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Abstract
The realization of a quantum computer requires the development of a scaleable and reli-

able two-level system. This thesis presents the knowledge gained from experimenting with a
series of low-dimensional hybrid superconductor/semiconductor quantum devices to inves-
tigate topological superconductivity. A topological superconductor is expected to host Ma-
jorana zeromodes (MZMs) at its boundaries that are described by a non-local wavefunction
obeying non-abelian exchange statistics. These attributes of MZMs enable the critical ‘fault-
tolerant’ quantum computation, whereby quantum information is stored in the fermionic
parity of a non-local state. Thismethodof encoding is predicted to protect quantum informa-
tion from local noise sources, allowing for longer qubit lifetimes. This work extends beyond
local tunneling spectroscopy signatures ofMZMs on proximitized nanowires and focuses on
investigating non-locality andMajorana parity that requires two-dimensional device geome-
tries.

My dissertation demonstrates that two-dimensional InAs-Al heterostructures are an en-
couraging material system for investigating topological superconductivity. This platform al-
lows for conventional top-down fabrication, facilitating scalable device geometries necessary
for pursuing topological qubit networks. A series of device geometries ranging in complexity
were investigated to assess the feasibility of creating the first topological qubit using two-
dimensional heterostructures.

The essential findings include the observation of conductance oscillations through aMa-
jorana island interferometer with a flux period of h/e (h is Planck’s constant; e is the ele-
mentary charge). This indicates coherent transport of single electrons through the islands - a
signature ofMajorana non-locality. I demonstrate the progress thatwasmade towards parity-
to-charge conversion for detecting the two parity states of a topological qubit. This includes
the observation of transport signatures of zero-energy mode hybridization that are compat-
ible with predictions of MZM hybridization. Finally, I introduce a fully two-dimensional
platform based on a Josephson junction that enables a flux controlled topological phase tran-
sition. I report on transport signatures consistent with the observation of MZMs in a topo-
logical Josephson junction.

The primary implication of this work is that two-dimensional heterostructures offer a
promising platform for scalable topological quantum computation.
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1
Motivation

Currently there is an immense global push to realize quantum technologies. At the
pinnacle of this endeavor is the pursuit of a fully-fledged universal quantum computer.

The current leading approach to quantum computing is based on superconducting circuits,
which use a Josephson junction as a non-linear element to create an anharmonic oscillator
[1, 2]. A recent breakthrough came from the Martinis group at Google who achieved quan-
tum supremacy, a feat where a quantum processor outperforms any classical computer on a
specialized computation [3]. This technology is anticipated to allow for quantum processors
consisting of∼ 1000 quantum bits (qubits), while todays most advanced quantum proces-
sors comprise less than a hundred [2]. However, qubits are prone to decoherence, a process
whereby quantum information stored in the quantum state is lost. An important considera-
tion of decoherence is that only a finite amount of gate operations (calculations) can be per-
formed before the information is lost. To achieve a more powerful quantum processor, both
the number of qubits and the number of executable gate operations need to be improved
in concert. This consideration appears to be difficult for all known qubit technologies to-
day. Fortunately, the solution to the problem of decoherence may come from fundamental
physics research.

In 1980, a new field of physics, known as topological condensed matter, was born with
the discovery of the quantum Hall effect [4]. Unbeknownst to von Klitzing at the time, the
precise quantization of conductance in units of e2/h is deeply rooted in the topology of the
system [5, 6] *. In fact, the robustness of the quantum Hall effect and its insensitivity to

*e is the elementary charge and h is the Planck constant
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specific experimental conditions allows to be used as a standard for electrical resistance [7].
This culminated in 2016whenNobel prize in physicswas awarded toKosterlitz,Haldane, and
Thouless for their contribution to the discovery of topological phase transitions and topolog-
ical phases of matter.

It is based on these two topics that this dissertation finds its footing. The question that is
currently being investigated in many laboratories around the world is if topology can be har-
nessed to protect quantum information from decoherence. It is this prospect that led to the
conceptionof thefield knownas ‘topologically-protected’ or ‘fault-tolerant’ quantumcompu-
tation [6]. Various quantum systems are expected to exhibit topological phases ofmatter [8].
However, the current leading approach for fault-tolerant quantum computation is based on
systems with Majorana zero modes (MZMs) [9, 10]. It is expected that quantum informa-
tion encoded in this systemwill be protected from the common sources of decoherence that
perturb conventional qubits.

Majorana zeromodes are exotic quasiparticle excitations that appear at the boundaries of
a topological superconductor [10, 11]. While there are only a few bulk material candidates
thatmay exhibit topological superconductivity [12, 13], it is predicted thatwith certainmate-
rial combination readily available in the laboratory, topological phases of matter can be engi-
neered [14]. This thesis focuses on the proposal, based on one-dimensional nanowires with
strong Rashba spin-orbit interaction and proximity induced conventional superconductiv-
ity, that are subjected to an external magnetic field [15, 16]. Each of these four key elements
will be introduced in Chapter 2 and the material system used to investigate topological su-
perconductivity is presented inChapter 3. This thesis focuses on the development of a new
material system based on quantumwell heterostructures, where an Indium-Arsenide (InAs)
two-dimensional electron gas is put in proximity to a thin filmof superconductingAluminum
(Al) [17].
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1.1 Majorana Fermions andwhere to find them

The concept of Majorana fermions started with a young Italian physicist named Ettore Ma-
jorana. In 1937, Ettore Majorana was investigating the relativistic Dirac equation [18]. This
equation describes fermionic particles and predicted the existence of anti-particles. By de-
manding his solution to be real (instead of the conventional imaginary solutions), Majo-
rana found that the wavefunction describing a particle was also its own antiparticle [19]. For
decades physicists have looked to fundamental particles andhigh energy physics for evidence
of the hypothetical particle - now commonly referred to as a Majorana fermion. However,
convincing evidence is yet to be found [20]. At the turn of the century, it was discovered
that the particle-hole symmetry offered by a superconductor can give rise to quasiparticle
excitations that obey similar properties to the proposed fundamental particles by EttoreMa-
jorana [14, 21, 22]. These excitations are referred to as Majorana zero modes (MZMs).

To first introduce the mathematical description of Majorana fermions, a mathematical
decomposition of standard Dirac fermions into a Majorana basis can be performed. Dirac
fermions are described by many-body creation complex operators c†j , which creates an elec-
tron with quantum numbers j and the operator cj annihilates it (creates a hole). As these
fermionicoperatorsdescribe identical particles theyobey the anticommutation relations [23],

{ci, cj} = {c†i , c
†
j } = 0 {ci, c†j } = δij

These fermionic operators can be decomposed in real and imaginary parts in terms of new
fermionic operators γ i as [10, 11],

cj =
1
2
(γ1 + iγ2), c†j =

1
2
(γ1 − iγ2) . (1.1)

This decomposition leads to a fermion being divided into two halves by γ i. Inverting the
preceding equations gives,

γ1 = (cj + c†j ), γ2 = i(cj − c†j ) .

By inspection, it is observed that the γ operators are composed of equal electron and hole
parts and satisfy,

γ i = γ†i , γ2i = 1 .

Therefore, the operator γ†i creates a particle that is identical to its own antiparticle. These
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particles are indeed Majorana fermions. Additionally, γ i are fermionic operators that obey
the anti-commutator relations [10],

{γ i, γ j} = 2δij; {γ i, γ
†
j } = 0 for i ̸= j .

These resultsmay not come as a surprise to some, since by construction it was demanded that
γ to be an equal superposition of electron and hole parts and may seem to carry no physical
consequence. However, it will become evident in the following section that if these twoMa-
jorana fermions are isolated from each other (as is the case of a topological superconductor),
then this description becomesmore than an abstract decomposition and results inMajorana
zero modes.

In solid state systems, quasiparticle excitations are primarily electrons and holes that carry
charge and spin. AsMajorana fermions are their own antiparticles they are constrained from
having spin or charge. This implies that a solid-state realization of Majorana fermions ne-
cessitates emergent non-trivial quasiparticle excitations. A promising candidate material is
a superconductor due to particle-hole symmetry. In a superconductor, single-quasiparticle
excitations are known as Bogoliubons b and are described by [10, 11],

b†↓ = uc†↓ − vc↑, b↑ = vc†↓ + uc↑ ,

which are excitations composed partly electron and hole components. Here u and v repre-
sent coherence factors of electron-like and hole-like excitations, respectively (more on this in
Chapter 2.3.1). Particle-hole symmetry states that for a quasiparticle b with energy E, there
exists another quasiparticle with energy −E such that b(E) = b†(−E), as depicted in Fig.
1.1a [11]. If the energy of the particle and antiparticle is zero then b↑ = b†↓*. However, these
zero-energy excitations are not necessarily Majorana fermions. In conventional supercon-
ductors, electrons form spin-singlet pairs (s-wave), causing the particle and antiparticle to
have opposite spin. The electron pairing in a p-wave topological superconductor is spinless,
allowing for quasiparticle excitations obeying γ = γ†, which are indeedMajorana fermions
as shown in Fig. 1.1b.

In the context of solid state, these zero-energyquasiparticle excitations are localizedmodes
living at the boundaries of a topological superconductor (see Fig. 1.2), and are referred to as
Majorana zeromodes (MZMs) [10, 24]. As opposed to the fundamental particle postulated

*The excitation is described by a linear combination of equal electron and hole parts (|u|2 = |v|2)
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E

0
Δ

-Δ b-E,↓

b†
E,↑

E

0
Δ

-Δ
γ†

 = γ

a b

Figure 1.1: Excitation spectrum of a trivial and topological superconductor: a,
Schematic representation of the quasiparticle spectrum of a trivial superconductor with
a spinful sub-gap excitations b at energy E and the particle-hole symmetric counterpart
at −E. b, At the boundaries of a topological superconductor there exists zero-energy
Majorana zero modes obeying γ = γ†.

by Ettore Majorana, these zero modes have an additional condition in that they commute
with the HamiltonianH of the system ([H, γ] = 0) [10, 24]. Since MZMs are zero energy
excitations and a pair of MZMs describe a ordinary fermion (see Eq. 1.1) that can either
be filled or empty, the ground state of a system with NMajorana pairs is 2N-fold degenerate
[10, 11]. Chapter 2 examines how to engineer topological superconductivity andMZMsout
of conventional material systems.

1.2 Majorana qubits

As opposed to conventional quasiparticle excitations in a superconductor, MZMs exhibit
numerous exotic properties that enable fault-tolerant quantum computation. The following
section will outline the two most relevant attributes for this thesis - Majorana non-locality
andMajorana parity.

γ1 γ2

Figure 1.2: One-dimensional topological superconductor: Schematic representation of a
one-dimensional topological superconducting nanowire. At the ends of the nanowire are
two non-local Majorana zero modes γ1 and γ2.

Figure1.2depicts aone-dimensional topological superconductorwith twonon-localMZM
excitation γ1 and γ2 at the ends of the wire. Majorana non-locality describes the spatial sepa-
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ration between a pair of MZMs, which together correspond to a single ordinary fermion. As
a consequence, the quantum information stored in these quasiparticle excitations is stored
non-locally and is protected from the environment due to the presence of a topological gap
in the bulk of the nanowire [10]. Majorana qubits are expected to be insensitive to local noise
sources, such as charge noise*, that leads to decoherence of conventional qubits, provided
that the separation between pairs of MZMs is large. This property is expected to allow for
long qubit lifetimes that scales with the length of the topological segment [25]. In Chapter
6, Majorana non-locality is investigated by performing an interferometry experiment, where
coherent single-electron transport is observed through a Majorana island, consistent with
theoretical expectations of non-locality [26].

The quantum information stored in these quasiparticle excitations is encoded in the Ma-
jorana parity of twoMZMs. The parity of an individualMZM is ill-defined, as it is a fraction-
alized Dirac fermion [10, 11]. However, a pair of MZMs constitute a single fermion that can
either be occupied or empty. The principle of using fermionic degrees of freedom as a qubit
was first implementation in 1999 as a charge qubit [27], however, this technology suffers
from short coherence times.

The concept of Majorana parity is introduced by considering the fermionic counting op-
erator n = c†c, which determines if a state is occupied (n = 1) or empty (n = 0) [23]. If
this operator is translated into theMajorana bias then,

n =
1
2
(1+ iγ1γ2) .

TheMajorana parity p is then defined as,

p1,2 = 1− 2n = iγ1γ2 =

{
1, if n = 0

−1, if n = 1
.

This parity is a two-level system that constitutes the basis of a Majorana qubit. As discussed
above, this parity is protected due to the non-locality of theMZMs and, therefore, this infor-
mation is expected to be robust to local sources of decoherence. In the following section, the
concept of Majorana parity will be implemented into a topological qubit architecture.

*MZMs are charge neutral as they are composed of equal electron and hole parts
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1.3 A route to topological quantum computation

There are several competing schemes for implementing MZMs as a qubit [28–33]. Origi-
nally, a leading proposal for manipulating MZMs was to physically braid them in real-space
using electrostatic gating in a T-shaped junction [28]. However, since an external magnetic
field aligned to the nanowire axis is used to induce a topological phase transition, segments in
an orthogonal orientation will experience a transverse magnetic field, which closes the topo-
logical gap (more on this in Chapter 2.4). Additionally, there is currently little experimental
evidence of spatial control ofMZMsby electrostatic gating, necessary for physically braiding.
An alternative approach relies on performing a sequence of measurements to mimic braid-
ing operations without the need of physically moving quasiparticles. This is known as the
’measurement-only’ scheme [34].

In this dissertation, two different approaches for measuring the parity of Majorana zero
modes are investigated. The first relies on interferometry, where the transmission phase
through a Coulomb blockadedMajorana island is expected to be sensitive to the MZM par-
ity [26, 29]. Indeed, inChapter 6 it was observed that conductance oscillations through the
interferometer were sensitive to the parity of aMajorana island. A second approach for parity
readout relies on the coupling betweenMZMs and a quantum dot (QD).The occupation of
this quantum dot is predicted to be sensitive to the parity of MZM pairs, and therefore, can
be used to manipulate and readout theMajorana qubits [30, 32, 33]. The progress towards a
parity-to-charge conversion scheme is detailed inChapter 7 through 9.

Figure 1.3: Topological qubit network: An array of linear topological wires forming a
network of topological segments connected by trivial superconductor backbones. Quan-
tum dots are adjacent to Majorana zero modes to allow for readout and manipulation of
Majorana parity. This figure is adapted from Ref. [32].
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The qubit architecture that this thesis is aspiring to is schematically drawn in Fig. 1.3.
It consists of linear topological wires connected into a network by trivial superconducting
backbones and loops [32]. To drive the nanowires into the topological regime with MZMs,
a parallel magnetic field B∥ must be applied along the wire axis. Since magnetic field is typ-
ically a global parameter, all of the wires must be well aligned to the external magnetic field;
otherwise the topological gap will not open (see Chapter 2.4). The quantum information is
measured and controlled by adjacent QDs, as will be discussed inChapter 7.

Several of the chapters of this thesis investigate the feasibility of constructing topological
superconducting networks using hybrid superconducting-semiconductor two-dimensional
electron gases. In Chapter 3, the material system consisting of an InAs quantum well that
is proximitized by a thin film of epitaxial Al is introduced [17]. This platform is considered
scaleable because it allows for device fabrication based on a top-down approach. This means
that nanowire networks can be patterned by conventional lithographic techniques. As such,
the fabrication of the network represented in Fig. 1.3 is not difficult to envision (see the de-
vices inChapters 8 and 9 for examples). However, the real experimental challenge is assigned
to the formation ofmultiple connected topological superconducting qubits, each needing in-
dividual chemical potential tuning and QD parity readout.

An alternative two-dimensional geometry, based on Josephson junctions may relax some
of these requirements. Figure 1.4a shows an elongated Josephson junction that is predicted
to host a topological phase withMZMs appearing at the ends of the junction (see theMZM
wavefunction probability density in Fig. 1.4b) [35, 36]. These junctions offer an additional
control parameter, the superconducting phase difference ϕ across the junction, capable of
tuning the topological phase of the junction. In Fig. 1.4c the topological phase diagram is
plotted as a function of Zeeman energy EZ and phase difference ϕ, showing that the topolog-
ical phase can attained at lower EZ at ϕ = π [36]. In principle, this geometry should be less
dependent on the microscopic details of the junction, such as chemical potential, mitigating
the need for fine-tuning of gate voltages to reach to the topological regime. Furthermore, by
using a global out-of-planemagnetic field to tune the phase difference,multiple junctions can
be tuned simultaneously into and out of the topological regime, opening up novel methods
for braidingMZMs [37]. Devices based on this proposals are investigated inChapter 10.
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a b c

Figure 1.4: Topologicalplanar Josephson junctions: a, Schematic illustration of a topolog-
ical Josephson junction where a narrow channel is confined between two superconducting
leads (S). b, In the topological regime, Majorana zero modes appear at the ends of the
junction as shown by the wavefunction probability P. c, Topological phase diagram as a
function of Zeeman energy EZ and superconducting phase difference ϕ. Figures a and b
are adapted from Ref [35] and c is adapted from Ref [36].
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Introduction





2
Theory

This chapter introduces the four key ingredients for synthesizing topological superconductivity in
solid state, namely: one-dimensional nanowires with strong Rashba spin-orbit interaction in prox-
imity to a conventional s-wave superconductor and subjected to an external magnetic field. By cre-
ating a system that includes all of these ingredients, it will be shown that Majorana zero modes are
formed at the ends of the engineered one-dimensional topological superconductors.



2.1 Two-dimensional electron gas

It is difficult to envision the development of condensedmatter physics without the discovery
of quantum wells (QWs) and the two-dimensional electron gas (2DEG). This platform en-
abled unprecedented and now hallmark experiments, such as the integer [4] and fractional
quantum hall effects [38], as well as, quantized conductance [39]. Electron motion within a
QW is confined by a potential that restrictsmotion in the growth direction, while leaving free
motion in a two-dimensional plane. Quantum wells are usually grown by molecular beam
epitaxy (MBE) that enables atomically precise thin-film growth of single crystalline mate-
rials. The high purity of the growth species and ultra-high vacuum growth conditions both
facilitate high carrier mobilities and low carrier densities. This enables unimpeded electron
motion over micron distances and long characteristic Fermi wavelengths λf, making QWs
ideal for studying quantum systems. Heterostructures, grown by MBE, are highly flexible
due to the ability of precise tuning of elemental compositions in a layer-by-layer fashion that
allows for custom tailored quantum wells.

To illustrate how confining potentials create aQW, the effect of dimensional reduction on
a bulk three-dimensional system is investigated. When the dimensions of a system approach
length scales on the sameorder as the characteristic electronicwavelengths, quantized energy
levelswill form. The separationbetween successive energy levels scales asΔE ∝ 1/L2, where
L is an associated length of the system [40]. This principle allows for the construction of low-
dimensional systems (0, 1, 2-dimensional) from bulk three-dimensional materials.

Consider a bulk sample defined by lengths Lx, Ly, Lz, as shown in the inset of Fig. 2.1a.
Bound states will form due to the boundaries of the sample with energies [41],

Eni =
π2ℏ2

2m∗

(
ni
Li

)2

i = x, y, z ,

where n is an integer representing a principle quantum number andm∗ is the effective mass
due lattice interactions. The total energy is then Enx,ny,nz =

∑
i Eni . The temperature T

and chemical potential μc governs the filling of electrons due to Fermi-Dirac statistics. The
chemical potential μc at zero temperature is termed the Fermi energy EF, where all states
below (above) EF are filled (empty) [41].

First, consider a system with Lx = Ly = Lz, as shown in Fig. 2.1a. In the case of weak
confinement, the separation between energy levels associated with each direction is negli-
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Figure 2.1: Quantumconfinement: a, Energy levels of a bulk three-dimensional sample in
the case of weak confinement. Columns Eni represent energy levels for x̂, ŷ, ẑ-directions and
the column E3D is the kinetic energy of the system. b, Confinement along the ẑ-direction
leads to energy level Enz quantizations, forming a two-dimensional system when EF is
below Enz=2. c, Further confinement along the ŷ-direction leads to a one-dimensional
system. d, Momentum dispersion relation for a two-dimensional electron gas showing
the first two sub-bands. e, The density of states D(E) for a two-dimensional system is
constant within each sub-band.

gible and form continuums of states, as indicated by the overlap of the teal, red and yellow
markers. Consequently, the electronmotion is free in all directions and the kinetic energy of
the system recovers the well-known parabolic dispersion,

E3D =
ℏ2

2m∗ k
2 k2 = k2x + k2y + k2z ,

where ki is the electron momenta along the î-direction and is continuous variables. The en-
ergy levels of the system are shown by the grey markers that form a continuum of states.

If the length in the ẑ-direction is reduced (Lz ≪ Lx, Ly), the separation between the Enz
levels increases (see Fig.2.1b). Strong confinement (Lz ∼ λf) leads to quantization of the
energy levels in the ẑ-direction. If the Fermi energy EF is below the Enz=2 (denoted by the
yellow dot in E2Dnz ), then the electron motion is restricted to the x-y plane. The energy of the
system is,

E2Dnz = Enz +
ℏ2

2m∗ k
2, k2 = k2x + k2y ,

stating that for each integer nz, there is a continuum of two-dimensional states (referred to
as a sub-band). The result of the confining potential is a restriction of the electron motion
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from three to two-dimensions. This reasoning canbe continuedby further confining electron
motion in the ŷ-direction, leading to a one-dimensional wire with energies (see Fig. 2.1c),

E1Dny,nz = Eny + Enz +
ℏ2

2m∗ k
2
x ,

which is useful for creating nanowires from two-dimensional electron gases. In Fig. 2.1c EF
is below both E1D1,2 and E1D2,1 and the system is one-dimensional.

In Fig. 2.1d the dispersion relationE2Dnz is shown for a two-dimensional system. TheFermi
energy EF is located between the first (E1) and second sub-band (E2) forming a 2DEG.The
density of states for a strictly two-dimensional system is [42]

D(E) =
m∗

πℏ2
.

Since the density of states for a given sub-band is energy independent, the carrier density ns
can be found by (T = 0),

ns =
∫ μc

E1
dE D(E) =

m∗

πℏ2
(
μc − E1

)
=

m
πℏ2

EF =
k2F
2π

where kF is the Fermi momentum. Using conventional Hall bar device geometries enables
the measurement of carrier density ns and mobility μ to be measured (see Chapter 3.3.1).
This allows for many of the defining properties of a 2DEG to be calculated [41, 42]:

λf =
2π
kF

, νF =
ℏkF
m∗ , EF =

ℏ2k2F
2m∗ , le =

ℏμ
e
√
2πns ,

where νF is the Fermi velocity and le is the electronic mean free path.

The two-dimensional quantum wells studied in this thesis rely on band-gap alignment to
create a confinement potential. This is achieved by sandwiching a layer of InAs (lowband gap
material) between two layers of either In1−xGaxAsor In1−xAlxAs (higher band gapmaterial).
In Fig. 2.2 the conduction band profile of a near surface InAs 2DEG is shown, where an InAs
QW is formed due to the InGaAs barriers [17].
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Figure 2.2: InAs quantumwell: Energy of the conduction band and the 2DEG probability
density ρ along the growth direction z calculated by a self-consistent Schrödinger-Poisson
solver.This figure is adapted from Ref [17].

2.2 Spin-orbit interaction and the Zeeman effect

Electrons as fundamental fermionic particles have a spin of 1
2 . It was discovered in atomic

physics that electronmotionabout a chargednucleus can interactwith the spinof the electron
in a process known as spin-orbit interaction (SOI) (shown in Fig. 2.3a). Essentially, SOI is a
relativistic effectwhereby anelectronmoving at velocity ν in anelectric fieldEwill experience
an additional magnetic field [42],

Beff = −
ν
c2
× E

in its own frame of reference, due to the motion of the nuclei (depicted in Fig. 2.3b) . This
effectivemagnetic field in turn couples to the spin of the electron through the Zeeman effect,
causing the spin splitting observed in the fine structure of atomic emission spectra. A similar
effect is observed for electrons travelling in a crystal lattice, where the ions play the role of
the atomic nuclei, as illustrated in Fig. 2.3c,d. As it turns out, this motion will result in spin
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dependent linear shifts in momentum, which lift the spin degeneracy of the energy bands.

b ca

e

p ep

e

+ + + +

e

+ + + +

d

Figure 2.3: Sources of spin-orbit interaction: a, An electron (e) in an atomic orbital
around the charged nucleus (p) will experience the nucleus orbiting itself in its own
reference frame b. The nucleus generates an effective magnetic field (blue arrow) that
couples to the spin of the electron (red arrow), known as spin-orbit interaction. c,d,
Electrons travelling in a crystal lattice will experience a similar coupling effect due to the
charged ions. This figure was influenced by Ref [43].

ConventionalQWsare subjected tounderlying symmetries that result in spin-degeneracy.
Time reversal symmetry enforces that the dispersion relation satisfies E↓(k) = E↑(−k),
while inversion symmetry of the crystal lattice causes E(k) = E(−k) [42]. If these two sym-
metries are left unbroken the resulting dispersion relation is doubly degeneratewithE↓(k) =
E↑(k) as shown in Fig. 2.4b. The following sections will discuss how to break these symme-
tries and what implications this has for engineering topological superconductivity.

2.2.1 Zeeman effect

Time-reversal symmetry is brokenunder anexternalmagnetic fieldB, which causes spin split-
ting of energy bands. This is known as the Zeeman effect and is given by [42],

HZ =
1
2
gμBB · σ =

1
2
gμBBxσx ,

where g is the Lande g-factor, μB is the Bohr magneton and σ i are the Pauli matrices *. The
last term is for the case of a one-dimensional nanowire (see Fig. 2.4a) . Applying a magnetic
field Bx causes a Zeeman energy,

EZ = ±1
2
gμBBx ,

*Here the σ i are Pauli matrices: σx=
(

0 1
1 0

)
, σy=

(
0 −i
i 0

)
, σz=

(
1 0
0 −1

)
.
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which opens up an energy gap of 2Ez at k = 0 (see Fig. 2.4c). Notice, that due to the spin
splitting, the energy bands are spin polarized. This will have important considerations for
engineering a spinless system necessary for topological superconductivity.

2.2.2 Rashba spin-orbit interaction

In two-dimensional heterostructures, the confinement in growth direction (ẑ) is a result of
the band alignment. It is also responsible for creating a structural inversion asymmetry [44–
46]. The confining potential leads to a potential gradient and an electric field E = E0ẑ. The
shapeof thepotential canbe tunedeither during growthof thequantumwell or by an external
gate-voltage. Electron motion in the QW experiences a corresponding effective magnetic
field Beff due to E, which aligns spin orthogonal to momentum p. This effect is termed the
Rashba SOI and is described by the Hamiltonian [42],

HR =
αR
ℏ
(σxpy − σypx) (2.1)

where p is the electron momentum and αR is the Rashba interaction strength. The case of a
one-dimensional nanowire with electron motion along x̂ leads to a Rashba Hamiltonian of,

H1D
R = −αR

ℏ
σypx .

For aRashbananowire, the spin-orbit fieldpoints in-plane andperpendicular to thenanowire
axis. This modifies the energy dispersion of a free particle by [45, 46],

E =
ℏ2

2m
k2 ± αk =

ℏ2

2m
(k± kSO)2 − ESO

causing a spin-dependent shift of the energy bands inmomentumby kSO = mαR
ℏ2 and down in

energy by ESO = mα2R/2ℏ2. The effects of Rashba SOI on the energy dispersion are shown
in Fig. 2.4d.
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Figure 2.4: Rashbananowire: a, Sketch of a one-dimensional nanowire and corresponding
external magnetic field parallel (B∥) and transverse (Bt) to the wire axis. b, Energy
dispersion calculated from Eq. 2.2 for spin-orbit interaction Eso = 0 and Zeeman energy
Ez = 0 causing spin degenerate energy bands. c, A finite Ez > 0 leads to spin splitting
of the bands. d-f, Evolution of the energy bands for a Rasbha nanowire in a parallel
magnetic field B∥ (perpendicular to the SOI field). g-i, Evolution of the energy bands for
a Rasbha nanowire in a transverse magnetic field Bt (parallel to the SOI field). Arrows
denote spin orientation dependence on magnetic field and momentum. Energy dispersions
were calculated by the python simulations package Kwant [47].
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While a Rashba SOI depends on structural properties of the quantum well, bulk prop-
erties of the underlaying crystal-lattice structure can also contribute to spin-orbit interac-
tions. Dresselhaus SOI (strength βD) is created by crystal structures lacking an inversion
symmetry, such as Zinc-Blende. For InAs QWs, a Rashba contribution is predicted to dom-
inate over Dresselhaus by a factor of four from band structure calculation [48]. Weak anti-
localization measurements on near surface InAs quantum wells (similar to the ones investi-
gated in this thesis) without epitaxial Al found that a Rashba SOI dominated by a factor of
5.6 with αR = 280meVÅ, and βD = 50meVÅ. Recent work on similar InAs QWs showed
that the strength of the SOI was sensitive to a gate-voltage [49]. This is expected for Rashba
SOI because the Rashba coupling strength is determined by an electric field [46].

We investigated the role of SOI in hybrid superconductor-semiconductor QWs by mea-
suring the magnetic field dependence on the Coulomb blockade peaks of a hybrid Coulomb
islands [50]. We found a dominant Rashba-like SOI by varyingmagnetic field directions and
estimated a lower bound of αR = 120 meVÅ for the hybrid system.

2.2.3 The helical gap

An interesting competition between the Zeeman effect and Rashba SOI arises when a one-
dimensional Rashba nanowire is subjected to an external parallel magnetic field Bx = B∥. If
the external magnetic field is oriented orthogonal to the spin-orbit field, it causes a rotation
of the spin direction creating a spin-texture. This system is modeled as,

H =
p2

2m
σ0 −

αR
ℏ
σypx + B∥σx (2.2)

where the first term is the kinetic energy, the second term is the Rashba SOI, and the third
termZeeman energy due to the externalmagnetic field B. Applying a smallB causes the spin-
ful bands to mix, leading to an anti-crossing at k = 0 and the opening of an energy gap of
2Ez, as shown in Fig. 2.4e. Around k = 0 the spins align along the external magnetic field,
while at large k the spins rotate perpendicular due to themomentumdependent Rashba con-
tribution. If the chemical potential is positioned within the Zeeman gap, the electrons spin
is locked to its momentum, where for k > 0 the spin is→ and for k < 0 spin is←. This is
referred to as the helical state.

If the external magnetic field is applied transverse to the wire, By = Bt, the field will be
aligned with the spin-orbit field. In this system, no spinmixing occurs and no Zeeman gap is
opened. The result can be seen in Fig. 2.4g-i, where a tilting of the dispersions is observed.
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2.3 Superconductivity

A superconductor is a material where below a critical temperature Tc, all electrons within
an energy window 2Δ about EF form pairs with opposite spin and momentum. These pairs
behave as bosons and are able to form a charge carrying condensate with zero resistance. A
microscopic model for superconductivity was introduced in 1956 by Bardeen, Cooper, and
Schrieffer (BCS), where two electrons feel an attractive potential allowing for pair forma-
tion [51]. Themechanism responsible for the attractive pairing potential is electron-phonon
scattering. This is described by a three step process where an initial electron causes a lattice
distortion, increasing the local positive charge density, which causes a subsequent electron
to experience a net positive attraction to the first electron. Written in the language of second
quantization, the pairing Hamiltonian is [52],

H =
∑

k,σ={↑,↓}

ξkc
†
k,σck,σ +

∑
k,l

Vkl c
†
k,↑c

†
−k,↓c−l,↓cl,↑ .

The first term is the kinetic energy with ξk =
ℏ2

2mk
2 − μc and the second term describes the

interaction between electrons with opposite spin and momentum (s-wave pairing). If Vkl

is negative it will promote the pairing in a spin singlet configuration (s-wave superconduc-
tivity). In this system, the ground state has correlated pairs of electrons with a correlation
amplitude described by [53],

Δ(r) = Vn F(r) = Vn ⟨ψ(r, ↑) | ψ(r, ↓)⟩

whereF(r) represents theprobability of finding twocorrelatedelectrons at aposition r. These
new composite particles - referred to as Cooper pairs - obey Bose-Einstein statistics, allowing
them to condense into the same lowest energy ground-state. The parameterVn describes the
binding strength of the electron pair and depends on thematerial, temperature andmagnetic
field. It will be shown below that Δ(r) is responsible for the energy gap in the quasiparticle
spectrum.

2.3.1 Quasiparticle spectrum

The quasiparticle excitation spectrum of a superconductor deviates from the single-particle
spectrum of a normal metal due to the presence of an energy gap 2Δ about EF. Quasiparticle
excitations in a superconductor are a coherentmixture of electron and hole states that can be
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can be written in terms of Bogoliubov operators b as [52] * ,

b†−k,↓ = uc†−k,↓ − vck,↑, bk,↑ = vc†−k,↓ + uck,↑ , (2.3)

where u and v are the coherence factors of the electron-like or hole-like excitations, respec-
tively. The Bogoliubov transformation of Eq. 2.3 diagonalizes the BCS mean-field Hamilto-
nian when they satisfy the Bogoliubov de Gennes (BdG) equation [54, 55],(

H Δ
Δ∗ −H

)(
uk
vk

)
= Ek

(
uk
vk

)
,

with H = p2

2m + V(r) − μc where V(r) is an electrostatic potential. For the trivial case of
Δ = 0, the BdG equation describes two decoupled Schrödinger equations - one for elec-
tron and one for holes. Turning on Δ > 0, couples the two equations and mixes electrons
and holes solutions †. The quasiparticle excitation spectrum is determined by considering a
homogeneous system (V(r) = 0) and plane-wave eigenfunctions,

(uk, vk)⊺ = eik·r(u0, v0)⊺ .

The energy eigenvalues of the BdG equation are [52],

Ek = ±
√

ξ2k + Δ2 ,

with the electron and hole coherence factors given by,

|uk|2 =
1
2

(
1+

ξk
Ek

)
, |vk|2 =

1
2

(
1− ξk

Ek

)
. (2.4)

InFig. 2.5a the coherence factors are shownas a functionof kinetic energy ξk that ismeasured
with respect to the Fermi energy. For ξk > 0, the quasiparticle excitations aremore electron-
like and for ξk < 0 are more hole-like. Interestingly, if the energy of the quasiparticle excita-
tion is zero, it is described by equal electron and hole components (|uk|2 = |vk|2 = 1/2).
This is whyMZMs are zero-energy excitations in a topological superconductor.

*The Bogoliubons operators commonly use γ notation and are referred to as Bogoliubons. However, here
we use b to not confuse with Majorana operators
†Elementary excitations in a superconductor are described by a linear combination of electron and hole
operators (see Chapter 1.1)
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To understand the role of superconductivity in a one-dimensional nanowire, the system
is model as,

HSC =
p2x
2m

σ0 ⊗ τz + Δσ0 ⊗ τx , (2.5)

where τ i is the Paulimatrix acting in particle-hole space. The energy dispersion of thisHamil-
tonian is plotted in Fig. 2.5b. First, it is noticed that the particle-hole symmetry introduced
by theBdGHamiltonian doubles the number of solutions (comparing teal and black curves).
By turning on electron pairing (Δ > 0), the appearance of an energy gap Δ in the spectrum
(red curve) is observed.

0
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|u|2|v|2 Δ

-Δ

E

ξk  0
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Δ
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0 k

Δ=0
Δ>0BdG=0

Figure 2.5: Quasiparticle spectrum: a, Electron-like (u) and hole-like (v) coherence factors
as a function of electron energy ξk measured with respect to EF. b, Superconducting
quasiparticle excitation spectrum. For Δ > 0 a gap opens about EF. c, Quasiparticle
density of states of a superconductor revealing the energy gap Δ.

Thisenergygap is reflected in thedensityof statesof a superconductorDS(E)givenby [52],

gS(E) =
DS(E)
DN

=


E√

E2−|Δ|2
, if |E| ≥ Δ

0, otherwise
,

where DN is the constant density of states in the normal state of the metal (T > Tc). The
density of states is plotted inFig. 2.5c. ForE < Δ there is zero density of quasiparticles states,
and at E = Δ the density of states diverges giving the BCS coherence peaks. The energy gap
is related to the critical temperature by Δ(T = 0) = 1.76kBTc. The superconductor used in
this thesis was exclusively Al, which has a bulk Tc ∼ 1.2 K giving Δ = 180 μeV [52].
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2.3.2 Tunneling spectroscopy

In 1960, Giaever used a thin, oxide film to form a tunnel barrier between a normal metal
and a superconductor that permitted the superconducting energy gap to be resolved. Hewas
awarded the 1973Nobel prize in physics for this effort [56]. This experimentalmeasurement
technique is termed tunneling spectroscopy. The system is comprised of a normal lead (N)
separated from a superconducting lead (S) by a tunnel barrier (I), or more commonly re-
ferred to as N-I-S tunneling spectroscopy. Shortly after Giaever’s discovery, tunnel junctions
formed from two superconductors, separated by a thin oxide, were studied by separately by
Giaever and by Nicol, Shapiro and Smith, showing the appearance of a 2Δ energy gap [57].
Interestingly, the original S-I-S paper showed thefirst experimental evidenceof a zero-voltage
current (supercurrent), but they did not draw attention to it. These results prompted Joseph-
son to thinking about tunneling effects between two superconductors, which led to his dis-
covery of the famous Josephson effect.

Giaever used a tunnel barrier as a spectroscopic tool that allowed him to measure the su-
perconducting energy gap. In the tunneling regime, a current flowing between two metals is
proportional to the density of occupied states in one lead and to the density of unoccupied
states on the other. Consider a system similar to Giaever’s experiment, where a N-lead with
a constant density of statesDN is separated by a tunnel barrier from another lead with an un-
known density of statesD2. The differential conductanceG as a function of source-drain bias
voltage Vsd is [52, 53],

G(Vsd) =
dI
dVsd

= G0 DN D2(eVsd) ,

where I is the current resulting from the applied bias voltage, andG0 is the conductance quan-
tum following from Landauer theory (see appendix B for further details). Therefore, mea-
suring the tunneling differential conductance G gives spectroscopic information about the
unknown density of state D2(eVsd). For instance, consider that second lead is a BCS super-
conductor. The corresponding differential conductance is,

G(Vsd) = G0DN gS(eVsd)

as observed by Giaever. The differential conductance is readily available by employing stan-
dard low frequency lock-in techniques. However, in contrast toGiaever’s experimental setup,
in this thesis tunnel barriers are formed by electrostatic depletion of the 2DEG into the tun-
neling regimeG≪ 2e2/h.
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2.3.3 Andreev reflection

The superconducting proximity effect describes the process of superconducting order leak-
ing into another material [53]. This effect plays an important role in modern quantum de-
vices. The concept places a material system exhibiting interesting attributes (say spin-orbit
interactions or ferromagnetism) in close proximity to a superconductor to inherit the pairing
correlations. These two materials form a unique hybrid system with properties from both
materials [58]. In the following discussion, the basis for proximity effect in semiconducting
systems is introduced.

DS(E)DN(E) 0 kN kS0

Δ

N S

0

E
2Δ

a b c d e

Figure 2.6: Andreev reflection: a, Real-space illustration of the transport mechanisms
occurring at a semiconductor-superconductor (N-S) interface. b,e, Density of states in N
(b), and S (e). c,d, Energy dispersion relation in N (c), and in S (d). Arrows represent
different transport mechanisms. See text for details.

The superconducting proximity effect can be understood by considering a system where
a normal semiconductor (N) with a constant density of states DN is placed in contact to a
superconductor (S) with density of states DS(E) (see Fig. 2.6b and e). Figure 2.6c and d
show the dispersion for the normal state and the superconducting state, respectively.

Consider anelectronwith energyE incident theN-S interfacedepictedby thewhite square
in Fig. 2.6a. Three different transport mechanisms are now possible [41, 53, 54, 59]. 1) If an
electron in the normal metal is incident to the N-S interface with an energy E > Δ and mo-
mentum+k, the electron is transmitted through the N-S interface by converting to a quasi-
particle in S at the same energy (see black circles in Fig. 2.6c and d). 2) If the energy of the
electron is E < Δ, there are no quasiparticle states in S at these energies and transport ap-
pears to be blocked. What transpires is a process known as Andreev reflection, where the
S accepts both the incident electron at (+k, ↑) and an additional electron with (−k, ↓) to



2.3. SUPERCONDUCTIVITY 27

form a Cooper pair [60]. Due to momentum and charge conservation, a hole must be re-
flected in the normal metal with (+k, ↑) at−E. More plainly stated, an incident electron is
retro-reflected from the interface as a hole, thereby transferring a charge of 2e into the super-
conductor in the form of a Cooper pair. 3) If there is a potential barrier at the N-S interface,
specular reflection can occur, where an electron is reflected with−k (see teal triangle in Fig.
2.6c).

TheAndreev reflection process places specific constraints on the retro-reflected hole. The
direction of the reflected hole initially appears to be incorrect, but considering that the group
velocity is given by νk = 1

ℏ∇kE(k), then the sign of the group velocity is the opposite to that
of the wave vector for holes [41, 54]. For electrons, the wave vector and the group velocity
are in the same direction. Therefore, the reflected hole follows the same path as the electron,
but in the opposite direction (retro-reflection). This backtracking is only exact if the energy
of the incident electron is E = 0. If |E| > 0 then there is a momentum difference between
the electron and the retro-reflected hole [41, 53],

δk = ke − kh =
E
ℏνF

,

which is absorbed by theCooper pair [40]. An estimate of the length overwhich the incident
electron and retro-reflected hole become out of phase (L δk = π) is given by,

L =
π
δk

=
ℏνF
πE

.

This allows for the superconducting coherence length to be defined for the case of E = Δ by,

ξ0 =
ℏνF
πΔ

.

This is the same result as the BCS coherence length [52], except that the Fermi velocity cor-
responds that of semiconductor.

Wehaveneglected in the abovediscussions that the superconducting lead canhave aphase
Δeiϕs . The phase shift acquired from an Andreev reflection will depend on the phase of the
superconducting lead ϕs and on the energy of the incident electron or hole as [40, 55],

φe(h) = arccos
(
E
Δ

)
± φS .
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This has important consequences in the next section for the discussion of a normal region
confined by two superconducting leads.

The Andreev reflection process discussed above is greatly simplified. In a realistic system,
an effective barrier increases the probability of secular reflections, due to Fermi velocity mis-
match, disorder, or remnant oxides, etc. A more realistic system was modeled in the seminal
work of Blonder, Tinkham, and Klapwijk (BTK), where an effective barrier was introduced
at the N-S interface [59]. This barrier, formally known as the Z parameter, showed that for
Z = 0, the Andreev reflection probability was unity. Increasing the barrier height caused an
increase in the probability of normal reflections, while the probability of Andreev reflections
decreased.

An ideal system for studying the BTK model is a quantum point contact (QPC), which
controls the amount of open transport channels. In a ballistic N-QPC-N geometry, conduc-
tance through the QPC constriction occurs in steps with integer values of 2e2/h; a signa-
ture of quantized conductance [39]. In the case of a N-QPC-S, a signature of perfect An-
dreev reflection is conductance steps with integers of 4e2/h, reflecting the charge transfer of
2e [61, 62]. However, in the presence of a barrier, the height of the conductance steps will
only reach a fraction of 4e2/h, due to the enhanced probability of normal reflection. Chapter
3 shows that a simple QPC pinch-off measurement can be used to assess the quality of the
interface transparency.

2.3.4 Andreev bound states

A semiconductor Josephson junction is constructed by confining a N region by two S leads,
forming an S-N-S junction, as depicted in Fig. 2.7a. The normal region is usually referred
to as a weak link. For electrons propagating in N, Andreev reflections are possible at both
N-S interfaces. Therefore, quasiparticles in the weak link with an energy E < Δ are confined
by the superconducting leads. As discussed, bound states are expected when confinement is
strong. The superconducting gap profile of the junction is introduced as,

Δ(x) =


Δeiϕ1 for x < L1,

0 for L1 < x < L2,

Δeiϕ2 for x > L2

,
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Figure 2.7: Andreev bound states: a, Sketch of a superconductor-normal-superconductor
(S-N-S) Josephson junction. b, Two superconducting density of states confine the normal
region forming bounds states due to Andreev reflections. c, Andreev bound state energy
EABS as a function of phase difference ϕ across the junction. Colours represent different
transmissions τ.

with a superconducting phase difference ϕ = φ1 − φ2 across the junction of length Lj =
L2 − L1. A right moving electron traversing the weak link will undergo Andreev reflection
once it encounters S2 and be reflected as a hole. This left moving hole is now incident on S1
and will undergo a further Andreev reflection back to a right moving electron. This process
is sketched in Fig. 2.7b. The total phase accumulated during a cycle is,

φtot = −khLj + arccos
(
E
Δ

)
+ φ1 + keLj + arccos

(
E
Δ

)
− φ2 .

The phase shift is similar to the case for Andreev reflection, but with the added dynamical
phase ke(h)Lj acquired traversing theweak link. The total dynamical phase acquired isdkLj =
ELj
ℏνF =

Lj
ξ0

E
Δ . Bound state solutions arise when φtot = 2π giving [54],

E
Δ
Lj
ξ0

= ϕ+ 2 arccos
(
E
Δ

)
− 2πn for integer n .

These solutions are referred to as Andreev bound states (ABS). When the junction length
is short compared to the superconducting coherence length Lj ≪ ξ0, the dynamic phase
contribution is negligible and the two lowest ABS energies are,

EABS = ±Δ cos(φ/2) .



2.3. SUPERCONDUCTIVITY 30

This is the case for reflectionless ballistic transport through the weak link, as plotted by the
black curve in Fig. 2.7c. If impurities are present, scattering opens an avoided crossing at
ϕ = π and the energy of the ABSs are described by [63],

EABS = ±Δ
√

1− τ sin2(φ/2), 0 ≤ τ ≤ 1

where τ is the transmission through the impurity. The ABS energy-phase relation is plotted
in Fig. 2.7c for different transmissions. These ABS are responsible for transferring a charge 2e
across the Josephson junction, leading to a supercurrent flow. At zero temperature each ABS
carries a supercurrent

IABS =
2e
ℏ
dEn
dϕ

.

At finite temperature, the total supercurrent of an S-N-S junction is a sum of all the current
carrying ABS and is given by [41, 53],

Is =
2e
ℏ

m∑
n=0

dEn
dϕ

tanh
(

En
2kBT

)
,

where n = 1, 2, 3...m and m is the total number of ABS (open transport channels). As a
consequence, ABS with a higher transmission will lead to a larger supercurrent flow. In the
next section, the Josephson effect andfluxquantizationwill be introduced tounderstandhow
to tune the phase difference ϕ across the weak link when embedded into a superconducting
ring.

2.3.5 Josephson effect

The story of the Josephson effect starts in the 1960s when Josephson famously postulated
that electrons can tunnel across a barrier in pairs [64]. It was formerly thought such a process
shouldbe suppressed since if the probability of one electron to tunnel is τ then theprobability
of twoelectrons is τ2, a very small number [65]. Josephsonargued that theCooperpairwave-
function is phase coherent and therefore the amplitudes need to be added before squaring.
Moreover, it is not single electrons that tunnel, but Cooper pairs themselves with a probabil-
ity comparable to single electrons. Tounderstand the Josephson effect, theGinzburg-Landau
formalism of superconductivity must first be discussed.

The phenomenological theory of Ginzburg-Landau states that the wavefunction ψ de-
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scribing the Cooper pair condensate is [52, 66],

ψ(r) =
√
ns(r)eiθ(r) .

This is a global wavefunction describing the entire Cooper pair condensate of a supercon-
ductor, where ns(r) is the density of Cooper pairs and θ is the phase of the superconductor.
Since this is a macroscopic wavefunction, the phase is restricted to only allow single-valued
solutions of ψ. The absolute phase is not an observable quantity, but as Josephson realized
the phase difference between two superconductors is measurable.

If there exists a gradient of the phase θ, a supercurrent density JS will flow given by [66],

ΛL JS(r) =
(

ℏ
q∗
∇θ(r)− A(r)

)
, ΛL =

m∗

q∗2n∗s ℏ

where q∗ = 2e and m∗ = 2me are the charge and mass of a Cooper pair, A is the magnetic
vector potential and ΛL is the London coefficient.

Consider the casewhere two independent superconductors (S1 and S2) are connected via
a weak link in the absence of any vector potentials as depicted in Fig. 2.7a. Each of the two
superconductors has a phase θi. The phase difference across junction can be described by,

ϕ =

∫ 2

1
∇θ · dl = θ2 − θ1 .

This lead Josephson to postulate that the current density, or simply the current I (for a homo-
geneous current density), is a function of the phase difference between the two superconduc-
tors I(ϕ) [64, 67]. Furthermore, since the phase difference can only be defined up to a differ-
ence of2πn for integer n, then the current is a periodic function, such that I(ϕ) = I(ϕ+2πn).
Finally, he argued that a common phase between the superconductors should not result in a
current flow I(ϕ = 0) = 0. Based on these observations he concluded that [67],

Is(ϕ) = Ic sin ϕ , (2.6)

where Ic is the critical current determined by the coupling strength of the two superconduc-
tors . For a ballistic junction the critical current is given by [68],

Ic =
NeΔ
ℏ
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whereN is the number of transport channels. Remarkably, this suggests that a zero-resistance
supercurrentwill flowbetween two superconductors provided that there is a phase difference
ϕ between them. The Josephson effect was experimentally first observed by Anderson and
Rowell [69].

2.3.6 Flux quantization

If there exists a holewithin a superconductor, then the total amount of flux threading the hole
is quantized inunits ofh/q∗. As it turnedout, fluxquantization experimentswere someof the
most convincing early evidence for the existence ofCooper pairs. These experiments showed
that q∗ = 2e by observing flux quantization in units ofΦ0 = h/2e = 2.07× 10−15 Wb ∼
2.07 µm2 mT [70, 71].

Flux quantization can be understood by considering two superconductors that are con-
nected into contourC enclosing an area S. Integrating the current density about the contour
gives *, ∮

C

ΛLJS · dl =
ℏ
2e

∮
C

∇θ · dl−
∫
S
B · ds , (2.7)

where B is the magnetic field threading the area S. The phase gradient term is,∮
C

∇θ · dl = θ(r2)− θ(r1) .

where r1 and r2 define the path of the contour. The wavefunction ψ must be single-valued,
meaning that the start and end points enclosing this contour must have the same value [66].
This implies that for r2 → r1, the path is closed and, therefore, θ(r2)− θ(r1) = 0 . However,
since θ is only specified modulo 2π (θn = θ0 + 2πn) it is found that,

ℏ
2e

∮
C

∇θ · dl = ℏ
2e
2πn = nΦ0

where Φ0 = h
2e is the superconducting flux quantum and n is an integer. Setting this into

*Here we use the Stoke’s theorem
∮
C
A · dl =

∫
S B · ds
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Eq. 2.7 gives [66], ∮
C

ΛLJS · dl+
∫
S
B · ds

︸ ︷︷ ︸
Fluxoid

= nΦ0 . (2.8)

The fluxoid condition states that for any multiply connected superconductors, the fluxoid
threading the hole is quantized in units of the superconducting flux quantum. If the super-
conductor thickness is much greater than the London penetration depth λL, then a contour
deep inside a superconductor can be chosen where Js = 0. This simplifies Eq. 2.8 to,∫

S
B · ds = nΦ0 .

This states that themagnetic flux threading a superconducting loop is quantized in integers of
h
2e . It is noted that the externalmagnetic fieldB does not need to be quantized. Only the con-
tributions of both the external and internal fluxes (resulting from the flowing supercurrent)
are quantized (see Eq. 2.8).

2.3.7 Phase biasing

Figure 2.8a illustrates a device that enables an externalmagnetic field to tune the phase differ-
ence across aweak link. This device is commonly referred to as aRFSuperconductingQUan-
tum InterferenceDevice (SQUID).The phase difference across theweak link is ϕ = θ2−θ1.
Due to flux quantization,

ϕ =

∫
S
B · ds = −2π Φ

Φ0
, (2.9)

where Φ is the total flux threading the loop. Substitution of this into the Josephson Eq. 2.6
states that the supercurrent flowing across the junction is given by [52],

I = −Ic sin
(
2π

Φ
Φ0

)
.

The total fluxΦ in the loop is the sum of the applied fluxΦext = B⊥S and the flux induced
by the screening currentΦs = L I, where L is the self inductance of the loop [52],

Φ = Φext − LIc sin
(
2π

Φ
Φ0

)
.



2.3. SUPERCONDUCTIVITY 34

Therefore, the phase difference ϕ across the S-N-S junction can be tuned by applying a per-
pendicular magnetic field B⊥ as given by Eq. 2.9.

Φ

NS1 S2

Φ
RF SQUID DC SQUID
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φ
1

2π 2π

π
π
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Figure 2.8: Phase biasing: Sketch of a RF SQUID (a), and a DC SQUID (b). c,d, Phase
biasing a DC SQUID. Phase difference ϕ1 across junction 1 (c) and ϕ2 across junction 2
(d) for different critical current asymmetries α = Ic2/Ic1 for a DC SQUID. Grey curves are
for 1 < α < 5.

This device geometry does not permit for a transport measurement of the critical current
because the S-N-S junction is shorted by the superconducting loop. This limits its experi-
mentally applications. However, this geometry enables a simple method of phase biasing a
Josephson junction that is measured by tunneling spectroscopy (see chapter 4.3).

If both critical current measurements and phase biasing are needed experimentally, an
alternative geometry can be used that is based on two Josephson junctions JJ1 and JJ2 con-
nected in parallel. This geometry is referred to as a DC SQUID and is illustrated in Fig.2.8b.
This device geometry was selected for the experiments discussed in chapter 10. Since the
weak links are semiconductor based, it is possible to open and close the superconducting
loop by controlling a gate voltage to deplete the 2DEG. This allows for the independent in-
terrogation of each junction. However, it is possible for phase to be dropped across both
junctions and therefore precautionary measures must be taken when designing devices.

In a DC SQUID, the phase differences of JJ1 ϕ1 and of JJ2 ϕ2 are constrained by flux
quantization giving [52, 66],

ϕ1 − ϕ2 = 2π
Φ
Φ0

, (2.10)

where, for simplicity, the kinetic and geometric inductances are assumed to be negligible.
The total current through theDCSQUID is the sumof the contributions from each junction
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as [52, 66],

I = Ic1 sin
(
ϕ1
)
+ Ic2 sin

(
ϕ2
)
= Ic1 sin

(
ϕ2 + 2π

Φ
Φ0

)
+ Ic2 sin

(
ϕ2
)

. (2.11)

When a finiteΦext is applied, a screening circulating current Jwill be induced,

J =
1
2
(
Ic2 sin

(
ϕ2
)
− Ic1 sin

(
ϕ1
))

.

In a conventionalDCSQUIDconfiguration, the critical currents Ici of each junction are sym-
metric (Ic1 = Ic2). In this configuration, however, the phase difference across each junction
changes abruptly atΦ = 1

2Φ0 due to the screening current changing sign. As a consequence,
the phase difference across the both junctions does not reach π.

For thedevices geometry reportedon inChapter 10, it is important to allow for the applied
external flux Φext to tune the phase difference across JJ1 ϕ1 ∼ π. This issue is resolved by
introducing an asymmetry α = Ic2/Ic1 between the critical currents of JJ1 and JJ2 †. The
phase differences ϕ1 and ϕ2 as a function ofΦext are determined by self-consistently solving
Eq. 2.11 constrained by Eq. 2.10 to maximize I *.

Figure 2.8c,d displays the phase difference ϕ1 and ϕ2 as a function of Φext for different
values of asymmetry. The case of symmetric critical currents (α = 1) is shown by the red
curves, illustrating the abrupt change in ϕ1 and ϕ2. Increasing the asymmetry (α > 1) re-
duces the abruptness as shown by the grey curves. The devices in chapter 10 were designed
with an asymmetry of α ∼ 5. Figure 2.8c andd show the case for α ∼ 5 (black curves), where
the asymmetry allows for Φext to continuously control ϕ1 from 0 to π. Therefore, introduc-
ing an asymmetry enabled phase biasing in a DC SQUID. Similar setups have been used by
other groups [72] and have been proposed as a measurement scheme to detect Majorana
zero modes in a topological Josephson junction [73].

2.4 Majorana zero modes

The following section will introduce how to engineering topological superconductivity and
the behaviour of MZMs at the ends of one-dimensional nanowires. This will require incor-
porating aspects from the previous sections of this chapter.

†A large asymmetry can be thought as approaching the limit of a RF SQUID.
*A similar result is found when only a circulating current is present by setting I = 0 in Eq. 2.11 and solving
for ϕ1 constrained to minimize the Josephson energy.
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The Kitaev chain is a common entry point to gain perspective on the fundamental prop-
erties of Majorana zero modes (MZMs) [11, 22]. Although based on a rather simplistic toy
model, the results are useful to understand the experimental signatures ofMZMs. Essentially,
the Kitaev chain is a tight-binding model for a spinless superconductor, where the standard
fermionic operators are decomposed intoMajorana operators (see Chapter 1.1). By varying
the model parameters, a topological phase can be engineered where the two outermost Ma-
joranas on either end of the chain no longer appear in theHamiltonian. This pair ofMajorana
modes is therefore 1) fixed to zero energy, 2) obey the predicted behaviour of Majorana op-
erators γ and 3) appear in one-dimensional nanowires at the boundary between topological
and trivial regions. The topological phase is tuned by the chemical potential, allowing for the
boundary between trivial and topological to be defined by a gate voltage. Finally, the model
suggests that in order to achieve this theoretical system, a p-wave superconducting phase of
matter is needed. The challenge is finding a suitable material system that hosts these quasi-
particle excitations.

This challenge was addressed by Fu and Kane in 2008, where they devised a mechanism
for creating p-wave pairing in the laboratory [14]. Their proposal relies on the combinations
of a topological insulator with conventional s-wave superconductivity induced by proximity
effect, mitigating the need for resorting to bulk materials. This mechanism was extended to
one-dimensional superconductor-semiconductor hybrids, which are discussed here [15, 16].
Elements of the previous sections will be used to understand this system, namely: 1) one-
dimensional nanowires, 2) strong spin-orbit coupling, 3) conventional s-wave superconduc-
tivity induced by proximity effect, and 3) an external magnetic field for a Zeeman energy.
This system is referred to as a Majorana wire.

A clear starting point to create a spinless superconductor is to spin polarize the electrons
by applying an external magnetic field (see Section 2.2.1). This causes the bands to spin split
and opens a Zeeman gap. If the Fermi energy is positioned within this Zeeman gap, then
only one spin species can contribute to transport. This renders the systemeffectively spinless.
However, conventional proximity effect relies on s-wavepairing, which is incompatiblewith a
spinless system. This complication is overcome by introducingRashba spin-orbit interaction
to rotate the spin direction, allowing for superconductivity to leak into the semiconductor
(see Section 2.2.2). The combination of Zeeman energy EZ and spin orbit energy Eso in a
s-wave proximitized nanowire allows for a topological phase to be engineered.

To illustrate the role of each of these energies, we consider amodel commonly referred to
as the Oreg-Lutchyn model for a one-dimensional Rashba nanowire coupled to a proximal
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s-wave superconductor and with an applied magnetic field [15, 16],

H =

∫
dx Ψ†HBdGΨ, Ψ† = (ψ†

↓, ψ
†
↑, ψ↑,−ψ↓) (2.12)

whereΨ are theNambu spinners andHBdG represents the 4 x 4Oreg-LutchynHamiltonian,

HBdG =

(
p2x
2m∗ − μ

)
σ0 ⊗ τz︸ ︷︷ ︸

Kinetic

− αR
ℏ
pxσy ⊗ τz︸ ︷︷ ︸
Rashba

+Bxσx ⊗ τ0︸ ︷︷ ︸
Zeeman

+ Δσ0 ⊗ τx︸ ︷︷ ︸
Superconductivity

. (2.13)

TheHamiltonian is similar to the helical gapmodel introduced in Section 2.2.3, butmodified
to include superconductivity (as discussed in Section 2.3.1). Figure 2.9a-c, summarizes the
roles of each of the three ingredients on the dispersion of the one-dimensional nanowire. Fig-
ure. 2.9a depicts the energy bands with superconductivity and without Rashba SOI or mag-
netic field, where a gap Δ is opened around EF. Turning on Rashba SOI shifts the parabolic
bands by kSO = ±mαR

ℏ2 (see Figure. 2.9b). Applying a magnetic field spin splits the bands
and tilts the spin towards the direction of the applied field (see Figure. 2.9c). The magnetic
field is most effective at low k, where Rashba SOI is weak. Experimentally, it is difficult to
independently control either Δ or αR, since they strongly dependent on the material system,
while the magnitude and direction of the external magnetic field is controlled with a vector
magnet. Therefore, the topological phase transition is illustrated as a function of magnetic
field.

Figure 2.9d-f, displays the evolution of the energy dispersion from topologically trivial to
non-trivial by varying the Zeeman energy through a critical energy EZ,c. For EZ < EZ,c a
minimum is observed at k = 0 that can be brought to E = 0 when EZ = EZ,c. At this point
the induced superconducting gap is closed, and signifies a transition to the topological phase.
The condition for the topological phase transition is,

EZ,c =
√

μ2 + Δ2 ,

where for EZ > EZ,c the topological gap opens. In a finite-sized system, MZMs will appear
at the boundaries between the topological trivial and non-trivial phases.

The eigenvalue problemof Eq. 2.13 is calculated by discretizing theHamiltonian for aMa-
jorana wire of finite length L to understand how the system parameters affect the properties
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Figure 2.9: Topological transition: a, Energy dispersion calculated for the case of Δ > 0
(a), ESO > 0 (b), and EZ > 0 (c). d-f, Zeeman energy induced topological phase transition,
where for EZ > EZ,c there is an inverted band structure. Energy dispersions were calculated
from for Eq. 2.13 using a python simulations package Kwant [47].
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of theMZMs and their expected transport signatures. The energy eigenvalues are calculated
using a tight-binding simulation package Kwant for different system parameters [47].
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Figure 2.10: Majoranawire spectrum: a-c, Eigenvalue spectrum as a function of Zeeman
energy for increasing Rashba spin-orbit strength αR. For EZ > EZ,c the system is in the
topological phase with MZMs at the ends of the Majorana wire. Increasing αR leads to a
larger topological gap. Simulation parameters: μ = 0, Δ = 200, L = 50 and α = 50 (a),
100 (b), 200 (c).

Figure 2.10a plots the energy spectrum of a Majorana wire as a function of EZ. For low
increasing Zeeman energy, the energy levels decrease towards E = 0. At EZ > EZ,c the
superconducting gap is closed and for increasing EZ the gap reopens signifying the transition
to the topological phase. Due to the finite size of theMajorana wire this transition coincides
with the appearance of two MZMs (coloured in red in Fig. 2.10a) that are located on either
end of the Majorana wire [74]. The strength of the Rashba interaction is increased in Fig.
2.10b and c, leading to an increase in the energy difference between the MZMs and the first
excited state. This energy difference is referred to as the topological gap, granting the topo-
logical protection of quantum information stored in MZMs. The size of the topological gap
is given by [75],

Δtopo =
αRΔ
B

.

It is observed that not only is amagnetic field needed to drive the system into the topological
phase, but it also reduces the size of the topological gap. To increase the size of the topo-
logical gap either the magnetic field can be reduced by increasing the effective g-factor or by
increasing the Rashba interaction strength αR (see Fig. 2.10) or the size of the induced su-
perconducting gap Δ. The majority of these parameters are fixed by the choice of material
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system, such as InAs and Al.
Highmagnetic fields decreases the size of the topological gap, but also induce oscillations

of the zero energy modes. This is due to the finite-length of the system causing a residual
overlap of theMajorana wavefunction, which have a characteristic decay length ξM* into the
bulk of the Majorana wire. As the magnetic field increases, so does the superconducting co-
herence length ξ ∝ 1

Δ , due to the decrease of the induced superconducting gap Δ. This in
turn causes an increase in the overlap of the Majorana wavefunction, leading to a stronger
hybridization and a larger energy splitting ΔE. This energy splitting can be reduced by in-
creasing the length of theMajorana wire.

E

∆

-∆

Ez(Ez,c)
2 40

E

∆

-∆

E

∆

-∆

Ez(Ez,c)
2 40

Ez(Ez,c)
2 40

L
a b c

Figure 2.11: Majorana wire length: a-c, Eigenvalue spectrum as a function of Zeeman
energy for increasing nanowire length L leading to a reduced energy splitting of the MZMs.
Simulation parameters: μ = 0, α = 50, Δ = 200 and number of sites L = 15 (a), 50 (b),
100 (c).

Figure 2.11a-c shows the energy spectrum as a function of Zeeman energy for increasing
wire length. The most remarkable observation is the decrease in the oscillation amplitude
with increasing length. Thisdecrease inoscillation amplitude is directly related to the residual
wavefunction overlap of the MZMs. The energy splitting of the zero-energy modes is given
by [74, 76] ,

ΔE = ℏ2kF,eff
exp(−2L/ξm)

mξm
cos (kF,effL) .

where kF,eff is the effective fermiwave vector associatedwith theMZMsolution. This expres-
sion shows that the oscillation amplitude is exponentially suppressed with increasing Majo-

*In most cases ξM is equal to the superconducting coherence length of the system
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rana wire length by ∼ e−L/ξm [74]. The decrease in ΔE with wire length reflects the non-
locality of the MZMs, and captures the exponential protection offered by MZMs [76, 77].
For an infinitely longMajoranawire, theMZMsare ideal non-local stateswith zerowavefunc-
tion overlap. It should be noted however, that the topological gap does not increase with L
(see 2.11a-c).
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Figure 2.12: Trivial gap closure: Eigenvalue spectrum as a function of Zeeman field
aligned parallel to the spin-orbit field (a), or when there is no Rashba spin-orbit interaction
(b).

Lastly, Fig. 2.12a addresses the effect of applying a magnetic field not aligned with the
Majorana wire axis. Back in chapter 2.2.2 it was observed that a transverse magnetic field
that is aligned with the Rashba spin-orbit direction caused a tilting of the energy dispersions
without the formationof aZeemangap (seeFig. 2.4). When superconductivity is introduced
into this scenario, the superconducting gap simply closes with EZ without reopening to form
the topological gap, as shown in Fig. 2.12a. A similar closure of the superconducting gap
occurs in the absenceofRashbaSOI shown inFig. 2.12b. This sensitivity to externalmagnetic
field alignment will be used in the following chapters to test the stability of putative zero-
energy states [78].

In summary, itwasdetermined that to achievewell-separatedMZMs in aone-dimensional
nanowire, it is necessary to have strong spin-orbit interaction, a large induced superconduct-
ing gap, and a magnetic field aligned parallel to the nanowire axis.

While the model of Eq. 2.13 is idealized, it is instrumental in understanding how this
material system can engineer a topological phase of matter. The first experiments providing
evidence of MZMs came in the form of zero-bias conductance peaks measured in tunneling
spectroscopy at the ends of aMajoranawire [79–82]. These early observations are consistent
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with the model shown above.
Recently, more realistic models have been considered [74]. For example, if orbital effects

are taken into account, the energy splitting ΔE in magnetic field reduces in response to a
decrease in wavefunction overlap [83]. Including both orbital contributions and multi sub-
bandMajoranawires can lead to a g-factor enhancement [84–86], but also causes a reduction
of available parameter space for a topological regime [87]. Moreover, by including disorder
induced quantum dots at the ends of a Majorana wire, trivial sub-gap states can mimic the
behaviour of the zero-modes discussed above [88]. This motivates experiments that move
beyond local tunneling spectroscopymeasurements and probe other interesting attributes of
MZMs, such as non-locality andMajorana parity.
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3
HybridQuantumWells

Central to every condensed matter experiment is the material system. The choice of material sys-
tem constrains the possible experiments, due to factors ranging from material properties, to ease
of fabrication. The research of engineered topological phases of matter sets strict requirements on
materials (as outlined in chapter 2.4). Furthermore, the envisioned topological qubit device ge-
ometries are complex, and therefore, the fabrication must be reliable. This chapter introductions
the hybrid semiconductor-superconductor two-dimensional heterostructures used in this thesis. In
the following chapter, an overview of the device fabrication on these heterostructures is given.



3.1 Introduction

One approach for synthesizing topological superconductivity is using s-wave proximitized
one-dimensional Rashba nanowire. The first experimental realization of such a system was
using vapor-liquid-solid grown free-standing III/V nanowires (InAs / InSb) with diameters
∼ 100 nm [79, 89, 90]. Historically, nanowires were proximitized by ex-situ evaporation
of a superconductor (Al/Nb etc). However, this created poor interface qualities, which re-
duced the superconducting proximity effect. A material breakthrough was discovered in
2015, whereby Al was grown on the facets of the nanowire before breaking the vacuum of
the growth chamber. Material characterization showed a more pristine interface -an epiti-
axial match - between the InAs and the Al. Quantum transport characterization showed a
hard-induced superconducting gap, indicating a strong hybridization between the semicon-
ductor and superconductor. This material system was instrumental in demonstrating many
of the local tunneling spectroscopy signatures ofMZMs [80]. However, since nanowires are
typically grown individually in a freestanding fashion, more advanced experiments involving
multiple nanowires, for fabrication purposes, is challenging.

Twodifferent approaches are actively being pursued to alleviate this fabrication challenge.
One is a bottom-up technique similar to nanowire growth, but no catalyst particle is used to
nucleate nanowire growth. This technique is called selective-area-growth and involves grow-
ing planar nanowires in prefabricated oxide mask[91, 92]. This thesis will not focus on this
technique, but instead on a second approach based on two-dimensional heterostructures as
will be discussed below.

Motivated by the success of nanowire experiments, the technique of epitaxial Al growth
was implemented on two-dimensional quantumwells [17]. This is achieved by first growing
a two-dimensional electron gas in close proximity to the surface, that allows for the deposi-
tion of a superconductor on top of the 2DEG.This enables the use of conventional top-down
lithography techniques, allowing for device geometries to expand into the seconddimension.
The two-dimensional electron gases studied in this thesiswere provided at the courtesy of the
Manfra group at Purdue university *. This is a collaboration between QDev and Purdue uni-
versity focuses on optimizing thematerial and transport quality of the hybrid quantumwells.
This material system continues to have an increase in activity in terms of transport character-
ization of the material [17, 49, 61, 93–96], superconductor-insulator transitions [97], super-

*T. Wang, C. Thomas, S. Gronin, G. Gardner, M. J. Manfra - Department of Physics and Astronomy and
Station Q Purdue, Purdue University
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conducting Coulomb blockade [50], superconducting qubits [98], superconducting quan-
tum interference [99, 100] and transport signatures of MZMs [81, 101, 102].

3.2 Wafer stack

Two-dimensional electron gases are grown bymolecular beam epitaxy (MBE), which grants
both a high degree of homogeneity and purity of the growth. Control over the growth tem-
perature andmaterial fluxes allows for layer-by-layer growth, enabling atomically precisemono-
layers with specific elemental compositions.

Al

G
aA

s

In0.75Ga0.25As

InAs
In0.75Ga0.25As

7 nm

10 nm

7 nm

4 nm 10 nm 2 nm

AlOx

a cb

Figure 3.1: Wafer stack: a, Illustration of the top layers of the wafer stack where the InAs
quantum well is confined by two layers of In0.75Ga0.25As. b,c Cross sectional transmission
electron micrograph of the top layers of the InAs-Al heterostructure. The transmission
electron micrographs are courtesy of Dr. Rosa Diaz at the Electron Microscopy Facility
at the Birck Nanotechnology Center, Purdue University as part of the QDev Purdue
collaboration.

Thesubstrates predominately used are semi-insulatingFe-doped InP substrate. InP is cho-
sen because it is moderately compatible with microwave technologies, compatible for gen-
erating resonators with reasonably high quality-factors (Q = 6.4 × 104) needed for cir-
cuit quantum electrodynamics technologies [98]. Similar resonator tests on GaAs or GaSb
showed resonators with significantly reduced quality factors. Forgoing quality-factor consid-
erations, GaSb is a promising substrate since the substrate-to-quantum well lattice constant
mismatch is reduced in comparisonwith InP. Generally, this results in a higher quality 2DEG
and allows for thicker quantum wells due to reduced strain considerations [103]. An addi-
tional benefit of GaSb is that it can be doped to allow for back-gating. However, the GaSb
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QWs that were investigated by transport measurements showed numerous problems, rang-
ing fromgate voltagehysteresis and issues related to the formationof hole gaseswhen strongly
depleting the 2DEG.

Thewafer stack starts with an InP substrate and then consists of a 1 μm graded In1−xAlxAs
insulating buffer used to transition from the InP lattice constant (5.87 Å) to the one of InAs
(6.06 Å). Following the graded buffer is the InAs quantum well, which is formed by sand-
wiching7nmof InAsbetween two layersof largerbandgapmaterials. Whena smaller bandgap
material is sandwiched between two larger bandgap materials, the chemical potential will
align at the interface and form a quantum well (see Fig. 2.2). Usually the bottom barrier
comprises of 4 nm In0.75Ga0.25As and a top barrier of either 5 nm In0.9Al0.1As or 10 nm
In0.75Ga0.25As. The wafer stack is then finished with 2 monolayers of GaAs that are used to
protect the 2DEG during wet-etching the Al. The next step is growing a 7 nm film of epitax-
ial Al. As mentioned, it is critical that this in-situ deposition is performed by MBE without
breaking the chamber vacuum. This ensures a high transparency between the superconduc-
tor and the semiconductor, that is necessary for hybrid devices.

Figure 3.1a,b shows a sketchof the top layers of thewafer stack next a corresponding trans-
mission electron micrograph image showing a high quality quantum well *. The interface
between the Al and the quantum well can be seen in Fig. 3.1c, showing an epitaxial match
between the two layers.

3.3 Wafer characterization

To optimize the quality of the 2DEG, a wide variety of different top barrier thicknesses and
compositions are grown and characterized by transport measurements. An assortment of
characterization devices are fabricated on each growth to examine the material properties of
the different wafer stacks. Details of the device fabrication approaches are given in chapter
4.1.

The standard characterization devices can be seen in Fig. 3.2. Primarily, the peakmobility
and the induced superconductivity aremeasured to track the quality of the 2DEGs. Standard
Hall bar techniques (Fig. 3.2a) are used tomeasure the density andmobility and a S-QPC-N
geometry is used to measure the induced gap by tunneling spectroscopy (Fig. 3.2c). Su-
percurrent properties are screened in a superconductor-normal-superconductor Josephson

*Micrographs are courtesy ofDr. RosaDiaz at the ElectronMicroscopy Facility at the BirckNanotechnology
Center, Purdue University.
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Figure 3.2: Wafer characterization devices: a, Conventional Hall bar with supercon-
ducting leads. b, Supercurrent properties are measured in a superconductor-normal-
superconductor (S-N-S) Josephson junction with a top-gate. c, Tunneling spectroscopy of
the proximitized quantum well is performed in a superconductor-quantum point contact-
normal geometry (S-QPC-N) where the the QPC is used to create a tunneling barrier
at the N-S interface. d, One-dimensional nanowire created by electrostatic confinement
with a gate voltage Vw with a tunnel probe at one end controlled by gate voltage Vt.

junction (Fig. 3.2b) that also allows for an indirect determination of the superconducting
gap [94]. However, this method of superconducting gap extraction is only resorted to if the
S-QPC-N devices are faulty. Andreev bound states and Majorana zero modes are investi-
gated in one-dimensional wire geometries (Fig. 3.2d).

3.3.1 Density and mobility

Density and mobility was measured in a Hallbar as shown in 3.2a where a current bias of
I = 10 − 20 nA is passed through the device and the longitudinal (Vxx) and transverse
(Vxy) voltageswere recorded as a functionof top-gate voltageVtg andperpendicularmagnetic
field, B⊥. To remove any sample specific geometry effects the per-square longitudinal and
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transverse resistivity are calculated for a Hall bar of length L and widthW by [42],

ρxx =
Vxx

I
W
L
, ρxy =

Vxy

I
.
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Figure 3.3: Hall bar: a,b, Hall resistivity ρxy as a function of top gate voltage Vtg and
perpendicular field B⊥. c, Longitudinal resistivity ρxx as a function of Vtg and B⊥. d, Vtg

dependence on carrier density ns. e, Carrier mobility μ as a function of ns. f, Critical
in-plane magnetic field measured in an Al hall bar.

In Fig. 3.3a,b the transverse resistivity is shown as a function of B⊥ andVtg, which is used
to calculate the electron density,

ns =
1

e(dρxy/dB)

where ns, and e are the electron density and charge, respectively. Figure 3.3d shows the cal-
culated density as a function of Vtg, whereby applying a negative top-gate voltage, the carrier
density in the 2DEG is controlled. From the longitudinal resistivity (Fig. 3.3c) the mobility
μ at a specific Vtg is calculated from,

μ =
1

ensρxx
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The mobility as a function of Vtg is shown in Fig. 3.3e, where a maximum of 1.8 m2/Vs is
obtained at ns = 0.9 × 1016 m−2. The peak mobility at lower density may reflect the fact
that the surface is a dominant source of scatter, and that two sub-bands are occupied at low
voltages [104]. Usually our devices are operated at negative gate voltages that takes advantage
of this enhancement.

3.3.2 Al film

A large Zeeman energy is required for hybrid InAs-Al heterostructures to undergo a topolog-
ical phase transition. Therefore, the epitaxial Al needs to be able to withstand large in-plane
magnetic fields. The critical magnetic field of the epitaxial Al film is determined by measur-
ing a 4-terminal Hall bar geometry in a device where the epitaxial Al has not been etched
away (see inset of Fig. 3.3f). Figure 3.3f shows the resistance of the Al Hallbar as a function
of in-plane magnetic field B∥, displaying an increase in resistance at B∥ = 2.9 T, marking
critical magnetic field Bc. It is important to correct any misalignment of B∥ to achieve the
highest Bc. The high Bc is caused by having the thin Al film. The Al superconducting gap
Δ increases with decreasing Al thickness [105]. Additionally, this value is higher than those
typically reported for nanowires, whichmaybe related to the planarmorphology and low sur-
face roughness heterostructures. Using the Clogston-Chandrasekhar limit [52] Bc =

Δ√
2μB

allows for ΔAl = 240 μeV to be extracted.

3.3.3 Induced superconductivity

Thequality of the induced superconducting gap is measured in a S-QPC-N device geometry
to allow for a tunnel barrier to be formed at the interface between the semiconductor and
Al (see Fig. 3.2c). A tunnel barrier is formed by depleting the 2DEG in the vicinity of the
QPC with a gate voltage Vqpc. In Fig. 3.4c the differential conductance G is measured as a
function of the gate voltage Vqpc, where a plateau at 4e2/h is observed at Vqpc = −6.25 V.
For a ballistic QPC in the normal state, conductance quantization causes plateaus at integer
steps of 2e2/h [39]. For a high transparencyN-S interface, Andreev reflection causes an addi-
tional charge transfer of 2e. This is reflected in quantization of conductance steps 4e2/h [61].
However, any remnant scattering will reduce the step towards 2e2/h. This shows that even a
simple depletion curve can be used to test the quality of the material. Additionally, applying
a large perpendicular magnetic field B⊥ = 1 T in Fig 3.4c shows a slight plateau at 2e2/h,
reflecting the normal state of the Al.
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Figure 3.4: Induced superconductivity: a, Differential conductance G as a function of
quantum point contact gate voltage VQPC and bias voltage Vsd. b, G as a function of Vsd

for VQPC = −6.6 V. c Zero-bias G as a function of VQPC for a perpendicular magnetic field
B⊥ = 0 and 1 T.

A tunnel barrier is formed by setting Vqpc below the last plateau (<-6.4 V). Measuring
G as a function of bias voltage Vsd and Vqpc reveals a hard superconducting gap of Δ∗ =

230 μeV (see Fig. 3.4a,c). This indicates a clean interface between the Al and the QW and a
high quality proximity effect. This was not the case for all wafer stacks that were investigated.
Wafers stacks containing top-barriers that are either thicker or have a higher potential would
typically reduce the proximity effect (not shown here).

To determine the superconducting coherence length ξ0 in the proximitized semiconduc-
tor the density at peak mobility is used. The length scale ξ0 describes the distance between
electrons pairs in the superconductor and is determined in the clean limit as,

ξclean0 =
ℏνF
πΔ
∼ 1 μm .

However, in this case the mean free path is le ≪ ξclean0 and coherence length is described in
the dirty limit as,

ξdirty0 =

√
ξclean0 le ∼ 0.5 μm

where le is the electron mean free path in the semiconductor.
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3.3.4 Sub-gap states in one-dimensional nanowires

Tunneling spectroscopy of one-dimensional nanowires is achieved by selectively etched the
Al film into an elongated Al strip with a width of 0.1 μmand length of 1.5 μm) (see Fig.3.2d).
Then using top-gate voltage Vw, the 2DEG surrounding the Al stripe is depleted, while the
Al stripe screens the electric field from the Vw (see Refs [101, 106] for details). This forms
a proximitized one-dimensional nanowire below the stripe. Tunneling spectroscopy is per-
formed at the end of the one-dimensional stripe by forming a tunnel barrier with a gate volt-
age Vt.

In Fig. 3.5a, tunneling spectroscopy reveals a 4Δ superconducting gap due to S-I-S trans-
port, which transitions to N-I-S spectroscopy at B∥ = 0.2T as a consequence of a softening
of the superconducting gap under the large Al lead [101]. Increasing B∥ > 3 T causes the
induced superconducting gapΔ∗ to collapse. A keen eyemay observe thatΔ∗ persists higher
than 2.9 T observed for the Al Hall bar in Fig. 3.3f. Typically a higher critical field was mea-
sured for elongated narrow nanowires compared to large planes of Al by several hundreds of
mT in both B∥ and B⊥. This discrepancy is potentially the result of confinement.
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Figure 3.5: Sub-gap states in a one-dimensional nanowire: a, Differential conductance G
as a function of parallel magnetic field B∥ and bias voltage Vsd in the tunneling regime
(high density). b, G as a function of B∥ and Vsd (low density).

We next focus on the magnetic field dependence of the sub-gap features. Figure 3.5a
shows the appearanceof a fewsub-gap resonances,which are interpreted tobeAndreevbound
states (ABS) of the proximitized one-dimensional wire. As seen in Fig. 3.5 these states cross
zero-bias atB∥ = 1.5Tand continue to finite-bias. ThseeAndreev bound states are expected
precursors of Majorana zero modes (MZM), which could undergo a topological transition
if the system parameters are correct. However, since these ABS do not remain at zero-bias
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as anticipated for MZMs (see Chapter 2.4), a trivial origin of these Andreev bound states is
suspected.

In certain gate-voltage configurations, theABSmerge and stick to zero-energy as themag-
netic field increases as shown in Fig. 3.5b. Such observations are consistent with a MZM
picture, however, more evidence is needed to draw conclusions. Nevertheless this is valu-
able information when determining if the wafer is promising for pursuing more complicated
device geometries for investigating topological superconductivity.

Comparing the two cases, I note a large discrepancy between the g-factors is noticed (see
Fig. 3.5a and b). In higher density regimes as in Fig. 3.5a, a larger g-factor is frequently
observed. In nanowire experiments, higher density regimes resulted in a g-factor enhance-
ment and depleting the nanowire lead to a reduced g-factor. This is attributed to orbital ef-
fects [84, 85]. I believe that the relevant g-factor in the one-dimensional nanowires is given
by sub-gap states that merge and form a robust zero-bias conductance peak, for which a g-
factor of 4 is typically obtained.

3.3.5 Phase coherence

The phase coherence length of the InAs 2DEG was measured by fabricating an Aharonov-
Bohm (AB) interferometer by wet etching a hole in the 2DEG and then defining a loop with
gates as show in Fig. 3.6a. A negative gate voltage applied to the gate electrodes confines the
2DEG into a loop. Figure 3.6b shows the differential conductanceG as a function of perpen-
dicular magnetic field B⊥ revealing periodic conductance oscillations with a flux periodicity
of h/e. This indicates coherent single electron transport through the Aharonov-Bohm inter-
ferometer.

To extract the phase coherence length the semiconductor, the temperature dependence
of the AB oscillations in a normal conducting 2DEG is measured. In Fig 3.6a the conduc-
tance ΔG (slowly varying background subtracted) is shown as a function of B⊥ which con-
trols the flux through the interferometer. The conductance oscillations in B⊥ with a peri-
odicity of h/e indicating phase coherent transport through the interferometer. Studying the
amplitude of these oscillations as a function of temperature allows for the phase coherence
length to be extracted. Figure 3.6c shows the temperature dependence of the AB oscillations
amplitude A which is extracted by calculating the power spectrum of the oscillating curves
in Fig. 3.6b. To extract the phase coherence length a diffusive interferometer is assumed,
for which the amplitude decays exponentially with temperature as A = A0 exp(−L/lφ(T)),
where lφ(T) ∝ T−1/2 is the phase coherence length and L = 4.5 μm is the circumference
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of the interferometer [107]. The exponential fit A = A0 exp(−aT1/2) gives a base tempera-
ture coherence length of lφ(20 mK) = 4 μm± 1 μm. Error bars show the standard deviation
between 4 data sets at each temperature.
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Figure 3.6: Phase coherence: a, False colored electron micrograph of a InAs
Aharonov-Bohm interferometer. b, Differential conductance ΔG as a function of per-
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4
Methods

This chapter reviews the fabrication procedure used for creating quantum devices on the hybrid
quantum wells (introduced in the previous chapter). A general overview of conventional lock-in
techniques to used to measure the differential conductance and resistance and unconventional third
harmonic lock-in techniques used to measure the zero-bias curvature are discussed. Lastly, details
on the development of a normal lead for tunneling spectroscopy are given.



4.1 Device fabrication

The design and fabrication of quantum devices on InAs-Al heterostructures is particularly
flexible because it relies on a top-down fabrication approach. This allows for a complete de-
vices to be drawn in a computer-aided design software, and the resulting device is almost an
exact replica. With the current standard recipe, Al etch resolutions of ∼ 20 nm and gate
resolutions of∼ 30 nm are achieved with standard 100 keV e-beam lithography techniques
and PMMA resists. Another usually overlooked advantage of the InAs-Al heterostructures is
that ohmic contact is made by bonding directly on the epitaxial Al. This mitigates the need
for harmful oxide milling procedures, which are necessary for fabrication based on vapour-
liquid-solid or selective-area grown nanowires. Thismilling is usually quite close to nanowire
tunnel junctions and has adverse effects. For the devices discussed in this thesis, Ohmic con-
tacts were formed by wire bonding directly onto the epitaxial Al, creating a superconducting
lead that terminates only a few microns away from the device.

In the following section, a brief overviewof a standard device fabrications flow is outlined.
A fantastic detaileddescriptionon fabricationwaswrittenbyapreviousPhDstudent,Morten
Kjaergaard, that should be read before starting fabrication on this material system [108]. In
appendix A the standard fabrication recipe used for devices in this thesis is given.

With a freshly cleaved sample, the first fabrication step was the mesa etch to define the
template for the devices (bonding pads, ohmic contacts, etc.) and alignment marks. Figure
4.1 shows the standard e-beam lithography flow starting with spinning resist (PMMA A4).
The next step was to expose the resist with a 100 keV Elionix e-beam system and develop in
MIBK:IPA 1:3. It was critical that resist was developed for 45 s and a short 5s rinse in IPA
to minimize resist swelling. With the PMMA etch mask completed the next step was to etch
the mesa, starting with a 6s Al etch (50 ◦CTransene Type D), followed by a∼300 nm III-V
chemical etch
H2O : C6H8O7 : H3PO4 : H2O2 (220:55:3:3) (usually 9 minutes at room temperature).
This ensured that the device was electrically isolated from other devices and the bonding
pads for the gates. The resist was then stripped before continuing with the next step.

Following the same e-beam procedure the fine Al features were patterned with a 5s Al
etch* and then the chipwas directly transferred to the atomic layer deposition system tomin-
imizedAl oxidation. Around15 to 30nmofHfO2 was grownover the entire sample to isolate

*this is by far the most delicate fabrication step.
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Figure 4.1: Fabrication: Device fabrication flow diagram shown by optical and scanning
electron micrographs. Left panels show the standard e-beam lithography procedure of
spinning, exposing, developing, and stripping the resist. The rest of the panels use the
same procedure, with the images taken after stripping the resist. The Al Etch image
is an exception, where the image is taken directly after etching in an optical dark-field
microscope, where the outline of the Al etch mask can still be seen. This is a good sign
that the etch went well.

the following gate stack from the 2DEG. The fine inner top gates were then deposited with
a e-beam evaporator with Ti/Au (5/25 nm) and then electrically connected to the bonding
padswithmeanders of Ti/Au (5/300 nm)while tilting and rotating to ensure the leads crawl
up the mesa side walls.

After finishing fabrication, the sample was investigated by either SEM or AFM to check
alignment and etch run. The devices were then glued to a chip-carrier with PMMA, making
sure chip is well aligned to the chip-carrier to have awell alignedmagnetic field. Deviceswere
contacted by bonding through the HfO2 with a wedge bonder. The devices were then ready
to be measured in a dilution refrigerator.
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4.2 Measurement techniques

4.2.1 Differential conductance

The devices typically used a four Ohmic contact setup to allow for four-terminal differen-
tial conductance measurements. We used standard lock-in techniques (Stanford Research
Systems SR-830) at frequencies between 30 - 180 Hz by applying the sum of a variable dc
bias voltage Vsd and an AC excitation voltage of 3 to 10 μV to one of the ohmic contacts.
The resulting differential current dI was measured by another ohmic that was grounded via
a low-impedance low-noise current-to-voltage converter (Physics Basel SP-983). The four-
terminal voltagedV4T across the devicewasmeasuredby andifferential voltage amplifierwith
an input impedance of 500 MΩ. The differential conductance G =dI/dV4T was then calcu-
lated.

4.2.2 Differential resistance

To measure the critical current of a SNS junction the setup was slightly modified. The dif-
ferential resistance R = dV4T/dIac was obtained by applying an AC current bias Iac < 5 nA
(using a 5 V AC excitations through a 1 GΩ resistor), superimposed on a variable DC cur-
rent bias Idc. The four terminal voltage was measured allowing for the differential resistance
to be calculated.

4.2.3 Third harmonic technique

Majorana zero modes are zero-bias excitations inside of a topological gap as shown in Chap-
ter 2.4. A transport signature of a MZM is a zero-bias conductance peak in tunneling spec-
troscopy at the ends of aMajoranawire. Conventional first harmonic lock-in techniques used
tomeasure the differential conductanceG at zero-bias cannot distinguish if the zero-bias fea-
ture is a peak or a dip in source-drain bias Vsd. However, by recording the third harmonic of
the differential current it is possible to efficiently determine if the zero-bias feature is indeed
a zero-bias peak or a zero-bias dip.

The third harmonic techniquewas used inwide variety of experiments to efficiently sweep
large multi-dimensional parameter-spaces to identify regions where zero-bias conductance
peaks occur. This technique allows for the curvature of the zero-bias conductance to bemea-
sured, and discern if the feature is a peak or a dip without varying the bias voltage Vsd.
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Figure 4.2: Measurement of the third harmonic of the current: a, Differential
conductance G as a function of source-drain bias Vsd and magnetic flux Φ. b, Numerical
second derivative of the conductance G′′(Vsd) = (∂2G/∂V2

sd)|Vsd as a function of Vsd and
Φ calculated from the data shown in a. c, Third harmonic of the current I3ω versus Vsd

and Φ measured by the lock-in amplifier using an excitation Vac = 15 μV. Most of the
features present in panel b are reproduced in panel c. d, e, Line cuts of G as a function
of Vsd taken at ϕ = 0, π as indicated by the ticks in panel a. f, I3ω(Vsd = 0) as a function
of Φ: a positive value of I3ω(Vsd = 0) indicates a ZBP in G.

Toobtain information about the curvature at zero-bias a lock-in amplifier (model SR830)
is used to measure the current at the third harmonic of the reference frequency ω. Typically
a low ω < 50Hz was used to avoid filtering of the third harmonic signal at 3ω. A sinusoidal
time-dependent excitationV(t) = Vsd+Vac sin(ωt)was applied to the device, and themea-
sured output current can be expanded in Taylor’s series as:
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I(t) ≃ I(Vsd) +
∂I
∂V

∣∣∣∣
Vsd

Vac sin(ωt) +
1
2
∂2I
∂V2

∣∣∣∣
Vsd

[Vac sin(ωt)]2 +
1
6
∂3I
∂V3

∣∣∣∣
Vsd

[Vac sin(ωt)]3.

the measured third harmonic current is then*,

I3ω(Vsd) = −
1
24

∂3I
∂V3

∣∣∣∣
Vsd

V3
ac ∝ −

∂2G
∂V2

∣∣∣∣
Vsd

.

In order to increase the signal-to-noise ratio, the measurement of I3ω(Vsd) was performed
with an amplitudeVac of the excitation greater than the temperature-limited full width at half
maximum of a Lorentzian feature, i.e., Vac ≳ 3.5 kBT, where kB is the Boltzmann constant
andT ∼ 40mK is the electron temperature estimated by the temperature dependence satu-
ration of zero-bias peak conductance [81].

Figure 4.2 shows a comparison between the numerically calculatedG′′(Vsd) and themea-
sured I3ω(Vsd). Fig. 4.2a shows tunneling spectroscopy of a S-N-S junction as a function of
magnetic fluxΦ threading a SQUID loop (see the next section or chapter 10 for device and
measurement details). At Φ = 0 the conductance is peaked at zero bias (see Fig. 4.2d),
while at Φ = Φ0 there is a zero-bias dip. Numerically calculating the second derivative of
the conductance G′′(Vsd) gives information about the curvature, where a negative second
derivative indicates a peak. Instead, if I3ω is measured using the third harmonic, a similar plot
is obtained (see Fig. 4.2c). This shows that not only are the zero-bias peaks correctly identi-
fied, but also the finite-bias features. This allows for Vsd = 0 to be fixed and determine if the
zero-bias feature is peaked in Vsd by obtaining a positive value of I3ω, as shown in Fig. 4.2f.

4.3 Normal lead spectroscopy

The initial tunneling spectroscopy experiments of one-dimensional nanowires in 2DEGs re-
lied on a large Al lead to achieve well resolved tunneling spectroscopy [81, 101]. It is believed
that the screening offered by the Al lead allows for sharp tunnel barriers to be achieved. On
the other hand, S-I-S spectroscopy adds unwanted complexity to tunneling spectroscopy.

This issue was combattedwith the observation that applying a small magnetic field causes
the large Al lead to be populated with sub-gap conductance (due to sub-gap states) and to

*Using (sin(ωt))3 = 1/4 (−sin(3ωt) + 3 sin(ωt))
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Figure 4.3: Al lead spectroscopy: a, Sketch of a S-N-S Josephson junction with an
additional Al lead at the top for S-I-S tunneling spectroscopy. b, Differential conductance
G measured as a function of bias voltage Vsd and tunnel barrier gate voltage Vt. An
induced superconducting gap is observed. c, G measured as a function of a perpendicular
magnetic field B⊥ and Vsd.

effectively render it a normal lead, while the hard superconducting gap is preserved in the
Al stripe due to electrostatic confinement. This allowed for N-I-S tunneling spectroscopy of
nanowires in a finite magnetic field (see for example Fig. 3.5). The transition from S-I-S to
N-I-S spectroscopy was detailed in Ref [101]. This transition typically occurred at a in-plane
field of B∥ ∼ 0.2 T, while the zero-bias peak signatures of interested appeared at B∥ > 2 T
in nanowire geometries.

One of the prominent predictions of a topological planar Josephson junction is that a
topological phase transition should occur at lowermagnetic fields [35, 36]. TheAl lead spec-
troscopy was therefore ill-suited for the devices investigated in chapter 10. This warranted
a normal lead to be developed for the devices. In the following discussion, measurements
with the Al plane spectroscopy technique will be shown first and then used to compare with
device used to develop normal lead spectroscopy.

Figure. 4.3a shows a schematic of a RF-SQUID where two Al leads (S) confine a semi-
conducting region (N) to form a SNS Josephson junction. At the top-end of the junction is
an additional Al lead used for spectroscopy together with a quantum point contacts (QPC)
used to form a tunnel barrier with a voltage Vt (see chapter 3.3.3). The differential conduc-
tanceGwasmeasured through theQPC as a function of bias voltageVsd and gate voltageVt,
where a superconducting gap is observed (see Fig. 4.3b). Applying a perpendicularmagnetic
field B⊥ threads fluxes in the superconducting loop andmodulates the superconducting gap
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(see Fig. 4.3b).
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Figure 4.4: Normal lead spectroscopy without a protrusion: a, Sketch of a device with a
quantum point contact tunnel probe. b, Differential conductance G as a function of bias
voltage Vsd and tunnel barrier gate voltage Vt reveals disordered spectroscopy. c, Sketch
of a device with a screening electrode operated at Vsc = 0 V and a point contact tunnel
probe. d, Differential conductance G as a function of bias voltage Vsd and tunnel barrier
gate voltage Vt reveals disordered spectroscopy.

In an attempt to move away from the complicated Al lead, a standard point contact ge-
ometry was invesigated(see Fig. 4.4). However, as observed in Fig. 4.4b, the tunneling
spectroscopy is disordered and no superconducting features are recovered. An alternative
approach is to use a gate electrode to mimic the Al screening effects as schematically drawn
in Fig. 4.4c. The principle of this gate is to screen the electric fields originating from the
quantum point contacts from depleting the 2DEG below the screening gate electrode (SC),
allowing for a sharp tunnel barrier to be defined lithographically. However, operating this
screening gate at Vsc = 0 V did not improve the tunneling spectroscopy (see Fig. 4.4d).

If instead, a small protrusion was added to the end of the screening electrode, which ex-
tends between the two point contact electrodes, a well resolved induced superconducting
gap was observed (see Fig. 4.5a,e). The role of the protrusion is investigated bymeasuringG
as a function of Vsc and Vt in Fig 4.5b. At Vsc = 0 V, a large Vt = −2.5 V is needed to close
the conductance. Decreasing Vsc leads to a tail of conductance until Vsc ∼ −0.4 V where
a rectangular dependence of Vsc and Vt is observed. Comparing these results with a similar
measurement for a screening gate without a protrusion (Fig. 4.5c, d) this tail feature is not
observed and only a rectangular dependence of Vsc and Vt is found, with a Vt ∼ −1.1 V
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Figure 4.5: Normal lead spectroscopy with a protrusion: a, Sketch of a device with a
screening electrode with a small protrusion and a point contact tunnel probe. b, Differ-
ential conductance G as a function of tunnel barrier gate voltage Vt and screening gate
voltage Vsc = 0 for Vsd = 0 c, Sketch of the same device as a but without the protrusion.
d, Differential conductance G as a function of tunnel barrier gate voltage Vt and screening
gate voltage Vsc = 0 for Vsd = 0. e-g, Differential conductance G measured as a function
of Vsd and Vt for different values of Vsc for the device in a.

pinching off (earlier than with the protrusion).
In Fig. 4.5e-g we measure G as a function of Vt and Vsd for different values of Vsc. For

values ofVsc within the tail (Fig. 4.5f) a superconducting gap is resolved. However, for more
negative values of Vsc outside of the tail, no induced gap is observed (Fig. 4.5e,g). Based on
these results, it is believed that theprotrusion is responsible for creating anarrowwell-defined
tunnel barrier at the top the the Josephson junction.
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5
Spectroscopy of sub-gap states in
Majorana islands

This chapter introduces the theoretical background ofMajorana islands and the expected signatures
of MZMs in these islands. It is shown that the superconducting Coulomb blockade peak spacing
analysis allows for the energy of the lowest sub-gap state to be measured. Lastly, the Majorana
island device geometry is introduced and transport characterization of the islands is shown.



5.1 Peak spacing analysis

Several recently proposed topological qubit architectures involve Majorana islands (floating
one-dimensional topological superconductors) that have a finite charging energy, which pro-
tects the island fromexternal quasiparticles that poison the parity of theMZMs [31–33]. The
first experimental signatures of MZMs in a N-I-S-I-N geometry (Majorana island) were re-
ported in 2016, showing signatures of the exponential protection expected for MZMs [77].
Below we will introduce the basic concepts of Majorana islands, and how to tune the device
into promising regimes with zero-bias states.

At low temperatures the ground state energy of a Majorana island is E(N) is minimized
[109],

E(N) = Ec(N− Ng)
2 +

{
Eo, if N is odd

0, is N is even
(5.1)

where Ng = CVg/e is the dimensionless gate voltage, where Eo is the energy of the lowest
sub-gap state. A parallel magnetic field, B∥, lowers the energy of Eo due to the Zeeman ef-
fect. In Fig. 5.1 we show the charge parabolas for different values of Eo. At low fields where
Eo > Ec, charge degeneracies occur when E(N) = E(N+ 2) for odd integers ofNg causing
Coulomb peaks to be 2e periodic. This is due to charge transfer of electron pairs mediated
by Andreev reflection on either end of theMajorana island [110].

a b

Vsd

VpgVl,c Vr,c

Ec

E0 >Ec E0 <Ec E0 = 0

0

Ng
N + 1 N + 3

Ti/Au Al InAs
B|| 

Figure 5.1: Coulomb blockade of a Majorana island: a, False colored electron micro-
graph of a Majorana island. b, Energy spectrum of a Majorana island displaying the
characteristic charge parabolas different Eo energies (see Eq. 5.1).
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Increasing the magnetic field lowers Eo < Ec, allowing for single electrons to occupy the
island at an energy cost that leads to an even-odd (e-o) peak spacing. In this regime, two
charge degeneracies occur within the 2e window - one at E(N) = E(N + 1) and another at
E(N+ 1) = E(N+ 2). This causes Coulomb peaks to occur at [77, 109, 111],

Ne
g(N) = N+

1
2
+

Eo
2Ec

EN = EN+1 ,

No
g(N) = N+

3
2
− Eo

2Ec
EN+1 = EN+2 .

With this the distance between Coulomb peaks can be calculated. The spacing of the odd
valley ΔNo

g is between EN+2 = EN+1 and EN+1 = EN and is therefore,

ΔNo
g = No

g(N)− Ne
g(N) = 1− Eo

Ec
.

Similarly, the spacing of the even valley ΔNe
g is found, which occurs between EN+3 = EN+2

and EN+2 = EN+1 giving,

ΔNe
g = Ne

g(N+ 2)− No
g(N) = 1+

Eo
Ec

.

Using a lever arm η, the peak spacing ΔNe/o
g is converted into gate-voltage spacing Se/o =

η−1EcΔN
e/o
g . Therefore, the peak spacing difference in gate-voltage is S = (Se − So) and

can be used to measure Eo by,

Eo =
η
2
(Se − So) .

In the topological regime, MZMs cause Eo = 0, and the CB perodicity is 1ewith Se = So.

5.2 Identifying zero-bias states

A false-colored micrograph of a Majorana island is shown in Fig. 5.1. The device was fabri-
cated on a hybrid quantumwell with a 7 nm epitaxial Al film selectively wet etched to form a
1.2 μm long stripe. Using the gate voltageVpg the 2DEG surrounding the stripe was depleted
forming the Majorana island. The gate-voltages Vl,c and Vr,c were used to form tunneling
barriers at the ends of the wire.
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In Fig. 5.2 the device is tuned into theCoulomb blockade regime bymeasuring the differ-
ential conductanceG through the Majorana island. To isolate the island from the leads, two
tunnel barriers were formed on either end of the device by tuning left (Vl,c) and right cutter
(Vr,c) gate voltages (see Fig. 5.2a). The Coulomb blockade regime was reached when dis-
crete charge transitions coupled to both cutter gate voltages were observed. Measurements
similar to Fig. 5.2 were useful to determine the symmetry of the cutter voltages. To check if
the peaks are 2e periodic at B∥ = 0T, either a finite bias Vsd or a finite magnetic field is used
to check for peak doubling as shown in Fig. 5.2b.

Once stable CB is achieved, the hunt forMajorana signatures started with setting the par-
allel magnetic field B∥ = 2.2 T *. MZMs should depend strongly on Vpg since it tunes the
chemical potential of the island. In Majorana islands, the most telling transport signatures
of MZMs are: 1) stable 1e periodic Coulomb peaks, 2) with a discrete zero-bias peak on the
charge degeneracy point. 3) Both of these signatures should also be stable in both magnetic
field and for some range in chemical potential.

In Fig. 5.2c the chemical potential and the charge occupancy is tune with Vpg and the
tunnel barriers are symmetrically tuned with Vl/r,c. Promising regions of parameter space
were identified by observing horizontal regions of 1e periodic peak spacings. Figure 5.2d
shows a cut atVtb,c = −0.64V, where the evolution of the CB peak spacing inVpg is shown.
At Vpg = −0.915 V the CB peaks are 2e periodic that split to an e-o periodicity at Vpg ∼
−0.93 V and becomes 1e periodic between−0.94 V < Vpg < −0.93 V.

The observation of stable 1e peak spacing is consistent with the presence of a discrete zero
energy state, however, additional spectroscopic information is needed to elucidate the origin
of 1e periodicity. The cause of 1e periodicity could be due: 1) the normal state transition,
2) enhanced quasiparticle poisoning (so-called ghost peaks) [112], or 3) a sub-gap state at
zero energy [77, 109]. Therefore, 1e periodicity alone is not sufficient evidence to draw con-
clusions aboutMZMs. It is important to observe a transition for 2ewhich split into 1e peaks
without seeing an increase in ghost peaks. This can be investigated by bothmagnetic field de-
pendence of the CB peak spacing and by tunneling spectroscopy, which is focused on next.

Figure 5.3a studies the evolution of the CB peaks in a parallel magnetic field. We observe
2e periodic CB peaks for B∥ < 1.75T, which split and become 1e periodic above 2 T. In Fig.
5.3b the average peak spacing difference ⟨S⟩ = ⟨Se⟩−⟨So⟩ is constant fromB∥ = 0 to 1.5T
due to 2e transport, which transitions to ⟨S⟩ = 0 at 2 T.This indicates that the energy Eo is

*This is the field value where the majority of stable zero-bias peaks were found in various device geometries.



5.2. IDENTIFYING ZERO-BIAS STATES 73

2ee-o1ee-o

a b

c d

B|| = 0 T B|| = 2 T
V r

,c
 (V

)

Vl,c (V)
0-0.6

0

-0.6

Vl,c (V)
0-0.6

V r
,c

 (V
)

0

-0.6

0

10-1

10-2

10-3 G
 (2

e2
/h

)

Vl/r,c (V)
-0.4-0.6

V p
g 

(V
)

-0.92

-0.96

0.1

0

G
 (2

e2
/h

)

-0.94 -0.92
Vpg (V)

B|| = 2.2 T

Figure 5.2: Coulomb blockade: a,b, Differential conductance G measured as a function
of the two tunnel barrier voltages Vr,c and Vl,c at B∥ = 0 T and B∥ = 2 T. c, Differential
conductance G measured as a function of Vpg and symmetric cutter voltages Vl/r,c at
B∥ = 2.2 T and a 1D cut at Vlr,c ∼ −0.64 V is shown in d.

lowered to zero at 2 T and remains until the normal state transition.
Measuring the conductance G as a function of bias voltage Vsd and Vpg yields spectro-

scopic details of the system. In Fig. 5.3c, Coulomb diamonds are measured for increasing
B∥. At low fields (B∥ < 1.5 T), the diamonds are 2e periodic at zero-bias and 1e periodic
at finite bias. At B∥ = 1.75 T, a transition to e-o, peak spacing occurs, which become 1e at
B∥ = 2.5 T. In the 1e regime, each of the charge degeneracy points has a zero-bias peak, in-
dicating a discrete state zero-energy state, which is distinctly different from the normal state
1e periodicity at B∥ = 3.5T.
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To corroborate the observation of a discrete zero-energy state, bias spectroscopy can be
performed at a fixed gate voltage. The technique was introduced in Ref [113] and used in
Ref [77] for sub-gap state spectroscopy. Effectively, this method tracks the energy of the
excited state of the Coulomb diamond. First the gate-voltage value needs to be determined.
The energy difference between EN+1 and EN found to be

E(N+ 1)− E(N) = Ec
(
2N+ 1− 2Ng

)
+ Eo .

By settingNg = N+1/2, the energy to thenearest chargedegeneracyoccurs atEN+1−EN =

Eo. Therefore, fixing Ng = N + 1/2 allows for spectroscopy of the lowest sub-gap state by
applying a bias voltage, where Eo = eVsd

2 [77, 113]. This gate voltage position corresponds to
the leads aligning with the center of the superconducting gap at B∥ = 0 and Vsd = 0 and
with the charge degeneracy of 1e periodicity at high field (see dashed line in Fig. 5.3a).

Figure 5.3d employs this technique to measure Eo(B∥) by fixing Vpg to the dashed line
in Fig. 5.3a. At B∥ = 1.5 T a discrete state is observed to separate from the superconduct-
ing gap, and form a zero-bias peak above 2 T. This behaviour of Eo is in agreement with the
Coulomb blockade peak spacing analysis of Eo shown Fig. 5.3b.

Theobservations in Fig. 5.2 and 5.3 are in support of theMZMinterpretationwith the the
zero-bias peak arising from a discrete state in bothVpg and B∥. The results in Chapter 6 yield
further evidence in support of the MZM interpretation, where phase coherent transport is
investigated throughMajorana islands.
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Figure 5.3: Majorana island spectroscopy: a, Zero-bias differential conductance G as
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6
Coherent transport through a
Majorana island in an
Aharonov-Bohm interferometer
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Spatially separatedMajoranamodes are expected to allow phase-coherent single-electron transport
through a topological superconducting islands via a mechanism referred to as teleportation [26].
Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al
island embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic field,
a discrete sub-gap state in the island was lowered to zero energy yielding persistent 1e-periodic
Coulomb blockade (CB) conductance peaks (e is the elementary charge). In this condition, conduc-
tance through the interferometer was observed to oscillate in a perpendicular magnetic field with a
flux period of h/e (h is Planck’s constant), indicating coherent transport of single electrons through
the islands, a signature of electron teleportation via Majorana modes.

*These authors contributed equally to this work



6.1 Introduction

Initial experiments reporting signatures of Majorana zero modes (MZMs) in hybrid super-
conductor/semiconductor nanowires focussed on zero-bias conductance peaks (ZBPs) us-
ing local tunnelling spectroscopy [79–82]. Subsequently, Majorana islands provided addi-
tional evidence ofMZMs based on nearly 1e-spaced CB peaks [77], and indicated a Rashba-
like spin orbit coupling with the spin-orbit field lying in-plane, perpendicular to the wire axis
[50]. Under some circumstances, these signatures can be mimicked by trivial modes [88,
111], motivating a new generation of experiments that explicitly probe non-local properties,
which are more difficult to mimic. For instance, non-locality of MZMs was recently investi-
gated by measuring the energy splitting induced by the interaction of a quantum dot and a
zero-energy state in a hybrid nanowire [114].

Non-locality can also be accessed by interferometric measurements of aMajorana island,
where CB couples separated MZMs and fixes fermion parity [26, 29, 115–117]. In the topo-
logical regime, a Majorana island can coherently transfer a single-electron between its two
ends through MZMs [26, 115]. To demonstrate the effect, a Majorana island can be em-
bedded in the arm of an Aharonov-Bohm (AB) interferometer. If single-electron transport
in both the reference arm and the Majorana island is coherent, conductance through the
interferometer is expected to show oscillations with a flux period h/e [26, 118]. The same
approach was used to investigate coherent transport in semiconductor quantum dots [119–
122].

6.2 Devices

Devices were fabricated using an InAs two-dimensional electron gas (2DEG) heterostruc-
ture covered by 8 nm of epitaxially grown Al [17]. The bare 2DEG (without Al) showed a
phase coherence length of lφ ∼ 4 μm (see Chapter 3). Figure 6.1a shows amicrograph of de-
vice 1 with a 1.2 μm long and 0.1 μmwide superconducting Al stripe formed by wet etching.
Ti/Au top-gates were evaporated on top of a 25 nm HfO2 dielectric grown by atomic layer
deposition. We studied two lithographically similar interferometers with circumferences of
5.6 μm for device 1 and 5 μm for device 2.

Applying a negative voltage, Vpg, to the central gate serves two purposes. It depletes the
2DEG surrounding the Al wire to form both theMajorana island and the AB ring center and
also adjusts the chemical potential and charge occupancy of the island. Energizing all exterior
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gates confines the 2DEG into an AB interferometer by connecting the Majorana island to a
normal conducting reference arm. The resistance of the reference arm was independently
tuned by a negative gate voltage Vc. A source-drain bias voltage (Vsd) was applied to one
lead and the resulting current and four-terminal voltagewas recorded. The in-planemagnetic
fields B∥ and Bt, and perpendicular field, B⊥, were controlled by a three-axis vector magnet.

6.3 Majorana island spectroscopy

At low temperatures, tunneling of single electrons onto a Majorana island with a supercon-
ducting gap Δ is suppressed by CB, except at charge degeneracies. When the lowest sub-
gap state energy, Eo, exceeds the charging energy Ec, ground-state degeneracies only occur
between even-occupied states, resulting in 2e-periodic CB conductance peaks [110]. Odd-
occupied ground states are lowered into the accessible spectrum by a Zeeman field, resulting
in even-odd CB peak spacing when 0 < Eo < Ec. The difference in peak spacings between
even andodd states, S = Se−So, is proportional toEo [77] (seeFig. 6.1b). Forwell-separated
MZMs, Eo tends exponentially toward zero, yielding 1e periodic CB peaks with a discrete
zero-bias state at consecutive charge degeneracy point [77, 109]. Both observations are nec-
essary for a MZM interpretation. When MZMs are not widely separated, CB peak spacings
oscillate with field and chemical potential [50, 77, 111].

We first investigated the Majorana island without interferometry by depleting a segment
of the reference arm (see Fig. 6.1a). Figure 6.1b shows zero-bias differential conductance
G = dI/dV of the island as a function of parallel magnetic field B∥ and gate voltage Vpg,
which controls the electron occupancy and chemical potential of the island. CB peaks are
2e periodic at zero field and split around 2 T, becoming 1e periodic as the sub-gap state
moves toward zero energy (see Fig. 6.3a for peak spacing analysis). Performing CB spec-
troscopy, that is, measuring G as a function of both source-drain bias Vsd and Vpg reveals
Coulomb diamonds (Fig. 6.1c-f). At low B∥, diamonds are 2e periodic with distinct neg-
ative differential conductance (Fig. 6.1c), which transition to an even-odd peak spacing dif-
ference atmoderate fields (Fig. 6.1d), similar to previouswork on superconductingCoulomb
islands [50, 77, 110, 113, 123–125]. At high fields, the 1e periodic diamonds show a discrete
ZBP for consecutive charge degeneracy points that is well separated from the superconduct-
ing gap (Fig. 6.1e). This sub-gap feature remained at zero bias until the superconducting
gap closure, and persists for 3 mV in Vpg, corresponding to an energy range of 0.8 meV. The
stability of the zero-bias state in both magnetic field and in chemical potential is consistent
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Figure 6.1: Majorana island interferometer. a, False-colour electron micrograph of
the Majorana island interferometer where an Al wire (light blue) is embedded in a normal
conducting Aharonov-Bohm interferometer (green) defined by Ti/Au gates (yellow). The
gate voltage Vpg defines both the Majorana island and the interferometer center, and
controls the electron occupancy. The gate voltage Vc controls the resistance of the
reference arm and Vsd is the source-drain dc bias voltage. Magnetic field directions are
shown with α denoting the in-plane angle measured with respect to the wire direction.
b, Zero-bias differential conductance G as a function of B∥ and Vpg. Se (So) is the even
(odd) CB peak spacing. c-f, Differential conductance G as a function of Vsd and Vpg

showing Coulomb diamonds for B∥ = 1 T (c), 2 T (d), 2.5 T (e), and 3.3 T (f). The
measurements shown in panels b-f were taken with the reference arm closed.

with the MZM picture (see Supplementary Fig. 6.5) [77], however, the observation of co-
herent single-electron transport is needed to draw conclusions about non-locality. Below,
we show that the zero-bias state was sensitive to rotations of the in-plane field. The magni-
tude ofB∥ where 1e periodicity is observed is in agreement with ZBPsmeasured in tunneling
spectroscopy in InAs 2DEGs [81]. In contrast, as a function of Bt the peak spacing remained
even-odd, and no consecutive ZBPs were observed (see Supplementary Fig. 6.6d-f). The
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normal state 1e regime of the Majorana island appears above B∥ ∼ 3 T with Ec = 80 μeV
(Fig. 6.1f), where no discrete ZBPs are observed (see Supplementary Fig. 6.5 and 6.6a-c).

6.4 Interferometry

The reference arm of the AB interferometer was connected to theMajorana island by tuning
Vc from -8V to -3VwhileVpg was compensated. This lifted the overall conductance by open-
ing a path through the reference arm (see Fig. 6.2a-d). Figure 6.2e-h shows the conductance
ΔG through the full interferometer (with smooth background subtracted; see methods) as a
function of B⊥ and gate voltage Vpg, which control the flux in the interferometer and occu-
pancy of the island, respectively. Figure 6.2e shows small oscillations inΔG(B⊥) atB∥ = 0T
for the 2e periodic peaks. For B∥ = 2.2 T, where the peak spacing was even-odd (Fig. 6.2f),
the conductance showed moderate oscillations with a period ΔB⊥ = 1.5 mT. The period
ΔB⊥ is consistent with a single flux quantum h/e piercing the interferometer, indicating co-
herent 1e transport through both arms of the interferometer. At B∥ = 2.7 T, the CB peak
spacing was uniformly 1e, and oscillation amplitude wasmaximal (see Figs. 6.2g). When the
Majorana island was driven normal, B∥ > 3 T, conductance oscillations were reduced, be-
coming comparable to the low field oscillations (Fig. 6.2h). The appearance of strong h/e
periodic conductance oscillations in the 1e regime of the island is a key experimental signa-
ture of electron teleportation.

The strength and periodicity of the oscillations were examined more quantitatively using
Fourier power spectrum (PS) analysis (see methods). In Figs. 6.2i-l, the PS of ΔG(B⊥) are
shown. IncreasingB∥ led to apeak appearing around f = 0.65mT−1, the frequency expected
for AB interference. The PS is maximized in the 1e regime. To quantify the oscillations am-
plitude, ⟨Ã⟩, we average the integrated PS (see methods).

We next correlate the B∥ dependence of the oscillations amplitude, ⟨Ã⟩(B∥), with the B∥
dependence of the lowest sub-gap state, Eo(B∥), of the island. The sub-gap energy is found
from the difference between even and odd CB peak spacings, averaged separately, ⟨S⟩ =

⟨Se⟩−⟨So⟩ (seeFig. 6.1b). InFigure 6.3a, ⟨S⟩ remains constant as a functionofB∥ (indicating
2e transport) until a sub-gap state moves below Ec, reaching zero at 2.2 T without overshoot
(as expected for well separatedMZMs in a long wire [77, 109]). At low fields, where the CB
periodicity was 2e, the oscillation amplitude ⟨Ã⟩ is small (Fig. 6.3b). When ⟨S⟩ approaches
zero at high fields (B∥ > 2 T), ⟨Ã⟩ exhibits a sharp increase that coincides with the 2e to 1e
transition. Above 3 T, the device was in the normal state and ⟨Ã⟩ returned to the low value
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Figure 6.2: h/e periodic conductance oscillations. Magnetoconductance for parallel
field values B∥ = 0, 2.2, 2.7, and 3.3 T (left to right). a-d, Zero-bias differential con-
ductance G(B⊥ = 0) versus gate voltage Vpg used to control electron occupation. e-h,
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the flux in the interferometer with corresponding power spectrums in i-l. The solid black
lines indicate the frequency window bounding the Aharonov-Bohm oscillations (see meth-
ods). ΔG is the conductance with a subtracted slowly varying background. ΔVpg = 0
corresponds to Vpg = -1.896 V.

found in the 2e regime. This comparison shows that the oscillation amplitude is correlated
with the energy of the lowest subgap state, and is maximal in the 1e superconducting regime,
as expected for electron teleportation.

Figure 6.3c,d shows a similar study for device 2. In Fig. 6.3c, ⟨S⟩ shows strong even-odd
below 1 T, fluctuates around ⟨S⟩ = 0 between 1-2 T, then settles to 1e (⟨S⟩ = 0) above 2 T.
CB spectroscopy reveals a discrete state that oscillates around zero energy in bothB∥ andVpg

without forming a stable 1e periodic zero-bias peak (see Supplementary Fig. 6.8). This be-
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haviour is compatiblewith hybridizedMZMsor extendedAndreev bound states (ABS) [50].
Figure 6.3d shows that phase coherent transport first appears above 1T and ⟨Ã⟩ gradually in-
creases until reaching a maximum amplitude for 1e peak spacing at 2.1 T, before diminishing
in the normal state. In comparison to device 1, phase coherent transport appears before 1e
peak spacing, suggesting that extended modes may also contribute to coherent transport.
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6.5 Transmission phase shifts

We observe that conductance oscillations measured on opposite sides of a CB peak in the 1e
regime are out of phase (see yellow ticks in the insets of Fig. 6.3) indicating a transmission
phase shift of π is acquired when the parity of the island is flipped (also see Fig. 6.9). This
demonstrates interferometric detection of island parity, a feature of several recent topological
qubit proposals [29, 32, 33]. In some cases, however, we found that the the phase shift was
restored through the CB valley, such that the same sides of adjacent CB peaks have the same
phase. What determines whether there is phase recovery in the CB valley is not currently
understood (see Supplementary Fig. 6.9 and Fig. 6.10) [117, 120–122].

6.6 Magnetic field rotations

The angular dependence of the in-plane magnetic field was investigated by fixing the field
magnitude Br = 2.5 T and rotating the field by an angle α (see Fig. 6.1). Theoretically,
a rotation of the in-plane field towards the Rashba field direction is expected to close the
topological gap [78]. Figure 6.4a shows 1e periodic Coulomb diamonds at B∥ = 2.5Twith
a discrete ZBP at each charge degeneracy point (similar to Fig. 6.1e). Rotating by an angle
α = 5◦ lifted the discrete state from zero energy, leading to even-odd peak spacing; at α =

10◦, 1e periodicity was recovered, though without a discrete ZBP. The observed sensitivity
of the zero-energy state to in-plane field rotation is consistent with MZMs [78].

Small rotations (|α| < 7.5◦) reduced the oscillation amplitude, ⟨Ã⟩, as expected for even-
odd periodicity (see Fig. 6.3). However, at larger angles (|α| > 10◦) where the discrete ZBP
was absent, a strong interference signal was observed (Fig. 6.4d). The observation of coher-
ent transport in the absence of a discrete zero-energy state suggests trivial extended modes
are also phase coherent over the length of the island. Therefore, the additional information
provided by bias spectroscopy is needed to distinguish teleportation from other coherent
transport mechanisms, as shown in Figs. 6.4a-c.

We further studied the effect of different magnetic field direction. The results are shown
in Fig. 6.11. In summary, all three axes showed coherent transport, with oscillation amplitude
first increasing as ⟨S⟩ approached zero. This shows that the oscillation amplitude is dictated
by the energyEo in all field directions and indicates that interference is not unique to a parallel
magnetic field, however, there is a distinction where the oscillation strength is maximized.
This may reflect the Rashba SOI of the 2DEG (see Fig. 6.11), which leads to an anti-crossing
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of iso parity modes for B∥, while Bt (aligned to the spin-orbit field) allows for crossing of
modes [50].

6.7 Discussion and conclusions

Finally, we comment on the physical mechanism that correlates the oscillation amplitude to
the energy of Eo. At low fields, the Majorana island favours an even parity where transport
of electrons occurs as two sequential tunneling events on either end of the island [110, 124].
The two electrons acquire the condensate phase when forming a Cooper pair, which sup-
presses single-electron coherence. At moderate fields, a discrete sub-gap state is brought be-
low Ec and a single-electron transport channel is opened, allowing coherent resonant tun-
neling through the Majorana island. When the discrete state is brought to zero-energy, the
contribution of coherent transport is increased due to electron teleportation. Finally, in the
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normal state, we interpret the reduction in interference signal to reflect the short coherence
length in the diffusive Al wire.

In conclusion, we report signatures of single-electron teleportation via MZMs using AB
interference in combination with spectroscopy of a discrete zero-energy state. Our results
also reveal that coherent transport by topologically trivialmodes extendingover the full length
of theMajorana island are allowed. These extended trivial modesmay be precursors of topo-
logical states [126]. We have shown that interferometry accompanying bias spectroscopy re-
vealing 1e periodic CB with discrete zero-bias states can discriminate MZMs from extended
modes. Increasing the wire length to greatly exceed the diffusive coherence length ξ =√

ξ0 le ∼ 1 μm (forΔ = 75 μeV at B∥ = 2.5T), where ξ0 is the clean coherence length and
le ∼ 300 nm is the semiconductingmean free path [52] will suppress 1e transport via trivial
extendedmodes. Theobservationof coherent transport through the island rulesout localized
ABS at the ends of thewire as the source of the studied zero-bias state. Indeed, transport flips
the parity of localized modes and suppresses interference, while transport through MZMs
preserves island parity and coherent transport [115, 116]. These localized modes could have
been a possible interpretation of the previously observed ZBPs in single-end tunneling ex-
periments [126].

These results suggest that InAs-Al 2DEGs are a promising route towards more complex
experiments related to the braiding or fusion ofMZMs. We have established coherent trans-
port and parity readout from the transmission phase shifts in Majorana islands, two key re-
sults for future topological qubit networks [29, 32, 33]. Future devices will take advantage
of improved material quality to allow for increased wire lengths to suppress coherent triv-
ial quasiparticle transport, allowing MZM contributions to be better separated from other
potential contributions.
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Methods

The devices were fabricated on wafers grown by molecular beam epitaxy on a InP substrate.
Thewafer stack consists of a 1 μm graded In1−xAlxAs insulating buffer, a 4 nm In0.81Ga0.19As
bottom barrier, a 5 nm InAs quantum well, and a top barrier consisting of 5 nm In0.9Al0.1As
for device 1 and 10 nm In0.81Ga0.19As for device 2. A 7 nm film of epitaxial Al was then
grown in-situ without breaking the vacuum of the chamber. The InAs 2DEGs were char-
acterized with a Hall bar geometry (Al removed), which showed a peak mobility of μ =

17, 000cm2V−1s−1 for anelectrondensityofn = 1.7×1012 cm−2 andn = 7.5×1011 cm−2

for device 1 and device 2, respectively.
To highlight the oscillating components of the differential conductanceG(B⊥), a smooth

background was subtracted with a low-degree polynomial Savitzky-Golay filter resulting in
ΔG [127]. Analysis of the oscillationswas performed by first performing a fast Fourier trans-
form F(f) of ΔG(B⊥) using a Hanning window then calculating the power spectral density
PS(f) = |F(f)|2. The oscillation amplitude ⟨Ã⟩ was obtained by averaging integrated power
spectra. The integration was limited to a band in frequency between f1 = 0.55 mT−1 and
f2 = 0.75 mT−1, spanning the range of a single flux quantumΦ0 = h/e through the area A
defined by either the central gate (A1 = 2.25 μm2) or the exterior gates (A2 = 3.1 μm2),
where f = A/Φ0 (see Figs. 6.2i-l).
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6.8 Supplementary Information
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occupancy with the reference arm closed. b-e, Differential conductance G as a function
of voltage bias Vsd and Vpg for B∥ = 0 T (b), 2 T (c), 2.75 T (d), and 3.5 T (e).
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the 1e regime for device 2 (a) and device 1(b) in the second gate configuration of device
1 (see Fig. 6.10). Bottom: G(B⊥ = 0) versus gate voltage Vpg used to control electron
occupation.
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7
Introduction to the loop qubit

The experimental evidence of Majorana non-locality presented in chapter 6 was a prerequisite be-
fore moving towards the more challenging Majorana parity detection experiments. The following
chapter will outline the parity-to-charge conversion scheme we are currently implementing in at-
tempts to detect the joint parity of twoMZMs. In chapters 8 and 9 I will expand upon the results of
this chapter and discuss the progresses towards realizing Majorana parity readout in hybrid quan-
tum well heterostructures.



7.1 Majorana parity

The prospect of utilizing MZMs to build a fault tolerant quantum computer relies on the
ability to readout andmanipulate quantum information stored in a fermionic parity of a non-
local state. Figure 7.1 shows a single topological superconductor with two well separated
MZMs γ1 and γ2 at the ends of the one-dimensional nanowire. These twoMZMs constitute
a single fermionicmode, which can be either occupied or unoccupied (seeChapter 1.2). The
parity p of theMZMs is defined as,

p1,2 = iγ1γ2 =

{
1, if occupied

−1, if empty .

γ1 γ2

Figure 7.1: Single topological nanowire with two Majorana zero modes γ1 and γ2

TheMajorana parity is protected from local external perturbations by the topological gap
[128]. For two well separated MZMs the two parity states are degenerate [30, 31, 128].
This degeneracy can be lifted by hybridizing twoMZMs, causing a parity dependent energy
splitting [30, 32]. This enables parity readout by parity-to-charge conversion mechanisms,
such as Coulomb blockade [31], quantum dot hybridization [32, 33, 128] or interferometry
[26, 29].

In the case of two topological wires, as depicted in Fig. 7.2a, the hybridization between
the two inner Majoranas, γ2 and γ3, is mediated by a quantum dot (QD). This controlled
hybridization forms the basis of the parity readout scheme envisioned by several ‘measure-
ment only’ topological qubit proposals [32–34]. The qubit operation is referred to as mea-
surement only becausemeasurements are both used to readout andmanipulate the quantum
information stored in theMajorana parity.

Figure 7.2a shows a schematic representation of a device where two topological wires are
connected by a trivial superconducting loop. This device geometry is referred to as a Loop
Qubit and allows for the joint parity iγ2γ3 to be measured. By bringing a QD level into res-
onance allows for the inner Majoranas to hybridize. This causes a parity dependent energy
splitting, which in turn alters the average occupationof theQD.This enables charge detection
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Figure 7.2: Loop Qubit: a, Schematic of a Majorana loop qubit. Two topological one-
dimensional nanowires are connected by a trivial superconducting (SC) loop with four
MZMs γ1,γ2,γ3,γ4. A quantum dot (QD) is used to control the hybridization of γ2 and γ3.
The parity p2,3 is readout by a nearby charge sensor (S). b, Parity dependent ground-state
energy as a function of level detuning of the QD ε with different parities shown in red and
blue and solid lines are for ϕ = π/2 and dashed lines for ϕ = π. c, Ground-state energies
as a function of ϕ for ε ∼ 0. d,e, Parity dependent charge occupation of the QD qdot as
a function of detuning ε (d) and phase different ϕ (e).

of joint parity measurements by employing charge sensing techniques.

A model of this system is constructed with two Majorana wires coupled by a QD with
charging energy Ec, which forms a Josephson junction with a phase difference ϕ between the
two topological wires. This system is described by the Hamiltonian [30, 32, 33],

Htot = H0 + HQD + Htunn

whereH0 describes a grounded s-wave proximitized Rashba nanowire tuned into the topo-
logical phase (see Chapter 2.4). In a low energy approximation (temperature T ≪ Δ, Ec),
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the superconductor contains only four MZMs: γ1, γ2, γ3, γ4 as shown in Fig. 7.2a. The
charging energy associated with having nf electrons on the QD is

HQD = Ec
(
nf − ng

)2
,

where the offset charge ng = CgVg/e is tuned by a gate voltage Vg and capacitance Cg.
The QD is positioned between the two topological wires and is tunnel coupled to the inner
MZMs, γ2 and γ3. The tunneling term,

Htunn = −i
eiφ/2

2
(
t2d†γ2 + t3d†γ3

)
+H.c. ,

describes a fermion hopping from the QD to the fermionic modes in the topological super-
conductor. The operators, 12 e

iφ/2 and d† add an electron to theMajorana γ i and QD, respec-
tively [32, 33]. The hybridization ofMajorana γ i and theQD is determined by the tunneling
amplitude ti. The initial state of the system is considered to have tunneling turned off and
the QD to be occupied while γ2γ3 is empty. Turning on the tunneling between the QD and
theMZMs allows for a fermion to tunnel back and forth from theQD to aMZM,mixing the
ground (QD occupancy) and excited states (MZM occupancy), which causes a shift on the
ground state energy of the system that depends on the parity of the Majoranas (occupied or
unoccupied) [30, 32] *. The spectrum of the system is given by [30],

E = − ε
2
±
√( ε

2

)2
+ t22 + t23 + 2p2,3|t2t3| sin (φ/2) (7.1)

where ε is the detuning of the QD and the joint parity p2,3 = ±1. For ε = 0, the QD is on
resonance. In Fig. 7.2b the spectrum is plotted as a function of detuning, showing that the
energy separation between the two parities increases as the QD is brought into resonance†.
In Fig. 7.2c, the spectrum is plotted in the vicinity of ε = 0 as a function of phase difference
ϕ, where each parity branch oscillates with a 4π periodicity. The parity degeneracy can be
restored by setting ϕ = 2nπ for n as an integer. The maximum visibility between the two
parity states is achieved for ε = 0 and ϕ = (2n+ 1)π.

The parity dependence of the energy levels (shown in Fig. 7.2b,c) affects the occupancy
of the QD, since either the electron is occupying the QD or theMZMs. Therefore, since the

*It is assumed that the length of the topological segments is long to avoid hybridization between γ1γ2 and
γ3γ4 [25]
†We assume here that the tunneling amplitudes t2, t3 are symmetric, however, asymmetry or lower ampli-
tudes will decrease the visibility
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occupancy of the QD is sensitive to whether γ2γ3 is occupied, a capacitively coupled charge
sensor can detect p2,3. To illustrate the parity-to-charge conversion, the charge qdot of the
QD is calculated as a function of detuning and phase difference. The charge qdot depends on
the ground state of the spectrum as [25, 32]*,

qdot = e(ng −
1
2Ec

∂EGS
∂ng

) .

Figure 7.2d,e shows that the different parity branches are distinguishable by the charge of
the QD. In this case the maximum visibility between the two parity states is achieved for
ϕ = (2n + 1)π while ε needs to be slightly tuned away from zero. Since the measurement
is performed in the ground state, an ideal measurement of qdot is 4π periodic (see Fig. 7.2e).
If poisoning processes are present, then the parity of the island will change on a timescale τp
where the island will switch between the two parity states and a 2π periodicity is recovered.

7.2 Trivial superconducting loop

Quasiparticle poisoning can arise from both external and internal sources, leading to deco-
herence of theMajorana qubit. This is because a poisoning eventwill flip theMajorana parity
and destroy the quantum information. External sources of poisoning include single electrons
entering the island from the leads or similarmechanisms, which change the total parity of the
island. External sources of poisoning can be reduced by having a finite charging energy [32],
orbyemployingfilter-gate techniques [129]. Internal sources canarise fromnon-equilibrium
quasiparticle excitations or lowenergy sub-gap states that canbe addressedby1) going to suf-
ficiently low temperatures to reduce thermally activated quasiparticles and 2) by ensuring the
superconducting loop is a trivial superconductor without sub-gap states (the loop is colored
grey in Fig. 7.2a). If there are sub-gap states present in the superconducting loop, they can
cause unwanted hybridization between theMZMs or be a source of quasiparticle poisoning.
In the following discussion it is shown how these low energy sub-gap states can be avoided
in the construction of the superconducting loop.

A clear starting point for fabricating the superconducting loop for the loop qubit is to use
the epitaxial Al. This avoids the detrimental ex-situ evaporation of Al or other superconduc-
tors, which involves aggressive and harmful milling procedures that lead to poisoning [129].
However, a challenge arises due to the Rashba SOI of the semiconductor and the alignment

*This is calculated by using the Hellmann-Feynman theorem
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of the magnetic field. To construct the loop, it is necessary to have a segment of the loop
oriented perpendicular with respect to the topological wires. This segment will experience a
transverse component of the applied external magnetic field used to drive the nanowires into
the topological regime. A transverse magnetic field is parallel to the Rashba spin-orbit field
of a one-dimensional wire and therefore the superconducting gap will close at much lower
magnetic fields (see Chapters 2.2.2 and 2.4) [78].

To overcome the challenge of unwanted sub-gap states in the superconducting loop, it is
investigated if sufficient depletion of the transverse segment could allow for a hard supercon-
ducting gap at highmagnetic field. In Fig. 7.3a aCoulomb island is shownwith a 20◦ rotation
away from the parallel magnetic field, with a length of 900 nm and awidth of 100 nm. Apply-
ing a purely parallel magnetic field will then impose a transverse component to the rotated
wire. Typically, a parallelmagnetic fieldB∥ ∼ 2T is required to observe signatures ofMZMs
in one-dimensional nanowires, therefore, it is necessary for the loop to remain a bulk gapped
superconductor until this magnetic field value [101, 106].

Theenergy of the lowest sub-gap stateEo is examinedusingCoulombblockade peak spac-
ing difference ⟨S⟩ = ⟨Se⟩ − ⟨So⟩ (see Chapter 5.1). Figure 7.3b-d shows the differential
conductance G as a function of gate voltage Vpg and parallel magnetic field B∥, where the
Coulomb island is tuned into the Coulomb blockade regime with a charging energy Ec =

45 μeV. At Vpg = −2 V the peak spacing was 2e periodic when B∥ = 0 T. Increasing B∥
caused the 2e periodic peaks to split at 0.68 T and become 1e periodic with strong oscilla-
tions in the peak spacing with field. This is due to a sub-gap state being lowered in energy
below Ec (see Chapter 5.1). The normal state transition of the epitaxial Al film was inde-
pendently measured to be B||,c = 2.5 T *. If the Coulomb island was depleted further with
Vpg = −3 V, the 2e to 1e transition was driven to higher magnetic fields (see Fig. 7.3c) with
the 1e transition occurring above B∥ = 2 T. Decreasing Vpg by a further -200 mV, the 1e
transition occurs at B∥ ∼ 2.4T.

The persistence of the 2e periodic peaks until B∥ ∼ 2.4 T is interpreted to indicate that
the semiconductor below the Al Coulomb island is fully depleted, removing the presence of
any unwanted of sub-gap states. This demonstrates that a 20◦ rotated segment can remain a
superconductor without sub-gap states below 45 μeV when Vpg is sufficiently depleted.

*The lower critical field of B||,c = 2.5 T observed in this wafer compared to the value reported in Chapter 3
is attributed to a thicker growth of Al on this wafer
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8
Magnetic field and flux driven
0-π phase transition in a spinful
Josephson junction

This chapter implements the rotated Coulomb island to construct a superconducting loop that con-
nects two superconducting nanowires. This allows for the device schematic in Fig. 7.2a to be re-
alized. This chapter investigates how to control and measure the quantum dot that is coupled to
the two superconducting nanowires. A normal lead is used to perform tunneling spectroscopy of
the formed between the two nanowires. Transport signatures of a spinful Josephson junction are
observed consistent with a quantum dot confined between the two nanowires. Additionally, 0-π
phase transitions are observed by inducing zero-bias crossings that are tunable with magnetic field
and the phase difference between the two nanowires.



8.1 Introduction

The coexistence of magnetism and superconductivity in a Josephson junction can lead to a
0-π phase transition [58]. Quantum dots (QDs) can serve as spin impurities that can be
controllably coupled to a superconductor (S) [130]. Here, the Andreev spectrumof a hybrid
S-QD-S Josephson junction is probed by performing tunneling spectroscopy with a weakly
coupled normal lead. A gate-voltage-induced transition from a singlet to a doublet ground-
state is identified, where the Andreev spectrum develops a π-phase shift. Control of the 0-π
transition is demonstrated using the superconducting phase difference across the junction
and an external magnetic field. Parity transitions are identified bymeasuring zero-bias cross-
ings induced by a magnetic field, phase difference, and gate voltage.

The proximity effect describes how superconducting order leaks into a material and form
a unique hybrid system composed of properties of the constituents [53]. This allows for
an innovative method for studying unconventional superconductivity without resorting to
bulk material. Recently, the growth of epitaxial Al has led to highly transparent interfaces
necessary for achieving a well-defined proximity effect (see chapter 2.3.3) [90, 94, 102].

When two superconductors (S) are connected by a short normal weak link (N), a super-
current is carried by a discrete spectrum of Andreev bound states (ABS) existing below the
superconducting gapΔwith energyEABS [63] (see chapter 2.3.4). These S-N-S junctions are
objects of intense research and are the fundamental component of gate-tunable supercon-
ducting qubits and Andreev qubits, both requiring a few highly transmitting modes [131–
133]. The Andreev spectrum is modified when magnetic order is induced into the weak link
and can cause a transition from a non-magnetic 0-junction to a magnetic π-junction [134].
For instance, a ferromagnetic weak link induces an oscillating order parameter, which can
lead to a phase difference ϕ = π across the junction [135].

An alternative approach to study the effect of magnetism on superconductivity is to con-
fine a QD in the weak link [136–138]. The charging energy of the QD stabilizes single elec-
tron occupancies that form Yu-Shiba-Rusinov [139–141] bound states through exchange in-
teraction with the S leads [142–144]. In a S-QD-S Josephson junction, where the QD con-
sists of a single spin degenerate orbital level, two ground-states (GSs) are possible [145–147]
(see supplementary Fig. 8.5). For an odd occupancy, the GS can either be a spin-degenerate
magnetic doublet or a non-magnetic singlet. While the precise boundary between the two
GSs is the result of a competition ofmicroscopic details of the junction [145], experimentally
it can clearly be distinguished by a fermion parity transition marked by a zero-bias crossing
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(ZBC) [130]. In a S-QD-S junction, sub-gap resonances occur at EABS matching the energy
difference between theGS and the excited state (ES) [130]. When the ES is brought to zero-
energy, the GS and ES are degenerate and a 0-π phase transition occurs due to a fermionic
parity change of the S-QD ground state (see yellow arrow in Fig. 8.5b) [148]. The tunneling
of single-electrons into the junction yields spectroscopic information of the Andreev spec-
trum and allows for a 0-π transition to be identified by a ZBC [145, 148].

Previous experiments relied on a node in the critical current of a S-QD-S junction as an
experimental signature of a 0-π transition. However, additional orbital effects may compli-
cate this interpretation [149–151] (also see Fig. 10.6). Additional signatures involving the
observation of supercurrent reversal using a superconducting quantum interference device
(SQUID) [143, 152, 153] or by directly probing the Andreev spectrum [146, 147] can result
in clearer experimental signatures. Indeed, tunneling spectroscopy in aN-QD-Sgeometry re-
vealed a 0-π transition that is induced by a magnetic field [130] and in a S-QD-S Josephson
junction by controlling the phase difference [147]. Theoretical studies of the QD-S system
have predicted that a 0-π transition is possible with 1) a gate voltage, 2) magnetic field, and
3) phase difference [134, 145, 148]. To the best of our knowledge, this work is the first ex-
periment addressing the combination of these three parameters on the 0-π phase transition.

In this chapter, theAndreev spectrumof a S-QD-S is directlymeasured by tunneling spec-
troscopy. This includes the observation of a singlet to doublet GS transitions by controlling
theQD charge occupancywith a gate-voltage. In the singlet GS, amagnetic field induced 0-π
transition is observed, which is lowered in magnetic field by controlling the phase difference
across the junction, reachingB∥ = 0T at ϕ = π. Within the gate-controlled doublet GS, the
Andreev spectrumobtained a π-shift and a reduced phase dependence ofEABS was observed.
We determine the evolution of the 0-π phase transition by measuring ZBCs as a function of
gate-voltage, magnetic field and phase difference.

8.2 Device

Devices were fabricated using an InAs two-dimensional electron gas (2DEG) heterostruc-
ture covered by 8 nm of epitaxially grown Al, with an induced superconducting gap ofΔ∗ =

220 μeV. Figure 8.1a shows a micrograph of the device, where a superconducting loop has
been selectively wet etched from the Al film. Ti/Au top-gates were evaporated on a 15 nm
HfO2 dielectric grown by atomic layer deposition. Applying negative gate voltagesVS,1/2 the
two superconducting leads were defined, forming a ballistic Josephson junction. TheQDbe-
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Figure 8.1: Spinful Josephson junction: a, False-colour electron micrograph of the
superconductor-quantum dot-superconductor Josephson junction where an Al loop (blue)
forms a Josephson junction with an embedded quantum dot defined by Ti/Au gates (yel-
low) with gate voltage Vpg. The tunnel barriers to the normal lead and superconducting
leads are controlled by gate voltage Vt. A bias voltage Vsd is applied to the normal lead
and the superconducting loop is grounded. Magnetic field directions are shown where B⊥
is used to thread fluxes in the superconducting loop. b, Simplified sketch of the device.
c, Zero-bias differential conductance G as a function of Vt and Vpg. d, Zero-bias G as a
function of B∥ and Vpg. e, G as a function of Vsd and Vpg for B∥ = 0 T and Vt = −1.85 V.
f, G as a function of Vsd and Vpg for B∥ = 0 T and Vt = −1.87 V. g, G as a function of
Vsd and Vpg for B∥ = 0.4 T and Vt = −1.85 V.

tween the twoS leadswas definedwith a negative voltagesVpg. In Fig. 8.1b, a schematic of the
transport configuration is shown, where a voltage bias was applied to a normal (N) lead and
the resulting current and four-terminal voltage was recorded with the S loop grounded. The
tunnel barriers to the N and S leads were controlled by gate voltage Vt, allowing for tunnel-
ing spectroscopy of the S-QD-S junction. The in-planemagnetic fieldsB∥ and perpendicular
field, B⊥, were controlled by a three-axis vector magnet. The superconducting phase differ-
ence ϕ across the junction was controlled by threading magnetic fluxes through the S loop
with B⊥. Previous measurements on similar material revealed a near unity transmission of
the ABS in an SNS junction [94].
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8.3 Results and discussion

Tunneling spectroscopyof theS-QD-S junctionwasperformedby forminga tunnel barrier to
the normal lead withVt = −1.85V (see Fig. 8.1b). In Fig. 8.1e the differential conductance,
G = dI/dV, is shown as a function of the bias voltage Vsd and the gate voltage Vpg used to
tune the occupancy of the QD. A superconducting gap Δ = 150 μeV< Δ∗ is found, which
indicates a strong QD-S hybridization. By changing Vpg, two distinct sub-gap features are
observed. The first occurred at Vpg ∼ −5.7 V (yellow marker), where EABS is reduced to
100 μeV.This is a signature of a Shiba-state and a parity conserving transition. Alternatively,
by varyingVpg through -5.8 V (purple marker), a ZBCwas observed. This crossing indicates
a degeneracy between the singlet GS and doublet ES, and a gate-induced 0-π transition.

ThedoubletGS origin of the ZBC is verified by studying the dependence of theZBCwith
Vt and parallel magnetic field B∥. Fixing Vsd = 0 in Fig. 8.1c shows that the ZBC splits and
expands in Vpg with more negative Vt voltages. This reflects a decrease in coupling to the
superconducting leads, which stabilizes the doublet GS in gate voltage (see supplementary
Fig. 8.5a) [130, 145]. Moreover, applyingB∥ lifts the spin degeneracy of the doublet, leading
to the splitting observed in both Fig. 8.1d,g. In the following discussion the behaviour of the
parity conserving transition (yellow marker) and the odd parity transition (purple marker)
is investigated as a function of magnetic field and phase (see Fig. 8.1e for markers) .

8.3.1 Even parity ground state

We first investigate the even parity GS by fixing Vpg = −5.69 V. In Fig. 8.2a, the differential
conductance G is measured as a function of ϕ and Vsd. As the phase difference across the
junction is increased from 0 to π, the doublet ES moves to lower energy and crosses zero-
bias at ϕ = π. The strong dispersion of EABS(ϕ) indicates a highly transparent junction [63].
Applying a small parallel field, B∥, spin splits the doublet ES, leading to a gap opening about
ϕ = π (marked by two ZBCs in Fig 8.2b). This gap indicates a phase tunable 0-π transition
that grows with increasing field (see In Fig. 8.2a-d) [145].

Focusing on the B∥ dependence in the absence of a phase difference (ϕ = 0) the zero-
bias conductance G(Vsd = 0) transitions from a minimum at B∥ = 0 T to a maximum at
0.8 T. That is, the doublet ES is lowered with B∥ and a ZBC occurs at 0.8 T (see Fig.8.2d).
At B∥ = 0.8 T we observe that EABS acquires a π-shifted phase dependence compared to
zero field, which is a predicted signature of a magnetic π-junction. In Fig. 8.2e, the ϕ and
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Figure 8.2: Even parity ground state: Differential conductance G as a function of
superconducting phase difference ϕ and voltage-bias Vsd for B∥ = 0 T (a), B∥ = 0.4 T
(b), B∥ = 0.6 T (c), B∥ = 0.8 T (d). e, Zero-bias G as a function of ϕ and B∥ with
corresponding cuts in f.

B∥ dependence of the 0-π transition is captured by measuring G(Vsd = 0). Increasing the
field causes the zero-bias crossing at ϕ = π to split, stabilizing a doublet GS in phase. At
B∥ = 0.8TaZBCoccurs atϕ = 0. These results indicate that the combinationof amagnetic
field and a phase difference can control the 0-π transition in an even parity GS.

8.3.2 Odd parity ground state

Theodd parity transition is investigated in Figure. 8.3 by fixing Vpg = −5.8V (see Fig. 8.1).
Figure 8.3a shows the ABS crossing at ϕ = 0 due to the spinful occupancy of the QD, which
is π-shifted compared to Fig. 8.2. A reduced EABS(ϕ) dependence is observed, similar to pre-
vious results on this system [147]. This weakened phase dependence is attributed to higher
order transport processes associated with tunneling across a spinful junction [154]. Apply-
ing B∥ = 0.2T in Fig. 8.3b causes the singlet ES tomove to finite bias, where a gap develops
at zero-bias for all ϕ. In comparison to Fig. 8.2, no spin splitting of the ES is observed. This
behaviour is explained by the decreasing energy of the doublet GS with increasing magnetic
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(b), B∥ = 0.4 T (c).

field due to spin splitting [130]. This in turn causes an increase in EABS with magnetic field,
leading to the gap forming for all ϕ observed in Figure. 8.3c.

8.3.3 Zero-bias crossings

We identify 0-π transitions bymeasuringZBCs induced by amagnetic field, phase difference,
and gate voltage in Fig. 8.4. At B∥ = 0, the parity conserving transition observed in Fig. 8.2
is observed at Vpg = −5.7 V marked by the ZBCs occurring at ϕ = π. The odd parity
transition examined in Fig. 8.3 is identified with the vertical band at Vpg = −5.8 V. Indeed,
the odd parity transition develops a π-shiftedAndreev spectrum compared to the even parity
ground state (see Fig 8.4b). Increasing B∥ = 0.2 T causes the odd occupancy ZBC to split,
stabilizing a doublet GS in both ϕ and Vpg. Further increasing B∥ = 0.4 T causes the even
parity ZBC at ϕ = π to split in both ϕ and Vpg. With increasing magnetic field, the doublet
GS expands in both ϕ and Vpg, while the singlet GS shrinks.

8.4 Conclusion

In summary, the Andreev spectrum of a S-QD-S Josephson junction under the influence of
gate voltage, magnetic field, and superconducting phase difference was measured. The com-
bination of a magnetic field and a phase difference was observed to stabilize a π-junction.
These results are important for the development of novel means of manipulating the spin of
the ABS for coherent control of Andreev qubits.
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9
Signatures of zero energymode
hybridization

This chapter shows the preliminary results of a highmagnetic field compatible loop qubit device. The
results shown here build upon the previous two chapters. A quantum dot (QD) is used as a spec-
trometer of the top and bottom superconducting one-dimensional wires to identify zero-bias states.
When zero-bias states were identified in both wires, controlling the charge occupancy of the QD,
showed signatures of avoided crossings when on resonance with the QD.These avoided crossings os-
cillate periodically by controlling the phase difference between the two superconducting wires. The
observations are compatible with the theoretical picture of hybridizing zero-energymodes presented
in Chapter 7.



9.1 Introduction

Chapter 8 illustrated the ability to form and control the coupling between a quantum dot
(QD) and two superconducting nanowires (S). Another important result was the ability to
perform tunneling spectroscopy of a S-QD-S junction, which will be necessary for identify-
ing putative zero-bias states. However, the device had several limitations. First, the super-
conducting gap of the junction closed at B∥ ∼ 1 T, hindering the exploration of MZMs in
the superconducting nanowire leads. Secondly, due to the strong QD-S coupling, it was not
possible to resolve sub-gap states in the nanowires. These challenges were overcome by a
slight redesign of the gate geometry used to define the QD.

Ti/Au Al InAs

Vpg

Vt,wire

Vb,wire

Vt,tunnel

Vb,tunnel1 µm

100 nm

a b

Vsd
B┴

B|| 

Figure 9.1: Loop qubit device: False-colour electron micrograph of the superconductor-
quantum dot-superconductor Josephson junction where a QD is embedded between the
two wires (top and bottom), which form a superconducting Al loop (blue). The chemical
potential of the top (bottom) wire is controlled by a Ti/Au gate (yellow) with voltage
Vt,wire (Vb,wire) and the tunnel barrier is controlled by voltage Vt,tunnel (Vb,tunnel). A bias volt-
age Vsd is applied to the normal lead and the superconducting loop is grounded. Magnetic
field directions are shown where B⊥ is used to thread fluxes in the superconducting loop.

The device studied in this chapter is shown in Fig. 9.1. It was fabricated on an InAs two-
dimensional electron gas (2DEG) covered by 7 nm of epitaxially grown Al, similar to the de-
vice in Chapter 8. The most prominent change was two additional electrodes operated with
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gate voltages Vt,tunnel and Vb,tunnel. The addition of these gates allowed for stronger confine-
ment of the QD and a reduced coupling to the superconducting leads. For the detection of
MZMs in one-dimensional nanowires, it was necessary to tune the chemical potential of each
nanowire [80]. This was achieved by controlling gate voltagesVt,wire andVb,wire for eachwire
independently. Tunneling spectroscopy was performed by measuring the differential con-
ductance G from the normal lead (right side of Fig. 9.1a) through a tunneling construction
into the S-QD-S junction as a function of Vsd with the superconducting loop grounded.

9.2 Tunneling spectroscopy
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Figure 9.2: Independent spectroscopy of each nanowure: a, Differential conductance G as
a function of gate voltages Vt,tunnel and Vb,tunnel. b, G as a function Vb,tunnel and voltage
bias Vsd revealing the superconducting gap of the bottom wire. c, G as a function Vt,tunnel

and voltage bias Vsd showing the superconducting gap of the top wire.

Theadditional gate electrodes increased the control over the device, offering the flexibility to
independently control the tunneling barriers for each nanowire segment. This is illustrated in
Fig. 9.2, where the gate voltagesVt/b,tunnels are used to open and close each wire. In Fig. 9.2a,
the zero-bias conductanceG ismeasured as a function ofVt,tunnel andVb,tunnel. Importantly, it
is observed that the conductance can only be pinched offwith a combination of bothVt,tunnel

and Vb,tunnel. To show independent spectroscopy of each wire, first both wires are pinched
off with Vt/b,tunnels ∼ −1.75 V. Then, by only reopening with one tunnel barrier at a time
allows for independent interrogation of each wire. In Fig. 9.2b the differential conductance
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G is measured as a function of Vb,tunnel and Vsd starting from−1.75 V where both wires are
pinched off. Increasing only Vb,tunnel reveals a superconducting gap of Δ = 220 μeV, which
is interpreted to reflect tunneling spectroscopy of the bottom wire. A similar measurement
for the top wire is shown in Fig. 9.2c. These results indicate that independent spectroscopy
can be performed on either wire.

A requirement forMajorana parity readout is to have a well-definedQD between the two
superconducting nanowires to allow for controllable hybridization ofMZMs [32]. Using the
results fromchapter 8, the S-N-S junctionwas confined into aQDusing the surrounding gate
electrodes. Figure 9.3a shows the differential conductanceG as a function of gate voltageVpg

used to tune to occupancy of the QD and the voltage bias Vsd, showing a series of Coulomb
diamondswith a regular periodicity. TheQDisused toperformspectroscopyof thenanowire
segments using co-tunneling transport [80]. That is, by using theCoulomb valley as a tunnel
barrier to perform spectroscopy. Figure 9.3b shows G at B∥ = 2.9 T as a function of Vpg

and Vsd where discrete states are observed extending through the Coulomb valleys, which
are interpreted to be sub-gap states of the nanowires.
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Figure 9.3: Coulombblockade: Differential conductance G as a function of gate voltage
Vpg and voltage bias Vsd for B∥ = 0.5 T (a) and B∥ = 2.9 T (b).

Weproceed to study eachwire independently in anN-QD-S configuration by closing one
nanowire and performing tunneling spectroscopy on the other. Figure 9.4a shows G as a
function of Vt,wire and Vt,tunnel revealing Coulomb blockade peaks (bottom wire closed). In
order to efficiently explore the gate-voltage parameter space, the third harmonic technique
discussed in chapter 4.2.3 is employed. In summary, a measurement of the third harmonic
of the current I3ω ∝ −∂2G

∂V2 at Vsd = 0. Therefore, a positive third harmonic current I3ω
indicates a zero-bias peak (ZBP).

To determine if the ZBP is stable in both gate voltage and magnetic field (as expected
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for MZMs), I3ω is measured as a function of Vt,wire and Vt,tunnel for magnetic fields ranging
from B∥ = 2 to 3 T in 100 mT steps. Then a numerical average is calculated ⟨I3ω⟩ of all
eleven Vt,wire and Vt,tunnel maps. Figure 9.4b shows ⟨I3ω⟩, where positive regions (red) are
indications of stable ZBPs.
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Figure 9.4: Thirdharmonic: a, Differential conductance G as a function of gate voltages
Vt,wire and Vt,tunnel. b, Numerically averaged third harmonic current ⟨I3ω⟩. See text for
description.

Based on the third harmonicmeasurements,Vt,wire andVt,tunnel are set to regions of stable
ZBPs. Measuring the differential conductance G as a function of Vt,wire and Vsd in Fig. 9.5a
reveals aZBPextending throughmultipleCoulombvalleys atB∥ ∼ 3T.Due to theCoulomb
peaks having a field behaviour, it is necessary to measure Coulomb diamonds from B∥ = (0
to 3) T to reconstruct the field dependence in the Coulomb valley. In Fig. 9.5a the recon-
struction shows the emergence of a ZBP after the closure of a gap at B∥ ∼ 2 T. To perform
a similar investigation of the bottom wire, the top wire is closed with Vt,tunnel. To identify
stable ZBPs inVb,wire andVb,tunnel a similar procedure outlined above is used for the topwire.
Figure 9.5c reveals a ZBP atVb,wire ∼ −1.99V.The reconstructed parallel magnetic field de-
pendence is shown in Fig. 9.5d, showing a ZBP emerging at B∥ = 2.5T and persisting until
the closure of the gap at∼ 3 T.The observation of a stable zero-energy state above a critical
parallel magnetic field is consistent with a topological phase transition and the appearance of
MZMs in both the top and bottom nanowires.

The observation of zero-bias states in each wire enables the investigation of MZM hy-
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Figure 9.5: Zero-bias peaks: a, Differential conductance G as a function of gate voltage
Vt,wire and voltage bias Vsd for a parallel magnetic field B∥ = 3.1 T. b, G as a function
of B∥ and Vsd reconstructed from the Coulomb valley marked in a. c, G as a function of
gate voltage Vb,wire and Vsd for B∥ = 2.6 T. b, G as a function of B∥ and Vsd reconstructed
from the Coulomb valley marked in c.

bridization. To investigate the hybridization of the zero-bias states, the tunnel barriers to
each wire are opened by setting Vt,tunnel = Vb,tunnel ∼ −1.25 V. In Fig. 9.6b,G is shown as a
function ofVt,wire (used to tune the occupancy of theQD) andVsd, where distinctly different
behaviours on Coulomb peaks and in Coulomb valleys are observed. Deep in the valleys a
few near ZBPs (see blue tick marker) are found. Figure 9.6a shows the reconstructed parallel
magnetic field dependence in the Coulomb valley. At B∥ ∼ 2 T, a partial closure of the su-
perconducting gap is observed, which coincides with the appearance of a ZBP for increasing
B∥. It appears that increasing B∥ causes an additional state to move near zero-bias, however
the reduced conductance in the Coulomb valley hinders the visibility of the states. The two
near ZBPs can be seen more clearly at the blue marker in Fig. 9.6e.
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constructed from the Coulomb valley marked in b. b, Differential conductance G as a
function of gate voltage Vt,wire and voltage bias Vsd for a parallel magnetic field B∥ = 2.7 T.

Next the attention is drawn to the behaviour of these two near zero-bias states when the
QD is brought into resonance (see Fig. 9.6b). Focusing on the Coulomb peak to the left of
the blue marker (Vt,wire = −2.02 V), it is observed that the two near zero-bias states on
the positive side of the Coulomb peak diverge towards positive Vsd, while approaching the
Coulomb peak from the opposite side causes a divergence to negative Vsd. This behaviour
leads to the formationof an avoided crossingwhenon resonancewith theQD.Thisbehaviour
is also observed for other Coulomb peaks in Fig. 9.6b.
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Figure 9.7: Periodic conductance oscillations. a-d, Differential conductance ΔG as a
function of gate voltage Vt,wire and perpendicular magnetic field B⊥ controlling the flux
in the superconducting loop for parallel magnetic fields B∥ = 0 T, B∥ = 2 T, B∥ = 2.8 T,
B∥ = 4 T. Power spectrum (e) and maximum oscillation amplitude (f) as a function
of B∥. The oscillation amplitude is measured from the power spectra from a series of
measurements similar to a-d at each B∥. G is the conductance with a subtracted slowly
varying background. The Coulomb peaks studied here correspond to the two rightmost
peaks in Fig. 9.6b and are shifted due to gate hysteresis.

9.3 Periodic conductance oscillations

In chapter 7 it was observed that the hybridization of MZMs should depend on the phase
difference across the S-QD-S junction. To investigate this effect on the avoided crossing, a
perpendicular magnetic field is applied to tune the superconducting phase difference ϕ be-
tween the two wires. In Fig. 9.7a-d, the differential conductance G (slowly varying back-
ground removed), is shown as a function of Vt,wire and a perpendicular magnetic field, B⊥,
used to thread fluxes through the superconducting loop and tune the superconducting phase



9.4. DISCUSSIONANDCONCLUSION 123

difference. At B∥ = 0 T, strong conductance oscillations are observed when on resonance
with the QD with a periodicity ΔB⊥ = 1 mT, corresponding to a flux h/2e threading the
superconducting loop (see Fig. 9.7a). As the magnetic field is increased, the conductance
oscillations gradually decrease in amplitude, coming to a minimum at 2 T. After B∥ = 2 T,
the conductance oscillations revive, reaching a local maximum at B∥ = 2.8T (see Fig. 9.7c)
before decaying in the normal state. Figure 9.7,e,f show the power spectrum and maximum
oscillation amplitude for each magnetic field displaying the gradual decrease and the revival
of the oscillation amplitudewith parallel magnetic field. The suppression of the conductance
oscillations coincides with the magnetic field where the partial gap closure was observed in
Fig. 9.6a, and the revival corresponds to the field where the zero-bias states emerged. The
conductance oscillations were observed when the QD was brought into resonance and ab-
sent in the Coulomb valley. The reentrance of phase coherent transport at B∥ ∼ 2.5 T in-
dicates an additional coherent transport mechanism was turned on with the appearance of
zero-bias states.

9.4 Discussion and conclusion

The observed behaviour of the ZBP avoided crossing in the vicinity of a Coulomb peak is
comparable with the theoretical picture of MZM hybridization outlined in Chapter 7. This
can be understood by considering two different scenarios. I first consider the case of a sys-
tem consisting of a single topological nanowire with a QD coupled at one end. The isolated
MZM-QD interaction in this setup has been proposed as a method to assess the quality of
the MZM non-locality [155, 156]. When the MZM wavefunctions of a single wire are not
overlapping, the MZMs are considered non-local. In this case, the isolatedMZM-QD inter-
action does not lead to an energy splitting. Instead, if there is a wavefunction overlap, this
cause a finite energy splitting of the zero-energy state when on resonance with the QD.This
system has recently been studied experimentally in Ref [114].

In the loop qubit geometry investigated here, the purpose of the QD is to mediate the
hybridization of γ2 and γ3 as shown inChapter 7.1. In this case, γ2 and γ3 constitute a single-
fermionic mode that has a parity dependent interaction with the QD [157]. When the QD
is on resonance, the two MZMs can hybridize, which leads to an energy splitting due to the
wavefunction overlap as discussed in Chapter 2.4 (also see Fig. 7.2).

This theoretical picture is compatible with the observations of Fig. 9.6b. When the QD
is brought into resonance, it causes an avoided crossing between the ZBPs, while when off
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resonance the energy of the states goes back to near zero-bias *. Additionally, this avoided
crossing was observed to oscillate as a function of phase difference across the junction as ex-
pected for the case of MZM hybridization. However, this behaviour could also arise due to
the interaction of the QD with a trivial localized Andreev bound state located in the vicin-
ity of the QD. Therefore stronger evidence is needed before drawing conclusions about the
hybridization of MZM. For example, an important missing observation is the oscillations of
the avoided crossing in bias voltageVsd, in addition to the conductance oscillations observed
in Fig. 9.7. An additional prediction of Chapter 7.1 is that in the absence of poisoning the
periodicity of each Majorana parity branch should be 4π in ϕ. For the results shown above,
the 4π periodicity is inaccessible in the currentmeasurement scheme because electron trans-
port is a source of poisoning for theMZMs. Therefore, in transport both parity branches are
recovered and the periodicity is 2π periodicity or h/2e in flux threading the loop. To gain
access to 4π periodicity measurements, the QDmust be isolated from the normal lead.

In summary, a promising platform and device geometry has been introduced for investi-
gating the hybridization of zero energy states by tunneling spectroscopy. Future experiments
will focus on charge detection of the QD to investigate joint parity measurements of MZMs
with the additional charge sensor seen on the right-hand side of Fig. 9.1.

*The splitting in the Coulomb valley can be explained by a residual hybridization of the MZMs due to not
achieving a fully detuned QD before the next Coulomb peak [157]
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A drawback of the one-dimensional nanowires platform introduced in chapter 2.4 and discussed
in Chapters 5 through 9 is the dependence of the topological phase transition on chemical poten-
tial [87, 158]. In 2017, two theoretical proposal offered an alternative purely two-dimensional
system predicted to be less sensitive to the microscopic details of the system [35, 36]. The pro-
posed device geometry is based on planar Josephson junctions, where Al leads confine a quasi one-
dimensional channel. This system adds an additional control parameter - the phase difference
across the junction - enabling additional control over the topological phase. This system differs from
nanowire junctions that are expected to show the 4π Josephson effect as discussed in Chapters 7.
Instead, it is predicted that MZMs are created at the ends of an elongated Josephson junction. Ex-
perimental evidence supporting the existence of a topological phase in a planar Josephson junction
will be shown.

*Equal Contribution



10.1 Introduction

Majorana zero modes are quasiparticle states localized at the boundaries of topological su-
perconductors that are expected to be ideal building blocks for fault-tolerant quantum com-
puting [9, 159]. Several observations of zero-bias conductance peaks measured in tunneling
spectroscopy above a critical magnetic field have been reported as experimental indications
ofMajorana zeromodes in superconductor/semiconductor nanowires [79, 80, 82, 101, 106].
On the other hand, two dimensional systems offer the alternative approach to confine Ma-
jorana channels within planar Josephson junctions, in which the phase difference ϕ between
the superconducting leads represents an additional tuning knobpredicted to drive the system
into the topological phase at lower magnetic fields [35, 36]. Here, we report the observation
of phase-dependent zero-bias conductance peaksmeasured by tunneling spectroscopy at the
end of Josephson junctions realized on a InAs/Al heterostructure. Biasing the junction to
ϕ ∼ π significantly reduces the critical field at which the zero-bias peak appears, with respect
to ϕ = 0. The phase and magnetic field dependence of the zero-energy states is consistent
with a model of Majorana zero modes in finite-size Josephson junctions. Besides providing
experimental evidence of phase-tuned topological superconductivity, our devices are com-
patible with superconducting quantum electrodynamics architectures [98] and scalable to
complex geometries needed for topological quantum computing [35, 37, 160].

The Josephson junctions ( JJs) studied in this work were fabricated from a planar het-
erostructure comprising of a thin Al layer epitaxially covering a high mobility InAs two- di-
mensional electron gas (2DEG) [17]. As a consequence of the highly transparent supercon-
ductor/ semiconductor interface [90], a hard superconducting gap is induced in the InAs
layer [61, 94]. Selectively removing an Al stripe of width W1 and length L1 defines a nor-
mal InAs region, laterally contacted by superconducting leads, as shown in Fig 10.1a. Su-
perconducting gaps Δexp(±iϕ/2) opening below the Al planes on the right- and left-hand
side [53, 59], respectively, confine low energy quasiparticles within the normal InAs chan-
nel. Owing to the strong spin-orbit interaction in InAs [17], togetherwith the lateral confine-
ment, the JJ of Fig 10.1a is predicted to undergo a topological transition at highmagnetic field
B∥ parallel to the junction [35], withMajorana modes isolated from the continuum forming
at the end points (crosses in Fig 10.1a), similarly to conventional nanowires [15, 16]. Most
strikingly, phase control offers an additional tuning parameter to enter the topological regime
not explored so far. Biasing the JJ to ϕ = π was predicted to significantly reduce the critical
magnetic field of the topological transition, and to enlarge its phase boundaries in chemical



10.2. DEVICE 129

potential [36].
Here we investigate planar JJs as schematically shown in Fig 10.1a as a function of B∥,

chemical potential μ and phase difference ϕ. Phase biasing is obtained by embedding the
JJ in a direct-current superconducting quantum interference device (DC SQUID) threaded
by a magnetic flux [52]. A robust zero-bias peak (ZBP) exhibiting strong dependence on
ϕ is measured via tunneling spectroscopy using a laterally coupled quantum point contact
(QPC), as schematically shown in Fig 10.1a. TheZBPbehavior is consistent with aMajorana
mode in a finite-size topological JJ (see Supplementary Fig. 10.8).

10.2 Device

Figure 10.1b shows a schematic of our device, which consists of a three-terminal asymmetric
SQUID with two JJs, labeled 1 and 2, and a tunneling probe coupling to a normal lead on
the top end of JJ1. Figure 10.1c shows an electronmicrograph in the surrounding of JJ1. The
junctions are characterized by Josephson critical currents Ic,2 > Ic,1, such that the phase dif-
ferenceϕ across JJ1 canbe tuned from0 to∼ π by threading theSQUID loopwith amagnetic
fluxΦ (generated by the out-of-plane field B⊥) varying from 0 toΦ0/2, whereΦ0 = h/2e is
the superconducting flux quantum (e is the electron charge and h the Planck constant). For
details on the phase biasing in a SQUID seeChapter 2.3.7. The SQUID is laterally connected
to two superconducting leads that serve as ground and allows the Josephson critical current
of the interferometer to be measured (see Supplementary Fig. 10.9). The SQUID loop is
obtained by a combination of deep wet etching on the semiconductor heterostructure and
selective wet etching of the top Al layer. AHfO2 dielectric layer is deposited over the entire
sample for gate isolation, followed by lift-off of the Ti/Au gate structures. Top gates V1 and
V2 control the chemical potential in JJ1 and JJ2, respectively. Split gates deposited at the top
end of JJ1 form a QPC. In the tunneling regime, the QPC serves as spectroscopic probe re-
vealing the local density of states of JJ1. The uppermost gate extends between theQPC gates
and helps defining a sharp tunnel barrier when operated at a voltage Vtop ∼ 0 (see Chapter
4.3 for more details). To ensure a hard superconducting gap in high parallel fields, the QPC
gates additionally confine the 2DEG beneath the narrow Al leads [101, 106] (see Fig 10.1c).
We present data for a devicewithW1 = 80,W2 = 40 nm,L1 = 1.6 μm andL2 = 5 μm. The
width of the superconducting leads isWS1 = WS2 = 160 nm for both JJs, and SQUID loop
area∼ 8 μm2. Data was reproduced for two additional devices withW1 = 80 and 120 nm
respectively. Differential conductance G was measured in a four-terminal configuration by
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standard AC lock-in techniques in a dilution refrigerator with an electron base temperature
of about 40 mK.
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Figure 10.1: Topological Josephson junction. a, Schematic of a planar JJ formed by
two epitaxial superconducting layers (represented in blue) covering a 2DEG with strong
spin-orbit interaction (grey). A one-dimensional channel, defined between the super-
conducting leads, can be tuned into the topological regime with Majorana modes (red
crosses) at its ends by the parallel field B∥, the 2DEG chemical potential μ and the phase
difference between the superconductors ϕ. Majorana modes can be probed in tunneling
spectroscopy using a QPC located at one end of the JJ. b, Schematic of the measured
device (not to scale) consisting of a superconducting loop interrupted by two JJs (labeled
1 and 2) in parallel. The interferometer is formed by InAs 2DEG (light grey) and epitaxial
Al (blue). Five Ti/Au gates (yellow) allow independent tuning of the chemical potential
in JJ1 (gate voltage V1), the chemical potential in JJ2 (V2) and the transmission of a
tunnel barrier at the top end of JJ1 (Vqpc and Vtop). The applied AC and DC bias voltages
are also indicated, together with the direction of magnetic field parallel (B∥) and trans-
verse (Bt) to the JJ, and the magnetic flux Φ. c, False color scanning electron micrograph
of the top part of a typical device, as in the dashed box shown in panel b. The colors are
the same as those used in panel b.
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10.3 Tunneling spectroscopy

Figure 10.2a shows G as a function of the bias voltage Vsd and Φ at B∥ = 0. The induced
superconducting gap Δ(Φ = 0) ≃ 150 μeV periodically oscillates as a function of Φ and
is reduced by approximately 50 % at Φ = (2n + 1)Φ0/2, where n is an integer. This be-
havior indicates phase-coherent transport through JJ1 generated by Andreev reflection pro-
cesses [60, 161] at the interfaces between the bare 2DEG and the proximitized leads. The
flux modulation of the whole continuum of states outside the gap is expected for JJs with
narrow superconducting leads (WS1 ≪ ξS, where ξS = ℏvF/πΔ ∼ 1.5 μm is the super-
conducting coherence length and vF is the Fermi velocity in the semiconductor), while the
non-complete closure of the gap atΦ = (2n + 1)Φ0/2 is associated to the finite length L1
of the junction and to possible unintended asymmetries in the etched superconducting leads
(see Supplementary Fig. 10.8 for further details). The finite sub-gap conductance at B∥ = 0
(see Fig. 10.2f) is due to a relatively high tunneling transmission and can be suppressed by
tuning Vqpc more negative, as shown in Supplementary Figs. 10.10.

AsB∥ is increased, discrete Andreev bound states (ABSs) enter the gap andmove towards
zero energy, as shown in Fig. 10.2b for B∥ = 250 mT. We note that these states have an
asymmetric fluxdependence. Weattribute this behavior to the presenceof a strong spin-orbit
interaction and a finite Zeeman field, similarly to what has been predicted and observed for
quasi-one-dimensional systems [162, 163].

At higher values of B∥ a ZBP in conductance appears at Φ = (2n + 1)Φ0/2 (corre-
sponding to ϕ ∼ π), while it vanishes whenΦ is set to 2nΦ0, i.e. when ϕ = 0, as shown in
Fig. 10.2c for B∥ = 525mT.The phase dependence of the ZBP is highlighted in Fig. 10.2g,
which displays the conductance line-cuts for ϕ = 0, π.

At even higher fields, from 600mT to 1T the ZBP extends over the whole ϕ range, except
at ϕ ∼ π where a relative minimum is observed (Figs. 10.2d,e,h). In this range of B∥ the
state sticks at zero energy for ϕ = 0, as shown in Fig. 10.2h, while it oscillates and moves to
higher energies for ϕ = π (see Supplementary Fig. 10.10f). Above B∥ = 1 T the induced
gap softens and the phase dependence of sub-gap states gradually disappears as the JJs of the
SQUID reach the resistive state.

Theobserved behavior of the ZBP in field and phase is in good qualitative agreementwith
the calculated spectrumof afinite-size topological JJ, as shown inSupplementaryFig. 10.8. As
theZeemanfield is increased, twodiscrete sub-gap states are expected tomerge at zero energy
for ϕ = π and gradually extend in phase until reaching ϕ = 0. The calculated gapped zero-
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Figure 10.2: Evolution of the zero-bias peak in parallel field. a-e, Differential con-
ductance G as a function of magnetic flux, Φ, piercing the SQUID loop and source-drain
bias, Vsd, measured at different values of magnetic field, B∥, parallel to the junction. The
flux is generated by the out-of-plane field B⊥. The values of B⊥ have been shifted to
remove offsets. f-h, Line-cuts of G versus Vsd at different values of B∥ for phase bias
ϕ = 0 (black lines) and ϕ ∼ π (red lines), as indicated by the ticks in panels a, c and
e. i, G as a function of Vsd and B∥ at ϕ = 0. The plot was reconstructed from line-cuts
as the ones shown in panels f-g. The measurements were taken at the top gate voltage
V1 = V⋆

1 = −118.5 mV.
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energy state aroundϕ = 0 is characterizedby aMajoranawave function localized at the edges
of the JJ (see Supplementary Fig. 10.8h). The oscillations in energy of the observed state at
ϕ ∼ π are reproduced by the simulations and can be understood in terms of hybridization
of the Majorana modes (Supplementary Fig. 10.8i), since at this value of ϕ the induced gap
is minimized and, as a result, the coherence length is maximized.

10.4 Zero-bias peak stability

One of the most interesting features predicted for a perfectly transparent JJ is the significant
expansion of the topological phase in magnetic field and chemical potential at ϕ = π [36].
We therefore investigated the stability of the ZBP, starting from its dependence on the gate
voltage V1, which controls the chemical potential in JJ1. In order to explore efficiently our
4-dimensional parameter space, we recorded the third harmonic I3ω(Vsd) of the currentmea-
sured by the lock-in amplifier, where I3ω(Vsd) ∝ −G′′(Vsd) = −(∂2G/∂V2)|Vsd (seeChap-
ter 4.2.3). A ZBP in conductance is therefore identified by a positive value of I3ω(Vsd = 0),
i.e., by a negative valueofG′′(Vsd = 0), which indicates a negative curvature aroundVsd = 0.

Figure 10.3 displays I3ω(Vsd = 0) as a function of Φ and V1 for different values of B∥.
At B∥ = 500 mT horizontal stripes showing positive values of I3ω(Vsd = 0) are visible at
ϕ ≃ (2n+1)π. Increasing the field causes the region of negative curvature to expand around
the voltage V⋆

1 = −118.5mV by∼ 2mV and in phase extending to 2nπ. For B∥ = 650mT
the ZBP region expands further around V⋆

1 , while a maximum develops at ϕ ≃ (2n + 1)π,
indicating that the ZBP has split to finite energy. The ZBP region covers a maximum range
of 10 mV at 775 mT and remains extended in phase for ϕ ̸= (2n+ 1)π.

The finite range of V1 over which the ZBP is stable is explained by the narrow width
WS1 ≪ ξS of the superconducting leads, which effectively decrease the ratio between An-
dreev and normal reflection probabilities, thus reducing the size of the topological phase as
a function of μ (see Fig. 10.8a). Although this geometry causes a deviation from the pre-
dicted behavior of a topological JJ, in our devices the finite width is necessary to guarantee a
well-defined induced gap up to 1 T (to be discussed in the Outlook section below).

The complementary study of the ZBP stability in Φ and B∥ for different values of V1 is
shown in Fig. 10.4. At V1 = −116mV (Fig. 10.4a) extended regions of positive I3ω(Vsd =

0) indicating a stable ZBP appear above an oscillating critical field Bc(ϕ), which reaches a
minimumvalueBc([2n+1]π) = 570mT, as indicated by the blue arrow. On the other hand,
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Figure 10.3: Stability of the zero-bias peak. a-d, Third harmonic of the current
I3ω(Vsd = 0) measured by the lock-in amplifier at zero bias as a function of top gate
voltage, V1, and magnetic flux, Φ, for different values of magnetic field, B∥, parallel to
the junction. The flux is generated by the out-of-plane field B⊥. The values of B⊥ have
been shifted to remove offsets.

the vertical stripe visible at ∼ 0.4 T is due to ABSs crossing zero energy without sticking.
Similarly to what was observed above as a function of the chemical potential, the negative
curvature region significantly expands in terms of B∥ range for V1 = V⋆

1 , where Bc([2n +
1]π) = 435mT (Fig. 10.4b). At more negative V1 the ZBP regime contracts again
(Bc([2n+ 1]π) = 480mT, Fig 10.4c), consistent with the stability maps shown in Fig. 10.3.
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voltage V1. The flux is generated by the out-of-plane field B⊥. The values of B⊥ have
been shifted to remove offsets. A positive value of I3ω(Vsd = 0) corresponds to a ZBP in
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10.5 Discussion

The combined results shown in Figs. 10.3 and 10.4 indicate the expansion of the ZBP re-
gion from ϕ ∼ π to the full phase range as B∥ is increased. This behavior is in qualitative
agreementwith the topological phasediagrams calculated for our system(seeSupplementary
Figs. 10.8a,b). We note that for specific values of chemical potential, the model of a perfectly
symmetric and clean JJ predicts a topological phase transition close to zero field [36], while
experimentally a ZBP is observed only above 400 mT, as discussed above. This discrepancy
could be ascribed to non-idealities of JJ1, such as disorder [99, 164] and unintended asym-
metries in the superconducting leads. A broken left-right symmetry in JJ1 could also explain
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the observed asymmetry in the phase dependence of the ZBP region at different values of
V1 (Fig. 10.4). Although we do not observe a reduction of the critical field down to zero,
our design decreases Bc by about a factor of four compared to previous experiments on one-
dimensional Majorana wires defined below Al stripes in similar heterostructures [101, 106].
This is due to the increased g-factor of the bare InAs Majorana channel and to the phase de-
pendence of the observed ZBP. As expected, the amplitude of the Bc modulations depends
on the valueofV1 and amaximumvisibility (Bc(2nπ)−Bc([2n+1]π)/Bc([2n+1]π) ∼ 37%
is obtained for V1 = V⋆

1 . Lastly, we note that the ZBP is robust over a range of∼ 70mV in
Vqpc and in Vtop, which modify the above-gap conductance by approximately one order of
magnitude, as shown in Supplementary Fig. 10.10c,d.
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Figure 10.5: Transport spectroscopy in transverse field for device 1. a-h, Differential
conductance G as a function of the magnetic flux, Φ, threading the SQUID loop and
source-drain bias, Vsd, measured at different values of the transverse magnetic field Bt

(applied in plane orthogonally to the junction) in device 1. Several ABSs enter the gap
without sticking to zero energy. The induced gap collapses at ∼ 360 mT.

As another interesting test of the topological nature of the observed ZBPs, we performed
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spectroscopy as a function of the magnetic field Bt applied in the plane of the 2DEG but
orthogonal to the one dimensional channel defined by JJ1 (see Fig. 10.1b). In order to induce
a topological phase transition, the external magnetic field must be aligned perpendicular to
the Rashba SOI.This is expected for a parallel magnetic field B∥ as discussed above [35, 36].
For a transverse magnetic field Bt a closure of the superconducting and topological gap is
expected (seeChapter 2.4) [78]. Applying a transversemagnetic field we do not observe any
discrete state sticking at zero energy before the suppression of the induced gap, which occurs
at Bt ∼ 360mT (see Fig. 10.5).

Finally, it is worth noting that a first-order topological transition is expected for a planar JJ
in presence of strong parallel fields. This transition should manifest itself with a minimum of
the Josephson critical current [165] when the Zeeman energy reaches a value comparable to
theThouless energy ET [36]. In our case, however, this limit cannot be reached since ET ∼
2.8meV is one order of magnitude larger than Δ. In Fig. 10.6a-c we measure the differential
resistance R1 of JJ1 by applying an AC current of Iac = 5 nA with the reference junction
JJ2 closed. For a width of the superconducting leadsWS1 = 160 nm (as studied above), we
observe thatB∥ first reduces the supercurrent to zero atB∥ = 1.5T and then causes a revival
of the supercurrent at B∥ ∼ 2 T (see Fig 10.6a). IncreasingWS1 to 500 nm causes multiple
periodic revivals of the supercurrent with B∥ with a periodicity of∼ 300mT (shown in Fig.
10.6b). In Fig. 10.6cWS1 is increased to 1000 nm and the periodicity is reduced to∼ 150
mT. From the results shown in Fig. 10.6a-c, we observe that the periodicity is correlated to
WS1 and we ascribe this behavior to trivial orbital effects of the in-plane magnetic field in
the proximitized 2DEG underneath the superconducting leads [36]. We corroborate this
interpretation by measuring R1 as a function of Idc and B∥ (B⊥ = 0) forWS1 = 500 nm and
1000 nm, revealing a clear Fraunhofer pattern (see Fig. 10.6d,e).

10.6 Conclusion

In summary, we have investigated phase-dependent ZBPs in tunneling conductance mea-
sured at the edge of a JJ patterned in a two-dimensional InAs/Al heterostructure. The critical
field at which the ZBP appears depends on the phase bias and is minimal at ϕ ∼ π, as ex-
pected for a topological JJ.We studied the ZBP stability as a function of fieldB∥, phase ϕ and
chemical potential μ, obtaining results qualitatively consistent with the topological phase di-
agram of a finite-size junction.
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Outlook

The finite stability of the zero-bias in chemical potential shown in Fig. 10.3 is related to the
narrow superconducting leads. A recent theoretical work addressed this issue, where narrow
superconducting leads reduce the effects of ϕ, while increasing the dependence on μ as the
nanowire limit is approached [166] *. To achieve the theoretically predicted reduced chem-
ical potential sensitivity, it is necessary to maximize the probability of Andreev reflections.
This is achievedby increasing thewidth of the superconducting leads toWS1 ∼ ξS ∼ 1.5 μm.
However, by making the superconducting leads wider, we encountered that the induced su-
perconducting gap closed at low B∥. In Fig. 10.7 we show tunneling spectroscopy of Joseph-
son junctions with varying superconducting lead widths WS1. Figure 10.7b shows the dif-
ferential conductance G as a function of parallel magnetic field B∥ and bias voltage Vsd for
WS1 = 160 nm, revealing a superconducting gap that persists until ∼ 0.8 T. However,

*For a nanowire system, there is no phase dependence since there is no Josephson junction and there is a
large chemical potential dependence.
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whenWS1 was increased toWS1 = 0.5 μm or 1 μm, the superconducting gap collapsed at
B∥ ∼ 0.2 T. We believe this is related to the reduced confinement of the 2DEG below the
Al, leading to a population of electrons with a higher g-factor. Therefore, for future devices
to take full advantage of the planar Josephson junction geometry, this soft gap issue needs
to be remedied. Possible resolutions may involve ex-situ superconductor evaporation, etch-
ing of the 2DEG below the Al leads, or changing substrates from InP to GaSb to allow for
backgating to deplete the 2DEG.
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magnetic field B∥ and bias voltage Vsd for WS1 = 160 nm b, WS1 = 500 nm c, WS1 = 1000
nm d, revealing tunneling spectroscopy of Josephson junctions with a width of W1 = 80
nm



Methods

Material characterization performed in a Hall bar geometry where the Al was removed re-
vealed an electron mobility peak μ = 43, 000 cm2V−1s−1 for an electron density n =

8×1011 cm−2, corresponding to an electronmean free path of le ∼ 600 nm. Electron trans-
port through JJ1 is therefore expected to be ballistic along the width direction (le ≫ W1)
and diffusive along the length direction (L1 > le). Characterization of a large area Al film
revealed a critical magnetic field of 2.5 Twhen the field is applied in the plane of the 2DEG.

We studied seven devices characterized by different dimensions of JJ1. Devices 1 and 2
haveW1 = 80 nm andWS1 = 160 nm, device 3 hasW1 = 120 nm andWS1 = 160 nm,
device 4 hasW1 = 40 nm andWS1 = 160 nm, device 5 hasW1 = 160 nm andWS1 = 160
nm, device 6 hasW1 = 80 nm andWS1 = 500 nm, whereas device 7 hasW1 = 80 nm and
WS1 = 1 μm. All the devices were designed with L1 = 1.6 μm,W2 = 40 nm, L2 = 5 μm
andWS2 = 160 nm. Results consistent with those presented in the main text were obtained
in devices 1, 2 and 3, while devices 4 and 5 did not show robust ZBPs in field. In devices 6 and
7 the induced superconducting gap collapsed at B∥ ∼ 200mT without showing any robust
ZBP. The behavior of devices 6 and 7 is consistent with the softening of the induced gap in
low parallel fields observed below wide superconducting leads [61, 101].

10.7 Supplementary
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Figure 10.8: Device spectra. Calculated topological phase diagrams and energy spec-
tra for a left-right asymmetric junction (here the asymmetry is introduced by having
ΔL ̸= ΔR). The left-right symmetry may be broken by disorder [99, 164], different ge-
ometric sizes of the superconducting leads, or different coupling of the 2DEG to the
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function of the Zeeman energy EZ and the 2DEG chemical potential μ for phase bias
ϕ = 0, π, calculated from the tight-binding Hamiltonian for JJ1 with infinite length (see
Methods). b, Topological phase diagram as a function of EZ and ϕ for different values
of μ, as indicated by the horizontal ticks in panel a. The diagrams were calculated for a
junction with width W1 = 80 nm, superconducting lead width WS1 = 160 nm, left-induced
gap ΔL = 150 μeV, right-induced gap ΔR = 100 μeV and Rashba spin-orbit coupling con-
stant α = 100 meV Å. c-g, Calculated energy spectra as a function of ϕ for different
values of the Zeeman energy. The spectra were obtained for the same parameters used
in panels a and b, except for L1 = 1.6 μm. For the chosen parameters, the system under-
goes a topological transition at EZ = 0.02 meV for ϕ = π and at EZ = 0.1 meV for ϕ = 0.
The lowest subgap states are shown in red and indicate two Majorana zero modes at the
edges of the junction in the topological regime. The behavior of the calculated Majorana
modes is qualitatively consistent with that of the observed zero-bias peaks in tunneling
conductance. h, i, Probability density |Ψ|2 of the Majorana wavefunction calculated as
a function of the spatial directions x and y in JJ1 for EZ = 0.13 meV and ϕ = 0, π.
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Figure 10.9: Behavior of the Josephson critical current at B∥ = 0. a, In order
to investigate the behavior of the Josephson current in our device, we measured the
differential resistance R = dV/dI of the SQUID with a conventional four-probe technique
by applying an AC current bias Iac < 5 nA, superimposed to a variable DC current bias IDC,
to one of the superconducting leads of the interferometer. During these measurements
the QPC was pinched off at Vqpc = −5 V. The Josephson critical current of JJ1 can
be measured independently by pinching off JJ2.b, Differential resistance R1 of JJ1 as a
function of the DC bias current Idc and gate voltage V1 measured in device 2. The region
of zero resistance indicates that a dissipationless Josephson current due to Cooper pair
transport is flowing through the junction. b, R1 as a function of Idc and the out-of-plane
field B⊥ displaying a characteristic Fraunhofer pattern, with a periodicity compatible
with the area of JJ1 W1 × L1 ≃ 0.13 μm2. For both the measurements displayed in
panels a and c, JJ2 was pinched off by setting the gate voltage V2 = −1.5 V. d, When
JJ2 was open (V2 = 0), the differential resistance of the SQUID RSQUID showed periodic
oscillations (periodicity of 250 μT, consistent with the area of the superconducting loop,
∼ 8 μm2) superimposed to the Fraunhofer patterns of both junctions. The ratio between
the critical currents of the junctions at zero field is extracted from the average value of
the SQUID critical current and the semi-amplitude of the SQUID oscillations, resulting
in Ic,2(0)/Ic,1(0) = 5.2.
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Figure 10.10: Quantum point contact characterization and stability of the zero-bias
peak. a, Differential conductance G as a function of source-drain bias, Vsd, and QPC
voltage, Vqpc, at zero field in device 1. b, Differential conductance at zero source-drain
bias, G(Vsd = 0 mV), versus averaged differential conductance at finite source-drain bias,
G(|Vsd| > 0.4 mV). The green line is the theoretically predicted conductance in an Andreev
enhanced QPC, GS = 2G0

G2
N

(2G0−GN)2
(Ref. [167]), where GS is the sub-gap conductance,

GN is the above-gap conductance and G0 = 2e2/h is the quantum of conductance. No
fitting parameters have been used. c, G as a function of Vsd and Vqpc at parallel field
B∥ = 780 mT and phase bias ϕ ∼ 0.8π for gate voltages V1 = −110 mV and Vtop = −35
mV. d, G as a function of Vsd and Vtop at B∥ = 600 mT and ϕ ∼ 0 for V1 = −118.5 mV
and Vqpc = −2.366 mV. In both panels c and d, the ZBP is robust against variation of the
above gap conductance of about one order of magnitude. e-f, Differential conductance G
as a function of source-drain bias, Vsd, and parallel magnetic field, B∥, for different values
of phase bias ϕ in device 1. The plots have been reconstructed from measurements similar
to the ones shown in Fig. 10.2 of the Main Text. For ϕ ∼ π a ZBP forms at B∥ = 0.35
T, while for ϕ = 0 it appears at B∥ = 575 mT. The ZBP at ϕ ∼ π oscillates and moves
away from zero energy as the field is increased.





A
Fabrication recipe

Cleaving and Cleaning

1. Cleaving:

(a) Spin A4 for 45 s @ 4000 RPM using dynamic deposition

(b) Bake @ 185◦C for 2 mins

(c) Manual Scriber: Cleave 3x5mm pieces, long edge parallel to major flat.

2. Choose a chip, preferably from near the center of the wafer

3. Cleaning:

(a) Sonicate in 1-3 Dioxolane, f = 80 kHz, PWR = 50-70 %, 5 mins

(b) Acetone and IPA rinse, 30 s each

(c) Blow dry well
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Mesa Etch

1. Spin Resist:

(a) Spin A4 for 45 s @ 4000 RPM using dynamic deposition.

(b) Bake @ 185◦C for 2 mins

2. Exposure:

(a) Expose fine features with: 500 pA, Beamer settings: InAs 200 nmPEC, write field:
150 μm, dots: 60k, dose: 0.085 μs/dot, area dose: 680 μC/cm2

(b) Expose outer features with: 20 nA, Beamer settings: InAs 200 nmPEC,write field:
600 μm, dots: 20k, dose: 0.34 μs/dot, area dose: 640 μC/cm2

3. Processing:

(a) Develop: 60s 1:3 MIBK, rinse 5s IPA, blowdry

(b) Oxygen plasma ash: 60s

(c) Post bake: 2 mins @ 120◦C

4. Al Etch:

(a) Preparation: Set hot-bath to 53◦C. Place in 1 beaker Transene-D Al etch, and 1
beaker MQ water with liquid level matching level in hot-bath. Wait until heated to
50◦C. Place one large beaker of MQ outside hot-bath for rinsing.

(b) Etching: 5s dip in Transene Al Etch D@ 50◦C - Swirl rigorously

(c) 20s in MQ@ 50◦C - Swirl rigorously

(d) 40s in MQ@Room temperature - Swirl rigorously

(e) Blowdry

5. Mesa Etch:

(a) Preparation: Using a large beaker with a magnetic stirrer, mix together
H2O : C6H8O7 : H3PO4 : H2O2 (220:55:3:3) add in this order andmix for 5mins.

(b) Etch 9 mins for∼ 300 nm - rotating the chip around in the beaker

(c) 60s in MQ@Room temperature - Swirl rigorously

(d) Blowdry

(e) Strip resist: 20 mins in 1,3-Dioxolane; Acetone and IPA rinse, 30 s each

(f) Measure the Mesa height
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Al Etch

1. Spin Resist:

(a) Spin A4 for 45 s @ 4000 RPM using dynamic deposition.

(b) Bake @ 185◦C for 2 mins

2. Exposure:

(a) Expose fine features with: 100 pA, Beamer settings: InAs 200 nmPEC, write field:
150 μm, dots: 60k, dose: 0.4 μs/dot, area dose: 640 μC/cm2

3. Processing:

(a) Develop: 45s 1:3 MIBK, rinse 5s IPA, no swirling - blowdry

(b) Oxygen plasma ash: 45s

(c) Post bake: 2 mins @ 120◦C

4. Al Etch:

(a) Preparation: Set hot-bath to 53◦C. Place in 1 beaker Transene D Al etch, and 1
beaker MQ water with liquid level matching level in hot-bath. Wait until heated to
50◦C. Place one large beaker of MQ outside hot-bath for rinsing.

(b) Etching: 5s dip in Transene Al Etch D@ 50◦C - Swirl rigorously

(c) 20s in MQ@ 50◦C - Swirl rigorously

(d) 40s in MQ@Room temperature - Swirl rigorously

(e) Strip resist: 30 mins in 1,3-Dioxolane; Acetone and IPA rinse, 30 s each

5. Transfer directly to ALD
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Atomic layer deposition

1. HfO2:

(a) Grow 15 nm of HfO2 at 90 ◦C

Fine Gate Deposition

1. Spin Resist:

(a) Spin A4 for 45 s @ 4000 RPM using dynamic deposition.

(b) Bake @ 185◦C for 2 mins

2. Exposure:

(a) Expose fine features with: 100 pA, Beamer settings: InP 200 nm PEC, write field:
150 μm, dots: 60k, dose: 0.38 μs/dot, area dose: 608 μC/cm2

3. Processing:

(a) Develop: 45s 1:3 MIBK, rinse 5s IPA, no swirling - blowdry

(b) Oxygen plasma ash: 45s

4. Ti/Au Evaporation:

(a) Evaporate: 5 nm Ti, 25 nm Au, no tilt or rotation

5. Liftoff:

(a) Overnight liftoff in 1,3-Dioxolane

(b) Check if liftoff is complete with a microscope while in IPA. Sometimes a gentle
squirt of Acetone can help.

(c) Acetone and IPA rinse, 30 s each

(d) Blowdry
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Outer Gate Deposition

1. Spin Resist:

(a) Spin El9 for 45 s @ 4000 RPM using dynamic deposition.

(b) Bake @ 185◦C for 2 mins

(c) Spin El9 for 45 s @ 4000 RPM using dynamic deposition.

(d) Bake @ 185◦C for 2 mins

(e) Spin A4 for 45 s @ 4000 RPM using dynamic deposition.

(f) Bake @ 185◦C for 2 mins

2. Exposure:

(a) Expose fine features with: 500 pA, Beamer settings: InP 200 nm PEC - 100%Uni-
form Clearing, write field: 300 μm, dots: 60k, dose: 0.32 μs/dot, area dose: 640
μC/cm2

(b) Expose outer features with: 20 nA, Beamer settings: InP 200 nm PEC- 100%Uni-
form Clearing, write field: 600 μm, dots: 20k, dose: 0.34 μs/dot, area dose: 640
μC/cm2

3. Processing:

(a) Develop: 45s 1:3 MIBK, rinse 5s IPA, no swirling - blowdry

(b) Oxygen plasma ash: 60s

4. Ti/Au Evaporation: The height of the outer gate evaporation should match the Mesa
height

(a) Evaporate: 10 nm Ti, 5◦ tilt and rotation

(b) Evaporate: 25 nm Au, 5◦ tilt and rotation

(c) Evaporate: 285 nm Au, 0◦ tilt

(d) Evaporate: 50 nm Au, 10◦ tilt and rotation

5. Liftoff:

(a) Overnight liftoff in 1,3-Dioxolane

(b) Check if liftoff is complete with a microscope while in IPA. Sometimes a gentle
squirt of Acetone can help.

(c) Acetone and IPA rinse, 30 s each

(d) Blowdry



B
Tunneling spectroscopy
In the tunneling regime, the current flowing between two metals is proportional to the den-
sity of occupied states on one lead and to the density of unoccupied states on the other. Con-
sider a systemsimilar toGiaever’s experiment,where aN-leadwith a constantdensityof states
DN is separated by a tunnel barrier from another lead with an unknownDOSD2(E). The re-
sulting tunneling current from a bias voltage Vsd is [52, 53],

I =
G0

e

∫ ∞

−∞
dE D2(E)DN ( f(E− eVsd)− f(E) )

where f is the Fermi-Dirac distribution and G0 is the quantum of conductance follow the
Landauer formulaG0 = 2e2/h

∑m
n Τn whereΤn is the energy independent transmission for

mode n with a total of mmodes. The differential conductance then gives,

G(Vsd) =
dI
dVsd

= G0

∫ ∞

−∞
dE

df(E− eVsd)

dVsd
D2(E)DN

This expression is simplified by considering that at low temperatures, f is a Heaviside step
function and therefore d f(E−Vsd)

dVsd)
= δ(E− eVsd) [23] which gives,

G(Vsd) = G0 DN D2(eVsd) .
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