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The good of the scorpion is not the
good of the frog, yes?
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Abstract

At the microscopic scale, where viscosity dominates motion and sensing is constrained
by physical limits, microorganisms rely on strategies highly adapted to their environ-
ments. This thesis uses differentiable programming techniques to develop computational
methods and mathematical models to explore navigation, sensory integration, and be-
havioural adaptations under such physical constraints.

The first project addresses the challenge of tracking overlapping organisms in micro-
scopy images – a critical step for understanding behavioural changes. I present a deep
learning-based method capable of assigning identities during occlusions and detecting
thousands of organisms simultaneously. Trained on synthetic data of simulated nemat-
ode motion in viscous environments, the model enables the analysis of massively dense
populations.

The second and third studies focus on decision-making during chemotaxis, where
physical constraints shape optimal sensing strategies. Using reinforcement learning, I
find a continuous transition between temporal and spatial sensing, identifying a re-
gime where integrating both results in a more efficient navigation. Furthermore, spatial
sensing in amoebas is modelled as a finite-resource competition between protrusions,
revealing how persistence in motion enables cells to overcome the physical limitations in
sensing, in agreement with experimental observations.

The fourth work explores the optimal placement of cell-surface receptors for gradient
estimation, leading to clustering at the tip of symmetry-breaking protrusions. These
findings suggest an evolutionary link between physical mechanisms and functional ad-
vantages. For the fifth and last project, the adaptation of biological transport networks
is modelled, showing how nodes optimally distribute based on resource delivery costs
and environmental constraints.

This thesis showcases how the integration of differentiable computational methods
and physical models can advance our understanding of microbial behaviour, and offers
a foundation for future applications.
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Resumé

Mikroskopiske organismer udnytter nøje tilpassede strategier for at overvinde de fysiske
love, der dominerer deres miljø: viskositet og termisk støj. Denne afhandling anvender
differentierbar programmering til at udvikle matematiske metoder og modeller til at
undersøge navigation, sensorisk integration og adfærdsadaptationer under disse fysiske
begrænsninger.

Det første projekt takler problemet med at detektere overlappende organismer i mi-
kroskopibilleder et kritisk skridt for at forstå adfærdsændringer. Jeg præsenterer en
deep-learning metode, der hurtigt kan identificere tusindvis af organismer på trods af
overlap. Modellen er trænet på syntetiske data af simuleret nematode-bevægelser i vis-
køse miljøer, og muliggør analyse af ekstremt tætte populationer.

De andet og tredje projekt fokuserer på beslutningstagning under chemotaxis, hvor
basal fysik begrænser de mulige sanse-strategier. Ved brug af reinforcement learning fin-
der jeg en kontinuerlig overgang mellem tidslig og rumlig sansning, og identificerer fysiske
parametre, hvor integration af begge disse metoder resulterer i mere effektiv navigation.
Herudover modelleres rumlig sansning i amøber som en konkurrence om begrænsede
ressourcer, hvilket afslører, hvordan vedholdenhed i bevægelse gør det muligt for celler
at overvinde fysiske begrænsninger i sansning, i overensstemmelse med eksperimentelle
observationer.

Det fjerde projekt undersøger den optimale placering af receptorer i celleoverfladen for
at estimere retning, hvilket fører til en sammenklumpning af receptorer. Disse resultater
påpeger en evolutionær forbindelse mellem fysiske mekanismer og funktionelle fordele.
For det femte og sidste projekt modelleres adaptation af biologiske transportnetværk og
viser, hvordan knudepunkter fordeler sig optimalt for a minimere omkostningerne for
distribuering af ressourcer.

Denne afhandling demonstrerer, hvordan integrationen af differentierbar program-
mering og fysiske modeller kan fremme vores forståelse af mikrobiel adfærd og tilbyder
en platform for fremtidige anvendelser.
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Resum

A escala microscòpica, on la viscositat domina el moviment i la detecció està limitada
per restriccions físiques, els microorganismes depenen d’estratègies altament adapta-
des als seus entorns. Aquesta tesi utilitza tècniques de differentiable programming per
desenvolupar mètodes computacionals i models matemàtics que exploren la navegació, la
integració sensorial i les adaptacions de comportament sota aquestes limitacions físiques.

El primer projecte aborda el repte de fer seguiment d’organismes superposats en
imatges de microscòpia, un pas crític per comprendre els canvis de comportament. Pre-
sento un mètode basat en deep learning capaç d’assignar identitats durant les oclusions
i detectar milers d’organismes simultàniament. Entrenat amb dades sintètiques de si-
mulacions del moviment de nematodes en entorns viscosos, el model permet analitzar
poblacions massivament densificades.

El segon i tercer estudi se centren en la presa de decisions durant la quimiotaxi, on les
restriccions físiques configuren les estratègies òptimes de detecció. Mitjançant reinfor-
cement learning, identifico una transició contínua entre la detecció temporal i espacial,
descobrint un règim on la integració d’ambdues estratègies resulta en una navegació
més eficient. A més, la detecció espacial en amebes es modelitza com una competició
de recursos finits entre protrusions, revelant com la persistència en el moviment per-
met a les cèl.lules superar les limitacions físiques en la detecció, en concordança amb les
observacions experimentals.

El quart treball explora la col.locació òptima de receptors a la superfície cel.lular
per a l’estimació de gradients, resultant en una agrupació a la punta de les protrusions
quan es trenca la simetria. Aquests resultats suggereixen una connexió evolutiva entre
mecanismes físics i avantatges funcionals. Finalment, en el cinquè projecte, es modelitza
l’adaptació de xarxes de transport biològic, mostrant com els nodes es distribueixen de
manera òptima basant-se en els costos de lliurament de recursos i les limitacions del
domini.

Aquesta tesi demostra com la integració de mètodes computacionals diferenciables i
models físics pot avançar la nostra comprensió del comportament dels microorganismes
i ofereix una base per a futures aplicacions.
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Preface

Here lies my ph.d.
This thesis encompasses my works, or at least those considered interesting enough to

be converted into papers, of the last three years. It is a synopsis thesis, which is just a
fancy way to say that I did not need to rewrite my projects. Instead, I have just placed
the contents of the manuscripts and called them Chapters – it was more work than it
sounds like...

Each chapter, i.e., research project, is on its majority independent from the rest.
As in many theses before this one, the challenge during writing has been to present
these projects as though they were part of a carefully planned and cohesive narrative.
My attempt at this can be found in the introductory chapter. Since the topics are a
bit diverse, the topics that need to be in the introduction are not very well defined.
Instead, my approach has been to describe the projects and their motivation, including
any relevant information I found appropriate along the way. Nevertheless, these are
individual works, and one should not need to be familiar with the others to follow a
specific one.

It is my firm intention that this thesis conveys the voice of its author – yours truly.
Hence, if the text is flawed, inconsistent, subtlety sarcastic, and slightly informal, it is
as per my design. It was my aim to be concise and straightforward, but the results may
show some variation from that original goal. Ironically, I find that to be a nice way to
show that a LLM 1 has not been tightly involved in the writing process, as using it would
probably result in considerably better texts.

1The scientific community has not agreed on how to feel with regards to the usage of such tools, yet.
Neither have I.
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Chapter 1

Introduction

It may be a strong misconception that the underlying mechanisms of real biological sys-
tems can be trivially explained. Nevertheless, this is precisely what I have tried to do in
the works presented in this thesis. Biological systems are complex, and here, I will treat
them using physics principles and computational methods that either assume a great
deal of simplifications or hide their complexity under hard-to-peak black boxes. This
approach allows for the interpretation of the systems at their most essential representa-
tion from which, and in spite of my limited knowledge about the topics at hand, insights
at their most fundamental level can be obtained.

This thesis focusses on employing advanced differentiable techniques to study and
understand – from a physics perspective – the behaviour of microorganisms. It would
be fair to remark that the studies presented here lie at the intersection between physics,
biology, and computer science, hopefully showcasing that while a jack of all trades is a
master of none, is oftentimes better than a master of one.

1.1 Research Motivation

Microorganisms, the simplest and most abundant form of life, exhibit incredibly sophist-
icated, intricate, and diverse behaviours. Assuming universality of such is likely a fool’s
mistake, as each microorganism can demonstrate unique responses to its environment [7].
Yet, a characteristic that distinguishes physicists from the wider scientific community
is our tendency to boldly employ assumptions and simplifications when solving a prob-
lem in order to unlock possible paths to solutions. When such a strategy is applied to
biological systems, underlying truths about them can be uncovered, if not hinted.

There are a wide range of ways to study the behaviours of organisms [8]. Of great
interest (to me) is the microscopic realm [9], where our macroscopic intuition about
sensing [10] and movement [11] tends to fail. At these scales, the limits imposed by
physical laws often dictate how microorganisms interact with their surroundings [12]
and respond to stimuli [13]. Understanding these can provide critical insights that can
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Chapter 1 | Introduction

then be transformed into more practical innovations.
Now, this is neither a theoretical nor an experimental thesis, but a computational one.

The role of computational models is crucial to study complex behaviours and predict
outcomes that are simply too difficult to observe or control experimentally. It is through
the use of computational techniques, such as the ones I will present in this thesis, that
more fundamental natural laws can then be found. However, the simulations should
align and reproduce the experimental results. In the cases where those are lacking,
nonetheless, computational simulations are particularly useful in exploring interesting
ideas and hypothetical scenarios, not unlike those presented here.

In this thesis, I demonstrate the application of differentiable programming meth-
ods [14] to address unsolved or unanswered questions related to cell motility [1], decision-
making [2, 3], cell-sensing [4], and even optimal fluid transport [5]. Hopefully, these may
lay the foundations for the exploration of the underlying fundamental principles that
describe these systems and, in doing so, showcase the integration of novel computation
techniques with fundamental studies on biophysical systems [15].

1.2 Differentiable Programming

Extremely relevant in physics and intrinsic to life itself, as this thesis should demonstrate,
is the need to compute gradients. After all, differentiation is everywhere (without it,
everything would be quite static and unchanging). It is for that reason that differen-
tiation is one of the first topics scientists need to master when starting their advanced
studies in natural sciences. When we learn the basics of differentiation, we typically deal
with simple expressions that are somewhat possible to derive. These often involve just
a few variables in a well-behaved domain and can easily be solved with pen and paper.
For more complex expressions, symbolic calculation methods allow many scientists to
acquire, albeit occasionally cumbersome, exact expressions [16, 17]. In the more trickier
cases, we have happily resorted to approximate solutions by calculating differences in
small changes using numerical methods [18, 19]. Honourable mention here is the family
of finite difference methods that have powered scientific research for decades. Having
said that, it is when dealing with more complex systems – those with large numbers of
parameters or intricate non-linear relationships – that one cannot help but notice (and
lament) their limitations. It is only logical that these errors increase as the need for pre-
cision grows, especially when higher-order derivatives or multiple variables are invited
to the party. Thankfully, a solution to this problem (explained just below), suggested
as early as the mid-20th century [20], has finally been put into practice and has recently
achieved the widespread recognition it likely deserves.

1.2.1 Automatic Differentiation

Automatic Differentiation (AD) manages to deal with these difficulties by offering an
approach that is both exact and scalable [20, 21]. Using the same logic as when we manu-
ally derive expressions, instead of seeing a function as one large monolith expression, AD

4



Chapter 1 | Introduction

breaks it down into simpler elementary operations with well-known differentiation rules,
where it systemically applies the chain rule of calculus [22] to obtain the target value.
In other words:

Let f1, . . . , fn be a (large) collection of elementary functions with known derivatives,
then for any composition of these such as g(x) = f

(m)
i (· · · (f (j)k (· · · (f (1)l (x)) · · · ) · · · )

where i, k, l ∈ {1, · · · , n} and the parentheses above indicate the order of application of
the function j = 1, . . . ,m, the derivative of g can be obtained as

dg

dx
=

df
(m)
i

df
(m−1)
k

· · ·
df

(j)
k

df
(j−1)
l

· · ·
df

(1)
l

dx
. (1.1)

This rather simple approach allows for any order derivatives to be computed with
machine precision, avoiding the errors and instability mentioned before. Naturally, ob-
taining an explicit expression is out of the question, but if your primary concern is eval-
uating the derivative – as is often the case in scientific computing – then this method
performs exceptionally well.

In the core of AD is the concept of a computational graph – a directed acyclic graph
(DAG) illustrating how information flows through a function [21]. Every node in this
graph represents a basic (elementary) operation , with the edges illustrating the passing
of data and derivatives between these operations. This graph does not only reflect the
functional architecture of the problem; it also forms the backbone for AD to follow and
compute the exact gradients. By constructing and navigating this graph, AD seamlessly
propagates derivatives throughout the entire function. These graphs enable the handling
of more complex combinations of functions, as opposed to the straightforward, sequential
graph that characterizes the scenario described by Eq. (1.1).

There are two main modes in which AD calculates the propagation of gradients in
a graph: forward-mode and reverse-mode (see Figure 1.1 for a simple example of each
mode). In forward-mode, derivatives are calculated at the same time as the function
is evaluated, which makes it ideal for problems involving fewer input parameters than
outputs. At each step, the following calculation is done

df
(q)
i

dx
=

df
(q)
i

df
(q−1)
j

df
(q−1)
j

dx
. (1.2)

During this process, the program computes and propagates a derivative value at
each step, often referred to as tangent value or tangent vector, while navigating the
computational graph. This comes at the cost of some additional storage memory [23].
However, each pass involves matrix-vector multiplications to calculate gradients, which
can become computationally expensive in high-dimensional output spaces. The forward-
mode aligns with the natural way of performing these calculations when the number of
inputs is relatively small compared to the number of outputs, because derivatives are
calculated on the go as the program evaluates the function. On the other hand, when
the function has many parameters that result in a single-scalar output, as is the case for
deep-learning models, where parameters are optimised following the gradient of a single

5



Chapter 1 | Introduction

loss value, reverse-mode AD becomes the more sensible method. Reverse-mode starts
by evaluating the function and then traces back the derivatives from the output to the
inputs, such as

df
(m)
i

df
(q−1)
k

=
df

(m)
i

df
(q)
i

df
(q)
i

df
(q−1)
k

. (1.3)

Although reverse-mode requires an additional pass through the computational graph
to propagate the derivatives backward, the computational benefits generally outweigh
this cost for scalar-valued outputs. Instead of propagating tangent values, reverse-mode
propagates adjoint values – representing the contributions of each variable to the out-
put gradient. In these cases, reverse-mode reduces the computational cost of gradient
calculation by replacing Jacobian-vector products (used in forward-mode) with vector-
Jacobian products, which are computationally more efficient when the number of outputs
is much smaller than the number of inputs1.

f0

f1

f2

f3

f4

f5

df3
df0

= df3
df1

df1
df0

+ df3
df2

df2
df0

(a)

f0

f1

f2

f3

f4

f5

df5
df2

= df5
df3

df3
df2

+ df5
df4

df4
df2

(b)

Figure 1.1: Computational graph diagram where (a) Forward mode differentiation and (b) Reverse
mode differentiation are shown. The final objective of both methods is to obtain df5

df0
|x∗ with completely

different approaches to obtain the gradients.

The capabilities of AD are likely a significant factor behind the surge in machine
learning applications; merely attempting to manually write the backpropagation equa-
tions, i.e., calculating the gradients using the reverse-mode approach, on a ResNet [24]
highlights how discouraging it would be to train new models. Yet, its benefits are not
constrained to deep learning models. In Physics, AD is applied to simulate physical sys-
tems in a wide range of fields such as in fluid dynamics [25], quantum mechanics [26–29],
classical mechanics [30, 31], astrophysics [32] and biophysics [4, 5, 33] among others.
Within optimisation algorithms, AD is critical to efficiently relax a system to its op-
timal configuration.

1The efficiency difference arises from the Jacobian’s shape and the algorithm used. Forward-mode
computes Jacobian-vector products efficiently for tall Jacobians (more rows than columns), while reverse-
mode computes vector-Jacobian products efficiently for wide Jacobians (more columns than rows), avoid-
ing explicit Jacobian construction and leveraging gradient accumulation.
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Overall, AD is an effective method to obtain gradient evaluations. However, it comes
with challenges, including the overhead of maintaining computational graphs and the
associated memory usage. Furthermore, AD struggles with non-smooth functions, where
derivatives may not exist or where discontinuities complicate the propagation of gradi-
ents2. Addressing these challenges is an ongoing area of research, with new algorithms
and techniques being developed to improve its efficiency and broaden its applicabil-
ity [34, 35].

Similarly, with the rise in usage of parallel accelerators such as Graphical Processing
Units (GPUs) and Tensor Processing Units (TPUs) in scientific computing [25, 36], auto-
matic differentiation (AD) frameworks such as JAX [37], PyTorch [38], AutoGrad [39]
and diffTaichi [40] with support for such hardware have cemented their status as es-
sential tools for computational scientists. Recent hardware advances have also resulted
in significantly more efficient implementations, enabling AD to tackle increasingly vast
and intricate systems. Looking ahead, the integration of AD with emerging hardware
paradigms, such as Stochastic Processing Units (SPUs) [41] – which relies on thermo-
dynamic principles to perform linear algebra – offers an interesting future for the scope
and efficiency of computational sciences.

1.2.2 Deep Learning

While most researchers must already be familiar with the concept of deep learning, let
it be briefly introduced here.

Deep learning (DL) models aim to approximate a function f : Rn → Rm that maps
inputs x (e.g., pixel intensities from images) to outputs y (e.g., classifications or traject-
ories), by learning an optimal set of parameters θ such that y ≈ f(x; θ). The function f
is commonly built as an artificial neural network [42], which in its simplest form is just
a sequence of matrix multiplications

x(i+1) = σ(W
(i)
θ · x(i) + b

(i)
θ ), (1.4)

where x(0) is the input, W (i) and b(i) are the weights matrix and bias vector at the i-th
layer, and σ is a non-linear activation function.

The optimisation of Wθ, bθ ∈ θ is achieved through iterative optimisation (training
steps), where a scalar loss function L(y, f(x; θ) quantifies the difference between pre-
dictions and true values, and its gradient – calculated via backpropagation – guides
parameter updates using stochastic gradient descent (SGD).

At its foundation, DL builds on the Universal Approximation Theorem [43], which
states that a feedforward neural network with a sufficient number of neurons can ap-
proximate any continuous function, given a suitable set of activation functions. This
explains DL’s ability to learn complex relationships between inputs and outputs across
many domains [44]. Notably, DL assumes models of many layers of neurons (hence

2One way to see if someone has struggled with such cases can be seen on how they approach in
constructing the square root of a distance that may be zero. This will likely reveal whether they have
faced divergent gradient calculations and its unforeseen complications.

7



Chapter 1 | Introduction

the deep term), where each layer transforms the input variables into progressively more
abstract representations, which makes them particularly capable of handling intricate
patterns in high-dimensional data, such as images, text, and speech [45, 46].

These models are often described as black boxes since it is rather hard to obtain
a proper meaning of the resulting parameters θ. Note, however, that the reason for
their success lies in their capability to learn from data rather than relying on manually
defined rules. This capability has made DL an essential tool in data-rich fields where
conventional approaches struggle, often due to the sheer complexity of the data.

1.3 Summary of Projects

This section provides an overview of each research project, explaining their motivation,
how they relate to the study of microorganism behaviour, and the relevant physics and
biological principles involved. It also summarises the key results presented in the papers,
as well as the role of AD in their implementation. Section 1.3.1 introduces the work in
Chapter 2, focussing on the computer-vision challenge to track overlapping bodies in
microscopy images and the physical principles involved in simulating artificial worms
to solve it. Section 1.3.2 describes the studies in Chapters 3 and 4, which investig-
ate optimal strategies for cellular decision-making using reinforcement learning under
different environmental conditions. Finally, Section 1.3.3 shifts the focus away from
machine learning and introduces how AD can be applied directly to optimise receptor
locations (Chapter 5) or study adaptability in biological transport networks (Chapter 6)
by calculating gradients through numerical solvers.

1.3.1 Data acquisition: Detection in microscopy images

Biology is fundamentally an observational science. It is through, ideally, well-designed
experiments that we can observe how microorganisms interact with their surroundings.
However, our conclusions cannot be based solely on anecdotal observations; that would
be poor scientific rigour. Noticing that microorganisms reduce their motion after in-
troducing a new drug in their environment is not enough to claim causality. Instead,
it is essential that these changes are quantified, and to do so we need to perform data
acquisition. Either by directly measuring physical properties with lab equipment or by
performing post-processing on the collected data, these allow scientists to – hopefully
rigorously – make informed conclusions about the systems at hand.

When studying microorganism behaviour, it has always been an effective way to
explore phenotypic changes by examining how external conditions affect their motility,
i.e., their ability to move independently. Indeed, motility is one of the most fundamental
aspects on a microorganism existence [47–51]. Consequently, being able to accurately
track microorganism trajectories in experimental recordings has been proven to be one
of the most effective way to quantify these changes [52–55].

Before the widespread inclusion of computer-aided image processing, scientists relied
heavily on manual tracking. Imagine spending hours at a microscope, watching microor-
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Conv. Layer 1 Conv. Layer 2 Conv. Layer 3 Flatten

{(x, y)}

Figure 1.2: Schematic representation of a classical convolutional neural network (CNN) architecture. The
input image of a bacterial colony (from Cordero et al. [47]) is processed through three convolutional layers,
followed by a flattening operation, which transforms the spatial features into a vector representation,
likely representing the desired quantity. Notice how at each change of layer, it is common to reduce the
dimension of the image while increasing its channels, which promotes a more abstract representation
of the input data. Highlighted connections illustrate the propagation of specific features through the
network.

ganisms wriggle across the plate while annotating their movements by hand. This, of
course, was – and in some places still is – an arduous task. Fortunately, the use of
classical computer image-analysis techniques, such as thresholding and edge detection,
greatly enhanced their ability to automate much of this work. This would drastically
transform microscopy imaging and allow for faster and more accurate processing of visual
information.

Segmentation methods capable of converting images into binary data enable to dis-
tinguish the organism from the background, which greatly facilitates the study of shape
trajectories. While these methods are a ludicrous step forward, they are often inad-
equate when dealing with very noisy, low-resolution microscopy data or in scenarios
where the steps to find the solutions cannot be easily defined. This inherit noise on ex-
perimental data, primarily caused by factors such as uneven illumination [56] or sensor
limitations [45, 57], still presents a challenge to the image analysis community. For this
very same reason, microscopy images have become the perfect candidate for computer
vision tasks powered by deep learning (DL) methods.

CNNs are neural networks specifically designed for image processing that exploit
translation invariance to reduce the amount of parameters and make them computa-
tionally efficient, while still being effective in recognising patterns and features within
images [58] (see Figure 1.2 for a schematic of a standard CNN). It would be very chal-
lenging to define the classical algorithm capable of distinguishing different types of cells
based on subtle differences in shapes or textures. Note that some classical approaches
sometimes show performances comparable to DL methods, even in areas dominated by
CNN, such as medical imaging [59]. It is, however, in more complex scenarios – where
solutions cannot rely on predefined rules or hand-engineered features – that deep learning
truly shines [45, 57].

1.3.1.1 Slender body tracking

In Chapter 2, I address the specific problem of tracking large ensembles of overlapping,
slender bodies, such as swimming nematodes. This is sadly not a simple plug-and-play
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Figure 1.3: Microscopy image showing overlapping Bacillus subtilis, kindly provided by Mireia Cordero.
This image highlights the challenge of tracking large ensembles of slender bodies that frequently cross
paths and occlude each other. Such conditions make it difficult for deep learning models to differentiate
between individual organisms, presenting significant obstacles in accurately tracking their motion and
behaviour. Classical methods often struggle with scalability in such high-density recordings.

a problem for deep learning solutions. For example, when observing active organisms
in a microscope, individual organisms often cross paths or become occluded, making it
difficult for standard DL methods to differentiate between them (see Figure 1.3 for a
nice visual example of how organisms tend to cross and overlap in microscopy data). DL
models have struggled to detect and track swimming nematodes under these conditions,
particularly due to the number of occlusions and overlaps that occur in large-scale mi-
croscopy recordings [53, 60]. Tracking many organisms that constantly cross each other
is a significant challenge, and resolving these overlaps is a key roadblock in applying
deep learning models to these kind of microscopy studies.

When high-resolution images are available and only a few organisms are being tracked
simultaneously, DL-based solutions work rather well [61, 62]. For instance, pixel-wise
segmentation models can often accurately segment individual cells or organisms when
the data is clear and some occlusion occurs. But these approaches largely ignore the
problem of overlapping, which is much more common in high-density recordings. In
these cases, classical methods remain the de facto approach, as they have historically
provided more reliable results for shape estimations [63, 64].

Classical methods often rely on probabilistic approaches, such as Kalman filters or
combinatorial optimisation, to resolve the identities of overlapping organisms. These ap-
proaches attempt to assign each visible body part to a specific organism based on motion
patterns, size, and trajectory, but their effectiveness diminishes as more organisms over-
lap. For example, resolving the identities of two crossing nematodes might be feasible
with classical algorithms, but once three or more organisms are involved, the complexity
increases drastically and the algorithm may fail to assign identities correctly (see Fig-
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(a) (b)

Figure 1.4: Identity resolution in crossings can rarely be evaluated based on the current configuration
alone due to the many possible solutions scenario, as the one shown in (a). For a simple crossing of three
simultaneous organisms, and assuming the quality of the image is good enough to accurately extract their
skeleton, identity assignments are not trivial. As shown in (b), a classical identity assignment method
would need to assess all N =

(
6
2

)
combinations using models or likelihoods before proceeding to the next

timestep (or frame). This scales poorly the more simultaneous crossing events there are, as well as the
more organisms are involved in a crossing.

ure 1.4 for an example of the combinatorial nature of identity assignment). Simply put,
as the number of organisms in a sample increases, these classical approaches struggle
with scalability and lead to slower processing times and reduced accuracy.

On the other hand, deep learning methods, while offering high throughput and the
potential to process large datasets more efficiently, have not yet been able to consist-
ently resolve the issue of overlapping organisms, or at least in the massive scale aimed
here. In typical deep learning detection models, the system generates many potential
detections (more than target objects in the image), each accompanied by a score that
reflects the confidence level in that specific detection. It then eliminates those with lower
confidence by assessing the degree of overlap in the predicted areas, a procedure known
as non-maximum suppression [58], which results in a single detection per object. This,
of course, does not translate well when objects are highly overlapped. Some models have
been successfully able to overcome the limitations of occlusion in few organisms [65–67],
mainly relying on rigid structures of the cell body for extrapolation. Fancier methods,
using newer techniques, are capable of distinguishing trickier shapes but result in slower
execution times and poor scalability [68].

Additionally, the lack of extensive labelled datasets for large-scale microscopy images,
particularly those with low resolution and many overlapping and crossing organisms,
makes training deep learning models for these applications even more challenging.

My work, as described in Chapter 2, addresses these two challenges – the handling of
overlapping detections and the lack of a labelled dataset – and provides a deep learning-
based solution for tracking many slender organisms in microscopy images. To resolve the
identity assignment issue on overlapping organisms, a phenotypic encoding technique is
used, which encodes the characteristic motions of the detected organisms and uses that
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to perform the non-maximum suppression. This allows for accurately assigned correct
identities to the detections suggestions of the model, which eases detecting through
crossings and obfuscations.

To solve the lack of proper dataset, a synthetic one with simulated worms was cur-
ated. This approach results in perfect labels (as they are used to create the input), and
freedom to generate situations that would be highly improbable to be obtained in in
vitro systems or existing datasets. Of course, another alterative could involve manu-
ally labelling hard-to-resolve images, but persuading a bachelor student into it would
probably result in some awkward pitching that was best avoided.

One key aspect of the modelling of swimming nematodes that the manuscript may
not emphasise enough is accounting for the physics of motions at such small scales [11].
Specifically, this involves modelling a slender object navigating in a viscous media. At
these scales, the Reynold number (Re) – a dimensionless metric indicating the ratio
of inertial to viscous forces – is quite small, i.e., Re � 1. In such environments, where
inertia can be neglected, the fluid dynamics given by the Navier-Stokes equations simplify
and reduce to the linear form

µ∇2v = ∇p (1.5)
∇ · v = 0 (1.6)

where p is the pressure, µ the viscosity of the fluid and v the velocity field. This
has strong consequences on the motility of organisms, as nicely put by Purcell [11].
Regardless of this notably simplification, solving the Stokes equations for complex shapes
such as the ones in slender bodies is still computationally cumbersome. Thankfully, the
study of how slender objects interact with the surrounding fluid is and has been of great
scientific interest. As a result, Gray and Hancock [69] developed an approximation theory
known as Resistive Force Theory (RTF), which calculates the expected motion due to
the oscillations of the slender body. RTF estimates hydrodynamic forces by focussing
on the local forces acting along the length of the body. This effectively simplifies the
problem by decoupling the body’s segments, neglecting long-range interactions because
of viscous damping. Although this approximation reduces computational complexity, it
remains accurate enough for many practical applications.

The force per unit on a segment of the slender body is given by the linear relation

df(s)

ds
= −ξ⊥u⊥(s) + ξ‖u‖, (1.7)

where the contributions are split between perpendicular (⊥) and parallel (‖) components,
with ξ and u being the resistive force coefficient and the local velocity relative to the
segment, respectively.

Having such a simplified description of the forces applied to each segment allows the
determination of the net hydrodynamic force F and torque τ acting on the body. By
integrating over the length of the body, we solve for the motion under the condition of
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f⊥
f‖

vy u = v + V +Ω× r(s)

Direction of
swimming

Figure 1.5: Application of resistive force theory (RFT) to a slender body, such as a nematode. The body
is depicted as a curve, with local forces decomposed into perpendicular (red arrow, f⊥) and parallel (blue
arrow, f‖) components at specific points along its length. The forces are calculated using Eq. (1.7), which
relates the force per unit length to the resistive force coefficients ξ⊥ and ξ‖ and the corresponding local
velocities u⊥ and u‖. The local velocity of a segment is given by the shown equation, where v(s) is
the velocity due to body oscillation, V is the translational velocity of the centre of mass, and Ω is
the angular velocity about the centre of mass, with r(s) being the position of the segment relative to
the centre. This formulation accounts for the combined contributions of body oscillations, translational
motion, and rotation in determining the local hydrodynamic forces.

net-zero force and torque, such that:

F =

∫ L

0
f(s) ds = 0, τ =

∫ L

0
r(s)× f(s) ds = 0. (1.8)

where r(s) is the position vector along the body.
This simple formulation of such a complicated motion allowed for the simulation of

millions of swimming Caenorhabditis elegans, which led to the creation of a large and
physically consistent data set of synthetic worms as ground-truth labels. After creating
these labels, I performed some post-processing to generate realistic microscopy images by
simulating optical effects, hoping that they closely resembled experimental data. Then
these synthetic data were used to train a deep learning convolutional model that tracks
real swimming C. elegans, even in challenging scenarios with overlapping bodies.

Although not thoroughly validated, this impressive generalisation to in vitro samples
highlights the effectiveness of using physical principles to train a DL model and shows
as a nice example of the capability of RFT in describing the real movements of slender
bodies. Similarly, Costa et al. [70] nicely showed the usage of RFT to study the dynamics
of C. elegans as Markovian processes.

Chapter 2 shows how by employing these two – albeit simple in hindsight – solutions,
a tracking algorithm is defined that provides a bast improvement to current methodo-
logies and results in an embarrassing parallel detection and tracking approach ideal for
quantitative microscopy analysis.

1.3.2 Evolution as a non-differentiable optimisation process

A common research area in the biophysical sciences is the study of evolutionary op-
timisation. Evolutionary processes often lead to optimised biological systems, where
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organisms adapt, through the course of generations, their structures and behaviours for
survival and reproduction [50]. This natural optimisation process has long fascinated
researchers because it provides a window into how biological systems might converge on
efficient, adaptive solutions over time, the utility of which ranges from biological insight
to human-designed applications [71, 72]. These solutions tend to reflect optimal config-
urations that maximise the fitness of the organism in its environment [73]. This makes
optimisation problems incredibly relevant on systems biology – and matches perfectly
with optimisation mechanisms such as those that AD makes possible.

One of the most interesting aspects of evolutionary process revolves around the fact
that the fitness function landscape needs not to be differentiable. In fact, fitness land-
scapes are often rugged and irregular, filled with local optima that make it difficult to
predict the best minimisation (or maximisation) path [74]. For example, in a fitness
landscape with multiple peaks, a population of organisms may evolve to settle on a local
peak, which represents an optimal configuration for that environment, but not necessar-
ily the global peak, which would be the absolute best possible configuration. This is not
uncommon on the topic of stochastic optimisation, now extensively studied in the field
of machine learning, but where many techniques have been explored to deal with such
degenerate systems [75–77].

The exact shape of this fitness landscape is usually unclear and the optimal con-
figuration of the systems is not a priori known. Thus, when optimising such systems,
stochastic exploration – drawing inspiration of evolutionary processes [78] – is required.

The concept of evolution tightly couples with that on a physicist view of the world,
where the principle of energy minimisation – all objects tend to the minimal energy
configuration in equilibrium – is one of the fundamental laws of the universe. Systems
naturally evolve toward states that minimise their free energy, whether it is the formation
of stable molecules, the growth of crystals, or the motion of planets. In much the same
way, biological systems can be thought of as minimising some form of "biological energy"
or maximising fitness to survive in a given environment.

One powerful tool for solving optimisation problems in complex stochastic systems
is reinforcement learning (RL) [79], a branch of unsupervised machine learning that,
despite its many pitfalls [80], has shown incredible performance in the optimisation of
difficult tasks [81–83]. Particularly useful for problems where the objective function
is not differentiable or where the solution requires balancing immediate and long-term
rewards.

Reinforcement learning differs from traditional optimisation techniques, such as gradi-
ent descent, in several important ways. In a standard optimisation problem, you often
have a clear objective function (such as minimising error) and a well-defined method for
calculating gradients, which allows the system to approach an optimal solution gradu-
ally. However, RL operates in situations where the optimal solution may not be obvious
from immediate feedback alone (similar to many strategy-based scenarios). Instead, it
optimises what is known as a policy – a function that guides the system’s reaction –
considering both immediate and future rewards. Simply, RL works by training an agent
to make decisions through an iterative process of trial and error (see Figure 1.6 for the
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Reward

Figure 1.6: Diagram illustrating the fundamental mechanisms of reinforcement learning. The interaction
between the agent and the environment is highlighted through a cyclical process. The agent selects an
action based on its policy and sends it to the environment. In response, the environment provides
feedback in the form of a new state and a reward, which the agent uses to learn and adjust its policy.
The flow emphasizes the critical components: action, state, and reward, showcasing how the agent
iteratively improves its decision-making strategy through trial and error, guided by reward signals.

classical representation of the RL workflow). The agent receives feedback in the form of
rewards and uses these to adjust its actions to increase the cumulative future reward,
thus optimising the policy [79]. This long-term reward approach should sound rather
similar to the way evolution is capable of optimising real biological systems [78]. Bit-
ing a sleeping lion might provide an instant reward to solve hunger, but it is unlikely
that such risky behaviour contributed to the survival and propagation of the biter’s
genes [74]. Hence, the reason for exploring the use of RL techniques to study such
processes is seldom explained.

A similar class of optimisation techniques is that in the evolutionary algorithm cat-
egory [84]. Albeit very similar to RL – and extremely similar to natural selection [78]
– those optimisation methods are more compute intensive and lack the smooth conver-
gence of gradient descent. Although not used here, they are also great tools for studying
systems such as those presented in this thesis [85, 86]. Interestingly, there exist hybrid
approaches that combine evolutionary algorithms and reinforcement learning to address
their respective limitations. These techniques, known as Evolutionary Reinforcement
Learning, offer an interesting avenue for studies on biological optimisation [87].

There is nothing relating automatic differentiation to reinforcement learning per se.
Precisely, the use of RL is needed due to the non-differentiability of the loss (or reward)
landscape, which is counter intuitive to the advantages of AD. However, the decision-
making mechanism can be defined to allow gradient descent in its parameters. In fact,
DeepMind demonstrated the capabilities of reinforcement learning (RL) combined with
deep learning – deep reinforcement learning (DRL) – when Mnih et al. [82] successfully
trained an agent to play Atari games. This breakthrough showed that DRL could solve
drastically more complex tasks and led to far more impactful models [88–90]. This
makes DRL a great tool for studying the complex internal mechanisms that cells may
have evolved and optimised over time, in a rather simplified manner.

However, once deep models – neural networks with more than a couple of layers
– are involved, interpretability often becomes a distant hope. Fortunately, there are
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Figure 1.7: (a) A cell perform chemotaxis by moving up (or down – but in this case up) the gradient, here
indicated by the coloured background. (b) Ligand receptors (red) on the surface of the cell (black) bind
to single particles (dot), that diffuse by Brownian motion on the environment. For the non-absorbing
case, this particle would unbind from the receptor after a set binding time, and will return to the diffusive
environment, with some probability of rebinding to another (or to the same) receptor. The binding of
the receptor sends a discrete signal to the cell. But, since the cell tends to have thousands of receptors,
these discrete signals provide the cell with gradient information.

techniques for understanding these models, such as the Integrated Gradients method
proposed by Sundararajan et al. [91], which extracts information on how input values
influence the resulting output.

1.3.2.1 Chemotaxis

In this thesis, I study one example of such an evolutionary process; the ability of an
organism to navigate their environment as a response to chemical cues, i.e., perform
chemotaxis (Fig. 1.7a). Chemotaxis is a fundamental biological process in which a cell
detects chemical signals in its environment and moves either toward or away from them,
depending on whether they are beneficial or harmful [92–94]. The ability to navigate
chemical gradients is clearly essential for survival in many microorganisms [50]. As in
any competitive environment, quickly getting to the food source (or away of the poison),
is crucial to increase your change of survival over the other organisms. Bacteria, such
as the overstudied Escherichia coli, swim toward higher concentrations of nutrients by
detecting astonishingly small changes in chemical concentrations through receptors on
their surface [51, 95]. These receptors initiate signalling cascades inside the cell, guiding
it to adjust its motion accordingly [96].

Estimating gradients is one of those things that seems a quite straightforward strategy
for us on the macroscale. You can easily determine the direction of the sun by feeling
the warmth on your skin (as long as you are outdoors and exposed to sunlight3). But,
as with the case of motion and its lack of inertia, sensing is not so intuitive when it is
performed on the microscale. Due to their small size, cells live in what is considered

3This may be a bad example to make during Danish winter.
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fundamental limits of sensing [10, 13, 97, 98], where physical constraints significantly
influence their ability to interact with the environment.

These limits mostly appear due to the stochastic nature of molecular processes
(Fig. 1.7b). At small scales, where thermal noise is ever dominant, molecules diffuse
randomly, and the number of molecules that receptors can bind is inherently limited by
the cell size. In fact, according to the work of Berg and Purcell [10], the mean number
of binding events for a cell during a measuring time T can be approximated with

N ≈ 4πDcaT, (1.9)

where D is the diffusion constant of the molecules, c is the chemoatractant concentration
at the cell location and a is the cell size. For smaller cells, this makes it impossible to
detect concentration differences across their surface and requires them to seek alternative
strategies to perform chemotaxis [99].

Due to the binding kinetics of chemoreceptors, the constant random fluctuations of
surrounding molecules significantly affect the ability of a microorganism to distinguish
meaningful signals from noise. This noise causes the binding events to follow a Poisson
distribution, introducing variability in the number of detected molecules that scale as
δN ∝

√
N . As a result, the signal-to-noise ratio (SNR) – often characterised by the

steepness of the gradient relative to the background concentration – becomes an im-
portant factor in studying sensory precision [13, 100]. Additionally, the energy costs of
processing information and maintaining the molecular machinery required for sensing
further constrain a cell’s ability to effectively interact with its surroundings [101, 102].
The counterintuitive nature of these constraints when making decisions highlights the
merit of physics-based studies in exploring their navigation strategies.

Studying the optimality of such noisy and unintuitive systems is not an easy task
– and its formulation is far from trivial. Most concerning is the fact that the fitness
landscape of navigating strategies is rarely well defined and is likely to be riddled with
many suboptimal solutions [103]. This is where modern computational techniques, such
as AD and RL, come into play.

In the context of cellular chemotaxis, RL can be used to simulate how a cell learns to
navigate chemical gradients by adjusting its movement over time. As simple as it sounds,
the task becomes challenging when accounting for the physical limits of sensing [104].
For example, a cell might initially make random movements, but, over time, learn that
certain reactions may ultimately lead to higher concentrations of nutrients [86, 105].
This very much relates to the experience over evolutionary time-scales, as an optimal
decision-making policy improves the cell’s chances of survival [50]. Therefore, identifying
in which observational patterns organisms exploit while learning to navigate the gradient
can yield critical insight into their internal mechanisms.
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1.3.2.2 Sensing strategies

An interesting consequence of such physical limits is the apparent dichotomy4 in chemo-
taxis strategies performed by microorganisms (see Figure 1.8 for visual examples of
these). It is well known that small, fast organisms – such as bacteria – rely on temporal
comparisons to evaluate whether to correct their direction of motion [92]. On the other
hand, large and slow organisms take advantage of their spatial advantage to estimate
the gradient by comparing measures along their bodies [94]. The clear observational
difference between these two strategies is of evident interest for any physicist. In fact,
Wan and Jékely [7] captures this distinction by showing that when displaying the size
versus speed of the organism on a log-log diagram, a distinct boundary between those
relying on temporal comparisons versus spatial sensing appears. Their analysis high-
lights how navigation strategies cluster into distinct regions and, interestingly, divide
prokaryotic and eukaryotic behaviours. But this is not a new concept, Tan and Chiam
[106] and Dusenbery [107] compare the performance of both sensing strategies under
different conditions and similarly to Rode et al. [108] and Metzner [109], observe that
their effectivity is determined by a set of environmental and morphological parameters.
While very insightful, these studies assume prior knowledge of both strategies, leaving
open the question of whether these strategies optimally exploit the organism’s sensing
limitations. It was already shown by Berg and Purcell [10] in their remarkable ana-
lysis of chemoreception that the relative noise in sensing is inversely proportional to
the measurement time, which agrees with Endres and Wingreen [13] observation of the
accuracy of gradient estimation at the limits of sensing. Therefore, even for a direct
spatial sensing mechanism, it is clearly beneficial to use memory to average the noise
in the measurements. This shows that the transition between temporal and spatial is
already blurred. However, temporal strategies do not rely on temporal measurements to
average values, but instead rely on memory to perform temporal comparisons [110]. This
raises important questions: When and how does the optimal use of memory transition –
from comparison to averaging, and ultimately to being redundant? After all, it is within
the transition regime where the most fascinating phenomena tend to occur [111].

Since these limits control when the transition occurs, the change in strategies can be
observed by either modifying the environment or adjusting the cell properties [108, 109].
In the work presented here, this is approached by smoothly increasing cell size, and using
DRL to estimate the best performant policy that leverages both memory and instant
sensing information. Notably, this is done without constraining the internal processing
of the cell – as it is modelled as a small artificial neural network capable of approximating
any function – but by only limiting the type of information it has access to.

Consider a self-propelled active particle that can choose the change in orientation
at each timestep based on the detected information. This is very similar to Colabrese
et al. [83] problem setup but where the effects of the surrounding fluid are neglected.
The reorientation of the cell is set by its angular velocity ω(t), which describes the rate

4Rarely has there been the situation where I’ve liked one of Julius pretentious words. This is one of
those rare cases.
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Figure 1.8: The diagrams here depict the two primary strategies for cellular chemotaxis: (a) Temporal
comparison, used mainly by bacteria, involves a run-and-tumble approach, where bacteria move in a
straight line (run) and then tumble randomly, adjusting their direction based on chemical gradients
detected over time. For the sake of simplicity, I ignore here the twitching mechanism. (b) Spatial
gradient sensing, used by larger, mostly eukaryotic cells, involves directly sensing spatial variations in
chemical concentrations across the body of the cell, allowing for more directed (and slower) movement.

at which the orientation changes over time and can be described with the following
Langevin dynamics:

I
dω(t)

dt
= −γω(t) + η(t) + τext(t), (1.10)

where I is the moment of inertia, τext is the external torque and η(t) is the fluctuations
that create rotational diffusion. However, since the cell is a neutrally buoyant particle
small enough for inertial effects to be ignored, i.e., low Reynolds numbers (Re � 1),
the dynamics are described on the overdamped regime, which results in the change in
orientation (or angular velocity) as

γω(t) = τext(t) + η(t), (1.11)

where ω = dθ
dt . Interestingly, the cell orientation is defined just by the active torque

and its rotational diffusion (due to thermal or motility fluctuations). This has the
implications that even for a perfect navigating cell capable of controlling τext(t) and
thus performing deterministic steering, rotational diffusion creates an upper limit to the
length scale for valid memory of previous forces.
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?

Figure 1.9: The cell decision-making process based on the sensors located on its surface. This process
is not a mathematical one, but a biochemical one. And while in some cases as in E. coli, the signalling
pathway and the transformation from binding to motor rotation is, on its majority, understood, that
is not the case for more complex organisms. We have some understanding of the signalling networks,
but some fundamental truths can be hidden behind so much complexity. For that, there is merit in
oversimplifying the decision process.

Chapter 3 shows the smooth transitions between strategies and explores how the
optimal integration of those two types of sensing would look like. At the limits of
small and large cell sizes, the well-known strategies of temporal and spatial comparison
naturally emerge as the optimal mechanisms for sensing. Remarkably, their emergence
occurs without explicitly enforcing any prior knowledge into the model but arises from
the fundamental limits themselves. These results validate the optimality of temporal
and spatial sensing at their respective limits but also provide insight into how a cell can
effectively integrate information from both sensings to achieve optimal decision-making.

1.3.2.3 Amoeboid mechanical intelligence

Having relied on artificial neural networks to obtain the optimal decision-making policy,
albeit useful on its generality and unrestricted nature, it lacks the interpretability of
how specific cells make such decisions5. For that, it is necessary to look to specific
mechanisms that cells employ and understand the underlying processes that make a cell
take a decision, e.g., choose the direction of movement. Therefore, Chapter 4 focusses
on amoebas to explore decision-making in amoeboid chemotaxis.

Amoebas, such as Dictyostelium discoideum, create temporary protrusions in the
cell membrane driven by the polymerisation of actin filaments, which play a central role
during their navigation [48, 112, 113]. These protrusions, known as pseudopodia, grow
only perpendicular to the cell membrane [114], and even though they are commonly
seen as tools for its motility mechanisms (and they are), it is very likely that they play

5This was a quite strong concern for Referee B during the peer-review process on one of the submis-
sions, despite not being the aim of the manuscript.
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an important role in the cell’s ability to sense its surroundings [115]. This raises the
question of how pseudopods may enhance chemotaxis decision-making in environments
with limited or noisy information?

Actin is one of the most abundant proteins in eukaryotic cells [116], and it is crucial
to cell morphology [115], as it is the material of which the cytoskeleton is composed. The
cytoskeleton is the backbone of the cell body and provides mechanical support for the
membrane and internal mechanisms [117]. Interestingly, the cytoskeleton is composed
of actin filaments (F-actin), which continuously get depolymerised and polymerised, as
well as contract and expand, helped by myosin motor proteins, to allow the cell to
move (and create protrusions) [114]. Polymerisation is regulated by signals from cell
receptors, which bind to molecules of chemoattractant in the environment [115]. Thus,
it is important to note that actin is the key component in the coupling of cell motility,
cell morphology, and sensing, and any study of this coupling should focus on it.

In fact, work by Tweedy et al. [118] has already shown that the shape of the cell is
closely coupled with environmental conditions, and notably that the morphology can be
dictated by the signal-to-noise ratio of the surrounding chemical profile – comparable
to the fundamental limits of accuracy [13]. Their observations agree with the reaction-
diffusion approach proposed by Meinhardt [119], and similarly to Neilson et al. [120],
suggest that the creation of new pseudopods happens as a reaction to diffusive signal
from the membrane. On the other hand, Andrew and Insall [121] argues that pseudopod
formation happens mainly by splitting from existing ones rather than being created on
demand, and their direction is random. Chemotactic signalling, however, helps maintain
the most accurate pseudopod which influences the frequency of pseudopods the gradient
direction. Bosgraaf and Haastert [122] already hints at the importance of persistence
in pseudopod formation for effective chemotaxis in shallow gradients. These findings
emphasise the strong role pseudopods clearly play in amoeboid chemotaxis, and stresses
the significance of understanding their dynamics. Based on the modelling of house-
hunting honeybee swarms decision-making described by Pais et al. [123], Chapter 4
presents a model of the interaction between signal sensing and the growth of physical
pseudopods reframed as a resource competition for the polymerisation of actin monomers
(G-actin).

The model is hypothetical, but plausible, and describes the polymerisation contest
as an out-of-equilibrium stochastic dynamical system. Therefore, polymerisation (con-
verting G-actin into F-actin) at each pseudopod is governed by the interactions with
the other pseudopods as well as the fluctuations in sensing signalling. The underly-
ing system is then simply defined as a set of stochastic differential equations (SDEs)
that allow the study of the role of pseudopods in spatial gradient sensing and direc-
tional motility. In its essence, our recruitment competition between pseudopods is a
resource allocation problem, governed by the mass conservation principle. The direction
of growth has an independent polymerisation rate determined by the change in the free
energy of the receptors in their membrane section, which varies with the concentration
of the chemoattractant. It is when noise and fluctuations in chemosensing that these
competitions become interesting, and where we observe the emergence of phenomena
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reported experimentally, such as the scaling of Weber-Fechner law and the advantage of
persistence in static environments.

The model is then expanded to evaluate the optimal strategies that an organism
would use when faced with different environmental conditions. Using DRL, it becomes
clear that frontal polarisation of pseudopod directions is highly relevant in very noisy
or shallow regimes, whereas in more information-dense environments, subtle nuances
between directions can be exploited for perfect chemotaxis.

The beauty of this minimalistic system lies in its ability to capture the decision-
making capabilities – or what we term mechanical intelligence – of amoeboid organisms,
that organically emerge from biochemical and physical processes. This physics-inspired
approach distils the complexity of actin polymerisation, which involves millions of fil-
aments, into a model governed by merely six free parameters. The simplicity of the
model not only makes it interpretable, but also allows for seamless integration with
advanced techniques DRL. This integration enables the exploration of optimal configur-
ations for more complex and less straightforward scenarios. Ultimately, what the project
in Chapter 4 shows is an approach that yields both clarity and possible valuable insights
into the intricate mechanisms driving amoeboid motility and decision-making processes.

1.3.3 Optimising with differentiable physics

The use of automatic differentiation extends beyond its well-known applications in deep
learning, even though they remain its most prominent use case. The ability to compute
exact gradients of arbitrary functions – without the approximation errors or cumbersome
expressions associated with traditional methods – makes it an indispensable tool for op-
timising complex systems. Particularly interesting is when applied to physical models,
an area loosely term differentiable physics. This approach involves propagating gradi-
ents through physical simulations during optimisation, enabling not only the integration
of physical formulations into deep learning workflows but also the direct optimisation
of multi-variable non-linear systems where numerical methods often struggle and result
in a non-smooth, computationally expensive process [40]. Compared to other optimisa-
tion methods like reinforcement learning, differentiable physics offers certain advantages,
such as eliminating the need for exhaustive exploration (and running millions of simula-
tions). Thus, it is particularly valuable for computationally intensive applications such
as fluid dynamics and robotics [33, 124, 125]. However, it can’t have the cake and eat
it too, a key limitation is that gradient descent, as a local optimisation method, usu-
ally gets stuck in local optimal solutions when dealing with non-convex landscapes. In
such cases, supplementary techniques to approach global optima may be needed. Nev-
ertheless, for problems where identifying local optima works, it provides an efficient and
computationally cheap solution.

This is indeed the topic of the remaining chapters (Chapter 5 and 6), where many-
component systems are optimised by using differentiable physics in order to explore
optimal configurations.
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(a) (b)

Figure 1.10: Receptor clustering formed at high-curvature regions observed in experimental studies.
(a) Images from Koler et al. [130] where E. coli express mutant receptors. (b) Dictyostelium discoideum
cell moving in a 2-ţm-deep chamber with a chemical gradient. The green fluorescent marker that reveals
activated receptor proteins, clustered at the tips. Reproduced from Levine and Rappel [94], with the
permission of the American Institute of Physics.

1.3.3.1 Receptor clustering

Keeping in topic with previous work, Chapter 5 studies the optimal position of cell-
surface receptors for spatial gradient sensing. It is a common assumption when studying
cell decision-making to assume that the information that arrives to the cell comes from all
directions [10], and if receptors are discretely defined, they are usually spread uniformly
along the surface of the cell body6 [104]. After all, there is no cell front and back for
a static cell. In reality, cells have shown to agree with this assumption [126], but also
break such symmetry to form clusters of receptors due to polarisation [94, 113, 127, 128].
Note also that the assumption of uniformity simplifies the derivations due to all the
mathematical advantages that such symmetries tend to provide [13, 129]. For the most
famous case of static receptor localisation, we can look at Escherichia coli, where ligand
receptor distribution is concentrated at the poles and forms arrays of receptors [130].

Nevertheless, if we assume that the cell mechanisms for performing signal processing
before making a decision are analogous to a least-squares fitting, then it surely makes
sense for cells to spread their receptors throughout their body. By doing so, it maximises
the gradient information and should result in a uniform distribution. Similarly, any po-
tential correlation between receptor measurements would encourage receptors to sample
the concentration profile in a dispersed manner, minimising the likelihood of redundant
molecular bindings. On the other hand, as just mentioned, experimental observations
suggest that receptors do cluster. This has been shown to occur to minimise curvature
energy between receptors and membrane, reduce biochemical potentials, or amplify sig-
nals. This slight paradoxical situation suggests that the receptor distribution may not
be trivially defined and makes for a very interesting study.

An interesting phenomenon on systems of binding receptors is the possibility of re-
6A handy example of this is the model in Chapter 3 and the model proposed in the appendix section

of Chapter 4
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Figure 1.11: A molecule that binds to one receptor may diffuse to another receptor and bind again,
generating a second signal within the cell’s internal mechanisms. This rebinding effect creates a spatio-
temporal correlation between binding events, influencing the accuracy of signal interpretation.

binding. The molecule binds to the receptor and, after a short period of time, is released
again. Now, the probability of rebinding to the same receptor is very low (but not
zero). More concerning is the chance that such molecule will rebind to another re-
ceptor (Fig. 1.11). In the non-absorbing case, this would result in the wrong counting
of two signals but generated from the same single molecule. This is usually ignored; as
in Berg and Purcell [10], they assume the bindings to be diffusion limited (a particle
diffuses past the body faster than the expected measuring time). In contrast, this is
clearly modelled in Bialek and Setayeshgar [97] with the use of the fluctuations dissipa-
tion theorem (FDT), where the kinematics of binding and unbinding are accounted for
and add to the uncertainty in measurement. These dynamics have strong implications
on the cell’s ability to sense the gradient [100]. Similarly, Kaizu et al. [129] expanded
on Berg and Purcell to account for rebinding, showing that only in the original limit is
indeed a lower bound, given the diffusion-limited assumption.

In the work described in Chapter 5, the binding dynamics are ignored. Instead, the
focus is on quantifying the correlation between receptor measurements. To do so, the
probability that a particle can be found at both receptors during the measurement time
is derived. This yields the correlation of the average measurement during an integration
time, and it is used to compute the lower bound on the estimate uncertainty. This for-
mulation, similar to that of Berg and Purcell [10], enables the analysis of the error in
gradient estimation using statistical information theory and its dependence on receptor
locations. To determine the optimal configuration of cell-surface receptors that minim-
ises uncertainty in estimation, differentiable programming is used to compute gradients
through the solving process. This is one of those cases where AD excels, as the compu-
tational graph of such a process is intricate and very sensitive to perturbations.

Interestingly, we find that on a perfect spherical surface, there is no need to redis-
tribute the receptors from their uniform distribution. However, when that surface is
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perturbed, receptors move towards the tips of the new protrusions, which considerably
reduces the estimation uncertainty as those grow. Such a simple model shows that
when receptor distribution is accounted for, quantification in uncertainty reduction due
to shape changes is greatly under-reported. Not only do we quantify the relevance of
receptors’ locations, but we also show that they agree with the mechanical explanations
previously reported. Meaning that there is a strong coupling between evolutionary ad-
vantage and physical mechanisms of receptor clustering. Notably, here, we ignore all the
other reasons why receptors would like to cluster, and yet clustering emerges.

1.3.3.2 Biological Transport Networks

Until now, this thesis has focused on single-cell behaviour, particularly in the context of
sensing and motility. These studies reveal how microorganisms dynamically change their
bodies and resource allocation strategies to optimise their interactions with the envir-
onment. Similar principles have been observed to govern the morphologies of collective
behaviour [131], leading to unexpected (and visually intriguing) ordered structures in
their optimal configuration [132]. Some fungi and slime moulds dynamically reorganise
their transport structures during foraging [133], as is the case in Physarum polycephalum
where a trade-off between variability and resource transport efficiency dictates the for-
aging strategy [134] (see Figure 1.12a). Similarly, Wilking et al. [135] reports biofilms
of Bacillus subtilis creating channel networks to overcome diffusion limits, achieving
efficient transport of nutrients and waste. These results are not limited to living organ-
isms, as efficient transport of resources is also critical to organ functionality [136] and
plants [137] (Figure 1.12b exemplifies one of such systems with the vein network in a
porcine kidney). These networks, much like the previous works, show how fundamental
physical constraints drive biological optimisation across scales.

In the final research project of this thesis (Chapter 6), I explore the optimisation
of such biological transport networks (BTNs) from a hydrodynamic perspective and
show how differentiable programming can be used to study their adaptability capab-
ilities. Albeit general, the results are strongly exemplified on the venation systems of
leaves (Fig. 1.12c) as they are commonly used as the model system for such generic
studies [140].

The physics behind BTNs is rather interesting, as the system needs to find a way
to efficiently deliver its resources under the constraint of fundamental physical laws.
This is often coupled with environmental forces and evolutionary needs [73], and results
in optimal configurations from which humans can gain insight [136] as well as inspira-
tion [141, 142]. Intrinsic to these structures is the concept of energy, as these optimal
solutions need to complete the task (deliver) using the less amount of resources (en-
ergy), and thus, BTNs are heavily governed by biophysical principles. For instance,
Poisseuille’s well-known equation of flow of liquids in tubes, described the flow rate F
in cylindrical tubes as

F =
πr4

8ηL
∆p, (1.12)

where the pressure difference ∆p and the tube dimensions (L, r) and η is the viscosity,
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(a) (b)

(c)

Figure 1.12: Examples of biological transport networks (BTN) in real systems. (a) Network morphology
during the migration of P. polycephalum obtained from Schick et al. [134]. (b) Angiographic analysis of the
decellularized porcine kidney showcasing the preserved vascular network, from Corridon [138]. (c) The
venation pattern of a Crataegus monogyna leaf provided by Julius, which I presume it is from Skjegstad
and Kirkegaard [139].

shows the importance of tube dimensions on transport networks. Similarly, Murray [143]
establishes the optimal relationship between the radius of the parent and the radii of
the daughter branches in bifurcations such that

r3p =
∑
i

r3di . (1.13)

which became known as Murray’s law and has been observed to be fulfilled in nature [137,
139, 144]. Bohn and Magnasco [145] showcase how biological systems tend to provide
energy-efficient solutions that minimise transport costs using a hydrodynamic formu-
lation. These often result in sparsely connected networks that resemble those seen in
Figure 1.12. And while Hu and Cai [146] demonstrated that local feedback formulations
could reproduce those, such systems are highly degenerate and struggle to identify global
optimal solutions. An approach by [147] showed that by modelling growth, it leads to
better and more natural looking solutions.

Despite successfully describing robustness in BTNs [148, 149], challenges remain in
fully replicating the adaptability observed in biological systems. Notably, there is a
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gap between the characteristics of in vivo biological networks and the results of purely
hydrodynamic optimisation methods.

Chapter 6 addresses one such situation, specifically when a finite regular grid is con-
strained by an irregular boundary. This introduces additional challenges in network
optimisation that are not fully captured by existing hydrodynamic models, offering an
opportunity to explore new formulations that bridge the gap between theory and biolo-
gical reality.

Consider a system composed of a finite number of nodes, inside a bounded domain,
and study how the positioning of the nodes is affected by the boundary. Each node
represents a sink node, where there is some resource to be delivered. However, current
formulations expect the nodes to be equidistant and evenly spaced, which simplifies the
mathematical formulations. To address it, the hydrodynamics model is reformulated to
account for the cost to delivery to a region – as regions would no longer be uniform
across the domain. Thus, the energy dissipation, P , of the system is then defined as the
sum of two components:

P = Ptransport + Pdelivery, (1.14)

where Ptransport represents the energy cost for transporting resources, and Pdelivery ac-
counts for the delivery cost to specific regions.

This formulation allows for the study of energy-efficient configurations while incor-
porating the impact of irregular boundaries and non-uniform delivery regions. Import-
antly, this defines the formulation to allow the nodes to no longer be constrained on a
static grid. We use AD to calculate the gradients through the transport optimisation,
where the optimal thickness of the edges is calculated, and then perform movement of
the nodes.

Optimised networks based on this energy formulation show higher adaptability and
efficient resource transport. By using AD to move the nodes to their optimal position,
the resulting networks effectively adapt to the mismatch between the network lattice
and the domain boundary. This results in configurations where the nodes are no longer
evenly spaced but instead are positioned to account for the shape of the domain and
the direction of the flow, yielding vein patterns that mimic better those found in actual
biological systems.
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On tracking many worms

This chapter contains the following paper:

Fast detection of slender bodies in high-density microscopy data
Albert Alonso and Julius B. Kirkegaard

Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark

Published in: Nature Communications Biology
DOI: https://doi.org/10.1038/s42003-023-05098-1
Pre-print server: https://arxiv.org/abs/2301.04460
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Methodology, Validation, Investigation, Data Management, Visualisation, Formal Ana-
lysis, Software, Writing Original Draft, Writing Review & Editing. Apparently that’s
not much – at least according to that article the Novo Foundation did about Julius...

Manuscript reformatted to fit the style of this thesis.
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Abstract

Computer-aided analysis of biological microscopy data has seen a massive improvement
with the utilization of general-purpose deep learning techniques. Yet, in microscopy
studies of multi-organism systems, the problem of collision and overlap remains challen-
ging. This is particularly true for systems composed of slender bodies such as swimming
nematodes, swimming spermatozoa, or the beating of eukaryotic or prokaryotic flagella.
Here, we develop a end-to-end deep learning approach to extract precise shape traject-
ories of generally motile and overlapping slender bodies. Our method works in low
resolution settings where feature keypoints are hard to define and detect. Detection is
fast and we demonstrate the ability to track thousands of overlapping organisms simul-
taneously. While our approach is agnostic to area of application, we present it in the
setting of and exemplify its usability on dense experiments of swimming Caenorhabditis
elegans. The model training is achieved purely on synthetic data, utilizing a physics-
based model for nematode motility, and we demonstrate the model’s ability to generalize
from simulations to experimental videos.

2.1 Introduction

Large-scale, high-throughput quantification of microscopy data has increasingly become
possible with the aid of computer vision [150–155]. In particular within the last decade,
deep learning techniques [42, 46, 57] have improved and enabled accurate image analysis
of microscopy data in a broad range of areas including cell counting [156, 157], cell seg-
mentation [158–160], nucleus detection [155, 161], sub-cellular segmentation [162], drug
discovery [163], cancer detection [164–166], and the identification of infectious diseases
[167, 168]. Detection models serve as the fundamental operation in tracking proced-
ures, and combined with suitable tracking algorithms, these can achieve morphologically
resolved organism tracks that can accurately quantify organism motility [169], the ap-
plication of which ranges from fundamental neuroscience [170–172] and the circuitry of
simple organisms [48, 173–175] to drug discovery [176–180].

Multi-organism detection can be achieved at increasing levels of fidelity: at the
crudest, only center-of-mass locations or bounding boxes are predicted [181] which does
enable tracking of organisms but provide little morphological information. In contrast,
pixel-wise segmentation models [158] and pose estimation using keypoints [62] reveal
accurate shape dynamics when employed on high-resolution data. However, these meth-
ods rely on high definition objects, as segmentation and prediction are highly sensitive
to noise. In particular for organisms that are long and slender, pixel-wise segmentation
fails at low resolution as correct predictions require sub-pixel accuracy. Moreover, at
high densities, these methods may fail due to their inability to properly handle overlap
between organisms.

Here, we consider the problem of studying slender organisms at low resolution and
high density with the goal to enable both accurate identity tracking and quantifica-
tion of shape dynamics. This problem has traditionally been approached by employing
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pixel-wise segmentation and subsequent skeletonization procedures [52–54, 182–184], an
approach that requires model-based approaches [60, 185] or ad-hoc procedures [63] to
solve the problem of correctly identifying overlapping organisms, the combinatorial com-
plexity of which blows up at high densities. To this end we abandon pixel-wise output
and instead construct a neural network architecture that predicts, potentially overlap-
ping, centerlines directly [186–188]. Our method enables both accurate shape prediction
and tracking in dense experiments of slender objects, a key challenge for a broad class of
systems [Fig. 2.1], including tracking of nematode worms [189–191], spiral or elongated
bacteria [192–195], spermatozoa [196, 197], the flagella of both eukaryotes [183, 184] and
prokaryotes [198], and freely swimming flagella such those of microgametes [199].

a b

c d

Figure 2.1: Microscopy images of different microorganisms whose slender structure and
frequent overlaps makes them hard to detect using classical approaches. a. C. elegans
motility experiment from the dataset of this paper. b. Motile, flexuous, thin, spiral-shaped B. pilosicoli
bacteria. Still from Ref. [194], with permission. c. Beating flagella of the green alga C. reinhardtii,
provided by Kirsty Wan, University of Exeter. d. Swimming human spermatozoa. From dataset in Ref.
[197].

Our method relies on recent advances in deep learning [24, 200–203] and extends
these by a few simple ideas: In still micrographs, the identities of individual worms can
end up being obscured by overlaps making them impossible to accurately identify, and
only by relying on the adjacent frames can they be correctly resolved. Thus, to allow
the neural network to encode the identity of individual bodies as a function of their mo-
tion, the input to our neural network is taken to be short video clips rather than single
frames. Our network outputs multiple independent predictions, and for each produces
(1) the centreline of the organism, (2) an estimated confidence score for the prediction,
and (3) a latent vector, the space of which we induce a metric on that measures whether
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two predictions are trying to predict the same body. To train the network, each output
quantity is associated with a specific loss term, where, importantly, the centerline loss
term is permutation-invariant in the labels. To resolve overlap, we do non-max suppres-
sion [181], but rather than measuring distances between curve predictions, we use the
latent space output, which allows two predictions to be kept even though they are close
in physical space. This enables correct predictions for data in which objects overlap
very closely. Our method is further tailored to support the subsequent tracking process,
which must link uniquely predictions from frame to frame. To that end, we not only
predict the object location at a single timepoint, but also predict consecutive past and
future centerlines. Using these time-resolved predictions in the linking process enables
high-precision tracking even through dense regions.

Our method is in-principle applicable to all microscopy datasets that involve slender
bodies, but we do not develop its general applicability here. Instead, we focus on its
applications for tracking dense experiments of swimming C. elegans worms, a popular
model system in neuroscience [204], human diseases [205], drug discovery [177], motor
control [206], memory [207], and ageing [208]. Studies of C. elegans often rely on phen-
otypic assays that measure the motility of the nematode worms as a function of some
environmental condition or treatment [55, 180, 209–220], the throughput of which can
be massively increased if overlap between organisms can be tolerated. Likewise, resolv-
ing identities of organisms during overlap is crucial for studies of interactions between
organisms [132]. Previous work on tracking C. elegans have generally employed classical
computer vision approaches to accurately track single or a few high-definition worms
[182, 221–225], or many low-resolution worms at non-overlapping densities [54, 226, 227],
in some cases by utilizing a computational model of the worm motion for hypothesis
tracking [60, 182, 185, 221].

Recently, deep learning techniques have been utilized to track C. elegans worms using
e.g. bounding box predictions [61, 228, 229] and fully resolved centreline in the case of
isolated worms [230], allowing for detection also during periods of self-overlap.

With this paper, we publish a dataset of videos of motile C. elegans worms imaged
at a wide range of densities. The dataset includes ∼ 1,500 labelled midlines that we use
to evaluate, but not train, our detection model. We demonstrate that our model can
be trained exclusively using synthetically generated data and yet generalizes well to real
videos. Our method leverages the parallel capabilities of convolutional neural networks
and is thus able to handle thousands of detections in a single pass, resulting in real-time
detection at ∼ 90 Hz at 512× 512 resolution on a single GPU. The code is open source
and available at https://github.com/kirkegaardlab/deeptangle.

2.2 Methods

2.2.1 Model structure

Centerline predictions We choose to represent the centre-line of the slender bodies of
interest by arrays consisting of k equidistant points [Fig. 2.2d]. These coordinate arrays,
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which we refer to as centerline, become high-precision descriptors even for complex
shapes when k is chosen large. To reduce the complexity of predicting k points, we
embed the centerline representation with a principal component (PCA) transform A,
the dimension κ of which can be much smaller than k [189]. The PCA components λ
represent shape, and in addition hereto, the network also predicts the offset x0 of the
centerline, the internal calculation of which is done in a local coordinate system defined
by the anchor points. Thus, instead of predicting 2k floating point values per centerline,
the network needs only output κ+ 2.

The temporal context of the input image stack permits output centerline prediction
also for the non-central images. In our approach, we predict a set of three centerlines
z = [x−,x,x+] corresponding to the three central frames [I−, I, I+] of the input stack
[Fig. 2.2c]. We consider the middle centerline x the main output, whereas the past x−

and future x+ centerlines are considered auxiliary predictions whose main purpose lies
in their use during the latent space encoding as well as the tracking procedure.

We define the similarity measure between two centerlines by the standard Euclidean
distance. In the case of detections that look symmetric from either end, we exploit this
symmetry and employ the flip-invariant distance defined by

d2
(
x,x′) = min

[ k∑
i=1

(xi − x′i)
2,

k∑
i=1

(xi − x′k−i+1)
2
]
, (2.1)

as illustrated in Fig. 2.2e.
Likewise, we define a distance between two collections of consecutive centerlines z,

z′ by their weighted average d2s =
∑

t ωt d
2(zt, z

′
t), where the weights can be adjusted to

give focus to central predictions, and for the present case we choose ω = 2ω− = 2ω+.
The neural network is trained to minimize the distance d2s between predictions and

labels. To do so, we let the independent predictors specialize for different shapes. This
is achieved by using a permutation-invariant loss such that the total loss is computed as
a sum over the labels only, each using the predictor that best match the labels. Thus
many centerline predictions will not contribute to the detection loss.

Confidence scores Each independent prediction of the network includes a confidence
score s, which is used to filter out bad candidates. In bounding box or mask detection,
intersection over union (IoU) is commonly used to evaluate the accuracy of a prediction,
however, this metric does not generalize well to centerline predictions when there is
overlap. Instead, we introduce a custom metric to define the goodness of a centerline
set z by comparing it to its label ẑ,

ŝ = exp
(
−d2s(z,ẑ)/σ2s

)
. (2.2)

Here, σs is a parameter that sets the scale over which the score varies. The metric is
sensitive to perturbations on accurate predictions, i.e. predictions close to labels where
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ds → 0, but loses sensitivity the worse the predictions are. This is a useful feature
as correct scoring for good predictions is crucial for choosing the best one, whereas
low-scoring predictions are discarded in any case and their relative scoring therefore
unimportant.

The score prediction is trained using L2 loss. To avoid conflicting backwards error
propagation between this task and that of centerline prediction (as scoring bad predic-
tions is easier), we stop the gradient flow in the computational graph on the last layer
of the score-predicting part of fθ [Fig. 2.2a] such that it does not interfere with the
accuracy of the predicted centerlines.

Latent space for candidates suppression Finally, we need to ensure that there is
only one prediction per object. Bounding box detectors let the user decide the fraction
of overlap between prediction boxes of the same class that should be considered to
be targeting the same object. As our method must work at high densities, this task
is complicated by the fact that two predictions might be very close, even completely
overlapping in the central frame, and yet represent different objects. The task of choosing
a suitable cutoff distance is therefore difficult, and we make this a trainable task. We do
so by embedding each prediction in a low-dimensional latent space in which comparison
between predictions is cheap, thus allowing efficient and fast candidate suppression also
at high densities.

Our method computes the latent vectors p for predictions using an auxiliary neural
network, qφ which acts directly on the eigenvalues λ and offsets x0 rather than the more
redundant centerline coordinate points. We induce a Euclidean metric on the latent
space with the interpretation that two predictions i, j are predicting the same object
with probability

P(i↔ j) =

{
exp
(
−||pi − pj ||2

)
if ||x0i − x0j || ≤ σl,

0 otherwise.
(2.3)

Here, σl is a real-space visibility cutoff that prevents far predictions to interact in the
encoded space, thus avoiding the need to scale the dimensionality of the latent space with
the number of candidates or the input size. We note that when using the flip-invariant
metric ds on centerlines, we explicitly construct the latent space encoder to likewise be
flip-invariant.

To train the latent space, we assume that during training predictors are ‘trying’ to
predict the label closest to the prediction centerline. Combined with the probability
interpretation, this allows us to use binary cross entropy as a loss function for the
probability defined in Eq. (2.3). To avoid wrong clustering between undefined close-by
predictions, the loss contribution of each prediction is scaled by the product of their real
scores ŝiŝj , thus ensuring that the network focuses its attention on good predictions that
will not be filtered out. Finally, since the encoder should not alter the performance of
the centerline suggestions, the loss on the latent space representations only updates the
weights qφ of the encoder, but is trained concurrently with the main model.
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We employ non-max suppression to choose the best prediction of each object, but
with distances measured in latent space, as illustrated in Fig. 2.2b. Concretely: Once
all the predictions whose score is lower than a threshold τs have been discarded, mul-
tiple candidates are likely to still remain for each target object. The lack of low score
predictions exposes clusters in the latent space that correspond to single objects. We
sort the remaining predictions by their score, automatically accepting the highest-scored
one. Once a prediction i is accepted, all predictions j that have a high probability
P(i ↔ j) > τo of being the same object are removed. This is equivalent to setting an
exclusion radius rl in the latent space as shown in Fig. 2.2b. We keep iterating on the
remaining predictions, pruning the latent space until all candidates have been iterated.
The final number of accepted predictions should equal the number of objects in the
frame.

2.2.2 Neural Network Architecture

Convolutional neural network Most of the weights of the network are at the fea-
ture detection convolutional network whose backbone is made of four ResNet groups
consisting of 2, 4, 4, 2 blocks with strides 1, 2, 1, 2, respectively. We modify the original
ResNet architecture by replacing the initial max-pooling layer with an average-pool layer
to avoid translational invariance. The final shape of the feature space is [H/16,W/16, C],
with C being the number of candidates each cell proposes. We have set C = 8 for this
project in order to fulfill the condition of the number of predictions being larger than
the number of bodies even at high densities. All in all, there will always be C candidates
per cell regardless of input size, which leads to a large number of candidates to be sorted
in the filtering process. The head of the convolutional neural network is composed of
two fully connected layers of 512 and C · (3(m + 2) + 1) cells, respectively, with batch
normalization in between. Due to the orientation invariance of the loss function on the
centerline predictions, it is possible that the centerlines in the predicted set x−,x,x+ are
not aligned. To remedy this, we aligned them by comparing them with the eigenvalues
of the flipped centerline. In order to get the flipped eigenvalues λf , we use

λf = A−1JAλ (2.4)

where A is the PCA transformation matrix and J is the exchange matrix.

Latent space encoder The encoder qφ is composed of two fully connected layers
with batch normalization in-between. The input of the encoder is the vector of size
3(m + 2) characterizing the centerline predictions and the output is D floating point
values, corresponding to the coordinates of p in the D-dimensional latent space. We
have found D = 8 to be a well-performing dimension in our experiments. Due to the
orientation invariance of the centerlines predictions, we need to construct the encoder
to cluster those centerlines regardless of orientations as well. To do so, the input values
are expanded to include those of the flipped centerlines λ→ (λ, λf ) and both are fed to
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the same layer. To ensure symmetry, the output is then summed before passing through
the last layer. In doing so, the encoder becomes independent of centerline orientation.

2.2.3 Training

Simulation-based training Our in-silico data generator has two main components:
a physics-based model for the organism and a synthetic frame generator.

In-silico worms are generated on demand every training step which removes the
possibility of overfitting to the generated frames. In order to train the model to work
effectively with a range of worm densities, we generate batches with different numbers
of worms in a uniform manner, without bias towards low or high worm counts. This
teaches the model to handle a variety of densities without overfitting to any specific
case. And to make the model more robust, training also happens on densities whose
manual annotation would be extremely challenging. The simulation and video synthesis
are implemented in a GPU framework which enables fast end-to-end training without
the performance penalization of data transferring between the accelerator and the host
machine.

We base the worm simulation on resistive force theory, as it has previously been shown
to correctly predict the position of the skeleton for short spans of time [231]. Since the
network only perceives the frames surrounding the target frames, we found the total
duration of the clip to be short enough that a linear swimming model approximation fits
our needs. The physics-based model should encapsulate all types of organism behavior.
This can be achieved by oversampling the behavior, i.e. by making the simulations more
diverse in the behavior than reality and thus hope to include all types of real behavior
as well. Details on the worm simulation and video synthesis can be found in the in-silico
dataset section of the methods.

Despite the potential for physics-based simulations to be used for synthetic train-
ing data, discrepancies with real data may lead to inaccuracies when applied to real
microscopy images. This reality gap can be the result of an overly simplified motility
model or physics model, or the result of imprecise video synthesis. The gap may be
further increased by the fact that the model relies on the PCA transformation matrix
A obtained on synthetic data, where the number of PCA components used have been
chosen to accurately reproduce all synthetic patterns, but not necessarily to generalize
to out-of-sample videos. Thus we find that our model is limited to accurate skeleton
predictions only on shapes that resemble those produced by our simulations, and the
goal of the simulations is therefore to reproduce a broad spectrum of possible motility
patterns. Likewise, we find that our model is susceptible to the brightness of the videos,
and accordingly we adjust the real videos to increase their resemblance to the training
data.

Loss functions Centerline descriptors are trained as a regression problem. Thus, the
loss contribution is given by the custom distance defined in Eq. (2.1). To enforce spe-
cialization on the predictors, and due to the number of predictions M being considerably
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larger than the number of bodies N , only the best predictors are accounted for in the
loss. Nevertheless, there may be labels x̂ completely or partially outside the frame at
tc, despite being inside at t0. To make sure not to punish bad predictions at the bound-
aries for not matching invisible centerlines, instead of using the number of simulated
bodies N , the subset of bodies completely inside the frame Nv is used and the final loss
expression is given by:

lx =
1

Nv

Nv∑
i

min
m

d2s(zm, ẑi) (2.5)

The score L2 loss is computed as the difference between the values predicted and the
score the centerline proposals should have. Thus, using Eq. (2.2), we train the predicted
score of all predictions using:

ls =
1

M

M∑
i

(
exp

(
−min

n

d2s(zi, ẑn)

σs

)
− s

)2

(2.6)

Finally, the loss function for the latent space encoder is a modified cross entropy loss
scaled by the product of scores. Denote Pi,j = P(i↔ j) as defined in Eq. (2.3), then the
encoder loss is defined as an average over all pairs of predictions 〈i, j〉 that are physically
within the cutoff σl,

lp =
1

S
〈ŝiŝj(tij log (Pi,j) + (1− ti,j) log (1− Pi,j))〉〈i,j〉 , (2.7)

where S =
∑
ŝiŝj , and ti,j indicates whether i and j are targeting the same label k, and

is set by

tij =

{
1 if ki = kj

0 otherwise
(2.8)

with ki, kj being the closest labels to the predictions zi, zj respectively.

Training details Training has been done from scratch, i.e. without the use of a pre-
trained backbone. During training, the frame size for the input clips used was 256×256,
but due to the anchored approach, this does not constrain inference to happen at the
same resolution. Synthetic input is generated on demand and on device rather than
using a fixed pre-generated dataset. Thus, the network never sees the same frame twice
and there is no host-to-device data transfer. As mentioned in the main text, all networks
are trained simultaneously, despite the weights of each one depending on different cost
functions. The code has been written in Jax using Haiku and training has been carried
out on a cluster of 8 × NVIDIA A5000’s.
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2.2.4 Inference

Inference happens at any resolution whose dimensions are multiple of 16. The input
frames need to be slightly pre-processed as mentioned in the previous sections. Candidate
predictions are chosen using a score threshold, and non-maximum suppression in latent
space is used for filtering. Due to the sequential nature of the filtering process, the
implementation is written to use the CPU using numba.

Input clips pre-processing The images used to train the model have dark (small
pixel intensity) backgrounds, as we employ zero-padded convolutional layers. This is
relevant for real recordings, where a negative flip may be necessary to match the network
requirements. During training, generated clips are normalized using a 199 percentile
normalization. For real clips, to accommodate uneven lighting conditions and potential
obstructions we apply contrast limited adaptive histogram equalization (CLAHE) and
subsequently correct the intensity of videos to match the variations of the simulated data
(see SI figure). Note that we match real data to the synthetic as this avoids the need to
retrain the network for different experimental setups.

2.2.5 In-silico dataset

Worm simulation Worm trajectories are computed by employing a resistive force
theory swimming model used to predict rigid body motions of C. elegans from the
undulations [231]. Thus, we ensure that from a given set of generated undulations,
the produced motions will match those of real worms. From empirical observations, we
propose a simple Eq. (2.9) to generate the undulation of swimming adult worms. The set
of equations is specifically targeted to the dataset of dense swimming C. elegans, but we
expect it to also apply to other life stages by modifying the parameters of the sampling
distributions. Similarly, the undulations proposed do not take into account self-coiling,
as it is rare on free swimming nematodes, but changing Eq. (2.9) appropriately would
allow the system to learn to detect them. We define the motions by the centerline angle
ψk(s) with s ∈ [0, 1] [Fig. 2.2d], and decompose this into a linear combination:

ψ(s) = ψu(s, t) + ψs(s, t). (2.9)
This logically separates the worm undulations into two types of motion: one correspond-
ing to a sinusoidal motion ψs and one in which the whole body bends ψu. These we
define by

ψu(s, t) = A cos

(
2π

T
t+ ρ1

)
cos (kusk + ρ2) (2.10)

ψs(s, t) = Ã cos

(
2π

T
t+ kssk + ρ3

)
(2.11)

where Ã = 1
2 (1 + | sin (2πt) |)A and the rest of parameters are sampled from random

distributions. Although many improvements for the above equations can be suggested,
we prefer to keep the model simple.
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Once the values of the parameters for ψ are generated for all the timesteps of the
simulation, the positional coordinates are obtained using

~x(s, t) = L

∫ s

0

(
cos (ψ(s′, t) + γ)
sin (ψ(s′, t) + γ)

)
ds′ (2.12)

where γ is a random orientation and L is the length of the worm (also sampled). Once
the skeleton is defined, the rigid body motions are predicted by solving [231]

~F =

∫ L

0

~f ds = 0, (2.13)

~τ =

∫ L

0
(~x− ~xCoM)× ~f ds = 0, (2.14)

where the force ~f can be calculated from the centerline velocity ~U = ∂t~x+V +Ω× (~x−
~xCoM) by

~f = αt (t̂ · ~U) t̂+ αn (n̂ · ~U) n̂. (2.15)

Here, V and Ω are the center-of-mass velocity and rotational velocity (that we are solving
for), and αt and αn = ααt is the tangential and normal drag coefficients, which is also
sampled for (α > 1). We did not find a need for using a non-linear force theory. The
simulation is run with Python 3.9 using the Jax library.

Video synthesis Given the labels for the centerlines positions, synthetic videos are
generated to be used as input during training. In order to add width to each worm, we
vary the local body radius r by a function of the form

r(s) = R̃ |sin(arccos(as+ b))| (2.16)

The pixel values of those circles are calculated with anti-aliasing. Once the worms have
been rendered, noise artefacts such as uneven background, blurring, Gaussian noise, etc.
are added to replicate the observed conditions of real experiments. During training,
standard augmentation techniques are applied as well. In the same manner as the
simulation of the motion and the neural network training, frame generation is also written
in Python using the Jax library in order to leverage GPU capabilities.

2.2.6 Evaluation

Experimental dataset Videos of swimming C. elegans were filmed using the protocol
described in Ref. [54].
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Manually annotated dataset The evaluation dataset is annotated using a cus-
tom tool that can be found at https://github.com/kirkegaardlab/deeptanglelabel.
Around ∼ 1,500 centerlines have been annotated (see data availability)

Asymmetric dynamic time-warped error metric We introduce a custom metric
to suitably compare the densely defined centerlines of the predictions to labels that
are defined using only a few labelled points. The metric used must be shift-invariant,
as having points anywhere along the centerline should yield zero error regardless of
whether the label points precisely coincide with the prediction points or not. Likewise,
label points should be monotonically assigned along the centerline in order to avoid
artificially reducing the error for strongly bent or self-coiling worms. Finally, it must
be robust against the subjectivity of the labellers, as manual annotations might miss or
avoid spots where visibility is low such as the end-points of the worms.

To satisfy all these requirements, we introduce a metric based on the dynamical time
warping (DTW) distance used to measure the similarity between temporal curves. In
our modified version, asymmetric DTW, summation only runs over label points. Thus,
the metric δadtw is defined as follows: Let d(i, j) be the Euclidean distance between label
point i and prediction line segment j, then

δadtw = min
α

1

N

N∑
i=1

d(i, α(i)), (2.17)

where α : [1, N ] → [1,M ] is a monotonic (non-decreasing or non-increasing) assignment
of the N label points to the M prediction line segments. A visual representation of the
metric is shown in Fig. 2.4b, and the O(NM) algorithm for its calculation is detailed
below. We note that, just as is the case for the dynamic time warping distance, this is
not a true distance in the mathematical sense.

2.3 Results

2.3.1 Architecture

Our model is based on single-stage detection models [181, 200] that output many can-
didate predictions per target in a single forward pass and rely on a score system to prune
until a single candidate is left for each target object. The performance of such single-
stage models has been shown to enable accurate real-time bounding box detection [202].
Fig. 2.2 illustrates the overall structure of our approach. The backbone of our neural
network [Fig. 2.2a] consists of convolutional residual networks [24] and the output of
our model is composed of a set of centerline predictions z = [x−,x,x+] representing
the past, present, and future motion of the bodies. We represent the centerlines by k
equidistant points along the center of the body [Fig. 2.2d]. The centerlines contained
within the set maintain alignment with a consistent head positioning across the three
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predictions. In addition, the model outputs confidence scores s and latent vectors p that
are used for subsequent filtering [Fig. 2.2b] (see Methods).

We take the input to our model to be a stack of consecutive frames in order to
provide the model with a temporal context [Fig. 2.2c]. In the present case of motile
slender objects where dynamic crossings and overlap between objects are very common, a
temporal context can provide the necessary information to resolve the problem of correct
identification. Furthermore, the temporal context allows the output of our model to
include information on the motion of the centerlines, which we will further exploit for
tracking purposes.

The backbone of our neural network performs a 162-fold reduction in resolution when
mapping the input images to feature space, from which the network outputs multiple
anchored predictions. This anchored approach means that the only restriction on input
size is that its dimensions be divisible by 16, and, in particular, it allows training at a
certain resolution H ×W and subsequent inference at another H ′ ×W ′ without loss of
accuracy. We choose the resulting number of candidates to be considerably larger than
the number of objects in the frame, thus ensuring that all objects have suggestions.

2.3.2 Detection on dense C. elegans experiments

To evaluate our approach, we study microscopy videos of swimming C. elegans worms.
We are particularly interested in videos captured at much higher densities than those
typically used in motility experiments. Thus we evaluate our model on wide-field videos
captured under approximately uniform illumination [54], exemplified in Fig. 2.3a. In
our dataset, the number of nematode worms varies ranging from ∼ 400 with a small
probability of overlap occurring (≈ 0.05 average overlaps per worm) to extremely densely
packed plates with up to ∼ 6,000 nematodes, where there is, on average, one overlap per
worm. This means that in the dense plates, detection methods that stop tracking after
contact between worms happens are rendered completely ineffective.

Defining worm density ρ as the number of worms in a region per square millimeter,
we find, as expected, a linear relation between the average amount of overlap per worm
and the density [Fig. 2.4a]. Due to the spatial heterogeneity of the worm distribution
inside the plate, higher densities can be observed when considering small regions. On
100mm2 scales, the highest density in the dataset is ρ ∼ 2.5mm−2, but this jumps
to an extreme ρ ∼ 3.5mm−1 when considering 10mm2 regions, where humans begin
to struggle to correctly identify worms. For quantitative evaluation of our model, ∼
200 random regions of the videos were sampled and hand-labelled resulting in ∼ 1,500
labelled worm centerlines. A sample of frames is shown in Fig. 2.3b to provide a sense
of the different densities encountered in the evaluation dataset, with the predictions of
the model overlaid.

To train our network, we implement a physics-based synthetic dataset generator to
exploit perfectly defined labels (see Methods). This approach removes the need for a
supervised dataset, and also allows labelled videos in situations where manual labeling
may not be reliable, or where the subjectivity of the human labellers can result in
inconsistent labels. Physics-based synthetic datasets have successfully been used to
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Figure 2.2: Method workflow. (a) Structure of the detection method. Trainable neural networks
are colored in gray, and represent the convolutional neural network f(I; θ) and the latent space encoder
q(λ, x0;φ). (b) Procedure to prune unfiltered predictions to final detections with the use of the encoded
latent space vectors. (c) Method overview from the input clip I (we use a stack of 11 frames in this
work) to the final matrix of centerlines x. The target frames [I−, I, I+] (center frames from the clip,
orange) are explicitly shown for both the synthetic and real videos. Additionally, the training setup is
represented using lighter color arrows; from synthetic data to loss backpropagation. After detection,
direct visualization of the predicted centerlines x is possible. (d) Diagram with a centerline descriptor
composed of k equidistant points along the skeleton of the nematode. (e) Visual representation of the
two distances used in Eq. (2.1), the minimum of which corresponds to correct head-tail alignment and
is the one that will be used in the model.

train systems on similar conditions, for instance where manual labelling may introduce
unnecessary noise or bias to the model [162]. Naturally, this requires the formulation of
a physical model that is accurate on the relevant time scales. Furthermore, dependence
on synthetic datasets can result in a divergence between the target and the training
data, potentially leading to inaccurate predictions during inference a phenomenon that
is avoided if the model is trained on real data.

Performance Despite being trained exclusively on synthetic data, the model’s in-
ference performance is very good on real clips. From visual inspection, no immediate
discrepancies are observed between detections in low density clips and at high density
[Fig. 2.3b]. Likewise, per design, the network accuracy is independent on the input clip
dimensions, and the parallel structure of convolutions permits the use of large videos

42



Chapter 2 | On tracking many worms

2736 x 2192

a b

Figure 2.3: Qualitative showcase of the capabilities of the model. (a) Detected centerlines
predicted on an entire densely populated well plate with a single forward pass through the neural network.
Inset shows a zoom-in section to demonstrate the accuracy of detection across the entire plate (except
near borders, where the plate interferes). The total plate contains around 6,000 detections. (b) Close-up
evaluation of different experimental clips with different densities of worms.

covering thousands of nematodes to be processed simultaneously in a single forward pass
[Fig. 2.3a]. We note, however, that even though no quality impact on detections is ob-
served when using large fields-of-view clips, there can be a dependency if non-uniform
illumination is used as different sections of the frame may have different requirements
for preprocessing.

For a quantitative assessment of the method accuracy, we compare to the manually
labelled dataset, an example of which alongside the model predictions can be seen in Fig.
2.4c. As the predictions are densely defined centerlines (here, ∼ 50 points), we used an
asymmetric version of dynamic time warping δadtw (defined in Methods and illustrated
in Fig. 2.4b) to evaluate the accuracy of the predictions using labels with lower fidelity.

The results of evaluating the trained model on the labelled dataset are shown in
Fig. 2.4. For reliable comparisons, we first solve the assignment algorithm for the label-
prediction pairs. This means that in the case of two completely overlapped worms, two
predictions need to be present to not count as a miss, and likewise, two predictions cannot
be considered to target the same label. We find an average error of δadtw ≈ 0.54 px with
no strong dependency between accuracy and density of worms [Fig. 2.4d], with the
exception of a slight increase in error for extremely dense clips (∼ 3.5mm−2). The
average error corresponds to less than the width of a worm (≈ 2 px ≈ 50µm), and part
of this can be attributed to the fact that human accuracy is also near the half-pixel
level [Fig. 2.4c]. Some outliers can be seen however, which can mostly be attributed
to an artefact of the model, where the network mistakes a single long worm for two

43



Chapter 2 | On tracking many worms

•
• •

•
•

•

••
• •

•
•

•

••
• •

•
•

•

•

b

0.0 0.5 1.0 1.5 2.0 2.5

Worm density in clip (mm−2)

0.0

0.5

1.0

1.5
Average overlaps on a worm

a

c ρ = 2.3mm−2 δadtw = 0.6 px 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Worm density in clip (mm−2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Double prediction
artefacts

Double prediction
artefacts

Error distance δadtw dependance with density
d

0 1 2 3 4

Worm density in clip (mm−2)

0.996

0.997

0.998

0.999

1.000
True Positive rate

e

0 1 2 3 4

Worm density in clip (mm−2)

0.00

0.02

0.04

0.06

0.08
False Negative rate

f

0.0 0.2 0.4 0.6 0.8 1.0
Score threshold τs

0.46

0.48

0.50

0.52

0.54

0.56
Average error distance δadtw

τo = 0.1
τo = 0.3
τo = 0.5
τo = 0.7

g

0.0 0.2 0.4 0.6 0.8 1.0
Score threshold τs

0.95

0.96

0.97

0.98

0.99

1.00
Average TP rate

h

0.0 0.2 0.4 0.6 0.8 1.0
Score threshold τs

0.0

0.1

0.2

0.3

0.4

0.5
Average FN rate

i

Figure 2.4: Quantitative performance metrics on the detection of slender bodies in dense
experiments of swimming nematodes. (a) Average number of overlaps counted on frames of pixel
size 512 × 512 with different densities of worms (N = 90). (b) Illustration of the asymmetric dynamic
time warping distance error corresponding to the average value of the orange euclidean distances between
the prediction (green) and the labelled points (white). (c) Example frame with manually labelled points
(white) and models predictions (colored). The metric is only evaluated in the lighter area of size 100×100.
(d) Quantified accuracy of the detections by showing the distance to the manually labelled centerlines.
Distributions for different densities are shown. The violin plots represent the 99 percentile of the data
whereas outliers are plotted individually. (e–f) Rates for True Positive and False Negative on the
manually annotated dataset. (g–i) Performance of the model with different combinations of score (τs)
and overlap (τo) thresholds. N = 1,420. Error bars indicate standard error.

overlapping shorter predictions. This effect seems particularly sensitive to incorrect
intensity normalization of the videos.

Let σε be a cutoff distance above which we no longer consider the predictions to
be targeting the closest label. For all the figures in Fig. 2.4, this cutoff is assumed to
be σε = 3.0 px, and we observe no significant changes by tuning it within the range of
sensible values. We define the True Positive (TP) rate as the fraction of predictions
that both get assigned a label and this label is within the distance σε of the prediction.
Fig. 2.4e shows that the model rarely predicts a centerline where there is nothing with
a TP rate of 0.999. Nevertheless, there are some predictions that do not get assigned
a label which can be attributed to the double-prediction artefacts just mentioned. The
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likelihood of this happening decreases with density, but the rate is so low that it is
almost negligible. Similarly, we define the False Negative (FN) rate as the fraction of
labels that are not assigned a prediction closer than σε. Fig. 2.4f shows that the model
in general manages a low FN rate at around ∼ 0.015, but that this increases to a rate
of ∼ 0.06 at extreme densities such as ρ ≥ 3.0 mm−2, where clusters tend to be densely
packed and manual labeling likewise becomes challenging.

The filtering process depends on two user-defined thresholds: the score threshold
τs ∈ [0, 1] is used to prune predictions with low confidence scores [Fig. 2.2b(1)] and the
overlap threshold τo ∈ [0, 1] is used for filtering by setting the maximum probability of
two independent predictions to be targeting the same object [Fig. 2.2b(2)]. Throughout
this paper, we have set these to τs = τo = 0.5. We evaluate how different combinations of
thresholds may alter the performance results. Fig.s 2.4g–i show the average performance
obtained across all densities when filtering the predictions with variable thresholds. In
spite of some dependency between worm density and TP/FN rates, we consider the
average metric to be a good indicator of the performance for each case.

Fig. 2.4g shows the effect of the thresholds on accuracy. No significant dependency on
the thresholds is observed. This can be explained by the fact that accuracy is determined
by the best predictors only (through assignment), which are not discarded until a high
τs is used, and once those are removed, τo becomes irrelevant. Further, the fact that
there is no notable difference between different values of τo indicates that the clusters
are highly compact.

In contrast, Fig. 2.4h shows that the TP rate has a stronger dependency on τo at
low τs because low score predictions do not form compact clusters, and therefore a larger
exclusion radius is required to discard them. Finally, Fig. 2.4i shows that misses only
begin to occur once the best predictions are discarded, and a strong dependence on the
τs is not observed before that point.

2.3.3 Tracking from consecutive detections

Motility assays require not only accurate detections but also the ability to link these
across frames to form time-resolved tracks of individual organisms. This is challenging
at high densities where we have the breakdown of the assumption that the closest de-
tected object to the previous frame corresponds to the same identity. In general, greedy
approaches to particle tracking such as assigning directly the closest particle in consec-
utive frames frequently leads to failed tracks. Instead, the process of tracking can be
efficiently formulated as a set of linear assignment problems [232]. Naturally, here we can
expand upon particle tracking by using a metric that measures distances not between
center-of-mass of the worms, but between the full centerlines [Fig. 2.2e]. This works
well for most predictions but can fail for fast-moving worms or in dense clusters.

A separate approach to tracking is Kalman filtering. This would require separate
detection of entry and exit events of worms, as well as a probabilistic model for worm
motility, which would most likely have to be highly non-linear. Kalman filtering is viable
for the tracking of few organisms, but for present large-scale systems we require a more
efficient approach. As our model also outputs centerlines from adjacent frames (to embed
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Figure 2.5: Tracking methodology and results. (a) Illustration of the directed distance used to
assign consecutive detections of the same identity. The simplified drawing shows two independent predic-
tions at adjacent frames and showcases how the assignment scheme computes the identity by comparing
future-present and past-present distances and choosing the assignment that minimizes their sum. (b)
Diagram showcasing how using a location cutoff simplifies the assignment problem. Nodes represent
independent detections at each frame whereas edge values are given by the directed distance measure.
The assignment happens by minimizing the sum of edges at each timestep. (c) Comparison of using the
straightforward centerline distance and the proposed directed approach. The accuracy is evaluated by
measuring the integrity of the tracks. In contrast to other metrics in this paper, this plot has been ob-
tained using synthetic worms as long-term, accurate tracks are required to evaluate the tracking integrity
(See Methods for details on Tracking integrity). Error bars indicate standard error (N ∼ 300 at lowest
density to N ∼ 3, 000 at highest density). (d) Qualitative example of 30 s trajectories of the center of
mass of the nematodes in a dense experiment. The still background image represents the last frame of
the video. To improve the visualization, a small subset of the trajectories is shown. In contrast, a corner
of the frame is used to display all the trajectories to showcase the density of simultaneous tracks. (e)
Two samples of the centerline angle ψ of two randomly sampled nematodes from (d). (f) Undulations
corresponding to 30 s of the detections relative to the center of mass coordinate of nine randomly sampled
nematodes from (d). (g) Standard error value of the measurements of the center of mass speed as a
function of density. (h) Showcase of the possible throughput of the method, by simultaneously tracking
more than 6,000 tracks from a full dense plate. A small window on the tracks is shown to showcase their
continuity.

temporal information into the latent vector, see Methods), we propose a directed metric
that leverages both past x− and future x+ centerlines predictions [Fig. 2.5a]. Thus to
find a mapping σ from one frame to the next, we solve

σ = argmin
σ

[∑
i

d(xi(t),x
−
σi
(t′)) + d(x+

i (t),xσi(t
′)

]
. (2.18)

Identity assignment can be seen as a network flow global optimization where nodes

46



Chapter 2 | On tracking many worms

represent detections and edges carry the cost of assignment. To avoid having to perform
all possible combinations of assignments, we include a physical distance threshold on
the midpoint of the central line. This threshold significantly simplifies the assignment
scheme and improves the runtime of the filtering process [Fig. 2.5b]. Notice that due to
the flip-invariance of the distance metric, consecutive assignments of sets of centerlines
are not necessarily aligned, hence a trivial alignment of the centerlines is carried out
during post-processing before being analysed. Likewise, head-tail alignment with the
real worm is not granted and a post-processing step would be required to guarantee the
alignment, e.g. by using temporal information such as the direction of the undulation
wave [Fig. 2.5e].

To quantify the performance of these methods, we define the tracking integrity ι as a
scalar that indicates how consistent the assignment of a label to a prediction is along the
tracked video. Perfect tracks have ι = 1, whereas labels that get assigned two different
identities for half of the duration of the video have ι = 1

2 , and so on (see Methods for a
detailed definition). We evaluate this on synthetically generated videos of 10 seconds (200
frames) that have perfectly labelled tracks, the results of which are shown in Fig. 2.5c.
On videos with densities up to 2.0 mm−2, we achieve an average integrity of ι ≈ 0.97.
This is a ∼ 30 % improvement of the error over using direct detection assignment defined
in Eq. (2.1). We observe that the integrity is almost perfect at low densities, but drops
to ι ≈ 0.93 at the highest densities.

When applied to high density videos of C. elegans, the tracking method is able to
keep track of individual worms as they pass through clusters of other worms [Fig. 2.5d]
(videos in SI). In contrast to pixel-level classification of worms, our approach outputs
centerlines directly, and thus subsequent analysis is straightforward. For instance, one
may directly study the worm undulations [Fig. 2.5f] or extract the worm centerline angle
ψ = arctan(y(s, t)− y0(t), x(s, t)− x0(t)) to provide insight into the movement patterns
and kinematics of the worm [Fig. 2.5e].

One of the key advantages of our methods is its ability to collect a larger number
of samples compared to traditional techniques, while still obtaining reliable results. As
the standard error decreases with the number of samples, using our methods allows for
metrics to be gathered with less uncertainty while still requiring the same experimental
setup. For instance, Fig. 2.5g shows how the error of estimating the average speed of the
center of mass of the nematodes decreases with density. This advantage can be exten-
ded to tracking large numbers of nematodes in crowded environments, such as extremely
dense petri dishes where more than 6,000 concurrent tracks can be simultaneously com-
puted [Fig. 2.5h]. Thus, with our method, we are able to collect a larger number of
samples and obtain more precise and reliable results, even in challenging conditions.

2.4 Discussion

We have introduced a deep learning approach for detecting and tracking slender bodies,
such as swimming nematodes, in microscopy data. The presented convolutional neural
network architecture is capable of accurately detecting a large number of overlapping
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organisms, a task that can be particularly challenging for standard methods such as
bounding boxes and pixel-level classifiers due to the issue of occlusion and overlap. To
address this, we have implemented a latent space encoding which allows us to filter by
non-maximum suppression and effectively handle overlapping objects. Not only is our
method capable of accurately detecting and tracking slender bodies, but it also demon-
strates strong scalability, performing well across a range of input frame sizes and dens-
ities of bodies. This makes it an ideal tool for a variety of experimental settings where
centerlines are useful descriptors, including studies of swimming nematodes, swimming
spermatozoa and beating eukaryotic or prokaryotic flagella.

Besides a suitable detector model, labeled training data is also needed. We have
demonstrated that relying on a physics-based model to generate synthetic data is ad-
equate to train our network to perform well on real data. This is a key achievement
as it means that applications of our system for different experimental studies do not
require large datasets to be procured, but rather the implementation of a suitable simu-
lation. Our approach for synthetic data generation relies on over-sampling the behavior
of the worms. This is naturally a trade-off as too extreme behavior can lead to datasets
that are too hard for the neural network to replicate. For our model, we found that
we slightly undersampled certain worm shapes such as strong coiling, which the model
therefore could struggle with identifying. Though we did not look into this here, an
interesting avenue for future research would be to bootstrap synthetic motility models
on small datasets of real organisms. In a similar fashion, the frame-generator proced-
ure should oversample the textures, pixel intensities and noise of real videos. Here,
it could be interesting to study whether style transfer [161] or diffusion models [233]
could be used to further reduce the gap between training and inference data. We note
that we have only developed and studied a simulation of swimming C. elegans worms,
and the study of other slender-body systems with our framework requires corresponding
synthetic models.

For tracking, we introduced a directed metric that employs past and future centerline
predictions to link them across time. At very high densities this may still fail, in partic-
ular because the directed metric yields little advantage if predictions are missing in some
frames. A potential way to improve on this could come from utilizing the latent space
encoding as well. This would require temporal continuity in the latent space representa-
tion, which is achievable by modifying the associated loss function. This should enhance
the integrity of tracking, as it could potentially be used to resolve issues such as switches
by leveraging the separation of close physical predictions with different temporal beha-
viour that characterises the latent encoding. We believe that these suggestions might be
fruitful avenues for further research for improving deep learning models for dense detec-
tion of centerlines. Furthermore, we note that high short-time scale tracking integrities
can still, over longer times, lead to loss of identity. The tracking integrity measurement
thus sets the time scale over which accurate statistics can be formed. For longer times
scales, other methods are needed [234].

Our approach differs significantly from previous approaches to slender-body tracking.
For C. elegans tracking in particular, previous trackers have focused on either accurate
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single worm tracking [230], few worm tracking [182, 185, 221–225], or large-scale tracking
[54, 226, 227]. However, we found that none of these existing approaches were designed
to handle the type of data and densities that we have presented here, and we thus omit
quantitative comparisons.

In this paper, we have proposed a new approach for fast and precise detection and
tracking of slender bodies in microscopy data. Its speed and accurate performance across
a range of densities and sizes, combined with the ability to handle overlapping objects,
make it a valuable tool for a variety of experimental settings where precise tracking is
essential for obtaining quantitative metrics.
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Abstract

We investigate the boundary between chemotaxis driven by spatial estimation of gradi-
ents and chemotaxis driven by temporal estimation. While it is well known that spatial
chemotaxis becomes disadvantageous for small organisms at high noise levels, it is unclear
whether there is a discontinuous switch of optimal strategies or a continuous transition
exists. Here, we employ deep reinforcement learning to study the possible integration
of spatial and temporal information in an a priori unconstrained manner. We paramet-
erize such a combined chemotactic policy by a recurrent neural network and evaluate
it using a minimal theoretical model of a chemotactic cell. By comparing with con-
strained variants of the policy, we show that it converges to purely temporal and spatial
strategies at small and large cell sizes, respectively. We find that the transition between
the regimes is continuous, with the combined strategy outperforming in the transition
region both the constrained variants as well as models that explicitly integrate spatial
and temporal information. Finally, by utilizing the attribution method of integrated
gradients, we show that the policy relies on a non-trivial combination of spatially and
temporally derived gradient information in a ratio that varies dynamically during the
chemotactic trajectories.

3.1 Introduction

Chemotaxis, the directed motion of organisms towards or away from chemical cues, is a
fundamental biological mechanism that spans biological kingdoms. For instance, proka-
ryotes rely on chemotaxis to find nutrients, avoid toxins, or even optimize oxygen and
pH levels by sensing molecular cues [101, 235, 236]. Single-celled eukaryotes show similar
chemotactic traits [237], and countless biological processes in multicellular eukaryotes
are supported by chemotaxis such as the fighting of bacterial infections by white blood
cells, the positioning of stem cells during early embryonic development, and formation
of multicellular structures in slime mold development [237–239]. Likewise, a hallmark of
cancer metastasis is the chemotaxis of tumor cells towards blood vessels [240].

However, the ubiquity of chemotaxis in biology does not imply uniformity in the
mechanisms that underlie the navigation. At the scale of microorganisms, the fluctu-
ations of the molecules that bind to the cells’ receptors are non-negligible and impose
physical limits on the accuracy of the measurements and, thus, navigation. Chemotaxis
is typically dichotomized into spatial and temporal strategies (Fig. 3.1c) [7, 106, 107].
Larger cells, usually eukaryotes, primarily exploit spatial sensing, harnessing their size to
directly perceive chemical concentration gradients [13], whereas smaller cells like bacteria
are known to adopt temporal sensing, detecting alterations in chemical concentrations
temporally to deduce information on the gradient’s direction, as the fluctuations across
their body render spatial sensing useless. Cells are able to internally calculate temporal
information due to the prolonged presence of the chemical signals within their body,
which, in the absence of spatial cues, can provide information about the concentration
changes experienced by the cell over time, especially as the cell moves through the envir-
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onment [51, 97, 241]. These differences in sensing mechanisms have direct consequences
for the possible types of navigation decision processes.

This binary classification enables detailed analysis of the distinct forms of chemotaxis
within each category. However, as the optimal strategy is dependent on continuously
varying parameters such as the size and velocity of the organism as well as the chemoat-
tractant concentration, it leaves the question of whether organisms can utilize an integ-
ration of both spatial and temporal sensing mechanisms in their chemotactic strategies
[110], and whether such a combination would be preferential in intermediate ranges of
these parameters. Interestingly, it has been shown that cells thought only to use spatial
sensing also rely on temporal information during chemotaxis when given periodic waves
of chemoattractant [242, 243]. Static temporal averaging of previous measurements has
also been shown to reduce sensing noise on cells placed in shallow concentrations [13];
however, this does not take into account the effect of the motile cell itself reacting to
the measurements. Previous work has proposed a more complex inclusion of both types
of sensing to develop newer strategies without being able to outperform single sens-
ing strategies [109], showcasing that efficient integration of both strategies is probably
non-trivial.

Here, we employ deep reinforcement learning (DRL) to discover optimal chemotactic
strategies that can combine spatial and temporal sensing. Previous work has successfully
made use of DRL to find optimal strategies for self-propelled agents exploiting the flow
in fluid environments [83] and for studying the tracking policies of flying insects relying
on memory from noisy measurements to locate food or other insects [244]. Similarly, ma-
chine learning has been utilized for demonstrating the optimality of known chemotactic
strategies [86, 245].

We propose a minimal chemotactic single-cell model and use modern policy optim-
ization techniques [246] to identify the strategy that minimizes the time it takes the cell
to reach a source of chemoattractant. The model cell is endowed with distinct sensors
that enable spatial gradient estimation and is given an internal memory state that allows
temporal information to be derived. Based on a combination of these inputs, the cell
must modify its orientation, a mapping that we leave largely unconstrained by employing
deep neural networks.

We demonstrate the existence of a better performant chemotactic strategy that non-
trivially combines spatial and temporal sensing. Specifically, we pinpoint a range of cell
sizes where a combined sensing strategy outperforms optimal single sensing strategies.
We then concentrate our analysis on this interface, comparing it to analytical ones
and offering both qualitative and quantitative insights on the internal dynamics of the
optimal navigational policy.
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Figure 3.1: Illustration of chemotaxis model components. (a) Representation of the model cell with five
sensors surrounded by chemoattractant particles. Each sensor measures the number of particles Mi inside
its sensing range rs and transforms it as mi = log(Mi+1). (b) Illustration of the simulation environment
where the cell navigates towards the center of the chemoattractant source. (c) Phase space diagram of
cell sizes and speeds showing the distribution of common unicellular prokaryotes and eukaryotes. The
dashed line roughly indicates the binary division between temporal and spatial navigation strategies [7].
Data from Refs. [7, 247].

3.2 Methods

3.2.1 The simulation model

We study a exponentially decaying, two-dimensional distribution C(x) of chemoattract-
ant particles with a concentration peak at x = 0,

C(x) = C0 exp (−λ |x|) . (3.1)

In Appendix A5, we further give examples of algebraic and Bessel function concentration
profiles which can e.g. arise from decaying and diffusing particles emanating from a
central static source,

D∇2C(x)− κC(x) + ρ δ(x) = 0. (3.2)

Here, D is the particle diffusion coefficient, and κ is a particle decay rate, which sets a
length scale λ =

√
κ/D. We take λ = 0.032µm−1 given typical values of D = 100µm2 / s

and κ = 0.1s−1 [109], and study C0 varying from Cq = 16µm−2 to 10 · Cq, which sets
the signal-to-noise ratio of the system and places the cell in the fundamental limit of
sensing regime. ρ is the rate of particle release at x = 0. Even though we assume a
steady state profile for a static source, the cell will experience a change in concentration
as it navigates the environment.

Our cell model consists of a circular disk of radius R, equipped with K sensors uni-
formly spaced around its surface (Fig. 3.1a), whose objective is to reach the source of the
chemoattractant by controlling its direction of motion depending on the environmental
measurements (Fig. 3.1b). The cell senses the environment through molecules binding
to cell-surface receptors. Still, in the interest of keeping our model as simple as possible,
we neglect the complex receptor dynamics of receptor binding and unbinding [10]. Thus,
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we assume each of the K sensors to possess a detection area of radius rs = R sin(π/K)
such that the entire surface of the cell is covered. We fix K = 5 for all our experiments.

Our model cell never stops and moves forward at a constant speed, which we arbit-
rarily set to v = 5µm/s, with its trajectory orientation θ(t) being modified both by its
own actions as well as due to rotational noise,

dθ = at dt+
√

2DR dW. (3.3)

Here, at is the output of the cell’s navigational policy π, and the second term is Wiener
noise with rotational diffusion coefficient DR. Rotational diffusion forces the cells’ nav-
igation policies to react to the sensor signals at least on a time scale 1/DR [99]. In our
experiments, we use Dr = 0.025/s as an average value on microorganisms of our sizes
[7], and use a time-stepping of ∆t = 0.1 s to solve the stochastic equations.

We model the cell receptors as perfect instruments [10], meaning that at each time
step of our simulation, the sensors measure the exact number of molecules inside their
sensor range instantly. This induces fluctuations in measurements with a signal-to-noise
ratio that increases with concentration. Thus, nutrient-deprived environments with a
low number of detected particles are noisy, and nutrient-rich environments are more
deterministic.

We approximate the particle count within each sensor’s area as a stochastic process
sampling from a Poisson distribution. Exploiting the nearly constant particle density
over the detection area, we use

E(Mi) =

∫
A
C(x) dA ≈ C(di) · πr2s (3.4)

Mi ∼ Poisson(E(Mi)), (3.5)

di is the radial distance of the receptor center to the source of the chemoattractant.
Simulations are initialized at random distances d0 from the source with random

orientations θ0 and crucially with a rate of particle release ρ, which we sample in the range
ρ0 and 10 · ρ0. These random initializations ensure that the cell agents cannot overtrain
to specific molecule counts and specific trajectories but rather need to generalize across
noise levels and become adaptable to varying concentration profiles.

Finally, we do biologically inspired preprocessing of the receptor input by transform-
ing according to the Weber-Fechner law [248],

mi = log(Mi + 1) . (3.6)

While this could have been learned directly from the data, it conveniently brings the
neural network input to a tightly constrained domain that is more suitable for DRL, and
also means that noise in mi decreases not just relative to the signal but also in absolute
numbers as ρ increases.

3.2.2 The policy

The internal mechanisms of a chemotactic cell involve a complex set of biochemical
spatio-temporal reactions. Here, we do not model these reactions explicitly, but instead

55



Chapter 3 | On memory and cell size

CombinedSpatial Temporal

{m(1)
t ,m

(2)
t , ...,m

(K)
t }

GRU

MLPMLP

ht

ht−1 ht

at−1

at ∼ N (µt, σt)Vt

{m(1)
t ,m

(2)
t , ...,m

(K)
t }

Dense

ht

MLPMLP

at ∼ N (µt, σt)Vt

⟨m⃗t⟩

GRU

MLPMLP

ht

ht−1 ht

at−1

at ∼ N (µt, σt)Vt

Figure 3.2: Our three neural network policies output the cell’s action based on the measurements and
hidden states. The combined policy has access to the individual measurement of its sensors and has
a hidden state used in a recurrent neural network layer, whereas spatial and temporal only have one
of these features. Dense: a linear NN layer connecting all inputs with all outputs. MLP: Multilayer
perceptron, a sequence of dense layers with non-linear activations. GRU : Gated recurrent unit, a simple
form of recurrent neural network module, which combines a hidden state with new input. The policy
output of the model is both a mean value µt and a standard deviation σt, which defines a normal
distribution from which an action at is sampled. In our experiments, σt → 0 at the end of training
results in deterministic policies

model directly an input-output approximator, the cell policy π. This policy maps an
internal state st, which in the simplest case could just be the vector of instantaneous
measurements, to an action at. We parameterize the function using artificial neural
networks (ANN) to minimize expressive restrictions on the learned policy.

To estimate the cell policy, we assume that it is an optimizer of efficient chemotaxis,
which we define as minimizing the time it takes to reach a certain distance from the
source, as the faster a cell reaches a source, the less competition with other cells it will
encounter. More precisely, at the end of a simulation, we calculate a reward by

R =
tmax − τ

tmax
+max(−1,

δ − d

d0 − δ
), (3.7)

where d0 and d are the initial and final distance to the source (which will be d = δ if
the source has been reached), respectively, and τ is the simulation duration. In the case
of not reaching the source, τ = tmax. We include distance information as part of the
reward reshaping technique to still gather information when the cell is not able to reach
the source before tmax. The first term is a normalized reward for getting to the source
fast, and the second is a bootstrapping reward that punishes cells that do not reach
within the required distance δ of the source. The reward is normalized between [−1, 1],
as is convention in reinforcement learning. We perform episodic rewards instead of
rewarding every action as we found the combined episodic rewards to converge to better
solutions. Simulations terminate when the cell has reached δ distance to the source or
the simulation time has exceeded tmax, thus only one term of the reward expression is
nonzero at the end of the episode; with the distance reward dominating early in training
and the time reward at the end of training.
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To find the optimal ANN policy, we employ Proximal Policy Optimization (PPO)
[246], which adapts the policy π in order to maximize the average reward. We study three
variants of the agents (Fig. 3.2): one policy we restrict to act purely on instantaneous
spatial information. This is enforced by simply designing the neural network to be a
pure feedforward network — from measurements {m(1)

t ,m
(2)
t , · · · ,m(K)

t } to output at.
Likewise, we design a purely temporal network, which does not receive spatial information
but rather the average of all receptors 〈mt〉. Instead, this agent must rely on memory to
provide temporal information on the particle gradients. This is achieved by introducing a
recurrent layer into the policy neural network, which emulates the biochemical memory of
real cells. Finally, we study a combined agent, which has access to both spatially resolved
measurements and has memory that can be used to derive temporal information. This
agent can execute pure spatial and pure temporal strategies but can furthermore act on
any combination of this information. Network details are given in SI.

Our networks also output an estimate of the final reward Vt (Fig. 3.2), which the
PPO algorithms use to speed up convergence but which does not influence the policy
once trained. Further, as the nature of PPO’s exploration strategy adds noise to the
policy output, we also recurrently feed the cell’s action back into the temporal policies,
which aids the training in reaching a deterministic strategy without hindering stochastic
exploration.

3.3 Results

3.3.1 Optimizing for noise-robust strategies

Our deep reinforcement learning approach is designed principally to work at all noise
levels. In nutrient-rich environments, where the input to the agents is not corrupted by
noise, our DRL framework converges quickly to effective temporal and spatial strategies.
Resulting trajectories in these environments are close to deterministic as the noise from
measurements gets reduced, and fewer mistakes in orientation corrections tend to occur.
In those scenarios, spatial-based gradient estimation is effective in directly locating the
source of chemoattractant, and noise due to rotational diffusion does not pose a challenge
for the cell, which only needs to follow the strength of the sensors (Fig. 3.3a). Likewise,
the optimal temporal sensing strategy at high concentrations is easily understood as
it continuously measures the change in concentration and increases the turn when the
concentration starts diminishing. As the temporal strategy contains no information
about the sensors’ positions, it has to spontaneously break its rotational symmetry,
which is exemplified in the resulting left-turning shown in Fig. 3.3b, resembling, e.g., the
chirality of sperm chemotaxis trajectories [249].

In contrast, in the low concentration limit, the input to the cell receptors is extremely
noisy (Fig. 3.4a), and the identification of optimal strategies becomes less clear. Yet, our
DRL approach is able to identify working strategies both using purely spatial and purely
temporal sensing mechanisms (Fig. 3.4b). Qualitatively, we note that the identified low-
concentration temporal strategy behaves very robustly against noise, as its trajectory
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Figure 3.3: Chemotaxis in nutrient-rich media (C0/Cq = 104) (a) Measurement values of each sensor of
the cell. Each color represents one of the K = 5 sensors used in the trajectories. The measurements
correspond to those of the Combined cell. (b) Example trajectories of each variant found strategies at
R = 2µm.

remains smooth despite its stochastic input. This can be interpreted as low reactivity,
which also showcases itself as the temporal strategy only slowly adapts its trajectory as
it nears the source. In comparison, the spatial strategy is very reactive, and while this
makes it susceptible to the stochastic input, it enables it to quickly adapt its orientation
once it nears the source and the concentration is relatively high. Finally, we observe the
first hint that the combined strategy can outperform the two: it shows low reactivity
when far from the source and high reactivity once in its proximity. Low reactivity in
shallow and noisy concentration profiles allows the cell to rely on persistence to avoid
getting trapped, increasing the likelihood of reaching a region where measurements con-
vey more information. This strategy has also been observed in situations where cells are
less likely to instantly turn around, enhancing their chemotactic response by reducing
their reactivity [98].

While deterministic policies are fast to identify, the information that reinforces
policies in the low concentration limit is much more stochastic, making the optimiz-
ation process harder. To enable learning in this very noisy regime, our reinforcement
learning steps rely on averaging the result of thousands of runs and require millions
of simulations to converge to a solution (see Table 3.2). To make this feasible, we de-
veloped a custom end-to-end RL implementation that runs exclusively on GPUs (see
Code Availability).

We note that DRL is not guaranteed to find the globally optimal policy. However,
we find that independent runs of the DRL training procedure result in the same policies,
which hints that the obtained local optima could be global.
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Figure 3.4: Chemotaxis in nutrient-depleted media (C0/Cq = 1) (a) Measurement values of each sensor
of the cell. Each color represents one of the K = 5 sensors used in the trajectories. The measurements
correspond to those of the Combined cell. (b) Example trajectories of each variant found strategies at
R = 2µm.

3.3.2 Smooth transition between a temporal and a spatial strategy

For evaluation, we define a strategy’s chemotactic efficiency η by how fast the cell reaches
the source compared to the minimal time a cell of speed v would take to reach it from the
same initial position (note that this is independent of tmax which was used for training).
Thus, the efficiency of a strategy is given by

η =

〈
d0 − δ

v · τ

〉
, (3.8)

where τ is the time it takes the cell to reach the source threshold distance δ and d0 is
the initial distance to the source, and the average is taken over all realizations.

We train our three variants, spatial (S), temporal (T), and combined (C), on the
same simulation parameters at different cell sizes and proceed to calculate their effi-
ciencies (Fig. 3.5a). At small sizes, where the positional sensor information becomes
indistinguishable due to the noise, both T and C policies show the same performance.
This is in accordance with previous studies showing that small cells are incapable of
sensing gradients along their own body due to the fluctuations in measurements [110].
Nevertheless, as the cell size increases, C starts to outperform T, indicating that the tiny
amount of available gradient information, as observed by the poor performance of S, can
somehow be integrated into a temporally dominated strategy to improve its perform-
ance. At large cell sizes, S dominates T, and while a gap still remains between S and
C at large R, it shows convergence towards the same strategy. Thus, the sensors need
not rely heavily on old measurements to estimate the gradient accurately at the largest
scales. At intermediate cell sizes, we find that the optimal strategy is not purely spatial
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Figure 3.5: Comparison of chemotactic performance between the combined policy and the control vari-
ants. (a) Chemotactic efficiency of each variant on reaching the source as a function of cell size. Each
value is the result of training and evaluating the policies at that cell radius for sampled values of C0.
The average efficiency is evaluated on 216 independent runs. A “blind” agent obtains efficiency η ≈ 0.02.
(b) Distribution of arrival times to the source of the three cell variants at R = 2µm. All evaluations use
sampled concentrations.

or temporal. In detail, we observe a smooth transition between strategies, indicating
that there is a continuous integration of information stemming from spatial input and
memory. Despite being dominated by noise, as illustrated in Fig. 3.4a, C is capable of
taking advantage of the measurement differences between the different receptors on the
cell surface to improve its efficiency. To explore this integration, we now focus on this
intermediate region where both S and T perform similarly yet are outperformed by C,
at R ≈ 2µm.

Inspecting the distribution of arrival times as shown in Fig. 3.5b for R = 2µm, we
observe a clear difference in skewness between T and S. The distribution of arrival times
in S has long tails since cells that start far away from the source are experiencing very
low concentrations of molecules, which disproportionally affect the spatial strategy. In
contrast, T shows very few cells that reach the source quickly, as this strategy relies on
building memory. Interestingly, the cells that use C are both fast and do not get trapped,
having both benefits of the other variants.

To evaluate the optimality of the found strategy C, we compare it against commonly
proposed strategies that use memory kernels to integrate temporal information into
spatial strategies. Likewise, we explore a switching strategy in which cells start by using
the noise-robust T strategy and later switch to using the reactive S strategy at a set
threshold. This incorporates the advantages of each variant as shown in Fig 3.5b. In all
cases, we find that the RL learned strategy outcompetes these simpler explicit strategies
(see Appendix A1).
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Figure 3.6: Reliance on temporal information, through the use of memory, of the action from the
Combined strategy. (a) Average memory usage contribution to the steering output during the simulation
runs at different sizes and concentration levels C0. The line indicates Uh ≈ 0.5, i.e. the transition from a
memory-dominated strategy to a more reactive sensing-based policy. (b) Distribution of memory usage
Uh values during individual trajectories, evaluated at different distances to the source. R = 2µm.

3.3.3 Integrating temporal and spatial information

Having established that C can integrate spatial and temporal information to outcompete
both T and S, we move on to studying the internals of C directly. The policy πC is
a highly non-linear, recursive function which we have parameterized by deep learning
neural networks — this at the cost of lack of interpretability. Nonetheless, numerous
techniques have been developed to gain insight into the internals of a trained neural
network, for instance, by estimating the importance of the input variables. One of the
most elegant techniques to study this attribution problem is the method of integrated
gradients (IG) [91], which calculates the importance of feature xi as

Ii = (xi − x′i)

∫ 1

0

∂π(x′ + α(x− x′))

∂xi
dα, (3.9)

where x′ is a baseline, which we here simply take to be no input x′ = 0. IG is sensitive
meaning Ii is non-zero if and only if xi contribute to the output, and satisfies complete-
ness such that the attributions sum to the output, i.e. at = π(x) = π(0) +

∑
i Ii.

We use IG to understand how the cell relies on previous measurements transmitted
to it by the hidden state ht−1, compared to current measurements mt from the receptors.
We define Uh as the relative importance of memory,

Uh =

∑
i∈h |Ii|∑
j |Ij |

. (3.10)

where the contribution of the hidden state inputs is normalized by the sum of con-
tributions of hidden state components (memory) and instant molecule measurements.
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Figure 3.7: Temporal and spatial sensor influence on cell navigation. Contribution of each sensor from
past time measurements to the current action. The three variants at R = 2µm are shown, with data
colored by sensor position as indicated in the cell diagram. For the temporal variant (dashed), only one
sensor is shown, as all have the same profile as per the designed symmetry. The red arrow indicates the
swimming direction. Curves are obtained by averaging over ∼ 105 trajectories with initial conditions
sampled similarly to previous plots.

Memory usage is well defined between 1, i.e., the cell only relies on memory for its decision
without considering the current measures, and 0, where the cell disregards the memory
information and instead only depends on instant measurements. Thus, a Uh > 0.5 value
indicates that the hidden state contributes more to the output than the current values.
Note that the definition sums over contributions from all hidden states and all meas-
urements and is thus virtually independent of, e.g., the number of hidden states. Here,
we also ignore the previous action at−1 contribution, as it is negligible compared to the
memory and measurements contributions for a converged policy, and it is only during
training that it is essential.

Figure 3.6a shows how average memory usage Uh changes as a function of cell size and
chemoattractant concentration. In accordance with previous conclusions, we observe a
smooth transition of decreasing memory contribution as the cell gets larger. This trans-
ition occurs at smaller sizes the higher the concentration. Interestingly, when evaluating
Uh within a single environment (Fig. 3.6b), we observe a decrease in memory usage as
the cell approaches the source. Thus, the cell is adapting between temporally and spa-
tially dominated strategies during a single trajectory, akin to a continuous version of the
discrete switching strategy just considered.

Although the input to the neural network policy π is the current measurements mt

and the hidden state ht−1, the output at can also be considered a function of all previous
measurements {m1,m2, · · · ,mt}, being processed recursively by a sequence of hidden
states, i.e. at = π(mt, ht−1) = π(mt, mt−1, mt−2, · · · , m0). Applying Eq. (3.9) in this
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Figure 3.8: Temporal and spatial sensor influence on cell navigation. Sensor contributes to the combined
policy for different cell sizes. Color code is the same as in Fig. 3.7.

formulation, we can attribute importance individually to all previous measurements on
the current output.

Figure 3.7 shows the IG attributions of measurements for the purely spatial, the
purely temporal, and the combined strategy at R = 2µm. As the cell diagram indicates,
a positive IG value translates into a contribution for a positive reorientation and a neg-
ative value vice-versa. For our model, this translates positive and negative contributions
to pushing the cell to turn left or right, respectively. On a pure spatial strategy, the
sensors work in opposition, and previous measurements obviously do not contribute. In
contrast, all sensors contribute the same on a pure temporal strategy, but previous meas-
urements oppose current measurements. Curiously, the shape of the contributions highly
resembles the bi-loped shape of the chemotactic memory kernel measured experimentally
on the impulse responses of E. coli bacteria [99].

Similar to the spatial strategy, the combined strategy shows sensors working in op-
position, but the left-right symmetry is broken and compensated by temporal variance,
with one side dominating early and the other side contributing late. This sensor signa-
ture of the combined strategy makes explicit the non-trivial combination of information
it is utilizing, and while these curves are merely IG components, they are indicative of a
non-linear combination of information that asymmetrically merges spatial and temporal
processing (Fig. 3.7). We observe a transition from temporal towards spatial information
processing by looking at how measurements are integrated into the combined policy for
different sizes (Fig. 3.8). This similarity is clearly observed when comparing trajectories
of the purely temporal and pure spatial policies with the combined one at the respective
extreme cell sizes.

3.4 Discussion

In this study, we have explored the theoretical possibilities in chemotaxis that arise
when traditional limitations are relaxed, i.e. when spatial and temporal strategies are
not studied in isolation. Our findings show that the borders of binary classifications
of chemotaxis strategies can be blurred by suitable integration of spatial and temporal
information. In particular, we have shown that for cells with the ability to sense across
their bodies as well as having memory access, there is a navigation strategy that out-
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performs those with only one sensing ability. Therefore, our results show that relying
solely on unimodal chemotactic strategies to evaluate microorganisms’ efficiencies may
indicate only a lower bound of their actual chemotaxis performance, and integrating
both sensing information instead may yield more accurate estimates. Without imposing
any constraints on the policy, we have seen the optimal solution to converge to known
policies (purely spatial, purely temporal) in the limits where it is known that one sensing
mechanism clearly provides faster information on the chemical gradient. Here, we ex-
plored this as a function of cell size and found that for large cells, the emerged combined
strategy converges to relying only on spatial information, whereas for small microor-
ganisms, the gradient information is strictly obtained on temporal differences. In the
intermediate range, we found no sudden switch in strategy, but instead, the transition
between them is continuous and smooth, where information is slowly being integrated
by the cell into its decision process. We expect our mapping of optimal strategies during
this transition may provide some guidance to understand how larger, more complex cells
exploit temporal information to improve their sensing capabilities.

Our general perspective on chemotaxis is achieved by employing artificial neural net-
works and optimizing these by reinforcement learning. The drawback to this is that the
obtained strategies are difficult to interpret. Yet, by comparing analytical strategies and
employing integrated gradients to study feature attribution, we find that the optimal
strategy that employs both spatial and temporal information is not a simple combina-
tion of known strategies, nor is its integration of information types trivial. Our analysis
reveals that memory usage varies with cell size and concentration and changes dynam-
ically throughout trajectories. This is akin to the well-known phenomenon that cells
adapt their measurement sensitivity to local concentration [250], but here, we find that
in an optimal setting, the navigation strategy itself must also dynamically adapt.

Using DRL to study chemotaxis in the noise-dominated regime is computationally
challenging, as it requires a large number of simulations that must dynamically be run
during training. Our custom approach runs simulations and training on GPU, avoiding
slow system-to-device transfers. Here, we have employed this approach to study a simple
chemotactic agent in two dimensions. An interesting avenue for future research is the
move to three dimensions, where the space of possible strategies is qualitatively different.
Likewise, it could be interesting to consider the consequences of a non-static source of
chemoattractant or heterogeneous environments and discover their effect on a combined
chemotactic policy. Similarly, it is of interest to extend our minimal cell model to
specificities of particular organisms, such as a thorough modeling receptor dynamics
[98], the inclusion of stochastic tumbles of peritrichously flagellated bacteria [241], or
more complex behaviors as the ones seen in C. elegans [251]. Concurrent to our work,
agents capable of both spatial and temporal sensing mechanisms have been investigated
using an information theoretical approach [108], deriving complementary insights.
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Appendix

A1 Comparison with interpretable models

In this section, we evaluate the chemotactic efficiency of the trained policies by compar-
ing them to simpler strategies that are straightforward in explaining the integration of
memory and spatial gradient sensing.

We begin by defining a naive spatial policy π̃ where the steering of the swimming
orientation is directly dictated by the strength of the receptor measurements. The naive
optimal reorientation is given by

φ = atan2

(
sin(α) · ω
cos(α) · ω

)
, (3.11)

where ω are the contributions of each receptor to the decision and α are the angles
of the receptor position on the cell’s surface with respect to the swimming direction
(Fig. 3.1a). This naive strategy is very susceptible to fluctuations in measurements and
can sometimes be improved by restricting the reorientations to a certain ε. Thus, we
consider policies of the form

at = π̃(st) =
1

∆t
·


−ε if φ ≤ −ε
ε if φ ≥ ε

φ otherwise.
(3.12)

Integrating measurements over time reduces the fluctuations in concentration meas-
urements, as has also been shown experimentally [13]. Thus, we explore the possibility
of cells relying on the average of previous measurements to set the change in orientation.
The contribution of each sensor is then averaged by previous measurements as

ω
(i)
t =

∫ ∞

0
κ(t′) m̂(i)(t− t′) dt′. (3.13)

Here, m̂(t) are corrected measurements at time t. Directly using m(t) completely ruins
performance, as every time an action is performed, the information of previous measure-
ments is no longer aligned with the cell orientation. To obtain optimal strategies, we use
m̂(t), which is corrected by the action taken at, and thus only suffers from information
decay due to rotational diffusion.

We begin by studying a uniform distribution, such as

κ(t) =

{
1
T for t ≤ T

0 otherwise
(3.14)

where all previous measurements contribute the same up to T . Moreover, we consider
the use of an exponentially decaying kernel

κ(t) =
1

T
e
−t/T , (3.15)

65



Chapter 3 | On memory and cell size

which gives more weight to newer measurements.
As seen in Fig. 3.9a, the chemotactic efficiency of these models outperforms S and T

when some rudimentary use of memory is allowed. We note that each reported value on
the analytical strategies is evaluated with different ε, and only the best-performing one
is shown. Nevertheless, we observe that a large memory timescale becomes counterpro-
ductive as the movement of the cell makes previous measurements irrelevant and only
contributes noise to the decision. Despite the gain in efficiency, the optimal timescale
for the proposed models is far from reaching the chemotactic efficiency of C.

We note that as T → 0, S outperforms the explicit models. This can be explained by
the freedom of S to dynamically control a non-linear equivalent of ε depending on the
measurements. With this in mind, we investigate a new RL agent using the same neural
network as S, but whose input is given by Eq. (3.13). Thus the integration of memory
is fully controlled, but any non-linear action can be taken based on this input. We note
that this again requires correcting previous inputs and special attention is given to the
early parts of trajectories, such that the policy only averages over known measurements.
Fig. 3.9a shows that this indeed outperforms S and T, but cannot reach the performance
of C. This suggests that C is not just combining a temporal average with a spatial strategy
but is also using elements of a temporal strategy.
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Figure 3.9: (a) Chemotactic efficiency of proposed explicit policies compared to the neural network
policies found using reinforcement learning, at R = 2µm. Green points are for policies that integ-
rate measurements over time (lower axis), whereas orange points correspond to the policy achieved by
switching between temporal and spatial strategies at a certain concentration threshold (upper axis).
(b) Chemotactic efficiency of a policy that adjusts the memory time scale according to a linear depend-
ency with the average strength of the measurements T = A〈mt〉 + B. The efficiency is shown as a
function of A, and B and ε are the optimal values for that A. The simulation parameters are the same
as in (a).

Spermatozoa have recently been shown to exhibit a biphasic chemotactic strategy,
in which there is a concentration-dependent switch between hyperactive phases, char-
acterized by random changes in orientation, and more well-known chiral motion [252].
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Presently, a switch between a temporal and a spatial strategy could achieve the best of
the distinct time distributions of T and S in Fig. 3.5b. We implement this by setting a
cutoff particle count at which we switch from T to S. As a function of this threshold,
an increase in chemotactic efficiency is observed, as shown in Fig. 3.9a, but this also
does not reach the efficiency achieved by C. Nevertheless, the increase in efficiency does
suggest that the contribution of temporal and spatial may change dynamically with the
concentrations.

Finally, we explore the possibility of designing an agent where the effective memory
scale T is linearly dependent on the measurement concentration, as suggested in FIG.4B,
such that

T = A 〈mt〉+B (3.16)

We evaluate for different parameters of A, B, and ε on a uniform kernel. Fig. 3.9b
shows the chemotactic efficiency at different parameters A, with the best performant
B∗(A) and ε∗(A).

The performance of this model is similar to that of a fixed uniform kernel. While
the study of integrated gradients shows the amount of memory used, it does not reveal
how this memory is used. In particular, here, we find that a simple uniform kernel is far
from enough to reach optimal behavior.

A2 Simulation Parameters

Table 3.1 lists the default parameters used in the simulation environment for training
and evaluation. These parameters govern the behavior of agents and the properties of
the environment, including the chemoattractant field and cellular dynamics.

Description Symbol Value Unit
Number of receptors K 5 –
Cell speed v 5 µm/s
Rotational diffusion coefficient DR 0.025 s−1

Chemoattractant diffusion coefficient D 100 µm2/s
Chemoattractant decay rate κ 0.1 1/s
Time step ∆t 0.1 s
Lower limit concentration levels Cq 16 1/µm2

Concentration levels C0 ∼ U(Cq, 10Cq) –
Threshold distance to the source
(10th percentile of N) δ − log(0.9)/

√
κ/D µm

Initial distance d0 − log(∼ U(0.3, 0.7))/
√
κ/D µm

Initial orientation θ0 ∼ U(−π, π) rad

Table 3.1: Default parameters used on the simulation of the environment during training and evaluation
runs, if not stated otherwise.
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A3 PPO training hyperparameters

Table 3.2 summarizes the hyperparameters used in training the Proximal Policy Op-
timization (PPO) algorithm for our implementation. These parameters were chosen to
balance learning efficiency and stability while leveraging parallelized environments for
large-scale simulations.

Description Symbol Value
Number of parallel training environments Nenvs 4096
Total number of simulation steps Nsteps 1010

Simulation duration steps tmax/∆t 256
Maximum gradient norm clipping 0.5
Learning rate η 3 · 10−4

Number of epochs Nepoch 8
Number of mini batches Nbatches 8
Epsilon clipping ε 0.2
Entropy coefficient σ̂s 0.01
Critic coefficient σ̂c 0.5
Advantage Discount γ 1.0
Generalized advantage coefficient λ 1.0
Number of hidden layers K 2
Hidden layers size L 64
Number of hidden state cells M 25
Minimum variance in output σmin 0.05
Maximum variance in output σmax 1.0

Table 3.2: Parameters used during training to train using our Proximal Policy Optimization implement-
ation
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A4 Approximation of the concentration profile

Figure 3.10 compares the Modified Bessel function of the second kind, which is the
solution to the 2D diffusion equation, with an exponential gradient used for simplicity.
While the Bessel function provides the exact solution, the exponential gradient serves as
an effective approximation in the regions of interest, offering a computationally efficient
alternative.
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Figure 3.10: Concentration profiles at different amounts of concentration levels C0/Cq. The standard
deviation of the expected values at different distances from the source is also shown to indicate the noise
in the measurements. The thick black line represents δ, the closest the cells will be from the source,
and the gray region indicates the initial distance region where the cell may start an episode. Both the
Modified Bessel of second kind function and the exponential are plotted to showcase their similarity in
the region of interest.
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A5 Universality of the results

Figure 3.11a-3.11c demonstrates the universality of the observed transition between tem-
poral and spatial chemotactic strategies across different gradient profiles and under vary-
ing assumptions about rotational diffusion. The crossing consistently occurs, and the
combined strategy always outperforms the individual strategies.
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Figure 3.11: Chemotactic efficiency as a function of cell size. (a) We model the rotational diffusion
of the agent as Drot =

( a
R

)3

, with a = 0.315 µm s−4. Similar results (transition) are observed,
with the main difference being at smaller sizes where the Drot worsens the efficiency of all strategies.
(b) Chemotactic efficiency while using a concentration profile c(x) ∝ K0(λx). (c) Chemotactic efficiency
with and algebraic concentration profile, i.e. c(x) ∝ 1/x.
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Abstract

Single-cell organisms and various cell types use a range of motility modes when following
a chemical gradient, but it is unclear which mode is best suited for different gradients.
Here, we model directional decision-making in chemotactic amoeboid cells as a stimulus-
dependent actin recruitment contest. Pseudopods extending from the cell body compete
for a finite actin pool to push the cell in their direction until one pseudopod wins and
determines the direction of movement. Our minimal model provides a quantitative un-
derstanding of the strategies cells use to reach the physical limit of accurate chemotaxis,
aligning with data without explicit gradient sensing or cellular memory for persistence.
To generalize our model, we employ reinforcement learning optimization to study the
effect of pseudopod suppression, a simple but effective cellular algorithm by which cells
can suppress possible directions of movement. Different pseudopod-based chemotaxis
strategies emerge naturally depending on the environment and its dynamics. For in-
stance, in static gradients, cells can react faster at the cost of pseudopod accuracy,
which is particularly useful in noisy, shallow gradients where it paradoxically increases
chemotactic accuracy. In contrast, in dynamics gradients, cells form de novo pseudopods.
Overall, our work demonstrates mechanical intelligence for high chemotaxis performance
with minimal cellular regulation.

4.1 Introduction

Mechanical intelligence is widespread in nature, by which information processing is
deeply embedded in the architecture of living systems [7, 253]. For instance, the un-
derlying mechanisms by which cells perform chemotaxis, the directed movement of an
organism along a chemical concentration gradient during microbial pathogenesis, wound
healing, and immune response, remains a subject of intensive research [2, 95, 131, 254].
Particularly relevant is the understanding of the tight coupling between sensory cues and
cell locomotion mechanisms, as they provide insights into effective navigation methods
at the microscopic scale for cell sensing at fundamental physical limits [255]. Here, we
focus on studying the role of pseudopod formation as a cellular decision-making mechan-
ism, which represents an important yet not fully understood aspect of cellular navigation
[118, 121].

Amoeboid locomotion is characterized by the extension of pseudopods, temporary
protrusions that allow the cell to explore its environment and move directionally in re-
sponse to chemical cues [7]. Experimental evidence has shown pseudopod formation to
occur at higher rates in shallow gradients and that they are more pronounced [112]. In
particular, this phenomenon may constitute a way to reach the fundamental physical
limit by minimizing the interference of sensing by movement [118]. The ultimate limit
is reached by a cell that senses only previously undetected ligand molecules to gain new
information, effectively corresponding to a ligand-absorbing cell [118]. Despite the ob-
served importance of amoeboid cell migration, a comprehensive theoretical understand-
ing of pseudopod splitting and its strategic role in accurate chemotaxis is still lacking.
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Traditionally, chemotaxis is approached from microscopic receptor-ligand interactions at
the cell surface, translating external signals into directional movement through a com-
plex network of signaling pathways [49, 122]. Often, models assume an "all-knowing"
cell, capable of optimally processing their signaling information for directional migra-
tion[2, 13, 108]. Alternative, more realistic models exist with a tight coupling between
signaling, cytoskeleton remodeling, and cell-shape dynamics [118, 256], but from which
insights are more difficult to obtain.

Here, we model pseudopod splitting through the dynamics of actin polymerization,
wherein the competition for a finite resource between extending pseudopods determines
the next cell movement direction. By quantitatively describing intracellular interactions
within an interpretable model, we gain insights into the fundamental principles gov-
erning cellular decision-making and their implications for efficient chemotaxis in com-
plex chemical landscapes. To generalize, we employ state-of-the-art deep reinforcement
learning (DRL) [79, 246], allowing us to study how pseudopod suppression enhances
the cell’s ability to correctly choose the direction of movement faster. By optimizing a
self-contained but unconstrained suppression policy at a level beyond what is possible
with classical optimization, we achieve chemotactic strategies that cells have evolved
over evolutionary time scales. One example is the experimentally observed alternation
of cells between pseudopod splitting and elongation [118]. Deciphering the key physical
principles of embodied computation in the living world allows us to understand the cell
body as an analog machine for both information processing and motility. This approach
may inspire entirely new classes of intelligent matter designs.

4.2 Methods

4.2.1 Decision-making model

In the context of cellular decision-making, pseudopods play an important role that ex-
tends far beyond mere movement [118] – we consider them fundamentally coupled with
the sensing process. Experimental results show pseudopod formation originates mainly
from two distinct mechanisms: splitting from existing pseudopods or by de novo forma-
tion (Fig. 4.1a) [112]. To simplify this complexity, our minimal model assumes a unified
cell body and pseudopod, where the previous pseudopod serves as the origin for new
pseudopod growths, which permits us to describe both mechanisms under the same dy-
namical framework. We refer to this as a splitting event (Fig. 4.1b). A splitting event
is defined as a competitive process between n possible directions for the cell to move
(or grow, in our case), where the winning candidate dictates the new cell orientation.
We allow 12 directional options, providing a suitable number of choices for the cell to
navigate its environment. In order to win, each candidate attempts to polymerize as
many actin filaments as possible from a finite reservoir of actin monomers.

Actin polymerization. Previous work by Pais et al. [123] successfully modeled col-
lective decision-making on honeybee swarms using stochastic differential equations for
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Figure 4.1: Schematics of the decision-making model and actin dynamics. (a) Pseudopod
splitting in a Dictyostelium cell performing chemotaxis under agar (provided by Robert Insall) [121].
Arrows indicate likely actin flows, and the scale bar is 20µm. (b) Diagram of the cell morphology during
a splitting event. Pseudopod formation occurs due to competition during actin recruitment. In this
instance, only two pseudopods emerge even though n = 12 candidates start the competition. Finally,
only one remains after decision-making time TD, altering the cell orientation and advancing its position.
The movement step is completed at time T . (c) Segmentation of actin filaments inside pseudopodia of
small platelets with permission from Sorrentino et al. [116] based on high-resolution structural analysis.
Actin filaments are in blue, red, and yellow, while receptors are shown in green. (d) Schematics of the
simplified polymerization of actin into filaments (F-actin) at the internal membrane surface from actin
monomers (G-actin), forming pseudopods. The diagram also shows how pseudopods suppress neighbors
by redistributing their actin filaments and mutually inhibiting each other’s growth.

valued-based decisions with a finite resource to distribute, e.g., swarm members to 2 or
more potential nest sites. Similarly, our model describes actin polymerization on each
pseudopod (Fig. 4.1c) with the following overdamped Langevin dynamics

dAi

dt
= ρiAu − δAi − λAiĀi + ε(Ai − Āi) + ηi(t), (4.1)

where Ai are the cumulative proportion of actin monomers that have been polymerized
into filaments at pseudopod Pi, and Āi are the local sum of actin levels of the other
pseudopods Āi =

∑
j 6=iAj . Assuming actin mass conservation, we set Au = 1 −

∑
iAi

as the uncommitted actin monomers (G-Actin) proportion inside the cell.
Fluctuations are assumed to arise by the Berg-Purcell noise in chemoattractant meas-

urements [10], which we include by adding noise η with

〈ηi(t)〉 = 0, 〈ηi(t) · ηj(t′)〉 = σ · ci · δ(t− t′) · δij , (4.2)

where δ(·) is Dirac’s delta, δij is Kronecker’s delta, and ci ≡ c(xi) is the dimen-
sionless concentration level at the tip of pseudopod Pi (see 4.2.2 for details on non-
dimensionalization). This assumes ligand noise as Poissonian due to the random arrival
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of ligand molecules at the cell surface by diffusion, and internal noise due to fluctuations
in actin levels is ignored.

The polymerization rate ρi of actin filaments inside a given pseudopod Pi is influenced
by the local concentration of chemoattractant, which activates well-known signaling
pathways that lead to increased actin polymerization [112]. Thus, we model the amount
of G-actin recruited by a pseudopod as being proportional to the signaling activity of
the receptors at the pseudopod end. The rate is defined as the average signaling activity
of a receptor complex composed of many receptors, which can switch between an on and
an off state [257], given by the Boltzmann probability Pon with a strength ρ0

ρi = ρ0 · Pon =
ρ0

1 + e∆Fi
, (4.3)

where we linearized the change in free energy for small ligand concentration changes,
i.e., ∆Fi ≈ −κc (ci − c0), with ci and c0 being the concentration value at the end of
the pseudopod and at the original focal adhesion point, respectively. Note that in an
environment without chemoattractant gradient, i.e., constant concentration profile, all
pseudopods have the same intrinsic polymerization rate set by ρ = ρ0 / 2.

F-actin constantly undergoes treadmilling, where individual monomers are removed
from one end to be added at the other end of the polymer (Fig. 4.1d). We include this
by adding a depolymerization rate (δ). In our case, however, once the monomer has left
the filament, we consider it to be returning to the uncommitted actin pool and, thus,
potentially being reused by other pseudopods. Furthermore, pseudopods may inhibit
each other by sequestering shared resources and signaling crosstalk [258]. Hence, we also
include a cross-inhibition (λ) term, where the size of the rival candidates will diminish
the overall recruitment speed [123].

Finally, the actin exchange rate (ε) represents the transfer of actin between pseudo-
pods (Fig. 4.1d), as it has been observed that cells can redistribute actin to prioritize
certain directions [113, 115]. This term results in a commitment to the winner behavior
where the cell follows the largest pseudopod the moment it has grown enough to collapse
the other candidates back to the focal adhesion point.

Pseudopod growth. To model pseudopod growth, we assume actin to be the sole
driver of membrane expansion, thereby linking sensing mechanisms to cellular motility.
Hence, by focusing on its intrinsic coupling, we ignore some known effects of mem-
brane mechanics on cellular motility, such as membrane tension, substrate interaction,
or surface curvature. Due to the high fluctuations in the actin dynamics at elevated
chemoattractant concentrations, we model pseudopod length as a timed-average linear
response of F-actin levels, such as

`i(t) = L

∫ t

t−1
Ai(t

′)dt′, (4.4)

such that the total dimensionless length of the cell is conserved, i.e., L = `u+
∑n

i `i,
with the time for the linear filter used as the characteristic timescale for the dynamics
(see 4.2.2 for further details).
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Decision time. At the beginning of a splitting event, we consider all the motility-
associated actin to be unpolymerized Ai(t0) = 0 for all i ∈ {1, . . . , n}, and Au(t0) = 1.
The event ends at t = T when one candidate has gathered most of the actin (Ai ≈ 0.95).
However, the duration of the event contains both the decision-making process and the
final growth of the winning pseudopod until it takes all remaining actin. Since we are
interested in the decision time TD, we define it as the time beyond which the length of
the winning pseudopod is larger than the summed lengths of all remaining candidate
pseudopods, i.e.

`i(t) ≥
∑
j 6=i

`j(t), ∀t ≥ TD. (4.5)

Concentration profile. To simulate chemotactic environments, we assume a linear
gradient of concentration profile similar to those observed in chemotactic chambers [118],
such as

c(x) = gxx+ cn. (4.6)

where gx is the concentration gradient and cn is the background concentration at the
origin. This is a common approximation to the resulting concentration profile based on
Flick’s second law of diffusion of a constant chemoattractant value that diffuses from
the side of the chamber. We treat gradient magnitude and background concentration
as freely varying initial conditions to investigate their impact on cell decision-making
processes. Notably, the profile is defined with unitless variables as described in the
Methods section.

4.2.2 Implementation

Numerical simulations. Actin dynamics are integrated using the Euler-Maruyama
integration scheme, converging to the Ito solution. Discrete-time steps are set to ∆t =
0.1 s during the simulations unless explicitly stated. Thousands of realizations are carried
out for each numerical result by massively parallelizing the simulations using GPUs (see
Code availability).

Non-dimensionalization of the dynamics. To simplify the equations, we non-
dimensionalize the system by scaling all lengths relative to cell size a. Similarly, time is
defined relative to τm, a characteristic timescale for the linear filter in Eq. (4.4), which
relates to the mechanical properties of the membrane. Accordingly, the gradient and
concentration levels are rescaled by length scale a, resulting in unitless concentration
profile Eq. (4.6). Hence, length scale a changes the concentration profile while main-
taining the same cell dimensions. The cell dynamics are described in the cell’s frame of
reference.

Suppression policy architecture. We model the suppression policy ρθ as a relatively
small artificial neural network whose input is the logarithm in base 10 of the SNR and
whose output is a vector of (n, 2) values between 0 and 1 as the logits for the probability
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of activating or suppressing each pseudopod ρ0. The final state is sampled from a
categorical distribution. The network is a multi-layer perceptor (MLP) of 4 layers of
128 neurons each, with tanh activation functions between them. Since the policy also
predicts the expected value V , we use an MLP with 4 layers and 128 neurons.

Optimizing the suppression policy. The algorithm used here is a modified version
of the proximal policy optimization (PPO) algorithm [246] implemented in Alonso and
Kirkegaard [2]. PPO is an on-policy optimization technique that iteratively improves its
policy pω by collecting information from simulations between optimization steps. The
results of these simulations are then used to perform stochastic gradient descent on the
policy parameters ω. Simply, the algorithm maximizes the following clipped surrogate
loss defined as:

LCLIP (ω) = E

[
min

(
pωn(ρ0|z)
pωp(ρ0|z)

·At,

clip
(
pωn(ρ0|z)
pωp(ρ0|z)

, 1− ε, 1 + ε

)
·At

)]
,

where ωn represents the updated parameters of the policy, while ωp indicates the previous
policy parameters. The term pω(ρ0|z) is the probability of output ρ0 given the SNR,
here indicated by z, under the new policy. The advantage function At quantifies the
relative benefit of taking a particular action at a given state compared to the average
action value. Notably, the clipping parameters ε control the size of the trust region,
ensuring that new updates do not deviate significantly from the previous policy, which
leads to more stable optimizations. In practice, the clipping is performed by defining
upper and lower bounds on the allowed change in ratio between consecutive policies that
contribute to the loss.

To promote exploration, especially given the discrete nature of our actions (active or
suppressed candidate), we include an entropy term on the loss function as a regularization
term set by

H = − 1

n

n∑
i

p(i)ω (z) log(p(i)ω (z))

which encourages the policy to maintain a certain degree of stochasticity, preventing
collapses and premature convergence. Here, n is the number of actions, which is set as
the number of candidate pseudopods.

4.3 Results

Effect of chemoattractant on actin dynamics. We evaluate the system at differ-
ent concentration profiles and observe the difference in the actin dynamics during the
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Figure 4.2: Actin and pseudopods dynamics during decision-making. (a-b) Sample trajectories
of F-actin levels of each of the n = 12 candidate directions of the cell, shown in the circular diagram in
(a), in a linear concentration profile Eq. (4.6) in a shallow (a: gx=0.01, c0=50) and a steeper (b: gx=1,
c0=150) gradient environment, respectively. The inset in (b) shows a closeup of the initial dynamics of
the competing pseudopods on log time. The proportion of G-actin is shown as a black line. The decision
time TD is also marked with a vertical line set by Eq. (4.5). (c) Duration distribution of the events T
and the decision times TD. (d) Decision time as a function of the chemoattractant gradient for different
noise levels set by the concentration value.

competition event (see Fig. 4.2). The trajectories quickly start by equally recruiting
monomers regardless of direction, which halves the pool of G-actin Au. As shown in
Fig. 4.2b, the F-actin levels fluctuate until some candidates are suppressed while oth-
ers remain, forming pseudopods. This process is quicker when the gradient is stronger.
The resulting distributions of decision time and total duration for many combinations of
gradients and concentration values (Fig. 4.2c) indicate that decision time only accounts
for half the duration of the event. This demonstrates that, despite cell movement and
decision-making being coupled, the decision occurs before the final pseudopod grows and
collapses all other candidates, directing the entire cell body toward the chosen direction.
Interestingly, when studying the effect of the environment in the decision time of the cell,
we observe an exponential decaying dependency with the gradient strength (Fig. 4.2d).
Hence, the cell reacts faster in environments where the gradient (signal) information is
stronger. Similarly, a larger concentration background level c0 (noise) also causes the
cell to decrease its decision time.

78



Chapter 4 | On amoeba decision-making

Emergence of Weber-like law. When examining cell decision success rate in re-
sponse to chemoattractant gradients, we find the minimal signal strength required for a
consistent movement up the gradient scales with noise strength due to measurement fluc-
tuations (Fig. 4.3a). This phenomenon echoes Weber’s law of just noticeable differences,
which describes a linear relationship between signal strength and mean value. Notably,
here, this property emerges without relying on logarithmic transformations of the signal,
commonly used in chemotaxis studies [2, 257]. Instead, the difference between concen-
trations, e.g., at the pseudopod tip and at its original position at the focal adhesion
point, suffices to produce Weber law-like behavior, implying that cells may use a simple,
local comparison mechanism to make directional decisions. However, our model results
in a square-root dependency on concentration, approximating linearity when noise con-
tributions become significant (see Fig. 4.3a). The square-root dependency indicates that
the cell success rate scales with the signal-to-noise ratio (SNR) instead, which is defined
as

SNR =
g2x
c(x0)

. (4.7)

This can be easily understood in our model, Eq.(4.1), as our cells make finite-difference
estimates of concentrations across pseudopods, effectively measuring gradients, while the
noise Eq.(4.2) scales as the square root of the chemoattractant concentration. This result
also matches previous experimental observations [118] and is consistent with Weber’s law
observed in the chemotaxis of some cell types [259, 260].

Interestingly, adjusting ε, which determines how fast the cell commits to the winner
pseudopod, modifies the slope of the dependency while preserving its linearity (Fig. 4.3b).
This showcases robustness in the behavior of the cell, which, despite changing the de-
cision accuracy and speed, conserves the overall dependencies on the environment in-
formation.

Pseudopod competition leads to indirect gradient sensing. A commonly used
measurable observable for chemotactic performance is the chemotactic index, which was
previously calculated using the physical limits of sensing by Endres and Wingreen [13].
The probability of estimating the gradient of a concentration by a perfectly ligand-
absorbing cell (to avoid the noise from rebinding) is

P (ĝx, ĝy) =
1

2πσ2g
exp

[
−(ĝx − gx)

2 − (ĝy − gy)
2

2σ2g

]
, (4.8)

where (ĝx, ĝy) is the estimated gradient, and the real one is given by ∇c = (gx, gy), with
the uncertainty of the measurement being

σ2g =
c0

12πDT
.

where T and D are the relative time the cell takes to measure the gradient and the
unitless diffusion constant of the chemoattractant, respectively. From Eq. (4.8) and
assuming a linear gradient on x such that ∇c = (gx, 0), we obtain that the expected
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Figure 4.3: Weber-like law and speed-accuracy tradeoff. (a) A heatmap of the success rate at
different values of gradient and background concentration. Each rate value (square) is calculated by
averaging 105 independent splitting events with randomly oriented cells and considering it a success if
the final movement of the cell has led it to a higher concentration, i.e., c(xT ) > c(x0). The blue line
indicates the minimum gradient at which the accuracy of choosing the direction up the gradient reaches
0.95, the threshold rate at which we consider the cell to be making the correct decision unambiguously,
as the perfect rate is subject to numerical fluctuations. The vertical dashed line indicates the threshold
at which we consider the linear regime to begin (c(x) > 30). A linear fit is shown in a dashed line on
top of the minimum gradient for the linear region. (b) The minimum gradient line changes for different
actin exchange parameters ε. The inset showcases what is commonly understood as Weber’s law, a scalar
ratio between the perceived change in stimulus (dS) and stimulus value S. (c) Accuracy of aligning the
cell body with the gradient, given by the chemotactic index (CI). The solid line showcases the optimal
CI of a perfect absorbing cell set by Eq. (4.9), while the dashed line adjusts it by a factor 0.9. The inset
exemplifies the resulting distributions of the alignment of the cell at low and high gradients, respectively.
(d) CI (black) and mean decision time TD (red) as a function of the number of candidate pseudopods
at the highest gradient (gx = 2). The inset shows the rate of alignment, fitted to the power law n−ν .

cosine similarity of the gradient and direction of movement. This is the chemotactic
index given by

CI = 〈cos (θ)〉 =
√
πz

2
e−z [I0(z) + I1(z)] , (4.9)

where z = 3πk SNR, θ is the orientation of the cell, and I0(1) are first (second)-order
modified Bessel functions. The combination k = DT can be thought of as a single
fitting parameter. During the measuring time, it is assumed that the cell processes
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the measurements by averaging their positional information before making a decision.
Instead, Fig. 4.3c shows that this processing emerges from the competition between
pseudopods until one candidate is chosen and the cell aligns itself with the estimated
gradient. However, the resulting CI from numerical simulations saturates at a lower
value due to the similarity in signal between neighboring candidates and the saturation
of the receptor’s signaling, set by Eq.(4.3). Agreement with the theory is only obtained
when multiplying Eq.(4.9) by a 0.9 factor. Interestingly, this was also done in Endres
and Wingreen [13] when comparing to data.

Pseudopods competition reveals speed-accuracy trade-off. Due to the pseudo-
pods’ fixed orientation, the larger the number of candidates, the more likely a pseudopod
will align perfectly with the gradient direction. As shown in Fig. 4.3c, the closeness of
the candidates, together with the low signal or strong fluctuations of the measurements,
saturate the decision. Thus, we compare the resulting alignment at the highest signaling
strength for an increasing amount of candidates (Fig. 4.3d) and notice that the align-
ment increases with n up to a saturation point at n = 6. Curiously, when estimating the
average decision time 〈TD〉, we observe a monotonic increase as well, without reaching
a saturation state, pointing towards a diminishing return in the number of candidates
in terms of efficiency. Furthermore, by evaluating the rate of alignment (Fig. 4.3d), we
infer a power-law-like behavior CI/TD ≈ n−ν , with ν = 4.5, which clearly indicates that
the lower the number of candidates, the lower the decision time, and the more efficient
the decision making (despite a decrease in absolute accuracy).

Chemotaxis trajectories depend on SNR. The dynamics of the splitting event
move the cell body towards its chosen direction. When completed, the winning pseudo-
pod becomes the cell body in a new location with a new orientation, ready to start
another event. Consequently, in our model, chemotaxis emerges as a sequence of con-
secutive pseudopod-splitting events. Similar to the decision success rate in Fig. 4.3a, by
extending pseudopod splitting to many events, the resulting ensemble displacement is
strongly affected by the SNR (Fig. 4.4a). The spread of the cell during the trajectory
is highly correlated with the accuracy of each individual decision. At low SNR, the
resulting distribution is almost that of a random walk, whereas, at high values, the cells
show strong persistence in moving up the gradient.

In Fig. 4.4c, we compare the chemotactic index of our unsuppressed cell, i.e., with
n = 12 possible directions of movement (yellow line), with those from experiments
(symbols). To quantify the alignment of trajectories, we calculate the chemotactic index
as the average of the cosine similarity SC for binned values of SNR. This can be expressed
as CI = 〈SC(t)〉SNR. Due to the shape of our cell, SC is defined as the weighted average
of the orientation of each pseudopod (with respect to the uropod), proportional to their
length. Thus, at each timestep, we have

SC(t) = `u cos (θ) +
n∑
i

`i cos (θ + φi), (4.10)
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Figure 4.4: Chemotaxis performance depends on SNR. (a) Sample of 3 102 chemotaxis trajectories
of our model, composed of 30 splitting events, at different levels of SNRs. The vertical black line
indicates the initial positions of the cell. Since SNR changes along a trajectory, low here contains SNR
∈ [10−5.874, 10−5.875], mid contains [10−3.26, 10−3.29] and high [10−1.87, 10−2.06]. (b) Final displacement
distribution (N = 7103) of the trajectories in (a). A distribution for the splitting configuration with
n = 2 at low SNR is also included in blue. (c) Chemotactic index (CI) as a function of SNR, plotted on
a log10 scale. The fundamental physical limit for a static spherical ligand absorber is given by Eq. (4.9)
[13], fitted to the experimental data from [105, 118]. Additionally, the performance of an all-knowing cell
that estimates the gradient based on (n = 12) sensors uniformly distributed across its body is shown in
a dashed line (see Appendix A1 for details). In yellow is the resulting CI of 104 independent trajectories,
from which at each timestep the CI is calculated using Eq.(4.10) and binned according to the SNR at the
start of the event. Similarly, the purple line shows the results for a cell with only activated P2 and P10.
For clarity, the lines are fitted to a logistic function using the numerical simulations binned by SNR.

where θ indicates the cell orientation and φi the relative orientation of the candidate Pi

w.r.t. the cell. Interestingly, at lower SNR, when the gradient is shallow and difficult to
infer, the average performance resembles the expected one of a perfect absorbing cell at
the fundamental limit of sensing (black solid line). Note that for wide-ranging attractant
concentrations, our cells with only two pseudopods perform significantly better than
all-knowing cells, implemented by 12 sensors, sophisticated inference by least squares
fitting, and uncertainty based on the Cramér-Rao bound (see Appendix A1 for details).
Furthermore, as the signal increases, the model approaches the lower bound of the
experimental data, ultimately saturating at ∼ 0.9 chemotactic index. There is notably
excellent agreement between our model and the data without any explicit fitting.

Pseudopod suppression to enhance chemotactic efficiency. Until now, unless
explicitly specified, we assumed that the cell has n=12 evenly spaced distributed pseudo-
pod candidates, sufficient for the cell to accurately choose the right moving direction.
However, we observed that fewer candidates can drastically improve efficiency during
decision-making (Fig. 4.3d). Experimental observations showed that the angle between
pseudopods is affected by the chemoattractant gradient shallowness [112, 122]. Based
on these observations, we suppress all pseudopods candidates except P2 and P10, which
grow at a ϕ=± 60◦ of the cell movement orientation, and observe their CI as the SNR
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increases (Fig. 4.4c). The resulting chemotactic index shows that the cell is able to move
up the gradient more robustly at small SNRs than when allowed to change directions
freely (n = 12). This is also seen on the final displacement at Fig. 4.4b at very low SNR,
where this configuration manages to reach further up the gradient. Nevertheless, as the
quality of the signal increases, the cell with the wider range of options performs better,
as the two pseudopods likely do not align with the actual gradient. This cross-over in
the chemotactic index can be seen in the data of cell morphology, where amoeba use
pseudopod splitting at small SNR and a broad-front polarization at high SNR [118].

In previous work [2], we observed the advantage of gradual orientation updates in-
stead of full turns when optimizing a fully unconstrained spatial policy using deep rein-
forcement learning (DRL) at the fundamental limits of ligand sensing, confirming that
relying on persistence is an effective strategy when navigating shallow gradients. What
can DRL tell us about the ideal number of pseudopods and their orientation?

Optimal pseudopod suppression policy. Having observed a clear advantage in
suppressing possible directions, we explore the possibility of an optimal configuration
in which the cell may have learned to exploit suppressing certain directions throughout
the course of evolution to enhance its chemotactic performance. Here, we optimize
a mapping function pθ : R → [0, 1]n that indicates the probability of not suppressing
candidate i by setting the signal strength to either suppressed (ρ0 = 0) or active (ρ0 = 1).
Due to the number of possible combinations of pseudopod states, classical optimization
techniques are computationally unfeasible. Therefore, we rely on modern reinforcement
learning approaches, specifically, proximal policy optimization (PPO) [246], to locate the
optimal suppression policy, here constructed as an artificial feed-forward neural network,
given the environment’s state, set by the SNR at the cell location at the start of the
event (see Fig. 4.5a and Methods for further details).

We define the reward function after each decision step during the chemotactic tra-
jectory of the cell (i) as

R(i)(xT , T ) = cos(θT ) + γ

(
tmax − T

tmax

)
, (4.11)

where tmax is the maximum possible time for the cell to make a decision before a ran-
dom one is selected, and γ is a time penalty to favor the configurations that lead to
faster events. Subsequently, we optimize the weights on the network by maximizing the
cumulative reward R̂(i) during a trajectory, which we specify as the concatenation of 30
splitting events.

The resulting configurations further confirm the important role of persistence in
accurate chemotaxis, as it enables the cell to place its receptors at the leading edge, and
by relying on consecutive turns, the cell further aligns itself with the gradient. Despite
exploring a wide range of SNR, only two final configurations emerge that surpass both
of our previous proposed ones (Fig. 4.5b). At low SNR, two candidate pseudopods,
closer than those we constructed from experimental observations, prove optimal, further
demonstrating that relying on small changes reduces the likelihood of sudden errors.
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Figure 4.5: Optimal pseudopod suppression strategy. (a) Schematics of the DRL training process,
where (1) the policy outputs activation probabilities of each candidate, (2) a sampling occurs to suppress
certain directions, and (3) a splitting event is simulated, resulting on a new outcome which we use to
optimize the weights of the policy, and a new SNR that will be used as input for the next step. (b) The
cell diagrams show the resulting activation probability pθ of the 12 candidates at different SNR for both
α = 0 and α = 0.3. On the schematics, the cell direction movement is up. (c) Evaluation of the optimal
policy pθ using PPO with γ = 0.2, based on how well pseudopods align with the gradient compared to
the results from Fig. 4.4c. The resulting points are fitted with a logistic function and are the result of
104 independent simulated trajectories, from which, at each time step, the CI is calculated and binned
by SNR. Both the policy strained on static profile concentrations (α = 0), and the one trained with a
high rate of changing gradient direction (α = 0.3) are shown despite being evaluated on a static gradient.
(d) Trajectories of the suppression policy trained in a static gradient (black) and in a dynamic gradient
with a high rate of switching (red). The initial position of the cell is marked with a cross, while the
point of the trajectory at which the gradient sign is changed is indicated by a dot.

Given that the limited information the cell gains from the environment is not enough
to distinguish forward and side directions, the found policy optimizes for time, which
results in a configuration with a minimal number of candidates (n = 2), echoing our
results on alignment efficiency from Fig. 4.3d. However, as the information from the
environment increases, the subtle difference between neighboring candidates becomes
apparent. The resulting policy at high SNR activates the forward pseudopod candidate
while still minimizing the number of candidates to yield better alignment during long
trajectories, where the concentration profile remains static. When comparing the CI of
the trajectories as a function of the SNR, we obtain an envelope curve, resulting in an
upper limit to previous performances (Fig. 4.5c).

The ability of a cell to react and adapt to sudden changes in the environment is
another criterion of successful chemotaxis. Specifically, Aquino et al. [261] investig-
ated how microorganisms respond to abrupt changes in the chemoattractant direction,
demonstrating that cells can adapt when the direction is suddenly reversed, at least in
steep gradients. We introduce the possibility, set by α, for the gradient direction to
randomly change during a chemotaxis trajectory, which we include while training the
policy. Given that our previous policy exploited the persistence of movement in a static
profile, we examine the performance of both the old policy (α = 0) and the new one
(α = 0.3) in enabling the cell to adjust its trajectory in response to a sudden change in
the gradient sign. Interestingly, when α = 0.3, the resulting pseudopod configurations
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are more spread, showing the possibility of activating the rear pseudopod candidates at
low SNR and consistently activating them at high SNR, where the frontal candidates
are likely to win when the difference in signal is notable (Fig. 4.5b). Observing example
trajectories, a forward-facing configuration reacts slower to changes in the gradient, per-
forming U-turns to realign with the source direction on both low and high SNR scenarios
(Fig. 4.5d). This contrasts with the adaptive policy, which can immediately reverse dir-
ection when the change occurs at high SNR, reproducing previously observed behaviors
[261] and the cells’ ability to form de novo pseudopods [112]. Despite the benefit of a
better reaction time to sudden changes in the environment information, when evaluated
on a static concentration profile as those more common on cellular chemotaxis, we re-
cover a similar performance as the one set by the limits of sensing (Fig. 4.5c). Thus,
cells lose the advantage persistence yields for overcoming those limits. Combining DRL,
an effective optimization technique for non-trivial problems, with the interpretability of
classical systems biology, we obtain insights into how different evolutionary traits may
have altered the navigation strategies of motile, chemotactic cells.

4.4 Discussion

We introduced a minimal model for cellular decision-making based on the competi-
tion between pseudopods with stimulus-dependent growth. Instead of relying on an
all-knowing cell that evaluates the measurements of the chemical gradient to decide its
orientation of motion, we propose that pseudopod dynamics, driven by the stochastic
processes of actin polymerization, simple G-actin conservation, and mutual inhibition,
are responsible for the cell’s emergent decision. Hence, no direct spatial gradient sensing
is required. Despite its simplicity, we have shown that our model agrees with the theoret-
ical limit while providing insights into the time costs of moving up the chemoattractant
gradient. Furthermore, our model captures the key features of pseudopod dynamics
as observed in experiments, such as the emergence of multiple pseudopods on shallow
low-SNR gradients and the scaling of the signal with noise to move up the gradient
unequivocally, reminiscent of Weber’s law.

When concatenating consecutive decision steps, i.e., splitting events, we modeled
chemotaxis trajectories capable of reproducing experimental data, where our results
showed a characteristic dependence of the chemotactic index on the SNR, previously
postulated in Endres and Wingreen [13]. We then extended the model by incorporating
a learnable suppression mechanism, allowing us to explore how cells might have optim-
ized their polarization for efficient chemotaxis, particularly at low SNR, where gradient
information is especially limited. By employing deep reinforcement learning, we found
a mapping between the SNR and pseudopod suppression. Interestingly, the learned
suppression policy converges towards a behavior where the cell preferentially suppresses
pseudopods at small angles, leading to a more focused forward distribution of directions
of motion. These findings align with experimental observation in shallow gradients,
whereby cells exhibit a fixed angular spread of forward-facing pseudopods [112].

Spread-out cell protrusions are optimal for instantaneous sensing, as they increase
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the spatial information of the environment around the cell [253, 262]. Our results suggest
that cell polarization promotes forward-facing pseudopods, which, while clearly subop-
timal for an instant decision, prove advantageous during chemotaxis. By leveraging
persistence, which bypasses the need for a memory of prior information, the cell is cap-
able of maintaining a consistent direction of movement, thereby improving its ability
to navigate gradients over longer trajectories. Thus, our findings highlight the tradeoff
between instantaneous, accurate sensing and overall chemotactic performance.

The model proposed here does present certain limitations, as assumptions were made
to facilitate interpretability and simplification. Thus, future research may want to ex-
pand on this work by increasing its realism and complexity. Notably, we have ignored
the physical effects of the moving cell, e.g., the "windshield effect" of a ligand-absorbing
cell [13, 118] and the mechanical properties of the cell membrane as the cell crawls
on the substrate, as well as molecular details of the spatial positioning of neighboring
pseudopods with mutual inhibition. Such positioning and regulation could be achieved
by simple reaction-diffusion mechanisms of activators and inhibitors [118]. Furthermore,
our simplification of concentration sensing in terms of stimulus-dependent growth of
pseudopods could be investigated in more detail to capture the effects of ligand binding
and unbinding times or ligand-induced receptor internalization. Further experimental
validation of our model may include tracking the dynamics of pseudopods in testable
decision-making scenarios according to the SNR. We hope further research into the mech-
anistic foundation of decision-making may yield novel insight into cellular behavior.

Amoeboid cell migration based on pseudopods and other cell protrusions is not
unique to D. discoideum but also occurs in neutrophils [121] and even in the spermato-
zoa of C. elegans [263]. Notably, the latter achieves motility without actin, emphasizing
shape and behavior as fundamentally important and that the biochemical details might
be secondary [50]. Instead, we suggest that amoeboid shape and behavior are evolu-
tionarily conserved traits, providing advantages in fast and accurate chemotaxis. Even
the syncytial plasmodia of the slime mold Physarum polycephalum forages and grows
as a macroscopic network [264]. Not unlike our proposed stimulus-driven pseudopod
extension in Dicty, nutrient uptake on one end of the network drives extensions in this
favorable direction, leading to retraction at the rear. Whether our navigation strategies
are also relevant to ciliated micro-organisms [7] or group chemotaxis [265] are fascinating
open questions. However, our results clearly go beyond chemotaxis in cells. With an
increasing interest in developing microscopic artificial agents, a theoretical framework for
decision-making in difficult-to-navigate environments is crucial. Amoeba-inspired limb-
less robotics may benefit from our robust strategy designs without requiring extensive
hard-wired sensor-driven feedback mechanisms [108, 266, 267]. We showed that by sup-
pressing the strength of candidate directions, the cell can use persistence to effectively
navigate up a gradient by focusing on creating fewer forward-facing protrusions.

In conclusion, our work proposes a new understanding of the fundamental principles
governing cell decision-making and their implications for chemotaxis in complex environ-
ments. We showed that pseudopod splitting leads to highly effective chemotaxis without
a need for direct spatial sensing and memory, demonstrating aspects of mechanical intel-
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ligence. The paper also highlights the potential of reinforcement learning as a powerful
tool for studying and understanding the intricate interplay between cellular mechanics,
sensing, and behavior without relying on black-box decision policies that obscure the
internal cellular mechanism. Applications in robotics are apparent.
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Appendix

A1 Gradient Sensing by a Cell with N Sensors

Here, we derive the chemotactic performance of a cell that has surface sensors and can
accurately process the information these send to estimate the gradient, also referred to
in the main text as an all-knowing cell. We assume the cell has N sensors in a plane
with coordinates (xi, yi) for each sensor, with the cell center of mass at the origin. Each
sensor measures the ligand concentration ci with some uncertainty δci.

CoM

(x0, y0)

a

(xi, yi)

Figure 4.6: Diagram of a cell with N sensors spread on its surface.

How would the cell infer the direction of the chemical gradient in this plane using
least squares fitting?

Gradient Estimation

Assume the ligand concentration c at any point (x, y) in the plane is given by:

c(x, y) = c0 + gxx+ gyy (4.12)

where c0 is the concentration at the origin, and gx and gy are the components of the
gradient vector in the x and y directions, respectively.

Each sensor i located at (xi, yi) measures the concentration ci with uncertainty δci,
and the objective is to minimize the sum of squared differences between the measured
concentrations and the model concentrations, defined as

S =

N∑
i=1

(ci − (c0 + gxxi + gyyi))
2 (4.13)

To minimize it, we take the partial derivatives of S with respect to c0, gx, and gy
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and set them to zero:

∂S

∂c0
=− 2

N∑
i=1

(ci − (c0 + gxxi + gyyi)) = 0 (4.14)

∂S

∂gx
=− 2

N∑
i=1

xi (ci − (c0 + gxxi + gyyi)) = 0 (4.15)

∂S

∂gy
=− 2

N∑
i=1

yi (ci − (c0 + gxxi + gyyi)) = 0 (4.16)

which can then be rewritten as

N∑
i=1

ci = Nc0 + gx

N∑
i=1

xi + gy

N∑
i=1

yi (4.17)

N∑
i=1

xici = c0

N∑
i=1

xi + gx

N∑
i=1

x2i + gy

N∑
i=1

xiyi (4.18)

N∑
i=1

yici = c0

N∑
i=1

yi + gx

N∑
i=1

xiyi + gy

N∑
i=1

y2i (4.19)

and since these are linear equations, we can express them in matrix form as N
∑
xi

∑
yi∑

xi
∑
x2i

∑
xiyi∑

yi
∑
xiyi

∑
y2i

c0gx
gy

 =

 ∑
ci∑
xici∑
yici

 (4.20)

with the gradient estimated direction being g = (gx, gy).

Simplification for c0 = 0

If the ligand concentration is measured relative to the center of mass’s ligand concen-
tration, effectively making c0 = 0, the problem simplifies as we only need to determine
the gradient components gx and gy. Thus, the model for the concentration at any point
(xi, yi) changes from (4.12) to

ci = gxxi + gyyi (4.21)

with its corresponding objective function

S =
N∑
i=1

(ci − (gxxi + gyyi))
2 (4.22)

Similarly to before, we take the partial derivates of S with respect to gx and gy and
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set them to zero:

∂S

∂gx
= −2

N∑
i=1

xi (ci − (gxxi + gyyi)) = 0 (4.23)

∂S

∂gy
= −2

N∑
i=1

yi (ci − (gxxi + gyyi)) = 0 (4.24)

which we rewrite and express them in matrix form leading to( ∑N
i=1 x

2
i

∑N
i=1 xiyi∑N

i=1 xiyi
∑N

i=1 y
2
i

)(
gx
gy

)
=

(∑N
i=1 xici∑N
i=1 yici

)
(4.25)

Including Measurement Uncertainty

So far, we have assumed that the cell can accurately measure the concentration values
on its sensors. For a more realistic derivation, we include the measurement errors δci in
the ligand concentrations, which will modify the least squares fitting process to account
for the uncertainties in the data. This involves using weighted least squares, where each
measurement ci is weighted based on its uncertainty δci.

In weighted least squares, each residual is weighted by the inverse of the variance of
the corresponding measurement. Therefore, the weight for each measurement is wi =

1
δc2i

,
where ci is the measured concentration, leading to the objective function:

S =

N∑
i=1

wi (ci − (gxxi + gyyi))
2 . (4.26)

Analogously to the previous derivations, we express the linear system in matrix form
as ∑N

i=1
x2
i

δc2i

∑N
i=1

xiyi
δc2i∑N

i=1
xiyi
δc2i

∑N
i=1

y2i
δc2i

(gx
gy

)
=

(∑N
i=1

xici
δc2i∑N

i=1
yici
δc2i

)
(4.27)

where now the components of the matrices are similar to (4.25) divided by their uncer-
tainties.

Solving the sytem Let the previous linear system (4.27) be

Aw

(
gx
gy

)
= bw (4.28)

where

Aw =

∑N
i=1

x2
i

δc2i

∑N
i=1

xiyi
δc2i∑N

i=1
xiyi
δc2i

∑N
i=1

y2i
δc2i

 ; bw =

(∑N
i=1

xici
δc2i∑N

i=1
yici
δc2i

)
(4.29)
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the inverse of Aw is given by

A−1
w =

1

det(Aw)

(
A22 −A12

−A21 A11

)
(4.30)

where det(Aw) is the determinant of Aw:

det(Aw) = A11A22 −A12A21 (4.31)

Using the elements of Aw from (4.28):

A11 =

N∑
i=1

x2i
δc2i

, A12 = A21 =

N∑
i=1

xiyi
δc2i

, A22 =

N∑
i=1

y2i
δc2i

(4.32)

we can express (4.30) as

A−1
w =

1(∑N
i=1

x2
i

δc2i

)(∑N
i=1

y2i
δc2i

)
−
(∑N

i=1
xiyi
δc2i

)2
 ∑N

i=1
y2i
δc2i

−
∑N

i=1
xiyi
δc2i

−
∑N

i=1
xiyi
δc2i

∑N
i=1

x2
i

δc2i

 , (4.33)

The gradient components gx and gy are obtained by multiplying A−1
w with bw:(

gx
gy

)
= A−1

w bw (4.34)

which we use (4.33) and (4.28) to express as

(
gx
gy

)
=

1

det(Aw)

 ∑N
i=1

y2i
δc2i

−
∑N

i=1
xiyi
δc2i

−
∑N

i=1
xiyi
δc2i

∑N
i=1

x2
i

δc2i

(∑N
i=1

xici
δc2i∑N

i=1
yici
δc2i

)
(4.35)

with

det(Aw) =

(
N∑
i=1

x2i
δc2i

)(
N∑
i=1

y2i
δc2i

)
−

(
N∑
i=1

xiyi
δc2i

)2

(4.36)

Performing the matrix multiplication and simplifying the results leads to

gx =

∑N
i=1

y2i
δc2i

∑N
i=1

xici
δc2i

−
∑N

i=1
xiyi
δc2i

∑N
i=1

yici
δc2i(∑N

i=1
x2
i

δc2i

)(∑N
i=1

y2i
δc2i

)
−
(∑N

i=1
xiyi
δc2i

)2 (4.37)

gy =

∑N
i=1

x2
i

δc2i

∑N
i=1

yici
δc2i

−
∑N

i=1
xiyi
δc2i

∑N
i=1

xici
δc2i(∑N

i=1
x2
i

δc2i

)(∑N
i=1

y2i
δc2i

)
−
(∑N

i=1
xiyi
δc2i

)2 (4.38)

These formulas provide the gradient estimation components gx and gy, accounting
for the uncertainties in the measurements.
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Uncertainity in gradient estimation

The Cramer-Rao bound (CRB) provides a lower bound on the variance of any unbiased
estimator [98, 268, 269]. For our problem, we can derive the CRB to quantify the
uncertainty in the gradient measurement δg.

To derive the CRB, we first need to compute the Fisher information matrix (FIM).
For a set of measurements {ci} with uncertainties {δci} and the simplified linear profile
(4.21), the FIM is given by:

I(g) =
N∑
i=1

1

δc2i

(
x2i xiyi
xiyi y2i

)
(4.39)

which we reformulate it as

I(g) =
(
Ixx Ixy
Ixy Iyy

)
, (4.40)

where

Ixx =

N∑
i=1

x2i
δc2i

, Ixy =

N∑
i=1

xiyi
δc2i

, Iyy =

N∑
i=1

y2i
δc2i

(4.41)

The CRB states that the covariance matrix of any unbiased estimator ĝ is bounded
from below by the inverse of the FIM. The covariance matrix of ĝ = (gx, gy)

T is

Cov(ĝ) ≥ I(g)−1 (4.42)

To find I(g)−1, we compute the inverse of the 2x2 matrix I(g):

I(g)−1 =
1

IxxIyy − I2xy

(
Iyy −Ixy
−Ixy Ixx

)
, (4.43)

Hence, the variances (uncertainties) of gx and gy are the diagonal elements of I(g)−1:

(δgx)
2 ≥

(
I(g)−1

)
11

=
Iyy

IxxIyy − I2xy
(4.44)

(δgy)
2 ≥

(
I(g)−1

)
22

=
Ixx

IxxIyy − I2xy
(4.45)

substituting (4.41) into (4.44), we obtain the standard deviation to be

δgx =

√√√√√√
∑N

i=1
y2i
δc2i(∑N

i=1
x2
i

δc2i

)(∑N
i=1

y2i
δc2i

)
−
(∑N

i=1
xiyi
δc2i

)2 (4.46)

δgy =

√√√√√√
∑N

i=1
x2
i

δc2i(∑N
i=1

x2
i

δc2i

)(∑N
i=1

y2i
δc2i

)
−
(∑N

i=1
xiyi
δc2i

)2 (4.47)
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These expressions provide the lower bounds on the standard deviations of the es-
timates of gx and gy, taking into account the uncertainties in the ligand concentration
measurements.

Simplified formulas for radial symmetry

The resulting equations become cumbersome, but due to the symmetries of our system,
we can simplify them.

Assuming the cell sensors sit on a circle of radius a such that x2i + y2i = a2 (see
Fig. 4.6), we have

N∑
i=1

(x2i + y2i ) = Na2 (4.48)

which, due to the sensors being symmetrically distributed, we also obtain the follow-
ing relations

N∑
i=1

x2i =
N∑
i=1

y2i =
Na2

2
(4.49)

N∑
i=1

xiyi = 0 (4.50)

Furthermore, we assume that the uncertainty of measuring concentrations is the same
for all sensors δci = δc, which leads to

N∑
i=1

x2i
δc2i

=
1

δc2

N∑
i=1

x2i =
1

δc2
Na2

2
(4.51)

with this, we can simplify (4.37-4.38) to

gx =
2

Na2

N∑
i=1

xici (4.52)

gy =
2

Na2

N∑
i=1

yici (4.53)

and similarly, the uncertainties (4.46-4.47) to

δgx = σg =

√
2δc2

Na2
(4.54)

δgy = σg =

√
2δc2

Na2
(4.55)
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Chemotactic Index (CI)

Based on the derived gradient estimation, we can determine the expected chemotactic
index (CI) of a cell that, at each step, decides to move toward the estimated gradient
direction. The CI is defined as the mean cosine similarity of the direction of movement
and the true gradient direction, which we can calculate with

CI =

∫ ∫ ∞

−∞

ĝ · g
‖ĝ‖‖g‖

P (ĝxĝy)dĝxdĝy, (4.56)

where ĝ is the estimated gradient and g is the real gradient, where we assume the
estimated gradients are Gaussian-distributed such that the probability is

P (ĝx, ĝy) =
1√

2πδgx
exp

[
−(ĝx − gx)

2

2δg2x

]
1√

2πδgy
exp

[
−(ĝy − gy)

2

2δg2y

]
, (4.57)

Furthermore, assuming the real gradient to only be on the x-direction, the dot
product simplifies to:

ĝ · g = ĝx · gx + ĝy · 0 = ĝx · gx (4.58)

with magnitudes

‖ĝ‖ =
√
ĝ2x + ĝ2y , ‖g‖ = gx (4.59)

by including (4.57), (4.58) and (4.59) to (4.56) we obtain

CI =

∫ ∫ ∞

−∞

ĝxgx√
ĝ2x + ĝ2y

1√
2πδgx

exp

(
−(ĝx − gx)

2

2δg2x

)
1√

2πδgy
exp

(
−(ĝy)

2

2δg2y

)
dĝxdĝy

(4.60)
Despite its apparent complexity, we can solve this integral analogously to Endres and

Wingreen [13] and obtain

CI =
√
πz

2
e−z [I0(z) + I1(z)] , (4.61)

where I0(1) are first (second)-order modified Bessel functions, and, differently to the
derivation using the physical limits of sensing, our z is given by

z =
Na2

8

g2x
δc2

=
Na2k5π

24
SNR (4.62)

where we have use the uncertainty δc expression from Berg and Purcell [10] for the error
in measurement

δc =
3c0

5πDT
(4.63)
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Abstract

Information from cell surface receptors is crucial for processes that require signal pro-
cessing and sensing of the environment. Here, we investigate the optimal placement of
such receptors through a theoretical model that minimizes uncertainty in gradient estim-
ation. Without needing to account for physical limitations and biochemical constraints,
we reproduce the emergence of clusters that closely resemble those observed in real cells.
In perfect spherical surfaces, optimally placed receptors spread uniformly. When per-
turbations break their symmetry, receptors cluster in regions of high curvature, massively
reducing estimation uncertainty. This agrees with mechanistic models that minimize
elastic preference discrepancies between receptors and cell membranes. We further ex-
tend our model to dynamic environments: time-dependent cell shape changes, motile
receptors, and external flow perturbations. Our findings provide a simple and utilitarian
explanation for receptor clustering at high-curvature regions, especially relevant at the
fundamental limits of sensing.

5.1 Introduction

Cells rely on their ability to detect and respond to environmental cues for essential
biological processes including chemical gradient sensing in chemotaxis, wound healing,
and embryonic development. It is only logical that the spatial information gathered by
the cells is highly dependent on the positioning of receptors on the cell surface, and
consequently on cell shape itself. Hence, cells can actively influence sensing perform-
ance, as exemplified by yeast cells localizing receptors such as Ste2 to shmoo tips when
projecting up mating pheromone gradients [270]. In many biological systems, receptors
are observed to cluster, particularly in regions of high membrane curvature, avoiding
the mismatch of the preferred curvatures of membrane and embedded proteins [271], or
due to biochemical constraints such as attractive protein-protein interactions, facilitat-
ing chemical reactions and efficient signaling [272–274]. Receptor clustering also occurs
purely by stochastic self-organization, such as driven by cell growth, receptor diffusion,
and capture [275]. These studies explain the mechanistic algorithms by which clusters
are formed. However, what other evolutionary advantages do receptor localization and
clustering provide to cells with, especially when confronted with noisy spatial signals?

Here, we develop a simple theoretical model to study the relationship between re-
ceptor distribution, cell shape, and gradient sensing efficiency in arbitrary 3D geometries.
By inducing shape perturbations, we observe that clusters emerge naturally to minimize
the uncertainty of the spatial gradient estimation, without any need to explicitly in-
voke receptor interactions or membrane information. Crucially, the clusters that result
from our model are localized in high curvature regions in agreement with both exper-
imental studies on prokaryotic [127, 130, 276] and eukaryotic [7, 277–279] systems, as
well as theoretical studies that model receptor interactions and membrane curvature
sensing [280–282]. Finally, we extend the model in two key directions: First, we study
how receptors move in response to dynamic changes in the cell body, such as cellular pro-
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trusion, e.g. actin-driven filopodia and pseudopods [3, 128]. Second, we elucidate how
receptor localization ideally responds to flow of the surrounding fluid, which produces
intricate patterns that may have implications in the context of synthetic biology [283],
biosensor designs [284], and robotics at the physical limits of sensing [71, 267].

5.2 Model
Consider a cell placed inside a three-dimensional diffusive environment with a linear
gradient concentration profile

c(x, y, z) = c0 + gxx+ gyy + gzz = x · g (5.1)

where x =
(
1, x, y, z

)
is extended positional coordinates and g =

(
c0, gx, gy, gz

)
is the

background concentration and gradient values.
We assume receptors to be perfect instruments [10] for counting molecules, and the

cellular internal mechanisms of biochemical signaling pathways to perfectly process the
information from the n surface receptors to distill the best gradient estimator ĝ. Assum-
ing a shallow gradient (R|∇c| � c0), we can model a cell measurement as a multivariate
Gaussian,

P (c) =
1√

(2π)n|Σ|
e−

1
2
(c−X·g)TΣ−1(c−X·g), (5.2)

where Σ is the covariance matrix between measurements c = (c1, . . . , cn), and X is a
positional matrix in Rn×4 where each row is the extended position vector of a receptor
at the surface of the cell. Assuming that the concentration fluctuations are diffusion-
limited, we model the individual uncertainty of each measurement with Berg and Purcell
noise [10], letting each receptor make an average measurement over a measuring time
τ . This reduces the measurement variance [10, 13], but also introduces the possibility
of rebinding, thus making the measurements of nearby receptors correlated. Taking all
this into account we use

Σi,j =
2a3V

Dτ(5a+ 6∆)
(xi + xj) · g. (5.3)

where ∆ = ‖xi − xj‖ is the distance between receptors, D is the molecular diffusion
coefficient, τ the cell measuring time, a and V the receptor effective radius and volume,
respectively (see Appendix A2 for a detailed derivation). In our formulation, a determ-
ines the typical correlation distance of the receptors.

We are interested in optimizing the uncertainty of the gradient estimation as a func-
tion of the receptor locations. The Cramer-Rao bound provides a lower bound on the
variance of any unbiased estimator [98, 268, 269],

Cov(ĝ) ≥ I(X, ĝ)−1, (5.4)

where I is the Fisher Information Matrix, which for our multivariate Gaussian evaluates
to

Im,k =
∂cT

∂ĝm
Σ−1 ∂c

∂ĝk
+

1

2
tr
(
Σ−1 ∂Σ

∂ĝm
Σ−1 ∂Σ

∂ĝk

)
. (5.5)
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Figure 5.1: Uncertainty of gradient estimation by the cell, normalized by the initial value of δĝ(X0),
of a spherical cell perturbed by the harmonic Y 4

6 to form protrusions, in the case of uniformly spread
receptors (black) or when placed at their optimal location for each α (orange).

where we use Eq. (5.1) with the real gradient g to obtain the expected concentration c,
and, using Eq. (5.3),

∂Σi,j

∂ĝk
=

2a3V

Dτ(5a+ 6∆)
(Xi,k +Xj,k) . (5.6)

Our aim is to find the optimal spatial configuration X∗ of the n surface receptors to
minimize the uncertainty of the gradient estimations,

δĝ(X) = tr(Cov(ĝ;X)) (5.7)

such that the optimal spatial distribution fulfills X∗ = argminX∈Sn(δĝ) where S is the
surface of the cell. We solve the optimization problem with differentiable programming
and local gradient descent.

5.3 Results

5.3.1 Clusters induced by symmetry breaking

Using spherical coordinates (r, θ, φ), we define the cell surface by r = f(θ, φ). Our
results are valid for any positive cell-shape function f , and we exemplify using spherical
harmonics,

r(θ, φ) = r0 + α · Re [Y m
` (θ, φ)] , (5.8)

which have previously been shown to be effective in describing cell shapes [285]. Y m
` is

the spherical harmonic of degree ` and order m, r0 is the base spherical radius of the
cell 1, and α is a free parameter that controls the strength of the harmonic perturbations,
meant to induce surface irregularities.

1We assume r0 = 1 and set the length scale to be on cell size.
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Using the Golden Spiral algorithm (“the Fibonacci sphere”) [286], we initialize the
receptors to be approximately uniformly distributed on the surface before optimization.
In the case of the unperturbed cell (α = 0), this provides a very evenly distributed
distribution along the surface (Fig. 5.1). We note that the more perturbed the cell
surface is from a sphere, the less perfectly distributed the receptors will be at the start
of the optimization.

As the cell has to estimate the gradient with three independent directional com-
ponents, the optimal distribution requires positioning the receptors to enable gradient
estimation in any direction. On a sphere this results in uniformly spaced receptors.
However, we observe that δĝ is very insensitive to the precise localization of the recept-
ors on a sphere, as long they are mostly spread. For symmetric cell shapes, we thus
expect even small effects coming from biochemical and physical factors would dominate
the minor changes to receptor efficiency.

Once the sphere is perturbed and the symmetry is broken (α > 0), the optimal dis-
tribution is no longer uniform. Instead a clustered distribution emerges, where receptors
move to gather at the tips of protrusions (Fig. 5.1). This clustering aligns with exper-
imental observations [287, 288], suggesting that receptors aggregate in areas of higher
curvature. Notably, this emerges simply by breaking the surface symmetry.

By modifying the value of α, we can smoothly perturb the spherical shape of the cell.
Previous studies have considered the impact of cell shape and size on gradient estima-
tion [2, 118, 262, 289, 290]. These studies find that elongated or protruded shapes can
improve gradient estimation without accounting for the repositioning of receptors. This
type of effect is reproduced in Fig. 5.1 (black curve), showing an improvement in estim-
ation accuracy. Additionally placing the receptors in their optimal locations leads to a
huge additional improvement (orange curve), thus showing the true potential of shape
deformations on gradient estimation. In other words, any estimation of the improvement
in accuracy resulting from deforming cell shapes will drastically underestimate the effect
if it does not account for receptor localization.

5.3.2 Minimal curvature energy regions are optimal for gradient sens-
ing

Previous work has shown that clustering occurs predominantly in high curvature re-
gions [271, 291], corresponding to energy minima of the elastic membrane energy [292]
induced by the receptors,

Em =
kc
2
(H −H0)

2 + k̄ K. (5.9)

Here, H0 is the preferred mean curvature of a receptor 2, and H and K are the mean
and Gaussian curvature of the membrane, the latter of which can typically be neglected
for cells [271]. Assuming H0 < H everywhere [278], energy is minimized when receptors

2We assume our receptors to be a coarse-grained representation of small clusters of binding ligands,
as there are orders of magnitude more receptors in real systems than in the ones simulated here
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Figure 5.2: Optimal receptor regions match those of minimal elastic energy on an spherical cell perturbed
by the Y 4

7 harmonic. (a) Mean curvature (H) in black and Gaussian curvature (K) in gray along
the surface of the cell shown on the right, at fixed azimuthal angle φ = 0 rad (top) and polar angle
θ = 0.4π rad (bottom). A single orange vertical line is placed at each angle where a receptor is found
along the surface path. (b) Direction alignment between the gradients from elastic energy and uncertainty
minimization Eq. (5.10), for homogeneously spread receptors (orange) and receptors located on half the
surface (blue). Error bars show the standard deviation of 100 realizations, where receptor position is
uniformly sampled at the entire or half cell surface. The diagrams show the individual alignment value
(cosine similarity) of each receptor indicated by the color.

localize at the highest negative mean curvature regions. This approach shows agree-
ment with experimental observations and explains why receptors are stable at a certain
locations on the membrane [277, 278, 282, 288].

Interestingly, in our study, deformation of the cell surface, which disrupts surface
symmetry, results in redistribution of receptors exactly to the minimal energy regions
of Eq. (5.9), as shown in Fig. 5.2a. In a curvature driven model, additional receptor-
receptor interactions needs to be accounted for [271], whereas here clustering is not
directly modeled; rather, it emerges through uncertainty minimization, with a cluster
size set by the sensing correlation length. Clusters do smoothly merge with each other
as the effective receptor size a increases (see Appendix A6). Yet, both models yield the
same final localization.

Given that our resulting cluster locations match with regions of minimal energy
(Fig. 5.2a), we argue that gradient estimation is optimized when receptors optimize
for membrane curvature, driven by elastic membrane energy or alternative biophysical
forces. Thus, we find that the mechanistic paradigm (energy minimization) that explains
the physical reasons for cluster formation is intimately linked to a utilitarian evolutionary
mechanism (enhanced gradient sensing), highlighting the mechanical intelligence [7] of
receptor localization. Notably, although global information is necessary for optimizing
gradient estimation, the curvature information is strictly local. Thus, the agreement
between receptor motion in the two mechanisms is only valid under certain conditions.
To quantify this, we calculate the alignment between receptor directions in both models
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using the cosine similarity between the gradients,

SG =
∇δĝ · ∇Em

‖∇δĝ‖ ‖∇Em‖
. (5.10)

As seen in Fig. 5.2b, the alignment is strong when receptors are many and spread uni-
formly on the cell. In contrast, when receptors are few and unevenly spread, e.g., only
half the cell is covered in them, following the local energy gradients yield suboptimal
gradient estimation, demonstrated by their misaligned gradient vectors.

5.3.3 Dynamic receptors for dynamic membranes

Moving beyond optimal static receptor locations, we study the consequences of mem-
brane dynamics and the ensuing response of the receptor localization. Many biological
systems adapt to membrane deformations by relocating their sensors [278, 293, 294],
which can enhance chemotactic efficiency [3, 295]. Thus, we allow receptors not only
to move as a result of membrane deformations but also as an independent mechanism.
We model receptor movement as influenced by an effective potential that mirrors the
gradient of the estimation variance, U ∼ δĝ, Eq. (5.7), which may in turn be related
to the curvature energy of the membrane and receptors. We assume the receptor mo-
tion to be over-damped and restricted to a maximum speed u. As the receptors are
constrained to move on the two-dimensional star-convex cell surface, we formulate the
gradient dynamics in spherical angles,

∂t

(
φ
θ

)
= − u

max(ε, |dr|)
∇φ,θU, (5.11)

where the normalization from

|dr|2 =
∑

q∈{x,y,z}

(
∂q

∂φ

∂U

∂φ
+
∂q

∂θ

∂U

∂θ

)2

(5.12)

ensures that u is the maximum speed in Cartesian coordinates, and ε is a small value
that allows receptors to stop when the gradients are sufficiently small.

In order to study the effect of dynamical receptors, we perturb a perfect sphere to
grow and retract protrusions, by defining the perturbation strength as an oscillating
function α ∝ sin(ωt), where ω is the speed of the membrane motion (see [118, 285] for
examples of oscillatory behavior in cells). Thus, we perform simulations for increasing
values of u/ω, and observe the effects of finite-speed moving receptors on gradient es-
timation as the membrane of the cell surface is deformed (Fig. 5.3). When receptors are
immobile (u/ω = 0), and thus only move due to membrane changes, the performance of
the estimation is only slightly affected by the perturbations as seen in Fig. 5.3b. Para-
doxically, when receptors are allowed to move at low speeds (u/ω = 0.13), the average
accuracy decreases compared to when the receptors are not motile. This is because
the receptors move according to instantaneous membrane shape information, and are
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Figure 5.3: Effects of reacting motile receptors to membrane dynamics. (a) Frames from three inde-
pendent simulations of the motion form protrusions caused by the harmonic Y 3

4 perturbation, where the
receptors are immobile (top), have low speed (middle) or move fast (bottom) as the membrane oscillates.
(b) Average gradient estimation error on an oscillating motion where protrusions are grown and retracted
(3 full oscillations). The inset shows the oscillations in error for the three cases displayed in (a) as the
membrane changes shape, with the black line showing the reduction for static optimization.

not fast enough to reach the tip of protrusions and form clusters before those tips have
disappeared again. As the speed of the receptors becomes faster, clusters form, and
the performance converges towards the same optimal spatial gradient sensing as that of
static shapes.

5.3.4 Fluid Flow distorts cluster morphology

The morphology of the observed clusters has until now been a conglomerate of receptors
spread isometrically. This is due to the fact that the environment has been symmet-
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Figure 5.4: Cluster formation in the presence of flow for a cell perturbed by the Y 2
3 harmonic. (a) Stream-

lines of the simulated Stokes flow around the cell. (b) Resulting cluster on an environment without flow
(top), cluster formation under the effect of front-facing fluid flow (middle) and cluster morphology for a
side protrusion affected by flow (bottom).

ric, i.e. we have assumed the cell to be static and in a shallow gradient. However,
chemotactic cells are naturally motile — motility being the typical reason to optimize
gradient estimation. To that end, we study how the resulting cluster formation is af-
fected when flow is accounted for; this flow being the result either of external motion or
cell motility.

With flow, chemical molecules not only diffuse but are also advected along the flow.
This changed the covariance between receptors. Under certain simplifying assumptions
(see Appendix A3 for derivation), we find

Σ̂i,j =
2a3V

Dτ(5a+ 6∆)
e

−‖v‖
√

a2+∆2

2D (xie
−λ + xje

λ) · g, (5.13)

where λ = v ·∆/2D, and v is the flow, which we take to be the Stokes flow that results
from moving the deformed cells at a constant speed. We compute this numerically using
the boundary element regularized Stokeslet method [296, 297].

We observe that the cluster morphology is drastically affected by the inclusion of
flow (Fig. 5.4). Interestingly, because of the higher correlation of the receptors in the
direction of the fluid flow, given by Eq. 5.13, receptors in clusters are no longer isotrop-
ically spread. Instead, they converge to form lines perpendicular to the flow field.
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5.4 Discussion
In this Letter, we found the optimal placement of cell-surface receptors by developing a
theoretical model that minimizes uncertainty in gradient estimation. Our results show
that, in spherical cells, optimal receptor location is uniform across the surface, but
once symmetry is broken through shape perturbations, clusters of receptors naturally
emerge in regions of high negative mean curvature. These clusters form without explicitly
including curvature information, yet are consistent with the results of elastic energy
minimization. This supports the idea that even though receptor distribution is governed
by biophysical principles, the final distribution agrees with an evolutionary trait to
maximize sensing accuracy.

We observed that when accounting for receptor localization, the effect of shape de-
formations on gradient estimation accuracy is massively improved, with the effect of
receptor localization being more than an order of magnitude larger than the effect stem-
ming from the shape deformation on its own. When the shape deformations are dy-
namic, we showed that surface receptor motility can maintain the massive improvement
in estimation accuracy, provided that the receptors move sufficiently fast. This would
indeed be the case e.g. during cell migration of social amoeba [118] and T cells [285]
with observed shape deformations on time-scales of 3 − 4 min, and receptor diffusivit-
ies of ∼ 0.1µm2/s [298], as long as there are sufficient numbers of receptors to avoid
long distances for diffusion (≥ 1µm). In contrast, if receptors were too slow, receptor
motility can have adverse effects on estimation accuracy. Note that gradient sensing,
which occurs over a time-scale of seconds [13], is much faster than the time required by
the receptors to relocalize. Finally, we have shown how optimal clustering is affected
by fluid flow, leading to separation of receptors in the direction of the flow to reduce
receptor-receptor correlations. Taken together, our work shows that cells can strongly
improve the accuracy of spatial sensing by actively regulating receptor placement and
clustering.
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Appendix

A1 Curvature Calculation

We can obtain the mean curvature [299] at any point on the surface of our cell, defined
by the coordinates (θ, φ) by using

H(θ, φ) =
(∇F ) ·HF · (∇F )T − |∇F |2∆F

2 |∇F |3
, (5.14)

where F is the implicitly defined surface given by

F = x2 + y2 + z2 − r(θ, φ)2 = 0. (5.15)

using
r(θ, ϕ) = a+ αt · Re [Y m

` (θ, φ)] , (5.16)
for the radius, and

x = r sin θ cosφ (5.17)
y = r sin θ sinφ (5.18)
z = r cos θ (5.19)

for the Cartesian coordinates, to backpropagate. ∇F , HF and ∆F are the Gradient,
the Hessian and the Laplacian on the cartesian coordinates, respectively.

Analogously, we can calculate the Gaussian curvature with the following expression

K(θ, φ) =
∇F ·H∗

F · ∇F T

|∇F |4
(5.20)

where H∗
F is the adjoint of the Hessian.

A2 Spatial Covariance of Receptors

Consider N particles that form an average density field

c(x) = c0 + g · x (5.21)

We mark two regions R and R′ (receptors) at x and x′, each spheres of radius a and
volume V = 4/3πa3. These receptors measure a time τ and report the average number
of particles M,M ′ that were inside their volume during that time. We can define these
random variables by the use of indicator functions:

M =
1

τ

∫ N∑
i=1

Ii(t) dt (5.22)

M ′ =
1

τ

∫ N∑
i=1

I ′(t) dt (5.23)
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Here Ii is an indicator function which is equal to one if particle i is inside receptor A,
and likewise for I ′i.

On average we have e.g.

〈M〉 =
∑
i

1

τ

∫
〈Ii(t)〉 dt = N〈Ii〉 ≈ c(x)V, (5.24)

with a variance

〈M2〉 = 1

τ2

∫∫ ∑
i

∑
j

〈Ii(t)Ij(s)〉 dt ds (5.25)

=
∑
i

1

τ2

∫∫
〈Ii(t)Ii(s)〉 dtds +

∑
i 6=j

1

τ2

∫∫
〈Ii(t)〉〈Ij(s)〉 dt ds

≈ N

τ2

∫∫
〈Ii(t)Ii(s)〉dtds + c(x)2 V 2,

where we used N(N − 1) ≈ N2. Separating the integrals into t < s and s < t and
exploiting symmetry, we have

N

∫∫
〈Ii(t)Ii(s)〉dtds = 2N

∫ τ

0

∫ t

0
〈Ii(t)Ii(s)〉ds dt (5.26)

= 2N

∫ τ

0

∫ t

0
〈Ii(s)〉〈Ii(t)|Ii(s)〉 ds dt

= 2 c(x)V

∫ τ

0

∫ t

0
〈Ii(t)|Ii(s)〉ds dt.

〈Ii(t)|Ii(s)〉 is the probability that a particle that is inside the region at time s is also
inside the region at time t. Assuming we are far from boundaries that set up the gradient
in c, we can use the Green’s function

P[xi(t)|xi(s)] =
1

(4πD(t− s))3/2
exp

(
−|xi(t)− xi(s)|2

4D(t− s)

)
, (t ≥ s), (5.27)

and we have

〈Ii(t)|Ii(s)〉 =
3

4πa3

∫∫∫ ∫∫∫
P[xi(t)|xi(s)] dV

2, (5.28)

where we took a uniform distribution for xi(s).
Swapping the order of the spatial and temporal integrals, the first integral we need

to evaluate is∫ τ

0

∫ t

0

1

(t− s)3/2
exp

(
− ζ

t− s

)
dsdt =

∫ τ

0
Γ[1/2, ζ/t]/tdt ≈

√
π

ζ
τ (5.29)

where we assumed τ large compared to the diffusive timescale, and wrote

ζ =
|xi(t)− xi(s)|2

4D
. (5.30)

106



Chapter 5 | On receptors location

We now need to carry out the spatial integrals of Eq. (5.28). The first integral
corresponds to evaluating the potential of a uniform spherical charge (evaluated inside
the sphere) ∫∫∫

1

|xi(t)− xi(s)|
dV = 2πa2 − 2π

3
|xi(t)|2, (5.31)

from which we find ∫∫∫
(2πa2 − 2π

3
|xi(t)|2)dV =

32π2a5

15
. (5.32)

Putting the terms back together we find∫ τ

0

∫ t

0
〈Ii(t)|Ii(s)〉ds dt =

3

4πa3
1

(4πD)3/2

√
4Dπ

32π2a5

15
τ =

2a2τ

5D
, (5.33)

and finally,

〈M2〉 = c(x)2 V 2 + c(x)V
4a2

5Dτ
. (5.34)

This is the celebrated Berg-Purcell measurement noise [10].
We further need the correlation between receptors, i.e.

〈MM ′〉 = 1

τ2

∫∫ ∑
i

∑
j

〈Ii(t)I ′j(s)〉dt ds (5.35)

=
∑
i

1

τ2

∫∫
〈Ii(t)I ′i(s)〉 dt ds +

∑
i 6=j

1

τ2

∫∫
〈Ii(t)〉〈I ′j(s)〉dt ds

≈ N

τ2

∫∫
〈Ii(t)Ii(s)′〉dtds + c(x)c(x′)V 2,

Following the same approach, we divide the integral into parts that satisfy s ≤ t,

N

∫∫
〈Ii(t)Ii(s)〉 dtds = N

∫ τ

0

∫ t

0
〈Ii(t)I ′i(s)〉ds dt+N

∫ τ

0

∫ t

0
〈Ii(s)I ′i(t)〉 dsdt. (5.36)

And then, e.g.

N

∫ τ

0

∫ t

0
〈Ii(t)I ′i(s)〉dsdt = N

∫ τ

0

∫ t

0
〈Ii(t)I ′i(s)〉 ds dt (5.37)

= N

∫ τ

0

∫ t

0
〈I ′i(s)〉〈Ii(t)|I ′i(s)〉 dsdt

= c(x′)V

∫ τ

0

∫ t

0
〈Ii(t)|I ′i(s)〉 ds dt.

Here, 〈Ii(t)|I ′i(s)〉 is the probability that a particle that is inside region R′ at time s is
inside region R at time t.
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While the formula for 〈M2〉 assumes τ � a2/D, i.e. τ large compared to the time of
diffusion over the receptor, to use the same approximation we must now further assume
τ to be large compared to the time scale of diffusion over the cell [see section A4 for
a derivation that does not assume large τ .]. With this, we continue with the same
procedure as above, but now xi(t) is outside the integration sphere, and we get∫∫∫

1

|xi(t)− xi(s)|
dV =

4πa3

3 |xi(t)|
. (5.38)

Denote by ∆ = x − x′ the distance between the two receptor centers. Aligning our
coordinate system such that this distance is on the z-axis, we have∫∫∫

1√
r2 +∆2 − 2r∆cos θ

dV =
4πa3

3∆
. (5.39)

Thus we find∫ τ

0

∫ t

0
〈Ii(t)|I ′i(s)〉 dsdt =

3

4πa3
1

(4πD)3/2

√
4Dπ

4πa3

3

4πa3

3∆
τ =

a3τ

3D∆
, (5.40)

and finally,

〈MM ′〉 = c(x)c(x′)V 2 +
c(x) + c(x′)

2
V

2a3

3D∆τ
. (5.41)

Note that this formula is only valid for ∆ > 2a, as we have assumed no overlap
of the receptors. When there is overlap between the receptors, the integrals must be
evaluated in overlapping and non-overlapping regions separately. Clearly, though, in the
range 0 < ∆ < 2a, the formulas must monotonically interpolate our results for ∆ = 0
and ∆ ≥ 2a, and there are many suitable approximations, none of which give massive
numerical changes. Here, we will approximate the combination with

cov(M,M ′) =
c(x) + c(x′)

2
V

4a3

5a+ 6∆

1

Dτ
, (5.42)

which is correct both at ∆ = 0 and asymptotically. An alternative such as

cov(M,M ′) =
c(x) + c(x′)

2
V

1

max(2a,∆)

(
8

5
− 7

15a
min(2a,∆)

)
1

Dτ
, (5.43)

is correct at ∆ = 0 and for all ∆ ≥ 2a, but does not give any significant numerical
changes.

A3 The Effect of Flow on the Covariance

If we include a constant flow v, the Eq. (5.29) becomes

I =

∫ τ

0

∫ t

0

1

(t− s)3/2
exp

(
−ζ1 + ζ2(t− s)2 − 2ζ3(t− s)

t− s

)
ds dt (5.44)
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where

ζ1 =
|xi(t)− xi(s)|2

4D
, ζ2 =

|v|2

4D
=

v2

4D
, ζ3 =

v · (xi(t)− xi(s))

4D
. (5.45)

The two new terms comes from including the drift v(t− s) in the Green’s function [Eq.
(5.27)] of the advection-diffusion equation. Again, we look for the asymptotics in τ , and
find to leading order

I ≈ e−2
√
ζ1ζ2 e−2ζ3

√
π

ζ1
τ. (5.46)

The two new terms have a fairly clear interpretation:
The first term accounts for the fact that once there is flow, variances are generally

smaller as diffusive molecules stay a shorter time within receptors as they are swept
along the flow. We approximate this effect to be constant within a receptor, and use
〈|xi(t)− xi(s)|〉 ≈

√
a2 +∆2 and

e−2
√
ζ1ζ2 ≈ e−

v
√

a2+∆2

2D . (5.47)

The second term accounts for the directional drift of molecules. This effect is small
compared to the previous one within a receptor, but between receptors it is significant.
Thus, we approximate

e−2ζ3 ≈ e−
v·∆
2D . (5.48)

The remaining integrals are then the same as in the previous section, and we end up
with

cov(M,M ′) =
c(x)e−

v·∆
2D + c(x′)e

v·∆
2D

2
V e−

v
√

a2+∆2

2D .
4a3

5a+ 6∆

1

Dτ
. (5.49)

A4 Relaxing the Assumption of Large Measuring Time

The assumption of large measuring time is the typical assumption in the literature of
sensing, and is what leads to the simple mathematical expressions of Berg and Purcell
[10]. To get similar results, we need to assume the measuring time larger than that of
diffusion time over the entire cell.

Here, we explore a different set of approximations to the integrals. Starting with Eq.
(5.28), we now do the spatial integrals first, i.e. evaluate 〈Ii(t)|Ii(s)〉. Before xi(s) was
sampled uniformly within the receptor. Instead, we will here approximate it by saying
that at time s all particles are exactly the center x. Hence,

〈Ii(t)|Ii(s)〉 ≈
∫∫∫

P[xi(t)|xi(s)] dV (5.50)

=
1√

4π(D(t− s))3/2

∫ a

0
r2 exp

(
− r2

4D(t− s)

)
dr

= erf
(

a

2
√
D(t− s)

)
− a√

πD(t− s)
exp

(
− a2

4D(t− s)

)
,
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which, after temporal integration, yields

〈M2〉 = c(x)2 V 2 + c(x)V

[
1− 2ae−a2/4Dτ (a2 + 2Dτ)

√
π(Dτ)3/2

+
(a4 + 4a2Dτ − 4D2τ2) erfc(a/

√
4Dτ)

D2τ2

]
(5.51)

= c(x)2 V 2 + ξc(x)V.

The term ξ behaves like ξ → 0 for τ → ∞ and ξ → 1 for τ → 0, but is in general a term
that is fixed to a finite value ∈ [0, 1] for our simulations.

For the covariance, we approximate |xi(t)− xi(s)|2 ≈ ∆2 + |xi(t)|2 and find

〈Ii(t)|I ′i(s)〉 ≈
∫∫∫

P[xi(t)|xi(s)] dV (5.52)

≈ exp

(
− ∆2

4D(t− s)

)[
erf
(

a

2
√
D(t− s)

)
− a√

πD(t− s)
exp

(
− a2

4D(t− s)

)]
,

and then approximate the first term by its average

exp

(
− |x− x′|2

4D(t− s)

)
≈ exp

(
−|x− x′|2

4Dτ

)
+
|x− x′|2

4Dτ
Ei
(
−|x− x′|2

4Dτ

)
≈ exp

(
−|x− x′|2

2Dτ

)
.

(5.53)
Thus we end up with

〈MM ′〉 = c(x)c(x′)V 2 +
c(x) + c(x′)

2
V ξ exp

(
−|x− x′|2

2Dτ

)
, (5.54)

where ξ is the term from above. Here, the correlation distance is set by
√
2Dτ , which is

more realistic when τ is smaller than the time to diffuse over the cell.
Using these formulae, we find numerical results very similar to those of the main text,

showing that the conclusions are quite general and not artifacts of specific assumptions.

A5 Volume Conservation

In the main text, we consider perturbed spherical cells. However, for simplicity, we do
not account for volume conservation, which instead we explore here. To ensure that the
perturbed sphere defined by R(θ, φ) = r0 + α · Re [Y m

` (θ, φ)] preserves its volume, we
derive the adjustment needed as a function of α.

The volume of a sphere in spherical coordinates is given by:

V =

∫ 2π

0

∫ π

0

∫ R(θ,φ)

0
r2 sin θ dr dθ dφ. (5.55)

For the perturbed sphere, R(θ, φ) = r0 + α · Re[Y m
` (θ, φ)], so:

V =

∫ 2π

0

∫ π

0

∫ r0+α·Re[Y m
` (θ,φ)]

0
r2 sin θ dr dθ dφ. (5.56)
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The radial integral is:∫ r0+α·Re[Y m
` (θ,φ)]

0
r2 dr =

1

3
(r0 + α · Re[Y m

` (θ, φ)])3 . (5.57)

Expanding this using the binomial theorem:

(r0 + α · Re[Y m
` (θ, φ)])3 = r30+3r20α·Re[Y m

` (θ, φ)]+3r0 (α · Re[Y m
` (θ, φ)])2+(α · Re[Y m

` (θ, φ)])3 .
(5.58)

We note that odd powers of spherical harmonics on dθ are zero for ` > 0, and hence we
only care about the even powers. The radial integral becomes:∫ r0+α·Re[Y m

` (θ,φ)]

0
r2 dr ≈ 1

3
r30 + r0 (α · Re[Y m

` (θ, φ)])2 . (5.59)

and the volume:

V =

∫ 2π

0

∫ π

0

[
1

3
r30 + r0 (α · Re[Y m

` (θ, φ)])2
]
sin θ dθ dφ. (5.60)

Split this into two terms:

V =
1

3
r30

∫ 2π

0

∫ π

0
sin θ dθ dφ (5.61)

+
r0α

2

3

∫ 2π

0

∫ π

0
(Re[Y m

` (θ, φ)])2 sin θ dθ dφ. (5.62)

The first term evaluates to the volume of the unperturbed sphere:∫ 2π

0

∫ π

0
sin θ dθ dφ = 4π, so 1

3
r30 · 4π =

4π

3
r30. (5.63)

Here, for instance for m = 4, ` = 6,

Re[Y 4
6 (θ, φ)] =

3

32

√
91

2π
cos(4φ) sin4(θ)

(
11 cos2(θ)− 1

)
. (5.64)

Integrating, we find∫ 2π

0

∫ π

0
(Re[Y m

` (θ, φ)])2 sin θ dθ dφ =
1

2
+
δm0

2
, (5.65)

Thus, the volume becomes (for m 6= 0):

V ≈ 4π

3
r30 +

r0α
2

2
(5.66)

To preserve the volume, the additional term must cancel out. Therefore:

4π

3
r̃30 =

4π

3
r30 +

r0α
2

2
, (5.67)
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Divide by 4π
3 :

r̃30 = r0

(
r20 +

3α2

8π

)
. (5.68)

Therefore, we set the correction factor Rc = R(θ, φ, α)η(α) to be

η(α) =

(
1 +

3α2

8πr20

)− 1
3

. (5.69)

In Fig. 5.5, we plot the change in measurement uncertainty of both clustered and
uniform receptor distributions as we perturb the spherical cell, and compare it with the
non-adjusted for constant volume case shown from the main text.
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Figure 5.5: Comparison of the improvement in gradient estimation between the adjusted radius formu-
lation (solid) and the original simpler formulation without volume conservation (dashed). The system is
composed of N = 720 sensors for both cases and perturbation is Y 4

6 .

The effect remains qualitatively the same.

A6 Effect of correlation length on cluster formulation

The correlation length, controlled here by the effective receptor size a, plays an role in
determining the spatial structure of receptor clusters. Fig. 5.6 illustrates how estimation
error increases with respect to the minimal separation h between receptors in a cluster.
This separation is influenced by the effective sensor radius, which introduces a scaling
relationship h ∼ log a.

A7 Optimal distribution in more complex shapes

Here, we consider the case of real cells, which are arguably less symmetric than the
simple perturbed shapes we study in the main text. Notably, real cells morphologies,
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Figure 5.6: Reduction in estimation error given the minimal separation h between receptors in a cluster,
modulated by the effective sensor radius which scales the separations as h ∼ log(a).

such as in the case of T cells, can be represented as a linear combinations of spherical
harmonics [285], so we consider the case of the cell defined by

r(θ, φ) =
7∑

`=0

∑̀
m=−`

α`,mRe[Y m
` (θ, φ)] (5.70)

where we have use the coefficients from a cell sample from Cavanagh et al. [285].

(a) (b) (c)

Figure 5.7: Results of receptors distribution on a less symmetric and rugged shape. The images show that
even when symmetry is not persevered, clustering still mostly occurs at high negative mean curvature.

The optimal distribution agrees with results in the main text, where receptors cluster
on protrusions to reduce estimation uncertainty.

A8 Clustering intuition in 1D

In this section, we discuss the intuition of receptor clustering. Simply, receptors need to
cover the most distance possible (in all directions), and avoid being too close to avoid
rebinding events. The mathematics simplify significantly in 1D:

Assume a very simple case where we can place two receptors, (x0, x) where x0 is
fixed and x ∈ (0, 1], and we would like to estimate the sloped of a linear function
y(x) = mx + n. We assume that the sampling yields two measurements yi = y(x) + η,
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with η ∼ N (0,Σ). For simplicity, we will assume the measurements are uncorrelated
and have the same noise and thus Σi,j = σ.

The Fisher Information Matrix for such a system is given by

I(m,n) = 1

σ2

(
x20 + x2 x0 + x
x0 + x 2

)
. (5.71)

from which we can compute the uncertainty in estimation in m with the Cramer-Rao
bound.

σ2m̂ =
(
I−1(m,n)

)
1,1
. (5.72)

We compute I−1(m,n):

I−1(m,n) =
σ2

det(I)

(
2 −(x0 + x)

−(x0 + x) x20 + x2

)
, (5.73)

where the determinant becomes

det(I) =
(
x20 + x2

)
(2)− (x0 + x)2 = 2(x20 + x2)− (x0 + x)2. (5.74)

Thus, the variance is

σ2m̂ =
2σ2

2(x20 + x2)− (x0 + x)2
. (5.75)

Assuming x0 = 0, we have σm̂ = 2σ2/x2, which is minimal when x is maximum at
x = 1 (Fig. 5.8). In practical terms, this means that placing the receptors farther apart
increases the Fisher Information and reduces the uncertainty in the slope estimate.
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Figure 5.8: Normalized uncertainty of the estimation depending on the position of the free sampling
location.
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Interestingly, when we introduce a new sample, i.e. using three points (x0, x, x1),
and repeat the steps above, we end up with

σ2m̂ =
3σ2

3
(
x20 + x2 + x21

)
− (x0 + x+ x1)

2 , (5.76)

Assuming x0 = 0 and x1 = 1, we find

σ2m̂ =
3σ2

3 (x2 + 1)− (x+ 1)2
=

3σ2

2x2 − 2x+ 2
. (5.77)

Since x ∈ (0, 1), we can clearly see that σm̂ is minimized when the denominator is
maximized, which happens at x → 0 and x → 1 when constrained to x ∈ (0, 1). This
indicates that while the sampled points aim to cover the entire domain and maximize
their spread, the fixed boundaries cause the optimal positions to be near existing sampled
points. This proximity persists if there are samples from the opposite end of the domain.
Once we introduce correlation between samples, spreading becomes less optimal and
thus, sampling would be more effective slightly closer to the center instead of overlapping
on the edges.
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Abstract

Biological transport networks are highly optimized structures that ensure power-efficient
distribution of fluids across various domains, including animal vasculature and plant ven-
ation. Theoretically, these networks can be described as space-embedded graphs, and
rich structures that align well with observations emerge from optimizing their hydro-
dynamic energy dissipation. Studies on these models typically use regular grids and
focus solely on edge width optimization. Here, we present a generalization of the hydro-
dynamic graph model which permits additional optimization of node positioning. We
achieve this by defining sink regions, accounting for the energy dissipation of delivery
within these areas, and optimizing by means of differentiable physics. In the context of
leaf venation patterns, our method results in organic networks that adapt to irregular-
ities of boundaries and node misalignment, as well as overall improved efficiency. We
study the dependency of the emergent network structures on the capillary delivery con-
ductivity and identify a phase transition in which the network collapses below a critical
threshold. Our findings provide insights into the early formation of biological systems
and the efficient construction of transport networks.

6.1 Introduction

Transport networks are ubiquitous in nature and in living systems. The efficiency of such
networks is crucial for the evolutionary fitness of organisms such as those observed in
leaf venation [137, 147, 300] and blood vasculature systems [136, 143, 300], and emerges
in complex systems such as river networks [301] and human transport systems [141,
142, 302]. Understanding the structure and morphogenesis of such network structures
has been facilitated by studying energetically optimal solutions to static, hydrodynamic
networks [145, 146, 148, 149].

The optimization of hydrodynamic transport networks is traditionally approached
as an edge-optimization problem [136, 145–147], assuming systems where network nodes
serve as sinks for their local area. Thus, optimizing the energy dissipation leads to
optimal edge conductivities [145], while the positions of the nodes themselves are con-
sidered fixed. In principle, this approach can be used to model any bounded system if
enough nodes are used. However, for a finite number of nodes confined within a bounded
system, it is evident that the node placement itself influences the optimality of the fluid
delivery system. In many systems, the finite number of nodes is a physical fact and
must be imposed, e.g., due to a lower bound on the vein thicknesses determined by the
capillary size.

Here, we consider bounded systems of finite nodes and generalize the hydrodynamic
model to have well-defined optima both in edge conductivities and node positioning.
Specifically, we model a bounded leaf venation network and let the boundary represent
the leaf margin. Each node represents a source or sink (we set a single node at the leaf
base as the source, and let all other nodes be sinks) and each edge represents a vein
between two nodes. Fig. 6.1a shows the optimal solution obtained for a fixed, hexagonal
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(a) (b)

Figure 6.1: Optimization and relaxation on an inclined leaf (ϕ0 = 60◦, β = 0.4, N = 175). Non-
suppressed edges and delivery regions of each sink node are shown. The source is marked with a red
dot. (a) Result after transport network optimization solving Eq. (6.5) on a hexagonal grid. (b) Result
after relaxation, where the network optimizes P = Pt + Pd.

grid in a bounded system. The imposition of the domain boundary and the inability of
the nodes to adapt positionally results in non-uniform areas associated with each node.
As fluid dissipation will typically be proportional to area, this thus implies that the
sinks become non-uniform. By removing the spatial constraint on the node positions,
we find more energy-efficient solutions, which yield networks that appear organic and
more consistent with networks observed in nature (Fig. 6.1b).

6.2 Methods

The power of the transport network is given by [145]

Pt =
∑

e∈edges

(
F 2
e

Ce
+ ctC

γ
e

)
Le, (6.1)

where Fe is the flux associated with edge e, which has length Le and conductivity Ce.
The constant ct defines the metabolic cost of maintaining the edge, which is equivalent to
considering a system with a finite amount of resources. γ is a parameter that determines
how the material cost scales with the conductivities, which we set to γ = 1/2 in this
Letter. The flow is pressure-driven, such that the flux over a (directed) edge e = i → j
is given by Fe = (pi− pj)Ce/Le. The pressures are indirectly determined by the need to
satisfy Kirchhoff’s law ∑

e∈i
±eFe = si, (6.2)

where si is the source/sink at node i and the sign is set by the direction of the edge. This
can be solved efficiently with hardware acceleration [139]. Typically, the sink magnitudes
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are assumed to be equal. However, once the nodes are permitted to move, these values
must change as well. Thus, taking the source s0 = 1, we define

si = − Ai∑
Ai

for i ≥ 1, (6.3)

where Ai is the area surrounding a node, implicitly defined by the associated Voronoi
cell.

In order for a transport system to have stable and well-defined optima in node posi-
tioning, the above model must be expanded to account for the power dissipation within
the Voronoi cells. To achieve this, we add a simple power-delivery term, Pd, to the con-
ventional formulation for transport power [145], and thus assume that the total power
can be described by the sum of two contributions P = Pt+Pd. With the goal of defining
a self-consistent model that equally considers both transport and delivery costs, we take

Pd =
∑

i∈sinks

s2i
Ĉi

〈`〉i. (6.4)

This is analogous to the first term in the transport formulation (Eq. (6.1)), but considers
the power dissipation due to the delivery of the sink fluid si over an average Voronoi
distance 〈`〉i. Ĉi is the delivery conductivity, which effectively models a capillary system.
Physically, this term favors equally sized and isotropic sink areas. We assume that the
delivery conductivity is an intrinsic property of the material, such that Ĉi = Ĉ is fixed
and equal for all nodes.

6.3 Results

6.3.1 Optimization

Our scheme to minimize P consists of the combination of an edge conductivity optimiz-
ation and a node relaxation process. We employ a fully connected graph and initialize
all edge conductivities to the same value. For a given node positioning {xi}, we optimize
the conductivities by using an adaptation model [146, 147]

dCe

dt
=

(
F 2
e

Cγ+1
e

− γct

)
Ce + c0e

−λt, (6.5)

where the term F 2
e /C

γ+1
e is the squared wall shear stress, and γct represents the optimal

squared shear stress. Furthermore, we include a growth term characterized by the area
growth rate λ, which has proven to be a robust strategy to achieve better optima [147].
To facilitate smooth convergence, we also decrease exponentially the magnitude of the
growth term c0(τ) ∝ e−ντ during the node positioning relaxation process. Here, we use
τ to denote the timescale of node relaxation and t for the conductivity optimization.

Crucially, even though our transport network is fully connected, optimization results
in a sparse, planar graph (Fig. 6.1). While networks with static nodes can simplify
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Figure 6.2: Transport and delivery power terms (Eqs. (6.1) and (6.4)) during optimization. (a) Optimiz-
ation of Pt by using Eq (6.5). (b) Node relaxation process. At each timestep one complete optimization
of Pt is performed, resulting in an improvement of both power terms.

the incidence matrix by, for instance, employing Delaunay triangulation to account for
sparse connections, we rely on the derivative information of the entire graph during the
optimization to accurately determine the correct gradients for node displacement and to
allow for the spontaneous creation and suppression of connections.

To optimize over {xi}, we use gradient descent computed by automatic differenti-
ation techniques [20, 37]. To propagate the gradients across the solution of the adapt-
ation model in Eq. (6.5), we employ a custom backpropagation method based on the
implicit function theorem [21], detailed in the Appendix. Importantly, the fact that we
use Voronoi cells to define the sink magnitudes si and the delivery distances 〈`〉i means
that all terms vary continuously with node positions, yet it requires the ability to dif-
ferentiate through Voronoi calculations. We achieve this with a custom differentiable
implementation of Voronoi tessellation [34, 303, 304], clipped by the domain boundary
1 (see Appendix for details). Crucially, this procedure is parallelizable and amenable to
hardware acceleration. As Voronoi cells are guaranteed to be convex, we can split the
integrals over these cells into triangles T , e.g.,

〈`〉i =
1

Ai

∑
T∈vori

∫∫
T
‖xi − x‖ dA, (6.6)

over which the integrals can be evaluated analytically (see Appendix). We note that our
optimization schemes are local optimizers and will generally not find global optima.

During the optimization of conductivities, delivery cost remains fixed (Fig. 6.2a). On
the other hand, during node placement relaxation, we see that while delivery costs are
monotonically decreasing, transport costs experience a phase of stochasticity where the

1Code implementation is available at https://github.com/kirkegaardlab/gradnodes
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Ĉ ∗ ∝ N−4/3

-4 -3 -2 -1 0
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Figure 6.3: Network collapse as a function of effective delivery conductivity. (a) Phase diagram of
(normalized) average nearest-neighbor distance for different Ĉ and network sizes in the one-dimensional
system. The line shows the scaling of Ĉ at constant Ω, (analytically obtained from the scaling analysis).
(inset) Individual network sizes from (a) showing the sudden but continuous collapse. (c) Resulting
networks with Ĉ above and below the critical value in two dimensions.

efficiency is reduced (Fig. 6.2b). Nevertheless, the total power continuously decreases,
and after some iterations both the transport power Pt and the delivery power Pd reach
lower values than those achievable in the regular grid, showing that the terms are not
opposing criteria and that the simultaneous optimization yields networks that show
increased power efficiency in both.

6.3.2 Network stability

The delivery term Pd depends on the capillary conductivity Ĉ. To understand its influ-
ence on the network dynamics, we consider a one-dimensional system, where the nodes
are solely connected to their adjacent nodes. This removes the need for Voronoi calcu-
lations, where instead the average delivery distance is

〈`〉i =
1

2(xR − xL)

[
(xR − xi)

2 + (xi − xL)
2
]
, (6.7)

where xL and xR are the midpoints between the left and right neighbor, respectively (see
Appendix). Fig. 6.3a show the mean node separation 〈d〉 in this 1D system confined to a
fixed domain for increasing values of Ĉ. We observe a smooth phase transition: When Ĉ
is small, the energy is largely dominated by the delivery energy, which is minimal when
the nodes are uniformly spread. As we increase the delivery conductivity of the system,
we observe a continuous change in the network until the network collapses (Fig. 6.3a).

To understand the origin of this transition, we consider the contributions of each
power term. If the energy needed to transfer fluid from a sink node to the surrounding
region is significantly greater than the energy required for transportation (small Ĉ),
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the cost incurred by reducing the connections between nodes – and thereby minimizing
transport energy – is too high to justify compromising the size discrepancies of the
regions. In contrast, when the delivery conductivity is sufficiently high to allow effectively
energy-free fluid transfer from the sink to the region, the optimal solution is achieved
by reducing the transport cost, i.e., moving all the nodes to the source, as a single node
can then deliver fluid to the entire domain cheaply. This leads us to study the transition
using the dimensionless power ratio

Ω =
Pt

Pd
. (6.8)

Scaling analysis of the one-dimensional system reveals that O(Ω) = N4/3 (see Ap-
pendix). Since Ω ∝ Ĉ, we observe that the abrupt collapse of the system in Fig. 6.3a
aligns with the outcomes of the scaling analysis. This analysis can be extended to the
two-dimensional formulation, resulting in O(Ω) = N5/3, which predicts that valid re-
laxed networks only emerge below the critical Ĉ∗, as shown in Fig. 6.3b. Although more
complex in two dimensions, the phase transition still occurs.

We note that the above scaling laws are derived for a fixed domain space. If instead,
we consider a 2D domain that increases with network size, e.g., O(L) =

√
N (i.e.,

a growing leaf), we find the resulting scaling to be O(Ω) = N−1/3. Thus, for fixed
domains, the more densely packed the network is, the lower the capillary conductivity
must be in order for the formulation to hold. If, however, the domain expands, the
system can maintain the same effective conductivity during growth – as expected of an
intrinsic property. For systems with a scaling domain, delivery costs become negligible
at large network sizes, where instead the transport costs dominate completely.

6.3.3 Adaptability

One constraint of regular lattice graphs is that their optimal solutions are dependent
on the alignment of the main axis of the leaf with the grid. To find optimal networks
for fixed grids, careful construction and alignment of the network boundary is therefore
required (Fig. 6.1a). Typically, this alignment is chosen so that the main axis follows
the shortest path between neighboring nodes, resulting in network shapes where the
leaf main branch is perfectly parallel with the main axis (Fig. 6.1a). Another issue is
the aforementioned non-uniformity of the sink areas along the leaf boundary. Thus, for
fixed grids, careful construction and alignment of the network boundary is required. To
illustrate this, we construct a leaf shape that can be rotated relative to the grid by using
a simplified version of Gielis’ superellipse equation [305], as it describes a broad range
of leaf shapes accurately [306]:

r(ϕ;ϕ0, β) =
(∣∣cos (ϕ−ϕ0

4

)∣∣+ ∣∣sin (ϕ−ϕ0

4

)∣∣)−1/β
. (6.9)

Here ϕ0 is the inclination of the major axis of the leaf, and β is a shape parameter.
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Figure 6.4: Model adaptability on differently aligned leaves. (a) The deviation σ (top), as well as power P
(bottom) are 60◦-periodic for the regular grid, and non-periodic for the relaxation model. (b) Resulting
leaves for maximum alignment (top) and misalignment (bottom) are fundamentally different for the
regular grid (left), but similar for the relaxation model (right).

We quantify the discrepancies by rotating the leaf and measuring the power P and
the average deviation of the main branch with the grid

σ = 1− 〈ci cos(θi − ϕ0)〉
〈ci〉

, (6.10)

where θi and ci are the angle and conductivity of the i’th edge of the main branch,
respectively. The main branch is found by greedily following the edges with the highest
conductivity, from the source to a leaf node. On the hexagonal grid, angles ϕ0 ≡
0 (mod 60◦) correspond to maximum alignment of the leaf with the grid, whereas ϕ0 ≡
30◦ (mod 60◦) correspond to maximum misalignment.

Fig. 6.4 shows the average main branch deviations for the outputs of the regular grid
and the relaxation model. For the regular grid, we see that the deviation is completely
dependent on angle, with a minimum of σ = 0 at the maximum values of leaf alignment,
as well as peaks at maximum misalignment. The slightly non-smooth changes in devi-
ation are caused by the discrete differences in the initializations of the node positions due
to boundary clipping. For the deviations in the relaxation model, there is no apparent
dependency on angle, which indicates that the model’s independence of initial boundary
alignment, with the noisiness being the result of local optimization. While zero deviation
is never reached for the relaxation model (due to the stochastic nature of the optimiz-
ation), the average deviation 〈σ〉 = 0.026 is nonetheless lower than 〈σ〉 = 0.033 for the
regular grid.

The resulting power from the same data can be seen in Fig. 6.4a. The mean power is
significantly lower for the relaxation model. We note that at maximum alignment we still
see a lower power in the relaxation model, even though the regular grid output has lower
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deviation, which can be attributed to the fact that power is not solely determined by
the structure of the main branch, but by the network in its entirety. Figs. 6.4b illustrate
the output of the models for maximum alignment and misalignment, respectively. The
regular-grid model yields two extremes where the main branch either completely follows
the main axis (Fig. 6.4b, top-left), or splits into two similarly sized branches (Fig. 6.4b,
bottom-left). In contrast, all outputs from the relaxation model preserve the central
main branch (Figs. 6.4b, right).

6.3.4 Vein curvature

A characteristic feature of the model networks is the emergence of smoothly curving
veins, leading to venation patterns that appear more organic compared to those pro-
duced by a regular grid. Previous work relied on complementary initialization techniques
in order to effectively mimic biological stochasticity, for example by using disordered tes-
sellation grids [147]. Such a method works by enforcing a repulsive potential between
sink nodes that leads to evenly spaced positions in the domain. This is approximately
equivalent to independently optimizing Pd in our formulation.

In Fig. 6.5 we compare the resulting morphologies of a leaf that mimics the domain
of L. xylosteum (Fig. 6.5a). This may be compared to venation patterns in our formu-
lation (Fig. 6.5b), and a regular grid (Fig. 6.5c), respectively. In Fig. 6.5d we show the
result of sequential optimization, i.e., optimization of Pd and subsequent optimization of
Pt. We observe sub-optimal solutions where the venation patterns do not match those
of the real leaf. Instead, we find that the optimization of Pt identifies approximately
straight lines in the optimal node positions, and uses these to form the main branch.

Our observations indicate that incorporating coupled energy costs in the power for-
mulation leads to solutions influenced by domain boundaries, closely resembling those

(a) (b) (c) (d)

Figure 6.5: Comparison between a real leaf and model venation patterns (β = 0.25, N = 100). (a) Sample
of L. xylosteum [139]. (b-d) Model output from the (b) relaxation model, (c) regular grid, and (d) se-
quential optimization.
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found in vivo (Fig. 6.5b). This is reproduced to a lesser extent when performing se-
quential optimization (Fig. 6.5d), and is completely absent when relying on regular
grids (Fig. 6.5c).

6.4 Discussion
In this Letter, we have addressed the limitations of traditional transport network optim-
ization models by allowing the optimization over the node positions themselves. We have
shown this to be a well-defined problem when incorporating the cost of resource deliv-
ery into the energy formulation, with resulting configurations that show adaptability to
domain boundaries and misalignment. The study has been enabled by exploiting a fully
differentiable process including the Voronoi tessellation of the domain and the steady
state of the conductivity adaptation model. Our results demonstrate the advantages of
node localization both internally and in adapting to external domain boundaries and al-
low the emergence of natural organic networks. This approach could find applications in
the efficient design of human-engineered networks [72]. We identified a phase transition
as a function of the capillary conductivity Ĉ, showing network collapse above a crit-
ical value, reminiscent of the well-known phase transition in γ for static networks [145].
Scaling analysis further reveals that physical networks remain stable during network
growth only if the domain expands along with the network. While our goal has been a
minimal extension of the hydrodynamic network model, we note that a main insight is
the addition of some delivery power term and not necessarily precisely the one of Eq.
(6.4). For instance, similar phase transition behavior emerges from considering, e.g.,
〈`2〉 (diffusion-limited costs). Our approach is limited by the local behavior of gradient
descent and the presence of many local optima. Resulting patterns are thus sensitive
to initial conditions even though the energy dissipation is similar between them. This
problem similarly prevails in edge optimization alone [145]. Our findings pose an inter-
esting question for further research: how can appropriate local feedback models [146, 147]
be formulated that optimize Pt + Pd? Finally, we note that in this Letter we do not
consider fluctuations in the sink magnitudes or similar phenomena that can result in
reticulate networks [148, 149, 307], the relevance of which becomes evident for larger
network sizes. This can be incorporated by choosing a suitable parameterization that
allows for area-weighted sinks [139].
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Appendix

A1 Spatially continuous sinks: integrals

In this section, we provide a detailed analysis of the area computation of the region where
the sink nodes deliver to and explore the integration of distance metrics in a triangle
within the polygon. Take a star convex polygon (such as those that result from Voronoi
tesselations), and consider a triangle ABC in that polygon:

A

B

C

Figure 6.6: Diagram of a triangle of a Voronoi cell. A is the sink node and B and C are vertices resulting
from the tessaration.

The area of such a triangle is trivial to calculate, and thus the total area is:

A =
∑

T∈triangles
AT , (6.11)

where AT is trivially computed with

AT =
1

2
|(xA − xB)× (xA − xC)| . (6.12)

Likewise, we need the average distance from A to all points in the polygon. This
becomes:

〈L〉 = 1

A

∑
T∈triangles

∫
AT

||xA − x||dA. (6.13)

This integral is not easy, but can be done by using polar coordinates. We write

x(r, θ) = xA + r

(
cos θ
sin θ,

)
(6.14)

and the integral becomes

I =

∫
AT

||xA − x||dA =

∫ θ2

θ1

dθ

∫ R(θ)

0
dr r2 =

1

3

∫ θ2

θ1

R(θ)3 dθ, (6.15)

where R(θ) is the distance from A to the line BC with angle θ,

R(θ) =
xa(yb − yc) + xb(yc − ya) + xc(ya − yb)

(yc − yb) cos θ + (xb − xc) sin θ
, (6.16)
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thus, our integral becomes

I =
1

3
[xa(yb − yc) + xb(yc − ya) + xc(ya − yb)]

3
∫ θ2

θ1

1

(δy cos θ − δx sin θ)3
dθ,

where δx = xc − xb and δy = yc − yb. This integral can be evaluated using Weierstrass
substitution to give∫

1

(δy cos θ − δx sin θ)3
dθ =

1

δ3
tanh−1

(
δx+ δy tan(θ/2)

δ

)
+

δx cos θ + δy sin θ

2δ2(δy cos θ − δx sin θ)2
, (6.17)

where we defined δ =
√
δx2 + δy2. Note that

tan(θ/2) =
sin θ

1 + cos θ
, (6.18)

so this can all be written in terms of cos θ and sin θ (i.e. no need to actually calculate
θ). Thus, the formula is complete by specifying

cos θ1 =
xB − xA

||xB − xA||
, sin θ1 =

yB − yA
||xB − xA||

, (6.19)

cos θ2 =
xC − xA

||xC − xA||
, sin θ2 =

yC − yA
||xC − xA||

. (6.20)

As Weierstrass substitution has problems at θ = π, the integral is only valid when
the triangle is aligned with node A west of nodes B,C — but this is always achievable
by a simple rotation.
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A2 Solution for the 1-Dimensional case

Here, we show the derivations and explanations to find the optimal distribution of x in
the simplified case of a one-dimensional (1D) leaf. We begin by considering a system
with a single source s0 = 1 at x0 = 0, and n delivery nodes positioned at locations
x = {x1, x2, . . . , xn}, which get constrained to x ∈ [0, L].

Similar to the 2D case, the sink values si represent the rate at which flow is absorbed
or removed at each node xi. The sink value is calculated based on the distances between
the neighbouring nodes, normalized by the system length L. An exception to this is the
first and last nodes, where the distance to the boundary is used instead.

si = − 1

2L
(xi+1 − xi−1), (6.21)

with special attention to correct at x0 and xn.

x0 = 0
x1

s1

x2

s2

xi

si

xi+1

si+1

xn

sn

xn+1 = L

Figure 6.7: Diagram of the 1D transport networks with moving nodes (blue) and a fixed source (red).

Next, we compute the flow values Fi of the passing flow through each node. Since
we are in 1D, we assume that the nodes are only connected to the nodes on their sides.
Hence, the flow expression for each edge simplifies to

Fi+1 = Fi − si = F1 −
∑
j≤i

sj , (6.22)

given that F1 = 1.
The conductivity at each node denoted Ci, is a function of the flow Fi. We can find

the optimal conductivity for this system by minimizing the transport power Pt given by

Pt =
∑

i∈transport
Li

(
F 2
i

Ci
+ ctC

γ
i

)
, (6.23)

by setting ∂P
∂C = 0, we find the conductivity at node xi to be:

Ci =

(
F 2
i

ctγ

) 1
1+γ

. (6.24)

This formula captures the non-linear dependence of conductivity on the square of the
flow, modulated by the parameters ct and γ.

The total power P of the system consists of two components: the transport power
Pt and the delivery power Pd. The transport power is given by:

Pt =
∑

i∈transport
Li

(
F 2
i

Ci
+ ctC

γ
i

)
, (6.25)
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where Li represents the length of the transport segment corresponding to node xi, and
the two terms inside the summation represent the power due to flow and the power
related to the conductivity, respectively.

The delivery power, on the other hand, is the power used to deliver flow from the sink
nodes to their surrounding areas, and it depends on the sink values si and the average
delivery distance 〈`i〉. The delivery power is expressed as:

Pdelivery =
∑

i∈delivery
〈`i〉

s2i
Ĉ
, (6.26)

where Ĉ represents the delivery conductivity, and 〈`i〉 is the average distance over which
the flow must be delivered.

The average delivery distance 〈`i〉 for a node at position xi is computed using the
positions of the left and right domain edges, denoted xL and xR, respectively. The
formula for the average delivery distance is the weighted average:

〈`i〉 =
(xR − xi)

xR − xL
·(xR − xi)

2
+

(xi− xL)

(xR − xL)
·(xi − xL)

2
=

1

2(xR − xL)

[
(xR − xi)

2 + (xi − xL)
2
]

(6.27)
This formula accounts for the spatial distribution of the flow and the relative positions
of the nodes within the system.
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A3 Scaling for different network sizes

A3.1 One-dimensional network

We analyze the scaling of the total power P given by

P = Pt + Pd, (6.28)

with respect to the number of elements N on the 1 dimensional case using the expressions
above. For this, we assume the domain to be fixed with N .

Starting by the transport term, we have

Pt =
∑

i∈transport
Li

(
F 2

Ci
+ ctC

γ
i

)
, (6.29)

where O(F 2
i ) ≈ 1/N2, and thus O(Ci) = ( 1

N2 )
2/3 according to Eq. (6.24). We also

assume ct constant and γ = 0.5 as in the main text. Taking into account Li ∝ L
N , and

splitting the terms we find:

O(Pt) = O(Σ) O(L) O(F 2) O(C−1) +O(Σ) O(L) O(C1/2) = N− 2
3 = N− 2

3 +N− 2
3 .

(6.30)
Hence, the transport network scales as O(Pt) = N−2/3.
In the case of the delivery term, given by

Pd =
∑

i∈delivery
〈`i〉

s2i
Ĉ
, (6.31)

where 〈`i〉 ∝ L
N , s2i ∝ 1

N2 and Ĉ is constant, giving:

O(Pd) = O(Σ) O(〈`〉) O(s2) = N−2. (6.32)

The ratio between the transport and cost terms to the delivery term scales as:

O(Ω) =
O(Pd)

O(Pt)
=
N−2

N− 2
3

= N− 4
3 (6.33)

Therefore, the ratio scales as O(Ω) = N−4/3.
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A3.2 Two-dimensional network

In the case of two dimensions, such as the ones on the networks of the main paper, we
need to approximate the scaling of the edges. This is due to the optimized conductivities
making the graph sparse, resulting in a linear scaling of the edges.

Similarly to A3.1, we want to understand the scaling of the terms of the power by
analyizing how its components scale with N .

Here, the scaling of the flow O(F 2) is unknown because it depends on the network
structure and therefore γ. Empirically O(F 2) ≈ 1/N if γ = 1/2 and O(F 2) ≈ 1/

√
N

if γ = 1/4. This is approximate because in reality F 2 does not scale uniformly: some
edges have O(1) and some have O(1/N).

Here we assume γ = 1/2 and take

O(F 2) = N−1 (6.34)

The remaining terms have known scaling with N :

C =

(
F 2

ctγ

) 1
1+γ

⇒ O(C) = O(ct)
− 2

3 N− 2
3 (6.35)

O(L) = N− 1
2 (6.36)

O(〈`〉) = N− 1
2 (6.37)

O(
∑

) = N (6.38)

O(s2) = N−2 (6.39)

So we find

O(Pt) = O(Σ) O(L) O(F 2) O(C−1) +O(Σ) O(L) O(C1/2) = N
1
6 +N

1
6 = N

1
6 (6.40)

and analogously

O(Pd) = O(Σ) O(〈`〉) O(s2) = N−3/2. (6.41)

Therefore, the resulting power ratio scales as

O(Ω) =
O(Pd)

O(Pt)
=
N−3/2

N1/6
= N−10/6 = N−5/3 (6.42)

which changes the scaling with regards to the one dimensional case.
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A4 Differentiable Voronoi

In this section, we show an overview of the clipped Voronoi tessellation implementation
used. Notably, our approach to make it differentiable relies on a pre-calculation using
SciPy, and leveraging that information to efficiency construct the resulting diagram.

Algorithm 1: Differentiable Voronoi Tessellation Clipped by a Boundary
Input: Set of points x = {(xi, yi)}, convex boundary polygon boundary
Output: Clipped Voronoi nodes and regions
Pre-calculation (Non-differentiable, CPU):
Extend x:

xext = x ∪ (boundary + 100 · (boundary − mean(x)))

Compute Voronoi regions, Delaunay triangulation, and mark regions needing
clipping.

Differentiable Voronoi (GPU-friendly):
foreach triangle {(ax, ay), (bx, by), (cx, cy)} in Delaunay do

Compute Voronoi node (ux, uy):

D = 2((ax − cx)(by − cy)− (bx − cx)(ay − cy))

ux =

∑
(p2x + p2y) · (∆y)

D
, uy =

∑
(p2x + p2y) · (∆x)

D

Clipping Regions:
foreach Voronoi region needing clipping do

foreach edge (A,B) of the region do
Find intersections with boundary edges (C,D):

ua =
(D − C)× (A− C)

(B −A)× (D − C)

if 0 ≤ ua ≤ 1 then
Compute intersection: (x, y) = A+ ua · (B −A)

Sort clipped vertices by angle θ relative to the centroid:

θ = − arctan 2(y − ycentroid, x− xcentroid)

Return clipped Voronoi nodes and regions.
Since this implementation is written with GPU in mind, most of the loops are instead

vector operations, and calculation occur on its majority in parallel. For calculating the
gradients we rely on jax [37] automatic differentiation rules.
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A5 Implicit Function Theorem

During the optimization of the nodes positions, we perform a full optimization of the
conductivities of the system. To do so, we use the dynamical model defined in the main
text as

dCe

dt
=

(
F 2
e

Cγ+1
e

− γct

)
Ce + c0e

−λt, (6.43)

until it has reached the steady state C∗. The steady state solution is equivalent to
finding the fixed point of the equation dCe

dt = 0. From now on, we are interested in
solving for the implicit function f(C∗, x) = 0.

The result C∗ is dependent on the positions of the nodes x in a non-trivial manner.
Namely, C∗ depends on Fe, which is a function of Le and s, all of which dependent on
x. We are interested in finding dC

dx , and even though automatic differentiation would
allow to apply the chain rule through the iterative solver, the memory and computa-
tional cost of calculating derivatives and storing them would make it computationally
challenging. Luckily, since we are iterating over an implicit function, we can make use
of the implicit function theorem [21, 308], which allows for backpropagation through a
fixed-point iteration without requiring saving each iterative step into memory.

For simplicity of presentation, here we will consider that the power only depends on
the optimal conductivities, i.e.

dP

dx
=

dP

dC∗ · dC
∗

dx
. (6.44)

In order to compute dC∗

dx (the gradients of interest here), we use its implicit form
f(C, x) = 0 and obtain

df

dx
=
∂f

∂C
· dC

∗

dx
+
∂f

∂x
= 0. (6.45)

Letting A = ∂f
∂C (the Jacobian of f with respect to C) and B = ∂f

∂x (the Jacobian of
f with respect to x), we isolate ∂C∗

∂x :

dC∗

dx
= −A−1B. (6.46)

This Jacobian is memory intensive (here we are ignoring the dependencies on the solver
of F ). However, we can rephrase this as a fixed-point problem using the adjoint vector
w given by

wT = vTA. (6.47)
where v = ∂f

∂C∗ . This means that we can solve for w iteratively if we express it in implicit
form such that w = f(w) = wT − vtA where we are around f(w) = 0, and have

df

dx
= wTB. (6.48)
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which is equivalent to finding dC
dx in the regime where f(C, x) = f(C∗, x) = 0. Thus,

by applying the implicit function theorem, we can compute the gradient with respect to
parameters in the adaptation model for conductivity optimization, ensuring efficiency
by avoiding the storage and backpropagation through each individual iteration step.

Our implementation of the fixed point approach can be found at https://github.com/
kirkegaardlab/gradnodes.
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Chapter 7

Final Remarks

The fundamental principles of physics, integrated with the computational tools of com-
puter science and the intricate complexities of biological systems, create a surprisingly
exciting playground for scientific exploration. In this thesis, I have explored this in-
terdisciplinary approach employing differentiable programming techniques to study the
behaviours of microorganisms, enhance data acquisition methodologies, and investigate
how transport networks can adapt to their domain.

Firstly, I took on the lasting challenge of tracking overlapping slender organisms
in microscopy images. Something quantitative behavioural studies were in need of.
By developing a deep learning solution, the method was able to assign identities to
organisms during occlusions and detect thousands of C. elegans simultaneously. The
creation of a synthetic dataset using force resistive theory was crucial, as it accurately
mimicked the motions of in vitro swimming nematodes at low Reynolds numbers. This
not only provided a robust training ground for the deep-learning detection model but also
demonstrated the effectiveness of combining physical modelling with machine learning
to overcome practical limitations in biological imaging.

The second and third projects explored decision making during chemotaxis, focussing
on how physical limits shape optimal strategies by constraining environmental sensing.
Although chemotaxis is a well-studied topic, integration with newer and more powerful
tools, such as deep reinforcement learning (DRL), is still anecdotal. These projects
aimed to bridge this gap and explore questions where optimality is not clearly known.

The first challenge addressed the transition between temporal and spatial sensing
strategies. The findings of which revealed a continuous transition in optimal strategies
and identified a regime in which both temporal and spatial information sources are effi-
ciently integrated. This continuum challenges the traditional dichotomy of chemotactic
strategies and suggests that microorganisms can adapt their sensing mechanisms based
on environmental conditions and limitations.

Further, modelling spatial sensing in amoeba as a finite resource contest between
protrusions offered insight into how cells could overcome physical limitations in sens-
ing. This mechanism demonstrated that cells could leverage persistence in motion to
enhance their chemotactic capabilities, aligning closely with experimental observations.
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The simplicity and effectiveness of this model underscore the potential for minimalistic
designs in biological systems to achieve complex behaviours through resource allocation
and mechanical interactions. Similarly to the previous project, optimality is not well
defined due to the complex dynamics of the system. Thus, by employing DRL, we dis-
covered how optimal pseudopod strategies depend on environmental information and
how cells adapt their strategies to enhance performance accordingly.

The fourth project investigated the optimal placement of cell-surface receptors for
spatial gradient sensing. Specifically, it studied their spatial organisation to reduce the
uncertainty in gradient estimation. The results showed that optimally placed receptors
tend to cluster in surface protrusions once symmetry is broken. This clustering not
only improves the accuracy of the detection, but also aligns with previous mechanical
explanations for receptor distribution. The convergence of mechanical and functional ex-
planations suggests an evolutionary link in which physical mechanisms are harnessed for
functional advantages, highlighting the interplay between form and function in biological
systems.

The final project ventured into the optimisation of transport networks by exploring
the optimal distribution of nodes when the cost of resource delivery is included in the
energy formulation. By removing the constraint of nodes being placed on a static grid,
the research used differentiable physics to determine their optimal placement, a task that
is challenging with conventional methods. The resulting networks showed adaptations to
boundaries and misalignments, indicating a higher level of efficiency and responsiveness
to environmental constraints. Although slightly tangential to the main theme of microor-
ganism behaviour, this project exemplifies the versatility of differentiable programming
in solving complex optimisation problems in biological contexts.

Collectively, this thesis highlights the benefits of integrating differentiable program-
ming with physical models to gain a deeper understanding of complex biological systems.
The methodologies developed offer a foundation for future applications, demonstrating
how computational techniques can bridge gaps between theoretical models and empir-
ical observations. By addressing challenges in tracking, sensing, and optimisation, the
research presented in this thesis may contribute to a more comprehensive understand-
ing of cell behaviour and the fundamental principles governing biological systems at
microscopic scales.

7.1 Future Directions

The findings of this thesis open up several avenues for further research. In the context
of organism tracking, future work could focus on extending the deep learning model to
handle a wider variety of microorganisms with different morphological and motility char-
acteristics. Incorporating more complex environmental conditions and interactions into
the synthetic datasets could enhance the model’s robustness and applicability to real-
world scenarios. Similarly, coupling physics-based simulations with generative models
can only but extend the capabilities of deep-learning-based models in difficult-to-label
tasks.
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Chapter 7 | Final Remarks

In exploring chemotactic decision making, subsequent studies might investigate how
external factors such as fluctuating environmental gradients or the presence of obstacles
influence the integration of temporal and spatial sensing strategies. Furthermore, ex-
amining the genetic and molecular bases of resource allocation in protrusion dynamics
could provide deeper insights into the mechanisms behind spatial sensing in amoebas
and other cells.

The optimal placement of cell-surface receptors presents opportunities to explore
the evolutionary pressures that shape receptor distributions. Experimental validation
of the theoretical models using advanced imaging techniques could substantiate the
proposed link between mechanical structures and functional advantages. Similarly, if in
agreement, the experimental evidence would validate whether the cells actually estimate
the magnitude and direction of the gradient, analogous to the least squares assumption.
Furthermore, investigating receptor dynamics in response to changing environmental
conditions could reveal adaptive mechanisms employed by cells. On a more practical
note, it would be valuable to investigate whether micro robots benefit from reduced
uncertainty in estimation, as suggested by the results of our study.

The optimisation of transport networks could be expanded to model more complex
biological systems, such as vascular networks in tissues or neural connectivity patterns.
Incorporating additional factors such as network robustness, redundancy, and energy
efficiency could lead to more comprehensive models that better reflect the intricacies of
biological transport systems.

7.2 Closing thoughts
This thesis has shown the power of interdisciplinary approaches in modelling the com-
plexities of biological systems. By integrating differentiable programming with physical
and biological models, this work has addressed long-standing challenges with fresh per-
spectives and practical solutions. The fact that the projects presented here have not
only been accepted for publication, but also positively peer-reviewed (an outcome that
remains pleasantly unexpected) showcases the value of computational methods grounded
in physical principles for studying biological systems. The research I have conducted over
the last three years should hopefully demonstrate that progress in biological sciences is
not confined to traditional approaches; but it thrives in the deliberate integration of
innovative and interdisciplinary methodologies.
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