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Abstract

The quantity and quality of data within astronomical archives are growing. With large-
scale surveys of the night sky, new tools must be developed in order to process an unprece-
dented amount of information, in a standardized way. Additionally, recent tools, called
Integral Field Spectrographs, gather spectra from an entire field of the sky. Searching for
astronomical sources in the 3-dimensional (Right Ascension, Declination, and wavelength)
images they produce can be difficult. Using IFS, 3D pictures of specific objects can be
taken, without analyzing other sources in the image, such as in the background or on the
edges.

In this Master of Sciences thesis report, we propose to create a tool, AutoMUSE,
standing for Autonomous MUSE Source Extractor. AutoMUSE is dedicated to the anal-
ysis of MUSE instrument products, but should in principle work on other IFS datacubes.
The tool is compliant with (most of) the FITS guidelines, and produces spectra, catalogs
and images in a standardized way.

After a description of the source images we are interested in, we will describe the
functioning of our software, and of the mechanisms behind it. We apply it to three
different fields, and show results form that analysis. Additionally, we worked on attempts
of automatic classification of spectra, and describe our reasoning.

Some definitions

In the report, we will use the following terms:

Datacube 3D astronomical image, with two spatial — generally right ascension
and declination — and one spectral — generally wavelength — axes,
containing voxels. Each voxel contains a value, generally being a flux
at a certain wavelength.

Voxel Pixel, generalized to a 3D space.

Image 2D astronomical object with two spatial axes. An image of 5 pixels —
or voxels — along the spectral axis from the datacube is the projection
(through sum, average...) along to spatial axes of a 5 spectral pixels
selected region of the datacube.

Stat (extension) Extension containing data uncertainty on the source datacube/image.
Stat is composed of 2D pixels or 3D voxels. Can be represented as a
standard deviation σ, a variance σ2 or a weight 1

σ2 .

Broad-band image An image from a large spectral portion of the datacube, projected to
spatial axes. White light is the image of the whole cube, blue the first
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third of the wavelength found in the datacube, green of the second
and red of the last.

Narrow-band image An image of a few wavelengths of the datacube, projected to spatial
axes.

Segmentation map : an image representing position and extent of various objects present
in an image or a datacube. To each object is assigned a unique integer.
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Chapter 1

Introduction

Along this thesis, we are going to derive a way to detect and extract objects in pecu-
liar three-dimensional images, and attempt to classify them. Before describing existing
processes and explaining how the process we implemented works, in chapters 3 and 4,
and presenting results and possible improvements, in latter chapters, we will start by an
introduction about astronomical concepts, in chapter 1. In chapter 2, we will discuss
instruments and data structure of the tools and files we use in AutoMUSE.

1.1 Night sky and collection of light

While looking at the night sky with naked eye, one can see bright point-sources, stars,
and more nebulous and extended objects, such as the Milky Way, nebulae, and nearby
galaxies. Some faint ones can be observed without any instrument if there is a great, dry
sky, with no light pollution around — the last point being a growing problem as stated
in [16] [22]. However, even with excellent observing conditions, an astronomer will not be
able to distinguish the billion stars compounding the Milky Way with its sole eyes, nor to
identify colors of distant objects. Thus, humanity and scientific community had to come
with ways to collect more light.

In order to achieve this problem, telescopes were invented. A telescope is a device
composed of lenses and mirrors (for their simplest forms), and of an eyepiece allowing
an observer to look at the celestial archway. The use of a telescope greatly increases
the surface collecting light: while a pupil is ≈ 6 − 7mm diameter wide, a telescope can
have much larger surfaces: commercial telescopes for amateurs easily reach an aperture
of 250 to 300mm, while professional optical telescopes diameters can be several meters.
The emblematic Hubble Space Telescope has a 2.4m mirror, and ground telescopes light-
gathering pieces can reach 10.4m — the aperture size of the Gran Telescopio Canarias.

With telescopes, not only astronomers observe fainter, nearly invisible objects, but
also increase the resolution of observations, their ability to distinguish close objects in the
sky.

We use the term “resolution” to mark how two objects close in the sky appear as
merged while looking at them with a telescope. It is defined as the ratio between observed
wavelength and telescope diameter; in the case of visible light, the resolution power is often
taken at 550nm.

Using the resolution, one can define “criterions”, such as the Rayleigh criterion, that
permits qualifying if two objects, angularly close in the sky, can be deblended:
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: The Hubble Deep Field, R. Williams (STScI), the Hubble Deep Field Team
and NASA.

sinαR = 1.22R = 1.22
λ

D

Using that criterion, one can find the minimal angular size αR of an object to be
resolved with a particular telescope. If we manage to know the distance from an observed
object, we can also be able to determine its physical size. For example, we can show that
in the visible light, the minimal detail size of an object on the Moon (distant of roughly
384.000km) with naked eye is about a hundred kilometers, while the Extremely Large
Telescope (E-ELT) will distinguish 6-meters wide objects with its 39m aperture.

However, increasing the size of the mirror used in a telescope is not the only way to
collect more light. With the invention of photographic plates, and after that of more
sophisticated light collectors, such as CCDs or CMOS sensors, astronomers can register
light/photons from a source for a longer time, thus gaining the ability of observing the
faintest objects of the universe. Hubble Space Telescope revealed that a 24-millionth of
the sky, while observed for ≈ 35h in total, at well-chosen wavelengths, contains a thousand
of galaxies.

Thus, we have two ways to increase the observing power of a telescope. Both comes
with sources of error, such as chromatic aberration or cosmic ray impacts.

1.2 Analysis of the night sky

What can we learn from images such as the Hubble Deep Field (Figure 1.1)?
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Figure 1.2: R. Williams (STScI), the HDF-S Team, and NASA/ESA.
Hubble Deep Field - South looks similar to the North one 1.1. Hubble Deep Fields demon-
strated that observing dark, small places of the sky reveal old galaxies, with different
shapes than the nearby observed ones. It also, with different pointings, is an illustration,
if not a proof, of the cosmological principle.

The first element concerns the nature of observed objects. Being able to build tele-
scopes allows, as we stated, to increase the resolution of our imaging of the night sky.
Forbes [19] , already in 1909, tightly linked the technical progress to the evolution of our
understanding of the Universe.

Historically, scientists and philosophers were first able to make the difference between
stars, that look like point sources, and nebulae, where all extended objects were classified,
without understanding their nature and dynamics. With technical progress, the difference
between galaxies and dust clouds was demonstrated by Hubble. The famous astronomer
showed that the fuzzy aspect of galaxies was due to a small telescope resolution, that was
not sufficient to make the distinction of billions stars laying outside our own Milky Way.
The other dust clouds can be linked to other phenomena, such as supernova events.

With the increasing quality of observations, a giant leap in understanding the Uni-
verse’s laws occurred during the XXth century. General relativity unveiled relations be-
tween space and time, that observing furthest objects permits unrolling history to the
birth of our Universe. In recent years, space borne observatories demonstrated that dark,
small pieces of the sky are full of information; mapping them could confirm and refine
equations ruling the evolution of the cosmos.
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Figure 1.3: Hubble’s classification scheme, Wikipedia Commons.

1.2.1 Shape of galaxies

Mapping the sky requires observation facilities, that point to different regions and objects
around the celestial sphere. Once these observations are done, they have to be understood
and analyzed.

A first analysis method is using simple imaging telescopes and sensors, to attempt
classifying the celestial objects based on their shapes and colors.

One could separate stars, looking like point sources, from fuzzy objects fixed in the
night sky, and from objects that appear to be moving in the sky, such as comets and
planets. The latter celestial corpses belong to our local galaxy, or even to our solar
system, and can be characterized through their luminosity. However, one would need
additional observations (see section 1.2.1) to understand their nature, similarly to stars.

More fuzzy objects were studied by Edwin Hubble in the 1920s’. Observing more than
400 “extra-galactic nebulae”, in order to determine their nature, the astronomer produced
a classification system to categorize his findings, Figure 1.3.

The Hubble Fork was first described by Hubble in its 1926 article,[27]. As Galaxy Zoo
stated in a blog post, it is still one of the golden standards in morphological classification
of galaxies. The fork in Figure 1.3 distinguish elliptical from spiral and barred spiral
galaxies. Each galaxy that light distribution seems elliptical is associated to an integer,
ten time the ellipticity of the object (rounded). For example, an E7 galaxy is elliptical,
with its ellipticity being e = 1 − b

a
≈ 0.7 (a and b being the semi-major and semi-minor

axes of the light distribution in the galaxy picture).

Spiral galaxies are denoted S, and can comport a star “bar” through it, that will be
denoted SB. The fuzziness and tightness to the central bulge of galaxies’ arms are rated
from “a” (diffuse and tight to the bright core arms) to “c” (extended, resolved arms around
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a fainter core).

However, the Hubble classification was not complete, and did not account for some
galaxies particularities. In his Galaxy Morphology article [14], Buta traces the various
changes made to the Hubble galaxy classification system. He denotes that Sandage added
the S0 type, representing galaxies with a central bulge, as well as a disk around it, but no
spiral arms. Sandage also carried two sub-types, allowing to take into account if a galaxy
contains a “ring” (r) in its light distribution, or if it’s a pure spiral (s).

In its own classification system, De Vaucouleurs enriched the Hubble-Sandage classi-
fication, into what he referred as a volume. The first dimension would be the stage of the
galaxy, being the axis going from elliptical to spiral galaxies in the Hubble Tuning Fork.
The two other axes represent a central bar presence or absence, as well as the presence of
a ring. Sandage - de Vaucouleurs also enriched the definition of classifications of irregular
galaxies, that cannot enter in any cases of the various tuning forks.

De Vaucouleurs also pointed out that another classification can be done comparing
esteemed mass - or diameter - to colors of galaxies in [17].

As Baldry points in [6], the word stage, used by Hubble and frequently by astronomers,
has no correlation to time evolution of the Universe. The “early” type galaxies, on the left
of the tuning fork, are not to be taken as if all the first-generation galaxies were elliptical.

The morphological classification has limits: galaxies evolve in a three-dimensional
space (plus time) projected on the two-dimensional sky surface. Thus, all galaxies are
not face-on, and the observed ellipticity is the projected ellipticity. Additionally, the
morphological classification system, in the visible light, is barely linked to any physical
parameter, as [14] reminds us, particularly for elliptical galaxies [31].

Finally, cataloging galaxies morphology is an important work in the framework of large-
scale survey. Studying distributions of shapes improves our understanding of celestial
objects formation. The Galaxy Zoo project is a collaborative tool aimed at classifying
galaxies in order to draw statistics and physics from galaxy shapes, such as the star
formation rate of spiral galaxies [53], or to identify peculiarities in shapes, informing us
about formation events - such as mergers. However, galaxy shape and luminosity are not
sufficient to characterize it. The intensity and luminosity profile of objects are not the
only source of data.

Spectra and redshift

During the XVIIth century, Newton discovered that projecting a sunlight ray in a prism
would decompose it in a rainbow. That crucial discovery led to understand that light is
an (electromagnetic) wave.

Nevertheless, light sometimes also behaves like a collection of particles, photons, con-
taining a specific level of energy, a quantum. This level of energy can be quantified by a
number, λ, the wavelength.

The paradox that light can be seen as both wave and particles has useful consequences.
For example, one can collect light, and count how many photons of specific energy - that
is, wavelength - are composing the wave. This count-per-wavelength is called a spectrum.

Before understanding light nature, we used our (human) eyes to observe the sky. Eyes
are adapted to see light with wavelengths ranging from 380 to 700nm, through the optical
spectrum. With the discovery that there is light outside this range, astronomers built
instruments permitting to watch what happens beyond visible spectrum. Then, they
could link photons distributions along wavelength to different physical processes.
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Observers can look at celestial bodies, and using a spectrograph, decompose their light
into spectra.

While looking at spectra of stars in the optical range (300 − 800nm), one can find
several features and light behaviors, as on Figure 1.4.

Figure 1.4: A-type star template from Marz software [24].

These features can be explained by exposing observations to the light of quantum
physics.

A first element that gives a star spectrum its shape is its continuum. If the dips in
the spectrum are ignored, and that the noise due to observing conditions is removed, a
spectrum can be smoothed to a continuous and slowly varying function depending on
wavelength, the continuum. It can be related to the Planck’s law :

B(λ, T ) =
2hc2

λ5
1

e
hc

λkBT − 1

This law links the spectral radiance of a body to its temperature. It is also called
a black-body spectrum. Using it, we can, for example, determine the temperature of a
stellar body.

We also notice, on the spectra, “dips”, wavelength ranges where the stellar object emits
less than the continuum. These features are explained by quantum mechanics and atoms
behavior. A star’s atmosphere is composed of atoms and ions. Electrons, fundamental
compounds of these, can absorb specific and discrete quanta of energy, that are only
dependent to the nature their associated element. Due to that quantization, an electron
can be excited to specific levels of energy, jumping discontinuously from one to another.
At the surface of a star, the energy that can excite an electron to a level higher than its
ground, fundamental state, is carried by photons, that have an energy depending on their
wavelength: E = hc

λ
.

When a photon, emitted by the black-body - thermal - radiation of the star, having a
specific energy is absorbed by an electron at the right state, it creates an absorption feature
in the spectra. The “intensity” of these features will be dependent to the concentration in
a star atmosphere of the atoms and ions, and of their attached electrons.

As we can measure (and compute), on Earth, which atoms and ions can absorb photons
at a specific wavelength, it is possible to trace back stellar atmosphere composition and
behavior from absorption lines.

When looking at a galaxy spectrum, we notice a different pattern.
The various galaxies optical spectra in figure 1.5 have other kind of features. Their

continuum cannot be fitted with a Planck function, but its flux seems to be increasing to
a plateau starting at ≈ 4000Å - for the two first ones. They also have both absorption
and emission lines.

Nevertheless, all these features can be explained by the nature of galaxies: such an
object is the sum of stars and gas.

As explained by Buat in a lecture [13], the continuum emission of the galaxies in the
optical range is due to the sum of light emitted by the stars.
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Figure 1.5: Optical galaxy spectra templates, from Marz software [24].

The hot, new stars in the nebulous object heat-up the gas surrounding them, thermally
exciting it. The atoms and ions compounding that gas will de-excite by emitting photons
at allowed frequency, thus making appear emission features.

Finally, the absorption lines in the galaxy characterize an old population of stars, whose
atmosphere’s metals absorbs the light at key wavelength, with the same mechanism as
stated above.

When observing spectra, the lines can be narrow or broad, and the whole spectra
can be shifted to blue or red. This is due to Doppler effect, that affects the perceived
frequency/wavelength of the observer relatively to the (radial) velocity differential between
source and observer. Broad absorption line in a star spectrum can translate the thermal
agitation of the absorbing atmosphere, while a rotating galaxy increases the width of its
emissions lines. If the entire line is moved, it means that the object moves relatively to
us, as characterized by the redshift formula (in the non-relativistic case):

z =
v||
c

where

z =
λobs
λemit

− 1

Hubble noticed that the galaxies velocities, when “sufficiently far away”, follow the
formula

v = H0D

, where H0 u 70km/s/Mpc and D the distance to the galaxy. By showing that empirical
law, the astronomer demonstrated that the Universe is in expansion.

1.2.2 Why should we map the Universe?

Mapping the universe is not only about being able to place objects on the sky — even if
this has been quite useful for navigation before the invention of GPS — but also about
characterizing them. Thanks to general relativity, being able to classify objects redshift
grant access to their ages as well as their nature.

A classification of objects across redshift, even if done roughly, can be used to derive
elements formation history, or star formation rate evolution in galaxies. It would give
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access to the great story of how galaxies evolve across millions (billions) of years, and the
evolution of cosmological dynamics and interactions.

A shape-or-color based classification, that would not require spectrographs, would also
be useful. It could bring information on the relative populations of celestial bodies. It
would also be less expensive than wide spectrometric studies. Using knowledge brought
by spectral classification, one can downgrade data quality to colors in broad-band images,
simulating the usage of broad-band instruments. From data acquired by spectral analysis,
one can then derive properties from objects using only flux, intensity of objects, in various
broad-band images.

In this thesis, we focus on developing a method to provide information on the lo-
cation of faint, distant objects, automatically, and incurs in the territory of automatic
classification, using the capacities of a recent (2014) instrument, MUSE.



Chapter 2

Related works

In this thesis, we are searching for astronomical sources on images, captured by MUSE
instrument. Such a work is called “construction of a catalog”.

2.1 Astronomical catalogs

Astronomical catalogs are a way of listing the different celestial bodies observed, by var-
ious techniques and instruments, as well as information derived from these observations.
Catalogs usually contains, for each object, a name, coordinates, and some information
about what is observed — it can be photometry, analysis, or an eye-description of the
object. We can also find information about redshift of a galaxy, or metallicity of a star,
if it was the topic of the catalog built. Forbes [19] assumes that the firsts catalogs were
constructed by Chinese civilizations, but also describes how careful Arabic scientists, dur-
ing the first millennia, gathered with accuracy and method object coordinates in the sky.
Western astronomers later produced tables of celestial bodies, similarly to current meth-
ods. Charles Messier, a French comet hunter from the XVIth century, discovered and listed
deep-space objects in its Messier Catalogs. Another notable catalog is the New General
Catalog (NGC), containing thousands of objects, and that was corrected and revised until
20151. The catalogs are now produced by surveys, instruments or method of discovery.
This led to an increase of numbers of catalogs, covering different portions of the sky, in
various wavelength ranges and deepness. To mine through catalogs, tools, such as Vizier2,
exists, permitting to identify objects in various catalogs through names, coordinates, and
numerous other parameters.

The tool also includes cross-identification attempts of objects. However, the matches
must be taken carefully, for multiple reasons: an instrument taking images may have an
offset on coordinates, the object could be a false detection, or two objects can lay really
close to each other, or even in the same line-of-sight.

2.2 Instruments used for Spectroscopic Astronomical Sur-

veys

In this thesis, we are interested into producing automatically catalogs from MUSE patches
of the sky, that may contain either stars and galaxies, and to extract their associated

1http://ngcicproject.observers.org/
2https://vizier.u-strasbg.fr/vizier/

15

http://ngcicproject.observers.org/
https://vizier.u-strasbg.fr/vizier/


16 CHAPTER 2. RELATED WORKS

spectra, profiting from MUSE capacities- see subsection 2.2.2.

Multiple catalogs and surveys exist to describe portions of the sky. However, few
instruments were created with the ability to gather images and spectra during the same
time.

2.2.1 Sloan Digital Sky Surveys - SDSS

Sloan Digital Sky Surveys are long term projects to map the sky, and to obtain science
from its maps.

SDSS projects occurred in four phases, with a fifth one starting in 2020/2021. Between
1998 and 2008, a 126 megapixels’ camera observed 30% of the sky, in 5 different color
bands3.

While finding objects on the band-images, some of them were (and still are) selected
in order to obtain their spectra. To capture these, drilled-aluminum plates were placed
in the telescope, with holes at the positions of celestial bodies to analyze. Optical fiber
linked target to a spectrometer, that deliver spectrometry for up to a thousand objects
per plate.

During the first phase of SDSS, around 800 000 galaxies and 100 000 quasars were
mapped with spectra. In the later phases, the telescope also observed spectroscopically
more than 300 000 stars (through SEGUE and SEGUE 2 experiments) , analyzed spatially
distributed spectra of nearby galaxies (MaNGa). The BOSS and eBOSS missions found
the redshift for more than a million objects.

The SDSS data releases are key instruments for astronomical research. Freely acces-
sible spectral and photometric databases allows performing analysis on numerous topics.
M. Tegmark and al. [47] used SDSS to refine cosmological parameters, while the SEGUE
missions [52] permitted to explore abundances of elements in Milky Way ’s stars and to
explore chemical evolution of its disk [43], among other discoveries.

Another key point of SDSS surveys is its identification pipelines, permitting to classify
automatically (numerous) gathered spectra. redmonster and idlspec2d are template-
matching tools, reliable more than 95% of time [11], used to automatically match spectra.
The SEGUE pipeline4 permits estimating stars parameters, when a good signal-to-noise
ratio is detected.

Finally, the use of massive data set of spectra from SDSS repository can be used to train
regression machine learning algorithms for redshift and categorization [26]. Indeed, we will
use SDSS spectra for our automatic classification of spectra algorithm in subsection 6.1.3

The limits of SDSS studies is the rate at which it can acquire spectra: holes must
be drilled on a cartridge, then each hole of the plate is manually plugged with optical
fiber to spectrometer, before an observation can occur. The SDSS-V will fix that spectra
acquiring system by using a brand new Robotic Positioning System 5 , that will replace
the plate system and reduce target-mapping time from 20 to 2 minutes. Also, an Integral
Field Unit will be installed, collecting millions of spectra with a great resolution. That
new“Local Volume Mapper” is expected to map spectra with sub-parsec spatial resolution
in the Milky Way, with similar techniques that are used with the instrument we mainly
use in our thesis, MUSE.

3https://www.sdss.org/instruments/camera/
4https://www.sdss.org/dr16/spectro/sspp/
5https://www.sdss.org/future/technology/

https://www.sdss.org/instruments/camera/
https://www.sdss.org/dr16/spectro/sspp/
https://www.sdss.org/future/technology/
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2.2.2 The Multi Unit Spectroscopic Explorer - MUSE

The Multi Unit Spectroscopic Explorer (MUSE) instrument is installed at the ESO Very
Large Telescope UT4, used by various surveys.

The MUSE instrument philosophy is different from the SDSS one. SDSS makes a first
multi-band imaging capture, identifies objects on the obtained images, and individually
collects spectroscopic data for pinpointed location, resulting in high-quality spectrum.

On the contrary, MUSE is an Integral Field Spectrograph, that can realize both imag-
ing and spectrometry in a single pass. The instrument targets a portion of the sky, and
slices the region in 24 areas. These areas are sent to 24 identical Integral Field Units, that
are devices with the capability to further divide images and to capture spectra for each
individual region. In MUSE, IFUs disperse each of the 24 regions into 48 “slits”, that are
then analyzed using spectrographs.

At the end of that process, one obtains a 3D image of the sky, where each of the 1152
(24IFUs × 48slices) spatial pixels are associated to spectra ranging between 480nm and
930nm. Thus, at each pointing, the instrument produces what can be seen as an array of
spectra — or, a 3D image — that we call a IFU product, or a datacube. These different
pointings can be staked and fused together, in mosaics, to obtain spatially larger cubes.
To recover a white-light image from the observation, the product can be transformed back
by summing its components along the wavelength axis.

To have proper data from an observation, raw data have to be treated. The MUSE
pipeline recipes software is able to automatically perform observation data correction
and reduction, dealing with the bias, dark and flat fields, and also correcting the line-
spread function of the instrument [49]. MUSE recipes can subtract sky emission , but
one should consider performing additional sky treatments, such as the ones proposed in
the ZAP package [44]. This additional processing step is often done on various spectrum
products, and may be important for automatic detection and classification processes (see
subsection 6.1.3).

MUSE, in its wide-field mode, has the ability to observe a 1′ × 1′ section of the sky.
As it is a ground instrument, it is affected by atmospheric effects, that can be corrected
using adaptive optics.

Using all these capabilities, an IFU can be used to obtain spatially resolved spectra of
extended objects. For example, the MaNGA IFU of SDSS has the capability to capture
spectra from different arms of a single nearby spiral galaxy.

MUSE is originally dedicated to search for characteristic hydrogen emission lines, emit-
ted by young redshifted galaxies. Mapping these objects permits to generate a spatial and
temporal map of the Universe, and allowed new discoveries. The Hubble Ultra Deep Field
Survey, leaded by Roland Bacon, observed the Hubble Deep Field [5], combining 10 dat-
acubes obtained during 137h spanned over two years. The mosaic permitted securing,
spectroscopically, redshifts from more than 1300 objects in the field, to study and con-
strain cosmological parameters such as reionization, but also to spatially resolve stellar
kinematics of 0.2 < z < 0.8 galaxies.

2.3 FITS files

In this thesis, we work on source detection and extraction in astronomical images. The
Flexible Image Transport System (FITS) has imposed itself as a standard output format
from telescopes, and has numerous interfaces across different programming languages.
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Our tool will be dedicated to the analysis of these files, so we choose to add a small
description and comments of these here.

For 2D images (also called broad-band images), tools such as DS9 can interpret and
represent the data contained in the files, permitting visual inspection. GAIA-Skycat tool
include analysis tools, and permit generating and representing catalogs automatically from
FITS images.

FITS files standards are described on the NASA dedicated website 6, and is ratified
by the International Astronomical Union. The authors exhaustively list all keywords
and structures of standard files, we will here describe the functioning of FITS files more
organically.

A FITS file is a collection of extensions, called Header and Data Unit(s). There must
be at least one, and there is no formal limit on the number of extensions in a file. Each
HDU contains a header and optionally data. The data block of a HDU is an array of
values, that can have as many of dimensions one wants to. An extension containing a
spectrum will be 1 dimensional, while an image can have two dimensions. An integral field
unit data, such as the data produced by MUSE, will be three-dimensional. The number
of axes has a virtual limit of 999 (that is, data in 999 dimensions). For observations issued
from telescopes, this limit is hardly reached.

The information describing the data array is stored in a Header. Headers, written as
ASCII text list, have the following structure: KEYWORD=VALUE / COMMENT. These lists can
be accessed without loading data, and a quick look at them can be useful to know what
a FITS file user is dealing with. The basic keywords in the header blocks concern axes.
First, the NAXIS keyword describes how many axes the data array have, while NAXISn

indicate the length of each axis, indexed with n varying from 1 to NAXIS. Other keywords
concern types of data. FITS can store not only images, but also tables of data. This is
set by the XTENSION keyword, with values IMAGE, TABLE, and BINTABLE. The latter stands
for “Binary Table”, and is similar to the TABLE one, except that data in it is not stored
as ASCII characters but in a binary way, providing more compact HDUs and allowing
to store arrays of values. Tables extensions are useful to store and handle catalogs of
objects, but we will not describe their specific keywords here. Additionally, python tables
are easily convertible to FITS table via the work of the Astropy project.

We’ll now describe images, and more specifically, critical parameters permitting to
link pixel axes to a physical coordinate system, a World Coordinate System. There are
a lot of keywords reserved to that end, all standard ones described in the FITS standard
paper. We’ll study a few of them here.

A first keyword that will be useful to interpret data is BUNIT, representing the units
of numbers within data array. Despite the importance of such an information, that every
physicist relies on, we encountered several times FITS images without that information.
Some tools rely on units to process data, and wouldn’t work without.

A second set of keywords are the axis names/types. Celestial axis types are mapped
through the CTYPEi keywords, where i is the pixel-axis to be mapped against. Classically,
right ascension RA and declination DEC are used, associated with a projection algorithm as
described in [15] . RA and Dec are nothing different from latitude and longitude, referring
to an orientation related to a reference frame defined by Earth equator, Greenwich Merid-
ian and earth center. CTYPEi comes with a reference frame, RADESYS, that define the axis
and origin of the frame. It can be Earth system, but one can also define the International

6https://fits.gsfc.nasa.gov/fits_standard.html

https://fits.gsfc.nasa.gov/fits_standard.html
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Celestial Reference Frame, based on distant observation of quasars7. Doing so, the coor-
dinates become independent of Earth rotation and from time. The ICRS is defined as the
solar system barycenter at its origin, and axes/ecliptics are defined relatively to position
of the distant objects.

Having defined RADESYS and CTYPEs, one has to define how the variation along a pixel
axis affects physical axis. There are different ways to do that, because the definitions
changed with standard evolution. We will not put all definitions here, but only the most
recent ones.

The keyword CRPIXi defines the reference pixel along the axis i, and is associated with
the physical value CRVALi. The latter value is associated with a unit CUNITi.

Then, the changing pixel coordinates along the various pixel axes, and how that affects
physical coordinate, is defined by matrices. The most recent formalism is defined by
the PCi_j matrix, associated to the CDELTi keywords defining scales. To determine the
celestial coordinates with that method, two successive transformations are applied (from
FITS standard paper):

qi =
NAXIS∑
j=1

mij (pj − rj)

xi = siqi + oi

where i spans over the physical-celestial axes, j the pixel ones, and rj is the reference pixel
of the pixel axis j - CRPIXj. The matrix mij is the matrix PCi_j, and the scale CDELTi is
represented by si. Finally, oi is the origin of the coordinates, that is CRVALi.

Another way to map pixel to celestial axis is to use the ancient formalism of the CDi_j
matrices. The equation transforms to:

xi =
NAXIS∑
j=1

(simij) (pj − rj)

where the scale is integrated to the sum.
Generally, the matrices of FITS files produced by the MUSE instrument are diagonal,

meaning there is no effect of rotation and distortion when moving along celestial axis. This
means that a change of coordinate pixel in one direction will only affect one direction along
the physical coordinates.

However, in this thesis, we are not only working on a two-axis system, but we are
also interested in the physical coordinates of a third -spectral- axis. The spectral CTYPEi
keyword can take various values, from table 25 of FITS paper, reproduced in Table 2.1.

Implementing a third axis add a column and a line to the pixel-to-physical matrix, as
well as a reference pixel and value to the FITS extension header. One would also need a
unit to that spectral axis When analyzing the spectrum part of a cube, it is truly important
to distinguish air wavelength (CTYPEn= AWAV) from vacuum wavelength (CTYPEn= WAVE).
The choice of a spectral reference system is also critical, using the keyword SPECSYSa, to
specify if heliocentric velocity has been corrected, for example.

We must stress out the importance of having consistent keyword to define WCS. Spe-
cific non-standard keyword exist (describe the HIERARCH) and are widely implemented.

7http://www.sirgas.org/fileadmin/docs/GGRF_Wksp/20_Heinkelmann_2019_ICRS-ICRF_

overview.pdf
8https://fits.gsfc.nasa.gov/standard40/fits_standard40draft1.pdf

http://www.sirgas.org/fileadmin/docs/GGRF_Wksp/20_Heinkelmann_2019_ICRS-ICRF_overview.pdf
http://www.sirgas.org/fileadmin/docs/GGRF_Wksp/20_Heinkelmann_2019_ICRS-ICRF_overview.pdf
https://fits.gsfc.nasa.gov/standard40/fits_standard40draft1.pdf
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Table 2.1: Reproduction of table 25 from FITS standard paper latest revision8. Presents
the different codes for CTYPE keywords.

Code Type Symbol Assoc. variable Default units
FREQ Frequency v v Hz
ENER Energy E v J
WAVN Wavenumber κ v m−1

VRAD Radio velocity V v m s−1

WAVE Vacuum wavelength λ λ m
VOPT Optical velocity Z λ ms−1

ZOPT Redshift Z λ . . .
AWAV Air wavelength λa λa m
VELO Apparent radial velocity v v m s−1

BETA Beta factor (v/c) β v . . .

However, the standard WCS system is consistent when looking at physical coordinates,
and a few software programs don’t use them properly. For example, the Marz tool makes
uses of the non-standard Boolean keyword VACUUM to check if the wavelength are vacuum
shifted or not — while this can be done simply by checking if the spectral axis CTYPE is
AWAV or WAVE. The same story happens while looking if heliocentric velocity have been
corrected, that Marz checks by looking at the DO_HELIO boolean, that could be done
looking at the SPECSYSa keyword.

Source and history of a FITS file are traced by a small set of keywords, and might also
have influence on the WCS computation. The DATE-OBS keyword describe the date of an
observation, and must not be confused with the DATE one, that gives information about
when the FITS data unit was created. The keywords OBSERVER, TELESCOP, INSTRUM are
transparent, and the keyword OBJECT should contain the name of the observed object.
EXPTIME represent exposure time of the observation.

Fields associated to the HISTORY keyword traces all modifications of the FITS file,
and can be used to indicate if skylines have been subtracted from a spectrum, if different
images have been merged, and so on. The COMMENT keywords are, well, comments.

Additionally, the European Southern Observatory developed a non-standard set of
keywords to further precise FITS data source : the HIERARCH convention. FITS header
keywords are limited with eight characters, and HIERARCH permits to overpass that
threshold; nowadays, these keywords are recognized in most of FITS files readers and
parsers9.

ESO uses these HIERARCH keywords to provide additional information on observa-
tions, and about parameters of telescopes 10.

Finally, other non-official keywords (and their associated values) are numerous. As we
discussed earlier, Marz introduced some of these, despite existence of “official” keywords
with the same end. Python package Astropy, and its FITS interface, does its best to
read and to standardize the FITS files. Astropy also adds some non-official keywords to
complete the FITS interface, such as the UTYPE one, that indicate the uncertainty type
of data — in an uncertainty extension, that can be either standard deviation σ, variance
σ2, or weights 1

σ2 .

9https://docs.astropy.org/en/stable/io/fits/usage/headers.html
10http://www.eso.org/sci/software/esomidas/doc/user/18NOV/vola/node116.html

https://docs.astropy.org/en/stable/io/fits/usage/headers.html
http://www.eso.org/sci/software/esomidas/doc/user/18NOV/vola/node116.html
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Astronomical images

3.1 What is an astronomical image?

In this study, we work on astronomical images, and on Integral Fields Units products
— also called datacubes. An astronomical image is compound of photons collected by a
telescope. These photons will produce a signal in a sensor, a camera, at the end of the
observing device. There are many types of sensors, used in different spectral bands [32],
and for the UV-to-Infrared bands, astronomers mainly use Charge-Coupled-Devices —
CCDs. SDSS telescope and MUSE, quoted earlier, use CCDs in their devices.

A CCD is composed of a semiconductor, usually silicon. Impurities, like a few atoms
of Gallium (or Boron) and Phosphorus, are added to the semiconductor crystal, in order
to dope the semiconductor. That dopage increases the number of free electrons in the
layer. During an observation, a photon is collected by the telescope, and will react via the
photoelectric effect with the semiconductor in the CCD, creating a photo-electron and its
associated hole. This photo-electron will be trapped in an electric potential well and the
hole will be guided to the ground. When the observation will be completed, the CCD
pixel array is read. Electrons are moved, line by line, like on a conveyor belt, to a charge
amplifier, that will convert the number of electrons contained in a pixel to a voltage, an
electric signal, proportional to the number of trapped electrons. Once that list of voltages
(one voltage per pixel in the CCD) is collected, it can be processed written in a digital
format, like in a FITS file 1.

Of course, CCDs do not work perfectly, and must be taken and processed carefully to
reduce errors and increase image quality — especially when one wants to observe with a
long exposure time. The quantum efficiency of a CCD measures the ratio between photo-
electrons against incident photons, and denotes that all photons collected by a telescope
won’t be saved. A CCD also has resolution issues : the smallest spatial unit is a pixel,
and not a single point. Thus, a CCD camera can limit the final resolution of an image. In
the spectral domain, a CCD can’t register photons that are not close to the visible light,
400− 800nm, even if this can be modified by adding doping atoms.

Images created by a CCD camera must also be corrected relatively to the noise created
by the detector itself, in order to produce accurate output images. Different noise sources
must be taken into account. When a CCD is read, a few electrons might appear (or
disappear) at each pixel read, that is the readout noise. The readout noise has a normal
distribution. When a pixel containing 2 electrons is read in a CCD with three-electrons
read noise, there’s a chance it will be interpreted as containing a negative value of charges,

1http://www.if.ufrgs.br/~marcia/ccd.pdf
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Figure 3.1: Processing science images: list of operations. Issued from http://123.

physics.ucdavis.edu/week_7_files/CCD_imaging_lecture.pdf

.

and that would cause problems when converting it to a digital unit. To avoid that, a bias
is added to each pixel, and it must be removed from the final frame.

To estimate bias and readout noise, one can take several images, with 0 exposure time,
and the sensor plunged in the dark. The mean of various images will be the bias field,
while the standard deviation between the frames would give an estimate of the read-out
noise.

A second issue is photo-electrons induced by the temperature of the CCD chip itself,
the dark current. It can be reduced by cooling the device, for example MUSE is cooled
by liquid nitrogen at −130°C. To measure it, one can take a few images with exposure
times identical to the future observations, but with the shutter closed, hence observing
the “dark”.

The various pixels of a CCD chip may have different efficiencies. To qualify that
efficiency map, flat fields are measured : images taken of homogeneously illuminated
areas.

Once all these images have been taken, on can finally collect science, or observation,
frames, and correct them by applying operations in Figure 3.1.

Finally, the uncertainty, or the noise, associated to a fully processed image is:

σtotal =

√
(DarkNoise)2 + (PhotonNoise)2 + (ReadNoise)2

The dark and photon noises are following Poisson statistics, meaning that the uncer-
tainty associated to a measurement is :

σN =
√
N

http://123.physics.ucdavis.edu/week_7_files/CCD_imaging_lecture.pdf
http://123.physics.ucdavis.edu/week_7_files/CCD_imaging_lecture.pdf
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Figure 3.2: Hubble Ultra Deep Field nega-
tive of the white light image, obtained from
a MUSE datacube using AutoMUSE.

Figure 3.3: Hubble Ultra Deep Field seg-
mentation map, obtained from a MUSE
datacube using AutoMUSE. Each colored re-
gion represent a different source, as de-
tected by the tool.

, where N is the number of events — the number of detected photons, in our case.
Images taken from professional telescopes usually flow through a dedicated pipeline,

realizing these steps automatically, resulting in FITS files containing two extensions, data
and its associated uncertainty.

The MUSE instrument and its pipeline produce 3D FITS files. The third dimension
comes by splitting the captured flux in different light rays, and by projecting these onto
CCD spectrographs. We then have a count of photons per wavelength unit.

3.2 How to detect objects on an image

In this thesis, we are working in producing “segmentation maps”. Segmentation maps are
bit-masks of an image, in which the background and identified features of an observation
are disambiguated, and where each different feature is labeled with a distinct integer, like
on figure 3.3.

A segmentation map can act like a mask, and using it, one can select one-by-one
objects in its original image. Contrary to a catalog, that only store centroid coordinates,
they can store the shape and topology of an object in the sky. Nevertheless, two celestial
sources can be blended, or even fully covering each other while projected in the sky, and
that cannot be represented correctly on a segmentation map, while a catalog can store
two objects in the same place. According to SDSS statistics2, about 15 to 20% of objects
are partially blended in the sky, thus a proper deblend is a rather important step.

To produce a segmentation map, one must start by finding objects on an image. As
we work not only on images, but on datacube, we will show some ways to extent image
detection to datacube detection.

There are various ways of detecting features on an image. In the era of machine
learning algorithm, we can train algorithms into recognizing faces, or common-life objects,

2https://www.sdss.org/dr12/algorithms/deblend/

https://www.sdss.org/dr12/algorithms/deblend/
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in images. However, to train such an algorithm for astronomical images one would need
to have a repository of segmentation map and white-light images, and to work on different
sets of algorithms to select the most appropriate one for such a task. This would require
an extensive computer time for the algorithm to learn what is an astronomical object,
and additional analysis to distinguish false positives in the detected objects sets. That
technique would also require to actually have a repository containing segmentation maps
and images.

Another way to perform detection is the approach used by Origin [34] to detect
emission-line objects. This tool is based on various algebra, to estimate the background
and remove “nuisance”, and pattern recognition techniques, to recognize the spatial-
spectral shape of an emission line.

Nevertheless, simpler, standard astronomy imaging techniques exist in order to obtain
a segmentation maps of an image. One of the most used - and fast - tool is SExtrac-
tor. Other detecting techniques for astronomical image are summarized and described by
Masias et al. in [35].

SExtractor

SExtractor [9] is a widely used tool in the astronomical field. Taking as input a FITS
image and a parameter file, it is able to find objects on an image, and to produce a
catalog of measurements (including photometric ones) and of coordinates. It is also able
to produce, as a by-product, segmentation maps.

The library retrieves various information in headers of the FITS file (such as gain,
units in the image, Right Ascension and Declination) to produce its catalogs. However,
detection parameters are not affected by these, and are impacted only by the configuration
files. If we are interested in the core of SExtractor, image detection, here is a way of
explaining what it does. A majority of parameters descriptions can be found in SExtractor
for Dummies [25] .

SExtractor works with an ASCII parameter file, where each line is written as:
PARAMETER Value(s)
(If there are different values for a parameter, they must be separated by commas).
In a first place, SExtractor imports the FITS image, and computes its background. To

do so, it draws meshes of sizes specified by the user using parameter BACK_SIZE (default
size is 65px× 65px), such as on figure 3.4.

Within each of these meshes, the tool computes a histogram of values. Recursively,
each pixel value is discarded from that histogram when its value is not within the mean
±3σ — and the statistics are recomputed until no values are discarded. If the standard
deviation σ value dropped by less than 20% at each iteration, the software considers that
the field is not crowded, and use the mean value of the histogram as local background
value once it stopped its iterations. In the crowded case, the resulting pixels values from
the histogram are used to compute the background in a local mesh, using the equation

Backgoundvalue = 2.5×median− 1.5×mean

The background values are then median-smoothed over the mesh-image (where each pixel
represents the value of a mesh) using the filter size stored in BACK_FILTERSIZE parameter.

The median-filtered background mesh-map is then resampled to the image size using a
bi-linear interpolation, according to the original paper [9], or a bicubic spline one according
to the online documentation [36]. In parallel, a background “Root Mean Square” map is
computed — that is, per mesh, the standard deviation of the background noise.
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Figure 3.4: Hubble Ultra Deep Field white light image, with a grid of mesh-size 65 pixels.
In each of these meshes, a different background value is computed.
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Figure 3.5: Figure 7.4 from [25]. SExtractor builds a tree of pixels intensity in connected
regions, and uses its branches to deblend objects.

Then, according to Source Extractor for Dummies [25], a threshold-filter is applied to
the data image. All pixels that are above Background + t × σ, where t is the threshold
set in DETECT_THRESH, and σ being from the RMS-map.

These detected pixels are analyzed, and the ones that are not in a region of more
or equal to DETECT_MINAREA connected pixels are discarded. The pixel connection in
SExtractor is a 8-connection, as shown in figure 7.3 of [25].

It will also deblend the objects that are close to each other, by building a “tree” of
the pixels’ intensity, and separating the branches as different and individual objects. This
behavior can be set and parameterized via the configuration files.

Once objects are deblended, SExtractor is able to produce a segmentation map of the
image, that will be written directly to the disk as a FITS file, if the parameter CHECKIM-
AGE_TYPE is set to SEGMENTATION. The software also generate a catalog, with the approx-
imated center-of-light pixel coordinate of every detected celestial body. After performing
object detection, SExtractor can extract photometric and morphological information from
each detection, and write that to the issued catalog, that can be analyzed by any tool
able to read ASCII files, or FITS files.

One of the reason that make people use SExtractor is quoted in Sextractor for dummies
[25] : the tool goes *fast*. With its default parameters, it is also able to generate accurate
results, if your image is bright enough. The tool is robust, and made its proofs, with
more than 7400 citations of the original article [9]. Additionally, it is resilient against
clumsy parameters and FITS files with wrong header information, meaning it will produce
(probably incorrect in the photometric part) results without returning an error code,
and without catastrophic failure. The tool is also embedded in astronomical software
collections, such as Scisoft or Starlink, making its use versatile.

It is used for detecting stars and galaxies in not-too-crowded fields, but also fainter
objects, such as asteroids [42].

It is also used to detect faint, emission line emitting galaxies, with algorithms such as
MUSELET [37].

3.2.1 MUSELET

MUSELET (MUSE Line Emission Tracker) [37] is a python tool in the MPDAF package,
dedicated to analyze MUSE products.
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The goal of MUSELET is to extend the capabilities of SExtractor to analyze MUSE
datacubes, as the mentioned tool can only work on 2D images. The tool handles detection
against the third, spectral, axis. To analyze a MUSE product, the script loads it, and cut
it along its spectral axis every 5 wavelength pixels. In the physical sense, every wavelength
pixel of a cube issued from MUSE is 1.25 angstroms wide, thus the obtained bands are
6.25 angstroms thick. These numerous narrow-band cubes — a MUSE datacube has
≈ 3600px in the spectral direction — are spectrally averaged to narrow-band images,
and written to the disk. These narrow-band images are completed with RGB images,
that are images produced from 1

3
of the cube in spectral direction. All are analyzed with

default SExtractor parameters (if the user have not specified any parameter file), and a
catalog for each is issued. All objects centroids, from all these catalogs, are placed in a
k-dimensional tree [29]. Using this structure, the nearest neighbors of each centroid, at
a distance of 5 (spatial) pixels maximum, is searched, and the centroid of every “ball” of
points is computed. These points represent the spatial coordinates of objects, as detected
by MUSELET.

As a result, the user obtains that list of coordinates, associated to positions of potential
emissions lines. The algorithm tries to associate a redshift based on the positions of these
lines.

3.3 Limits and critics, development of a different program

The goal of this thesis is to provide a script with the ability to generate a reliable segmen-
tation map of a MUSE datacube, through an easy to install, to use and to modify Python
script. The parameters must be understandable, and to accord a certain flexibility to
the user. It must be able to produce a “confidence” level for each detected object in the
segmentation map. To produce such a tool, one could think that we could start with the
MUSELET algorithm as a basis, and extent its capabilities into producing segmentation
map with SExtractor, and then combine them. Originally, we tried such an approach,
but had to fix many issues one by one, gently departing from the original algorithm, and
leading to a completely different one. The first problem is related to SExtractor behavior
and internal functioning. SExtractor has no python interface, and all parameters must be
written to a configuration file or in a command line, and must be launched from command
line, making it os dependent. There are attempts to port SExtractor to a python package,
as a wrapper or as a module, such as sewpy [45] or SEP [7]. Even using these modules,
the SExtractor workflow is not pythonic, producing strangely organized codes for python
users.

A second problematic with SExtractor is that it can’t work with memory-stored arrays,
it only works on FITS files written to the disk. If one want to analyze FITS data (generated
by astropy, for example) using SExtractor, s.he has to write it into a file, analyze it with
SExtractor — that will then load it back to memory, do some computations, write results
to the disk — and load results back to python memory. This is fine for small-scales
analysis, with a few dozens of files, but will become inefficient while using up to a thousand
files.

Moreover, SExtractor main functionality is to produce catalogs, not segmentation
maps. These last ones are a by-product of the tool, so it seems justified to use another
tool, more dedicated to that production.

Finally, a last problem comes from MUSELET. The package is great to handle the
Muse products, but is inefficient in terms of memory use in the scenario of our thesis.
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Indeed, MUSELET, while loading a datacube — that can weight several gigabytes — will
store it twice in the computer RAM. Moreover, it uses SExtractor, rendering a program
with a strange workflow, as stated above. Finally, the tool is not aimed to segment
a datacube, but to find object centroids in all wavelength-layers of an input file. The
detected centroids, if close to each other (see the above section) are considered to be
belonging to the same celestial body — which is not the case for close and not fully
deblended objects. The software, even if inspiring in its methods for our thesis’ goals, is
not suited to produce segmentation maps.

We thus choose to implement our own tool.



Chapter 4

AutoMUSE

4.1 Basis of the script

We want to produce an easy-to-use and easy-to-read tool, that would run reasonably
quickly. We choose to use Python 3, for its versatility and for its numerous science
libraries, that often use C and C++ under-the-hood - such as NumPy [23], and Pandas
[41]. It also has useful packages oriented towards astrophysics — astropy [2, 3]— and
data analysis — that are too many to be cited, but the first one to come in minds is scipy
[48]. Our script, called Autonomous MUSE Source Extractor (AutoMUSE), is based on
the following python dependencies :

Python 3.7 (or above): core of the program, programming language.

astropy 4 (or above): to handle FITS files in python, and astronomical data;

scipy : for signal and image processing;

pandas : For tables management;

numpy : for numpy;

multiprocessing : to handle parallelization of Python functions;

subprocess : to run external programs;

tqdm : to display progress bars;

photutils : for image processing [12];

pint : to handle units until astropy.units is improved [20].

To use the automatic classifier (attempt) capacity of the script, one also needs to
install Alex Griffiths’ Marz version [24]1.

AutoMUSE needs a few arguments to function, and they will be described through
the section:

fitsfile : your datacube to analyze;

–output : the output directory, where all files and results will be produced;

1https://a-griffiths.github.io/Marz/#/overview
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–n cpu : the number of CPUs/processes you want to use;

–delta : the number of pixels along wavelength-axis a narrow-band image will be com-
posed of — see subsection 4.3.1;

–step : Step selection, if the program has already been started and that you don’t want to
re-run all steps. If int, like “0” (without quotes), the step at which the script should
start; if list, like “3,7” (without quotes), the steps the script should execute.

AutoMUSE can be launched in a Command Line Interface through python3 auto-

muse.py args .

4.2 Reading FITS files from Muse

To be able to process data, reading it is a necessity. The FITS standard in astronomy
provides a set of rules (see section 2.3), incorporated in different FITS readers/writers
that exists in the scientific world, and evolving across versions of telescopes or software.
Ironically, the FITS standard is not a standard, as every team and facility add their own
layers.

To simplify the problem, we propose to use reformat the input data to make it com-
patible to the astropy.nddata.CCDData object.

This class is designed to process CCD and image products in astropy, and handle units,
uncertainty, masks, flags, and World Coordinate Systems associated to data contained in
FITS files. It is especially useful to select a chunk of data in a cube, as it will automatically
generate new WCS on-the-flight for the new chunk, as well as selecting the correct part
of the uncertainty array. An additional interesting feature of the CCDData class is its
ability to propagate uncertainties along calculations, but we won’t use that feature in our
program. Using CCDData allows astropy to automatically correct and standardize most-
of WCS header keywords. In this section, we describe our method to make a formatted
copy of a datacube, in order to obtain, as a final product, a FITS file easily readable by
the class mentioned above.

In a first place, we find the extensions containing data — a 2D image plus a spectral
axis — and uncertainty associated to it from an input FITS file.

According to the MUSE pipeline [49], a datacube should present two extensions :
DATA, and STAT, containing variance, so this step should be optional. The primary
(DATA) header would contain information about WCS: right ascension, declination, units
... However, analyzing various cubes leads us to notice the great variety of extensions
names and format presenting the two considered data arrays. We thus chose to do the
following :

• If the first extension of the datacube contains an array, it is considered as the data
array.

• If the first extension does not contain data, the program search non-empty extensions
with names in “DATA”, “FLUX”, “INTENSITY”, and consider the first detected as
data.

• Data variance extension, ”STAT”, is searched through non-empty extensions named
“STAT”, “VAR”, “VARIANCE”, “WEIGHT”, “STD”, “DEV”, or “UNCERT”.
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If the STAT-type extension is not found, the rest of the program should work, but
results would be less-accurate.

Then, the formatting function parses units of both data and stat, using the pint library
instead of astropy.units. The pint module has proven itself more reliable to figure out
the correct units under the BUNIT keyword of the FITS file headers, that sometimes causes
errors while parsed with astropy. We will update the script function when the units module
of astropy will prove itself reliable, in our will to work within a single coherent framework
to simplify computations and reading.

For the data extension, if the units do not parse, or if the BUNIT keyword is absent of

both primary and data headers, the data is assumed to be expressed in 10−20erg s−1 cm−2 Å
−1

- as in MUSE pipeline.
Then, there is an attempt to create the CCDdata instance, without further checking

to the STAT extension. Astropy will try to automatically determine what is the uncer-
tainty type based on headers. However, if this does not work, units from the uncertainty
extension are retrieved, and based on them, the type of uncertainty array — is it repre-
senting a standard deviation, a variance or weights? If that determination fails, variance
will be assumed. The uncertainty array will be converted to variance, and stored in the
CCDData cube.

After getting through data loading, the formatting function will load, analyze and
correct the World coordinate system to standard keywords and axis types. As defined by
the FITS standard guidelines [40], WCS headers have fundamental components describing
axis, in particular the spectral axis. The script determines if the measured wavelength
of the spectrum is taken as the vacuum or air one. In order to do so, it checks if the
keyword VACUUM is set. If not, it will verify if the CTYPE associated to the spectral axis is
WAVE, LINEAR — for vacuum wavelength — or AWAV (air wavelength), and set the VACUUM

keyword accordingly. Handling logarithmic scale is not implemented.
That formatting step will then produce a FITS file containing data and variance

extension, fully compatible with astropy.nddata.CCDdata interface. Along with that file
a white light image of the cube is computed and produced, with the same compatibility
to the above interface.

4.3 Images, narrow-bands detection

4.3.1 Generating narrow-band images

In MUSELET [37], Johan Richard chose to cut MUSE datacubes along the spectral axis
in order to detect the faint single emission line celestial bodies — such as Lyman-Alpha
Emitters. According to Wisotzki and al. [50], nearly all the sky is covered by that emis-
sion, due to the transition between the orbital level n=2 to n=1 of an electron belonging
to an hydrogen atom. Warm hydrogen gas, surrounding galaxies, will emit photons with
wavelength 121.567nm. That wavelength will then be redshifted during its travel to Earth,
and enter the MUSE wavelength coverage between redshifts 3 . z . 6.5. Detecting such
an emission line can improve faint object findings, as well as bring information to secure
the redshift of a celestial structure. Figure 4.1 shows an example of a Lyman-α emitter,
with a sole Ly-α line.

A single emission line structure is much more contrasted — thus easily detectable —
in a narrow-band image. In our program, we decide to roll a 5-wavelength pixel (the 5
pixels length is modifiable via the argument -delta) window along the wavelength axis.
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Figure 4.1: Spectrum of a Lyman-α emitter, showing almost no continuum, while having
a strong emission in its Ly-α band, from Figure 5 in [4].

The 5-wavelength-pixels layers in the window are weighted with a Gaussian with σ = 1.26
centered on the central spectral layer, and summed along the wavelength axis, giving
narrow-band images, as illustrated on Figure 4.2. The technique used in MUSELET is
similar.

Figure 4.2: Narrow-band process illustration, taking -delta wavelength layers, and
weight-summing them to a narrow-band.

For a complete MUSE product, this generates ≈ 3600 narrow-band images. To avoid
having to compute these images several times when analyzing the same datacube with
different parameters, the images are stored as FITS files. This step is parallelized using
the multiprocessing python package, to reduce compute time.

4.4 Finding the bright pixels

In computational astronomy, a source is a subset of bright pixels in an image. To detect
them, we use the same workflow as in section 3.2, through the python package photutils

[12], to have more flexibility than SExtractor in terms of python interaction.
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4.4.1 Background generation

Using the cited package, we generate a background image for each of the bands — narrow-
bands and white-light. photutils comes with an handy tool to roughly mask the first
sources in an image, make_source_mask. This function is parameterized in AutoMUSE
to find pixels, connected to at least 5 others falling in the same category, laying 3 σ above
the image pixel values mean. Mean and standard deviation are computed internally using
sigma-clipped statistics, similarly to what is explained in Figure 3.2. The detected regions
are aggressively extended of 11 pixels, generating a source-mask.

Figure 4.3: First pixel sources mask, generated by photutils of Figure 1.1. Each source,
detected by photutils during its preliminary run, is expanded and masked.

Then, that source mask is used to generate a background image. The mask is used to
hide the bright sources, and meshes of 64×64px2 are drawn. In each of these meshes, pixels
laying outside of medianmesh ± 3σmesh are clipped iteratively ten times. The background
value of each mesh is defined as (similarly to SExtractor):{

(2.5 ∗median)− (1.5 ∗mean) if mean−median
σ

> 0.3
median otherwise

One should notice that there are different types of background-estimators, for example
one can take the mean or the median in a cell as background value. More robust estima-
tors, such as the SExtractor one, are less sensible to the presence of existing sources in cells.
SExtractor uses a Mode estimator: a linear combination of mean and median in a cell is
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Figure 4.4: Mesh-background, generated
by photutils, of Figure 3.2.

Figure 4.5: Background, interpolated, gen-
erated by photutils, of Figure 3.2.

used as background. Other programs, such as DAOPHOT [46] uses other linear combina-
tions, like the MMM algorithm, a mode estimator of the form 3×mean−2×median. The
MMM algorithm is, according to [9], less accurate when using sigma-clipped distributions
of pixels. The photutils package, that we use to do our computations, includes these
various estimators.

The mesh values (Figure 4.4) are then upscaled to the original-size using spline in-
terpolation (Figure 4.5). Along these background images, local σ-maps (also called RMS
images) are generated, first for the meshes, then interpolated to the resampled image.

4.4.2 Thresholding and obtaining the pixel sources locations

Once the background is obtained, a threshold image is generated, computed with the
formula:

T = B + t×
√
V +B2

rms

where t is -threshold , B is the background-image Figure 4.5, V is the variance in
the variance-extension of the image, and Brms is the background root-mean-square. The
threshold-image is convolved with a Gaussian kernel in a 3px× 3px windows, to smooth
it.

Then, photutils compares this threshold-image do the input data. Every pixel, in the
analyzed image, above its corresponding value in the threshold image is flagged as True.
The pixels that are not in connected regions of at least 5 flagged pixels are discarded. The
output is Boolean image, that will serve as basis for a segmentation image.

This process of generating background and thresholding images is repeated for each
narrow-band and the white light image, creating thousands of mask images that remains
to be analyzed to obtain the final segmentation images.

4.5 Fusing and deblending objects

The result of the previous step is a set of Boolean pixel maps, for each of the narrow-band
and white-light images, marking the regions where pixels have been flagged as belonging
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Figure 4.6: Detection-count map of Fig-
ure 3.2. Each pixel has the value of how
many times it has been detected on broad
and narrow-band images.

Figure 4.7: Labeled regions of Figure 4.6.
Each source is assigned to a different inte-
ger.

to a source. For a standard MUSE cube, that represent ∼ 3600 images. We now have to
combine these maps, and separate the blended objects.

To merge the different pixel maps, we explored various options. In a first place, we
tried to deblend the Boolean pixel maps individually, based on intensities and shapes.
Then, the idea was to merge these maps, thanks to a coefficient quantifying the number
of pixels in common. This method had several issues : it worked on relatively small sets
of stacked images (10-20 images), but dramatically failed while using the entire array of
narrow-deblended maps. This was due to presence of large objects on some images, that
by their sizes included the smaller-deblended objects in other images, thus removing them.
Moreover, this method required to inspect, individually, each of the detected region, in
each of the images. To give an order of magnitude, this represents, for the Hubble Ultra
Deep Field (Figure 3.2), nearly 500 objects per image with a σ-detection threshold of
3, and the method would have required to go several times through around 2 millions
objects.

Then, we chose to sum the detected pixels maps, to an image that would summarize
the detection count across all segmentation maps, as shown on Figure 4.6. Every region
where the number of count is not null is labeled differently (Figure 4.7), and is analyzed
independently.

4.5.1 Elliptic filtering

To avoid over-segmentation - deblending sources that should not be deblended — each
labeled region goes through an “elliptic filter”. The script estimates moments of objects,
and derives the semi-major and semi-minor axis a and b that would fit an ellipse the
best to an observed label, using scikit-image measure function regionprops. Then, we
compute the area of such an ellipse (abπ) and compare it to the actual area of the region
of connected pixels. If

1.015 ≥ areapixels

abπ
≥ 0.985
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the object is assumed to be elliptic and not to be further deblended. This is a strong
assumption, thus the results of these steps must be taken carefully. Blended objects that
have an elliptic projection on the sky will not be split, and single objects that are not
looking round will be spitted.

The 1.5% threshold has been chosen by trial and error, to find the correct balance
between large and small objects in segmentation maps.

Thus, discrete objects laying next to bright sources will probably be absorbed, and
in case of the search for such sources, one would need to inspect the resulting objects
manually.

4.5.2 Number-of-detection deblend

After having filtered elliptic objects, we start the deblending process, using a watershed al-
gorithm provided by photutils. A watershed algorithm can be visualized as the following
:

• Local minima in an image are searched. A different color“water source” is associated
to each of them.

• Watershed starts by pumping colored water in each of the sources, raising the level
of water.

• When differently-colored water encounter, the watershed stop pumping, and surfaces
of colored lakes are two (or more) different regions.

• When two regions have made contact, water can still be pumped in other directions,
until it meet different colors.

In a first step, we apply the watershed on the previous number-of-detection image
(Figure 4.6), convolved with 3×3 Gaussian kernel. To start with, pond borders are set at
the edge of each labeled regions. The algorithm reverses the image — “summits” are now
the deepest points of the image — , searches for the local minima (previously, summits)
and starts to flood. The regions that contained different summits in terms of number-
of-detection, are deblended. We set a limit to the deblended region sizes, that must be
larger than 5 pixels area.

At the end of that step, we apply again the elliptic filtering, described in subsec-
tion 4.5.1.

4.5.3 Topographic-distance filtering

For each individual region derived from previous step, we compute the euclidean distance
of its pixels from the borders of the object. Again, we reverse the obtained image, and
apply the watershed algorithm. That distance-process is shown in Figure 4.8.

That process creates new deblended objects, that are again analyzed to check their
ellipticity, to remove some of them from further analysis.

4.5.4 White-light deblend

To complete the deblending process, we now use the white-light image of the cube. This
step, sometimes done using external images of the same sky square, is here done using
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Figure 4.8: Example from photutils, deblending using topological distance.

Figure 4.9: Late type emission galaxy at a spectroscopic redshift of z = 0.52463 found on
Figure 3.2. Left panel: White light image. Middle panel : Segmentation of the object,
before spectral fuse. Right Panel : Narrow-band image, centered around the brightest
emission line of the galaxy.

the cube data flux summed along the spectral axis. We load the target cube, and weight-
average it to its white-light image — weights being the inverse of the variance 1

σ2 . That
white-light is passed to photutils deblending algorithm, with the same parameters as
before. We apply elliptic filter on the resulting segmentation map again.

4.5.5 Hull cleaning

All the objects that are not flagged as elliptic, or not present in the 10 − σ white-light
segmentation map, are “hull-cleaned”. We start by computing their hulls, the smallest
convex polygon containing all pixels of each label. Then, we check the solidity - ratio
between area of the object and the hull’s one - of the region. If the solidity is less than
80%, the objects are discarded.

All the non-elliptic objects that are close to the borders (10 pixels) are discarded.

4.5.6 Spectral fuse - Pearson-coefficient filter

After the entire deblending process, used to separate sources, we implemented to the
algorithm a part to clean wrong divisions. This part is quite important to correct the over-
segmentation phenomenon. An example of over-segmentation is available on Figure 4.9.

To correct the segmentation map, we use the full extent of the wavelength axis. For
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each label, AutoMUSE finds if there are neighboring (touching) ones. If two labels are
connected, the script computes their spectra, by summing over spatial axis the pixels
contained in their segmentation map. To remove border effects, produced spectra are
cosine tapered. Additionally, they are sigma-clipped — with σ = 8 — and smoothed with
a Blackman window [10]

w(n) = 0.42− 0.5 cos(2πn/M) + 0.08 cos(4πn/M)

5-pixels wide.
Then, the Pearson Correlation coefficient ρ between the neighboring spectra X and Y

are computed:

cov(X, Y ) =
1

n2

n∑
i=1

n∑
j=1

1

2
(xi − xj) (yi − yj) =

1

n2

∑
i

∑
j>i

(xi − xj) (yi − yj)

ρX,Y =
cov(X, Y )

σXσY

If the regions occupied by both neighboring labels are larger than 25 pixels, the two
regions are considered to be the same object if the correlation coefficient is higher than
98%. Else, for smaller objects, that threshold is lowered to 80%.

The spectral comparison produce permits correcting over-segmentation such as on
Figure 4.9.

4.5.7 Eccentricity cleaner

Finally, all labels/objects are cleaned according to their extent and eccentricity. If their
extent, the ratio between pixels in the objects and the bounding box area, that is the
smallest rectangle area containing the object is 1, the source is discarded. Moreover, if
the object eccentricity of the ellipse that has the same second-moments as the region is
more than 0.98, the object is discarded, as interpreted as a misdetection.

4.5.8 Segmentation map file

The segmentation map is written to the disk as a FITS file containing two extensions.
The Primary one contains the segmentation map array itself ; where each integer value
represent an individual object. The second extension is called a “trust” array: each pixel
value is

P (X, Y ) =

∑Segmentation-maps
i Segi(X, Y )

Number of segmentation maps

Where Segi are Boolean segmentation maps of narrow-bands and broad-bands : on these
images, pixels where a source is spotted are equal to 1, while the others are 0. That
extension must be taken just as an indicator : some emission-line galaxies are detected
on 2 or 3 segmentation maps, over more than 3000 maps.

4.6 Extraction of objects and of spectra

Once the objects are found by the previous steps of the scripts, they are conveniently
extracted to permit further analysis easily. For each label in the segmentation map, we
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draw their minimal bounding box, and expand it by 4 pixels on each side. Then, that
bounding box is placed on the CCDData - formatted cube of section 4.2, and pixels within
the box are extracted and put in a FITS file. Again, that FITS file respects the CCDData
conventions: a data, an uncertainty and a mask extensions are present. The uncertainty
extension is variance, while the mask is a Boolean array set to True where the pixels are
background : it is the opposite of the segmentation map of the studied label. The source
center Right Ascension and Declination are computed from WCS information, and written
in the data extension header, under the cards RA and DEC. The NAME card represents the
ID of the object (the integer of the label in the segmentation map).

Once the sources are extracted, they are reduced to spectra. This is done using two
different manners, from the whole segmentation map and from an aperture.

In both reduction cases, we apply the Marz [24] conventions, to ease the analysis by
the tool.

The objects datacubes are preprocessed to mask invalid pixels. These include pixels
containing a negative flux value, as well as those containing a NaN. To this mask is added
an identical mask for variance: negative variance values and NaNs are flagged.

Then, for the segmentation map reduction, all pixels contained within the object and
not masked are summed along spatial axis. The same happens for the variance extension
pixels. These operations are performed using numpy masked arrays sum along axis. The
consequence is that at the end of the operation, a spectral pixel may be masked if there
are no pixels with a value at its wavelength band. These are replaced by NaN.

For the aperture reduction, the segmentation mask is replaced by a circular aperture -
of radius specified by the user through the -aperture option, defaulting to 5. The center
of the disk is determined through the RA and DEC keywords from the header, determined
as explained previously in this subsection.

All spectra are written individually with three extensions. The primary one contains
the spectrum, and WCS information about wavelength and spatial coordinates, as well
as TRUST being the maximal number of detection in the segmentation map. A second
extension contains VARIANCE, while the third is a table with three columns (RA, DEC, and
NAME being the object ID) and a single row of values. Segmentation spectra are placed in
the folder “spectra” while apertures one are written to “apertures” folder.

Then, we run on those two folders a function to merge all spectra in a folder into a
single file, to ease analysis by Marz. We obtain two files, combined_spectra_seg.fits
and combined_spectra_apertures.fits, that can be inserted to Marz directly.

4.7 Marz automatic analysis

Marz [24] is an automatic template-matching application, programmed in JavaScript, to
analyze spectra. The tool matches a template and a redshift to an input signal, and output
them along a correlation indicator, Xcor. The higher Xcor is, the higher the match is.
To fit the parameters, Marz smooths spectrum using the variance extension, is able to
remove the continuum of a spectrum, and reduces the importance of ends of the signal in
its calculations — as they are often places of high noise. Marz provides two modes. The
first one is graphical, provide the user a first set of input parameters, and allows selecting
parameters (template and redshift) manually, as shown on Figure 4.10.

The second mode is automatic : the tool returns the 5 best templates matches to each
spectrum, for both aperture and segmentation files.
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Figure 4.10: Example of a spectrum and of a template in Marz-Graphical interface.



Chapter 5

Results

To assert the results from AutoMUSE, we analyze three MUSE cubes: the Hubble Deep
Field South [4], the Hubble Ultra Deep Field [5], and the quasar Q1422+23.

5.1 Asserting the results

In a first place, we gather all the objects extracted from each cube, and analyze them
manually through a Jupyter notebook [30].

Figure 5.1: Hubble Ultra Deep Field (Figure 3.2) extracted object. Left panel: White-
light image of the object, middle panel:Segmentation map of the object, right panel:
narrow-band image of the object. Lower panel: Extracted 1D spectrum.

In the Jupyter Notebook, we plot each of the objects and their spectra as on Figure 5.1
. The upper left panel of Figure 5.1 is the white light image of the extracted object, the
middle one represents its segmentation map. The right panel is the narrow-band image
of the object. To extract it, we compute the spectrum (lower panel) similarly to the
segmentation spectrum in section 4.6. We then fit the object continuum using [18] and

41
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normalize the flux to it and to its variance, similarly to Marz [24] :

S(λ) =
Flux(λ)

fit(λ)× σ2(λ)

We search for the maximum of S(λ), and extract the object’s layers (not the spectrum)
around that point, and compute the narrow-band image as in Figure 4.2. We also plot
the spectrum (not variance and flux normalized, only cosine tapered) to check if there
is an eye-recognizable pattern or if there is just noise. Along with each object plot, we
search for three features. We check if the object is correctly fitted to its segmentation
map, that is if the object is under-segmented or over-segmented. We verify its presence
on the narrow-band, then on the white light image. Furthermore, we obtain a table, with
4 columns : object ID, object fitting, detection on the white-light image, and detection
on the narrow band image.

5.1.1 Hubble Ultra-deep field: Detection results

On the Hubble Ultra Deep Field, with default parameters of AutoMUSE, we detect 593
objects. The segmentation map is available on Figure 3.3.

In these objects, we find the distribution of AutoMUSE findings exposed in Figure 5.2.

Figure 5.2: AutoMUSE findings in Figure 3.2. 516 objects appear to be correctly extracted
and deblended. 41 objects are correct detections, but not correctly deblended: several
sources are belonging to the same object. Finally, 36 are false detections, where no source
clearly appear in broad and narrow-band images.

In these results, we find no case of over-segmented objects. However, some objects
are undeblended, either in broad-band or narrow-band image. Illustrations of different
situations leading to not deblended objects are available on Figure 5.3, Figure 5.4 and
Figure 5.5, with their associated explanations.

The false detection are of two types : artifacts, as shown on Figure 5.6 and unsure
objects, where a source could exist but is dominated by noise, Figure 5.7.

Finally, we achieve a high score (87%) in good — and deblended — detection, that
spans a large variety of cases. A great part of the objects are detected on both white-light
(broad band) and narrow-band images, but some are detected only on one of the two, as
shown on Figure 5.8.

We encounter various situations within the correctly deblended objects. For example,
on Figure 5.9, AutoMUSE successfully detects and deblend an emission-line source be-
tween two objects that are visible in the white-light image, completely masking it. On
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Figure 5.3: HUDF (Figure 3.2) object detected by AutoMUSE, but not correctly de-
blended. On the images we observe two objects, one much brighter than the second. This
should have been deblended applying topological deblending from subsection 4.5.3, but
this did not succeed on that object.

Figure 5.4: HUDF (Figure 3.2) object detected by AutoMUSE, but not correctly de-
blended. On the narrow-band image we observe two objects, while they appear unified
in the white-light. This may be corrected by implementing a narrow-band deblending —
see subsection 6.1.2.
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Figure 5.5: HUDF (Figure 3.2) object detected by AutoMUSE, but not correctly de-
blended. Looking carefully at it shows at least 5 objects. Starting with the narrow-band,
one sees two bright and two fainter sources. Masking the region with these objects in
the white-light, one can find the presence of a fifth source on the left-hand corner of the
image - still in the segmentation map. This source is very faint, but guessable on the
narrow band image. With additional masking, we found that a sixth source may be ob-
servable between the fifth object and the four others, without being certain if it could be
an artifact.
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Figure 5.6: HUDF (Figure 3.2) false detection by AutoMUSE. This artifact is likely due
to the method used to gather the ten cubes composing the field, as it lays on the frontier
between two of them.

Figure 5.10, an emitter is successfully detected while merged (in the sky) with another
object.

The object on Figure 5.11 is a single-emission line object blurred by a source in the
upper left corner of the local cube, but is still detected by our script.

5.1.2 Q1422+23 field : Detection results

We perform the same operations as for the Hubble Ultra Deep Field on a smaller cube,
containing the quasar target Q1422+23. This datacube is one of the cube that was used
to test and calibrate the tool against very bright and extended objects. The quasar is
a compound of bright gravitational lens - lensed object pair, composed of four sources
([51]). It has been observed by many instruments, including MUSE. We downloaded the
object datacube identified as MUSE.2015-04-24T04:20:38.757 from ESO archive. Its
white-light on Figure 5.12. AutoMUSE produced a segmentation map on Figure 5.13,
marking different sources in the field of view.

One of the challenges with AutoMUSE and the quasar was to prevent its over-segmentation,
while being able to separate the four connected sources. The succession of deblending
steps (section 4.5) tends to create a few regions in the area occupied by the quasi-stellar
object, that are reunified by the spectral-fusing algorithm. The original SExtractor [9],
if not fine-tuned, also had troubles to produce a correct map of the area. The manual
classification of the 93 detected regions is available on Figure 5.14 an Figure 5.15.

As the reader can observe on Figure 5.14, the datacube containing the quasar is subject
to a high false detection rate. This is due to the presence of sky emission lines in the field.
Mainly, the 6297, 9Å and the OI6300Å sky lines [38] have not been removed properly
from spectra. We learn from that cube that the sky lines must be properly cleaned in
order to have accurate results.

As explained at the beginning of the section, AutoMUSE detected 593 sources (false
detections included) in the Hubble Ultra Deep Field issued from MUSE, using a detection
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Figure 5.7: HUDF (Figure 3.2) probable false detection by AutoMUSE. We are not sure
that an object is present in this region. The object is close to a frontier between two
datacubes, and close to another object. However, there are clues of the presence of an
object in the spectrum, that could be due to contamination from the nearby object.

threshold of 3σ. In [5], Bacon et al. detect 1251 “potential real detections” + 672 false
detections using a different algorithm, ORIGIN [34]. We should justify that difference.

The two tools have a different philosophy and way of functioning. AutoMUSE, as
explained thoroughly along this thesis, uses “standard” methods of detection, looking into
broad and narrow-band images directions, computing backgrounds, etc. ORIGIN, on the
contrary, looks in the spectral direction, and tries to match spectral signatures to the
images, in order to detect emission lines. As shown in [5], ORIGIN performs well on
high signal-to-noise parts of the mosaic compounding the HUDF, with a 86% purity of
detections in the most exposed area of the cube. That ratio lowers down to 65% in regions
with lower signal-to-noise. For a detection threshold σ = 3, AutoMUSE has a purity that
goes up to 93.9% while including not deblended sources.

Finally, if we lower AutoMUSE detection threshold to sigma = 2, we detect 996
sources. If that number is lowered to σ = 1.5, 1373 objects are detected. Then, the
same order-of magnitude of sources are detected using AutoMUSE with an appropriate
threshold, compared to ORIGIN. However, we did not run a manual sanity check of these
detections, so we can’t affirm the purity of these detections.

5.1.3 Hubble Deep Field South

R. Bacon and al. [4] obtained a 3D view of the Hubble Deep Field South with 37 hours of
observation of that region. We downloaded the version 1.34 of the cube on muse-vlt.eu

website, as the data is in open access. For the HDFS target, we find the segmentation
map Figure 5.17, that comport 203 different objects.

We see, in Hubble Deep Field South distribution figure, a lot of false detections.
Objects images, as stated before, were inspected visually, without applying a special
treatment to the spectra. Some objects, with a single very bright pixel (on the white-light
or on the narrow-band), were considered as incorrect findings, due to our uncertainty on

muse-vlt.eu
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Figure 5.8: AutoMUSE correct results types in Figure 3.2. Among the 516 “correctly
deblended objects” from the Hubble Ultra Deep Field, 289 are detected in both broad and
narrow-band images, 181 in narrow-band only, and 56 in broad-band only.

Figure 5.9: Figure 3.2 faint emission-line object between two brighter sources.

the presence of a source. To simplify the analysis, we did not include a “doubt” category
to the pie chart, but note that on the 29 objects classified as ”False detection”, we had
doubts on 12 of them. Analysis to confirm the presence of sources could be realized by
looking at other instruments, looking in the optical range as MUSE does.

The Hubble Deep Field South has been analyzed by Bacon et al. [4], constructing a
catalog of 585 objects available on their website1.

In these objects, 189 have a “CONFIDENCE” marked as non-null. Within these
objects, 44 are not detected in threshold 3 segmentation map issued by AutoMUSE.
However, in the 203 objects of AutoMUSE, 79 are not found with a > 0 confidence in
the HDFS catalog. While removing the confidence filter, 367 objects are not found on
the segmentation map, and conversely, 26 are not in the catalog. If we remove from
the segmentation map the 17 objects that are false detection, the number of AutoMUSE
objects not found in the HDFS catalog with a > 0 confidence drops to 68.

1http://muse-vlt.eu/science/hdfs-v1-0/

http://muse-vlt.eu/science/hdfs-v1-0/
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Figure 5.10: Figure 3.2 faint emission-line object hidden behind another extended source.

If we lower the threshold parameter of AutoMUSE to σ = 1.5, then we detect 272
objects. The number of objects not found in the segmentation map stays stable - 378.
That (a bit) higher number can be explained by border effects: we remove objects touching
edges of the image in AutoMUSE segmentation maps. However, 142 objects are not in
the catalogs.

This data has to be taken carefully. The false detection have not been filtered in the
σ = 1.5 map.

5.2 Spectral analysis of the Hubble Ultra Deep Field

To know more about the analyzed fields that have been used to prove the capabilities of
AutoMUSE, we analyze the spectra issued from the segmentation map, using Marz.

As stated in section 4.7, Marz is a template matching tool, that associate a template
and a redshift to a spectrum. In the Marz [24] version used, there are 22 templates : 5
of stars, 1 of a quasar and the others of galaxies of various types. These templates are
eigenspectra, issued from multiple sources, as explained in the Marz article.

While in automatic classifier mode, Marz outputs a template+redshift match list,
associated and sorted with a score called Xcor. Xcor is a function of the redshift based on
the Fourier Transform of a spectrum and templates, and score returned are the highest
local maxima. Marz also returns a “Quality Operator” (QOP) that is a function of the
two greatest peaks of the Xcor function. The automatic QOP, that later needs to be
confirmed manually while examining spectra, range from 1 to 6, where:

1 is Unknown/unsure.

2 is possible, there is a correlation between spectrum and templates+redshift combina-
tion, but is unsure.

3 is when there is a good correlation. In [24], the author classify that QOP to a 95%
confidence of classification.
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Figure 5.11: Hubble Ultra Deep Field (Figure 3.2) faint extracted object, even if close to
a bright source.

4 represents a great correlation, with a 99.5% confidence.

5 : There is no QOP5 in Marz.

6 is dedicated to match stars. It is associated when the automatic QOP is >3 while
matching a stellar template.

We visually analyze the spectra contained in the Hubble Ultra Deep Field, without
knowing prior information on their deblending or misdetection state. We associate a
manual QOP to each spectrum, and we keep the liberty to change parameters from the
proposed templates+redshift combination automatically proposed by Marz. The manual
QOP are defined according to visual inspection, with the following parameters:

1 is Unknown/unsure, or when the spectrum is too noisy to conclude.

2 is a possible resemblance between a template and a spectrum. Some emission/ab-
sorption lines match, but not the majority - or there are not enough lines on the
spectrum to conclude. If there is a doubt between two templates, the QOP falls into
that category.

3 is when there is a majority of lines that match, but not all of them. The template
doesn’t match “perfectly”, or there is not enough lines to conclude but the spectrum
match perfectly, without additional artifacts.

4 if almost all — if not all — lines (more than 5) match, and the template matches
perfectly. If there is one or two lines that disagree, and they are not bright enough
to be important, the match can fall into that category.

6 is dedicated to match stars, and used when the correlation is great, with a quality near
to the one required falling in QOP 4.
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Figure 5.12: Q1422+23 segmentation map,
by AutoMUSE.

Figure 5.13: Segmentation map of Fig-
ure 5.12 issued by AutoMUSE.

Figure 5.14: AutoMUSE findings in
Q1422+23, Figure 5.12.

Figure 5.15: AutoMUSE correct results in
Figure 5.12.

The results on manual QOP should be taken carefully. All spectra were inspected by
a sole person, that is not an expert on template matching (ie, the writer of this thesis).
Broad, faint lines can be unnoticed during the matching process. We take the image with
the larger number of objects (Hubble Ultra Deep Field) to run this analysis.

On Figure 5.22, it is not surprising that we find that a majority of objects classified
as false detection are QOP1, while the rest are QOP2. There is a single object in QOP3,
which leads us to think that that object was faint, and put into the wrong category while
looking at it by eye.

Comparing Figure 5.20 and Figure 5.21, we find that, proportionally, there are more
QOP4 objects in the undeblended objects than in the deblended ones. However, in the
correctly deblended objects, there are 92 QOP4, while they are just 19 in the undeblended
ones.

Nevertheless, one can wonder why almost half of the undeblended objects are classified
as QOP4, while several spectral signatures should mix into these sources. A clue, that
we verified on three of the 19 undeblended QOP4, is that one of the sources in the
segmentation map is much brighter than the others. Then, the emission is dominated by
that bright spot, leading to the masking of the other sources in the spectrum.
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Figure 5.16: Hubble Deep Field South seg-
mentation map, by AutoMUSE.

Figure 5.17: Segmentation map of Fig-
ure 5.16 issued by AutoMUSE.

Figure 5.18: AutoMUSE findings in the
Hubble Deep Field South, Figure 5.16.

Figure 5.19: AutoMUSE correct results in
Figure 5.12.

Finally, to explain a part of QOP2/3 on Figure 5.20, some sources are correctly de-
blended, but still contaminated by the light of nearby objects - that they were deblended
from.

In an article about the MUSE Hubble Ultra Deep Field Survey [28], Inami et al explore
the redshift of sources contained in the cube. A majority of them have a Hubble Space
Telescope counterpart and were detected using external images from the space device,
and some faint ones using ORIGIN and MUSELET.

From their redshift list, available as a Vizier catalog2, we select the ones with a high
confidence (“Confid” = 3). From them, we plot the histogram on Figure 5.23.

With our analysis, using spectra gathered by AutoMUSE, we obtain the histogram on
Figure 5.24. We selected spectra from deblended objects, with QOP>=2.

2https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/A%2BA/608/A2

https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/A%2BA/608/A2
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Figure 5.20: Marz QOP
distribution among the ob-
jects marked as correctly
deblended and detected in
the Hubble Ultra Deep
Field segmentation map.

Figure 5.21: Marz QOP
distribution among the ob-
jects marked as unde-
blended in the Hubble Ul-
tra Deep Field segmenta-
tion map.

Figure 5.22: Marz QOP
distribution among the ob-
jects marked as false de-
tections in the Hubble Ul-
tra Deep Field segmenta-
tion map.

Figure 5.23: High-confidence spectroscopic
redshift in MUSE Hubble Ultra Deep Field.

Figure 5.24: Spectroscopic redshift in
MUSE Hubble Ultra Deep Field, by Au-
toMUSE detected sources.



Chapter 6

Challenges and conclusions

6.1 Challenges and potential developments

6.1.1 Preprocessing of datacubes

A source of issues in AutoMUSE is the data organization and preprocessing of fields.
MUSE pipelines [49] performs well and create cubes that are readable by our program.
However, these cubes can be modified or issued from another source, and WCS information
can be lost in the process. On cubes we tested, the BUNIT keyword was sometimes removed,
while being crucial for astropy nddata.CCDData interface. The WCS axis keywords
(CTYPEi) are usually well-defined when describing spatial axis, but can be challenging
when facing spectral definitions. When looking at that third dimension, CTYPE should
be set to AWAV - Air WAVelength - or to WAVE — vacuum WAVElength, as explained
in section 2.3. A filter is set in AutoMUSE to handle as accurately as possible various
definitions, but we did not compile all of them.

Moreover, we started to implement in our tool an astrometric corrector. In order to
produce more precise results on the position of detected objects, and to fix incorrect (or
missing) header data, it could be an improvement to rely on additional sources than on
the FITS file itself. We initially based that part of the work on astrometry.net, without
success, due to the lack of stars in fields. We did not have enough time during this master
thesis to create a function handling astrometry (a master thesis is just one year long), we
removed that part from our code after exploring additional options, such as SCAMP [8].
If one has to run a source-detection algorithm on numerous MUSE files in archives, that
part of software has to be implemented.

The final issue we encountered is due to data itself, and not headers. As shown in
subsection 5.1.2, sky subtraction is of key importance, as it seems to be the highest source
of false detection. The Zurich Atmosphere Pure, ZAP [44], is an important tool to remove
sky residual, especially in MUSE products, and should probably be used on AutoMUSE
cubes. A way we did not retained to reduce sky subtraction defects is to discard wave-
length planes in which sky spectrum shows an emission line. Based on a sky emission
line atlas - such as [38], we could disregard sources detection on a list of spectral coordi-
nate, but we estimated that would be too much loss of information. Indeed, AutoMUSE
has the capacity to detect both broad and emission line sources, and disregarding entire
wavelength planes would reduce efficiency of detection of the latter.

53
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6.1.2 AutoMUSE processing

We encountered many exceptions to handle while developing AutoMUSE. In theory, it
should deal with all errors and scenarios encountered - absence of sources in an image,
difficult background estimation for crowded fields or bad-pixels only in an object. How-
ever, we are aware that all exceptions were not considered, and we would be happy to
correct errors a user may encounter.

AutoMUSE is fully based on tqdm process_map and multiprocessing to parallelize
computations in terms of processes - and not threads. Processes do not interact with
each other, and all execute the same task on different CPU cores. The key point of
the algorithm is its deblending part. Through its different steps, described thoroughly
long this thesis, we describe how we detect and segment objects. However, we show on
Figure 5.5 that additional deblending steps could be added. For example, once an object
has been extracted, one could analyze it further.

The first thing to check would be if there is a source in the extracted region. This
could be done similarly to MUSELET, by checking a flux from the white light image.

We had some trails about an additional implementation filter, but lack of time to
program them. In a first place, one can make a first detection pass, and gather object’s
spectra. Once that is done, the script could find two flux values : a first one by summing
the entire spectrum — total flux — and one by obtaining the spectrum in a narrow window
around the largest emission line — narrow flux. Fluxes would then be ordered, and the
first quartile - or any other chosen quantile - of each list would be used, multiplied by a
threshold (20%?), to flag objects with a lower flux value than that number in both lists.
If an object sees its fluxes low enough to be flagged in both lists, it would be discarded.

Another filter can be added knowing limiting magnitude and flux, that are given by
ESO on its website dedicated to MUSE instrument. As an example, in narrow field mode,
the predicted limiting flux is 2.310−18ergs−1cm−2 per hour of observation. As the exposure
time is available in FITS file headers, one could discard objects that are not brighter than
the computed limiting flux.

In a second (additional) step, one can try to deblend objects again, case by case.
One would need to decide some criteria that would start the new processing, such as
the area occupied by the source segmentation map. On Figure 5.5, that step would be
a deblending using a narrow band image, as one can clearly see by eye that numerous
sources are present.

Finally, the last processing step of AutoMUSE would be on spectral reduction. Cur-
rently, to transform an object to spectra, we simply collapse segmentation maps and
aperture masks of objects to the spectral axis, by a simple summation. One could im-
prove spectral extraction by using techniques such as the ones presented in AutoSpec
[21].

That Python tool, similarly to AutoMUSE, creates subcubes from a Large IFU dat-
acube, based on a list provided by the user, while AutoMUSE handles the detection
step. The tool then computes a cross-correlation map, between a reference 1D-spectrum,
obtained by aperture or segmentation map summation, for example, and all spectra of
the smaller cube. Then, only spectral pixels with a cross-correlation coefficient above a
certain threshold would be added to the final 1D-spectrum, yielding, according to the
AutoSpec authors, to a better S/N ratio. This technique is similar to the one used in
subsection 4.5.6, where we use Pearson cross-correlation, not to discriminate pixels, but
to prevent over-segmentation.

For testing purposes, we implemented the AutoSpec functions in AutoMUSE. We don’t
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Figure 6.1: Det SNR signal-to-noise of HUDF spectra

guarantee an identical functioning to AutoSpec. The reduction to “optimal” spectra can
be enabled by setting the -optimal parameter to “True”.

In that case, we realize the operations described in AutoSpec [21] section 2.2. In that
section, Griffiths et al. subtract continuum from all spectra - in the subcube containing
the source, and in the reference spectrum. Then they obtain the cross-correlation map
(and the optimal spectrum) using spectral lines only. In AutoMUSE, reference spectrum is
the one obtained from the segmentation map. The continuum is fitted (for each spectra in
the object subcube) using a 8-degree polynomial. Then, we compute the cross-correlation
map of the datacube, and extract the correlation pixels that are above σ = 1.5 (that’s
the default SExtractor parameter). We use that new segmentation map to extract a new
reference spectrum - and repeat the operation a second time. The final cross-correlation
segmentation map is used to extract a 1D optimal spectrum. 1D optimal spectra are
written to the disk, similarly to aperture and segmentation spectra.

We computed segmentation and optimal spectra for the 593 sources in the Hubble
Ultra Deep Field. We apply the DER SNR algorithm [33] to extract a signal-to-noise
ratio of both extracted 1D-spectra, and obtained the SNR distribution in Figure 6.1.

These distributions are quite similar. However, they contain a major flaw: the optimal
flux extractor algorithm default to the segmentation map spectrum in case of any error.

Thus, we can compute the ratio between both SNR, optimal SNR against segmentation
one. We remove the points where that ratio is equal to 1, and plot the distribution in
Figure 6.2.

The distribution is slightly tilted in favor of the segmentation map extraction.

Nevertheless, we can find an use to the optimally extracted spectrum, and in particular
of their cross-correlation map. In Figure 6.3, one can see that, when the segmentation-
map area becomes large enough, the SNR ratio is often larger than 1. Actually, the cross-
correlation map reduced the size of the object segmentation, and acted as a deblending
technique, such as for the object in Figure 5.5. You can see it’s cross-correlation map in
Figure 6.4.

There is a little step to program from this cross-correlation technique to further refine
the deblending process of AutoMUSE.

These techniques would provide a better signal-to-noise ratio. Additionally, one may
need to clean contaminants from nearby sources.
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Figure 6.2: Ratio of Det SNR signal-to-noise from HUDF spectra distribution. The mean
is µ = 0.95, median m = 0.96 and standard deviation σ = 0.13

Figure 6.3: Ratio of Det SNR signal-to-noise from HUDF spectra (y-axis) against pixel
area occupied by the segmentation map (x-axis). Orange dashed-line at ratio=1.

Figure 6.4: Cross correlation map of the object in Figure 5.5. The σ-threshold was set to
10.
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6.1.3 AutoMUSE post-processing: An incursion into automatic classi-
fication

The original title of our MSc thesis was “Automatic detection and classification of MUSE
spectra”. The automatic classification part was supposed to be managed entirely by Marz,
as we thought we would be able to discriminate redshift automatically, based on the XCor
parameter issued by the tool. In the current version of the code, available on Github1,
there is an attempt of automatic classification, that does not give better results than
selecting the highest XCor template Marz select.

As explained earlier, AutoMUSE outputs two spectra per detected source, one from
the segmentation map, the other from an aperture centered around the center-of-light of
the object. Marz analyzes them automatically and output 5 template per spectrum, that
is ten templates per objects. We combine the templates from the two analysis through
a set of rules : if two templates have an identical name and a close redshift between the
segmentation and apertures list of matches, they are added together and we artificially
increase the XCor of the match.

That sum intervene so that two high-quality matches substantially increase the XCor,
while two medium-to-low Xcor do not false the correct result. In order to perform such a
sum, we chose to use the following form for the “sum”:

XCor = log
(
eXCor1 + eXCor2

)
However, this should be taken carefully, as it doesn’t respect identity properties of a classic
sum. It was only a way to combine and analyze two lists of templates.

The next operation was to boost Xcor for specific templates, that are stars. If a star is
detected, then we boost the Xcor according to its redshift, if it ranges in the typical star
velocity field to hyper-velocity stars. So, if a star template is associated to a (absolute)
redshift lower than has a redshift associated to 400km/s, its XCor is boosted by 2, and if
it is lower than 1000km/s, it is boosted by one.

Then, we consider that the highest final XCor is the correct template. We tested
that algorithm on the objects issued from the Hubble Ultra Deep Field (subsection 5.1.1),
for objects with a (manual) Marz QOP of 3 and 4 (223 objects). We chose to apply a
tolerance of 0.002 for the redshift (two redshifts are considered identical if their difference
is less than 0.002).

Marz is correct facing the manual z for 176 objects (that is a ratio of 0.79%). Our
algorithm improves that ratio of 2 objects. The results are then not good enough to be
implemented, as it may be source of additional errors. We then turned to potentially
more efficient algorithms.

Machine learning is a branch of computational algorithms in which programs “learn
by themselves” against a set of rules. In that family, there are many fields growing, like
neural networks, that tend to emulate the functioning of human brain.

To our classification system, we tried to provide a tool, that would automatically
predict a redshift from different Marz templates match. This operation is a regression
in the frame of Machine learning. In order to do so, we downloaded spectra from the
SDSS data release 16 [1]. From these, we selected the ones with no warning associated -
meaning the redshift determined by the SDSS software is quite secure. We ran Marz on
the downloaded spectra, and obtained Marz results for ≈500 000 sources.

1https://github.com/Tenivar/automuse

https://github.com/Tenivar/automuse
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We randomly split the results into groups of 5000, and compare the Marz first template
automatic redshift to the SDSS ones, with the formula:

abs (zMarz − zSDSS) < 3× σSDSS

where σSDSS is the error associated to a SDSS spectrum. Doing so, we find that 63.0±0.6%
of the time, Marz is correct against SDSS redshift. Additionally, if we look at 5−σ SDSS
errors, we find that that number grows to 76.3± 0.5%. We also computed that in 85% of
the cases (using SDSS spectra), one of the redshifts proposed in the 5 templates is within
5σ of SDSS redshift. Thus, we have to do better with machine learning! We used the
scikit-learn [39] library in order to process computations.

We would like to note that the author of this thesis is a beginner in the machine
learning field. We just wanted to try that technology, in the framework of a master thesis,
as the redshift regression was one of the first goals of the thesis. To train the algorithm,
we used the following features:

redshifts The 5 redshift proposals issued by Marz,

Automatic QOP The 5 automatic QOP issued by Marz, reorganized to range from 0 to
1 (so QOP 1 is 0.25, QOP 2 is 0.5 ...)

XCor The 5 XCor parameters issued by Marz

Template types for each of the 5 templates issued by Marz, a one-hot vector indicating
if the template is from a quasar ([1 0 0]), a galaxy ([0 1 0]), or a star ([0 0 1]).

Position and flux of the strongest emission line.

We chose to use the decision tree regressor algorithm provided by scikit-learn.This
choice was motivated by the fact we would like the algorithm to select a correct template
among the various proposal issued by Marz. We transform the redshift distribution with
the QuantileTransformer proposed, with a normal output distribution.

Once done, we fit the decision tree a hundred times, with different training and testing
sets. We measure various scores:

Max Error measures the maximum error between prediction and target values. It has to
be minimized;

explained variance is defined as

1− Var{y − ŷ}
Var{y}

. The highest score achievable with explained variance is 1, and lower values means
that predicted values are getting away from target values.

Accuracy computes the proportion of predicted results falling within 5σ of the SDSS
redshifts.

We start with a maximum depth of the tree of 5. We find a max error of 6.84± 0.06, an
explained variance of 0.46± 0.01, and an accuracy of 0.12± 0.01. After that, we decided
to repeat the training until we hit a maximum in accuracy. With a maximum depth of
the tree of 60, we obtain a max error of 6.97± 0.02, an explained variance of 0.44± 0.01,
and an accuracy of 0.76± 0.01.

Thus, our decision tree classifier did not fit the parameters correctly to obtain a higher
accuracy, of the order of 85% as we targeted.
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6.2 Conclusions

We produced a Python 3 script, based on multiple Python 3 science libraries, that can gen-
erate segmentation maps from MUSE datacubes. Before using AutoMUSE on a cube, the
latter should be formatted as close as possible to the astropy nddata.CCDData structure,
with data and statistic extensions. As shown in subsection 5.1.2, IFU cubes need to be
preprocessed to remove sky effects from observations, in order to limit false detection-rate.
These cubes should also contain accurate and standardized World Coordinate System.

Once AutoMUSE is used on a datacube, it produces files accross its different steps.
Narrow and broad band images are first used to create undeblended source maps, that are
summed to a detection image. That detection image, qualifying how many times a pixel
is declared as a source accross broad and narrow-band images, is used to deblend objects
from connected regions, through a watershed algorithm. That watershed algorithm is
used two additional times, on a topographic map of objects and on the white light image
of sources. AutoMUSE implements two mechanisms to limit over-segmentation. In a
first place, once an object is flagged as “elliptical enough”, it is not analyzed further.
After deblending steps, the script also compare spectra of touching sources, and fuses
the objects that have a high Pearson Correlation Coefficient between their spectra, thus
limiting over-segmentation with a second algorithm.

Once the final segmentation map has been produced, along with a “trust” image ( that
is the ratio between the “detection image” and the number of broad and narrow-band
images), objects are extracted and put in different files individually. They can be easily
read with the astropy nddata.CCDData interface, and handle data, uncertainty (usually,
variance) and mask (opposite of the segmentation of the object) FITS extensions. These
extracted objects are summed along spatial axis to produce spectra files. These files are
then gathered into two files : one containing spectra issued from segmentation maps, the
second containing spectra issued from a circular aperture sum.

Finally, Marz is used to automatically assign 5 sets of redshifts and templates to each
spectrum, permitting to draw some automatic statistics on the analyzed datacube.

Using AutoMUSE, we detected and extracted continuum and line-emission sources in
a standardized way, from different fields. We then manually analyzed them, in order to
examine the quality of the program, and to give a redshift distribution of sources in IFU
products.

The goal of this thesis was to produce a program that could, without manual inter-
vention, detect and classify sources from datacubes. This goal is explained by the great
amount of MUSE products available in the ESO archives. Indeed, MUSE is often used to
capture an object spectrum, without analyzing the other sources that are present around
the original target. We would like to run our script on archives, in order to produce
catalogs from these disregarded sources.

Another application is about quasar gravitational lensing, and more generally gravi-
tational lensing. Being able to locate, characterize, and study sources involved or around
a lensing event can be challenging. But to understand more clearly the behavior of lenses
and lensed objects, astronomers need a tool to catalog surrounding objects, in order to
verify the involvement of these in lens models.

Currently, we don’t judge AutoMUSE mature enough to run on an archive without a
user assisting it.

However, it can be used to produce segmentation maps, in a standardized way, and
to extract objects and spectra automatically. It is easily modifiable, and one can add
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and adjust functions to detect, deblend and extract objects without technical difficulties,
except from knowing Python 3. The code provided in Appendix B permits to assess
results from extracted objects.

Other tools, such as MUSELET and ORIGIN are dedicated to blindly detect sources
in IFU images, using different techniques than the ones developed in this MSc thesis.
Similarly, they come with false detections, and as explained in the results section of this
thesis, there must be a manual check of the results to assess their purity. These techniques
can be complementary, in particular when using ORIGIN and AutoMUSE. Indeed, both
algorithms look to different scopes : spectral signatures (for ORIGIN) and images (for
AutoMUSE).

In both MUSELET and ORIGIN, documentations emphasize the fact that parameters
must be selected carefully, step by step. In AutoMUSE, their is a single parameter to
change, -threshold. Number of CPU and narrow-band spectral pixels size are modifiable,
but should work by default. Thus, our program is easier to use than others.
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Appendix A

Plots and spectral matches from the
Hubble Ultra Deep Field

In this appendix, we present various plots from the Hubble Ultra Deep Field, and their
correlated Marz templates.

A.1 QOP 4

Figure A.1: Object 127 from HUDF and its Marz-template match, with QOP 4
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Figure A.2: Object 185 from HUDF and its Marz-template match, with QOP 4

Figure A.3: Object 229 from HUDF and its Marz-template match, with QOP 4
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Figure A.4: Object 262 from HUDF and its Marz-template match, with QOP 4

Figure A.5: Object 364 from HUDF and its Marz-template match, with QOP 4
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Figure A.6: Object 401 from HUDF and its Marz-template match, with QOP 4

Figure A.7: Object 57 from HUDF and its Marz-template match, with QOP 4



A.1. QOP 4 71

Figure A.8: Object 611 from HUDF and its Marz-template match, with QOP 4

Figure A.9: Object 66 from HUDF and its Marz-template match, with QOP 4
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A.2 QOP 3

Figure A.10: Object 181 from HUDF and its Marz-template match, with QOP 3
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Figure A.11: Object 293 from HUDF and its Marz-template match, with QOP 3

Figure A.12: Object 496 from HUDF and its Marz-template match, with QOP 3
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Figure A.13: Object 588 from HUDF and its Marz-template match, with QOP 3

Figure A.14: Object 609 from HUDF and its Marz-template match, with QOP 3
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Figure A.15: Object 97 from HUDF and its Marz-template match, with QOP 3
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A.3 QOP 2

Figure A.16: Object 116 from HUDF and its Marz-template match, with QOP 2
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Figure A.17: Object 218 from HUDF and its Marz-template match, with QOP 2

Figure A.18: Object 253 from HUDF and its Marz-template match, with QOP 2
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Figure A.19: Object 430 from HUDF and its Marz-template match, with QOP 2

Figure A.20: Object 492 from HUDF and its Marz-template match, with QOP 2
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Figure A.21: Object 554 from HUDF and its Marz-template match, with QOP 2

Figure A.22: Object 565 from HUDF and its Marz-template match, with QOP 2
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A.4 QOP 1

Figure A.23: Object 200 from HUDF and its Marz-template match, with QOP 1
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Figure A.24: Object 306 from HUDF and its Marz-template match, with QOP 1

Figure A.25: Object 337 from HUDF and its Marz-template match, with QOP 1
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Figure A.26: Object 35 from HUDF and its Marz-template match, with QOP 1

Figure A.27: Object 395 from HUDF and its Marz-template match, with QOP 1
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Figure A.28: Object 419 from HUDF and its Marz-template match, with QOP 1

Figure A.29: Object 536 from HUDF and its Marz-template match, with QOP 1
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Appendix B

Python object plotter code

The following code is used to plot images from objects, outputting white-light, source
segmentation, narrow-band image of the brightest emission line, and spectrum of the
object (tapered with a cosine windows). It is the code generating images along the thesis,
and the ones in Appendix A.

1 from astropy.io import fits

2 from astropy.nddata import CCDData

3 import matplotlib.pyplot as plt

4 from aplpy import FITSFigure

5 from scipy import signal

6 from scipy.ndimage import convolve1d

7 import numpy as np

8 import os

9 from astropy.utils.exceptions import AstropyWarning

10 import warnings

11 import aplpy

12 import ipywidgets as widgets

13 from IPython.display import clear_output

14 from bokeh.io import output_notebook

15 import pandas as pd

16

17 from astropy.modeling import models

18

19 from astropy import units as u

20

21 from specutils.spectra import Spectrum1D , SpectralRegion

22

23 from specutils.fitting import fit_generic_continuum

24

25 warnings.simplefilter(’ignore ’, category=AstropyWarning)

26

27

28 def obj_plotter(cubename):

29 print(os.path.basename(cubename))

30 cube = CCDData.read(cubename)

31 window = signal.windows.tukey(len(cube.data), alpha =0.05)

32 cubetozero = (cube.data <= 0) | (cube.uncertainty.array <=

0) | np.isnan(cube.data) | np.isnan(
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33 cube.uncertainty.array)

34 cube_noneg = cube.data

35 cube_var = cube.uncertainty.array

36 cube_noneg[cubetozero] = 0

37 cube_var[cubetozero] = 0

38 cubetozero = cube.mask

39 cube_forspec = cube_noneg.copy()

40 cube_forspec[cubetozero] = 0

41 cube_var[cubetozero] = 0

42 spec = cube_forspec.sum(axis=(1, 2)) * window * cube.unit

43 specvar = cube_var.sum(axis=(1, 2)) * window * cube.unit

44 specaxis = cube.wcs.spectral.pixel_to_world(np.arange(0, len

(spec)))

45 spec = Spectrum1D(spec , specaxis)

46 g1_fit = fit_generic_continuum(spec)

47 y_continuum_fitted = g1_fit(specaxis)

48 spec = (spec.flux / y_continuum_fitted / np.sqrt(specvar)).

value

49 spec[np.isnan(spec)] = 0

50 bbcenter = np.where(spec == max(spec))[0][0]

51 spec = spec * y_continuum_fitted

52 nbsum = cube_noneg[bbcenter - 2: bbcenter + 3].sum(axis =0)

53 wlsum = cube_noneg.sum(axis =0)

54 wlHDU = fits.ImageHDU(data=wlsum , header=cube.wcs.celestial.

to_header ())

55 segHDU = fits.ImageHDU(data =(~ cube.mask [0]).astype(int),

header=cube.wcs.celestial.to_header ())

56 nbHDU = fits.ImageHDU(data=nbsum , header=cube.wcs.celestial.

to_header ())

57 fig = plt.figure(figsize =(20, 10))

58 wl = FITSFigure(wlHDU , figure=fig , subplot =(2, 3, 1))

59 wl.tick_labels.show()

60 wl.tick_labels.set_font(size=’x-large ’)

61 wl.show_grayscale ()

62 wl.add_colorbar ()

63 wl.colorbar.set_font(size=’x-large ’)

64 wl.axis_labels.set_font(size=’x-large ’)

65 seg = FITSFigure(segHDU , figure=fig , subplot =(2, 3, 2))

66 seg.tick_labels.show()

67 seg.tick_labels.set_font(size=’x-large ’)

68 seg.show_colorscale ()

69 seg.axis_labels.set_font(size=’x-large ’)

70 nb = FITSFigure(nbHDU , figure=fig , subplot =(2, 3, 3))

71 nb.tick_labels.show()

72 nb.tick_labels.set_font(size=’x-large ’)

73 nb.show_grayscale ()

74 nb.add_colorbar ()

75 nb.colorbar.set_font(size=’x-large ’)

76 nb.axis_labels.set_font(size=’x-large ’)

77 # get axis bottom subplot

78 axspec = fig.add_subplot (2, 3, (4, 6))
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79 axspec.plot(specaxis * 1e10 , spec)

80 axspec.set_ylabel ("Flux , Arbitrary units", fontsize =12)

81 axspec.set_xlabel ("Wavelength , Angstroms", fontsize =12)

82 fig.canvas.draw()

83 plt.tight_layout(h_pad =7)

84 fig.savefig(’plots/’ + os.path.basename(cubename)[:-5] + ’.

png ’)

85 # plt.show(fig)

86 plt.close(fig)
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Appendix C

Additional segmentation maps analysis

We analyzed with AutoMUSE additional MUSE fields, targeting lensed quasars.The dat-
acubes are not available publicly, and were obtained from Lise and Adriano. The left
panel represents the segmentation map produced by AutoMUSE, while the right panel is
the white-light image.

Figure C.1: Lensed quasar —HE0047— analyzed by AutoMUSE. There are 72 objects
detected with detection threshold = 3. The target object “leaks”, and has small false
detections around the center.
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Figure C.2: Lensed quasar —HE1104— analyzed by AutoMUSE. There are 65 objects
detected with detection threshold = 3. The target object, where we clearly see two sources
on the white-light image, is not correctly deblended at this threshold.

Figure C.3: Lensed quasar —J024— analyzed by AutoMUSE. There are 65 objects de-
tected with detection threshold = 3. The target object seems to be correctly deblended.
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Figure C.4: Lensed quasar —MS1310— analyzed by AutoMUSE. There are 54 objects
detected with detection threshold = 3. The target object seems to be over-segmented.
There are 5 central sources, but 7 objects are detected in the segmentation map.
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