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Abstract

Recent developments in machine learning made it possible to solve complex prob-
lems through a purely statistical approach. One might ask is it possible to combine
the power of neural networks and prior information, in this case laws of physics, to
make a neural network drastically better? This project explores this idea by imple-
menting physics information in the loss function of a fully connected feed forward
neural network, in order to generally solve a scaleable inverse problem with out train-
ing for each specific case. Despite limitations of computational resource, the final
results from physics informed neural network(PINN) is slightly better in goodness
of prediction than the non-physics informed neural network(noPINN) when there
are sufficient amount of training samples and neural network layers.
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1 Introduction

Throughout human history, empiricism has played a big role on our understanding of
nature. The science revolution in the Renascence period gave empiricism a boost with
the scientific way of thinking and studying, which in turn led to huge leaps forward for
human civilization.

For the past many years, Physics had been well regulated and constrained by the
existing paradigm. Hypothesis were made before discoveries, researches were driven
by theoretical predictions. The laws of Physics are well formulated in the language of
mathematics.

As technologies advance, new tools were invented and gained huge traction in the
scientific community. One of these tools is the use of machine learning. Contrary to
mathematical formulas machine learning does not need to follow any mathematical con-
structs. Instead, this approach only looks at the data that is given to it and the pattern
in the data. This statistical approach has served machine learning well but machine
learning can be better if it makes use of the existing theories in Physics and decades of
knowledge that humans have obtained beforehand. The Neural network that makes use
of Physics information is generally called Physics informed neural network(PINN).

The potential benefits of physics informed neural networks could be shorter train-
ing time, more accurate results and more importantly physically realistic results. To
understand how PINN works and different approaches to PINN, first let us get an un-
derstanding of the neural networks and how it works in general.

Overview of this thesis. Section 1 introduces basic concepts of artificial neural net-
works, physics informed neural networks and inverse problems. Section 2 contains meth-
ods used to generate synthetic seismic waves. Section 3 will take a detailed look into the
neural networks setup used to generate the results. Section 4 describes all the relevant
physics information and considerations when implementing them. Section 5 contains
the criteria for evaluating results and different results. Section 6 contains discussions of
different considerations and leanings from results. Section 7 highlights points of interest
for future research. Lastly, section 8 concludes this thesis.

1.1 A brief introduction to artificial neural networks

There are many different types of neural networks; some of the most popular neural
networks to date are Convolutional Neural Network(CNN) that excels in pattern and
image recognition[1] and Recurrent Neural Network(RNN) that stands out in time series
forecasting.[2] There are also many different ways to train the networks, such as, super-
vised learning, unsupervised learning and last but not least re-enforcement learning. In
this thesis, we mainly focus on training a feed forward neural network with supervised
learning.

Feed forward means that input signal is only travelling towards the direction of the
output neurons. All neural networks that have the same feed forward characteristic can
be called a Feed forward neural network(FFNN). Only fully connected layers are used
in this thesis, it means all neurons from the previous layer are connected to all neurons
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in the next layer. A basic feed forward fully connected neural network consists of a few
key components as follow,

• Activation function

• Fully connected neural layers consisting of weights and biases

• Loss function

• Optimizer

The best way to illustrate the FFNN with fully connected layers is through linear
algebra with matrices.

1.1.1 Activation function

Activation functions are functions that map the input values of a neural network layer to
other values that are often restricted to a certain range or have a certain characteristic.
Some examples of activation function include the binary step function that maps x to 1
if x is larger or equal to 0 while mapping x to 0 if x is smaller than 0 as shown in eq.1 or
the hyperbolic tangent function that maps x ∈ R to values between 1 and -1 as shown
in eq.2.

f(x) =

{
0 x < 0
1 x ≥ 0

(1)

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2)

Activation functions are generally used to help neural networks to learn non-linear
features of a problem.

1.1.2 Fully connected neural network layers

Fully connected layers in a neural network consists of activation function, weights and
biases. Weights can be represented as a matrix while biases can be represented with a
row vector.

Imagine we have a row vector of size R as our input, after it passes through the
activation function of choice, it then multiplies with a matrix of the size R x C, which
will give another row vector of size C. The new row vector is then added with another
row vector of size C. This new row vector is the output values after one fully connected
neural networks layer. Next, this row vector is passed through the rest of the layers of
the neural network. Here the matrix of size R x C is the weights matrix and the row
vector of size C is the biases matrix. This process is shown in fig.1.
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Figure 1: This process is repeated until the last layer of the network.

1.1.3 Loss function

In supervised learning, the output of the last layer of this network is compared to a
predetermined row vector of the same size according to the loss function. One of the
most common loss functions is Mean Square Error(MSE) as seen in eq.31. Where N is
the number of training sample sets.

loss = MSE =
1

N

N∑
(prediction− target)2 (3)

The values of the loss function is the key to another part of the neural network, the
optimizer.

1.1.4 Optimizer

Optimizers work to determine how to tweak the weights and biases in order to minimize
or maximize the loss function. The most popular optimizers use a form of gradient
descent to determine the gradient of the loss function with respect to weights and biases
in the layers of the neural network. One of the standard optimizer choice is Adam
optimizer which uses Stochastic gradient descent with adaptive moment estimation to
minimize the loss function.
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1.2 Introduction to physics informed neural networks (PINN)

There are a few different approaches to include physics information into neural networks,
in this thesis we look mainly into two different approaches. One of which involves
direct manipulation of inverse problem parameters during training and the other involves
manipulation of the standard loss function.

1.2.1 PINN with direct manipulation of parameters

To illustrate the basic principles of this method we take one of the examples about
solving Korteweg–De Vries equation(KdV) from our main reference paper[3].

A KdV equation is a mathematical model of waves on shallow water surfaces, it has
the following form,

ut + λ1uux + λ2uxxx = 0 (4)

Where u(t, x) is the wave value at location x and time t, ut denotes the first order
time derivative of u and ux denotes the first order derivative of u while uxxx denotes
the third order deviated of u both with respect to x. λ1 and λ2 in this case are the
parameters we need to solve.

This particular choice of inverse problem is interesting because the KdV equation
originates from Burgers equation which is a fundamental partial differential equation that
deals with the dispersion and reflection of shock waves, or in another term waves with
discontinuities, which is notoriously hard to resolve by classical numerical methods.”[3].

For this PINN, the optimizer not only needs to tweak weights and biases it also has
direct access to the two parameters λ1 and λ2. The structure of the neural network
is also slightly different as eq.4 is directly incorporated in the network structure. The
details to how exactly it is done can be found in Appendix.A.

The advantages of this approach, based on the reference paper, is that the end values
of the parameters λ1 and λ2 have a objectively small error.

The limitations on the other hand, include requirements of training for every case
with different λ values and the flexibility of the inverse problem is also limited, meaning
that the number of parameters is pretty limited as there is a need for an explicit ex-
pression containing the parameters and the problem always involves some sort of partial
differential equation.

1.2.2 PINN with custom loss function

Another approach to introduce physics information to neural networks is to define a
custom loss function with regulating terms encoding the prior information, in this case,
physics information. [4] As shown below,

loss = g(prediction) + ... (5)

Here g is the laws of physics containing prior information of which we evaluate
the predictions from the neural network with. And there could be more terms in the
loss function with different prior information. A regular non-physics informed neural
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network(noPINN) learn by minimizing the Mean Square Error(MSE) between the pre-
diction and the target output in the case of supervised learning as shown in eq.31. This
results in a prediction based purely on statistical information. With physics informed
regulating terms in the loss function the neural network is expected to be able to take
physics information into consideration while learning to minimize the new loss function.

The expected advantage of this approach is that there is no need for training for each
specific case. Once the training is done the now PINN will be able to generate predict
for new cases with respect to laws of physics.

Some of the limitations of this approach is that it is difficult to reach a meaningful
balance of the normal MSE term in the loss function and the new regulating terms with
physics information. If the normal MSE term is weighed too much it can overpower the
optimizer and end up with a result that is no different than the ones without physics
information. If the new regulating term is overpowered the optimizer would likely ignore
the normal MSE term and hence ignore the statistical information. Another limitation
is that the extra regulating term could be overly complex that the CPU would have to
take the work load instead of the GPU which will end up increase the training time
significantly.

1.3 Introduction to inverse problems

”Inverse problems are problems where physical data from indirect measurements are used
to infer information about unknown parameters of physical systems. Noise-contaminated
data and prior information on model parameters are the basic elements of any inverse
problem.”[5].

Imagine we have data d = (d1, d2, ..., dN ), model parameters m = (m1,m2, ...,mM )
and the physical relation that links model parameters to data d = g(m). When m and
g is known but d is unknown, we have a forward problem. When d and g is known but
m is unknown, we have an inverse problem.

Simply put, it is an inverse problem when we have observational data but we want
to calculate the original conditions of which the data was generated in.

An example could be as previously described in section 1.2.1. When we have the
wave values u(t, x) of the KdV equation in eq.4, but the λ1 and λ2 is unknown. The act
of solving λ1 and λ2 is solving an inverse problem.

1.3.1 Solving inverse problems

One of the most primitive ways to solve an inverse problem is to solve the forward
problem using the tweaked parameters and calculate the misfit between the forward
problem solution and the true data. There after go back to tweak the parameters again
and calculate the new misfit. This is similar to how the optimizer works in a neural
network. the weights and biases would be equivalent to the parameters of the inverse
problem and the loss function values would be the misfit of the data. And this is exactly
the case for PINN with direct manipulation of parameters.

8



1.3.2 Difficulties in solving an inverse problem

One of the difficulties in solving inverse problems is the non-uniqueness of solutions.
That means there might be multiple solutions to a inverse problem that give the same
misfit of the data. This is especially apparent when dealing with under-determined
problems which mean there is less data than there are parameters to solve. This under
determined problem is explored in this thesis by varying the training sample size and
the results can be seen in fig.10.

Another difficulty associated with solving inverse problem is the hidden physics re-
lation, if the physics relation between the data and the parameters are not known then
it is necessary to develop a theory to describe the physics relation before solving the
inverse problem.

2 Seismic Wave Scattering

Since we want our test problem to be scale-able with many parameters and at the same
time to be able to quickly generate a large amount of synthetic training data, we have
chosen a classic seismic wave scattering problem. The following section refers to the
paper from D. C. Ganley[6].

2.1 Basic concepts of seismic wave propagation

By sending a pressure wave from the earth surface vertically downwards and measure
the reflected seismogram we will be able to have an idea about the layer structure of the
earth directly below the surface in terms of their acoustic impedance. That is because
the pressure wave will be reflected at the boundary of two layers with different impedance
values with the reflection coefficient defined as follow,

R1 =
ρ1vp1 − ρ2vp2
ρ1vp1 + ρ2vp2

(6)

vp1 and vp2 here represents the velocity of the pressure wave, also known as acoustic
impedance, at two different layers. ρ is the density of earth at each layer. R1 is the
reflection coefficient at the boundary of layer 1 and layer 2 for waves travelling from
layer 1 towards layer 2 (down going). The transmission coefficient of the pressure wave
is then,

T1 = 1 +R1 =
2ρ1vp1

ρ1vp1 + ρ2vp2
(7)

The down going wave can hence be expressed as follow,

Di+1 = TiD
′
i +R′iUi+1 (8)

Here Di+1 is the down going wave at the top of in layer i+1. Ui+1 is the up going
wave at the top of layer i+1 as seen in fig.2. Ti and R′i are the transmission and reflection
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Figure 2: An illustration of down going (D) and up going (U) waves within a layer. Here
prime denotes the waves at the bottom of a layer.

coefficient at the layer boundary between layer i and i+1. Prime denotes that it is the
corresponding coefficient for up going wave. In this case, R′i is the same as −Ri. Waves
D and U are the Fourier Transformation of the corresponding waves in time domain,
hence they are frequency dependent complex values.

The up going wave can hence be expressed as follow,

U ′i = RiD
′
i + T ′iUi+1 (9)

By combining eq.8, eq.9 and take into account the damping coefficient α and time
delay in travelling within the layer between Di, D

′
i and U ′i , Ui, we get the following

propagation equation governing up going and down going waves,

Di =
eαdieiwdi/ci

Ti
(Di+1 +RiUi+1) (10)

Ui =
e−αdie−iwdi/ci

Ti
(RiDi+1 + Ui+1) (11)

Here di and ci are the depth and the speed of the wave at layer i, w is the angular
frequency of the wave in frequency space.

2.2 Generation of synthetic seismic waves

From eq.10 and eq.11, we have the basic formulations of the propagation method gov-
erning the wave propagation from the bottom layer up to the top layer. This requires
that the down going and up going wave at the bottom layer is known. While up going
wave is 0 at the bottom layer, the corresponding down going wave at the bottom layer,
in this case, is an unknown variable. On the other hand, down going wave at the top
layer can be represented by 1 as it is assumed to be a spike wavelet in frequency space.
And the up going wave at the top is an unknown variable.

A cleaver work around of the unknown down going wave at bottom layer is to cal-
culate the ratio of up going and down going wave Yi = Ui/Di. By dividing eq.11 with
eq.10, the following expression for Yi can be obtained,
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Yi = e−2αdie−2iwdi/ci(
Ri + Yi+1

1 +RiYi+1
) (12)

At the bottom layer Ybottom = 0, while at the top layer Ytop = Utop as Dtop = 1.
The seismic response at the top layer from a down going spike wavelet can then be

expressed as,

X(w) = U1(w) +D1(w) = U1(w) + 1 (13)

X(w) is the Fourier transform of the synthetic seismogram at the surface. Multi-
plying this with the Fourier transformation of a different wavelet will give the seismic
response from that particular down going wavelet. Inverse Fourier transform the result-
ing X(w) would give the seismic response in time domain.

From here on, in order to generate synthetic seismograms of primary waves that are
to be used in our neural networks training, we first define a structure of under earth
layers that is discretized to 1000 layers and each layer has a corresponding impedance
value that in term determines the primary wave velocity at the respective layers. Each
layer has a thickness of di = 2 ∗ dT ∗ ci, dT here is the two way time thickness, to
ensure all layers have the same two way time thickness in the time domain. In this way,
the fluctuations in the generated seismic response, when plotted along with the layering
structure in the time domain, happen at the same time in the x-axis as the reflective
layer boundaries that caused the fluctuations.

3 Neural Networks Setup

The neural network is set up and trained on Google Colab platform. It uses Keras
with TensorFlow back-end as the base for neural networks training, it also utilizes GPU
acceleration. This section includes some of the technical details of the supervised learning
setup, in order to give an approximate picture of the training process.

3.1 Data generation & preparation

The data we generate are seismic responses from a structure discretized to 100 layers.
The depth of the layers are measured in two way time, all the layers have the same
two way time thickness of 0.01 [seconds]. The impedance values for each layers have a
unit of [km · kg/s/m3] and are generated randomly with uniform distribution between
the values 1 to 9. Damping coefficient α is set to 0 through out this thesis in order to
simplify the problem.

The resulting seismic wave have 4096 time steps where each time step is 0.001 [sec-
onds]. The seismic data is generated using MATLAB codes based on the propagation
principle in section 2.2. Instead of a spike wavelet the code utilized a Mexican hat
wavelet as the down going wavelet at the top layer. The MATLAB codes were originally
provided by Professor Klaus Mosegaard. An example of the generated data can be seen
in fig.3.
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Figure 3: (a) The 0-1000 [ms] section of the seismic wave response generated by the
impedance values structure in (b). (b) The impedance values structure in two way time
domain in this case with 5 distinct layers and 100 numeric layers, each numeric layers
have a two way time thickness of 10 [ms]. (c) The corresponding reflective coefficient,
following eq.6, of the layering structure in (b).

3.1.1 Choice of training input

For the training input we only make use of the first 3000 data points, first 3 seconds, of
the seismic wave in time domain as our input. This is mainly due to the fact that all the
responds after first 1 second of the data is due to reflections between layers. We would
like to include the reflections, hopping the network will learn more from the reflected
waves. But at the same time the reflections decrease in amplitude as time passes. Hence
first 3 seconds are enough

The total dimension of the problem is also dependent on the total number of data
points as follow,

Dimension = Ninput +Noutput (14)

Ninput and Noutput are the number of data points used as input and output respec-
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tively.
This is important as the minimum number of the training sample should exceed the

number of dimensions to avoid it being an under determined problem.

3.1.2 Choice of target output

While we have tried many different types of target output, include but not limited to
impedance values in two way time domain and logarithmic impedance values in two way
time domain. We landed on reflective coefficient in two way time domain. The sizes of
the target output is the same as the number of layer boundaries, in this case a 1 by 99
row vector.

The advantage of using reflective coefficient is that it has a range between -1 and 1
which does not require future processing. Unlike using impedance values directly which
poses a non-uniqueness challenge, different impedance values depending on the starting
impedance value could end up with same reflective coefficient. A comparison between
directly predicting impedance values and directly predicting reflective coefficient using
non-physics informed neural network can be seen in fig.4 and fig.5. It is also apparent
that the direct predictions of reflective coefficient eliminated many small variations in
reflective coefficient values compared to directly predicting impedance values.

The advantage of using layer thickness in two way time domain is that there is a
clear correspondence of when there is a peak of seismic wave and when the reflective
coefficient is not 0.

3.2 Training setup

We tried mainly with 8 neural networks layers and 12 neural networks layers. The
structure for 8 neural networks layers is 4 fully connected layers with 3000 neurons, 3
fully connected layers with 1000 neurons and 1 fully connected layer with 99 neurons.
The structure for 12 neural networks layers is 6 fully connected layers with 3000 neurons,
5 fully connected layers with 1000 neurons and 1 fully connected layer with 99 neurons.

The network uses early stopping to stop training if the loss function has not improved
for more than 0.001 for a certain number of epochs. This number has changed along the
way and for different situations but we ended up with 4 epochs. The loss function value
it monitors is the validation loss which is the loss function value of the validation set.
When the training is stopped by early stop it also restores the weights and biases of the
epoch that gave the best validation loss value.

The network also uses a learning rate reduction call back function that also monitors
the validation loss value, if that did not decrease for a certain amount for a certain
number of epochs the learning rate of the optimizer is reduced by a factor. All these
factors have also changed many times along the way. Here I provide an approximate
range of these parameters. The validation loss minimum delta is between 0.001 and 1.
The number of epochs before changing the learning rate is 3 epochs. The factor that the
learning rate reduces by is 0.2. The minimum learning rate can be achieved is 1E − 9.
The starting learning rate is 1E − 5.
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Figure 4: (a) The 0-1000 [ms] section of the input data to the neural network from the
validation set that are used to generate predictions in (b). (b) The red line is the true
impedance values, the blue line is the direct prediction of impedance values. (c) The
red line is the reflective coefficient from true impedance values and the blue line is the
reflective coefficient from predicted impedance values.

Batch sizes are set according to training sample size, the optimizer used is Adam,
stochastic gradient descent with adaptive moment estimation and The activation func-
tion used in every layer of the network is hyperbolic tangent.

A batch size is the number of the training samples passed through the network at
the same time. While an epoch is defined when all training samples passes through the
network. So for a training sample size of 100 and batch size of 10. There will be 10
batches before 1 training epoch is complete. The weights and biases are tweaked while
evaluating each batches. So for our 10 batch epoch the optimizer tweaks the weights
and biases 10 times per epoch.
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3.3 Training output

There are two different output predictions after training. One is what we call predictions
from non-physics information neural network, in this case, the loss function directly
computes the mean square error(MSE) between predicted reflection coefficient values
and the target reflection coefficient values. A simple example of training input and
output as well as the target output for supervised learning can be seen in fig.5. A more
complex example can be seen in fig.6.
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Figure 5: (a) The 0-1000 [ms] section of the input data to the neural network from the
validation set that are used to generate predictions in (b). (b) The red line is the true
reflective coefficient and the blue line is the predicted reflective coefficient from noPINN.

The second is predictions from pure physics information neural network(PINN), in
this case, the loss function computes the chosen physics information as described under
Physics information in section 4 without computing the MSE between the predicted
reflection values and the target reflection coefficient values. The physics information is
calculated for a certain number of frequencies ω in Fourier Space as the computation
time is the limiting factor. The reasons why certain ω is selected will be explained under
”Selection of ω” in section 4.7.
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Figure 6: (a) The 0-1000 [ms] section of the input data to the neural network from the
validation set that are used to generate predictions in (b). (b) The red line is the true
reflective coefficient and the blue line is the predicted reflective coefficient from noPINN.

4 Physics Information

While our preliminary results from the non-physics informed fully connected neural
network looks promising for simple 5-distinct-layer cases as seen in fig.5. The non-
physics informed neural network failed to deliver satisfactory results when it comes to
more complicated cases, for example the 100-distinct-layer cases seen in fig.6. This more
complex case is what we are trying to improve by implementing physics information.

This section contains the description, in chronological order, of different kinds of
physics information proposals that were explored in this project and the reasons behind
the selection the frequencies ω to implement these physics information in. As all the
physics information in this section are a function of ω in Fourier space.

One of the critical criteria for choosing what physics information to use is how good
the physics information involves all the predicted layers of the problem. A good physics
information should involve all the predicted impedance values on all the layers. This
is to ensure that the physics information can provide a holistic picture of the problem
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formulation. The effects of different PINNs that are not our final physics information of
choice can be found in Appendix B.

4.1 Wave ratio Y at the bottom layer

This is one of the most intuitive physics information for this problem. As the seismic
waves on the top layer were generated with a propagator that goes from bottom layer to
the top layer as seen in eq.12. It assumes that the up going, down going wave ratio Y on
the bottom layer is 0, that means the up going wave at the bottom layer is 0. This physics
information can be used as part of the loss function neural network while training. As
it makes use of all the impedance values in the predicted layer structure. Therefore it is
reasonable to expect this physics information to regulate all the impedance values at all
the layers at the same time.

To implement this physics information, we will need to generate the up going, down
going wave ratio Y at the top layer first, using the true impedance values, through the
propagator method in eq.12. This ratio Y on the top layer is then back propagated from
the top layer to the bottom layer using the predicted impedance values. The backwards
propagator method can be derived from eq.12 to be,

Yi+1 =
e2αdi+2iwdi/ciYi −Ri
1− e2αdi+2iwdi/ciRiYi

(15)

Here if the predicted impedance values get an up going, down going wave ratio of 0
at the bottom layer, then we say the prediction satisfies the physics. Hence this is one of
the terms the neural networks optimizer can minimize. Because Y is a complex number
we only take the absolute value of it as shown below.

Loss =

Nsamples∑
|Ybottom| (16)

4.2 Residual of wave ratio at the top layer

As it is possible to get the up going, down going wave ratio Y at the top layer from the
propagator. We can compare the misfit of the results generated from the true impedance
values and the results generated using predicted impedance values as shown below,

Loss =

Nsamples∑
|predYtop − trueYtop| (17)

This is relevant as for solving inverse problems the only criteria is how close the result
is to the observed data. Here the wave ratio Y on the top layer is the representation of
the observed data at a specific frequency in frequency space.

The seismic wave on the top layer in time domain essentially contains the same
information as its counterpart in frequency domain. Hence the comparison of misfit in
frequency domain is valid. On the other hand, it is not possible to compare the misfit
in time domain, even tho we would very much like to, as transforming from frequency
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domain to time domain requires the knowledge of all the frequencies but we only have
computational capacity for a few frequencies.

4.3 Up going wave at the bottom layer

Slightly different from the previous wave ratio Y , this physics information only take into
account the up going wave at the bottom layer. The closer to 0 the absolute value of
the up going wave the better. This physics information is in principal better than using
the wave ratio at the bottom layer, as the assumption of the propagator method is that
the up going wave is 0, hence the wave ratio Y is 0. By isolating up going wave from
the wave ratio, this eliminates the possibility of a false optimization as wave ratio Y
could be minimized by maximizing down going wave while keeping the up going wave
non-zero.

To implement this physics information we will need to make use of eq.10 and eq.11
to get two expressions of Ui+1 and Di+1 as a function of Ui and Di as seen below,

Di+1 =
Ti(Die

−αdie−iwdi/ci −RiUieαdieiwdi/ci)
R2
i − 1

(18)

Ui+1 =
Ti(Uie

αdieiwdi/ci −DiRie
−αdie−iwdi/ci)

R2
i − 1

(19)

Then just as in the previous section, we first get the wave ratio Y at the top layer
with the propagator method using true impedance values at each layer. As wave ratio Y
is known, so are starting values of D1 and U1. We can then make use of eq.18 and eq.19
with predicted impedance values to propagate down to the bottom layer to get the up
going wave at the bottom layer. The loss function term is then defined as follow.

Loss =

Nsamples∑
|Ubottom| (20)

4.4 Sum of residuals of waves at every layer

As the results of previous physics information did not meet our expectation, we decided
to include up going and down going waves at every layer and compare the residuals
between the two waves generated using predicted impedance values and true impedance
values.

The implementation of this physics information is the same as for up going wave at
the bottom layer, as in order to get the up going wave at the bottom layer we will need
to propagate through all the layers. Hence we already have all the up going, down going
wave information at each layer. The additional information is that we will need to do
the same propagation with true impedance values to get true up going, down going wave
values at each layer. We can then subtract predicted values from true values to get the
residuals at each layer as follow,
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Loss =

Nlayers∑
i=1

(|trueUi − predUi|+ |trueDi − predDi|) (21)

This physics information is expected to be better than the previous ones due to the
extra information it encodes between all the layers. Ideally it would not only help the
network to learn about the impedance structure as a whole, but also help to learn the
relations between each layers. One draw back of this physics information, however, is
that it could overly emphasize on the early layers, in this case the layers towards the
surface as the propagation direction is from top to bottom, a small residual during the
early stage could end up with a huge residual towards the end, somewhat like a butterfly
effect. Hence there is a chance that it would not treat all the layers equally.

4.5 Sum of residuals of wave ratios at every layer

This is an extension of the sum of residuals of waves at every layer it is the same approach
but this time take the sum of the residuals of wave ratios Y at each layer.

This can be done by just using the propagator method in eq.12. There are two
separate propagation, one with true impedance values and the other with predicted
impedance values. The residuals were then taken as follow

Loss =

Nlayers∑
i=1

|trueYi − predYi| (22)

This physics information has the same drawbacks as the previous one. But this time
the propagation is from the bottom layer to the surface. So it would emphasis on the
bottom layers instead of top layers.

4.6 Sum of residuals of wave ratios at every layer including backward
propagation

This physics information is an addition to the sum of residuals of wave ratios at every
layer. It not only includes the previously mentioned sum, it also includes the sum of
residuals of wave ratios when using a propagator going from top layer to the bottom
layer. This way it will hopefully eliminate the previously mentioned drawbacks about
not treating the layers equally.

The implementation starts the same by getting the true wave ratio Y at top layer,
while summing the residuals of wave ratios, along the way, propagating from bottom
to top layer. The true wave ratio Y is then used as a starting point for the backwards
propagator shown in eq.15, using both true impedance values and predicted impedance
values. The Loss value is then as shown below,

Loss =
1∑

i=Nlayers

|Up trueYi − Up predYi|+
Nlayers∑
i=1

|Down trueYi −Down predYi| (23)
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4.7 Selection of frequencies ω for physics informed training

In ideal scenarios, all frequencies should be used as a constrain for physics informed
neural network. However, the reality is physics informed neural networks take a longer
time to train than non-physics informed neural networks, depending on the complexity
of the physics information and how many frequencies are chosen to implement these
physics information. Therefore it is essential to be able to choose the correct frequencies
to apply the physics information to.

This section takes a deeper look behind each physics information and proposes a
selection of frequencies for the respective physics information to implement and the
reasons behind the selection process.

4.7.1 Criteria for choosing a certain range of frequencies

When choosing a frequency to implement a certain physics information, it is intuitive to
take a look at the results of the physics information based on the predictions produced
by non-physics informed neural network. In order to then maximize the effect of the
physics information it could be a good idea to take the frequencies that has the largest
resulting values of that particular physics information. As the Loss function that consists
of this physics information is to be minimized. This in principle would make it easier to
minimize the value of the physics information at that frequency.

Another factor is that we would like to apply the physics information to as many
frequencies as possible but there is a limit on how many frequencies we can use. So by
limiting the range of the preferred frequency, the gap between the physics information
constrained frequencies can be smaller and therefore hopefully function better.

4.7.2 Example frequency selection for sum of residuals of wave ratio Y at
the bottom layer including including backward propagation

The physics information calculated according section 4.6 using predictions made using
no physics information can be seen in fig.7.

Upon closer inspection the physics information presents local minimums at frequen-
cies closest to multiples of π. This is interesting as if ω is divisible by π, that would
eliminate the complex part of the exponential term in our up-ward and down-ward
propagator seen in eq.12 and eq.15 and result in the following respectively,

Yi = ±(
Ri + Yi+1

1 +RiYi+1
) (24)

Yi+1 =
±Yi −Ri
1±RiYi

(25)

The complex part of e2αdi+2iwdi/ci is eliminated because α is set to 0 as described
previously and 2di/ci is the two way time thickness which is fixed to 0.001. Hence when ω
is around 314 in fig.16, the exponential term approximates to eiπ = −1 and we have our
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Figure 7: The curve is the result of the physics information in section 4.6 from non-
physics informed network as a function of frequency.

local minimum. When ω is around 628 the exponential term approximates to ei2π = 1
and we have another local minimum.

Another observation from fig.7 is that the curve is repeating itself as ω gets over 2π.
This is understandable as the exponential term, which is the only varying factor in eq.12
and eq.15, come back to the staring point as omega completes a full rotation from 0 to
2π.

Last but not least, the curve in the range between the minimum at ω = 0 and
the minimum around ω = 614 is approximately axis-symmetric around the y-axis that
crosses the minimum point around ω = 314. This is not as apparent as the previous
observations, but it is observable when examining the same figure generated with results
from physics informed neural network. Then it is possible to see that the same effect
of the constrain appears at the corresponding location on the other side of the axis-
symmetric axis.

Hence the ideal domain of frequencies to apply this particular physics information
constrain lies between ω = 0 and the local minimum around ω = 314. This domain of
frequency can actually be applied for all the physics information. As further inspection
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reveals that they all have the same properties as shown in this example. See Appendix
B.

5 Results & Analysis

In this section, we will take a look at the neural networks prediction results from physics
informed neural networks and non-physics informed neural networks and compare the
predictions. As seen in the simple and complex cases in fig.5 and fig.6. We will mainly
be looking at the more complex cases for physics informed neural network as it poses a
more non-linear challenge.

5.1 Criteria for goodness of prediction

As there are prediction results generated with physics information and without physics
information. We will need to compare the goodness of the predictions in the good old
inverse problem way which is the sum of squared residual of the seismic data from the
predictions and from the true impedance values. This is shown in eq.26

Goodness =
1

N

N∑∑
residual2 (26)

Here N is the number of validation sets for the respective simple or complex scenarios.
The respective error on the goodness is then the standard deviation of the N values as
follow,

Error = σ(
∑

residual2) (27)

The smaller the goodness of prediction the better the prediction.

5.2 Results without physics information

While our predictions looks promising when dealing with simple cases. It is the exact
opposite for complex cases with more non-linearity. This non-linearity is directly related
to how many distinct layers of different impedance values as shown in fig.8.

5.2.1 Mostly linear scenarios

As seen in fig.5 and fig.8. When it comes to mostly linear scenarios with 5 distinct
impedance values the neural network without physics information does a exceptionally
good job at predicting the reflective coefficients for both the amplitude and the location.
However we can already see that the reflections in seismic wave between layers are causing
a problem for the neural network. The network clearly mistakes the reflections between
layer boundaries for reflections from layer boundaries. Which is why the predicted
reflective coefficients show responses at depths corresponding to these reflections.
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Figure 8: This figure shows the goodness of prediction as a function of number of layers
with distinct impedance values. The respective error bars are calculated as shown in
eq.27.

5.2.2 Highly non-linear scenarios

As seen in fig.6. The highly non-linear scenario with 100 distinct impedance values
presents a challenge for the neural network. The predicted reflection coefficient was able
to stay closely with the true reflective coefficient at shallower depths but was ultimately
unable to predict the true reflective coefficient at deeper depths and the goodness of
prediction confirms our observation as well.

5.3 Results with physics information

Results from the predictions made from neural networks trained with physics information
described in section 4.6 can be seen in fig.9.

The neural networks optimizer worked well to minimize the values of the physics
informed curve at the selected frequencies. The curve is below the comparison at most
places. The goodness of prediction from the physics informed network is however still
not better than the ones from non-physics informed neural network. This leads us to
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Figure 9: The [0 631] section of fig.7. The red line is the result of the physics information
in section 4.6 from non-physics informed network. The blue line is the result of the same
physics information from physics informed network. The vertical black lines denote the
frequencies where the information was applied.

suspect might there be some other factors that may affect the goodness of prediction.

5.4 Effect of different training sample size

One of the factors that clearly had an effect on the goodness of fit is the number of
samples used for training. The effect of different sample size is pretty substantial for our
physics information of choice as shown in fig.10. Prediction results with loss function
consisting of pure physics information did not outperform the loss function with no
physics information for smaller training sample sizes. However, the decrease in goodness
of prediction is sharper for physics informed neural network than that for the non-physics
informed neural network between 6 and 8 on X-axis. We then decided to expand the
graph from 8 to 11 and we see that once the training sample size increases to a certain
level the goodness of prediction from physics informed neutral network did catch up with
non-physics informed prediction and eventually overtake the prediction made using no

24



physics information.
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Figure 10: On Y-axis we have the mean goodness of prediction. The dashed curve is
the goodness of prediction from non-physics informed neural network, the solid curve is
from physics informed neural network.

5.5 Effect of different number of neural network layers

Another factor that affected the goodness of prediction is the number of layers of neurons
used in the neural network. We started with 8 neural layers but when the number
of layers increased from 8 to 12 the PINN outperformed the noPINN on goodness of
prediction and outperformed goodness of prediction of the same PINN but with only 8
neural layers, as seen in fig.11.

6 Discussion

In this section we discuss the implication of observations, limitations and improvements
that could be made to make physics informed neural network work better.
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Figure 11: On Y-axis we have the goodness of prediction. The dashed curve is from
non-physics informed neural network, the solid curve is from physics informed neural
network. The round data points are from 12 neural network layers and the square data
points are from 8 neural network layers.

6.1 PINN V.S. noPINN

6.1.1 Effect of more training information and more neural layers

As we can see in fig.10 and fig.11. non-physics informed neural network results in a better
goodness of prediction than physics informed network when there are less information to
work with. When there are more information, either with a larger training sample size
or a deeper neural network structure, the physics informed neural network out performs
the non-physics informed neural network.

This means that the extra neurons and extra training samples helped in learning the
features of the physics information. This also means that there are more useful infor-
mation to learn in the physics informed neural network than the non-physics informed
neural network.

When only comparing goodness of prediction from physics informed neural networks
the extra neural network layers have also helped in getting a better goodness of pre-
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diction. This came in contrast with the effect of the extra neural network layers when
looking only at non-physics informed neural networks. Results from the non-physics
informed neural networks did not improve with extra layers of neurons. Which means
that the non-physics informed network have reached the limit of how much it can learn
about the problem from a pure statistical point of view.

6.1.2 Number of frequencies

One argument could be made for the sub-optimal performance of the physics informed
neural network, that is we are only enforcing the physics information on selected fre-
quencies, in the case of fig.9, 15 out of 2049 frequencies in the frequency space. While the
non-physics informed neural network, which does not work in frequency space, in prin-
cipal works with 100% of the frequencies. So in a way the the physics informed neural
network was able to achieve the same result with 0.732% of the constrain is impressive.

6.1.3 Statistical limitation revealed by out of boundary test

We have also challenged our best trained neural network, both physics informed and
non-physics informed, for predictions using samples that are out of boundaries of train-
ing samples. This means that the neural networks were trained using samples with
impedance values within the range of 2.2197 and 5.8785. We now input samples with
impedance values that are generated within the range of 1 and 9. This means some
impedance values will be out side the range the network was trained to recognize. We
then compare the goodness of prediction for both physics informed neural network and
non-physics informed neural network. The expectation is that the physics informed neu-
ral network will be able to predict better than non-physics informed neural network due
to the fact that the laws of physics that the neural network was suppose to learn works
across different ranges of impedance values. Hence if the network was able to encode
the laws of physics in its weights and biases then it should out perform the non-physics
informed neural network. The result however was that both network performed worse
than they did originally with a both goodness of prediction around 200%.

This reveals that the network even though learnt about the laws of physics behind
the problem formulation, a statistical approach still dominated the results of this test.
The limitation of a statistical approach is of course that there will be problems when
dealing with previously unseen data like we have seen here.

However, one of the limitation of this out of boundary test is that for our new input
data not to be a subset of training data we had to expand the range of impedance values
from 2.2- 5.8 to 1-9 which made the seismic wave much more non-linear. And as we can
see in fig.8 The more non-linear the worse the goodness of prediction. So the inferior
performance can also be attributed to this enlarged non-linearity.
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6.1.4 Training time

The training time for non-physics informed network ranges from seconds to a few minutes
while training time for physics informed neural network ranges from half an hour to a
few hours.

From a practical view point the difference in training time is directly related to the
extra calculations involved in the custom defined loss function in the physics informed
network. The more frequencies we evaluate the physics informed network in, the longer
the training time. We also suspect that the calculations within our custom loss is
too complex that the program used the CPU to process it instead of the GPU, hence
contributing to the longer training time.

From a philosophical point of view, the longer training time might be tied to the
discussion of number of frequencies used in training in section 6.1.2. Solving an inverse
problem with sufficient information, in this case sufficient number of frequencies, usually
takes less time than solving an inverse problem with not enough information. The non-
physics informed network can be considered using all the frequencies in the frequency
space to solve the inverse problem hence it takes less time while the physics informed
network only uses a few frequencies hence it takes a longer time to solve.

6.1.5 Similarities between two methods

The fact that the two vastly different approaches in training results in strikingly similar
results is very encouraging for our approach. A comparison of a non-physics informed
prediction and a physics informed prediction with 12 neural network layers and the most
amount of training samples can be seen in fig.12.
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Figure 12: (a) The blue line is the true data from true reflective coefficient structure,
red line is the data from non-physics informed prediction while yellow line is the data
from physics informed prediction. (b) blue line is the true reflective coefficient, red is
the non-physics informed prediction and yellow is the physics informed prediction.

The fact that the predicted reflective coefficient with or without physics information
is in phase with each other towards the right of graph fig.12(b) but out of phase with
the true reflective coefficient that they are suppose to predict, may suggest that there is
a deeper connection between the two methods than there appears to be.

One explanation of this similarity could be that it is the result of the input data we
used to generate the output prediction which in this case are both the seismic wave in
time domain. Upon closer inspection the phase of the predicted reflection coefficients
is somewhat similar to the phase of the seismic wave. The seismic wave however is not
in phase with the true reflection coefficients due to non-linearity caused by reflections
between layer boundaries. The correlation between the input data and the reflection
coefficients can be seen in fig.13.
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Figure 13: On y-axis we have the correlations between the input data and the reflec-
tion coefficients within each segment, on x-axis we have 9 segments of the 99 reflection
coefficients each segment contains 11 reflection coefficients. Each reflection coefficients
has a corresponding value from the input data at the same two way time depth as the
reflection coefficients. Blue line is the correlation between input data and true reflection
coefficients, yellow line is the correlation between input data and predicted reflection co-
efficients from noPINN and red line is the correlation between input data and predicted
reflection coefficients from PINN

As shown in fig.13. All the reflection coefficients have a good absolute correlation
with the input data in the beginning towards the left, segment 1 contains 11 reflection
coefficients between time depth 10 [ms] and 110 [ms]. This supports the fact that non-
linearity comes from wave reflections between layer boundaries. As these reflections are
not the dominating signal in the beginning but towards the end to the right.

As time proceeds we can see that the absolute correlation between true reflection
coefficients and input data drops faster than all the predicted reflection coefficients.
This supports our theory that the predictions are constrained by the limited ability
of the network to map input to output in a non-linear fashion. Hence the predicted
reflection coefficients are able to maintain a better absolute correlation to the input data
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while the absolute correlation between true reflection coefficients and input data drops
as non-linearity increases due to reflections between layer boundaries.

Towards the right of fig.13. We see that the true reflection coefficients are no longer
correlated to the input data while the correlation between predicted reflection coefficients
and input data went from negative to positive. Which supports our previous observation
that the predicted reflection coefficients are in phase with each other and out of phase
with the true reflection coefficients towards the right.

Another observation could be made that towards the right predictions from the
PINN has a lower correlation than predictions from noPINN which means that PINN
was able to learn the non-linearity slightly better than noPINN however in the middle
part of fig.13, the noPINN ends up with lower absolute correlation than PINN which
suggests the opposite. This observation again supports our theory that the predictions
are influenced by the input data.

This mapping limitation from input to output might suggest that for a feed forward
fully connected neural network to solve non-linear inverse problems there will be a need
for training for each specific case and a deeper integration of physics information just as
described in section 1.2.1 and appendix A.

6.2 Combination of PINN and noPINN

The idea is simple, to harness the speed of the non-physics informed network and the
knowledge of the physics informed network. There are mainly two ways to achieve it.

The first way is somewhat related to a concept named transfer learning in the machine
learning community which is to train the network first with non-physics information, save
the weights and biases and then train the network with physics information with the
saved weights and biases as a starting point. There is one major concern about this
method that prevented our further exploration. The trained network with on physics
information could result in a starting point for the physics informed network at a local
minimum. Hence the physics informed network would not be able to learn much about
the physics information with the gradient decent methods used by the optimizer.

Another way of training is to train the network using the loss function presented in
eq.28.

Loss = PI +MSE (28)

Here PI denotes Physics information.
The idea of a loss function consisting of both physics information and non-physics

information is interesting and is slightly touched during in this thesis. A concern of this
method is the weight set up for physics information term and non-physics information
term. A biased weight could mean the network would end up towards a physics informed
or a non-physics informed scenario. Another concern for this method is tied to the
previous discussions about how the non-physics informed network makes use of all the
frequencies in the frequency space and the physics informed network works with only a
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few frequencies. The combination of the two would potentially mean double training on
selected frequencies.

Both combination methods are explored during the making of this thesis and the
preliminary results did not set these combined methods apart from the main method
hence these possibilities are not explored further.

This leaves us with the physics informed network using only physics information
and the non-physics informed network using no physics information. This is a more
fundamental comparison that clearly examines the performance and accuracy of two
different approaches and that is what we chose to do.

6.3 Goodness of prediction as a percentage error

The goodness of prediction defined in section 5.1 is the mean of the sum of squared
residual. This goodness value is absolute and not relative. A more relative approach to
calculate the goodness of prediction takes inspiration from percentage error and modifies
eq.26 and eq.27 to the following

Goodness =
1

N

N∑ ∑
residual2∑
amplitude2

(29)

Error = σ(

∑
residual2∑
amplitude2

) (30)

The resulting corresponding figures of fig.8, fig.10 and fig.11 can be found in appendix.C.

6.4 Direct prediction of impedance values

As seen in fig.4, the predicted impedance values are around the mean of all the impedance
values used for training. The fact that it is not around zero, but with a starting value
close to the true impedance values is an encouraging sign as neural networks tends to
like normalized values.

6.5 Minimization of physics information

6.5.1 Networks predicting impedance values

Early on during this thesis our networks were trying to predict impedance values di-
rectly, for a setup with 1000 numerically discretized layers with 5 distinct layers with
different impedance values, and that posed a few challenges as discussed in section 3.1.2.
The physics information described in section 4.1 was imposed on the network and the
optimizer tried to minimize the physics information. The result is shown in fig.14.

There are a few differences here compared to networks predicting reflection coeffi-
cients. First, the resulting values of physics information is not periodic as for network
predicting reflection coefficients as described in section 4.7. Second, and here is the
interesting part, the physics informed network tried to minimize the frequency at the
local minimum at ω = 2845. It succeeded in the way that there is a local minimum at
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Figure 14: Both curves in (a) and (b) are the results of the physics information in section
4.1 from networks predicting impedance values. (a) From non-physics informed network.
(b) From physics informed network. The black vertical line denotes the frequency the
physics information was applied.

that specific frequency. But it failed in the sense that it formed the local minimum by
elevating the values of the physics information for the surrounding frequencies.

6.5.2 Networks predicting reflection coefficients

Although the results of physics informed neural network were not substantially differ-
ent than non-physics informed neural network, but contrary to the networks predicting
impedance values, the fact that the optimizer was able to minimize, to a certain point,
the physics information at selected frequencies and their surroundings, see fig.9, may
suggest that the network was able to approach the problem from the perspective of the
physics information. Which is encouraging.

And comparing the results from networks predicting impedance values and reflective
coefficients, the choice of predicting reflective coefficient clearly made the problem easier
to tackle for the optimizer.
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6.6 Limitations and improvements

A major limitation that could be improved right out of the box is the limitation of com-
putation power. More computation power would make applying the physics information
for every frequency possible and would hopefully improve the results of physics informed
neural network.

Another limitation is that we have only looked at one neural network structure which
is the full connected feed forward neural network. Other network types and structures,
such as Bayesian convolutional neural networks that were used to classify seismic facies
[7], may help improve the results and error estimations from both physics informed and
non-physics informed neural network.

Yet another limitation involving the neural network setup is the use of early stop
method and subsequently revert weights and biases to the epoch with the best loss value.
This is somewhat problematic when the loss function does not provide a full picture of
the misfit of the data from the predictions. This means even though the loss value could
be reverted to when it is minimized that does not necessarily mean the total misfit is at
its minimum. This limitation can also be solved by the use of more computation power
to directly calculate the misfit in the loss function.

As discussed in section 6.1.5. Both predictions from physics informed neural network
and non-physics informed neural network are quit limited by the input data and the
limited ability of the feed forward fully connected neural network to learn the non-
linearity of the problem. Hence the predictions are somewhat a linear projection of the
input data. This limitation might be solved by exploring other neural network structures.

7 Further Study

It could be a good idea to take a deeper look behind the following phenomena shown in
this thesis in order to gain a better understanding of how the physics information and
neural network work together.

• Formation of local minimums at specific frequencies of physics information as de-
scribed in section 4.7.2.

• Offset between some local minimums and frequencies where physics information
were applied.

• The minimums between ω = 0 and ω = 500 in fig.14.

• The elevated physics information surrounding the physics constrained frequency
in fig.14.

8 Conclusion

We explored the possibility of implementing different physics information through the
loss function of a fully connected feed forward neural network in order to solve for the
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impedance structure beneath the surface using seismic waves in time domain observed
on the surface. We then compared the performance of the physics informed network with
non-physics informed network. It turns out that the physics informed neural network
slightly out performs the non-physics informed neural network when there is a large
number of training samples and a sufficient amount of neural network layers despite
the limitation of the physics information only being applied to less than 1% of all the
available frequencies in frequency space.
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A Technical Details Concerning Implementation of PINN
With Direct Manipulation of Parameters

For this PINN, we have one shared set of weights W and biases B filled with truncated
normally distributed random numbers and trainable parameter λ1 and λ2 with some
starting value.

Consider we are given the wave values u at two time instances t = 0.2 and t = 0.8
for all x, 199 and 201 data points are extracted across x at these two time instances to
be feed into the share weights and biases in the PINN, as shown in fig.15[3]

Figure 15: KdV equation: Top: Solution u(t,x) along with the temporal locations of the
two training snapshots. Middle: Training data and exact solution corresponding to the
two temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom:
Correct partial differential equation along with the identified one obtained by learning
λ1,λ2

For simplicity purposes, let us first focus on the 199 wave values u1−199(t = 0.2, x1−199)
and the corresponding values of x1−199.

The shared weights has 5 layers the form of a list of 5 weight matrices [(1, 50),(50,
50),(50, 50),(50, 50),(50, 50)] and the shared biases has 5 layers the form of a list of 5
bias matrices [(1, 50),(1, 50) ,(1, 50) ,(1, 50) ,(1, 50)]. The 5 matrices represent the 5
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layers of this fully connected feed forward neural networks.
For u1−199(t = 0.2, x1−199), the input to the network are x1−199 as a column vector

”CV 1” of size [199, 1]. The operations for the first layer of the neural networks are as
follow with some help of pseudo code,

1. Values in CV 1 is normalized between -1 and 1 to get CV 2 of size [199, 1].

• CV 2 = 2 ∗ (CV 1−min(CV 1))/(max(CV 1)−min(CV 1))− 1

2. CV 2 multiplies with first layer of weights W1 of size [1, 50] to get a matrix M1 of
size [199, 50].

• M1 = CV 2 ∗W1

3. Each column of M1 is added with each column of the first layer of biases B1 of
size [1, 50] to get M2 of size [199, 50]

• M2 = M1 +B1

4. Values in M2 is then fed into a hyperbolic tangent function to get M3 of size [199,
50]

• M3 = tanh(M2)

Operations from the second layer of the neural networks are as follow,

5. M3 multiplies with second layer of weights W2 of size [50, 50] to get M4 of size
[199, 50].

• M4 = M3 ∗W2

6. Each column of M4 is added with each column of the second layer of biases B2 of
size [1, 50] to get M5 of size [199, 50]

• M5 = M4 +B2

7. Values in M5 is then fed into a hyperbolic tangent function to get M6 of size [199,
50].

• M6 = tanh(M5)

The operations for the rest of layers of the neural network is the repeat of the second
layer. After all 5 layers the final out come is a matrix U of size [199, 50]. At this stage
matrix U is assumed to be a representation of u(t, x) in the KdV equation.

This matrix is then operated on with the following steps,

8. U is passed through a tensorflow function using automatic differentiation to get
Ux and Uxxx of the sizes [199,50].
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• Ux = tf.gredient(U)

• Uxx = tf.gredient(Ux)

• Uxxx = tf.gredient(Uxx)

9. Ux and Uxxx are then used to construct Ut following eq.4. Multiplication between
U , Ux and Uxxx is element-wise at this step. Ut has the size [199,50].

• Ut = −λ1UUx − λ2Uxxx

10. Ut along with U are then used to calculate the final matrix U1 of size [199,50], which
will be used to calculate the value of the loss function in eq.31. Each column in
U1 represents a neural networks prediction of u(t = 0.2, x1−199). ∆t is the time
difference between the two sampled times which is 0.6. IRKweights1 is a custom
layer of weights of size [50,50] which remains unchanged during training.

• U1 = U −∆tUt ∗ IRKweights1

For u1−201(t = 0.8, x1−201), the input to the network is x1−201. The operations for
this case is exactly the same from step 1 to 9. Step 10 is replaced by step 11 where U2

is the outcome.

11. In this case, Ut along with U of size [201,50] are used to calculate U2 of size [201,50],
which will be used to calculate the value of the loss function in eq.31. Each column
in U2 represents a neural networks prediction of u(t = 0.8, x1−201). ∆t is the time
difference between the two sampled times which is 0.6. IRKweights2 is a custom
layer of weights of size [50,50] which remains unchanged during training.

• U2 = U −∆tUt ∗ IRKweights2

At this stage the PINN has spit out U1 and U2 as predictions of u(t = 0.2, x1−199)
and u(t = 0.8, x1−201). The outcomes are used to construct the loss function which
is defined as the sum of the squared residuals of each column of U1 subtracted by the
column vector containing u(t = 0.2, x1−199), plus the sum of the squared residuals of
each column of U2 subtracted by the column vector containing u(t = 0.8, x1−201)

loss = sum((U1 − u(t = 0.2, x1−199))
2) + sum((U2 − u(t = 0.8, x1−201))

2) (31)

During training loss value is minimized by the optimizer manipulating weights W
and biases B plus the two inverse problem parameters λ1 and λ2.
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B Supplementary Figures of Results With Different PINNs

B.1 Wave ratio Y at the bottom layer
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Figure 16: The mean modulus of wave ratio Y at bottom layer of the impedance struc-
ture, calculated using non-physics informed predictions from neural network trained
using impedance layer structure with 100 distinct impedance values.

40



B.2 Residual of wave ratio at the top layer
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Figure 17: The mean modulus of wave ratio Y at top layer of the impedance structure,
calculated using non-physics informed predictions from neural network trained using
impedance layer structure with 100 distinct impedance values.
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B.3 Up going wave at the bottom layer
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Figure 18: The mean modulus of up going wave at bottom layer of the impedance
structure, calculated using non-physics informed predictions from neural network trained
using impedance layer structure with 100 distinct impedance values.
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B.4 Sum of residuals of waves at every layer
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Figure 19: The mean modulus of the sum of residuals of waves at every layer of the
impedance structure, calculated using non-physics informed predictions from neural net-
work trained using impedance layer structure with 100 distinct impedance values.
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B.5 Sum of residuals of wave ratios at every layer
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Figure 20: The mean modulus of the sum of residuals of wave ratios at every layer of
the impedance structure, calculated using non-physics informed predictions from neural
network trained using impedance layer structure with 100 distinct impedance values.
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C Percentage Goodness

0 10 20 30 40 50 60 70 80 90 100

Number of distinct layers

0

10

20

30

40

50

G
o
o
d

n
es

s 
o
f 

p
re

d
ic

ti
o
n

 [
%

]

Figure 21: This figure shows the percentage goodness of prediction as a function of
number of layers with distinct impedance values. The respective error bars are calculated
as shown in eq.30.
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Figure 22: On Y-axis we have the percentage goodness of prediction. The dashed curve
is the goodness of prediction from non-physics informed neural network, the solid curve
is from physics informed neural network.
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Figure 23: On Y-axis we have the percentage goodness of prediction. The dashed curve
is from non-physics informed neural network, the solid curve is from physics informed
neural network. The round data points are from 12 neural network layers and the square
data points are from 8 neural network layers.
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