of different parameters, especially interesting by the temperature at deposi-
tion. So to give a qualified estimate on the temperature at a given time, it is
of utmost importance to estimate the diffusion length as accurate and precise
as possible. The restoration is achieved through a number of different compu-
tational methods, with a specific focus on a constrained optimization routine.
This routine assumes a number of constraint over the depth series, especially
the number of years expected in the section. This dating is made through
Electrical Conductivity Measurements, where the two historically well docu-
mented volcanic eruptions of Laki (1783) and Tambora (1815) are visible. The
method is tested on five different ice cores, from the Alphabet ice core series,
all shallow cores drilled in the vicinity of the Crête ice core. The method has
room for improvement, especially some of the simpler assumptions like the
constraints and the optimization routine could benefit from further develop-
ment. Moreover, the work carried out in this thesis leaves room for additional
examination and development, but lays a good foundation to be used as a
stepping stone in future research.
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Chapter 1

Introduction

The introduction to this work contains a motivation on why the research is
of relevance, on what basis the general idea is based upon, and how the
method is carried out. Along with this, it contains a brief walk through of
the content of the entire thesis, and a short description of what software was
developed, and where it is available.

Contents

1.1 Ice Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Rare Gem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Using the Rare Gem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Reading Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Ice Cores as a Window to the Past

The studies of ice cores have revealed much information and knowledge about
the dynamics of the world’s past climate, atmosphere and geology through
measured proxies such as isotopic [13, W. Dansgaard, 1964], [28, S. Johnsen et
al., 2001] and chemical compositions, conductivity [46, Moore et al., 1990], and
dust measurements [34, F. Lambert et al., 2008]. By disclosing information
about our past, the analysis of ice cores leads us to a greater understanding of
the behaviors of the Earth system, which opens up for possibilities of modeling
and predicting the future that lies ahead of us.

1



2 CHAPTER 1. INTRODUCTION

When analyzing ice cores it is most important that a relationship
between depth and age is accurately established, as these timescales are of the
essence when building empirical models and reconstructing paleoenvironments
[8, E. Capron, 2013]. Dating of ice cores can be attempted through a variety
of methods: visual inspection of annual layers in data, known volcanic events
detected in the ice [67, B. M. Vinther et al., 2006] or radiocarbon dating [1,
S. Aciego et al., 2011], to name a few.

A difficulty, that arises when dating ice cores, is the effects of diffusion
through the firn column. Both gas and water molecules can diffuse through
the firn which presents a number of obstacles for the continued dating. Firstly,
the diffusion of gases in firn, through air pockets connected to the atmosphere,
makes the age of the gas in the ice younger than the age of the firn at the same
depth. Secondly, the diffusion of solid state molecules present in the firn, like
water molecules, erases some of the signal, when measuring different properties
of the ice. This erasure is commonly described through the average diffusion
length of a molecule at a given depth, σ. This work focuses in particular on
the densification and diffusion processes affecting water isotopic ratios in the
firn.

The diffusion length σ is affected by a variety of parameters: the
depth, the annual average accumulation, the ice flow and - especially inter-
esting - the temperature [26, C. Holme et al., 2018]. By understanding which
parameters influence the behavior of σ, it might be possible to use this signal
erasure obstacle to gain more knowledge about paleoconditions: if it is pos-
sible to empirically estimate a diffusion length at a given depth, it may be
achievable to reconstruct the temperature for this time interval.

The goal of this thesis is to establish a method for estimating the
diffusion length for a given depth section. This is achieved through different
analyses, and through a hidden gem in the ice cores.

1.2 A Rare Gem of Knowledge

In June 1783 the Icelandic volcano Laki erupted explosively [60, J. Steingŕımsson,
1998]. The eruption led to an eight-month long emission of volcanic aerosols
into the European airspace, bringing climatic and sociological disruptions with
it [62, R. Stone, 2004], [64, T. Thordaldson and S. Self, 2004]. Although a
cataclysmic catastrophe for much of Europe, with extreme weather, famine
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Figure 1.1: Visualization of pattern of summers and winters in the time span
between the Laki and Tambora volcanic depositions in Greenland.

and higher death rates, the violence of the impact on the life of Europeans,
led to this eruption being very well documented and recorded across most of
Europe.
Later, in April of 1815 on the Southern Hemisphere, the eruption of the In-
donesian volcano Tambora resulted in a series of events just as, or even more
fatal than, the Laki eruption [49, C. Oppenheimer, 2003]. Tens of or even hun-
dreds of thousands died either during the eruption or in direct consequences
hereof, from starvation or epidemic diseases. Furthermore, the eruption, fol-
lowing a number of decades with heavy volcanic activity [11, J. Cole-Dai et
al., 2009], left its mark on the climate of the entire Earth system, disrupting
global temperatures. In Europe, the following year of 1816 became knwon
as The Year Without a Summer [49], and the apocalyptic climate affected
not only the crops and human necessities, but also the artistic and sociologi-
cal environment of Europe. Writers like Lord Byron (Darkness 1816, 6) and
Mary W. Shelley (Frankenstein 1815-1818) became inspired by the cold and
dark weather [39, A. Marshall, 2020], and painter J. M. W. Turner was clearly
influenced by the change of colour of the world, to a more yellow, brown and
gloomy ambiance of the 1816 European summer, for example in the painting
The Eruption of the Soufriere Mountains in the Island of St Vincent, 30 April
1812, 1815, see Figure 1 [73, C. Zerefos, 2007].

Both volcanic events were not only landmarks in European history, but
quite literally also left their marks on the Greenlandic ice sheet, by deposition
of volcanic material through precipitation. These layers of snow with extra
high content of volcanic material shows to be a rare gem of knowledge, hidden
in the ice. When measuring ice cores this can be utilized along with a different
property of the data signals available through ice core analysis, namely the
seasonality of a given parameter.
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Some measured signals in the ice cores contain annual cycles. For
example, the water isotopic ratios in the firn are sensitive to temperature [31,
J. Jouzel, 1997], leading to a clear summer-to-winter cycle. This makes it
relatively easy to date shallow ice cores as the cycles can be counted, but as
diffusion takes place in the firn column, some of this signal is washed away.
Luckily, another method can be utilized to date the ice: detection of known
volcanic events through electrical conductivity measurements. This reveals a
quite unique gem of knowledge: by knowing the time of a certain volcanic
event, either through historical observations or through previous ice core syn-
chronization, and matching this with the depth of the detected event in the
ice, it is possible to set some very certain dates on the timescale of the ice.

An example of this type of event dating, which is used in this work, is
by examining the volcanic eruptions of Laki and Tambora. Both eruptions are,
as described, very well historically documented and are visible and detectable
in a great number of ice cores [9, H. Clausen, 1988], [35, C. Langway, 1988].
The deposition in Greenlandic ice cores has been estimated to be in December
1783 for Laki and in July 1816 for Tambora, yielding 33 summers and winters
between the two events, see Figure 1.1 [11, J. Cole-Dai et al., 2009], [69, L. Wei,
2008]. This does not only make it possible to generally date and synchronize
different ice cores, but it also allows for in depth analysis of the diffusion and
densification processes in the ice.

1.3 Utilizing the Rare Gem

By considering an isotopic depth series situated between two volcanic events,
it is possible to back diffuse this series over the known time span in years -
or even months - using the diffusion length as a tuning parameter. This is
an optimal way to empirically estimate the diffusion length of a given depth
interval which makes it possible to obtain a temperature reconstruction of this
interval, as σ is temperature sensitive [26].

The goal is thus to reconstruct the lost signal by a back diffusion
scheme, tuning σ of the diffusion process, until the known actual number of
winters/summers between the events can be counted as peaks and valleys in
the depth signal. Then the estimated optimal diffusion length can be used to
make a temperature estimate of the given interval. The back diffusion method
is built on both empirical models and signal analysis of the measured data. A
simplified flowchart of the general idea is illustrated in Figure 1.2.
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The data under consideration in this thesis is mostly shallow ice cores,
namely the Alphabet cores drilled in the vicinity of the 405 m Crête ice core
[10, H. Clausen and C. Hammer, 1988].

The spatial locations of Crête, the alphabet cores and three other
major ice cores, the NEEM [20], NGRIP [48] and EGRIP [52] cores, can be
seen in Figure 1.3.

1.4 Reading Guide

In this thesis, Chapter 2 contains an introduction to the theory of diffusion
of water isotopes in ice cores along with theoretical and empirical methods
for modeling densification and diffusion profiles. Following, still in Chapter
2, is a brief examination of different experimental methods for detection of
deposited volcanic material and which methods have been used for the data
under inspection. The chosen data are then presented in Chapter 3, along with
an argumentation of why they were selected. Then a thorough presentation
of the data and signal analysis along with important computational methods
are presented in Chapter 4. These different tools are then combined in the
method description in Chapter 5, depicting a walk-through and testing of the
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final algorithm developed for estimating the diffusion length given the specific
number of years. The final method is tested, and further discussed, developed
and fine tuned, still in Chapter 5, and results from the final iteration of the
method are presented along with a statistical analysis of variations in the
final estimates in Chapter 6. On the basis of these results, finally, a basic
temperature reconstruction of the examined depth intervals for the ice cores
is presented. Finally, a walk through of the most important conclusions and
an outlook to future research is given in Chapter 7.

Chapter 2 contains already existing material, as it is a walk through
of the theory of ice cores developed throughout the last century. Chapter 3
contains, as mentioned, a description of data, which is per se not new material,
as the ice cores in focus were drilled and analyzed in the 1970’s and 1980’s,
but some small corrections were made to the estimates of the locations of the
volcanic events. Chapter 4 contains a presentation of the existing computa-
tional methods utilized, but also a walk through of how the choices of methods
and parameters affect the final method. In Chapter 5 the newly developed
back diffusion method is presented along with a discussion of various subjects
in the thesis.

1.5 Software

All computational analysis carried out in this work is implemented through
Python v3.8.10. All code is available on GitHub repository by T. Quistgaard,
Master’s Thesis, (2021), GitHub repository: https://github.com/TheaQG/AWI
Bcores Analysis. The main modules implemented are:

• Herron-Langway densification model, Section 2.2.1.1, in file HL_AnalyticThea_class

.py.

• Diffusion length profile model, Section 2.3, in files DiffusionProfiles_calculations

.py and Diffusivity.py.

• Interpolation methods, Sections 4.6 and 5.2.2, in file Interpolation_Class

.py.

• Signal attenuation and annual layer thickness estimation, Section , in
file SignalAttenuation.py.

• Spectral transforms and analysis, along with general deconvolution/back
diffusion method, Sections 4.2, 4.3 and 5.1.1, in file Decon.py.



1.5. SOFTWARE 7

• The final optimization module, along with the constrained peak detec-
tion method, Sections 5.1.2 and 5.1.3, in file BackDiffuse_LT.py.

• Final temperature estimates, Chapter 6, in files sigmaSolver.py and TemperatureEstimates

.py.

The modules are all described in depth in the corresponding sections referred
to, and the connections between modules are illustrated in Figures 5.2 and
5.6. Along with the presented files are a number of files containing code for
testing the different modules and for generating the final results.





Chapter 2

The Theory of Ice Cores

The ice core theory on which the methods and analyses of this thesis is built
will be presented in this chapter. This includes the basis of water isotopic
ratios, densification and diffusion in ice, temperature estimation from
diffusion lengths, and electrical conductivity measurements.
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2.1 Water Isotopes

A corner stone in ice core analysis, which helps lay the basis for paleo cli-
mate research, is the measurements of isotopic composition of the water which

9
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Figure 2.2: Fractiona-
tion through evaporation,
transportation and precip-
itation along with typical
water isotopic ratios in [h].

makes up the ice or of the encapsulated air in bubbles throughout the ice [19,
V. Gkinis et al., 2011]. Water isotopes are sensitive to temperature changes
and can thus be used as a proxy for paleo temperature and climate along with
being used as dating parameters, since the annual cycles often are detectable
in water isotope data, as is clearly the case with the water isotopic ratios
depicted in Figure 2.1.
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Figure 2.1: Ten meters of the top of Cretê ice core, with identification and dating
of 19 annual layers.

2.1.1 δ Notation

Water isotopic ratios, i.e. the ratio of the minority isotope, H18
2 O or H17

2 O
(2H2O), compared to the majority isotope, H16

2 O (1H2O), are used to report
the quantities of isotopes in a sample relative to the ratio of a given reference
water sample. This is commonly expressed in the δ-notation as:

δi =
iRsample
iRreference

− 1 (2.1)

where 18R =
n18O
n16O

, 2R =
n2H
n1H

and 17R =
n17O
n16O

. Here n is the abundance of the

given isotope.

Besides the isotopic quantities δ17O, δ18O and δ2H = δD, both deu-
terium excess and ∆17O, known as 17O excess, can be of interest [33, K.
Lamb et al., 2017]. Deuterium excess is often used as a measure of the kinetic
fractionation processes, taking place in the water vapor formation of polar
precipitation, to which it is especially sensitive, giving an indicator of the con-
ditions during precipitation formation, and thus giving a pointer to the source
of the water vapor.

The naturally occurring oxygen isotopes are approximately divided
into 99.759% 16O, 0.037% 17O and 0.204 % 18O [3], and historically the focus
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Figure 2.3: Illustration of
the densification process of
a firn column, from snow
deposition to glacial ice.
Image source [6].

has been on the water isotopic ratio of δ18O, due to the higher abundance
making it easier to measure than for example δ17O. One of the challenges
of modern glaciology is to develop a stable, precise and accurate measuring
technique for δ17O. This work examines the data from ice cores drilled and
measured in the past century, and only δ18O has been measured for these
cores.

2.1.2 Water Isotopes in the Earth System

Due to H18
2 O being slightly heavier than H16

2 O, the isotopic signal is depleted
of the heavier isotopes through transportation of the water vapor before it is
deposited at the ice sheets. A clear annual signal in the δ18O measurements
can be observed due to the seasonal temperature changes from summer to
winter at deposition time. This is the main isotopic feature under considera-
tion for this thesis. The greatest issue with this type of signal is that there is a
loss of information over time as the snow becomes more compact and diffusion
processes wash out some of the signal throughout the ice depth. Thus to be
able to examine and analyze isotopic signals more accurate and precisely, the
processes of densification and diffusion need to be well understood.

2.2 Densification and Diffusion

Deposited snow will over time be compressed and at last be compacted com-
pletely to glacial ice, see Figure 2.3. Any ice state between snow and glacial
ice is referred to as firn. Throughout the firn column the important pro-
cesses of densification and diffusion take place. Both processes need to be well
understood and examined when analyzing ice core data, as diffusion and den-
sification play a large role in thinning of annual layers due to compression of
snow to ice and in washing out the measured signals through diffusion in the
firn. Specifically in this thesis the diffusion processes are carefully examined,
as the diffusion length, σ can be used as a proxy for paleotemperatures [26],
[32].

2.2.1 Densification

Densification is the process of compression of snow to ice. It affects the annual
layer thickness in the data as snow will be compacted to a smaller volume
under pressure from the firn column above until it reaches a solid ice state
with an, almost, constant density.
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Commonly three stages of densification are described in the firn col-
umn [25, M. Herron and C. Langway, 1980]. The first stage is between the
initial precipitated snow density and the ’critical density’ at 0.55Mg

m3 , the sec-

ond stage is between critical density and the close-off density at 0.82−0.84Mg
m3 ,

and the third stage is from close-off and all the way through the glacial ice.
The close-off depth refers to the depth, where all air pores in the firn column
become closed-off from the atmosphere at the surface, and separate bubbles
start to form in the ice.

At the first stage the densification is mostly due to grain settling and
packing and the densification rate is very rapid. At the second stage, the
snow is close to isolating air bubbles. At the third stage, the dominating
densification taking place is by the compression of air bubbles [25].
For these three stages it has early been of interest to develop a model to
determine the depth-density profile, which is dependent on snow accumulation
rate and temperature. The focus was on developing an empirical model for
the first and second stages of densification, as they are the most dramatic
sections of the firn column considering densification and diffusion.

A number of different densification models have been developed [5,
J. Barnola, 1991], [22, C. Goujon, 2003], but for this thesis work, only one
model is used, namely the Herron-Langway empirical model, first presented by
Michael M. Herron and Chester C. Langway Jr in [25, Herron and Langway,
1980]. The basic idea of the model will be presented in the following. For a
more thorough mathematical presentation, the reader is referred to Appendix
7 or the original paper.

2.2.1.1 Herron-Langway Model in This Thesis

The Herron-Langway model(from now on HL model), is an attempt to describe
the densification process through a firn column, given some initial conditions,
mainly the temperature and annual accumulation rate at the site. The model
is generally derived from the suggestion that during the process of densifica-
tion, the proportional change in airspace is linearly related to the change in
stress due to the overburdened snow:

dρ

ρice − ρ
= const.ρ dh. (2.2)

with ρ being the density of the firn, ρice the density of glacial ice and h the
depth.
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This implies, by integration, a linear relationship between
[

ρ
ρice−ρ

]
and h. Through empirical analysis of depth-density measurements from a
number of different ice cores, and the basic acceptance of Equation 2.2, the

rate equations
(

dρ
dt

)
zone 1

and
(

dρ
dt

)
zone 2

can be derived, see Appendix 7. From

these rate equations, and given temperature, T , accumulation rate, A, and
initial snow density, ρ0, it is then possible to estimate the density and age of
the snow at any given depth.

In this thesis, the HL model is used to generate an estimate of the
density profile for each ice core site under examination. The HL model has
been incorporated in the computational works of this thesis as a class module,
which computes a diffusion length profile, given initial parameters. An exam-
ple of five different density profiles computed with this module, given present
day conditions at five different ice core drilling sites as initial conditions can
be seen in Figure 2.4. These profiles are then used to give a first diffusion
length profile estimate for each core, which is used in the further analysis.

For the purpose of this thesis, an extra module has been added to the
HL model class, which makes it possible to incorporate any measured data in
the density profile estimation, so as to best approach the actual profile at the
drilling site. This module is implemented by allowing an intake of two arrays
consisting of depth and density measurements, which are then used to fit the
model, using a least square optimization from scipy, scipy.optimize.leastsq.
An example of a density profile estimation, both using the measured data and
using only the model, can be seen in Figure 2.5.

2.2.2 Diffusion

In general diffusion refers to the mixing of material, e.g. molecules, by net
movement from high to low concentration due to somewhat random stochastic
processes, see Figure 2.6. When considering ice cores, the diffusion taking
place is the displacement of the molecules that make up the ice and firn,
for example water molecules. The diffusion processes are subject to varying
conditions and are caused by different effects at different depths. In the first
few meters of an ice core, the main diffusion is due to mixing and settling
of snow particles due to surface conditions and gravity, and later, the total
diffusion is more subject isotopic gradients in the ice [29, S. Johnsen et al.,
2000].
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Figure 2.6: Example of diffusion over time, where two materials are mixed.

The diffusion processes are different for the porous firn and for the
later glacial ice, described in the different stages above and below close-off
depth.

2.2.2.1 In Firn

The diffusion processes in firn can be used to describe the attenuation of a
given signal, e.g. a water isotopic signal, due to vapor phase diffusion in the
porous firn column. This vapor phase process takes place in the air pockets
of the material from time of deposition to pore close-off [29].

To develop accurate knowledge of paleo climate and temperatures it
is of great importance to understand this process, as a reconstruction of the
part of the signal lost will reveal finer details in the signal and thus a more
detailed knowledge of past times.

Diffusion is modeled through Fick’s 2nd law [15, A. Fick, 1851], which
describes the change in concentration of a substance with time, due to diffu-
sion:

∂φ

∂t
= Ddif(t)

∂2φ

∂z2
− ε̇z(t)z

∂φ

∂z
(2.3)

where φ is the concentration of the substance, t is time, Ddif is the diffusion
coefficient, z is the position, and ε̇z is the strain rate. Focusing on water
isotopic ratios, the water isotopic signal can be assumed as a concentration,
φ→ δ, resulting in a diffusion equation as:

∂δ

∂t
= Ddif(t)

∂2δ

∂z2
− ε̇z(t)z

∂δ

∂z
(2.4)

Through depth and time driven attenuation due to diffusion there is
a loss of information which can be used to gain information of the underlying
processes. Since the diffusion constant and the vertical strain rate ε̇z(t) in
Fick’s 2nd law are dependent on temperature and accumulation on site, the
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information loss process can infer the temperature of firn and accumulation
on site.
The attenuated, directly measured, isotopic signal, δ(z), can be described
as the convolution between the initial isotopic signal, δ′(z), and a Gaussian
filter, G(z). The Gaussian function describes the stochastic diffusion process.
The signal is furthermore multiplied by the thinning function, S(z), which
describes the total thinning of a given layer at depth z due to the vertical
strain from the above firn column.:

δ(z) = S(z)[δ′(z) ∗ G(z)] (2.5)

where

S(z) = e
∫ z
0 ε̇z(z′) dz′ (2.6)

and

G(z) =
1

σ
√

2π
e−

z2

2σ2 (2.7)

In the Gaussian filter, the variance σ is referred to commonly as the
diffusion length: the distance a water molecule is displaced along the z-axis.
This quantity is directly related to both Ddif(t) and ε̇z(t) (the strain rate being
approximately proportional to the densification rate in the column). Thus an
accurate estimate of the diffusion length is crucial for describing the diffusion
process. The change of diffusion length over time is given as

dσ2

dt
− 2ε̇z(t)σ

2 = 2Ddif(t) (2.8)

by [27, Johnsen, 1977], which also states that in the case of firn and assuming
a site with little ice flow, the vertical strain rate can be approximated with a
simple strain rate, only dependent on the density and its time evolution

ε̇z(t) ≈ −
dρ

dt

1

ρ
, (2.9)

where ρ is the density and dρ
dt is the densification rate. With this approxima-

tion, the solution to Eq. 2.4 describing evolution of the diffusion length in
the firn column, can be found, defined only through density and densification
rates, as:

σ2(ρ) =
1

ρ2

∫ ρ

ρ0

2ρ′2
(
dρ′

dt

)−1

Ddif(ρ
′) dρ′. (2.10)
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Certain densities and corresponding depths are of special interest as
they indicate a specific stage of the firn and ice column [25]. At top and
bottom, we find the two extremum densities of settled snow, ρsnow = 330 kg

m3 ,

and ice, ρice = 917 kg
m3 . In between these two there are two more densities

of importance: the critical density, ρCr = 550 kg
m3 , describing the transition

between the two firn stages (see Section 2.2.1), and the pore close off density,
ρco = 330 kg

m3 , describing the density at which air pockets in firn will seal of
from each other to form single bubbles. As mentioned, from the close-off
density, further densification will be due to compression of these closed off air
bubbles until the density reaches ρice. If we assume that the diffusion constant,
D(ρ), and the densification rate, dρ

dt are known, then it is possible to give an
estimate of the diffusion length profile by integrating from top, at density ρ0,
to pore close-off depth, ρco.

2.2.2.2 In Solid Phase

When firn reaches the solid state of ρice below close-off depth, the isotope
diffusion is driven not as much by densification any more, but by isotopic
gradients within the ice crystal lattice structure. This diffusion process is
much slower than the diffusion in vapor phase taking place in firn, and thus
does not contribute as much to the information loss and attenuation of the
signal. For solid ice, at ρ ≥ ρice, the diffusion constant is only dependent on
temperature, and can be described through an Arrhenius type equation as [54,
Ramseier, 1967], [30, Johnsen et al., 2000]:

Dice = 9.2 · 10−4e−
7186
T

[
m2

s

]
(2.11)

The diffusion length in solid state ice is then given from the diffusion
constant in ice and the thinning function as:

σ2
ice(t) = S(t)2

∫ t

0
2Dice(t

′)S(t′)−2 dt′ (2.12)

From Equations (2.10) and (2.12) it is possible to model a diffusion
length profile given surface conditions from a ice core drill site. This profile
along with the depth-density profile will be the theoretical grounds for much
of the empirical work carried out in this thesis.
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2.2.3 Reconstruction of temperatures

Reconstruction of paleotemperatures can be attempted through a number of
various techniques [31], [26], [16]. For this work, the focus is on restoring a
signal by single isotopic back-diffusion.
By the deconvolution theorem [41], convolution in time domain is equal to
multiplication in the frequency domain. According to Equation (2.5), the
transfer function describing the diffusion in the frequency domain, will be the
Fourier transform of the Gaussian filter:

F [G(z)] = Ĝ(f) = e−
k2σ2

2 , k = 2πf =
2π

∆z
(2.13)

where ∆z is the discrete sampling size. This filter, of course depending on ∆z,
keeps larger wavelength frequencies (> 50 cm) unaltered but attenuates short
wavelengths (< 20 cm) heavily, which is exactly the effect of diffusion on the
isotopic signal. In the Gaussian filter σ represents the diffusion length.

An estimate of the diffusion length σ can be made from the power
spectral density (PSD) of an isotopic time series. In the frequency domain a
PSD composed of an initial signal, a filter function and a white noise term
can be described as:

Ps = P0(k)e−k
2σ2

+ |η̂(k)|2, f ∈ [0, fNq] (2.14)

where the diffused and noise-affected signal, Ps, is equal to the original signal,
P0(k), times a filter, e−k

2σ2
(our previously inspected Gaussian filter), plus a

noise term, |η̂(k)|2, over a frequency space ranging from zero to the Nyquist
frequency, fNq [58, C. Shannon, 1949]. The Nyquist frequency is dependent
on the sampling resolution by fNq = 1

2∆z
.

The noise term, often categorized as white noise, but red noise is also
seen in isotopic signals [26], is given as

|η̂(k)|2 =
σ2
n∆z

|1− a1 eik∆z |2 (2.15)

Equation 2.15 describes an autoregressive process of the first order
(white noise), with a1 being an AR-1 coefficient. An AR-n process describes
the evolution of a stochastic time series X where the next time step, Xt is de-
pendent on the last n points, {Xt−n, ..., Xt−1}, and is mathematically defined
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as:

X
(n)
t = C +

n∑
i=1

φiXt−i + εt (2.16)

where C is a constant, φ̄ = {φ1, ..., φn} are the model parameters and εt is the
noise added to the given time step. The AR-1 process thus describes a series
where each new point is only dependent on the last point before:

X
(1)
t = C + φ1Xt−1 + εt. (2.17)

and the power spectral density of the AR-1 process is, corresponding to Eq.
2.15:

S(1)(f) =
σ2
z

|1− φ1e−2φif |2 (2.18)

The spectral estimate of the time series, Ps, can be computed via a
number of different numerical schemes, in this work the focus is on Fourier
and Cosine transforms.

To give a data based estimate on the diffusion length a fit to these
estimated spectral data, Ps, is found through for example a least square opti-
mization, from which the parameters P0, σ, a1, σ

2
η can be estimated and the

diffusion length σ can be calculated by least-square minimization of the misfit
between Ps and Ps, see Section 4.3.

This estimated diffusion length needs to be corrected: the obtained σ̂
is affected by two further diffusion processes, taking place respectively in the
ice and in the experimental sampling:

• Sampling diffusion: This diffusion is due to the sampling method.
Sampling at a certain discrete resolution - be it discrete sections or
resolution in CFA system due to step or impulse response - gives an
additional diffusion length of

σdis =
2∆2

z

π2
ln
(π

2

)
(2.19)

• Ice diffusion When below the close-off depth, a correction for the ice
diffusion must also be made.
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So to obtain the actual diffusion length estimate from the raw data,
both the sampling and the ice diffusion need to be subtracted from σ2, and a
scaling factor due to thinning from the strain must be introduced:

σ2
firn =

1

S(z)2
σ̂2

firn =
σ̂2 − σ2

dis − σ2
ice

S(z)2
(2.20)

From Equation (2.20) it is clear that the accuracy of the diffusion
length estimate σ2

firn is dependent on the correction terms σ2
dis, σ

2
ice and the

thinning function S(z). The correction term related to the discrete sampling
method used in isotope analysis, σ2

dis is generally a well managed parameter,
as the discretization of the measurements is known.

At relatively shallow depths, as the ones under examination in this
thesis, the term σ2

ice is relatively small compared to the total diffusion length
estimate σ̂2 and can be either neglected or easily accounted for with simple
assumptions on ice flow and borehole temperature. For this thesis, the ice
diffusion is neglected at the depths which are operated on.

The final correction parameter, the thinning function S(z)2, has a
strong influence on the final diffusion length estimate, and errors from the ice
flow modelling will be propagated to the diffusion length estimate, and finally
to the temperature estimate.

2.3 The Community Firn Model

The Community Firn Model (CFM) is an open-source modular Python frame-
work for firn-modelling. It was first developed by [61, Stevens et al, 2020] and
later adapted to a different version with a focus on water isotopic diffusion by
[17, Gkinis et al, 2019] under the name Iso-CFM, the latter version used in
this thesis.

The original CFM is modular, meaning that, firstly, it is easy to choose
which physical processes should be included in the modelling, and, secondly,
it allows for the user to develop new modules that can easily be integrated
in the framework, which is what [17] utilized in their work on the Iso-CFM.
The main focus of the CFM is on modelling the evolution of firn density and
temperature using a Lagrangian (firn parcel-following) grid, where each parcel
(model volume) represents a layer of firn with uniform properties. In this work
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it is carried out by first assuming that the accumulation rate at the site under
consideration is constant and that the firn-density profile is in a steady state
(Sorge’s law). The densification rate is computed at each step in the model,
using any of the given previously published firn-densification models, provided
in the modules, and the firn density is updated in each time step. Following,
the firn temperature evolution is computed through a coupled heat-diffusion
model, by the use of a finite-volume method, [51, Patankar, 1980]. The model
then proceeds by adding a new layer on top of the simulated firn column,
described by the provided input parameters (temperature, accumulation rate,
density), and the bottom volume of the grid is removed.

For this work, the CFM is only utilized with steady state conditions
(i.e. constant accumulation rate and temperature), but for future works many
different dynamic assumption could be made for more accurate depiction of
densification and diffusion processes along with more precise temperature es-
timates.

The user starts by specifying input parameters(firn-densification physics,
time-step size, surface boundary conditions and more) in a .json file. A model
run is then started by a ”spin-up” which determines a steady state model used
as the initial condition for the main model run. Thus, for the initial model,
a steady state analytic firn-densification Herron-Langway model [25, Herron
and Langway, 1980] is used to calculate depth-density and depth-age profiles,
using the forced steady state parameters temperature, T0 and accumulation,
ḃ0. Then stepping forward one time step, it uses the specified densification
model to evolve the firn in time. An in depth description of the entire CFM
can be found in [61, Stevens et al.].

2.3.1 Iso-CFM

The Iso-CFM building on the Community Firn Model, is a tool for estimat-
ing firn diffusion rates of water isotopes, δ18O, δ17O and δD, developed by
[18, Gkinis et al., 2021] for use in [18]. It requires two main inputs, temper-
ature and accumulation rate, and no prior knowledge of the isotopic signal
is required. The model provides computation of the diffusion lengths for the
mentioned water isotopes. As previously discussed, the diffusion lengths are
a metric for the smoothing a signal has undergone and can, along with decon-
volution techniques also discussed in this thesis, be used to reconstruct some
of the signal that has been otherwise attenuated.
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Figure 2.7: Contribution of the diffusion(dashed) and densification(dot-dashed)
terms from Eq. 52 to the final analytical diffusion length solution (blue).

2.3.1.1 Diffusion Length Profiles

The iso-CFM computes a numerical solution for σ using a time-stepping
scheme, as is the case for the original CFM, to estimate the most likely dif-
fusion length profile at a given site. From each time step the CFM computes
dρ
dt and T , and the iso-CFM uses these results to calculate the quantity dσ2

dt :

dσ2

dt
= 2

(
D(t)− σ2

ρ

dρ

dt

)
(2.21)

Equation (52) shows that the diffusion length signal throughout the ice is a
result of two processes, opposing each other: the always positive diffusivity
term D(t), and the densification process contributing negatively to the change

over time, −σ2

ρ
dρ
dt . After a certain depth, the densification term comes to

dominate and thus the entire equation becomes negative and the value of the
diffusion length is decreasing, see Figure 10.

To simplify the work of this thesis, the numerical module of the CFM
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Figure 2.8: Crete and surrounding Alphabet cores, as their analytical solutions place
them according to observed temperature and accumulation rate.

and the iso-CFM has not been implemented in the final computations, and
the diffusion length profiles referred to in the rest of the project are calcu-
lated through an analytical method, using equations derived from Equation
(52) analytically. A short walk-through of the derivations are presented in
Appendix 7 as they are described in [18, Gkinis et al., 2021]. Five examples
of diffusion length profiles given different conditions are presented in Figure
12, with the same conditions as used in 9.

The analytical equations derived in Appendix 7 have been used for
creating a contour plot of the analytical solutions for σ18 at the close-off den-
sity, ρco. This can be seen in Figure 11. The plot shows six different ice cores
drilled in the proximity of the Crête ice core drill site and their diffusion length
analytical solutions.

These analytical equations are used to compute diffusion lengths to
compare with the optimal diffusion length estimates computed from the raw
data. One could advantageously explore the iso-CFM further to numerically
compute the diffusion lengths with different temperature and accumulation
forcing to recreate a diffusion length profile corresponding to the most likely
at a given drill site. Since the iso-CFM do consist of many different modules
all with different possibilities for parameterisation, it is outside the scope of



2.4. TEMPERATURE ESTIMATION 23

0.00 0.05 0.10
σ [kg/m−3]

0

20

40

60

80

100

D
ep

th
[m

]

Vostok
T0: -57.0,
A0: 0.024

EPICA
T0: -54.5,
A0: 0.025

Crete
T0: -30.4,
A0: 0.280

NEEM
T0: -31.0,
A0: 0.220

EGRIP
T0: -28.0,
A0: 0.110

Figure 2.9: Analytically
calculated diffusion length
profile examples given five
different initial conditions
representing present day
conditions at the five differ-
ent ice core locations. Tem-
perature, T0, is in oC and
accumulation, A0, is in me-
ter of water equivalent per
year.

this project to develop more advanced iso-CFM diffusion length estimates for
the examined cores, and only the previously described, simple diffusion length
profile estimate will be used in the further work. In-depth methodology and
results from the iso-CFM can be found in [18, Gkinis et al., 2021].

2.4 Temperature Estimation

Through the theoretically based analytical (or nummerical) estimates of the
diffusion length, σmodel, and the diffusion length estimate from the isotopic
signal of a depth section of an ice core, σfirn, a temperature estimate of can
be given. This estimate made by numerically solving Equation (2.10) with T
as the unknown variable:

(
ρco

ρice

)2

σ2
model(ρ = ρco, T (z), A(z)) = σ2

firn. (2.22)

For the temperature estimates made in this project a secant numerical
method[53] was used, through the Python SciPy package scipy.optimize.newton.
Only the function it self is provided and no derivative is given, so the scipy.

optimize.newton uses the secant method to find a zero of the function passed. If
a derivative was given, the packages would use a Newton-Raphson[53] scheme
to find the zero of the function.

2.5 Dating of Ice Cores: ECM and DEP

Isotopic composition analysis has already been presented as a tool for analyz-
ing ice cores to examine past temperatures, climate and atmospheric composi-
tion. Another method is through electrical conductivity measurements (ECM)
[24, C. Hammer, 1980] which is much more sensitive to violent volcanic erup-
tions and deposition of volcanic material. This sensitivity makes it possible
to use historically dated eruptions visible in the ice cores as volcanic horizons,
and thus making dating of the ice core more precise and absolute. In Figure
2.10 two aligned depth series can be seen: the water isotope profile and the
conductivity profile. The conductivity profile shows clear peaks, which are a
result of the increased conductivity due to volcanic material deposited along
with the snow at the ice core drill site.



24 CHAPTER 2. ICE THEORY

−40

−30
δ1

8
O

[h
]

SiteA

20 40 60 80 100 120
Depth [m]

0

5

C
on

d
u

ct
iv

it
y

Figure 2.10: Water isotope measurements aligned with conductivity measurements
from the ice core drilled at Site A.

2.5.1 Electrical Conductivity Measurements

The conductivity of ice arises from the current emerging due to the build-up
of space charges in the ice structure. This conductivity can be analyzed by
measuring the electrical current (DC) - induced by the electric potential and
the acid balance - between two electrodes which are moved along the ice cores
length. This current is related to the acid impurity concentration (pH), in the
form of H3O+ concentration, of the ice core. Higher levels of acid impurity
concentration are due to volcanic eruptions. Large amounts of volcanic gases,
i.e. SO2, in the atmosphere oxidize and combine with water to form acid,
i.e. sulphuric acid, which is then washed out of the air due to precipitation.
Thus it is made possible to recognize volcanic horizons in ice cores, and - if
the spatial location of the eruption is known - from the amount of acid, the
magnitude of the eruption can also be estimated.

The measured current can then be transformed into acidity by a cali-
bration curve relating the current, in µA, to the acidity, in µequivalents H3O+

per kilogram. To find the calibration parameters, the current and the acid-
ity must be measured - the current through the above mentioned method,
and the acidity through pH measurements of melted ice core samples. The
pH measurements must further be corrected for any co2 induced H+ ions [63,
K. Taylor et al., 1993].The relation between acidity [H+] (corrected for co2

induced H+) and current I can be expressed in two ways:
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• [H+] = (0.017 I2 + 1.2)µequiv. H+/kg
without a 50% correction for co2 surplus.

• [H+] = (0.045 I1.73)µequiv. H+/kg
with a 50% correction for co2 surplus.

The salt concentration in the ice can be estimated from measurements of the
specific conductivity κ of the melted samples. The salt contribution hereto
can be expressed as:

κs = κ− κ(H+)− κ(X−)− κ(HCO−3 ) (2.23)

where the three later terms correspond to the contributions from H+ (through
pH measurements) and its anions1, HCO−3 and any other anions X−. The an-
ion concentration will be equal to the cation concentration, which in this case
is only H+ concentration. Disregarding low acidity samples, the concentra-
tion of HCO−3 is negligible and thus concentration(X−) ≈ concentration(H+).
The current is thus heavily influenced on/determined by the H+ concentra-
tion, and thus it is approximated that the salt concentration has no influence
on the current readings, which is fortunate, since the ECM method only re-
sponds to acidity, and not to salt and ammonia concentrations. This is one of
the method’s limitations, which the later dielectric profiling method has taken
into account [45, J. Moore and S. Fujita, 1993], [44], see Appendix 7.

Though DEP measurements might have been more sensitive to salt
and ammonia concentrations and thus would have given a different signal,
the data available for conductivity for the ice cores under consideration in
this thesis are made through the ECM method. In Figure 2.10 the raw ECM
signal can be seen, aligned with the isotopic signal. Marked in blue is the
estimated depth between the two eruptions Laki and Tambora.

Through electrical conductivity measurements it is possible to observe
the very clear effects of some volcanic events in ice cores. Particles from the
eruption are quickly transported from the source, since the atmospheric airflow
will scatter the particles all over the atmosphere at a relatively high speed.
Thus the dust (particle) and ECM signals pick up the volcanic signal faster
than for example the isotopic signals. The isotopic signal reacts much slower,
as it must be subjected to a change in global - and then following local -

2Anions are molecules losing a number of electrons to become negatively charged.
Cations are molecules that gain a number of electrons to become positively charged.
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temperature, which might first show after a number of years. Thus ECM,
DEP and dust measurements are good records to use for dating ice cores.
Some eruptions are only great enough to show in ice cores located close to the
volcanic source, while others are of a magnitude impacting the entire globe
[35], [69], [11], thus showing in almost all ice core records. These volcanic
horizons are specifically good for synchronizing records, which is essential for
developing knowledge about the geographically varying climate, temperatures
and hemispherical dependency of the past.



Chapter 3

Isotopic Data: Laki to
Tambora as Seen in Five Ice
Cores.

The data under examination in this thesis, namely the Alphabet ice cores
near the Crête drill site, were chosen because of the relatively high resolution
and because of the existence of both water isotopic data and electrical
conductivity measurements. The data and the selection of data is presented
in this chapter, along with some corrections applied to the original
conclusions from [10, Clausen & Hammer, 1988].

Contents

3.1 Volcanic Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Corrected Depth . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 AWI B-cores . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Crete Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Determining Time of Volcanic Material
Deposition

For this thesis, two volcanic horizons have been in focus, namely the eruption
of the Icelandic volcano Laki in 1783 and the Indonesian volcano Tambora

27
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Figure 3.1: Illustration of expected summers and winters in the time span between
the Laki and Tambora volcanic depositions in Greenland.

in 1815. Due to delay in atmospheric transport ([69, Wei et al., 2008], [11,
Cole-Dai et al, 2009]), the volcanic material from Tambora was first deposited
around the summertime of 1816. This reveals a time span between volcanic
material deposition from the two eruptions of 33 summers (peaks) and 33
winters (troughs).The essence of this project is to restore as much of the
diffused signal as possible, while obeying the constraint, that the isotopic
signal must correspond to this time span, that is, the signal must exhibit 33
peaks and 33 troughs.
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Figure 3.2: Conductivity measurements aligned with water isotope measurements
at the depth corresponding to the time between eruptions at Laki and Tambora.

In Figure 3.2, the isotopic and the conductivity signals have been
aligned from the assumed positions of the Laki and Tambora depositions.
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The Laki deposition signal is especially well-defined, as it originates from a
volcano in the vicinity of the Greenlandic ice core. The Tambora signal on the
other hand is more smudged and has a wider signal with a less well-defined
peak. This is due to the large hemispheric distance between Greenland and
Indonesia, and the time it thus takes for the volcanic material to be distributed
through the atmosphere and finally deposited at Greenland.

Specifically considering the constraint involving the 33 troughs, there
might be room for some error, as it is clear that if the deposition happened
just a bit earlier or later than expected, there could be one or two troughs
more or less.

3.1.1 Corrected Depth Estimate

[10, Clausen & Hammer, 1988] presented estimates of the Laki and Tambora
positions from the ECM measurements previously presented in this thesis.
These positions have in this thesis been revisited and corrected to a more
fitting central value, which can be seen in Figure 3.3 and Table 3.1. In the
table the subscript ’CH’ refers to values as found in [10, Clausen & Hammer,
1988] and subscript ’TQ’ refers to new estimates as found in this thesis. m
corresponds to what is estimated to be middle of the event and s corresponds
to the estimated width of the event.

Tambora Laki
Core mCH mTQ sCH sTQ mCH mTQ sCH sTQ

[m] [m] [m] [m] [m] [m] [m] [m]

Site A 70.90 70.90 0.65 0.40 80.85 80.87 0.30 0.34
Site B 73.00 73.01 0.55 0.57 83.70 83.82 0.45 0.30
Site D 81.50 81.55 0.55 0.70 93.80 93.95 0.55 0.30
Site E 53.40 53.43 0.40 0.48 62.95 62.90 0.35 0.45
Site G 60.50 60.48 0.75 0.82 69.40 69.38 0.35 0.35

Table 3.1: Original and corrected middle, m, and width, s, values for Laki and Tambora
deposition events.

3.1.2 Gaussian Distribution

From the corrected middle and width estimates for the volcanic events ob-
served in ECM data, it is possible to investigate what happens to the further
analysis if the event location is moved from a fixed point. This gives a possi-
bility of estimating the locations as Gaussian distributions, with a mean equal
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Figure 3.3: Corrected depth positions durations for the volcanic signal of Laki and
Tambora in the ECM data. Green shades correspond to previously estimated depths,
from [10, Clausen & Hammer, 1988], and blue shades correspond to newly estimated
positions and durations.

to the middle value and a standard deviation of 1/4 (Tambora) or 1/5 (Laki)
of the width, and thus makes it possible to draw the Laki and Tambora esti-
mated locations from these distributions. This enables further analysis of the
developed method, as the stability can be tested by varying the positions of
the volcanic events within these Gaussian distributions. To be able to use the
developed method, it might be necessary to make the constraints of 33 peaks
and 33 troughs soft but the stability of these constraints is also something that
can be investigated through this method. Figures 3.5 and 3.4 show examples
of Gaussian distributions generated from investigation of midpoint and width
of the volcanic events.

3.2 Selection of Isotopic Data

The method developed in this project is very general and can hopefully be
used for information reconstruction and diffusion length estimation in a great
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number of different ice cores. But to develop a general algorithm one must
first test it on specific data sets. The focus was chosen to be mainly on a
number of shallow ice cores, the Alphabet cores near the Greenlandic ice core
Crête [10], and especially on the core drilled at Site A, see Figures 3.7 and 3.8
for location of the different cores examined.

3.2.1 AWI B-cores: Core B23

Before choosing to focus mainly on the Alphabet cores, some time was spent
on examining a number of cores of length between 100-175 m drilled during
the North Greenland Transverse (NGT) between 1993 and 1995 in northern
Greenland, from now on referred to as the AWI (Alfred-Wegener-Institut)
B-cores, [70, Weissbach et al. 2016]. These were primarily chosen due to
their great spatial coverage of an area of roughly 10 % of the Greenland ice
sheet. This could have proven very useful for using the method developed
here to estimate a spatial-temporal map of the covered area in the period
between the eruptions of Laki and Tambora. Unfortunately the data from the
AWI B-cores were not of high enough quality to meet the requirements of the
following data analysis. Of the twelve AWI B cores available, only seven had
corresponding electrical conductivity measurements with recognizable Laki
and Tambora signals. Out of these seven only three were of adequate quality
and resolution to subsequently be analyzed, see Appendix 7. The δ18O and
electrical conductivity profiles of one of the three high-quality cores from the
NGT can be seen in Figure 3.6.

3.2.2 Crete and Surrounding Alphabet Cores: Site A
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Figure 3.6: δ18O and conductivity profile of the AWI B-core B23. The dashed lines
represent the suggested locations of the Laki and Tambora eruptions as matched in
[70, Weissbach et al. 2016]
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Figure 3.8: Map of spatial locations of the Alphabet cores analyzed in this thesis.

The cores drilled in 1984-85 around the Crête core consist of the 400
m Crête core obtained in 1974 [9, H. Clausen et al., 1988] and eight shallow
cores of varying length, between 25 m and 130 m, drilled in the Crête vicinity
with a spatial coverage of 150 × 150 km, [9, Clausen, Gundestrup, Johnsen
1988]. See Figures 3.7 and 3.8 for spatial positioning of the ice cores.

Three cores were not of use for this project, Site C and Site F due
to their shallow maximal depth, and the Crête core, as the ECM data were
missing. The remaining five cores make up the cores in focus of this project.
They are all well-documented, [10, Clausen & Hammer, 1988], [9, Clausen,
Gundestrup, Johnsen 1988], and of high resolution making them ideal for the
data and signal analysis used in the scope of this thesis. The Alphabet cores
under consideration are presented in their full length in Figure 3, and at the
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Figure 3.9: All Alphabet cores examiend in this thesis in their full length. Blue
sections correspond to depth of Laki to Tambora

Laki to Tambora depth sections in Figure 4.

3.2.2.1 Data Specifications

The general specifications of all five cores, i.e. drill site information and vol-
canic event locations, are presented in Table 3.2 [10]. d describes depth of
event, A describes accumulation rate, T describes temperature, ρ describes
density at a given depth and s describes the width of a given event. Sub-
scripts L and T stand for volcanic events Laki and Tambora, respectively,
subscript 0 describes initial surface condition, and superscripts CH and TQ
represent the original and corrected values for depth and width of events.
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Figure 3.10: All Alphabet cores used in thesis at the depth corresponding to Laki
to Tambora.
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Site A Site B Site D Site E Site G

dCHL [m] 80.85 83.7 93.8 62.95 69.4

dCHT [m] 70.9 73.0 81.5 53.4 60.5

A0 W.E [m] 0.307 0.327 0.365 0.225 0.251

A0 I.E. [m] 0.282 0.300 0.335 0.206 0.230

T0 [oC] -29.41 -29.77 -28.3 -30.37 -30.1

ρ0 [kg m−3] 343.0 355.0 350.0 325.0 -

z0 0.55 0.55 0.825 0.675 -

sCHL [cm] 30.0 45.0 55.0 35.0 35.0

sCHT [cm] 65.0 55.0 70.0 40.0 75.0

ρL [kg m−3] 836.0 841.0 857.0 786.0 807.0

ρT [kg m−3] 812.0 816.0 839.0 749.0 778.0

dTQL [m] 80.87 83.82 93.95 62.9 69.38

dTQT [m] 70.90 73.01 81.55 53.43 60.48

sTQL [cm] 34.0 30.0 30.0 45.0 35.0

sTQT [cm] 40.0 57.0 55.0 48.0 82.0

Table 3.2: Core specifications for core drilled at Site A. d describes depth of event,
A describes accumulation rate, T describes temperature, ρ describes density at given
depth and s describes the width of a given event. Subscripts L and T stand for
volcanic events Laki and Tambora, respectively, subscript 0 describes initial surface
condition, and superscripts CH and TQ represent the original and corrected values
for depth and width of events.





Chapter 4

Signal Analysis and
Computational Methods

This work is based on the main idea that a diffused depth series can be at-
tempted reconstructed through various analysis of especially the frequency
spectrum of the signal and through theoretical and empirical knowledge of
diffusion and densification processes in snow, firn and ice. To utilize this idea,
the specific analysis methods used must be well understood. This chapter
focuses on the signal analyses and computational methods used in the further
analysis, and discusses some of the challenges encountered.

Contents

4.1 Data as a Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Back Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Signal Restoration . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Peak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Constraint: ALT from Spectral Analysis . . . . . . . . . . . . . . . . 51

4.5.1 Estimating λA . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.2 Change in lsec . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.3 Change in lshift . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Splines and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.2 Interpolation in this Project . . . . . . . . . . . . . . . . . . . 58

37



38 CHAPTER 4. SIGNAL ANALYSIS & COMP. METH.

This chapter only focuses on the hands on methods used and does not
go into depth with the next part of the work, which uses the back diffusion
method along with a constrained optimization to estimate an optimal diffusion
length, σ, for a given depth section. The optimization method and algorithms
are presented in the next chapter, Chapter 5. This chapter focuses on spectral
transform and analysis of a depth series, Section 4.2, frequency filtering and
deconvolution as means to back diffusion, Section 4.3, peak detection, Section
4.4, annual layer thickness as constraint for peak detection, Section 4.5, and
spline interpolation, Section 4.6.

4.1 Isotopic Data as a Time Series

The presented data obtained through various experimental measurements,
electrical conductivity measurements and water isotopic measurements, are
easily compared with a time series, as they typically show some quantity
measured all along the depth of an ice core. This depth is often, at short
intervals, treated as a regular linear time series thus making it possible to use
some of the known signal analysis methods. Of course, when considering the
entirety of an ice core, the linearity disappears as thinning and compression
makes the depth series non linear. But when considering short lengths of core
it is possible to estimate a linearity, assuming conformity in this specific layer.

This section will contain a detailed presentation of the signal analysis
and computational methods used to obtain the restored and enhanced signal
that is sought after. In Figure 4.1 the general back diffusion method for signal
restoration and enhancement is presented, with the specific modules described
in this section highlighted in bold text and with an YellowGreen colour.

The method presented in Figure 4.1 is a subpart of the final algorithm
that will be presented in the subsequent chapters. Figure 4.1 describes the
flow of the general method, through back diffusing a measured depth series
given empirically modelled σ. Thus it describes a single process, which is
implemented in the optimization algorithm later on, where the diffusion length
is the unknown parameter that is being optimized.

In this chapter spectral analysis and frequency filtering are presented
as the main signal analysis methods used. The description of spectral analy-
sis also contains a walk through of how back diffusion is carried out through
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spectral analysis. As computational tools this chapter presents spectral trans-
forms, interpolation and constrained peak detection, all methods used as in-
struments to improve accuracy and precision of the analysis.

4.2 Spectral Analysis of Time Series

A very useful tool for analyzing signals exhibiting oscillatory effects is analysis
of the signals power spectrum. Instead of considering the signal in time (or
depth), it is transformed to the spectral domain, where it is possible to obtain
an estimate of both the signal and the underlying noise. This is crucial for
enhancing the signal and filtering away noise. But to be able to examine
these effects, first the data must be transformed. A range of different methods
may be used to compute the frequency transform of the depth series, here is
presented the three that has been implemented and utilized throughout this
thesis. Since the data are discrete and experimental samples, it will be the
discrete and applicable mathematical models that are presented.

4.2.1 Power Spectral Densities

When considering a signal, it may be of interest to investigate how the energy
of said signal is distributed with frequency. The total power is defined as:

Total Power =

∫ ∞
−∞
|X(τ)|2 dτ. (4.1)

Using Parseval’s theorem [50, M. Parseval, 1806] (assuming that the
signal has a finite total energy), the power of the signal can alternatively be
written as

∫ ∞
−∞
|X(τ)|2 dτ =

∫ ∞
−∞
|X̃(τ)|2 df (4.2)

where X̃(f) is the spectral (Fourier) transform of the signal, from time to
frequency domain, defined as:

X̃(f) =

∫ ∞
−∞

X(τ)e2πifτ dτ (4.3)

and the inverse spectral (Fourier) transform, from frequency to time domain,
defined as:

X(τ) =

∫ ∞
−∞

X̃(f)e−2πifτ df. (4.4)



40 CHAPTER 4. SIGNAL ANALYSIS & COMP. METH.

Both X(τ) and X̃(f) represent the same function, just in different
variable domains. Often, the angular frequency ω is used instead, with the
relation between ω and f being ω ≡ 2πf , giving the Fourier and inverse
Fourier transforms as:

X̃(ω) =
1√
2π

∫ ∞
−∞

X(t)eiωτ dτ

X(τ) =
1√
2π

∫ ∞
−∞

X̃(ω)e−iωτ dω

(4.5)

From Equation 4.2 we can interpret the integrand on the right hand
side |X̃(f)|2 as a density function, describing the energy per unit frequency.
This is a property which is able to reveal much information about the consid-
ered signal, and it is useful to define this as the (one-sided) Power Spectral
Density:

PX(f) ≡ |X̃(f)|2 + |X̃(−f)|2 0 ≤ f <∞ (4.6)

This entity ensures that the total power is found just by integrating
over PX(f) from 0 to ∞. When the function is purely real, the PSD reduces
to PX(f) = 2|X̃(f)|2.

In the above the transform used to define the PSD was presented as the
Fourier transform. When working with discrete data, as is very common when
analyzing real world data, there are a different ways of estimating the PSD.
In the following a number of different transforms will be presented briefly, all
used in this thesis. For a more in depth description and discussion of the
individual transforms, see Appendix 7.

4.2.1.1 Spectral Transforms

• DFT/FFT In the above section the general description of the contin-
uous Fourier Transform and its inverse were presented. When consider-
ing discrete functions, as is generally the case with measured data, the
Fourier transform of the measurements will also be discrete and repre-
sented over a finite interval [a; b] for functions with a period of L = b−a,

described continuously as CN
∫ b
a X(τ)ei

2π
L
ωτ dτ with CN being the ap-

propriate normalization. The discrete version of the Fourier transform
is refered to as the Discrete Fourier Transform (DFT). It transforms the
discrete signal into a sum of separate components contributing at differ-
ent frequencies.



4.2. SPECTRAL ANALYSIS 41

The DFT and its inverse for a data series consisting of N discrete points
are defined as:

X̃n ≡
N−1∑
k=0

Xk e
2πik n

N (4.7)

Xn ≡
1

N

N−1∑
n=0

X̃n e
−2πik n

N (4.8)

The DFT is dependent on the sampling interval, ∆z, which limits the
bandwidth to frequencies smaller in magnitude than the so-called Nyquist
critical frequency, fNQ ≡ 1

2∆z
. That is X̃(f) = 0 for |f | ≥ fNQ. Thus

when considering a signal with frequencies both inside and outside this
Nyquist interval, the spectral information outside of the interval will be
falsely interpreted as being inside the interval - this is called aliasing,
and gives rise to an increased power at the daughter frequency of the
aliased frequencies.
Computation of the DFT can be very slow, but a number of different
algorithms have been developed for fast and efficient computation of the
DFT, and the one considered in this thesis is referred to as the Fast
Fourier Transform (FFT). The FFT implemented in this work is the
scipy.fft.

• DCT The full Fourier transform is designed to process complex-valued
signals, always producing a complex-valued spectrum, as the cosine and
functions each contain individual information of the spectrum and con-
stitute a complete set of basis functions. But a purely real-valued signal
has a symmetric Fourier spectrum, meaning that it is only necessary
to compute half the number of spectral coefficients, without losing any
signal information. In this work, the data analyzed is purely real-valued.
This can be utilized by only using the cosines as basis functions, describ-
ing the purely real part of the signal - which is exactly what is needed
here. The FCT is commonly computed through the FFT algorithm, and
in this thesis the scipy.fft.dct is used.

• NDCT Both the FFT and the FCT work under the assumptions that
data is equispaced. This is not always the case when considering real
world data, and when the data is nonuniform, the DCT is described as

X̃k = 2

N−1∑
n=0

Xn cos

(
2πfk

(
pn +

1

2N

))
, 0 ≤ k < M − 1 (4.9)



42 CHAPTER 4. SIGNAL ANALYSIS & COMP. METH.

with, in the most general case, nonuniformly spaced signal, po, ..., pN−1,
data and frequency data, f0, ..., fM−1. The inverse of NDCT, the IN-
DCT, is computed as:

Xk =
X̃0√
N

+

√
2

N

N−1∑
n=1

X̃n cos

((
pn +

1

2N

)
2πfk

)
, 0 ≤ k < N − 1

(4.10)

The data under consideration in this project is rarely exactly equi-
spaced and previously, the spectral analysis made on isotopic depth series
has assumed that the sampling size differences were of an order that could
be ignored, and assumed that the samplings were uniform. When working
with large data sets this is understandable, as it can slow down the analysis
if the FFT or FCT could not be used. This can lead to a loss of information,
as in nonuniformly sampled data, some features may be erased by assuming
uniformity.

For this project though, the data sets are not of great numbers and
the differences in and effects of using FFT, FCT(mostly just referred to as
DCT) and NDCT has been examined.

4.3 Back Diffusion Through Spectral Analysis

Due to diffusion in firn and ice, some of the water isotopic signal is lost.
Some of this signal can be restored by investigating the diffusion process, and
through filtering and deconvolution techniques. For the data of this thesis a
spectral method, determining the effect of mixing and diffusion as a spectral
filter [29, S.Johnsen et al., 2000], [55, S. Rasmussen et al., 2005] is used as a
restoration technique.

4.3.1 Signal Restoration by Optimal Diffusion Length

When considering a water isotopic depth series as the ones under examination
in this thesis, it is possible to restore some of the signal lost to diffusion. This
signal restoration technique will forwardly be referred to as ’back-diffusion’,
as it approximates the inverse of the diffusion process.
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Figure 4.1: Flowchart of back diffusion method and peak detection, high-
lighted in green are the computational methods examined in this chapter:
spectral transform and analysis of a depth series, Section 4.2, frequency filter-
ing and deconvolution as means to back diffusion, Section 4.3, peak detection,
Section 4.4, annual layer thickness as constraint for peak detection, Section
4.5, and spline interpolation, Section 4.6.
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Figure 4.2: Examples of three different spectral transforms, FFT, DCT, NDCT,
performed on the depth series between Tambora and Laki eruptions from Site A.
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The spectral filtering technique assumes the measured signal to be
composed of a noise free signal and a noise signal. During the signal restoration
process, a first estimate of the diffusion length σ of the depth series can be
made, since the PSD of the noise free measured signal is described through
PSDsignal = P0 e

−k2σ2
tot , where σtot describes the most likely mean diffusion

length of the total mixing in the system. When estimating through spectral
analysis, the diffusion length estimate will be a constant, even though the
diffusion length is varying with depth. It is still a good estimate for the entire
depth series, as the depth sections under consideration here show a relative
small change in theoretically expected diffusion length, see Figure 4.4 showing
the modelled diffusion length profile for Site A with a variation of 0.2 cm.

4.3.1.1 Spectral Filtering

When examining a real-world signal with focus on the frequency domain one
will quickly run into the problem of noise. Different signals are prone to differ-
ent types of noise, and must thus be treated in a fitting manner. Some spectra
are prone to random low frequency noise and some to high, while others again
might have a well-defined noise spectrum inherently. Understanding the na-
ture of the noise is crucial for further signal analysis, as the signal-to-noise
ratio (SNR) needs to be sufficiently high to be able to accurately separate
signal and noise from each other. By understanding the noise, and modelling
and estimating it, it can become possible to generate a filter which might min-
imize the noise and enhance the signal. This next section will go into detail
with how to construct a filter fitting to the data at hand, and builds upon
the theory presented in the previous chapter, along with [29] and [56]. This
filtering will also be able to give an estimate of the diffusion length at a given
depth section, due to the inherent nature of the signal and noise.

Through spectral analysis it is possible to treat the noise of the signal
consistently. The goal is to create spectral filters which enhances the signal
while minimizing the effect of the noise, thus increasing the SNR.

Estimating the Unmixed Signal Theoretically, without any diffusion, the
change in isotopic concentration would be described through a step function,
going from one constant concentration to another. This step function can be
described by the Heaviside function:

D(t) =

{
0, t < 0

1, t ≥ 0
(4.11)
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In reality, a number of different mixing processes change this step func-
tion, and the measured signal will be a smooth curve, d(t), which corresponds
to the convolution of D(t) with the mixing response function M(τ)

d(t) =

∫ ∞
−∞

D(τ) ·M(t− τ) dτ (4.12)

where t describes the time or depth with which the signal D(t) varies with, and
M(t − τ) in the integral describes the effect of the mixing response function
at all different time or depth differences.

As is well known by the convolution theorem, in the spectral domain,
convolution is multiplication and the mixing is described as the element wise
multiplication between the Fourier transform of D and M :

d̃(f) = D̃(f)� M̃(f) (4.13)

By differentiation with respect to time, the mixing filter M is unaffected, and
differentiation of the measured system response, the Heaviside function, D′ is
a delta function, which Fourier transformed is unity, leading to:

d̃′(f) = D̃′(f)� M̃(f) = M̃(f) (4.14)

The mixing filter can thus be determined by measuring the system response
to a step function, differentiating, and performing Fourier transform of the
result d̃′(f).
After determination of the mixing filter M̃ , the unmixed signal D can be
estimated in theory by inverse Fourier transform of

D̃(f) = d̃(f)� 1

M̃(f)
(4.15)

Construction of Wiener Filter During the mixing, cycles with short
wavelengths are heavily washed out, and through the restoration in Eq. 4.15,
the amplitudes corresponding to these wavelengths are heavily amplified by
the filter, since the restoration filter is chosen to reconstruct the wavelengths
otherwise washed out by diffusion. This method though has a drawback,
which is that when the measurements contain noise, the restored signal will
be dominated by high-frequency noise, greatly amplified by the mixing filter.
Thus it is a problem of retaining as much (short wavelength) signal as possible
while simultaneously attempting to amplify the high-frequency noise as little
as possible. This optimal trade-off can be found by creating an optimum filter
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for the considered measured isotopic signal δM (z), consisting of the noise free
signal δm(z) and the noise η(z):

δM (z) = δm(z) + η(z) (4.16)

This optimal (Wiener) filter F̃ , defined for each wave number k = 2πω, is
presented as the ratio between pure signal and pure signal plus noise described
in Power Spectral Densities as:

F̃ (k) =
|δ̃m(ω)|2

|δ̃m(ω)|2 + |η̃(ω)|2
(4.17)

In this work, the power spectral densities of the signal and the noise, respec-
tively, are determined through analysis of the power spectral density of the
combined signal/noise PSD.
The PSD of the noise free measured signal, |δ̃m(ω)|2, is assumed described as

|δ̃m(ω)|2 = P0e
−k2σ2

tot (4.18)

where σ2
tot describes the total estimated diffusion length of the mixing.

In ice core isotopic data, the noise in a signal is often due to random relocation
of the snow deposited. This would lead to an assumption of the noise in the
data under consideration here being described by white noise. But based on
the conclusions of [26, C. Holme et al., 2018], stating that high accumulation
Greenlandic ice cores, as the ones under consideration here exhibits red noise,
the noise is assumed to be red noise, and is described by an autoregressive
process of first order, AR1:

|η̃(ω)|2 =
σ2
η∆z

|1 + a1 exp(−2πiω∆z)|2
(4.19)

where σ2
η is the variance of the red noise, a1 is the AR1 coefficient and ∆z is

the resolution of the time/depth data.

Since the power spectrum of the full signal δM (z) is a sum of the
noise free signal and the noise, and the noise and signal are assumed described
through Eq. 4.18 and 4.19, it is possible to estimate the parameters P0, σ2

tot,
σ2
η and a1 by curve fitting to the power spectrum. The estimated parameters

are varied to find the optimal guess to use for the filter. An example of the
constructed Wiener filter can be seen in Figure 4.6 on both a linear and a
double logarithmic scale.
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Wiener Filter.
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Figure 4.6: (a) Wiener
filter on linear scale. (b)
Wiener filter on double log-
arithmic scale.

4.3.1.2 Final Restoration

After finding the best fit (noise and signal) to the spectral data, it is possible
to construct an optimal restoration filter, R̃(f), which contains two separate
filters. One is the Wiener filter, F̃ (f), which is described in the above section
and the other is a Gaussian filter constructed to amplify certain frequencies.
This filter, the transfer function of the system, is constructed to specifically
amplify the frequencies heavily attenuated by the diffusion process and is
described as

G(z) =
1

σ
√

2π
e
−z2
2σ2 , (4.20)

in the time (depth) domain and, since the Fourier transform of a Gaussian is
still a Gaussian, in the frequency domain it is described as:

G̃(f) = F [G(z)] = e
−(2π f)2σ2

2 . (4.21)

Finally, the constructed frequency restoration filter, in the frequency
domain, is a product of the Wiener filter, from Equation (4.17), and the
transfer function, from Equation (4.21):

R̃(f) = F̃ (f)
1

G̃(f)
(4.22)

which results in a rewrite of equation 4.15 to:

D̃(f) = d̃(f) F̃ (f)
1
˜G(f)

(4.23)
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An example of the final frequency restoration filter, as it changes with
diffusion length estimate inputted in the transfer function, G̃(f), can be seen
in Figure 4.7.

Figure 4.7: Frequency filter examples ranging from diffusion length 0.04 m to 0.085
m.

4.4 Peak Detection

After attempting to reconstruct the diffused signal as best as possible, the
next question is, how to determine the estimated number of years in a given
back diffused depth section.

Knowing that water isotopic data are a proxy for temperature, the
most obvious way to determine annual layers in the signals is by detecting
peaks and troughs. During colder periods, e.g. winter, the air masses arriving
at the ice core sites have formed more precipitation before reaching the sites,
and the vapor that results in this final precipitation is then more depleted of
heavy isotopes, resulting in lower isotopic values, troughs in Figure 2.1. The
precipitation falling during warmer conditions, e.g. summer, is correspond-
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ingly less depleted of the heavy isotopes, and results in higher isotopic values,
peaks in Figure 4.8.
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Figure 4.8: Ten meters of the top of Cretê ice core, with identification and dating
of 19 annual layers, with peaks(blue) corresponding to summers and troughs(orange)
corresponding to winters.

Peak detection and layer counting has previously been carried out by
visual inspection of the ice core depth signals, but as computers and algo-
rithms have become more integrated in data analysis, it is now more common
to use different automatic methods [71, J. Wheatley, 2015], [72, M. Winstrup,
2012], [56, S. Rasmussen et al., 2014]. Developing and implementing layer
counting and peak detection algorithms can be done in a number of different
ways, but for this project, at first a very simple method has been initially
implemented and later the method has been improved and optimized through
a number of different constraints. One could also use different pattern recog-
nition techniques to achieve even more qualified seasonal cycle detection, and
later some of these methods will be presented.

The most näıve approach, and the one first implemented in this project,
to peak detection is to simply find local maxima by comparing neighbouring
values. When examining point di, the point is deemed a local maxima, if
di±1 < di. Local minima, troughs, can be found in exactly the same manner
by finding minima as di±1 > di. A very simple constraint for this method is to
keep a required minimal distance between peaks, so that two peaks cannot be
detected within a point distance of ∆dmin. For example at a depth of 12 m in
Figure 4.8 two troughs can be seen, but only one is chosen, as they are within
the threshold distance to each other, which here is set to ∆dmin = 7 points.
Here, the lowest of the two troughs is chosen. The threshold distance can
be chosen in different ways, for this short section it has been chosen through



4.5. CONSTRAINT: ALT FROM SPECTRAL ANALYSIS 51

visual inspection, but more generally it can be chosen by examining some of
the intrinsic properties of the signal like the estimated annual layer thickness,
λA, as explained in the following Section 4.5.

4.5 Constraint: Annual Layer Thickness Estimates

For a more reliable peak detection, it is of interest to impose some constraints
representing the known nature of the signal, i.e. that it is continuous, that it
should exhibit cyclical behavior or that the signal must decrease in amplitude
with depth.

A feature, important to impose as constraint, that is also possible to
examine through spectral analysis, is the annual layer thickness, λA, i.e. the
distance between peaks or troughs in the annual isotopic signal [67, B. Vinther
et al., 2006]. Due to densification processes and ice flow, λA is expected
to decrease with depth, as the layers are thinning with depth. The annual
layer thickness will be of use for the further analysis, as λA can be used as
a constraint for the distance between peaks and troughs when counting years
in the depth signal. Thus the goal is to estimate an annual layer thickness
at the depth section between the Laki and Tambora events, which can then
be used to set up a distance constraint. This section will present the method
used for estimating the annual layer thickness piecewise throughout an entire
ice core, and a discussion of the different parameters that can be varied when
estimating λA. Especially the length of the depth section used in the spectral
analysis, lsec, and the length of the shift between sections, lshift, are considered.
Specifically the effect on the annual layer thickness estimate at the depth
between Laki and Tambora by changes in lsec and lshift are investigated to
make a qualified decision on what the optimal values for these parameters
are.

4.5.1 Estimating λA Through Spectral Analysis

The transfer function of the diffusion process, Equation (4.21), can be rewrit-
ten as a function of the wavelength of the isotopic signal, λ:

G̃(f) = e
−2π2σ2

λ(f)2 (4.24)

The wavelength of the signal corresponds roughly to the annual layer
thickness, λA, in the signal. Regarding the isotopic signal as a wave, it is clear
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from both theoretical knowledge of the processes and visual inspection of the
data, that the diffusion and densification have an effect on the magnitude and
the wavelength/frequency respectively. The diffusion attenuates some of the
waves magnitude, and the densification shortens the wavelength of the signal.
As presented in the previous sections of this chapter, the general effects of the
densification and diffusion processes can be examined by spectral analyzing
the entire core. This is done by dividing the signal into a number of sections of
an (almost) fixed length, lsec and shifting this section down through the core
with a shift of length lshift. The length is not exactly fixed, as the sample
sizes vary through the core, which results in small variations in section and
shift lengths.

For a such depth section, the PSD of the signal is computed through
the use of DCT, NDCT, FFT and MEM (Maximum Entropy Method, [66, T.
Ulrych and T. Bishop, 1975]). All four spectral transforms are utilized to be
able to give an uncertainty estimate on the annual layer thickness. Since the
frequency of the seasonal cycle is assumed to be the most prominent in the
spectrum, thus λA is detected as the most prominent peak, see Figure 4.9.
Though as diffusion affects the signal more and more with depth, the annual
signal becomes slightly more difficult to single out in the spectrum, and other
features might result in more prominent peaks at lower frequencies. This has
been dealt with in this thesis by simply assuming that the frequency in section
lisec must be larger than the frequency in li−1

sec , due to knowing that the densifi-
cation and thinning in the firn column must result in a continuous decrease of
annual layer thickness.The analysis is then carried out be sequentially going
through the depth segments

Figure 4.10 shows the λA estimates of the entire cores drilled at site
A, B, D and G. The section length is 5 m and the shift is 4 m, to avoid
missing any frequencies in the transitions between sections. Along with the
estimated λAs, an estimate of the average λ̄A value at the depth corresponding
to between Laki and Tambora events has also been shown.

The final λLT used as a constraint on peak distance in the final algo-
rithm is determined as an average of the estimated λA falling inside the Laki
to Tambora depth interval.
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Figure 4.10: Annual layer thickness estimates, λ, calculated through spectral inte-
gration of 5 m sections of the entire core lengths. The average is based on using both
FFT, DCT and NDCT spectral estimations. Blank spaces, akin to the sections below
60 m depth at Site E shows problematic areas, where the spectral estimation have
had trouble with determining λ. The black vertical lines show the depth sections
between Laki and Tambora events.

4.5.2 Change in section length

When performing spectral analysis on a time series, the length of the section
under examination is crucial for the outcome of the analysis. If the section
is too short to contain the information hidden in the signal, then it will be
difficult to detect patterns and frequencies of interest. If the section is too long
though, noise might dominate the spectrum, or longer term cycles that are not
of interest for this analysis might become visible and dominant. Furthermore,
for a nonlinear signal, as the isotopic depth series are, the linearity does not
hold for very long sections, as the cycles are compressed and diffused. Thus
it is of interest to examine the effect of the section length on the annual layer
thickness estimates. The λA estimates were performed for sections lengths
of 1.0 to 25.0 m. Above this upper limit, there were too much noise in the
spectrum to determine a λA.

In Figure 4.11 different λA depth profiles can be seen, given five differ-
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ent section lengths. All estimates are made with a shift of 1 m. Considering the
shortest section length of lsec = 1.00 m, it is clear that the estimation method
picks up some noise resulting in a highly varying λA estimate throughout the
cores. but, generally, the other four section lengths seem to pick up the same
annual cycles, except for at Site E and G, where the two largest section lengths
of 15.55 m and 20.39 m give some very long annual layer thicknesses at some
depths.

Considering Figure 4.12 the λA estimates of the Laki to Tambora
depth sectionsshow low stability at short section lengths and increasing accu-
racy and precision as the section length increases, until at some point, espe-
cially clear in Site E, but also visible in Site G and Site A, the accuracy start
to drop as the variance of the λLT estimate increases.
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Figure 4.11: Examples of the λ depth profile given different section lengths. All
profiles are computed with a shift of 1 m.

Based on the stability analysis of the section lengths, the general sec-
tion length to estimate λA in this work was set to λA = 7 m, but with possi-
bility to vary.
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Figure 4.12: The annual layer thickness estimates in the section between Laki and
Tambora as computed with different section lengths, lsec, used in the spectral analysis.
The section is shifted 1 m and then computed again. The λLT is then calculated as
a mean of th λ estimates falling into the Laki to Tambora depth section.

4.5.3 Change in shift length

The change in shift length is assumed to be more an issue of how detailed the
λA depth profile needs to be versus how computationally fast it is needed to
be. If the shift is small, there will be a need to perform the spectral analysis
many times before the entire depth is covered, but many small varying features
may become visible throughout the core. All shift lengths are examined with
a section length of lsec = 7 m.

For this project though, a rough estimate of the λLT at a given depth
is needed, and the accuracy and details is not as important. Looking at Figure
4.13 it is obvious that for most cores there is a clear exponential attenuation
effect on the layer thickness. This effect is visible for all different shift lengths,
which might point to that, for this work at least, a very small shift is not
necessary.

Interestingly, though, is that especially for Site E and Site G, there
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A spline is a piecewise poly-
nomial of degree k that is
continuously differentiable
k − 1 times.

are some depths where the λA estimates seem to be increasing instead of
decreasing. Luckily for this work, these depth are not of interest, and the
specific depth between the Laki and Tambora events seem to be stable at
almost any shift length. Only site E presents some troubles where λA has
presented itself difficult to estimate exactly at the Laki to Tambora depth.
For this specific core it could therefore be necessary to decrease the shift
length to be able to get more estimates in the Laki to Tambora area.
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Figure 4.13: Examples of λ depth profiles given different shift lengths. All profiles
are computed with a section length for spectral analysis of lsec = 5 m.

In Figure 4.14 the λLT versus shift length can be seen, with shifts from
0.05 m to 5 m.

4.6 Splines and Interpolation

For the purpose of this thesis, interpolation of data needs to be fast, efficient
and result in a function as smooth as possible. The last criterion is due to the
knowledge of the nature of the data. The measurements are not continuous
but they are discrete samples of a continuous function. Thus a good choice
for interpolation of the data examined in this thesis would be the cubic spline
interpolation. An instance of a such interpolation can be seen in Figure 4.15.
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Figure 4.14: Annual layer thickness estimate at the depth section between Laki and
Tambora, λLT versus different shifts of the sections used in the spectral analysis.

Cubic spline interpolation has been used in two instances during this
analysis, both times through the Python SciPy package scipy.interpolate.CubicSpline

. Firstly, to assure equally spaced data points, so as to be able to perform a
useful frequency analysis through spectral transformation, see Section, 4.2.1.1.
Secondly cubic spline interpolation was used to improve on peak detection in
the final back diffused data. The final data have a rather low resolution, lead-
ing to an initial guess of peak positioning that might be shifted due to the
discretization. Through cubic spline interpolation it is possible to construct a
smooth estimate of a signal of higher resolution, leading to a peak positioning
estimate that might be less shifted.

4.6.1 Interpolation

Interpolation is a tool that can be used - and misused - to extract more in-
formation out of a given set of data. Used correctly, interpolation can reveal
more information than is initially available and disclose connections not ap-
parent at first, but used incorrectly, it can be manipulated to infer misleading
correlations and lead to inaccurate conclusions. Thus it is a tool that must
be used with care. Aiming to avoid incorrect deductions and inferences one
should at first gain as much knowledge about the data at hand as possible. By
understanding how the data have come about and gaining knowledge about
the underlying physical theories a somewhat deficient data set can robustly
and securely be interpolated to accommodate the needs of the analysis. In the
case of this thesis, both knowledge about data gathering and the physics at
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play have been gained and thus some of the common fallacies may be avoided.
The limits of the data available is due to the discrete sampling, leading to a
minimum sampling of about 26 samples per meter of ice.
When considering that the depth series of 33 years between Tambora and Laki
is just above 10 meters, this means that each meter of ice needs to contain at
least three years on average. 26 samples per three years might not sound as
a bad sampling interval, but if the goal is to show seasonality and give a best
estimate of annual layer thickness, interpolation could be put to good use to
be able to give better estimates of the exact placement of peaks and troughs.

4.6.2 Cubic Spline Interpolation in this Project

An in depth description of interpolation and splines can be found in Appendix
7. In general, these interpolation methods are implemented and examined in
two particular sections of the analysis:

1. Cubic spline interpolation of raw, unevenly sampled data to represent
even data, that can be analyzed through fast spectral transforms.

2. Cubic spline interpolation of the final back-diffused signal estimate to
enhance resolution for more efficient peak detection.



4.6. SPLINES AND INTERPOLATION 59

−35

−30

δ1
8
O

[h
]

Measured

Spline interp., ∆ = 2.00 [cm]

−35

−30

δ1
8
O

[h
]

Measured

Spline interp., ∆ = 3.81 [cm]

−35

−30

δ1
8
O

[h
]

Measured

Spline interp., ∆ = 10.10 [cm]

72 74 76 78 80
Depth [m]

−35

−30

δ1
8
O

[h
]

Measured

Spline interp., ∆ = 20.41 [cm]

Figure 4.16: Four different resampled signals of Site A data, showing loss of infor-
mation when resampling resolution is low.

Since the second interpolation is performed on data that has already
been altered through the back diffusion and signal restoration process, it is
the first interpolation, before back diffusion, that is the most at risk of in-
troducing false information. To try and maintain the signal as true to its
underlying samplings as possible, the first interpolation is only used if either
of the uniform spectral transforms are chosen. If the interpolation is necessary,
in the case of the uniform transforms, the interpolation is not chosen smaller
than the smallest existing sample size in the depth section. Furthermore this
interpolation is avoided when possible. This is done by primarily using the
nonuniform DCT in the analyses, even though it is much slower. The effects of
both interpolation methods are presented in the following chapter, in Section
5.2.2.





Chapter 5

Estimating σ from Data:
Methods, Algorithms and
Discussion

This chapter presents the final method and algorithm used to obtain an
estimate of the optimal diffusion length, σ, for the depth sections under
consideration. It consists specifically of two sections, one presenting a walk
through of the constrained optimization σ estimation method, Section 5.1,
and one containing a number of tests to examine the behaviour and stability
of the method and algorithm, 5.2. Finally, a discussion of the further work
that could be done to improve on the method is presented in Section 5.3.

Contents

5.1 σ Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Module 1: Initialization and Back Diffusion . . . . . . . . . . 63

5.1.2 Module 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.3 Constrained Peak Detection . . . . . . . . . . . . . . . . . . . 68

5.2 Testing and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Constraints or No Constraints . . . . . . . . . . . . . . . . . . 70

5.2.2 Effects of Interpolations . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Spectral Transforms . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 LT locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

61



62 CHAPTER 5. METHOD AND DISCUSSION

0.000 0.025 0.050 0.075
Diffusion Length σ [m]

0

20

40

60

80

100

120

Ic
e

d
ep

th
[m

]

SiteA

σ̄LT : [0.076;0.074]

Figure 5.1: Diffusion
length profile with section
between Laki and Tambora
highlighted.

5.1 σ Estimation Method

As mentioned earlier, the diffusion length varies with depth, see Figure 5.1 for
a modelled diffusion length profile for conditions at ice core drill site A. Though
for the most of the final results, an assumption is made that the diffusion
length along the depth section under consideration is constant, σ(z) = σ. This
assumption is made based on the relatively small variation in diffusion length
at the depths analyzed, especially compared to the uncertainty given on the
final diffusion length estimates. Though this assumption is made, the subject
of including a varying σ(z) in the final analysis is presented and discussed.

The general idea of the optimal σ estimation method is to back diffuse
a depth series defined on an interval where the time span (i.e. the number
of peaks and troughs expected in that section) is known. This allows us to
use the diffusion length as a tuning parameter, to find the diffusion length
estimate which generates the right number of peaks and troughs and fulfills
the imposed constraints in the back diffused depth series. If more than one
diffusion length meet these constraints, the largest diffusion length to still
fulfill the constraints is sought after. This diffusion length is then assumed to
be the optimal guess on the diffusion length in that interval, which allows for a
temperature estimate, following the temperature dependence of the diffusion
length, as described in Chapter 2.

The algorithm consists of two modules, where one module describes
the numerical back diffusion, given an inputted depth series, core specification
and specific σ0 estimate (which is either manually inputted or estimated from
the spectral analysis). The flowchart describing the processes carried out in
this module can be seen in Figure 5.2. Many of the sections in this module
are only necessary in the initialization of the algorithm as these parts do not
change if the inputted diffusion length estimate is changed. In Figure 5.2
anything carried out above the Frequency Filters block to the left is only
computed once, and the same with anything to the right of it, except the σ0

estimate. The density and diffusion profile calculations, the spectral analysis
and the Wiener filter construction are inherent to the depth series alone, and
these analyses are carried out as previously described in this thesis.

The first module could easily be used to scan the entire one dimen-
sional σ space linearly, and from this analysis determine the optimal σ. This
was first implemented, but turned out to be very slow - of course depending
on the stepping size. But to speed up the search, a direct search method was
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implemented.

The second module is responsible for the optimization. This module
examines the parameter space containing the diffusion length estimates, and
utilizes a constrained direct search method to find the optimal diffusion length
estimate. This method is illustrated through a flowchart in Figure 5.6.

5.1.1 Module 1: Initialization and Back Diffusion

The first module of the algorithm, containing initialization and describing the
general back diffusion method, is based on many of the aspects and models
presented in the previous Chapters 2 and 4. Therefore the description of this
module will focus on the work flow and not so much on the specific details
of each process, as these have already been presented. The different chapters
and sections containing the description of the methods used are referred to in
the text of Figure 5.2.

The module takes an input of a measured depth series in a given
interval, d, and the specifications concerning the drill site and the ice core in
general. From here the work flow splits in two: one route(left) analyzing the
depth series, and one(right) giving an estimate of σ at that depth, based on
models.

Figures 5.3 and 5.4 illustrate the back diffusion with three different
diffusion lengths, minimum and maximum theoretical estimate (σmin

Theo, σmax
Theo)

and σFit estimated from the signal’s PSD, used in the Gaussian filter. The
two Figures show the difference in stability for the signal. Site A exhibits
a stronger reaction to a change in σ, rapidly increasing the amplitude and
number of peaks counted, whereas Site B shows smaller variation in the final
restored signal.

The right flow describes how the σ0 estimate is given on the basis of
the core specifications passed into the algorithm. First, a HL-density profile
is modelled, based on the necessary input parameters of annual accumulation
rate A0 and drill site surface temperature T0, and the optional inputs of surface
density ρ0 and measured depth versus density data. Secondly, this density
profile is used to compute a diffusion length profile, by the use of the Iso-
CFM.

The modelled diffusion length profile is then used to find a theoretical
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Figure 5.2: Flowchart of initialization method for back diffusion of a depth series
given a diffusion length estimate. For the left part of the flow, the methods used
are presented in the following sections: spectral transform and analysis is presented
in Section 4.2, frequency filtering and deconvolution as means to back diffusion in
Section 4.3, peak detection in Section 4.4, and spline interpolation in Section 4.6. For
the right part of the flow, the theories and methods are presented in Section 2.2.
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Figure 5.3: Backdiffused data for Site A, deconvolution with maximum and minimum
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Figure 5.4: Backdiffused data for Site B, deconvolution with maximum and minimum
σTheo, and σFit estimated from the PSD of the signal.

diffusion length estimate which is used as an initial guess for the diffusion
length, σ0. This is then used as the standard deviation in the Gaussian transfer
function filter, G used for deconvolution, unless a σ0 is inputted manually.
From the modelled diffusion length profile, it is also possible to choose not just
a constant σ0, but an option for a depth-varying diffusion length, σ(z), used
in the transfer function is also available. This functionality is not analyzed in
depth and would benefit from further analysis and testing.
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If the varying σ(z) is chosen, a fit is made to the theoretical diffusion
length profile in the depth section corresponding to the Laki to Tambora
depth. The back diffusion is then performed with a different Gaussian filter

for each point, i.e. G(σ(z)) = 1
σ(z)
√

2π
e
−z2
2σ2 . σ(z) is estimated from a fit to the

theoretical diffusion length profile. In Figure 5.1 is shown the depth section of
the diffusion length profile corresponding to that between Laki and Tambora.
Figure 5.5 shows the polynomial fit made to this depth section.

The left flow shows the analysis carried out on the measured depth
series, d(t). First, the depth series is transformed to the frequency domain,
with the user’s choice of spectral transformation method. If FFT or DCT
is chosen, the depth series will be interpolated to resemble equispaced data.
Then the frequency series is analyzed according to Section 4.3, where fits to
the signal and noise are made, that again are used to construct an optimal
Wiener filter, F̃ (f). During this process, it is optional to choose the standard
deviation of the estimated noise free signal, σtot, as the diffusion length to use
in the deconvolution.

Finally, the right and the left flow are combined to construct the final
restoration filter, R̃(f) = F̃ (f) 1

G̃(f)
, which is used for optimal enhancement

and restoration when deconvoluting the signal toD(t) = F
[
d̃(f) · F̃ (f) · 1

G̃(f)

]
,

and the module returns the back diffused series D(t) and the diffusion length
used, σ0.

5.1.2 Module 2: Estimating the Optimal σ

The second module contains the optimization routine to find the best estimate
of σ to fulfill the constraints imposed, especially with the focus on reconstruct-
ing the signal to contain 33 peaks. It is based on a constrained direct search
method which examines the one dimensional σ space. A flow chart of the
module can be seen in Figure 5.6. The module takes three initialization pa-
rameters as input, the starting grid sizing ∆σ, a small size ε and the number
of grid points to examine Nσ, as well as the constraints imposed on the depth
interval, described in the following section, 5.1.3.

The method is initialized by an input σ0 estimate, the right flow in
module 1, from either models, spectral analysis or manual input, which is used
to create the first coarse σ̄ grid. The method also carries out the left flow from
module 1 as part of the initialization. These steps do not need to be repeated
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σ0 estimate
Inputs:

∆σ, ε, Nσ

Construct σ̄0 grid,

σ̄ =



σ0 −
(
Nσ
2 − 1

)
∆σ

...
σ0 −∆σ

σ0

σ0 + ∆σ
...

σ0 +
(
Nσ
2 − 1

)
∆σ



for σ in σ̄:

Deconvolution,

D = F
[
d̃ · F̃ · G̃(σ)−1

]

Wiener filter, F̃

Count NP in D,
under constraints

if NP ≤ 33:
Pi = 0,

else:
Pi = 1

P̄ = [P0, P1, ..., PN−1]

constraints

Construct new σ̄ grid with:

σmin = max(σ̄(Pi == 0)),
σmax = min(σ̄(Pi == 1)),

∆σ = σmax−σmin
Nσ−1

σ̄ =


σmin

σmin + ∆σ
...

σmax −∆σ

σmax


if σmax − σmin > ε

STOP

if σmax − σmin ≤ ε

σfinal = σmin,
Dopt = D(σfinal)

Figure 5.6: Flowchart of the module responsible for estimating the optimal σ,
as described in Section 5.1.2. This module is continued from the initializations
made in module 1, and contains the same deconvolution method, just utilized
multiple times to search for the most optimal diffusion length, σOpt, instead
of only using σ0.
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again.

Then the module carries out the deconvolution method on the σ̄ grid
and uses the imposed constraints to count the number of peaks in the back
diffused depth series, along with controlling that the imposed constraints are
complied with. The algorithm then assigns a value of either 0 (NP ≤ 33) or
1 (NP > 33) to the indices of a new vector P̄ . These values are then used to
decide where to create the next search grid from, as it sets the new minimum
diffusion length to σmin = max(σ̄(Pi = 0)) and the maximum to σmax =
min(σ̄(Pi = 1)). This narrows down the search area and creates a finer grid.
The σmax − σmin test is then performed, and the deconvolution is performed
once again, if σmax − σmin > ε. If not, then the algorithm stops, presenting
the final diffusion length as the last σfinal = σmin and the final back diffused
series as Dopt = D(σfinal).

The direct search method is very simple, and the main reason that
this search method works is due to the investigation of the relation between
number of counted peaks versus diffusion length. This relation was examined
by brute force: the number of peaks versus diffusion length was computed
manually from 0.01 m to 0.15 m. This showed clearly that - in the area of
interest, i.e. resulting in NP = 33 - the number of counted peaks increases as
the diffusion length increases, see Figure 5.7.

The algorithm does not contain an optimized version for determining
the optimal varying σ(z), and if σ(z) is chosen, the algorithm searches linearly
through σ space, by moving the fitted σ(z) through the diffusion length depth
profile. This, along with the multiple deconvolutions with different Gaus-
sian filters, makes this part of the algorithm very slow. This means that the
further analysis does not focus on σ(z), but future work could benefit from
investigating this module further.

5.1.3 Constrained Peak Detection

The main constraint when back diffusing these depth series is the number of
years between the two volcanic events detected in the ice. The number of
especially winters between the two events is fixed to NP = 33, as this number
of winters is expected in the interval, even with a two month variation from
the estimated event position. The counted number of summers can on the
other hand vary a bit, due to the uncertainty on the exact time of deposition
from the volcanic events, as discussed in Chapter 3.
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For better peak detection, a number of other constraints have been imple-
mented. Since the data is a proxy for a continuous physical process, the
temperature, it is reasonable to set up constraints representing some of the
logical expectations for this type of signals.

Firstly, restrictions may be demanded of the distance between peaks.
The annual layer thickness, λA, may help with setting some limitations on the
peak distances, as it is not likely for the average peak distance to be much
smaller than λA. The peaks are expected to show the same annual cycle as
the rest of the signal, representing summers.

Secondly, for the prominence of the peaks, i.e. the amplitude of the
signal at a depth, it is assumed that individual peaks may not have a promi-
nence of less than a certain percentage of the standard deviation of the signal
at the given depth. This makes certain that smaller peaks or troughs, maybe
representing a warm period in a winter or a cold period in summer, are not
counted as annual peaks or troughs. This is one way to constrain peak promi-
nence, but a more efficient and accurate way is to consider the amplitude
of the entire ice core signal. As it may be assumed that the amplitude and
prominence at a given depth will be somewhat smaller than the prominence
of the peaks at a shallower depth, due to the general diffusion in the firn. By
analyzing the amplitude attenuation of the ice core, the average attenuation
at a given depth could be used as a restriction for the peak prominence. This
is something that would have been implemented, if time had allowed it.

Thirdly, a constraint on how the general pattern of the trough and
peak detection must look is imposed. As the temperature variations represent
the change from summer to winter, it is assumed that the general pattern
must be able to detect a peak P , then a trough T , then a peak P , and so on,
creating a pattern of ...PTPTPTP.... Since the deposition time of volcanic
material in the ice is assumed to be Gaussian, the pattern is not restricted
to starting with either a peak or a trough, as this may vary when drawing a
location from the distribution. Thus, the number of peaks is set at NP = 33
and the number of troughs is accepted with a variation, as long as the general
pattern is intact.

Finally, the diffusion length estimate is kept at a positive value with
an upper limit, that can be set manually, depending on the conditions of the
site and the depth.
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The optimal parameter choices for the constraints are presented in
Table 5.1.

NP 33

NT 33± 1

Peak(trough) prominence 50 % of SDsignal

Peak(trough) distance 50 % of λA

[σmin, σmax] [cm] [0, 15]

Pattern ...PTPTPTPTP...

Table 5.1: The general constraints used in the method to optimize the diffusion
length estimate.

5.2 Method Testing and Stability

Throughout this section a number of different tests of the algorithm will be
presented. The tests are performed to examine the stability of the method, the
accuracy of the Laki and Tambora positions and how the choice of parameters
(interpolation, spectral transform type) changes the resulting diffusion length
estimate.

5.2.1 No constraints versus constraints

Figure 5.8 shows the depth series between Laki and Tambora events of the ice
core drilled at Site B, back diffused through the algorithm described in the
above. The difference between the blue and the green back diffused signals is
that the blue is back diffused using the above presented constraints, and the
green signal is back diffused with only the constraint NP = 33. It is clear that
the imposed constraints, especially the ones concerning peak distance and
prominence, influence the final result of the optimal diffusion length. Par-
ticularly, the algorithm containing more constraints clearly leaves out some
’shoulders’ before an actual peak in the final count, see Figure 5.8 at a depth
of 77.5 m. These shoulders could be actual peaks but with the imposed con-
straints, they are omitted. This is something that could be further developed
and examined. The appearance of these ’shoulders’ could be peaks, but it is
also likely that they are remnants of some noise effect that is not quite filtered
in the frequency filter construction. If that is the case, then it is a positive
thing that the algorithm filters them out.
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Figure 5.8: Example of how the imposed constraints affect the final diffusion length
estimate for the Laki to Tambora depth section of the core drilled at Site B. The
black line shows the data, the green the back diffused data using a method with less
constraints, and the blue line shows the back diffused data when using the imposed
constraints. The blue dots represent the peaks counted in the constrained method.

5.2.2 Effects of Interpolations

The choice of interpolation, before and after deconvolution, does affect the
final result by introducing some effects not inherent in the originally measured
signal. Therefore it is important to examine exactly how these interpolations
influence the final σ estimate. Here that is examined by running the algorithm
with different resampling sizes.

5.2.2.1 Interpolation of Data Before Deconvolution

The first interpolation is needed if the fast spectral transforms FFT or FCT
are used, as one of the conditions of the algorithms is that the data are evenly
spaced. At first, this was implemented in the analysis, but this had the risk
of excluding some information that might lie in the unevenly sampled data.
Later, the method was abandoned in favor of implementing a nonuniform
spectral transform (NUFT or NDCT), which is slower than the FFT and
FCT, but carries all information from the unevenly sampled signal into the
spectral domain. Luckily, this nonuniform transform needs only be carried out
once, as the inverse transform, i.e. resampling in time domain, can be done
uniformly without loss of information and any future spectral transforms can
then be performed through FFT or FCT.

Even though the first interpolation method was later abandoned, some
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Figure 5.9: Site A, illustration of the effect of five different cubic spline resamplings
before deconvolution. Original sample sizes lie in the interval [3.80; 4.00] [cm]. Re-
sampling at smaller sample sizes show a tendency to restore some signal frequencies
that are not necessarily inherent to the original signal. The resample should thus not
be chosen too small as this would introduce some false signal into the results.

analysis was carried out with it to examine the effect of the size of the resam-
pled, interpolated data on the final diffusion length estimate. Examples of
a resampled signal can be seen in Figure 4.15 and Figure 4.16. Figure 4.16
shows how sample resolution affects information from the signal. The higher
sampling resolution, the more information is retained. But higher sampling
resolution also means more data to be analyzed, which might slow down any
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analysis algorithms developed. This might create some headache if an entire
ice core length of a couple thousand meters should be examined, but for this
study only af few meters are of interest, and thus it should not create delays
in the computation time.

To examine the effect of the resampling resolution on the final diffusion
length estimate when conducting a spline interpolation before carrying out the
back-diffusion, the full diffusion length analysis has been performed with 100
new interpolation resampling sizes in the range [∆min

z ; ∆max
z ]. This gives an

idea of the stability of the method considering both sample size of the raw data
and resampling by interpolation. The minimum and maximum interpolation
samplings are presented in Table 5.2 and an illustration of the test results can
be seen in Figure 5.10.

Figure 5.10 shows that if the sampling size of the interpolation is de-
creased, it becomes difficult for the algorithm to determine a diffusion length
that fulfills the constraints. This is due to the spectral transforms and back
diffusion method being sensitive to small variations that the spline interpola-
tion introduces to the signal, as can be seen in the first panel in Figure 5.9.
Furthermore, Figure 5.10 shows a less stable diffusion length estimate as the
resampling size increases, and a general tendency to result in higher diffusion
lengths as many features become washed out in the signal and need more
enhancement by cranking up the diffusion length estimate, see final panel
in Figure 5.9. The interpolation before deconvolution is only necessary for
running the method with the spectral transforms that are based on uniform
sampling, i.e. the FFT and the DCT. For these two methods a choice of in-
terpolation size can be made, but the general setting in the algorithm is to
resample at the smallest sampling size found in the depth interval, ∆min

z .

Site ∆min
z ∆max

z ∆OG
z

[cm] [cm] [cm]

A 1.0 10.6 3.8-4.0
B 1.0 11.7 3.8-4.0
D 1.0 12.0 3.7-3.9
E 1.0 11.4 4.1-4.4
G 1.0 10.3 4.0-4.2

Table 5.2: Minimal and
maximal new sample res-
olution used for testing
interpolation before back-
diffusion. Each test is
run with 100 different new
sample resolutions between
∆min
z and ∆max

z .

5.2.2.2 Interpolation of Data After Deconvolution

The second interpolation is carried out after deconvoluting and back-diffusing
the signal, but before detecting peaks. Splines are especially effective when
trying to find features like peaks in data whose underlying signal is continuous,
smooth and differentiable, but the sampling is discrete and thus the data
are discrete and non-smooth. The isotopic signal under examination here
is assumed to be truly smooth and continuous throughout the core - unless
any gaps are present. Thus the cubic spline interpolation is a good tool for
estimating a higher resolution version of the final back-diffused data series
to use for peak detection. This makes the detection of peaks and troughs
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Figure 5.10: Diffusion length estimates versus resamples through cubic spline inter-
polation before deconvolution for Alphabet cores from sites A, B, D, E and G.

more precise, as there might not be a discrete data point exactly at the top
of a peak, but the spline interpolation then estimates where the most likely
top of the peak must be, on the basis of the existing data. Examples of
three different interpolation samplings are presented in Figure 5.11. The effect
of resampling after deconvolution on the final diffusion length estimate is
illustrated in Figure 5.11.

As the actual isotopic signal is continuous and the discretization is
introduced by different measurement samplings, it is assumed that the spline
interpolation after deconvolution results in a more likely peak detection, when
decreasing the numerical resampling size. In Figure 5.12 the diffusion length
estimate versus the resampling size after deconvolution can be seen, and the
data show a convergence towards a fixed diffusion length as sampling size is
decreased, and a much noisier diffusion length estimates as sampling size is
increased. Furthermore, at certain larger sampling sizes the sought after pat-
tern of peaks and troughs is not even reached. This resampling is carried out
both for the FFT, DCT and NDCT spectral analysis methods, as the inverse
NDCT can be resampled uniformly without any loss of information. Based on
these observations, a resample size of ∆min

z /2 is chosen for interpolation after
back diffusion and before peak detection. It is a compromise between choos-
ing an interpolation that results in a higher resolution, but doing so without
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Figure 5.11: Site A, effect of cubic spline interpolation after signal has been decon-
voluted. The interpolation is introduced to make peak detection more stable.

slowing down the algorithm too much.

5.2.3 Spectral Transform’s Effect on Diffusion Length

The different ways of performing spectral transformation also influence the
final σ estimate, not only due to the transformation itself, but for FFT and
DCT, the methods demand an interpolation, which in itself influences the
results.
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Figure 5.12: Final diffusion length estimate, given new resample by cubic spline
interpolation after deconvolution for Alphabet cores from sites A, B, D, E and G.
The original sample size interval is illustrated as black vertical lines.
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Figure 5.13: A visual example of the differences in final back diffused data when
using different spectral transforms.

Figure 5.13 shows an example of the qualitative differences between
using FFT, DCT or NDCT for spectral analysis. The most obvious visual
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difference between the transforms is in the end sections of the interval. This
might be due to some specific boundary conditions imposed on the fast Fourier
and Cosine transforms. Furthermore, by careful visual inspection, it can be
seen that the NDCT seems to cater to some effects of the nonuniform sam-
plings, that the FFT and DCT do not.

There are no significant differences between the three spectral trans-
forms, but there is some small variations. What might also be taken into
consideration is, that this method might be run a large number of times - as
is the case later on in this thesis - for example to estimate accuracy of the
method, and one might therefore want to choose the method that gives the
fastest results. Thus, the speed of the different transforms has been tested,
as can be seen in Figure 5.14, with 200 separate runs where the Laki and
Tambora positions have been drawn from a distribution with a standard de-
viation of 2 months from the estimated location. Not surprisingly, the NDCT
is much slower than the DCT and the FFT, and it might prove efficient to
choose either DCT or FFT if the algorithm has to run many times. For the
case of this thesis, the final results have been made with the NDCT, so as not
to miss any of the effects that might come from unevenly sampled data.
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Figure 5.14: Diffusion length estimates along with speed of algorithm given the three
different spectral transforms examined in this work. The volcanic event depths have
been drawn from a Gaussian distribution with a width corresponding to ∼ 1 month
around the estimated mean depth of the event.
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5.2.4 Laki and Tambora as Gaussian Distributions

As mentioned previously, the Laki and Tambora event depth locations are not
exact. Thus to accommodate error in this positioning, the algorithm has been
tested with Laki and Tambora locations drawn from Gaussian distributions.
This was examined in four ways:

• Variation in both Laki and Tambora position, corresponding to the en-
tire events.

• Variation in only the Tambora position while keeping a fixed section
length, corresponding to the mean value d̄L − d̄T .

• Variation in only the Laki position while keeping a fixed section length,
corresponding to the mean value d̄L − d̄T .

• Variation corresponding to a Gaussian distribution with a standard de-
viation of a depth that resembles to months in time.

The first variation of both Laki and Tambora can be seen in Figure
5.15. The method has been run 500 times with new locations drawn for each
run, and the same constraints imposed each time. This results in an estimate
of the diffusion length for Site A between Laki and Tambora of σ = 7.32±0.67
[cm]. But considering the lengths of the volcanic events, as seen in the ECM
data, one might question this result. Due to more or less time incorporated as
the depth section is widened or narrowed, some of the constraints might not be
very well chosen any more. It might be that a larger depth interval could gain
an extra peak or trough, so that the constraint should be NP = 34 instead
of NP = 33. This is some work that could be continued on the algorithm,
ensuring that the extra interval length increase or decrease loosens the count
constraint.

The next method examines what happens when only changing the
Laki or Tambora position. The results for 500 runs can be seen in Figure
5.17 and 5.16. An interesting feature shows here, and is also visible in some
of the later results: the diffusion length estimates seem to not be Gaussian
distributed, but concentrated around two or more different diffusion lengths.
This could be an effect of the direct search algorithm, which might quantize
the possible σ estimates when creating the grid. This could be examined by
trying to randomize the grid creation. Furthermore, it would be interesting to
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Figure 5.15: Diffusion length estimates when varying the depth locations of the
volcanic events. The locations of both Laki and Tambora events have been drawn
from Gaussian distributions as the ones presented in Section 3.1.

examine if there is a correlation between the positioning of the depth interval
and the estimated diffusion length.

The final method is an investigation of drawing the locations of both
Laki and Tambora from distributions with a standard deviation of what cor-
responds to two months and a mean value of where the middle of the volcanic
event is estimated to be. An illustration of how much this is in depth is shown
in Figure 5.18. The results can be seen in Figure 5.19. Again, the possible
effect of the quantized grid search can be seen.

5.3 Possible Algorithm Upgrades

In future work, a number of different areas in the method and the algorithm
could be upgraded and continuously developed. Some of these further work
points will be presented and discussed here.

The peak detection method in the optimization module is, as men-
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Figure 5.16: Diffusion length estimates for Site A when varying only the Laki vol-
canic event. The locations are drawn from Gaussian distributions as the ones pre-
sented in Section 3.1. The depth section is kept at a constant length, corresponding
to the mean distance value, d̄Laki − d̄Tambora.
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Figure 5.17: Diffusion length estimates for Site A when varying only the Tambora
volcanic event. The locations are drawn from Gaussian distributions as the ones
presented in Section 3.1. The depth section is kept at a constant length, corresponding
to the mean distance value, d̄Laki − d̄Tambora.

tioned, very simply developed. There are ways that this method could be
improved, for example by taking the entire yearly pattern of winter(peak)-
spring-summer(trough)-fall (PSTF) into account when detecting the pattern.
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Figure 5.18: Illustration of the method implemented to manage the uncertainty of
the exact depth location of the volcanic events. The method establishes a Gaussian
distribution with a mean of the estimated middle of the volcanic event and a standard
deviation of what corresponds to two months.
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Figure 5.19: 500 runs with locations of Laki and Tambora events drawn from a
Gaussian distribution with a standard deviation of two months, using NDCT as
spectral transform.

This could possibly be done by investigating the derivative in the signal, and
assigning S and F values to the steepest part between a P and a T. There is
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also a possibility to develop a more sophisticated and maybe intelligent pat-
tern recognition algorithm to detect yearly cycles in the signals. The pattern
recognition could be based on the undiffused isotopic signals in the shallower
parts of different ice cores. This would improve the certainty of detecting the
right number of years in the section. By implementing more seasons, it also
allows for more precise dating.

Considering the optimization routine, some issues have already pre-
sented themselves, through the distributions of the final results. These quan-
tizations of the final results might be an effect of the search method, and could
maybe be avoided by introducing a factor of randomness into the grid search.
Furthermore, when shifting the estimated volcanic event positions to generate
uncertainties, the optimization should also take into account if the constraints
should be changed. If the locations add or subtract length from the signal,
the number of peaks and troughs should also be considered to be raised or
lowered. This could be worked in with the more detailed pattern recognition.

The frequency filter construction could also be investigated further.
It might be allowing too much noise, or filtering some cycles away that were
actually interesting. The construction could be made variable and work with
the optimization module to tune and change as the constraints do. Some of
these issues could be dealt with by gaining a higher resolution from the data
by increasing the sampling rate in future measurements - interpolation can
only get us so far without a large risk of misinterpretation.

This work has focused on estimating the maximal diffusion length that
fulfills the imposed constraints. Another focus point could be on investigating
all σ that fulfill the constraints. This could give a temperature range estimate
instead of just one temperature estimate. Furthermore, the stability of the
method at a given section might be investigated through this as well, as a
section that only allows for a very limited σ range might actually show that
the imposed constraints are not valid.

Furthermore, an in depth investigation and implementation of working
with a variable diffusion length, σ(z), instead of a constant σconst could present
a more accurate estimate of the final σOpt(z) for the entire depth section, and
not just an average. If this was implemented further, it might allow for a more
thorough analysis of the variation in temperature in the depth section, instead
of only examining the mean temperature of the time frame. Implementing
σ(z) could also allow for a better estimate of σfirn, if the samples are unevenly
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sampled, as the firn diffusion length estimate then could be made individually
point by point based on both sample size and diffusion length estimate at that
point.





Chapter 6

Results

This chapter contains the final results of the stability tests presented in Chap-
ter 5 along with the final diffusion length estimates, based on the results of the
stability tests and general considerations and observations made throughout
the thesis. Finally these σ estimates are used to give a first estimate of the
temperature for the given depth interval.
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Site λLT

[m]

A 0.311 ± 0.006
B 0.326 ± 0.008
D 0.354 ± 0.012
E 0.246 ± 0.005
G 0.264 ± 0.006

Table 6.1: Spectral
analysis estimated annual
layer thickness at the
depth sections between
Laki and Tambora.

6.1 Annual Layer Thickness

The final annual layer thickness estimates are determined with a section length
of lsec = 7 m and a shift of lshift = 1.5 m. From Table 6.1 it can be seen that
λ is smallest for Site E and Site G, which corresponds well with those sites
having the lowest accumulation rates.
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6.2 Diffusion Length Estimates

Site ∆̄z

[cm]

A 3.92 ± 0.06
B 3.89 ± 0.06
D 3.77 ± 0.06
E 4.25 ± 0.07
G 4.10 ± 0.07

Table 6.2: Average sam-
pling size in the depth be-
tween Laki and Tambora
events.

Before revealing the final σ estimates, the results of the stability tests carried
out are presented. This concerns the effects on the diffusion length by the
different spectral transforms, the constant or variable σ, and using constraints
or not. The results are presented with both the optimal found diffusion length,
the afterwards corrected firn diffusion length and, for some tests, the average
run time for the algorithm. In Table 6.2 the average sample sizes in the Laki
to Tambora depth interval used for σfirn estimates can be seen.

6.2.1 Diffusion Length Estimates if Constrained or Not
Constrained

The previous chapter presented the constrained method for optimization. The
results of both constrained and unconstrained optimization can be seen in
Table 6.3. If the method does not impose constraints on the algorithm, the
algorithm is not quite as stable, as can be seen on the average run time and the
run time variances. Furthermore, the unconstrained method systematically
results in a diffusion length estimate lower than the one computed through
the constrained method, and generally with a higher variance.

6.2.2 Diffusion Length Estimates vs. Counted Peaks

To get an understanding of how the diffusion length affected the number of
counted years, a run was made going through all diffusion lengths from 1 cm
to 15 cm for all cores. Illustrations of the results can be seen in Figures 6.1 and
6.2. In Figure 6.1 it can be seen that the number of counted peaks generally
increases as the diffusion length increases, until some value where the counts
start being more irregular. When looking at Figure 6.2, it can be seen that
for most of the cores, there exists a stable plateau of diffusion lengths that
all result in NP = 33, for some longer than for others. This could be used
as a stability measure and a sanity check of the number of years assumed is
actually likely in this section.
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No Constraints Constraints

Site A
σopt [cm] 6.69± 0.85 7.88± 0.66

σfirn [cm] 6.58± 0.87 7.79± 0.66

t [s] 19.85± 10.39 8.84± 1.47

Site B
σopt [cm] 5.98± 0.24 7.31± 0.18

σfirn [cm] 5.86± 0.24 7.21± 0.18

t [s] 11.66± 4.46 8.68± 1.08

Site D
σopt [cm] 4.35± 0.53 6.94± 0.24

σfirn [cm] 4.24± 0.32 6.84± 0.24

t [s] 14.83± 8.50 9.19± 0.72

Site E
σopt [cm] 6.20± 0.20 8.15± 0.11

σfirn [cm] 6.07± 0.21 8.05± 0.11

t [s] 5.44± 1.82 6.97± 0.56

Site G
σopt [cm] 8.55± 0.27 9.35± 0.26

σfirn [cm] 8.46± 0.28 9.27± 0.26

t [s] 29.99± 3.81 7.19± 0.48

Table 6.3: Optimal and corrected firn diffusion length estimates with either the
non-constrained or the constrained method.
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Figure 6.1: Number of
peaks estimated given dif-
fusion length, based on dif-
fusion length in the interval
[0.01; 0.15] m.

6.2.3 Diffusion Length Estimates vs. Spectral Transform
Methods

In Table 6.4 the estimated diffusion lengths, both optimal and firn, are pre-
sented along with the average run time of the method. The error is estimated
through drawing the Laki and Tambora event locations from a Gaussian dis-
tribution with standard deviation of two months. For all sites, the results of
all three methods are almost within each other’s margins. This might point
to choosing one of the faster back diffusion methods to estimate the diffu-
sion length with, if it is used for a quantitative measure. If it is needed to
reconstruct a single data series one time, it might be preferable to use the
NDCT.
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Figure 6.2: A zoom-in of the N peaks v. diffusion length plot in Figure 6.1. Specif-
ically in focus are the maximal diffusion lengths corresponding to Npeaks = 33.

6.2.4 Diffusion Length Estimates if Diffusion Length
Constant or Variable
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Figure 6.3: Backdiffused data, deconvolution with σconstant = σmin
LT and σ(z).

Deconvolution with a variable diffusion length has not been quantita-
tively examined, but a qualitative example of the difference between deconvo-
lution with a constant or variable Gaussian filter can be seen in Figure 6.3. It
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FFT DCT NDCT

Site A
σopt [cm] 7.57± 0.60 7.80± 0.68 7.26± 0.53

σfirn [cm] 7.48± 0.61 7.71± 0.69 7.17± 0.54

t [s] 8.00± 0.91 7.93± 0.91 17.46± 0.98

Site B
σopt [cm] 7.11± 0.40 7.30± 0.20 7.36± 0.21

σfirn [cm] 7.01± 0.40 7.21± 0.20 7.27± 0.22

t [s] 8.64± 0.51 8.41± 0.82 19.06± 0.55

Site D
σopt [cm] 7.00± 0.41 6.96± 0.28 7.21± 0.27

σfirn [cm] 6.91± 0.41 6.86± 0.29 7.12± 0.27

t [s] 9.24± 0.73 9.20± 0.69 19.55± 1.03

Site E
σopt [cm] 8.07± 0.01 8.15± 0.11 8.21± 0.14

σfirn [cm] 7.97± 0.01 8.05± 0.11 8.11± 0.14

t [s] 7.28± 0.36 7.03± 0.56 16.61± 0.54

Site G
σopt [cm] 9.38± 0.32 9.35± 0.25 9.44± 0.24

σfirn [cm] 9.29± 0.32 9.27± 0.25 9.36± 0.24

t [s] 7.53± 0.49 7.24± 0.49 16.45± 0.34

Table 6.4: Diffusion length estimates resulting in Npeaks = 33 based on different
spectral transform methods, namely the FFT, DCT and NDCT presented in earlier
chapters and described in Appendix 7. Along with the optimal diffusion length, the
actual firn diffusion length is presented - corrected for sampling diffusion, ice diffusion
and thinning. The computational time of the back diffusion process given the different
spectral transforms is also presented.

is mostly presented here to emphasize that using either a constant or a vari-
able σ does not result in a large difference in the restored signal. The change
in theoretically estimated σ(z) at the depths under consideration here is rel-
atively small, resulting in a small difference from the constant σ. It is thus
concluded that the speed is prioritized in the σ estimations and the variable
σ(z) method is abandoned.
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Figure 6.4: Example of back diffused data from Site A, both deconvoluted with
maximum and minimum expected σ and with the final σopt.

6.2.5 Final σ Estimates Based on Previous Conclusions

Figure 6.4 shows the optimal diffusion length estimate resulting in NP = 33
for Site B, along with the restorations using the theoretical diffusion length
estimates, σmin and σmax, in the Gaussian filter. The theoretical estimates are
not resulting in an unlikely number of peaks, but the optimization algorithm
still estimates a lower diffusion length, resulting in the wanted 33 peaks.

In Table 6.5 the final optimized diffusion length estimates can be seen,
along with the theoretical diffusion length interval and the σ estimated from
the fit to the PSD of the signal.

6.3 Final Temperature Estimates from Optimal
Estimated σ

The temperature estimates are, as described previously, made based on a
steady state model, with a constant accumulation rate. The estimate is then
made numerically through a Newton-Raphson scheme from scipy.optimize.

newton, finding the roots of σmodel · ρCO
ρice
− σdata.

The final temperature estimates can be seen in Table 6.6 and the
underlying distributions in Figure 6.5. Again in these distributions can the
quantization of the results can be seen, resulting in non-Gaussian distributions.
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σfinal σFit σTheo

Site A
σopt [cm] 7.37± 0.54 7.12 −
σfirn [cm] 7.27± 0.55 − [7.69; 7.90]

Site B
σopt [cm] 7.35± 0.22 7.42 −
σfirn [cm] 7.26± 0.22 − [7.58; 7.80]

Site D
σopt [cm] 7.21± 0.28 7.56 −
σfirn [cm] 7.12± 0.28 − [7.36; 7.54]

Site E
σopt [cm] 8.22± 0.15 7.81 −
σfirn [cm] 8.12± 0.15 − [8.85; 9.13]

Site G
σopt [cm] 9.46± 0.24 8.21 −
σfirn [cm] 9.38± 0.24 − [8.85; 9.10]

Table 6.5: Final diffusion length estimates, based on conclusions made previously in
different tests, along with theoretical and fit estimates.

Site A Site B Site D Site E Site G

T0 [oC] -29.41 -29.77 -28.3 -30.37 -30.1

T̄Opt
StSt [oC] −31.04± 2.02 −30.46± 0.83 −30.00± 1.05 −30.80± 0.48 −25.93± 0.70

T̄Firn
StSt [oC] −31.41± 2.07 −30.81± 0.85 −30.35± 1.07 −31.14± 0.49 −26.18± 0.71

Table 6.6: Steady state temperature estimates based on the final firn diffusion length
estimates found. T0 is the temperature used to generate the theoretical diffusion
length and density profiles, and originates from [9, H. Clausen et al., 1988]

The final temperatures have been presented along with the assumed
temperature, T0, which has been used to generate modelled density and dif-
fusion length profiles previously in this work and is the steady state assumed
surface temperature at the sites.

6.3.1 Further Possibilities with the Iso-CFM

These temperature estimates are made on a steady state assumption, that is,
that the annual accumulation rate, A0, and surface temperature, T0, are at a
steady state. This of course is not an optimal assumption, but it is a useful
stepping stone to sanity check the results and from where to continue further
temperature analysis and estimations with less rigid models.
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Figure 6.5: Steady state temperature distributions

An obvious easy next step would be to investigate different accumu-
lation rates, instead of just computing for a single A0. This will need an
adjusting of the λ used in the general method and might give insight into a
more accurate A0 estimate, still under steady state assumptions.

In further analysis and work, it would be interesting to utilize the
Iso-CFM to model non-steady state solutions and use these to estimate tem-
peratures from more realistic models. This could be models implementing
seasonal changes in both temperature and accumulation rate, or statistical
analysis of random variations.

´



Chapter 7

Conclusion and Outlook

In this final chapter of the thesis, the main finding will be summed up, along
with a short presentation of the final results. Lastly an outlook section
presents the next steps the conclusions point to be taken, in future research.

Contents
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7.1 Conclusions

As the need for more accurate and precise models for the future increases, so
does the need for better and wider understanding of the past. This work set
out to investigate a new method to expand our knowledge of how to recon-
struct paleotemperatures best. Through a series of methodical computational
and theoretical analyses, a model for estimating the temperature of an ice core
time series was developed.

The starting idea was to utilize the fact that diffusion length is temper-
ature dependent, and to use signal analysis, theoretical knowledge of diffusion
processes in ice and constrained pattern recognition to estimate the diffusion
length σ empirically in a water isotopic depth series. Throughout the thesis
was presented the different methods used and the mathematical and theoret-
ical foundations on which they were developed. A variety of methods were
tested, discussed and further developed to finally generate a generic method.
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The final method reconstructs the measured signal by back diffusion,
attempting to reconstruct the part of the signal that was washed out by dif-
fusion, using σ as a tuning parameter of the diffusion process. The method
finds the optimal diffusion length by choosing the σ which results in the known
number of years in a given section. In this thesis, the two volcanic events of
Laki in 1783 and Tambora in 1815 have been used for specific dating of the
examined water isotopic depth series, but the method is not restricted to vol-
canic markers nor to isotopic depth series. Any series exhibiting annual cycles
and affected by diffusion could be used.

This back diffusion method results in final optimal diffusion length
estimates, σopt, which are presented in Table 7.1 along with the firn diffusion
estimates, σfirn, corrected for sampling and ice diffusion.

σfinal

Site A
σopt [cm] 7.37± 0.54

σfirn [cm] 7.27± 0.55

Site B
σopt [cm] 7.35± 0.22

σfirn [cm] 7.26± 0.22

Site D
σopt [cm] 7.21± 0.28

σfirn [cm] 7.12± 0.28

Site E
σopt [cm] 8.22± 0.15

σfirn [cm] 8.12± 0.15

Site G
σopt [cm] 9.46± 0.24

σfirn [cm] 9.38± 0.24

Table 7.1: Final diffusion length estimates, based on conclusions made previously in
different tests.

From the optimal σ a steady state temperature was estimated. These
results can be seen in Table 7.2, both the temperature estimated from σOpt

and σfirn. For further studies, it is evident to use the diffusion length estimates
and using them in more complex temperature estimate models, and not just
a steady state solution.



7.2. OUTLOOK 95

Site A Site B Site D Site E Site G

T0 [oC] -29.41 -29.77 -28.3 -30.37 -30.1

T̄Opt
StSt [oC] −31.04± 2.02 −30.46± 0.83 −30.00± 1.05 −30.80± 0.48 −25.93± 0.70

T̄Firn
StSt [oC] −31.41± 2.07 −30.81± 0.85 −30.35± 1.07 −31.14± 0.49 −26.18± 0.71

Table 7.2: Steady state temperature estimates based on the final firn diffusion length
estimates found. T0 is the temperature used to generate the theoretical diffusion
length and density profiles, and originates from [9, H. Clausen et al., 1988].

7.2 Outlook

Using the estimated σfirm results and the general conclusions from this thesis,
an apparent next step would be to examine the paleotemperature in the given
depth section more thoroughly. To be able to verify the efficience of the
developed methods in this thesis, a more extensive and complex examination
of the temperature would be needed. Along with this, implementing σ(z) and
investigating how it affects the final temperature estimates can also be used
for more precise and accurate temperature estimation.

Additionally, the method would benefit from being tested on multiple
new ice cores, and on new depth sections, i.e. between other known volcanic
events. This could also help verifying the chosen constraints, as the new cores
would have a different annual layer thickness profile. This could also lead
to an investigation on the choice of constraints. These constraints could be
further developed and more seasonality could be implemented, and maybe the
constraints should be tuned differently for different ice cores.

As a byproduct of this work, an interesting feature presented itself,
namely the relationship between the number of peaks versus the diffusion
length used in back diffusion. If it is possible to estimate the most stable
number of peaks (i.e. where a change in diffusion length does not dramatically
change the number of counted peaks), is could be possible to date a depth
series with no dating markers.

Finally, the in depth analysis of stability of this method considering
different computational tools points to the research field being more careful
about the technical data analysis. Especially considering interpolation, which
again points to more careful and higher resolution data measurements, and
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considering choice of spectral transforms, where this work concludes that the
NDCT restores best.

The method has room for improvement, especially some of the simpler
assumptions like the constraints and the optimization routine could benefit
from further development. Moreover, the work carried out in this thesis leaves
room for additional examination and development, but lays a good foundation
to be used as a stepping stone in future research.
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Masson, Christian Häggström, Clark Fitzgerald, David A. Nicholson,
David R. Hagen, Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Martin,



104 BIBLIOGRAPHY

Eric Wieser, Fabrice Silva, Felix Lenders, Florian Wilhelm, G. Young,
Gavin A. Price, Gert Ludwig Ingold, Gregory E. Allen, Gregory R. Lee,
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APPENDIX II: Data - AWI B-cores

AWI B-Cores: Core Specifications

B19 B22 B23

dL [m] 80.85 83.7 93.8

dT [m] 70.9 73.0 81.5

A0 W.E [m] 0.307 0.327 0.365

A0 I.E. [m] 0.282 0.300 0.335

T0 [oC] -29.41 -29.77 -28.3

Table 1:
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Figure 1:
AWI B-cores density measurements and HL-modeled densities.
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Figure 2: AWI B-cores averaged density measurements and related HL-modeled densities.
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APPENDIX III: Data - Alphabet Cores

Figure 3: All six Alphabet cores under examination, with Laki to Tambora depth
section highlighted.
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Figure 4: All six Alphabet cores, showing only the depth series concerning the Laki
to Tambora section.
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Alphabet Cores: Core Specifications

Site A Site B Site D Site E Site G

dCHL [m] 80.85 83.7 93.8 62.95 69.4

dCHT [m] 70.9 73.0 81.5 53.4 60.5

A0 W.E [m] 0.307 0.327 0.365 0.225 0.251

A0 I.E. [m] 0.282 0.300 0.335 0.206 0.230

T0 [oC] -29.41 -29.77 -28.3 -30.37 -30.1

ρ0 [kg m−3] 343.0 355.0 350.0 325.0 -

z0 0.55 0.55 0.825 0.675 -

sCHL [cm] 30.0 45.0 55.0 35.0 35.0

sCHT [cm] 65.0 55.0 70.0 40.0 75.0

ρL [kg m−3] 836.0 841.0 857.0 786.0 807.0

ρT [kg m−3] 812.0 816.0 839.0 749.0 778.0

dTQL [m] 80.87 83.82 93.95 62.9 69.38

dTQT [m] 70.90 73.01 81.55 53.43 60.48

sTQL [cm] 34.0 30.0 30.0 45.0 35.0

sTQT [cm] 40.0 57.0 55.0 48.0 82.0

Table 2: Core specifications for core drilled at Site A. d describes depth of event,
A describes accumulation rate, T describes temperature, ρ describes density at given
depth and s describes the width of a given event. Subscripts L and T stands for
volcanic events Laki and Tambora, respectively, subscript 0 describes initial surface
condition, and superscripts CH and TQ represents the original and corrected values
for depth and width of events.
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APPENDIX IV: Spectral Transforms

Discrete and Fast Fourier Transform

The definition of the continuous Fourier transform and its inverse was pre-
sented in the above. The Fourier transform is as seen a way of representing
the function under consideration as an infinite sum of periodic components.
When the function is discrete, so will the Fourier transform be, and the integral
is replaced with a sum. This gives us the Discrete Fourier Transform (DFT)
which transforms the signal into a sum of separate components contributing
at different frequencies. The DFT is dependent on the sampling interval, ∆,
and we can describe our discrete signal X as a function of N discrete time
steps tk = k ·∆, where k = 0, 1, ..., N − 1:

Xk ≡ X(tk) (1)

This sample size is supposed to be representative for the entire discrete func-
tion, if the function continues beyond the N sampled points. When sampling
discretely at interval ∆, there will be a special frequency, the Nyquist critical
frequency, defined through the sampling size as:

fNQ ≡
1

2∆
. (2)

This frequency is of great importance in transformation of discrete signals.
If the continuous signal is sampled at an interval ∆ is bandwidth limited to
frequencies smaller in magnitude than fNQ, X̃(f) = 0 for |f | ≥ fNQ - i.e.
the transformed function has only non-zero values inside the Nyquist interval,
X̃(−fNQ), ..., X̃(f), ..., X̃(fNQ). This means that the function is completely
determined since we have all information about the signal contained in our
available frequency space.
On the other hand, which is much more likely, if the continuous signal consists
of frequencies both inside and outside the Nyquist interval, then all spectral
information outside of this range will be falsely interpreted as being inside
this range. Thus a wave inside the interval with a frequency of fn will have a
number of wave siblings outside of the interval, with frequencies of k · 1

∆fn, k
being integers, which will be aliased into the Nyquist interval and give rise to
an increased power at the frequency fn.
When analyzing an already measured discrete signal, this might give rise to
some headache. What can be done is to assume that the signal has been sam-
pled competently and then assume that the Fourier transform is zero outside
of the Nyquist interval. After the analysis it will then be possible to deter-
mine if the signal was indeed competently sampled, as the Fourier series will
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go to zero at fNQ given a correct assumption, and go to a fixed value, if the
sampling was not done competently.
Now with the basics of understanding the limits of frequency transform of
a discretely sampled signal, it is possible to estimate the DFT of the signal
Xk ≡ X(tk). Since the Fourier transform is a symmetric transformation it is
easiest to assume that N is even.

Since the input information is of size N we should expect only to
sample the frequency transform X̃(f) at only discrete values of f in the range
between the upper and lower critical Nyquist frequencies, −fNQ to fNQ:

fn ≡
n

N∆
, n = −N

2
, ...,

N

2
(3)

This will indeed actually give rise to N + 1 values, since 0 will be in the
interval as well, but the limit frequencies are actually not independent, but
all frequencies between are, which reduces it to N samples.
Now the integral from Equation 4.3 needs to be estimated as a sum:

X̃(fn) =

∫ ∞
−∞

X(τ)e2πifnτdt ≈
N−1∑
k=0

Xke
2πifntk∆ = ∆

N−1∑
k=0

Xke
2πik n

N (4)

The Discrete Fourier Transform is thus defined as:

X̃n ≡
N−1∑
k=0

Xke
2πik n

N (5)

This gives the approximate relation between the DFT estimate and the con-
tinuous Fourier transform X̃(f) when sampling at size ∆ as:

X̃(fn) ≈ ∆X̃n (6)

The inverse DFT is given as:

Xn ≡
1

N

N−1∑
n=0

XX̃ne
−2πik n

N (7)

Computation of the DFT can be very slow and tiresome, since it involves
complex multiplication between a number of vectors and matrices. If we write
Equation 5 as X̃n =

∑
k=0N − 1WnkXk, where W is a complex number

W ≡ e2πi/N . This shows that the vector Xk must be multiplied with a com-
plex matrix which (n,k)th component consists of the constant W to the power
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of nk. This matrix multiplication evidently leads to a process of O(N2). For-
tunately, a number of different algorithms implementing a wide range of dif-
ferent theories from complex number arithmetic and prime-factoring to group
and number theory ([12],[21], [7] and others) have been developed for fast and
efficient computation of the discrete Fourier transform. One of these is called
the Fast Fourier Transform (FFT), which can reduce the computations to
just O(N log2N). In this thesis the FFT used is the one implemented in the
scipy.fft Python package [68], which is based on the works of [12]. See said
article for implementation details. One important thing about this specific
algorithm is that for the algorithm to function most efficiently, the number of
points computed in the frequency space must be of a power of 2, following the
use of base log2

Nonuniform Discrete Fourier Transform

All FFT algorithms evaluates the DFT definitions from Eqs. 5 to 7 in fast
and efficient ways. But one key assumption for these methods is that the data
under examination are equispaced, i.e. uniformly distributed, based on the
summation in Eq. 5. The computations thus expect uniform data as input
and returns uniform data as output. Unfortunately this is not always the case
for data collected in physical experiments. In this case the basic assumptions
for the calculations of both DFT and FFT are flawed.
The most general form of a nonuniform transform would be the one that takes
non-equispaced data as input and also returns non-equispaced transforms as
output. Firstly we wish to create a nonuniform discrete Fourier transform
(NUDFT) that transforms a sequence ofN complex numbersX0, ..., XN−1 to a
different sequence of M complex numbers, X̃0, ..., X̃M−1. The one-dimensional
NUDFT the computes the transformed vector X̃ = (X̃0, ..., X̃M−1)T, with
entries computed as the sum

X̃k =

N−1∑
n=0

Xne
−2πipnfk , 0 ≤ k ≤M − 1. (8)

The values X0, ..., XN−1 are sample values, p0, ..., pN−1 are sample positions
and f0, ..., fM−1 are frequencies. The NUDFT vector X̃ is found by computing
M sums with each N terms. This meaning that the computational cost will
be of order O(M · N), and if M = N then of O(N2). The NUDFT reduces
to the DFT if the points are equispaced, pn = n

N , and the frequencies are
integers, fk = k, and can be computed at the cost of the FFT, O(N log2N).
In the literature there are many who have presented different ways to develop
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a fast NUDFT ([59], [40], [57], [36] among others), generally referred to as
NUFFT or NFFT. In this work though, the main focus is on the discrete co-
sine transform, and the NFFT methods will not be described in depth

Discrete Cosine Transform

The Fourier transform in any of its many forms is designed to process complex-
valued signals, always producing a complex-valued spectrum, even for signals
that were strictly real-valued. The real-valued or complex-valued part of the
Fourier spectrum is on their own not enough to represent the full information
of the signal, since neither the cosine nor he sine functions (corresponding
to the real and the complex parts of the spectrum respectively), constitute a
complete set of basis functions. Nonetheless, a purely real-valued signal has
a symmetric Fourier spectrum, meaning that it is only necessary to compute
half the number of spectral coefficients, without losing any signal information.
Since the signals analyzed in this thesis are strictly real, one way to use this
knowledge to improve on the works of this project is to consider a different, less
expensive, purely real spectral transform. The cosine transform [2] seems to
do the trick: it uses only cosine functions as basis functions and operates with
only real-valued signal and spectral coefficients, and have properties similar
to the Fourier transform.
For the discrete version of the cosine transform, DCT, and its inverse, IDCT,
a number of different definitions have been proposed, but for this work, the
originally formulations by [2] are used. These are often referred to as ”The
DCT” and ”The IDCT”, and other times as DCT-II and DCT-III. The entries
of the computed discrete cosine transform vector,X̃0, ..., X̃M−1 , of a real-
valued signal of N data points, X0, ...XN−1, is computed as

X̃k = 2
N−1∑
n=0

Xn cos

(
π(2n+ 1)k

2N

)
, 0 ≤ k < M. (9)

To orthonormalize the base functions,φk(n) , the coefficients are mul-
tiplied by a scaling factor f :

f =

{
1√
2N
, ifk = 0

1√
4N
, otherwise

(10)
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so that the base functions, φk[n] = 2f cos
(
π(2n+1)k

2N

)
, meet the condition:

N−1∑
n=0

φk[n]φl[n] = δlk. (11)

The inverse of the DCT, the so called DCT-III, is defined, unnormal-
ized, as:

Xk = X̃0 + 2

N−1∑
n=1

X̃n cos

(
πn(2k + 1)

2N

)
, 0 ≤ k < N (12)

and orthonormalized:

Xk =
X̃0√
N

+

√
2

N

N−1∑
n=1

X̃n cos

(
πn(2k + 1)

2N

)
, 0 ≤ k < N (13)

Only when the DCT-III is orthonormalized is it exactly the inverse
of the orthonormalized DCT-II. If they are both unnormalized, the DCT-III
is the inverse of the DCT-II up to a factor 2N . As with the DFT, the DCT
can directly be computed at a cost of O(N · M), and can also reduced to
O(N logN). The fast DCT algorithm(FCT) used here is based on [38] as it
is implemented in the scipy.fft.dct package[68].

Nonuniform Discrete Cosine Transform

Again, as with the FFT, the FCT works under the key assumption that data
is equispaced. Though when data is nonuniform, the DCT is described as:

X̃k = 2
N−1∑
n=0

Xn cos

(
2πfk

(
pn +

1

2N

))
, 0 ≤ k < M − 1 (14)

with, in the most general case, nonuniformly spaced signal, po, ..., pN−1, data
and frequency data, f0, ..., fM−1. The inverse of NDCT, the INDCT, is com-
puted as:

Xk =
X̃0√
N

+

√
2

N

N−1∑
n=1

X̃n cos

((
pn +

1

2N

)
2πfk

)
, 0 ≤ k < N − 1 (15)



120 APPENDICES

It is possible to develop algorithms with the computational cost of
O(N logN) for NDCT and INDCT as it is for the NDFT ([65], [74]) but it has
showed to be out of the scope of this project and has not been implemented.
This of course slows down the final optimization algorithm, as it requires a
number of spectral transformations. In Section ?? it is described how the final
algorithm has been designed to minimize the use of NDCT, and thus speeding
up the final computations.
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APPENDIX V: Splines and Interpolations

Existence, Uniqueness and Conditioning

Considering any attempt to create an interpolant to fit a number of data
points, the questions of uniqueness and existence is a matter of matching the
data points with the number of parameters in the interpolant. If there are
too few parameters, the interpolant does not exist, as it will not pass through
all data points. If there are too many, the interpolant will not be unique.
Formally this can be described through a system of linear equations.
For any data set consisting of (ti, yi), i = 1, ...,m points, an interpolant can be
chosen from a function space spanned by some suitable set of basis functions,
φ1(t), ..., φn(t). The interpolant can then be described as a linear combination
of these basis functions:

f(t) =

n∑
j=1

xjφj(t) (16)

The interpolant can then be found by determining the parameters xj by re-
quiring that the interpolant f must pass through the M data points (ti, yi):

f(ti) =

n∑
j=1

xjφj(ti) = yi, i = 1, ...,m (17)

This can of course also be written compactly in matrix form as a system of
linear equations:

Ax = y (18)

In this equation A is the m × n basis matrix, which entries consists of the
value of the n basis functions evaluated at the m data points, aij = φj(ti), the
m vector y consists of the known data values yi, and the n vector x consists
of the unknown, to be determined, parameters xj .
From linear algebra we know, that if we choose the number of basis function ot
be equal to the number of data points, n = m, the basis matrix will be square,
and thus - given the matrix is nonsingular - the system will be determined, and
the data points can be fit exactly. Though in some problems it is beneficial
to choose the system to be either overdetermined(less parameters than data
points, the data cannot be fit exactly) or underdetermined(more parameters
than data points, giving freedom to allow satisfaction of additional properties
or conditions).
So the existence and uniqueness of an interpolant is given by the non-singularity
of the basis matrix, be it square or not and the conditioning of the matrix
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points to the parameters’ sensitivity to perturbations. An ill-conditioned ba-
sis matrix will lead to high sensitivity in the parameters, but this problem
can still be approximately solvable through Gaussian elimination with par-
tial pivoting, but this solution will mean that the coefficients may be poorly
determined.

Polynomial Interpolation

The most common way to determine an interpolant is through polynomials.
Denoting a set of all polynomials of degree at most k, k ≥ 0 as Pk, it can be
seen that this set forms a vector space of dimension k+1. The basis functions
that span this vector space can be chosen to be composed of a number of
different functions and this choice has a great influence on both the cost of
computation and manipulation of the interpolant, and the sensitivity of the
parameters, i.e. the conditioning of the basis matrix.
Considering n data points it is obvious to choose k = n−1 so that the dimen-
sion of the vector space matches the number of data points. The maybe most
natural choice of basis for Pn−1 is one that consists of the first n monomials1,

φj(t) = tj−1, j = 1, ..., n. (19)

Thus any given polynoial pn−1 ∈ Pn−1 will be of the form

pn−1(t) = x1 + x2t+ · · ·+ xnt
n−1. (20)

In this basis the system of n× n linear equations will be of the form

Ax =


1 t1 · · · tn−1

1

1 t1 · · · tn−1
1

...
...

. . .
...

1 t1 · · · tn−1
1



x1

x2
...
xn

 =


y1

y2
...
yn

 = y. (21)

This type of matrix with geometric progression, i.e. the columns are succes-
sive powers of some independent variable t is called a Vandermonde matrix.
When using the monomial basis and using a standard linear equation solver
to determining the interpolants coefficients requires O(n3) work and often re-
sults in ill-conditioned Vandermonde matrices A, especially for high-degree
polynomials. This ill-conditioning is due to the monomials of higher and
higher degree being more and more indistinguishable from each other. This

1Roughly speaking, a polynomial with only one term.
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Figure 5: Illustration of
the first eight monomials.

makes the columns of A nearly linearly dependent, resulting in almost sin-
gular matrices, and thus highly sensitive coefficients. For high enough n, the
Vandermonde matrix becomes efficiently singular, to computational precision
at least, though, as mentioned, this can be worked around, but requires some
additional computational work.

Piecewise Polynomial Interpolation and Splines

The amount of work needed to solve the system as well as the conditioning
of the system can be improved by using a different basis all together. Some
different bases superior to the monomial that are worth mentioning are the
Lagrange basis functions, the Newton basis functions and the orthogonal poly-
nomials. But for this thesis we take a step further into the interpolation theory,
as the choice of basis functions might not be enough to work around some of
the problems connected with fitting a single polynomial to a large number of
data points(i.e. oscillatory behaviour in the interpolant, nonconvergence or
issues around the boundaries).
These practical and theoretical issues can be avoided through the use of piece-
wise polynomial interpolation, with the advantage that a large number of data
points can be fitted with low-degree polynomials.
When turning to piecewise polynomial interpolation of the data points (ti, yi), i =
1, ..., n, t1 < t2 < · · · < tn, a different polynomial is chosen for each subin-
terval [ti, ti+ 1]. Each point ti, where the interpolant changes is called knots
or control points. The simplest piecewise interpolation is piecewise linear in-
terpolation, where each knot is connected with a straight line. If we consider
this simple example it appears that by eliminating the problems of nonconver-
gence and unwanted oscillatory behaviour, the smoothness of the interpolant
is sacrificed. This might be true for this simplistic example but since there
are a number of degrees of freedom in choosing each piecewise polynomial
interpolant, the smoothness can be reintroduced by explotiting a number of
these measures. One way of doing this is by demanding knowledge of both
the values and the derivatives of the interpolant at each data pint. This just
adds more equations to the system, and thus to have a well-defined solution,
the number of equations must match the number of parameters. This type
of interpolation is known as Hermite interpolation. The most common choice
for this interpolation, to still maintain simplicity and computational efficiency,
is cubic Hermite interpolation. This introduces a piecewise cubic polynomial
with n knots, and thus n−1 interpolants each with 4 parameters to fit, leading
to 4(n− 1) parameters to be determined. Since each of the n− 1 cubics must
match the data points at each end of the subinterval, it results in 2(n − 1)
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A spline is a piecewise poly-
nomial of degree k that is
continuously differentiable
k − 1 times.

equations, and requiring the derivative to be continuous, i.e. match at the end
points, an additional of n− 2 equations are taken in. This leads to a system
consisting of 2(n−1) + (n−2) = 3n−4 equations to fit to the 4n−4 parame-
ters. This leaves n free parameters, meaning that a cubic Hermite interpolant
is not unique and the remaining free parameters can be used to accommodate
further or additional constraints that might be around the problem at hand.

Cubic Spline Interpolation
One way of using the remaining free parameters is by introducing splines. A
cubic spline is, given the spline definition, a piecewise cubic polynomial, a
polynomial of degree k = 3, and must then be k − 1 = 2 times differentiable.
Thinking back on the Hermite cubic, we were left with n free parameters. By
demanding continuity of also the second derivative, we introduce n − 2 new
parameters, leaving only 2 final parameters to be free. These 2 remaining
parameters can be fixed through a number of different requirements, e.g. by
forcing the second derivative at the endpoints to be zero, which leads to the
natural spline.
The Hermite and spline interpolations are useful for different cases. The Her-
mite cubic might be more appropriate for preserving monotonicity if it is
known that the data are monotonic. On the contrary, the cubic spline may
enforce a higher degree of smoothness as it takes the second derivative into
account as well.
For the case of this study, cubic spline interpolation is used to either evenly
redistribute slightly unevenly sampled data or to enhance resolution for more
precise peak detection. The general method for cubic spline interpolation used
here is described in the following.

Assuming the original depth array d is distributed as di−1 < di < di+1

with i = 0, ..., n − 1 has a minimum sampling distance as ∆min we define
the new sampling distance for the new depth array d̂ as ∆ = ∆min - again
assuming that d̂j−1 < d̂j < d̂j+1 with j = 0, ..., n̂− 1. This makes it possible
to define the first and last value of the new array as

d̂0 = ∆dd0

∆
, e (22)

d̂n̂−1 = ∆bdn−1

∆
c. (23)

From this the number of values in the new array, n̂, can be determined as

n̂ = 1 +
d̂n̂−1 − d̂0

∆
, n̂ ∈ Z. (24)
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Thus our new depth array will be given as

d̂ = d̂0 + j ·∆, j = 0, ..., n̂− 1. (25)

The original data are then used to define a cubic spline interpolation function
to which the redistributed depth data points can be matched. For this part
of the data analysis the SciPy.interpolate Python (REFERENCE) package
with SciPy.interpolate.CubicSpline for the cubic spline interpolation.
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APPENDIX VII: Diffusion Illustrated Through
Synthetic Data

Figure 6: Illustration of modelled auto-regressive process of first order (AR-1).

Figure 7: Illustration of AR-1 process and the same process diffused as in firn.
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Figure 8: AR-1 process, raw and diffused, illustrated in the spectral domain.

APPENDIX IIX: Herron Langway Empirical Model

Sorge’s law(REFERENCES) assumes that the relation between snow density
ρ and depth h is invariant with time, given a constant snow accumulation and
temperature. Furthermore, annual layer thinning by plastic flow is ignored.

Densification of firn, which can be described as the proportional change
in air space, is linearly related to change in stress due to the weight of the
overlying snow(REFERENCES):

dρ

ρi − ρ
= const. ρ dh (26)

By integration, this implies a linear relation between ln
[

ρ
ρi−ρ

]
and h.

When considering real data, analysis shows that ln
[

ρ
ρi−ρ

]
vs h. plots have

two linear segments(EXAMPLE), corresponding to the first and second stages
of densification, with separation of segments at ρ = 0.55 and ρ = 0.8. These
segments on the plots will yield two different slopes with slope constants:
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C =
d ln

[
ρ

ρi−ρ

]
dh

, ρ < 0.55

(27a)

C ′ =
d ln

[
ρ

ρi−ρ

]
dh

, 0.55 < ρ < 0.8

(27b)

To find the densification rate, dρ
dt , substitute dh

dt = A
ρ → dt = ρ

Adh and use the

differentiation ∂
∂t

[
ln
[

x(t)
k−x(t)

]]
=

k dx
dt

(k−x(t))x(t)

C =
ρ

A

d ln
[

ρ
ρi−ρ

]
dt

=
ρ

A

ρi
ρ(ρi − ρ)

dρ

dt

=
1

A

ρi
ρi − ρ

dρ

dt

leading to
dρ

dt
=
CA

ρi
(ρi − ρ) (28a)

dρ

dt
=
C ′A

ρi
(ρi − ρ) (28b)

To continue from here two assumptions are made. The first is that the tem-
perature and the accumulation rate dependencies may be separated, and that
they thereby have no inter-correlation. The second is that the rate equations
may be written as:

dρ

dt
= k0A

a(ρi − ρ), ρ < 0.55 (29a)

dρ

dt
= k1A

b(ρi − ρ), 0.55 < ρ < 0.8 (29b)

where k0 and k1 are Arrhenius type rate constants which are only tempera-
ture dependent, and a and b are constants determining the significance of the
accumulation rate and are dependent on the densification mechanisms.
a and b may be determined by comparing slopes for densification at different
sites of nearly equivalent conditions as:

a =
ln
(
C1
C2

)
ln
(
A1
A2

) + 1 (30)
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and equivalently for b, with C ′1 and C ′2.
k0 and k1 can be estimated by observing values of k at different temperatures
and plotting ln(k) versus temperature - a so-called Arrhenius plot(REFERENCES)
- to find A and Ea in equations:

k = Ae
− Ea
kBT = Ae−

Ea
RT (31)

ln(k) = ln(A)− Ea
R

1

T

leading to values of k0 and k1 of:

k0 = 11e−
10160
RT (32a)

k1 = 575e−
21400
RT (32b)

Depth-density and depth-age calculations
Assuming that temperature, annual accumulation rate and initial snow density
are known, the following calculations can be made:

• Density at depth h, ρ(h)

• Depth at pore close-off, ρ = 0.55

• Depth-age relationship from surface to pore close-off (stage 1 and 2).

1. stage of densification: Depth-density profile:

ρ(h) =
ρiZ0

1 + Z0
(33)

where Z0 = e
ρik0h+ln

[
ρ0

ρi−ρ0

]
. In this segment, the depth-density is independent

of accumulation rate. The critical density depth can be calculated as:

h0.55 =
1

ρik0

[
ln

[
0.55

ρi − 0.55

]
− ln

[
ρ0

ρi − ρ0

]]
(34)

and the age at close-off depth as:

t0.55 =
1

k0A
ln

[
ρi − ρ0

ρi − 0.55

]
(35)



130 APPENDICES

Figure 9: Density profile examples given five different initial conditions representing
present day conditions at the five different ice core locations. Temperature, T0, is in
oC and accumulation, A0, is in meter of water equivalent per year.

2. stage of densificaion: The depth-density profile

ρ(h) =
ρiZ1

1 + Z1
(36)

where Z1 = e
ρik1(h−h0.55) 1

A0.5 +ln
[

0.55
ρi−0.55

]
. The age of firn at a given density ρ:

tρ =
1

k1A0.5
ln

[
ρ1 − 0.55

ρ1 − ρ

]
(37)

An estimate of the mean annual accumulation rate can be made from the
slope C ′ and the mean annual temperature:

A =

(
ρik1

C ′

)2

(38)
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APPENDIX IX: Iso-Community Firn Model

Firn Diffusivity

The Iso-CFM framework contains a number of different new modules added
to the CFM. A specific module for calculation of the firn diffusivity, D(ρ(z)),
is provided, containing several different methods for the calculations of the
individual parameters contained in the calculation of the diffusivity constant,
using the formulation in [30, Johnsen et al., 2000]:

Di(z) =
mpDair

RT (z)αis/v τ(z)

(
1

ρ(z)
− 1

ρice

)
(39)

with i ∈ O18,O17,D representing the three different types of water isotopic
ratios generally examined. The different terms in 39 each describes the fol-
lowing:

m: molecular weight in [kg]

R = 8.314478
[

m3Pa
K mol

]
: molar gas constant

T Temperature [K]

p: saturation vapor pressure over ice in [Pa]

The saturation vapor pressure over ice can be calculated in two dif-
ferent ways, as in [47, Murphy & Koop 2005]:

p = exp

(
28.9074− 6143.7

T

)
(40)

p = exp

(
9.5504− 5723.265

T
+ 3.530 ln(T )− 0.0073T

)
(41)

where Eq. 41 takes the temperature dependence of the latent heat of subli-
mation of ice into account when integrating the Clausius-Clapeyron equation.
A third expression is presented in [29, Johnsen et al., 2000] as:

p = 3.454 · 1012 exp

(−6133

T

)
(42)

which will be the one used for analytical calculations of diffusion length in
this project.
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Dair: diffusivity of water vapor in air,

calculated from P0 = 1Atm, T0 = 273.15K, T temperature in [K] and
P ambient pressure in [Atm], as in [23, Hall and Prupacher, 1976]:

Dair = 2.1 · 10−5

(
T

T0

)1.94(P0

P

)
(43)

From [42, Merlivat, 1978] the additional diffusivity of water isotopes
ratios for 18O and 2H vapor were defined as

Dair2H =
Dair

1.0251
(44)

Dair18O =
Dair

1.0285
(45)

αis/v: solid-to-vapour fractionation factor. i = 18O, D, 17O,

For both α18
s/v and α2

s/v there are multiple options for parameterisation

of the fractionation factor. Considering α18
s/v, one can choose between [37,

Majoube 1971] and [14, Ellehøj et al., 2013], respectively as:

ln(α18
s/v) =

11.839

T
− 28.224 · 10−3 (46)

and

ln(α18
s/v) = 0.0831− 49.192

T
+

8312.5

T 2
(47)

For α2
s/v the parameterisation from [43, Merlivat and Nief, 1967], [14, Ellehøj

et al., 2013] or [33, Lamb et al., 2017], respectively as:

ln(α2
s/v) =

16288

T 2
− 9.45 · 10−2, (48)

ln(α2
s/v) = 0.2133− 203.1

T
+

48888

T 2
(49)

or

ln(α2
s/v) =

13525

T 2
− 5.59 · 10−2. (50)

The parameterisation of the fractionation factor related to the 17O
water isotopic ratios is based on [4, Barkan and Luz, 2005] as α17

s/v = 0.529α18
s/v.
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For a comparison of the different parameterisations see [18, Gkinis et al., 2021].
The default choices in the iso-CFM modules is [37, Majoube 1971] for α18

s/v

and [43, Merlivat and Nief, 1967] for α2
s/v

τ : firn tortuosity

In [30, Johnsen et al., 2000] a parameterisation of the firn tortuosity
was presented as:

1

τ
=

1− bτ
(

ρ
ρice

)2
, ρ ≤ ρice√

bτ

0, ρ > ρice√
bτ

(51)

where bτ = 1.3 and ρice = 917 kg
m3 , implying for 1

τ = 0 a close-off density

of ρco = 804.3 kg
m3 . This close-off density refers to the density at the depth

where diffusive fluxes stop and Dair
Deff
→ ∞. Different parameterisations have

been suggested, some defined from the total porosity, but for this project, the
expression used is the one given in Eq. 51.

Diffusion Length Profiles

The iso-CFM computes a numerical solution for σ using a time-stepping
scheme, as is the case for the original CFM, to estimate the most likely dif-
fusion length profile at a given site. From each time step the CFM computes
dρ
dt and T , and the iso-CFM uses these results to calculate the quantity dσ2

dt :

dσ2

dt
= 2

(
D(t)− σ2

ρ

dρ

dt

)
(52)

Eq. 52 shows that the diffusion length signal throughout the ice is a result of
two processes, opposing each other: the always positive diffusivity term D(t),
and the densification process contributing negatively to the change over time,
−σ2

ρ
dρ
dt . After a certain depth, the densification term comes to dominate and

thus the entire equation becomes negative and the value of the diffusion length
is decreasing, see Figure 10.

To simplify the work of this thesis, the numerical module of the CFM
and the iso-CFM has not been implemented in the final computations, and
the diffusion length profiles referred to in the rest of the project are calcu-
lated through an analytical method, using equations derived from Eq. 52
analytically. A short walk-through of the derivations will be presented here
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Figure 10: Contribution of the diffusion(dashed) and densification(dot-dashed) terms
from Eq. 52 to the final analytical diffusion length solution (blue).

as they are described in [18, Gkinis et al., 2021]. By substitution of variables
rearrangement Eq. 52 becomes:

dσ2

dρ
+

2σ2

ρ
= 2

(
dρ

dt

)−1

D(ρ) (53)

which can be converted to integral form:

σ2(ρ) =
1

ρ2

∫ ρ

ρ0

2ρ′2
(

dρ′

dt

)−1

D(ρ′)dρ′ (54)

Then, by using the densification rate parameterisation given in [25, Herron
and Langway, 1980], the expression becomes:

dρ(z)

dt
= k(T )Aν (ρice − ρ(z)), (55)

where k(T ) is an Arrhenius-type densification rate constant, dependent on
temperature and densification zone described by:

k0(T ) = 0.011 exp

(
−10160

RT

)
, ν0 = 1 (56)
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in the upper densification zone, ρ < 550ρco. In the lower densification zone,
ρ ≥ ρco, it is described as:

k1(T ) = 0.575 exp

(
−21400

RT

)
, ν1 = 0.5. (57)

Using the parameterization of the diffusivity coefficient from Eq. 39 and

expressing the term 1/τ = 1−btau
(

ρ
ρice

)2
in densities, the diffusivity coefficient

can be described as a function of density:

Di(ρ) =
mpDair

RT αis/v

(
1− bτ

(
ρ

ρice

)2
)(

1

ρ
− 1

ρice

)
. (58)

By then inserting in Eq. 54, defining mpDair

RT αi
s/v

= ζ, and integrating the

final analytical equations for the diffusion length in upper and lower densifi-
cation zones can be obtained:

σ2(ρ < ρco) =
ζ

ρ2 k0Aν0ρice

[
ρ2 − ρ0 −

bτ
2ρ2

ice

(ρ4 − ρ4
0)

]
(59)

σ2(ρ ≥ ρco) =
ζ

ρ2 k1Aν1ρice

[
ρ2 − ρCr −

bτ
2ρ2

ice

(ρ4 − ρ4
Cr)

]
+

ζ

ρ2 k0Aν0ρice

[
ρ2

Cr − ρ0 −
bτ

2ρ2
ice

(ρ4
Cr − ρ4

0)

] (60)

The analytical equations have been used for creating a contour plot
of the analytical solutions for σ18 at the close-off density, ρco.

These analytical equations are used to compute diffusion lengths to
compare with the optimal diffusion length estimates computed from the raw
data. One could advantageously spend some time and energy on using the iso-
CFM to numerically compute the comparison diffusion lengths with different
temperature and accumulation forcing to recreate a diffusion length profile
corresponding to the largest likelihood at a given drill site. Since the iso-
CFM do consist of many different modules all with different possibilities for
parameterisation, it is outside the scope of this project to develop a iso-CFM
diffusion length estimate. In-depth methodology and results from the iso-CFM
can be found in [18, Gkinis et al., 2021].
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Figure 11: Crete and surrounding Alphabet cores, as their analytical solutions place
them according to observed temperature and accumulation rate.

APPENDIX X: Dielectric Profiling

In this thesis has previously been presented a method for measuring electrical
conductivity in ice cores, which is used for locating volcanic events. A dif-
ferent method was later developed to demonstrate how both acids and salts
play a decisive role in the determination of the electrical behavior of ice. The
dielectric response of an ice core can be used to determine the total ionic
concentration of the core. For ECM the measurements are sensitive to the
fluctuating distance between ice core and electrodes, and after each measure-
ment a fresh piece of ice needs to be prepared to repeat a measurement.

A new dielectric profiling technique (DEP) was developed (REFER-
ENCES) with the advantages over the ECM that no direct contact is needed
between the electrodes and the ice, so that the ice can stay in a protective
polythene sleeve and the experiment easily can be repeated on the same piece
of ice. Together the ice core and the polythene sleeve creates a complete sys-
tem, where the plastic acts as an electrical blocking layer.
The dielectric response is measured by a sweeping of the AF-LF frequency
range for the entire ice-polythene system. At LF the conductivity of the com-
posite system is within a few percentages of the intrinsic behavior of the ice
itself. At HF-VHF frequencies it also approximates well enough (REFER-
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Figure 12: Analytically calculated diffusion length profile examples given five dif-
ferent initial conditions representing present day conditions at the five different ice
core locations. Temperature, T0, is in oC and accumulation, A0, is in meter of water
equivalent per year.

ENCES).

The measured dielectric parameters are the conductivity of ice at HF-
VHF range, denoted σ∞ where ∞ signifies a frequency much higher than the
relaxation frequency, fr, of the dominant dispersion in the system. Both of
these parameters display clear chemical response signals which can be used
either alone or in combination with other ice core analysis measurements like
ECM and isotope analysis.
If the core under analysis is chemically analyzed for Na+, Mg2+, Cl−, SO2−

4

and NO−3 , a number of important parameters, which can be used to evaluate
the response of the dielectric parameters, can be calculated(REFERENCES):

• The salt parameter, which represents the total marine cation concentra-
tion calculated with the assumed marine ratios as:

[salt] = 1.05([Na+] + [Mg2+]) (61)
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• XSO4, the excess sulphate, which represents the amount the sulphate
concentration is above the expected if the salt and sulphate ions were
in normal sea salt ratios. Excess sulphate is essentially sulphuric acid,
which is the main acidic component of the ice.

• The strong acid content of the ice has been calculated as(assuming no
other ions present in significant quantities):

[acid] = [Cl−] + [SO2−
4 ] + [NO−3 ]− 1.05([Na+] + [Mg2+]) (62)

From data, it can be seen that acid and salt concentration peaks
clearly affect σ∞ and fr(EXAMPLES, REFERENCES). The relationship be-
tween salt and acid, and the two dielectric parameters have been derived
through non-linear regression analysis. In PAPER(REFERENCES) the lin-
ear responses for the DEP at -22◦C were:

σ∞ = (0.39± 0.01)[salt] + (1.43± 0.05)[acid] + (12.7± 0.3) (63)

with 76.6 % variance

fr = (440± 11)[salt] + (612± 65)[acid] + (8200± 400) (64)

with 68.4 % variance. σ∞ is measured in µS/m, fr in Hz and [acid] and [salt]
in µEq/l. The total ionic concentration of the ice core is strongly linked to the
dielectric parameters, and a regression between the total anion concentration
and the dielectric parameters gives:

[anions] = [salt] + [acid] = 0.022σ1.89
∞ + 10−6f1.61

r − 0.2 (65)

with 86.7 % variance.

The DEP complements the ECM technique by not only reacting to
acids alone, as ECM does, but responds to both neutral salts and acids. The
acid term is here associated with the DC conductivity, the same way it is also
detected by ECM. The dielectric dependence on salts is consistent with the
Bjerrum L defect2affecting every one or two salt ions in the ice, indicating
that a large fraction of the neutral salt is incorporated into the ice lattice. 3

3A Bjerrum defect is a crystallographic defect specific to ice, partly responsible for
the electrical properties of ice. Usually a hydrogen bond will normally have one proton,
but with a Bjerrum defect it will have either two protons (D defect) or no proton (L de-
fect).(REFERENCES)
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The sensitivity to salt concentrations allows for identifications of pe-
riods with major storms and open seas which are also important identifiers
for paleo climate research, along with the volcanic eruption detection made
possible through the ECM.
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