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Abstract

This project aims to use Monte Carlo (MC) method to improve the model proposed
originally by Sundblom et al [1] for quantitative analysis of small-angle X-ray scatter-
ing (SAXS) data from the ordered mesoporous silica (OMS) material named SBA-15.
The nanostructured mesoporous silica SBA-15, formed by around 20µm particles with
hexagonal ordered mesopores with a diameter of 10 nm and macropores larger than 50
nm, has the ability to protect antigens from the harsh stomach environment, improve
the immune response, and in the future allow for the use of needless vaccines. Depend-
ing on their size, the antigens can be located in the macropores (HBsAg, with a radius
around 22 nm, used in the Hepatitis B vaccine) or in the mesopores (dANA, with a ra-
dius around 4 nm, used in Diphtheria vaccine). Thus, it is essential to know the size
distribution of the mesopores in the SBA-15, and SAXS is a experimental technique that
allows us answering this question. However, more advanced models to analyse the
experimental data are needed, and MC is a good alternative.



Abbreviation List

dANA diphtheria anatoxin.

HBsAg Hepatitis B surface antigen.

MC Monte Carlo.

OMS Ordered Mesoporous Silica.

PEO-PPO-PEO poly (ethylene oxide) - poly (propylene oxide) - poly (ethylene oxide).

RF radio frequency.

SANS Small-Angle Neutron Scattering.

SAS Small-Angle Scattering.

SAXS Small-Angle X-Ray Scattering.

SBA Santa Barbara Amorphous.

TEOS tetraethoxilane.

TMOS tetramethoxysilane.

TPOS tetrapropoxysilane.

WAXS Wide-Angle X-Ray Scattering.

XRD X-Ray Diffraction.
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Chapter 1

Introduction

Porous materials have raised a very large interest in the material science community
since they appeared in 1990s [2]. This attention comes from their many advantages,
such as large surface areas and pore volume, as well as narrow distribution of pore
sizes. The International Union of Pure and Applied Chemistry (IUPAC), classifies the
porous material into three different categories, according to their pore size; micropores
being smaller than 20Å, macropores larger than 500Å, and the mesopores in between
[3]. Accordingly, zeolites and microporous molecular sieves, which are widely applied
as catalyst for oil refining and petrochemistry, are representatives of the microporous
material family. However, due to their pore size, there is an intensive limitation in mi-
croporous material when the processes involving large molecules. Thus, researchers
have focused on the enlargement into the mesopore range [2]. As a result, in 1998,
Santa Barbara Amorphous (SBA)-15 materials are Ordered Mesoporous Silica (OMS),
were firstly synthesized by Zhao et al [4]. by using amphiphilic triblock copolymers
to direct the arrangement of polymerizing silica species (Fig.1.1). Since then, SBA-15
has attracted wide interest of scientists due to their highly ordered mesoporous struc-
ture, large pore diameter, inactive framework, thick pore wall and high thermal and
hydrothermal stability, which means they can be applied widely in catalysis, absorp-
tion, immobilization, drug delivery and vaccine carrier [2, 5, 6]. More recently, it was

Figure 1.1: Sketch of the general procedures for the SBA-15 preparation [2]
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shown that, due to its low toxicity, stable thermal and hydrothermal properties and
hierarchical porous structure, SBA-15 can be used as nanocarriers for protecting the in-
tegrity of oral vaccine from the harsh gastrointestinal environment [5, 6]. The reason is
that SBA-15 is composed by pores with hierarchical sizes, and proteins can be protected
into these pores. For instance, diphtheria anatoxin (dANA) with around 4 nm diam-
eter is small enough to enter the 10 nm mesopores, while Hepatitis B surface antigen
(HBsAg), with a diameter of about 22 nm, is too large to be protected in the mesopores.
However, the complex SBA-15 + HBsAg induces immune response to hepatitis, because
HBsAg is encapsulated in the macropores of SBA-15 [6]. Moreover, it is now known that
the morphology of SBA-15 could affect the efficiency of SBA-15 absorbing the antigens,
and the level of immune response [6]. Based on this knowledge, it is vital to charac-
terize the structure of SBA-15 sample used in oral vaccine delivery i.e. size, shape, size
distribution and spatial ordering in advance. In this case, Small-Angle X-Ray Scatter-
ing (SAXS) is a powerful technique because it can provide the spatial information in
the range of 10-1000 Å (1-100 nm) that fits well with the dimensions of the sample of
interest. Moreover, it is a convenient technique, since the experiments are easy to per-
form, accurate, data collection is fast and, in general, it is non-destructive. However,
as in most situations, the overall structural sizes in a SBA-15 sample can present fluc-
tuation, and advanced analysis through data modeling is needed in order to retrieve
”hidden” structural information contained in the experimental curves. Apart several
structural parameters, size distributions between cylindrical pores must be taken into
account. The models currently available to fit SAXS curves of SBA-15 assume a particle
size distribution, such as Gaussian [7, 8] or Schulz-Zimm distribution [1] for the meso-
pores. Since this assumption affects the form factor describing their morphology, and
consequently the scattering pattern, this may compromise the fitting quality.
In this project, we propose to apply the Monte Carlo (MC) method to improve Sund-
blom et al model [1], because compared with the other two models [7, 8], this one analy-
ses the whole process of synthesising the SBA-15, and better fit the results. MC methods
are thought to be the suitable methods in this work, because they are based on random
sampling and the trial and error principle. In fact, the application of MC in polydisperse
sphere particle system has been successfully done to describe a reasonable size distri-
bution in the SAS pattern of boehmite (AlOOH) particles [9, 10].
To achieve the results presented in this thesis the consecutive steps were followed:
1. The first step was to write new program to simulate the SAXS curves of different
shapes of mono and polydisperse particles: sphere, cylinder and core-shell sphere.
To validate the new program,the results were compared with patterns generated by
SasView, a widely used Small-Angle Scattering (SAS) data analysis software [11]. Re-
sults for sphere are shown in Appendix, together with all the related codes.
2. Then, I applied MC methods in a polydisperse sphere, in a long cylinder and in a
long core-shell cylinder system and compared the retrieved distribution to the theoreti-
cal one. This is presented in Chapter 4.2, together with the analysis of a real data set.
3. The next step was to write a new Python code to build the mathematical model de-
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scribed in Ref [1] for pure SBA-15. This result is shown in Chapter 4.1.
4. Finally, the MC method was applied to the SBA-15 model, and the radius of the
mesopores distribution extracted. This first attempt is promising, but improvements
are necessary as described in the Conclusions and Perspectives Chapter.
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Chapter 2

Materials and Methods

2.1 Santa Barbara Amorphous: SBA-15
SBA-15 is one of the most promising members of the SBA family, due to its chemical
and physical properties including low toxicity, thermal and hydrothermal stability and
an hierarchical porous structure [5]. This nanostructured mesoporous silica is formed
by 20 µm particles with hexagonal ordered mesopores with a radius of 50 Å and macro-
pores larger than 500 Å as showed in Fig. 2.1.

Figure 2.1: (a) Schematic of SBA-15 particle showing hexagonal ordered mesopores.(b) Scanning
electron microscopy (SEM) image of the SBA-15 with some macropores [6].
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Figure 2.2: The standard procedure to produce SBA-15, and the morphology can be changed by
varying the conditions. The acid solution including the structure director, poly (ethylene oxide)
- poly (propylene oxide) - poly (ethylene oxide) (PEO-PPO-PEO), is heated to 50◦C. The silica
source, TEOS, is added, and the solution is stirred at this temperature for 24h. The reagent flask
is then transfer to an oven, held at 80◦C for another 24h. Then, the powder is filtered out from
the solution and wash with water. Finally the material is calcined for 6h at 500◦C [12].

SBA-15 is usually synthesised by PEO-PPO-PEO, also known as Pluronic P123, as a
structure directing agent and appropriate silica sources, such as tetraethoxilane (TEOS),
tetramethoxysilane (TMOS), and tetrapropoxysilane (TPOS) in a range of temperature
from 35◦ to 140◦, followed by high temperature calcination to degrade the copolymer-
template, as shown in Fig.2.2 [2, 4, 12, 13].
The kinetic process of how the SBA-15 forms is shown in Fig. 2.3 [14]. The unique char-
acteristic of PPO block in Pluronic P123, which is hydrophobic at temperatures above
288 K and is soluble in water at temperatures below 288 K, leads to the formation of
micelles consisting of PEO-PPO-PEO triblock copolymers (Fig. 2.3 a). After addition of
silica source, TEOS starts to hydrolyse, and then the shape of their micelles starts chang-
ing from spherical to cylinder-like (Fig.2.3 b-d). Afterwards, the cylinder-like micelles
form a hexagonal phase due to gathering, and keep growing (Fig.2.3 e and f).

Figure 2.3: Schematic of how the structure of SBA-15 is formed. a: The formation spherical
micelles; b: Addition of TEOS; c: Beginning of hydrolysis; d: Formation of cylinder shape; e:
Nucleation of the 2D-hexagonal phase; f: Growth of 2D-hexagonal phase [14].
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There are three SBA-15 samples studied in this work, and we name them SBA-15 a, b
and c. All of them were synthesized at the Institute of Physics, University of São Paulo
in Brazil. SBA-15 a and SBA-15 c were synthesized by Luis Cides and Pedro Leonidas
Oseliero Filho. SBA-15 b was synthesized by Tereza Martin and it is a mix of multiple
batches. The SAXS data of SBA-15 a was collected in Brazil on a laboratory instru-
ment, and the SAXS of SBA-15 b and SBA-15 c were collected using CoSAXS [15, 16], at
MAXIV in Lund. All three samples are pure calcined SBA-15, and their information are
summarised in the table 2.1.

Table 2.1: The synthesized and measured information about three data sets

a b c

Synthesis synthesized
by Luis and Pedro

mix batches
synthesized by

Tereza

synthesized
by Luis and Pedro

Measurement
Xeuss 2.0

with λ = 1.54Å

COSAXS,MAXIV,
Lund, Sweden,

with λ = 1Å

COSAXS, MAXIV,
Lund, Sweden,
with λ = 1Å

2.2 X-Rays

Figure 2.4: The wavelength of common radiations, showing that the X-rays wavelength enable
the study of atomic systems [17].

X-ray is a high energy electromagnetic radiation discovered by the German physicist
Wilhelm Conrad Röntgen in 1895. The standard X-ray tube showed in Fig. 2.5 consists
mainly of three parts: filament, cathode and anode. By heating the filament and ap-
plying high voltage (around 30-60 kV) between the cathode and the anode, electrons
will be accelerated and collide the metal target at a high speed. This process will create
X-rays, which energies or wavelengths are defined by the anode material.
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Figure 2.5: Schematic of X-Ray tube. The cathode and the anode are providing the electric field
to accelerate the electrons emitted from the heated filament through thermionic emission, and
when the electrons collide with the target metal, the X-rays are produced [17].

The raw X-ray spectrum is continuous because while the electron hits the anode, it is de-
celerating, and this radiation is called Bremsstrahlung, bremsen means brake in German.
The highest energy of Bremsstrahlung depends on the voltage applied on the tube. The
sharp peaks on the Bremsstrahlung spectrum in Fig.2.6 are called characteristic energy,
which occurs when the incident electron hits the inner atomic electron, and removes it
from the inner shell. The electron from the outer shell will fall down to the vacancy and
this process will emit the fluorescent radiation Kα or Kβ, which depends on the anode
material. The energy of Kα is equal to the difference between L and K shell, while Kβ is
the difference between M and K shell.
In a X-ray scattering experiment, we need to utilize monochromatic and highly intense

radiation, and Kα is several order of magnitude more intense. Thus, we need to filter out
Kβ and only the Kα will be used in the scattering experiment. The filter is usually made
of a metal having one proton less than the anode material. The condition of choosing the
filter material is that the K excited energy of the filter should be in between the energy
of anode’s Kα and Kβ. Thus, Kα line is left and the radiation with energy higher than
K excited energy gets absorbed. Or we can use crystal monochromators to select the
wanted wavelength of the X-rays. It’s principle is to use Bragg’s scattering as a ”filter”,
and only the radiation suits the Bragg’s law that can be reflected. This way could obtain
a more narrow band of the wavelengths.
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Figure 2.6: The spectrum from an X-ray tube has sharp fluorescent lines superimposed on the
continuous bremsstrahlung radiation (left). Schematic atomic energy level diagram (right): the
Kα line results from transitions between an L and K shell, whereas the Kβ comes from an M to K
transition [18].

2.3 Synchrotron Radiation
It is known that the electrons inside the synchrotron magnets emit electromagnetic radi-
ation which is known as synchrotron radiation. This happens because the electrons are
constantly accelerated, since they move in curved trajectories, even though their speed
remains the same. The construction of a synchrotron facility is shown in Fig.2.7b.

(a) synchrotron generation. (b) planar view of synchrotron (c) storage ring

Figure 2.7: a is the comparison between the average brightness of storage rings for different syn-
chrotron generations. b is the schematic planar view of a synchrotron radiation facility, where
mainly is consisted of a linear accelerator (linac), booster, storage ring and beamlines. c is the
schematic of a storage ring where some main elements like bending magnets, quadrupoles, wig-
gler, undulator and RF cavity are shown. [19]

At first, even though the electrons might have reached the expected energy, they lose
some of it as electromagnetic radiation due to their movement. However, this energy is
given back to them through radio frequency (RF) electric fields when the electrons pass
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through RF cavities. Those cavities are installed inside linear sections of the storage
rings. The RF cavities were the first way to keep the electron velocity under control. Af-
terwards, more techniques were developed like the wigglers and the undulators. Those
techniques are what cause the synchrotron to have a continuous production of energy
and at such high levels. As we can see from the following diagram the more advanced
the technique used the greater the spectral brightness (Fig.2.7a). The definition of the
brightness or brilliance is photons per second (s), per unit source size (mm2) and angular
divergences (mr2) in a given bandwidth (BW), and its function [18] is:

Brightness =
Photons

s · mr2 · mm2 · (0.1%BW)
(2.3.1)

where the angular divergences are set by the horizontal and vertical apertures (in milli-
radian), and the relative bandwidth of the monochromator crystal relative to 0.1%.

2.4 X-Rays Scattering Theory
When we use X-rays to irradiate the sample, X-rays interact with all the atoms in the
irradiated volume. A fraction of X-rays get absorbed and part of X-rays get scattered.
X-rays interact mostly with the electrons in the atoms, whereas neutrons interact with
nuclei. In terms of how X-rays interact with electrons, it can be explained from two
aspects, particles (photon) and wave. If we consider X-rays as photons, photons collide
with electrons and their trajectory is changed by the electrons. If we consider X-rays
as waves, electrons absorb the wave to a excited state, and another X-rays is emitted
because the excited electrons decay to the stable state.
Under certain energy limits (≈ 7 − 12KeV, according to E = hc

λ , i.e. λ ≈ 1.03 − 1.77Å),
this scattering process can be thought as elastic scattering or Thomson scattering, where
the energy and wavelength (λ) of the incident and scattered radiation are identical [20].
It is true that the interaction between electron and X-rays can be inelastic, called Comp-
ton scattering. In a elastic scattering experiment, scattering unit is an electron, which is
thought to be structureless, and the simplest cases consists of two electrons with a dis-
placement r between them. Determining the structure of this system is to determine the
value of r. For elastic scattering |k0| = |kF|, the magnitude of scattering vector q(Fig.2.8)
is equal to:

|q| = 2k sin θ =
4π

λ
sin θ (2.4.1)

The scattering amplitude is defined as the Fourier Transform (FT) of the distribution
of the electrons within the irradiated system, and the scattering intensity is equal the
square of the scattering amplitude.
The FT of the two electrons system (Fig.2.8) is written as

F(q) =
∫

ρ(r)eiq·rdr (2.4.2)
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Figure 2.8: Representation of how two electrons get scattered. The lag phase or phase difference
is ϕ, and the scattering angle is 2θ. q is the scattering vector.

where the ρ(r) is the electron density function for X-rays or called scattering length
density, which is in real space, and q is a coordinate in Fourier space, which is also
called reciprocal space. Thus, the unit of q is Å−1, when r is in Å. In this two electrons
system, if we put the origin of coordinate at one of the electrons, the other is at a position
r (Fig.2.8). With the FT, we can get the scattering amplitude

A(q) =
∫

ρ(r)eiq·rdr =
∫
(δ(0) + δ(r))eiqrdr = 1 + eiq·r (2.4.3)

and the intensity becomes

I(q) = A(q)A(q)∗ = 2 + eiq·r + e−iq·r (2.4.4)

If r is randomly oriented, then the intensity is given by the orientational average of
phase factor [18]:

< eiq·r >Ω=

∫
eiqr cos θ sin θdθdϕ∫

sin θdθdϕ
=

sin (qr)
qr

. (2.4.5)

These ideas can be extended to more than two electrons, and the amplitude of a system
with any electrons is

A(q) = ∑
i

eiq·ri (2.4.6)

where ri is the position of i’th electron.
The electrons bounded in atoms can not seen as a point like, and they are treated as a
cloud surrounding the nucleus with a distribution ρ(r). The integral of ρ(r) is equal to
the total number of electrons Z in the atom. The scattering amplitude of an atom is the
atomic form factor and it is

Fa(q) =
∫

ρ(r)eiq·rdr (2.4.7)

For q −→ 0, the phase factor is equal one, so the integral is equal the number of electrons
in the atom i.e. Fa(q) = Z. When q −→ ∞, the wavelength of the radiation becomes
small compared to the atom, the interference between the waves scattered from differ-
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ent electrons in the atom is destructive, so Fa(q) = 0.

2.5 Small-Angle X-ray Scattering (SAXS)

Figure 2.9: Different methods cover different size ranges for our study the suitability of SAXS
is clearly shorwn. Here, n and e stands for neutrons and electrons scattering, and DLS for dy-
namic light scattering. USANS and TEM stand for Ultra Small-Angle Neutron Scattering, and
Transmission Electron Microscopy, respectively [17].

Elastic X-ray scattering includes a number of material characterization techniques, for
instance, X-Ray Diffraction (XRD), SAXS, and Wide-Angle X-Ray Scattering (WAXS)
as shown in Fig.2.9. The term XRD traditionally applies to a well-ordered crystalline
material and thus used for determination of crystal structures. This project deals with
larger structures and therefore uses the small angle scattering technique, which allows
us analysing size between 10 − 1000Å, and can be used to quantified nanoscale density
differences in a sample.
The schematic of a SAS experiment is showed in Fig.2.10. Depending on the radiation
used, the technique is called either Small-Angle X-ray Scattering (SAXS) or Small-Angle
Neutron Scattering (SANS). During data collection a collimated beam is shoot to the
sample in a straight trajectory, and after interacting with the sample, the beam will be
scattered in a angle, 2θ. The scattering angle of SAS is in the range of 0.1-10◦, and the
measured scattering curve, I(q), covers a momentum transfer q range from 0.007 - 0.7
Å−1 (in the most frequently used CuKα line of 1.54Å). The resolved range can be ex-
tended on both sides by measuring smaller (Ultra Small-Angle Scattering, USAXS or
USANS) or larger angles than the typical values, because distance between sample and
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detector is easy to change [21].
In case of small angle scattering, the objects that we are concerned are very large com-

Figure 2.10: Schematic of a SAS setup showing the incident (k0) and scattered (kF) beam, as well
as the source, optics, sample, beamstop and the detection system. 2θ is the scattered angle, q
is the scattering vector, and the beamstop is used to protect the detection system from direct
intensive beam [22].

pared with typical inter-atomic distances, and it will be elaborated later. The approaches
to analyse the SAXS data will be described in next section.
In SAXS experiment, when the incident radiation suits Bragg’s law:

∆l = nλ (2.5.1)

nλ = 2d sin θ (2.5.2)

there is a intensity increase in the scattering pattern. The second incident radiation (the
lower arrows in Fig.2.11) will have half lag path 1

2 ∆l and the scattered radiations will
have the same lag path. When the total lag path is an integer multiple of the wave-
length, there is a constructive interference in these two scattered radiation.

Figure 2.11: The schematic of Bragg’s law. k and k are the incident vector and scattered vector,
respectively. θ is the incident angle. d and 1

2 ∆l are lattice distance and half lag path.
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2.6 Reducing and Modeling SAXS data

2.6.1 Data Reduction

There are basically four data reduction steps in SAXS experiment, corrections, scattering
vector q calibration, intensity calibration and averaging. The corrected intensity for the
radiation absorbed by the sample is

T = fsample/ f0 (2.6.1)

Icorr =
I
T

(2.6.2)

, where T is the transmission of the sample, and fsample and f0 are the flux of radiation
with and without the sample. In the experiment, it is necessary to measure two intensi-
ties, one is the system (sample holder + sample) and the other is sample. The corrected
intensity of the sample is

Icorr,sample = Icorr,total − Icorr,holder (2.6.3)

In our case, the sample holder is the empty quartz capillary tube. If the investigated
system is liquid, the solvent should be included in the subtraction.
Silver behenate is often used in the scattering vector q calibration. The first order re-

flection of silver behenate is at q = 0.1078Å−1. It can be used to determine the beam
center from the ring, and adjust q-scale so that the first peak is at q = 0.1078Å−1 (see
Fig. 2.12a).
Integration is used to transform 2D scattering pattern into a 1D scattering curve. There
are two ways to implement, radial and azimuthal integration. Azimuthal integration
can always be used, either considering the full 2D data or only sectors, the former strat-
egy being applied to analyse anisotropic patterns. For anisotropic patterns, radial in-
tegration can additionally be used in order to evaluate ordering features of the system.
What azimuthal integration does is showed in Fig.2.12b. Performing a 2π integration to
the intensity points that lies on a certain radius circle. As the radius increases, the value
of q also increases, and then obtain the scattering curve.

2.6.2 SAXS Models

The scattering amplitude for a fixed particle is the FT of the particle electron density
ρ(r):

f (q) =
1

4π

∫
V

ρ(r)e−iq·rdr (2.6.4)
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(a) q calibration

(b) Schematic of performing azimuthal integration.

Figure 2.12: 2.12a is schematic of calibrating scattering vector q. The scattering curve of silver
behenate is on the left, and the 2D scattering pattern is on the right. 2.12b is the schematic of
performing azimuthal integration.

, and intensity I1(q):

I1(q) =
∫

V
γ(r)e−iq·rdr (2.6.5)

γ(r) =
∫

V
ρ(r∗)ρ(r∗ − r)dr∗ (2.6.6)

Where γ(r) is defined as self correlation function. If the particle is randomly oriented,
then the orientational average of the intensity must be performed:

I1(q) =< f (q)2 >Ω= 4π
∫ ∞

0
p(r)

sin(qr)
qr

dr (2.6.7)

γ(r) =< ρ(r)ρ(r∗) >Ω (2.6.8)

p(r) = r2γ(r) (2.6.9)

where the p(r) is called pair distance distribution function [20]. Thus, the intensity of
the a system with N particles is

I(q) = N < f (q)2 >< S(q) > (2.6.10)

Where < f (q)2 > is the particle form factor, and < S(q) > is called the structure factor
which considers possible interparticle interactions or system ordering effects.
The scattering length density of the particles and solvent are ρp and ρo, respectively.
For particles distributed in the solvent, only the electrons density difference, ρp − ρo i.e.
contrast, is effective, and if ρp = ρo, the X-rays can not ”see” the particles (see Fig.2.13)
[21, 23]. In a dilute system, all the distances between particles are considered to be
large enough or completely uncorrelated, and it means that inter-particle correlations
can be neglected. if all the particles in the system are the same, this system we call it
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Figure 2.13: The contrast in SAXS is the difference of electron densities (∆ρ = ρp − ρo) between
particle and environment (left). The right in the figure is invisable due to zero contrast [21].

monodisperse system. Scattering length is a term that describe the ability of an electron
to scatter X-rays or other radiation. Because X-rays interact with the electrons in the
particle, the scattered intensity function of a isolated particle [18] can be written in this
way:

ISAXS
1 (q) = (ρp − ρo)

2 <
∫

Vp
eiq·r dVp >2 (2.6.11)

where the q and r are the scattering vector and displacement between electrons in the
single particle. The integral in 2.6.11 is the sum of all the electrons in the particle and
assuming the electrons are continuously distributed in the particle. The magnitude ex-
pression of the scattering vector is

|q| = 4π

λ
sin θ (2.6.12)

where λ and θ are the wavelength of incident beam and the half of the scattering an-
gle(Figure 2.1). Every displacement r is measured relative to the wavelength λ of the
applied radiation, so in order to be independent from the λ, the scattering intensity is
usually presented as function of q [21]. By introducing the normalised particle ampli-
tude form factor,

F(q) =
1

Vp
<

∫
Vp

eiq·r dVp >, (2.6.13)

the scattered intensity function of a fixed particle can be indicated

ISAXS
1 (q) = ∆ρ2V2

p |F(q)|2, (2.6.14)

and ∆ρ = (ρp − ρo) is the scattering contrast between particles and solvent.
Form factor is the scattering caused by the morphology of the particle, and it fulfils the
condition: F(q = 0) = 1. Only few cases have the analytical mathematical expression in
the integral in (2.3.1), and in most situation, the integrals only have numerical solution.
When the particle is sphere with the radius R, probably the simplest case. Due to its
symmetry and it is not necessary to consider orientational averaging. Therefore, the
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form factor of sphere can be calculated as [18]:

F(q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
eiqr cos θr2 sin θ dθ dϕ dr =

1
Vp

∫ R

0
4π

sin (qr)
qr

r2 dr

= 3[
sin (qr)− qr cos (qr)

(qr)3 ].
(2.6.15)

The form factor for a cylinder with radius R and length L has no analytical expression
and it is numerical expression is [24]:

|F(q)|2 =
∫ π/2

0
[
2B1(qR sin α)

qR sin α

sin (qL cos α)/2
(qL cos α)/2

]2 sin α dα (2.6.16)

, where B1(x) is the first order of the Bessel function,and the α is the angle angle between
the axis of the cylinder and q.
Some systems are intrinsically consisted of particles in different sizes, which are poly-
disperse system. We can use distribution functions to describe the variation of sizes.
For particles with spherical shape, the number radii distribution D(R) and the scatter-
ing intensity is given by:

ISAXS
1 (q) = ∆ρ2

∫ ∞

0
D(R)Vp(R)2|F(q, R)|2 dR (2.6.17)

The number particle radii distribution is normalised such that
∫ ∞

0 D(R) dR = 1. For
cases that the interparticle interactions can not be ignored, the structure factor S(q) need
to be introduced. Using a local monodisperse approximation for including the effects of
polydispersity [25], the intensity function changes to be

ISAXS
1 (q) = ∆ρ2

∫ ∞

0
D(R)Vp(R)2|F(q, R)|2S(q, R) dR. (2.6.18)

Depending on the system to be investigated, it is necessary to choose different distribu-
tions. Actually, according to data analysis experience, there are some suggested applica-
tion. If the polydispersion is to describe particle sizes, people often apply the Lognormal
or Schulz distributions. If it is to describe interfacial thicknesses, the Gaussian or Boltz-
mann distributions are suggested [26]. In a SAXS experiment, the total intensity of the
illuminated sample is:

ISAXS(q) =
N

∑
n=1

ISAXS
n (q) = η∆ρ2Vp(R)2|F(q, R)|2S(q, R) (2.6.19)

= ϕ∆ρ2Vp(R)|F(q, R)|2S(q, R) (2.6.20)

where N is the total number of particles in the sample, η (η = N
Vsample

) is the number
density of the particles in the sample (i.e. concentration if the sample is solution), and ϕ

is the volume fraction, (ϕ =
Vtotal particles

Vsample
=

NVparticle
Vsample

= nVparticle).
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Figure 2.14: The schematic of different q corresponding to different size structure. Guinier and
Porod region are the long wavelength and short wavelength limit, respectively. [27]

Form factor, P(q), in the long and short wavelength limit has different approximation as
shown in Fig.2.14.

Long Wavelength Limit (i.e. qr → 0)

In this limit, the form factor, P(q), can be approximated by [18]:

P(q) ≈ a0 · e
−R2

gq2

3 (2.6.21)

where Rg is the radius of the gyration. This equation was first derived by Guinier in
1939, so this region also called Guinier region. The radius of gyration Rg of a partilce
is the root-mean-squared distance from the particle’s center of gravity. If the scatter-
ing length density is homogeneous, spherically symmetric and the radius of gyration
squared is

R2
g =

∫
Vp

r2dVp

Vp
(2.6.22)

If the scattering length density is spatially distributed, and the radius of gyration is
given by

R2
g =

∫
Vp

ρp(r)r2dVp∫
Vp

ρp(r)dVp
(2.6.23)

Short Wavelength Limit (i.e. qr → ∞)

In the short wavelength limit, in which the wavelength is small compared with the
particle size, but still large compared with the inter-atomic spacing, the SAXS intensity

19



for a spherical particle becomes [14]

ISAXS
1 (q) = |F(q)|2 =

2π∆ρ2

q4 Sp (2.6.24)

which is proportional to the surface area of the particle, and inversely proportional to
the fourth power of q. According to the shape of particle, q has a different Porod ex-
ponent n. The Form factor depend sensitively on particle dimension. We can have
a roughly understanding of this fact though the element of integration in E.q.2.6.13.
When the particle is sphere shape, the element of integration is dVp = 4πr2dr, so the in-
tegrand varies as r2. The intensity is the square of the form factor and therefore it varies
as r4. When the particle is a two-dimensional object, an infinitesimally thin plate, with
radius R, and the element of integration is an area dAp = 2πrdr. When considering one-
dimensional object, an infinitesimally thin rod of length L, the element of integration is
a constant independent of r. For the rough interface, the Porod exponent would be in
the format of −(6 − d), with the help of fractal mathematics. [18] All these expressions
are provided in table 2.2.

Table 2.2: Variation with dimension d of SAXS single particle form factor square P(q), radius of
gyration, Rg, and Porod exponent. Results are given for a sphere of radius r, and infinitely thin
plate of radius r, infinitely thin rod of length L, and the particle volume Vp. Here Si(x) is sine
integral

∫ x
0 sin t/tdt, B1(x) = (sin x)− x cos x)/x2 is a Bessel function of the first kind, and <>Ω

means performing a orientational average [18].

P(q) Radius of gyration
Rg

Porod exponent
n

Sphere (d = 3) (3B1(qr)
qr )2

√
3
5r -4

Plate (d=2) 2
q2r2 (1 −

B1(2qr)
qr )

√
1
2r -2

Rod (d =1) 2Si(qL)
qL − 4 sin2(

qL
2 )

(qL)2

√
1

12 L -1

Generalized Form < 1
Vp

∫
Vp

eiq·r dVp >2
Ω

√ ∫
Vp

r2dVp

Vp
−(6 − d)

2.7 Modeling Method
There are mainly two approaches to analyse small-angle scattering data, model inde-
pendent and model dependent. Both approaches need to apply least-squares methods
[20, 24]. In the model-independent approach, we basically perform a Fourier Transfor-
mation (FT) of the experimental scattering curve I(q), and the obtained curve is the pair
distance distribution function, p(r). FT is usually done by the Indirect Fourier Transfor-
mation (IFT) that was initially proposed by Glatter [23]. Because this project is related
to the improvement of a model dependent method, the focus will be direct to it from
now on.

Model dependent methods use mathematical models to describe the experimental
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Figure 2.15: The schematic of constructing the amplitude form factor of core shell sphere, and
it is equal the amplitude form factor of a sphere with larger radius (Rout) minus the amplitude
form factor of inner sphere and plus core sphere with different electron density ρcore.

SAXS data. We can have analytical or semi-analytical expressions of the form factor
of simple shape particle to calculate the scattering intensity with E.q. 2.6.19. The main
advantage of this is that there are only some parameters to adjust to fit the experimental
data, allowing the determination of structural information with reasonable reliability.
If the model does not fit the data correctly, this means that the real shape of particle is
different from the assuming shape [20]. For the form factor of a complicated shape, it
is possible to use known subunits to construct the particle shape. For example, form
factor of core shell sphere can be built up in the method shown in Fig.2.15.
Least square method is employed to find the best fit for the SAXS experimental data,
and chi-squared (χ2) function or chi-squared test is used as a measure for the devia-
tion between the experimental data and the model [20, 24]. Given a set of experimental
intensity points Iexp(qi), i = 1,...,N, and qi is the modulus of the scattering vector cor-
responding to the measured intensity. The counting statistics will bring the statistical
uncertainties σi on the intensity point Iexp(qi). The χ2 is given as:

χ2 =
N

∑
i=1

(
Iexp(qi)− Imod(qi)

σi
)2 (2.7.1)

where Imod(qi) is the model intensities which depends on the parameters in the model.
It is common to use reduced χ2, which is defined as:

Prob =
χ2

N − M
(2.7.2)

where N is the number of data points, M is the number of independent fitting param-
eters in the model, and N − M is called number of degrees of freedom (ndf). If a good
fit is achieved, Prob should be closed to 1, which in the ideal case, Prob is equal to 1,
which means the deviations |Iexp(qi) − Imod(qi)| are on average equal to the statistical
uncertainties [24]. If Prob is greatly larger than 1, it might indicate important differences
between the model and experimental data. It also indicates that the uncertainties are un-
derestimated. On the other hand, if Prob is greatly lower than 1, the uncertainties may
be overestimated [20]. The χ2 function (i.e. 2.7.1) is minimized during the fitting, and
this can be done through many different methods. For instance, making a reasonably
initial guess on the values of the parameters, and then simply varying the values one by
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one in a meaningful bound, so that consequently lower values of χ2 are obtained. This
simple grid search method could work but time consuming. In this project, a function
curve fit in scipy package [28] is applied to perform the least-squares to fit the model
function.
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Chapter 3

SBA-15 Model and MC Methods in
Modeling SAXS data

3.1 The Analytical Model of SBA-15
Now we come back to SBA-15, which exhibits a hierarchical structure with micro, meso
and macropores. This implies that to analyse the measured data, the SAXS model must
consider these three different size pores contributing to the scattering intensity. There-
fore, the scattered intensity per unit volume for the mesostructure in SBA-15 can be
written in this:

Imeso(q) = (∆ρ)2nd < F(q)2 > S(q); (3.1.1)

where ∆ρ is the scattering contrast between surrounding solvent and the cylinder ma-
terial, nd is the number density of the particles in the sample, F(q) is the Form factor of
the particle, and S(q) is the structure factor.

S(q) = 1 + β(q)(< Z(q) > −1)G(q) (3.1.2)

Z(q) is the lattice factor describing the spatial distribution of the particles, and the angu-
lar brackets< ... >means an average operation in terms of the particle size and spatial
distribution of particles, which are assumed to be independent. These two equations
imply a decoupling approach that allows one to factorize the scattering intensity into
the contributions from the form factor and the structure factor.
The square of form factor P(q) =< F(q) >2 for long cylinder can be approximately
factorized into longitudinal and cross-section contribution of the particle [24, 29]. Thus
P(q) [1] becomes

P(q) = Prod(q)PCS(q) (3.1.3)

Then, the longitudinal factor Prod(q) is taken as the form factor of an infinitely long thin
rod:

Prod =
2Si(qL)

qL
−

4 sin2 qL
2

(qL)2 (3.1.4)
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where
Si(x) =

∫ x

0
t−1 sin t dt (3.1.5)

and L and R are the length and radius of the cylinder [24]. The cross-section contribution
PCS(q) is

PCS(q) = (
2B1(qR)

qR
)2 (3.1.6)

where B1(x) is the first order of the Bessel function. Using the Miller indices (h k l) for a
given crystal lattice plane, the lattice factor for an ideal undistorted lattice, Z(q) has the
expression [29]:

Z(q) =
(2π)d−1c

nvdΩdqd−1 ∑
hkl

mhkl f 2
hkl Lhkl(q) (3.1.7)

where n is the number of particles per unit cell, vd is the volume (d=3), surface (d=2),
or long-period (d=1) of the d-dimensional unit cell, Ωd is the d-dimensional solid angle,
fhkl is the symmetry factor that takes into account symmetry-related extinction rules,
Lhkl(q) is a normalized peak shape function, and mhkl is the reflection multiplicity.
The mesopores in the SBA-15 are in a p6mm space group, 2-D hexagonal lattice struc-
ture, so Z(q) can be written in this format:

Z0(q) = c
2√
3a2q ∑

hk
mhkLhk(q) (3.1.8)

Here, c is a constant of order unity, which ensures that the product of form factor and
structure factor fulfills the equation for Porod invariant Q, a is the lattice parameter, and
mhk is the multiplicity factor of the hexagonal lattice with values of 12 ( f or h ̸= k ̸= 0)
and 6. Porod invariant Q is the integral over all q of the intensity, and it is given by

Q =
∫ ∞

0
q2 I(q)dq (3.1.9)

In the q range of interest, there are five obvious peaks in the SAXS data of the SBA-15
corresponding Miller indies are (100), (110), (200), (210), and (300). Lhk is the peak shape
functions, and they have the expression:

Lhk(q) =
2

πδ
|
Γ[ ν

2 +
iγν2(q−qhk)

πδ ]

Γ[ ν
2 ]

|2 ,
∫ +∞

−∞
Lhk(q) dq = 1 (3.1.10)

where Γ[z] is a complex gamma function, qhk determines the peak position, and ν con-
trols the shape of the peaks. In the limit ν → 0, the peak function Lhk is a Lorentzian
form, and ν → ∞, it is a Gaussian form. δ is the width of the peak, which is related to
the domain size D of the ordered domain through the Dybye-Scherrer function:

D =
2π

δ
(3.1.11)
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G(q) is similar to the Debye-Waller factor, which describes the thermal disorder, and
given by

G(q) = e−(σaaq)2
(3.1.12)

β(q) includes the effect of the polydispersity of the cylinders in their radii to the inter-
ference term, and its expression is

β(q) =
< FCS(q) >2

< FCS(q)2 >
(3.1.13)

< FCS(q) > =

∫ ∞
0 D(r)FCS(q, r) dr∫ ∞

0 D(r) dr
(3.1.14)

< FCS(q)2 > =

∫ ∞
0 D(r)FCS(q, r)2 dr∫ ∞

0 D(r) dr
(3.1.15)

In the equation, the brackets < ... > means the average of all possible cylinder sizes,
weighted by a distribution D(r), which in our model is Schulz-Zimm distribution, which
expression is given by

D(r) = (
z + 1

r
)z+1 rz

Γ(z + 1)
exp(−(z + 1)

r
r

(3.1.16)

Here, Γ(x) is the real gamma function, r is the mean radius of the cylinder, and z is a
measure of the spread in the radii. Here we consider that the relative polydispersity
pd = σr/r, and z = 1

pd2 − 1. In the implementation of this model, we only add the
polydispersity into the inner radii, because the intensity pattern are very similar even
if the polydispersity into the thickness t of the cylinder shell is added. Considering the
smeared outer surface of the core-shell cylinder, the cross-section form factor FCS(q) is
described by [24]

FCS(q) = r2
out

2J1(qrout)

qrout
exp[−1

2
q2σint]− (1 − ∆ρin

∆ρout
)r2

in
2J1(qrin)

qrin
(3.1.17)

rout = rin + t (3.1.18)

where ∆ρin/∆ρout is the ratio between the inner and outer electron density contrast of
the cylinder,rout, rin, and t are the outer, inner radii, and thickness of the cylinder shell,
respectively, and σint is the width of the smeared Gaussian interface.
In the high q range, the scattering intensity pattern is dominated by the microstructure,
and it can be described by the Gaussian chain form factor: [1]

Imicro(q) =
2[exp(−q2R2

g)− 1 + (qRg)2]

(qRg)4 (3.1.19)
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Table 3.1: Summarizing of all parameters contained in the SBA-15 model.

Sc1 scale for the mesoporous structure contribution
Sc2 scale for the Guassian chain contribution
Sc3 scale for the macrostructure contribution
c correction for Porod invariant
a lattice parameter
D domain size
σa disorder parameter
rin inner radius of the cylinder
t thickness of the cylinder

∆ρin/∆ρout
ratio between inner and outer
contrast of the cylinders

σint smearing width of the outer shell
pd relative polydispersity of radii
Rg radius of gyration of the Gaussian chain

bkg the backgroud intensity
L length of the cylinder
ν peak shape

where Rg is the radius of the gyration of the chain, and it is a fitting parameter in the
model.
According to Porod’s law, IPorod(q) is only contributing in the low q-range (q < 0.01Å−1)
and comes from interface between the grains [14]:

IPorod(q) ≃
2πA

q4 (3.1.20)

where A is the outer surface area.
Thus, the final expression for the SBA-15 model is

I(q) = Sc1Prod(q) < FCS(q)2 > (1 + β(q)[< Z(q) > −1]G(q))

+Sc2 Imicro(q) + Sc3 IPorod(q) + bkg
(3.1.21)

where Sc1, Sc2, and Sc3 are the scale factors for the ordered hexagonal mesopores, the
microstructure and the macrostructure contribution, respectively. The bkg term ac-
counts for the background intensity. The fitting parameters are summarised in the table
3.1 above.

3.2 MC in SAXS Model
To test the MC fit, we need to simulate the SAXS data set with known distribution,
and try to recover it. Due to symmetric property of Gaussian distribution, we use it
in the implementation, and we try to apply Monte Carlo (MC) method to extract the
distribution. Ns random radii from Gaussian distribution with the mean radius r and
standard deviation σ = pd r, will be used to simulate the scattering intensity with the
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function 2.6.19.
The MC method used here is essentially identical to that used by Pauw et al [9]. Before
implementing the MC method in the sphere system, a reasonable radius range has to
be estimated, and it needs the help of scattering curve. Scattering vector q = 4π sin θ

λ , λ

the wavelength of the radiation and 2θ the scattering angle, all can get from the SAXS
experiment. A reasonable estimated maximum and minimum radii are Rmax ≃ π/qmin

and Rmin ≃ π/qmax respectively, so in the MC fitting, the radius range should be set to
Rmin < R ≤ Rmax or 0 < R ≤ Rmax [9].
The initial guess of the total scattering intensity IMC is calculated through ns sphere
whose radii R are randomly sampled from a bound uniform distribution, and the range
of the bound is in between Rmin and Rmax (i.e. R ∈ [Rmin, Rmax]). The initial guessed
intensity is calculated using E.q. 2.6.19.

IMC(q) = b + A
ns

∑
k=1

|Fsph,k(qRk)|2(
4
3

π)2R(6−pc)
k , (3.2.1)

A =
ϕ∆ρ2

∑ns
k=1

4π
3 R(3−pc)

k

. (3.2.2)

Fsph,k(qRk) is the sphere form factor for sphere k, which has analytical expression 2.6.15.
Rk is the radius for sphere k. A is the scaling factor and b is a constant background
term. pc is a computational aid in the range 0 ≤ pc ≤ 6, biasing the volume weighting
of the contributions, and the choose of pc would not affect the result. It is because pc

is compensated in A and pc only affect the computational speed. Because the scatter-
ing intensity is proportional to the volume square, it means the scattering intensity of a
sphere with radius 10 Å is 106 stronger than the one with 1 Å.

ϕi =
A

∆ρ2
4π

3
R(3−pc)

i (3.2.3)

ϕ =
ns

∑
k=1

ϕi (3.2.4)

The recommended value for pc is 3, because this value is one of the fastest values [9].
In the function 3.2.1, A and b are adjusted to make the IMC fits the measured scatter-
ing intensity through applying the least-square method [24]. There is package in SciPy,
scipy.optimize.curve fit, using non-linear least squares to fit a function [28], that is more
convenient to use this package to fit E.q.3.2.1, and thus will be used in this thesis.
The iteration cycle runs as the following.
1. Randomly selecting the ns sphere radii from a uniform distribution in a reasonable
bound that mention before.
2. The initial fitting intensity I, background b and the scale factor A can be calculated
through scipy.optimize.curve fit package.
3. The χ2 between fitted and measured can be calculated. If the χ2 is larger than the set
criteria, then the MC iteration cycle start. If not, the fitting result will be exported.
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4. A random sphere radius r is chosen from ns spheres sample generated in the first
step, and randomly select a new radius rnew for this sphere from the uniform distribu-
tion in the same bound.The new intensity after this change is calculated by subtracting
the contribution of the previous sphere and adding the contribution of the new sphere
radius, and a new scaling factor A and background term b are obtained by least-square
fit.
5. Only when this radius change can decrease the χ2 between measured and MC inten-
sity, the change can be accepted. Otherwise, the choosing radius step will keep repeat-
ing. After enough iteration times, the χ2 decreases to smaller than the set criteria, and
the iteration will stop. Or when the iteration times, i ≤ 106, the optimization would
stop. Finally, the ns sphere radii data set, A, b, and the fitting curve will be exported.
The MC optimization process when no clues about the distribution shows in the flow-
ing chart 3.1.

Figure 3.1: The flowing chart of the Monte Carlo optimization in fitting the sphere shape SAXS
data
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The MC functions for a long cylinder are

IMC(q) = b + A
ns

∑
k=1

Pcross−section(q, Rk)Prod(q, L)π2R(4−pc)
k L2, (3.2.5)

A =
ϕ∆ρ2

∑ns
k=1 πR(2−pc)

k L
. (3.2.6)

where Pcross−section(q, R) (E.q. 3.1.6) and Prod(q, L) (E.q. 3.1.4) are the cross-section and
infinity thin rod form factor respectively. The MC functions of core-shell long cylinder
are different from the long cylinder, and they are

IMC(q) = b + A
ns

∑
k=1

Pcore−shell(q, Rk)Prod(q, L), (3.2.7)

A =
ns

∑
k=1

ϕk∆ρ2
outπ (3.2.8)

ϕ =
ns

∑
k=1

ϕk =
A

π∆ρ2
out

(3.2.9)

where Pcore−shell(q, Rk) are the square of core shell form factor (E.q. 3.1.17). For MC fit
to the SBA-15 the function becomes

IMC = sc1

Ns

∑
k=1

P(q, Rk, L)S(q, Rk) + sc2 Imicro + sc3 Iporod + bkg (3.2.10)

P(q, Rk, L) = Prod(q, L) < FCS(q, Rk)
2 > (3.2.11)

S(q, Rk) = 1 + β(q, R)[< Z(q) > −1]G(q) (3.2.12)

The loop to run the MC functions are the same as the sphere (i.e. Fig. 3.1).
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Chapter 4

Results and discussions

4.1 Implementing the SBA-15 model in Python
In these work three SBA-15 SAXS data sets, a, b and c, which precedence and measure-
ment information were given in the table 2.1, were analysed. All these SBA-15 samples
have basically the same morphology.
From the CoSAXS experiment, we collected patterns in 20 different points along the
quartz cylinder in b and c, and all scattering curves are shown in the appendix, and Fig.
4.1b, and Fig. 4.1c represents the data we discuss now. The Bragg reflections in SBA-
15 c scattering curve, from left to right, represent the Miller index of (10), (11), (20), (21),
and (30), respectively. SBA-15 b is highly inhomogeneous, therefore we observe double
reflections (Fig. 4.1b). The ”twin reflections” are the combination of at least two lattices
with similar but not the same lattice parameter a.
From Fig. 4.1c, we can observe that the scattering curve is proportional to the q−1 for
q < 0.006Å−1, and proportional to the q−4 for q > 0.006Å−1. The intensity curve reflects
the particle size and surface area between q < 0.006Å−1 and 0.006Å−1 < q < 0.01Å−1,
respectively. As q increases, there is a transition from macroscale to mesoscale. The
implemented model in this project mostly takes into account the mesoscale features, i.e.
the mesopores, and it does not mainly consider macroscale features, except for the do-
main size, D, which affects the peak width only. Thus, the q range from 0.01 to 0.35 Å−1

is a trustful range for this model.
Implementing Sundblom’s model [1] in a reasonable q range, to analyse SBA-15 a and
SBA-15 c leads to reduced χ2 equal to 25.9 and 30676, respectively. For the sample SBA-
15 c, CoSAXS data, the reduced χ2 between model the experimental is considerably
larger than forSBA-15 a, and the reason may be the uncertainty for SBA-15 c is under-
estimated. From the fit of SBA-15 c (Fig. 4.1c), the model will start to break with the q
raising. It is most likely because even the micropores are included in the model through
the Gaussian chain form factor, but this is too simplistic compared to the way that we
consider the mesopores. Also, we are assuming a continuum electron contrast in the
model, which is not true for the reason that discrete the molecular feature.
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(a) The scattering curve of SBA-15 a and it’s fit.

(b) The scattering curve SBA-15 b.

(c) The scattering curve SBA-15 c and it’s fit.

Figure 4.1: a is the experimental scattering curves of SBA-15 a (green circles) and it’s fit (blue
line) for 0.01 < q < 0.33Å−1. b is the experimental scattering curves of SBA-15 b. c is the
experimental scattering curve (red circles) and it’s fit (light blue line) with the Sundblom’s model
[1] for 0.01 < q < 0.33Å−1. For 0.001 < q < 0.006Å−1 and 0.006 < q < 0.01Å−1 are the fit with
the function A ∗ q−1 + bkg (dark blue line) and B ∗ q−4 + bkg (black line), respectively.

From the fit SBA-15 a, we can obtain the mean radii, rin and the thickness, t, of the meso-
pores are 52.7 ± 0.5Å, and 13 ± 1.9Å. The polydispersity, pd, of the inner radius of the
mesopores is 0.145 ± 0.002. The values of fitting parameters of SBA-15 a are concluded
in the table 4.1. The value of domain size, D, in the fitting result is not the real one, be-
cause D is mainly affected by the peak width. The peak width is also easily affected by
the instrumental smearing, and in our implementation, we did not include the smear-
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Figure 4.2: The green open circles are the experimental SBA-15 a SAXS data with the X-ray
wavelength λ = 1.54Å, and the blue line is the fit (Fig.a). The χ2, number of degree of freedom
(ndf), and reduce χ2 (Prob), are given in the figure. Different contributions to fit (blue line)
are showed on the Fig.b. Porod’s law (purple line) mostly contributes in the low q range, and
the core shell cylinder form factor (orange line), and Gaussian chain form factor (green line)
dominate in the middle q range, and high q range, respectively. The lattice factor are shown in
red line.

ing effect using the resolution function in the model. The ratio ∆ρin/∆ρout is closed to
0, because these materials are empty SBA-15, where there is nothing but the air in the
mesopores.

Table 4.1: Summarizing all parameters fitting values contained in the SBA-15 a model

parameters values (±)uncertainty
Sc1 0.13 0.01
Sc2 7.8 0.7
Sc3 2.01 × 10−7 0.0
c 9.5 0.9
a 118.21 0.08
D 3900 224
σa 0.081 0.002
rin 52.7 0.5
t 13 1.9

∆ρin/∆ρout 0.10 0.01
σint 40 13
pd 0.145 0.002
Rg 28 1.8

bkg 0.00 0.03
L 5000 4000
ν 0.15 0.02

Fig. 4.2 a is the fit of the SBA-15 a data and the Fig. 4.2 b shows the contributions of
different terms in the fit. From Fig. 4.2 b, we can observe in the low q range, the Porod’s
law (purple line) dominates the fit (blue line), and it rapidly decreases with the increas-
ing q. When comes to the middle q range, the form factor of the long core shell cylinder
(orange line), Pcore−shell(q), is the main contribution of the fit. As q raises, the scattering
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of the micropores (green line) takes over the Pcore−shell(q), and finally dominates in the
high q range. The scattering curve is the product of the structure (or lattice) factor S(q)
with form factor P(q) of the particles, when the lattice reflection and the form factor
minima collide, then a so-called systematic extinction follows and the peaks cannot be
observed. This is the reason why the last two peaks with the miller indices (22), and
(31) do not appear in the fit (Fig. 4.2 b). In this model, it only fits the first four peaks of
the scattering curve well, and the fifth peak in the fit is weaker than the experimental
(Fig. 4.2 a). The distribution of the radius of the mesopores would affect the form fac-
tor contribution, and assuming distribution (Schulz-Zimm distribution) may affect the
form factor thereby decreasing the fitting quality.
Together these factors indicates that the complexity of this analytical model lead us to-
wards the first attempt for developing a Monte Carlo (MC) approach to analyse SAXS
data. The obtained results are discussed in the next chapter of the thesis. However,
before achieving this goal, we needed to apply and validate our own MC models for
simpler systems firstly. This is discussed in the next section.
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4.2 Implementing MC models to retrieve distribution in
Python

4.2.1 Retrieve Spheres’ Distribution

Gaussian

Figure 4.3: Comparison between before and after MC fit. a) is the initial guess distribution
of the ns radius, and it is a uniform distribution; b) is the distribution after MC fit showed in
normalised number (pink) and volume (blue) weighted; c) is the fit under uniform distribution,
i.e. before performing MC fit (blue dash line), and the red dots are the SasView intensity for
0.001 ≤ q ≤ 0.7Å; d) is the MC fit (blue dash line) the SasView intensity (red dots).

Scattering curve includes the information about particle size distribution, and MC fit
can help us to retrieve it. Before implementing the MC fit to the experimental scattering
curve, we need to test it theoretically. More information about generating the theoretical
SAXS intensity curve (red dots in Fig. 4.3 c) can be found in Appendix. In the theoretical
test, assuming there is 1% uncertainty relative to every intensity value. As mentioned
in Chapter 3.2, ns = 200 sphere radii are randomly chosen from a uniform distribution
that in a reasonable bound (r ∈ [10, 30]), and the normalised number weighted size dis-
tribution of the radius is the Fig. 4.3a. We use least-square method to fit the E.q.3.2.1,
and then we can get the scattering curve (blue dash line in Fig. c). The fitting is not well,
because the distribution in SasView intensity curve is not the uniform distribution.
Now, we apply the MC fit to this intensity curve, and we set the criteria is 1, which
means that for χ2 < 1, the MC fit stops, and the scaling factor A = 1.07 × 10−6, the
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background term b = 2.20 × 10−5 values are exported. The distribution of the ns ra-
dius can represent the distribution of the irradiated sample (Fig. 4.3 b). It can be seen
that around 300 times successful changes in the ns radii, and its distribution turns into
the Gaussian distribution. Every radius Rk corresponds to a volume fraction ϕk, and
every bin value is equal to the sum of volume fraction ϕk in the corresponding radius
range (the blue bins in Fig.b). Thus, this particle size distribution is volume weighted.
In terms of radius range, except for the last bin is closed on the left and closed on the
right (i.e. Ri ∈ (Ri−1, Ri+1]), and the others are closed on the left and open on the right
(i.e. Ri ∈ [Ri−1, Rmax]). Before we calculate the mean radius, we need to transform into
number weighted distribution (the pink bin in Fig.b) through dividing by the sphere
volume 4πr3

3 in every bin, and we observed that the extracted mean radius r = 19.87Å is
quite closed to set mean radius 20Å. In SasView, the particle size distribution is imple-
mented as number-weighted [26], but the way we calculating the scattering intensity in
MC method is in volume-weighted. Thus, when comparing the extracted distribution
with original one, we need to do a transformation.
In order to better compare the difference between extracted and origin distribution, we

Figure 4.4: The MC fit of the simulated data, and the blue dash line is the MC fit and red dots
are the simulated data(a).The blue histogram is the extracted distribution in one MC loop, and
the pink one is sample distribution(b).

simulate SAXS data curve with a sample containing 104 sphere particles, which radii
are in Gaussian distribution with the mean radius Rmean = 20Å and σ = 2Å. The
pd = σ

Rmean = 0.1. The volume fraction ϕ, scattering contrast ∆ρ of this system are
1 and 3 × 10−6/Å−2. The comparison between simulated and SasView intensity is in
the Appendix.5 and it is to be sure that obtain the correct simulated intensity. We im-
plement MC fit to the simulated scattering curve, and the extracted distribution (blue
bins), and the fit to the intensity curve are presented in Fig. 4.4. The final scale factor A
and background are 1.70 × 10−6 and 4.14 × 10−5 respectively.
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Figure 4.5: Normalised number weighted distribution are extracted by the MC fit the intensity
curves. Fig.a shows the extracted (the blue histograms) and original (red line) distribution for 40
bins. Fig.b and c show the extracted (the blue histograms) and the sample (the pink histograms)
distribution for 40 bins. Every bin value and error bar is the mean and standard deviation over
20 (a and c) or 100 (b) repetitions

In order to avoid arriving at the radius that is valid but unrelated during the MC pro-
cess, we implemented 20 independent MC fits to the simulated and Sasview intensity,
and obtained the Fig.4.5 a and c, respectively. Every bin and error bar value in Fig.4.5
are the mean and standard deviation over 20 or 100 repetitions. The extracted mean ra-
dius, and volume fraction are R = 20.03 ± 0.03Å, and ϕ = 0.9993 ± 0.0011 closed to the
set R = 20 and ϕ = 1 in Sasview. The calculation of all 20 repetition takes around 6 min-
utes for Intel i7-8550U CPU. If we run the MC loop 100 times, we could obtain Fig.4.5 b.
The retrieval volume fraction ϕ = 0.9957 ± 0.0014 is closed to the simulated ϕ = 1. The
standard deviation or error bar of the radius R only decreases very little compared with
run the MC loop 20 times. However, the consuming time increase greatly, and it takes
around 30 minutes to run 100 times.

Log-Normal

We also tested other distributions. Such as, the log-normal distribution D(r) in Sasview
given by [11],

D(r) =
1

Norm
1

rσ
exp(−1

2
(

ln(r)− µ

σ
)2) (4.2.1)

where Norm is a normalisation factor which will be determined during the numerical
calculation, µ = ln(xmed) and xmed is the median value of the log-normal distribution,
and σ = pd is a parameter describing the width of the underlying normal distribution.
We fit the intensity curve when pd = 0.1 and 0.2, assuming the uncertainty is 0.01 ∗ I,
then we can get the Fig. 4.6. In Fig. 4.6 b and e, First chi2 are defined as the χ2 value
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before accepting the new radius, and the Second chi2 are define as the χ2 value after
accepting the new radius.

Figure 4.6: Fitting SAXS curve for the 0.001 ≤ q ≤ 0.7Å−1 when D(r) is log-normal distribution.
In Fig.a, the red circles are the sphere scattering intensity simulated with SasView in the log-
normal distribution that pd = 0.1, and the blue line is the MC fit with the χ2 = 0.77. Fig.b shows
how the χ2 decreases during the MC fitting SasView data (pd = 0.1), the red dots are the second
chi2, and the blue line is the First chi2. Fig.c shows the extracted distribution (blue histograms)
from scattering intensity (red circles in Fig.a) and the distribution D(r) in SasView (orange line).
Figs.d-f are similar but pd = 0.2.

Afterwards, we implemented 20 independent MC fit, and then the mean retrieved dis-
tributions of pd = 0.1 and 0.2 were obtained (Fig.4.6 c and f). For higher pd values the
longer running time are needed (Fig.4.6 b and e). The higher pd gives rise to higher
standard deviation. When applying the MC fit for the pd = 0.2, the assuming radius
range should be more constrained. The radius range in Fig4.6 a is around between 5
and 40 Å, and the assuming radius range set in MC can not be too wide especially for
the minimum value. For example, if the set R range in MC is R ∈ [0, 40], the MC still
can fit the intensity curve, but we can not obtain a reasonable extracted distribution.
The minimum radius that can be ”seen” in this q range is Rmin ≈ π

qmax
= 4.5Å, so some

small radii are impossible to be seen but they may be accepted during MC process.
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Bimodal

(a) CD = 15Å, Rex = 29.99 ± 0.14Å, and Rsam = 30.02Å

(b) CD = 10Å, Rex = 29.36 ± 0.33Å, and Rsam = 30.03Å

(c) CD = 5Å, Rex = 30.04 ± 0.05Å, and Rsam = 29.99Å

Figure 4.7: The recovered distribution (normalised number weighted distribution) over 20 inde-
pendent MC fit, and the number of bins is 200. The blue bins and the error bars are the mean
the standard deviation over 20 times, respectively. The pink bins are the sample distribution,
and the blue dash lines show the center of the Gaussian distribution. The Rex and Rsam are the
extracted mean and the mean of the sample, respectively.

We also tested the bimodal distribution, which was built by summing Gaussian dis-
tributions with different means and same standard deviation (σ = 2Å). For example,
r1 = 22.5Å and r2 = 37.5Å and the center difference (CD) between these two distribu-
tion is 15Å (i.e. CD = 15Å). The scattering contrasts is the same as previous and the
sample particles are equal 2 × 104. We apply the MC fit the scattering intensity when
CD = 15, 10, and 5 Å, and the average recover distribution over 20 times are shown
in the Fig.4.7 above. The Rex is smaller than the Rsam and is outside more than one σ
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(Fig.4.7b). The reason is that too many small but unwanted radii are accepted in the MC
fit, and we can constrain the guessed radii range to get a better mean. The guessed radii
range in Fig4.7b is R ∈ [10, 50], and in Fig4.7c is R ∈ [15, 45].

4.2.2 Test MC Fit With Real Data

We tested the MC method in real experimental data that was provided by Erik S. Brok
in the students’ Experimental X-rays course (UCPH, 2021). This is a SAXS curve of a
protein solution. Through the fitting in SasView with Gaussian distribution function,
the protein can be well described by sphere shape. Applying the MC fit to this protein
solution assuming that the distribution is uniform, and the radius is in the range from
0 to 35 Å. We obtained the results shown in the Fig.4.8. In the MC fit, we set the
criteria is 1.2 considering the consuming time. Because the reduced χ2 converges very
slowly after 1.2. The contrast ∆ρ = 9.4 × 10−6/Å−2 that we used is fitted value in
SasView, and the volume fraction fitted in SasView is ϕSas = 0.205%. Then, we use
this ∆ρ to calculate the extracted volume fraction ϕext of the protein in the solution, the
mean ϕext = 0.297± 0.002% through 20 independent MC fit. It takes around 40 minutes
to complete the 20 repetitions. The scale in the red line is to normalised the D(r), and r3

is to transform the number weighted distribution into volume weighted.

Figure 4.8: The figures are fit of a protein solution scattering intensity curve for 0.008 ≤ q ≤
0.6Å(a) and the extracted volume fraction (b). In Fig.a, the blue solid line is the MC fit with
the χ2 = 1.20, the black dash line is the fit in Sasview with the χ2 = 1.17, and the open red
circles are experimental scattering intensity. Fig.b is the volume weighted size distribution for
50 bins. The blue bins are the average of 20 independent MC fit, and the error bars on the bin
are standard deviation over 20 repetitions. D(r) is the Gaussian distribution with the mean 23.4
Å and σ = 2.6Å in SasView describing the polydispersity.

SasView still can fit the scattering curve well even it does not include the small particles
(i.e. the particles are in the bins for r in the range of [0,10] in Fig4.8b.). The reason is
that the scattering intensity is proportional to V6

p , and the measured scattering intensity
is mainly scattered by the ”big” particles. This may be also one of the reasons that ϕext

is larger than ϕSas. However, more information about the protein solution is needed
to confirm the volume fraction. We found if the initial guessed distribution set to be
Gaussian distribution and the selected radii distribution is uniform distribution, the

39



MC fit spends less time to converge down to the criteria.

4.2.3 Retrieve Long Cylinders’ Distribution

Gaussian

We also applied MC in the long cylinder shape particles to retrieve the radius distribu-
tion of the cylinder. The form factor of the long cylinder(i.e. L > 10R) can be approx-
imately well into two parts, cross-sectional and longitudinal contribution, and meso-
pores in SBA-15 are considered into a long core-shell cylinder shape[29]. In SasView,
the scattering intensity of cylinder shape particle is calculated through E.q.2.6.16, and
our simulated data calculate in a approximately (E.q.3.1.3). We use 104 radii to generate
the simulated data, the radius R, length L, scattering contrast ∆ρ, polydispersity pd in
inner radius R and volume fraction ϕ are equal 30Å, 3000Å, 4 × 10−6Å−2, 0.133, and 1
respectively. The intensity curve of SasView is used to validate the simulated scatter-
ing curve (see Fig.5.4a). We apply the MC fit in the simulated scattering curve. After
applying the MC fit for 20 times, average distribution is showed in the Fig.4.9a.

(a) Long cylinder.

(b) Long core shell cylinder

Figure 4.9: 4.9a is the average of 20 times extracted distribution. The blue bins are the average
of the extracted distribution, and the pink ones are the distribution in the simulated data. The
mean of the extracted and the sample are R = 30.41 ± 0.12Å and 29.98Å respectively. 4.9b is the
average of 20 times MC fit of the core-shell cylinder. The mean radius of extracted distribution
is 39.93 ± 0.07Å, and it in the sample is 39.98Å.

Considering the mesopores in SBA-15 is long core shell cylinder shape, we implement
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the MC fit to the long core-shell cylinder, the mean inner radius R, thickness of the shell
t, pd, length of the cylinder L, outer electron contrast ∆ρout, and contrast ratio ∆ρin

∆ρout
are

40Å, 20Å, 0.1, 4000Å, 3 × 10−6Å−2, and 1/3 respectively. ∆ρout is the electron density
difference between shell and the solvent, and ∆ρin is the electron density difference be-
tween core and the solvent. We run the MC fit for 20 times, and then we can get Fig. 4.9b.

Log-Normal

We also applied MC in the long cylinder with log-normal distribution (same median
radius 30Å but different pd), and the process is similar to applying MC in sphere with
log-normal distribution. The results are shown Fig. 4.10.

(a) pd = 0.1

(b) pd = 0.2

Figure 4.10: The figures show the average over 20 times to recover the log-normal distribution.
The blue bins are the average of the extracted distribution, and the pink ones are the distribution
in the simulated scattering intensity curve. The mean of the extracted and the sample are R =
30.62 ± 0.04Å and 30.15Å respectively in Fig4.10a. The mean radius of extracted distribution is
30.66 ± 0.32Å, and it in the sample is 30.72Å in Fig. 4.10b. The dash line shows the median radii
30Å of sample.

4.2.4 First Attempt to SBA-15

Finally, We attempted to apply the MC method into SBA-15 a. Considering many pa-
rameters in the model, we only varied the Sc1, Sc2, Sc3, and bkg parameters. All the
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other parameters are fixed and their values are shown in table 4.1. We also assume ns

radii distribution change to be Gaussian distribution but in the selecting radii distri-
bution keeps in the uniform distribution. It would take less time in the MC fit if the
assuming distribution is similar to real distribution. The assuming radii are in range
of 10 to 80 Å, the criteria is set to be 5. However, we found the value of χ2 fluctuate
considerably, and did not converge (see Fig.4.11) during the MC fit.

Figure 4.11: The χ2 behaviour of the first attempt to use MC to SBA-15 a.

The first chi2 does not follow the second chi2 as expected during the MC fit, and the
reason may be when including the structure factor S(q) in the MC fit, the previous way
to calculate the intensity is not suitable. It is possible to combine the full SBA-15 model
with the MC fit. We conclude that the MC optimization strategies need to be improved
to speed up the process and to have the χ2 under control.
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Chapter 5

Conclusions and Perspectives

The goal of this thesis was the first attempt to incorporate the MC method in the Sund-
blom’s model [1] in order to retrieve the SBA-15 mesopores size distribution from the
corresponding SAXS data in a free modeling approach, i.e., without any assumption
on the profile of such distribution. To achieve this goal, we wrote the codes of simple
shape particle’s SAXS models (i.e. sphere, long cylinder, and core shell long cylinder)
in Python. After that, we validated these models against SasView, which is a widely
used SAS data analysis software. Furthermore, we tested the MC method described on
previous studies from the literature and used this approach to fit theoretical scattering
curves of simple shape particles. With this method, We successfully recovered the dis-
tributions behind the theoretical scattering curves that were simulated in the previous
step. Then, we started to implementing Sundblom’s model [1] in Python and success-
fully applying it to fit SBA-15 experimental data. All the related Python scripts are in
the link that shown in appendix. It required from the author of this thesis a deep un-
derstanding of the SAXS theoretical foundations of the models and the development of
several computational skills.
Having hands on those, and considering that the scattering curves that we tested are
too idealistic, so a ”real case” was considered in which the Python code and algorithm
were applied to satisfactorily fit a SAXS curve from a small globular protein in solution,
yielding to the particle size distribution which agrees with the one obtained through
the analysis with SasView software. Additionally, limitations of MC and validation of
the results were extensively tested. MC was also adapted to deal with core-shell long
cylinders, structures present in the SBA-15 model. Finally, in a first attempt, MC was
incorporated to the SBA-15 model and used to fit the SBA-15 scattering curve. After sev-
eral tests, a large χ2 fluctuation was observed, preventing convergence of the method.
Likely, the combination of the form factor calculation (where MC is) with the lattice
structure factor is the source of such instability. Additionally, a much longer comput-
ing time was needed to process the fits compared to the previous tests using spheres
and cylinders. This means that the complexity of the problem is greatly increased when
dealing with SBA-15 model.
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In conclusion, the study presented in this thesis gathered important experimental, the-
oretical and computational aspects of the considered problem and allowed to narrow it,
providing basis for its continuation in the future.
In terms of perspectives, a deeper investigation on the source of the MC method instabil-
ity is needed. For example, it would be interesting to test the MC against experimental
scattering curve of long core shell cylinders. One way to speed up the data fitting is
to combine the MC optimization into the least-square method. In this project the Scipy
package used in the script may bring longer running time. Strategies to solve it along
with the processing time speed up should be developed by experts in this field.
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valho de Abreu Fantini, et al. Assessing the efficiency of sba-15 as a nanocarrier for
diphtheria anatoxin. Microporous and Mesoporous Materials, 312:110763, 2021.

[6] Martin K Rasmussen, Nikolay Kardjilov, Cristiano LP Oliveira, Benjamin Watts,
Julie Villanova, Viviane Fongaro Botosso, Osvaldo A Sant’Anna, Marcia CA Fan-
tini, and Heloisa N Bordallo. 3d visualisation of hepatitis b vaccine in the oral
delivery vehicle sba-15. Scientific reports, 9(1):1–8, 2019.

[7] Cedric J Gommes, Gonzalo Prieto, and Petra E de Jongh. Small-angle scattering
analysis of empty or loaded hierarchical porous materials. The Journal of Physical
Chemistry C, 120(3):1488–1506, 2016.
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minique Durand, Cristiano LP Oliveira, Jan Skov Pedersen, Christel Gervais, Niki
Baccile, Florence Babonneau, et al. Kinetics of the formation of 2d-hexagonal silica
nanostructured materials by nonionic block copolymer templating in solution. The
journal of physical chemistry B, 115(39):11330–11344, 2011.

[15] Tomás S Plivelic, Ann E Terry, Roberto Appio, Keld Theodor, and Konstantin Kle-
mentiev. X-ray tracing, design and construction of an optimized optics scheme
for cosaxs, the small angle x-ray scattering beamline at max iv laboratory. In AIP
Conference Proceedings, volume 2054, page 030013. AIP Publishing LLC, 2019.

[16] Maik Kahnt, Konstantin Klementiev, Vahid Haghighat, Clemens Weninger,
Tomás S Plivelic, Ann E Terry, and Alexander Björling. Measurement of the co-
herent beam properties at the cosaxs beamline. Journal of Synchrotron Radiation, 28
(6), 2021.

[17] Notes from experimental x-rays course ucph 2021.

[18] Jens Als-Nielsen and Des McMorrow. Elements of Modern X-ray Physics, chapter 4,
5. John Wiley Sons, West Sussex, 2 edition, 2011.

[19] Antonella Balerna and Settimio Mobilio. Introduction to synchrotron radiation. In
Synchrotron radiation, pages 3–28. Springer, 2015.

46



[20] Cristiano Luis Pinto Oliveira et al. Investigating macromolecular complexes in
solution by small angle x-ray scattering. Current trends in X-ray Crystallography,
pages 367–392, 2011.

[21] Heimo Schnablegger and Yashveer Singh. The SAXS Guide, chapter 2,3. Anton Paar
GmbH, Austria, 4 edition, 2017.

[22] Domenico Lombardo, Pietro Calandra, and Mikhail A Kiselev. Structural charac-
terization of biomaterials by means of small angle x-rays and neutron scattering
(saxs and sans), and light scattering experiments. Molecules, 25(23):5624, 2020.

[23] Ingrid Pilz, Otto Glatter, and Otto Kratky. [11] small-angle x-ray scattering. In
Methods in enzymology, volume 61, pages 148–249. Elsevier, 1979.

[24] Jan Skov Pedersen. Analysis of small-angle scattering data from colloids and poly-
mer solutions: modeling and least-squares fitting. Advances in colloid and interface
science, 70:171–210, 1997.

[25] Jan Skov Pedersen. Determination of size distribution from small-angle scattering
data for systems with effective hard-sphere interactions. Journal of applied crystal-
lography, 27(4):595–608, 1994.

[26] Sasview user documentation, 2015. URL https://www.sasview.org/docs/

user/qtgui/Perspectives/Fitting/pd/polydispersity.html?highlight=

polydispersity.

[27] N Sanjeeva Murthy. Recent developments in small-angle x-ray scattering. Recent
Developments in Small-Angle X-Ray Scattering, 2017.

[28] scipy.optimize.curve fit. URL https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.curve_fit.html.

[29] S Förster, A Timmann, M Konrad, C Schellbach, A Meyer, SS Funari, P Mulvaney,
and R Knott. Scattering curves of ordered mesoscopic materials. The Journal of
Physical Chemistry B, 109(4):1347–1360, 2005.

[30] Particle size distribution. URL https://wiki.anton-paar.com/cn-cn/particle-

size-distribution/.

[31] Bruce B. Weiner. What is particle size distribution weighting: How to
get fooled about what was measured and what it means?, 2011. URL
https://www.brookhaveninstruments.com/wp-content/uploads/2020/02/what-

is-particle-size-distribution-weighting-brookhaven-instruments.pdf.

47



Appendix

Python script
https://drive.google.com/drive/folders/1BNmdTBijQqYdLHk3rGlIR_FUHc48sOQN?usp=

sharing

Number and Volume Weighted Distribution

Figure 5.1: Two different weighted distribution but they are the same radii sample from a same
normal distribution with the mean and σ are 30 and 4 Årespectively.

Figure 5.2: Theoretical particle size distribution of a simple mixture in different weightings.[30]
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Particle size distributions can look very different even they are same data set, if they are
weighted in different ways. Fig.5.1 shows the distribution of same radii data set but two
different weighted. In number weighted the median value of the distribution is equal
to the mean, but in volume weighted the median value would larger than the mean[31].
It reflects on the distribution graph is the volume weighted would skew to the large
values. Different measurement techniques “see” the particles in a different way, which
translates to a different weighting as the result. As an example, as a microscope sees the
diameter of each particle, using this technique will deliver a number-weighted result.
In contrast, the diffraction of light is proportional to the volume of the particle, there-
fore techniques such as laser diffraction or X-ray diffraction deliver volume-weighted
results. The difference between these three weighted shows in Fig.5.2. It is easier to
calculate the mean using the number weighted distribution, and the way transform
volume weighted to number weighted is dividing by the particle volume.

Validating the SAXS Model
Before applying MC method, we need to be sure that we can simulate the correct data
set. Here what we are doing is comparing our sphere and long cylinder shape particle
SAXS model with the one in SasView [11], which is software to analyse SAXS data. The
goal of this part is to be sure that the model is built correctly.

Sphere SAXS Model

The radius R of the sphere is 20 Å, and the scattering length density of the sphere and
the solvent are 4 × 10−6/Å−2 and 1 × 10−6/Å−2, respectively. Therefore, the scattering
contrast ∆ρ is 3 × 10−6/Å−2. Using E.q.2.6.15 under the monodisperse condition, the
range of the scattering vector q divides evenly from 0.001 to 0.7 Å into 100 points, and
we can plot the figure a).
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Figure 5.3: The SAXS curve of sphere particle. The red dots are the data exported from SasView,
and the blue dash line is plotted in the same condition as set in the SasView. a): all the sphere
are identical, or monodisperse; b),c),d) are in the polydisperse system, and the polydispersity is
different, 0.1, 0.2, and 0.3 respectively.

pd is a parameter to describe how polydisperse the system is, and the larger pd the more
polydisperse. Figure b),c),d) are in the polydisperse system, applying the E.q.(2.3.7) can
plot the scattering curve. Here the particle size distribution D(R) is the Gaussian distri-
bution, with the mean radius Rmeanis 20 Å, and the σ = pd · Rmean, so the σ for b),c),d)
in Figure 3.1 are 2nm, 4nm, and 6nm, respectively. The radius R can get a infinite larger
or negative value from a complete Gaussian distribution, although its possibility is very
small. In order to avoid these extreme values, in actual modeling, a incomplete Gaus-
sian will be applied. In this case, we only use the range of [Rmean − 3σ, Rmean + 3σ] in the
Gaussian distribution. Qualitatively, polydispersity plays a role to smear out the sharps
feature in the SAXS curve. In Fig.3.1, we can see that introducing a small spread in the
sphere radius of pd = 0.1 (Fig.a.) leads to rapid damping of the intensity oscillations.
Keep increasing the pd, the smearing effect become more obvious, and the intensity os-
cillation almost disappears when pd = 0.3.
Now we are going to use SasView to simulate the scattering data and try to apply the
MC method to extract the ”hidden” distribution. The settings of the simulated data are
mean radius Rmean = 20Å, pd = 0.1, and the distribution function D(R) is Gaussian dis-
tribution in +− 3σ(σ = pd Rmean).
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Long Cylinder SAXS Model

(a) Gaussian distribution, pd = 0.133

(b) Log-normal distribution, pd = 0.1

Figure 5.4: The comparison of the simulated and SasView data of long cylinder with Gaussian
(mean = 30Å, and σ = pd · mean) and Log-normal (µ = ln(30) and σ = pd) distribution for q in
the range of 0.05 ≤ q ≤ 1Å−1. The blue dots are the simulated data, and the orange line is the
SasView data.

The form factor F(q) of the cylinder in SasView is E.q.2.6.16, and the simulated intensi-
ties are calculated approximately with E.q.3.1.3. The length of the cylinder L, and the
contrast ∆ρ are 3000Å and 4× 10−6/Å−2. We can see the model is matched the SasView
data very well, which suits our expectation, because the data exported from SasView is
the theoretical data. If there is nothing wrong in our model functions, and settings in
the model are the same, the scattering patterns should be the same.

Vertical scanning of the sample during the CoSAXS exper-
iment
We perform the SAXS experiment of SBA-15 b and SBA-15 c with 20 different vertical
points in CoSAXS, and the energy of the radiation is 12.4 keV (i.e. λ = 1Å), the sample-
detector distance is 3032 mm, and the exposure time is 1 second. Five representative
scattering curves are shown in the figure below.
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Figure 5.5: The scattering curves of different vertical points from position 0 to 4 for SBA-15 b
(blue line) and SBA-15 c (orange line) for q in the range of 0.001 ≤ q ≤ 0.4Å−1
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