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Abstract

This thesis reports the construction of a hybrid setup consisting of an optomechanical
system in and an atomic spin ensemble capable of quantum back-action evading
measurements of mechanical motion by use of an itinerant optical field.

The optomechanical system consists of a highly stressed, 500 µm × 500 µm ×
60 nm, SiN membrane placed in the middle of an unresolved, high finesse, one-sided
optical cavity. This cavity is placed in a cryostat operated at 4.4 K. The motion
of the dielectric membrane modulates the cavity resonance frequency, and thus the
light field populating the cavity. This couples the light degrees of freedom with
the motion of the mechanics allowing a sensitive read out of mechanical motion
by interrogation of the light quadratures output from the cavity. The limit of the
sensitivity with which this motion can be read out, without disturbing the system, is
set by the quantum back-action introduced by the probing light onto the mechanical
motion.

The significant influence of the quantum back-action on the motion of the me-
chanics is initially demonstrated by a (−3.18± 0.18) dB (equivalent to (53± 2) %
below shot noise) observed ponderomotive squeezing. Correcting for detection effi-
ciency and additional classical laser noise gives an ideal squeezing of −8.6 dB (equiv-
alent to 86 % below shot noise). The squeezed light noise occurs as a result of a pro-
jection of the optically transduced mechanical motion onto the optical quadrature,
whose quantum correlations were the drive for the motion in the first place.

Using an atomic spin ensemble pumped to its most energetic state, we realize an
oscillator with an effective negative mass. Using the motion of this oscillator as a
reference allows for the evasion of back-action on the mechanical oscillator. The spin
ensemble consists of a vapour cell with 109 spin polarized cesium atoms confined to
a micro-channel of length 300 µm × 300 µm × 10 mm coated with a spin preserving
layer. The cell is placed in a magnetically controlled environment allowing for precise
control of the oscillator frequency and spin direction. The spins are coupled to an
optical probe via the Faraday effect and read out in transmission before being filtered
and directed towards the optomechanical setup.

Measuring the output optical phase quadrature from this cascaded hybrid system
allows for measurements of mechanical displacement with enhanced sensitivity in
the relevant regime where the mechanical displacement sensitivity is overwhelmed
by the added noise caused by the quantum back-action. This quantum back-action
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is demonstrated to be evaded by −1.8 dB (equivalent to a (−34± 5) % reduction)
and is well understood by a detailed theoretical hybrid model. The model provides
further insight into how to significantly boost back-action evasion in such a hybrid
system.

Demonstrating an optically linked hybrid system consisting of two quantum en-
abled subsystems, capable of significant back-action evasion, lays the foundation for
generating Einstein-Podolsky-Rosen entanglement between the two.



Sammenfatning

Denne afhandling omhandler konstruktionen af et hybridsetup, bestående af et op-
tomekanisk system, samt et atomart spin-ensemble, som ved hjælp af en optisk
forbindelse tillader en kvantetilbagekoblingsundvigende måling af mekanisk bevæ-
gelse.

Det optomekaniske system består af en 500 µm× 500 µm× 60 nm SiN-membran
under højt stress, placeret i midten af et uopløst, høj-finesse, ensidet optisk kavitet.
Kaviteten er placeret i en kryostat der opereres ved 4.4 K. Bevægelsen af den dielek-
triske membran modulerer kavitetens resonansfrekvens, og dermed det optiske felt i
kaviteten. Dette kobler lysets frihedsgrader med bevægelsen af mekanikken, hvilket
tillader præcise udlæsninger af den mekaniske bevægelse ved måling af lyskvadra-
turerne udsendt fra kaviteten. Grænsen for følsomheden hvormed bevægelsen kan
udlæses uden at forstyrre systememet sættes af kvantetilbagekoblingen forårsaget af
det undersøgende lys på den mekaniske bevægelse.

Denne væsentlige påvirkning fra kvantetilbagekoblingen på bevægelsen af meka-
niken demonstreres indledningsvis igennem (−3.18± 0.18) dB (ækvivalent til (53± 2) %
under haglstøjsniveau) observeret ponderomotorisk klemning. Såfremt der korrigeres
for detektionseffiktivitet, og klassisk laserstøj, udregnes en ideel klemning på−8.6 dB
(ækvivalent til 86 % under haglstøjsniveau). Det klemte lys opstår som et resultat
af projektionen af den optisk transducerede mekaniske bevægelse på den optiske
kvadratur, hvis kvantefluktuationer var den dominerende drivkraft for bevægelsen i
første omgang.

Vha. et atomart spinensemble pumpet til den mest energirige tilstand realiserer
vi en oscillator med en effektiv negativ masse. Ved at benytte bevægelsen af denne
oscillator som reference, tillades undvigelse af tilbagekobling på den mekaniske oscil-
lator. Spinensemblet består af en gascelle med 109 spinpolariserede cæsium-atomer,
begrænset til en mikrokanal med størrelsen 300 µm × 300 µm × 10 mm som er be-
lagt med et spinbevarende lag. Cellen er placeret i et magnetisk kontrolleret miljø,
hvilket tillader præcis kontrol af oscillatorens frekvens og spinnets retning. Spinnene
er koblet til en optisk undersøgelsesstråle igennem Faraday-effekten, som udlæses i
transmission før den filtreres og sendes imod det optomekaniske setup.

Måling af den udsendte optiske fasekvadratur fra dette sekventielle hybridsystem
tillader måling af den mekaniske forskydning med øget sensitivitet i det relevante
regime, hvor den mekaniske forskydningssensitivitet overskygges af den tilføjede støj
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fra kvantetilbagekobling. Denne kvantetilbagekobling demonstreres undveget med
1.8 dB (ækvivalent til (34± 5) % reduktion), og er velforstået igennem en detaljeret
teoretisk model for hybridsystemet. Modellen giver yderligere indsigt i hvordan en
væsentligt øget tilbagekoblingsunvigelse kan opnåes i et hybridsystem som dette.

Demonstration af et optisk forbundet hybridsystem, bestående af to kvantebe-
grænsede undersystemer, som udviser væsentlig tilbagekoblingsundvigelse lægger
grunden for frembringelsen af Einsten-Podolsky-Rosen-sammenfiltring af de to un-
dersystemer.
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A brief history
of a time well spent

If at first you don’t succeed,
try two more times so that your
failure is statistically significant.

Mitchell Moffit & Gregory Brown

The work presented in this thesis represents the latest development in the long
term goal aimed at entangling two fundamentally different systems; a mechanical
resonator and an atomic spin ensemble. This ambitious project, facilitated by the
“hybrid ” overall system, has numerous fundamental aspects of interest as well as
useful practical applications in the field of quantum optics, and sensing in general.
The idea originated as a somewhat natural extension of the entanglement already
demonstrated between two spin ensembles in Eugenes Polziks group in Julsgaard
et al. (2001). Through discussions with Peter Zoller and his then postdoc Klemens
Hammerer, the idea began to take shape. Once Markus Aspelmeyer was brought in
as the expert in experimental optomechanics, it all culminated in the joint proposal
Hammerer et al. (2009).

Now the technical challenges were all that had to be overcome; easier said than
done! In Eugenes group in particular, an optomechancial subgroup had only just
been formed in 2008. It was run by team leader Koji Usami and had been maturing
quickly. Promising initial results together with Dalziel Wilson (on the membrane
side) and Hanna Krauter (on the spin ensemble side) showed that the desired exper-
iment for entangling the two systems would be at the limit of what was possible, but
not beyond! In 2012 Eugene was looking to strengthen the optomechanical effort
and brought in Albert Schliesser as assistant professor in 2013 to lead the optome-
chanical subgroup. I visited shortly thereafter and started as a research assistant
for a few months before beginning my Ph.D. in January 2014.

By this time the physical platform of the optomechanical system had been de-
termined. The exact details of its design however, were still to be decided. From
there it had to be built and brought into the quantum regime. I started working
on this with William Nielsen, a fellow PhD student, with the clear goal of ulti-
mately bringing the optomechanics subgroup into the quantum regime. In parallel
the performance of the mechanical device specifically was being developed and im-

xi



xii

proved by Yeghishe Tsaturyan and Andreas Barg with their early efforts published
in Tsaturyan et al. (2014). Initially our efforts lie in detecting sub-poissonian light
noise statistics through an inherently quantum optomechanical interaction known as
ponderomotive squeezing. We measured the first hints of ∼ 2 % squeezing in early
spring of 2015. By the middle of autumn we had improved this to a ∼ 16 % effect,
unequivocally ushering in quantum optomechanics at NBI. This work is published
in Nielsen et al. (2016) and the fruits of our effort were elegantly documented in the
PhD thesis of Nielsen (2016).

Following the optomechanical entrance into the quantum regime, I began work-
ing specifically on the hybrid experiment in the summer of 2015. For this, a new
dedicated, optomechanical system was built, specifically tailored to the requirements
of the hybrid system, and using the knowledge acquired from our original design.
Working towards this ambitious goal a new (dream) team was assembled. Rodrigo
Thomas, Georgios Vasilakis and Kasper Jensen had already been working on a
suitable, quantum enabled, atomic system. So, together with Albert and I on the
optomechanical side, we all began integrating our two experiments, with Eugene di-
rectly leading the hybrid (dream) team. Worth noting are a few milestones reached
along the way. Initially, our two systems were optically linked by a 100 m path
length interferometer since the experimental infrastructure to address both systems
were physically located in two different labs. The first major milestone was when
the experiments were physically joined in holy matrimony after which the atoms
moved in with the mechanics in June 2015.

We then began measuring back-action evasion of large amounts of added pulsed
classical noise. This added noise was gradually reduced until we could eventually
demonstrate the evasion of added pulsed classical noise on the scale equivalent to
∼ 10 units of optical shot noise in the spring of 2016. By the middle of summer we
had improved and on July 24 we could demonstrate the evasion on the order of just
a few units of optical vacuum noise. This milestone is described in section 6.3.4.

Fast forward to November 22, 2016 when the quantum back-action associated
with the optical shot noise was demonstrably evaded for the first time. The results
of more detailed measurements throughout December have since been published in
Møller et al. (2017) and are detailed in section 6.4. The work presented in this thesis
describes the underlying machinery and part of the labour that led to these fruits.

Since the this publication, very significant improvements to both subsystems
and the optical link that comprise the hybrid system have been completed, while
some are still under way. These include the implementation of a new generation of
improved mechanical resonators by Tsaturyan et al. (2017), a more quantum enabled
spin ensemble, and severely reduced optical losses. These technical improvements,
combined with a matured experimental understanding, are currently paving the road
for progress to march through. Hybrid entanglement is now within reach.
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Heisenberg, Schrödinger and Ohm are in a car. They
get pulled over. Heisenberg is driving and the cop

asks him “Do you know how fast you were going?”.
“No, but I know exactly where I am” Heisenberg

replies. The cop says “You were doing 55 in a 35.”
Heisenberg throws up his hands and shouts “Great!

Now I’m lost!”
The cop thinks this is suspicious and orders him to
pop open the trunk. He checks it out and says “Do

you know you have a dead cat back here?”. “Well we
do now!” shouts Schrödinger. The cop moves to

arrest them. Ohm resists.
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Chapter 1

Introduction

Before we begin discussing the details of what is covered in this thesis, let us consider
a measurement limitation imposed by the Heisenberg uncertainty principle. This
example, following Polzik and Hammerer (2015), will motivate the key elements of
this work.

1.1 Motivational example
Let us consider a generic quantum harmonic oscillator with canonical position and
momentum q̂(t), p̂(t) respectively, and a mass m > 0. As this oscillator undergoes
harmonic motion at its natural frequency Ω, the position varies in time according
to

q̂(t) = q̂(0) cos(Ωt) + p̂(0)
mΩ sin(Ωt). (1.1)

A measurement of the position with uncertainty ∆q̂, imposes an associated uncer-
tainty in the conjugate variable, the momentum, of ∆p̂. This is the Heisenberg
uncertainty principle, ∆q̂∆p̂ ≥ ~/2, and is a consequence of the non-commutative
nature of the canonical operators, [q̂, p̂] = i~.

This uncertainty in the momentum will, as the oscillator undergoes harmonic mo-
tion according to eq. (1.1), translate into an accumulation of uncertainty regarding
the position. This means that the phase space trajectory of the oscillator cannot be
tracked for arbitrary times with arbitrary precision. Such tracking is, for example,
desirable for sensing purposes and this “quantum back-action” of the measurement
sets a limit to the precision of such sensing.

To circumvent the accumulation of noise we envision introducing an auxiliary
oscillator with position and momentum q̂0(t), p̂0(t) respectively, and the same nat-
ural frequency Ω. For this oscillator we will match the magnitude of the mass, but
allow it to be both positive and negative, i.e. m0 = ±m. If we consider the position
of our original oscillator with respect to this auxiliary oscillator we find that

q̂(t)− q̂0(t) = (q̂(0)− q̂0(0)) cos(Ωt) + p̂(0)∓ p̂0(0)
mΩ sin(Ωt). (1.2)
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Using the auxiliary oscillator as a (quantum) reference frame, we will see below that
measuring the relative position is not necessarily afflicted by the accumulation of
“quantum back-action” noise, depending on the sign of the auxiliary systems mass.

In the case of two identical, traditional, positive mass oscillators (m0 = m), the
relative position, as seen in eq. (1.2), depends on non-commuting relative variables
q̂(0)− q̂0(0) and p̂(0)− p̂0(0), which are bound according to Heisenberg’s uncertainty
principle. However, when the auxiliary system has a negative mass m0 = −m, the
relative position depends on the summed momenta variable p̂(0) + p̂0(0) with which
it commutes,

[q̂ − q̂0, p̂+ p̂0] = 0. (1.3)

Thus simultaneous knowledge of the relative position and the summed momenta is
allowed, unconstrained by Heisenberg’s uncertainty principle.

As this point you may be worried that Mr. Heisenberg is being made a fool.
However, rest assured, the overall system has four degrees of freedom and we have
simply chosen two combinations, which do not commute, and are thus unconstrained
by his uncertainty principle. Uncertainty is still being accumulated, but in variables
dynamically uncoupled from the relative variables of interest. This is a feature only
available in the case of a negative auxiliary mass system.

In practice one gains knowledge of, say, the position of an oscillator by way of a
measurement. This thesis is all about measuring the harmonic motion of a mechan-
ical oscillator, without the uncertainty (back-action) imposed by the measurement
affecting the evolution of the system. To do this we introduce an oscillator with a
negative mass reference oscillator and measure their relative motion by way of an
itinerant optical field.

The relative position (q̂− q̂0) and summed momenta (p̂+ p̂0) are known as EPR
variables. A simultaneous measurement of these can project the total system into
an arbitrary well defined state, whose sum of the variances of these EPR variables
is less than the sum of all the individual system variable variances. Such a state is
entangled and is, as the acronym may have given away, those originally considered by
Einstein, Podolsky and Rosen in their famous challenge to the theory of quantum
mechanics in Einstein et al. (1935). Thus the ability to avoid the measurement
back-action is intimately related to the generation of EPR entanglement of the two
oscillators.

1.2 Approach
The main system of interest will be the aforementioned mechanical oscillator and
our auxiliary system, with the ability to realize an effective “negative” mass, will be
an atomic spin oscillator. This thesis outlines our progress towards realizing back-
action free measurements of mechanical motion as just described, and as mentioned,
such measurements also naturally lead towards entanglement of the two physically
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different and distant quantum systems. This ambitious goal, proposed nearly a
decade ago by Hammerer et al. (2009), is simultaneously of high fundamental and
practical interest. The use of such a hybrid system presents both novel behavior
and a valuable quantum information tool.

The two individual systems emerge from well established fields in quantum op-
tics, namely atomic spin physics and optomechanics. The former emerged from the
scientific study of the light-matter interactions, which has led to early advancements
of Quantum Mechanics. The latter grew out of a desire to understand the limits
facing the technically challenging interferometric approach to studying gravitational
waves predicted by the other contemporary giant of physics, General Relativity.

We begin by discussing the fields of optomechanics and atomic spins in general
terms along with similar efforts in building hybrid systems consisting of the two.

1.3 Brief background
We make use of two specific platforms for studying the interaction of light and mat-
ter: atomic spins and a micro-mechanical resonator. In the following subsection, we
briefly review the use of atomic spin ensembles, optomechanical devices, and hybrid
systems insofar as they are relevant to this work. For a broader and more compre-
hensive overview the following resources are recommended. For atomic ensembles
see the review of Hammerer et al. (2010), whilst for optomechanical systems the
review of Aspelmeyer et al. (2014). Hybrid systems are particularly numerous and
diverse in their realizations. Resources for their overview involving predominantly
mechanical oscillators and atomic systems are discussed in the previously stated
references as well as in Treutlein et al. (2014); Wallquist et al. (2009).

A fairly recent and brief editorial, Schleier-Smith (2016), outlines of the motiva-
tions behind the drive for hybrid systems. These motivations can be bluntly boiled
down and explained as follows. No single platform is able to provide all the desired
functionalities of emerging quantum technologies. The desire is, thus, to merge
useful aspects of various systems in order to meet and improve the performance of
crucial tasks, such as precision sensing and quantum communication. Additionally,
coupling hybrid systems leads to novel behavior that may further our fundamental
understanding of quantum mechanics.

For both the atomic and mechanical systems a so called quantum non-demolition
measurement can be realized. Such a measurement may result in a back-action free
estimation of a single system variable. This was first discussed by Caves et al. (1980);
Braginsky et al. (1980) and has been realized by a variety of groups and in a plethora
of systems. Recently, ideas to go beyond the limitation of single variable quantum
back-action free measurement have surfaced. In the context of cavity optomechanics
notable works include Tsang and Caves (2012); Polzik and Hammerer (2015), as well
as the proposal of Hammerer et al. (2009), which this thesis is specifically motivated
by.
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1.3.1 Atomic spins
Atoms are inherently quantum. Studying their behavior has a rich history of ad-
vancing the field of physics, not least from our institute which bears the name of
one early pioneer. Similarly quantum is light, and its interaction with atoms helped
develop quantum mechanics and eventually led to a new field separate from atomic
physics and optics. This field of quantum optics has traditionally focused on light-
matter coupling through the experimentally rather challenging platform of cavity
quantum electro-dynamics.

In the last two decades, a new direction of atom-light interactions has emerged
as a feasible platform. The logic is to trade off a rather strong coupling to a single
atom (or atoms) for a weaker interaction with a large ensemble. By confining a large
number of atoms in a small region of space, research groups are now able to realize
a whole host of different interaction types as well as high interaction strengths.

One such platform is atomic spin ensembles where the collective spin components
of a large ensemble of Alkali atoms interact with light via the Faraday effect. This
platform is particularly well suited for precision metrology, particularly with respect
to sensing magnetic fields, as described in Budker and Romalis (2007); Budker and
Kimball (2013). Notable groups include Mike Romalis’ at Princeton, which use a
Potassium (K) vapour for precision magnetometry Kominis et al. (2003); Savukov
et al. (2006), Morgan Mitchell’s group at ICFO1, which uses a cold Rubidium (Rb)
ensemble Wolfgramm et al. (2010); Koschorreck et al. (2010); Sewell et al. (2012),
and of course by Eugene Polzik’s group here at NBI2, which uses a Cesium vapour,
most recently with Jensen et al. (2016).

These efforts all share the same limit to precision metrology; namely the effect
of the measurement back-action on the system. Thus, it should come as no surprise
that all have studied ways to surpass this limitation. In Mike Romalis’ group they
looked into a stroboscopic QND measurements of a single atomic spin quadrature,
while piling the back-action noise into the conjugate quadrature Vasilakis et al.
(2011). Morgan Mitchell’s group recently showed sensitivity improvements to spin
degrees of freedom beyond classical limits by sidestepping the traditional Heisenberg
uncertainty relation. They map the back-action from two spin variables into an
unmeasured third quadrature, see Colangelo et al. (2017).

Eugene Polzik’s group also demonstrated stroboscopic back-action evasion in
one quadrature in Vasilakis et al. (2015). Furthermore, entanglement assisted back-
action evasion, improving senstivity, was demonstrated in Wasilewski et al. (2010).
This scheme made use of two spin ensembles projected by a Bell-measurement into
an Einstein-Podolsky-Rosen (EPR) entangled state Julsgaard et al. (2001). Sub-
sequently this entanglement was further demonstrated in the steady state regime

1The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology,
Barcelona, Spain.

2Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
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Krauter et al. (2011). In such a system a measurement of two precessing spin
quadratures can be unbounded by the Heisenberg uncertainity relation as the back-
action is directed into irrelevant spin quadratures of the joint system.

1.3.2 Optomechanics
Optomechanics, although no longer a new field, has matured drastically in the last
decades. The field deals with the interaction between light (often enhanced by
a cavity) and a mechanically compliant oscillator. This coupling is traditionally
mediated by the radiation pressure force, which fundamentally has quantum fluc-
tuations governed by light statistics itself. These quantum fluctuations impose a
fundamental limit, caused by the random back-action of the light, on the sensi-
tivity to mechanical motion, were first considered in the early days by Vladimir
Braginsky, Anatoly Manukin and Farid Khalili in Braginskii and Manukin (1977);
Braginsky et al. (1992). A partial workaround is that of quantum non-demolition
measurements as described by Braginsky et al. (1980) and Caves et al. (1980).

Fast forward a few decades, skipping important theoretical insights and exper-
imental developments, we enter the current era where the aforementioned intrinsic
quantum fluctuations of light play a crucial role. In particular, in 2008 the group
of Dan Stamper-Kurn at Berkley3 observed the radiation pressure back-action on
a collective mechanical mode of an ultracold gas ensemble of Rb atoms held in an
optical cavity, see Murch et al. (2008). This was subsequently repeated in 2013 by
Cindy Regal’s group in JILA4 by Purdy et al. (2013a), with a more traditional solid
state mechanical oscillator embedded in an optical cavity (like the one employed in
this work).

Competing with the radiation pressure quantum back-action effect is the influx
of noise from the thermal environment of the mechanical oscillator – thus why an
isolated ultracold atomic ensemble beat out much larger and hotter solid state de-
vices. The ever present struggle against thermal noise reached a milestone in 2010
where, aided by a dilution refrigerator held at 35 mK, Andrew Cleland’s group at
Santa Barbara5 prepared a microwave frequency micromechanical resonator in its
quantum ground state, see O’Connell et al. (2010).

This regime was subsequently reached by others in 2011 by use of laser cooling,
notably Oskar Painter’s group at Caltech67 by Chan et al. (2011) and in Konrad
Lehnert’s group at JILA8 by Teufel et al. (2011). The former took a microwave fre-

3University of California at Berkeley, California, USA.
4A joint institute between the National Institute of Standards and Technology and the Uni-

versity of Colorado at Boulder, Colorado, USA.
5Santa Barbara, University of California, California, USA.
6California Institute of Technology, Pasadena, California, USA.
7With the help of Markus Aspelmeyer’s group at the Vienna Center for Quantum Science and

Technology, University of Vienna, Vienna, Austria.
8In conjuction with Raymond Simmonds at National Institute of Standards and Technology,
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quency mechanical oscillator from a much higher9 initial temperature to the ground
state, while the latter brought a much lower frequency10 mechanical device to the
quantum ground state starting from the 20 mK dilution fridge environment. The
laser sideband cooling technique is a manifestation of an effect known as dynamical
back-action known from the early days of Braginsky and is discussed in section 4.1.4.
While the limits of this cooling technique were not known in these early days, they
were soon discovered by Caves (1980) to be given by the quantum back-action of
light. Cooling to this limit was recently demonstrated in Cindy Regal’s group by
Peterson et al. (2016a).

As the control of mechanical oscillators continued to grow, new techniques and
schemes were developed. In a particularly strong analogy with the electromag-
netically induced transparency (EIT) effect present for atoms, the optomechanical
equivalent was demonstrated in Tobias Kippenberg’as group at EPFL11 by Weis
et al. (2010) and in Oskar Painter’s group by Safavi-Naeini et al. (2011). This ef-
fect is known as optomechanically induced transparency (OMIT) and is discussed
in section 4.3.

The effects of the radiation pressure quantum back-action on the motion of the
mechanics, while at once being a limit to measurement sensitivity, can also be used
to generate squeezed light. This was demonstrated by Brooks et al. (2012a) in Dan
Stamper-Kurn’s group and followed, once again, by the solid state mechanical oscil-
lators in Oskar Painter’s and Cindy Regal’s groups by Safavi-Naeini et al. (2013);
Purdy et al. (2013b). This effect is further discussed in section 4.4.

This regime of detecting squeezed light is an important milestone as it necessi-
tates two (typically) important features of a quantum optomechanical experiment.
First, the mechanical oscillator must be influenced significantly, as compared to ther-
mal noise, by the quantum fluctuations of light, i.e. the quantum back-action. Sec-
ondly, the detection efficiency for the quantum behavior must not be prohibitively
large. We, as shown by Nielsen et al. (2016), have recently joined the set of ex-
perimenters worldwide operating in this – quite non-trivial – regime by detecting
significant squeezing of light for a multitude of mechanical modes simultaneously.

For mechanics it is the motional degrees of freedom that are of interest and
are measured. Just as was the case for the atomic ensembles in section 1.3.1, the
measurement sensitivity is eventually limited by the quantum back-action. Thus,
it should come as no surprise that many of the aforementioned groups are looking
into evading it! Early on, using traditional positive mass mechanical oscillators
the back-action can be evaded in the case of two detuned oscillators, but only in a
narrow bandwidth. This was shown by Caniard et al. (2007) in Antoine Heidmann’s

Boulder, Colorado, USA.
9Almost 600 times higher.

10Lower by a factor of about 600!
11Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
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group at LKB12 and the effect is also observed here in13 fig. 6.21. Another trick
to improve measurement sensitivity was demonstrated in Cindy Regal’s group by
Kampel et al. (2017) using correlations between the optical quadratures through a
technique known as variational readout.

A quantum back-action free measurement of a single quadrature on a single
mechanical oscillator was proprosed by Clerk et al. (2008) implementing a two tone
drive based on a scheme first developed by Braginsky et al. (1980). Keith Schwab’s
group at Caltech implemented this idea in the microwave domain to great effect, see
Suh et al. (2014).

Not content with evasion limited to a single mechanical quadrature, a broad-
band back-action evading scheme was proposed by Woolley and Clerk (2013) im-
plementing a two tone drive of cavity mode addressing two mechanical oscillators.
This scheme further attracted experimentalists. Dan Stamper-Kurn’s group added
another ultracold atomic ensemble to their optical cavity and observed a cavity
mediated coupling between the two mechanical oscillators driven by the quantum
back-action in Spethmann et al. (2015). Again, in the microwave domain, Mika
Sillanpää’s group at Aalto14 demonstrated quantum back-action evasion of the col-
lective quadratures of two uncoupled mechanical oscillators in Ockeloen-Korppi et al.
(2016) paving the way for entanglement between the two, which is currently under
review, see the pre-print by Ockeloen-Korppi et al. (2017).

1.3.3 Hybrid systems
Since our hybrid system is comprised of an optically linked Cs vapour spin ensemble
and a micro-mechanical oscillator in a cavity, see Møller et al. (2017), we will restrict
our focus to hybrid systems employing similar subsystems15. Employing a hybrid
system provides an alternative route towards back-action evading measurements,
entanglement and much more – in this case richer due to the fundamentally different
nature of the subsystems. This approach should be seen as complementary to, but
distinct from, the single system efforts described in sections 1.3.1 and 1.3.2. Central
to back-action evasion proposal on which our scheme is based, Hammerer et al.
(2009), and other discussed here, is the ability of the atomic spin ensemble to be
realized in an effective negative mass configuration, as we will see in section 5.10.

On a similar trajectory is Philipp Treutlein’s group in Basel16 who early on
demonstrated an ultracold Rb ensemble optically linked and coupled to a micro-
mechanical oscillator in Camerer et al. (2011). Recently they added a cavity for

12Laboratoire Kastler Brossel, École Normale Supérieure, Paris, France.
13Albeit for a positive mass spin and mechanical oscillator. Nonetheless, the physics is the same.
14Aalto University, Greater Helsinki, Finland.
15We, thus, neglect atomic like systems such as colour centers and quantum dots, as well as

mechanics related systems like electro-optomechanics and plasmonic optomechanics.
16University of Basel, Basel, Switzerland.
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the mechanics and demonstrated a large (factor of ∼ 460) sympathetic cooling of
the mechanical motion in Jöckel et al. (2014). Further utilization of the atoms as a
spin ensemble, by manipulation of the internal states, provides yet another degree
of freedom. This may allow a pursuit of entanglement and quantum back-action
evasion akin to our own.

Similarly, Dan Stamper-Kurn’s group has recently shown in a pre-print, that
they are able to orient their ultracold Rb cloud as a spin ensemble in the negative
mass configuration, and couple it to the center of mass motion of the same cloud
by way of interaction with an optical cavity mode. Their coupling gives rise to an
instability Kohler et al. (2017), which drives correlations between the quadratures
of the system. Further improvements may see this system’s utility extend to the
quantum regime.

1.4 Overview of thesis structure
This thesis follows the typical structure of a main body of work detailing the essential
concepts necessary for appreciation and discussion of results. Some details related
to these concepts or results are long winded or too technical to warrant inclusion in
the main body. These can thus be found in appendices. The first two appendices,
namely appendices A and B, which discuss Fourier analysis, power spectral densities
and optical detection methods, provides enough background to hopefully understand
the mathematical language spoken throughout this thesis. If not already familiar
concepts, I would recommend starting with those prior to approaching the main
body.

1.4.1 Main body

In chapter 2 we will introduce and review some important results for the “third half”
of our hybrid system, namely the optical field linking them. The traditional ampli-
tude and phase quadratures of light will be discussed, as they are relevant for the
optomechanical system. Similarly some polarization quadratures will be discussed
as they are important for the spin system. We then consider the dynamics of a
Fabry-Pérot cavity, the fundamental behaviour of which is crucial in understanding
the more complicated optomechanical dynamics. Finally the quantum Heisenberg-
Langevin approach to treating dissipation quantum mechanically is introduced and
applied to the Fabry-Pérot cavity as an example.

In chapter 3 we will first introduce the basic dynamics of membrane resonators
and see how we may reduce the real world 3D nature of such a device to an effec-
tively 1D harmonic oscillator. We will see how the more realistic case of a damped
mechanical harmonic oscillator is treated and behaves. The importance of the me-
chanical Q factor is explained followed by a brief overview of the mechanisms which,
in practice, limit it and methods by which to enhance it. This is followed by a
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description of the phononic bandgap shielded membrane resonators that form the
mechanical workhorse in our optomechanical experiments.

Next, in chapter 4, we will discuss the canonical cavity optomechanical system
and the well known effect of dynamical back-action, which modifies the mechani-
cal susceptibility. Then we discuss how the quantum back-action disturbance of a
probing optical field disturbs the mechanical motion. We then discuss our practical
realization of the optomechanical interaction using a membrane-in-the-middle ap-
proach. From here we show that we realize a quantum optomechanical system, where
the quantum back-action disturbance dominants the thermal noise. This quantum
back-action produces correlations between the optical quadratures, which is mea-
sured as an ponderomotive squeezing in the detected optical amplitude quadrature.
These results are akin to the results we published in Nielsen et al. (2016) and display
stronger correlations, both observed and inferred. Also discussed are the interesting
effect of optomechanically induced transparency as well as a few practical consider-
ations regarding the operation of our system.

In chapter 5 we introduce our realization of a spin system based on an ensemble
of cesium atoms. The basic atomic structure of cesium is discussed followed by the
crucial coupling to external magnetic fields. A basic theoretical model that allows
the basic dynamics of the systems interaction with a probing light field is then
derived. This is followed by a more detailed description. The regime in which we can
prepare this spin ensemble as an effective harmonic oscillator, able to display both
a positive and negative effective mass, is then outlined. The relevant mechanisms
for the quantum behavior are then discussed followed by a few effects not captured
by the simple model. Finally a few practical considerations are discussed.

In chapter 6 we finally get to the real meat of the thesis, where we take our light
from chapter 2 and use it to link the optomechanical system of chapter 4 with the
spin system of chapter 5. We first discuss the idea, first laid out in the motivational
example of section 1.1, of back-action evasion in the simple QND case. We then
discuss the experimental details of how we optically address the atomic spin and
optomechanical systems in a cascaded fashion to realize a unified hybrid system.

Back-action evading measurements in the domain of pulsed disturbances are then
discussed and evasion on the single noise quanta level subsequently demonstrated.
Continuous quantum back-action evasion in the steady state regime is then dis-
cussed. This is facilitated by a more detailed model addressing the implications
of operating the optomechanical cavity detuned from resonance. We then, with a
detailed theory at our disposal, demonstrate the significant evasion of the quantum
back-action! This is done first in the case where the spin and mechanical systems
are degenerate, and subsequently for the non-degenerate case. This latter case offers
us the largest demonstration of quantum back-action cancellation observed.

In chapter 7 we briefly summarize the key results of this thesis before discussing
the future prospects of entanglement generation which naturally follow these results.
To wrap up the thesis, we discuss some quite significant improvements implemented
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since the experiments described in this work, as well as possible improvements, which
may shape the future hybrid experiment.

1.4.2 Appendices
First off, in appendix A we describe the Fourier transform, its digital implementa-
tion, and the construction of a power spectral density. These form the back-bone of
how we describe, measure, and view the most important results of this work.

Secondly, in appendix B, we discuss the types of detection used to measure
the optical quadratures relevant for the atomic spins, optomechanical, and hybrid
system. Also briefly discussed is how they relate to the mathematical constructs
of appendix A used to analyze them. Lastly, how losses affect the propagation and
detection of quantum correlations is discussed.

In appendix C we describe a general approach to measure the fraction of an
oscillators response, which is due to the quantum back-action of light as compared
to everything else. This is an important instrument to measure the degree to which
quantum back-action dominates a systems behavior.

In appendix D we describe briefly the basics of Gaussian optics, free space and
in a cavity, as it is relevant for discussions of loss and limitations of the mechanical
and atomic systems.

Then in appendix E we describe the useful mathematical tool of transforming
into a rotating frame as well as state a handful of useful algebraic relations.

In appendix F we detail an effective operator formalism used specifically to de-
scribe the effective spontaneous emission damping rate caused by a large probe field
for the spin ensemble. This framework also provides a useful language and founda-
tion on which, a more general and inclusive atomic model may be built.

In appendix G we detail some theoretical results needed for section 6.3. These
results relate to the description of an oscillators response to a pulsed optical force.
These is necessary for the discussion of the near quantum results of section 6.3.

Lastly, in appendix H, we derive the general optomechanical model used to de-
scribe the most important results of section 6.4. Also shown is a very useful approx-
imation for understanding the quantum back-action evasion in the unresolved, but
red detuned optomechanical regime.



Chapter 2

Light

Almost all experiments described in this thesis utilize laser light in one way or
another. Laser light is particularly well suited for both probing and linking our
quantum systems for multiple reasons. Firstly, the systems of interest couple to
light degrees of freedom, thus enabling us to learn about our quantum systems
by subsequent interrogation of the light. Secondly, optical detectors and various
well established techniques allow for this interrogation to be done very efficiently.
Thirdly, light from a laser can be spectrally very well defined and monochromatic
as far as our quantum systems (the end users) are concerned. Finally, laser light
has large coherence times, and thus can be used over large distances allowing us to
link our distant quantum systems.

Light has various degrees of freedom depending on which modes of the field
one considers and their relative phases. This will be explored in the following sec-
tions. Its basic behaviour will also serve as an introductory example to the quantum
harmonic oscillator and its dynamics. It will also help introduce some notation, nec-
essary concepts and relations.

The electromagnetic (light) field will, in general, be composed of various modes
of different wave-vectors k, frequencies ωk and polarizations. For simplicity, let us
here consider quantizing this field in a finite confined space with perfectly conducting
boundaries. Furthermore, let us consider just a single mode of angular frequency ω
and described by the creation and annihilation operators â(t), â†(t) at some time t.
The field satisfies the bosonic commutation relations given by

[
â(t), â†(t′)

]
= δ(t− t′), (2.1a)

[
â†(t), â†(t′)

]
= [â(t), â(t′)] = 0, (2.1b)

and evolves according to the field Hamiltonian given by

Ĥ = ~ω
(
â†(t)â(t) + 1/2

)
, (2.2)

where â†(t)â(t) = n̂(t) is the operator describing the number of photons in the field.
The constant term of ~ω/2 is the ground state energy of the field given by the field
frequency and the reduced Planck constant ~.

11
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In this Heisenberg picture operators explicitly depend on time and the states do
not. The evolution an operator Ô(t) is given by the Heisenberg equation

˙̂O(t) ≡ d
dtÔ(t) = i

~
[
Ĥ, Ô(t)

]
. (2.3)

The field operator â thus has a time evolution given by â(t) = â(0)e−iωt. Let
us write down the electric field of this mode quantized along the z-direction. Each
spatial mode contains two allowed polarizations. For simplicity we consider only a
single polarization mode of a single spatial mode. If the polarization mode is linearly
aligned with the x-direction, the electric field can, from Christopher Gerry (2005),
be written as

Ê(t) = exEx
(
â(t) + â†(t)

)
= exEx

(
â(0)e−iωt + â†(0)eiωt

)
, (2.4)

where E roughly describes the resultant electric field per photon.
The time correlations of the field of mean excitation n̄ = 〈n̂(t)〉 are typically

useful quantities. These are given by

〈â†(t)â(t′)〉 = n̄δ(t− t′), (2.5a)
〈â(t)â†(t′)〉 = (n̄+ 1)δ(t− t′), (2.5b)
〈â(t)â(t′)〉 = 〈â†(t)â†(t′)〉 = 0. (2.5c)

Similarly useful are the correlations expressed in the Fourier domain, discussed in
appendix A, which read

〈â(Ω)â†(Ω′)〉 = (n̄+ 1)δ(Ω− Ω′), (2.6)
〈â†(Ω)â(Ω′)〉 = n̄δ(Ω− Ω′). (2.7)

In the following we will describe degrees of freedom for these light modes and
subsequently for radiative modes not confined in space. As will become clear later
on, the observables associated with these light degrees of freedom provide us with
information about the light field, and can be used as probes of the mechanical and
atomic spin system.

2.1 Optical phase quadratures
Inspecting eq. (2.4) we see that the electric field is proportional to the real part of â.
If we were to write out the magnetic field, it would be proportional to the imaginary
component of â. These components of the field operator â can be thought of as the
dimensionless generalized position and momentum of the light field, and behave as
such. These can be defined as

X̂(t) ≡ 1√
2
(
â(t) + â†(t)

)
, (2.8a)

Ŷ (t) ≡ i√
2
(
â†(t)− â(t)

)
. (2.8b)
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These are known as quadrature phase operators1 and indeed oscillate at ω as
would be expected from a traditional harmonic oscillator. This is seen by explicitly
writing out the time dependence as in eq. (2.4), namely

X̂(t) = X̂(0) cosωt+ Ŷ (0) sinωt, (2.9a)
Ŷ (t) = Ŷ (0) cosωt− X̂(0) sinωt. (2.9b)

These operators describe canonically conjugate variables with the canonical com-
mutation relations for a quantum harmonic oscillator that we shall see manifested
throughout this work. These relations are,

[
X̂(t), Ŷ (t′)

]
= iδ(t− t′), (2.10a)

[
X̂(t), X̂(t′)

]
=
[
Ŷ (t), Ŷ (t′)

]
= 0. (2.10b)

Just like a traditional harmonic oscillator, as we will see in chapter 3, we find
that the Hamiltonian of eq. (2.2) can be re-expressed as

Ĥ(t) = ~ω
2
(
X̂2(t) + Ŷ 2(t)

)
. (2.11)

These non-commuting quadratures also obey the classic Heisenberg uncertainty
relation, which limits instantaneous knowledge of both to arbitrary precision,

Var
[
X̂(t)

]
Var

[
Ŷ (t′)

]
≥
∣∣∣∣

1
2i〈
[
X̂(t), Ŷ (t′)

]
〉
∣∣∣∣
2

(2.12)

≥ 1/4, for vacuum and t = t′. (2.13)

The statistics of these quadratures of light depend on the underlying quantum
state. We will predominantly be concerned with the “most classical” quantum state
of light, namely the coherent state, as it is a useful approximation to the state
produced at the output of our laser sources on relevant time scales. This coherent
state is defined by the property â |α〉 = α |α〉 and has noise equivalent to that of
vacuum2 corresponding to a variance of Var(X̂) = Var(Ŷ ) = 1/2. This vacuum
noise is also known as shot noise. This coherent state has mean amplitude |α| and
phase φ, which is illustrated in phase space in fig. 2.1 along with the vacuum state.

The amplitude of the coherent field is given by the mean number of photons in
the field. From fig. 2.1 it is clear that the uncertainty in phase, ∆φ, of the state
is reduced for ever larger coherent states, i.e. ∆φ ∝ 1/|α|. This also enhances the
phase sensitivity.

As will become clear in section 4.1, these quadratures, X̂ and Ŷ , couple to the
mechanical degrees of freedom. The vacuum noise of X̂ will act as a driving force,

1so called because they are 90 deg out of phase - thus in “quadrature”.
2Thus why this state is also known as displaced vacuum, i.e. the vacuum state displaced by a

large mean field α.
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Figure 2.1: Vacuum and coherent optical field in phase space. The vacuum state
(left) has zero mean amplitude and a spread given by the ground state variance of 1/2
in each quadrature. A coherent state (right) has a mean amplitude of α and a phase
between the quadratures of φ. The amplitude and phase sensitivities are shown as δφ and
δ|α|.

while the quadrature Ŷ will inscribe the motional information and its shot noise
will determine the sensitivity to this motion above the lights coherent state vacuum
noise. The trade-off between the improved sensitivity, scaling with 1/|α|, and the
driving force of X̂, scaling with |α|, leads to the standard quantum limit.

Just as in eqs. (2.5) and (2.6), we can also look at the correlation functions of
these Hermitian quadrature operators. We find that

〈Ŷ (t)Ŷ (t′)〉 = 〈X̂(t)X̂(t′)〉 =
(
n̄+ 1

2

)
δ(t− t′), (2.14a)

〈Ŷ (Ω)Ŷ (Ω′)〉 = 〈X̂(Ω)X̂(Ω′)〉 =
(
n̄+ 1

2

)
δ(Ω− Ω′). (2.14b)

where the optical quadratures in the Fourier domain are given by

X̂(Ω) = 1√
2
(
â†(−Ω) + â(Ω)

)
, (2.15a)

Ŷ (Ω) = i√
2
(
â†(−Ω)− â(Ω)

)
. (2.15b)

Most often in this work the relevant case is when the field is in the vacuum state
with n̄ = 0. The variance of 1/2 for each quadrature as just discussed is also seen
in the power spectral density, discussed in appendix A, of the optical quadratures.
These will be

SY Y (Ω) = SXX(Ω) = 1/2, (2.16)

and are spectrally white. This shot noise level sets the standard noise floor in
quantum limited measurements of these quadratures. In practice these quadratures
contain frequency dependent noise and looking at the power spectral density of an
optical quadrature as a function of Fourier frequency is commonly referred to as a
spectrum. The noise is typically additional to the shot noise of eq. (2.16), but may
in certain cases through an interaction with a system, interfere destructively with
the shot noise and create spectral regions of sub-poissonian light statistics. We will
see this in explicitely in section 4.4.
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2.2 Polarization states

2.2.1 Free space description
Previously we simply stated results for the electromagnetic field quantized in a finite
volume. This gives rise to discrete allowed wave-vectors, of which we just considered
a single mode. Now we wish to talk about fields in free space. We, thus, take our
finite boundary conditions and let them tend to infinity. This leads to a continuum
of allowed wave-vectors, k and thus radiation modes â(k). If we restrict ourselves
to a single polarization degree of freedom and quantize the field only along a single
direction, say z, then the full continuum hamiltonian for the radiation field is given
by

ĤL =
∫

~ck
(
â†(k)â(k) + 1/2

)
dk. (2.17)

Considering both the time and spatial dynamics of a continuum mode is elegantly
summarized in Julsgaard (2003, App. C.). Consider the very relevant case where we
have an interaction between a light field and some system given by the Hamiltonian
Ĥint. The field â(z, t) is defined in every point in space and time, and its evolution
in real space1 is then given by

(
∂

∂t
+ c

∂

∂z

)
â(z, t) = i

~
[
Ĥint, â(z, t)

]
(2.18)

where the spatial evolution term comes from the evolution of the field according to
ĤL.

These field operators â(z, t) are defined as the Fourier transforms of the reciprocal
space operators â(k). From eq. (2.17) the term â†(k)â(k) dk can be interpreted as
the photon number within the wavevector slice k → k + dk. Thus, in “real space”
â†(z)â(z) dz is the number of photons in some region of space bounded by z and
z+ dz. For free space modes it is often most useful to talk about photon fluxes at a
particular point in space, say before and after an interaction with some system. It
is, thus, sensible to define a field operator,

â(t) =
√
c â(z, t). (2.19)

where the added factor of c normalizes the operator such that â†(t)â(t) now describes
the photon flux at some point z.

2.2.2 Stokes vectors
Classically a light field with different polarization components can be fully described
by what are known as Stokes vectors. These vectors span a 4D space of polarization

1as opposed to reciprocal k-space.
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Figure 2.2: Polarization ellipse examples. Examples of polarization types visualized
by the polarization ellipse described by eq. (2.21). We describe the examples going left
to right with Ex = Ey unless otherwise stated. First column: Linearly polarized light
along y (top) and x (bottom). Second column: Linearly polarized light along 45° (top)
and −45° (bottom). Third and fifth column: Elliptically polarized right (top) and
left (bottom) handed light. Fourth column: Circularly polarized right (top) and left
(bottom) handed light.

states, which are exhaustively covered in great detail in Goldstein (2003). Normal-
izing these vectors yields three vectors spanning the interior of a unit sphere. Here
we will simply give a quick classical introduction and then state the results as they
pertain to our needs.

Suppose a plane wave, monochromatic light field traveling along z is composed
of polarization components along two orthogonal directions x and y. If we consider
the electric field of this wave at a particular point in space we can write,

E(t) = ex Ex cos(ωt+ δx)︸ ︷︷ ︸
Ex

+ey Ey cos(ωt+ δy)︸ ︷︷ ︸
Ey

, (2.20)

where we have Ex and Ey as the electric field components along the x and y direction
respectively. Notice that the polarization components may have a relative phase
between them given by δ = δy− δx. The allowed configurations of these polarization
components is given by what is known as the polarization ellipse

E2
x(t)
E2
x

+
E2
y(t)
E2
y

− 2Ex(t)Ey(t)
ExEy

cos(δ) = sin2(δ). (2.21)

This ellipse describes the electric field in the transverse plane and is a convenient
way to visualize the polarization state of the light. A selection of polarization
configurations are shown in fig. 2.2. The particular polarization state is simply
defined by relative phase shift between the two polarization components as well
as their magnitude. We distinguish between three distinct polarization types each
described by two degenerate states. These are,
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• Linearly polarized light along the horizontal axis x and vertical
axis y (pictorially ↔ and l),

• Linearly polarized light oriented at ±45° w.r.t the x axis, (picto-
rially ↔ and ↔)

• Left and right handed circularly polarized light (LHCP, RHCP)
around the direction of propagation, (pictorially 	 and �).

The polarization states are neatly summarized by the famous classical Stokes
polarization parameters, which together provide a complete description of any po-
larization state. More on their classical derivation, description and use can be found
in Goldstein (2003).

We are interested in a quantum analogue of these vectors. If we write our
quantized electric field component of the light in a form reminiscent of eq. (2.20) we
get,

Ê(z, t) = Exex
(
âxe

iφx(t) + â†xe
−iφx(t)

)
+ Eyey

(
âye

iφy(t) + â†ye
−iφy(t)

)
(2.22)

where we have written the time dependence of a mode âi out in its phase φi(t) =
kz − ωt + δi. With this definition in mind, we define the quantum analogs of the
Stokes vectors, for a field traveling along the z direction, as

Ŝ0(z, t) = 1
2
(
â†xâx + â†yây

)
= 1

2 (n̂x + n̂y) , (2.23a)

Ŝx(z, t) = 1
2
(
â†xâx − â†yây

)
= 1

2 (n̂x − n̂y) , (2.23b)

Ŝy(z, t) = 1
2
(
â†xây + â†yâx

)
= 1

2 (n̂+45 − n̂−45) , (2.23c)

Ŝz(z, t) = 1
2i
(
â†xây − â†yâx

)
= 1

2 (n̂R − n̂L) , (2.23d)

where we have omitted writing the time and space dependence of the field operators.
We can always perform the normalization to photon fluxes of eq. (2.19) for the Stokes
vectors

Ŝi(t) = cŜi(z, t), i ∈ {0, x, y, z} , (2.24)

so that we may talk about the operators in terms of photon fluxes at a particular
point in space.

These Stokes operators of eq. (2.23d) are expressed in the linearly horizontal and
vertical basis. Notice that in this basis Ŝx is the difference in the photon number
flux operators of polarizations aligned to this basis. Similarly, if we rotate basis
into that of ±45° or R, L we find that Ŝy and Ŝz express differences in the amount
of ±45 deg polarized light and RCHP vs LCHP polarized light, respectively. The
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Figure 2.3: Poincare sphere. The Stokes components Ŝj , j ∈ {x, y, z} span the polar-
ization space, which can be visualized as tracing out a sphere of radius Ŝ0. This sphere
is useful in representing the polarization of a light field. Figure is a modified version of
Geek3 (2014).

total number flux of excitations of the field is characterized by Ŝ0 in any basis, since
n̂x + n̂y = n̂45 + n̂−45 = n̂R + n̂L. The details of these transformations are given in
eq. (2.25) below. The operators in these rotated bases are defined by the following
basis vectors

e45,−45 = (ex ± ey)√
2

, (2.25a)

eL,R = (ex ± iey)√
2

. (2.25b)

As we shall see in section 5.5, these Stokes operators present the natural lan-
guage through which the atomic spins and light will communicate. There are strong
analogies between the Stokes operators Ŝi presented here (and in particular the ap-
proximation presented below in section 2.2.3) and the atomic spin operators Ĵi of
eq. (5.23) (where i ∈ {0, x, y, z}). An example of this is that they both obey the
angular momentum commutation relations of (here written for the Stokes operators)

[
Ŝj, Ŝk

]
= iεjklŜl, (2.26a)

[
Ŝ0, Ŝj

]
= 0, j ∈ {x, y, z}, (2.26b)

Ŝ0
(
Ŝ0 + 1

)
= Ŝ2

x + Ŝ2
y + Ŝ2

z . (2.26c)

where the tensor εjkl is the usual anti-symmetric Levi-Civita symbol.
Analogous to how one may represent the states of a two-level spin 1/2 particle

on the Bloch sphere, the Stokes operators describing the polarization state may be
represented on the Poincare sphere shown in fig. 2.3. By construction we can use
the intrastructure of the Pauli matrices defined for the Bloch sphere to define the
Stokes vectors. Exactly how is described in appendix B.4.

From eq. (2.18) it follows that these Stokes operators evolve according to the
some interaction Hamiltonian as

(
∂

∂t
+ c

∂

∂z

)
Ŝ(z, t) = i

~
[
Ĥint, Ŝ(z, t)

]
. (2.27)
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The interacting medium, we will eventually be considering, is an atomic ensemble
contained within a region of 10 mm in length meaning that light travels through it in
33 ps. The dynamics of interest in the atomic ensemble will be on a timescale on the
order of ∼ 1 µs, which is much slower. We will be concerned with observing of the
effect of the atom-light interaction by measuring the light polarization quadratures
and will, therefore, be concerned with variations on the latter timescale. Thus, for
the evolution of the Stokes operators we may in practice neglect the effects of field
retardation (∂/∂t term) and simply write

c∂zŜ(z, t) ≡ c
∂

∂z
Ŝ(z, t) ≈ i

~
[
Ĥint, Ŝ(z, t)

]
. (2.28)

If we say that the region the atoms are confined to is between z = 0 and z = L,
then we can write these input-output relations for all the light polarization quadra-
tures as

Ŝin
k (t) ≡ Ŝk(z = 0, t), (2.29a)

Ŝout
k (t) ≡ Ŝk(z = L, t), (2.29b)

for k ∈ {x, y, z}.
In practice we need to do polarimetry to measure these light polarization quadra-

tures. The procedure and logic to do this is described in appendix B.3 and essentially
involves manipulating the light field by use of polarizers and phase retarders, and
detecting appropriate fields with balanced detectors.

2.2.3 Effective quadrature operators
Suppose we have a large coherent state linearly polarized along x. We can then
treat this field component classically and write âx → iα, where α ∈ R and the
phase is chosen without the loss of generality. If the remaining component in the
field ây is small, then keeping only terms to first order in it, our Stokes vectors can
be re-written as,

Ŝx → Sx = α2

2 , (2.30a)

Ŝy = iα

2
(
â†y − ây

)
, (2.30b)

Ŝz = −α2
(
ây + â†y

)
. (2.30c)

In light of the notation introduced in section 2.1 it is clear that we can express
Ŝy and Ŝz from eq. (2.30) above as effective quadratures of the y polarization mode.
Defining quadratures

X̂ ≡ Ŝz√
Sx

, (2.31a)

Ŷ ≡ − Ŝy√
Sx

, (2.31b)
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we obtain the canonical commutation relation of
[
X̂, Ŷ

]
= i already seen in eq. (2.10).

Thus, by having a strong field, linearized along x, the orthogonal polarization com-
ponents form a convenient effective harmonic oscillator.

Furthermore, on a practical level, realizing quantum limited performance of these
quadratures is not very demanding on a typical laser. Using of a high extinction po-
larizer can easily produce light with sufficiently clean, for our purposes, polarization
quadratures.

As we shall see in chapter 5 these polarization quadratures couple to the de-
grees of freedom of the spin system. Being able to relate these general polarization
quadratures to the classic effective amplitude and phase optical phase quadratures
is important for the mapping required to link the spin and optomechanical systems
in chapter 6.

2.3 Fabry-Pérot cavity
The Fabry-Pérot resonator is one of the simplest interferometers available. In its
purest form it consists of just two parallel reflecting boundaries. In this section
we will consider the basics of such a device where both these boundaries consist of
mirrors.

2.3.1 Classical basics

The basic dynamics of a cavity can be summarized in the following way. Suppose
a plane wave input described by electric field Ein impinges on a mirror of field
reflection and transmission amplitudes (r1, t1). Part of the field will be reflected and
the remaining (in the absence of losses) will be transmitted. Once transmitted the
field meets another mirror with field reflection and transmission amplitudes (r2, t2).
Clearly, part of the field will be reflected and met by the first mirror once more,
this is the field E2. Thus a circulating field is generated that can build up if the
counter propagating fields constructively interfere. This process can be thought of
as the field having an effective roundtrip gain proportional to r1 and r2, as will be
seen shortly. The fields relevant to the description of the cavity are illustrated in
fig. 2.4, and their relation to each other are given by the following relations,

Erefl = it1e
ikLE2 + r1Ein, (2.32a)

E1 = it1Ein + r1e
ikLE2, (2.32b)

E2 = r2e
ikLE1, (2.32c)

Eout = it2e
ikLE1. (2.32d)

The field E1 encapsulates the relevant dynamic. It is the sum of the transmitted
input field itEin and the reflected field having completed a roundtrip r1e

ikLE2. This
can, thus, be thought of as the (“circulating”) intracavity field. The relative power
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Figure 2.4: Basic Fabry-Pérot cavity. The input Ein and reflected Erefl fields are seen
on the left. In the middle, the counter propagating fields E1 and E2 fill the cavity of length
L. The output field is given by Eout. The mirrors themselves have amplitude reflection
and transmission coefficients (ri, ti), i ∈ {1, 2}.

of the input and intracavity fields will be given by

|E1|2

|Ein|2
= t21

1− r1r2e2ikL ≡ gt21 (2.33)

= T1(
1− √R1R2

)2
+ 4 sin2(kL)

, (2.34)

where the enhancement for constructive interference, sin2(kL) = 0, is evident.
This requirement is simply for the accumulated roundtrip phase 2kL = n2π, n ∈
Z. When this is the case the intracavity field is enhanced by a factor |g| =(
1− √R1R2

)−1
, which in principle can be arbitrarily high as the reflectivities of the

mirrors are increased. The intracavity field of eq. (2.34) is plotted in fig. 2.5 where
resonances and an enhancement of the input power are apparent for the above men-
tioned choice of roundtrip phase. The spacing between the consecutive longitudinal
modes is given by the free spectral range (FSR) and the width of the resonances are
given by the cavity bandwidth κ. The ratio of these two define the cavity finesse F

F ≡ FSR
κ/2π , (2.35)

which is a useful quantity providing a numerical intuition for the sharpness of the
cavity enhancement features seen in fig. 2.5.

An FSR simply corresponds to an additional 2π in roundtrip phase. We can
change this phase by either altering the cavity length by δL or by changing the
input field frequency by δν. The FSRs1 corresponding to these are,

FSRδL = λ

2 , (2.36a)

FSRδν = 1/τRT = c

2L, (2.36b)

where we further define the cavity round-trip time τRT ≡ 2L
c
.

1note the FSRδν is not in angular units. This convention is used throughout this thesis.
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Figure 2.5: Cavity resonances. Intracavity field for variable round trip phase 2kL.
Symmetric cavity consisting of mirrors with a power reflectivity of R = R1 = R2. Periodic
cavity enhancements (resonances) of the input power every 2π multiple of the roundtip
phase. Resonance spacing is a free spectral range (FSR) and the width (FWHM) of these
resonances is the cavity linewidth κ.

The FSR is a parameter independent of mirror reflectivities, as is it constitutes a
statement about the roundtrip phase. The cavity bandwidth κ, however, is related
to the amplitude of the roundtrip gain. Thus, it does depend on the mirror choice,
as we shall soon see.

What is not reflected need not be transmitted. In general optical losses are
present and can be characterized by a power loss of δi. The power transmission and
reflections for each mirror i are related by energy conservation through Ri + Ti =
1− δi, which allow us to define a round trip power loss of

δRT = δ0 + (1−R1) + (1−R2) (2.37a)
= T1 + T2 + δ0 + δ1 + δ2 = T1 + T2 + δL (2.37b)

characterizing the fractional power returned per round trip of the cavity. Above δ0
characterizes additional loss not associated with the mirrors and δL simply describes
all power losses not associated with a transmission. This round trip loss is unsur-
prisingly related to the cavity enhancement. In the limit where the transmission and
added losses are small compared to the reflection, they are related via |g| = 2/δRT.

In general, one can relate the cavity finesse2 eq. (2.35) to the total roundtrip
(RT) loss of eq. (2.37) via Ismail et al. (2016)

F = π

2

[
arcsin

(
1− √δRT

2 4
√
δRT

)]−1

≈ 2π
δRT

, (2.38)

where the approximation is very good for small roundtrip losses3.

2so called Lorentzian finesse.
3only a ∼ 10 % error at δRT = 20 %.
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Looking back at eq. (2.34) and fig. 2.5, and assuming a small roundtrip loss
δRT � 1, the resonant power enhancement can be cast in terms of the cavity finesse4,

|E1|2

|Ein|2
≈ 4T1

δ2
RT
≈ 4η1

F
2π . (2.39)

Here we have introduced another important parameter, namely the coupling
efficiency η, characterizing the efficiency of coupling a field through a given port. It
measures how large a fraction of the total cavity round trip loss is given by said port.
This is both of practical and fundamental importance. Practically, it determines how
large an input field is needed to reach a desired intracavity field. Fundamentally, it
acts both as a limited detection efficiency5, as well as a measure of the importance
of the vacuum fluctuations entering from a given port.

For a general port i ∈ (1, 2) we have an in/out-coupling efficiency

ηi = Ti/δRT = κi/κ. (2.40)

Here we have used the fact that total angular loss rate of the cavity κ is, in general,
linearly composed of many component loss rates κi via,

κ = δRT/τRT = κ1 + κ2 + κex (2.41)

κ1,2 = T1,2

τRT
, (2.42)

where κ1,2 are due to the transmissions of mirrors 1 and 2. The remaining term
κex = δL/τRT in an additional loss term that describes all remaining loss.

2.3.2 Classical input-output
To get a idea of how this intracavity field evolves with time let us consider the field
E1 on the time scale of a roundtrip, τRT. From eq. (2.32) we see that

E1(t+ τRT) = it1Ein(t) + r1r2e
2ikLE1(t). (2.43)

We can approximate the time evolution by noting that the round trip time is
very fast compared to the dynamics of interest in the cavity, i.e.

Ė1(t) ≈ E1(t+ τRT)− E1(t)
τRT

(2.44)

≈
(
i∆− κ

2

)
E1 + it1

τRT
Ein (2.45)

=
(
i∆− κ

2

)
E1 + √κ1

Ein

τRT
, (2.46)

4notice that for typical parameters the enhancement is roughly given by F .
5If only one output port is observed
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where we assumed that the mirror reflectance r1,2 ≈ 1 and that laser frequency
ωL = k/c are close6 to the cavity resonance ωc. The difference between these two
frequencies is known as the detuning

∆ ≡ ωL − ωc. (2.47)

Since κ1 = t21
τRT

, we have written √κ1 = it1√
τRT

for didactic purposes. Had we
chosen a different convention7 for the amplitude transmission and reflection coeffi-
cients, we would have found the same evolution equation, but without the awkward
complex unit.

If we Fourier transform eq. (2.46) we find that the intracavity power, is simply
the input enhanced by a Lorentzian of κ (FWHM) centered on Ω = ∆, i.e.

|E1(Ω)|2

|Ein(Ω)|2 /τRT
= κ1

(κ/2)2 + (∆− Ω)2 . (2.48)

Whenever the cavity finesse is high the cavity lineshape is well approximated by
a Lorentzian. In this regime we recover the power enhancement of eq. (2.39) when
∆ = Ω = 0, as expected.

Now let’s see what we may learn about the intracavity field E1 by measuring
Erefl. If we look at the reflected field, and make the same approximations, we find
that

Erefl√
τRT

≈ r1
Ein√
τRT
− √κ1 E1. (2.49)

This is known as an input-output equation and describes how, and at what rate,
information is gathered about the intracavity field. Had we looked at the output
port 2 of the cavity we would have found that the field leaks out with a rate of √κ2 .
Thus, in general the efficiency of a port i to collect the information pertaining to
the intracavity field is given by ηi = κi/κ of eq. (2.40).

This efficiency can, almost at will, be conveniently tailored for cavities. As we
shall shortly see, in the quantum context it is often the case that you wish one port
to be highly overcoupled, i.e. η ≈ 1. For classical fields you occasionally want quite
the opposite. For a cavity probed in transmission we find

|Eout(Ω)|2

|Ein(Ω)|2
= κ1κ2

(κ/2)2 + (∆− Ω)2 (2.50)

= 4T1T2

δRT
= 4η1η2, ∆ = Ω = 0. (2.51)

From which we note one of many useful features. If the cavity has no additional
loss, then η1η2 = η1(1− η1). If we choose η1 = 1/2, also known as critical coupling,

6∆/FSR� 1
7this is done to be consistent with previous work Jayich et al. (2008), Nielsen (2016)
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and probe on resonance ∆ = 0 we will get |Eout(0)|2 = |Ein(0)|2. Thus, the DC
power will be transmitted. However noise at sideband (SB) frequencies Ω 6= 0 will
be suppressed by the cavity Lorentzian. This is a way to filter a laser with classical
noise at SB frequencies.

Looking at the reflected field, on resonance we similarly find that in the low loss
limit,

|Erefl(Ω)|2

|Ein(Ω)|2
= |1− 2η1|2 , ∆ = Ω = 0, (2.52)

from which it is clear that for critical coupling, no light is reflected back. This is a
consequence of the light reflected destructively interfering with the light transmitted
from the cavity in the reflected port.

2.3.3 Practical considerations
Cavity geometry

In practice, the cavity input optical spatial modes are not plane waves but rather
Gaussian, see appendix D.1 for their most basic description. The mirrors can,
therefore, not both be flat to form a stable high finesse resonator. In fact, to
form a stable resonator there are certain requirements, detailed in appendix D.3,
which must be fulfilled. For this work we make use of a stable plano-concave cavity
geometry. Their are infinitely many spatial modes allowed in such a cavity and they
are given by eq. (D.3.31). Of interest to us is the fundamental TEM00 mode as this
allows for the highest optomechanical coupling as described in section 4.5.2.

Achieving high finesse

Furthermore, achieving high finesse is easier said than done. In practice one can-
not make the mirror reflectivities arbitrarily close to 1, although one can through
considerable effort actually get .99999, which is remarkably close, by use of a dis-
tributed Bragg reflector. The conventional technique for optical mirrors, such as the
ones made use of in this work, involves depositing a coating consisting of alternat-
ing layers of high and low index of refraction. This forms an effective high optical
impedance in a narrow frequency band, whose center is defined by the thickness of
the layers.

The limit to achievable finesse arises due to parasitic losses, which also limit the
attainable degree of overcoupling as well as the reachable intracavity power as the
fraction of light not reflected is shared between transmission and loss. As this loss
begins to dominate the transmission, less light is admitted with diminishing returns
from the (slightly) increasing finesse.

Achieving the aforementioned incredible reflections of 1 − R ' 1 ppm requires
tremendous skill and effort with respect to the coating itself. It additionally puts
strict requirements on the optical substrates the coatings are placed upon. At these
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1 ppm levels, controlling various imperfections, which lead to scattering and absorp-
tion, becomes very relevant.

For example, the fraction of scattered light S at a wavelength λ probing a large
flat region of rms surface roughness δ is given by

S = 1− exp

−

(
4πδ
λ

)2

 ≈

(
4πδ
λ

)2

, (2.53)

where the approximation is good in the typical case of small surface roughness δ � λ.
This means that achieving a scatter of < 1 ppm at 852 nm requires a surface

roughness of about δ = 0.7 Å over a large region of the mirror probed by the cavity
mode. Needless to say, making optical substrates achieving these levels of polish
is difficult, but surprisingly (though barely) feasible. The larger the required clear
aperture region is, however, the more challenging.

For this reason the specifics of the desired cavity modes and their extent may
conflict with a desire for a high finesse (low loss) cavity. In particular the cavity spot
size is often restricted by the amount of tolerable loss. This may be due to a limited
region of the mirror coating being low loss, or, in our case typically, an opaque Silicon
frame holding a membrane. The loss from these simple cases be estimated using the
results of appendix D.2 and are useful in considerations of membrane geometries
designs.

2.4 Quantum Heisenberg-Langevin equation
It seems natural to extend the field description above to the quantum domain.
However, fundamental to the classical interpretation is that the field in the cavity
leaks out and is “lost” to the environment. Treating this loss on the quantum
mechanical level is non-trivial, but can be done in a rather intuitive sense as we
shall see.

Central to describing this dissipation is the idea of a reservoir (bath1) to which
your system is coupled. It is through this coupling that the system decays by leaking
into the bath. The fluctuation-dissipation theorem demands that the bath also leaks
into the system. The effect of this is a fluctuating driving term, referred to as the
Langevin force. This fluctuating force also ensures that the commutation relations
of eq. (2.1) are conserved in the presence of loss.

In the short exposition we will follow the approach described in Gardiner and
Collett (1985); Lukin (2005). In doing so, we will assume that this bath is an infinite
reservoir with no memory, i.e. a delta correlated in time. This is of course not true
in general, but is a good model so long as the characteristic time scale of the bath
is much shorter than that of cavity decay, which is the case for all the oscillators we
will consider. This type of reservoir is known as Markovian.

1These are used interchangeably, but refer to one and the same.
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Suppose we wish to describe the dynamics of a system S coupled to a reservoir
R, then the full Hamiltonian will be given by

Ĥ = ĤS + ĤS-R + ĤR, (2.54)

where ĤS-R describes the system–reservoir interaction. The evolution of an operator
Ôµ is then given by,

d
dtÔµ = i

~
[
ĤS, Ôµ

]
+ i

~
[
ĤS-R, Ôµ

]
+ i

~
[
ĤR, Ôµ

]
. (2.55)

We will in this thesis only be interested in the dynamics of system operators,
and thus we can disregard ĤR in the following discussion.2

We can, in general, write the system–reservoir Hamiltonian in terms of system
and reservoir operators Ŝ and R̂, respectively, as

ĤS-R = −(R̂†Ŝ + R̂Ŝ†). (2.56)

From here we can solve the evolution equation of eq. (2.55) for a general system
operator Oµ and get the general quantum Heisenberg-Langevin equation given by

d
dtÔµ = d̂µ + f̂µ, (2.57)

d̂µ = i

~
[
Ĥsys, Ôµ

]
+ decay. (2.58)

Here d̂µ represents the evolution of the field operator as determined by the system
Hamiltonian Ĥsys and the decay. The Langevin force is a stochastic force with
〈f̂µ〉 = 0 and correlation function given by

〈f̂µf̂ν〉 = 2Dµνδ(t− t′). (2.59)

We can evaluate the correlation function by application of the fluctuation dissipation
theorem, which, assuming the bath is Markovian, is given by the generalized Einstein
equation of

2Dµν = d
dt〈ÔµÔν〉 − 〈Ôµd̂ν〉 − 〈d̂µÔν〉. (2.60)

Since the reservoir is simultaneously the drain into which the system mode Ŝ
decays, and the source of the stochastic driving Langevin force f̂ , we can express
the reservoir operator R̂ in terms of these as

R̂(t) = i~
(
γ

2 Ŝ + f̂(t)
)

(2.61)

2Reservoir engineering is an interesting topic in its own right. In optomechanics, to pick an
example, it may be used to facilitate a two-mode squeezed states between two mechanical oscillators
as described in Woolley and Clerk (2014).
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Figure 2.6: Quantum cavity description. Input modes ŝin,j couple through ports j to
force the intracavity field â. Drawn are only input modes from the cavity ports labeled
j = 1, 2. In general, loss in the cavity not due to transmission through the mirrors
constitutes yet another port, which although not illustrated would be in addition to 1 and
2.

where γ is the power decay rate of the system mode Ŝ into reservoir R̂.
We can write down the Heisenberg-Langevin equation of motion for a general

system operator Ô as

d
dtÔ = i

~
[
ĤS, Ô

]
+
(
γ

2 Ŝ
† + f̂ †

) [
Ô, Ŝ

]
−
[
Ô, Ŝ†

] (γ
2 Ŝ + f̂

)
. (2.62)

This Heisenberg-Langevin evolution equation allows us to describe the evolution
and dissipation of a cavity or mechanical mode quantum mechanically. Both of
these will also serve as an excellent illustration of the quantum Heisenberg-Langevin
equation in action!

2.5 Quantum description cavity modes

2.5.1 Cavity Evolution
Using the classical system as a guide, we now wish to map into the language of
the Heisenberg-Langevin approach described in section 2.4. The setup is illustrated
in fig. 2.6. We can easily identify the fields outside the cavity entering through
port j ∈ (1, 2) as reservoirs whose operators we can write as i~√ηjκ ŝin,j(t). The
prefactors are added in anticipation of a result akin to that of the classical evolution
found in eq. (2.46). The system operator is of course the cavity operator, â and thus
we can write out the Hamiltonian as,

Ĥ = ĤS + ĤS-R + ĤR, (2.63a)
ĤS = Ĥcav = ~ωcâ†(t)â(t), (2.63b)

ĤS-R = Ĥdrive = −i~
∑

j

√
ηjκ

(
ŝin,j(t)â†(t)− ŝ†in,j(t)â(t)

)
, (2.63c)

ĤR = Ĥlaser =
∑

j

~ωL,jŝ
†
in,j(t)ŝin,j(t). (2.63d)

The time dependent, Heisenberg picture, field operators in eq. (2.63) evolve on
the time scale of their optical frequency which is typically much faster than the
timescales of interest here. Any such slowly varying residual can be isolated from
the fast optical dynamics if we move into a rotating frame at the laser and input
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field frequencies. Doing so we find these residual slowly varying operators and a
simplified Hamiltonian of

Ĥ = ĤS + ĤS-R + ĤR, (2.64a)

ĤS = Ĥcav = −∆â†â− iκ

2 â
†â, (2.64b)

ĤS-R = Ĥdrive = i~
∑

j

√
ηjκ

(
ŝ†in,jâ− ŝin,jâ†

)
, (2.64c)

ĤR = 0. (2.64d)

This is done by a unitary transformation, the procedure which is described in ap-
pendix E.1. The operator needed to construct the unitary matrix is Â = ~ωLâ

†(t)â(t)t+
∑
j ~ωL,jŝ

†
in,j(t)ŝin,j(t). Going forward we adopt a slightly sloppy, but more readable,

notation for the subsequent operators now in the rotating frame. This choice is also
described in appendix E.1.

If we now solve for the evolution of the cavity mode â according to the Hamilto-
nian of eq. (2.64) according to eq. (2.55) adding the mode damping, or by applying
eq. (2.62) using Ŝ = â and f̂ = ∑

j
√
ηjκ ŝin,j, we get

˙̂a =
(
i∆− κ

2

)
â+

∑

j

√
ηjκ ŝin,j. (2.65)

This is the Heisenberg-Langevin equation for the cavity mode. It is, by construction,
clearly of the classic form given by eq. (2.58). Furthermore, eq. (2.65) is reminiscent
of the classical result of eq. (2.46). If the input modes were comprised of large mean
fields then we recover this classical result.

This is often the case as the input fields are typically a coherent field from a laser
with a large mean field and quantum fluctuations on top. In the case of a coherent
tone this is the typical description and is indeed referred to as “displaced vacuum”,
see fig. 2.1. Such a scenario would also give rise to a large intracavity mean field.
We thus cast the fields â and ŝin,j as

â = ā+ δâ, (2.66)
ŝin,j = s̄in,j + δŝin,j. (2.67)

We thus get two equations of motion, one for the mean field, and one for the
quantum fields. These are given by

˙̄a =
(
i∆− κ

2

)
ā+

∑

j

√
ηjκ s̄in,j, (2.68)

δ̇â =
(
i∆− κ

2

)
δâ+

∑

j

√
ηjκ δŝin,j. (2.69)

Where eq. (2.68) reproduces the classical heuristic result of eq. (2.46) in the case
of a single input. We simply identify s̄in = Ein/τRT and ā = E1. This also lets us



30

notice that these fields are defined differently. The input modes ŝin,j describe photon
fluxes whereas the intracavity field describes a photon number1.

Suppose we consider the effect of having just one input, j = 1, and we consider
the steady state case ˙̄a = 0, then

n̄ ≡ |ā|2 = η1κ

∆2 + (κ/2)2
Pin

~ωL
, (2.70)

Pin ≡ |s̄in,1|2 ~ωL, (2.71)

which if we consider the cavity on resonance and compare to the input power, gives
Pcirc

Pin
= ~ωLn̄/τRT

Pin
= 4η1

F
2π . (2.72)

This is just as we found in eq. (2.39). In this case we cast circulating power in terms
of the intracavity field on the timescale of the roundtrip time.

The main difference between the classical argument and the quantum one is, that
you will always have vacuum leaking in from both ports in proportion to the ports
coupling efficiency ηj and the cavity loss κ. Notice that in eq. (2.69) the input modes
play the role of the thermal Langevin force of the eq. (2.58), where δŝin,j = f̂j/

√
ηjκ .

Expressing the correlation functions of these we find the expected delta-correlated
bath as a result of the commutation relations of the reservoir modes,

〈ŝin,j(t)ŝ†in,j(t′)〉 = (n̄j(ω) + 1) δ(t− t′), (2.73a)
〈ŝ†in,j(t)ŝin,j(t′)〉 = n̄j(ω)δ(t− t′), (2.73b)

where n̄j(ω) = 〈ŝ†in,jŝin,j〉 is the mean occupation of at a particular frequency ω. This
occupation is given by the bosonic thermal occupation of

n(ω) = 1
exp(~ω/kBT )− 1 →





kBT
~ω , for kBT � ~ω

0, for kBT � ~ω
(2.74)

where T is the temperature of the bath. For the optical frequencies relevant to
this work, the mean occupation is absolutely negligible2. However for experiments
utilizing microwave sources at say 1 GHz, you would already have a mean thermal
occupation of 1 at 70 mK. Thus why most microwave quantum optomechanics
experiments are done in a dilution refrigeration environment.

Our cavities will have decay rates of < 100 MHz, which is very small compared
to the optical frequencies ∼ 350 THz used to probe. This can be characterized by
the cavity Q-factor, similarly defined to the mechanical Q-factor of eq. (3.40) as
Qcav = ωc/κ, which is > 106. Thus, we can to a very good approximation say that
the optical thermal occupation is spectrally flat across the cavity bandwidth.

1This makes good sense in the classical picture too. The input field is a traveling wave, thus,
best described by an input power, whereas the intracavity field is a standing wave best described
by its energy.

2n(852 nm) ∼ 10−26 at T = 300 K.
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Figure 2.7: Intracavity field phase and amplitude. Intracavity field phase (left) and
amplitude (right) as a function of cavity detuning. The field is given by eq. (2.76) and
the phase is measured relative to the input field s̄in. For the amplitude plot we set κ = 1
and s̄in = 1.

2.5.2 Cavity input-output

Just as we saw in section 2.5.1, the quantum equations of motion can be motivated
from the classical. So we write the input-output equations of the cavity in direct
analogy to the classical result of eq. (2.49) as

ŝout,j(t) = ŝin,j(t)−
√
ηjκ â. (2.75)

These input-output relations can also be used to derive the steady state mean
reflected and transmitted field equations of eqs. (2.51) and (2.52) as is easily checked
by squaring the eq. (2.77) and eq. (2.78). If we consider a single input, with coupling
efficiency η, and mean input field s̄in, then

ā =
√
ηκ

(κ/2)− i∆ s̄in, (2.76)

s̄refl = s̄in −
√
ηκ ā, (2.77)

s̄trans = −
√

(1− η)κ ā. (2.78)

The amplitude and phase of the mean intracavity field ā relative to the input field
s̄ is shown in fig. 2.7. The transmitted field s̄trans has the same relative phase but a
different amplitude as is clear from eq. (2.78).

Unlike the intracavity or transmitted field, the phase of the reflected field s̄refl
depends on the coupling efficiency η since there is an interference with the light
immediately reflected. In the regime of η > 1/2 the reflected field is always π phase
shifted on resonance as is seen in fig. 2.8. The returned power is also shown and
varies with the coupling efficiency.

Cavity coupling regimes

Three regimes present themselves from the perspective of the reflected field. For
η > 1/2 we are “overcoupled” and see a large contribution from the intracavity
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Figure 2.8: Reflected power and phase. The mean field reflected power (left) and
phase (right) relative to the input field as function of cavity detuning as described by
eq. (2.77). In both cases the overcoupling η of the cavity is varied.
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Figure 2.9: Reflected field phase for variable overcoupling. Reflected field phase of
eq. (2.77) as a function of cavity detuning ∆ and cavity overcoupling η. The phase wraps
around at π (black) for visual ease.

field. When η = 1/2 we are critically coupled3, and all input power is lost in the
cavity (to the transmitted port or elsewhere). Finally there is the undercoupled
regime of η < 1/2. The phase of the reflected field for all these conditions can be
seen in fig. 2.9.

From the quantum perspective it is clear from eqs. (2.77) and (2.78) that the
coupling efficiency η effectively sets the limit for the detection efficiency of the
intracavity field. This loss will mask the quantum correlations of the intracavity
field as seen in e.g. the sub-poissonian light statistics observed in section 4.4. Thus,
for many quantum optics experiments the overcoupled regime is preferable.

For the scheme of quantum back-action evasion in section 6.2 the cavity is probed
in reflection, and we wish to measure both the intracavity field as well as the input
field. In this case the highly overcoupled regime is preferable and we can write

3Also known as impedance matched
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Figure 2.10: On resonance reflected power. Reflected power (red curve) on cavity
resonance according to eq. (2.79). Left: Varying the overcoupling from the undercoupled
regime of η < 1/2, through the critical coupling η = 1/2 into the overcoupled regime
η = 1/2. Right: Closer view at the highly overcoupled regime. Here the reflected power
goes as ≈ η4 and the approximation of the exact η4 dependence (dashed grey line) is very
good within the typically relevant regime of η > 95 %.

η = (1− ε) ≈ 1, where ε � 1 is a power loss. The detection efficiency of the input
field reflected off the cavity (on resonance, ∆ = 0 for simplicity), is

|s̄refl|2

|s̄in|2
= (1− 2η)2 ≈ (1− 4ε) ≈ η4. (2.79)

The on resonance reflected power of eq. (2.79) is shown in fig. 2.10 and can be
compared to the power loss of fig. 2.8. Clearly, if the cavity is operated detuned, as
turned out to be desirable in results to be discussed in chapter 6, this loss can be
reduced.

Phase of reflected field

We will be concerned with the effect of these phase rotations on the quadrature
operators. The input-output relations of eq. (2.75) are trivially extended to that of
field amplitude and phase quadrature operators, defined by eq. (2.8), such that

(
X̂out,j(t)
Ŷout,j(t)

)
=
(
X̂in,j(t)
Ŷin,j(t)

)
− √ηjκ

(
X̂cav

Ŷcav

)
, (2.80)

where X̂cav, Ŷcav are a cavity amplitude and phase quadratures. Supposing again
that we have only a single input they are predictably related to their input via

(
X̂cav

Ŷcav

)
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
X̂in

Ŷin

)
, (2.81)

where the rotation by θ = Arg(ā/s̄in) is the phase rotation of the input field by the
cavity. It is given by,

tan(θ) = ∆
κ/2 , (2.82)
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which is shown in fig. 2.7. For detunings comparable to the cavity half-bandwidth
this rotation is very significant. In fact when |∆| = κ/2 the intracavity quadratures
will be an equal mix of the input amplitude and phase quadratures. In the far
detuned regime of |∆| � κ/2 the roles are completely swapped, such that the
intracavity amplitude quadrature is simply given by the input phase quadrature,
and vice versa. The quadrature rotation will be important once the mechanical
oscillator is introduced to the cavity.

The reflected field quadratures can likewise be viewed as rotated inputs given by

X̂out = Rᵀ(φ)X̂in, (2.83)

R(φ) ≡
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, (2.84)

where φ is shown in fig. 2.9 and is given by

tan(φ) = −2ηx
x2 + (1− 2η) , x = ∆

κ/2 . (2.85)

Notice that for η ≈ 1 and ∆ � κ/2 the reflected field simply acquires the phase
shift φ ≈ 2θ = ∆/κ, i.e. getting the same small rotation going in and out of the
cavity. In eq. (2.84) we have written the input and output quadratures in vector
form where

X̂in,out =
(
X̂in,out

Ŷin,out

)
. (2.86)



Chapter 3

Mechanics

Integral to the work of this thesis is the behavior and description of a traditional
mechanical harmonic oscillator. It forms the oscillator, originally discussed in the
motivational example of section 1.1, the motion of which we wish to measure as
precisely as possible. Experimentally we chose a highly stressed, ∼ 60 nm thick
and ∼ 500 µm wide, stoichiometic silicon nitride1 membrane to be this canonical
oscillator. This choice is made due to its very low optical as well as mechanical
losses, a crucial resource in the quantum limited sensing.

The extreme ∼ 104 aspect ratio between the membrane side length and its thick-
ness, as well the high stress, is why we call it a membrane and suggest that the
dynamics of thin plates are applicable to describe their behavior. This membrane
and the larger Si device supporting it can be seen in fig. 3.8 and is the membrane
used for the results presented later in section 4.4 and chapter 6.

In this chapter we will start off by describing membranes as stressed thin plates.
We will then see how such a device can be treated as a effectively 1D damped
harmonic oscillator and then discuss its quantized equations of motion.

The importance of the mechanical quality factor (a measure of the mechanical
dissipation) will then be highlighted followed by a discussion of the various losses
which impact it. Finally we will discuss the physical implementation of our mem-
brane device and its fabrication. We will conclude by reflecting on the past, present
and future generation of membrane devices used.

3.1 Membranes

3.1.1 Simple description
Consider a thin plate of uniform density ρ and isotropic in-plane stress σ a sketch of
which is shown in fig. 3.1. For small out of plane deviations w(x, y, t) of the mem-
brane from equilibrium at z = 0 we can naively postulate a generic wave equation

1Although the chemical composition is Si3N4 we will simply write SiN throughout this work.

35
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Figure 3.1: Membrane sketch Sketch of a thin plate of height h and side lengths of Lx
and Ly. The effect of an out of plane displacement w is shown by the curved solid blue
lines over the dashed equilibrium values. The inset to the right shows a profile view of an
example of out of place displacement.

to describe the motion. It will be given by

∇2w = 1
c2 ẅ, (3.1a)

c2 ≡ σ/ρ, (3.1b)

where the speed of sound c is given by the Newton-Laplace equation.
If we enforce the boundary conditions of zero out of plane displacement at the

edges of the membrane and assume a separable solution of the form

w(x, y, t) = q(t)φ(x, y), (3.2)

we find that the displacement will spatially be determined by (given a suitable choice
of origin)

φmn(x, y) = sin(mkxx) sin(nkyy), {m,n} ∈ Z (3.3a)

kx = π

Lx
, ky = π

Ly
. (3.3b)

The allowed wave-vectors mkx and nky are quantized by the boundary conditions
of

φmn(0, 0) = φmn(Lx, 0) = φmn(Lx, Ly) = φmn(0, Ly) = 0, (3.4)

where Lx and Ly are the membrane dimensions along x and y respectively.
As perhaps could be expected the quantized wave-vectors result in a mode de-

pendent time evolution of amplitude qmn. For each mode these are given by

qmn(t) = qmn(0) cos(Ωmnt) (3.5)

where Ωmn is the angular mode frequency. This solution assumes an initial arbitrary
phase choice of q̇mn(0) = 0. In general, the motion will of course be a superposition
of all modes with each their own phase. However, we will in practice be concerned
with individual modes and thus this complication is omitted.
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Figure 3.2: Membrane mode examples. A snapshot of simplistic motion (meshed
sheet) for a selection of membrane modes characterized by mode numbers (m,n) according
to eq. (3.2). Going left to right and top to bottom we have (1,1), (1,2), (2,2) and (3,3).
For each, red is considered maximum displacement whereas blue is minimal. The black
lines show the profile of motion along the x and y axis of the membrane at maximum
displacement. The dashed grey lines shown the same but with a phase lag of π. Below
each membrane is a 2D displacement map.

A selection of the spatial modes allowed eq. (3.3) are shown in fig. 3.2. From the
profiles of the modes along the x or y direction it is clear that the mode indexes m
and n denote the number of antinodes along these axes respectively.

The angular frequency of these modes are given by

Ωmn = c
√

(mkx)2 + (nky)2 = πc

√√√√m2

L2
x

+ n2

L2
y

, (3.6)

which for a square membrane of L = Lx = Ly simplifies to,

Ωmn = Ω11

√
m2 + n2

2 , Ω11 =
√

2 πc
L

, (3.7)

where Ω11 is the membranes fundamental frequency. The membranes used in this
work1, described in section 3.10, have a fundamental mode frequency of about
0.8 MHz. Furthermore, in chapters 4 and 6 we will be working with the (1, 2) mode
which has a frequency of about 1.3 MHz.

1Stress from fabrication is σ = 1 GPa and stoichiometric SiN has a density of ρ = 3200 kg/m3,
Pierson (2000).
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3.1.2 Detailed description
The simplistic wave equation of eq. (3.1) turns out to be an excellent approximation
to the actual dynamics of the membranes under consideration. The full expression
for a small out of plane displacement w of a membrane of uniform thickness h is
given by Landau L.D. (1986); Leissa (1993)

− ∂2

∂x2
β

(
Dαβ

∂2

∂x2
α

)
w + h

∂

∂xβ

(
σαβ

∂

∂xα

)
w = ρẅ, α, β ∈ {x, y}, (3.8)

where the Einstein summation convention is implied and h is the membrane thickness
as shown in fig. 3.1. Dαβ is known as the flexural rigidity and σαβ the stress, both
given along a particular axis denoted by the subscripts. For the membranes of
interest in this work, which are based on amorphous SiN, we can reasonably assume
that the density and tension are isotropic, i.e. Dαβ = D and σαβ = σ. Thus, we can
simplify eq. (3.8) to

− D
σh
∇4w +∇2w = 1

c2 ẅ, (3.9)

where ∇4 ≡ ∇2 (∇2) is the biharmonic operator and c is the speed of sound as
defined in eq. (3.1).

The additional term in eq. (3.9) can be understood by considering the now
modified dispersion relation. If we consider a square membrane with2 wavevector
k = kx = ky, and frequency Ωmn, for simplicity we see that3

Ω2
mn =

(
m2 + n2

)
k2
(

1 + D

hσ

(
m2 + n2

)
k2
)
c2 ≡ k2

eff,mnc
2 (3.10)

The effect is clearly an increased effective wavevector keff,mn, which leads to an
increased energy cost ∝ k2. This can be associated with the curvature of a given
mode, which is proportional to the second spatial derivative – thus k2.

Since this effect is related to the bending of a structure one would naively expect
it to depend on the materials Youngs modulus E and Poisson ratio ν. It should also
scale with the thickness as the bending cost associated with a thicker base should be
higher for a given k (which is independent of thickness). In fact the flexural rigidity
is defined as,

D ≡ Eh3

12 (1− ν2) . (3.11)

We can quantify the impact of this additional term via the modification is has
on the dispersion relation. Had we considered the impact more generally we would
have found the relevant dimensionless parameter for a given mode (m,n) to be

Rm,n = D

σh

(
m2 + n2

)
k2 ∝

(
h

L

)2

. (3.12)

2The extension is trivial to different side lengths is trivial.
3Fourier transforming we simply have d

dx → i(mkx) and d
dt → iΩmn. See eq. (A.1.7).



3.2. Effective 1D harmonic oscillator 39

In this work we will generally be concerned with low order modes, m,n ∼ 1,
where R ∼ 10−5. Indeed we would need to make our membranes 10 times larger
or work with modes of m,n ∼ 10 for this even to be ∼ %� effect. Thus, the
approximation originally made in eq. (3.1) and the derived expressions are excellent
approximations for our purposes here.

Furthmore, there are no real benefits to the work here in making the membranes
thicker. In fact, due to the current advances of Tsaturyan et al. (2017), thinner
membranes are a likely choice for future endeavours.

3.2 Effective 1D harmonic oscillator
It is often useful to recast the general 3D dynamics of eq. (3.9) into an effective 1D
harmonic oscillator. This will be especially useful for this work as we will eventually
only probe the membrane motion at a point. The modes of this effective 1D oscillator
will effective masses of meff, which may be different from the physical mass of the
entire membrane mphys.

For our simple geometry we can approximate this effective mass by considering
the solution to eq. (3.1). From the separable solution of eq. (3.2) we can integrate
the potential energy contribution of each oscillating mass element comprising the
entire volume V of the membrane. This gives the total potential energy of a given
mode (m,n) as

Umn(t) = 1
2Ω2

mn

∫
w2(x, y, t) dV (3.13)

= 1
2
ρLxLyh

4 Ω2
mnq

2(t), (3.14)

which evidently doesn’t depend on which mode number is being considered.
We can compare this potential to that of a traditional 1D harmonic oscillator of

mass m and displacement x(t) with potential energy1 Umn = 1
2mmnΩ2

mnx
2(t). Doing

so, we identify that we can assign our 3D membrane the effective 1D mass of

meff = ρLxLyh

4 = 1
4mphys, (3.15)

While the effective mass for a rectangular membrane is independent of the mode
index, this is not true in general. The effective mass of axisymmetric modes of
circular membranes decreases for higher mode numbers (more radial anti-nodes) as
is shown and discussed in Wilson (2012).

We can also define an effective spring constant Keff,mn, which is related to the
eigenmode frequencies through the dispersion relation of eq. (3.10) as,

Ωeff,mn = keff,mnc =
√
Keff,mn

meff,mn
. (3.16)

1An unfortunate case of notation. mmn is the mass m of mode (m,n) written as a subscript.
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We can, thus, write down a 1D simple harmonic oscillator equation of motion for
the membrane in the absence of any driving force or damping as

meffq̈mn(t) +Keff,mnqmn(t) = 0. (3.17)

3.2.1 Galerkin’s Method

For more complicated mechanical structure, we can, in general, calculate the effec-
tive mass and spring constant using Galerkin’s method Schmid et al. (2016). This
approach is readily implemented in finite-element modeling of non-trivial geometries,
making it possible to define effective parameters for more complicated membrane
designs. This is particularly important for the designs of new membranes which are
based on Tsaturyan et al. (2017).

With Galerkin’s method the effective parameters can be calculated via integrat-
ing the normalized spatial mode function φ(x, y) as follows

meff,mn = ρ
∫
φ2
mn dV, (3.18a)

Keff,mn = σ
∫ (

D

σh
φmn∇4φmn − φmn∇2φmn

)
dV, (3.18b)

which for the standard square membrane of fig. 3.1 reproduces the results of eqs. (3.15)
and (3.16).

Note that the effective spring constant is related to the effective wave-vector by

Keff,mn = (meff,mnc
2)keff,mn. (3.19)

We can write eq. (3.18a) in a more suitable fashion for use in finite element
modeling. Also allowing the density ρ to vary with position (r) we have

meff =
∫
ρ(r)

(
|Q(r)|
|Q(r)|max

)2

dV, (3.20)

where the mode displacements Q are integrated over the entire structure of volume
V .

3.3 Damped harmonic oscillator
So far we have said nothing about the forces and interactions that invariably damp
the motion of any real world membrane. These will show up in our effective 1D
harmonic oscillator equation eq. (3.17) under the collective umbrella of an effective
dissipation rate γm. This effective damping rate will contain contributions from
many different sources of various origins. A selection of the damping mechanisms
will be discussed later in this chapter.
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Figure 3.3: Magnitude and phase of a damped harmonic oscillator.Susceptibility
χ(Ω), eq. (3.23), for a unit mass damped harmonic oscillator of different damping rates
given relative to mechanical frequency by Q = Ωm/γm. Left: Magnitude |χ(Ω)|, Right:
Phase Arg(χ(Ω)).

Let us assess the impact this damping has on the mechanical oscillator by con-
sider just a single mode of the effective 1D oscillator. Suppose the mode has fre-
quency ΩM , viscous damping rate1 γM and a mass2 m. If the mode is subject to
an external force Fext then the displacement q(t) will obey the damped harmonic
oscillator equation of

q̈(t) + γM q̇ + Ω2
Mq = Fext/m. (3.21)

Consider now this motion in the Fourier domain3. Here the motion of q at a
Fourier frequency Ω is given by,

q(Ω) = χ(Ω)F (Ω), (3.22)

χ(Ω) ≡ m−1

Ω2
M − Ω2 + iΩγM

, (3.23)

where the susceptibility χ(Ω) has been introduced and is shown in fig. 3.3 for various
γM . It is clear that χ becomes sharper for smaller γM and is centered on the reso-
nance frequency. The oscillator’s response near the resonance frequency is enhanced
whilst the off-resonant response remains unchanged. At very low frequencies (DC)
the response is m−1/Ω2

M and for Fourier frequencies Ω � ΩM we have −m−1/Ω2.
From these off resonance limits it is also clear that the phase of the oscillators
response goes from in phase to completely out of phase as we cross the resonance.

3.4 Equations of motion
Now, suppose that we take this effective 1D harmonic oscillator and quantize its
motion. We, thus, have the following system Hamiltonian, omitting the time depen-

1γM is the rate at which mechanical power decays.
2This is, of course, the effective mass but for simplicity we henceforth drop this qualifier.
3 d

dt → iΩ with our definition of the Fourier transform.
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dence for simplicity,

Ĥ = p̂2

2m + 1
2mΩ2

mq̂
2. (3.24)

The position q̂ and momentum p̂ operators for a particular mode are described
by an underlying field operator b̂, which obeys the boson commutation relations of
eq. (2.1). Just like in section 2.1 they describe the real and imaginary components
of b̂, i.e.

q̂ = xzpf
(
b̂+ b̂†

)
, (3.25)

p̂ = pzpfi
(
b̂† − b̂

)
. (3.26)

We have introduced the zero-point motion, which is simply the variance of the
mechanical oscillator in the ground state, e.g. Var(q̂) = 〈0| q̂2 |0〉 = x2

zpf (similarly
for the momentum). These quantities are given by

xzpf =
√

~
2mΩm

, (3.27)

pzpf = mΩmxzpf, (3.28)

and represent a natural scale by which we may reference mechanical motion. For a
1 MHz mode this ground state temperature1 is around 25 µK. This is a useful order
of magnitude to keep in mind when considering a required cooling power to reach
the ground state regime.

These zero point motions also allow us to define dimensionless mechanical quadra-
ture operators,

Q̂ ≡ 1√
2
(
b̂+ b̂†

)
= q̂√

2 xzpf
, (3.29a)

P̂ ≡ i√
2
(
b̂† − b̂

)
= p̂√

2 pzpf
, (3.29b)

exactly as with light as defined in eq. (2.10). Thus, they also obey the same canonical
commutation relations. We can now write the Hamiltonian of eq. (3.24) in terms of
these dimensionless operators – just like for light in eq. (2.2) – as,

Ĥ = ~Ωm

2
(
Q̂2 + P̂ 2

)
= ~Ωm(b̂†b̂+ 1/2). (3.30)

The amount of excitations in the mode is given by the phonon number operator
n̂m = b̂†b̂.

If we look back at eq. (3.21) we see that membrane is, in fact, technically a
resonator. That is, it needs a driving force for any motion to exist2. This external
driving force in the absence of any other coupling is the thermal environment.

1For some temperature T we can say kBT = 1
2~Ωm.

2Throughout this thesis we will, nonetheless, refer to it as an oscillator.
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The inescapably ever finite coupling to this bath gives rise to input driving fluc-
tuations and also the dissipation of mechanical energy as dictated by the fluctuation-
dissipation theorem. We can model this bath as composed of independent harmonic
oscillators whose position are coupled by a spring3 to our system. In the language
of section 2.4, this system-reservoir interaction can be described by the Hamiltonian
Ford et al. (1988)

ĤS-R =
∑

j

p̂2
j

2mj

+ kj
2 (q̂j − q̂) . (3.31)

This has the canonical form of eq. (2.56), where R̂ = b̂j + b̂ and Ŝ = b̂.
Looking at eq. (3.21) it is easy to motivate our quantum Heisenberg-Langevin

equations. They are given by
˙̂
Q = ΩmP̂ (3.32a)
˙̂
P = −ΩmQ̂− γmP̂ + F̂ (3.32b)

where the first follows from the ˙̂q = p̂/m. The second is simply eq. (3.21) with
an external Langevin force F̂ . As the dissipation occurs in only one mechanical
quadrature the input fluctuations also only appear in this quadrature (at twice the
rate). Often the rotating wave approximation is employed where losses (and thus
input fluctuations) are shared among the two quadratures equally.

In the case of coupling to the mechanical thermal bath only, this Langevin force
is a thermal force F̂ th,in with coupling rate

√
2γ , i.e.

F̂ =
√

2γ F̂ th,in. (3.33)

This thermal force has a correlation function given by Giovannetti and Vitali (2001)
of

〈F̂ th,in(t)F̂ th,in(t′)〉 =
∫ ∞

−∞
eiΩ(t−t′)

(
coth

(
~Ω

2kBTbath

)
+ 1

)
dΩ
2π

≈ (n̄bath + 1/2)δ(t− t′).
(3.34)

The approximation is made for a bath with a high mean occupancy (kBT � ~Ωm)4
and we have treated the bath as effectively Markovian. This is justified as the
thermal bath time scale is on the order of ~/(kBT ) ∼ 2 ps at T = 4 K, whereas the
typical decay time scales relevant for this work are 1/γm > 1 s.

For these dimensionless operators it is more suitable to define a dimensionless
susceptibility (dimensionfull one defined in eq. (3.23)) as

χ(Ω) = Ωm

Ω2
m − Ω2 + iΩγm

. (3.35)

3with constant kj = mjΩj
4coth(x) = 1

x + x
3 + ...



44

Under this definition we have for the relation, in the Fourier domain, for the dimen-
sionless position operator

Q̂(Ω) = χ(Ω)F̂ (Ω) (3.36)

in nice analogy with the dimensionfull expression of eq. (3.22).
The coupling to the thermal bath is synonymous with dissipation. As will be

described shortly in section 3.5.2 we are typically interested in the case where this
dissipation is very small, γM � ΩM . Thus, we will often be interested in the
response near resonance, i.e. around Ω ≈ Ωm where the response is the greatest. In
this regime we can make the following useful approximation,

χ(Ω) ≈ 1/2
(Ωm − Ω) + iγm/2

= L(Ω)
γm

, (3.37)

where the response approximates that of the complex Lorentzian L(Ω) defined as

L(Ω,Ωm, γm) ≡ γm/2
(Ωm − Ω) + i(γm/2) . (3.38)

Care should be taken when using the Lorentzian approximation since the full
susceptibility of eq. (3.35) has a flat low frequency response as well as a two poles
(Ω = ±Ωm). The Lorentzian approximation of eq. (3.37) is very useful, but does
not caption these two features. An important result to bare in mind is the integral
over the susceptibility, which gives

∫ ∞

−∞
|χ(Ω)|2 dΩ

2π = 1
2γm

. (3.39)

The integral over the approximate susceptibility eq. (3.37) falls a factor of 2 short
since it is missing a negative frequency pole.

3.5 Mechanical quality factor

3.5.1 Basic description
When considering the susceptibility it is natural to cast the damping rate relative
to the resonance frequency. This quantity is known as the Q factor and is defined
as

Q ≡ 2π U

∆U ≈
Ωm

γm
, (3.40)

where the approximation is valid in the regime of low damping. This dimensionless
quantity is defined by the ratio of the total energy stored U to that lost per oscillation
∆U . From this perspective three distinct regimes emerge, namely the overdamped
(Q < 1/2), critically damped (Q = 1/2) and underdamped (Q > 1/2) regimes. Each
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are interesting in their own right, but only the underdamped case will be relevant
for describing the mechanical oscillator. In this regime the system undergoes many
oscillations before being significantly damped. The importance of this regime can
be understood as follows.

A mode with higher Q dissipate less stored energy per oscillation cycle. As this
dissipative loss is due to a coupling with the environment it entails a non-unitary
evolution of motion. This is (typically) undesirable and the Q, as we shall see shortly
in section 3.5.2, will set the relevant time scale for which quantum behavior should
be expected.

Since contributions to the total damping rate add linearly, thus, contributions to
the Q add in parallel. We may further differentiate between internal and external
sources of loss, writing

Q−1 =
∑

i

Q−1
int,i +

∑

i

Q−1
ext,i, (3.41)

This is typically done as the former is set by the material (and its quality) used
whereas the latter is a consequence environmental factors, which in principle can
be manipulated by a crafty experimentalist. We will explore a few relevant cases of
both types of loss shortly.

3.5.2 Importance of Q
The importance of a high quality factor membrane for our quantum optics ambitions
can be seen from the following simple consideration. To realize a useful quantum
harmonic oscillator its dynamics must not be significantly disturbed on the timescale
of a single coherent mechanical oscillation by unwanted noise sources.

Suppose this noise source is the thermal reservoir at temperature Tbath. The
mean number of thermal phonons in the reservoir at the mechanical frequency Ωm

is given by eq. (2.74), and in the limit of large bath temperature, is

n̄bath = kBTbath
~Ωm

. (3.42)

The rate at which you interact with this bath is proportional to the coupling
rate (the decay rate) γm times the number of available quanta n̄bath. This is known
as the decoherence rate,

γthdec = γm(n̄bath + 1/2) ≈ γmn̄bath, (3.43)

where the bath vacuum contribution of 1/2 is often dwarfed by the mean occupation
n̄bath. If the bath is in the ground state then the decoherence rate is simply the decay
rate, namely γm. As we have already assumed that the mean bath occupation is
very large (which is always a good assumption in this thesis) we can safely neglect
this additional contribution in what follows.
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A minimum of a single coherent oscillation requires γthdec < Ω, which is usually
expressed as the Q− f product (Q times mechanical frequency f)

Qf >
kBTbath

2π~ ≈ 5 THz, for Tbath = 300 K. (3.44)

The amount by which one’s system is above (or below) this sets the amount
(or fraction) of coherent oscillations possible given no other decoherence sources.
Achieving just a single coherent oscillation at room temperature has proved very
difficult for the SiN membranes in general. A membrane with a Q ∼ 10 M and a
frequency of 1 MHz just barely makes one coherent oscillation at room temperature.

This is one of the main reasons why experiments are typically operated in a
cryogenic environments, in our case at a temperature of T ∼ 10 K. At this reduced
temperature the bath occupation is significantly lower, by ∼ 1/30, and the Q is
increased by a factor1 ∼ 3. This results in ∼ 100 times more coherent oscillations
overall. In the future however, with much higher Q systems becoming available,
room temperature quantum operation may become feasible.

3.5.3 Measuring Q
The quality factor is typically measured in the time or Fourier domain depending
on the situation. For low Q modes the Fourier domain is easiest as the decay
time is fast, and thus spectrally broad. This makes the mechanical linewidth easy
to estimate from Lorentzian fits of a power spectral density proportional to the
mechanical displacement.

For high Q modes a ringdown technique is typically employed. Here the mem-
brane mode is excited, either by optical or physically driving, far out of the equilib-
rium with the thermal bath. Turning off this added drive the subsequent return to
equilibrium occurs as exponential decay with a time constant related to the mode
Q.

Suppose the drive boosts the amplitude to some large value A. If we then turn
off the drive and neglect the thermal driving force in this large amplitude limit, the
motional amplitude will decay according to

q(t) = A sin(Ωmt+ φ)e−γmt/2. (3.45)

Suppose this motion is linearly transduced into, say, an optical quadrature, as is
described in section 4.2, and then detected. The detected signal, proportional to
the mechanical motion, can then be analysed, e.g. by a lock-in amplifier as in our
case, and the decay of the signal power at the membrane frequency Ωm can be
measured. The timescale of the decay yields the quality factor as the membrane
frequency is known. An example of such an exponential ringdown is seen in fig. 3.4.

1This is a fact universally true amongst amorphous materials.
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Figure 3.4: Mechanical ringdown example. The membrane used for the results of
chapter 6 is cryogenically cooled to near 4 K, and the (1, 2) mode is excited to a large
amplitude, and then observed as the ringing down as vibrational energy is lost. Shown is
not the power but the amplitude (square root of power) which decays only half as fast.
Grey points are data, blue line is an exponential fit. From many such measurements we
can extract a mechanical quality factor of Q = 13× 106 for this membrane mode.

3.6 Zener’s loss model
In general, many solid materials are anelastic, i.e. exhibiting both viscous and elastic
behaviour, with no lasting deformation. Their behaviour is practically differentiated
by their response to an externally applied force (stress). When the local stress σ
changes this affects the material strain ε and deformation occurs. If the strain
occurs in phase with the stress the system is said to be purely elastic (this is of
course unrealistic) and if the strain responds π/2 out of phase we identify it as
purely viscous. As already alluded to, in general the strain will lag by an amount
δ that depends on how viscous compared to elastic the material is. Suppose we
modulate the stress at frequency Ω and look at the Young’s modulus1

E ≡ σ

ε
= σ0e

iΩt

ε0ei(Ωt−δ)
(3.46)

= σ0

ε0
(cos(δ) + i sin(δ)) = E1 + iE2. (3.47)

Thus, we can model the anelasticity via a complex Young’s modulus. One can show
Schmid et al. (2016, Chapter 2.3) that the retarded response, due to a finite viscous
damping, is related to the quality factor of eq. (3.40) by

Q−1 = E2

E1
= tan(δ) (3.48)

≈ δ, δ � 1. (3.49)

The factor tan(δ) is typically referred to as a “loss tangent” and is inversely related
to the quality factor by definition Marc André Meyers (2008, Chapter 2), tan(δ) ≡
energy loss/energy stored.

1Typically defined as stress
strain .
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For any standard linear solid2 we can write a general rate equation relating the
stress and strain. Suppose we kept the material under a constant stress (or strain)
and let the strain (or stress) relax. This would occur on a time scale given by τσ (or
τε). This rate equation would have the following form,

σ + τεσ̇ ∝ ε+ τσ ε̇. (3.50)

This equation is perhaps most useful to use when the strain and stress are modu-
lated at some frequency Ω due to for example the membrane oscillating at Ω = Ωm.
In that case one can show, see Zener (1948), that

Q−1 = tan(δ) = Ω (τσ − τε)
1 + Ω2τστε

(3.51)

= ∆ Ωτ̄
1 + (Ωτ̄)2 , (3.52)

∆ = τσ − τε
τ̄

, τ̄ = √τστε . (3.53)

This is known as the Zener model and is peaked when the oscillation frequency
coincides with the time scale τ . The overall scale of the loss is given by ∆, not to be
confused with the cavity detuning. The limits can be understood in the following
way. For oscillations much faster than this timescale the system has no time to relax,
thus resulting in lower loss than the on-resonant case. Conversely, for oscillations
much slower than this timescale the system is always relaxed and in equilibrium,
thus lower loss.

In general, there may be multiple time scales due to multiple relaxation mecha-
nisms. These will result in multiple loss peaks known as Debye peaks. We will see
this model used to characterize relevant loss mechanisms now.

3.7 Intrinsic loss mechanisms
Thermoelastic damping

Thermoelastic damping (TED), as the name suggests, is the loss caused by spatially
inhomogenous heating caused by deformation. If we consider a membrane of density
ρ as an example we can picture this mechanism as follows. Undergoing oscillations
there are regions of compression and tension. Depending on the sign of the coeffi-
cient of thermal expansion (CTE) α the local temperature will rise or fall in these
regions. Temperature gradients are, thus, formed from which heat will irreversibly
flow leading to a diffusion of the mechanical energy and effectively loss.

For small excitations the local temperature variations are negligible compared to
the ambient bulk temperature T . The relevant time scale for this mechanism was

2as the following model is known as.
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Figure 3.5: Illustration of thermoelastic damping. The (widely exaggerated) motion
of a 2D slab of material leads to areas of compression which heat up (darker regions) and
regions of expansion which cool down (lighter regions). The diffusion of heat diffuses out
the mechanical motional energy ultimately a source of mechanical energy loss.

worked out by Zener (1937, 1938) and is given by

τTED = h2

π2D
, (3.54)

αth ≡
κ

ρcp
, (3.55)

where αth is the thermal diffusivity, which is the relevant inertia of the heat conduc-
tion equation (written here without an internal source of heat),

Ṫ = αth∇2T. (3.56)

For a 60 nm thick SiN membrane the time scale τTED ∼ 0.2 ns (5 GHz) is much
faster than the modes of interest which oscillate on the time scale of 1 us (1 MHz).
This timescale becomes quadratically shorter for thinner membranes. The thermal
diffusivity αth is related to the heat conductivity κ and the specific heat capacity cp
by

αth = κ

ρcp
. (3.57)

The scale of this damping will be related to the amount of expansion, which will
be proportional to α, T and E1. It is given by

∆TED = TE1α
2
CTE

ρcp
. (3.58)

This loss can of course also be viewed in light of the Zener model with amplitude
and characteristic time scales given by eqs. (3.54) and (3.58) respectively.

A derivation of thermoelastic loss can be done from first principles in absence of
stress, as is by Lifshitz and Roukes (2000). They consider the thermoelastic effect of
the on the flexural rigitidy in conjuction with the heat equation of eq. (3.56). The
result is given by

Q−1
TED,LR = ∆TEDg(ξ), (3.59)

g(ξ) =
(

6
ξ
− 6
ξ3

sin(ξ) + sinh(ξ)
cos(ξ) + cosh(ξ)

)
, ξ =

√
Ωh2

2αth
. (3.60)
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which predicts the similar losses as the aforementioned Zener model.
The scale of the thermoelastic damping is clearly proportional to the coefficient of

thermal expansion. For some materials the coefficient changes sign with temperature
(e.g. Silicon and Sapphire), and it generally decreases in amplitude for reduced
temperatures. Thus, one can eliminate this damping contribution present in such
a material by choosing the temperature where αCTE = 0 or reduce it by cooling.
For applications where this loss is the limiting source of noise, this is seriously
considered. Materials with a zero-crossing near room temperature are even available,
e.g. Zerodur (lithium-aluminosilicate glass-ceramic) and Invar (Nickel-Iron alloy).

Akhiezer damping

Whilst one can to some degree engineer one’s way around TED damping, the mech-
anism behind Akheizer damping is more difficult to escape. This damping is also
known as phonon-phonon interaction loss.

At its heart it is an interaction between sound waves and thermal phonons.
Thus why, this loss mechanism is also refered to as a phonon-phonon loss. As ex-
plained by Braginsky et al. (1985, Chapter 2), if the sound wavelength is much
larger than the phonon mean free path, one can consider the sound wave as locally
perturbing the local phonon frequencies. This happens by the material lattice being
deformed. This displaces the phonons from the equilibrium of the Planck distribu-
tion. Phonon-phonon scattering events reestablish thermal equilibrium, but at the
expense of sound wave energy diffusion. The link between a locally deformed lattice
and vibrational energy is described by the thermodynamic Grüneisen parameter γG.

The effect can also be thought of in terms of a change of temperature as the local
lattice deforms. A contraction (say) leads to increased phonon frequencies, and thus
a locally higher temperature. Thus, the timescale for this mechanism depends on
the thermal diffusivity αth and some notation of the propagation speed of phonons,
here characterized by the Debye velocity vD. The timescale is given by Braginsky
et al. (1985, Chapter 2)

τAkhiezer = 3αth
v2
D

, (3.61)

which for our SiN membranes will be on the order of 5 fs (20 THz). The Debye
velocity is given by,

3
v3
D

= 2
v3
t

+ 1
v3
l

. (3.62)

For low stress SiN membranes this speed is very close to that of the speed of sound1,
i.e. vD ≈ v =

√
E/ρ .

1This of course depends on the exact material parameters but is on the order of a few percent.
For the theoretically expected transverse and longitudinal sound velocities of thin film, low stress
SiN see Ma et al. (2017)
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Figure 3.6: Two level system (TLS) model. This double well potential is representative
of the two stable configurations of a local defect in an amorphous material. The potential
difference between the minima is given by ∆ and the barrier height (from midway between
the two minima) is given by V .

The scale of the loss is given by

∆Akhiezer = CpTργ
2
G

E
, (3.63)

and together with eq. (3.61) and the Zener model provide a good order of magnitude
estimate for the resultant loss.

Although the discussion for Akhiezer damping is typically framed for materials
with a crystalline lattice, this mechanism is also present in amorphous SiN. This is
due to the (inevitable present) local structure. This structure is described in Wang
et al. (1996) where they also review lattice defects present in SiN. This is the origin
of the next considered internal loss mechanism, two level defects.

Two level systems (TLS)

The behaviour of amorphous solids a cryogenic temperatures has been a subject of
intense study over the past few decades. The seemingly universal behaviour among
“glassy” materials (at temperatures above a few Kelvin) has also recently been
observed in Silicon Nitride string resonators in the context of cavity optomechanics
Faust et al. (2014). The temperature dependence of the quality factor in amorphous
materials is well captured by a so-called two-level system (TLS) model. The loss
of elastic energy is ascribed to a distribution of local defects2 in the material, each
with two stable configuration described by an asymmetric double-well potential,
see fig. 3.6 and Vacher et al. (2005) for an overview of the theory. The activation
energies, V , are typically on the order of several hundred Kelvin Faust et al. (2014),
suggesting that a single MHz frequency phonon cannot excite such a two-level system
on its own. Indeed, Faust et al. (2014) have suggested a scattering process where
a TLS is excited by a scattering process involving a resonator phonon and a high-
energy bulk phonon. This irreversible process thus results in loss of elastic energy. At

2Beyond defects found in crystalline materials (vacancies, substitutional defects, dislocations,
etc.), it’s worth noting that amorphous solid have order in smaller regions (so called “grains”), the
interfaces between which are filled with various defects.
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lower bath temperatures the rate of TLS excitations is reduced. This is responsible
for the observed factor of 2.5− 3 increase in Q observed for our membranes as they
are cooled from room temperature to 4 K.

3.8 Dissipation dilution
The intrinsic loss mechanisms described briefly in section 3.7 all set a limit on the
highest attainable quality factor for an untensioned thin plate resonator. Thankfully
(and the reason why we use it) SiN can be highly stressed, which results in an
increased stored mechanical energy U , whilst leaving the intrinsic loss of mechanical
energy ∆U unaffected. Thus from eq. (3.40) it follows that this leads to a higher
quality factor.

Consider the case of thermoelastic loss described in section 3.7. In the presence
of an additional stress the damping is reduced significantly as was shown by Zwickl
(2011); Chakram et al. (2014), the former of which derives the expression1

Q−1
TED = Ω2E1h

2ρ

12(1− ν)2σ2QTED,LR = λ2π
2 (m2 + n2)

4 QTED,LR. (3.64)

In the last step we simply write out the membrane frequency Ω = Ωmn according
to eq. (3.7). It is thus clear that adding a stress σ reduces thermoelastic loss by a
“dilution factor” λ given by

λ =
√

4D
σh

= h

L

√
E

3σ(1− ν2) . (3.65)

Within the optomechanics community this was first observed in Verbridge et al.
(2006, 2007) and the above explanation provided by Schmid and Hierold (2008)
shortly thereafter. In practice, this dissipation dilution means a higher Q by an
amount α, i.e.

Qintrinsic → αQintrinsic. (3.66)

The amount of dilution in general depends on material parameters, the mode fre-
quency and the specifics of the structure under consideration. However, for a square
membrane clamped at the edges, such as discussed in section 3.1.2, this dilution is
given by Yu et al. (2012) to be

α−1 = λ


 1︸︷︷︸

edge

+λ
π2 (m2 + n2)

4︸ ︷︷ ︸
sine


 = λ︸︷︷︸

edge

+λ2π
2 (m2 + n2)

4 .
︸ ︷︷ ︸

sine

(3.67)

1Here rewritten in terms of our thermoelastic scale factor ∆TED from eq. (3.58).
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Notice that the dilution of eq. (3.67) has two contributing components. The first
is term (“edge”) derives from the bending near the edge of the membrane where it
is clamped to the surrounding structure. The second (“sine”) term comes from the
sinusoidal bending of the modes, described in eq. (3.3).

Note that dissipation dilution works better for bigger and thinner membranes
that are highly stressed. The SiN membranes used in this work, see section 3.10,
have a thickness and size chosen for reasons besides the dissipation dilution, see
section 4.5, and are stressed to roughly 1 GPa, an appreciable fraction of the total
yield stress of (6.4± 0.6) GPa Kaushik et al. (2005). This gives a typical dilution
factor of λ ≈ α−1 ≈ 10−4.

Fundamentally, the dilution is really an increase in elongation energy (stress)
compared to the bending energy. So when the bending energy becomes comparable,
e.g. for large mode numbers, the dilution wears off. As we are interested in the low
order modes the increase in Qintrinsic is to a very good approximation given by 1/λ.
This means that the dilution will be limited by the “edge” contribution. However, for
a new generation of membranes this limiting “edge” term can be heavily suppressed
by a “soft clamping” technique described in Tsaturyan et al. (2017).

As can be seen from eq. (3.67), upon removal of the edge term, the dilution scales
with the square of the dilution factor, suggesting a (L/h)2 scaling of the quality
factor. Surface effects, however, modify the scaling which is shown by Tsaturyan
et al. (2017) to have the following dependence

Q ∝ L2

h
. (3.68)

3.9 External loss mechanisms
Beyond the intrinsic mechanisms that lead to loss are external sources, a few of
which will now be discussed. An excellent overview of these, and several others, can
be found in Schmid et al. (2016).

Gas damping

Lets first consider the loss resulting from embedding a membrane in a surrounding
medium. If the dimensions of the membrane are smaller than the mean free path of
the medium constituents, then the damping will be of a ballistic nature. Achieving
higher vacuum is often exponentially more difficult it is useful to quantify the amount
of this ballistic gas damping with vacuum pressure.

We assume that the gas behaves like an ideal gas at pressure P proportional to
the gas temperature T by

P = ρgas
R

Mgas
T, (3.69)

where the gas has density ρgas and molar massMgas. R is the universal gas constant.
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Figure 3.7: Q limit due to gas damping. Limit to the mechanical quality factor
posed by gas damping, according to eq. (3.73). The two regimes derive from the relative
importance of squeeze film damping versus ballistic damping.

In the presence of such a surrounding medium it can be shown that the resultant
ballistic gas damping is given by Bao et al. (2002)

QB = ρhΩmn

4

√
π

2ρgasPgas
(3.70)

= ρhΩmn

4

√
π

2

√
RT

Mgas

1
P
. (3.71)

This is of course just an approximation as the membrane is typically not the only
object in the environment. In general, the geometry of the immediate environment
can be shown the influence the effect of the gas damping. A very relevant case is
that of the membrane being placed close to a flat surface (e.g. a mirror).

The gas between these two surfaces results in an enhanced damping, the con-
tribution of which is known as squeeze-film damping. If the membrane has a side
length L and is a distance d from a parallel surface then the additional damping
experienced will be given by Bao et al. (2002)

QSF = 32
β

d

L
QB, (3.72)

where β is a factor taking into account the geometry of the membrane surface. In
the case of a rectangular membrane we have β = π/2.

The total gas damping is the inverse sum of these two effects,

Qgas = QD

(
1 + β

32
L

d

)−1

, (3.73)
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and is shown in fig. 3.7. It is clear that squeeze-film damping is an effect that is
mostly relevant for membranes in rather close proximity to another surface d ∼ L/20
compared to the general scale of the membrane structure. This is not a problem for
the assemblies realized in this work, but present a very real concern if one wishes to
engineer a stucture with our macroscopic membranes (∼ 0.5 mm) on the scale of a
typical NIR wavelength λ ∼ 1 µm.

Clamping losses (phonon tunneling)

Mounting conditions typically have a high impact on the quality factor of an object.
This is because mounting conditions affect the amount of mechanical energy radiated
into the environment. To see this, consider the membrane (m) in profile (1D) and
notice that a wave traveling towards the boundary with the substrate (s) will be
completely reflected in the case of a perfectly rigid interface. In fact, if the boundary
is completely soft (or free) the wave is also reflected. This is an important point
which we shall shortly see.

In practice, the interface is not perfectly rigid, and we can attribute to it some
finite impedance to motion Zs = ρscs. The membrane itself has some impedance
Zm = ρmcm and the reflected wave amplitude will be proportional to

R = Zm − Zs
Zm + Zs

= 1− η
1 + η

, (3.74)

where we introduced η ≡ Zs/Zm as a useful measure of the ratio of the two
impedances. Clearly for η = 0 or ∞ no power is transmitted as stated previously.
Any transmitted wave energy can essentially be considered to be lost and will, thus
reduce the resonator Q. This is also commonly referred to as phonon tunneling or
radiation loss, see Wilson-Rae (2008).

The impact on Q can be found by a more careful analysis of the coupling between
membrane and continuum substrate modes, as has been done by Wilson-Rae (2008);
Wilson-Rae et al. (2011). It was found that the Q depends on an overlap integral
between the stress and displacement fields of the modes, as well as a spectral overlap.
In the case most relevant here, namely a highly stressed membrane, substrate and a
thin square membrane the result can be approximated by1 Villanueva and Schmid
(2014)

Qclamping ≈ 1.5β
(
ρs
ρm

)2

η3 m2n2

(m2 + n2)3/2
L

h
, (3.75)

η ≈
√
Esρs
σmρm

= Zs/Zm. (3.76)

This result demonstrates that a high impedance mismatch η is preferable, and
that higher order modes will be (linearly for m = n) less limited. The fundamental

1Here we re-write this slightly to fit with the heuristic discussion above.
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(1, 1) mode for common membrane parameters this loss limits the Q to ∼ 10 M,
for optimal mounting conditions. Unfortunately one often does not wish to work
with the lowest order modes, (1, 1) included, which have proved extremely sensitive
to the specifics of how the overall structure is supported, an effect quantified by
the experimental catch-all β. This was first systematically considered by Wilson in
Wilson et al. (2009) and Wilson (2012, Chapter 4) where, perhaps unsurprisingly in
hindsight, minimal contact was found to be preferable.

Practically, contact is required and often desired due to other concerns like sta-
bility and thermalization in a cold environment. Luckily, this issue can be addressed
in a much more systematic fashion, by means of phononic crystal structuring of the
silicon substrate.

3.10 Phononic bandgap shielded membrane res-
onators

If we consider eq. (3.76) once more we see that the impedance mismatch η is of
critical importance. A way to, in effect, increase this is by a periodic array of
alternating high and low impedance regions. The effect of this patterning is to create
a mechanical “Bragg mirror”, i.e. to boost the reflection of an incident mechanical
wave. While a reflection on an interface is given by the impedance mismatch via
eq. (3.74), if the interface consists of N alternating high and low impedance regions
then the impedance mismatch is boosted to ηN , thus, reflecting more. This principle
is used in making low loss (high finesse) optical cavities where an alternating stack
of high and low index (and thus impedance) materials can realize incredibly low
loss.

Physically these high and low impedance regions are realized by suspending the
membrane by a mesh of alternating high and low mass regions in a Silicon support
structure, see fig. 3.8. This structure is known as a phononic crystal and the periodic
structure modifies the dispersion relations and creates a bandgap. This bandgap is
key, as it leads to a suppression of radiated mechanical energy for modes of frequency
inside the bandgap since their motion is suppressed in the phononic structure. The
phononic bandgap reduces the amount of elastic energy lost to the substrate modes,
which are strongly coupled to the environment. Furthermore, since the membrane
rests on a small silicon defect, with a sparse mode spectrum, which further reduces
the probability of a spectral, as well as spatial, overlap between a membrane mode
and a (silicon) defect mode, see Yu et al. (2014); Tsaturyan et al. (2014).

If the structure is chosen with care, the phononic bandgap can be large (com-
pared to the central frequency) as seen in fig. 3.8 and in a useful region with respect
to membrane modes of interest. Since the suppression of elastic waves scales expo-
nentially with the number of unit cells, only a few unit cells are sufficient for this
structure to offer sizeable advantages, as shown in Tsaturyan et al. (2014).
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Figure 3.8: 2D phononic crystal shielded membrane. Left: A picture of the 2D
phononic crystal shielded membrane used throughout the work presented in this thesis.
The membrane itself is the white square in the middle also seen in the top right inset.
It is 60 nm thin SiN membrane supported by a local defect of Si in a larger phononic
crystal structure etched in the supporting 500 µm thick Si. The structure of this periodic
pattern is shown in the top left inset. The modulation of this structure can be viewed
as periodic high and low mass regions which give rise to a phononic bandgap. Right:
Dispersion relation of an infinite phononic crystal structure (geometry corresponding to
the left figures top left inset), showing a phononic bandgap (shaded grey area), where no
vibrational modes (blue lines) are sustained. The band diagram traces the elastic wave-
vector through the high symmetry points of a two-dimensional square lattice known as Γ,
X and M . The bandgap is wide and designed such that multiple mechanical modes of the
membrane can lie within it. The structure is simulated using finite element modeling in
COMSOL. Figure reproduced with permission from the Tsaturyan (2016).

Hybridization with silicon defect

The membrane is held by a local Si support, which unfortunately introduces a defect
in the periodic lattice. This defect consists of both the SiN membrane and the Si
defect. The modes of the Si defect can, thus, hybridize with the vibrational modes
of the SiN membrane, which reduces the Q of the membrane mode. It further acts
as a driving force for the membrane mode leading to added decoherence. We see
these undesirable defect modes often, but of course choose only to work where the
hybrization is small.

A very clear example of this effect can be seen in fig. 3.9 which shows an optical
spectrum of transduced membrane motion. The spectral heights are proportional to
membrane motion weighted by a transduction factor given, in part, by the mass of
the mode. Without needing to know the specifics of the membrane or defect mode
we can make the following qualitative observations. As the defect and membrane
modes are brought away from each other in frequency), the membrane mode regains
a high Q (seen as the large peak emerging to the right). This may be viewed as the
hybrization being weakened and the two returning (once not nearly degenerate) to
being distinct modes.
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Figure 3.9: Defect frame hybrization Hybridization of a vibrational mode of the Silicon
defect (left peak) and a mode of the Silicon Nitride membrane (right peak). As the
temperature is tuned the slight shift in membrane frequency changes the coupling between
the modes and hence the membrane Q.

This tuning is done in practice by changing the temperature T of the whole
structure. Since the membrane modes are dominated by a large in-plane stress, and
the Si defect is completely unaffected by this, they can be tuned apart by changing
the stress. This is accomplished by changing the temperature which introduces a
differential expansion of SiN compared to Si, changing the stress in the SiN pushing
the membrane modes significantly in frequency.

This issue of hybridization, along with the larger (for low order modes) edge
contribution to the dissipation dilution of eq. (3.67), has been countered by the
latest innovation Tsaturyan et al. (2017).

Fabrication

The detailed fabrication process for the 2D membranes with a bandgap in the sup-
porting silicon is described in Tsaturyan et al. (2014). In short, a standard double-
side polished silicon wafer (500 µm thick) is covered by a thin layer of silicon nitride
via low-pressure chemical vapor deposition. The wafer is subsequently coated with
a photosensitive polymer (a photoresist) and the desired patterns (i.e. the square
membrane and the phononic structure) are first transfered to the photoresist using
a photolithographic mask via illumination with UV light, and subsequently into the
silicon nitride, using reactive ion etching.

We define the membranes using a wet chemical etch (potassium hydroxide –
KOH), stopping the etch ∼ 10 µm short of releasing the membranes, while the
phononic crystal structure is etched into the wafer using deep reactive ion etching.
Finally, the membranes are fully released at the very end of the process, with a short
KOH etch, and cleaned using a hot piranha solution (which removes the potassium
residues from the KOH etch).
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Figure 3.10: Membrane generations. A chronological (left to right) selection of SiN
membrane generations used in the labs of Eugene Polzik and Albert Schliesser. Going from
left to right we have: A membrane purchased from Norcada Inc. (white) held be a rigid
Si structure (yellow). A membrane (white) held by a 1D phononic crystal structure in Si
(yellow). A membrane (white) held by a 2D phononic crystal structure in Si (pink). A
SiN membrane (center white), perforated with a 2D phononic crystal structure, where the
localized defect modes constitute the vibrational modes of relevance. This whole structure
is held by a Si frame (purple). All devices have comparable overall sizes and images are
not to scale. The membranes shown have useful modes at ∼ 1 MHz frequencies.

Membrane generations

To conclude this chapter, it is interesting to consider the many generations of mem-
branes, each improving upon the last, that have accompanied my PhD. A selection
are shown in fig. 3.10 and are meant to highlight the significant progress made on
the fabrication and characterization front in as it pertains to highly stressed SiN
membranes.

The 1D phononic structures in Silicon improved upon the standard (often bought
from Norcada Inc.) membranes in that they have a bandgap making them less
susceptible to clamping loss. They were superceded by the 2D version as the bridge
of the 1D structure was too floppy for our early day experiments. These are what
have been used for the work presented in this thesis and enabled us to enter the
quantum regime. Unfortunately these structures have hybridization with the Silicon
defect supporting it. As it also turns out the “hard clamping” of the membrane at
the edges by the Silicon defect limited the Q. The latest development described
in Tsaturyan et al. (2017) addresses both these issues. The hybridization with the
Silicon defect is now gone and the “soft clamping” approach has boosted the Q
factors by more than an order of magnitude for the same resonance frequencies and
membrane thickness.
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Chapter 4

Optomechanics

So far we have introduced the basics of cavities in chapter 2 and mechanical oscil-
lators in chapter 3. These two harmonic oscillators can be coupled via radiation
pressure, and provides a desirable increased sensitivity to mechanical motion. We
will first describe this fundamental concept in section 4.1.1 and then move on to
describe some important results. These involve the most important effects for this
work, namely dynamical back-action, described in section 4.1.4, and the quantum
back-action resulting a sensitive measurement from the interaction, described in sec-
tion 4.1.5. This latter effect is the effect limiting the sensing of the oscillator motion
in our motivational example of section 1.1 and is of utmost concern.

In section 4.2, we discuss how we physically realize a system displaying this op-
tomechanical interaction as well as how to map the behavior of our system onto
the canonical system discussed in section 4.1. Then we describe and show an ex-
ample of the practically useful technique of optomechanically induced transparency
in section 4.3. We will then describe, and show, the strongest yet observed (to my
knowledge) ponderomotive squeezing in section 4.4. These results show that we can
measure the mechanical motion so sensitively that the quantum back-action of the
light influence the motion significantly and serves as a demonstration that to further
increase motional sensitivity we need the famous negative mass oscillator described
in section 1.1.

Lastly, in section 4.5, we discuss some practical concerns relating to our imple-
mentation of cavity optomechanics.

4.1 Canonical cavity optomechanical system

4.1.1 Basics

The canonical optomechanical system can be understood from fig. 4.1, where the
basic logic goes as follows. A cavity mirror is allowed to move. This motion alters the
cavity resonance frequency, and thus energy of the cavity mode. Thus, a coupling
between the cavity mode and the mechanical mode is born.
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Figure 4.1: Canonical optomechanical system. The canonical optomechanical system
is an optically driven cavity, populated by n̂ photons, consisting of two mirrors where one
is mechanically compliant (indicated by being held on a spring, right) and the other is
fixed. Motion of the mirror, q̂, changes the cavity resonance frequency, thus, affecting
the light mode inside. Conversely the light mode inside the cavity can exert a radiation
pressure on the mechanically compliant mirror.

The interaction can be seen from the Hamiltonian describing the energy of a
cavity field, of frequency ωc, as

Ĥ = ~ωc(n̂+ 1/2) (4.1)

where n̂ = â†â is the cavity photon number operator.
If we allow the cavity resonance frequency to depend on the mirror position

q(t), i.e. ωc = ωc(q) and Taylor expand for small excursions around the equilibrium
position q = 0,

Ĥ = ~
(
ωc(0) + dωc

dq

∣∣∣∣
q=0

q

)
(n̂+ 1/2), (4.2)

The cavity resonance shift per displacement is given by1 G = dωc/ dq. In the case of
the canonical “end mirror” coupling of fig. 4.1 this parameter is given by G = ωc/L,
where L is the cavity length2. For a cavity of ∼ 1 mm long with a resonance at 1 µm
this coupling is G/2π = 300 MHz/nm, which is a near useless number unless it is
referenced to the natural excursion lengths of the mirror, i.e. its zero point motion.

Referencing G to the zero point position fluctuations xzpf defined in eq. (3.28)
comes about naturally when we quantize the mirror displacement variable q → q̂.
We then write our interaction Hamiltonian in terms of the dimensionless mechanical
position operator of eq. (3.29) as3

Ĥint =
√

2 ~g0Q̂n̂, (4.3)
g0 ≡ Gxzpf. (4.4)

1sometimes called the frequency pull parameter
2The sign of G is a choice of coordinate system. Here we have a positive displacement of the

mirror resulting in a shorter cavity and with a higher frequency.
3the

√
2 is due to our chosen definition of Q̂, see eq. (3.29).
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This Hamiltonian describes the coupling of the mirror position with the intracavity
photon number mediated by the radiation pressure force. The interaction is eas-
ily motivated in hindsight. Radiation pressure of the cavity light field can affect
the motion of the end mirror. Likewise, the motion of the end mirror affects the
resonance frequency of the cavity thereby affecting the cavity field.

We can work out the force on the mirror by

F̂ = −dĤint

dQ̂
= −
√

2 ~g0n̂. (4.5)

which adds an additional forcing term (on top of the thermal Langevin force) to
eq. (3.32). The effect of the interaction Hamiltonian will also modify the cavity
mode evolution equation of eq. (2.65). Considering a single input optical mode ŝin
(with vacuum δvvac leaking in through the remaining optical channels) and a single
mechanical mode Ωm, we can write the quantum Langevin equations as,

˙̂a =
(
i
(
∆−

√
2 g0Q̂

)
− κ

2

)
â+ √ηκ ŝin +

√
(1− η)κ δvvac, (4.6)

˙̂
P = −Ω2

mQ̂+ γmP̂ +
√

2γm F̂ th,in −
√

2 g0n̂ (4.7)

To see what to expect from this coupling of light and mechanics let us consider,
classically, what happens to the cavity mode under sinusoidal mechanical motion of
Q = Q0 cos(Ωmt). We then find that

a (t) ∝ a(0)ei∆̄t−κt2 e−iβ sin (Ωmt) (4.8)

∝
∞∑

n=−∞
Jn(β)einΩmt, β =

√
2 gq0

Ωm

. (4.9)

where we used the Jacobi–Anger expansion of eq. (E.2.9) to express â(t) in terms
of Bessel functions J of the first kind and of order n ∈ Z. Thus, we expect to see
the cavity field being comprised of a constant component (oscillating at the cavity
frequency of course) and harmonics of the mechanical motion at Ωm. Through
this modulation we see sidebands being generated at ±nΩm. The strength of these
sidebands is set by the modulation depth β, essentially quantifying how large cavity
frequency excursions are compared to the mechanical frequency. Of most practical
relevance for us is the regime of small modulations depths, where only the first order
sidebands (n = 1) need be considered4.

Treating this problem a little more generally, as done by Kippenberg and Vahala
(2007), one can find the first order correction to the intracavity amplitude to be

4For small modulation depths, β � 1, each Bessel function can be expanded to first order
giving Jn(β) ∝ βn. Thus, each sideband will be β times smaller in amplitude than the previous.
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given by

a(1) =
√

2 g0Q0

2 a(0)




e−iΩmt

i(∆ + Ωm)− κ/2︸ ︷︷ ︸
Anti-Stokes

+ eiΩmt

i(∆− Ωm)− κ/2︸ ︷︷ ︸
Stokes




(4.10)

where a(0) is the unperturbed field (zeroth order) given by the cavity Lorentzian and
in the input drive. From above it is clear that the sidebands will, in general, not
be equally weighted. Their rate of generation is a function of the cavity Lorentzian
evaluated at the sideband frequencies ±Ωm and is enhanced by the optomechanical
coupling. These two scattering rates represent Raman scattering processes, which
will shortly be described further in section 4.1.3. They are known as Stokes and Anti-
stokes processes and signify whether optical energy is being depleted or increased,
respectively.

For a more detailed derivation of eq. (4.10) see Schliesser et al. (2008, Supple-
mentary). This asymmetry of the perturbed cavity field, as well as its in and out
of phase quadrature components (sin and cos), will play a significant role in the
dynamics of the mechanical motion Q̂. Before we explore this lets make a highly
useful and relevant approximation, namely that of mean fields.

4.1.2 Mean fields
Just as in eq. (2.67), we will take the case where the cavity field has a large mean
coherent amplitude ā and quantum fluctuations given by δâ on top as a result of
the input field ŝin being similarly composed. This mean field clearly gives rise to a
mean displacement Q̄, which, of course, will also have quantum fluctuations δQ̂ on
top. Additionally, we will assume that the mechanical motion is in equilibrium with
a zero mean momentum, P̄ = 0 and that the thermal Langevin force is ergodic,
namely F̄L = 0. The mean fields are given by

â = ā+ δâ, (4.11a)
Q̂ = Q̄+ δQ̂, (4.11b)
ŝin = s̄in + δŝin, (4.11c)

which, if applied to eq. (4.7) in the steady state, give

ā =
√
ηκ

i
(
∆−

√
2 g0Q̄

)
− κ/2

, (4.12)

Q̄ = −
√

2 g0n̄

Ωm

. (4.13)

Since n̄ = |ā|2 in general, we have a cubic in n̄ solution5 for the intracavity
mean field (if g0 6= 0), where the intracavity field may have multiple solutions

5n̄
(
Ω2
m

(
∆2 + 4∆Ωmg2

0n̄+ (κ/2)2)+ 4g4
0n̄

2) = Ω2
mηκ|s̄|2
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Figure 4.2: Membrane bistability. As the single photon coupling rate g0 is ramped up
the membrane is displaced more by the static radiation pressure force. Eventually this
diplacement becomes so large as to displace the cavity resonance frequency enough from
its original (no coupling) point that a bistability arises, here at g0/2π = 61 Hz. Shown are
the solutions to the intracavity power as a function of detuning in a single sided cavity
(η = 1) of linewidth κ/2π = 1 MHz. The cavity is driven with a 40 µW input power
corresponding to an on resonance intracavity mean photon number of n̄ = 110× 106. The
optomechanical coupling g0 is varied showing the clear onset of this bistability.

for a given detuning. The effect of this interplay is shown in fig. 4.2 and is a
result of the intracavity power changing the effective cavity detuning by forcing a
mechanical displacement. We can define this effective detuning from eq. (4.12) as
∆̄ = ∆−

√
2 g0Q̄, which returns the cavity field to the familiar form of eq. (2.76).

The onset of the bistability occurs when the slope of the intracavity field folds
back over and was first observed in an optical Fabry-Pérot cavity by Dorsel et al.
(1983). This happens when the slope of eq. (4.12) exceeds that of eq. (4.13), which
will happen first where the effective cavity Lorentzian is the steepest, i.e.

∂n̄

∂Q̄

∣∣∣∣
∆̄=−

√
3 κ

6︸ ︷︷ ︸
slope of eq. (4.12)

squared

≥ ∂n̄

∂Q̄
.

︸ ︷︷ ︸
slope of
eq. (4.13)

(4.14)

This onset occurs at a particular intracavity photon number, n̄onset, and limits the
interaction strength available before this effect becomes present to,

g2
0n̄onset
κ

≥ 2
√

3
9 Ωm, (4.15)

In practice, a mechanical structure will have multiple modes that are coupled to the
optical field, all with different frequencies, which all contribute to the onset of this
stability. However, since g2

0 ∝ x2
zpf ∝ (meffΩm)−1 ∝ Ωm the onset on this bistability

is roughly affected by modes of any frequency equally.
Notice that once beyond the bistability onset, the range of accessible effective

cavity detunings is reduced. In this case of end mirror coupling, imagine tuning the
input field frequency, the red detuned regime ∆̄ < 0 anywhere near resonance is
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Figure 4.3: Optomechanical scattering picture interactions. Feynman diagrams of
the two optomechanical scattering processes described by the Hamiltonian of eq. (4.16).
Left: The processes of δâ†δb̂† and δâδb̂ are known as the two mode squeezing or parametric
down conversion interactions. These interactions clearly correlates mechanical motion with
the optical field. Right: The processes of δâ†δb̂ and δâδb̂† are known as the beamsplitter or
state swap interactions. They describe Stokes Raman scattering (former) and anti-Stokes
Raman scattering (latter) scattering.

simply off limits. On the other hand, near most of the blue detuned regime ∆̄ > 0 is
accessible. This is a consequence of the sign g0, which is positive for6 our end mirror
coupling. If we construct a system where the sign of g0 is negative then we can have
the red detuned regime be the highly accessible one. We will see in section 4.2.4 that
an optomechanical setup with the membrane in the middle of a cavity will manifest
coupling rates of both signs.

4.1.3 Fluctuations
Having linearized the optical and mechanical fields, the interaction Hamiltonian is

Ĥint =
√

2 ~g0(δâ+ δâ†)(δb̂+ δb̂†) (4.16)
∝ δâδb̂+ δâ†δb̂†︸ ︷︷ ︸

e±i(∆̄−Ωm)t

+ δâδb̂† + δâ†δb̂︸ ︷︷ ︸
e±i(∆̄+Ωm)t

(4.17)

from which we can identify two unique terms (and their Hermitian conjugates)
namely δâδb̂ and δâδb̂†. The weighting of these terms,which depends on the cavity
detuning ∆̄ relative to the mechanical frequency Ωm as well as the cavity linewidth
κ, give rise to three distinct regimes. The iteractions can be view as scattering
events as shown in fig. 4.3.

For so called blue sideband operation where ∆̄ ≈ Ωm we see from eq. (4.16)
that some terms evolve quickly in time with ±2Ωmt, whereas others have a slowly
varying envelope. If the quick evolution is much faster than the cavity response time,
i.e. if 2Ωm � κ, then we can employ the rotating wave approximation and neglect
these terms. Thus, the dominant terms with be the ones slowly varying in time,
namely δâδb̂+h.c. These terms annihilate (create) a cavity sideband photon whilst

6in our definition of eq. (4.4)
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annihilating (creating) a mechanical phonon. This process (unsurprisingly) leads to
correlations between the mechanical and optical modes given to rise to effects such
as two-mode squeezing and entanglement. This process is also known as the Stokes
Raman process.

For red sideband operation of ∆̄ ≈ −Ωm we have near resonant mechanical
and optical modes. Using the same logic as above, the dominant terms will be
δâδb̂† + h.c, which describe the annihilation (creation) of a cavity sideband photon
whilst creating (annihilating) a mechanical phonon. This process leads to swapping
of mechanical and optical excitations. Therefore, this regime is known as the state-
swap or beam-splitter regime.

The misbalance of these two subprocesses δâδb̂† and δâ†δb̂ can lead to a net
addition or removal of mechanical phonons at the expense of optical photons (or
vice versa). In the optical case one can think of phonons being converted into
photons which are then lost from the cavity. This is effeciently done in the highly
resolved sideband regime, where the cavity effectively favours one process over the
other, and so you do not have the competing reverse process. This will be discussed
in section 4.1.4.

Finally, the balance of these two processes is realized when ∆̄ = 0 and realizes
the so called quantum non-demolition interaction. This is because the linearized
interaction Hamiltonian looks like

Ĥint =
√

2 ~gδX̂δQ̂, (4.18)

and the coupling is between the mechanical and optical amplitude quadratures only.
In this case the mechanical position (and optical amplitude) quadrature commutes
with the interaction Hamiltonian and can thus be measured without measurement
influence. The measurement will however impact the position quadrature at later
times via the harmonic motion mixing position and momentum.

To gain further insight into the system dynamics with this interaction Hamilto-
nian we now look at the first order fluctuating terms of the quantum Heisenberg-
Langevin equations of eq. (4.7) under the assumption of the large mean fields as
given by eq. (4.11). The quantum Heisenberg-Langevin equations read

δ ˙̂a =
(
i∆̄− κ

2

)
δâ− i

√
2 g0|ā|eiθδQ̂+

√
κ δŝin, (4.19)

δ
˙̂
P = −ΩmδQ̂− γmδP̂ +

√
2γm F̂ th,in −

√
2 g0|ā|

(
e−iθδâ+ eiθδâ†

)
(4.20)

δ
˙̂
Q = ΩmδP̂ (4.21)

where θ is the phase of the mean intracavity field, which, relative to the input
field, is given by eq. (2.82)7. These equations are known as the linearized quantum
Langevin equations and are the foundational equations on which this work is built.

7where the detuning is given by ∆̄, not just ∆.
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The input fluctuations δŝin will generally come from different baths. The most
common example used here is one where one port is driven by some field of interest,
whilst the other contains just vacuum. In that case we would write simply,

√
κ δŝin →

√
ηκ δŝin +

√
(1− η)κ δvvac. (4.22)

One can, in general, spot whether all the ports are being collectively treated or
whether they are broken up into component sub-ports by the appearance of the
coupling efficiency η for some port.

From eq. (4.21) we see that the coupling between the optical and mechanical
modes is boosted by |ā|, allowing us to define a linearized coupling rate

g ≡ g0|ā| = g0
√
n̄ . (4.23)

This underscores that the linear coupling rate can be enhanced by a large mean in-
tracavity field, thus, making the bistability onset of eq. (4.15) of practical relevance.

Furthermore, the mechanical motion is coupled to a quadrature of the intracavity
field, which in the case of θ = 0 is the expected familiar amplitude quadrature. The
intracavity field quadratures are given by

δ
˙̂
X = −κ2 δX̂ − ∆̄δŶ + 2g sin θδQ̂+

√
κ δX̂ in, (4.24)

δ
˙̂
Y = −κ2 δŶ + ∆̄δX̂ − 2g cos θδQ̂+

√
κ δŶin, (4.25)

where we have written a single collective input quadrature as shorthand for the
general case of multiple drives.

In the CW regime, the Fourier domain is more appropriate. Here the equations
of motion for the relevant quadratures are given by8,



iΩ + κ/2 ∆̄ 2g sin θ
−∆̄ iΩ + κ/2 −2g cos θ

2g cos θ 2g sin θ χ−1(Ω)






δX̂

δŶ

δQ̂


 =




√
κ δX̂ in
√
κ δŶ in

√
2γm F̂L


 (4.26)

where we have used the susceptibility χ defined in eq. (3.35) with a unit mass since
we are working with dimensionless operators9. It is also clear that the mechanical
motion is generally coupled to both intracavity light quadratures. The mixing given
by the field phase θ, and the relation to the input light quadratures gives governed
by ∆̄.

To investigate this interplay a bit further let us choose the input field phase such
that the intracavity field is real, i.e. θ = 0. We can then solve for the mechanical

8An additional prefactor of 2 in the coupling terms present here compared to Møller et al.
(2017) is due to a

√
2 difference in both the definition of g0 and the light quadratures δX̂, δŶ .

9Note this definition is different from the one used in Møller et al. (2017) by a Ω−1
m .
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degree of freedom and from eq. (4.26) we find,
(
χ−1 + χ−1

dba

)

︸ ︷︷ ︸
χ−1
eff

δQ̂ =
√

2γm F̂ in
th︸ ︷︷ ︸

TN

+ F̂ in
BA︸︷︷︸

QBA

, (4.27)

F̂ in
BA = g

κ/2

{
i [L(Ω)− L∗(−Ω)]

√
κ δX̂ in− (4.28)

[L(Ω) + L∗(−Ω)]
√
κ δŶ in

}
, (4.29)

Thus, the mechanical motion is, in general, driven by thermal noise (TN) and both
input light noise from both quadratures (QBA). These light quadratures act as a
force, just like the Langevin force. The force in addition to the thermal noise is
known as the quantum back-action and the fluctuations of this force drive motion.
The balance of these two forces is a very relevant experimental turning point and is
discussed in section 4.1.5.

It is also clear from eq. (4.29) that the mechanical susceptibility is modified to
some effective susceptibility χ−1

eff = χ−1 +χ−1
dba. The additional term is known as the

dynamical back-action (dba) term and is given by,

χ−1
dba = 2g2

κ/2

(
κ/2

(∆̄− Ω) + iκ/2
+ κ/2

(∆̄ + Ω)− iκ/2

)
(4.30)

= 2g2

κ/2 [L(Ω) + L∗(−Ω)] , (4.31)

where we have used eq. (3.38) to define the the complex cavity Lorentzian as

L(Ω) ≡ κ/2
(∆̄− Ω) + iκ/2

. (4.32)

This modified susceptibility tells us how the cavity treats fluctuations at sideband
frequencies of ±Ω and may indeed dominate the bare mechanical susceptibility χ. In
that case the mechanical susceptibility can be molded by tuning cavity parameters.

4.1.4 Dynamical back-action
By decomposing the added dynamical back-action susceptibility χ−1

dba into its real
and imaginary components the modified susceptibility can be framed in terms of an
effective mechanical frequency Ωeff and damping rate γeff.

Ωmχ
−1
eff =

(
Ω2
m + Re(χ−1

dba)
)

︸ ︷︷ ︸
Ω2
eff

−Ω2 + iΩ
(
γm + 1

Ω Im(χ−1
dba)

)

︸ ︷︷ ︸
γeff

. (4.33)

The frequency change δΩm and added optical damping γopt can be defined
through a natural extension of the bare susceptibility as follows,

Ωmχ
−1
eff ≡ Ω2

m + 2ΩδΩm − Ω2 + iΩ (γm + γopt) . (4.34)
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Figure 4.4: Example of dynamical back-action. Optical spring and damping measured
on a mechanical (2,1) mode of frequency Ωm/2π = 1.37 MHz in a near single sided cavity of
κ/2π = 15 MHz. The system was probed with a fixed 10 µW input power, and a coupling
rate of g0/2π = 110 Hz. Here the coupling rate g = g(∆̄) since n̄ = n̄(∆̄) due to the fixed
input power.

These can be interpreted as an additional sideband frequency dependent opti-
cal damping channel and spring. They can be expressed in terms of the cavity
parameters from as

δΩm(Ω) = g2 Ωm

Ω

[
∆̄ + Ω

(κ/2)2 + (∆̄ + Ω)2
+ ∆̄− Ω

(κ/2)2 + (∆̄− Ω)2

]
,

= g2

(κ/2)2
Ωm

Ω
[
(∆̄ + Ω) |L(Ω)|2 + (∆̄− Ω) |L(−Ω)|2

]
,

(4.35)

γopt(Ω) = 2g2Ωm

Ω

[
κ/2

(∆̄ + Ω)2 + (κ/2)2
− κ/2

(∆̄− Ω)2 + (κ/2)2

]
,

= 2g2

κ/2
Ωm

Ω
[
|L(Ω)|2 − |L(−Ω)|2

]
,

(4.36)

where we have re-expressed each in terms of the cavity power Lorentzian |L|2 evalu-
ated at the upper and lower sideband. This is a particularly useful parameterization
when considering the low coupling regime of g � κ/2 relevant to this work, but is
valid even in the strong coupling regime g > κ/2.

In the relevant low coupling regime these corrections to the susceptibility can of-
ten be evaluated at the mechanical frequency Ω = Ωm since the mechanical linewidth
γeff will be small compared to the cavity linewidth κ. In this case we simply have

δΩm ≈
g2

(κ/2)2

[
(∆̄ + Ω) |L(Ω)|2 + (∆̄− Ω) |L(−Ω)|2

]
(4.37)

γopt ≈
2g2

κ/2
[
|L(Ω)|2 − |L(−Ω)|2

]
. (4.38)

These dynamical back-action effects are shown in fig. 4.5 for a few representative
choices of Ωm/(κ/2). Notice how the dynamical back-action cooling always has same
functional dependence, essentially just asymmetry in the cavity Lorentzian response
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Figure 4.5: Dynamical back-action in different regimes. First unresolved sideband
regime with (top left) Ωm

κ/2 = 1/10 and g/2π = 100 kHz, then (top right) Ωm
κ/2 = 1 and

g/2π = 10 kHz, then (bottom left) Ωm
κ/2 = 4 and g/2π = 10 kHz, finally (bottom right)

Ωm
κ/2 = 10 and g/2π = 1 kHz. Mode frequency Ωm = 1 MHz.

at the sideband frequencies. The frequency shift however is more complex. Now
let us look in a bit more detail at the cooling part of the dynamical back-action
associated with the added optical broadening.

Dynamical Back-action cooling

The sign of the optical damping described in eq. (4.38) will always depend on the
sign of the detuning ∆̄. For ∆̄ < 0 we have a positive additional optical broadening
of the mechanical motion, whilst for positive detuning ∆̄ > 0 the added broadening
is negative. If the added broadening is negative and exceeds the intrinsic broadening
you have an instability as the mechanical motion will grow exponentially. This is
not a regime which one can easily stay in continuously, and thus we will mostly
focus on red detuning.

The amount of added broadening depends on the difference between the cavity
Lorentzians evaluated at ±Ωm, see eq. (4.36). This difference is maximized in the
so called resolved sideband regime, where Ωm � κ/2. In case you are favouring
the anti-Stokes process which removes mechanical energy by swapping phonons for
photons.

At a detuning of ∆̄ = ±Ωm this assymetry is maximized and the ratio of the
upper (+Ω) vs lower (−Ω) sideband weights is given by

(
2Ω
κ/2

)2
, which can in principle

be as large as desired. This is important for certain experiments in which cooling to
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the mechanical ground state is desirable, since the remaining Stokes scattering will
inevitably lead to heating. In this resolved sideband regime it is easy to implement
either a pure beam-splitter or squeezer Hamiltonian described in section 4.1.3, since
the relevant scattering terms can be efficiently selected by cavity detuning.

The complementary regime is known as the unresolved sideband regime, where
Ωm � κ/2 and the cavity mode follows the changing mechanical boundary condi-
tion adiabatically. For this reason, it is easy in this regime to realize a quantum
non-demolition type interaction, as described in section 4.1.3. This is further com-
pounded by the small sideband asymmetry that can be realized. These are in turn
what limits the achievable sideband cooling.

In the absence of light the only dissipation channel for mechanical energy was
the mechanical bath. The damping was, therefore, also originally solely associated
with a coupling to the thermal bath through the Langevin force. Now by optical
coupling we have, in effect, coupled the motion to the light bath. This can be seen
from eq. (4.29), where it is clear that the light modes now present an additional force,
which drives the motion. This has also however, opened a dissipation channel. Let’s
examine the effect of this additional damping as it pertains to the temperature of
the mechanical oscillator.

Mechanical mode temperature

First, consider the mechanical motion without any light. The variance of the motion
Var(q̂) = 〈q̂2(t)〉 will be a classical measure of the mode temperature, which is in
thermal equilibrium with the bath Tbath. In traditional dimensionfull units we have
by equipartition10

1
2mΩ2

m〈q2(t)〉 = 1
4kBTbath, (4.39a)

∴ Var(q) = 〈q2(t)〉 = kBTbath
2mΩ2

m

= x2
zpf
kBT

~Ω . (4.39b)

Now in the Fourier domain we have our dimensionless motion operator given by

δQ̂(Ω) = χ(Ω)
√

2γm F̂ th,in(Ω), (4.40a)
SQQ(Ω) = |χ(Ω)|2 2γmSFF (Ω). (4.40b)

where we have written the power spectral density of motion11 as SQQ. It is driven by
the power spectral density of the thermal force SFF given by the correlation function
eq. (3.34).

10With a 1D oscillator the energy is 1
2kBT which is shared equally between the potential and

kinetic contributions.
11The subscripts here refer are a bit of notational convenience. They indeed refer to δQ̂ and

not Q̂.
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Converting to dimensionfull units using our definition q̂ ≡
√

2 xzpfQ̂ we see that
the motional variance calculated in the Fourier domain is

Var(q̂) = 2x2
zpfVar(Q̂) = 2x2

zpf

∫ ∞

−∞
SQQ

dΩ
2π

= x2
zpf (2n̄bath + 1)

(4.41)

where we have used the result of eq. (3.39) and the motional power spectral density
of eq. (4.40b).

By invocation of Parsevals theorem (eq. (E.2.10)) the results of eqs. (4.39)
and (4.41) should be equivalent. Thus, we have

n̄bath + 1/2 ≈ n̄bath = kBTbath
~Ωm

, (4.42)

which is only valid in the approximation made since our treatment of eq. (4.39)
followed a rather classical argument.

Now consider what happens when the optical mode is part of the game. Denoting
motion driving terms to do with the light quadratures as simply “light” we have,

δQ̂ = χeff
(√

2γm F̂ th,in + light quads
)
, (4.43)

Var(Q̂) =
∫ ∞

−∞
SQQ

dΩ
2π =

∫ ∞

−∞
|χeff|2 (2γmSFF + light) dΩ

2π , (4.44)

= Var(Q̂)TN + Var(Q)Light. (4.45)

which means that the contribution to the variance due to the thermal noise (TN) is
given by,

Var(Q̂)TN = γm
γeff

(n̄bath + 1/2) . (4.46)

This thermal noise variance is clearly reduced by the increased damping from the
light field, with the suppression given by the cooling factor γm/γeff. In dimensionfull
units this thermal noise contribution to the total variance is given by

Var(q̂)TN = x2
zpf

γm
γeff

(2n̄bath + 1) ≈ x2
zpf

γm
γeff

2n̄bath = x2
zpf2n̄thM. (4.47)

The approximation is valid for large bath occupations, which is always the case for
our devices where we typically have n̄bath ' 105 at cryogenic temperatures of ∼ 10 K.
The thermal bath is optically cooled to an effectively lower occupancy given by n̄thM.

The total variance will, of course, also have a contribution from the light. In
effect the mechanical oscillator now sees a modified bath of effective temperature
Teff having two contributions. The steady state temperature given by a weighted
sum of its components, namely

Teff = γmTbath + γoptTopt
γeff

. (4.48)
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By analogy with eq. (4.42) we can recast this in terms of the thermal bath
occupancy n̄bath and one associated solely with the light force n̄min, namely

n̄eff + 1/2 = γm(n̄bath + 1/2) + γopt(n̄min + 1/2)
γeff

. (4.49)

where we notice that in the case of a high cooling power γeff ≈ γopt � γm we severely
dilute the thermal contribution and are dominated by light noise. Furthermore, the
relevant vacuum contribution (1/2) is also associated predominantly with the light
noise. Regardless of n̄bath or n̄min there will always be the vacuum noise (some
linear combination of the two baths) driving the systems ground state motion. The
minimum effective occupancy is given by nmin and is typically referred to as the
quantum back-action limit of sideband cooling. Reaching this limit was recently
demonstrated Peterson et al. (2016b) for in a very similar setup as the one used
here.

This minimal occupancy n̄min that is added by the coupling with light is given
by Marquardt et al. (2007),

n̄min = |L(−Ωm)|2

|L(Ωm)|2 − |L(−Ωm)|2
(4.50)

= −
(κ/2)2 +

(
∆̄ + Ωm

)2

4∆̄Ωm

(4.51)

and is plotted in fig. 4.6 for various cavity parameters. Clearly there are two ways one
may seek to minimize this parameter, namely by changing either your mechanical
frequency or the cavity detuning. These two choices are seen as the two branches
in fig. 4.6. They converge in the resolved sideband regime where there is only one
sensible choice, and diverge in the unresolved sideband regime where once again
there is only one sensible choice. Between these regimes there are two equivalent
choices owing to the symmetry between changing the mechanical frequency and
altering the detuning.

Experimentally, typically the free parameter is the cavity detuning whose opti-
mum is given by,

∆̄opt,n̄min = −
√

Ω2
m + (κ/2)2 ≈




−Ωm, for Ωm � κ/2,
−κ/2, for Ωm � κ/2,

r (4.52)

which can be easily understood by considering the sideband picture.
In the resolved sideband regime the best SB asymmetry you can achieve is when

the anti-Stokes SB is on resonance with the cavity Lorentzian. In the unresolved
sideband regime the best asymmetry you can get is when you are detuned by exactly
half the cavity linewidth. This optimal detuning is shown in fig. 4.7 and gives an
optimal minimum occupancy given by

n̄min = 1
2




√√√√1 +
(
κ/2
Ωm

)2

− 1


 ≈





(
κ/2
2Ωm

)2
< 1, for Ωm � κ/2,

(
κ/2
2Ωm

)
> 1, for Ωm � κ/2.

(4.53)
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Figure 4.6: 2D plot of n̄min as described in eq. (4.51) for a varying detuning and mechan-
ical frequency. Solid lines show contour of n̄min according to eq. (4.53) as is also shown in
fig. 4.7. This represents the optimal choice of detuning for a given mechanical frequency,
as is often the experimentally relevant case. The remaining branch represents the converse
choice, which is equivalent to eq. (4.52), where ∆̄ and Ωm simply switch roles.

Thus, it is clear that if one desires to add little light noise to the mechanical oscillator,
a high degree of SB resolution is required.

The other half of the effective occupancy is the diluted thermal noise contribu-
tion. Here the important parameter is the amount of added optical broadening,
which is maximized for a detuning of

∆̄2
opt,γopt = Ω2

m

3 −
κ2

12 + 2
3

√

Ω4
m + Ω2

m

(
κ

2

)2
+
(
κ

2

)4
=




Ω2
m, for Ωm � κ/2

κ2/12, for Ωm � κ/2
(4.54)

which, just like eq. (4.52), can be reasoned within the sideband picture. From
eq. (4.38) this quantity is maximized when the difference in the scattering rates
is the highest. In the unresolved sideband regime this happens exactly when the
sidebands are symmetric with respect the highest slope point of the cavity. In the
unresolved sideband regime the optimum is the same as for n̄min for the same reason.
Due to their similar asymptotic with n̄min this optimal detuning is shown side by
side in fig. 4.7.

The optical broadening for this choice of optimal red detuning is (to lowest order)
given by

γopt =




16g2

κ

(
Ω
κ/2

)2
, for Ωm � κ/2,

3
√

3 g2

κ
Ω
κ/2 , for Ωm � κ/2.

(4.55)
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Figure 4.7: Left: Optimal detuning for added optical broadening according to eq. (4.54).
Right: Optimal detuning for minimal n̄min according to eq. (4.52).

Figure 4.8: Optical broadening, γopt, for choices of cavity parameters, see eq. (4.38).
The two branches (grey lines) of maximum γopt are apparent and converge in the resolved
sideband regime. In the unresolved sideband regime the two branches represent an optimal
detuning for a given mechanical frequency as described in eq. (4.54), or vice versa, which
is equivalent to ∆̄ and Ωm switching roles.

and the optical broadening is shown in fig. 4.8. Notice how this has the same
qualitative behavior as fig. 4.6 as they both relate to sideband asymmetry.

If we look back at eq. (4.49) we see that the minimum effective occupancy that
can be reached is given by a trade-off between the dilution of the thermal bath and
an increased effect of the light bath. Assuming that significant optical cooling is
present, i.e. γopt � γm, a balance is struck when the decoherence rates associated
with the two baths are equal, i.e. when

γmn̄bath = γoptn̄min =




4g2

κ
, for Ωm � κ/2,

3
√

3 g2

2κ , for Ωm � κ/2.
(4.56)

where we have chosen the optimal conditions for both regimes for simplicity. At
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this balance the effective occupancy is given by n̄eff ≈ 2n̄min. Thus, by optical
sideband cooling you can only cool into the ground state if you have enough sideband
resolution to begin with. That is, unless change the input assumption of vacuum
states. Probing with pre-squeezed light source constitutes such a change, and was
recently done by Clark et al. (2017).

Mechanical quantum cooperativity

This balance also indicates the point at which the thermal and optical baths are of
comparable importance for the dynamics of the mechanical motion. Reinspecting
eq. (4.56) we may define a useful figure of merit which allows us to judge whether
we may approach the quantum regime, namely the quantum cooperativity,

Cq ≡
4g2

κγm(n̄bath + 1/2) (4.57)

where we have added vacuum to the mechanical decoherence rate and assumed the
optical bath to be in the quantum ground state12. These are excellent assumptions
for most optical optomechanics experiments and certainly true in our case. The
balance struck in eq. (4.56) happens when Cq ∼ 1 and as we shall see this parameter
is relevant whenever light noise is being contrasted with thermal noise.

Let us look further at the effect light has on the motion of the mechanics and
vice versa.

4.1.5 Quantum back-action
Quantum cooperativity

Looking back at eq. (4.29) we see that the motional degree of fredoom has contri-
butions from both the thermal reservoir and the back-action of the optical field.
Writing this in terms of power spectral densities we have13

S̄QQ = |χeff|2
(
S̄TN
FF + S̄BA

FF

)
, (4.58)

S̄TN
FF = 2γm(n̄bath + 1/2) (4.59)

S̄BA
FF = 4g2

κ




(κ/2)2
(
∆̄ + Ω

)2
+ (κ/2)2

+ (κ/2)2
(
∆̄− Ω

)2
+ (κ/2)2




= 4g2

κ

(
|L(Ω)|2 + |L(−Ω)|2

)
(4.60)

12Note this is not n̄min, but rather the mean thermal excitations of the light field.
13In calculating 〈F̂BA

FF (Ω)F̂BA
FF (−Ω)〉 the following relation is useful, u(Ω)u∗(Ω) + v(Ω)v∗(Ω) =

1
2

(
|L(Ω)|2 + |L(−Ω)|2

)
, where u and v are combinations of the complex Lorentzian L(Ω) as defined

in eq. (4.111).
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where we see that the back-action contribution is weighted by the cavity Lorentzians
L(Ω) evaluated at the sideband frequency of interest. This sideband frequency is
typically near the mechanical frequency as the mechanical susceptibility is strongly
peaked there (for a high Q). We have used the correlation functions for the input
fields given by eq. (2.73) and assumed them to be shot noise limited, i.e. Sin

XX =
Sin
Y Y = 1/2.
If we consider the relative importance of the thermal and quantum back-action

(QBA) forces we find that

QBA
TN = S̄BA

FF
S̄TN
FF

= Cq
1
2
(
|L(Ω)|2 + |L(−Ω)|2

)
(4.61)

where Cq is the quantum cooperativity as defined in eq. (4.57). As suspected,
when this quantity is near unity the quantum back-action and thermal noise play a
comparable part. In the resolved and unresolved sideband regimes (RSB and uRSB)
the contributions are given by

S̄BA
FF
S̄TN
FF

=





Cq, for uRSB regime Ωm,
∣∣∣∆̄
∣∣∣� κ/2,

Cq
1
2

(
1 +

(
κ/2
2Ωm

)2
)
, for RSB regime Ωm � κ/2,

∣∣∣∆̄
∣∣∣ = −Ωm.

(4.62)

It is clear that in the unresolved sideband regime a Cq = 1 implies equal contribu-
tions to the driving of the mechanical motion. In the absence of significant quadra-
ture rotations this ratio of the contributions translates into the observed variance of
the mechanical motion as read-out in the optical phase quadrature.

The quantum cooperativity can also be thought of in terms of a “measurement”,
Γmeas, and thermal decoherence, γthdec, rate. Using the eqs. (3.43) and (4.57) we can
write

Cq = Γmeas

γthdec
,Γmeas = 4g2

κ
. (4.63)

In this sense the quantum cooperativity quantifies the interaction strength as com-
pared to the decoherence rate. As we shall see now, in a simple case, the measure-
ment rate is related directly to the rate of mechanical motion readout.

Readout

Suppose we observe the phase quadrature output of port 1 of the cavity. Using the
input-output relations of eq. (2.80) we have

δŶ out,1 = δŶ in,1 − √η1κ δŶ (4.64)

where the intracavity field will, in general, contain contributions from external am-
plitude and phase quadratures, as well as transduced fluctuations of the mechanical
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motion. Let us, for simplicity, consider the case of zero detuning, ∆̄ = 0, and choose
the intracavity mean field to be real. In this case we find that

Sout,1
YY =

∣∣∣∣∣1−
η1κ

iΩ + κ/2

∣∣∣∣∣

2

Sin,1
YY +

∣∣∣∣∣∣

√
η1(1− η1) κ
iΩ + κ/2

∣∣∣∣∣∣

2

Sin,2
YY +

∣∣∣∣∣

√
ηκ

iΩ + κ/2

∣∣∣∣∣

2

4g2SQQ (4.65)

= Sin
YY + η1ΓeffSQQ, (4.66)

where all the input light noise contributions can be collectively written as Sin
YY. Note

that if both input fields are in the vacuum state then this is just shot noise, since
the prefactors in eq. (4.66) sum to unity.

From eq. (4.66) it is clear that the transduced mechanical fluctuations need to
be read out with sufficient strength to overcome this noise floor Sin

YY set by the
fluctuations of the input fields. This transduction strength is given by the effective
readout rate given by

Γeff = 4Γmeas|L(Ω, ∆̄ = 0)|2 = 16g2

κ
|L(Ω, ∆̄ = 0)|2 = ΓM |L(Ω, ∆̄ = 0)|2. (4.67)

This rate is related to the measurement rate defined in eq. (4.63). We further define
one last useful rate, namely the on resonance mechanical readout rate given by

Γm = 16g2

κ
. (4.68)

This is the readout rate, on cavity resonance, in the unresolved sideband regime
where Γeff = Γm.

Notice the Lorentzian penalty factor given simply by the reduced gain of the
cavity seen by the mechanical sidebands. In general, for a detuned cavity the penalty
is more of a weighted average as in eq. (4.60), and can actually be quite substantial
for even moderate detunings.

The aforementioned noise floor can be related to an equivalent transduced me-
chanical motion that would produce the observed variance. This is known as the
imprecision noise floor and sets the level of motion sensitivity. From eq. (4.66) we
find that it is given by

Simp
QQ = 1

ηΓeff
Sin
YY. (4.69)

Seemingly, there is no limit to the achievable measurement sensitivity. We will
read out the mechanical motion SQQ together with the imprecision (imp) noise floor
Simp
QQ as

Sout,1
YY = ηΓeff

(
Simp
QQ + SQQ

)

︸ ︷︷ ︸
StotQQ

. (4.70)

However, in general the mechanical motion will have contributions from thermal
noise and the back-action noise as described in eq. (4.58) and will be given by
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Figure 4.9: Standard quantum limit. Apparent mechanical displacement Stot
QQ inferred

from measurement, see eq. (4.70), for γm = 1, η = 1. Two cases are shown, one with no
thermal noise contribution (blue curve) and one with n̄bath = 105 (red curve). The latter
is the typical order of magnitude reached in the experiments presented here. Also shown
and annotated are the (dashed grey) contributions from the imprecision noise floor Simp

QQ ,
the quantum back-action noise SBA

QQ, and the thermal noise STN
QQ.

SQQ = STN
QQ + SBA

QQ. Neglecting for the moment the thermal noise contribution
we have only the quantum back-action from the input light fields which drive the
mechanical motion.

This produces a back-action (BA) force on the oscillator is given by

F̂BA = −2gδX̂ (4.71)
SBA
FF = ΓeffS

in
XX, (4.72)

where we have also written the input optical driving quadrature terms δX̂ in,i com-
prising δX̂ in collectively as Sin

XX. The read-out rate Γeff also turns out to be the
write-in rate of optical fluctuations on the mechanics. Thus, clearly the imprecision
noise floor scales inversely with the back-action. Indeed,

Simp
QQS

BA
FF = 1

η
Sin
XXS

in
YY ≥ Sin

XXS
in
YY, (4.73)

where we see a Heisenberg uncertainty principle apply to the sensing of the mechan-
ical displacement. If the quadratures are shot noise limited, then, putting ~ back
in, we have the canonical relation Sin

XXS
in
YY ≥ (1/2)2. In what follows we will assume

that they are both shot noise limited, and thus equal to 1/2.
The quantum back-action associated with the readout of mechanical motion

invariably disturbs it, writing in optical fluctuations, thus limiting the achievable
sensitivity. The total apparent motion is then

Stot
QQ = Simp

QQ + SBA
QQ + STN

QQ, (4.74)
SBA
QQ = |χ|2SBA

FF , (4.75)
STN
QQ = |χ|2STN

FF . (4.76)
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These terms are shown in fig. 4.9 evaluated at the mechanical resonance frequency
as the effective readout rate is increased.

Consider the transduced mechanical motion in the absence of thermal noise as
would be observed in a power spectral density of the detected optical phase quadra-
ture S̄out,1

YY . The peak of the motion due to quantum back-action (BA) in units of
the imprecision shot noise floor (SN) is given by

BA
SN =

SBA
QQ(Ωm)
Simp
QQ

= η

(
Γeff(Ωm)
γm

)2

. (4.77)

When the ratio is unity, the competing terms of imprecision and quantum back-
action balance. In this case the transduced spectral density associated with the
mechanical motion driven by the light noise has an equal contribution to the appar-
ent motion of shot noise floor, this is the standard quantum limit.

In practice the presence of thermal noise typically dominates the imprecision
noise floor at mechanical resonance. The point at which the BA force begins to
dominate the thermal noise (see fig. 4.9) happens when Cq ∼ 1 as described in
section 4.1.5. It is much harder to reach as the readout rate needs to be larger by
the thermal bath occupancy.

The regime relevant for this work is the case where the mechanics is significantly
broadened by dynamical back-action as compared to its intrinsic broadening. Since
both γopt ∝ g2 ∝ n̄ and Γm ∝ g2 ∝ n̄ the height of the back-action contribution
in the power spectral density, as described by eq. (4.77), is independent of the
intracavity power ∝ n̄. Thus this quantity, if desired, can only be tuned by changing
the cavity detuning or by cavity linewidth κ, the former being a more experimentally
convenient knob.

Changing the cavity detuning changes the the optical broadening and, in con-
juction with the input optical power, is a way to fine tune the readout rate required
for a particular optical broadening. This is important for the experiments of chap-
ter 6. To achieve a larger (smaller) BA/SN, whilst maintaining the maximum optical
broadening, the sideband resolution Ωm/(κ/2) must be made smaller (larger). This
is easily understood from eq. (4.38) where a larger sideband resolution means that
a smaller readout rate is required for a given amount of optical broadening.

Efficiencies

Let us look again at eq. (4.66) from the perspective of particular quantum fields. Let
us first consider only the fluctuations not related to the mechanics. We see that the
detected output quadrature from the cavity really has two contributions. One from
the light reflected off the port which you are detecting (say port 1) and the other
from the remaining port (say port 2). If these are both SN limited quadratures then
the total detected quadrature is also SN limited.

However, a fraction of the quadrature reflected off the cavity is lost and the
fluctuations replaced by those of the other port. This limits the detection efficiency
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of the input quadrature, and in the highly overcoupled regime this is equivalent to
a power loss of η4, as mentioned in eq. (2.79).

Similarily, we can consider the output fluctuations associated with the mechan-
ical fluctuations, in particular the QBA contribution. If the fields from both ports
are degenerate and have ∆̄ = 0, then this contribution is given by

Sout,1,BA
YY ∝ ηκSBA

QQ ∝ Sin
XX (4.78)

= ηκ
(
ηκSin,1

XX + (1− η)κSin,2
XX

)
. (4.79)

This means that the QBA contribution to the output spectrum deriving from the
input amplitude quadrature fluctuations of port 1 is diminished by an equivalent
power loss of η2. The contribution to the back-action is, however, given linearly
proportional to η.

From this general analysis it is clear that the overcoupling of the cavity is of
primary concern for a quantum limited readout of the input fluctuations, as this
scales with η4. Of secondary concern is the detection of the mechanical QBA, which
scales as η2. Finally, the mechanical motion is driven by the input quadrature of
interest by a fractional amount η.

Cavity mode matching

In practice the input field incident on our optomechanical system is not in a spatial
mode with perfect overlap with the driven cavity mode of interest. The degree of
spatial mismatch, is characterized by the overlap integral of eq. (B.5.39) and known
as the cavity mode matching ηmm. The modes of our plano-concave cavity are
hermite-Gaussian modes described by eq. (D.3.31), which have a Gaussian profile
and a spatial distribution given by a Hermite polynomial. The Gaussian nature of
these modes means that we can couple a Gaussian beam very efficiently to them, in
principle reaching a mode matching efficiency of ηmm = 1.

In practice however our input fields are never perfectly Gaussian, typically dis-
torted by various optics, and so our input field only has a less than unity overlap
with the cavity mode. This can be viewed as a source of incoupling loss to the
cavity, as is shown and explained further in appendix B.5.3.

Importantly, in such a real life case, the efficiency η just discussed in section 4.1.5
is not only comprised of the cavity overcoupling, which we may write as ηc = κ1/κ.
The cavity mode matching ηmm also impacts this such that η = ηcηmm.

This impact of mode matching depends crucially on the type of measurement
being done. The efficiency is clearly of huge importance if the quantum fluctuations
of the input field are important, particularly so if the cavity is probed in reflection
as just discussed in section 4.1.5. This will limit the hybrid experiments discussed
later in section 6.4. The mode matching is on the other hand completely irrelevant
for the purely optomechanical results of section 4.4.2.
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4.2 Membrane-in-the-middle

4.2.1 Introduction

Before diving into the specifics of our system it is instructive to view a few canon-
ical system. There are many groups who work with such end mirror coupling op-
tomechanical systems. Limiting the scope to those implementing micromechanical
resonators as the mechanical degree of freedom we have a more manageable subset.
To name a few groups who have pursued systems like this we have the following.

In the group of Markus Aspelmeyer, a double clamped SiN beam with a de-
posited micromirror was used to demonstrate strong coupling between the mechan-
ical motion and the intracavity field in Gröblacher et al. (2009a). Furthermore
they demonstrated strong optical sideband cooling down to an occupancy of ∼ 30
phonons, see Gröblacher et al. (2009b). A similar system was introduced a few years
later by Dirk Bouwmeester and colleagues in Kleckner et al. (2011). They realized
a SiN trampoline resonator with a micromirror forming part of a high a finesse op-
tomechanical cavity. More recently they have demonstrated an improved mechanical
quality factor by realizing nested trampoline structures, see Weaver et al. (2016).
They simultaneously improved the cavity finesse by a factor of 4.5.

In an attempt to “integrate” the mirror into the mechanical resonator the group
of John Lawal introduced SiN membrane resonators with a high-contrast grating
etched into the membranes. In this system they demonstrated an achievable cavity
finesse of ∼ 3000, see Kemiktarak et al. (2012). Similar pursuits, with photonic crys-
tal perforation in SiN instead of a high-contrast grating, include those of Jack Harris
in collaboration with Chee Wei Wong (Bui et al. (2012)), Jack Sankey (Bernard et al.
(2016)), Simon Gröblacher (Norte et al. (2016)), and Pierre-François Cohadon (Chen
et al. (2017)).

A different approach was taken by Michele Bonaldi, where mechanical resonators
in Si with a deposited mirror were realized demonstrating cavity finesses of ∼ 65×
103. These structures in contrast to the aforementioned groups had much larger
effective masses (∼ 100 µg), see Serra et al. (2012, 2013).

Finally, the group of Antoine Heidmann has similarly high effective masses
(70µg) in a quartz micropillar resonator with a micromirror at the end, see Neuhaus
et al. (2013); Kuhn et al. (2014).

In practice, the mechanical motion we are interested in is not the canonical
cavity end mirror on a spring. Instead we have opted to place a SiN membrane, as
described in section 3.10, in the middle of a plano-concave Fabry-Pérot cavity, such
as described in section 2.3. This optomechanical system is illustrated in the left
panel of fig. 4.10. The coupling between the mechanical motion of the membrane
and the optical field is dispersive and will be described further shortly.

This arrangement is chosen as it has numerous practical advantages. Let us
name a few, some of which are not necessarily exclusive to this type of setup. First
the high mechanical quality factors of the SiN membranes combined with their very
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Figure 4.10: Membrane in the middle illustration and 2kzm. A membrane in placed
inside a Fabry-Pérot cavity shown by the two cylindrical (blue) mirrors. Left: Relation
to the canonical optomechanical setup. Input modes ŝin,j couple through mirror ports j
generating an intracavity field â. The field describing the common mode excitations of the
membrane (translucent square) is described by field operator b̂. Middle: View of cavity
again with the standing wave of the intracavity field shown. The dashed lines shown the
transverse Gaussian profile. The membrane (blue line) is held by a Silicon structure (dark
grey). It samples the intracavity field at a particular point in the standing wave, which has
a half-wavelength periodicity. Right: The location zm of the membrane (blue line) with
respect to this half wavelength, also known as “bubble” (red), affects the cavity dynamics
and is quantified through the field phase 2kzm which is periodic every 2π.

low optical loss, see Zwickl et al. (2008); Wilson et al. (2009), invites their addition
to an optical cavity. Optical cavities with very high finesses are readily available and
well understood. The decoupled mechanical and optical properties allow for both to
be optimized and tailored independently. Furthermore, decoupling the mechanical
element from the end mirror allows for smaller masses since the onus for a high
cavity finesse no longer rests with the mechanical element.

Placing a membrane in the cavity as shown in fig. 4.10 means that the cavity field
probes the mechanical motion at a particular point, as is seen in the left panel. This
is typically arranged to coincide with the spatial displacement maxima of a chosen
mechanical mode. In the middle panel of fig. 4.10 the standing wave nature of the
intracavity field is shown. The membrane position with respect to this periodic field
is quantified through the phase 2kzm where k is the cavity fields wavevector and
zm the location of the membrane inside the cavity with respect to mirror 2. This
relative placement alters the cavity dynamics as we will shortly see.

So long as the cavity is long compared to the wavelength, the optomechanical
dynamics are unchanged under translation, maintaining the same relative position
with respect to the standing wave, of course. That is, locally, adjacent standing wave
“bubbles” are equivalent. Thus we cast the membrane position in terms of a large
scale position zm and further by a 2kzm phase mod 2π, since the exact location is
unimportant. This 2kzm bubble is shown in the right panel of fig. 4.10.

In practice, our membrane-in-the-middle setup consists of three primary ele-
ments; the two end mirrors and the membrane. However we are only interested in
the motion of the membrane. As we saw in the previous section the motion of the
end mirrors will unfortunately (in this case) also be transduced by the cavity. So
we need to be careful to differentiate between the fluctuations associated with the
cavity, and those of the membrane. These unwanted mirror modes are discussed in
section 4.5.7.
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4.2.2 Experimental realization
More specifically, the optomechanical system is based on the near-monolithic cryo-
genic membrane-in-the-middle system described in detail in Nielsen (2016); Nielsen
et al. (2016). The system built here consists of a membrane device (SiN membrane
with a larger Si chip surrounding it) pressed towards a plano mirror together with a
Si spacer. This is achieved by sandwiching these elements between a rigid larger cop-
per structure compressing an O-ring placed beneath the mirror. This spring holds
the sandwich in place and all these elements are shown in fig. 4.11. The Si spacer
has a square groove big enough to not clamp the Si phononic crystal structure of the
membrane device. It also has a small square hole large enough to allow the cavity
mode through and small enough to be in contact with the plano mirror everywhere
along the edge.

Above this stack floats a plano-concave mirror glued1 to a piezo-electric trans-
ducer, which itself is glued to a copper support. Since this mirror is decoupled from
the remaining stack the piezo-mirror combination can tune the cavity resonance
frequency. The ring piezo is 3 mm long and provides enough travel at cryogenic
temperatures of ∼ 4 K to move a cavity free spectral range. This is essential as we
wish the cavity to be on resonance with a probe at 852.3490 nm for the experiments
of chapter 6. Furthermore, the piezo-electric transducer is used to compensate low
frequency excursions of the cavity resonance frequency with respect to the probe.
This is further explained where applicable.

The Fabry-Pérot cavity formed is 1.3 mm long with a finesse F = 4500 (κ =
2π × 25 MHz) and is mounted in a continuous flow cryostat2 in order to achieve a
high vacuum as well as low operating temperatures of ∼ 4.4 K. The power trans-
missions of the mirrors are 20 ppm (plano) and 1400 ppm (concave) thus, giving a
largely one-sided cavity with η1 = 97 % in the absence of any other losses besides the
transmissions and losses of the mirrors3. This one-sidedness is of practical impor-
tance for the detecting quantum fluctuations in section 4.4 and more importantly
in chapter 6. The cavity mirrors are further anti-reflection coated on the back.

The cavity assembly itself is placed in a liquid helium flow cryostat capable of
operating at 4 K. The assembly is housed in a larger copper structure which is
anchored to a cold finger of the cryostat. A radiation shield protects the assembly
from the 300 K radiation load of the environment. The vacuum chamber has windows
for optical access which are anti-reflection coated on both sides. Such a cryostat
provides vacuum at a level of 1× 10−6 mbar and can be evacuated, heated, or cooled
in a very short period of time (< 30 min).

The membrane is placed 500 µm from the 20 ppm mirror. This distance is set

1Stycast 2850FT
2Janis ST-100.
3While the 20 ppm mirror has negligible losses compared to transmission, the 1400 ppm mirror

is suspected to have losses amounting to ∼ 20 ppm.
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Figure 4.11: Basic MIM assembly components. From left to right we have: A
standard O-ring. Then a high finesse mirror of 20 ppm transmission and negligible loss
coated on top of a 7.7 mm diameter 4 mm thick BK7 substrate. Then a 500 µm Si spacer.
Then an example of a membrane device as described in fig. 3.8. Lastly (looking from top to
bottom) a high finesse mirror of 1400 ppm transmission coated on top of a plano-concave
6.35 mm diameter 3 mm thick fused substrate. This substrate is then glued (plano side)
to a 3 mm thick ring piezo-electric transducer, which is itself glued to a copper support
structure. The wires seen allow for electrical control of the transducer.

by the thickness of the underlying Si spacer. The actual mechanical oscillator is the
highly stressed, 60 nm thick SiN membrane supported by the Si. This device can
be seen as the last element in fig. 4.11 and in greater detail in fig. 3.8.

We will predominantly be concerned with the (1,2) drum mode of the membrane
with a frequency ΩM = 2π×1.28 MHz at cryogenic temperatures. This mode is used
as it is the lowest frequency mode to lie within the bandgap, see fig. 3.8, and has a
high quality factor of Q = 13× 106 as measured by ringdowns (γM0 = 2π× 0.1 Hz),
see section 3.5.3 and specifically fig. 3.4. The frequency of the mode is chosen such
that it does not coincide with unwanted empty cavity mirror modes as described in
section 4.5.7.

An ∼ 8 % side length difference of the membrane breaks the degeneracy of the
(1,2) and (2,1) modes significantly, with the desirable (1,2) mode being ∼ 60kHz
lower in frequency than its sibling. This membrane is placed in a cavity and aligned
such that the cavity TEM00 mode has a good spatial overlap with the (1,2) mode
and a poor overlap with the (2,1) mode. This further separates the modes as the
optical spring effect described in section 4.1.4 pushes the (1,2) mode even further
away, while having only a marginal impact on the (2,1) mode.

Since the dielectric membrane reflects light, its central placement forms two sub-
cavities. It turns out that one can map the behavior of this membrane-in-the-middle
setup directly to the canonical OM system described in the previous section. This
is done by defining effective parameters such as κ and g.

4.2.3 Motivational effects
First, let us motivate the effect of such a dielectric thin film placed inside MIMposs-
calingbasicthe cavity. Note that since the membranes employed are typically never
thicker than ∼ 70 nm < λ/10 they add very little to the optical path length of a
cavity ∼ 1000 λ long. In principle the membrane constitutes an etalon with the
first resonance occurring when the thickness is nd = λ/2, which is about 200 nm
for SiN. Since we are still far below this and the etalon has a very low finesse we
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Figure 4.12: Cavity frequency shift for membrane in the middle Membrane is
placed in the center of a long cavity with a varying absolute amplitude reflectivity rm =
(0, .1, .2, .5, .8, .99) (lightest to darkest). The frequency shift is relative to the maximum
cavity frequency.

can simply treat the membrane as an infinitely thin dielectric film segmenting the
cavity into two sub-cavities. The complex reflection and transmission coefficients of
the membrane are still calculated with their finite width, however, and are given by,

rm = (n2 − 1) sin(knd)
2in cos(knd) + (n2 + 1) sin(knd) , (4.80a)

tm = 2n
2in cos(knd) + (n2 + 1) sin(knd) . (4.80b)

The two sub-cavities are defined by the position of the membrane and their
dynamics, it turns out, depend strongly on where the membrane is placed. This can
be reasoned by realizing that the membrane acts as a boundary condition one side
of each sub-cavity. Supposing the membrane position in the cavity can be tuned,
then the boundary conditions of the sub-cavities change, and thus we should expect
to an overall change in the cavity as a whole. We should, therefore, also expect that
the fluctuations of the membrane change the resonance frequency of the cavity, i.e.
that a coupling exists.

In what follows we will pay close attention to the work and formalism of Jayich
et al. (2008); Wilson (2012). The cavity resonance frequency can be found by re-
quiring that the transmitted field phase is a multiple of π with respect to the input.
Suppose we place a lossless membrane in the center of a long symmetric cavity
(zm = L/2). In that case, the cavity resonance frequency ωc,n as a function of the
fine position ∆zm (where zm = L/2 + ∆zm), with respect to the center of the cavity,
can be shown to be

ωc,n
FSR = 2 (arg(rm) + arccos(|rm| cos(2k∆zm))) + n

ωc,0
FSR , (4.81)

where FSR is the bare cavity free spectral range and nωc,0 takes into account that
we are considering a high harmonic of the cavity n � 1. Whilst the first term
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Figure 4.13: Cavity frequency shifts in 2kzm. Membrane off cavity center at zm =
345 µm and a cavity length of L = 1 mm. The membrane reflectivity is varied by changing
the thickness from h = (5, 10, 20, 40, 80) nm (lightest to darkest), which changes the
absolute amplitude relfectivity rm = (0.06, 0.11, 0.21, 0.39, 0.57) (lightest to darkest).
In total the wavelength is tuned from 852 nm to 856 nm.

represents a constant frequency offset, the second shows a clear modulation of the
cavity eigenfrequency. The size of this modulation is given by the membrane ampli-
tude reflectivity |rm| whilst the periodicity is given by the phase 2kzm. The cavity
frequency shift, removing the constant frequency offset, as the membrane position
is varied is seen in fig. 4.12.

The coupling rate (∝ ∂ωc/∂zm) is clearly modulated with the location of the
membrane in the “2kz” phase of 2kzm. We can think of this 2kzm phase as the
position of the membrane with respect to the optical standing wave. If the cavity
is long (with respect to λ) the dynamics are periodic in this quantity as long as
we only are locally translating the membrane one standing wave period over. Some
quantities are period not just on the local scale, but also on the global placement of
the membrane within the cavity.

Talking about this periodicity in terms of the 2kzm is very handy since one may
not always be able to tune the membrane position directly. Indeed this is the case
for the work presented here. In that case one has to change the wavevector in order
to address different places in 2kzm. This is done in two main ways.

Firstly, in the case where one cannot adjust even the length of a subcavity, one
can still cycle through this 2kzm picture by jumping multiple FSRs. After ∼ L/zm
FSRs the membrane returns to original location in 2kzm. Thus, if L/zm is very close
an integer you will not sample very many locations in 2kzm by this method. Cycling
through 2kzm in this way sets the number of FSRs you need to go before you roughly
return to where you started. This method allows you to discreetly sample the 2kzm
phase of fig. 4.13, which can actually be sufficient. This method was described in
more detail Nielsen (2016) and used to great effect in Nielsen et al. (2016).

Secondly, as is relevant to the main work presented here, the length of one
subcavity (subcavity bounded by mirror 1) can be changed. If the wavelength is
tuned and the cavity kept on resonance by adjusting the tunable subcavity length,
the effective 2kzm phase can be changed. The amount of wavelength change required
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Figure 4.14: Cavity linewidth and resonance frequency shift in 2kzm. Here the laser
frequency is tuned, whilst keeping the cavity on resonance by tuning of the cavity length.
The membrane is placed at zm = 500 µm from the flat mirror. This wavelength map can
be folder into 2kzm, but is left as is to show the periodicity and practical realization of
such a measurement. Top: Change in cavity resonance frequency as the wavelength is
tuned referenced to the case where no membrane is present. Bottom: Cavity linewidth
as the wavelength is tuned. The grey line at 25 MHz indicates the empty cavity linewidth.

to tune through a 2kzm bubble in this case is

∆λ = λ

2

(
λ

zm

)
, (4.82)

where it is clear that a 2kzm bubble can be tuned an FSR (= λ/2) by the accu-
mulated shift by 2zm/λ bubbles each having their size increase ∆λ. This is also
intuitively obvious; just as a small mirror displacement results in a large accumu-
lated phase shift far away (after many λ), so too does a small wavelength change at
the source produce a large accumulated phase shift far away. Tuning through 2kzm
in this fashion results in frequency shifts much like that of fig. 4.12. These frequency
shifts can be seen in fig. 4.13 for various membrane reflections.

In practice a 2kzm map can be seen in fig. 4.14 where the cavity resonance
frequency shift is clearly seen in the top panel. As the probing laser wavelength is
tuned, the cavity length is appropriately adjusted so as to stay on resonance with a
wavelength λcav equal to that of the laser. From here we could convert the clearly
period dependence into the 2kzm phase by multiplication of k = 2π/λcav with the
membrane position mod 2π. This would result in a figure like that offig. 4.13.

The cavity frequency shifts are calculated by how far the cavity must be tuned
by the piezo-electric transducer in order to be on resonance. The cavity linewidth
is measured by scanning the cavity resonance across a probe with known frequency
modulation sidebands. These sidebands are generated by an electro-optic modulator
a provide an absolute frequency reference. A fit of the cavity Lorentzian then yields
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Figure 4.15: Membrane-in-the-middle transfer matrix fields. The input Ein and
reflected Erefl fields are seen on the left. In the middle of the L long Fabry-Pérot cav-
ity formed by the two mirrors with amplitude reflection and transmission coefficients
(ri, ti), i ∈ {1, 2} sits the membrane with amplitude reflection and transmission coeffi-
cients (rm, tm). The membrane is taken to be a distance zm away from the back mirror.
The counter propagating fields inside the subcavities are E1, 2 and E3, 4. The transmitted
field is given by Etrans.

the linewidth.
To understand why the cavity linewidth, shown in the lower panel of fig. 4.14, is

modulated, we need to treat the membrane-in-the-middle system a bit more formally.
In doing so we will find that other canonical optomechanical properties are also
modulated.

4.2.4 Theoretical model
The approach to a system like this can be generally treated using the transfer matrix
model approach, as is done in Wilson (2012). For a more formal example imple-
menting multiple elements see Genes and Dantan (2017). Our system, however, is
simple enough that we can simply write down the relations between the intracavity
fields, as is done in Jayich et al. (2008), whose convention we will follow. Using the
simple cavity described in section 2.3 as a reference we can write down the following
intracavity fields as illustrated in fig. 4.15,

Erefl = r1Ein + it1E2e
ik(L−zm), (4.83)

E1 = it1Ein + rmE2e
ik(L−zm), (4.84)

E2 = itmE4e
ikzm + rmE1e

ik(L−zm), (4.85)
E3 = itmE1e

ik(L−zm) + rmE4e
ikzm , (4.86)

E4 = r2E3e
ikzm , (4.87)

Etrans = it2E3e
ikzm . (4.88)

We are, of course, most interested in the coupling between the membrane motion
and the cavity fields. The net DC force on the membrane depends on the radiation
pressure forces experienced, and provides a clear way to determine the coupling.
If n̄1 photons are populating subcavity 1 then the radiation pressure force will be
given by the rate of change of the momentum transfer, which happens on a timescale
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given by the subcavity roundtrip time τ1. The momentum transfer of each photon
is 2~k and the net radiation pressure force on the membrane is, making a similar
definition for subcavity 2, then given by,

F = F1 − F2 = 2~k
(
n̄1

τ1
− n̄2

τ2

)
, (4.89)

τ1 = 2(L− zm)
c

, τ2 = 2zm
c
. (4.90)

The net force simply depends on the power difference of the two subcavities.
We can contrast this to the force on the canonical end-mirror coupled mechanical
oscillator of eq. (4.5), which was

F̂ = −∂Ĥint

∂q̂
= −~g0n̂/xzpf, (4.91)

we can map our dynamics onto this by defining the coupling rate as4

gMIM
0 ≡ 2kxzpf

n1 + n2

(
n1

τ1
− n2

τ2

)
. (4.92)

Although we motivated this mapping through a classical consideration of the
mean photon subcavity populations, it naturally extends to the quantum case as
originally done for the canonical case. The intracavity photon numbers are related
to the cavity fields via

n1 =
(
|E1|2 + |E2|2

)
τ1, (4.93)

n2 =
(
|E3|2 + |E4|2

)
τ2. (4.94)

As the membrane modulates 2kzm the photon populations n1 and n2 change.
This is shown in fig. 4.16 for various membrane reflectivities. In the very relevant
(and currently hard to avoid) limit where the cavity mirrors are much more reflective
than the membrane this 2kzm modulation only depends on the membrane transmis-
sion and reflectance as can easily be checked from eq. (4.88). Both subcavity fields
are modulated in a non-trivial manner in the case of reasonable membrane reflec-
tivity. However, the subcavity furthest away from the driving port experiences the
largest absolute modulation as a function of 2kzm.

4.2.5 Effects on canonical optomechanical parameters
From fig. 4.16 we can also see that a significant differential subcavity photon pop-
ulation can be achieved for particular 2kzm positions. Thus, we should expect the

4Note that there is an additional negative sign difference between eq. (4.89) and eq. (4.91) has
been included due to the opposite directions taken to be positive displacement. Thus, eq. (4.92)
can be directly mapped to the canonical system coupling.
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Figure 4.16: Intracavity fields dependence on membrane thickness. A SiN mem-
brane is positioned at zm = 500 µm in a L = 1 mm one-sided cavity. The thickness is
varied from h = (5, 10, 20, 40, 80) nm (lightest to darkest) which also changes the absolute
amplitude reflectivity rm = (0.06, 0.11, 0.21, 0.39, 0.57) (lightest to darkest) The total
cavity length is probed at 852 nm the cavity length adjusted by � L to keep the cavity
on resonance.

coupling g0 to be modulated also, and with the subcavity roundtrip times we can
directly calculate the dependence. This modulation clearly depends on the reflec-
tivity of membrane, where higher couplings can be achieved with higher membrane
reflectivities. This is partly shown in fig. 4.17, where the thickness is varied as this
is typically the experimental parameter that may be toggled. This, however, has the
added effect that a thicker membrane has a higher mass, and thus a lower g0. How-
ever, even with this, the effect is clearly of a larger coupling for larger reflectivities
is the dominant effect.

The disparity of the subcavity powers also modulates other important overall
cavity parameters. One that immediately jumps to mind is of the cavity loss rate.
Imagine a one-sided cavity5 with subcavity populations modulated as in fig. 4.16.
When the subcavity adjacent to the lossy port has a larger population the overall
cavity loss rate will be higher, because a larger fraction of the total cavity photons
are being lost per unit time. Conversely, in the situation where most cavity photons
populate the subcavity adjacent to the perfect mirror, the cavity will lose fewer
overall photons per unit time, as compared to the bare cavity. Thus, the addition
of the membrane can enhance (or reduce) the cavity finesse/bandwidth. This effect
can be seen in fig. 4.17 where the membrane reflectivity is varied by changing the
membrane thickness.

The roundtrip time of the particular subcavity is also important for this over-
all linewidth modulation. A trade-off exists as the total number of photons in a
subcavity, and its roundtrip time, depends on the global position of the membrane
(always chosing the point of maximum modulation in 2kzm). For the one-sided cav-
ity the point of no finesse/linewidth modulation lies very close to the near perfect

5In a one-sided cavity we can think of one port (termed the “lossy” port) as having some finite
transmission, whereas the other port is perfectly reflecting.
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mirror. Moving the membrane across the cavity this effect is shown in fig. 4.18.
For a symmetric cavity, this point of no modulation lies right in the middle of the
cavity, since the subcavity roundtrip times are then equal (and again the photon
populations care not for the absolute location of the membrane).

This reduced or enhanced linewidth/finesse is really due to a smaller or greater
number of photons leaving from a given port. Thus, the coupling effeciency of a given
port can also be thought of as modulated. Considering again the one-sided cavity,
in the enhanced linewidth 2kzm region (where more photons populate the subcavity
with the lossy port) a greater fraction of the total cavity photons leave through the
lossy port. Thus, the overcoupling is higher and one should expect a higher overall
reflected power. Likewise, in the other port the transmitted light should be reduced
by this fractional increase. This can be seen in fig. 4.17 for the transmitted light.
The reflected light sees the same modulation, with (1−R)/(1−R0) being modulated
exactly as shown for T/T0 in the case of no additional cavity losses. Here R, T are
the power reflection and transmission and the subscript 0 indicate that of the bare
cavity.

Unfortunately, it is not possible to simultaneously achieve a large degree of over-
coupling while simultaneously having a reduced cavity linewidth (increased finesse)
as would often be desirable. However, this effect allows the overcoupling of a particu-
lar membrane-in-the-middle cavity to be tuned by choice of the membrane reflectiv-
ity. In a similar vein, one can also tune the size of the cavity linewidth modulation
by choosing where to place the membrane. When doing this one often needs to
consider both the relevant parameters g2

0/κ and κ as such a choice often involves a
desire for a particular readout rate and/or sideband resolution. These parameters
are also shown in figs. 4.17 and 4.18. The collection of all these optomechanical
parameters in 2kzm is colloquially known as a column of wisdom. Once a setup
has been characterized, the measurement of one of these parameter, most often the
cavity linewidth κ, is enough to infer the others.

4.3 Optomechanically induced transparency

4.3.1 Theoretical treatment

An optomechanical system like ours can display a feature analogous to atomic elec-
tromagnetically induced transparency (EIT). In an atomic medium where a probing
field resonant with a transition would normally be absorbed, adding a strong pump
field can, under the right circumstances, open up a transparency window for the
weaker probe to leak through. This is typically done in a three level system where
the pump drives a transition between a level the probe addresses and one it does
not. This scheme can lead to a destructive interference effect between the transition
probability amplitudes of the levels. This effect on Strontium atoms was first re-
ported in Boller et al. (1991) and is concomitant with a severely distorted dispersion
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Figure 4.17: Periodic 2kzm modulation of optomechanical parameters with
membrane thickness. The membrane thickness is scaled from h = (5, 10, 20, 40, 80)nm
(lightest to darkest) for a membrane placed at zm = 500 µm in a L = 1 mm long cavity.
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Figure 4.18: Periodic 2kzm modulation of optomechanical parameters with
global membrane position The global position of the membrane is tuned zm =
(50, 100, 200, 500, 900) (lightest to darkest). The cavity length is fixed at L = 1 mm and
the membrane thickness is taken to be h = 60 nm.
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Figure 4.19: Simplified OMIT. Pump field s̄in (red) is detuned from cavity resonance
frequency ωc by a detuning given by ∆̄. The probe field δsin (blue) has two contributions in
the frequency modulation case as indicated by the additional dashed field. These detuned
from the pump by the sideband modulation frequency ±Ωp. Left: Optomechanical state
picture. The cavity has photon number operator n̂c and the membrane a phonon number
operator is n̂m. Note similarity to atomic EIT in e.g. a Λ scheme. Right: Probe and
sidebands in relation to the cavity Lorentzian (black) with linewidth κ.

relation. This leads to a severe reduction in the group velocity of the probing field,
as shown in Kasapi et al. (1995), and thus this effect can be used for storage.

In an optomechanical system this three-level system dynamics can also be real-
ized as was demonstrated by Weis et al. (2010). The effect is used in this work not
for slowing light, but as a handy characterization tool to determine optomechanical
parameters. Let us see how induce this effect1.

As our input, let us take a large coherent field as our pump and a small probe.
Using our previous notation we can write the input as sin = s̄in+δsin. In practice the
probe field is made by an electro-optic modulator, which phase modulates the light
at an experimentally tunable frequency Ωp. The input field, thus, attains sidebands
at ±Ωp, which in the case of a small modulation depth β is can be written as

sine
iωt = sine

i(ωLt+β sin(Ωpt)) (4.95)

= sine
iωLt

[
1 + β

2
(
eiΩpt − e−iΩpt

)]
= s̄in + δsin, (4.96)

δsin = s̄in
β

2
(
eiΩpt − e−iΩpt

)
(4.97)

Where we have identified our small probe field δsin, which is purely imaginary
(δsin = δs†in)2 if we take our input field to be a large real field (s̄in = s̄†in). Sending
these fields to the cavity we realize the level scheme illustrated in fig. 4.19, which is
reminiscent of a traditional Λ scheme for atomic EIT.

In the most simple detection scheme possible we simply seek to detect the ampli-
tude quadrature δX̂out coming from the cavity. As we are applying the probe field

1We take a similar approach to Nielsen (2016).
2δsin(t) = iβ sin(Ωt) = −δs†in(t)
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at a known frequency we can simply demodulate this quadrature at Ω = Ωp. As this
probe field is very large, and we are only interested in the steady state dynamics of
the system, we will neglect quantum effects as well as the mechanical thermal reser-
voir. Looking in transmission, the detected quadrature is related to the intracavity
quadrature δX by

δXout = √ηoutκ δX, (4.98)

where the ηout is the cavity output coupling efficiency. For simplicity let us take the
mean intracavity field ā to be real. Thus, we write the rotation of the cavity on the
input field as an effective phase on the input, i.e.

s̄in = i∆̄− κ/2√
∆̄2 + (κ/2)2

ā, (4.99)

δsin →
i∆̄− κ/2√
∆̄2 + (κ/2)2

δsin. (4.100)

We can then use the equations of eq. (4.26) to write down the mechanical motion
and the intracavity field as,

δQ(Ω) = −χm(Ω)
√

2 gδX(Ω), (4.101)

δa(Ω) = iL(−Ω)
κ/2


√ηinκ

i∆̄− κ/2√
∆̄2 + (κ/2)2

δsin(Ω)− i
√

2 gχ(Ω)δQ(Ω)

 . (4.102)

We can now find the intracavity amplitude quadrature δX(Ω) =
(
δa(Ω)+δa†(−Ω)

)
/
√

2
to be given by,

δX(Ω) = C(Ω)δsin(Ω) +M(Ω)δX(Ω), (4.103)

C(Ω) =
√
ηinκ√

∆̄2 + (κ/2)2

(∆̄− iκ/2)L∗(Ω)− (∆̄ + iκ/2)L(−Ω)
κ/2 , (4.104)

M(Ω) = 2g2

κ/2χm(Ω) (L(−Ω) + L∗(Ω)) , (4.105)

where we have used δsin(Ω) = −δs†in(−Ω) as stated previously. From this result
we realize that the intracavity field has two contributions. The first is a cavity
conversion of the input phase modulation into amplitude fluctuations, which we will
write as C(Ω). The second is the transduced driven mechanical motion, which in
the case of the detuned cavity mixes the phase quadrature response into amplitude
fluctuations. We write this mechanical contribution as M(Ω) and notice that its
contribution is only substantial when the coupling rate is large and when Ωp ≈ Ωm

since the response is filtered by the mechanical susceptibility. Using this result and
the input–output equation of eq. (4.98) the detected quadrature is given by,

δXout(Ω) =
√

(1− η)κ C(Ω)
1 +M(Ω) s̄in

β

2 (δ(Ω + Ωp) + δ(Ω− Ωp)) . (4.106)
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Figure 4.20: Theoretical OMIT response. Grey line is only |C(Ω)| whereas blue includes
the mechanical response M(Ω). A mechanical susceptibility is chosen to contain only 3
modes with frequencies Ωm = (∆̄− κ,

√
∆̄2 + (κ/2)2 , ∆̄ + κ). The detuning was set to be

∆̄ = −5(κ/2) and g2/κ = .03.

We can think of this scheme as probing the mechanical response of the optome-
chanical cavity to an input phase modulation. Demodulating the detected quadra-
ture at Ω = Ωp and looking at the amplitude of the signal (treating both sidebands
equally) we see the transparency window, initially advertized, in fig. 4.20. The over-
all cavity transduction of the probe is shown in grey and the full response in blue.
Where there is a mechanical mode the probe field is not transduced into δXout and
thus the cavity appears transparent to the phase modulation field.

The mechanical susceptibility used in fig. 4.20 includes 3 modes for illustra-
tive effect. Including these modes (or more) requires only a minor modification to
eq. (4.102) to extend the susceptibility to be the sum of many susceptibilities and
the coupling constants to be written individually.

The cavity response is maximum where Ωp =
√

∆̄2 + (κ/2)2 , and the OMIT
feature of a mechanical mode here is symmetric (see fig. 4.20) in frequency since the
probe is on cavity resonance, and thus the sidebands are weighted equally. A mode
with a frequency above or below this point has unequally weighted sidebands, and
thus a distorted and dispersive response. This phase difference has a sign difference
above and below resonance as is clearly seen.

The detected signal strength can, in practice, be boosted to the required signal-
to-noise by a simple increase of modulation β (so long as it remains small). Further-
more this method acts as a nice way to coherently probe the mechanical response
of a potential mode. Indeed it can also be used to check whether something is me-
chanical pliable or an artifact of detection. For very narrow mechanical modes with
a high mass this is, however, difficult in practice.

4.3.2 Measurement

In a monolithic, symmetric, 1.7 mm long cavity like the one described in Nielsen
et al. (2016) the optomechanical system is cryogenically operated and probed in
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Figure 4.21: OMIT optical setup. A probe with frequency modulation sidebands is sent
through the optomechanical cavity and detected in transmission on a diode. The cryostat
(blue square) surrounds the optomechanical system.

transmission by a strong probe with frequency modulation sidebands generated by
an electro-optic modulator. A simplified optical setup of the experiment is shown
in fig. 4.21.

In practice a bias tee splits the detected photocurrent fluctuations. The high fre-
quency branch (> 100 kHz) is directed to demodulation and signal processing. The
low frequency branch forms part of a feedback loop stabilizes the laser to the cavity
on long time scales compared to the dynamics of the mechanics3. The transmission
Lorentzian of the cavity is used as the error signal. A good reference for under-
standing such feedback, which are of huge practical importance, but not thoroughly
discussed in this work, can be found in Bechhoefer (2005).

The output transmitted light from the cavity is detected and the resulting pho-
tocurrent demodulated at the sideband frequency. As this frequency is swept we
obtain the OMIT response of the optomechanical system as seen in fig. 4.22.

The cavity mirrors each have a 20 ppm transmission in contrast to those de-
scribed in section 4.2.2. This provided a significantly higher finesse and the achieved
linewidth was κ/2π = 1.4 MHz. The membrane has a large number of modes within
a few cavity linewidths4. Thus, the OMIT response seen in5 fig. 4.22 looks a bit
more messy. Nonetheless, the same underlying dynamics are at play. Typically the
overall cavity dynamics described by C(Ω) is the dominating feature, and can always
be made so by reducing the intracavity field amplitude.

We can use the fit of the overall cavity response to fit both cavity linewidth and
detuning. Fits of the individual modes can be used to extract the coupling strength
g for that mode. To get g0 from the fitted g the intracavity power needs to be known,
which can in practice be calculated if the input power and coupling efficiencies are
measured, or, if the output coupling efficiency and ultimate detection efficiency are
measured.

In this particular experiment, shown in fig. 4.22, the (3, 3) membrane mode with
a frequency of 2.2 MHz is significantly optically broadened to γopt/2π = 70 kHz. In

3Feedback bandwidth of ∼ 10 kHz.
4This is typical for us as we have so far not ventured deep into the unresolved sideband regime
5This is a particularly extreme case of large dynamical back-action.
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Figure 4.22: Practical OMIT response. In the absence of a membrane (or with zero
optomechanical coupling) we have the grey line. This is the bare cavity response and
clearly shows the cavity linewidth κ/2π = 1.4 MHz and is roughly centered on the cavity
detuning ∆̄/2π = −2.5 MHz. The OMIT response of the membrane in this case is signifi-
cant due to a large coupling and the mechanical modes are significantly broadened.Top:
Linear scale OMIT response in a wide bandwidth. Bottom: Logarithmic scale with zoom
of the first few modes with the theoretical OMIT response included (red line). The dips
are very deep, and thus the transparency in this window is very high.

the absence of other decoherence mechanisms (unfortunately likely not the case) this
cooling would effectively bring it into the quantum ground state, with an effective
occupancy of about 0.4 phonons, as it has a measured quality factor of Q = 7.8×106.
A conservative estimate of the bath temperature of ∼ 10 K was used as the cryostat
was operated at 4 K.

This OMIT technique is typically used as a way to measure optomechanical
parameters in conjuction with other methods. This allows for characterization and
is often a useful consistency check. It also allows for diagnostics in conditions of bad
signal-to-noise as the large coherent response to the classical probe is demodulated
in a narrow bandwidth.
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4.4 Ponderomotive squeezing

4.4.1 Theoretical treatment

The mechanical oscillator, as we discussed in section 4.1.5, is driven by the fluctu-
ations of the input light fields. In practice, seeing this radiation pressure induced
back-action effect on the mechanical motion is challenging as it has to first overcome
an often very large thermal noise component. This has only recently been demon-
strated in Purdy et al. (2013a) who use a very similar optomechanical setup. It has
also been demonstrated for a mechanical resonator coupled to the radiation pres-
sure of microwaves Teufel et al. (2016) as well as the collective mechanical degree of
freedom of a cold atomic gas ensemble in a cavity Murch et al. (2008).

This light induced quantum back-action force on the mechanical motion can be
viewed as a heating term. Equally, however, it correlates the mechanical motion
with the fluctuations of the light. We can probe this correlation by way of what is
known as ponderomotive sqeezing, which we can think of in the following way.

Traditionally in the QND case of ∆̄ = 0 only the ampltide quadrature δX̂ drives
the resonator and the response is imprinted as additional fluctuations in the phase
quadrature δŶ . When this QBA driving force is appreciable significant correlations
between the two light quadratures arise, since δŶ ∝ δX̂. Thus, if we mix these
quadratures, as can be done by a detuned cavity (∆̄ 6= 0), interference should
manifest. Observing this interference presents a straightforward way to demonstrate
that the QBA on the mechanical resonator and shows that the light noise is a relevant
factor in the dynamics. It can also lead to sub-poissonian statistics of the light field
at particular Fourier frequencies and is, thus, also – in principle – of interest from
an improved imprecision point of view.

This effect was recently demonstrated for the motional degrees of freedom of the
aforementioned cold atomic ensemble in a cavity Brooks et al. (2012b). This was
followed shortly thereafter for solid state optomechanical implentations by Safavi-
Naeini et al. (2013) and then Purdy et al. (2013b) in a very similar setup as our
own. Each time the observed squeezing was increased. Our entrance into this
quantum optomechanics regime follows this trend. We recently demonstrated this
ponderomotive squeezing in Nielsen et al. (2016), where the effect is quite substantial
(for optomechanical standards). So, let’s see how this all comes about, where we
will follow the approach of Nielsen et al. (2016). More on the background of our
work towards this achievement is detailed in Nielsen (2016).

Like in section 4.3 we will take the mean intracavity field as a real quantity and
seek to find the output amplitude quadrature, as this is typically where this effect is
detected. The logic is easily extended to detection in an arbitrary quadrature phase.
In the detuned cavity case the intracavity amplitude quadrature has contributions
from both input quadratures as well as some mechanical response. Once again using
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the QLE of eq. (4.26) It can be written as we find

δX̂(Ω) =
{
i [L(Ω)− L∗(−Ω)]

√
κ δX̂ in − [L(Ω) + L∗(−Ω)]

√
κ δŶ in

}
− (4.107)

g

κ/2 [L(Ω) + L∗(−Ω)] δQ̂. (4.108)

We know from eq. (4.29) that the mechanical position δQ̂ is also driven by a light
term identical to that contained in the curly brackets of eq. (4.108) above. This we
can anticipate that the power spectral density will contain correlations related to
the mechanical susceptibility. Using the input output equations of eq. (2.80), for
the moment assuming a perfectly one-sided cavity, we find the symmetrized output
power spectral density (relative to shot noise) of,

S̄out
XX
SN = 1 + 8Γmeas Re

(
χeff(Ω)u(2u2 + 2v2 − v)

)
+ 16Γ2

meas |χeff|2 |u(u+ v)|2 +
(4.109)

8Γmeas |χeff|2 |u| 2γm(nbath + 1/2). (4.110)

where we have summarized the typically complicated cavity response factors in two
parameters u and v. These parameters are not the real and imaginary components
of the complex Lorentzian, but rather useful expressions defined as

u(Ω) ≡ −1
2 [L(Ω) + L∗(−Ω)] , (4.111a)

v(Ω) ≡ i

2 [L(Ω)− L∗(−Ω)] . (4.111b)

In the unresolved sideband regime where |∆̄|,Ω � κ/2 the cavity response terms
significantly simplify and allow us to approximate eq. (4.110) to

S̄out
XX
SN = 1− 8

(
∆̄
κ/2

)
Γmeas Re(χeff)

︸ ︷︷ ︸
correlations

+ 16
(

∆̄
κ/2

)2

Γmeas |χeff|2
(
Γmeas + γthdec

)

︸ ︷︷ ︸
transduced motion

(4.112)

The first term is the shot noise term and the last represents the fraction of the
transduced mechanical motion appearing in the amplitude quadrature. This is a
small fraction of the total response, which is predominantly mapped into the phase
quadrature. Notice how this contribution grows for larger cavity detunings, and thus
quadrature rotations. This rotation term necessary as the mixing provides us with
the middle term, which derives from the correlations between the amplitude and
phase quadratures. This correlation term has the characteristic dispersive shape of
the effective mechanical response Re(χeff) which can be negative.

One can heuristically think of the correlations as originating from the mechanical
response to say δX̂, which is given by χeff, being then projected back onto δX̂.
Thus, the interference will follow the phase response of the mechanical resonator.
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Below (mechanical) resonance the response is in phase and the interference is then
constructive, whereas above (mechanical) resonance, the response is out of phase,
and thus the interference can be destructive.

Operating the cavity in transmission (driving it through the high reflector), will
produce correlations with this characteristic response of Re(χeff). In Nielsen et al.
(2016) we present a realization of an optomechanical setup with a multitude of
mechanical modes all responsible for ponderomotive squeezing. Strong squeezing
(by optomechanical standards) of −2.4 dB is reported, which correcting for detection
efficiencies would be −3.6 dB.

A finite detection efficiency, η, simply replaces the correlations present with
uncorrelated shot noise. This loss, be it from out-coupling efficiency or detection
losses, reduce the measured (meas) squeezing by

S̄meas
XX
SN & η

S̄out
XX
SN + (1− η). (4.113)

Beyond the purely technical imperfection of detection efficiency, which in Nielsen
et al. (2016) and in the work presented here, can easily be drastically improved,1
the squeezing is limited by the ever finite thermal noise component whose fraction
to the driving force of the mechanics is given by ∼ Cq. This thermal noise limiting
sets a bound given by

S̄out
XX
SN & 1− Γmeas

Γmeas + γthdec
(4.114)

= 1− Cq
Cq + 1 ≈

1
Cq
, ∀Cq � 1. (4.115)

4.4.2 Measurements in transmission
To measure squeezing in the amplitude quadrature as just discussed we first send
a probe through the cavity as shown in the left panel of fig. 4.23. The output
transmitted light is then collected by a single diode in direct detection, as described
in appendix B.1. This single diode is half of a differential detector where the other
diode is dark for these measurements and those that follow in section 4.4.3. This
complication, along with the assortment of waveplates and polarizing beam splitters
(PBS) are a result of this setup being a subset of a larger setup shown in fig. 6.2
needed for the experiments discussed in chapter 6. These unnecessary optics give
rise to a rather low detection efficiency, which, as we will see, limits the detected
amount of squeezing. The measurements discussed here and in section 4.4.3 were
measurements done as a test as to whether our optomechanical system was indeed
quantum limited. Thus, the detection chain was not optimized for high efficiency,
as it was built for the experiments described in chapter 6.

1The limiting losses are optical in both cases and could be eliminated by a simply implementing
higher quality optical components and striping the detection path to the bare minimum.
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Figure 4.23: Squeezing optical setup. The optomechanical setup used for the mea-
surements in transmission (left) and reflection (right) the results of which are shown in
figs. 4.24 and 4.25 respectively. A legend is shown (top) and the optomechanical system
is enclosed in a cryostat (blue square).

The power spectral density of the detected photocurrent fluctuations is then
calculated. This is shown in fig. 4.24, where the detected amplitude quadrature
for a cavity probed in transmission, is normalized to shot noise (of an source with
equivalent power) as measured through a similar setup as that used in Nielsen et al.
(2016). The details of our setup is described in more detail in section 4.2.2. In
the figure two mechanical modes are shown. The lower frequency one is the (1,2),
with bare Ω(1,2)

m = 2π × 1.28 MHz, and the higher frequency one the (2,1) Ω(2,1)
m =

2π × 1.34 MHz. Both have high quality factors with Q = 13 × 106. They are split
by a slight asymmetry in the membrane side lengths and are also asymmetrically
coupled to by an intentional choice of cavity mode overlap with the spatial profile
of these membrane modes.

The sharp noise peaks at the edges of the top panel of fig. 4.24 are likely empty
cavity mirror noise peaks as discussed in section 4.5.7. These peaks are seen with
an increasing signal to noise ratio as the imprecision is increased concomitant with
the larger cooperativity. The sharp peaks seen immediately to the red of the (1,2)
mode is interest as different. These appear to additionally grow in proportion to
the mechanical motion. They are likely hybrid modes driven to larger amplitude as
the mechanical mode is pushed into them by dynamical back-action. Such hybrid
modes are discussed in section 3.10.

While these system imperfections complicate the broadband picture, the overall
dynamics are largely unaffected. This is clear from the excellent agreement between
the optomechanical theoretical fit and the measurements shown in the bottom left
panel of fig. 4.24.

The one-sided cavity described in section 4.2.2 is operated at the 2kzm point
where the linewidth is κ = 2π × 15 MHz, see fig. 4.14. It is driven through the high
reflector (overcoupled) port and the amplitude quadrature detected is seen through
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Figure 4.24: Squeezing in transmission for (1,2) mode. Cavity κ/2π = 15.2 MHz
and the detuning varies steadily from ∆̄/2π = −5.5 MHz→ −1.5 MHz as Cq is increased.
Top: Measured PSDs relative to SN. The broad feature is the (1,2) mode and the narrow
adjacent feature is the (2,1) mode. Bottom left: Squeezing trace of Cq = 12.4. The
discrepancy at higher frequency is due to the tail of the (2,2) mode and the sharp mirror
modes. The maximum squeezing is of (−3.3± 0.2) dB ((53± 2) % below SN) for a Cq =
12.4. Correcting for detection and additional classical amplitude noise gives −8.6 dB (86 %
below SN). The red line is a fit from the dynamics of the QLE. The red dot is the point of
minimum predicted squeezing from the model. The grey line is the noise floor set by the
classical AM noise and finite detection efficiency. Bottom right: Measured squeezing,
blue dots, corresponding to the minimum value of the trace low passed with a Hanning
window of 40 adjacent frequency bins. The error corresponds to the standard deviation of
the noise in a region of 30 adjacent frequency bins. This corresponds to a range of 3 kHz.
The detected squeezing does not come close to the yellow bound described in eq. (4.116)
for the low cooperativity traces as the detuning was far from optimal. Red transparent
dots are the minimum squeezing as fitted by the model. See bottom left figure.
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the overcoupled port with an efficiency of ηout = 95.5 %. Upon exiting the cavity
light is converted into a photo-electron with an efficiency of 65 %.

The cooperativity is scaled by increasing the probe power thus increasing the
intracavity field. The residual light not reflected by the final PBS before the balanced
detector D2, see fig. 4.23, is directed onto an avalanche photodiode (not shown) and
the variation of the transmitted power with the cavity Lorentzian used as an error
signal. The cavity frequency is stabilized to the laser frequency on long time scales
compared to the dynamics of the mechanics2 by feedback on the cavity piezo. The
lock point was set by hand and thus when the power increased the detuning changed.

As the quantum cooperativity grows we see the effects of dynamical back-action,
namely an increased mechanical damping due to the increased optical broadening,
as well as a frequency shift. This is clear for both the mechanical modes, although by
far dominant for the highly coupled (1,2) mode of interest. If we look at a particular
trace, bottom right panel of fig. 4.24, we can clearly see significant squeezing over a
wide bandwidth. The (2,1) mode lies almost in the middle of this range, which is,
of course, not ideal. It is, however, quite narrow compared to the squeezing feature,
and its effect is minimal. The squeezing is well predicated by the QLE equations
as shown by the fit, which assumes only a single mechanical (1,2) mode. At higher
frequencies the agreement is worse as there are additional mirror modes littering the
landscape and the tail of the inescapably highly coupled (2,2) mode. In grey we plot
the de-facto squeezing floor (1− η) + S̄in,AM

XX /SN given by the finite total detection
efficiency η and additional classical amplitude noise from the laser S̄in,AM

XX .
Classical laser amplitude noise scales ∝ P 2

in, whereas the cooperativity and the
shot noise scale ∝ Pin. Thus, at some finite power the classical amplitude noise of
the laser will begin to dominate or at least significantly contribute to the noise of
the input field δX̂ in. This additional noise contribution is of S̄in,AM

XX (Ω) is shown in
section 4.5.1 and falls off for higher frequencies.

Despite these serious limitations to the amount of squeezing attainable, a remark-
able (−3.3± 0.2) dB ((53± 2) % below SN) of sub-shot noise squeezing is measured
for a Cq = 12.4. If one were to correct for the detection efficiency this would in-
crease to −8.6 dB (86 % below SN). This measured squeezing is the mean over a
3 kHz bandwidth and the error simply the given by the standard deviation. Thus,
the actual peak squeezing may be a bit higher, but over a smaller bandwidth.

The squeezing for the varied Cq is shown in bottom right of fig. 4.24 along with
the grey line displacing the aforementioned practical limit. Additionally shown in
yellow is the combined bound of eq. (4.115) and eq. (4.113) plus the amplitude noise
of the probe, i.e.

S̄out
XX
SN & η

(
1− Cq

Cq + 1

)
+ (1− η) + S̄in,AM

XX
SN . (4.116)

2Feedback bandwidth of ∼ 1 kHz.
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Clearly this bound is not reached for the initially small cooperativities, but is reached
as the detuning is brought closer to resonance for a larger cooperativity.

4.4.3 Measurements in reflection

Squeezing can also be observed probing in reflection, although often with higher
losses due to finite cavity modematching, see section 4.1.5. The logic to solving
the QLE is exactly the same. In this case the response gets an additional π phase
shift from the interference with the input field, and thus the detected amplitude
fluctuations have the form of −Re(χeff).

For the measurements displayed in fig. 4.25, which we shall shortly discuss, we
operate a wide cavity side of 2kzm where we have a κ = 2π × 33 MHz, see fig. 4.14.
We keep the cavity at a fixed detuning of ∆̄ = −2π×8 MHz, and probe in reflection
by the scheme illustrated in the right panel of fig. 4.23.

Cavity stabilization

The stabilization of the cavity used in this setup is worth discussing in a little more
detail as it is also used for the measurements described in chapter 6. The cavity is
locked by the use of an auxiliary low power beam (labelled PDH), originating from
the same laser. The intracavity fields from the probe and PDH (locking) beams are
in orthogonal polarizations ensured by use of quarter waveplates on either side of
the cavity. On the side of the probe field, the waveplate is adjusted such that the
probe is reflected off the input PBS upon returning from the cavity. This allows
the field from the cavity originating from the probe and having interacted with the
optomechanical cavity to be stripped from the input and directly detected on the
D2 detector as just in section 4.4.2.

The waveplate on the PDH locking beam side of the cavity is adjusted such that
the fraction of this field transmitted through the cavity is also transmitted from the
PBS on the probe side, thus not being detected. The reflected fraction of the PDH
field is picked off by a PBS, just as the probe was on the other side of the cavity,
and detected on detector DPDH.

The locking beam is referred to as “PDH” since it contains two frequency modula-
tion sidebands at 12 MHz. These sidebands beat with the carrier and the differential
phase shift these experience in reflection off the cavity is used to generate an error
signal. This is done by mixing the detected photocurrent with a tone at the side-
band frequency and low passing the output. This is known as the Pound-Drever-Hall
(PDH) technique and is further described in Black (2001). The error signal derived
is used to stabilize the cavity to the laser by feedback on the cavity piezo with a
feedback bandwidth of ∼ 1 kHz.

The PDH beam is blue shifted from the probe by use of an acousto-optic modu-
lator. If the cavity is stabilized so as to be on resonance with the PDH beam, then
the probe will address the cavity red detuned by their frequency difference. This is
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Figure 4.25: Squeezing in reflection for (1,2) mode. Cavity κ/2π = 33 MHz and a
fixed detuning of ∆̄/2π = −8 MHz as Cq is increased. Top: Measured PSDs relative to
SN. Bottom left: Squeezing trace of Cq = 2.7. The discrepancy near maximum squeezing
is due to a mirror mode. The maximum squeezing is of (−1.8± 0.2) dB ((34± 3) % below
SN) for a Cq = 2.7. Correcting for detection and additional classical amplitude noise gives
−4.4 dB (64 % below SN). The red line is a fit from the dynamics of the QLE. The red dot is
the point of minimum predicted squeezing from the model. The grey line is the noise floor
set by the classical AM noise and finite detection efficiency. Bottom right: Measured
squeezing, blue dots, corresponding to the minimum value of the trace low passed with
a Hanning window of 10 adjacent frequency bins. The error corresponds the standard
deviation of the noise in a region of 15 adjacent frequency bins. This corresponds to a
range of 1.5 kHz. The detected squeezing is quite close to the yellow bound described in
eq. (4.116) as the cavity was not too far detuned. Red transparent dots are the mininum
squeezing as fitted by the model. See bottom left figure.

used to controllably set and change the cavity detuning ∆ with respect to the probe
field.

This PDH beam couples to the cavity through the undercoupled port 2 with a
low power. The contribution this field has to the intracavity power is always kept
to < 1 % of the probe. This locking beam thus has a negligible impact on the
intracavity dynamics and, due to polarization filtering, the final detection.

Measurements

A series of measurements where the probe input power is varied is shown in fig. 4.25,
where the observed squeezing is quite large. It does reach the same level as that
shown in fig. 4.24 since the cavity now has twice as big linewidth without a much
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different single photon coupling rate. This is seen in fig. 4.17 where the relevant
g2

0/κ interaction strength is smaller on the wide cavity side of 2kzm. Thus, the input
power required to reach the same Cq is higher. This means that the amplitude noise
begins to be limiting that much faster. All the curves shown in fig. 4.25 have the
same meaning as is fig. 4.24.

In all of these traces the thermal noise contribution was assumed to be that of a
bath with a constant temperature of 7 K as is constistent with what was measured
in section 4.5.5. It is plausible that the membrane temperature would increase with
an increased intracavity power, but this has unfortunately not yet been studied in
detail.

4.5 Practical considerations
Of practical importance for design and operation are the basic optomechanical pa-
rameters of g, κ, γthdec and Ωm, as well as tangential system properties which affect
these. These are all important as they impact the light-matter interaction of inter-
est. Also important are the underdesired modes of the cavity mirrors themselves as
well as the classical noise properties of the interacting light fields.

Here we will discuss these parameters and practical considerations and techniques
that are relevant for our particular implementation of a membrane-in-the-middle
system.

4.5.1 Classical laser noise

In reality laser systems typically do not produce perfect vacuum states at their
outputs. This means that the fluctuations in the optical quadratures that drive
the mechanics are not shot noise by default. The laser we use for our probe of the
optomechanical (and hybrid) system is a Ti:sapphire laser system from Msquared.
We are concerned with any frequency (phase) noise or amplitude noise as they
will both constitute a classical drive of the mechanics. The amplitude noise directly
through an increased Sin

XX and the latter through increased Sin
Y Y which, in a detuned

cavity, is converted into amplitude fluctuations which drive the mechanics.
Our cavity is not phase sensitive enough to convert any laser phase noise into

appreciable amplitude noise at the frequencies of the mechanics. The amplitude
noise on the other hand is a concern and our laser system has ample of it at a few
100 kHz. This noise is caused by the relaxation oscillations of the intracavity field
of the laser. As this intracavity field is perturbed from steady state, by say noise of
the pump, it oscillates as it returns to equilibrium. Both the oscillation frequency
and damping rate depend on the intracavity power and are are seen experimentally
in fig. 4.26.

First note that the classical amplitude noise scales quadratically with power
whereas the optical shot noise scales linearly. Thus, the absolute optical probe
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Figure 4.26: Amplitude noise of Ti:Sapph probe laser. A power spectral density of
the Ti:Sapph probe lasers amplitude noise. The shown is the classical contribution added
on top of optical shot noise relative to a particular optical power and for a given power
pumping the laser (legends). This pump power is directly related to the intracavity laser
power. Left: log-log scale. Right: Zoom of noise in the region 900 kHz to 2.1 MHz.
Both: the abrupt change of scaling at higher frequencies is due to measurement noise
rather than a changing noise response.

power used is important. Consider the case of the laser cavity pumped by with a
power of 1.9 W resulting in some laser intracavity power. For the continuous wave
light emanating from the laser this results in an added classical amplitude noise
equivalent to 1.0 unit of shot noise at a Fourier frequency of 1.0 MHz with a probe
power of 400 µW. Thus, at this frequency the amplitude quadrature noise will be 1
unit of shot noise plus 1 unit of classical noise. This noise falls off fast and already at
1.3 MHz, where our membrane mode sits, there is already ≈ 6 times less amplitude
noise. This added noise drives the mechanics and limits quantum behavior such as
the ponderomotive squeezing discussed in section 4.4.

4.5.2 Coupling rate

The linearized coupling rate g = g0
√
n̄ can be tuned by the optical or mechanical

properties. The single photon coupling rate g0 depends on the 2kzm modulation
discussed in section 4.2.4 and tuning to an optimal point can be done by changing
the probing wavelength or the membrane position with respect to the flat mirror.

The spatial position of the membrane with respect to the cavity mode is also
important as the cavity mode samples the displacement of the membrane. Probing
at an anti-node is therefore desirable and is in practice aligned such that this is the
case. This is done by imaging the plane of the membrane and moving the concave
mirror so as to localize the cavity mode as the desired location. This, along with the
penalty associated with a mismatch, is described in Nielsen (2016). This mismatch
is often made worse by more extended, higher order, cavity modes. Thus working
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Figure 4.27: Single photon coupling rate with membrane thickness. As the mem-
brane thickness is varied, the absolute value of the membrane amplitude reflectivity is
shown in blue, while the single photon coupling rate is shown in red. The envelope of
the coupling rate decays due to the h−1/2 scaling of the zero point fluctuations due to the
mass dependence on thickness. This assumes a 1.3 MHz mode on a 500× 500 µm wide SiN
membrane probed at 852 nm.

with the TEM00 mode is desirable and also what is done throughout this work.
The coupling also depends on mechanical parameters such as the reflectivity, as

well as the zero point motion. The membrane reflectivity is periodic in the thickness
h whereas the zero point motion falls of as ∝ h−1/2. This is shown in fig. 4.27 where
the optimum g0 lies at h = 65 nm (the highest reflectivity is at h = λ/8 = 106.5 nm).

Clearly if the amplitude reflectivity was larger for thinner membranes a higher
coupling could be achieved. Using a much shorter wavelength of light is not an
option as the SiN membranes have larger absorption at shorter wavelengths. This
would limit the cavity finesse. One could also envision coating the membrane with
a more reflective layer. This, however, also introduce absorption as the coating
material is unlikely to be as transparent as SiN and would impact the mechanical
quality factor Q.

One can also imagine making a photonic pattern on the membrane in an ef-
fort to boost the reflectivity. This photonic pattern would cover the region on the
membrane where light probes the mechanics. High reflectivities, of ∼ 99.95 %, have
been realized with such an approach has been realized by Chen et al. (2017). In
practice however, fabrication imperfections result in losses still too high for practical
application in our experiments discussed in this work. The losses limit the degree
of cavity overcoupling and by extension the achievable cavity linewidth finesse.

4.5.3 Cavity length
The cavity length L impacts both g0 ∝ 1/L, κ ∝ 1/L and for a fixed input power the
intracavity photon number n̄ ∝ L. Suppose we keep a fixed relative detuning from
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cavity resonance and fix the relative location of the membrane within the cavity.
The quantity g2

0n̄/κ is then independent of the cavity length, which means that
the bistability onset described in eq. (4.15) is unchanged, and determined by Ωm.
This is a handy feature since it means that if other experimental parameters are
otherwise fixed, then making the cavity longer can offer an increased or decreased
sideband resolution. If a shorter or longer cavity is desired this can be done until
some disadvantageous effect does too much harm.

For shorter cavities the membrane will also be closer to a surface. This will
increase squeezing film damping which eventually will limit the membrane Q, see
section 3.9. A very short cavity will also lead to an ever smaller cavity waist, see
appendix D.3. This will lead to an increase in background noise associated with
the cavity mirrors. Many of these loss noise mechanisms scale non-linearly with the
cavity waist, see section 4.5.7.

For longer cavities one has to watch out for the cavity mode mostly. If it gets
too large at the membrane you can have a reduced g0 due to a poor mode overlap1.
A bigger waist can also lead to beam clipping or diffraction at the edges of the
membrane which would increase cavity losses. For a very long cavity the beam spot
on the mirrors may also be of concern. In the plano-concave cavity the beam spot
on the plano mirror will be small and the aforementioned concern of mirror noise
should be considered. Also, the beam spot on the curved mirror may become very
large in this regime. This can lead to increased cavity losses as HR cavity mirrors
are typically not clear of defects over the entire surface. Having a clear aperature is
more likely for smaller areas. To see how the cavity waists scale in the short or long
cavity limits, see appendix D.3.

4.5.4 Quality factor
Improving Q is an ongoing challenge for all groups striving to work in the regime
of quantum optomechanics. The limitations for the currently used SiN membranes
are discussed in sections 3.7 and 3.9. The new generation of membranes Tsaturyan
et al. (2017) have the Q not only scaling ∝ h−1 but also ∝ Ω−2

m (Higher Q for
larger membranes). Thus, the trade-off needed to be balance is between whether
one wishes the higher coherence times at the expence of lower coupling rates and/or
SB resolution.

Let us first consider the case of scaling the membrane size, and thus the fre-
quency. Assuming a 2D membrane with a characteristic size L, then the quantum
cooperativity will scale as Cq ∝ L ∝ Ω−1

m with the new patterned membranes. Thus,
operating with lower frequency membranes is advantageous from the point of view
of the quantum cooperativity, all else being equal.

1Essentially sampling not just at an anti–node of displacement, but some broader region with
smaller or even opposite displacement.
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Figure 4.28: Cq for scaling with membrane thickness. Maximum achievable quantum
cooperativity in 2kzm for various global membrane positions zm in a 1 mm long one-sided
cavity probed on resonance with a fixed input power. The mirrors have transmissions of
20 ppm and SI1400ppm and there is no added loss. Legend is common and the cavity
linewidth is numerically calculated with the model described in eq. (4.88). Left: For
the membranes used in this work the cooperativity scales according to Cq ∝ (g2/κ), i.e.
the mechanical damping does not scale with thickness. This is due to surface effects as
explained in Villanueva and Schmid (2014). Right: Future patterned membranes, see
Tsaturyan et al. (2017), have a thickness dependent damping scaling as Q ∝ h−1. Thus
the cooperativity scales as Cq ∝ (g2/κ)/h.

For the thickness scaling the quantum cooperativity scaling is slightly more tricky
as it will depend on the non-trivial modulation of the cavity linewidth κ and the
period nature of the membrane reflectivity rm, how they interact together, and the
placement of the membrane within the larger cavity, zm. By considering these effects,
for a fixed input power on cavity resonance (n̄ ∝ 1/κ), we can see from fig. 4.28 that
there are two decent strategies, both for the new generation of membranes and for
the old.

Either one positions the membrane such that there is little 2kzm modulation of κ
and a high g0, which in this overcoupled case means very close to the high reflector.
Here the choice of membrane thickness (due to rm) is quite limited. Alternatively
one can position the membrane at the point of large κ modulation in which can the
scaling of Cq with thickness is much broader and indeed optimized for thicknesses
of maximum reflectivity.

Of course, the quantum cooperativity is not always the sole quantity of interest.
In practice, for the new membrane for instance, one may also wish to trade off a
higher Cq for a thinner membrane. An example of such a case would be if the
absolute dynamical broadening required was restricted by another spectral feature
or experimental timescale.

Making the membrane modes of interest higher Q may result in other modes
which are not of interest also being higher Q. This may present a problem if they
additionally have a low mass (due to a thinner membrane) and a large displacement.
If not addressed, these high Q modes may have very large displacements making
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locking difficult, can produce harmonics at undesirable frequencies and if they have
too large amplitudes may even mix with the modes of interest. One can imagine a
large amplitude mode whose displacement causes a stress modulation which couples
to the mode of interest.

Additionally, making membranes thinner increases the thermal impedance and
sets a higher steady state temperature in the case of a thermal load from the probing
beam. This is expected to be an issue for the new membranes were the membranes
are not only thin but very extended compared to the previous generation.

4.5.5 Bath temperature

Reducing the temperature of the thermal bath, all else being equal, is always
favourable for the experiments of this work. This simply reduces the thermal occu-
pancy driving the membrane, and thus the thermal decoherence rate.

Liquid helium flow cryostat

In practice, the membranes are cooled to liquid helium temperatures in a continuous
flow cryostat. Liquid helium from a refillable dewar is brought through the cryostat
coldfinger, to which our optomechanical assembly is attached, before being let out
through an exhaust. The speed of the flow has previously proved to be a limitation to
the achievable temperature, Nielsen (2016), since higher flow comes with additionally
induced vibrations. This is a product of both cryostat design and operation, as well
the specific design of the optomechanical setup.

A pressure differential between the dewar and the outside world is necessary for
flow. For the experiments reported in this work the cryostat used was operated in so
called “push mode”. This means that instead of relying on a pump to create a low
pressure at the cryostat exhaust (“pull mode”), an over-pressure is created inside
the dewar leaving the cryostat exhaust at atmospheric pressure. This removes the
need for a noisy pump and provides a smoother flow. It also allows the dewars to
be easily left overnight in a low flow configuration. This ensures that the operating
point in 2kzm remains constant from day to day over the duration of an experimental
run (typically about 8 days).

Drift from cryogenic cycles

In practice the optomechanical system is seen to drift between cryogenic cycles in
such a way that the distance between the membrane and the flat mirror changes.
This shifts the 2kzm map and we can thus in practice move this map to suit an
absolute wavelength of choice by deliberately going through temperature cycles.
This is done by successively heating and cooling the cavity by roughly 100 K. The
resulting drift is always observed to be in the same direction thus allowing for fine
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control2 over the membrane position in the cavity and thus the 2kzm map.
While for purely optomechanical experiments, like that of section 4.4, the precise

operating wavelength is of little importance. Once a 2kzm map has been measured,
such as fig. 4.14, the desirable point in 2kzm can be chosen at will by choice of
wavelength. In this case the 2kzm drift associated with temperature cycles is a
minor inconvenience. However, the point in 2kzm a particular absolute wavelength
samples is important in chapter 6. In that case a static 2kzm map is undesirable.

Thermalization

Although the liquid helium used can bring the cryostat cold finger to 4.4 K, the
thermal bath which the mechanical oscillator sees does not reach this in practice. It
has not yet been studied thoroughly but the achievable temperature is presumably
limited by residual heating either by absorbed or scattered probe light, or a hot
immediate environment due black body radiation heating from the cryostat surround
materials which the membrane is in contact with, such as the flat mirror.

We can infer the mechanical bath temperature by noting that a spectrum of
S̄XX ∝ S̄QQ ∝ Tbath. Probing and locking the optomechanical system in transmis-
sion just as described in section 4.3.2, and by appropriately calibrating a detected
spectrum of S̄XX , we infer the mechanical bath temperature as the cryostat temper-
ature is varied. The details of this method are described in Nielsen (2016) and make
use of a standard technique in which the the observed motional variance is calibrated
to a known frequency modulation as described in Gorodetksy et al. (2010).

At each set cryostat temperature the mechanical Q is measured and a 2kzm map
is made. Adjusting the wavelength if necessary the same narrow linewidth point
of 2kzm is used. The optomechanical system is then probed at various detunings
where the optical broadening always dominates the intrinsic linewidth. An example
of such a series is seen in the left panel of fig. 4.29.

At each detuning an optical broadening is fitted and, an from a spectral integral,
a variance proportional to the mechanical mode temperature calculated. The inter-
action strengths are kept weak so that there is negligible back-action heating from
the probe, i.e. Cq � 1. Using the fitted optical broadening to correct for the cool-
ing done by dynamical back-action we can compare the measured mode variances
at the different cryostat temperatures, averaging each over many detunings. This is
done for three modes of the membrane used throughout this work and the resultant
inferred bath temperature seen for each is shown in the right panel of fig. 4.29. All
modes are assumed to be thermalized at 28 K and begin to deviate from the cryo-
stat temperature at about 12 K eventually thermalizing to (8.5± 1.0) K when the
cryostat is operated at the base temperature of 4.4 K.

An increase in the cryostat radiation shield surface area (leaving a small hole for
the probe input and output fields) was observed to have a small (if any) impact on

2Although a quite laborious task!
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Figure 4.29: Membrane thermalization as a function of cryostat temperature.
The inferred temperature of the mechanical thermal bath is found for various cryostat
operating temperatures. At each set temperature, calibrated spectra from a detuning series
are used to inferred the membrane bath temperature up to a proportionality constant.
Left: Example of a detuning series for the (1,2) mode at 4.4 K cryostat temperature. From
near cavity resonance we increase the red detuning, and subsequent sideband cooling,
is coloured from red to blue. Right: Referencing all measurements of inferred bath
temperature to those at 28 K shows a linear dependence with respect to the cryostat
temperature at high temperatures and deviation at lower temperatures. This is particular
true for the (1,2) mode, which features the cleanest measurements at all temperatures.

the achieved thermalization. In subsequent assemblies used for results of section 4.4
and chapter 6 the bath temperature for the (1,2) mode was found to be closer to
(7.0± 0.5) K when operating at a cryostat temperature of 4.4 K. This was inferred
from the observed ponderomotive squeezing seen in section 4.4, as well as fig. 6.11,
knowing the remaining relevant system parameters from independent measurements.
These thermalizations are consistent with those observed in the aforementioned
scaling of the cryostat temperature. This suggests that our optomechanical system
can be significantly improved if the source of this added heating can be removed (all
else being equal).

Similar thermalization was observed in the closely related system used for the
results discussed in section 4.3. This is further discussed in Nielsen (2016). Not
thermalizing to the cryostat temperature is a limitation experienced by many ex-
periment groups, particularly as the temperature is further decreased as in a dilution
refrigerator. Examples of such insufficient thermalization for SiN membranes have
been reported in both optical and microwave systems, see Fischer et al. (2016) and
Yuan et al. (2015), respectively.
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4.5.6 Membrane loss
Any tilt between the membrane and cavity mode leads to added loss. In practice this
is avoided by aligning the membrane to the flat mirror of the cavity. This is done by
the supporting Silicon structure either being in direct contact or indirect through a
spacer akin to the full membrane device, but without the actual membrane itself.
Our setup features no degree of freedom which may toggle this tilt. Thus acheiving a
low tilt loss in practice necessitates multiple assemblies as well as very clean mirrors
and membrane devices.

The membranes have very low absorption and we have been able to reach finesses
of 150 k implying a total absorption bounded at the ppm level as our mirrors have
known transmissions of 20 ppm. The membranes used in this work are bounded by
an opaque Silicon support structure. This may clip the probing cavity mode leads
to loss. In practice this is a negligible effect as may be seen in appendix D.2.2.

Any added loss from the membrane complicates the 2kzm picture as it needs to
be accounted for in the transfer matrix model described in section 4.2.4. The effects
are interesting but undesirable for our purpose. Thus they are not studied as we
routinely realize setups with negligible added loss.

4.5.7 Mirror Noise
A multitude of mechanisms give rise to loss and thus fluctuations of the cavity
mirrors. The most relevant are discussed and described in DeSalvo (2012). Here
we will only briefly address the currently dominant source of added noise in our
optomechanical system, namely substrate Brownian noise.

Substrate Brownian noise

Mirrors themselves have eigenmodes, which cause a displacement and modulate the
cavity frequency just like the membrane. These modes behave with the canonical
end-mirror coupling of optomechanics, but have a very high mass which makes the
coupling to them quite weak. This also means that they are not affected by dy-
namical back-action, and thus are not significantly cooled by a detuned cavity field.
Thus, despite their low coupling, the relatively large thermal occupancy (especially
at room temperature) means that they still modulate the cavity significantly on the
scale of the mechanical zero-point motion. This is the imprecision level of interest
and excursions on this order will introduce additional decoherence, mediated by the
light field, of the mechanical oscillator.

We do not see the bare eigenmodes of the substrate mirrors unfortunately. The
mirrors hybridize with our support structure, see section 4.2.2, significantly increas-
ing the density of modes and rendering an effectively narrow spectral region of
practical interest. This region can be clearly seen in fig. 4.30.

We have made many assemblies with different springs. With stiff copper springs
featuring a low contact area to the mirror we measure higher mirror Qs reaching
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Figure 4.30: Empty noise as a function of temperature. The peaks seen are modes
of the mirror and possible hybridized with the entire support structure. Modes are low
Q at RT, but get better at cryogenic temperatures reaching as high as ∼ 2000. Traces
are normalized to a known frequency modulation tone, and thus can be compared on an
absolute scale. The shaded region indicates a region of 10 kHz around 1.27 MHz. This is
a ∼ 2γM region around the mechanics for the experiments of section 6.4.

as high as Q ∼ 104. O-rings, however, proved the most stable under the cryogenic
flow conditions experienced in our present hybrid setup. These O-rings have a
relatively large contact area when compressed and are soft thus still providing a
large impedance mismatch between it and the mirror. These O-rings have quite
low quality factors, but still allow the mirror modes to have Q ∼ 103 at cryogenic
temperatures.

In our assembly one mirror is not in contact with a spring but is instead glued
to a piezo-electric transducer, reducing its Q considerably. There is also significant
hybridization between piezo and mirror. Efforts are ongoing to design an assembly
that creates a large acoustic impedance mismatch between the piezo and mirror.
This will reduce hybridization and produce a less dense mode spectrum.

Having the membrane spacer clamp the mirror also produces significant hy-
bridization of the mirror modes with the larger Silicon chip. Engineering a solution
to this requires adding a new degree of freedom to adjust the tilt of the membrane
with respect to the flat mirror, or designing the decoupling such that the tilt align-
ment is preserved (and is stable upon cryogenic cooling).

Direct approach

Predicting the empty cavity mode spectrum is difficult as due to the hybridization
between the elements of the structure. An approach to this end is known as the
direct application of the fluctuation dissipation theory as described by Levin (1998).

In practice we can model our structure in a finite element model. We wish
to see the noise a cavity mode sees on the surface of a mirror. Thus we apply a
force with a spatial profile of the cavity mode. The force is modulated and the
frequency f swept. The power admitted into the system is dissipated, Wdiss, and
by the fluctuation dissipation theorem this is related to the scale of the fluctuations
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seen by the probe by

Sxx(f) = 2kBTWdiss

π2f 2 . (4.117)

This Brownian noise depends on the temperature T of the structure as well as the
loss angle (Q−1) indirectly through the magnitude of the dissipated power.

FEM simulations3 of our structures are use and predict the qualitative features
of our complicated setup. However, the important details of exactly where hybrid
modes appear is still not understood and requires more work and experimental
realizations to pin down.

3We use COMSOL. In particular the outward mechanical energy feature of the solid mechanics
module.



120



Chapter 5

Atomic spins

For the quantum back-action evasion protocol described in chapter 6 we desire a
negative mass harmonic oscillator. In this chapter we will show that such a system
can be realized by appropriately preparing an ensemble of cesium-133 atoms.

This particular isotope is (still) used to define the second and is very well studied,
in particular here in Eugene Polzik’s labs. It is an alkali with only a single electron
in the outer most shell, making its (comparatively) simple dynamics particularly
well suited for quantum optics experiments.

They are also commercially available, and locally present, laser sources to address
relevant transitions. These light sources will serve both to create the required spin
oscillator from the ensemble of atoms, and to subsequently read out its motion.

We will first describe the basic structure of cesium and then consider the effect
of an externally applied magnetic field. We will introduce a basic model useful
in deriving the light-matter interaction. After including a magnetic field to this
interaction we will see under which conditions we can create the required effective
negative mass harmonic oscillator.

Then, a more general interaction Hamiltonian will be discussed, shedding light on
a few important interactions not captured by the basic model originally introduced.
Then various experimental realities, and sources of loss for the effective harmonic
oscillator will be discussed. Before we dive into all this, let us first briefly introduce
our physical platform in more detail.

5.1 Spin ensemble
We make use of a large ensemble of N ∼ 109 atoms confined in a vapour cell like the
one shown in fig. 5.1. Such cells are made locally by Mikhail Balabas1. Each atom
k have their own spin vector jk, which we align to an externally applied magnetic
field around which they collectively precess.

1Associate Professor at Saint-Petersburg State University.
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Figure 5.1: Atomic vapour cell. Glass cell used to encapsulate a cesium vapour. Left:
Full view of the vapour cell standing on large washer. The curvy stem houses a liquid
(black) drop of cesium at the top. This is the source of the vapour which fills the inside
of the glass cell. In the main (large cylindrical) chamber sits a microchip. This is the
small rectangular box in the middle. Top right: This microchip is more easily seen in
this zoom. Right in the middle of the chip is a square 300µm × 300µm × 10mm channel
leading straight through the chip to the other side. The entrances to this microchannel
are sealed by the glass windows of the big cylindrical cell. Thus, the atoms have no way
of entering (or leaving) the channel but through a small hole leading through the chip
into the channel. Bottom right: This hole is seen in profile here. At the bottom is the
channel and at the top is a hole tapering down to a small opening of about 30 µm. This
hole provides a connection between the cesium droplette and the microchannel.

Since the atoms are sensitive to magnetic fields we seek to shield them from
extraneous sources not under our control. This is done by housing the vapour cell
in a cylindrically symmetric four layer magnetic shielding, protecting the spins from
ambient magnetic fields and external RF sources. An inner system of coils produces a
homogeneous bias field, Bx, in the x direction. This is used to control the precession
frequency known as the Larmor frequency. This setup is shown in fig. 5.2.

Adding up the individual spins from Na atoms we can motivate a collective total
ensemble spin as

J =
Na∑

k=1
jk. (5.1)

It turns out that the dynamics of a single spin, which will be described in section 5.5,
largely translates to that of the ensemble. Thus, we use the notation of upper case J .
There are however a few corrections, and a more full treatment is given in Julsgaard
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Figure 5.2: Atomic experimental layout. A linearly polarized (along x) field propa-
gates along z through the cell seen through the hole indicated by the black dashed square.
This cell is the one in fig. 5.1 but viewed from above. It is placed within a cylindrical
magnetic shield (the major object in the image). The polarization quadratures of the
output light are detected using balanced polarimetry, as described in appendix B.3, by
the detector shown to the right. The cell is optically pumped (green arrow) along the
x direction, as described in section 5.10.6, and is subject to a constant magnetic field B
(blue arrow) along the x direction. Both these fields prepare the atoms in the cell as an
effective harmonic oscillator.

(2003). For example, we will not optically probe the entire microchannel of the cell,
nor will the strength of the probe be of equal intensity everywhere. We thus define
an effective ensemble spin as

Ĵi(t) =
∫ L

0
ĵi(z, t)ρ(z)A(z) dz, i ∈ {x, y, z} , (5.2)

where the Ĵi are the collective spin spatial components. We have assumed that we
probe along the z direction and that since we have so many atoms we can treat their
number density ρ(z) throughout the channel (of length L) as a smooth function. The
volume sampled is determined by the optical probing cross-sectional area A(z).

This optical field is a free space Gaussian mode, as described in appendix D.1,
with a focus at the center of the channel. Such a probe will clearly not address all
atoms equally. However, in practice we will consider dynamics on a time scale long
compared to the thermal transit time within this volume. This averages the inter-
action with each atom allowing us to treat them all equally, and is further discussed
in section 5.11.2. The atomic motion may be readout through the polarization
quadratures of this optical probe field and detected as shown in fig. 5.2.

Notice that if all the individual spins align this means that our total spin, from
eq. (5.1), is boosted ∝ Na. As we will see in eq. (5.38) it turns out that this boosts
our effective atom-light interaction strength, which is partly why a great number of
atoms addressed collectively is of such high interest!
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Probing this ensemble collectively we may further realize an oscillator with an
effective negative mass, as shown in section 5.10.1, a crucial asset in the back-action
evasion scheme detailed in chapter 6. Let us now develop a more detailed description
of the cesium ensemble.

5.2 Basic cesium structure
The element cesium was first discovered via its emission spectrum, which features
two strong blue lines giving the element its name1. In the near-infrared there are
two vastly brighter (although not visible) lines in the near-infrared at 894.6 nm and
852.3 nm. These are the so-called D1 and D2 lines. This work makes use of both of
these and to see what transitions these correspond to we must take a more detailed
look at the atomic structure.

We focus on neutral Cesium-1332 where the single outer most electron occupies
the 62S1/2 ground state. This notation summarizes the following basic properties
of the atomic state. First, the principal quantum number (here n = 6), secondly
the exponent refers to the spin multiplicity (here 2), thirdly the orbital angular
momentum quantum number L is written as a letter (a historical shorthand with
S ⇔ (L = 0), P ⇔ (L = 1), etc.), and finally the total angular momentum quantum
number of the electron J is written as the subscript (here J = 1/2).

Two components, namely the electron intrinsic spin S and the orbital angular
momentum L, comprise the total angular momentum J = L+S. Their interaction,
with strength βLS, is characterized by the spin-orbit Hamiltonian

Ĥspin-orbit = βLSS ·L (5.3)

and gives rise to an energy level splitting known as fine-structure. This interaction
is not present (to first order) for the ground state 62S1/2 since L = 0. However, the
next orbital of 62P , having L = 1, is split into 62P1/2 and 62P3/2.

In general, the allowed total angular momentum can be calculated from the
selection rules eq. (5.4) below.

|L− S| ≤ J ≤ |L+ S| (5.4a)
|J − I| ≤ F ≤ |J + I| (5.4b)
−F ≤ mF ≤ F (5.4c)

The quantum numbers governing the selection rules of eqs. (5.4b) and (5.4c) will be
discussed shortly. From eq. (5.4a) we expect to see distinct transitions from 62S1/2 ↔
6P1/2 and 62S1/2 ↔ 62P3/2, which indeed we do: these are the aforementioned D1
and D2 lines.

1deriving from sky blue in Latin.
2By far the most abundant (' 100 %) and only stable isotope.
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Figure 5.3: Hyperfine structure of Cs-133. The D1 and D2 lines describe the transition
from the ground state 62S1/2 to the excited states 62P1/2 and 62P3/2 respectively. These
states are further split due to the hyperfine interaction of eq. (5.5).

The fine-structure is not the only coupling relevant for the atomic energy levels,
although it is the largest. The nuclear spin I interaction with the total angular mo-
mentum of the electron provides another correction known as the hyperfine splitting
(HFS). This interaction has one main term relevant for us. This term arises due to
the nuclear magnetic dipole moments interaction with the electronic spin J . The
strength of these interactions is characterized by AHFS. The Hamiltonian for this
interaction is given by Arimondo et al. (1977) as

ĤHFS = AHFSI · J + higher order terms (5.5)

where the immediate higher order terms are the electric quadradupole moment and
the magnetic octupole moment, in order of importance. These are only relevant for
states with J 6= 1/2. These are the excited manifolds of the alkalis, of secondary
importance to us, and are thus omitted in our simple treatment here.

The ground state 62S1/2 splits into a doublet, denoted by quantum numbers
F = 3 and F = 4. This is, in fact, true for all alkali ground states which have
F = I±1/2. This means that the total energy splitting of the ground state manifold
is given by

∆EHFS = AHFS(I + 1/2), (5.6)

which is valid for all alkalis. For Cs-133 with nuclear spin I = 7/2 this splitting
amounts to 9.2 GHz3. This splitting is much smaller than the fine-structure and

3For the 62S1/2 manifold AHFS ≈ 2.3 GHz
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Figure 5.4: Zeeman structure of Zeeman sublevels of 62S1/2. The 2F +1 degenerate
magnetic sub-levels in each hyperfine level F are labeled by their magnetic quantum
number mF . The red dots represent individual atoms in the case where we consider an
ensemble. The uniform distribution of the atomic population throughout this manifold
is known as an unpolarized atomic spin state as described further in section 5.10. These
degenerate levels may be split by a magnetic field as described in section 5.3.

depends on the total atomic angular momentum F = I+J which, in general, takes
values given by the selection rules of eq. (5.4b).

The excited states of 62P1/2 and 62P3/2 are also split as shown in fig. 5.3. The
additional energy (from the fine structure) of a particular hyperfine level is given by

EHFS = AHFS
F (F + 1)− I(I + 1)− J(J + 1)

2 + higher order terms, (5.7)

where the exact details of the higher order terms can be found in Steck (2010).
To get a sense of scale we notice that the spin-orbit interaction splits the 62P1/2

and 62P3/2 excited states by 16.5 THz, whilst the hyperfine manifold of the ground
state 62S1/2 is split by only 9.2 GHz. An overview of this fundamental structure is
seen in fig. 5.3. Exact splittings and relevant constants can be found in Steck (2010)

Additionally, there are 2F + 1 degenerate magnetic sub-levels in each hyperfine
level F . These are shown for the 62S1/2 ground state in fig. 5.4. These so-called
Zeeman sub-levels can be split due by an external magnetic field. That such fields
would affect the structure is clear from the aforementioned interaction with the
magnetic dipole moment.

5.3 Zeeman splitting
In the case of an externally applied uniform magnetic field B an additional contri-
bution to the hyperfine Hamiltonian of eq. (5.5) must be added. This contribution
is given by Foot (2005) as

HB = µatom ·B (5.8)

µatom = µB
~

(gJJ + gII) ·B. (5.9)

where the magnetic moment of the whole atom µatom has contributions from the
electronic and nuclear magnetic moments. Their strengths are given by the Landé
g factors gJ and gI in units of the Bohr magneton µB. As with fine and hyperfine
structure the dominant contribution to this interaction is the electronic moment.
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The Landé factors also absorb various (and ever smaller) modifications and compli-
cations not addressed here1.

The effect of this additional magnetic field is, in general, not trivially solved. Let
us consider the typical case where the magnetic field – of strength B – is aligned
along the atomic quantization axis. The projection of the total angular momentum
along this axis is here given by the magnetic quantum number mF . In this work we
utilize small B-fields, and thus the splitting caused by this interaction will be small
compared to the total hyperfine splitting (∆EHFS) and – fortunately – an exact
solution is known, see Breit and Rabi (1931); Steck (2010). This solution applies
to the S1/2 ground states of all the alkalis and predicts the additional energy of a
particular state |I, F,mF 〉 above the fine structure to be

EI,F,mF = ∆EHFS
2(2I + 1) + gIµBmFB ±

∆EHFS
2 (1 + 2mFx

2I + 1 + x2)1/2, (5.10)

x = (gJ − gI)µBB
∆EHFS

. (5.11)

The ± depends on which hyperfine level F = I ± 1/2 is being considered.

5.4 Larmor frequency
Expanding eq. (5.10) to first order1 in B we find the mF levels degeneracy broken.
The splitting between adjacent mF levels, to first order, is known as the Larmor
frequency and is given by

ΩL ≡ (E(1)
mF+1 − E(1)

mF
)/~ = (gFµBB)/~, (5.12)

gF = gI ±
gJ − gI
2I + 1 ≈ ±

gJ
2I + 1 . (5.13)

We have defined the hyperfine Landé factor gF and note that its sign changes de-
pending on whether we are in F = 3 or F = 4. We will always be interested in
the F = 4 manifold. Evaluating eq. (5.12) gives a convenient scale for the Larmor
frequency given an applied magnetic field strength, namely 0.35 MHz/G.

Larmor frequencies typically used in this work are ∼ 1 MHz requiring ∼ 3 G.
This is quite a weak magnetic field, though still only about 10 times that of the
Earths. This also means we are rather sensitive to magnetic fields as they alter the
Larmor frequency. Having a firm control over the external magnetic fields interacting
with our Cesium ensemble is, therefore, of critical importance, and is addressed
by magnetic shielding as mentioned in section 5.1. If instead you care about the
transition from |mF = 0, F = 3〉 to |mF = 0, F = 4〉, on which the second is defined,
then you are only susceptible to external magnetic fields to second order.

1e.g. structure of the nucleus and atomic diamagnetism which contributes to gI , and the
sixth-order magnetic moment of the electron which contributes to gS Levine and Wright (1971).

1In our regime of interest x� 1.
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The second order contribution to adjacent mF level splittings is known as the
Quadratic Zeeman Effect. From eq. (5.16b) we can see this contribution scales with
m2
F . The amount of quadratic Zeeman splitting is approximately given by

(E(2)
mF+1 − E(2)

mF
)/~ ≈ ∓(2mF + 1) Ω2

L

∆EHFS/~
, (5.14)

where the sign convention is as in eq. (5.10), namely dependent on the choice of
hyperfine level F = I ± 1/2.

This splitting leads to transitions, e.g. E2→3 andE3→4, having Larmor frequencies
that differ by

∆ΩQZS
L = 2Ω2

L

∆EHFS/~
. (5.15)

These transitions can be easily driven and measured as shown in the example of
fig. 5.13. Here the quadratic Zeeman splitting of eq. (5.15) is also shown as the
Larmor frequency is tuned.

The difference in Larmor frequencies, eq. (5.15), correspond to about 26.6 Hz/G2

which means that we should expect Larmor frequency differences of ∼ 210 Hz for
our transitions with Larmor frequencies of ∼ 1 MHz. This is an inconvenience as
it adds anharmonicity to the effective harmonic oscillator we wish to create, see
section 5.10, and is further discussed in section 5.11.1. Likewise it is also a handy
tool as it allows for population differences of neighboring states to be probed, see
section 5.10.8.

The first and second order corrections to the energy are given by

E
(1)
I,F,mF

/~ = mFΩL, (5.16a)

E
(2)
I,F,mF

/~ = ± m2
FΩ2

L

∆EHFS/~
[
(I + 1/2)2 −m2

F

]
. (5.16b)

5.5 Spin half toy model
Suppose we prepare our atoms in an extreme magnetic Zeeman level (i.e. mF = ±4)
as shown in the left panel of fig. 5.11. Suppose also that we probe the D2 line from
the |F = 4〉 to |F ′ = 4〉, see fig. 5.3, very far detuned from the entire 62P3/2 manifold.
We may then approximate the atom-light dynamics by considering only the last two
magnetic Zeeman levels. This is justified since excitations, and thus population
redistribution, is suppressed. These two ground states constitute an effective spin-
1/2 system. We now follow Julsgaard (2003, Erratum) in deriving the basic spin-light
interaction by use of two excited states whose dynamics are eliminated. These can
be thought of as states of the excited state manifold in the real atomic structure.
They are necessary to our description as we are ultimately interested in the effect
of the atomic operators on an optical probe field set to this transition.
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Figure 5.5: Spin 1/2 toy model. In this two ground states |1〉 and |2〉 are coupled by
far off-resonant fields âL,R to two excited states |3〉 and |4〉 who dynamics are eliminated.
This leaves the dynamics of the ground states who together constitute a spin 1/2 system.

In fig. 5.5 we see this (4 level) so called spin-1/2 toy model represented diagram-
matically. The ground states of |1〉 and |2〉 can be thought of as the |F = 4,mF = ±3〉
and |F = 4,mF = ±4〉 levels, for example. The excited states of |3〉 and |4〉 can be
thought of as corresponding |F ′ = 4〉 levels in the P3/2 manifold. If we choose our
quantization axis to be along the probe direction, then the transitions |1〉 → |2〉 and
|3〉 → |4〉 are dipole forbidden, making the system dynamics particularly simple to
calculate. The remaining transitions are coupled by right and left hand circularly
polarized light fields âR and âL respectively.

Furthermore, we make the simplifying assumption that the transitions |1〉 〈4| and
|2〉 〈3| have equal Clebsch-Gordan coefficients1. In any real world atom this may not
be the case, but can be accounted for subsequently. Omitting the each operators
time dependence (t) we can write the full system Hamiltonian as

Ĥ = Ĥlight + Ĥatoms + Ĥint, (5.17a)
Ĥlight = ~ωL

[(
â†RâR + 1/2

)
+
(
â†LâL + 1/2

)]
, (5.17b)

Ĥatoms = ~ω0 (|3〉 〈3|+ |4〉 〈4|) , (5.17c)
Ĥint = −~g

(
â†R |1〉 〈4|+ âR |4〉 〈1|+ â†L |2〉 〈3|+ âL |3〉 〈2|

)
. (5.17d)

where g is a light-matter coupling rate. Henceforth, we will use the notational
shorthand σ̂ij ≡ |i〉 〈j| for the atomic operators.

All these light and atomic operates in the Hamiltonian above evolve very fast on
timescales of eiω0t and eiωLt. Transforming into a rotating frame, see appendix E.12,
oscillating at the light frequency ωL we can look at the slow dynamics, which are of

1These coefficients are determine the relative strength of decay channel as are related to the
wavefunction overlap between the final and initial states.

2Using Â = ~ωL
(
â†R(t)âR(t) + â†L(t)âL(t) + σ̂33(t) + σ̂44(t)

)
.
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importance to us. Neglecting constant terms we have

Ĥ = ~∆ (σ̂33 + σ̂44) + ~g
(
â†Rσ̂14 + â†Lσ̂23 + h.c.

)
, (5.18)

where the operators are now in the rotating frame. We are most interested in the
dynamics of the operators describing the populations and coherences of the ground
states. We can work these out by considering their evolution according to the
Hamiltonian of eq. (5.18) and find that

˙̂σ11 = i

~
[
Ĥ, σ̂11

]
= −ig

(
â†Rσ̂14 − σ̂41âR

)
, (5.19a)

˙̂σ22 = −ig
(
â†Lσ̂23 − σ̂32âL

)
, (5.19b)

˙̂σ12 = −ig
(
â†Lσ̂13 − σ̂42âR

)
, (5.19c)

˙̂σ21 = ˙̂σ†12. (5.19d)

Our large detuning means that we can effectively neglect any excited state popu-
lations, i.e. σ̂44 = σ̂33 = 0. Additionally, adiabatically eliminating the excited state
transitions by setting ˙̂σ14 = ˙̂σ41 = 0 we ultimately find that the resultant dynamics
are the result of an effective Hamiltonian of the form

Ĥeff = −~g2

∆
(
â†RâRσ̂11 + â†LâLσ̂22

)
. (5.20)

From this simple Hamiltonian we can see that having a large RHCP (n̂R = â†RâR)
or LHCP (n̂L = â†LâL) light component shifts the energies of the ground states.
This is known as a Stark shift and the vacuum fluctuations of these light modes can
be considered the source of the quantum back-action force ultimately limiting the
measurements of important atomic spin quadratures, which are described next.

5.6 Atomic spin operators

Consider a generic system of spin F with ground levels labeled by their Zeeman
number m probed along the quantization axis taken to be z. It is natural to define
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the following spin operators1,

Ĵ0 =
F∑

m=−F
|m|σ̂mm, (5.21a)

Ĵz =
F∑

m=−F
mσ̂mm, (5.21b)

Ĵ+ =
F∑

m=−F
C(F,m)σ̂m+1,m, (5.21c)

Ĵ− = Ĵ†+, (5.21d)

C(F,m) =
√
F (F + 1)−m(m+ 1) . (5.21e)

The weight C(F,m) depends on the total spin F and that of each sublevel m. Here
Ĵz simply counts the energy in the spin system along the quantization axis, whereas
the Ĵ± are ladder operators.

Just as was the case when considering the optical and mechanical fields, it will
prove useful to define quadrature operators as the real and imaginary components
of these atomic ladder operators. They turn out to describe the spin components of
the quantization axis and are given by,

Ĵx = 1
2 (J+ + J−) , (5.22a)

Ĵy = i

2 (J+ − J−) . (5.22b)

These spin operators obey the angular momentum relations of
[
Ĵj, Ĵk

]
= iεjklĴl, j, k, l ∈ {x, y, z} , (5.23a)

Ĵ0
(
Ĵ0 + 1

)
= Ĵ2

x + Ĵ2
y + Ĵ2

z , (5.23b)
[
Ĵk, Ĵ0

]
= 0, k ∈ {x, y, z} . (5.23c)

For our simple spin 1/2 effective two level system (having now eliminated the dy-
namics of the excited manifold) we have, F = 1/2 and thus mF = ±1/2. Therefore,

1Not to be confused with an individual atoms total electron angular momentum also denoted
J in sections 5.2 and 5.3. The use of the same symbol is commonplace in the field and is employed
here to be consistent with relevant literature and commonplace nomenclature.
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eq. (5.21) can be simplified as

Ĵ0 = 1
2 (σ̂22 + σ̂11) , (5.24a)

Ĵz = 1
2 (σ̂22 − σ̂11) , (5.24b)

Ĵ+ = σ̂12, (5.24c)
Ĵ− = σ̂21, (5.24d)

Ĵx = 1
2 (σ̂12 + σ̂21) , (5.24e)

Ĵy = i

2 (σ̂12 − σ̂21) . (5.24f)

We can invert this relationship and find that we can express the atomic state oper-
ators as

σ̂11 = Ĵ0 − Ĵz, (5.25a)
σ̂22 = Ĵ0 + Ĵz, (5.25b)
σ̂12 = Ĵx − iĴy, (5.25c)
σ̂21 = Ĵx + iĴy. (5.25d)

Thus, we can re-write our Hamiltonian of eq. (5.20) in terms of these atomic spin
quadrature operators. We now have,

Ĥeff = 2~g2

∆
(
Ĵ0Ŝ0 − ĴzŜz

)
, (5.26)

where we have expressed the light operators in terms of the Stokes operators de-
scribed in eq. (2.23d).

5.7 External magnetic field

We now wish to add an external magnetic field, and in keeping with the notation
commonplace in this group we will let this direction be x. The optical probe will
be orthogonal to this along z and these can be seen in fig. 5.2. This change of basis
does not change the interaction Hamiltonian, which now reads

Ĥeff = 2~g2

∆
(
Ĵ0Ŝ0 − ĴzŜz

)
+ ~ΩLĴx, (5.27)

where we have used the magnetic field in terms of the effective Larmor frequency
(ΩL ∝ Bx) it produces according to eq. (5.12).

Choosing this quantization axis we have effectively cyclically permuted the atomic
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spin operators, which now read

Ĵx =
F∑

m=−F
mσ̂mm, (5.28a)

Ĵy = 1
2 (J+ + J−) , (5.28b)

Ĵz = i

2 (J+ − J−) . (5.28c)

where J+ and J− are defined as before, but the atomic state operators σ̂jk are
in the basis of a quantization axis along x. A summary of the relation between
probe direction, Stokes operators and the interaction Hamiltonian is summarized in
section 5.9.

Let us consider the dynamics of the spins according to eq. (5.27). For the quadra-
ture operators we have1,

˙̂
Jx = −gŜzĴy, (5.29a)
˙̂
Jy = +gŜzĴx − ΩLĴz, (5.29b)
˙̂
Jz = + ΩLĴy, (5.29c)
˙̂
J0 = 0, (5.29d)

from which we observe the following well known facts about spin oscillators. The
term related to the magnetic field represent a precession at the Larmor frequency
of the orthogonal spin components Ĵy and Ĵz around the spin eigenvector Ĵx along
the quantization axis.

The term related to Ŝz, denoting the light angular momentum content along the
probe direction z, causes the spin operators to evolve similarly. We can think of this
as another effective magnetic field causing the spins to precess around Ĵz.

This interaction of the spins and light also impacts the dynamics of the light
operators orthogonal to Ŝz, the linear polarization components of Ŝx and Ŝy. Using
the input-output equations for the Stokes components described in eq. (2.29), the
output light operators are

Ŝout
x = Ŝin

x − gŜyĴz, (5.30a)
Ŝout
y = Ŝin

y + gŜxĴz, (5.30b)
Ŝout
z = 0, (5.30c)
Ŝout

0 = 0. (5.30d)

This rotation of the output Ŝx and Ŝy polarization quadratures due to the interaction
with the atoms is the effect known as Faraday rotation. This rotation of the linearly
polarized light components and can be quite substantial for ensembles of atomic
spins and the effect is quantified in section 5.11.3.

1The term in eq. (5.29c) is deliberately offset for ease of comparison with eq. (5.29b).
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5.8 General Hamiltonian

A more general approach than that of our simple model described in section 5.5
would have given a Hamiltonian containing higher order interaction terms. Such
a detailed derivation can be found in Julsgaard (2003) and yields an Hamiltonian
containing contributions up to second order given by

Ĥint = −~cγsp
8A∆

λ2

2π

∫ L

0

{
2a0Ŝ0 + a1Ŝz ĵz

+ 2a2
[
Ŝ0ĵ

2
z − Ŝx

(
ĵ2
x − ĵ2

y

)
− Ŝy

(
ĵxĵy + ĵy ĵx

)] }
ρ(z)A dz.

(5.31)

where the atomic system is probed along the z direction over a cross-sectional area
A taken here to be constant. The spontaneous emission rate of the excited state
manifold is given by γsp which for cesium is 5.32 MHz.

The successively higher order light-matter interaction terms are weighted by ai
factors which are shown as a function of probe detuning in fig. 5.6. These factors,
see Julsgaard (2003), are given by

a0 = 1
4

(
8 + 7

1 + ∆45/∆
+ 1

1 + ∆35/∆

)
→ 4, (5.32a)

a1 = 1
120

(
176− 21

1 + ∆45/∆
− 35

1 + ∆35/∆

)
→ 1, (5.32b)

a2 = 1
240

(
16− 21

1 + ∆45/∆
+ 5

1 + ∆35/∆

)
→ 0, (5.32c)

where the detunings ∆35 and ∆45 are the absolute detunings of F ′ = 3, 4 to F = 5′
respectively. Two effects associated the higher order interaction terms are discussed
in sections 5.10.9 and 5.10.10.

The Hamiltonian eq. (5.27) derived from the simple model does however cap-
ture the relevant physics. This is confirmed by neglecting the higher order terms
of the general case in eq. (5.31). This gives the effective light-matter interaction
Hamiltonian of our spin system is given by

Ĥeff ≈ −β
(
Ŝ0Ĵ0 − ŜzĴz

)
, (5.33)

where the light quadratures of that of the probe field, aligned along z and far detuned
by ∆. In the limit of a large detuning compared to the Doppler broadening we have
an effective coupling rate of

β = γsp
8A∆

λ2

2πa1(∆) ≈ γsp
8A∆

λ2

2π (5.34)

where a1(∆) ≈ 1 is an excellent approximation as seen in fig. 5.6.
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Figure 5.6: Atomic coupling strength paramters. Atomic coupling strength pa-
rameters a as a function of probe detuning ∆ according to eq. (5.32). Blue detuning is
considered negative, and thus what is plotted goes to roughly 3GHz blue detuned. The
shaded region indicates the region corresponding to the 400 MHz full width (i.e. two half
widths) of the Doppler broadening profile, see section 5.11.4, that is practically far from
useful due to high absorption. Similarly bounded from above we cannot detuned too far
as we start to probe F = 3 → F ′. The dashed line indicates our typically experimental
detuning.

5.9 Quantization axis, probe direction and inter-
action Hamiltonian

Throughout this chapter we discuss different quantization axes and probing direc-
tions. In particular, when multiple fields are concerned, potentially in different
directions, it may be difficult to orient oneself with respect to the spin and optical
quadratures. To help prevent a confused state of affairs we review a few facts.

First off, the interaction Hamiltonian will always be

Ĥint ∝ (S +B) · J , (5.35)

where B is the externally applied magnetic field which may point in any direction.
In our discussions (although it need not be), if present, this will always coincide
with the quantization axis. The Stokes vector S points in the direction of light
propagation which for us will commonly be along z for the probe and along x for
other optical fields such as those discussed in section 5.10.6.

Taking the quantization direction to be along x means that eq. (5.35) will only
have a BxĴx term. Here Ĵx is the spin operator that has the ground states of the
spin oscillator as eigenstates, namely eq. (5.21b). Had we chosen to quantize along
z the previous states would have been identical, but we would change all x→ y.

Similarly, if we choose to probe along z then we will have a term ŜzĴz. Here
Ŝz = (n̂R − n̂L)/2 is the Stokes operator for differences in circularly polarized light.
Notice also that this interaction term is independent of our choice of quantization
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axis and will always be ŜzĴz. Our interpretation of Ĵz will, in a different basis,
however, be different.

Probing in a different direction, say x, would give ŜxĴx, where now we define
Ŝx = (n̂R − n̂L)/2. Thus, just as our quantization axis defines the spin operator,
so too does the probe direction define the Stokes operators. We will always take
the Stokes component in the direction of propagation to be the one quantifying the
amount of circularly polarized light. Thus, saying Sz light needs to be qualified by
a statement about the probing direction. In case this is omitted, it should be noted
that throughout this work the probing direction is going to be along z.

5.10 Effective harmonic oscillator
From the spin precession described by eq. (5.29) the route to an effective oscillator
is clear. The two atomic spin quadratures Ĵy and Ĵz should become canonically
conjugate variables like with the mechanics and behave like eq. (3.32). The way to
realize this is described next.

5.10.1 Holstein-Primakoff approximation
Using optical pumping, described in section 5.10.6, we can achieve a large, effective
macroscopic, spin with Ĵx ≈ Jx along the applied bias magnetic field by pumping
atoms into an extreme mF state.

The degree to which the spin of the ensemble is maximized/minimized is de-
scribed by,

P ≡ 1
F

F∑

m=−F
m〈σ̂m,m〉 (5.36)

where the |P | is referred to as the spin polarization1. In the limit of large optical
pumping the spin polarization can approach unity.

Suppose we prepare an ensemble with a spin polarization |P | ∼ 1. We can then
make what is known as the Holstein-Primakoff approximation and create effective
normalized spin (S) operators. We can then write these as

Q̂S ≡
Ĵz√
|Jx|

, (5.37a)

P̂S ≡ − sgn(Jx)
Ĵy√
|Jx|

. (5.37b)

Since
[
Ĵy, Ĵz

]
≈ iJx the quadratures Q̂S and P̂S behave as canonical variables with[

Q̂S, P̂S
]

= i. This approximation is typically very good as we commonly have

1This is also known as the spin orientation.
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Figure 5.7: Holstein-Primakoff approximation Visualization of the physical basis for
the Holstein-Primakoff approximation. Left: The total spin vector (grey) seen on sphere
described by the spin vectors Ĵx, Ĵy and Ĵz. Precession around magnetic field B (blue
arrow) is small compared to the macroscopic spin vector magnitude |Jx| and corresponds
to simple harmonic motion in a plane (translucent blue) of effective spin operators Q̂S and
P̂S with a frequency ΩS . Right top: The aforementioned simple harmonic motion in the
cases of positive and negative spin mass resulting from the macroscopic spin orientation.
Right bottom: States of the effective harmonic oscillator on an energy scale E. In the
negative mass case (left subpanel) atoms are prepared in the highest energy magnetic
sublevel mF = 4. In the positive mass case (right subpanel) atoms are prepared in the
lowest energy magnetic sublevel mF = −4. The ground and first excited states of these
effective oscillators are shown as |0〉 and |1〉. Part of this figure is a modified version of
Geek3 (2014).

|Jx| ∼ N ∼ 109 � 1. In this limit the spin ensemble behaves like a traditional
harmonic oscillator when sgn(Jx) is positive. The sign of the macroscopic spin
vector is sgn(Jx).

This approximation can be viewed as in-plane precession of Ĵy and Ĵz on the
surface of a larger sphere (of radius |J0|) defined by the spin components, just like
the Poincaré sphere of the Stokes polarization components. This is shown in the
left panel of fig. 5.7, where our total spin vector is predominantly the large spin
component along x. It has a magnitude essentially equal to |Jx| and precesses
around the applied magnetic field at the Larmor frequency.

The case shown in the left panel of fig. 5.7 is for an ensemble prepared in the
maximum mF state, with a spin aligned along the magnetic field. The evolution
in our effective coordinate system (Q̂S, P̂S) runs counter clockwise as is shown in
the top right panel of fig. 5.7. Such counter clockwise phase space rotation is the
behavior of a harmonic oscillator as if had a negative frequency, or equivalently a
negative mass.

If instead we had prepared the ensemble in the minimum mF state the sign of
the macroscopic spin would be negative. The spin precession in the (Q̂S, P̂S) phase
space would evolve in a clockwise manner like in a traditional positive mass harmonic
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oscillator.
The atomic population in the magnetic sublevels for the cases of effective posi-

tive and negative mass harmonic oscillators are shown in the bottom right panel of
fig. 5.7. In the positive mass case, right dashed subpanel, spins populate the lowest
energy state mF = −4. Excitations in this harmonic oscillator result in higher en-
ergy, thus positive mass and the traditional counter clockwise phase space rotation.
In the negative mass case however, left dashed subpanel, the spins populate the
highest energy state and excitations of this harmonic oscillator corresponds to a de-
excitation of the inverted spin population. Making the ground state |0〉 the highest
energy state requires input energy (as does the positive mass oscillator) from the
optical pumping, but does not constitute an unstable oscillator.

5.10.2 Effective Hamiltonian and equations of motion
A similar approximation of the optical Stokes quadratures was described in sec-
tion 2.2.3 where, for a strong linearly polarized input field along x, propagating
along z, we had Ŝx → Sx. The resulting effective polarization amplitude and phase
quadratures X̂, Ŷ are described by eq. (2.31).

These approximations for the spin and Stokes operators mean that we can
re-write the Hamiltonian of eq. (5.27)2 and the equations of motion eqs. (5.29)
and (5.30) now read (setting ~ = 1),

Ĥeff ≈
√

ΓS Q̂SX̂ + ΩS

2
(
Q̂2
S + P̂ 2

S

)
, (5.38)

ΓS ≡ β2 |Sx| |Jx| ≈
α2

2 β
2 |Jx| , (5.39)

ΩS ≡ − sgn(Jx)ΩL. (5.40)

We have recast the Larmor frequency in terms of the spin frequency ΩS for two
reasons. First, keeping the subscript of L could be misleading as it is not associated
with the light field. Secondly, absorbing the sign of Jx into ΩS lets us differentiate
the two possible regimes of operations for the spin ensemble. Finally, there are mean
field interactions with the linearly polarized input field that give rise to Stark shifts
effectively changing the Larmor frequency, see section 5.10.10.

We have also collected the effective light matter interaction strength into the term
ΓS. This is the readout rate for the spin motion and sets the scale for the rate at
which the motion couples to the light degrees of freedom, just like for optomechanics.
It depends on the large mean field |Sx|, which, since we probe with a field linearly
polarized along x, is just equal to half the optical photon flux α2. Thus the readout
rate, like in the optomechanical system can be linearly tuned by increasing the probe
power. Likewise the readout rate is also dependent on the mean spin |Jx|, which is
proportional to the number of atoms and the degree of spin polarization.

2Using the relation of eq. (5.23b).
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The spin motion is, just like mechanics, not immune to loss. In practice the
motion is that of a damped harmonic oscillator with a damping rate γS. This
damping introduces the “thermal” Langevin spin noise driving force written as F̂S.
We will assume it has a correlation function of

〈F̂S(t)F̂S(t′)〉 = δ(t− t′) (n̄S + 1/2) , (5.41)

describing a Markovian bath of mean occupancy n̄S. While this reservoir lacks a
clear link to any particular physical bath, it will be a measure of how much added
noise the spin system sees.

We can thus write down the Heisenberg-Langevin equations of motion for the
effective light and spin operators under the effective Hamiltonian given by eq. (5.38).
These are

X̂out = X̂ in, (old Ŝz) (5.42a)

Ŷ out = Ŷ in −
√

ΓS Q̂S, (old Ŝy) (5.42b)
˙̂
QS = ΩSP̂S, (old Ĵz) (5.42c)
˙̂
PS = −

√
ΓS X̂ in − ΩSQ̂S − γSP̂S +

√
2γS F̂S. (old Ĵy) (5.42d)

where ΩS = ±ΩL implies positive and negative mass respectively. As was shown in
the upper right panel of fig. 5.7 this difference is tantamount to a reversed phase
space evolution. The spins oscillator, by contruction, has a susceptibility, just like
that of mechanics in eq. (3.35), given by

χ(Ω) = ΩS

Ω2
S − Ω2 + iΩγS

. (5.43)

The resource to flip the sign of this susceptibility by choice of positive or negative
mass is the key to the quantum back-action evasion in chapter 6.

Now that we have an effective harmonic oscillator, we can use the exact same
language developed for the mechanical oscillator. Of primary interest are the read-
out, damping and decoherence rates, and of course the quantum cooperativity. To
fully discuss these we must first address a physical difference between the spin and
mechanical systems. For atomic spins it turns out that the nature of the interac-
tion not only adds decoherence, the quantum back-action of the probe light just as
seen in the optomechanical case, but also invariably dampens the spin oscillator,
somewhat unlike the optomechanical system.

The total damping rate γS of the spins is thus usefully decomposed into two
contributions. The damping induced by the probe, γprobe, and all other extrane-
ous sources, which we will write, in analogy with the mechanics, as the “intrinsic”
damping γS,0. Thus we have

γS = γS,0 + γprobe. (5.44)

The sources of intrinsic damping are discussed in section 5.11.5 and the probe in-
duced broadening is discussed next.
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5.10.3 Probe induced spontaneous emission broadening

The spin-light interaction described by the our simple toy model of section 5.5 is
really a coherent interaction mediated by coupling to the excited state manifold.
Due to the ever finite detuning, as this interaction strength is increased, so too
are excitations to the excited state manifold. Subsequent incoherent decay through
spontaneous emission is an effective source of damping, and is known as the probe
induced spontaneous emission, or power broadening.

To more fully capture the essence of this dynamic it is thankfully not necessary
to treat the general case 16 Zeeman sublevels (7 in F = 3 and 9 in F = 4) and
the complicated set of excited state manifolds. We may instead continue to use our
spin 1/2 toy model, but will treat it as an open quantum system with spontaneous
emission as a dissipation channel. This is done in appendix F, where we utilize the
wonderfully applicable effective operator formalism described in Reiter and Sørensen
(2012).

We make use of this Schrödinger picture master equation approach since it has
the benefit of being scalable and of explanatory utility. Due to our in practice
finite spin polarization, endeavors to describe more magnetic sublevels, as done in
Vasilyev et al. (2012), and understand their coupled dynamics, are relevant for future
experiments. The formalism further allows for effective parameters to be calculated
which can be used in the Heisenberg-Langevin approach preferred throughout this
work.

In the relevant case of spontaneous emission such an effective parameter for the
damping, γeff is given by eq. (F.2.12). Solving the dynamics shows that the probe,
with large mean photon flux α2, gives rise to an enhanced damping of the atomic
spin quadratures, see eq. (F.3.18). This probe induced power broadening is given
by

γprobe = γeff
α2

2 ≈
γg2

∆2
α2

2 , (5.45)

where the approximation is for the experimentally relevant case of large probe detun-
ings ∆. The functional dependence of the broadening can be understood as follows.
The damping is related to absorption and subsequent spontaneous emission from
the excited state manifold. The absorption scales as 1/∆2 and rate scales with the
light-matter coupling rate g and the photon flux α2. Similarly, an effective coherent
coupling rate, geff, can be found, see eq. (F.2.10), which is related to the readout
rate as ΓS ∝ g2

eff.

5.10.4 Spin quantum cooperativity

To read out the spin motion well requires a large readout rate. The larger the readout
rate, the larger the probe induced broadening. Consider the typically relevant regime
where the probe induced broadening dominates the other sources of damping, i.e.
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γS ≈ γprobe. Here the ratio of the readout rate to the total broadening is given by

ΓS
γS
≈ g2 |Jx| ∝

|Jx|
A
. (5.46)

Thus the amount of readout rate available per unit of induced power broadening
is given, essentially, by the atomic density 3. It does not depend on the detuning,
as long as we stay far detuned, nor on the optical power as the readout rate and
broadening both scale linearly with power.

We can think of the power broadening as a decoherence due to probe field, which,
just as for mechanics, is also the source of the quantum back-action. This back-action
is from the optical driving term from the light quadrature X̂ in in eq. (5.42). It is
thus natural to want the spin ensemble decoherence (and thus broadening) to be
dominated by the probing light field as this will give a large quantum cooperativity.
In practice, we seldom broaden to more than 10 kHz, but always try to dominate
the intrinsic losses. In fact, in the experiments detailed in section 6.3 we broaden to
' 8 kHz, and in section 6.4 to about 4− 5 kHz. In both cases the intrinsic damping
was about 1 kHz.

From eq. (5.42) we can compare the quantum back-action (QBA) drive to that of
the thermal noise (TN) and work out the contributions to the variance of Q̂S, just as
with mechanics in section 4.1.5. This allows us to define the quantum cooperativity
for the spin ensemble as

CS
q ≡

QBA
TN = ΓS/4

γS(n̄S + 1/2) . (5.47)

This is in practice an experimentally measured quantity since the atomic mean
occupancy n̄S is not easily measurable or readily available from theoretical consid-
erations. Rather it is a product of experimental conditions and sets the baseline
decoherence achieved for a particular readout rate.

From eq. (5.46) it is clear that the quantum cooperativity of section 4.1.5 does
not scale with optical probing power once once the power broadening is dominant.
This is routinely observed for our spin ensemble. In practice, before saturating, the
quantum cooperativity increases as the optical probing power is increased. Since
the optical power also determines the readout rate, the amount of power broadening
is a typically a trade-off with the tolerable readout rate. In chapter 6, where we put
the spin system to use, the absolute value of readout rate must be contrasted with
that of the optomechanical system.

Experimentally, the way to increase the atomic cooperativity is to put the atoms
inside a cavity, or by having more atoms, specifically a higher density. In this work
we take the latter approach. This is done by heating the vapour cell and thereby

3Recall that |Jx| is related to the number of atoms seen by the probe of cross-sectional area A
according to eq. (5.31).
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Figure 5.8: Cesium vapour pressure Shown is cesium vapour pressure (blue) as function
of ambient temperature. Also shown is the number of atoms (red) contained within a
300× 300 µm square channel of 10 mm length. Grey dashed line indicates phase transition
of cesium from solid to liquid at T = 28.5 ◦C.

increasing the vapour pressure. The dependence of the atom number on the vapour
pressure is described in section 5.10.5. The amount of atoms contributing to |Jx|
would also help. This is akin to saying that the degree of ensemble spin polarization
is important. Thus optical pumping is desirable, this is described in section 5.10.6.

Having a low spin polarization also effectively adds more noise through the
Langevin drive F̂S in eq. (5.42). The amount of extra noise compared to the case of
perfect polarization is described in section 5.10.7.

5.10.5 Vapour pressure
Atoms in the gaseous phase are seeded by a reservoir of Cs in the stem of the vapour
cell which is shown in fig. 5.1. These gaseous atoms form our spin oscillator and, as
we just saw, the more the merrier.

The vapour pressure of Cs is highly temperature dependent and undergoes a
phase change from solid to liquid at 28.5 °C. In the two regimes the vapour pressure
has the same functional dependence given by B. Alcock et al. (1984) as

Pvapour = 10A−B/T , (5.48)

(A,B) =




(4.711, 3999) , for T < 28.5 °C,
(4.165, 3830) , for T > 28.5 °C,

(5.49)

where the pressure is in atm and the temperature in K. Through the phase change
the vapour pressure rises slightly. However, the overall uncertainty in the model
parameters is likely larger than this rise and the absolute values should be taken
with a specified ∼ 5 % error. In practice this small error is of little matter to us,
and we care mostly about large increase in number density, n, with temperature.

The atoms are typically confined in a volume V , which using the ideal gas law,
yields an absolute number Na of Cs atoms simply given by

Na = nV = PvapourV

kBT
. (5.50)
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Figure 5.9: Increase in number of atoms with temperature. Left: Fractional
increase in encased number of atoms per degree. The spike happens at the phase transition
of T = 28.5 °C. Clearly the per degree fractional increase falls off quite fast with a 1 °C
change at 60 °C being roughly 30 % lower than that at 20 °C. Right: Total fractional
increase in number of atoms as referenced to room temperature of 20 deg where cells are
typically initially characterized.

Na is typically on the order of 108 − 109 for the experiments discussed in this work,
but of course depends critically on temperature. The vapour pressure and atomic
number versus temperature are shown in fig. 5.8.

The fractional increase in the number of atoms, which is typically of experimental
interest, is shown in fig. 5.9. Incredibly, one can increase the number of atoms by
roughly a factor of 34 by increasing the temperature by 40 °C from 20 °C (room
temperature) to a balmy, but easily feasible, 60 °C.

5.10.6 Optical pumping
If left to their own devices, the large ensemble of atoms would thermally populate
the Zeeman states within each hyperfine level of F = 3 and F = 4 as shown in
fig. 5.4. In this case we would on average find a net zero spin,

〈J〉space ≈ 0, (5.51)

as the individual atoms would have a randomly oriented spin direction in space. The
fraction of atoms in the extreme mF state is known as the spin polarization and is
typically desirable as it provides a larger mean spin and lower noise.

In practice, we use auxiliary fields to prepare the atoms in (or near to) a particular
state of extreme mF in the F = 4 ground state manifold, an example is shown in
fig. 5.10. This produces a large mean ensemble spin 〈J〉 6= 0. To do this, we use two
separate, co-propagating optical fields oriented along the quantization axis (x), i.e.
orthogonal to our probe but parallel with our bias magnetic field. These two fields
are known as the pump and repump, as their main jobs are simple.

The repump brings atoms into the F = 4 ground state manifold, while the pump
brings all atoms towards the extreme mF = ±4 state. These fields are shown in the
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Figure 5.10: Spin polarization in the Zeeman sublevels of 62S1/2. An example of a
highly spin polarized ensemble. All atoms (red dots) occupy an extreme Zeeman sublevel,
in this case the mF = 4, in the F = 4 hyperfine manifold.

right panel of fig. 5.11 with respect to the atomic energy structure. For the work
in this thesis the pump, repump and probe are on continuously in the experiments
discussed in section 6.3 whilst the pump is turned off in section 6.4. Let us discuss
these now in a bit more detail.

Pump

The pump beam is a right hand circularly polarized field4 (σ+) set to the D1 line
at 894.6 nm and is tuned on resonance with the F = 4 → F ′ = 4 transition. This
beam co–propagates with the repump field and drives atoms to the excited state
with ∆mF = +1. From there any subsequent decay back to F = 4 will be with a
∆mF set by Clebsch-Gordan coefficients. This process cannot reduce the overall,
mF and thus a steady state is reached where the atomic population has a higher
average mF . This principle is illustrated in the left panel of fig. 5.11.

Since the pump addresses states in the 62P1/2, F = 4 manifold it adds broadening
proportional to the intensity and thus the pumping rate. Notice that although the
|4, 4〉 is a dark state of the probe, the coherence of interest are between the |4, 4〉
and |4, 3〉, the latter of which the pump addresses, and thus unfortunately adds
decoherence to.

Pumping F = 4 → F ′ = 3 renders both |4, 3〉 and |4, 4〉 dark states. Since this
cannot bring atoms to the maximum mF state of |4, 4〉, this scheme appears not
worth considering. This is true in pulsed probe experiments5 where you wish to
pump to your ensemble to |4, 4〉, turn off the pump and then probe. In this case
you do not care about the reduced coherence between |4, 3〉 and |4, 4〉 arising from
the pump as it is turned off during the probing of the spin ensemble. However,
in the continuous probing regime this counter intuitive pumping approach is worth
considering as it increases the overall polarization without influencing the coherence
between |4, 3〉 and |4, 4〉.

4A field with right hand circularly polarized light propagting along the quantization axis is
known as σ+ polarized.

5Not implemented anywhere in this thesis.
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Figure 5.11: Optical pumping of the Zeeman sublevels in 62S1/2. Effects of the
pump and repump are shown through an example and an overview. Left: The σ+ repump
field excites atoms from F = 3 bringing atoms ultimately into F = 4. It does so yielding
a increased overall mF . The pump field moves atoms to higher mF by within F = 4.
Right: Overview of optical pumping on the D1 and D2 lines.

Repump

The repump beam operates broadly on F = 3→ F ′ = 2 transition of the D2 line at
∼ 852.3 nm, see right panel of fig. 5.11. This is transition is driven in order to bring
atoms from the unprobed F = 3 ground state hyperfine manifold into F = 4. This
is achieved since the repump field drives atoms populating F = 3 into the 62P3/2
excited states from which they decay to either F = 3 or F = 4 according to the
Clebsch-Gordan coefficients and selection rules. Provided enough optical power is
used the repumping will eventually dominate other decay channels and all atoms
will populate the F = 4 ground state manifold. See fig. 5.11 for an illustration of
this.

Additionally, since we use a right hand circularly polarized repump, the atoms
ending in the F = 4 manifold will be asymmetrically distributed tending towards
higher mF . It is for this reason that we set our repump to near the F = 3→ F ′ = 2
transition. This may seem like a paradoxical choice since we cannot decay from
F ′ = 2 → F = 4 as desired. However, due to the doppler broadening and finite
detuning, the other F ′ excited states which can decay to F = 4 are also driven. This
choice thus increases the average gained mF for atoms going from F = 3 → F = 4
since atoms most often decay back to F = 3, before that low probability event of
ending up in F = 4. We are essentially using the repump as a “pump” for the F = 3
manifold, as well as a “repump” for the F = 4 manifold. This provides us with a
more favourable spin polarization.

5.10.7 Added noise from finite spin polarization
In our case of continuous optical pumping and probing a trade-off exists between
benefits of optical pumping and the noise added by these fields. Having a high pump
field means a high pumping rate and a larger polarization, but is concomitant with



146

an increased decoherence due to increased spontaneous emission and absorption.
In the experiments of section 6.3 the optimal scenario was found to be lots of

repump (which adds little broadening) and little pump. However, in section 6.4 the
pump was completely removed.

A high degree of spin polarization reduces the effective noise seen by the atomic
spin quadratures, i.e. it reduces the bath occupation n̄S seen in eq. (5.41). This can
be seen by considering, say, the decay term of the Ĵy quadrature given by eq. (5.29b).
Writing a quantum Heisenberg-Langevin equation for this quadrature by adding a
noise term F̂Jy with a coupling given by the quadrature damping rate γS, we have

˙̂
Jy = gŜzĴx − ΩLĴz −

γS
2 Ĵy + √γS F̂Jy. (5.52)

The noise the quadratures see, given by the correlations of the driving Langevin
noise terms, can be shown to be

〈FJy(t)FJy(t− t′)〉 = Na

2Z

F∑

m=−F
emβ

[
F (F + 1)−m2

]
(5.53)

=



F, for |P | → 1,
2F (F + 1)/3, for |P | → 0,

=




4, for F = 4,
40/3, for F = 4,

(5.54)

Z =
F∑

m=−F
emβ, (5.55)

where β = log[(1 + |P |)/(1 − |P |)] and Z is the partition function. This is further
described in Vasilakis et al. (2011), and the the underlying assumption is that for
a given spin polarization |P | the ensemble distribution in mF levels is such that
entropy is maximized.

From eq. (5.54) it is clear that a completely unpolarized ensemble sees 10/3 ' 3.3
times more noise than a perfect polarized ensemble. For a particular polarization
|P | the noise added compared to the perfectly polarized case of |P | = 1 is shown in
fig. 5.12. Experimentally in chapter 6 we typically achieved∼ 60 % spin polarization,
and thus add an additional 50 % of noise, which is quite substantial. Increasing
polarization, and thereby reducing this extra noise is thus highly desirable and is
being investigated. Recent measurements have shown that larger spin polarizations
can be achieved with a new batch of cell coatings although the exact mechanism is
not yet understood.

5.10.8 Magneto-optical resonance (MORS)

A powerful tool used predominantly for purposes of spin characterization is the
technique of magneto-optical resonance (MORS). The basic idea is to coherently
drive the atomic spins to a very large precession amplitude and probe the now
classically enhanced spin dynamics optically. This is done in practice by modulating
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Figure 5.12: Spin quadrature added noise for finite spin polarization Noise added
to atomic spin quadratures relative to the case of perfect spin polarization for an atomic
ensemble in the F = 4 manifold.

a magnetic field at an angular frequency Ωmod perpendicular to the quantization axis
x, where we have a large constant (DC) magnetic field.

Adding this modulated magnetic field (also known as RF drive) to the Hamilto-
nian gives a extra contribution of ByĴy, where By = |BRF| sin(Ωmodt). The effect is
immediately seen from the evolution of the precessing spin components, which now
read

˙̂
Jz = −ΩLĴy + |BRF| sin(Ωmodt)Jx −

γS
2 Ĵz +

√
2γS F̂Jz, (5.56)

˙̂
Jz = ΩLĴy −

γS
2 Ĵz +

√
2γS F̂Jy. (5.57)

The RF drive acts as a driving force at Ωmod boosted by the large mean spin Jx.
This force drives the spin oscillations to amplitudes governed by the susceptibility.
Thus, if we sweep the modulation tone and demodulate the detected light quadra-
ture Ŝout

y ∝ Ĵy we can directly see the atomic response. The motion is readout
in this optical polarization quadrature as can be seen from eq. (5.42). How these
polarization quadrature are measured in practice is explained in appendix B.3.

As an example, the quadratic Zeeman splitting is easily observed with a high
signal to noise using MORS. In fig. 5.13 we show an example MORS data set and
a model fit assuming all the Zeeman sublevels have an equal linewidth. This model
is the same as the one detailed in Julsgaard (2003). Also shown in the figure is the
quadratic Zeeman splitting as a function of Larmor frequency together fit showing
an excellent agreement with the quadratic dependence expected from eq. (5.15).

5.10.9 Tensor rotation

Non-linear interactions terms with the second–order prefactor a2 in the general
Hamiltonian eq. (5.31) distorts the simple Faraday rotation by mixing the Ŝy and Ŝz
components in an effect akin to birefringence. The mechanism mediating the tensor
effect is associated with a two photon scattering process and depends crucially on
the finite excited state populations. It is thus efficiently suppressed compared to
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Figure 5.13: Quadratic Zeeman splitting measured by MORS. Shown in an example
of a MORS (left) signal as a function of demodulation frequency Ωmod. The blue points
are the measurement and the red line is a model fit. To the right we show the quadratic
Zeeman splitting (blue points) as derived from MORS data at various Larmor frequencies.
The red curve is not a fit but the quadratice prediction according to eq. (5.15).

the other processes by a large probing detuning, which in practice is how they are
rendered negligible.

Although the tensor effect may be small, the effect on the measured Ŝz quadra-
ture can still be quite significant compared to quantum noise (shot noise) of Ŝz.
This is because for a large interaction strength the Ŝy quadrature has a very large
contribution from the atomic precession. This contribution is on the order of 100s
of times that of shot noise in Ŝy for the experiments of chapter 6. Thus, even a
small tensor effect on the order of a percent may lead to a contribution appreciable
compared to the shot noise in Ŝz.

The size of this contribution in Ŝz is, in practice, the most important effect. This
is because we require the shot noise in Ŝz after the interaction with the spin ensemble
to be the same as that coming in. This is important for the hybrid quantum back-
action evasion scheme detailed in chapter 6 since the Ŝz quadrature output from
the spin ensemble ultimately interacts with (and drives) the mechanical system.
Experimentally, this is addressed by increasing the atomic detuning until a2/a1 is
sufficiently small.

5.10.10 Stark shifts
The higher order interaction term proportional to a2 in eq. (5.31) also gives rise to a
light induced Stark shift. This term arises from Zeeman energy levels shifts associ-
ated with coupling to the probe’s electric field and depends on the angle θpol between
the direction of the linearly polarized probe field and the direction of macroscopic
spin. The effect is probe power dependent and can be shown, e.g. in Julsgaard
(2003), to be of the form

∆ΩStark, probe
L ∝ α (1 + 3 cos(2θpol)) (5.58)
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Figure 5.14: Stark shifts and broadenings for a variable input polarization θpol.
Left top: Broadenings of the Zeeman sublevels levels fitted from MORS in blue. Guess
for functional dependence in red. See text for details. Left bottom: Total Zeeman split-
ting ∆ΩL = ∆ΩStark, probe

L + ∆ΩQSZ
L , see eq. (5.58) for the Stark shift ∆ΩStark, probe

L and
eq. (5.15) for the quadratic Zeeman shift ∆ΩQSZ

L . Right: Raw MORS signals for each po-
larization as a function of demodulation frequency Ωmod. Signals for various polarizations
are offset for clarity. Increasing polarization angle θpol is blue towards red.

where the constant α depends linearly the probe power and inversely on the detun-
ing.

Using magneto-optical resonance signals (MORS) technique described in sec-
tion 5.10.8 we can measure this effect as a function of input polarization angle. This
is shown in fig. 5.14 along with the oscillator broadening. The functional dependence
of this broadening is not fully understood and is guesses here, only out of curiosity,
to have the form γeff = A + (B + C/∆ΩStark, probe

L )−1, where A, B and C are fit
constants.

5.11 Practical considerations

5.11.1 Anharmonicity and finite polarization
A reasonable concern is the anharmonicity caused by the quadratic Zeeman splitting
described in section 5.4. For the experiments of chapter 6 we cannot just reduce
Larmor frequency as it needs to roughly match the mechanical oscillator. For the ex-
periments this was near 1.3 MHz and so the quadratic Zeeman splitting was 370 Hz,
a non-negligible amount.

The Stark shift, as described in section 5.10.10, from the probe helps in this
regard. We adjust the probe input polarization such that the quadratic Zeeman
splitting is compensated as much as possible. This also corresponds to a reduced
probe power broadening which allows more power to be used (if the wish is to
keep the broadening constant). The probe induced broadening also helps with the
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anharmonicity as the quadratric Zeeman splitting is washed out by the broadening.
Having a higher spin polarization also decreases the severity of the anharmonicity.

In our experiments a spin polarization of ∼ 60 % was reached. Such a polarization
is already enough for the the effective harmonic oscillator model to work well in
practice, as witnessed by its utility and behavior in chapter 6. Compare the polarized
oscillator case shown in the right panel of fig. 5.15 with the unpolarized case seen
in left panel of fig. 5.13.

5.11.2 Motional averaging and broadband spin noise
So far we have not spoken as to the choice of dimensions, 300µm× 300µm× 10mm,
for the microchannel in which we confine and probe the atoms, which was shown in
fig. 5.1. The narrow transverse size was chosen to have a short wall-to-wall transit
of 1.4 µs, using eq. (5.66). This short timescale means that on the time scale of the
mechanical decoherence, ∼ 14 µs1, each atoms has transited the probe beam many
times. This allows us to treat the entire ensemble of atoms as equally addressed and
indistinguishable, and constitutes a motionally averaged interaction, as described in
Hammerer et al. (2010); Borregaard et al. (2016).

Suppose now we readout the motionally averaged interaction of the spin oscilla-
tor. Detecting the output optical phase quadrature Ŷ out (polarization quadrature
Ŝy) from the spin system we observe the effective harmonic motion of the spin oscil-
lator with a broadening of γS = 2π×2.7 kHz and resonance at the Larmor frequency
of 1.343 MHz. This is as expected from the spin motion evolution and transduction
according to eq. (5.42). This is the Lorentzian feature seen in the detected power
spectral density shown in fig. 5.15.

Below this dominant contribution we see a small, and very broadband feature also
centered at the Larmor frequency. The broadband response follows as the Larmor
frequency is tuned and constitutes an undesirable increased imprecision noise floor.
In this case the additional noise added is equivalent to 2 units of added shot noise.

The ∼ 1.2 MHz spectral width of this feature suggests that the process respon-
sible should occur on a very fast timescale of ∼ 1 µs, which is the rough timescale
of an atom thermally crossing channel. From numerical simulations of the spin in-
teraction in cell of our dimensions and probed in the same way, the transit time
broadening caused by the thermal motion is found by Borregaard et al. (2016) to
be 1.5 MHz, which is in reasonably good agreement.

The optical probe with a waist (radius) of 55 µm since the effect is related to a
transient effect as the atoms fly through the beam one would expect this broadband
effect to scale with the fraction of the confined atomic ensemble which is probed.
This is indeed what is seen and is shown in Julsgaard (2003). This effect thus
depends on the fraction of the cell that is optically probed. How this relates to the

1Using eq. (3.43) the mechanical decoherence rate is 11.5 kHz at a bath temperature of 7 K.
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Figure 5.15: Atomic broadband noise. Measuring the Ŝy polarization quadrature we
observe the spin motion readout in the optical phase quadrature. We show the power
spectral density of this quadrature in the case of no atoms (black), which is simply shot
noise, and with spin motion (yellow). Left: A broadband, 1.2 MHz at −3 dB, feature is
seen with a peak at 3 units of optical shot noise. The spin effective oscillator response
is the narrow feature. Right: A zoom of the effective oscillator spin response with the
broadband pedestal contribution shown as the dashed yellow line. Inset: Zoom far from
spin resonance.

optical probe is described in appendix D.2.3.

5.11.3 Faraday rotation
The Faraday rotation described by the ŜzĴz interaction term is responsible for the
transduction of the atomic spin components into the light quadratures. The effect
on input linear polarization components is such that the output contains a mix
of the Ŝx and Ŝy. This mixing on time scales near the Larmor frequency encodes
information about the spin components. In steady state this mixing means the input
polarization is rotated by an angle θF .

If we consider the mean classical components of the Stokes vectors we find them
to be mixed by an angle of 2θF at the output2. Using the rotation matrix R defined
in eq. (2.84) we have

(
Sout
x

Sout
y

)
= R(2θF )

(
Sin
x

Sin
y

)
. (5.59)

The Faraday angle is given by

θF = −β〈Ĵz〉 (5.60)

where Ĵz is the spin component along the probe direction. If we assume a perfect
spin polarized spin ensemble, the mean spin component will be 4Na. Thus, if we

2From the definitions of the Stokes components this rotation of 2θF corresponds to the axis of
an linearly polarized input beam being rotated by θF .
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Figure 5.16: Doppler broadening. View of the 400 MHz wide atomic Doppler broad-
ening (big dip) in the transmission of a probe through an atomic ensemble. This is
measured through saturated absorption spectroscopy and the features seen are transitions
from F = 4→ F ′ and crossover resonances, see Schmidt et al. (1994) for more details.

orient this spin along the probing direction we can get a very large (θF � 1) rotation
of the input polarization state. This can be used to calculate the interaction strength
or number of atoms.

Since we orient our bias magnetic field along x, perpendicular to the probing
direction of z, we can approximate 〈Ĵz〉 ≈

√
〈Ĵx〉 ≈

√
4Na , for the perfect polarized

case. As a theoretical ballpark figure for our typically experimental conditions at
60 °C, Na ' 109 and a detuning of ∆S = 2π×3 GHz the Faraday rotation is < 0.01°.

5.11.4 Doppler broadening

The atomic thermal motion in the microchannel mean that atoms moving along the
probe direction see it Doppler shifted. Scanning the probe through the F = 4→ F ′

transition, with frequency FD2, clearly shows this as seen in fig. 5.16. This is quite
a large effect since the atoms are at about room temperature.

The Doppler broadening (FWHM) of the transitions is given by

∆f =
√

8kBT ln 2
mCs

fD2

c
(5.61)

where mCs is the mass of a cesium atom and T the ensemble temperature. The scale
of the Doppler broadening is roughly 400 MHz in our case and by far dominates the
line broadenening of ∼ 5 MHz from spontaneous emission. In practice, we need
to probe much further detuned than the doppler width to avoid absorption which
we desire in order to neglect excited state populations. From a typical absorption
profile of ∝ (γdoppler/2)

(γdoppler/2)2+∆2
S
it is clear that we need to be detuned by at least 2.8 GHz

in order to have < 0.5 % absorption relative to the on resonance case.



5.11. Practical considerations 153

5.11.5 Sources of loss

In what follows we will describe a few relevant processes which lead to “intrinsic”
damping of the effective spin oscillator described in section 5.10. The total dissi-
pation rate relevant for the evolution of the spin oscillator, according the quantum
Heisenberg-Langevin equations of eq. (5.42), is given by the sum of all relevant de-
cay channels as written in eq. (5.44). Expanding the intrinsic loss γS,0 term into its
component parts we find,

γS,0 = γSE + γspin-flip + γ∂B + γpump + γrepump + ... (5.62)

The relevant loss mechanisms discussed here leading to this damping are the spin
exchange (γSE) and spin-flips (γspin-flip). Also discussed are the effect magnetic field
inhomogeneities (γ∂B) and finally the pump (γpump) and repump (γrepump) induced
spontaneous emission damping.

At the operating conditions of the work described in chapter 6 the excess noise
sources comprised roughly 1 kHz of broadening. This was predominantly due to wall
collisions since a measurement of γS,0 at very low Larmor frequencies (low magnetic
field), very low probe power, and no pump or repump, gave a ∼ 1 kHz broadening.
This type of measurement is commonly referred to as the “T2 in the dark” of the
cell. Further scaling of the magnetic field gradient showed that this was not the
main culprit.

Spin-exchange collisions

The high atomic densities used mean atom-atom collisions may be a relevant factor.
When atoms collide they may exchange electron spin whilst conserving the overall
spin. This process is aptly named spin-exchange collisions and has the effect of
depolarizing the ensemble and unsurprisingly scales with the collision rate. Since
the number density n(T ) scales exponentially with temperature T , and the atoms
have an increasing mean relative thermal velocity v̄th(T ) this collision rate increases
substantially. This effect is diminished for higher spin polarized ensembles, since
colliding atoms both in |4, 4〉 leave indistinguishably. All other decoherence channels
of course still apply in this case. More on this process, and the result below, can be
found in Seltzer (2008).

The collision rate σn(T )v̄th(T ) is related to the expected spin-exchange (SE)
broadening γSE by

γSE/2π = σn(T )v̄th(T )q−1
SE , (5.63)

q−1
SE = 2I(2I − 1)

3(2I + 1)2 , (5.64)

v̄th(T ) =
√

8kBT
πM

(5.65)
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Figure 5.17: Spin exchange broadening. Added broadening due to spin exchange
collisions according to eq. (5.63). Cesium atoms are confined to a rectangular channel
that measures 10 mm in length and 300× 300 µm in cross-section. A collisional cross-
sectional area of 2.1 nm2, as measured by Ressler et al. (1969), is assumed.

whereM is the molar mass, σ the effective collisional cross-sectional area, and q−1
SE a

spin-exchange broadening factor related to the collision rate probability of effectively
exchanging spins. This spin-exchange broadening is shown in fig. 5.17 as a function
of temperature. Added broadenings of on the order of 100 − 200 Hz is in practice
seen at near 70 ◦C operating temperatures.

Atoms can, of course, also interact with other species of atoms in the cell. They
may be deliberately added as a buffer gas or are simply a contaminant. These cases
also lead to a larger decoherence, but are not discussed as they are not relevant in
this work.

Wall collisions

Clearly when the atomic vapour is contained in the microchannel the atoms are
constantly bouncing off the walls. This is true in general for a containing atomic
vapours in a vessel, typically glass for optical purposes. This wall interaction intro-
duces additional decoherence, painfully true for spin ensembles, thus, the walls are
covered with an anti-relaxation coating. This coating preserves the spin polariza-
tion with a very high probability of an atom-wall collisions. The property was first
discovered in 1958 by Robinson et al. (1958) and has since been extensively studied.
See Seltzer et al. (2010) for an overview and the modern tools employed to further
study the coatings.

These coatings see continuous improvements and those used in our experiments
are made by Mikhail Balabas. Some are even able to withstand very high tem-
peratures before compromising the spin coherence. This is clear from Seltzer and
Romalis (2009), enabling a large vapour pressure, and thus a high number of atoms
if desired.

In a thermal vapour of constant pressure, the average time between wall collisions
in a cell of volume V and internal surface area S is given by

τwall = 4V
v̄thS

, (5.66)
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which at room temperature means it takes an atom about 1.4 µs between each wall
collision. In our realization of the vapour cell this collision rate is quite high as we
confine the atoms within a square micro-channel measuring only 300 µm on the side
and being 10 mm long.

While the probability of spin decoherence per wall collision may be low, many
collisions occur per second in the small channel leading to a fairly high3 spin de-
coherence rate. When an atom collides with the wall it will, in general, interact a
lot with the surface causing the electron spin to flip which leads to decoherence. It
turns out that a paraffin coating can severely reduce this spin-flip rate, and thus
preserves the atomic spin over many atom-wall collisions. If the atoms can collide
with the wall N times before a spin flip occurs then the contribution to the spin
decoherence will be given by

γspin-flip ∝
1

Nτwall
. (5.67)

This increased spin lifetime is crucial since we are interested in dynamics over many
coherent evolutions (on time scale of � 1/ΩL ∼ 1 µs) of the spin oscillator. It
is, thus, required that the atoms are able to endure multiple wall collisions with-
out decohering. Furthermore, considering the ensemble on an extended time scale
compared with the average wall collision rate means that we have some degree of
thermal averaging. This means we address the atoms equally and indistinguishably
allowing us to more accurately treat them as a single oscillator.

More severe atom-wall collisions where the nuclear spin also flips are also possible,
though less frequent. These interactions do not preserve the total spin, and thus
lead to a more severe form of depolarization.

Magnetic field inhomogeneity

The cell of fig. 5.1 is placed in a bias magnetic field which splits the Zeeman sub-
levels by the Larmor frequency. However, a spatially inhomogenous magnetic field
means that as the atoms move around the cell they precess with differing Larmor
frequencies. Suppose we have the bias field along a direction i where the cell length
is Li. In the relevant limit where the field gradient is small, the added decoherence
from the inhomogeniety is roughly given by Julsgaard (2003)

γ∂B ≈
(
gFµB
~

)2
(
L3
i

v̄i

)(
∂Bi

∂xi

)
(5.68)

where v̄i is the mean speed along the i direction. The spatial inhomogeneity, and
thus added decoherence, is largest along the axis of the microchannel as it is roughly
30 times longer than it is wide. For us this is a mostly negligible effect.

3Compared to larger cells which can have decoherence times on the timescale of minutes.
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Similarly a bias field that is noisy on timescales comparable to the Larmor fre-
quency will also add decoherence. In practice, this is straightforward to avoid by
appropriate filtering of the current generating the field.

Optical pumping

Just as the probe induces spontaneous emission broadening, as discussed in sec-
tion 5.10.3, so too do the optical pumping fields described in section 5.10.6. Most
important is the pump field which addresses the same F = 4 manifold as our probe.
Since the job of this field is to be absorbed, and thereby increase to over spin polar-
ization, it is not far detuned as our probe. This allows for small optical powers to be
used, but the associated increased spontaneous emission broadening from this field
can still be very large. Thus in practice its use is a delicate trade-off pitting spin
polarization, and by extension the readout rate, against added decoherence from the
increased broadening.

Less important is the repump field as it addresses the F = 3 manifold. However,
since the ground state hyperfine levels are split by 9.2 GHz it essentially acts as a far
detuned probe. Since the optical power of the repump actually driving the atoms is
low compared to the probe, its broadening of the F = 4 ground state manifold is in
practice negligible.



Chapter 6

Hybrid system back-action evasion

We now, finally, turn to the part of the thesis motivated by our introductory example
of section 1.1. In the example, we measured an oscillators motion with respect to
some quantum reference frame with an effective negative mass. Here we realize such
a measurement by observing the mechanical motion of the membrane discussed in
chapter 3, by using optomechanics as discussed in chapter 4, in the reference frame
of a negative mass atomic spin oscillator as just described in chapter 5.

The measurement is performed in a cascaded fashion as shown in fig. 6.1, where
an optical field acts as the link between the two systems. The spin system is optically
readout first and the output then appropriately filtered. This translates the optical
language spoken by the spins to that spoken by the mechanics. The mechanical
oscillators motion is then probed and detected with an improved sensitivity if the
spin system is prepared in a negative mass configuration.

Before fully detailing exactly how this is all accomplished in practice, let us con-
sider an idealized situation first in section 6.1. We will then discuss the experimental
implementation in section 6.2 before presenting back-action evading measurements
in the pulsed regime in section 6.3.

We then finally turn to the business of describing quantum back-action evading
measurements section 6.4. Part of the work presented in this chapter, in particular
parts of section 6.4, has been published in Møller et al. (2017).

6.1 Quantum non-demolition back-action evasion

In practice, losses abound and the light driving and reading out the atomic spins
are only partly that which interacts with the mechanical oscillator. Here we will
treat the lossless case first and only then include them. We will neglect any higher
order tensor effects for the spin system, treating the interaction as purely quantum
non-demolition (QND). Likewise for the optomechanical subsystem, we will consider
the cavity to be on resonance (∆̄ = 0) along with a linearized QND interaction. The
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Figure 6.1: Basic schematic of the cascaded hybrid subsystems. The spin system
(yellow box) is optically read out first and the output then appropriately filtered (dark
box). This translates the optical language spoken by the spins to that spoken by the
mechanics. The mechanical oscillators motion is then probed in the optomechanical system
(blue box). The subsequent detection of its motion comes with an improved sensitivity
if the spin system is prepared in a negative mass configuration. The output is drawn in
cavity transmission to emphasize that the hybrid system has a cascaded read out scheme.

interaction Hamiltonian will, thus, be given by

Ĥint,i =
√

Γi Q̂iX̂i, i ∈ {S,M} (6.1)

where Qi is the canonical position quadrature of each subsystem and X̂i is the light
amplitude quadrature interacting with said subsystem.

We are interested in seeing the effect on the light from the cascaded interaction
with the two subsystems. Let us consider the quadrature output from each system
separately first. For both subsystems the input output relations are

X̂out
i (t) = X̂ in

i (t)

Ŷ out
i (t) = Ŷ in

i (t) +
√

Γi Q̂i(t)
(6.2)

where i ∈ {S,M} for the spin and mechanical subsystems respectively. It is clear
that each light amplitude quadrature X̂i is a QND variable of the interaction Hamil-
tonian of eq. (6.1), which is reflected in the input-output equations.

6.1.1 Lossless case
Now, the spins couple to light polarization degrees of freedom whereas the mechanics
couples to the amplitude and phase quadratures of light. Formally we map these
under the same umbrella of X̂i, but in practice they are fundamentally different.
However they can transformed into one another as described in section 6.2. In
practice, we can ensure that the output of the spin system is fed as the input to the
mechanical system according to

X̂ in
M = −X̂out

S , (6.3a)
Ŷ in
M = −Ŷ out

S . (6.3b)
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This is the action of the filter in fig. 6.1. The full input-output equations from before
the spins to after the mechanics, i.e. the full hybrid input-output relations, will then
be

X̂out = −X̂ in (6.4a)

Ŷ out = −Ŷ in −
[√

ΓM Q̂M −
√

ΓS Q̂S(t)
]
. (6.4b)

If we take the readout rates to be the same ΓM = ΓS = Γ, and the oscillators
to have the same frequency ΩM = |ΩS| = Ω then the output phase quadrature will
contain the commuting EPR variables initially motivated in the generic oscillator
case. Writing the time dependence of the operators out explicitly we see that

Ŷ out(t) = −Ŷ in(t)−
√

Γ
[ (
Q̂M(0)− Q̂S(0)

)
cos(Ωt)+

(
P̂M(0)∓ P̂S(0)

)
sin(Ωt)

] (6.5)

where we have used the fact that for the spin oscillator, being considered “positive”
or “negative” mass is tantamount to the direction of phase space rotation. Thus, we
differentiate the two by the sign of the spin oscillator frequency ±ΩS (≡ positive /
negative mass). This treatment is facilitated by our choice of dimensionless canonical
operators. Notice that this input-output relation is just like eq. (1.2) and the sin and
cos components commute in the case of negative mass (ΩS = −Ω). Thus, they can
both be simultaneously known unbounded by the Heisenberg uncertainty principle.

In the case of negative mass operation, it was previously stated that the back-
action could be evaded. Further insight into how this is achieved is found by con-
sidering the thermal and light forces effect on the mechanical and spin oscillator. In
the Fourier domain we have

Q̂M(Ω) = χM(Ω)
[√

γM0 F̂M(Ω) +
√

ΓM X̂ in
M(Ω)

]
, (6.6a)

χM(Ω) = ΩM/(Ω2
M − Ω2 − iΩγM0), (6.6b)

Q̂S(Ω) = χS(Ω)
[√

γS F̂S(Ω) +
√

ΓS X̂ in
S (Ω)

]
, (6.7a)

χS = ±ΩS/(Ω2
S − Ω2 − iΩγS). (6.7b)

There could, of course, be additional forces, which add to the thermal and back-
action drives. Both systems respond with their susceptibilities on the time scales
given by their damping rates.

Using the above eqs. (6.6) and (6.7) together with eq. (6.4), the output phase
quadrature of the full hybrid system is

Ŷ out(Ω) = −Ŷ in(Ω)︸ ︷︷ ︸
SN

−
√

ΓMγM χM(Ω)F̂M(Ω) +
√

ΓSγS χS(Ω) ∗ F̂S(Ω)
︸ ︷︷ ︸

TN

+ [ΓMχM(Ω) + ΓSχS(Ω)] X̂ in(Ω)︸ ︷︷ ︸
BA

.
(6.8)
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It is clear that the thermal noise contributions cannot interfere as the driving ther-
mal forces F̂M and F̂S draw from two uncorrelated reservoirs. However, the back-
action contribution for both systems is driven by the fluctuations of the common
light amplitude quadrature X̂ in. Thus, by manipulation of the back-action term
ΓMχM(Ω) + ΓSχS(Ω) we can remove the back-action contribution at particular
frequencies, or indeed, over a wider bandwidth. Indeed if we set ΓM = ΓS and
χS = −χM the contribution can be completely removed from the output phase
quadrature of light.

This is the essence of the back-action evasion discussed in the motivation example
of section 1.1, and can be understood as follows. Although the individual systems
still experience a stochastic quantum back-action force, and are thus kicked around
in phase space, the light measures the relative motion, which is unaffected. This is
due to the fact that both systems are perturbed by the same light noise but respond
out of phase and with equal magnitude.

The above logic of the back-action cancellation works equally well in the time
domain. In that case we have

Ŷ out(t) = −Ŷ in(t)︸ ︷︷ ︸
SN

−
√

ΓMγM χM(t) ∗ F̂M(t) +
√

ΓSγS χS(t) ∗ F̂S(t)
︸ ︷︷ ︸

TN

+ [ΓMχM(t) + ΓSχS(t)] ∗ X̂ in(t)︸ ︷︷ ︸
BA

.
(6.9)

where the ∗ indicated the time convolution. In the time domain it is reasonable
to speak of back-action cancellation on short and long time scales (relative to the
subsystems), just as it makes sense in the Fourier domain to speak of evasion in a
wide bandwidth or at a particular Fourier frequencies.

6.1.2 Equations of motion and input-output relations
The Heisenberg-Langevin equations for each oscillator i ∈ {S,M} can be written as

˙̂
Qi = ΩiP̂i
˙̂
Pi = −ΩiQ̂i − γiP̂i −

√
2γi F̂ th,in −

√
Γi X̂ in

i ,
(6.10)

as can be read for both oscillators from eqs. (4.21) and (5.42). As described in
section 5.10.1, positive or negative mass configuration of the spin oscillator is simply
captured in the sign of the frequency ΩS in the case of dimensionless motional
quadrature operators. We write eq. (6.10) in compact matrix notation as

Q̇i = MiQi + F̂ in
i , (6.11)

where we have defined

Qi ≡
(
Q̂i

P̂i

)
, Mi =

(
0 Ωi

−Ωi −γi

)
, F̂ in

i = −√γi F̂ th,in
i −

√
Γi F̂ L,in

i , (6.12)
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and the thermal and light force vectors given by

F̂ th,in
i =

(
0

F̂ th,in
i

)
, F̂ L,in

i =
(

0
X̂L,in
i

)
. (6.13)

In the steady state spectral domain these output light quadratures from each
system can by compactly written as

X̂out
i (Ω) =Hi(Ω)X̂ in

i (Ω) +
√

Γiγi χi(Ω)F̂ th,in
i (Ω), (6.14)

Hi(Ω) =
(

1 0
Γiχi(Ω) 1

)
. (6.15)

For visual clarity, when speaking of the individual subsystems, we will writeHS = S
and HM =M.

6.1.3 Lossy case
We treat optical losses as an additional beam splitter as described in detail in ap-
pendix B.5.1, which introduces vacuum quadratures X̂ᵀ

j =
(
X̂vac
j , Ŷ vac

j

)
. This field

is uncorrelated with the other input fields and acts as a replacement for the lost
fraction of the particular quadrature due to some loss channel j characterized by a
power transmittivity ηj.

Let η1 be the transmittivity between the spin and mechanical system. Using
the mapping of the light quadratures described in eq. (6.4) with the aforementioned
treatment of losses, the input light quadratures to the optomechanical system are

X̂ in
M = −√η1 X̂

out
S +

√
1− η1 X̂

vac
1 . (6.16)

With the QND light-oscillator coupling, the oscillators are read out purely in
the optical phase quadrature, leaving the amplitude quadrature unaltered except
due to losses. Suppose that η2 is the transmittivity between oscillator M and the
detection system. If the input quadratures X̂ in

S contain just vacuum noise, then1,
taking losses into account we can modify the simple eq. (6.5) to give the hybrid full
input-output equations of

X̂out = −X̂ in +
(
1, 0

)√
η2

(√
η1

√
ΓS Q̂S −

√
ΓM Q̂M

)
. (6.17)

These equations will form the basis of the discussions in section 6.3.

1The input vacuum quadratures experience loss, and thus the output, say amplitude quadra-
ture, would be X̂out = −√η1η2 X̂

in +
√
η2(1− η1) X̂vac

1 +
√

1− η2 X̂
vac
2 . However, we can just as

well write X̂out = −X̂ in since the resultant correlation function will be equivalent.
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Figure 6.2: Hybrid setup schematic The atomic spin system (orange box, left) is
subjected to a magnetic B field (blue arrow) and optical pumping (olive arrow) along the
x direction. It is driven and probed by local oscillator 1 (LO1), along the z direction, with
linear polarization angle set by half-wave plate 0 . The output is polarization filtered by
section 1 and then phase filtered by the appropriate introduction of LO2 in section 2 .
The conversion of polarization quadratures into phase and amplitude quadrature is done
by a polarization projection in section 3 . The optomechanical membrane-in-the-middle
set-up (blue box, right), is probed in reflection by the injected LO2. The reflected light is
separated from the input by section 4 and homodyning this field with the high power
LO3 allows for the detection of the optical phase quadrature. The remaining cavity port
is probed in reflection with by LOPDH by the same method as 4 . This field allows the
optomechanical system to be stabilized on long time scales with respect to the probing
field LO2. Legend: HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing
beamsplitter; EOM, electro-optic modulator.

6.2 Experimental realization
In fig. 6.2 the hybrid experimental setup used for both pulsed and CW experiments is
shown. On the left, in the orange box, we have the atomic spin ensemble, which was
described in section 5.1, which realizes an effective harmonic oscillator as discussed
in section 5.10. On the right, in the blue box, the optomechanical system consisting
of a membrane in the middle of a high finesse cavity. This part of the experiment is
described in section 4.2.

Beyond the two subsystems, the hybrid setup is characterized by polarization
and phase filtering, shown as sections 1 and 2 in fig. 6.2 and further described
in section 6.2.1. Also important is the optical link connecting both systems and the
allowing the detection of their motion, shown in fig. 6.2 as the red optical path and
section 4 . This is further described in section 6.2.2.

The optomechanical cavity is probed in reflection. The cavity is locked in the
same way as described in section 4.2.2 using a PDH signal derived from a low
power, orthoganolly polarized, auxilary beam probing the cavity from the back
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(undercoupled) port.

6.2.1 Polarization and phase filtering

Polarization filtering and phase rotations are necessary since the atomic spins re-
spond to modulation out of phase, and in an orthogonal polarization, to the local
oscillator probe LO1, which is a linearly polarized field with a large classical Sx
Stokes component. The orthogonal polarization components are Ŝy and Ŝz and
form quadratures equivalent to amplitude and phase quadratures of the light, see
section 2.2.3.

Subsequent polarization conversion is necessary since the mechanical oscillator
ultimately responds only to modulation in phase with the LO (i.e. amplitude mod-
ulation) and necessarily in the same polarization mode. Since LO1 was out of phase
with the quadratures of Ŝy and Ŝz and in the orthogonal polarization, we wish to
introduce a new LO, namely LO2, replacing LO1 with the following properties. LO2
should be in an orthogonal linear polarization mode to LO1 and π/2 phase shifted
with respect to LO1. This way the Ŝy and Ŝz quadratures are mapped into phase and
amplitude modulation of the new carrier LO2. To accomplish this, three filtering
stages are required.

First, polarization filtering of LO1 is done using a half-wave plate and polarizing
beam splitter right after the microcell, see 1 in fig. 6.2. This filtering extinguishes
the power of LO1 better than 1:103 from the optical path with little loss of the
orthogonal polarization quadratures. The loss of these are given by the transmission
of the PBS and which was typically ∼ 3 %.

Secondly, the phase filtering, section 2 in fig. 6.2, consists of using a Mach-
Zehnder interferometer, arms hosting LO1 and LO2 with output at PBS2, is used.
Observed interference on detector D1 allows for the phase of the spin quadratures
{X̂out

S , Ŷ out
S } to be set with respect to LO2, and thus the input fields {X̂ in

S , Ŷ
in
S }.

In practice this is accomplished by way of an electro-optic modulator in LO1 prior
to the atomic spins, driving by a coherent sinusoidal modulation at 10MHz. This
produces sidebands in the Ŝz quadrature only, and with negligible added broadband
noise in Ŝy. This is ensured by tuning a DC bias voltage across the electro-optic
modulator and by adjustment of its axis with respect to the optical polarization.
It is set up to produce small modulations and as such a large AC voltage modula-
tion, though still small with respect to the π voltage, is required for even modest
modulation depths. The ratio of Ŝz modulation to Ŝy or Ŝx polarization modulation
inadvertently introduced by the electro-optic modulator is typically & 105 in power.

The coherent Ŝz drive at 10MHz is far from both oscillator responses. Both
oscillators are typically set around 1.3 MHz and have linewidths of∼ 5 kHz. Only the
broadband response of the atomic spins have a broad enough response to significantly
affect (or be affected by) the Ŝz modulation. The high modulation frequency is
chosen such that effect of the atoms on these sidebands, and vice versa, is negligible.
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These modulation sidebands are in the same polarization mode as the quantum
back-action driving the spin system as well as the response of the spin ensemble.
This polarization is thus desired to be fully transmitting by the PBS in 2 . In
practice a half-wave plate allows for an adjustable fraction of this polarization to be
picked off. Some finite sideband power is needed for the phase filtering lock, and
thus typically ∼ 5 % is reflected towards detector D1.

From the same PBS, most of LO2 is reflected. A half-wave plate in the LO2
arm allows some to be transmitting, which is modematched to the spatial mode
of LO1 with a visibility typically > 95 %. The demodulated balanced polarimetry
measurement of Ŝz on detector D1 produces a signal proportional to cos δφLO1,2,
where δφLO1,2 is the phase difference between LO1 and LO2. This is used as an error
signal in a feedback loop stabilizing their relative phase to be π/2 by actuating the
piezoelectric transducer in the LO2 arm. Adding an offset to the error signal allows
for a stabilized relative phase 6= π/2. This enables rotations of the quadratures
driving the subsequent optomechanical system to be controllably adjusted.

Now we have the quadratures {X̂out
S , Ŷ out

S }, with the desired phase with respect
to LO2, at the output of the interferometer. However, they still occupy orthogonal
polarization modes since LO2 is reflected and the polarization quadratures trans-
mitted through the output PBS. Thus, we turn to the the third, and final, step of
the filtering. This can be seen as section 3 in fig. 6.2. A half-wave plate and a
PBS projects a controllable (typically very small) fraction LO2 into the polarization
mode of the aforementioned polarization quadratures, which are transmitted in the
absence of the have-wave plate. In practice the amount of projected LO2 is . 1 %
resulting is little loss of the aforementioned optical quadratures {X̂out

S , Ŷ out
S }.

6.2.2 Optical link and detection

Suitable optics mode match and direct the optical output quadratures {X̂out
S , Ŷ out

S }
from the spin system to the optomechanical cavity where they are considered the
optical input quadratures {X̂ in

M , Ŷ
in
M }. These quadratures are in a mode with the

optical frequency of LO1. The cavity resonance frequency is stabilized relative to
this frequency using the Pound-Drever-Hall method, on long time scales, just as
described in section 4.4.3.

The original output quadratures of the spin system are also in the spatial mode
of LO1, and thus this mode is matched to the optomechanical cavity. The degree of
spatial overlap given by the modematching ηmm is typically in the range of ' 90 %.
The mode matching is defined as the fraction of incident LO1 power going into the
TEM00 compared to all cavity modes and is discussed in appendix B.5.3.

In practice this is done by adjusting the waveplate in 1 allowing LO1 through
the setup. The optics directing the beam are then adjusted. Allowing this field
through also allows for the total optical power transmission for the output optical
spin quadrutures to be measured. This is typically in the 60− 65 % range.
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Detecting the full output of the hybrid system is done by isolating the reflection
from the cavity as shown in section 4 shown in fig. 6.2. The amplitude and
phase quadratures are measured on detector D2 by direct and balanced homodyne
detection, respectively, which are discussed in appendices B.1 and B.2. In the former
case, all light was directed onto a single detector diode. In the latter case, the use
of an additional local oscillator, LO3, is needed as a phase reference.

LO3 is split from LO2 before the piezo-actuator in the interferometer arm shown
in fig. 6.2 and when recombined on the polarizing beam splitter of section 4 con-
stitutes another interferometer. This interferometer has balanced arm lengths (one
arm goes to the cavity and back) and is low frequency stabilized by feedback on the
peizo-electric transducer shown in the arm of LO3.

For the experiments in section 6.3 the error signal derived from the 10 MHz, now
amplitude modulation, sidebands also used to lock the phase filtering interferometer.
Demodulating the homodyning current at this frequency gave an error signal whose
minimum corresponded to minimal detected amplitude modulation, thus the optical
phase quadrature. For the experiments in section 6.4, the error signal was simply
the low frequency interference fringe of LO2 and LO3, which worked equally well.

6.2.3 Optical Losses

The relevant optical losses in the hybrid system are numerous, but of variable im-
portance. We speak in terms of losses ε instead of efficiencies η = 1−ε since they are
easier to compare. In order of importance, these losses can be broken down into two
main parts. First, the loss between the spin and mechanical systems, and second,
the detection losses. These will now be considered in the context of the quantum
back-action evading measurements to be described in section 6.4.

The vapour cell used had a full transmission of 13 %, but only the loss going
from inside the cell to outside is of importance from a quantum perspective. This
corresponded to a roughly 7 % optical loss. From there (outside the cell) the trans-
mission losses to the input of the optomechanical system were 33 %. Once there,
there are the optical incoupling losses of the free space field to the intracavity field
driving coupling to the mechanics. These losses derive from the cavity overcoupling
and mode matching which where responsible for losses of 4 % and 11 %, respectively.
In total these losses amount to roughly 55 % of the quantum vacuum driving spin
system being replaced before driving the mechanics. This is a significant hindrance
to our back-action evading protocol, but does not preclude it entirely as we will see
in section 6.4.

Detection losses, from a quantum back-action evading measurement, is of little
importance since it merely reduces the signal to noise ratio of the detected motion.
The losses associated with exiting the cavity are as with the input, that is, the
cavity overcoupling and mode matching are responsible for losses of 4 % and 11 %
respectively. The optical loss from outside the optomechanical cavity to the detector



166

was 15 % and the typically achieved homodyne visibility of 89 % gave an extra 21 %
loss. The glass encapsulated diodes of our homodyne detector have a quantum
efficiency of about 90 %1 and are thus responsible for a roughly 10 % loss. This
makes for an overall loss in converting intracavity quantum fluctuations into photo-
current fluctuations of 61 %.

In the above loss budget calculation we used the fact that the power equivalent
detection efficiency for a homodyning visibility of V is actually η = V2 as shown in
appendix B.5.2. Thus, as we just saw, this visibility is of high importance in the
case of homodyne detection.

Similarly important is the cavity mode matching ηmm, which is described in
appendix B.5.3. First, in the transmittance of the fluctuations that drove the spin
ensemble to get to the mechanical system. Then in the detection efficiency of the
quantum fields from inside the cavity. Furthermore, the interference of the optical
phase quadrature responses of the spin system and mechanical systems are further
impacted by this. This is due to the spin noise being parsed through the cavity and
interference in reflection from the cavity. The loss associated with this effect is the
same as the cavity one-sidedness, which as we saw, also limited the efficiencies. The
importance of cavity one-sidedness, as well as the effect mode matching has on it,
was discussed in section 4.1.5.

While the optical transmission losses are a product of the experimentally chosen
pieces of optic, the losses associated with ηmm and V are the result of spatial mode
mismatch. The optical mode at the optomechanical cavity was distorted from trans-
mission through the vapour cell as well as the plethora of optics linking the systems.
This limited the achievable mode matching and visibilities across our setup.

6.2.4 Matching the systems
Clear from our discussions in section 6.1 we wish to have our auxiliary subsystem,
the spin ensemble, in the negative mass configuration. It should have an equal and
opposite susceptibility |χS| = −χM and be probed with a readout rate equal to that
of the mechanics, i.e. ΓS = ΓM . Furthermore, the two systems should see the same
vacuum noise implying the need for a high efficiency optical link. Lastly, for the
quantum back-action evasion scheme to even be relevant both systems must have
Cq & 1. With our fundamentally very different systems, see fig. 6.3, achieving these
requirements, in practice, means balancing various trade-offs. Here we will simply
discuss these in general. Let’s start by discussing the two components defining the
susceptibility, namely the resonance frequency and damping rate.

1These are typical values and have not been measured.



6.2. Experimental realization 167

1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33
Ω/2π (MHz)

100
101
102
103
104
105
106
107
108
109

S
ou

t
Y
Y

(S
N)

Figure 6.3: Hybrid subsystems comparison. Large susceptibility mismatch. Mem-
brane probed near resonance. Mechanical mode is inadvertantly broadened by dynamical
back-action to 7 Hz from the original intrinsic 0.1 Hz meaning that the undamped mechan-
ical response would be an additional 70 times higher than shown. The dashed red line is
a Lorentzian fit. The spin oscillator is broadened to ∼ 4 kHz by the strong probe of LO1
required for a high read-out rate and quantum cooperativity.

Resonance frequency

The resonance frequency of the spin oscillator can be changed at will by dialing
the bias magnetic field. This is very easily accomplished experimentally, and is
extensively used. The resonance is further shifted by the DC optical stark shift, but
is typically a very small fractional change and depends on optical power, on which
more important parameters depend. The DC stark shift helps reduce the quadratic
zeeman splitting, see fig. 5.14, which improves the approximation of the spin system
as a harmonic oscillator.

The mechanical frequency is tunable during the design stage. Once fabricated,
however, our devices are not tunable2 except by temperature changes. This change
is, however, much too small for our samples to be useful, not to mention the fact that
we wish to operate the device at the lowest bath temperature out of concerns for
thermal decoherence. The mechanical resonance frequency, in the case of a detuned
cavity, can also be tuned3 by the optical spring effect of dynamical back-action
described in section 4.1.4. This is not very useful, as the tuning range is much less
than that of the atomic spins and furthermore linked to the readout rate. Thus, in
practice the spin oscillator frequency is tuned to the desired frequency – often close
to the mechanical frequency.

2One can imagine a bunch of ways to modify our assembly or device such that this is feasible.
This has not been done and invariably has its own compromises related to Q, n̄bath, experimental
complexity and space, etc.

3Due to our wide cavity linewidth compared to the mechanical frequency this always amounts
to a small fractional amount.
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Linewidths

Matching the damping rates is where the real difficulty lies. The intrinsic damping
rates for both systems are very different, 4 orders of magnitude apart! The spin
ensemble realized has a intrinsic damping of γS,0 = 2π × 1 kHz and the membrane
an intrinsic linewidth of γM,0 = 2π × 0.1 Hz. These rates derive from experimental
and material imperfections and, in order to have a large quantum cooperativity, are
desired to be as a low as possible. Conflict, thus, arises since it is not experimentally
feasible to reduce the atomic linewidth, nor is it advantageous (although easily
doable) to increase the mechanical intrinsic linewidth. In fact, concomitant with
a large spin readout rate is an increased spin damping. Thus, in practice the spin
oscillator is broadened to γS ' 2π× 5 kHz further exacerbating the mismatch. This
mismatch is vividly seen in fig. 6.3 where the systems are probed with comparable
readout rates.

To mitigate this mismatch we employ the additional optomechanical damping
introduced via dynamical back-action arising from a red detuned optomechanical
cavity. This damping serves two crucial roles. First, it allows for the mechanical
damping rate to be matched to the spin linewidth. Secondly, it provides an enormous
reduction in the thermal phonons driving the mechanical oscillator, cooling the
mode by a factor of > 104. Whilst this does not (appreciably) affect the quantum
cooperativity as the thermal decoherence rate remains unaltered, it does provide a
more practical measurement environment by reducing the amplitude of the thermal
state.

Using a detuned cavity means we no longer have a purely QND optomechanical
interaction. Additionally, we now have a complicated optomechanical input-output
relation due to the now present quadrature rotations. It turns out that in this regime
back-action evasion is still possible, albeit with some additional complexity.

Readout rates

While sideband cooling with the probe can provide the desired mechanical broad-
ening, the readout rate required depends on the cavity sideband resolution ΩM/κ.
If the mechanical readout rate ΓM required to reach a desired broadening is so high
that it exceeds the attainable spin readout rate ΓS (increasing this would further
increase the spin broadening), then perfect matching is not possible. This was the
case for the experiments described in section 6.3 where the cavity linewidth was
κ = 2π × 33 MHz and mechanical frequency ΩM = 2π × 1.3 MHz.

In this case increasing the sideband resolution is a natural solution4. Following
the experiments described in section 6.3 the optomechanical cavity was operated at
κ = 2π× 15 MHz for exactly this reason. The results of this switch are discussed in

4In principle a cell with low intrinsic loss and a higher readout rate per unit broadening would
also do the trick. However, if such a cell was available, it would, of course, already be in use!
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section 6.4.
If we assume the optical broadening dominants the intrinsic mechanical broaden-

ing then the quantity ΓM/γM describes the amount of broadening per unit readout
rate since γM ≈ γopt. This quantity is power independent and depends on optome-
chanical parameters g0, κ, ΩM and ∆̄. Only the cavity detuning, ∆̄, is tunable.
Thus ∆̄, along with the LO2 drive power allows us to match the mechanical readout
rate and broadening to that of the spin ensemble5.

For the spin ensemble, the readout rate may be increased by a larger probe
field. This causes a linear probe induced broadening of the oscillator. The readout
rate required for the atoms is in practice bounded from below by the requirement
that the probe broadening dominates intrinsic broadening. This is equivalent to
saying that we wish total decoherence to be dominated by the observed optical
port. The readout rate achieved per unit of induced broadening is dependent upon
experimental realities such as the number of atoms addressed and ensemble spin
polarization.

Once the spin broadening is dominated by the probe induced broadening, the
spin cooperativity saturates. The readout rate may still be increased arbitrarily, as
long as we can neglect higher order interactions and Stark shifts. In practice however
a specific broadening of the spin system is desired, thus limiting the readout rate
from above.

This desired broadening is set by a restriction of the mechanical system. Since
we wish to match the broadening of the mechanics to the spins, the latter cannot
be too large as optomechanical mirror noise and hybridization become increasingly
problematic for broader and broader mechanics. The setup thus select a narrow
frequency band in which the mechanical mode must reside. Additionally, since me-
chanical broadening from dynamical back-action goes hand in hand with a frequency
shift this further restricts the available broadening.

Spectral comparisons

By spectral comparison it is possible to gauge crucial system parameters. Observing
the power spectral density of the optical phase quadrature output from the full
hybrid system, or each system individually, we see the system response and the
measurement noise floor. This is illustrated in fig. 6.4. From this spectrum we can
identify a few important contributions and parameters.

First, the variance from the system can be broken up into two contributions.
These derived from the thermal noise and quantum back-action forces acting on the
system. The thermal contribution is illustrated as the shaded region whereas the
back-action contribution is indicated by the hatched region.

5It is an interesting twist of fate that experimental realities force you to match the “target”
system to the “auxiliary” system. Alas, such is the life of a pragmatic experimentalist.
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Figure 6.4: Optical phase quadrature spectral overview Oscillator response in op-
tical phase quadrature. The noise floor is set by the optical short noise (SN). The shaded
area is thermal noise contribution to the oscillator. The hatched blue region is the back-
action contribution to the observed variance. The ratio of these two contributions to the
variance is the quantum cooperativity Cq. The height of the oscillator response is associ-
ated with quantum back-action is in units of optical shot noise given by η(Γi/γi)2. This
is diminished by the detection efficiency η.

In principle there could be many more classical noise sources. For our purposes,
so long as they are white, we simply absorb them into the thermal noise contribution.
Classical laser noise such as amplitude noise is a very relevant such example. The
ratio of these contributions is the quantum cooperativity for the spin system and
directly proportional for the optomechanical system, see eq. (4.61).

Secondly, the quantum back-action system peak above shot noise is given by
(Γi/γi)2, i ∈ {S,M}. Suppose we now neglect the thermal noise contribution.
Keeping both system linewidths the same and correcting for different detection
efficiencies, the difference in spectral height is then a direct measure of the difference
in readout rates. This is often a useful diagnostic tool in the hybrid system.

Finally, we consider the measurement noise floor in the optical phase quadrature.
When the atomic ensemble is present, this is in practice not entirely shot noise. This
is because the spin ensemble has additional broadband noise, see section 5.11.2.
This noise is roughly white on the frequency scale of the system linewidths, and
thus appears as an inflated noise floor.

Added white noise

For quantum back-action evasion to be observed (and indeed be useful), the quantum
vacuum must be an important driver of the subsystem dynamics. We have seen
that we are able to independently operate the spin and mechanical systems in a
regime where the back-action is a major driving force. This is most clear from the
observation of significant light noise squeezing achievable from both the mechanical
system in section 4.4, and the spin system as we will see later in fig. 6.10.

However, the quantum back-action contribution to an oscillator’s motion is, in
practice, diminished in importance by thermal or other undesired classical noise
sources. Thus it is often useful to intentionally inject additional classical light noise
for purposes of diagnostics and characterization. We have already seen the use of
this principle in the cases of a coherent excitation for both the mechanical and spin
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system in the cases of OMIT in section 4.3 and MORS in section 5.10.8 respectively.
It is, thus perhaps not surprising that classically inflating the optical driving

force responsible for the quantum back-action is diagnostically useful. This can be
done by introducing additional white noise in the desired optical quadrature, which
for our purposes is the optical amplitude quadrature X̂. The resultant back-action
noise on each system i is determined by the fluctuations of this light quadrature.
The noise is characterized by the correlation function

〈X̂ in,i(t)X̂ in,i(t′)〉 =
(
n̄iWN + 1/2

)
δ(t′ − t′), (6.18)

where the vacuum contribution is the 1/2 and white additional classical noise is
characterized by a mean field occupation of n̄WN.

In the case of only vacuum noise (n̄iWN = 0) we refer to the resultant response
as quantum back-action. Looking back at eqs. (6.6) and (6.7) however, if we boost
the amplitude quadrature with additional classical noise n̄iWN then we can introduce
more back-action on the systems. This translates into a larger back-action variance
in the optical quadrature as if the gain of the system was larger.

This provides a convenient way to probe the response of the systems as we can
drown out thermal noise in favour of back-action. The back-action response has the
added benefit that it is less susceptible to transmission losses between the systems,
providing a convenient way to probe the expected back-action interference of the
hybrid system. Losses between the systems reduce the classically added noise in
the amplitude quadrature (as it does with the response in the phase quadrature).
Unlike with vacuum, however, the lost classical noise is not replaced. Thus, the
noise correlations that drove the spins will also drive the mechanics, regardless of
the intra-system loss.

Finally, the added white noise is in the optical quadrature that drives the sys-
tems. Thus, the scaling of a systems variance with an increased light noise variance
provides a metric by which to measure the systems quantum back-action contribu-
tion, and thus by extension the quantum cooperativity. This method is described in
detail in appendix C, and is used to determine the quantum cooperativities relevant
for the results of sections 6.3 and 6.4. An example of this scaling method is discussed
in the following section.

Basic system characterization

The white noise scaling described above in section 6.2.4 is seen applied to both
subsystems in fig. 6.5. From the top panels it is clear that both systems variances
respond linearly to an increased amplitude quadrature variance (n̄WN). This mea-
surement was done for the full hybrid system with the atoms far detuned from the
mechanical oscillator. Thus, we could drive both systems simultaneously under the
conditions of the experiment, with the only difference being the spin system Lar-
mor frequency. This is easily tuned back near the mechanical frequency and the
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Figure 6.5: Hybrid subsystems cooperativity for pulsed back-action evasion.
Spin system is far detuned from detuned from mechanics (|ΩS | 6= ΩM ) to avoid interfer-
ence. Bottom left (right): Power spectral densities of the full hybrid output optical
phase quadrature (both bottom figures are from the same spectra) are normalized to the
optical shot noise. Seen left (right) are the noise associated with the spin (mechanics).
The grey data are for an added white noise drive of n̄SWN = 1.4 (n̄MWN = 1.2). Solid yellow
(blue) lines gives fits to the spin (mechanical) system with no added modulation. The data
for these are given by the dots of the same color. The shaded areas indicate the thermal
contribution to the variance (not including shot noise). Likewise the hatched area is the
contribution of the quantum back-action to the variance. Solid grey is a fit of the systems
response to the added white noise. Top left and right: Shaded and hatched areas same
as in bottom panel. The grey points are the integrated noise areas associated with each
system as a function of added noise photon number n̄iWN. Dashed grey line is a linear fit.
A zoom of these data are shown in the insets in the bottom panel.

back-action contribution to the spin system is unaffected by this small fractional
resonance frequency change.

From the scaling to the additional white noise we can infer the fraction of the
quantum back-action contribution to the thermal noise for both systems. These are
0.8 for the spin system (CS

q = 0.8) and 1.0 for the mechanics (CM
q = 1.2 correcting

according to eq. (4.61) at the cavity detuning of ∆̄ = −2κ/9). Their respective
impacts are seen in the transduced motion of each observed in the optical phase
quadrature power spectral densities shown in the lower panels of fig. 6.5.

The mechanical quantum cooperativity is consistent with that expected from
the known experimental parameters of input power (200 µW), detuning, coupling
rate, cavity linewidth and bath temperature. The expected readout rate from these
independently measured parameters gives ΓM = 2π × 13 kHz = 11γm. A bath
temperature of 7 K giving a thermal decoherence rate of γthdec = 2π × 11 kHz can be
inferred as it results in the measured quantum cooperativity.
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The mechanical readout rate need not be constructed from quantities found from
independent measurements as just described in section 6.2.4. The readout rate can
also be estimated by noting that in lower right panel of fig. 6.5 the peak of the
back-action contribution is 110 in units optical shot noise. With the broadening of
γm = 2π × 1.2 kHz and detection efficiency for mechanical motion of η2 = 60 % this
translates into a readout rate of ΓM = 2π× 16 kHz = 13γm, roughly consistent with
that expected. This would imply a bath temperature of 8.5 K to yield the expected
cooperativity.

Bath temperatures in this range are expected as discussed in section 4.5.5, and
the discrepancies likely derive from uncertainties in various experimental parameters.
Perhaps most of all the detection efficiency, which affects the expected amount
of back-action as well as the inferred readout rates from considerations such as
section 6.2.4. More careful measurements are made in cases where the back-action
is of crucial importance as in section 6.4.

The readout rate for the much broader, γS = 2π × 8.4 kHz, spin system can be
similarly found from the lower left panel of fig. 6.5. The spin readout rate is found
to be ΓS = 2π × 30 kHz. Here the peak of the back-action contribution is 3.5 in
units optical shot noise and the detection efficiency is much η1η2 = 30 %.

In practice only rough knowledge of the absolute readout rates of the individual
systems is required. Since they may be finely adjusted by the probing powers of LO1
and LO2 their desired value is usually set in reference to a measurement depending
on the difference between the spin and optomechanical responses to some back-action
force.

6.3 Pulsed back-action evasion
Let us consider a practical example of how we may measure and go about cancelling
the aforementioned light induced back-action on the motion of the oscillators. We
will consider that case where both oscillators are constantly monitored in a cascaded
fashion as described in section 6.1, when suddenly an additional light force is added.
This boosts the light noise which drives both subsystems and is kept on long enough
for the subsystems to reach their steady state, after which the noise is switched off
for a much longer period. This allows the systems to decay back to their initial
steady state. As may be expected, the systems are driven to higher amplitudes at
a rate proportional to their read-out rates ΓS, ΓM (coupling strength), which occur
on a timescale determined by their damping rates γS, γM .

In section 6.3.2 we will consider the case of a coherent driving force being sud-
denly switched on. Then, in section 6.3.3, we will consider the case where the added
force derives from additional white fluctuations. The former case will help us visual-
ize the coherent response of the systems and the latter will aid us in understanding
the response to noise. This latter case further provides us with a close analog, and
stepping stone, to the case where the driving force is only the quantum vacuum of
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the probing field. The quantum regime is probed in section 6.4.
For simplicity we will still consider the simple case of QND interaction for both

subsystems {S,M} (spins, mechanics) and that both systems are high Q, i.e. γi �
Ωi for i ∈ {S,M}. We will further assume that the filtering of the light quadratures
output from the spin ensemble are appropriately converted into the light quadratures
incident upon the optomechanical system according to eq. (6.3). The optomechanical
cavity will also be treated as a purely one-sided system probed in reflection. Both
of these constraints will be relaxed and considered in general in quantum regime
ofsection 6.4.

Experimentally, adding a disturbance is tantamount to generating photons in a
desired quadrature. We do this by modulating the electro-optic modulator placed
prior to the spin ensemble. This modulation scatters photons from LO1. This
reduces its strength by a negligible amount as the modulation depths used will be
incredibly small. Whether the added photons are coherent (spectrally narrow) or
noisy (spectrally white) is chosen by the modulation voltage sent to the electro-optic
modulator. The quadrature in which these are generated is set by orienting the axis
of the electro-optic modulator appropriately and adjusting a DC voltage offset. All
added photons described here are generated in the Sz polarization quadrature.

For the experiments described here in section 6.3, the near quantum limited spin
and optomechanical system are those characterized in fig. 6.5. Furthermore, the spin
system is tuned to be degenerate with the mechanical mode. Thus, unless otherwise
stated, we will in the following sections assume ΩM = |ΩS|.

6.3.1 Response and readout
Suppose the force acting on oscillator i is described by F̂i(t′) then the quadratures
of motion Q̂i at some time t will be influenced by the accumulated action of the
force. Solving eq. (6.11) we have

Q̂i(t) =
∫ t

−∞
dt′eMi(t−t′)F̂i(t′). (6.19)

This motion is read out in the optical phase quadrature according to eq. (6.17).
Furthermore, if we look back at eq. (6.5) we saw that the sin and cos components
of Ŷ out will contain the desired information about the mechanical state referenced
to the atomic ensemble, namely Q̂M(0)− Q̂S(0) and P̂M(0)∓ P̂S(0). These sin and
cos harmonic components for each oscillator also underlie eq. (6.19) as is clear from
expanding eMi(t−t′) as in eq. (G.1.4).

To access these components in practice we demodulate the optical output quadra-
ture at a frequency Ω (typically = Ωm) by multiplying the detected photo-current
by q(Ω, t) ∈ {cos(Ωt), sin(Ωt)} and integrating for a time T . The demodulated sin
or cos components (denoted by subscript q) are given by

Ŷ
out(in)

(q) (Ω) ≡ 2√
T

∫ T

0
dtq(Ω, t)Ŷ out(in)(t). (6.20)
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Figure 6.6: Coherent back action dynamics and evasion. Hybrid optical phase
quadrature time trace has been bandpass filtered leaving only noise in a 50 kHz bandwidth
around the demodulation frequency, equal to the mechanical resonance frequency. The
systems are driven by a coherent optical amplitude quadrature tone at the mechanical
frequency turned on at time t = 0. Left:. Time evolution of the back-action. The
membrane (blue), the spin (yellow) and the joint (red) systems. Top right: Zoom in
around 250 µs. The membrane and the spin back-action are out of phase resulting in just
a small residual back-action of the joint system (red). Bottom right: Zoom out of time
evolution. Notice the initial regime where both systems grow at roughly the same rate.
Here the back-action is well and the hybrid response is growing slowly. Once the spin
system reaches a steady state the amount of hybrid back-action begins to grow as the
mechanical system outpaces the spin system.

These components are typically (as in our case) extracted by use of a lock-in ampli-
fier. They are commonly referred to as the X and Y components of a signal, but will
be referred to as the sine and cosine harmonic components here to avoid confusing
with the optical quadratures X̂ and Ŷ .

6.3.2 Pulsed coherent back-action

Suppose now that at t = 0 we switch on a coherent tone at Ω = ΩM = |ΩS|.
We generate this tone in the amplitude quadrature driving the spins such that
〈X̂S

L,in(t)〉 ∝ cos(Ωt) and watch the systems respond according to eq. (6.19). This
coherent time evolution response is seen in fig. 6.6 for the spins (configured in the
negative mass setting), mechanics and joint hybrid system. Clearly evident are the
features described previously. The individual systems grow at different rates and
reach different steady state values. Furthermore, in the negative mass setting of the
spin ensemble the joint response is significantly reduced. In fact, the joint response
is smaller than both individual systems for many hundreds of periods. The positive
mass, not shown for clarity, is larger than either individual system response.

Notice that the slopes of both systems are similar in the beginning and the back-
action is canceled to a large extent. Eventually, however, the spin response begins to
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Figure 6.7: Hybrid coherent back action in phase space. Results of many realizations
of pulsed coherent drive measurements, one of which is shown in fig. 6.6. The coherent
drive consists of photon state with 2 photons s−1 Hz−1 in the measurement bandwidth. The
harmonic quadratures of the light quadrature Ŷ out taken at T = 320 µs. Left: Phase space
harmonic quadratures. Dots are individual realizations. Bold dots and circles display the
mean and standard deviations of the cloud corresponding to the mechanical (blue), spin
(yellow) and joint hybrid (red) systems. The variances for each are equal along all axes to
within a few percent. The standard deviations are 0.68, 0.62, 0.07 for the aforementioned
systems respectively. Right: Histrogram of slice through Ŷ out

sin where Ŷ out
cos = 0. The mean

coherent displacements are equal and opposite, 〈Ŷ out
sin 〉S = −.052 and 〈Ŷ out

sin 〉M = 0.51,
whilst the hybrid response was cancels out pretty well, with 〈Ŷ out

sin 〉hybrid = −0.04.

reach a steady state. As the mechanical response is slower, it continues to grow and
thus the system responses begin to diverge. This is seen in the individual responses
and appears as a very clear transition in the amount of hybrid back-action. At
around 250 µs this begins to grow as the mechanics does.

Also, clear from the zoom in fig. 6.6 is that while the individual system responses
are out of phase, the hybrid response does not perfectly cancel. While the conditions
of the hybrid measurement are the same as for the mechanical response, they are
different with respect to the measurement of the spin system individually.

The atoms are measured individually by detuning the cavity far from cavity res-
onance. This simply reflects the atomic response off the cavity towards the homo-
dyne detection. The mechanical and hybrid measurements are done with the cavity
locked. The mechanical system is probed individually by detuning the atomic oscil-
lator frequency |ΩS| → ∞. Thus, losses introduced from the cavity will reduce the
response of the spins as compared to the mechanical. More importantly, the cavity
is slightly detuned and the quadratures from the spin system will be rotated. Thus,
the nice out of phase responses seen for the system individually are not exactly the
relevant components for the hybrid system.

The response of the systems to this pulsed coherent tone can also usefully be
visualized in phase space as seen in fig. 6.7. This is done by extracting the harmonic
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components from a time trace such as in fig. 6.6 by demodulation as described by
eq. (6.20). Many realizations of this measurement allows us to estimate the impact
of the pulsed excitation. The out of phase nature of the two oscillators is clearly
seen by their opposite displacement in phase space. The imperfect cancellation, as
just discussed, is also seen by a displacement in 〈Ŷ out

cos 〉hybrid 6= 0.
The main effect seen in fig. 6.7, however, is the cancellation of the 〈Ŷ out

sin 〉 quadra-
ture component. Both systems are displaced by an absolute amount ' 0.5 and
almost perfectly cancel yielding a hybrid displacement of ' 0.0. There is also a not-
icable ' 20 % reduction in the variance (' 10 % standard deviation) of the hybrid
system as compared to the membrane only case. However, in this case, the error
on this quantity is too great to claim any noise cancellation. This feature of noise
cancellation is, however, the feature of preeminent importance and we will discuss
for the remainder of this chapter.

6.3.3 Pulsed white noise back-action
The added force is described by an additional classical back-action noise in the
optical amplitude quadrature X̂ i

in responsible for driving each system i ∈ {S,M}.
This force has a white spectral density and a mean occupancy given by n̄i, measured
in photons per unit time per unit bandwidth1. The auto-correlation of this light
quadrature is

〈X̂ i
in(t)X̂ i

in(t′)〉 =
(
n̄iWNs(t) + 1/2

)
δ(t− t′), (6.21)

where for vacuum noise we have n̄iWN = 0 leaving just the 1/2 vacuum noise. This
vacuum noise is referred to as the optical shot noise (SN) and provides a very useful
reference point from which to measure n̄iWN. The distinct regimes of pulsed and
continuous wave (CW) operation are distinguished by the function

s(t) ≡




1 (CW)
Θ(t) (pulsed)

(6.22)

where Θ(t) is the Heaviside step function ramping at t = 0.
We can, of course, just as well measure the quadrature components (sin and cos)

for the systems individually as well as the cascaded joint measurement. Applying a
pulsed white noise force for in the optical amplitude quadrature as just described, we
see the individual systems displaced in phase space, see fig. 6.7. In time domain the
responses are that previously shown in fig. 6.6. Notice both systems respond close
to π out of phase, owing to the fact that the spin ensemble had been prepared in the
negative mass configuration. The mechanical system is in a much higher occupancy
thermal state, and thus has as a greater variance. Nonetheless, the systems have a

1Typically s−1 Hz−1
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comparable response to the white noise drive as the observed mean displacements
are similar.

When the joint (hybrid) system is probed, the back-action on each system cancel,
as intended. The result state has a reduced variance, and perhaps more noticeably,
a comparably small displacement to the white noise drive. The reduced variance is
the predominant feature of interest as it is the limiting factor in our estimation of
the system quadrature. It will, thus, be discussed further in this chapter. To see
more clearly how the back-action evolves, and in order to gain a useful language and
intuition on how to think of its cancellation, we will now consider a rather idealized
situation.

If we neglect transmission losses for simplicity (η1 = η2 = 1) such that n̄MWN =
n̄SWN ≡ n̄WN, we find from eqs. (6.21) and (G.2.11) the BA contribution,

Var[Ŷ out
(q) (Ω)]BA = 4

T

∫ T

−∞
dt′(n̄WNs(t′) + 1/2·

[ΓSuq,S(Ω, t′) + ΓMuq,M(Ω, t′)]21,2 ,
(6.23)

where [·]21,2 indicates the square of the (1,2) component of the matrix. The matrices
uq,i, i ∈ {S,M} parameterizes the filtering a harmonic component q (the sin and
cos components) of an oscillator i’s quadrature does of the driving force F̂i. They
are defined in eq. (G.1.3) and more fully detailed in appendix G.1.

Note that eq. (6.23) is the integral of a non-negative function, because contri-
butions from different time steps t 6= t′ add incoherently. The physics of this is
simply that back-action perturbations at times t 6= t′ are uncorrelated and hence no
interference can occur between different time steps.

Thus, if the two oscillators do not respond equally (when including the weights
Γi) and opposite at each individual time step t, there is no memory in the system
that allows this imbalance to be counted at a later time t′. Hence to have perfect
cancellation the integrand of eq. (6.23) must be zero for all t′ ∈ (−∞, T ]. This
is only possible if in this interval we have uq,M(Ω, t′) = −βuq,S(Ω, t′) for some
β ∈ R+(assuming we can choose the read-out rates Γi at will). Exact back-action
cancellation cannot be achieved for γM 6= γS, except in the long-time limit T �
1/γM , 1/γS as we will see below.

We will focus on the case of resonant demodulation Ω = ΩM = |ΩS| and for
simplicity consider just the harmonic cosine quadrature component (q = cos). By
substituting eq. (G.1.9) into eq. (6.23) we have

Var[Ŷ out
cos (ΩM)]BA ≈

2
T

∫ T

−∞
dt′(n̄WNs(t′) + 1/2)·

[
ΓS
γS

(
eγS min{t′,0}/2 − e−γS(T−t′)/2

)
± ΓM
γM

(
eγM min{t′,0}/2 − e−γM (T−t′)/2

) ]2

,

(6.24)

where in the last line we have replaced the rapidly varying factor sin2(ΩM t
′) by its

mean value, 1/2, an excellent approximation in the high-Q limit for both systems
when integrating for several oscillation periods (which we will always be doing).
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Even though the integral eq. (6.24) is manageable analytically for any T >

0, we will explore two limiting cases to extract simple conditions for back-action
cancellation:

i) Long integration time with respect to both decay times T � 1/γS, 1/γM .

ii) Short integration time with respect to both decay times T � 1/γS, 1/γM .

It should be noted that the pulsed results presented in section 6.3.4 occupy an
intermediate regime, where T ∼ 1/γM while T � 1/γS. In this regime a simple
parameter condition has not been found. Nonetheless, the above case are worth
considering as they have explanatory utility.

Long-time limit

Looking at the variance in the long-time limit T � 1/γS, 1/γM , eq. (6.24) simplifies
to

Var[Ŷ out
cos (ΩM)]BA ≈ 2(n̄WN + 1/2)

[
ΓS
γS
± ΓM
γM

]2

. (6.25)

In this limit, back-action cancellation can be achieved in the positive-negative (mechanics-
spin) mass configuration (minus sign in eq. (6.25)) by matching the gain factors of
the two systems

ΓS
γS

= ΓM
γM

. (6.26)

This can be understood as follows. A random kick applied to system i at time t′
will only contribute significantly to the integration sub-interval t ∈ [t′, t′ + 1/γi] ∩
[0, T ] due to the damping rate truncating the time interval of importance. Since
the damping rates are in general different, the relevant time scales for noises are
different. However, in the long-time limit T � 1/γS, 1/γM we need only consider
kicks occurring in the bulk of the integration interval, roughly speaking t′ ∈ [0, T −
max{1/γS, 1/γM}]. These are kicks that are not truncated in mapping into the
response.

Short-time limit (CW noise)

Turning now to the short-time limit, T � 1/γS, 1/γM , the dominant contribution in
eq. (6.24) comes from the momentum kicks occurring prior to the start of integration
and potential pulsing, t′ < 0. In this regime their has not been enough time for the
systems to respond and and their subsequent motion read out. This is clear from
expanding eq. (6.24) in T , which to lowest order approximates to

Var[Ŷ out
cos (ΩM)]BA ≈ (n̄CWWN + 1/2)T2

[
Γ2
S

γS
+ Γ2

M

γM
± 4 ΓSΓM

γS + γM

]
, (6.27)
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where we note that Γ2
i /γi is proportional to the fractional area of the spectral re-

sponse due to the back-action force. Thus, only in the case where CW noise has
been added will there be a first order contribution. Once again the ± indicates the
positive and negative mass configuration of the spin ensemble.

The interference in this regime depends crucially on the readout rates. Suppose
the systems damping rates were matched, i.e. γS = γM = γ, then relevant term in
eq. (6.27) simplifies as

Γ2
S

γS
+ Γ2

M

γM
± 4 ΓSΓM

γS + γM
= (ΓS ± ΓM)2

γ
, (6.28)

where the interference depends on the read-out rates Γ. In this configuration of
matched oscillator susceptibilities, unsurprisingly the optimal choice is the same as
in section 6.3.3.

6.3.4 Single noise quanta pulsed back-action evasion
Here we present evasion of the back-action resultant from the pulsed white noise of
just a few added noise quanta. Just as described before we consider the effect of the
noise for a finite duration T = 150 µs, in this case shorter than the results shown
in fig. 6.7. This measurement time is comparable to the membrane response time
1/γM = 1/(2π × 1.2 kHz) ' 130 µs, but significantly longer than the spin response
time 1/γS = 1/(2π × 8.4 kHz) ' 20 µs.

From measurements of Ŷ out(t) we extract the two harmonic quadratures at
ΩM = |ωS| defined by eq. (6.20), which contain information about the desired com-
muting variables. In fig. 6.8 we see the phase space distributions of these harmonic
components for the hybrid system with n̄WN

M = 1.3 ± 0.1 added photons at the
optomechanical system. Comparing the membrane alone with the hybrid system
with the spins oriented in the negative and positive mass configurations we see the
expected destructive and constructive interference. The results are normally dis-
tributed with isotropic standard deviations within a few percent.

The interference of the total back-action variance contribution, given by

Var[Ŷ out(ΩM)]BA = Var[Ŷ out
cos (ΩM)]BA + Var[Ŷ out

sin (ΩM)]BA, (6.29)

is quite substantial as seen by comparing shaded circles at the top of fig. 6.8. These
represent only the square root of variance. The added back-action variance of the
hybrid system with negative spin mass is reduced by a factor of 3.6 compared to
the membrane alone. Likewise the hybrid system with positive spin mass has an
increased back-action variance by a factor of 2.8.

The order of magnitude contrast in back-action interference is diluted when con-
sidering the total system variance. The steady state quantum back-action and ther-
mal noise from each systems comprising the undriven states. These are separately
measured and are shown as the black circles in fig. 6.8. There are no statistically sig-
nificant differences between the driven hybrid system configurations of positive and
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Figure 6.8: Hybrid pulsed back-action quadrature variances. Data for 1500 re-
alizations (dots) for the harmonic quadratures of Ŷ out in the presence of 1.3 photons of
added noise driving the mechanics. For each system the standard deviation is shown by
a dashed black circle. The solid black circle shows the standard deviation of the system
in the absence on any added noise. The difference between these dashed and solid lines
is the back-action contribution associated with the added noise. The phase space area of
this contribution is illustrated as the filled circles above each panel. These contributions
are the square root of the contributions to the variance. The cross at the center marks
the origin. Left: Joint measurement with the negative spin mass. Center: Measurement
of mechanical oscillator only. Right: Joint measurement with the positive spin mass.

negative mass indicating negligible quantum back-action interference. These two
cases are however different from the membrane only, as the thermal and quantum
back-action noise from the spin system contribute to the overall variance. In these
measurements, however, the contribution of the membrane variance was dominant,
thus the small perceived difference in fig. 6.8.

Nonetheless, the overall effect of the interference is captured well by the basic
QND model of eq. (G.2.11), which only takes the losses and thermal noises of the
systems into account. It predicts the total variance of the hybrid system with
negative spin mass to be in 20 % below that of the membrane alone in agreement
with the results of fig. 6.8 where this is 20 %. In similarly good agreement is the
expected ratio of the total variances of positive and negative mass hybrid systems.
This is expected to be 2.0 and found to be 1.9.

The high contrast and significant cancellation of the back-action contributions
to the hybrid positive and negative mass cases are shown in fig. 6.9 as the added
white noise drive is increased. The variances are linear in this drive as expected
from our initial characterization of each system in fig. 6.5.

The same basic model predicts large quantum back-action cancellation for our
system parameters. They would however only result in a 5 % difference between
the hybrid negative mass system and the membrane only. Observing differences
on this scale was barely feasible within the experimental noise. Nonetheless, the
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Figure 6.9: Hybrid pulsed back-action quadrature variances. Pulsed back-action
(BA) variance as a function of added white noise photons n̄WN driving the mechanical
oscillator. The variance of demodulated responses, in a duration of T = 150 µs, is con-
sidered for the hybrid system with both positive (green) and negative (red) spin mass, as
well as the membrane only (blue).

absence of any hint of such interference was not fully understood at the time. It
is now thought to have been due to a variety of underappreciation factors, such as
optical losses, in particular cavity mode matching, and the long term stability of
experimental parameters, in particular the polarization and phase filtering linking
the optical quadratures addressing both systems.

6.4 Steady state back-action evasion

Following the experimental efforts culminating in the (single quanta) classical back-
action evasion of section 6.3.4 we now shift our focus towards quantum back-action
evasion. We will consider this evasion in the steady state regime where both oscil-
lators are continuously monitored, just as in the pulsed case of section 6.3. Here
however no added noise will be pulsed.

The hybrid system underwent a few changes and, while the structure of the
experiment as described in section 6.2 remains unaffected, the following parameters
are now significantly different. First, the operating optomechanical cavity linewidth
was changed to κ = 2π× 15 MHz. The change was motivated by a desire to further
match the systems as described in section 6.2.4. In practice, this meant operating
at the narrow cavity linewidth point in 2kzm seen in fig. 4.14.

The spin ensemble was pushed to operate 65 ◦C from the previous 52 ◦C, thus
significantly boosting the number of atoms. This raised the atomic cooperativity
from CS

q = 0.8±0.1→ 1.10±0.15. This spin quantum cooperativity is inferred from
the white scaling as described in appendix C. A mechanical quantum cooperativity of
CM
q = 2.6±0.3 is extracted from the observed ponderomotive squeezing seeing in the

right panel of fig. 6.10. Knowing the detection efficiency and various optomechanical
parameters the bath temperature Tbath = (7.0± 0.5) K is fitted thus yielding a
quantum cooperativity.
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Figure 6.10: Ponderomotive squeezing in hybrid system. The full hybrid system
displays significant ponderomotive squeezing in the optical amplitude quadrature for both
the spin and mechanical subsystems. The optical shot noise (SN) level shown in black
averaged over many spectra is verified to within 5 % by both balanced detection and
comparison to a white light source. The sub shot noise region is shaded grey. Left:
Spin system squeezing in final hybrid detection. Both positive (dark green) and negative
(yellow) effective spin mass displays squeezing with an opposite sign due to the difference
in their susceptibilities. The amount of squeezing is about 10 % below shot noise, which
when correcting for the large detection losses gives about 25 % below shot noise (−1.3 dB).
Right: Optomechanical squeezing in reflection (light blue). The fit (dark blue) is used
to determine the mechanical bath temperature giving a cooperativity of CMq = 2.6± 0.3.
The amount of observed squeezing is −1.7 dB, equivalent to −2.6 dB correcting for the
detection efficiency of 72 %.

A simplified infrastructure and operational experience allowed for a higher overall
detection efficiency and a higher efficiency optical link between the two systems.
This is particularly evident from fig. 6.10 where the detectable squeezing in the
final hybrid detection is substantial for the spin system. The losses are however
still far from negligible as the spins system has a total detection efficiency of only
ηtotal ' 40 % in the hybrid system.

This higher cooperativity now available implies that the quantum back-action
contribution to the mechanical variance dominates the thermal contribution by a
factor of 1.8, whilst this is 1.1 for the spins. Thus, in the hybrid system there is,
in total, significantly more quantum back-action noise than classical noise. This is
shown in fig. 6.11 as the dominating hatched contributions.

Once the total mechanical variance has been broken down into the thermal and
back-action contributions, it is possible to calibrate the spectra in terms of me-
chanical displacement using eq. (4.47). The calibration is naturally cast in terms of
mechanical zero point fluctuations xzpf, one unit of which determines the motional
variance of the ground state (with variance x2

zpf). This displacement scale is shown
as the right hand axis of fig. 6.11 and in all subsequent figures featuring measured
mechanical motion in the optical phase quadrature. This includes hybrid system
variances as the absolute scaled of displacement sensitivity enhancement resultant
from any back-action evasion is of interest.
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Figure 6.11: Hybrid subsystems variance contributions. Shown are the variance
contributions to spin (left) and optomechanical (right) system variances (dots) along
with the solid fit lines (yellow - spin, blue - mechanics) from the model described in
section 6.4.1. The shaded region bounded by the dashed line indicates the thermal noise
contribution to the variance, and the hatched region indicates the quantum back-action
variance contribution. Both are determined from each systems cooperativity. For the spin
system this is determined by the response (black) to a white noise drive of n̄SWN = 1.2 just
as in fig. 6.5 and as described in appendix C. The mechanical cooperativity is determined
from the ponderomotive squeezing shown in fig. 6.10.

This calibration relies on knowing the cooling factor γm/γeff and the thermal bath
occupancy (temperature). The former is measured rather precisely. The intrinsic
mechanical broadening γm through ringdowns and γeff by the observed broadening
in the optical phase quadrature power spectral density. The latter underpins the
calibration of the back-action to thermal noise fraction in the first place and carries
the dominating uncertainty. Thus, the error in this calibration is on the order of the
mechanical back-action to thermal noise measurement of ' 10 %.

Looking once more at the spectral responses of both systems in fig. 6.11 we
see that with the now narrower cavity we are better able to match the systems. In
particular, they now have very similar broadenings. Using the simple logic of fig. 6.4
we can, by comparing the spectral heights along with the thermal noise contribution,
deduce that the readout rates are also similar.

Now that we will be dealing with quantum back-action there are a few impor-
tant effects that must be addressed and accounted for. We will discuss these and
the theoretical model incorporating them in section 6.4.1 as well as a very useful
approximation in section 6.4.2. This allows for a deeper understanding of the limits
of the employed scheme as well as a useful expectation as to the spectral structure of
the evasion. As we shall see, in the case of large optical broadening of the mechanics,
while needed to match the system responses, introduces an undesirable effect and
complicates the back-action interference which underpins its evasion.

We will, then, discuss two cases of quantum back-action evasion. First, in sec-
tion 6.4.3, the canonical case where the sub-systems have the same resonance fre-
quency and are otherwise closely matched. Secondly, we will consider the case where
the subsystems are slightly detuned from each other. This scheme can achieve a
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higher degree of quantum back-action evasion if the input quadratures to the op-
tomechanical cavity (output quadratures of the spin ensemble) are pre-rotated. The
experimental parameters for each case are displayed in table 6.1.
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Parameter Symbol Value (section 6.4.3, section 6.4.4)

Atomic spin oscillator
Intrinsic damping rate γS,0 2π × 1 kHz
Total damping rate γS 2π× (5.2, 4.6) kHz

LO1 input driving power (1.7, 1.5) mW
Readout rate ΓS 2π× (70, 60) kHz

Detuning from the D2
F = 4→ F ′ = 5 transition ∆S 3 GHz

Quantum cooperativity CS
q 1.10± 0.15

Spin Polarization |P | 60 %
Microcell full transmission 13%
Microcell temperature 67.7 ◦C, 68.4 ◦C

Mechanical oscillator
Effective mass meff 14 ng

Zero point fluctuations xzpf 0.7 fm
Intrinsic mechanical frequency ΩM,0 2π × 1.28 MHz

Intrinsic damping rate γM,0 2π × 0.1 Hz
Optical damping rate γopt 2π× (5.6, 5.36) kHz

Optical mechanical frequency shift δΩm 2π× (-12, -11) kHz
Cavity detuning ∆̄ −2π × 4.7 MHz

Total cavity linewidth (FWHM) κ 2π× (17.4, 15.4) MHz
LO2 input drive power (54, 38) µW
Intracavity photons n̄ (5.8, 4.4)×106

Single photon coupling rate g0 2π× 150 Hz
Thermal bath temperature Tbath 7 K

Bath occupancy n̄bath 114×103
Mean thermal occupancy n̄thM 2.0, 2.1
Quantum cooperativity CM

q (2.6, 2.2)
Cavity mode-matching ηmm 89%

Cavity incoupling efficiency κ1/κ 96 %

Hybrid & detection
Quadrature mapping between systems θ 0°, 6°
Efficiency outside cell to outside cavity 67 %
Efficiency inside cell to intracavity 45 %
Efficiency outside cavity to detector 82 %, 85 %

Detector quantum efficiency 90 %
Homodyning visibility V 89 %

Efficiency Intracavity to photoelectron 39 %
Model intrasystem efficiency η1 61 %

Model detection efficiency (ampl. quad.) η2 72 %, 75 %
Model detection efficiency (phase quad.) η2 54 %, 57 %

Table 6.1: Summary of relevant experimental parameters. Experimental
parameters for the optomechanical, spin and hybrid systems relevant for the steady
state quantum back-action measurements presented in section 6.4.
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Figure 6.12: Theoretical hybrid schematic. The atomic spins (in the spin cell, blue
box at left) are interrogated and driven by the light quadratures of X̂ in and additionally
driven by the spin noise F̂S . Output light quadratures of the spin system X̂out

S are chan-
neled to the optomechanical system. En route, it experiences losses characterized by a
transmissivity η1 associated with replaced vacuum noise V̂ in

1 and a phase rotation by an
angle θ, resulting in a driving field X̂ in

M for the optomechanical system. The optomechan-
ical cavity has two ports with with decay rates κ1 and κ2. The optomechanical system is
driven in addition by light noise V̂ in from the unprobed port and a thermal force F̂ . The
output field of the optomechanical system X̂out

M , in being detected, experiences further
losses with transmissivity η2 associated with additional light noise V̂ in

2 . Before detection
it rotated by an angle φ.

6.4.1 Detailed theoretical model

The most important experimental complexity, by far, not accounted for in the basic
QND model described in section 6.1 is clearly the finite detuning of the optome-
chanical cavity. Including the effects of a detuned cavity into our hybrid model is
straight forward and the full optomechanical model and input-output equations are
given in appendix H. The spin input-output equations remain QND as described in
eq. (6.14).

Next, the mapping of the output quadratures of the spin system to the input
quadratures of the mechanical system need, in practice, not be exactly as described
in eq. (6.3). In general the mapping will be related by a rotation matrix R(θ)
(defined in eq. (2.84)) by

X̂ in
M = R(θ)X̂out

S , (6.30)

where the quadratures are rotated by an amount given by the angle θ. Previously in
the simple QND we had θ = π, which will also be the case in section 6.4.3. However,
in section 6.4.4 we will vary this angle. This can, in practice, be done since this
quadrature filtering is done by locking the relative phase of two local oscillators to
be π/2 out of phase. Deviating slightly from this lock point, by a controllable offset
to the error signal, changes the quadrature rotation angle θ in eq. (6.30).

The two systems are linked via eq. (6.30), as shown schematically in fig. 6.12.
Taking all these effects into account we can write the compound transfer matrix (in
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Fourier space) for the hybrid optomechanical-spin system as

X̂out(Ω) = √η1η2M(Ω)R(θ)S(Ω)X̂ in(Ω)︸ ︷︷ ︸
vacuum noise of light transduced

through spin and mechanics

+ √η1η2M(Ω)R(θ)
√

ΓSγS χS(Ω)F̂S(Ω)
︸ ︷︷ ︸
spin thermal noise transduced through mechanics

+ √
η2F(Ω)F̂ (Ω)︸ ︷︷ ︸

mechanical thermal noise

+
√

(1− η1)η2M(Ω)V̂ in
1 (Ω)

︸ ︷︷ ︸
vacuum noise of light from

losses between spin and mechanics

+ √
η2V(Ω)V̂ in(Ω)︸ ︷︷ ︸

vacuum noise of light from
losses in optomechanical cavity

+
√

1− η2 V̂
in

2 (Ω)︸ ︷︷ ︸
vacuum noise from losses

between mechanics and detector

(6.31)

where η1 and η2 denote the transmission efficiencies from the spin system to the
optomechanical cavity and from the optomechanical cavity to the detector, respec-
tively. Vacuum noises incurred through these losses are described by V̂ in

1(2)(Ω). An
optional phase shift θ introduced deliberately in between the two systems is ac-
counted for by the rotation matrix R(θ).

The first term of eq. (6.31) is the input quadratures of light transduced through
the spins by matrix S, then rotated by the filter matrix R, and then transduced
through the optomechanical matrixM. The second term is the spin thermal noise
transduced through the optomechanical system and the third term is simply the
read out mechanical thermal noise transduced according to the matrix F. The final
three terms are the contributions from vacuum introduced as a result of losses. The
first of these three is the introduced vacuum between the spin and optomechanical
system and then transduced by the mechanics. Next is the vacuum leaking in from
the uncoupled port of the optomechanical cavity. This is transduced through the
mechanics by the matrix V. Finally, we have the vacuum introduced by the detec-
tion losses. In this model the finite cavity modematching is modeled as additional
loss in the incoupling port as described in appendix B.5.3.

Finally, the homodyne detection is performed in the frame of the classical field af-
ter the optomechanical system where it has acquired a phase shift relative to the field
before the optomechanical cavity. The acquired phase is described in section 2.5.2
and can be undone by rotating the output quadratures back. The measured quadra-
tures are thus

X̂meas = R(φ)X̂out(Ω), (6.32)

where rotation angle φ is given in eq. (2.85).

6.4.2 Unresolved sideband regime approximation
We will now use the transfer matrix (1st line of eq. (6.31)) of the hybrid system
to analyze the quantum back-action contribution to the optical output field in the
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detuned cavity case. We do so neglecting the thermal noise contributions for sim-
plicity and because their contributions are easy to add in and are well understood.
In the sideband unresolved limit of ΩM � κ, which we find ourselves in1, we can
approximate optomechanical transfer matrix as described in appendix H.2. The
approximation further assumes a one-sided cavity which we also easily meet. Using
the resultant transfer matrix of eq. (H.2.23) and ignoring optical losses between the
systems (η1 = η2 = 0) for simplicity the output optical phase quadrature is given by

Ŷ QBA ≈
[
ΓML2

0χM(Ω) + ΓSχS(Ω) {1 + iΓMχM(Ω)L0δL(Ω)}
]
X̂ in, (6.33)

L0 ≡ |L(Ω = 0)| = κ/2√
(κ/2)2 + ∆2

, δL(Ω) = Ω∆κ/2
((κ/2)2 + ∆2)3/2 (6.34)

where we have neglected an overall phase factor and have assumed the we set θ = π

(standard mapping of quadratures between systems). In eq. (6.33) L0 is the empty
cavity Lorentzian response at Ω = 0, the relevant zero order term since we will
care about Fourier frequencies close to the mechanical, Ω ≈ Ω, and we are oper-
ating in the unresolved sideband regime. The first order Lorentzian dependence
on the Fourier sideband frequency is δL(Ω), which is approximately the difference
in cavity response at ±Ω. One can easily relate the optical damping to the side-
band asymmetry characterized by δL(Ω) by considering the mechanical effective
susceptibility, where one finds the optical damping in this regime to be given by
γM ≈ γM,0 + ΓML0δL(ΩM,0).

Immediately clear from eq. (6.33) is the appearance of a third term ∝ χMχSδL

beyond the previous seen two terms of ΓMχM and ΓSχS seen in the QND case of
eq. (6.8). This third term is only present for ∆ 6= 0 and has the same fundamental
origin as optomechanical ponderomotive squeezing discussed in section 4.4, namely
the partial mixing of the system response in the cavity optical phase quadratutre into
the amplitude quadrature. In this hybrid case the mixing of the spin and mechanical
responses occurs due to the finite cavity detuning and prevents perfect interference
of the back-action responses spin and mechanical. It is particularly easy to see this
in the case of strong optomechanical cooling γM � γM0, where there clearly is no
back-action cancellation at the joint resonance frequency Ω = ΩM = |ΩS| since
iχM(Ω = ΩM)γM = −1.

Interestingly however, at this particular Fourier frequency there seems to be no
contribution from the spin system, even though this is at the peak of its response.
It seems interference is going on and we will now probe deeper into this third term
and the back-action evasion in this regime of a detuned optomechanical system.

Constituent phase responses

Additional insight can come from considering the phase response of each term in
eq. (6.33). These are shown in fig. 6.13 for both cases of spin mass and with these

1For the back-action evading experiments described here we always have Ω/κ < 0.1.
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Figure 6.13: Phases of the terms involved in hybrid QBAE. Shown are the phases
(Argχ) of the terms comprising eq. (6.33), namely χM (blue), χS (yellow) and iχMχS
(grey). Dashed (dotted) curves are the phases with the spin resonance frequency blue (red)
detuned from the mechanical resonance frequency (1.3 MHz) by 50 kHz. Both oscillators
have the same broadening, γM = γS = 2π × 5 kHz. Left: Negative mass spin ensemble.
Right: Positive mass spin ensemble. When the two systems are degenerate they share
the same phase response (blue).

we can discuss the phase of the back-action contributions arising from each term.
In the negative mass case (left) it is clear that, in the degenerate case of Ωm = |ΩS|,
the spin and mechanical susceptibilities are −π out of phase everywhere meaning
that these terms will destructively interfere at all frequencies2. However, the mixing
term is clearly not perfectly out of phase anywhere. On the wings (far detuned from
both systems) it is π/2 out of phase with of the contributions from both systems
implying some cancellation. When the two systems are degenerate, the term is
perfectly out of phase with spin system on mechanical resonance, thus, canceling
the spin back-action contribution. This leaves only the mechanical contribution
remaining meaning that we should expect no cancellation on mechanical resonance
in case of degenerate oscillators.

When the spin oscillator is detuned from the mechanical resonance, the region
between the two resonances displays no cancellation. This is a slightly more involved
argument as one needs to account for the amplitude of each response at particular
frequencies in addition to the phase. However, we simply note that in this region
the mechanical and spin oscillator are in phase, and thus their contributions con-
structively interfere.

We can argue similarly in the case of a positive mass spin oscillator (right
fig. 6.13). In the degenerate case, on resonance, the spin response is π out of phase

2These are the QND contributions discussed in the simplistic cases previously.
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with the mixing term, and thus they destructively interfere leaving only the me-
chanical response. Thus, in this case, like in the negative mass case just discussed,
there should be no back-action evasion on mechanical resonance. However, on the
wings whilst the mixing term is π/2 out of phase with both contributions, both
systems are in phase and thus we should expect the back-action contributions to
constructively interfere.

In the case of non-degenerate positive mass oscillators the back-action contribu-
tions in the region between them can interfere destructive. The logic here is the
same as in the negative mass case just discussed. Simply note that, disregarding the
mixing term, the systems are π out of phase.

Spectral response

From the intuition gained from section 6.4.2 we now consider the power spectrum
of the quantum back-action component of the measured optical phase quadrature
for the hybrid system given by eq. (6.33). This is given by

S̄QBA
Y Y = (ΓML2

0δS ± ΓSδM)2 + Γ2
ML

4
0γ

2
S

(δ2
M + γ2

M)(δ2
S + γ2

S) S̄in
XX , (6.35)

where δM,S = Ω− |ΩM,S| and the ± indicate the choice of positive or negative spin
mass respectively. S̄in

XX is the power spectral density of the input light amplitude
fluctuations. The detuning of the spin system from the mechanical is given by
|ΩS|−ΩM = δS−δM . The spectral response in the cases of positive and negative spin
masses are shown in fig. 6.14 for the case of matched oscillators with ΓS = ΓML2

0,
γM = γS and |ΩS| = ΩM . Notice that the overall structure is as described in
section 6.4.2.

For degenerate oscillators, ΩM = |ΩS| (giving δ = δS = δM), and matched
readout rates, ΓS = ΓML2

0, the interference term completely cancels out in the
negative spin mass hybrid setting! There is maximal interference in the positive
mass setting. Under these conditions, the ratio of the hybrid quantum back-action
to that of mechanics alone3, at a particular Fourier frequency Ω, is given by

S̄QBA,Hybrid
Y Y (Ω)

S̄QBA,Membrane
Y Y (Ω)

=





γ2
M

δ2+γ2
M
, for negative mass

4δ2+γ2
M

δ2+γ2
M
, for positive mass

(6.36)

Thus, as explained in section 6.4.2, quantum back-action interference is indeed ex-
pected everywhere (to some extent), except for on joint resonance of δ = 0. On the
wings there will be destructive (constructive) interference in the negative (positive)
mass case of the spins.

Additionally, the strength of the interference decreases approaching the system
resonance frequency. Of course, the system variance has its biggest contribution in

3To retrieve the mechanics only simply set ΓS = γS = ΩS = 0.
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Figure 6.14: Theoretical spectral response of hybrid quantum back-action eva-
sion. Spectral response expected according to eq. (6.35) with shot noise added also. The
mechanical system alone is shown in blue, whereas the spin system alone is shown in yellow
(negative mass) and grey (positive mass). Dashed (dotted) vertical lines indicate the reso-
nance frequency of the spin ensemble when blue (red) detuned from mechanical resonance
(1.3 MHz) by 50 kHz. The hybrid system is shown in red (negative spin mass) and green
(positive spin mass). Both oscillators have the same broadening, γM = γS = 2π × 5 kHz
and have matched readout rates ΓS = ΓML2

0. Top: Negative mass spin ensemble. Bot-
tom: Positive mass spin ensemble.

this region, and thus the fractional amount of achievable back-action evasion will be
reduced accordingly. The total back-action variance is the spectral area, and thus
can found by integration over the spectral response, i.e.

Var
(
Ŷ QBA

)
=
∫ ∞

−∞
S̄QBA
Y Y dδ. (6.37)

In the degenerate case with matched readout rates, the variance of the hybrid quan-
tum back-action compared to that of the mechanical oscillator alone is found to
be

Var
(
Ŷ QBA,Hybrid

)

Var
(
Ŷ QBA,Membrane

) =





γS
γS+γM , for negative mass

4γM+γS
γS+γM , for positive mass

(6.38)

Whereas in the simple QND case the optimal back-action evasion occurs for per-
fectly matched systems, the penalty of the mixing term arising from the non-QND
optomechanical interaction is not plain to see. In the case of perfectly matched
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Figure 6.15: Theoretical spectral response of degenerate hybrid quantum back-
action evasion with a narrow spin oscillator. Spectral response expected according
to eq. (6.35) with shot noise added also. The mechanical system alone is shown in blue,
whereas the degenerate spin system alone is shown in yellow (both positive and negative
mass). Both systems are set to have the same readout rate. The hybrid system is shown
in red (negative spin mass) and green (positive spin mass). The solid lines indicate the
membrane and spins having the same linewidth γM = γS = 2π × 5 kHz, and the dashed
lines indicate a narrower spin system with γM = 10× γS = 2π× 5 kHz. For the solid lines
the spin system is identical to the mechanics only (blue curve) and is, thus, obscured.
When the spin linewidth is reduced (dashed) it is clearly visible. In this case the reduction
(increase) of the hybrid negative (positive) spin mass system back-action as compared to
the membrane only is clearly greater than when γM = γS in accordance with eq. (6.38).

oscillators (γS = γM , etc) the back-action evasion is limited to 1/2 in the negative
hybrid spin mass case. In the positive mass case the back-action interference leads
to an increase by a factor of 5/2. This 50 % limit in the negative mass case is far
from the perfect (100 %) reduction in principle available in the QND case.

Fortunately, from eq. (6.38) we can see that the back-action evasion in the neg-
ative mass case approaches perfect evasion as γM →∞. In practice, having simply
γM � γS leads to an achievable back-action evasion approaching γS/γM ! Likewise,
the positive mass hybrid system approaches perfect constructive interference with 4
times the membrane only variance. Keeping the readout rates the same as in fig. 6.14
but simply reducing the broadening of the spins such that γS/γM = 1 → 1/10 a
much larger back-action cancellation (1/11) is seen in fig. 6.15. The desire is, thus,
clearly for γM →∞ and γS → 0, keeping the readout rates equal.

This noise filtering can be viewed through the lens of an OMIT type effect,
where the cavity response is now replaced by the mechanical susceptibility. The
phase sidebands are now the spin response and are partially projected onto, and
thus drive, the mechanics. The response goes largely back into the phase quadrature
where it interferes with the original spin sidebands. Notice the positive mass case
of fig. 6.15 similarity to the features of fig. 4.20. The negative mass case appears to
have the inverted effect.

This knowledge was not fully developed and appreciated at the time the ex-
periments reported here were carried out. In practice, we were experimentally
constrained from below to the spin broadening of ' 5 kHz by the necessity to be
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Figure 6.16: Spectral comparison of the spin and mechanical systems under
hybrid detection. Spins system (yellow) detuned from mechanics (blue) and observed
jointly in the optical phase quadrature. The response of the spins is offset manually to
appear degenerate with the mechanics. This allows for a comparison of the two systems.
Dots are measurement and solid lines are fits with the full hybrid model. The dashed
yellow line is the broadband atomic spin noise (see section 5.11.2). Linear scale (left),
logarithmic scale (right).

dominated by the optically power broadening and have a reasonable CS
q . On the op-

tomechanical side, our sideband assymmetry set the mechanical optical broadening
for a given readout rate at the optimal cavity detuning. This limited the mechanical
broadening as increasing it meant further mismatch of the readout rates. Thus, at
the time, we were limited to the (still much improved compared to section 6.3) case
of relatively matched systems as seen in fig. 6.11.

The conditions discussed so far apply to the case of degenerate subsystems and
the canonical mapping of optical quadratures. It turns out that adjusting these
knobs leads to more complicated behaviour, which as we shall see in section 6.4.4,
can result in improvements upon the degenerate oscillator case. First, however, let
us experimentally probe the case of matched degenerate oscillators.

6.4.3 Degenerate subsystems

Having fairly well matched, and quantum back-action dominated, systems as seen in
fig. 6.11 we link the two with the standard mapping of the optical quadratures θ = π

(see eq. (6.30)). Measuring the full hybrid system with the atoms far detuned from
the mechanics we can compare the responses of both systems as seen in fig. 6.16.
The spin system is noticably reduced by the losses between the systems.

Beyond the mechanical lorentzian feature seen in fig. 6.11 there are additionally
some noise spikes on the blue side of resonance. These are likely a combination of
hybridized modes, as described in section 3.10, or mirror modes of the cavity mirror
substrates as described in section 4.5.7. They are thankfully many γM/2 away, thus
their influence is minor and is not further treated.
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Ŷ

ou
t

jp
os

)(
%

)

jpos

0

5

10

15

20

S̄
qq

(x
2 zp

f/
kH

z)
10−1

100

101

S̄
qq

(x
2 zp

f/
kH

z)

Figure 6.17: Degenerate hybrid white noise back-action evasion. Mechanics, shown
in blue, has a resonance frequency at the dashed grey line as do the spins, thus degener-
ate. Hybrid system with spins as negative mass (red) and positive mass (green) clearly
show significant back-action interference. The grey shaded region indicates the bandwidth
corresponding to the full mechanical linewidth γM centered on the mechanical resonance.
Top: Variance for hybrid system (spectral areas of the panels below, subtracting shot
noise), relative to that of the membrane alone, in a variable bandwidth centered on me-
chanical resonance. Hybrid system with negative spin mass (joint negative: jneg) and with
positive spin mass (joint positive: jpos) are shown together but on different axes, left and
right, respectively. Bottom left: Power spectral density of hybrid system and membrane
only as read out in the optical phase quadrature. Bottom right: Same as left, but on
logarithmic scale and in a wider spectral window.

Added white noise

To see the back-action response of the total system clearly we apply lots of white
noise (n̄WN & 20) and observe the resultant spectra shown in fig. 6.17. From the
lower panels we see the features of the degenerate hybrid case just discussed in
section 6.4.2. In particular, notice the features of reduced interference on resonance
and large reduction on the wings in the hybrid negative mass case. This is as
expected save for the small on resonance reduction. In the positive mass case back-
action is not added on resonance – indeed actually a small reduction is observed.
The large constructive interference on the wings is also clearly seen.

The total variances for the positive and negative mass systems, relative to the
mechanics only variance, are 100 % and −46 %, respectively. These are within, and
very close to, the limits4 from eq. (6.38) of ≈ 155 % and ≈ −52 %, respectively.

4Here we using the fractional differences. Thus, limits for the negative and positive mass
evasion (enhancement) of say 1

2 and 5
2 from section 6.4.2 expressed as fractional differences are

simply 1
2 − 1 = − 1

2 and 5
2 − 1 = 3

2 .
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Figure 6.18: Contrast between hybrid positive/negative spin mass. Power spectral
density of the hybrid system with a negative (red) and positive (green) spin mass. Dots
are measurements and solid lines are fits from the full hybrid model. Dashed yellow line
is the broadband atomic spin noise (see section 5.11.2). Linear scale (left), logarithmic
scale (right).

Thus, we have prepared the hybrid system such that, under ideal conditions, the
back-action contribution in the hybrid system could be reduced to nearly half that
of mechanics alone.

Quantum back-action evasion

In the same experiment we now turn off the white noise modulation. The resulting
power spectral density now contains non-negligible contributions from the thermal
noise components of both systems. These, along with the losses between the systems,
reduces the contrast of the back-action interference. Nonetheless, in fig. 6.18 we see
clearly the contrast between the positive and negative mass hybrid system. The on
resonance dip and larger wings in the positive mass case are clearly seen.

Compared to the membrane only, the hybrid system does not have as dramatic
an impact as in the case of white noise. In the negative mass case the hybrid re-
sponse is nearly identical to that of the membrane only, thus omitted for clarity.
The evaded back-action has been nearly perfectly compensated for by the added
spin thermal noise. Nonetheless, a statistically significant overall sensitivity im-
provement is observed with the total variance of the negative mass hybrid system
being (95± 2) % of the membrane only variance.

This is clear from the variance contribution breakdown seen in fig. 6.19. The
total membrane only variance is 12.20x2

zpf, of which the thermal motion constitutes
4.07x2

zpf, equivalent to an effective thermal bath of n̄thM = 2.04 thermal phonons5.
The remaining 8.13x2

zpf is the variance due to the quantum back-action drive. The
negative mass hybrid system has a total variance of 11.59x2

zpf, only slightly less than

5The dynamical back-action cooling is indeed quite substantial reducing the thermal noise by
a factor of 5.6× 104.
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Figure 6.19: Hybrid quantum back-action evasion in degenerate oscillator case.
Power spectral density of the hybrid system with a negative (red), and membrane alone
(blue). Dots are measurements and solid lines are fits from the full hybrid model. Mem-
brane only data omitted for clarity but can be seen in fig. 6.16. Red hatch is the quantum
back-action contribution to the negative mass hybrid system. Shaded areas are thermal
noise contributions of the membrane (blue) and spins (yellow). Dashed yellow line is the
broadband atomic spin noise (see section 5.11.2). Linear scale (left), logarithmic scale
(right).

that of the membrane only, as previously stated. The thermal noise contribution is
increased to 5.15x2

zpf by the now added spin thermal noise. The remaining 6.44x2
zpf

back-action variance is significantly less than that of the membrane alone.
Thus, we infer the amount of evaded quantum back-action to be −24 ± 5 %

(−1.0 dB) of the mechanics alone6, quite a considerable amount! In the positive
mass setting the hybrid system has a total variance of 17.62x2

zpf and only a slightly
higher thermal noise contribution. This it contains 50±8 % (1.9 dB) more quantum
back-action noise than the membrane only. This is a quite sizeable interference
contrast, only masked on the absolute scale by thermal noise.

We may further notice that the spin thermal noise has been processed by the
optomechanical system as the added contribution on top of the mechanical thermal
noise is reduced near resonance also. This is a consequence of the same mixing
term discussed in section 6.4.2 limiting the back-action evasion to ' 1/2. Indeed
all the spin noise is transduced through the transfer matrix, and in this case the
optomechanical response reduces the spin thermal noise contribution by −18 %.

The back-action evasion makes the sensitivity to mechanical motion greater by
reducing the back-action contribution. We define the sensitivity enhancement as
the fraction of the membrane spectral response to that of the negative spin mass
hybrid system. This, furthermore, provides a convenient way to view the quantum
back-action cancellation experimentally realized in a wide bandwidth, since it is now
normalized to the mechanical response.

In the left panel of fig. 6.20 we see this sensitivity enhancement as a fractional

6Once again these are fractional differences.
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Figure 6.20: Quantum back-action evasion sensitivity enhancement. Blue line is
the fractional difference of the membrane only and negative spin mass hybrid system. The
red solid line is the same fractional difference of the individual fits of the hybrid model
to each measurement, not a fit to the fractional difference. The solid blue line indicates
the mechanical response to which the negative spin mass hybrid system is compared.
Dashed black lines indicate a γM wide region around the mechanical resonance frequency.
Left: The case of degenerate oscillators discussed in section 6.4.3. Data and fits are
seen in figs. 6.16 and 6.19.. Right: The case of non-degenerate oscillators discussed in
section 6.4.4. The data and associated fits are shown in fig. 6.23.

difference7. In the region near the mechanical resonance we see that the sensitivity
enhancement is mostly positive, although small, except for on exact joint resonance,
where there is not net gain. Initially, on the wings of the resonance, the gains are
long lived spanning more than two full linewidths, but eventually become negligible
and a loss.

Lastly, we notice that the sensitivity enhancement has qualitatively the same
form as the positive spin mass hybrid system interference. This is, of course, no
coincidence as the enhancement is a consequence of the destructive interference.
This is itself like a inverted image of the constructive interference.

6.4.4 Non-degenerate subsystems
The limit of ' −50 % back-action cancellation is specific to the case of degenerate,
matched, oscillators. If, and we are, one is free to set the relative detuning and the
quadrature mapping phase θ at will, then one can surpass the' −50 % mark without
making the mechanical response broader. The trick is to detune the spin system
whilst simultaneously rotating the optical quadratures input to the cavity. This
combination shifts the point of no back-action cancellation away from mechanical
resonance, where the response has the largest gain. How far from resonance is
optimal depends on the gain factor of the spin ensemble. The detuning can be
considerable since the back-action interference depends on differences in quadrature
amplitudes, not power.

7Subtracting unity from the ratio of responses gives the fractional difference.
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Figure 6.21: White noise spectral response of non-degenerate hybrid system.
Spectral response of a non-degenerate hybrid system otherwise reasonably well matched.
The mechanical system alone is shown in blue and the negative (positive) spin mass
hybrid system in red (green). In the case of solid curves the spin system is set |ΩS | −
ΩM = 2π × 4.2 kHz slightly blue detuned. As in fig. 6.14 the dashed (dotted) curves
are for spins which are far blue (red) detuned from the mechanical resonance frequency
(1.27 MHz) by ≥ 20 kHz. Both oscillators have similar broadenings, γM = 2π × 5.4 kHz
and γS = 2π × 4.6 kHz and similar readout rates. The spin system spectra are not shown
for clarity. Top: Negative mass spin ensemble. Bottom: Positive mass spin ensemble.

In this scheme the back-action interference in the hybrid system has, to a large
extent, the same general behaviour as the degenerate case, with only spectrally
local differences. To appreciate this we compare the back-action response (to white
noise) of the detuned system, fig. 6.21, with that expected from the degenerate case
shown in fig. 6.14. The features characteristic of the negative and positive mass
hybrid system are clear. There is a point of no back-action cancellation, still at the
spin resonance frequency, and large interference in the wings of the hybrid response.
Detuning the spin ensemble far into the blue or red we see the characteristic positive
and negative hybrid spin mass interference features. Two positive mass systems has
destructive interference between the oscillators and constructive outside, whereas for
a positive (mechanical) and negative (spin) mass combination in the hybrid system
yields constructive interference between them and destructive outside.

For the experiments which follow the mechanical cooperativity was slightly lower
than in section 6.4.3, now CM

q = 2.2, meaning an optomechanical quantum back-
action to thermal noise ratio of 1.5. Despite this, as we shall see, greater quantum
back-action cancellation was achieved. In detuning the spins from the mechanics by
|ΩS|−ΩM = 2π×4.2 kHz we rotated the quadrature mapping described by eq. (6.30)
by θ = 6°.
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Figure 6.22: Non-degenerate hybrid white noise back-action evasion. Mechanics,
shown in blue, has a resonance frequency at the dashed blue line. Likewise the spins have
their resonance frequency at the dashed yellow line. Hybrid system with spins as negative
mass (red) and positive mass (green) clearly show significant back-action interference. The
grey shaded region indicates the bandwidth corresponding to the full mechanical linewidth
γM centered on the mechanical resonance. Top: Variance for hybrid system (spectral areas
of the panels below, subtracting shot noise), relative to that of the membrane alone, in a
variable bandwidth centered on mechanical resonance. Hybrid system with negative spin
mass (joint negative: jneg) and with positive spin mass (joint positive: jpos) are shown
together but on different axes, left and right, respectively. Bottom left: Power spectral
density of hybrid system and membrane only as read out in the optical phase quadrature.
Bottom right: Same as left, but on logarithmic scale and in a wider spectral window.

Added white noise

Lets take a closer look at case where lots of white noise is added, as we did in
the degenerate case. When the spin system is blue detuned from the mechanics as
just described we have fig. 6.22. In this case the back-action evasion on mechanical
resonance is very large, at −74 %. Enabled by the relocation of no interference point
to the wings of the mechanical response.

As we look in a very wide bandwidth, the total back-action in the hybrid system
is reduced by −63 %, considerably more than the maximum of −54 % expected from
eq. (6.38) had the systems been degenerate.

Likewise the positive mass hybrid system interference is very large, approaching
110 % of the membrane only. With such large interference we now switch off the
white noise drive, as done previously, expecting the quantum-back action to display
a similar interference profile.
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Figure 6.23: Hybrid quantum back-action evasion in the non-degenerate case.
Power spectral density of the output optical phase quadrature for the hybrid system with
a negative (red), and positive (green) spin mass. Also shown are the membrane only
(blue) and spin only (yellow). Dots are measurements and solid lines are fits from the
full hybrid model. The spin measurements are omitted here for clarity. The red hatched
region is the quantum back-action contribution to the hybrid system whereas the blue
hatched region is similarly the quantum back-action contribution from the membrane
only. The region between the green solid line and the red dashed line is approximately the
quantum back-action contribution to the positive spin mass hybrid system. The region
contained between the dashed grey lines indicated a full mechanical linewidth γM around
the resonance resonance. Inset: The areas of the circles are directly proportional to the
quantum back-action variance contribution for each system.

Quantum back-action evasion

Now with no white noise we clearly see the interference of the quantum back-action
in fig. 6.23. In particular we also see a significant noise reduction on mechanical
resonance. The responses shown in fig. 6.23 display the same form as the white
noise driven case shown in fig. 6.22 with the biggest interference on mechanical
resonance, least near the spin resonance frequency, and again noticeably (in this
figure however only in the positive mass case) above the spin resonance frequency.

The interference in the negative mass case is easily seen through the sensitivity
enhancement shown in fig. 6.20. Notice the qualitative similarity in the enhance-
ment profile of the degenerate case. In this case we have a significant sensitivity
enhancement of 8 % near the mechanical resonance frequency. Indeed, there is a
statistically significant net sensitivity improvement over the entire bandwidth. The
full variance of the negative mass hybrid system, 10.4x2

zpf, is (94± 2) %, of the full
membrane only variance 11.1x2

zpf. This improvement is as found in the degenerate
case, but the spectral region of sensitivity improvement with respect to the mechan-
ical susceptibility is quite different.

Let us now consider the contributions to the variances seen in fig. 6.23. The total
variance for the mechanical oscillator is 11.10x2

zpf and the thermal noise contributes
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4.26x2
zpf equivalent to an effective thermal bath of n̄thM = 2.13 thermal phonons.

The quantum back-action variance of 6.84x2
zpf dominates. Adding the negative mass

spin system gives a total hybrid variance of 10.44x2
zpf of which 5.9x2

zpf is thermal
noise and the remaining 4.54x2

zpf quantum back-action contribution, clearly reduced
comparable the membrane only case. When the hybrid system is in the positive
spin mass configuration the total variance is 17.7x2

zpf and the thermal contribution
merely 5.61x2

zpf. Thus the quantum back-action comprises 12.09x2
zpf.

From these we infer that the quantum back-action variance of the negative spin
mass hybrid system is −34± 5 % (−1.8 dB) below that of the membrane only. For
the positive spin mass case the variance is increased 73± 10 % (2.4 dB). Once again
we note that the spin thermal noise is filtered by the optomechanical transfer matrix,
in this case by −17 %.

The quantum back-action variance contributions to the membrane, as well as hy-
brid system in both mass configurations, are displayed in the inset of fig. 6.23 as the
areas of the circles. By comparison of these, the contrast between the constructive
and destructive interference is vividly clear, as well as the very appreciable amount
of demonstrated quantum back-action evasion in the negative mass hybrid system.



Chapter 7

Summary and Outlook

, specifically and section 6.4,

7.1 Summary
In this thesis I have presented the two most important results of my experimental
work conducted at the Niels Bohr Institute over the past 4 years. Initially the focus
was on realizing a robust and versatile quantum enabled membrane-in-the-middle
optomechanical system. These efforts, intimately linked with the development of
highly coherent mechanical resonators Tsaturyan et al. (2014), ultimately succeeded
for multiple mechanical modes simultaneously and was published in Nielsen et al.
(2016). This laid the foundation for further developments enabling us to generate,
and detect, even stronger ponderomotive squeezing of light, (−3.18± 0.18) dB below
the shot noise level. This is, to the best of my knowledge, the largest degree of
ponderomotive squeezing of light reported to date.

These results are discussed in section 4.4, and serve as a testament to the strength
of the quantum correlations achievable in our optomechanical system. The simple
design of this system, along with the implementation in a flow cryostat, enabled
improvements in both the optical and mechanical components to be rapidly imple-
mented. High detection efficiencies are also feasible with such a platform, which
was crucial for subsequent endeavors where quantum correlations are of great im-
portance.

Building on top of this quantum optomechanical platform, we proceeded to de-
sign and realize a hybrid spin-optomechanical system, combining the atomic spin
ensemble and the aforementioned membrane-in-the-middle system. The spin ensem-
ble consisted of a vapour cell with 109 spin polarized cesium atoms used to realize
an effective negative mass oscillator. Measuring in the reference frame of this os-
cillator, it is possible to evade the back-action on the mechanical oscillator motion
concomitant with quantum limited sensitivity. The experiment realized is based
on a proposal by Hammerer et al. (2009), which will soon celebrate its decennial
anniversary.
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This hybrid system demonstrated the evasion, by −1.8 dB, of quantum back-
action limiting the sensitivity to mechanical motion. This result was published in
Møller et al. (2017) and marked the first time two different systems were optically
linked in such a quantum enabled fashion. The nature of the hybrid system paves
the way for entanglement generating as well as improved sensing of force, motion
and gravity beyond the standard quantum limit.

7.2 Outlook
The encouraging results obtained and described in this work have led to new as-
pirations. One such idea is inspired by the dawn of gravitational wave-astronomy
being ushered in by Abbott et al. (2016) as well as the fields recent entry into the
multi-messenger astronomy community facilitated by the detection of the binary
neutron star merger described in Abbott et al. (2017). As outlined in the pre-print
by Khalili and Polzik (2017), the idea is to use a negative mass spin system to evade
the quantum back-action on the motion of the mechanical interferometer mirrors
comprising state-of-the-art gravitational wave detectors. This scheme, drawing on
many of the same key concepts as the work presented here, promises to improve
instrument sensitivity in a wide bandwidth.

As our understanding of the current spin-optomechanical hybrid system dynam-
ics continues to improve, new insights and visions are likely to emerge. Although
both systems comprise harmonic oscillators at heart, the hybrid system is vastly
greater than the sum of its parts and has provided ample surprises throughout the
work carried out so far. Going forward I expect nothing less.

7.2.1 Entanglement

The initial long term vision for this experiment, namely Einstein-Podolsky-Rosen
(EPR) entanglement between the mechanical and spin systems, was laid out by
Hammerer et al. (2009). I am not the first PhD student to have worked towards this
ambitious goal and, clearly, I am not the last. The system realized thus far however,
shows great potential towards this end. Demonstrating the evasion of the quantum
back-action is an underlying feature of the desired EPR entanglement.

Towards this effort the recent pre-print by Huang et al. (2018) provides ample
motivation as it details the details of how our hybrid system may generate, even
unconditional, EPR entanglement. They define a generalized EPR variance, ξg,
taking into account the relevant experimental realities of our hybrid system. These
are the finite losses between our two systems, which may in general be read out
at different rates and have a fundamentally different interactions with light. The
spin ensemble is predominantly probed with a QND interaction, whereas for the
mechanics we probe significantly off cavity resonance, realizing a manifestly non-
QND interaction as seen by the significant dynamical back-action cooling present in
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chapter 6.
They have shown that the misbalance of interaction types, and large dynamical

back-action broadening of the mechanics as compared to the spins, may be used as
a resource. We already saw in section 6.4.2 that this regime is also favourable from
the perspective of back-action evasion.

Entering the desired regime of unconditional entanglement set by ξg < 1 is re-
strained by the thermal noises of both systems as well as the optical losses between
the systems. Furthermore, if conditional entanglement is pursued, where the mea-
surement record is included in our knowledge of the system evolution, the detection
efficiency is of added importance. Thus, before concluding this work, we discuss
some exciting new technical improvements diminishing the adverse effects of ther-
mal noise and optical losses on future entanglement in the hybrid system.

In discussing these improvements it is worth keeping in mind the following results
from Huang et al. (2018). The presence of a power loss ε between the systems bounds
the entanglement to no less than

ξg ≥
√

ε

4− 3ε . (7.1)

The effect of thermal noise is harder to bound, but the achievable entanglement is
enhanced by higher quantum cooperativities. The scaling with these are handwav-
ingly, ∝

√
1/CS

q and ∝
√

1/CM
q , thus the fraction of thermal noise compared to

back-action is on the same square root footing as the optical losses.
The unconditional scheme relies on large dynamical back-action cooling to reduce

the thermal variance. If sufficient optical broadening is not experimentally feasible,
then conditional entanglement, where the thermal motion is measured and corrected
for, may instead be the way to go.

7.2.2 Optomechanical improvements
On the optomechanical side, the new generation of “soft clamped” membrane res-
onators by Tsaturyan et al. (2017) are now realized in our optomechanical setup.
These membranes do not show signs of hybridization and their much higher Q
factors, even keeping thickness and resonance frequency fixed, enable quantum co-
operativities at least an order of magnitude higher than the CM

q = 2.6 described in
section 6.4. The mechanical cooperativity can be further increased since the higher
spin system cooperativity realizes a larger readout rate for the same probe induced
broadening. These two factors will all but remove the mechanical thermal noise con-
tribution realizing a hybrid system abundantly dominated by quantum back-action.

As thermal noise diminishes in importance, classical laser amplitude noise will
take its spot as dominant factor for mechanical decoherence. In practice this limits
the feasible mechanical frequency from below. Reducing the laser noise influence
without going to a higher frequency can be achieved by introducing a filter cavity at
the laser output. Since our back-action evasion scheme is fixed in absolute operating
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frequency by the atomic D2 line, the added experimental complexity of such a cavity
may not be too large of an inconvenience. Having less amplitude noise also means
higher probe powers can be used, thereby increasing the achievable readout rate.

Mirror noise also constrains the choice of mechanical resonance frequency and
limits the amount of dynamical back-action that is practically useful. An improved
understanding and enhanced predictive capabilities in regards to where (spectrally)
a particular cavity assembly produces cavity noise is sure to help. Additionally,
physically smaller mirrors in conjunction with an updated cavity assembly should
yield a significantly less dense spectrum of cavity noise. The deep valleys between
Brownian noise peaks in such a spectrum may even allow for room temperature
quantum optomechanics.

7.2.3 Spin system improvements

On the atomic side, a spin system with an improved quantum cooperativity of
CS
q = 3.5 has already been realized at 55 ◦C. Comparing this to the CS

q = 1.1
achieved for the results of section 6.4, at 68 ◦C, the spin thermal noise contribution
is now significantly diminished. Furthermore, the intrinsic damping rate of the
spins in this vapour cell is more than two times less, at only 400 Hz, meaning this
higher cooperativity can be reached for a smaller probe induced broadening. Indeed
this higher cooperativity was reached already at a broadening of 1.5 kHz. This
makes it significantly easier for the dynamical back-action affected mechanics to be
significantly broader than the spins. This will allow for a greater degree of quantum
back-action evasion, and likely also entanglement.

Furthermore, embedding the atomic ensemble in a low-finesse cavity may prove
advantageous as it can boost the readout rate for the same optically induced broad-
ening. Higher quantum cooperativities should therefore be expected. However,
making high transmission vapour cells is a difficult task as it appears the spin-
relaxation coating crucial for low decoherence negatively impacts the anti-reflection
coating of the windows. Additionally the cavity must be largely one-sided towards
the mechanics as the outcoupling efficiency will constitute an intrasystem loss.

The higher mechanical coherence times available with the new generation of
membranes means possible improvements on the atomic ensemble. The length of the
microchannel confining the atoms, 300 µm across, was designed such that the atomic
motion would average out over the decoherence time of the mechanical oscillator.
Now that this time is increased, by an order of magnitude, the microchannel may
equally be made larger.

A larger channel width, keeping the length constant, would allow the waist of the
optical probe to be made larger. Since the Rayleigh range is longer this probe could
sample a larger fraction of the atoms, thus reducing the effect of the broadband
noise. If instead the cavity is made longer, then the optical depth will increase as
more atoms are sampled. This gives a larger readout rate and thus a higher spin
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cooperativity. Similarly advantageous, the wider channel decreases an atoms wall
collisions per unit time, thus decreasing the intrinsic spin decoherence rate.

7.2.4 Optical link and detection improvements
On the optical side, a severe reduction in the optical losses between the spin and
mechanical systems, and in ultimate detection, has been made following the exper-
iments of chapter 6. Before, the losses between the systems amounted to roughly
54 % of the quantum vacuum driving spin system being replaced before driving the
mechanics as described in section 6.2.3. Clearly there was room for improvement.

The new vapour cell not only enables a higher cooperativity but also has lower
optical losses, now only contributing 1.5 % to the intrasystem loss1. Furthermore,
the optical layout has been simplified and fitted with low loss, high quality, wave-
plates, polarizing beam splitters, mirrors, and lenses. The loss from outside the
cell to the input of the optomechanical cavity is now merely 7 %, a reduction by
26 percent points. The cavity one-sidedness remains unchanged, but the reduced
number of optics, and a less distorted optical mode from the new vapour cell, now
allows for mode matching losses of less than 3 %. Thus the total losses now only
amount to roughly 15.5 %, a more than three-fold reduction! This will allow for
even larger back-action interference and, using eq. (7.1), should limit the achievable
unconditional entanglement to ξg ≥ .21, which would be very respectable bearing in
mind that ξg = 1 is the case of no entanglement.

The layout of the homodyne detection scheme needed for optical phase quadra-
ture readout has not changed much. Previously, the losses in converting intracavity
quantum fluctuations into photo-current fluctuations of was 70 %. Here there was
certainly also room for improvement.

Just as with the optical link, the detection path has been fitted with low loss
optics and benefits from an improved cavity mode matching. This has reduced
the loss from outside the cavity to detector down to 5 % and the improved mode
matching now results in losses of 3 %. The homodyning visilibilty is also helped
by the improved spatial mode quality of the probe and can now reach 97 % thus
responsible for 6 % loss. Thus the total detection loss is now < 20 %, again, a more
than three-fold improvement! This not only greatly improves the sensitivity of our
detection and allows for conditional entanglement to be considered.

The homodyne detector still uses glass encapsulated diodes with a quantum
efficiency of 90 % responsible for a 10 % loss. Removing this protective glass leaves
the bare diodes which are specified to have a quantum efficiency of 98 % at 852 nm.
This would bring the losses from the diodes down to 2 % thus rendering it feasible
that our detection losses may be still be significantly reduced. This will also remove
the now most lossy single element in detecting spin or mechanical ponderomotive

1A full transmission of 3 %.
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squeezing. The latter case, combined with the improved cooperativities, should thus
be able to just about reach −10 dB of observed squeezing.

7.2.5 Final remarks
The selection of hybrid system improvements just discussed have been carried out
since the experiments of chapter 6. To me they highlight the ever improving and
evolving nature of our experiments, achieved through hard work, improved under-
standing, and concerted effort. Taken together with the results obtained so far, the
hybrid system constructed seems a promising candidate for, and inspiration to, fu-
ture pioneering experiments. I hope our efforts here prove useful for experimentalists
and theorists alike, at QUANTOP, and elsewhere.

This is the end, beautiful friend
This is the end, my only friend, the end.

Jim Morrison, The Doors
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Appendix A

Fourier Analysis

In this appendix we discuss the basics of Fourier analysis as it pertains to time vary-
ing signals as they are most relevant for this work. We will discuss the mathematical
Fourier transform, the discrete analogue used in practice as an estimator, and finally
the power spectral density as it relates to signals of interest.

A.1 Fourier Transform
Suppose we have a time varying signal X(t). We define its Fourier transform (FT)
as

X(Ω) = F [X(t)](Ω) ≡
∫ ∞

−∞
X(t)e−iΩtdt. (A.1.1)

This signalX(Ω) quantifies the strength of the constituent frequency components
at Ω present in X(t). Likewise, if we had a signal already in the Fourier domain,
say X(Ω), or wanted to undo our previous transformation, we could simply apply
the inverse FT defined here as

X(t) = F−1[X(Ω)](t) ≡
∫ ∞

−∞
X(Ω)eiΩtdΩ

2π . (A.1.2)

Notice here we are integrating over both positive and negative frequency compo-
nents. This is often seen as confusing, but is in fact a perfectly consistent and useful
tool in signal analysis – and is crucial for understanding the signals that we detect
and analyze. That both negative and positive frequency components are important
and not at all mystical as explained well in Lyons (2004, Chapter 8.3-4). For now
consider the simple example of a real time varying sinuosoid

X(t) = cosωt = eiωt + e−iωt

2 , (A.1.3)

which when written as complex exponentials clearly indicates – looking at eq. (A.1.1)
– that the signal X(Ω) will have two equal amplitude components at Ω = ±ω. One
can think of these two components as counter-rotating at the same frequency ω
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leaving only a real component, namely cosωt. Extending this logic to real signals
with multiple frequency components is trivial. From there to complex signals one
can further imagine the effect of having a phase difference between the counter
rotating components.

For complex signals in general and operators in particular it is important to note
the relationship between Hermitian conjugates, namely

[X(Ω)]† = X†(−Ω), (A.1.4)
X†(Ω) = X(Ω). (A.1.5)

We are often concerned with the Fourier transform of time derivatives. By
considering the time derivative of eq. (A.1.2) it is clear that

d
dtX(t) = d

dtF
−1[X(Ω)](t) = F−1[iΩX(Ω)](t), (A.1.6)

∴ F
[

d
dtX(t)

]
= iΩX(Ω). (A.1.7)

This logic also applies to spatial derivatives. To see this simply relabel the
frequency Ω with a wavenumber k and d

dt with
d

dx .

A.2 Discrete Fourier Transform
The use of the Fourier domain is particularly relevant when we care about a partic-
ular frequency component of a continuous time trace, e.g. the voltage time trace on
a detector. In real life we don’t have infinite time traces and so the finite time FT
is more relevant,

XT (Ω) =
∫ T/2

−T/2
X(t)e−iΩtdt, (A.2.8)

where T is the total duration of the time trace.
In practice the FT is often implemented digitally. This involves first digitizing

an analogue signal. This digitizes the analogue signal at a sampling rate of fs for
some time T producing an array x total of N = fsT samples. We then implement
a discretized version of the FT known as the Discrete Fourier Transform (DFT),
which is defined as

X(m) =
N−1∑

n=0
x(n)e−i2πnm/N . (A.2.9)

Here the DFT output array X(m) has m ∈ {0, N − 1} and maps to a particular
component of frequency

Ω(m) = 2πmfs/N = 2πm/T. (A.2.10)
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Clearly the finite length of the time trace sets the spectral resolution, known as
the resolution bandwidth (RBW). This is the frequency difference between adjacent
bins of X(m) and is given simply by

RBW = fs/N = 1/T. (A.2.11)

Now we can estimate the finite time FT of an continuous X(t) (eq. (A.2.8)) with
using the DFT of the sampled array x(n)(eq. (A.2.9)) as

XT (Ω) ≈ X(m)/fs. (A.2.12)

A.3 Power Spectral Density
In this section we draw broadly from Bowen (2016) and Gardiner (2010, Chap-
ter 1.5).

The type of signals of interest here are stochastic and will always have the same
statistical properties, i.e. they are “stationary”. We will also consider the time
average of the signals, as described in eq. (A.3.15), as equivalent to the ensemble
average. This is known as ergodicity and is tantamount to saying the long time
average of a single realization is equivalent to the averaging of many – shorter time
– realizations. When considering the stochastic signals relevant in this work, these
assumptions are to our knowledge justified.

For such signals, we are typically interested in at particular Fourier frequencies.
Considering just a single signal, this is conveniently quantified by the so called power
spectral density, which distributes the total power of the system into its constituent
frequency components.

We can define the so called power spectral density1 of a signal X(t) through its
finite time Fourier transform as

SXX(Ω) ≡ lim
T→∞

1
T
|XT (Ω)|2 . (A.3.13)

In practice of course we do not measure the power spectral density as defined
above, but can merely estimate it. The estimator of choice for this work is the so-
called Periodogram. It – rather unsurprisingly – uses the discrete Fourier transform
approximation of the Fourier transform (eq. (A.2.12)) to give

PXX = 1
T
|X(m)/fs|2 ≈

1
T
|X(Ω)/fs|2 = SXX(Ω). (A.3.14)

We can extend the notion of the power spectral density to correlations between
two signals. This along with a more detailed description of the power spectral
density is given in the subsection below.

1This is sometimes also referred to as the spectrum of X(t)
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A.3.1 Power and cross spectral density theory
Suppose we have two complex signals X(t) and Y (t), we can define the cross corre-
lation function of the signals by (Saulson, 1994, Chapter 4)

(X ? Y ) (τ) = GXY (τ) = lim
T→∞

1
T

∫ T/2

−T/2
X∗(t)Y (t+ τ) dτ, (A.3.15)

where the notational shorthand GXY stands for the application of the ? operation
of Y on X. This operation measures the correlations between the signals X and Y
at a lag time of τ . It may already be clear how this type of correlation would be
of relevant for a signals that are periodically correlated, as the function would have
deviations on intervals given by the period.

On the assumption that our signals are ergodic and stationary as discussed above,
we can re-write eq. (A.3.15) in terms of the ensemble average as

GXY (τ) = 〈X∗(t)Y (t+ τ)〉 = 〈X∗(0)Y (τ)〉, (A.3.16)

where we have set t = 0 for convenience since the signals statistical properties are
independent of time (stationary).

Although cross spectral density of two complex signals X(t) and Y (t) is generally
defined through their finite time Fourier transforms,

SXY (Ω) ≡ lim
T→∞

1
T
〈X∗T (Ω)YT (Ω′)〉, (A.3.17)

it can be shown via the Weiner-Khincin theorem that the cross spectral density
is the Fourier transform of the correlation function, i.e.

SXY (Ω) ≡
∫ ∞

−∞
GXY (τ)e−iΩτ dτ. (A.3.18)

This is a very useful result as we can often specify the statistics of a variable through
its correlation function.

We can, and it is often more useful for us to, evaluate eq. (A.3.18) in terms of
the signals in Fourier space,

SXY (Ω) =
∫ ∞

−∞
〈X∗(Ω)Y (Ω′)〉dΩ

2π . (A.3.19)

Recall that the power spectral density is simply the cross spectral density when
X = Y and will always be a real quantity. On the other hand it is clear that the
cross spectral density – in general – is a complex quantity and it can be shown that

SXY (Ω) = S∗Y X(Ω). (A.3.20)

As the reader may have been guessed, the case most relevant for us is where the
complex variables are in fact operators, i.e. X → X̂ and Y → Ŷ (and replace ∗ with
† of course). The definitions and results above are still valid, where the ensemble
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averaging now implies the expectation value. There is, however, a key difference in
that operators may not always commute. This can lead to differences in the power
spectral density, SXX(Ω) 6= SXX(−Ω), that cannot occur classically. Thus we define
the symmetrized power spectral density as the weighted sum of the negative and
positive frequency contributions,

S̄XX(Ω) ≡ SXX(Ω) + SXX(−Ω)
2 (A.3.21)

which is akin to the single sided power spectral density defined classically and is
what is actually measured and presented throughout this thesis. That we really
measure the symmetrized power spectral density is discussed in appendix B.
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Appendix B

Detection and losses

B.1 Direct detection
In this section we will follow Bowen (2016) closely. In direct detection we direct a
light field onto a single linear detector as illustrated in fig. B.1. The photons produce
electrons in proportion with detectors quantum efficiency, which for the diodes used
in this thesis is ∼ 90 %. The statistics of the field detected is therefore carried over
into the resultant photo-current.

Let us for simplicity assume the detection is 100 % efficient. The way to treat
losses is described in appendix B.5.1. Suppose the input field is described by some
mode â(t), then the photo-current operator Î will be directly related to the photon
number flux n̂(t). Taking them to be directly related for simplicity we have

Î(t) = â†(t)â(t) = n̂(t). (B.1.1)

The detection is comprised of an absorption induced photo-current which goes
through the detector electronics and is boosted - irreversibly - to a large classical
signal with photo-current I(t). The power spectral density of this classical variable
is given by a second order correlation function (see eq. (A.3.18))

SII(Ω) ≡
∫ ∞

−∞
GII(τ)e−iΩτdτ =

∫ ∞

−∞
〈I∗(0)I(τ)〉e−iΩτdτ (B.1.2)

which, when related to the field operator â that produced it, should be normal
and time ordered1 (Christopher Gerry, 2005, Chapter 5). This means that the power
spectral density of the classical photo-current can be written as

SII(Ω) =
∫ ∞

−∞
〈:Î†(0)Î(τ):〉e−iΩτdτ (B.1.3)

=
∫ ∞

−∞
〈â†(0)â†(τ)â(τ)â(0)〉e−iΩτdτ. (B.1.4)

1since we are actually annihilating photons by absorption
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Figure B.1: Direct and homodyne detection schemes. Left: In direct direction a
probe field is sent directly onto a detector. Right: In homodyne detection the probe
field is interfered on a 50:50 beamsplitter with a strong field of the same frequency and
polarization. This serves as a phase reference for the probe.

Suppose the detected field has a large classical component α (which it often does)
then we can write the field in the a linearized fashion as â(t) → α + â(t), α ∈ C.
We can then see in eq. (B.1.5) below that the photo-current operator measures a
particular quadrature X̂θ ≡

(
â†eiθ + âe−iθ

)
/
√

2 of the quantum field given by the
phase θ of the classical component.

Î(t) = â†(t)â(t)→ |α|2 +
√

2 |α| X̂θ(t) + â†(t)â(t). (B.1.5)

It is clear that the large classical component produces a large DC (i.e. constant
in time) value |α|2. The Hermitian quadrature X̂θ(t) will dominate the time varying
part of I(t) since it is boosted by the amplitude of the large coherent field α. It can
further be shown that the power spectral density (without the DC component) will
be given by (Bowen, 2016, Chapter 3)

SII(Ω) ≈ |α|2 S̄XθXθ(Ω), (B.1.6)

where the S̄ indicates the symmetrized PSD, see eq. (A.3.21). This important result
shows that we measure a quadrature of the light field in direct detection by simply
investigating the single-sided PSD of the classical photocurrent2. Exactly which field
quadrature is measured (i.e. what value θ takes) is in direct detection not a free
parameter as it is determined by the phase of the coherent component. To access
the full range of available quadrature phases we can (and do) use the technique of
homodyning.

B.2 Homodyne detection
In this section we also follow Bowen (2016). With homodyning – unlike direct
detection – a particular phase quadrature of the field â can be measured. We will

2to highlight this the operator hat was left on the quadrature X̂θ in the subscript of the PSD.
This is not done throughout this thesis as it needlessly complicates the notation.
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treat this field with a large coherent component, as in appendix B.1, as it is typically
the relevant case. The detection scheme is draw in fig. B.1 and simply injects a
constant large (degenerate) coherent field αLO with a tunable phase into a 50/50
beam splitter. This field is typically called a local oscillator (LO) as it provides a
phase. The photo-current operators on each diode (+ and −) are Î±(t) = n̂±(t)
neglecting losses (i.e. assuming a unit quantum efficiency).

Looking at the difference current Î(t) ≡ Î+(t) − Î−(t), it can easily be shown
that the we will in general measure

Î(t) = (α∗LO + α∗) â(t) + (αLO + α) â†(t) (B.2.7)
≈
√

2 |αLO| X̂θLO(t), ∀ |αLO| � |α| , (B.2.8)

X̂θLO(t) ≡ 1√
2
(
â†eiθLO + âe−iθLO

)
. (B.2.9)

The phase θLO is now the phase of the LO, and as such the measured phase quadra-
ture is tunable. In practice this may not always be so easy of course. This freedom
is an advantage of homodyning and if the coherent part of the homodyned field, α,
is not too large, then it is easy to compensate the LO phase for the phase rotation
it causes.

Additionally it is clear that the shot noise level is dominated by the LO, but only
be a fraction of αLO/α, i.e. by the fraction of their amplitudes, the square root of
the ratio of powers.

Lastly, it is an implicit assumption here that the fields mixed on the BS are in
the same spatial mode. This is not true in general, and their mismatch is a source
of effective loss. This is described in appendix B.5.2.

B.3 Measuring Stokes components
The polarization quadratures, which are relevant for the atomic spin system, can
be completely described by the Stokes operators defined in eq. (2.23d). To measure
these quadratures will need to do some polarimetry involving phase retarders, a
polarizer and a differential detector.

Let us work in the basis of a field propagating along the z direction while linearly
polarized light in the horizontal and vertical (x and y) directions. Let these two
polarization modes be described by âx and ây. To see the effects of various optical
elements on these polarization modes we will adapt the mathematical infrastructure
of Jones calculus. This language is expressed in terms of linearly polarized light
aligned along x and y (horizontal and vertical), e.g. a horizontally polarized state
is given by

âx |0〉 = |↔〉 =
(

1
0

)
. (B.3.10)
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Operator State Stokes vector Jones vector

âx, ây |l〉, |↔〉




1
±1
0
0




(
1
0

)
,
(

0
1

)

â±45 | ↔〉, | ↔〉




1
0
±1
0




1√
2

(
1
±1

)

â± |�〉, |	〉




1
0
0
±1




1√
2

(
1
∓i

)

Table B.1: Stokes and Jones vectors for a selection of polarization states.
Table inspired by E. (1998).

A right hand circularly polarized state has the y component simply lagging the
x component by π/2, which is reflected in the Jones vector of

â+ |0〉 = |�〉 =
(

1
−i

)
. (B.3.11)

The Jones vectors for all the polarization basis states are shown in table B.1
where they are also related to the Stokes vector given by,

S =




S0
Sx
Sy
Sz



. (B.3.12)

They can be visualizing on the Poincaré sphere fig. 2.3.

B.3.1 Sx

The Stokes component Sx is simply the difference in the number x and y polarized
photons. Suppose we have a detection scheme comprising of a polarizer (PBS)
aligned in the x, y polarization basis and a detector at each of the two outputs.
Taking the difference clearly will be a measure of Sx. This is shown in fig. B.2.
This sounds almost trivial; the input light will simply be split by the PBS it into
horizontally linearly polarized light in one output, and vertically polarized in the
other. Looking at this more formally, however, will aid in understanding how to
measure the remaining Stokes components.
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Figure B.2: Detection of Stokes components. To detect Ŝx (left) we only need a
polarizing beamsplitter (PBS) and balanced detection. To measure Ŝy (middle) we need
to add a half-wave plate (HWP). To measure Ŝz (right) we need to add a quarter-wave
plate (QWP). The half-wave plate is optional.

The polarizer is the crucial element which performs the projection of the input
light. The eigenstates of this projection are what allow us to measure the light
components in the basis of x, y. This projection is (in the Jones calculus language)
described by the linear polarizer (LP) operator with θ = 0 (θ = π/2) where |l〉
(|↔〉) is the eigenstate. This is trivially checked and is shown below for clarity.

(
1 0
0 0

)
|l〉 = |l〉 . (B.3.13)

This type of measurement is useful for measuring the amount of horizontally vs
vertically polarized light which was in our input state. By looking at the variance
of the photo-current we will also learn fluctuations of this difference.

The logic just described can be extended to that of Sy and Sz. To measure these
we can simply rotate the basis onto which we project.

B.3.2 Sy

Recall that Sy could be seen in the eq. (2.23d) to be simply measuring the difference
in photon number operators in the ±45° basis. This basis is easily related to the x,
y basis through

â±45 = âx ± ây√
2

=
(
âx ây

) 1√
2

(
1
±1

)
(B.3.14)

which is also clearly seen from the Jones vector in the x,y basis.
In analogy with appendix B.3.1 we simply need to project onto the basis of light

polarized along ±45° basis. This can be done using a half waveplate retarder (HWP)
set at an angle of θ = π/8 wrt to the fast axis as shown in fig. B.2. We can think of
this in two ways, either we change the polarizer basis or we convert the states in the
±45° basis to the x,y basis. Let us simply consider the projection operator due to
this basis rotation of the HWP. Again, let us only look at the x output of the PBS,



238

LP QWP HWP

θ

(
C2

1 C1S1
C1S1 S2

1

)



C2
1 − iS2

1 C1S1(1 + i)

C1S1(1 + i) S2
1 − iC2

1




(
C2 S2
S2 −C2

)

θ = 0
(

1 0
0 0

) (
1 0
0 −i

)



1 0

0 −1




θ = ±π/2
(

0 0
0 1

) (
−i 0
0 1

) (
−1 0
0 1

)

θ = ±π/4 1
2

(
1 ±1
±1 1

)
√

2
2 e−iπ/4




1 ±i

±i 1







0 ±1

±1 0




θ = ±π/8 1
2
√

2




1 +
√

2 ±1

±1 −1 +
√

2




1
2e
−iπ/4




√
2 + i ±i

±i
√

2 − i




√
2

2




1 ±1

±1 −1




Table B.2: Overview of Jones matrices for the common optical elements
Jones matrices for a linear polarizer (LP), have-wave plate (HWP), and a quarter-
wave plate (QWP). θ is the angle with respect to x for the LP, and with respect
to the fast axis for the HWP and QWP. C1 = cos θ, C2 = cos 2θ, S1 = sin θ and
S2 = sin 2θ. Inspired by Gerrard (1975).

which will now be

HWP† (θ = π/8) LP (θ = 0)HWP(θ = π/8) =
1
2

(
1 1
1 1

)
= LP (θ = π/4) .

(B.3.15)

The eigenstate is | ↔〉 and if we were to look at the other PBS output (LP (θ = π/2)
we would find | ↔〉 as the eigenstate. The Jones matrices of the HWP and LP are
shown in table B.2 along with that of the QWP.

Notice that the use of the HWP θ = π/8 is the same as simply rotating the PBS
by 45° = π/4. This is no real surprise as rotating the PBS would trivially change
the projection to the desired basis, and the HWP at angle θ rotates the polarization
by 2θ. The two outputs of the PBS thus describe â±45 and the detector difference
signal will thus be a measure of Ŝy, see fig. B.2.

B.3.3 Sz

To measure Ŝz we can apply the same logic as described above in appendix B.3.2.
Suppose we inserted a QWP at θ = −π/4 instead of the HWP introduced to measure
Ŝy. The effective x output of the PBS (eigenstate of new projection operator) will be
that of right handed circularily polarized light. This can be seen by the projection
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operator of (just like in eq. (B.3.15)) as follows,

QWP† (θ = −π/4) LP (θ = 0)QWP(θ = −π/4) = 1
2

(
1 −i
i 1

)
, (B.3.16)

which has |�〉 as an eigenstate. Just like before the projection operator associated
with the other PBS output (LP (θ = π/2)) will have |	〉 as an eigenstate.

Thus we now measure circularly polarized photons in the basis of â± at the two
PBS outputs and the difference signal will be a measure of Ŝz. We could just as
well have introduced the QWP in conjuction with the HWP (albeit with the choice
of a different angle). In fact this is typically done out of convenience. Since these
operators do not commute, one will not measure the same quadrature with a QWP
followed by a HWP or vice versa. However a combination of angles can always be
found1 measures Sz.

B.3.4 Mueller Calculus
While the Jones calculus detailed above is simple and useful in cases where the input
light is polarized – which is always the case for work presented in this thesis – there
is Mueller calculus for the general case. Visualizing the rotations on the Poincaré
sphere of fig. 2.3 are best done with the Mueller matrices. These are defined as

QWP HWP



1 0 0 0
0 C2 S2C2 −S2

0 S2C2 S2
2 C2

0 S2 −C2 0







1 0 0 0
0 C4 S4 0
0 S4 −C4 0
0 0 0 −1




Table B.3: Mueller matrices for a QWP and a HWP. See Goldstein (2003)
for details. For compactness we write Cn = cosnθ, Sn = sinnθ.

In the case of measuring Sy and Sz it is clear that the effect of the HWP and
QWP in both cases was simply to swap roles with Sx, which we measure with our
linear polarizer in the absence of any polarization rotation. This is seen by

HWP(θ = π/8)




S0
Sx
Sy
Sz




=




S0
Sy
Sx
−Sz



, (B.3.17)

QWP(θ = −π/4)




S0
Sx
Sy
Sz




=




S0
Sz
Sy
−Sx



. (B.3.18)

1QWP(θ = 0) followed by HWP(θ = π/8), or HWP(θ = π/8) followed by QWP(θ = π/4)
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B.4 Stokes operators relation to Pauli matrices.
The Stokes operators can be neatly expressed in in terms of the Hermitian Pauli
matrices given by

σ0 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
,

σy = i

(
0 −1
1 0

)
, σz =

(
1 0
0 −1

)
.

(B.4.19)

and obey the commutation relations of [σi, σj] = 2εijkσk, ∀i, j, k ∈ {x, y, z}. From
them we can easily define the Stokes operators in light bases of either linear x, y,
±45° linear, or left (L) and right (R) hand circularly polarized like. These bases are
written as

a =
(
âx
ây

)
,

(
â+45
â−45

)
,

(
âR
âL

)
, (B.4.20)

respectively. We can then write the Stokes operators, for propagation along z, in
the horizontal and vertically linear polarization basis as

Ŝ0 = 1
2 â
†σxâ = 1

2(â†xâx + â†yây), (B.4.21a)

Ŝx = 1
2 â
†σzâ = 1

2(â†xâx − â†yây), (B.4.21b)

Ŝy = 1
2 â
†σxâ = 1

2(â†yâx + â†xây), (B.4.21c)

Ŝz = 1
2 â
†σyâ = i

2(â†yâx − â†xây). (B.4.21d)

In the ±45° linearly polarized basis,

Ŝ0 = 1
2 â
†σ0â = 1

2(â†+45â+45 + â†−45â−45), (B.4.22a)

Ŝx = 1
2 â
†σyâ = i

2(â†−45â+45 − â†+45â−45), (B.4.22b)

Ŝy = 1
2 â
†σzâ = 1

2(â†+45â+45 − â†−45â−45), (B.4.22c)

Ŝz = 1
2 â
†σxâ = 1

2(â†+45â−45 + â†−45â+45), (B.4.22d)

and finally in the circularly polarized basis,

Ŝ0 = 1
2 â
†σ0â = 1

2(â†RâR + â†LâL), (B.4.23a)

Ŝx = 1
2 â
†σxâ = 1

2(â†RâL + â†LâR), (B.4.23b)

Ŝy = 1
2 â
†σyâ = i

2(â†LâR − â†RâL), (B.4.23c)

Ŝz = 1
2 â
†σzâ = 1

2(â†RâR − â†LâL). (B.4.23d)
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Figure B.3: Input output field operators from a beam splitter. Inspired by Christo-
pher Gerry (2005). Shown left is the general case of two input modes â0, â1 and two output
modes â2, â3 related via the reflection (r, r′) and transmission (t, t′) amplitudes of the
beam splitter. Shown right is the case relevant for losses where an input mode âin is
combined with vacuum âvac on a beamsplitter with power transmission η.

B.5 Losses

Loss is traditionally modelled by the use of a beamsplitter, where a percentage of
your signal is reflected and transmitted, see fig. B.3. In general the input mode â0 is
reflected and transmitted with amplitude coefficients (r, t). In order to preserve the
commutation relations the splitting of this mode must include the addition of some
other mode â1 with reflection and amplitude coefficients (r′, t′). The two output
modes will be related by a unitary matrix U according to

(
â2
â3

)
= U

(
â2
â3

)
, (B.5.24)

U =
(
t′ r

r′ t

)
. (B.5.25)

The reflection and transmission coefficients are constrained by the reciprocity
relations, see Ou and Mandel (1989), basically describing energy conservation, which
are simply,

|r| = |r′| , |t| = |t′| , (B.5.26a)
|r|2 + |t|2 = |r′|2 + |t′|2 = 1, (B.5.26b)
r∗t′ + t∗r′ = 0. (B.5.26c)

One could more formally write this transformation in terms of the unitary trans-
formation given by

(
â2
â3

)
= Û †

(
â0
â1

)
Û , (B.5.27)

Û = e
θ
2(â†0â1−â†q â0). (B.5.28)
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B.5.1 Inefficiency
Reflecting part of the signal of interest away to a unobserved port, is clearly a
loss of information. The transmitted portion is joined by uncorrelated vacuum in
replacement for what was lost. Typically we give the loss of signal in terms of
its equivalent power loss η, i.e. how much light power was lost from A to B. The
transformation matrix U is then given simply by

U =
( √

η
√

1− η
−√1− η √

η

)
. (B.5.29)

This is illustrated in fig. B.3, where the relation to power loss is apparent by
simply noting that the power is proportional to the mean excitation in the field
(where vacuum has a zero mean occupation), i.e.

〈nout〉 = η〈nin〉. (B.5.30)

Loss of a particular quadrature is modeled in exactly the same way, i.e. some
general quadrature X̂ experiencing a power loss of η will have the input-output
relation

X̂out = √η X̂in +
√

1− η X̂vac. (B.5.31)

Similarly the power spectral density will be modified accordingly,

Sout
XX = ηSin

XX + (1− η)Svac
XX . (B.5.32)

B.5.2 Homodyning visibility
In homodyning a field the finite overlap of the LO field will manifest itself as an
effective loss. The spatial overlap of two fields is typically measured by their visibility
V . The modematching efficiency turns out to be equivalent to a power loss and is
related to the visibility by

η = V2. (B.5.33)

To see how this comes about consider fig. B.4. Lets assume we have an input
field1 E ′1, which is being homodyned with an LO of field ELO. We can think of E ′1 as
being comprised of two orthogonal fields E1 and E2 where the former is in the same
spatial mode as ELO, whilst the latter in an orthogonal one. Thus E1 and ELO will
interfere perfectly when mixed equally on a 50:50 BS. If we detect a single output
of the BS on a diode the intensity we will measure will be given by,

I =
∣∣∣∣∣

1√
2
(
ELO + E

′

1

)∣∣∣∣∣

2

(B.5.34)

= (ILO + ηI1 + (1− η)I2 + √η |ELOE
∗
1 | 2 cosϕ) /2, (B.5.35)

1Here we will simply assume classical electric fields since the visibility is typically measured
with large classical fields. The results are directly transferable.
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Figure B.4: Spatial mismatch in homodyning. Theoretical representation of finite
modematching in the case of homodyne detection. A field E′1 is homodyned by the local
oscillator field ELO. We write the input field E′1 as composed of two spatially orthogonal
fields, E1 and E2, the former being in the spatial mode of ELO. The amount of power
each E1 and E2 fields contribute to the total field E′1 is given by η.

where we have written the intensities of the fields as Ii = |EiE∗i |. Furthermore we
have let the phase difference between fields E1 and E2 be given by ϕ. Note that
there are no interference terms between ELO and E2 since they are in different spatial
modes.

The interesting contribution in a homodyning signal is the interference term
|ELOE

∗
1 |, which clearly is reduced by √η . This reduction is the same you would get

given a power loss of η in the relevant field E1, see eq. (B.5.31). To measure this loss
factor we can simply measure the visibility, where one typically uses equal power in
both fields to maximize the contrast. Thus if we let, I ′1 = ILO we find that

I = ILO (1 + √η cosϕ) (B.5.36)

and thus the visibility is given by

V ≡ Imax − Imin

Imax + Imin
(B.5.37)

= √η , (B.5.38)

as was initially stated in eq. (B.5.33).

B.5.3 Cavity mode matching

The degree to which two modes, with time and spatially varying electric fields given
by E1 and E2, are similar, is given by the field overlap integral,

η = |∫ E∗1E2 dA|2
∫ |E1|2 dA

∫ |E2|2 dA
, (B.5.39)

over some plane A. If E1 is a gaussian beam with field distribution given by
eq. (D.1.1) and E2 a cavity mode given by eq. (D.3.31), then we can consider
eq. (B.5.39) to be the degree of cavity mode matching. To gauge the impact this
mode matching has on the cavity dynamics we present here an argument based on
a note by Klemens Hammerer.
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Suppose the intracavity field â is coupled to input mode âin with through port
1 with rate κ1. The residual extraneous cavity losses are associated with losses
to a single general field âex with rate κex. The full cavity decay rate is given by
κ = κ1 + κex. Thus the cavity mode evolution is given by

˙̂a = −κ2 â+ √κ1 âin + √κex âin. (B.5.40)

Suppose our we wish to probe this cavity mode with an experimental input field,
ŝin, which is not exactly mode matched to mode âin that couples to the cavity due to
a spatial mismatch as just described in eq. (B.5.39). We can think of âin as being in
a superposition of the input mode ŝin and an orthogonal mode ŝ⊥in with the fraction
of each given by η, i.e.

âin = √η ŝin +
√

1− η ŝ⊥in. (B.5.41)

This means that we can rewrite the cavity evolution equation as

˙̂a = −κ2 â+ √ηκ1 ŝin +
√

(1− η)κ1 ŝ
⊥
in + √κex âex (B.5.42)

= −κ2 â+ √ηκ1 ŝin +
√
κ′ex â

′
ex (B.5.43)

where we collect the orthogonal input mode together with the extraneous losses by
defining a new mode

â′ex =
√

(1− η)κ1/κ′ex ŝ
⊥
in +

√
κex/κ′ex âex (B.5.44)

coupled to the cavity mode with rate κ′ex = κ− ηκ1 = (1− η)κ1 + κex.
From the point of view of the cavity mode dynamics of eq. (B.5.43) the mode

matching reduces the importance of input field just as reduced incoupling efficiency
would. This is seen by expressing the cavity incoupling rate as a fraction ηc of the
total decay rate as κ1 = ηcκ. Then the term coupling to our input field of interest
reads √ηηcκ .

To determine the input-output relations for our input field we note that we can
define a mode orthogonal to âin as

â⊥in =
√

1− η ŝin −
√
η ŝ⊥in (B.5.45)

and thus express our input field as

ŝin = √η âin +
√

1− η â⊥in. (B.5.46)

Similarly, we can write the output mode of interest as having contributions from
the cavity output mode âout and some orthogonal output mode âout, i.e.

ŝout = √η âout +
√

1− η â⊥out. (B.5.47)
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The cavity output mode has the expected input-output relation âout = âin −
√
κ1 â

whereas the orthogonal input mode is completely reflected off the cavity such that
â⊥out = â⊥in. Thus we can write eq. (B.5.47) as

ŝout = √η âin +
√

1− η â⊥out −
√
ηηcκ â

= √η âin +
√

1− η â⊥in −
√
ηηcκ â

= ŝin −
√
ηηcκ â. (B.5.48)

So, from the point of view of the output field of interest reflected off the cavity, the
intracavity field is read out with a reduced efficiency equivalent to a less onesided
cavity.

A hasty interpretation may lead to the conclusion that the mode matching is
equivalent to intracavity losses from the point of the view of the input field. This
is not the case as highlighted by considering the two fundamentally different cases
η = 1/2, ηc = 1 and η = 1, ηc = 1/2. In the former case the cavity is perfectly
onesided and the mode matching is only 50 %, whereas in the latter case the mode
matching is perfect and the cavity is critically coupled.

To make use of our classical intuition, we consider the mean fields and take the
only relevant field to be our input field s̄in = √η āin +

√
1− η ā⊥in. The reflected

power is given by

|s̄out|2 = η|āin|2 (1− 2ηc)2 + (1− η)|ā⊥in|2, (B.5.49)

and thus the cases just discussed give

|s̄out|2 =




1
2 |āin|2 + 1

2 |ā⊥in|2, for η = 1/2, ηc = 1,
0, for η = 1, ηc = 1/2.

(B.5.50)

In the first case, half of the input mode is reflected and the remaining half interacts
with the cavity eventually being completely reflected. In the latter case the entire
input field interacts with the critically coupled cavity, being lost in the process.
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Appendix C

Measuring quantum cooperativity
with classical white noise

The method detailed here gives the fraction of quantum back-action comprising the
detected optical phase quadrature variance. This fraction is directly related to the
quantum cooperativity, by definition. Knowing the quantum back-action fraction
further allows one to infer the system readout rates through the logic shown in
fig. 6.4.

From the optical output quadratures of eq. (6.2), combined with a detection
efficiency of η we can write the power spectral densities of the detected quadratures
X̂ and Ŷ , be they from homodyning or direct detection, as

S̄XX = ηS̄in
XX + (1− η)S̄vac

XX

S̄Y Y = ηS̄in
Y Y + (1− η)S̄vac

Y Y + ηΓS̄QQ
(C.1.1)

where we have dropped the subscript i differentiating each system since eq. (C.1.1)
applies to each system in the same fashion. The fluctuations of the input optical
amplitude quadrature X̂ in are given by eq. (6.18) and the optical phase quadrature
Ŷ in is taken to be vacuum.

We can write the variance contribution from the system motion, ΓS̄QQ, in terms
of the fraction coming from the back-action (BA) S̄BA

Y Y and that coming from thermal
noise (TN) S̄TN

Y Y ,

ΓS̄QQ = S̄BA
Y Y (n̄WN) + S̄TN

Y Y , (C.1.2)
S̄BA
Y Y (n̄WN) = 2S̄BA

Y Y (0) (n̄WN + 1/2) , (C.1.3)

The back-action contribution is driven by S̄L,inXX and thus n̄WN + 1/2 as seen from
eq. (6.18). The fraction of this that is the quantum back-action we can write as
S̄BA
Y Y (0), where the implication it that this is for n̄WN = 0.
If the input optical phase quadrature is only vacuum, S̄in

Y Y = 1/2, then input-
output relations of eq. (C.1.1) can be written as

S̄XX(n̄WN) = ηn̄WN + 1/2, (C.1.4a)
S̄Y Y (n̄WN) = η

[
2S̄BA

Y Y (0)(n̄WN + 1/2) + TN
]

+ 1/2. (C.1.4b)
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From eq. (C.1.4) it is clear that experimentally, to be able to calculate the back
action to thermal noise ratio under a particular set of operating conditions, one
needs only to measure the

i) response of the system to SN drive (i.e. vacuum),

ii) response of the system to some modulation n̄WN ,

iii) used modulation n̄WN .

However, typically, at least for this work, the detection efficiency η is needed to
accurately determine n̄WN . Since S̄XX(n̄WN)− S̄XX(n̄WN = 0) = ηn̄WN we simply
measure S̄XX with and without added white noise. If we then divide out the mea-
sured detection efficiency we are left with n̄WN to within the detection efficiency
error given the spectral measurements are appropriately averaged.

If we measure S̄Y Y (n̄WN) and subtract the constant shot noise factor (1/2) we
are left with two equations defined here as A and B, given by

S̄Y Y (n̄WN)− 1/2 ≡ B = η
[
2S̄BA

Y Y (0)(n̄WN + 1/2) + TN
]
, (C.1.5a)

S̄Y Y (n̄WN = 0)− 1/2 ≡ A = η
[
S̄BA
Y Y (0) + TN

]
. (C.1.5b)

From this set of equations the ratio of quantum back-action (QBA) to thermal noise
(TN) can be found as

QBA
TN = S̄BA

Y Y (0)
S̄TN
Y Y

= B − A
(2n̄WN + 1)A−B. (C.1.6)

This fraction can – since we can always subtract the shot noise contribution – be
measured at any Fourier frequency. However in practice the best signal to noise is
found on-resonance with the system being probed, or by comparing spectral areas.



Appendix D

Gaussian beams and cavity
formulae

D.1 Basic formulae Gaussian beam
A generic radially symmetric Gaussian beam travelling along z is described by the
electric field profile given by,

E(r, z) = E0
w0

w(z) exp
(
−r2

w2(z)

)
exp

(
ik

r2

2R(z)

)
exp(i [kz − φ(z)]) (D.1.1)

where the waist (radius) w(z), wavefront curvature R(z) and Gouy Phase φ(z)
are given at distance of z from the focus by,

w(z) = w0

√
1 +

(
z

zR

)2
, (D.1.2)

R(z) = z + z2
R

z
, (D.1.3)

φ(z) = arctan(z/zR). (D.1.4)

At beam focus z = 0 the waist is minimal and denoted by w0 ≡ w(0). The
wavefront curvature is infinite, i.e. plane. Common to both eqs. (D.1.2) and (D.1.3)
is the rayleigh length zR. This is the characteristic length scale over which the
Gaussian beam parameters change. It is related to the waist and the light wavelength
λ via,

zR = πw2
0

λ
. (D.1.5)

Clear from this relationship is the fact that if we wish to focus a beam to a small
waist it will diverge over a very short distance. The divergence angle is given by

θ = w0

zR
= λ

πw0
. (D.1.6)
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The intensity of a Gaussian beam averaged over an optical period is given by

I(r, z) = ε0c

2 |E(r, z)|2 = 2P
πw2(z) exp

(
−2r2

w2(z)

)
, (D.1.7)

where the total power P through plane A perpendicular to the direction of prop-
agation z is given by,

P =
∫

A
I(r, z) dA. (D.1.8)

D.2 Aperture effects.
In general the effect of a Gaussian beam passing through a 2D aperture is a com-
plex diffraction problem. Here we will give an oversimplified treatment, which is
nonetheless still valuable to estimate the order of magnitude of a potential issue.

The optimal waist for minimal clipping loss in any cell, which is l long, can be
easily shown to be given by the requirement that zR = l/2. It is independent of
the aperture size and whether it is square or circular. For a cell of 10 mm this is a
waist of w0 ' 116 µm. This sets the natural relevant scale of waists to consider, but
may not represent the practical optimal. Some amount of clipping losses are always
tolerable and a larger waist may be desirable, for example if a large filling factor,
described in appendix D.2.3, is required.

Probing a membrane motion is best done at an anti-node of modal motion. The
wavelength of a, say, (1, 2) mode on a L = 500 µm sized membrane is ∼ L. We wish
to probe the motion ideally at a point of maximum displacement. In practice that
means we need a spot size on the membrane roughly L/10. This gives the natural
scale for the relevant cavity waist of ∼ 50 µm.

D.2.1 Circular aperture
Mention clipping radial aperture, power in given radius. relevant for light on mirror.
has to be good over some distance. With high finesse this is a necessary consideration

Passing a Gaussian beam of waist radius w concentrically through a circular
aperture or radius R results in beam clipping and diffraction. The power transmitted
can be easily calculated from eq. (D.1.8) in the general case as

Pout =
∫ 2π

0

∫ R

0
I(r, z)r dr dθ (D.2.9)

= Pin

(
1− exp

(
−2R2

w2

))
. (D.2.10)

This also describes the amount of power which is contained within a given radius.
For example, the power contained within a single waist R = w is 1 − e−2 ' 86 %.
This is known as the 1/e2 waist for obvious reasons and is a good measure for the
extent of a beam.
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This consideration is important when considering high finesse mirrors. In such
mirrors we typically are concerned with losses on the order of ∼ 10 ppm, but in
some circumstances care about ∼ 1 ppm. Loss on these orders correspond to being
concerned about the condition of a mirror on the scales of R ' 2.4w and R '
2.6w respectively. This corresponds to a region of about 105 µm in radius (210 µm
diameter) for a cavity waist (radius) of 40 µm. From the perspective of added losses
this small, but non-negligible, region must be devoid of major defects and distortions.
If the waist is larger, as it would be for any mirror not placed at the cavity waist,
this region is bigger.

D.2.2 Square aperture
The passage of a Gaussian beam through a square aperture is also of interest. This
is relevant for both the membrane and the atomic spins. The membrane is square
and suspended from an opaque Si frame. This creates a naturally sharp aperture;
sharp and very (� λ) thin.

The clipping of a beam through a point (x0, y0) on a square aperture centered
on (0, 0), is given by

Pout =
∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2
I(x, y) dx dy (D.2.11)

= Pin erf
(
Lx − 2x0√

2w(z)

)
erf

(
Ly − 2y0√

2w(z)

)
. (D.2.12)

where the error function erf(·) is defined as,

erf(x) = 2√
π

∫ x

0
exp

(
−t2

)
dx. (D.2.13)

Membrane aperture

Let us first see the effect from the frame aperture of a square membrane of side length
L ' 500 µm. Note first that since the membrane is embedded in a high finesse cavity
where the relevant loss scale is ∼ 1 ppm to 10 ppm like that of appendix D.2.1.

The plano-concave cavity used for the work here had a cavity waist1 of 40 µm,
which would mean that we would not see additional losses due to this effect, if we
probed right in the center. This clipping as a function of the cavity waist is shown
in fig. D.1 for a selection of aperture side lengths.

However, if we were to move away from the center this effect becomes important.
In practice we probed the (1, 2) mode at an antinode. This entails an offset of ∼ L/4
in either x or y. This also adds negligible (but much less so) loss as can be seen in
fig. D.1.

1corresponding to a Rayleigh length of zR ∼ 6 mm and our membrane was always placed close
to this waist in units of zR.
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Figure D.1: Power clipping loss for a beam of varying waist (radius) through a square
aperture of side length L. The aperture is assumed to be opaque outside the aperture.
Diffraction is not taken into account. Left: Beam passing through the middle of the
square. Right: Beam passing through the square with an offset (parallel to edge) of 10 %
of the side length L from the center.

Cell aperture

For the spin cell the clipping loss is of much less importance as it is not embedded
in a cavity, let alone a high finesse one. For the cell clipping is more a question of
competing interests. The trade-off is between the filling fraction – i.e. how much of
the cell volume your optical mode sees – and the losses due to clipping. The former
is discussed in appendix D.2.3. These obviously scale inversely with the beam waist.

For the experiments reported in this thesis a beam waist through the cell of
55 µm was used. The clipping loss resulting from this choice is negligible as is clear
from fig. D.1.

Waist characterization

The predictable power clipping of a Gaussian beam by a straight edge is experi-
mentally used to characterize the beam waist. This is easy to see from eq. (D.2.12),
where we could simply just choose to clip the beam only from one side.

Pout =
∫ ∞

−∞

∫ X

−∞
I(x, y) dx dy (D.2.14)

Doing this with, say, a razor blade (or something with a well defined edge com-
pared to the expected waist size) allows one to measure the waist along a partic-
ular axis. This is known as the knife-edge technique and it can be shown using
eq. (D.2.14) that the distance δX10−90 between blocking 10 % and 90 % of the beam
is related to the waist (radius) via,

wx(z) = δX10−90

1.28 . (D.2.15)
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D.2.3 Filling factor

Consider a probing beam passing through the atomic cell microchannel. If we define
the filling fraction FF to be proportional to the volume of the beam Vbeam, truncated
at a waist on either side, probing the channel of volume Vchannel we have

FF ≡ Vbeam
Vchannel

(D.2.16)

If we consider a rectangular channel of length l and opening side length L,
probed by a Gaussian beam whose extent is approximated by the beam waist w(z),
this filling fraction defined in eq. (D.2.16) is given by,

FF = 1
L2l

∫ l/2

−l/2
πw2(z) dz = πw2

0
L2

(
1
2 + a2

6

)
, (D.2.17)

a = l/2
zR
. (D.2.18)

The point z = 0 is chosen to be the center of the channel and the focal point of the
beam.

Had we chosen to work with a cylindrical channel the filling factor would simply
be 4/π ' 1.27 times larger. This extra 27 % is quite significant and the feasibility
of a cylindrical cell is currently being considered.

In principle one could reshape the beam to more efficiently fill the channel.
Reshaping the beam into a top hat shape is one such possibility.

D.3 Cavity formulae
Here we state simple results about the spatial nature of cavity modes. A larger
overview, and derivations, can be found in Milonni P.W. (2010).

For a basic two mirror Fabry-Pérot cavity we define a useful parameter gi for
each mirror i. If each mirror has radius of curvature given by Ri and the cavity is
L long, then

gi = 1− L

Ri

. (D.3.19)

A stable cavity requires that 0 ≤ g1g2 ≤ 1, and concave mirrors are defined to have
positive radius of curvature whilst convex mirrors have negative radius of curvature.
Flat mirrors have a infinite radius of curvature.

The waist of the TEM00 mode, see eq. (D.3.31), defined by the cavity mirrors
will in general be,

w0 =
√
λL

π

[
g1g2 (1− g1g2)

(g1 + g2 − 2g1g2)

]1/4

(D.3.20)
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Figure D.2: Cavity waist with cavity length. Plano-concave cavity waist according
to eq. (D.3.21) for a curved mirror with a 25 mm radius of curvature and a varied cavity
length.

Where λ is the wavelength of light. In the specific (and very relevant) case of a
plano-concave cavity we have g1 = 1 (plano) and g2 = 1−L/R (concave with radius
of curvature R). Thus eq. (D.3.20) simplifies to,

w0 =
√
λL

π

(
R

L
− 1

)1/4
, (D.3.21)

and is shown for a fig. D.2 as a function of cavity length.
For cavity lengths much smaller than radius of curvature (or lengths very close

to R), we can make the following approximation for the cavity waist,

w0 ≈ 36.45 µm
(

L

1 mm

)1/4 ( R

25 mm

)1/4 ( λ

852 nm

)1/2

. (D.3.22)

Since the cavity waist is symmetric around L = R/2, eq. (D.3.22) also describes
the cavity waist for very long cavities where L = R −∆L, ∀∆L � L. In this case
simply replace the L in eq. (D.3.22) with ∆L.

What about the size of the spot on the cavity mirrors? These are given by

w1 =
√
λL

π

[
g2

g1 (1− g1g2)

]1/4

, (D.3.23)

w2 =
√
λL

π

[
g1

g2 (1− g1g2)

]1/4

. (D.3.24)

In the case of a plano-concave cavity w1 = w0 and the waist on the concave mirror
is given by

w2 =
√
λL

π

[
L

R

(
1− L

R

)]−1/4
. (D.3.25)

In the very short cavity regime, L� R, we simply have w2 ≈ w1. In the regime of
a very long L ≈ R cavity, just as above in eq. (D.3.22), we can approximately write
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L = R−∆L. The spot size on the mirror is then

w2 = 182.25 µm
(

∆L
1 mm

)1/4 (
R

25 mm

)1/4 ( λ

852 nm

)1/2

. (D.3.26)

In general, the position of the waist wrt to each mirror i is given by zi, which is
given by

z1 = −Lg2(1− g1)
g1 + g2 − 2g1g2

(D.3.27)

z2 = z1 + L. (D.3.28)

The location of the waist for a plano-concave cavity will always be on the plano
mirror, as is easily checked from eq. (D.3.28). In a confocal cavity where the mirrors
are identical, g1 = g2, the cavity waist is located at L/2, as would naively be
expected.

The TEM00 modes of the cavity have a frequency given by

νq = FSR
(
q + arccos(g1g2)

π

)
(D.3.29)

where the free spectral range FSR ≡ c/2L gives the frequency difference between
two consecutive longitudinal modes q and q + 1.

The remaining TEM modes, denoted by indexes m,n see eq. (D.3.31), have
frequencies given by,

νqmn = FSR
[
q + 1

π
(m+ n+ 1) arccos(√g1g2 )

]
. (D.3.30)

Clearly the spacing between difference transverse modes depends on g1 and g2. One
can use this fact to determine these if required.

Modes of the Fabry-Pérot cavity are given by the Hermite-Gaussian modes.
These TEM modes have electric field distributions given by Milonni P.W. (2010)
as

Emn(x, y, z) = E0
w(0)
w(z)Hm

(√
2 x

w(z)

)
Hn

( √
2 y

wy(z)

)
exp

(
−(x2 + y2)
w2(z)

)

exp
(
ik
x2 + y2

2R(z)

)
exp

(
i
[
kz − (m+ n+ 1) arctan

(
z

z0

)])

(D.3.31)
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Appendix E

Mathematical methods

E.1 Rotating Frame
Moving to the rotating frame consists of making a unitary transformation of the full
Hamiltonian Ĥ according to the matrix Û by

Ĥ → Û †ĤÛ − Â, Û = exp
(
−iÂt/~

)
(E.1.1)

To do this in practice it is useful to know the Baker-Hausdorf lemma, which by
Taylor expansion, states

eiλÂB̂e−iλÂ = B̂ + iλ
[
Â, B̂

]
+ (iλ)2

2!
[
Â,
[
Â, B̂

]]
+ ... (E.1.2)

An very relevant example is the effect of a transforming into a rotating frame
(RF) at the laser frequency ωL. Suppose we are interested in the effect of this
transformation on a hamiltonian of the form

Ĥ = ~ωcâ†(t)â(t) + i~
(
â(t)− â†(t)

)
(E.1.3)

where the mode has the time dependence â(t). This time dependence can often
conveniently be broken down into a fast oscillatory dynamic and a (typically much
slower) residual time depedence. For this mode â†(t) it is very clear that is will
have dynamics on a timescale of 1/ωc. With this intuition in mind we can write
â(t) = ˜̂a(t)e−iωct where we have pulled out the fast dynamics and write the remaining
slow dynamics as ˜̂a(t).

Thus using Â = ~ωLâ†(t)â(t) gives

Ĥ → −~∆â†â+ i~
(
â− â†

)
(E.1.4)

where we have written â ≡ ˜̂a(t). This notation of neglecting the tilde and resid-
ual time dependence symbol (t) is a notational shorthand that can sometimes be
confusing, but allows for more easily digestible equations. When calculating the
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dynamics of the operator it should be clear from which hamiltonian is being used
which operator is being considered. If we have

˙̂a = i

~
[Ĥ, â] (E.1.5)

then if Ĥ is the original hamiltonian then ȧ means ˙̂a(t). Whereas if Ĥ is the
hamiltonian in the rotating frame, then ȧ means ˙̂̃a(t).

E.2 Useful algebraic relations
Cavity lorentzian

In calculations of cavity dynamics the real and imaginary components of the cavity
lorentzian given by

L(Ω) = κ/2
(∆̄− Ω) + iκ/2

(E.2.6)

often appear. The following relations are useful in simplifying expressions

2∆̄
(iΩ + κ/2)2 + ∆̄2

= 1
κ/2 (L(Ω) + L∗(−Ω)) (E.2.7a)

iΩ + κ/2
(iΩ + κ/2)2 + ∆̄2

= i

κ
(L(Ω)− L∗(−Ω)) . (E.2.7b)

Atomic operators

When manipulating atomic operators the following relations are very handy to keep
in mind.

σ̂ijσ̂kl = σ̂ilδjk

[σ̂ij, σ̂kl] = σ̂ilδjk − σ̂kjδli.
(E.2.8)

Jacobi-Anger expansion

The Jacobi-Anger expansion is given by

eiβ sin θ =
∞∑

n=−∞
Jn(β)einθ, (E.2.9)

where Jn is the nth Bessel function of the first kind.

Parsevals Theorem

Parsevals theorem links the energy in a time domain signal to that contained in the
spectral domain. For some time domain signal Q̂(t) we have

lim
τ→∞

∫ τ/2

−τ/2
〈Q̂†(t)Q̂(t)〉 dt = 1

2π

∫ ∞

−∞
SQQ(Ω)dΩ

2π (E.2.10)



Appendix F

Effective atomic Hamiltonian and
decay

Here we will use the effective operator formalism described in Reiter and Sørensen
(2012) to derive the effective Hamiltonian and decay rates for the spin 1/2 toy model
of section 5.5 used to describe the atomic spin ensemble. This formalism is employed
since it readily generalizable to the case of many atomic levels, which our cesium
atoms indeed have. The extended structure our cesium ground state manifold is
not treated in (nor is it within the scope of) this work, but currently appears to be
relevant for future work.

F.1 Effective operator formalism

Suppose there are various processes responsible for decay from the excited state
manifold to the ground state. Associating a Lindblad operator L̂k to each such a
process we can write the dynamics of the system through the master equation,

˙̂ρ = − i
~

[Ĥ, ρ̂] +
∑

k

[
L̂kρ̂L̂

†
k −

1
2
(
L̂†kL̂kρ̂+ ρ̂L̂†kL̂k

)]
, (F.1.1)

where the systems density matrix is given ρ̂ and the system Hamiltonian is Ĥ. We
have assumed (as is so often the case) that the dynamics of the system is Markovian.

Eliminating the excited states, as described and justified in section 5.5, and
through perturbation theory of ρ̂, one finds an effective master equation of the form

˙̂ρ = − i
~

[Ĥeff, ρ̂] +
∑

k

[
L̂k,effρ̂L̂

†
k,eff −

1
2
(
L̂†k,effL̂k,effρ̂+ ρ̂L̂†k,effL̂k,eff

)]
, (F.1.2)

where the effective Hamiltonian Ĥeff will given some effective coherent coupling rate
geff and the effective Lindblad operators L̂k,eff will yield some effective dissipation
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rate γeff. These operators are given by

Ĥeff = −1
2 V̂−

(
Ĥ−1

NH + Ĥ−1,†
NH

)
V̂+ + Ĥg, (F.1.3a)

ĤNH = Ĥe −
i

2
∑

k

L̂†kL̂k, (F.1.3b)

L̂k,eff = L̂kĤ−1
NHV̂+, (F.1.3c)

where ĤNH is the non-Hermitian part of the Hamiltonian responsible for decay.
Theoretically we construct our Hamiltonian from the subspaces of the ground,

Ĥg, and excited state, Ĥe, manifolds. Then we add perturbative excitation V̂+ and
de-excitation V̂− operators. Our Hamiltonian is then given by

Ĥ = Ĥg + Ĥe + V̂+ + V̂−. (F.1.4)

These subspace Hamiltonians are given by projection operators acting on the full
Hamiltonian. For example, the ground state subspace is given by Ĥg ≡ P̂gĤP̂g,
with P̂g = σ̂11 + σ̂22. Similarly for the excited state we define P̂e = σ̂33 + σ̂44.
The perturbative excitation operator V̂+ ≡ P̂eĤP̂g and de-excitation operator V̂− ≡
P̂gĤP̂e couple the ground and excited subspaces.

F.2 Modified spin half toy model
The coherent coupling and dissipation desired in a modified spin half model can
be motivated through terms of eq. (F.1.3) in the following handwaving fashion. In
eq. (F.1.3a) the coherent interaction V̂+ brings us into the excited state manifold,
in which we undergo evolution before being coherently brought back by V̂−. The
competing process leading to decay happens when, following the evolution in the
excited state manifold, we are brought back to the ground state manifold by decay
via L̂k,eff.

Recalling our toy model Hamiltonian from section 5.5, which was given by

Ĥ = ~∆ (σ̂33 + σ̂44) + ~g
(
â†Rσ̂14 + â†Lσ̂23 + h.c.

)
(F.2.5)

we can thus easily identify the following mapping (letting ~ = 1).

Ĥg = 0, (F.2.6a)
Ĥe = ∆ (σ̂33 + σ̂44) , (F.2.6b)
V̂+ = g (âRσ̂41 + âLσ̂32) , (F.2.6c)
V̂− = g

(
â†Rσ̂14 + â†Lσ̂23

)
. (F.2.6d)

(F.2.6e)

Now let us consider the situation where the excited states decay due to sponta-
neous emission at a rate given by γ. Lets assume that occurs at the same rate for
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all levels. In that case we write our Lindblad operators as,

L̂14 = √γ σ̂14, (F.2.7a)
L̂13 = √γ σ̂13, (F.2.7b)
L̂24 = √γ σ̂24, (F.2.7c)
L̂23 = √γ σ̂23. (F.2.7d)

We can now readily calculate the effective operators of eq. (F.1.3)1. First off,
the non–Hermitian part of the Hamiltonian is,

ĤNH = ∆(σ̂33 + σ̂44)− iγ

2 (σ̂33 + σ̂44)

= (∆− iγ/2)(σ̂33 + σ̂44), (F.2.8a)

Ĥ−1
NH = σ̂33 + σ̂44

∆− iγ/2 , (F.2.8b)

∴ Ĥ−1
NH + (Ĥ−1

NH)† = (σ̂33 + σ̂44)
(

1
∆− iγ/2 + 1

∆ + iγ/2

)

= (σ̂33 + σ̂44) 2∆
∆2 + (γ/2)2 . (F.2.8c)

The effective Hamiltonian is then

Ĥeff = −1
2 V̂−

(
Ĥ−1

NH + Ĥ−1,†
NH

)
V̂+ + Ĥg

= g2∆
∆2 + (γ/2)2 (â†Rσ̂14 + â†Lσ̂23)(σ̂33 + σ̂44)(âRσ̂41 + âLσ̂32)

= geff(â†RâRσ̂11 + â†LâLσ̂22),
= geff(Ŝ0Ĵ0 − ŜzĴz)

(F.2.9)

where we defined the effective coupling rate

geff ≡
g2∆

∆2 + (γ/2)2 , (F.2.10)

and used the relation of the spin operators defined in eq. (5.21) for a quantization
axis along z.

Similarly, we also calculate the effective Lindblad operators using eq. (F.1.3)
which are,

L̂eff
14 =

√
γ g

∆− iγ/2 σ̂14(σ̂33 + σ̂44)(âRσ̂41 + âLσ̂32)

= √γeff σ̂11âR (F.2.11a)
L̂eff

13 = √γeff σ̂12âL (F.2.11b)
L̂eff

24 = √γeff σ̂21âR (F.2.11c)
L̂eff

23 = √γeff σ̂22âL. (F.2.11d)

1Particularily useful expressions in this exercise are those of eq. (E.2.8).
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Above we have written the effective dissipation rate due to spontaneous emission as

√
γeff =

√
γ g

∆− iγ/2 . (F.2.12)

The above mathematical acrobatics followed from density matrix approach in
the Schrödinger picture. For the dynamics of the system, we would like to convert
this to the Heisenberg picture. We can relate the effective parameters found to
the Heisenberg–Langevin equation of eq. (2.62), which in terms of these Lindblad
operators is given by (written here in terms of the atomic system operators),

˙̂σij = i

~
[Ĥ, σ̂ij] +

∑

k

(L̂†k/2 + F̂ †k )[σ̂ij, L̂k]− [σ̂ij, L̂†k](L̂k/2 + F̂k) (F.2.13)

= i

~
[Ĥ, σ̂ij] +

∑

k

1
2(2L̂†kσ̂ijL̂k − L̂†kL̂kσ̂ij − σ̂ijL̂†kL̂k)
︸ ︷︷ ︸

dissipation

+ F̂ †k [σ̂ij, L̂k]− [σ̂ij, L̂†k]F̂k︸ ︷︷ ︸
F̂ij

(F.2.14)

Here F̂k is the Langevin force as a result of dissipation through channel L̂k.
In practice it is easier to calculate the dissipation using the terms grouped in

the second expression of eq. (F.2.13) and simply ignore the detailed dependence of
the effective Langevin force F̂ij. In the end of the day we will anyway care about
the Langevin force correlator of eq. (2.59), which can be conveniently calculated
from the fluctuation dissipation theorem of eq. (2.60). The dissipation part for each
atomic operator is given by,

˙̂σ11 : γeff(â†LâLσ̂22 − â†RâRσ̂11), (F.2.15a)
˙̂σ22 : γeff(â†RâRσ̂11 − â†LâLσ̂22), (F.2.15b)
˙̂σ12 : −2γeffσ̂12Ŝ0, (F.2.15c)
˙̂σ21 : −2γeffσ̂21Ŝ0, (F.2.15d)

which means that the contributions to the spin operators in our chosen quantization
axis (along our probe) along z are

˙̂
Jx : −2γeffŜ0Ĵx, (F.2.16a)
˙̂
Jy : −2γeffŜ0Ĵy, (F.2.16b)
˙̂
Jz : −2γeff(Ŝ0Ĵz + ŜzĴ0), (F.2.16c)
˙̂
J0 : 0. (F.2.16d)

F.3 Probe induced broadening
We now change our quantization axis to the x direction while keeping the probe
direction to be along z. This is the experimentally relevant case for the setup in
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section 5.1. Cyclically permuting the spin operators as in section 5.7, we now have
dissipation contributions of

˙̂
Jx : −2γeff(Ŝ0Ĵx + ŜzĴ0), (F.3.17a)
˙̂
Jy : −2γeffŜ0Ĵy, (F.3.17b)
˙̂
Jz : −2γeffŜ0Ĵz, (F.3.17c)
˙̂
J0 : 0. (F.3.17d)

If we make the Holstein-Primakoff approximation, as described in section 5.10.1, we
can write the effective spin quadratures as

˙̂
QS : −2γeffS0Q̂S = γprobe

2 Q̂S, (F.3.18a)
˙̂
PS : −2γeffS0P̂S = γprobe

2 P̂S, (F.3.18b)

where we have also taken the probe field to have a large classical nature, writing the
optical Stokes component Ŝ0 = S0 and absorbing it into γprobe.

These equations are within the rotating wave approximation thus why the dis-
sipation is shared between the spin quadratures instead of collected in P̂S at the
full rate γprobe. The S0 Stokes component is related to the mean probe flux α2 by
S0 = α2.
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Appendix G

Pulsed oscillator response and
optical readout

G.1 Demodulated oscillator response
Since the only quantity connecting the oscillators is the common back-action driving
force, their dynamics can be solved for separately as implied by their uncoupled
equations of motion, eq. (6.11). Since all local oscillators are running continuously,
the time-domain solution of each oscillator i is

Qi(t) =
∫ t

−∞
dt′eMi(t−t′)Fi(t′). (G.1.1)

Demodulating this time domain response according to its harmonic components
q(Ω, t) ∈ {cos(Ωt), sin(Ωt)} over the finite interval t ∈ [0, T ] gives

Qq,i(ω) ≡ 2√
T

∫ T

0
dtq(Ω, t)Qi(t) = 2√

T

∫ T

−∞
dt′uq,i(Ω, t′)Fi(t′), (G.1.2)

where the subscript indicates the harmonic component q = cos(sin). Note that in
the second equality of eq. (G.1.2) we reversed the order of integration dt dt′ → dt′ dt,
and introduced the oscillator filter functions

uq,i(Ω, t′) ≡
∫ T

max{t′,0}
dtq(Ω, t)eMi(t−t′). (G.1.3)

These mode functions reflect the point of view that the oscillator dynamics filters
the output quadrature q(Ω, t) resulting in (a matrix of) effective oscillator filter
functions uq,i(Ω, t′). To determine these, it is useful to note that the matrix of
response functions in eq. (G.1.3) can be evaluated using eq. (6.12) to find,

eMiτ = e−γiτ/2
(

cos(Ωiτ) sin(Ωiτ)
− sin(Ωiτ) cos(Ωiτ)

)
. (G.1.4)

The (1,2) element of the matrix eq. (G.1.4) is the response function that maps
the optical back-action force into oscillator position response and is related to the
oscillator susceptibility χi.
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Thus, being an important example, we explicitly evaluate the (1,2) matrix el-
ement of uq,i(Ω, t′). Choosing the output harmonic cosine quadrature q(Ω, t) =
cos(Ωt) as an example gives

[ucos,i(Ω, t′)]1,2 =
∫ T

max{t′,0}
dt cos(Ωt)e−γi(t−t′)/2 sin(Ωi(t− t′))

= gi(Ω, t′) + gi(−Ω, t′),
(G.1.5)

where we have defined

gi(Ω, t′) ≡ −
1
2

1
(γi/2)2 + (Ω− Ωi)2 ·

[
eγi min{t′,0}/2

(
γi
2 sin (Ωt′ − [(Ω− Ωi) min{t′, 0}])

+ (Ω− Ωi) cos(Ωt′ − [(Ω− Ωi) min{t′, 0}])
)

− e−γi(T−t′)/2
(
γi
2 sin([Ω− Ωi]T + Ωit

′)

+ (Ω− Ωi) cos([Ω− Ωi]T + Ωit
′)
)]
.

(G.1.6)

From eqs. (G.1.5) and (G.1.6) we note that if ΩM = −ΩS, γM = γS, then

⇒ [uc,M(Ω, t′)]1,2 = −[uc,S(Ω, t′)]1,2, (G.1.7)

as expected for two identical oscillators in the positive-negative (mechanics-spins)
mass configuration, ΩS = −ΩM . If on the other hand γM 6= γS, the property of
eq. (G.1.7) will fail to hold for a general (Ω, t′). In the relevant regime of large
quality factors Qi ≡ |Ωi|/γi � 1 we have

[uc,i(Ω, t′)]1,2 ≈ gi(sgn(Ωi)|Ω|, t′). (G.1.8)

If we evaluate eq. (G.1.8) for on mechanical resonance with both systems, i.e. at
Ω = ΩM = |ΩS|, we find that

[uc,i(|Ωi|, t′)]1,2 ≈ −
1
γi

[
eγi min{t′,0}/2 − e−γi(T−t′)/2

]
sin(Ωit

′). (G.1.9)

G.2 Optical readout of the oscillator cascade
We now consider the optical readout of the oscillator cascade, which can be de-
termined by combining the solution for the oscillator responses (G.1.2) with the
input-output relation (6.17). Defining cosine and sine quadratures of Ŷ out analo-
gously to (G.1.2),

Ŷ
out(in)

(q) (Ω) ≡ 2√
T

∫ T

0
dtq(Ω, t)Ŷ out(in)(t), (G.2.10)
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which is normalized to shot noise units when considering variances, we find for the
phase quadrature of light that

Ŷ out
(q) (Ω) = −Ŷ in

(q)(Ω) + 2√
T

(
1
0

)T
·

T∫

−∞

dt′

√η1η2

√
ΓS uq,S(Ω, t′)

[
−√γS F̂ th,in

S (t′)−
√

ΓS F̂ L,in
S (t′)

]

− √η2

√
ΓM uq,M(Ω, t′)

[
− √γM F̂ th,in

M

−
√

ΓM
(
−√η1 F̂

L,in
S (t′) +

√
1− η1 F̂

v,in(t′)
) ]

.

(G.2.11)

eq. (G.2.11) is the desired solution of the equations considered here, and all moments
of Ŷ out

(q) (Ω) can be calculated from it once the state of the input operators has been
specified.
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Appendix H

General optomechanical model

H.1 Derivation
The optomechanical quantum Heisenberg-Langevin equations of eq. (4.26) in the
Fourier domain can in general be solved for a particular cavity input port quadra-
tures. Re-writing eq. (4.26) in terms of block matrices then we find
(
Rᵀ(φ) 0

0 1

)(
A B

Bᵀ χ(Ω)

)(
R(φ) 0

0 1

)(
X̂(Ω)
Q̂M(Ω)

)
=
(√

κ1 X̂in
M(Ω) + √κ2 V̂

in(Ω)√
γM0 f̂(Ω)

)

(H.1.1)

where R(φ) is the 2D rotation matrix defined in eq. (2.84). The remaining elements
are

A =
(
iΩ + κ/2 ∆̄
−∆̄ iΩ + κ/2

)
, B =

(
0
−2g

)
, (H.1.2)

X̂ in
M(Ω) =

(
X̂ in
M(Ω)

Ŷ in
M (Ω)

)
, X̂(Ω) =

(
X̂(Ω)
Ŷ (Ω)

)
. (H.1.3)

This equation is easily inverted from which we find that the intracavity field
quadratures X̂ and mechanical position quadrature Q̂M are given by
(
X̂(Ω)
Q̂M(Ω)

)
=
(
Rᵀ(φ) 0

0 1

)(
A B

Bᵀ χ−1(Ω)

)−1 (
R(φ) 0

0 1

)(√
κ1 X̂

M
L,in(Ω) + √κ2 V̂

in(Ω)√
γM0 f̂(Ω).

)

(H.1.4)

The inverse Block matrix can be expressed in two equivalent forms, namely
(
A B

Bᵀ χ−1(Ω)

)−1

=
(
A−1 +A−1BS−1BᵀA−1 −A−1BS−1

−S−1BᵀA−1 S−1

)
(H.1.5)

=
(

T−1 −T−1Bχ(Ω)
−χ(Ω)BᵀT−1 χ(Ω) + χ(Ω)BᵀT−1Bχ(Ω),

)
(H.1.6)
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where we have made use of the Schur complements S and T . These are given by

S = χ(Ω)−BᵀA−1B = χ−1(Ω) + ΩM,0
κΓM∆̄

(iΩ + κ/2)2 + ∆̄2
≡ χ−1

eff (Ω), (H.1.7)

T = A−Bχ(Ω)Bᵀ =
(

iΩ + κ/2 ∆̄
−∆̄− κΓMχ(Ω) iΩ + κ/2

)
, (H.1.8)

where the effective susceptibility χeff is modified by dynamical back-action. The
additional term is defined in eq. (4.30) and discussed in sections 4.1.4 and 4.1.4.
The effective mechanical susceptibility now includes optically induced mechanical
frequency shift and additional damping.

The intracavity light quadratures now follow directly from eqs. (H.1.5) and (H.1.6)
and are

X̂(Ω) = R(φ)T−1Rᵀ(φ)
(√

κ1 X̂
in
M(Ω) + √κ2 V̂in(Ω)

)

+
√
γM0κΓM χeff(Ω)ΩM,0

ΩM

R(φ)A−1F̂ (Ω),
(H.1.9)

F̂ (Ω) ≡
(
0, f̂(Ω)

)ᵀ
. (H.1.10)

Using the cavity input-output equation for the field quadratures reflecting off port
1 of the cavity we have

X̂out
M (Ω) = −X̂ in

M(Ω) + √κ1 X̂(Ω)
= R(φ)(κ1T

−1 − 1)Rᵀ(φ)X̂ in
M(Ω) + √κ1κ2 R(φ)T−1Rᵀ(φ)V̂in(Ω)

+
√
κΓMκ1γM0 χeff(Ω)ΩM,0

ΩM

R(φ)A−1F̂ (Ω)

≡M(Ω)X̂ in
M(Ω) +V(Ω)V̂in(Ω) +F(Ω)F̂ (Ω). (H.1.11)

This is the general input-output relation used for the optomechanical mechanical
subsystem and allows for a general intracavity field phase. Through eq. (H.1.11) we
define the transfer matrices for the optomechanicsM(Ω), vacuum fields introduced
due to loss V(Ω), and the thermal noise driving the mechanics F(Ω).

The optomechanical transfer matrix M(Ω) filtering the input quadratures in
eq. (H.1.11) is given by

M(Ω) = κ1

Dc(Ω)
χ(Ω)
χeff(Ω)

ΩM,0

ΩM

R(φ)
(

iΩ + κ/2 −∆̄
∆̄ + κΓMχ(Ω) iΩ + κ/2

)
Rᵀ(φ)− 1

=κ1

κ

χ(Ω)
χeff(Ω)

ΩM,0

ΩM

R(φ)

2
(
v u

−u v

)
+

 0 0
κ2ΓMχ(Ω)
Dc(Ω) 0




Rᵀ(φ)− 1

(H.1.12)

where Dc(Ω) = (iΩ + κ/2)2 + ∆̄2 and, as in eq. (4.111), we define u(Ω) = −[L(Ω) +
L∗(−Ω)]/2 and v(Ω) = i [L(Ω)− L∗(−Ω)] /2. This latter formulation makes clear
the contributions of the cavity rotation of optical quadratures and the optomechan-
ical response. The complex cavity Lorentzian L is defined in eq. (4.32) and also
described below in eq. (H.2.15).
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H.2 Unresolved sideband approximation
For a broadband, one-sided cavity with κ� ∆̄, ΩM , Ω and κ2 = 0 eq. (H.1.11) sim-
plifies to the simple QND optomechanical input-output relation described ineq. (6.14),
namely

X̂out
M (Ω) =M(Ω)X̂ in

M(Ω) +
√

ΓMγM,0 χM(Ω)F̂ th,in
M (Ω), (H.2.13)

M(Ω) =
(

1 0
ΓMχM(Ω) 1

)
. (H.2.14)

In this regime there is no dynamical back-action and the system responds according
to its bare susceptibility.

For a nonzero detuning we, in general, need to take the finite cavity linewidth into
account by way of the more detailed input-output relations of eq. (H.1.11). However,
in the unresolved-sideband regime (κ � ΩM ,Ω) we may obtain an approximate
expression for the optomechanical transfer matrix eq. (H.1.12). To see how we first
write out the amplitude and phase of the complex Lorentzian as

L(Ω) = κ/2
(∆− Ω) + iκ/2 = |L(Ω)|eiθ(Ω), (H.2.15)

|L(Ω)| = κ/2√
(κ/2)2 + (∆− Ω)2

, (H.2.16)

θ(Ω) = arctan
(

κ/2
∆− Ω

)
. (H.2.17)

Writing the u and v components as

u = −1
2
[
|L(Ω)|eiθ(Ω) + |L(−Ω)|e−iθ(−Ω)

]
, (H.2.18a)

v = i

2
[
|L(Ω)|eiθ(Ω) + |L(−Ω)|e−iθ(−Ω)

]
, (H.2.18b)

we notice that the rotation matrix R ([θ(Ω) + θ(−Ω)] /2) can be pulled out. We can
thus can re-express eq. (H.1.12) as

M(Ω) = ei[θ(Ω)−θ(−Ω)]R (φ+ [θ(Ω) + θ(−Ω)]/2)×


[
1 + i

ΓMχM(Ω)
4

(
|L(Ω)|2 − |L(−Ω)|2

)]
1

+ ΓMχM(Ω)
4

(
0 −(|L(Ω)| − |L(−Ω)|)2

(|L(Ω)|+ |L(−Ω)|)2 0

)
×

Rᵀ (φ− [θ(Ω) + θ(−Ω)]/2) ,
(H.2.19)

where φ = π/2− θ(0) is the phase acquired by the on local oscillator field.
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We can further simplify eq. (H.2.19) in the regime of κ � ΩM ,Ω by expanding
|L(Ω)| and θ(Ω) to first order in Ω around the carrier frequency of Ω = 0. This gives

|L(Ω)| ≈ L0 + δL(Ω), (H.2.20)

L0 ≡ |L(0)| = κ/2√
(κ/2)2 + ∆2

, δL(Ω) = Ω∆κ/2
((κ/2)2 + ∆2)3/2 , (H.2.21)

θ(Ω) ≈ φ+ δθ(Ω), δθ(Ω) = Ω κ/2
(κ/2)2 + ∆2 , (H.2.22)

which results in the approximate optomechanical scattering matrix of

M(Ω) ≈ e2iδθ(Ω)R(2φ)

 [1 + iΓML0δL(Ω)χM(Ω)]1

+ ΓML2
0χeff(Ω)

(
0 0
1 0

)
,

(H.2.23)

to first order in δθ and δL. The phase prefactor can be omitted whenever the end
result is a power spectrum as it will cancel out in any correlation function.

This transfer matrix of eq. (H.2.23) provides a useful middle ground between the
simplistic QND result of eq. (H.2.14), valid in the limit κ → ∞, and the general –
but complicated – result of eq. (H.1.12).
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