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Abstract

The ability of stem-cells to differentiate into various cell-types is the cornerstone

underpinning the marvellous diversity of tissues that make up animals. Despite

their absolutely integral role in the formation of all multi-cellular life, the mech-

anisms that underlie stem-cells ability to orchestrate and coordinate the choices

surrounding differentiation are not fully understood. In this thesis I describe the

work from 3 articles: For the first article, we investigated the changes stem-cells

undergo when they first start forming the mammalian gut. We did this by ex-

amining the RNA content of thousands of individual cells obtained from mouse

embryos using single-cell RNA sequencing (scRNAseq) throughout the early days of

development. To aid in this investigation, I developed a computational algorithm

to compare and quantify the relationship between noisy high-dimensional data,

such as scRNAseq data. Analysing the scRNAseq data, we find and characterise a

group of cells previously thought to be confined to the extra-embryonic membranes

surrounding the embryo, that seemingly defy their differentiation decision, and

end up becoming part of the embryo’s gut. In the 2 last articles, we investigated

the differentiation decisions cells undergo when being chemically reprogrammed

into different cell-types. We find a set of genes that are critical to activate for the

reprogramming of somatic fibroblast cells to XEN-like cells to be successful. We

further show that a set of chemicals can be used as a starting point for making

new reprogramming protocols for multiple types of cells, showing that it works for

generating both neuronal and muscle cells from fibroblast.
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Resumé (Abstract in Danish)

Stamcellers evne til at differentiere til forskellige celle-typer er hjørnestenen bag

den fantastiske diversitet af vævstyper der udgører et dyr. På trods af deres

fuldstændig afgørende rolle i formationen af alt multi-cellulært liv er mekanismen

bag stam-cellers differentieringsevne ikke fuldt ud forstået. I denne afhandling

vil jeg beskrive det arbejde der står 3 artikler: Den første artikel omhandler

de ændringer stam-celler tager mens du udvikler tarmsystemet i patterdyr. Vi

undersøgte dette ved at kigge på RNA indholdet af tusindvis af celler fra tidlige

musefostre ved hjælp af single cell RNA sekventering (scRNAseq). Til at hjælpe

i denne afsøgning udviklede jeg en algoritme til at sammenligne og kvantifiere

forholdet mellem høj-dimensionel data, så som scRNAseq data. Ved analyser

af denne data fandt vi en gruppe af celler som normalt antages at være del af

de membraner som ligger uden om fostret, men som viser sig at ændre deres

celle-type og bliver til en del af tarmsystemet. I de 2 andre artikler arbejdede vi

med celle differentiering i kontekst af kemisk omprogramming af celle-typer. Vi

viser hvordan et sæt af gener er helt centrale i forhold til omprogrammeringen af

fibroblast til XEN-lignende celler. Vi viser ydermere hvordan et sæt af kemikalier

kan bruges til at lave omprogrammings protokoller til mange forskellige celle-type,

herunder hjerne og muskel celler.
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1Introduction to the thesis

This PhD project was structured as a 4-year integrated MSc/PhD programme, a

programme structure offered at Danish universities. The programme consists of 2

parts, each lasting 2 years. The first two years consist of MSc studies performed

alongside the PhD and conclude with a thesis that serves as a qualifying exam for

the final two years of the PhD studies. This thesis is the conclusion of the second

part of the programme, and the work presented here will therefore focus on the

work done in the second half of the PhD programme.

The main recurring questions throughout this thesis are the following:

1) What cell-types are there? (In a given single-cell RNA sequencing dataset)

2) How are the cell-types related to each other? (E.g. what are the develop-

mental trajectories between the types? How do we make sure we make

the right cell-types in vitro?)

3) How to engineer cell-types in vitro?

The thesis is structured into three parts, each with their own introduction, re-

sults and conclusion:

Chapter 1: Introduces CAT, an algorithm I developed to compare cell-types from

single-cell RNA sequencing data. This chapter deals with questions 1) and 2).

Chapter 2: Briefly introduces early embryo formation and describes our study of

the cell-types that develop into the gut. This chapter deals with questions 1), 2),

and 3).

Chapter 3: Discusses how to chemically reprogram somatic cells into other somatic

cell-types. This chapter deals mainly with question 3).

During my PhD, I co-authored four articles, which are attached in the appendix.

One of these articles was published in the first part of the PhD programme, so

this thesis will only cover the work of the three most recent articles, along with

additional results that are not yet published.
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2CAT - A tool providing
quantitative comparison
between cell-types

This chapter presents the computational tool CAT, which I developed as part of the

work that resulted in the following article:

Rothová, M. M.1, Nielsen, A. V.1, Proks, M.1, Wong, Y. F., Riveiro, A. R., Linneberg-

Agerholm, M., David, E., Amit, I., Trusina, A., Brickman, J. M. (2022). Identifica-

tion of the central intermediate in the extra-embryonic to embryonic endoderm

transition through single-cell transcriptomics. Nature Cell Biology, 1-12.

In the article, we present a single-cell RNA sequencing (scRNAseq) dataset covering

the early stages of mouse embryo development, which serves as the foundation

of the investigation. CAT was designed to make analysis of such data easier.

Specifically, the purpose of the algorithm is to reveal the relationship between

groups of cells in scRNAseq data. However, as we will see, it also works for

other types of high-dimensional data. Our article’s primary focus is the biology

surrounding the specification and development of the gut, and while CAT is

introduced as a method and its results displayed, the method itself is not thoroughly

discussed in the article. In this chapter, I will therefore go into more detail about

why it was necessary to develop CAT, describe more precisely how it works and

discuss results based on examples. In the next chapter, I will introduce the main

biology results from the article.

The main question that drove the development of CAT is the second question stated

in the "Introduction to the thesis": How are the cell-types related to each other? To

answer this, however, we also need to answer question 1: How do we find and

identify the cell-types?

1These authors contributed equally.
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In the following introduction I will introduce the datasets used in the chapter

and cover how the two above questions are normally approached in scRNAseq

studies.

2.1 Introduction

2.1.1 Datasets

Throughout this chapter, I am going to refer to three datasets: The scRNAseq

dataset we published along with the paper [Rothová et al., 2022], the Modified

National Institute of Standards and Technology (MNIST) digits dataset [LeCun

et al., 1998] and fashion-MNIST [Xiao et al., 2017].

The exact format and content of the Rothova2022 dataset is covered in the paper,

but I will quickly review the essential points. The dataset consists of measurements

of the RNA sequences inside 6282 individual single cells taken from mouse embryos

in the early stages of development (between days 6.5 - 9.5 after fertilization) and

4003 cells from in vitro experiments. The RNA of individual cells were sequenced

using the MARS-seq protocol [Jaitin et al., 2014]. The resulting data characterize

each cell with a vector, where each entry denotes the number of RNA sequences

expressed corresponding to a specific and unique gene.

After collecting all the vectors representing the individual cells, the overall result

can be represented as an M by N matrix, where M is the number of cells (10285),

and N is the number of genes (24262). The rows in this matrix represent RNA

levels for a given cell, and columns represent the expression of a given RNA across

all cells. This matrix is commonly referred to as a count matrix and represents the

whole transcriptome profile of the cell population. In conventional data-science

terms, each cell is a sample, and each gene is a feature. The count matrix can

therefore be interpreted as a standard "sample x feature" matrix common in the

field of machine learning and scientific computing. An illustration of the matrix

format can be seen in Figure 2.1.

ScRNAseq datasets are by nature high-dimensional, noisy and often contain various

data defects, making it hard to analyze, interpret, and intuit about the data [Eraslan

et al., 2019, Xu et al., 2021].

4 Chapter 2 CAT - A tool providing quantitative comparison between cell-types
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Figure 2.1: Data layout for scRNAseq datasets and fashion-MNIST. Using scRNAseq, the
strands of RNA inside a cell can be measured. Adding up the counts cor-
responding to the various genes results in a vector summarizing the gene
expression for the cell. Combining many such expression vectors yields a
count matrix. The fashion-MNIST dataset is constructed similarly, but is
composed of pictures instead of cells. Each image is vectorized by simply
reading the pixel intensities. Combing many vectorized images yields a matrix
representing the dataset of pictures. (DNA and RNA clip-art edited from IGI
Glossary Icon Collection by Christine Liu).

In our article, [Rothová et al., 2022], CAT is only run on scRNAseq datasets.

So in this chapter, in order to evaluate and illustrate the functionality of CAT,

I will additionally make use of the famous MNIST digits and fashion-MNIST

datasets (Figure 2.1), that are commonly used for benchmarking machine learning

algorithms. In the MNIST digits dataset, each sample is a digitized 28 by 28-pixel

photo of a handwritten digit, ranging from 0 to 9. The features are the intensity

of each pixel. The MNIST digits dataset has the convenient property that each

of its 70.000 samples conforms neatly into archetypes of 0,1,2... etc. (unlike

scRNAseq), making it easy to judge the performance of algorithms run on it. The

fashion-MNIST dataset is structured like the MNIST digit dataset but consists of

more complex photos of fashion items, such as shoes and t-shirts, instead of digits.

MNIST digits is one of the more simple datasets a machine-learning algorithm can

be benchmarked against, and if an algorithm fails here, it can hardly be excepted to

2.1 Introduction 5



work for more complicated data. When MNIST digits is "too easy", fashion-MNIST

is often used instead [Song et al., 2017, Xiao et al., 2017].

2.1.2 Standard processing of scRNAseq data

The raw sequencing data produced by scRNAseq protocols are not immediately

ready for analysis, it needs to be prepossessed before becoming a usable count

matrix (like the Rothova2022 dataset described above). The steps involved in a

preprocessing pipeline affect all subsequent analyses, like finding and comparing

cell-types. A typical scRNAseq processing/analysis pipeline is illustrated in Figure

2.2.

The raw data contains the sequences for each piece of RNA that was detected inside

each cells of a sample. The sequencing reads are matched against a reference

genome to determine which gene each sequence belongs to. The number of RNA

sequences corresponding to each gene is counted for each cell. The steps involved

in this quantification process are called trimming and alignment, and results in a

raw (un-normalized) count matrix [Du et al., 2020].

The sequencing process is sensitive to the concentration of reagents, which vary

slightly from cell to cell and sequencing batch to batch. For example, in the PCR

amplification step of a standard scRNAseq protocol, this can lead to big differences

in the total number of RNA reads between cells [Jaitin et al., 2014]. Due to

this type of technical noise, the raw count matrix from the quantification step

needs to be normalized [Brennecke et al., 2013]. The simplest normalization is

normalizing each gene’s count by the total RNA count for each cell, but many

other methods exist [Cole et al., 2019]. Technical batch-to-batch variation can be

normalized using specialized batch correction methods [Haghverdi et al., 2018].

Normalization has been extensively studied and is the preprocessing step that

influences the subsequent analysis the most [Vieth et al., 2019].

Quality control is performed between each preprocessing step. This ensures

the removal of cells that failed to be properly sequenced, e.g. cells with too

few detected genes or a too low total number of reads. The end result of the

prepossessing pipeline is a normalized count matrix with associated metadata (see

section 2.1.1), which can then be used for the downstream analysis.

6 Chapter 2 CAT - A tool providing quantitative comparison between cell-types
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Figure 2.2: Illustration of a typical scRNAseq data-processing workflow. The raw data
first undergoes preprocessing to get a normalized count-matrix with relevant
metadata (preprocessed data). This count-matrix is then typically clustered
and embedded. These steps are usually iterated a few times before converging
on a set of good parameters for the preprocessing, clustering and embedding.
Afterwards, there will be further downstream analysis.

Usually, the first task for downstream analysis is exploration and examination of

the dataset’s content, i.e. identifying cell types, figuring out their function and

how they relate to each other and contribute to the various organs of the studied

tissue.
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2.1.2.1 Clustering

To address how the cell-types in a dataset are related, we first need to find out

which cell-types there even are. The detection of cell-types (also called lineages) is

typically done using clustering to label similar data points together, using some

measure of "distance" for similarity [Kim et al., 2019]. Clustering is sensible for

scRNAseq data since we expect cells of the same cell-type to have relatively similar

RNA expression profiles compared to cells of a different cell-type. Cells of the same

lineage should therefore have a small distance between their expression vectors

and should cluster together. Once the cells have been clustered, the clusters need

to be examined so we can identify the lineages they represent. This is typically

done using known marker genes or gene ontology enrichment analysis on genes

that are differentially expressed between the clusters (more on identification in

section 3.2.1).

In principle, clustering could be done in a supervised manner, manually assigning

labels to each individual cell in a dataset (assuming the researcher has enough

prior knowledge and patience). In practise, due to the overgrowing datasets in

the field, researchers turn to unsupervised clustering algorithms such as Louvain

[Blondel et al., 2008], SNN-Cliq [Xu and Su, 2015], PhenoGraph [Levine et al.,

2015], SC3 [Kiselev et al., 2017] or Leiden [Traag et al., 2019].

While the exact methods these algorithms use to determine clusters differ, they

all have in common that they use some distance metric, e.g. euclidean or cosine

distance, to measure similarity between cells for this decision. Consequently, they

are all prone to the phenomenon dubbed "the curse of dimensionality" [Bellman

et al., 1957]. The curse of dimensionality is technically an umbrella term that

covers various phenomena that makes it difficult to analyze high-dimensional

real-world data, but I will just cover the following aspect of the curse that is

relevant to this topic: When the dimensionality of a dataset’s feature space grows,

the distances between all pairs of data points tend to converge, rendering any

measure of distance meaningless [Ertöz et al., 2003]. This is naturally a problem

for algorithms relying on distances, like clustering. The more noise a real-world

dataset has, the worse the problem becomes. ScRNAseq data is notoriously noisy

[Wagner et al., 2018, Eraslan et al., 2019].

A toy example illustrating the curse of dimensionality is shown in Figure 2.3.

The figure contains two rows of plots; the first row shows points drawn from

8 Chapter 2 CAT - A tool providing quantitative comparison between cell-types
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Figure 2.3: Figure illustrating the behaviour of noise in various dimensions. The top
row shows points sampled from Gaussian distributions with 0 mean and unit
variance. The bottom row shows the pairwise distance between points of the
top row. As the number of dimensions grows, the pairwise distance between
points grows as well, making it harder and harder to use the distance to
distinguish between pairs of points that were sampled closely together and
points that are sampled further apart. In the 10.000D case, the distance
between all pairs of points are basically the same.

Gaussian distributions (with zero mean and unit variance) for different numbers of

dimensions, and the second row shows the pairwise distance between these points.

In the 1-dimensional case, the chance of sampling 2 points from the centre of

the normal distribution is quite high, so the pairwise distance between 2 random

points is often very close to 0. Occasionally, as we would expect, a point is sampled

from further out in the Gaussian’s tail, which is reflected in a few high pairwise

distances. Based on the distance in the 1D case, it is easy to distinguish between

two points that were sampled closely together and two points they were sampled

from further apart. Once the dimension increases to 2D, the expected pairwise

distance shift to a higher value. The points are still most likely to be sampled close

to the centre of the distribution, but the added degree of freedom means the points

can be offset at an angle to each other and, as a result, will be slightly further apart

on average. In the 2D case, it is still easy to distinguish between points that are

close together and points that are further apart based on the pairwise distances.

When the number of dimensions increases, the pairwise distances keep shifting

higher. In the 10.000D case, the vastness of the high dimensional space further

inflates the distances between the pairwise points and the degrees of freedom

all but guarantee that the sampled points will be orthogonal to one another. As

2.1 Introduction 9



a result, the difference between the highest possible pairwise distance and the

smallest are virtually the same, meaning that all the points are basically equidistant.

The examples shown in Figure 2.3, illustrate that noise in high dimensions always

pushes points apart, never together. If the variance of the Gaussians had been 0,

all the points would be located at origo and the pairwise distance between points

would be a delta function at zero (regardless of the number of dimensions). The

fact that distances increase with a larger number of dimensions can therefore be

attributed solely to the noise. These are idealized examples to showcase the effect

of the curse of dimensionality, but the effect of noise in real-world data is the same.

Put in equation form:

lim
Ndim→∞

dmax − dmin

dmin

= 0 (2.1)

where Ndim is the dimensionality of the data and dmax and dmin denoted the largest

and smallest possible pairwise distances between points in the given dataset. As the

dimensionality of the data tends towards infinity, any contrast between distances

vanishes, leaving every point equidistant not only to origo but also to each other.

Fortunately, a typical scRNAseq dataset spans only 10.000 to 30.000 genes and

current state-of-the-art clustering methods, like the ones mentioned above, have

proven capable of successfully finding meaningful clusters, given proper tuning of

clustering parameters. But, when dealing with 10.000 to 30.000 dimensions, the

effect of the curse of dimensionality is a genuine concern, and it is crucial to verify

the clustering’s results. Having a lot of gene expression information for single cells

is both a blessing and a curse. More genes in a dataset should in principle enable

us to resolve more rare and specific cell-types that might only differ slightly in

expression of only a few genes. On the other hand, having more genes makes it

harder to do proper unsupervised clustering, embeddings and many other types

of analysis that directly or indirectly rely on distances between the cells in the

gene-expression space.

2.1.2.2 Dimensional embedding / reduction.

To visualize how the identified cell-lineages (clusters) relate to one another, the

clustering is typically done alongside a dimensional embedding. Before explaining

what an embedding is, let us take a step back.

10 Chapter 2 CAT - A tool providing quantitative comparison between cell-types



To understand and convey data, we create graphical representations of it. This

could be a pie-chart of the composition of cell-types in a dataset (1 variable) [Wang

et al., 2019], a bar-plot of a gene’s expression across experiment replicates (2

variables) [Zhao et al., 2021] or a scatter-plot of the sepal width versus the petal

length, color-coded for multiple types of iris flowers (3 variables) [Fisher, 1936].

The purpose of the illustrations in these examples is to show how datapoints relate

to each other in terms of a varying number of variables, i.e. which datapoints

are similar/dissimilar and to reveal trends. How to best plot different kinds of

data has been studied at length, and it is generally agreed that only a handful of

variables can be plotted in one figure at a time [Bertin, 1983, Wilkinson, 2012].

This leaves high dimensional data, like scRNAseq data, in a difficult spot. To

convey and intuitively understand the full picture of the relationships between

high dimensional datapoints (such as cells in scRNAseq data), we cannot plot all

the different combinations of 3 genes (variables) at a time. To overcome this diffi-

culty researchers, use dimensional embedding techniques [Han et al., 2022, Kadur

Lakshminarasimha Murthy et al., 2022, Bandler et al., 2022]. Dimensional embed-

ding enables the otherwise unintuitive and high-dimensional scRNAseq datapoints

(cells) to be plotted as a scatter-plot in just 2 (or sometimes 3) dimensions. The

distances between the cells in the scatter-plot are computed so they capture the re-

lationship/similarity across all the genes (variables) at once. This low-dimensional

representation is called the "embedding" of the data. The goal of the dimensional

embedding, when used to explore scRNAseq datasets, is twofold:

1. Check that the clusters are "reasonable" in the sense that they actually appear

to be separate clusters that do not intermix.

2. Compare the relationship of clusters in the embedding, revealing which cells

and cell-types are similar and which are not (Figure 2.2).

While both goals here can serve as a validity check for the clustering, an embedding

is often done in its own right to gain novel insight into the structure of the dataset.

The embedding can reveal possible trends between types and be used for plotting

other variables on top of (e.g. color-coding the scatter points to specific genes)

[Yao et al., 2021, Konstantinides et al., 2022, Melenhorst et al., 2022].

There is a multitude of dimensional embedding techniques, each with a different

method for calculating an appropriate distance between data-points (cells) in the

scatter-plot. Broadly speaking, the techniques can be put into two categories:
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Linear and non-linear2 [Sumithra and Surendran, 2015, Udell et al., 2016, Wang

et al., 2020].

Linear

The linear class of techniques work by using low-rank matrix approximation: An

input matrix is factorized to be approximately expressed as the product of 2 smaller

matrices, as illustrated in Figure 2.4a. The two smaller matrices can be thought

of as a representation matrix and an archetype matrix. A row in the representa-

tion matrix contains the weights of a single sample for a linear combination of

signatures (rows in the archetype matrix) needed to approximately reconstruct a

row of the original data. In the domain of scRNAseq, a row of the original data

would represent a cell. Linear methods include examples like principal component

analysis (PCA), single value decomposition (SVD), multidimensional scaling (MDS)

and non-negative matrix factorization (NMF). The signatures in the archetype

matrix are the directions in the case of PCA, and the representation rows are the

placement of a datapoint along these directions. An example of PCA is shown in

Figure 2.4c. The way these linear methods accomplish a dimensionality reduction,

down to 2 dimensions for example, is by using the first 2 entries in the rows of the

representation matrix as the coordinates for the cells in the embedding. In the case

of PCA, this corresponds to plotting the two leading PCA components and ignoring

the contribution of the rest of the components (the ones that account for the least

variance in the dataset). The main difference between these linear methods comes

down to how they weigh the minimization of the difference between the original

data and the approximation, as well as the constraints they put on the problem

[Udell et al., 2016]. Linear dimensionality reduction techniques are blazing fast

and are successfully applied across many fields, but as the name would also suggest,

they do not capture non-linear relationships well (like the ones typically present

in biological data) [Van Der Maaten et al., 2009]. For this reason, non-linear DR

have overtaken methods like PCA and are now the undisputed standard for visual

exploration in the field of bio-informatics [Luecken and Theis, 2019].

Non-linear

Non-linear dimensionality reduction (NLDR), also sometimes called manifold

learning, is a slightly broader category of algorithms. The idea behind NLDR is

that high-dimensional data is usually not distributed randomly throughout all

2Technically, there are also autoencoders and other types of neural network approaches, but these
are not common in the scRNAseq field (or data science in general) so I will not cover these.
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Figure 2.4: Linear dimensionality reduction example. a) Using matrix factorization a
count matrix can be approximated by 2 smaller matrices. A dimensionality
reduction can be achieved by dropping the least significant signatures, e.g.
the signatures accounting for the least variance in the case of PCA. b) High
dimensional data (3d) lying on a lower dimensional (2d) "swiss roll" manifold.
c) 2d dimensional embedding of b) using the 2 leading PCA components (i.e.
2 columns of the representation matrix). PCA fails to capture the manifold
nature of the data and instead simply removes the depth of the roll, which
contains the least relative variance. The swiss-roll data was generated using
scikit-learn [Pedregosa et al., 2011b].
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its dimensions but tends to lie close to a lower-dimensional manifold within the

feature (gene) space. A visual example can be seen in Figure 2.5a, illustrating a 3d

dataset consisting of data-points lying on a 2d manifold in the shape of the classic

"swiss roll" from [Tenenbaum et al., 2000]. The structure of the lower-dimensional

manifold can be captured in the form of a weighted neighbour graph, which in turn

can be used to embed data-points into a lower dimension in such a way that the

features of the graph are preserved, even if the exact relative distances between all

points cannot. Older methods like isomap [Tenenbaum et al., 2000] and Laplacian

Eigenmaps (spectral embedding) [Belkin and Niyogi, 2001] uses the neighbour

graph to construct a geodesic distance matrix which is then processed using MDS

or other matrix factorization methods to create an embedding (exactly like the

linear methods) [Whiteley et al., 2021]. Newer and more popular methods, like

T-SNE, UMAP and PaCMAP, forgo this step and instead embed the neighbour graph

itself directly into the lower dimension using force-directed layout algorithms:

The datapoints (nodes of the neighbour graph) are placed in the desired lower

dimension, sometimes at random, and the edges and nodes of the network are

assigned attractive and repulsive forces. The NLDR algorithm then simulates the

forces of the network, relaxing it iteratively into a shape that (ideally) recaptures

the weights of the neighbour graph from the higher dimension and conserves

thereby conserves the manifold structure. This process is illustrated in Figure 2.5

using UMAP on the swiss roll dataset. It is worth noting that the axis units on the

final embedding are arbitrary, which is the reason NLDR embeddings are often

displayed without their axis altogether, see e.g. [Cao et al., 2019]. The exact

method for constructing the graph and the weights of the forces depend on the

algorithm and will often vary slightly upon implementation [Wang et al., 2020].
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Figure 2.5: Non-linear dimensionality reduction example. a) High dimensional data lying
close to a lower dimensional manifold. The example shows the 3d "swiss roll"
dataset. b) To capture the structure of the lower-dimensional manifold, points
are connected into a nearest-neighbour graph. The graph is then embedded in
a lower dimension, for example, using a force-directed graph layout. c) Once
the graph has been embedded, the dimensionality reduction is complete. This
example shows a UMAP embedding in 2d plotted together with the neighbour
graph. UMAP captures the manifold and "unrolls" the data along it. Axis units
are arbitrary.

2.1.2.3 Challenges of using non-linear dimensionality reduction

Modern non-linear DR methods have proven capable of producing impressive visual

results on many types of real-world datasets, ranging from high-throughput ’omics’

technologies [Argelaguet et al., 2019] to climate modelling [Franch et al., 2020],

astronomy [Jespersen et al., 2020], cybersecurity research [Bozkir et al., 2021]

and computer vision [Väisänen et al., 2021]. An example of how embeddings are

used in practice in the scRNAseq field could be; accessing similarities between

cell-types after dataset integration. When datasets co-localise in an embedding,

e.g. T-SNE or UMAP, they are judged to be similar, thereby proving success data

integration [Butler et al., 2018, Chen et al., 2022]. Researchers also use the

continuity of data-points in an embedding to infer relationship between cell-types

(E.g. the clusters corresponding to two cell-types mix with each other at the border

between them) [Krivanek et al., 2020].

However, despite their well-deserved and widespread use, NLDR methods have

some challenges that limit their usefulness for interpretation of the data. Partic-

ularly for the types of scRNAseq-related questions outlined at the beginning of

the "Dimensional embedding/reduction" section: verifying the clustering of cells
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and finding relationship between cell-types. In practice, whether or not NLDR

produce helpful embeddings, depends strongly on the quality of the data and the

parameters used. Below I will discuss a few of the problems with modern NLDR

algorithms, such as T-SNE and UMAP, and afterwards introduce my own algorithm,

CAT, to address these issues.

Non-linear DRs are sensitive to parameter tuning

Firstly; non-linear DRs are known to be sensitive to parameter tuning [Wattenberg

et al., 2016, Coenen and Pearce, 2019, Wang et al., 2020, Huang et al., 2022].

For example, algorithms like T-SNE and UMAP have a parameter that balances the

algorithm’s emphasis on local versus global structure in the data, usually called

perplexity or simply the number of nearest neighbours. The parameter determines

the number of neighbours that the algorithm will try to strictly preserve the

distances between. A suitable value for this parameter depends on the number

of datapoints, so the same value cannot be assumed to give similar results across

different datasets or even for the same dataset if more samples are added to it

later. Fortunately, tuning the parameter is easy, making it possible to quickly find

reasonable-looking embeddings in most cases. Effectively perplexity controls the

"tightness" or "clumpy-ness" of datapoints in the embedding, meaning higher values

will group the points together in fewer larger clumps. Tuning perplexity up or

down can therefore mean the difference between having a single spatial group

of cells split in two or having separate groups adjacent or entirely apart in the

embedding. These differences could lead to different interpretations of the data,

so in order to get an intuition about the underlying data, it is necessary to run the

non-linear DR algorithm with multiple perplexity values.

An example of just how different embeddings of the same data can look with

different embedding parameters is provided in Figure 2.6.

Other parameters also profoundly influence the result of embedding algorithms.

The exact parameters and their names depend on the respective algorithm [McInnes

et al., 2018, Poličar et al., 2019, Wang et al., 2020]. To give a few examples using

T-SNE terminology: The degree of freedom in the kernel shape for finding nearest

neighbours, early exaggeration (negative sampling rate in UMAP) and the learning

step size used in the descent algorithm. These parameters influence the way
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Cell types (Both plots)

Figure 2.6: The same data is embedded in a) and b) by different authors using T-SNE with
different parameters. Despite portraying the same data, the two embeddings
look starkly different. a) Shows a T-SNE embedding of a mammalian organo-
genesis scRNAseq dataset. Dataset and plot produced by Cao et al. [Cao et al.,
2019]. Each of the 2.026.641 tiny colored dots corresponds to a sequenced
mouse cell. The authors have colored each cell according to cell-type (identi-
fied from clusters found using unsupervised Louvain clustering). b) The same
dataset embedded using T-SNE by Kobek et al. [Kobak and Berens, 2019],
but with different T-SNE parameters. colors and labels are the same between
a) and b). Besides the obvious global structure difference, notice how for
example, cluster 15 appears split up in a) but not in b). If a researcher uses
co-localisation or mixing between cell-types to guide their interpretation of
the data, they will reach different conclusions, depending on which of the 2
embeddings they are looking at.
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the manifold is reconstructed [Kobak et al., 2019], the likelihood of the layout

getting stuck in a poor local minimum [Linderman and Steinerberger, 2019], the

distance between clusters [Kobak and Berens, 2019] and how discrete/continuous

the borders between clusters get presented [Böhm et al., 2020]. Similar to the

case of perplexity, good values for these parameters depend on the question the

researcher is trying to answer, as well as the intricacies of the dataset. To get a full

understanding of a dataset, multiple embeddings should ideally be created varying

these parameters as well. All in all, optimizing the parameters of non-linear DR is a

decidedly non-trivial task, so much so that software has been written to automate

the task [Belkina et al., 2019].

Results of NLDR are sensitive to heterogeneity of the dataset

Unlike most statistics tools, introducing more data-points does not necessarily make

the embedding more reliable or easier to analyse. By adding more data-points to a

dataset, NLDR can make the already present data-points squeeze closer together

or fall in completely different regions on the embedding, giving the illusion of

lower/higher similarity. An example of this is shown in Figure 2.7. The figure

shows that after adding new clusters to a dataset and running the typical analysis

pipeline steps required for an embedding (Figure 2.2), the distances between

previous clusters in the embedding will change. Some researchers acknowledge

that the distances between disconnected clusters do not carry any significance

[Coenen and Pearce, 2019, Wattenberg et al., 2016], but this example shows

that even the intermixing of clusters can be quite arbitrary. This problem is

particularly relevant when researchers use co-localisation on an embedding to

support conclusions of similarity between different cells, like in the cases of data

integration mentioned above. The effect can be partially avoided if the embedding

is run on the full gene-set instead of highly variable genes (HVGs) or PCA. Feature

selection, however, is often used due to the performance scaling issues of NLDR

and the ever-growing dataset sizes [UMAP, 2022, Wang et al., 2020] (see section

"How to deal with the curse of dimensionality for manifold learning" below).

Stochasticity

Stochasticity itself is by no means a negative feature of an algorithm; randomness

helps optimization algorithms find useful minima, speed up calculations and
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Figure 2.7: UMAP embedding using embryonic stem cells of in vivo (grey) and in vitro
origin (colored) from Rothova2022. The embeddings on a) and b) portray
the exact same in vivo cells but a different number of in vitro cells (3 in vitro
clusters in a) versus 1 in b)). This difference influences whether or not the in
vivo and in vitro mix together in the embedding (notice the blue population).
The names of the in vitro populations are not important for this figure but are
explained in section 3.2.2 of the next chapter, where these populations are
more thoroughly introduced.

help discover solutions that would otherwise be hard or impossible to derive

analytically. A modern example of the success of stochastic algorithms is the

optimizers behind neural networks [Kingma and Ba, 2014, Loshchilov and Hutter,

2017]. All modern NLDR algorithms currently applied in the field of bioinformatics

are also stochastic in nature, and can in fact be thought of as unsupervised machine

learning3. NLDR "learns" a high-dimensional manifold that fits the data, which it

then tries to project lower-dimensional data onto [Wang et al., 2020]. Like other

machine learning algorithms, the network layout part of NLDR methods works

like a minimizer, using some form of stochastic gradient descent to arrive at their

objective function’s minima. Using this approach, they are able to non-linearly

embed high-dimensional data in a way that can take both large-scale and local

features into account, something linear embedding methods inherently cannot.

This feature comes at a cost; unlike linear methods, non-linear DR is not guaranteed

to arrive at the global minima for the objective function, meaning that every time

the algorithm is rerun, even with the same data and parameters, it produces a

different embedding. The resulting embeddings can differ significantly, and with

it, the possible interpretations we draw about the data. When commenting on

3Typically unsupervised. UMAP, for example, has been updated to support supervised learning
using labelled data and neural networks under the hood.
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the reproducibility in UMAP’s official documentation, Vito Zanotelli puts it quite

eloquently:

[. . . ] setting a random seed is like signing a waiver "I am aware that this is a
stochastic algorithm and I have done sufficient tests to confirm that my main
conclusions are not affected by this randomness".

Since non-linear DR algorithms rely on stochastic iterations to converge to their

result, they are not only affected by the random number generator but also by their

initial configuration. Recent papers have investigated the choice of initialisation

and shown that it can have a substantial impact on the ability of these algorithms

to preserve global structure [Kobak and Berens, 2019, Kobak and Linderman,

2019, Wang et al., 2020, Kobak and Linderman, 2021].

To illustrate how non-linear DR can fail to produce consistent results, I have

run UMAP 6 times with random initialisation using different random seeds, but

otherwise identical default parameters. The test was run using the simple MNIST

digits benchmark dataset (see section 2.1.1). Four of these UMAP embeddings

are shown in Figure 2.8. While the four embeddings look comparable at first

glance, upon further inspection, it can be seen how both subplot 2.8a and 2.8d,

contain more than the expected 10 groups of datapoints (one for each digit). This

could indicate that some of the sampled digits are not as consistently similar as

we would expect (maybe people draw the same digit in two different ways?),

but this conclusion is contradicted by the embeddings on subfigures 2.8b and

2.8c, that correctly show 10 groups on the embeddings. More likely than not, the

embeddings got stuck in sub-optimal minima for subplot 2.8a and 2.8d, but this

would have been impossible to guess without re-running the embedding multiple

times or having a ground truth (in this case we know that there should be 10 types

of digits). The embedding on subplot 2.8c, that correctly shows 10 groups, also

shows how the groups corresponding to digits 9 and 7 are neighbours and slightly

intermix at their borders, indicating a possible similarity between the shapes of

these hand-drawn digits. With prior knowledge of how the digits look like, this

similarity will probably make sense to most people. The "closeness" between 7

and 9 is not present in subplot 2.8a and 2.8b, and since there is no quantitative

measure to judge with, it is hard to definitely say how related two digits are com-

pared to other digits. The MNIST digits dataset is supposed to be one of the easier

datasets to benchmark [Wang and Deng, 2022, Jiang, 2020], and while UMAP

successfully groups most of the digits together according to their type, it does not
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do so consistently. For datasets with less well-defined archetypes, more noise, and

for which we have less prior knowledge, UMAP and other NLDR algorithms’ lack

of consistency should be a real concern.

(a) 12 clusters. Cluster "7" separate. (b) 10 clusters. Cluster "7" separate.

(c) 10 clusters. Cluster "7" neighbours "9". (d) 11 clusters. Cluster "7" neighbours "9".

Figure 2.8: UMAP embeddings of the famous MNIST digits dataset. The 70.000 small dots
on each embedding corresponds to an image of a handwritten digit between
0 and 9 and are color-coded according to the digit it represents. Ideally, the
embeddings should consistently group datapoints corresponding to the same
digits together, but as seen in subplots (a) and (d), this is not always the case
since these have more than 10 spatial clusters. Subplots (b) and (c) correctly
shows 10 spatial clusters but disagree on the neighbourhood of cluster "7".
Embeddings were generated using default UMAP parameters (official python
implementation, random initialization) for 6 random seeds, with 4 being
cherry-picked to show here.
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Curse of dimensionality and manifold learning

Because the goal of dimensionality reduction is to embed the relative distances

between datapoints in high dimensions into a lower one, it is inherently sensitive

to the curse of dimensionality. If the data is noisy and high dimensional enough, it

will lose its contrast between similar and dissimilar points, the points becoming

equidistant (Figure 2.3). This means that there will be no structure or manifold in

the high dimension to embed in the first place. In practice, as mentioned earlier,

datasets are rarely so high-dimensional or noisy as to be useless, but the higher

dimensional the data is, the harder it will also be to do insightful dimensionality

reduction on it [Van Der Maaten et al., 2009]. An often used method to limit the

effect of the curse of dimensionality is to simply limit the number of dimensions

by selecting a subset of features prior to doing dimensional embedding. The most

common approaches include limiting the analysis to the most highly-variable genes

(HVGs), i.e. the genes that vary most between the cells, or to perform PCA on the

data and only use a limited set of the top PCA components [Johnstone and Lu,

2009, Wolf et al., 2019, Hao et al., 2021].

The logic of limiting the features to HVGs relies on the argument that the genes

which do not vary much between cells also will not enable us to distinguish

between samples and therefore effectively only contribute with more dimensions

of potential noise [Luecken and Theis, 2019]. On the other hand, the genes that

vary most between the cells are likely also the ones that are best at distinguishing

cell-types. It is the same argument that can be made for PCA, simply using PCA

directions in the gene space instead of genes. Feature selection is so common,

that some researchers even recommend running PCA on top of HVGs before

downstream analysis like NLDR [Weber, 2022, Amezquita et al., 2020]. Using a

sub-set of features has the added benefit of significantly improving the runtime

and memory usage of NLDR, since these tend to scale poorly with an increased

number of features [McInnes et al., 2018, Wang et al., 2020].

The choice of pre-reduction of dimensions becomes clear a trade-off: better perfor-

mance for the down-steam analysis (e.g. clustering and dimensionality reduction)

versus the loss of signal that comes with throwing data away. An additional down-

side of using feature selection is that the results of the downstream analysis will

depend on the details of input data in unpredictable ways. Imagine two scRNAseq

datasets, dataset A and dataset B, that are entirely identical, with the exception
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that A contains an additional population of cells that B do not. These additional

cells may have significantly different genes expression compared to the average of

the dataset, which means that the HVGS and PCA computed on dataset A will be

different from dataset B. When downstream analysis of the datasets is concluded,

the portion of cells that were otherwise identical between the two datasets will

cluster differently and show different embedding relationships. This effect is simi-

lar to the one shown in Figure 2.7, but extends to all downstream analyses that

depend on the explicitly data-derived feature selection.

Implications of the DR limitations

Linear dimensionality reduction struggle to capture the non-linear relationships

between cells in scRNAseq data, which makes non-linear dimensionality reduc-

tion the natural alternative and de-facto standard [Liu et al., 2016, Verma and

Engelhardt, 2020, Wu et al., 2021].

However, given the challenges with current state-of-the-art NLDR embedding

methods, it can be risky to judge or draw conclusions from individual embedding.

In my own research, I find that I often create multiple embeddings, changing

parameters and rerunning the same parameters over and over (with different

seeds) to gain an intuition and to find a plot I feel best illustrates the data. It is a

tedious process, and even with multiple embeddings of the same data, it can be

difficult to pick one since, in principle, each embedding is equally "correct" when

there is no qualitative measurement to judge them by. In practice, the vast majority

of publications include only a single embedding.

With the replication crisis in science, [Nissen et al., 2016], I think that it is fair to

point out that without a ground truth to hold NLDR against, "finding the embedding

that best illustrates the data" can be awfully close to "finding the embedding that

best supports the desired conclusion".

In "Eleven grand challenges in single-cell data science", a widely cited review collabo-

rated by many of the leading researchers in single-cell data science, the authors

list 3 overarching themes among the challenges that are pervasive in the entire

field [Lähnemann et al., 2020]:

1. A challenge of navigating varying levels of resolution.
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2. A challenge of quantifying measurement uncertainty.

3. A challenge of scaling to higher dimensionalities.

While not intended to solve all issues in the field, I would still argue that non-linear

dimensionality reduction, in its current state, falls short on all 3 accounts.
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2.2 Cluster Alignment Tool (CAT) - Principles and
functionalities

In an effort to sidestep the challenges of using and interpreting non-linear DR

when applied to the use case, "verify clusters and examine the relationship between

cell-type", I developed Cluster Alignment Tool (CAT). With CAT I wanted to develop

a method that deals with the curse of dimensionality without limiting the number

of input dimensions (genes) but instead by reducing noise. This makes CAT a

complementary approach to how cell-types are currently compared with NLDR.

CAT is a tool for determining, with meaningful uncertainties, which cell-types in

a dataset are most similar. This can be used to determine whether or not in vitro
cultures produce cells corresponding to in vivo cells, it can assist in figuring out

how cell-types within an embryo relate to each other, and it helps us ascertain that

the results we find are actually consistent with previously published data. The

result of CAT can be understood visually, with graphics like UMAP/T-SNE, but it is

also easily interpretable via the statistics it produces. In the section below, I will

cover how the algorithm works, discuss some of its shortcomings and show how it

applies to the easily interpretable fashion-MNIST dataset.

2.2.1 How the algorithm works

By operating at a level of clusters rather than single cells, CAT reduces noise

by averaging the gene expression among the cells in a cluster. Since clusters

correspond to cell-types, this resolution is also fitting for testing how cell-types

are related. For CAT to run, the input data therefore needs to be pre-clustered.

Instead of finding distances between cells, we are interested in distances between

clusters (cluster averaged gene expression). CAT uses the simple euclidean distance.

Unfortunately, highly expressed genes will have a disproportionate influence on

these distances, as illustrated in Figure 2.9. To avoid this, we normalize the

expression of all genes by their median (excluding zeros), also illustrated in Figure

2.9.

For each cluster, the shortest distance will indicate which other cluster it is most

similar to. To meaningfully distinguish between the shortest and next-shortest
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Figure 2.9: Illustration of the non-zero median normalization and its effect on highly
expressed genes. Each gene, xi, is normalized by the median for all cells
expressing the gene (I.e. the median excluding zeroes). This normalization
ensures that highly expressed genes (compare first and fourth gene) contribute
to the distance calculation at the same order of magnitude as lowly expressed
genes (compare contributions of the first (orange) and the fourth (red) gene
to the distance before and after the normalization. ⟨X⟩ and ⟨Y ⟩ are vectors of
the average gene expression across cells in some cluster X and Y , respectively.
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distances for each cluster, we need to quantify the uncertainty of the distance

measurements.

Since clusters are ensembles of datapoints, it is possible to use a sampling method

to estimate the distance uncertainties: Assuming that the cells faithfully represent

the possible variety within a cluster, then if we take random samples from within

the cluster (with replacement, i.e. allowing to take the same samples multiple

time), the resulting collection of samples should be representative of what the clus-

ter could potentially look like if we re-ran of the experiment. Performing tests on

samplings with replacement is a type of statistical analysis known as bootstrapping

[Efron, 1992]. Using this bootstrapping method, Niteration number of represen-

tations of each cluster is generated and then averaged. The Euclidean distances

between the clusters are calculated at each bootstrap iteration. Thus, instead of

getting one distance between pairs of clusters, there are Niteration distances, each

with a bit of variation, representing the heterogeneity of clusters. Calculating

the average and standard deviation of these distances allows the algorithm to

estimate the confidence of similarity between clusters before finding the most

similar nearest neighbours.

A parameter, σ, controls the confidence with which CAT can tell two distances

apart when finding the nearest neighbours between clusters (constructing a neigh-

bourhood graph). For example: Consider a cluster "a" with distances db ± σdb
,

dc ± σdc to some clusters "b" and "c" respectively. If db is the smallest of the two

distances, we say that "b" is the nearest neighbour to "a". If the difference between

db and dc is very small (i.e. cannot be distinguished from 0, with a confidence

higher than σ), we also count "c" as a nearest neighbour. The specific criteria

is |db−dc|√
(db)2+(dc)2

< σ. This parameter is similar to the perplexity of T-SNE or the

"n_neighbours" parameter of UMAP, since it controls the connectedness of the

neighbourhood graph. As with UMAP and T-SNE it effectively controls global

versus local structure; too low a sigma and the graph will not be connected, too

high a sigma and everything will be connected.

If a cluster is ill-defined, for example consisting of many dissimilar cell types, the

exact choices of sampled cells at each bootstrapping iteration will matter more

compared to a completely homogeneous cluster. This variation between iterations

will show up as high uncertainties on the distances from this cluster to other

clusters, revealing that the cluster in question should be sub-clustered further or
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that the cluster simply consists of heterogeneous cells (usually this would be cells

that were half dead or not sequenced properly).

A pseudocode outline of CAT is given below:

Algorithm 1 Implementation of Cluster Alignment Tool (CAT)

Require:

• X - high dimensional data matrix with annotated cluster labels.
• Niterations - Number of iterations for the bootstrap process. Defaults to 1000.
• σ - Significance cutoff for nearest neighbours. Defaults to 1.6.

Pseudocode:
• Normalise each gene (column) of X by the median expression for all cells

(rows) expressing the gene.
for i=0 to Niterations do

• Sample each cluster to its original size, with replacement.
• Calculate the average of each subsampled cluster.
• Calculate and record the euclidean distances between every combination

of sampled cluster averages.
end for
• Calculate the mean and variance for the Niterations distances found for each

combination of pairs of clusters.
• Find the nearest neighbour for each cluster based on the mean distances. For

a given cluster, there might be multiple clusters with a low distance. If the
difference between the distance of the nearest neighbour and another cluster
is close to 0. (I.e. with less than σ levels of uncertainty), then we say we
cannot determine which is actually the nearest neighbour, and they will both
count as nearest neighbours.

• Construct a nearest neighbour graph and lay it out with forceatlas2 for visuali-
sation. There is an edge between clusters if they are nearest neighbours, with
edge strength inversely proportional to distance (scaled).

Return:
• Table with distances with uncertainties and neighbour status for each cluster

to all other clusters.
• Graph visualisation.
• Sankey visualisation.

2.2.1.1 Visualisation of CAT alignments

CAT can produce visualisations in the form of nearest neighbour graphs, Sankeys

and tables. The visualisations show, each in their own way, which clusters in a

dataset are most similar.
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Nearest neighbour graph

Forceatlas2 was chosen for laying out the neighbourhood graph for CAT to visualise

its results in a manner comparable to algorithms like UMAP. ForceAtlas2 [Jacomy

et al., 2014] is the default layout algorithm of the network visualisation software

Gephi [Bastian et al., 2009], and is available in many packages for easy use in

Python [Chippada, 2022] and R [analyxcompany, 2022]. ForceAtlas2 works under

the same principles as the layout algorithm in UMAP and the other algorithms like

it, using repulsive and attractive forces between points to iteratively converge to

a 2-dimensional graph representation. The embeddings produced by ForceAtlas2

have been shown to be on par with those of other embedding algorithms, even if its

speed cannot compare to the newer algorithms like UMAP [Böhm et al., 2020].

For the purpose of CAT, the efficiency of the layout algorithm is of little concern

since the plotted number of nodes (clusters) is typically less than 50, many orders

of magnitude less than what is expected to be handled by this class of layout

algorithm. In general, the choice of layout algorithm is not very important for CAT,

almost any network layout algorithm could manage to preserve the graph structure

when less than 50 points are involved. In cases where CAT only has a handful of

nodes in its graph, it is even viable to draw the edges between neighbours, and as

such, even a circular graph layout or linear DR like MDS could be a meaningful

and interpretable representation of CAT’s result. Nearest neighbour graphs are

most useful when visualising the relationship between clusters within a single

dataset.

Sankey

Sankey diagrams are typically used for visualising flows. CAT uses it for visualising

how different clusters align to their targets, taking account of multiple nearest

neighbours and the relative number of cells in each cluster. Sankeys are my

preferred methods to visualise the relationship of clusters from one dataset to

another, like the examples in Figures 2, 5 and 6 of [Rothová et al., 2022].

Tables

CAT produce a table for each cluster listing its distances to all other clusters, sorted

by their respective distances. The nearest neighbours are highlighted in green.

Examples of such tables can be seen in section 2.2.2 on Table 2.1 and in the

supplementary data of [Rothová et al., 2022]. The advantage of the tables is

that the uncertainties and statistics that go into the calculations of finding nearest

neighbours can be displayed.

2.2 Cluster Alignment Tool (CAT) - Principles and functionalities 29



2.2.2 Example CAT usage

To help the reader get an intuitive understanding of how CAT performs and to probe

its generality to problems other than scRNAseq, this section shows a usage example

with the fashion-MNIST dataset, which is both easier to understand and interpret

than the average scRNAseq dataset. At the same time, it is high-dimensional and

complex enough to be a challenging dataset to work with.

The fashion-MNIST dataset consists of 70.000 greyscale 28x28 images, with ex-

amples from 10 types of clothing articles. The dataset is widely used, especially

for classification and embedding benchmarks. For this example, we assume that

the cluster classification has already been done and that the objective is to identify

similarities between clusters, as we would for a typical scRNAseq dataset (like

the outlined goals in section 2.1.2.2). Each image in the dataset is represented

by a vector containing the individual 784 pixel values. Compared to a scRNAseq

dataset, an image’s pixel intensity corresponds to a cell’s gene-expression value,

and instead of clusters of cell-types, the dataset contains classes of clothing-types.

Figure 2.10: Fashion-MNIST dataset: The 10 categories are shown with 9 examples from
each. The pictures are grayscale 28 by 28 pixels. The dataset consists of
70.000 clothing articles.

I have shown 9 images of each class in the dataset in Figure 2.10. Looking

at these, you probably already have an idea about which clothing classes are going

to be similar. Keep these similarities in mind as we see how CAT would align these.

Running CAT on the dataset is trivial. The dataset is available through the python
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library sklearn [Pedregosa et al., 2011a] or github [Xiao et al., 2017] and is al-

ready formatted as a count matrix. Without any processing or normalisation, CAT

produces the 2d network embedding, table and Sankey, that can be seen in Figure

2.11, 2.12 and Table 2.1.

Coat

Pullover

Shirt

Tshirttop

Dress

Trouser

Sneaker

Sandal

Ankleboot

Bag

Figure 2.11: Result of CAT when run on the fashion-MNIST dataset and embedded as
a network in 2d. The graph is directed, with each node pointing to its
closest neighbour(s). The size of each node is scaled to reflect the average
magnitude of its outgoing similarities. The plot shows the clothing articles
falling into 3 categories. Notice how the (dis)similarity of the “bag” class
results in many nearest neighbours for the class, each with a low similarity
score.

The easiest way to get a quick overview of the results from CAT is to look at the

2d nearest-neighbours graph embedding shown in Figure 2.11. This figure that

the graph separates into 3 disconnected neighbourhoods; footwear, upper-body

wear and dresses/trousers. In my opinion, this corresponds well to how my human

intuition would align these clusters. A possible outlier is the “Bag” class, which

aligns to the upper-body wear. All classes have nearest neighbours, even if the

alignment is not mutual. For potentially “bad” alignments such as the “Bag” class,

there is no other class that is really a good match, which results in multiple nearest

neighbours, all with a relatively high distance. This kind of sub-optimal alignment

is more evident when looking at the alignments quantitatively, as in Table 2.1.

Looking at the "Bag" cluster, we can see that it has the highest numbers of nearest

neighbours and that the quantitative distances to these nearest neighbours are the
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Table 2.1: A table containing a simplified overview of CAT’s quantitative result, showing
the distance/similarity for each class of clothing. Green indicated the nearest
neighbour(s). The “±” shows the standard deviation on the distance calculated
from the bootstrap. This is a simplified overview; a full table would also
include the p-values.

highest among all clusters. The difference between the nearest and farthest cluster

is also the smallest for the "Bag" cluster. Distant alignments and small near/far

ratios can occur for different reasons; 1) that the cluster is simply dissimilar to

the other clusters or 2) that the cluster is ill-defined, consisting of heterogeneous

samples. If a cluster is ill-defined, its distances after each bootstrap iteration

are more likely to be influenced by noise and therefore become larger and more

equidistant. This heterogeneity, however, should show up in the uncertainties of

the distances since each bootstrap will contain a different sampling of the cluster,

giving a larger spread in the distance. The "Bag" cluster has approximately the

same size of uncertainties as the other cluster, so it is safe to conclude that the

cluster is not ill-defined, it is simply just the most different from the other clusters

in the dataset. To illustrate another use of the table, one might wonder how the

footwear clusters are all related. Focusing on "Sandal", we can see that while

"Ankleboots" is the only nearest neighbour at distance 11.14, "Sneakers" is not far

off at 13.63. Both "Ankleboot" and "Sneaker" are much closer than the next cluster

"Bag" at 17.77. This clearly suggests a relatively high similarity between "Sneaker"

and "Sandal", even if "Sneaker" does not quite meet the criteria for being a nearest

neighbour.
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Figure 2.12: Snakey representation of CAT on the fashion-MNIST dataset. Connections
indicate a nearest neighbour relationship from the nodes on the left to the
nodes on the right. colors corresponds to the groups that can be seen on the
network embedding in figure (2.11)

2.2.3 Limitations and strengths of CAT

The following section will cover some of the limitations and strengths of CAT,

hopefully giving the reader a more thorough understanding of CAT in the process.

Limitations:

2.2.3.1 All clusters have a nearest neighbour.

Like other non-linear embedding algorithms, CAT relies on a nearest neighbour

search, which means that each cluster will always have a “nearest” neighbour,

no matter how far this might be. The consequence of this is that clusters that

should intuitively be isolated will always “attach” themselves to other clusters and

visually connect with these in the graph. Algorithms like T-SNE and UMAP have

a parameter for tuning a cut-off for neighbours if the similarities get too distant.

This feature could, in principle, also be implemented in CAT, but as of the moment

of writing, this is not implemented, so potential users should beware of clusters

that align towards many nearest neighbours with big distances.
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2.2.3.2 How to interpret CAT distances

In the coverage of CAT so far, I have only addressed rankings of the distances

CAT computes between clusters, i.e. which are closest and which are not. The

main reason to focus on the rankings (the nearest neighbours) rather than the

actual value of the distance to judge similarity is that the distances change from

experiment to experiment (dataset to dataset).

Technical differences between sequencing methods influence, e.g. the number

of genes that get observed in an experiment and can bias the relative detection

between genes (sequence length bias, guanine-cytosine-content bias, etc) [Liu

et al., 2012, Ding et al., 2020, Dabney and Meyer, 2012]. Technical differences such

as these make it hard to say if a concrete distance value is short or long because it

very much depends on the data. For the same reason, it is hard to directly compare

the internal distances between clusters in one dataset to the internal distances

between clusters in another dataset. The distances have meaning, but only relative

to the other distances within the same experiment. Distances in a dataset seem

to have a lower bound. Because of the noise (natural variance or otherwise) that

is inevitably present in data, the curse of dimensionality dictates that datapoints

will always be pushed at least a certain distance apart from each other (Figure

2.3). This lower bound can be estimated by comparing a cluster to itself (using

randomly sampled sets of the same cluster with replacement). The only component

that should contribute to this distance is noise/variation. Empirically, we find that

the shortest distances between clusters seem to be comparable to this self-to-self

distance.

The cell-types (hindgut1, hindgut2, midgut) will be discussed in the next chapter,

for this examples the specific names of the clusters are not important.

Here is an example using the Rothova2022 dataset. (The specific names of the

clusters are not important for this example, only the distances. The names are

explained in the next chapter if the reader is curious). The distance from the

hindgut1 cluster to itself (random re-sample to random re-sample) is on average

12.01 (±0.36), while the distance from hindgut1 to its nearest neighbour, hindgut2,

is 13.15 ± 0.28. So the fact that the distances between clusters in the Rothova2022

dataset are never less than 10, does not mean that the clusters are actually far

apart (i.e. dissimilar), it just means there is a minimum noise-driven (and therefore

dataset dependant) contribution to all distances. The distance from hindgut1 to
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midgut is 16.42±0.24; at first glance, this distance seem comparable to its hindgut2

distance (13.15), but when the minimum distance is considered, the difference

between these 2 distance can be more clearly appreciated.

It would be interesting to explore distances between datasets further, perhaps with

the help of overlapping reference cell-types sequenced in both datasets. For now,

we simply use nearest neighbours.

2.2.3.3 CAT requires a minimum number of cells per cluster

A requirement for CAT to work is the pre-clustering of the data it uses as input.

In order to provide proper uncertainties on the distances between clusters, each

cluster needs to contain enough cells to average over at each step of the bootstrap

iteration to 1) average out the noise and 2) properly reflect the heterogeneity of

the cells in the cluster. The number of cells (data points) that is required for these

2 criteria depends on the dimensionality of the data as well as the distributions of

data within the dataset, but should, in principle, always converge given enough

data points and bootstrap iterations (see section 2.2.3.5).

The question then becomes, how many cells per cluster is needed in practice?

To get an estimate of what this number of cells might look like for an average

scRNAseq dataset, I will use our own dataset, Rothhova2022, as an example. In this

context, a cluster contains "enough" cells if the sub-sampled cluster averages used

in the bootstrap process do not substantially change when including more cells.

Example: if a sub-sampled cluster contains only 5 cells, then their average will look

substantially different from the average of another 5 sub-sampled cells from the

same cluster. The specific noise/variation of the selected 5 cells would dominate

the signal. One way to measure if the sub-sampled cluster average has reached

convergence towards the true cluster average is to look at the distance between

the sub-sampled cluster average and origo. As the number of cells included in

the sub-sample, its distance to origo will converge towards the true value. Figure

2.13 shows sub-sampled cluster averages for 3 randomly chosen clusters from the

Rothova2022 dataset and how their distance to origo changes as a function of the

number of sampled cells. Judging from this figure, I would estimate that about

50 cells per cluster are enough to get an accurate enough representation of the

cluster to use with CAT.
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Figure 2.13: Cluster-averages all converge to a specific euclidean distance from origo
(d =

√
(

∑
i x2

i )), if enough cells are included when calculating the average.
This figure shows 3 example clusters from the Rothova2022 dataset. Dashes
lines are guides for the eye, while the vertical bars show the spread over
500 independent runs. X-axis show how many cells were sampled (with
replacement) to calculate the cluster average.

Strengths:

2.2.3.4 Computational runtime

With the number of bootstrap iterations (N_iterations), ideally being larger than

100, the bootstrap for loop in the CAT algorithm takes up the vast majority

of the computation. Conveniently the loops are independent and can therefore

easily be parallelized. With a parallelized CAT implementation, it took about 5

minutes (or approximately 1 coffee break) to finish 1000 bootstrap iterations on

the Rothova2022 dataset (10.285 cells x 24262 genes). This was done on an AMD

Ryzen threadripper 2990WX CPU using 10 threads. As can be seen in Figure 2.14,

CAT scales linearly with the number of cells in a dataset, enabling it to be used

on even large datasets. An implementation using the GPUs superior number of

parallel compute cores and its ability to rapidly calculate distances between vectors

could potentially speed up CAT.
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Figure 2.14: Comparison of the scaling of CAT, T-SNE and UMAP, using our own mouse
embryonic scRNAseq dataset (Rothova2022) with 24262 genes and a variable
number of cells. T-SNE and UMAP were run with default parameters and
their exact solvers. The figure shows the ideal linear scaling of CAT compared
to the scaling of competing non-linear DR methods.

2.2.3.5 CAT is not sensitive to random number seed

Although CAT uses bootstrapping to arrive at its results, making it a stochastic

algorithm just like UMAP and T-SNE, it is not prone to the same fluctuation in its

output. The bootstrapping in CAT is used to calculate distances between re-sampled

clusters. In the following, I will argue that these distances follow a non-central

chi² distribution. The distribution is important because we want to show that the

average of these distances over many runs of the bootstrap will, therefore, always

converge and that CAT’s results are entirely reproducible across runs, regardless of

random seeds.

Each cluster in a scRNAseq dataset represents a population of cells that can be

thought of as a distribution of cells. These distributions have some quantifiable

mean (the cluster average) and a finite variance. If we take multiple samples with a

sufficiently large number of cells in each from these distributions with replacement,

then the averages (mean or median) of these samples should be approximately

normally distributed, given the central limit theorem [Bentkus, 2005].
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If {C1, C2, . . . , Cn} is a set of independent and identically distributed random

variables (cells) being drawn from the same distribution (cluster), then the formula

for the sampled cluster average, X, is trivially:

X = C1 + C2 + ... + Cn

n
(2.2)

Each cell is a vector of independent gene-counts (features); Ci = [ci1, ci2, ...cim].
To calculate the cluster average, X, the different genes can, therefore, be added

independently, meaning that the individual genecounts of X, (xi), are themselves

sums of independent and identically distributed random variables, each subject to

the central limit theorem.

X =


x1

x2
...

xm

 =


(c11 + c21 + c31 + ... + cn1)/n

(c12 + c22 + c32 + ... + cn2)/n
...

(c1m + c2m + c3m + ... + cnm)/n

 (2.3)

To calculate the squared Euclidean distance between 2 cluster averages, X and Y ,

we get the following terms:

d(X, Y )2 = (x1 − y1)2 + (x2 − y2)2 + ... + (xm − ym)2 (2.4)

Since the individual gene counts of the cluster averages, xi and yi, are normally

distributed random variables, it follows that the difference between any two pairs

of features for two cluster averages, xi − yi, should also be a normal distributed

random variable, each with their own mean and variance; zi = xi − yi. This means

that the squared difference for each term in the distance sum becomes a chi²

distributed random variables.

d(X, Y )2 =
m∑
i

(zi)2 (2.5)
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Because the different zi are normally distributed, but each has unequal means µi

and unequal variances σi, the resulting distribution for the distance between 2

clusters does unfortunately not have an exact analytic solution. However, recent

advances approximating sums of chi-square distributed random variables show

that sums like these can be approximated by a non-central chi-squared distribution

[Imhof, 1961, Castaño and López, 2005, Bodenham and Adams, 2016].

In the case of the CAT algorithm, we can make one simple approximation that

will trivially show the same. In the first step of the algorithm, the genes are

normalised against their median count (zeros excluded). This is done to avoid

the distances being dominated by a single or few individual genes that happen

to have larger copy numbers. Because of this normalisation, we can expect the

random variables xi, yi and therefore zi to have approximately the same order of

variance. If we assume the variances to be the same, then the expected distance

(squared) between clusters becomes exactly non-central chi-squared distributed.

[Abromowitz and Stegun, 1972, p. 942]. The non-central chi-squared distribution

has the convenient property that as the number of dimensions (genes), i.e. number

of terms in distance sum, tends towards infinity, then the excess kurtosis (or

“tailedness”), as well as skewness of the distribution tends to 0.

Using a bootstrap process, CAT repeatedly samples the distances between cluster

averages from this distribution. Due to the above-mentioned properties of the

distribution, we can expect the average of the bootstrapped distances between 2

clusters to, therefore, always converge. This means that CAT’s results should be

entirely reproducible across random seeds, unlike its competitors.

I strongly suspect that similar approximations of convergence could be found for

other distance measures, such as cosine similarity or fraction distances [Aggarwal

et al., 2001]. Having run CAT multiple times with other distance measures, at least

it seems to hold empirically. Perhaps an entirely analytical solution without the

need for bootstrapping could even be derived.

2.2.3.6 Complexity

The entirety of the algorithm can be explained in a page or 2, and requires very little

mathematics to understand. This is in stark contrast to T-SNE, UMAP and PaCMAP,

whose family of algorithms seems to grow more complicated with each iteration,
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as evidenced by the many papers and blog posts devoted to analysing their inner

workings and trying to explain their performance [Wang et al., 2020, Chari et al.,

2021, Oskolkov, 2019]. For algorithms designed to be used by people that do not

necessarily fully understand them, I personally feel like simplicity is an important

feature.

CAT only has a single tunable parameter, σ.

2.2.3.7 CAT results do not appear to depend on distance metric

As mentioned above, the concept of proximity and distance begin to lose qualitative

meaning when operating in high-dimensional spaces. The choice of appropriate

and best performing distance metrics has therefore been studied both in the setting

of scRNAseq [Kim et al., 2019] and machine learning more generally [Aggarwal

et al., 2001, Shirkhorshidi et al., 2015, Smets et al., 2019]. By default, CAT uses

Euclidean distance under the hood due to its simplicity. In order to evaluate CAT’s

robustness to the choice of distance metrics, we have run it with cosine and Pearson

distance, which both tend to perform better in high-dimensional spaces. Cosine

distance measures the similarity between two vectors as the angle between them,

making it invariant to the scaling of the vectors. Pearson distance is the same as

cosine distance after a centering of the vectors, making it invariant to both scale

and location. It measures the correlation between the features of the vectors. The

formulas for these are in the table below:

Distance measure Formula

Euclidean D =
√∑n

1 (xi − yi)2

Cosine D =
∑n

1 xiyi√∑n
1 x2

i

√∑n
1 y2

i

Pearson correlation D =
∑n

1 (xi − x)(yi − y)√∑n
1 (xi − x)2

√∑n
1 (yi − y)2

Testing these on the Rothova2022 dataset, the results of CAT can be seen in Figure

2.15 in the form of network plots. Tables and Sankey diagrams reveal the same, i.e.

that CAT is not particularly sensitive to the choice of distance metric. Switching

between Euclidean, cosine, and Pearson does not change a single nearest neighbour

found in this test.
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Figure 2.15: Comparison of nearest neighbour graphs produced by using CAT on our
mouse embryonic scRNAseq dataset (Rothova2022) using different distance
metrics to determine the similarity between clusters. The plots show that all
nearest neighbours between clusters are identical regardless of metric. Each
node represents an in vivo cluster of cells from the Rothova2022 dataset,
labelled with its identified cell-type. The specific labels are not important for
this comparison, but are explained in the introduction of chapter 3, if the
reader is curious.

2.2.3.8 CATs sensitivity to number of genes

To test how sensitive CAT is to the selection of specific genes and the number of

genes included, I ran CAT varying the percentage of genes included in the analysis

and compared the outcome to CAT run on the full dataset. The results can be

seen in Figure 2.16. Even with a random 80% of the geneset excluded, about

80% of the nearest neighbours are still correctly found. Including only 1% (243

genes) still conserve the majority of the nearest neighbours. When the number

of genes included in the analysis goes down, CAT also begins to find nearest

neighbours that were not present when using the full geneset. The number of

these presumably wrong nearest neighbours is still small when using more than

50% of the geneset.
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Figure 2.16: Test of CAT’s dependence on the percentage of genes included in the
Rothova2022 dataset (both in vivo and in vitro cells). X-axis shows how many
genes were included in 10 tests compared to the full geneset of 24262 genes.
Genes were sampled at random. Y-axis on the left plot shows the percentage
of nearest neighbours (compared to CAT run using the full geneset) that
was also found with CAT using less genes. Y-axis on the plot on the right
shows the percentage of nearest neighbours found in a CAT run, that was
not present compared to CAT run on the full geneset.

2.3 Conclusion

CAT was developed to fill the need for a tool that could compare cell-types without

the difficulties of conventional NLDR methods. CAT provides this by taking a

different approach. By focusing on noise reduction as the main way to overcome

the curse of dimensionality, CAT ends up providing answers in a way that is

complementary to the current techniques. This makes it hard to directly benchmark

CAT’s performance in cell-type comparison against NLDR.

I criticise current NLDR for failing to address the 3 main challenges described in

"Eleven grand challenges in single-cell data science" [Lähnemann et al., 2020]. I will

now argue how CAT meets these challenges.

1) The challenge of scaling to higher dimensionalities:

Because of the noise reduction, it is possible for CAT to utilize all dimensions

(genes) in a dataset for its analysis without the need for prior feature selection

with e.g. PCA. CAT furthermore provides the best possible runtime scaling (linear),

allowing the number of cells in a dataset to scale as well.

2) The challenge of quantifying measurement uncertainty:

Due to the design choice of CAT to focus on clusters rather than single cells, CAT
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can use bootstrapping to quantify the uncertainties of the results that it produces.

This allows the researcher, if not to trust the results, then at least to know how

strongly to doubt them. The fact that CAT converges to the same result every time

is definitely a bonus.

3) The challenge of navigating varying levels of resolution:

CAT is inherently dependent on an external and predefined scale in the form of

clusters. For NLDR, the problem is that its scaling parameter (perplexity) does not

clearly indicate what resolution the algorithm draws out of the data to display (it

is also dependent on the data). Since CAT uses clusters as a basis for its analysis,

the resolution is always very explicit. To navigate to different levels of resolution,

the user can easily re-cluster the data to the desired scale. Unfortunately, CAT

requires a minimum number of cells to be included in each cluster. Even if this

limit is fairly low (approximately 50 cells), it means that there is a lower bound on

the resolution.

If I get more time to work on CAT, I would like to investigate how the values of

the distances could be further used. It would be interesting to see how scRNAseq

experiments using different sequencing methods but containing the same cells

could be used to calibrate and investigate the behaviour of the distances. I

would also like to address the shortcoming that all clusters in CAT have a nearest

neighbour. It should be possible to define a cut-off for clusters that are obviously

only a nearest neighbour from the perspective from one of the two clusters.
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3Analysing data obtained on
embryogenesis and
gastrulation

"It is not birth, marriage, or death, but

gastrulation which is truly the most

important time in your life."

Lewis Wolpert

This chapter presents the main analysis results that I helped contribute to the

article introduced in the previous chapter: [Rothová et al., 2022].

The main question that the article tries to answer is how the cells surrounding the

embryo contribute to the formation of the gut in the early stages of development.

The article furthermore attempts to recreate the early gut development in vitro. The

results I present in this chapter will be slightly more focused on the computational

analysis angle than the article.

The introduction contains a quick overview of the formation of the early embryo,

specifically the time period around the formation of the gut. The "Methods and

results" section covers how the cell-types in our dataset are identified before

exploring their relationship to one another. I also show how we can map the

differences that make the in vitro cultures fail to fully mimic the early in vivo gut

development. Lastly, I discuss the usefulness of the computation methods used.

3.1 Introduction

The embryo is, by nature, a diverse and changing organism. After conception,

the nascent mammalian embryo expands orders of magnitudes in size, while cells
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rearrange to change the embryo’s shape, before maturing into an animal ready for

birth. Despite undergoing this dynamic process, the embryonic growth spurt is

incredibly robust, reaching developmental goals with remarkable precision along a

predefined trajectory.

In the early embryogenesis, one of the first and most critical development mile-

stones is gastrulation. Gastrulation occurs in all multi-cellular organisms (except

for sponges [Nakanishi et al., 2014]) and is the process where the basic body plan is

first laid down [Tyser et al., 2021]. For this thesis, the focus will be on mammalian

gastrulation, specifically mouse. While the process happens at slightly different

timescales for different species; around day 6-9 for mouse [Bardot and Hadjan-

tonakis, 2020, Tam et al., 1993], and around day 14-21 for human [O’rahilly and

Müller, 2010], it is otherwise remarkably similar between these two species, mak-

ing mouse a good model organism for understanding our own human development.

Around day 3-4 (prior to gastrulation), the mouse embryo is approximately spheri-

cal in structure (a structure called the blastocyst), consisting of trophoblast, the

outer layer of cells that will go on to form part of the placenta and the inner cell

mass (ICM), which consists of the cells that will go on to form the embryo proper

[Edgar et al., 2013]. The blastocyst stage is the starting point of the developmental

map in Figure 3.1, where the abbreviations for each cell-type are also shown.

During gastrulation, the still pluripotent stem-cells of the ICM differentiate into

one of the three germ layers; endoderm (inner layer), mesoderm (middle layer)

and ectoderm (outer layer), in the process limiting their potency and locking

their cell-fates onto one of these developmental paths [Riveiro and Brickman,

2020, Edgar et al., 2013]. In layman’s terms, this is the point of development

where the cells that actually form the animal proper first decide which part of

the body they will become. The developmental paths and the tissues/body-parts

associated with the three germ layers are shown in Figure 3.1. While the cells

internally commit to these decisions, they globally migrate, reshaping the embryo

from an elongated sphere to the classic fetus ’C’-shape, with a clearly defined

left-right, back-front and head-tail axis. The ICM also gives rise to the hypoblast, a

group of cells that, among other things, form the yolk sac and visceral endoderm

(VE), membranes that envelop the embryo and help pattern and orient its growth

[Riveiro and Brickman, 2020, Srinivas, 2006]. It has normally been understood

that cells of the hypoblast are an extra-embryonic lineage that does not become
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Figure 3.1: A developmental map of the early mouse embryo, from blastocyst stage to
the end of gastrulation. The map shows the lineage structure and earliest
occurrence of each cell type. The green color indicates the cell types present
in the Rothova2022 dataset. Lineage tree idea inspired by [Nowotschin et al.,
2018]. Images of mouse embryo stages from [Rothová et al., 2022, Xue et al.,
2013, Saiz and Plusa, 2013]
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part of the animal, only serving as a transient support structure for the embryo

[Hogan and Zaret, 2002]. Recent research has cast doubt on this picture.

Using genetic labelling with fluorescent markers and high-resolution imaging of

individual embryos at the gastrulation stage, it has been shown that a portion

of VE lineage cells intermixes with the DE lineage and end up contributing to

the formation of early gut tube [Kwon et al., 2008, Viotti et al., 2014, Scheibner

et al., 2021]. Transcriptomic experiments support this notion [Pijuan-Sala et al.,

2019, Nowotschin et al., 2019].

This behavior is curious, suggesting that the distinction between the cell lineages

that diverge at the late-blastocyst stage might not be so clear-cut. In the classical

view of development, as exemplified by the Waddington landscape metaphor, the

cells become less potent as they mature, following a path along an ever more

branching tree structure to more specific and narrow cell-types [Waddington,

1957]. While some plasticity of the cell-types at the branching points of the tree is

expected, the notion that branches of the tree merge is not.

If VE contributes significantly to DE, then it should be able to form gut organoids

on its own. This is hard to test in an in-vivo setting, given the presence of DE, but

it could potentially be tested in in-vitro.

To study this extra-embryonic VE to embryonic endoderm transition in more detail,

we generated an in-vivo single-cell RNA sequencing dataset (using the MARS-seq

protocol [Jaitin et al., 2014] as mentioned in section 2.1.1), focusing specifically

on the gastrulation period, day 6.5 - 9.5. Analysing the Rothova2022 data, we find

and trace the canonical lineages and furthermore pinpoint the exact population of

VE-derived cells with an expression profile suggesting that they are transitioning

to become more "DE gut"-like. We call these the intermediate visceral endoderm

(InterVE). As part of the Rothova2022 dataset, we also generated in-vitro samples

comprised of embryonic stem cells (i.e. in-vitro epiblast-like cells) and differen-

tiated them towards the gut lineages under different conditions. We determine

the efficiency and precision of the in-vitro differentiation protocols by using CAT

to compare their outcome to the in-vivo part of Rothova2022. Additionally, we

performed the above hypothetical experiment, sequencing naïve extra-embryonic

endoderm (nEnd) stem cells (i.e. in-vitro hypoblast-like cells), showing that it is

possible to differentiate these to produce gut-like cells. Our results suggest that the

developmental trajectory of these cells goes through the InterVE path by comparing
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to our in-vivo dataset. The comparisons between our in-vivo and in-vitro datasets,

as well as an external 3rd party dataset, were made possible using CAT.

3.2 Methods and results

3.2.1 Identifying the embryonic cell types from experimental in vivo
data

As the fertilized egg grows and divides from 1 cell to 2, 4, 8 and so on, the cells

change their gene expression, differentiating into different cell-types (as illustrated

in Figure 3.1). The genes’ expression and changes in their regulation are what

determine the cells’ function and, thereby, identity.

To study and map the origin of the gut lineages in our in vivo scRNAseq datasets (see

section 2.1.1), we first need to determine exactly which cell types are present.

Using the transcriptomes we have gathered for each cell, we sort the cells into

clusters of similar expression profiles (see clustering in chapter 2.1.2.1). The

differences in expression patterns between the clusters enable us to assign identities

to the cell types. We did this in three ways: 1) Using known marker genes, 2)

using differential gene expression with enrichment analysis and 3) using CAT to

compare clusters to annotations in a 3rd party dataset.

1) Using known marker genes.

Embryogenesis has been studied for at least 2 thousand years [Wallingford, 2021]

and through experiments like dissections [Wallingford, 2021], electrophoretic mo-

bility shift assay [Okamoto et al., 1990, Schöler, 1991], immunochemical staining

[Herrmann, 1991], northern and southern blots [Pruitt, 1994, Chambers et al.,

2003], gene modification with fluorescence microscopy [Botchkarev et al., 1999],

reverse transcription polymerase chain reaction [Bao et al., 2011], RNAseq [Irie

et al., 2015] and recently scRNAseq [Lun et al., 2016], many cell-types and their

associated marker genes are already well established. Simply quantifying and

inspecting the expressions of these known genes across the clusters of our dataset

enables us to assign identities to the clusters. This approach, however, is not with-

out its flaws; unfortunately, markers are often shared between multiple lineages

[Zhao et al., 2012] and are typically manually selected, requiring a survey of the
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current literature and databases, leaving a bit of wriggle room depending on which

markers are chosen of how much weight/trust each marker is given. This approach

becomes extra tricky once applied to cells grown in vitro since specific protocols

might up/down-regulate genes in unexpected and unknown ways, skewing the

significance of the marker genes. Since marker genes are based on current liter-

ature, they are also less useful for rare sub-types or new cell-types that have not

been extensively studied previously, such as InterVE. Relying on the expertise of

colleagues and the databases: Mouse Genome Informatics [Bult et al., 2019], Gene

Expression Database [Smith et al., 2019], and Mouse Models of Human Cancer

database [Krupke et al., 2017], we compiled a list of marker genes for different

know cell lineages, which is shown in Table 6.1 in the supplementary of this thesis.

Visualizing these genes in different combinations on a 2d embedding plot (UMAP)

helped guide us in annotating the various clusters in our dataset.

2) Differential gene expression and enrichment analysis.

Once the cells have been clustered, it is common to find the differentially expressed

genes (DEG) among the clusters. Typically one focuses only on the genes that are

more highly expressed within a cluster when compared to other clusters. Some

natural variation in the gene expression is expected; to account for this, only genes

where this variation cannot statistically explain the observed difference between

clusters are considered. For the Rothova2022 data I used the rank_genes_groups
function from Scanpy (a scRNAseq python toolkit) [Wolf et al., 2018] to perform

this DEG analysis. The function is a wrapper for a t-test [Student, 1908] between

the clusters that correct for multiple comparisons (one comparison for each gene)

using the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995].

The list of statistically significant DEGs for each cluster can then be "text-mined".

In databases like the Mouse Genome Informatics and the others mentioned above,

genes are annotated with text terms describing which biological functions they

are involved in and in which part of the anatomy they are expressed. We used

MouseMine [Motenko et al., 2015] (a tool for interacting with the Mouse Genome

Informatics database) to count the number of occurrences for each text term

associated with the DEGs found in the previous step and to perform an enrichment

analysis to determine the statistical likelihood of getting those exact counts if the

genes had been chosen at random (among all possible genes in the dataset).
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If the observed counts for those text terms were unlikely to occur by random

chance, we assume that our cluster does indeed have something to do with the

features described by the text terms associated with its DEGs.

For example: At the time we did this analysis, we had not definitively assigned

identities to each cluster, and the (then unnamed) InterVE cluster did not have any

unique known marker genes pinpointing its identity as either VE or DE derived

in origin for certain. Applying the process above we get the following DEGs for

InterVE: 2900073G15Rik, 5730469M10Rik, Abhd2, Actn1, Apoc1, Apoe, Arfgap3,
Car2, Cbx7, Cd8a, Cdh1, Cited2, Cldn19, Cldn6, Cldn7, Cnn2, Colec12, Cpm, Cst3,
Cstb, Ctsc, Ctsh, Degs1, Egr1, Emb, Emp2, Epcam, Eras, Fam107b, Fgfbp1, Fhl2,
Fmr1nb, Fos, Foxa3, Gas6, Glrx, Gm6030, Gprc5a, Gpx2, Gsn, Hdac6, Itm2b, Jun,
Jup, Klf6, Krt18, Krt19, Krt8, Laptm4b, Lhfpl2, Lima1, Lpar1, Mogat2, Myl6b, Nid2,
Nptx2, Parm1, Pdzk1ip1, Peg10, Perp, Phlda1, Pkdcc, Plat, Polg, Prkch, Prss12, Pvrl2,
Rbp1, S100a10, Sat1, Sepp1, Serpinb6a, Slc16a1, Slc2a1, Slc2a3, Slc39a4, Slc39a8,
Sox17, Sp5, Stard10, Stard8, Sulf2, Tagln2, Tfpi, Tmprss2, Trap1a, Trh, Tspan7,
Txndc12. Parsing these InterVE DEGs to MouseMine platform [Motenko et al.,

2015] for anatomy enrichment analysis, we find anatomy terms (with a likelihood

less than 1e-9 to have occurred by random chance) that are displayed in Table 3.1

below.

Anatomy Terms P-value
Endoderm 2.761674e-18
Embryo endoderm 7.175610e-16
Extraembryonic component 5.546667e-11
Extraembryonic endoderm 7.076719e-11
Hindgut 7.496198e-9
Stomach 9.151894e-9

Table 3.1: The anatomical terms associated with the InterVE. The terms are found by
anatomy enrichment analysis based on the genes in InterVE that are up-
regulated compared to the other cell-types in the dataset.

As we can see from the table, the InterVE cluster has anatomy features that look

both like embryonic and extra-embryonic endoderm, supporting the hypothesis

that this cluster is made up of cells of VE (an extra-embryonic lineage) origin that

is in the process of intercalating into the embryonic endoderm as discussed in the

introduction.

We performed similar enrichment analyses for all clusters in our dataset to help
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guide our cell-type annotation.

3) Using CAT to find similar clusters in a 3rd party dataset.

To further confirm the cluster identities from the 2 previous steps, we used CAT

to compare Rothova2022 to Nowotschin’s dataset [Nowotschin et al., 2019], a

previously published scRNAseq dataset that also covers the gastrulation period

of the mouse embryo. The Nowotschin dataset covers days 3.5 to 8.75 of devel-

opment, providing a significant but not complete overlap. The comparison result

between the Nowotschin and Rothova2022 datasets are included as tables in the

supplementary section 6.1. These are the tables that correspond to the Sankey that

can be seen in Figure 2C in [Rothová et al., 2022].

End result of identification

Combining the results from the three methods, we label the in-vivo clusters from

Rothova2022. The labeling can be seen on Table 3.2 below, as well as in Figure 3.1,

where the clusters are highlighted in green. Some clusters share the same identity

(we postfix them 1 and 2), and appear to be the same overall population, but are

captured at different time-points along their differentiation. DE1 and DE2 contain

markers and enrichment terms that seem to suggest that the early DE1 sits more

anterior, while the later DE2 sits relatively posterior within the embryo. To ensure

the identified cell types are placed correctly in the developmental tree in relation

to each other, we apply RNA velocity [Bergen et al., 2020]. The directionality of

differentiation discernible by RNA velocity confirms that InterVE is differentiating

from a more VE-like state towards a more DE-like state, and not the other way

around.

Label Cells Label Cells
Anterior visceral endoderm (AVE) 391 Hindgut 2 (HG2) 281
Definitive endoderm 1 (DE1) 319 InterVE 193
Definitive endoderm 2 (DE2) 506 Liver 441
Embryonic visceral endoderm (EmVE) 209 Midgut (MG) 356
Extra-embryonic visceral endoderm 1 (ExVE1) 319 Node 430
Extra-embryonic visceral endoderm 2 (ExVE2) 253 Notochord 269
Foregut (FG) 553 Parielral endoderm (PE) 162
Floor plate (FP) 809 Primitive streak (PS1) 181
Hindgut 1 (HG1) 379 Primitive streak (PS2) 231

Table 3.2: The cell-types label assigned to each cluster in the Rothova2022 dataset,
together with the number of cells in each cluster.
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3.2.1.1 Functional similarities of the intermediate visceral endoderm

By running CAT on a subset of genes belonging to functional categories, we

can investigate how InterVE compares to other clusters in relation to only these

features, thereby learning what it is InterVE is changing first to become more

gut-like. Functional projection of the distances between clusters was run separately

for 23 lists of genes corresponding to biologically relevant processes retrieved

from the gene ontology databases mentioned in section 3.2.1. The exact lists are

supplied in the supplementary of our paper [Rothová et al., 2022]. The result

is shown in the colored tables in Figure 3.2 along with 3 examples of functional

projections reveal how the nearest neighbour of InterVE changes between either

the DE lineages, VE lineages or a mix, depending on the projection used.
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Figure 3.2: CAT projections on functionally related subset of genes. Depending on the
functional projection, InterVE will be more similar to the DE lineages (shown
in blue), the VE lineages (shown in yellow) or somewhere in between (shown
in green). One CAT nearest neighbour graph is shown for each category.
Figure modified from [Rothová et al., 2022].

3.2.2 Determining the cell-types made using in vitro differentiation
protocols

To mimic in vivo conditions and guide the development of in vitro grown mouse

embryonic stem cells (ESC), a mixture of chemical compounds is typically added

[Whitten, 1957, Gonzalez et al., 2016, Linneberg-Agerholm and Brickman, 2022].

Depending on the specific protocol used, the ESC cells can be inhibited from
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developing into certain lineages while other paths remain open. [Riveiro and

Brickman, 2020].

It is said that imitation is the most sincere form of flattery. When studying embryo

development, it might also be the most useful. If we can design a protocol for in
vitro culturing of ESC in such as way that they will grow and differentiate to exactly

mimic cell populations found in vivo, it implies that our understanding of the

mechanics that governs the differentiation is sound. The opposite is likewise true.

If we can show that a culture of ESC grown in vitro does not reflect the expected

in vivo counterpart, we know we that are missing something; a discrepancy that

can be used to pinpoint a lapse in our understanding.

As part of the Rothova2022 dataset, we tested 4 established in vitro protocols,

sequencing the cells at different time-point along the differentiation. We tested

two 2D protocols (naming these 2D-ESC and 2D-PI3Ki) based on the same starting

population of an ESC-derived cell line with the same formulation of culturing

media with and without phosphoinositide 3-kinase inhibitor. We furthermore

tested a 3D protocol (3D-ESC) using the same starting population, and lastly, we

tried an alternate 3D protocol (3D-AChir) using a different starting cell-line. For

more information about the exact protocols see [Rothová et al., 2022], particularly

supplementary Data 8.

Two commonly used ways to check whether the in vitro samples match in vivo
cell types include correlation between a subset of genes [Krenkel et al., 2019, Yan

et al., 2013, Kim et al., 2020] or co-localisation on an embedding map [Chen

et al., 2017, Tyser et al., 2021]. As mentioned above, using a limited set of genes

for identification/comparison is sensitive to the specific selection of genes (see

section 3.2.1), and relying on co-localisation on an embedding map is risky for a

variety of reasons (see section 2.1.2.3). But since we have already identified the

populations of the in vivo part of the Rothova2022 (and these cells were sequenced

using the same technology as the in vitro part), we can use CAT to find the closest

corresponding cell-types for the clusters found in vitro and map these onto the in
vivo cell-types.

CAT alignments for the clusters from these 4 protocols can be seen in Figure 5 in

[Rothová et al., 2022]. The data that was used to generate these figures can be

seen in Table 3.3 for the 2D-ESC protocol, Table 3.4 for the 2D-PI3Ki protocol and

supplementary Table 6.2 for 3D-ESC and 3D-AChir.
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D4a (171 cells) D4b (128 cells) D4-D6a (316 cells) D4-D6b (92 cells)
DE2 18,17 ± 0,17 PS2 17,11 0,27 DE2 14,87 0,22 Foregut 22,64 0,46
PS2 19,10 ± 0,24 DE2 18,95 ± 0,18 DE1 14,98 0,21 DE2 22,72 0,53
DE1 19,53 ± 0,21 DE1 19,50 ± 0,22 Foregut 17,74 ± 0,19 Hindgut2 23,10 0,47
NP 20,12 ± 0,19 PS1 19,66 ± 0,29 Hindgut2 18,52 ± 0,22 NP 23,19 0,49
Foregut 20,48 ± 0,21 NP 20,10 ± 0,21 NP 19,07 ± 0,23 Hindgut1 23,41 0,49
Hindgut2 20,54 ± 0,23 Hindgut1 21,64 ± 0,26 PS2 19,13 ± 0,25 DE1 23,47 0,53
PS1 20,67 ± 0,26 Foregut 21,78 ± 0,22 Hindgut1 19,19 ± 0,21 PS2 23,67 0,54
Hindgut1 21,00 ± 0,24 Hindgut2 22,02 ± 0,25 PS1 19,90 ± 0,30 Notochord 24,74 ± 0,48
Notochord 23,16 ± 0,29 Notochord 24,01 ± 0,30 Notochord 21,86 ± 0,28 PS1 24,93 ± 0,52
Liver 26,21 ± 0,27 Liver 26,95 ± 0,27 Midgut 24,44 ± 0,62 Liver 27,47 ± 0,43
Midgut 27,33 ± 0,58 Midgut 28,65 ± 0,55 AVE 24,84 ± 0,28 Midgut 28,63 ± 0,65
AVE 28,92 ± 0,28 AVE 30,65 ± 0,27 InterVE 24,98 ± 0,54 InterVE 30,90 ± 0,57
InterVE 29,67 ± 0,53 InterVE 31,30 ± 0,51 Liver 25,36 ± 0,31 AVE 31,07 ± 0,40
Node 33,21 ± 0,47 Node 33,06 ± 0,48 Node 30,21 ± 0,49 Node 34,17 ± 0,52
EmVE 37,10 ± 0,52 EmVE 38,56 ± 0,51 EmVE 34,54 ± 0,52 EmVE 38,51 ± 0,55
ExVE2 48,89 ± 0,58 ExVE2 49,99 ± 0,57 ExVE2 47,31 ± 0,58 ExVE2 50,00 ± 0,59
ExVE1 61,31 ± 0,66 ExVE1 62,20 ± 0,66 ExVE1 60,44 ± 0,67 ExVE1 62,42 ± 0,66
PE 87,44 ± 1,82 PE 88,04 ± 1,82 PE 86,83 ± 1,82 PE 88,03 ± 1,80

D5-D6a (256 cells) D5-D6b (173 cells) D5-D6c (67 cells) D6 (185 cells)
DE2 20,30 0,20 DE2 18,34 0,31 DE2 27,56 1,03 DE2 24,80 0,40
DE1 20,63 0,21 DE1 18,91 0,31 Foregut 28,19 0,88 DE1 25,64 0,40
Hindgut2 23,22 ± 0,20 Hindgut2 20,41 ± 0,22 InterVE 28,87 0,99 Hindgut2 25,88 ± 0,34
Foregut 23,55 ± 0,21 Foregut 20,64 ± 0,20 Hindgut2 28,90 0,94 Foregut 26,66 ± 0,35
Hindgut1 23,70 ± 0,20 Hindgut1 20,90 ± 0,24 DE1 29,11 1,04 Hindgut1 27,20 ± 0,35
NP 24,84 ± 0,22 NP 21,70 ± 0,26 Hindgut1 30,16 ± 0,93 Notochord 27,90 ± 0,32
PS2 25,07 ± 0,22 PS2 22,06 ± 0,29 Midgut 31,04 ± 0,91 InterVE 28,80 ± 0,52
Notochord 25,48 ± 0,24 Notochord 22,46 ± 0,27 Notochord 31,45 ± 0,90 Midgut 28,94 ± 0,56
AVE 25,79 ± 0,25 PS1 22,97 ± 0,29 AVE 32,33 ± 0,97 NP 29,00 ± 0,39
InterVE 25,80 ± 0,45 AVE 25,43 ± 0,32 NP 32,48 ± 0,95 PS2 29,15 ± 0,39
PS1 25,91 ± 0,25 Midgut 25,61 ± 0,60 Liver 33,01 ± 0,85 AVE 30,20 ± 0,39
Midgut 27,22 ± 0,57 InterVE 25,78 ± 0,54 PS2 33,26 ± 0,96 PS1 30,92 ± 0,43
Liver 28,75 ± 0,29 Liver 26,32 ± 0,29 PS1 34,70 ± 0,98 Liver 32,18 ± 0,39
Node 31,98 ± 0,41 Node 30,52 ± 0,49 Node 36,82 ± 0,93 Node 34,68 ± 0,42
EmVE 35,26 ± 0,47 EmVE 34,39 ± 0,56 EmVE 37,68 ± 0,91 EmVE 38,38 ± 0,50
ExVE2 47,59 ± 0,56 ExVE2 46,86 ± 0,61 ExVE2 49,05 ± 0,86 ExVE2 50,06 ± 0,57
ExVE1 60,76 ± 0,65 ExVE1 60,06 ± 0,69 ExVE1 61,58 ± 0,85 ExVE1 62,59 ± 0,65
PE 86,87 ± 1,81 PE 87,00 ± 1,81 PE 89,24 ± 1,79 PE 87,29 ± 1,79

± ± ± 
± ± 

± 
± 
± 
± 
± 

± ± ± ± 
± ± ± ± 

± 
± 
± 

Table 3.3: CAT distance table from aligning the 2D-ESC in vitro protocol to the in vivo
cell-types within Rothova2022. Green indicated the nearest neighbour(s).
The “±” denotes the standard deviation on the distance calculated from the
bootstrap. The names on top of each sub-table, e.g. D4a, is the label for a
cluster from the in vitro experiments. The D followed by a number denotes the
day along the differentiation of the cells that make up the cluster. The clusters
were obtained using unsupervised clustering.

To measure the success of the differentiation, we define what targets in vivo cell-

types that we expect the in vitro cells to mimic: In vitro clusters composed of

earlier cells should ideally align to PS and/or DE, ane later cells should align to

any of DE, foregut, midgut or hindgut, while clusters that consist of a mix of early

and late cells should align to PS, DE, foregut, midgut or hindgut (these alignments

corresponds to one arm of the developmental tree in Figure 3.1).

The results of the alignments are roughly as expected: All 4 protocols produce

cells along the DE lineage tree with different efficiencies. Taking 2D-ESC as an
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PI3Ki-D4-D6b (111 cells) PI3Ki-D4-D6a (156 cells) PI3Ki-D4-D6c (129 cells)
DE2 19,64 ± 0,25 DE2 19,80 ± 0,17 DE2 22,32 ± 0,31
DE1 21,03 ± 0,27 PS2 21,02 ± 0,25 Hindgut2 22,73 ± 0,26
Hindgut2 21,26 ± 0,23 DE1 21,05 ± 0,22 Hindgut1 22,91 ± 0,26
Hindgut1 21,60 ± 0,24 Hindgut2 21,15 ± 0,20 Foregut 22,93 ± 0,25
Foregut 21,65 ± 0,23 Foregut 21,19 ± 0,19 DE1 23,37 ± 0,31
PS2 22,18 ± 0,25 Hindgut1 21,60 ± 0,23 PS2 23,59 ± 0,35
FP 22,23 ± 0,24 FP 21,95 ± 0,21 FP 23,68 ± 0,28
Notochord 23,04 ± 0,27 Notochord 23,08 ± 0,28 Notochord 23,91 ± 0,30
PS1 23,85 ± 0,29 PS1 23,44 ± 0,26 PS1 25,89 ± 0,38
Midgut 27,07 ± 0,59 Midgut 27,42 ± 0,57 Midgut 28,28 ± 0,58
Liver 27,73 ± 0,30 Liver 27,83 ± 0,27 Liver 28,68 ± 0,33
AVE 28,29 ± 0,28 InterVE 29,69 ± 0,52 InterVE 30,58 ± 0,50
InterVE 28,29 ± 0,52 AVE 30,18 ± 0,25 AVE 31,18 ± 0,27
Node 32,35 ± 0,45 Node 33,29 ± 0,46 Node 33,45 ± 0,44
EmVE 36,61 ± 0,52 EmVE 38,23 ± 0,51 EmVE 38,92 ± 0,52
ExVE2 48,88 ± 0,60 ExVE2 50,18 ± 0,59 ExVE2 50,57 ± 0,58
ExVE1 61,76 ± 0,72 ExVE1 62,68 ± 0,72 ExVE1 63,06 ± 0,70
PE 88,10 ± 1,81 PE 88,39 ± 1,82 PE 88,76 ± 1,80

PI3Ki-D5-D6a (196 cells) PI3Ki-D5-D6b (54 cells) PI3Ki-D6 (90 cells)
DE2 22,41 ± 0,18 DE2 21,67 ± 0,42 DE2 25,94 ± 0,35
Hindgut2 23,43 ± 0,19 Foregut 22,07 ± 0,39 DE1 26,67 ± 0,34
DE1 23,72 ± 0,21 DE1 ### ± 0,41 Hindgut2 26,83 ± 0,35
Foregut 24,04 ± 0,18 Hindgut2 22,77 ± 0,40 Foregut 26,95 ± 0,34
Hindgut1 24,08 ± 0,20 Hindgut1 23,36 ± 0,38 Hindgut1 27,42 ± 0,34
Notochord 24,92 ± 0,25 FP 23,65 ± 0,39 Notochord 28,09 ± 0,35
FP 25,52 ± 0,21 PS2 24,04 ± 0,42 FP 29,17 ± 0,36
PS2 25,88 ± 0,23 Notochord 24,81 ± 0,41 InterVE 29,23 ± 0,49
PS1 27,48 ± 0,23 PS1 25,58 ± 0,43 AVE 29,77 ± 0,32
Midgut 27,90 ± 0,56 Midgut 27,90 ± 0,60 Midgut 29,89 ± 0,59
InterVE 27,94 ± 0,48 Liver 28,95 ± 0,39 PS2 30,03 ± 0,35
AVE 28,73 ± 0,23 AVE 29,40 ± 0,37 PS1 31,31 ± 0,36
Liver 29,63 ± 0,28 InterVE 29,42 ± 0,55 Liver 32,59 ± 0,37
Node 32,82 ± 0,40 Node 33,44 ± 0,50 Node 34,71 ± 0,42
EmVE 36,58 ± 0,50 EmVE 37,50 ± 0,54 EmVE 38,12 ± 0,51
ExVE2 48,93 ± 0,59 ExVE2 49,91 ± 0,62 ExVE2 50,33 ± 0,58
ExVE1 61,94 ± 0,71 ExVE1 62,70 ± 0,73 ExVE1 63,24 ± 0,69
PE 88,00 ± 1,80 PE 88,72 ± 1,80 PE 87,98 ± 1,77

Table 3.4: CAT distance table from aligning the 2D-PI3Ki in vitro protocol to the in vivo
cell-types within Rothova2022. Green indicated the nearest neighbour(s).
The “±” denotes the standard deviation on the distance calculated from the
bootstrap. The names on top of each sub-table, e.g. D4a, is the label for a
cluster from the in vitro experiments. The D followed by a number denotes the
day along the differentiation of the cells that make up the cluster. The clusters
were obtained using unsupervised clustering.

example, the cell from this experiment clustered into 8 distinct populations that

roughly coincide with time. The alignments show that earlier stages of the in
vitro differentiation (day 4) align to PS and DE2. As time progresses towards day

6, the cells align almost purely towards DE1 and DE2, with only the 2 smallest

clusters (clusters D4-D6b and D5-D6c) additionally aligning to the gut lineages

and others.
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Comparing the results of the 2D-ESC alignments to those of 2D-PI3Ki, the effects

of the phosphoinositide 3-kinase inhibitor become clear. All clusters from the

2D-PI3Ki experiment align to DE2, and a significantly larger percentage of the

cells align to hindgut. This indicates that the inhibitor pushes the cells towards

a more posterior identity. The fact that none of the 2D-PI3Ki clusters align to PS

also seems to suggest that the inhibition does not delay or halt the differentiation

process, which has previously been suggested [Villegas et al., 2013].

Curiously it seems like the distances of the alignments for all protocols grow larger

the longer the cells differentiate in vitro, suggesting they are somehow diverging

from the in vivo cell-types.

3.2.2.1 Functional differences between in vitro differentiations and in vivo
cell-types

To figure out how well the in vitro differentiation protocols captures different

biological processes compared to their in vivo counterpart, we run CAT using

functional projections. As mentioned above, we expect the different in vitro
clusters to align to different in vivo cell-types, depending on how long they have

been differentiating along their respective protocols.

However, since the different in vivo clusters might look similar under certain

functional projections, it is fine for an in vitro cluster to also align to other in vivo
cell-types than the target ones, as long as a target in vivo cell-type also align to

these other in vivo clusters. A visual illustration of correct and incorrect alignments

is shown in Figure 3.3. There can also be cases where the alignments are only

partially successful. For example; an in vitro cluster aligns to DE, EmVE and ExVE

while DE under the same projection aligns itself to EmVE but not ExVE. In this

case, we judge the alignments from the in vitro cluster to be only partially correct.

We formalize this logic using the following similarity score:

S = 1 − nvitro→vivo

nmax

· (1 − nvivo→vivo

nvitro→vivo · (nvitro→vivo − 1)) (3.1)

nvitro→vivo is the number of alignments for the in vitro cluster, corresponding to

the red arrows in the figure. Nmax is the number of in vivo clusters and, therefore,

the highest possible number of alignments for an in vitro cluster. nvivo→vivo is the
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Figure 3.3: Illustration showing different scenarios for the alignment of an in vitro cluster
(red dot) to the in vivo lineages (blue dots). Blue arrows symbolise alignments
internally in the in vivo dataset, while red arrows symbolize the alignments
from clusters in an in vitro experiment to the in vivo lineages. S is the similarity
score in each of the 4 scenarios. Figure modified from [Rothová et al., 2022].

number of alignments between the in vivo clusters internally in the in vivo dataset

(between clusters that the in vitro cluster aligns to), corresponding to the blue

arrows in the figure. The similarity is always set to 0 if the in vitro cluster aligns

to none of the target in vivo clusters. The first fraction in the formula accounts

for the specificity of the alignments. In the case where an in vitro cluster aligns

to every in vivo cluster in the dataset, this fraction will equal 1, and the similarity

score will therefore most likely be low (depending on the second term). If the in
vitro cluster aligns to only a single or few in vivo clusters, the similarity score will

be high. The second fraction in the similarity formula calculates how connected

the in vivo alignments are compared to a fully connected graph between them. If

the in vivo targets are fully connected, the similarity score will be 1. Otherwise, if

the targets are less well connected, the term inside the parenthesis will be high,

and the similarity score will therefore be smaller. A more thorough derivation of

the formula is discussed in the methods of [Rothová et al., 2022].

We set a heuristic value of S = 0.75 as the criteria that the an in vitro cluster

successfully mimics in vivo for the given biological functions.

For each protocol and functional projection, we calculated the median S score

across all its clusters. If the median is larger than 0.75, the protocol successfully

mimics the biological process. The result for each biological function is shown in
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Figure 3.4. This analysis indicates that the protocols produce cells that correctly

mimic many of the biological functions of in vivo, but not all of them. All protocols

fail with regard to Hippo signalling pathway, suggesting that this pathway could

be a point of focus for future in vitro differentiation protocols.

Figure 3.4: Matrix showing which in vitro differentiation protocol that produces cells that
are similar to specific in vivo lineages (DE-like lineages, see text) with regard
to various biological functions. Green indicates a median similarity score, S,
higher than 0.75 for the clusters of each protocol, while red indicates a lower
average score. Figure modified from [Rothová et al., 2022].

3.3 Conclusion

We still don’t fully understand the cell-types of the early (mouse) embryo or the

relationship between them. This is evident by the number of papers that keep

getting published on the subject1 [Qiu et al., 2022, Lohoff et al., 2022, Meistermann

et al., 2021]. InterVE is an example of a cell-type we have only recently begun

understanding [Nowotschin et al., 2019].

In addition to classical tools, we use CAT to investigate the relationship between

cell-types inside the embryos at the stage of gastrulation. We further the under-

standing of the InterVE cell population by finding its marker genes and pinpointing

its position in the developmental tree. We compare the results we find to a 3rd

party dataset, ensuring the validity of our findings. Furthermore, we compare cells

grown in vitro to their supposed in vivo counterpart, and find that they correctly

mimic most of the biological functions as in vivo, but not all.

1These 3 cited papers all use UMAP by the way. It is hard to find a recent embryo scRNAseq paper
that does not.
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The use of functional projections to find similarities between cell-types is a kind

of dimensionality reduction, not unlike that of PCA or HVGs. The functional

categories are defined apriori however, externally from the dataset itself. This

means that the use of functional categories is at least reproducible, even if it is still

a biased approach. In practice it turned out to be very useful.

Similarity scores, based on functional projections, allow us to see which pathways

the in vitro protocols have trouble mimicking. We can use this information to

suggest how to improve in vitro protocols. To the best of my knowledge, people

normally use methods like DEGs to identify discrepancies between in vivo and in
vitro [Ye et al., 2020, Noguchi et al., 2020, Wells and Patrizio, 2008]. CAT offers

a new more systematic approach, that allows for an overview at the resolution

of pathways. We can rank functional projections by their distances to find the

projections where the cells mimic their expected target the worst. Having the

functional projections, it is easy to identify the individual genes that contribute

most to each distance. By focusing on these genes, we can quickly suggest gene

perturbation targets for experimentalists to improve in in vitro protocols, in a way

that wasn’t possible before. I am happy to say that the members of the Brickman

Lab2 have already incorporated CAT into their workflows, even before we have

officially published a separate methods paper for CAT.

2The Brickman Lab is the lab of the last author of our paper [Rothová et al., 2022], and the
lab where the scRNAseq experiments were conducted. The lab is part of the "Novo Nordisk
Foundation Center for Stem Cell Medicine, reNEW" at the University of Copenhagen.
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4Chemical reprogramming of
somatic mouse cells

This chapter is based on the following 2 articles concerning reprogramming of

somatic cells (differentiated body cells) into stem-cells.

Yang, Z., Xu, X., Gu, C., Li, J., Wu, Q., Ye, C., Nielsen, A. V., Mao, L., Ye, J.,

Bai, K., et al. (2020). Chemicals orchestrate reprogramming with hierarchical

activation of master transcription factors primed by endogenous sox17 activation.

Communications biology, 3(1):1–10.

Yang, Z., Xu, X., Gu, C., Nielsen, A. V., Chen, G., Guo, F., Tang, C., and Zhao, Y.

(2022). Chemical pretreatment activated a plastic state amenable to direct lineage

reprogramming. Frontiers in cell and developmental biology, 10

I will introduce the main concepts of stem-cell reprogramming and give a short

presentation of the background for each of the two papers, along with a summary

of their methods and results. Afterwards, the findings of the papers will be

discussed in the context of current research. The articles are included in full

length in the end of the thesis. My contribution to the work behind both articles

includes dimensionality reduction analysis, clustering of the data, processing of

the ATAC-seq data, handling of the single cell sequencing pipeline and various data

visualisations.

4.1 Introduction: Cell reprogramming

Stem-cells are useful for research in a variety of ways. By differentiating stem-cells

into other cell types (e.g muscle, retina, neurons), scientists can gain insight into

genetic diseases [Halevy and Urbach, 2014], more easily test drugs [Jensen et al.,

2009, Shi et al., 2017], study development (see chapters above), or perform cell

replacement therapies [Davila et al., 2004, Ronaghi et al., 2010]. Unfortunately,

stem-cells are not easy to acquire in large quantities. Stem-cells can painstakingly
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be obtained from embryos, but this practice remains somewhat controversial,

especially for human embryonic stem-cells (ESC) [Parkin, 2010], and since ESCs

are specific to individual patients and can only be obtained at the embryo stage they

have limited potential in clinical settings. Other avenues for obtaining stem-cells

are therefore an active field of study.

Perhaps the most important breakthrough in this field came in 2006, when a team

of researchers, led by Shinya Yamanaka, showed that stem-cells could be created

from somatic cells (fibroblast cells at first) [Takahashi and Yamanaka, 2006]. The

2006 paper demonstrates that by infecting somatic cells with a virus engineered

to contain certain transcription factors (TFs), the cells can be reprogrammed to

a stem-cell-like state. TFs are proteins that bind to regions of the DNA to either

promote or decrease the expression of specific genes, thereby changing the state

of the cell. After this discovery of induced pluripotent stem-cells (iPSC), several

advances followed: In 2013 Hou. et al. produced a protocol that could chemically

induce pluripotent stem cells (CiPSC) from mouse fibroblast cells, using a set of

molecules without the need for exogenous transcription factors [Hou et al., 2013].

Chemical induction has several advantages over the use of transgenic TFs; There is

no risk of the TF-delivering virus integrating permanently into the genome of the

host (potentially leading to tumorigenesis), it has a lower cost of reagents and it is

easier to control temporally [Xie et al., 2017]. By tweaking the chemical cocktail

of small molecules proposed by Hou. et al, researchers have since improved the

"fibroblast to CiPSC" conversion rate a 1.000 fold over the original protocol (which

was comparable to the TF-mediated method) [Zhao et al., 2015]. I will refer to

this improved protocol as the Zhao protocol. A schematic of the molecules used

for CiPSC reprogramming in the Zhao protocol is shown on Figure 4.1.

Compared to induction via exogenous transcription factors, chemical induction has

one big drawback though; the mechanism behind its gene regulation is not as well

understood [Cao et al., 2018]. There exist databases for TFs and their respective

binding sites on the DNA, describing which genes they activate or inhibit, and

for TFs not already in these databases, established experiments like ChIP-Seq can

reveal this [Sandelin et al., 2004, Lachmann et al., 2010, Kulakovskiy et al., 2016].

As a consequence, it is relatively easy to explain what TFs are changing at a genetic

level to facilitate the conversion of cell-type, as well as pick out candidate TFs for

conversion of new somatic cell-types to iPSC [Deng et al., 2021].
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embryonic fibroblast

Extra-embryonic endoderm
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Figure 4.1: Schematic showing the original Zhao protocol for chemical reprogramming of
fibroblast cells into pluripotent stem-cells via the XEN-like state. The protocol
consists of 3 stages of differing lengths with different small molecules. The
molecules are written as abbreviations: VPA (V), CHIR99021 (C), E-616542
(6), Tranylcypromine (T), Forskolin (F), AM580 (A), EPZ004777 (E), DZNep
(Z), SGC0946 (S), 5-aza-dC (D), N2B27 (N). In the first stage (16 days),
fibroblast cells are converted into an intermediate XEN-like cell-type. Once
the cells are in the XEN-like stage they are then pushed to become CiPSC over
the course of the last two stages.

Since the small molecules used in chemical induction do not generally bind directly

to DNA, similar experiments are not readily available to explain the efficiency of

CiPSC protocols, making it significantly harder to quantify exactly which genes the

molecules regulate and how [Xie et al., 2017, Cao et al., 2018]. The molecules

currently used for chemically induced reprogramming have therefore largely been

found through trial and error, where researchers screen vast libraries of chemicals

(up to 10.000 at a time) to find suitable ones [Shi et al., 2008, Zhu et al., 2010, Hou

et al., 2013, Dai et al., 2014, Li et al., 2015]. There are many outstanding questions

about the mechanisms behind CiPSC reprogramming and how the process could

be optimized. These questions are the topic of the 2 articles.

4.2 Article 1 - Chemicals orchestrate reprogramming with

hierarchical activation of master transcription factors primed

by endogenous sox17 activation

Background

Unlike earlier reprogramming protocols, the type of protocol pioneered by Zhao

et al. (Figure 4.1) starts by pushing the somatic fibroblast cells not toward the

CiPSC state but a distinct intermediate XEN-like state, from which the cells are

then subsequently reprogrammed to become CiPSC. By designing the protocol

to include this extra stop on that way to become pluripotent, the efficiency of
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the reprogramming could be vastly improved [Zhao et al., 2015]. In the original

paper outlining this popular protocol, the authors note that once the cells arrive

at the XEN-like state they express 3 genes commonly associated with the XEN

state, namely: Sall4, Gata4 and Sox17, at the same level as embryo-derived XEN

cells. Knocking out any of these genes severely hampers the number of fibroblast

cells converting to the XEN state and thereby the total number of cells converting

successfully to CiPSC. We set out to further pinpoint exactly how the chemicals

used in this type of protocol regulate the XEN "master-genes" (Sall4, Gata4 and

Sox17) and facilitate the activation of the XEN-like state.

Methods and results

To test the regulation of XEN-related genes throughout the reprogramming process,

we first subjected mouse embryonic fibroblast (MEF) cells to 20 days of VC6FEA

(see caption of Figure 4.1 for chemical abbreviations). We gathered gene expression

data from immunofluorescence staining (taken every day along the experiment)

and single-cell sequencing (every second day) to quantify the temporal activation

pattern of the XEN master-genes, confirming the results from the Zhao et al.

paper, with higher precision. Combining the above with knockout experiments,

we conclude that the XEN master-genes are activated in a hierarchical fashion and

propose a small gene-regulatory network explaining this. It was only in the last

part of the reprogramming (from MEF to XEN-like state) that fibroblast-related

genes were substantially down-regulated. To investigate the specific role of the

individual chemicals, we performed experiments with different combinations of

them, for varying amounts of time, while gathering the gene expression of the

XEN-master genes with immunostaining. We find that different chemical affects

different parts of the regulatory master-gene network and work in concert to

produce their desired effect. Since the regulatory network of the XEN master-

genes gets activated in a hierarchical and time-dependent manner, we show that

the efficiency of the protocol can be further improved by restricting some of the

chemicals to specific periods of the reprogramming.

Conclusion

The paper adds to the current knowledge in the field by revealing what effects

the small molecules have through the MEF to XEN-like reprogramming. The first

part of the reprogramming up-regulates Sox17, priming the cells for activation

of other XEN-like genes such as Gata4 and Sall4. After a period of up-regulation
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of XEN-related genes, the cells begin to repress their fibroblast identity, transiting

to the new XEN-like state. This "prime–specify–transit" model of reprogramming

could help explain why the use of the chemicals CHIR99021, 616452 and forskolin

are so common among different reprogramming protocols (e.g. fibroblast → neural

stem-cells [Zhang et al., 2016]). These chemicals were crucial, particularly in the

priming state, and we speculate that they might serve the same priming role in

other protocols.

4.3 Article 2 - Chemical pretreatment activated a plastic state

amenable to direct lineage reprogramming

Background

Fibroblast cells have successfully been reprogrammed directly into a multitude of

other cell-types, e.g. adipocytes [Takeda et al., 2017], cardiomyocyte [Fu et al.,

2015], neurons [Li et al., 2015], photoreceptors [Mahato et al., 2020], skeletal

muscle [Bansal et al., 2019], and more. Curiously the chemicals CHIR99021,

616452 and forskolin are often used in these protocols, despite their different

end goals. In "article 1", we speculated that these molecules might serve to

prime the fibroblast cells, somehow making them more plastic and receptible to

reprogramming, explaining why they are useful in reprogramming of different

cell-types. In this article we seek to test this hypothesis.

Methods and results

We treated MEF cells with the chemicals C6FAE for 4,8,12, and 16 days before

bulk-RNA-sequencing the resulting cells. This expression data revealed the up-

regulation of a wide range of TFs associated with multiple lineages (not just

the XEN master-gene Sox17), detectable as soon as day 4. Revisiting the gene

expression data we obtained using single-cell RNA sequencing in article 1, we

determined that the TFs were not up-regulated consistently in every cell but

heterogeneously and seemly at random throughout the cell population. Using

ATAC-seq, a popular method for measuring chromatin accessibility (whether a gene

is open to be transcripted), we found that after 4 days of treatment with C6FAE

the MEF cells had a significantly more open chromatin pattern. The open places

in the chromatic correlated with the TFs found using RNA seq, explaining their

up-regulation. Together these results indicate that 4 days of treatment pushes the

MEF cells to a primed state that could potentially be used to induce a multitude
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of lineages. Encouraged by this finding, we then showed that this is indeed the

case. By changing the culturing media of cells in the primed state to one favored

by neuronal cells with just 3 added chemicals (CHIR99021, Forskolin, and ISX9),

the MEF cells were successfully reprogrammed into neuron-like cells. The same

procedure, using a different media, could also directly reprogram the primed MEF

into skeletal muscle cells.

Conclusion

The results of the paper further reveal why splitting up the chemicals used in

reprogramming of MEF to XEN into distinct stages worked for article 1. We show

that a primed state, achievable after only 4 days of C6FAE, can be used as a

stepping stone to directly induce multiple different cell-types.
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Table 6.1: Compilation of marker genes for early mouse embryonic cell-types

Anterior visceral endoderm
Aggf1, Amot, Celsr1, Cer1, Chst15, Cnbp, Dkk1, Emb, Eomes, Fgf8, Foxa2,
Furin, Fzd5, Gpc4, Gsc, Hesx1, Hhex, Lefty1, Lhx1, Nuak, Otx2, Pkdcc, Sfrp5,
Shisa2, T

Definitive endoderm Cer1, Chst15, Cldn4, Col2a1, Cpm, Dkk1, Efna1, Emb, Eomes, Ersp1, Foxa2,
Fzd5, Hesx1, Hhex, Hnf1b, Itga3, Kdm5b, Lama1, Lamb1, Lhx1, Nepn, Otx2,
Pkdcc, Prdm1, Prdm4, Sdc1, Sfrp5, Shisa2, Smad3, Sox17, T, Tes, Tgif1,
Tmprss2, Trh, Zic3

Embryonic visceral endoderm Amot, Apoe, Cer1, Chst15, Dkk1, Eomes, Fgf5, Fgf8, Foxq1, Fzd5, Gpc4, Hesx1,
Hhex, Lefty1, Lhx1, Pkdcc, Sfrp5, Shisa2

Extra embryonic visceral en-
doderm

Apln, Apoa2, Apoe, Cited1, Foxo4, Igf2, Msx1, Tbx3, Tdh, Ttr

Floor plate Fgf8 , Foxa1, Hspg2, Ntn1, Ptch1, Scrib, Tle3, Vangl2
Foregut Apoa2, Apoe, Bambi, Cdkn1c, Gata4, Gata6, Hhex, Nepn, Phlda2, Pitx2, Sfrp5,

Ttr
Gut endoderm Afp, Ahnak, Ankrd17, Bmp4, Bmp7, Ccnd1, Ccnd2, Ccnd3, Cdh1, Cdx1, Cdx2,

Chst15, Cldn4, Crabp2, Cxcr4, Cyp26a1, Dkk1, Dusp9, Efna1, Epha2, Esrp1,
Fgf8, Fgfr1, Fgfr4, Fn1, Foxa1, Foxa2, Foxd4, Gsc, Gtf2ird1, Hesx1, Hhex,
Hnf4a, Hoxb1, Hoxb6, Hs6st1, Ifitm3, Igf2, Isl1, Itga3, Kit, Klf5, Lemd3, Mcc,
Nav2, Nck2, Nepn, Otx2, Prdm1, Prrx2, Ptpn12, Pyy, Rarb, Rhou, Ripk4, Sall1,
Sfrp5, Shisa2, Snrk, Sox17, Sox2, T, Tjp1, Tle3, Tmprss2, Trh, Twsg1, Vegfa,
Zmiz2

Hindgut Cdx1, Cited1, Hoxa7, Hoxb1, Hoxb2, Hoxb6, Msx1, T, Zfp503
Midgut Gata3, Gfpt2, Has2, Isl1, Otx2
Neural progenitors Meis2, Ncam1, Otx2, Ptch1, Sox2
Node Bicc1, Bmp7, Calca, Capsl, Car3, Ccdc151, Ccdc40, Cfc1, Chrd, Cobl, Cyb561,

Dand5, Fam183b, Foxd4, Foxj1, Gal, Hoxb1, Ift57, Lhx1, Mlf1, Ndrg1, Nog,
Noto, Ppp1r1a, Prnp, Scara3, Slit2, Sox9, T, Ttc25, Vtn, Zic2

Node/notochord Bicc1, Calca, Capsl, Ccdc40, Cfc1, Chrd, Cobl, Cyb561, Fam183b, Foxd4, Foxj1,
Gal, Ift57, Mlf1, Ndrg1, Nog, Noto, Ppp1r1a, Scara3, Slit2, Sox9, T

Notochord Acvr1, Ahnak, Akap13, Anxa4, Arhgef16, Arl4a, Ate1, Atp9a, Bicc1, Bmp2,
Bmp7, Calca, Car3, Cdh2, Cdh3, Cdo1, Cdx2, Clcn2, Clu, Cobl, Col2a1, Ctgf,
Cthrc1, Dab2, Dlg1, Dvl2, Epha2, Etl4, Ezr, F5, Fam183b, Fgg, Fn1, Foxa1,
Foxa2, Foxd4, Fzd6, Gal, Gdf1, Grik3, Gsn, Gtf2ird1, Hoxb6, Igfbp5, Ippk, Irx3,
Itga3, Kdelr3, Krt7, Lhx1, Lrig1, Malat1, Mcc, Mixl1, Mmp15, Moxd1, Msx1,
Mtrr, Ncam1, Nck2, Ndrg1, Nodal, Nog, Noto, Otx2, Ppp1r1a, Prmt1, Ptch1,
Rbp1, Rec8, Ripk4, Robo1, Sall3, Scara3, Sdsl, Sel1l3, Sept9, Slit2, Smad2,
Smoc1, Sod1, Sox9, Sp5, Spred2, Sulf1, T, Tacc1, Tapbp, Tcf12, Tes, Tgm2,
Tmem176a, Tmem176b, Tmprss2, Vangl1, Vtn, Zfp704, Zic3, Zmiz1, Zmiz2

Notochordal plate Anxa4, Arhgef16, Bmp7, Cer1, Cfc1, Cobl, Col2a1, Epha2, Foxa2, Furin, Fzd7,
Gal, Grik3, Lhx1, Nodal, Nog, Notch1, Sdc1, Shisa2, Sox9, T

Notochordal process Acvr1, Arhgef16, Cfc1, Cobl, Foxa2, Foxd4, Lhx1, Otx2, T, Tdgf1, Zic2
Parietal endoderm Aqp8, Cd9, Col4a1, Col4a2, Cryab, Fabp3, Lamb1, Lamc1, Serpinh1, Sparc
Primitive streak Cer1, Chrd, Cyp26a1, Dnmt3b, Eomes, Fgf5, Fgf8, Fst, Gsc, Hhex, Lhx1, Mixl1,

Otx2, T, Tdgf1, Zic2
Visceral endoderm Afp, Aggf1, Ahnak, Amot, Apoe, Cdh1, Celsr1, Cer1, Chrd, Chst15, Cited1,

Cldn6, Cnbp, Col2a1, Ctnna1, Ctnnb1, Dab2, Dkk1, Dll1, Dll3, Ecsit, Emb,
Eomes, F3, Fgf3, Fgf8, Foxa1, Foxa2, Furin, Fzd5, Gata6, Gpc4, Gsc, Hesx1,
Hhex, Ifitm3, Ihh, Ino80, Lefty1, Lhx1, Mixl1, Nodal, Notch1, Nuak1, Otx2,
Pam16, Pkd2, Pkdcc, Prdm4, Racgap1, Sfrp5, Shisa2, Snai1, Stat3, T, Vps26a
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6.1 CAT tables

Comparing clusters in Rothova2022 to Nowotchin2019

AVE Std sigma pvalue
Now-emVE2 31.73 0.37 0.00 -
Now-emVE0 32.28 0.36 1.07 0.143401
Now-mes5 32.89 0.31 2.40 0.00824523
Now-DE 33.19 0.23 3.36 0.000394799
Now-VE-Lung 33.96 0.25 4.96 3.51E-07
Now-DE-Lung 34.38 0.21 6.24 2.17E-10
Now-DE-Pancreas 34.60 0.24 6.48 4.65E-11
Now-DE-Thymus 34.71 0.22 6.92 2.29E-12
Now-DE-Liver 34.90 0.22 7.31 1.29E-13
Now-DE-Small int 34.97 0.21 7.58 1.73E-14
Now-VE-Liver 35.00 0.22 7.59 1.57E-14
Now-Gut tube 35.45 0.26 8.22 1.05E-16
Now-exVE 35.67 0.24 8.88 3.23E-19
Now-mes4 35.69 0.23 9.11 3.94E-20
Now-mes1 35.73 0.22 9.31 6.63E-21
Now-VE-Colon 35.81 0.21 9.54 6.86E-22
Now-TE 35.96 0.56 6.32 1.27E-10
Now-VE-Small int 35.97 0.23 9.77 7.60E-23
Now-ExE 36.09 0.28 9.33 5.46E-21
Now-mes2 36.13 0.35 8.68 2.01E-18
Now-VE-Pancreas 36.24 0.25 10.10 2.77E-24
Now-VE-Thymus 36.32 0.32 9.39 3.03E-21
Now-DE-Colon 36.36 0.42 8.26 7.12E-17
Now-mes3 36.57 0.22 11.18 2.54E-29
Now-mes7 36.80 0.34 10.08 3.26E-24
Now-DE-Thyroid 36.83 0.23 11.75 3.60E-32
Now-emVE3 37.37 0.46 9.58 5.09E-22
Now-mes0 37.52 0.23 13.24 2.65E-40
Now-mes6 37.75 0.49 9.83 4.28E-23
Now-EPI 39.11 0.31 15.26 6.74E-53
Now-Endothelial 39.16 0.31 15.30 3.93E-53
Now-Midline1 39.17 0.33 15.07 1.29E-51
Now-VE-Thyroid 39.28 1.41 5.17 1.18E-07
Now-emVE4 39.30 0.57 11.10 5.95E-29
Now-GermCells 40.61 0.30 18.59 2.12E-77
Now-VE 41.45 2.07 4.61 2.01E-06
Now-Midline3 41.86 0.39 18.80 4.06E-79
Now-Midline0 42.32 0.54 16.23 1.45E-59
Now-Midline2 42.43 0.55 16.08 1.83E-58
Now-emVE1 44.96 0.50 21.28 9.57E-101
Now-PrE 45.42 0.59 19.62 4.90E-86
Now-YsE 63.20 1.20 25.11 1.84E-139
Now-ICM 69.06 0.56 55.86 0
Now-ParE 164.42 2.78 47.26 0
Now-Blood 560.86 11.54 45.85 0

EmVE Std sigma pvalue
Now-exVE 32.62 0.29 0.00 -
Now-emVE0 33.41 0.36 1.70 0.0448277
Now-emVE2 34.98 0.50 4.08 2.24E-05
Now-mes5 39.29 0.51 11.35 3.64E-30
Now-emVE1 40.03 0.45 13.90 3.24E-44
Now-VE-Liver 40.26 0.42 14.84 4.08E-50
Now-DE 40.33 0.45 14.40 2.42E-47
Now-VE-Lung 40.63 0.45 14.97 6.05E-51
Now-DE-Pancreas 40.84 0.44 15.56 7.00E-55
Now-DE-Liver 41.05 0.43 16.18 3.72E-59
Now-Gut tube 41.19 0.44 16.30 4.74E-60
Now-DE-Lung 41.36 0.44 16.49 2.07E-61
Now-VE-Pancreas 41.48 0.42 17.18 2.02E-66
Now-DE-Small int 41.68 0.45 17.00 4.11E-65
Now-DE-Thymus 41.77 0.44 17.28 3.36E-67
Now-VE-Small int 41.98 0.44 17.73 1.14E-70
Now-TE 42.10 0.61 14.08 2.45E-45
Now-VE-Colon 42.12 0.44 17.94 3.11E-72
Now-mes1 42.53 0.44 18.70 2.55E-78
Now-mes4 42.66 0.44 18.87 1.04E-79
Now-ExE 42.69 0.46 18.37 1.09E-75
Now-DE-Colon 42.73 0.55 16.27 8.44E-60
Now-DE-Thyroid 42.99 0.42 20.18 7.29E-91
Now-VE-Thymus 43.01 0.47 18.83 1.98E-79
Now-mes2 43.01 0.48 18.56 3.27E-77
Now-mes3 43.15 0.44 20.03 1.49E-89
Now-emVE3 43.35 0.53 17.79 4.22E-71
Now-mes7 43.41 0.51 18.37 1.10E-75
Now-mes6 44.33 0.56 18.59 2.12E-77
Now-mes0 44.33 0.42 22.99 2.90E-117
Now-emVE4 44.81 0.64 17.39 5.28E-68
Now-Midline1 44.92 0.45 22.88 3.77E-116
Now-VE 44.94 2.03 6.00 9.61E-10
Now-VE-Thyroid 45.08 1.25 9.70 1.57E-22
Now-Endothelial 45.44 0.44 24.12 8.47E-129
Now-EPI 45.81 0.46 24.22 7.61E-130
Now-GermCells 46.26 0.46 25.14 1.01E-139
Now-Midline3 47.35 0.48 26.34 3.24E-153
Now-Midline0 47.80 0.59 23.18 3.44E-119
Now-Midline2 47.84 0.57 23.60 1.91E-123
Now-PrE 48.34 0.62 23.07 4.86E-118
Now-YsE 58.98 1.18 21.70 9.59E-105
Now-ICM 72.68 0.58 61.91 0
Now-ParE 165.77 2.76 47.89 0
Now-Blood 561.34 11.52 45.87 0
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ExVE1 Std sigma pvalue
Now-exVE 47.60 0.65 0.00 -
Now-emVE1 52.78 0.62 5.80 3.27E-09
Now-emVE0 53.69 0.68 6.52 3.63E-11
Now-emVE2 57.51 0.67 10.62 1.23E-26
Now-mes5 60.45 0.70 13.52 5.69E-42
Now-VE-Liver 61.39 0.62 15.41 7.27E-54
Now-TE 61.61 0.70 14.71 2.76E-49
Now-DE 62.40 0.64 16.26 9.74E-60
Now-DE-Liver 62.50 0.63 16.46 3.84E-61
Now-DE-Pancreas 62.55 0.63 16.52 1.24E-61
Now-ExE 62.60 0.66 16.25 1.04E-59
Now-VE-Pancreas 62.68 0.61 16.96 8.31E-65
Now-VE-Lung 62.68 0.64 16.60 3.34E-62
Now-Gut tube 62.95 0.62 17.19 1.45E-66
Now-DE-Lung 62.97 0.64 16.95 9.22E-65
Now-DE-Small int 63.32 0.64 17.32 1.67E-67
Now-DE-Thymus 63.33 0.64 17.35 1.07E-67
Now-mes1 63.42 0.63 17.51 6.32E-69
Now-VE-Small int 63.53 0.62 17.72 1.41E-70
Now-VE-Colon 63.55 0.63 17.72 1.54E-70
Now-VE 63.63 1.71 8.76 9.96E-19
Now-mes7 63.80 0.64 17.88 9.20E-72
Now-mes4 63.89 0.64 17.96 1.86E-72
Now-DE-Colon 63.91 0.67 17.57 2.21E-69
Now-emVE3 63.91 0.72 16.90 2.29E-64
Now-mes3 63.91 0.63 18.07 2.73E-73
Now-mes2 64.09 0.65 18.04 4.98E-73
Now-VE-Thymus 64.33 0.64 18.34 1.83E-75
Now-YsE 64.41 0.99 14.18 6.32E-46
Now-DE-Thyroid 64.44 0.62 18.82 2.76E-79
Now-emVE4 64.92 0.74 17.58 1.67E-69
Now-mes6 64.99 0.66 18.77 6.95E-79
Now-mes0 65.24 0.62 19.65 2.79E-86
Now-PrE 65.27 0.74 17.94 2.94E-72
Now-Endothelial 65.65 0.62 20.08 5.18E-90
Now-Midline1 65.67 0.63 20.00 2.50E-89
Now-EPI 65.73 0.65 19.77 2.74E-87
Now-GermCells 65.75 0.61 20.36 2.01E-92
Now-VE-Thyroid 65.88 1.04 14.93 1.12E-50
Now-Midline2 67.52 0.66 21.54 3.44E-103
Now-Midline0 67.57 0.66 21.69 1.41E-104
Now-Midline3 67.60 0.63 22.20 1.64E-109
Now-ICM 85.47 0.63 41.82 0
Now-ParE 173.02 2.66 45.75 0
Now-Blood 563.24 11.48 44.83 0

ExVE2 Std sigma pvalue
Now-exVE 36.48 0.44 0.00 -
Now-emVE0 41.07 0.52 6.80 5.25E-12
Now-emVE1 42.53 0.46 9.59 4.42E-22
Now-emVE2 45.10 0.55 12.33 3.20E-35
Now-mes5 49.00 0.58 17.17 2.13E-66
Now-VE-Liver 50.07 0.49 20.74 8.35E-96
Now-DE 50.84 0.51 21.32 3.59E-101
Now-TE 50.91 0.63 18.92 4.18E-80
Now-VE-Lung 51.04 0.51 21.66 2.55E-104
Now-DE-Pancreas 51.14 0.51 21.97 2.75E-107
Now-DE-Liver 51.15 0.49 22.29 2.54E-110
Now-VE-Pancreas 51.46 0.48 23.17 4.82E-119
Now-Gut tube 51.54 0.50 22.75 6.94E-115
Now-DE-Lung 51.55 0.51 22.57 3.82E-113
Now-ExE 51.76 0.53 22.29 2.29E-110
Now-emVE3 51.85 0.60 20.71 1.33E-95
Now-DE-Small int 51.92 0.50 23.28 3.34E-120
Now-DE-Thymus 51.95 0.51 23.13 1.25E-118
Now-VE 52.08 1.92 7.92 1.20E-15
Now-VE-Small int 52.18 0.49 24.06 3.03E-128
Now-VE-Colon 52.22 0.50 23.85 5.44E-126
Now-mes1 52.33 0.51 23.71 1.58E-124
Now-DE-Colon 52.66 0.57 22.46 5.28E-112
Now-mes4 52.69 0.51 24.29 1.27E-130
Now-emVE4 52.85 0.68 20.17 9.05E-91
Now-mes3 52.91 0.50 24.82 2.68E-136
Now-mes2 52.93 0.54 23.74 7.57E-125
Now-VE-Thymus 53.08 0.52 24.50 7.10E-133
Now-DE-Thyroid 53.09 0.49 25.41 9.68E-143
Now-mes7 53.10 0.54 24.01 1.13E-127
Now-mes6 54.00 0.57 24.52 4.58E-133
Now-mes0 54.13 0.49 26.82 9.98E-159
Now-Midline1 54.43 0.51 26.87 2.44E-159
Now-PrE 54.49 0.67 22.54 8.89E-113
Now-EPI 54.84 0.54 26.48 7.29E-155
Now-VE-Thyroid 54.85 1.13 15.11 6.76E-52
Now-Endothelial 54.91 0.52 27.11 3.88E-162
Now-GermCells 55.27 0.51 27.92 7.44E-172
Now-Midline3 56.62 0.51 30.01 3.58E-198
Now-Midline2 57.03 0.58 28.20 2.94E-175
Now-Midline0 57.03 0.58 28.23 1.18E-175
Now-YsE 59.23 1.09 19.45 1.34E-84
Now-ICM 78.07 0.61 55.56 0
Now-ParE 168.59 2.73 47.78 0
Now-Blood 562.11 11.51 45.64 0
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Foregut Std sigma pvalue
Now-DE-Lung 22.20 0.19 0.00 -
Now-DE-Thymus 23.00 0.18 3.07 0.00108569
Now-DE-Liver 23.14 0.22 3.23 0.000623116
Now-VE-Lung 23.76 0.31 4.27 9.65E-06
Now-mes4 23.96 0.19 6.45 5.77E-11
Now-DE-Pancreas 24.27 0.28 6.17 3.40E-10
Now-DE-Thyroid 24.39 0.22 7.61 1.36E-14
Now-mes2 25.01 0.40 6.31 1.35E-10
Now-DE-Small int 25.06 0.20 10.39 1.38E-25
Now-VE-Thymus 25.09 0.31 7.86 1.90E-15
Now-VE-Liver 25.19 0.24 9.73 1.09E-22
Now-Gut tube 25.54 0.28 9.91 1.92E-23
Now-mes0 26.14 0.21 13.89 3.41E-44
Now-VE-Small int 26.94 0.23 15.94 1.78E-57
Now-DE 27.11 0.17 19.16 4.29E-82
Now-DE-Colon 27.16 0.51 9.03 8.51E-20
Now-VE-Colon 27.46 0.19 19.59 9.09E-86
Now-mes6 27.47 0.62 8.18 1.45E-16
Now-mes1 27.78 0.18 21.09 5.24E-99
Now-VE-Pancreas 27.93 0.32 15.34 2.04E-53
Now-VE-Thyroid 28.17 1.74 3.41 0.000330622
Now-mes5 28.51 0.24 20.81 1.61E-96
Now-mes3 28.55 0.19 23.85 4.72E-126
Now-mes7 30.01 0.32 20.81 1.93E-96
Now-Midline1 30.77 0.39 19.94 9.14E-89
Now-ExE 31.93 0.34 25.13 1.25E-139
Now-Endothelial 32.20 0.36 24.42 4.93E-132
Now-Midline3 32.93 0.45 21.94 6.01E-107
Now-TE 34.02 0.60 18.85 1.53E-79
Now-GermCells 34.23 0.34 31.14 3.19E-213
Now-EPI 34.45 0.29 35.35 5.24E-274
Now-emVE2 35.92 0.41 30.61 4.03E-206
Now-Midline0 36.37 0.61 22.17 3.10E-109
Now-Midline2 36.49 0.63 21.62 6.40E-104
Now-emVE0 41.49 0.40 43.13 0
Now-emVE3 44.47 0.41 49.58 0
Now-exVE 45.00 0.27 69.69 0
Now-VE 45.33 1.80 12.77 1.23E-37
Now-emVE4 46.71 0.51 44.91 0
Now-PrE 50.07 0.62 43.26 0
Now-emVE1 55.05 0.51 60.06 0
Now-ICM 68.32 0.57 76.72 0
Now-YsE 69.78 1.22 38.55 0
Now-ParE 165.51 2.79 51.32 0
Now-Blood 560.52 11.54 46.64 0

Hindgut1 Std sigma pvalue
Now-VE-Colon 23.97 0.20 0.00 -
Now-DE-Colon 24.30 0.56 0.55 0.291005
Now-DE-Small int 24.54 0.27 1.69 0.0452877
Now-DE-Lung 25.42 0.22 4.95 3.77E-07
Now-VE-Lung 25.80 0.26 5.57 1.27E-08
Now-DE-Thymus 25.87 0.23 6.20 2.87E-10
Now-mes4 26.70 0.24 8.73 1.30E-18
Now-DE-Pancreas 27.22 0.24 10.43 8.65E-26
Now-DE-Liver 27.27 0.24 10.73 3.55E-27
Now-Gut tube 27.55 0.35 8.96 1.62E-19
Now-mes2 27.68 0.43 7.77 4.05E-15
Now-VE-Thymus 28.00 0.37 9.53 7.92E-22
Now-DE 28.06 0.20 14.44 1.50E-47
Now-VE-Small int 28.47 0.25 14.10 1.99E-45
Now-DE-Thyroid 28.61 0.21 16.20 2.51E-59
Now-mes1 28.64 0.22 15.76 2.75E-56
Now-mes5 29.02 0.27 14.99 4.12E-51
Now-VE-Liver 29.05 0.24 16.38 1.32E-60
Now-mes0 29.17 0.25 16.48 2.37E-61
Now-mes3 29.19 0.23 17.02 3.02E-65
Now-mes6 29.83 0.60 9.30 7.28E-21
Now-VE-Pancreas 30.22 0.29 17.97 1.72E-72
Now-mes7 30.98 0.36 17.16 2.61E-66
Now-Midline1 31.21 0.44 15.00 3.43E-51
Now-VE-Thyroid 31.92 1.64 4.81 7.51E-07
Now-ExE 32.46 0.35 20.88 4.12E-97
Now-Endothelial 32.89 0.36 21.71 8.61E-105
Now-Midline3 34.00 0.47 19.67 1.85E-86
Now-TE 34.57 0.60 16.87 4.06E-64
Now-GermCells 34.63 0.35 26.51 3.43E-155
Now-EPI 35.32 0.30 31.23 2.00E-214
Now-emVE2 35.80 0.41 25.96 6.51E-149
Now-Midline2 36.29 0.62 18.89 6.83E-80
Now-Midline0 36.41 0.59 19.89 2.67E-88
Now-emVE0 41.70 0.40 39.51 0
Now-emVE3 45.09 0.41 46.28 0
Now-exVE 45.12 0.26 64.69 0
Now-VE 45.63 1.79 12.03 1.27E-33
Now-emVE4 47.42 0.52 42.19 0
Now-PrE 49.96 0.60 41.02 0
Now-emVE1 55.12 0.51 57.03 0
Now-ICM 68.28 0.57 73.36 0
Now-YsE 70.19 1.21 37.84 0
Now-ParE 165.55 2.78 50.72 0
Now-Blood 560.55 11.54 46.48 0
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Hindgut2 Std sigma pvalue
Now-DE-Small int 23.39 0.23 0.00 -
Now-DE-Lung 24.47 0.21 3.47 0.000258685
Now-VE-Small int 24.75 0.24 4.16 1.58E-05
Now-VE-Lung 24.86 0.26 4.23 1.17E-05
Now-DE-Thymus 25.02 0.21 5.30 5.85E-08
Now-DE-Pancreas 25.30 0.24 5.77 3.90E-09
Now-DE-Liver 25.37 0.21 6.40 7.68E-11
Now-Gut tube 25.52 0.30 5.69 6.18E-09
Now-VE-Colon 25.90 0.24 7.71 6.28E-15
Now-mes4 25.91 0.22 8.02 5.25E-16
Now-DE-Colon 26.29 0.54 4.92 4.28E-07
Now-DE-Thyroid 26.63 0.22 10.35 2.20E-25
Now-mes2 26.67 0.40 7.18 3.49E-13
Now-DE 27.01 0.19 12.21 1.43E-34
Now-VE-Thymus 27.08 0.35 8.91 2.65E-19
Now-VE-Liver 27.12 0.23 11.60 2.09E-31
Now-VE-Pancreas 27.60 0.28 11.68 7.95E-32
Now-mes1 28.37 0.21 16.05 2.84E-58
Now-mes0 28.40 0.22 15.75 3.55E-56
Now-mes5 28.79 0.26 15.84 8.28E-57
Now-mes6 28.91 0.58 8.88 3.37E-19
Now-mes3 29.13 0.22 18.25 1.11E-74
Now-VE-Thyroid 30.26 1.67 4.07 2.31E-05
Now-mes7 30.30 0.35 16.52 1.33E-61
Now-Midline1 31.06 0.38 17.32 1.74E-67
Now-ExE 32.25 0.33 21.97 2.69E-107
Now-Endothelial 32.94 0.35 22.77 4.08E-115
Now-TE 33.81 0.57 16.90 2.20E-64
Now-Midline3 34.14 0.46 21.11 3.09E-99
Now-GermCells 34.36 0.33 27.48 1.61E-166
Now-emVE2 34.72 0.41 24.07 2.82E-128
Now-EPI 35.34 0.31 30.88 1.03E-209
Now-Midline0 36.31 0.59 20.35 2.37E-92
Now-Midline2 36.42 0.63 19.52 3.73E-85
Now-emVE0 40.85 0.41 37.41 1.25E-306
Now-exVE 44.18 0.27 58.56 0
Now-emVE3 44.72 0.42 44.72 0
Now-VE 45.25 1.82 11.95 3.17E-33
Now-emVE4 47.08 0.53 41.25 0
Now-PrE 49.48 0.62 39.73 0
Now-emVE1 54.23 0.52 54.11 0
Now-ICM 68.05 0.57 72.42 0
Now-YsE 69.27 1.23 36.65 1.95E-294
Now-ParE 165.70 2.79 50.87 0
Now-Blood 560.67 11.54 46.56 0

InterVE Std sigma pvalue
Now-emVE2 26.23 0.45 0.00 -
Now-VE-Lung 31.07 0.47 7.46 4.37E-14
Now-DE 31.71 0.42 8.87 3.56E-19
Now-DE-Pancreas 32.22 0.48 9.17 2.44E-20
Now-Gut tube 32.42 0.50 9.23 1.32E-20
Now-VE-Small int 33.32 0.47 10.92 4.81E-28
Now-DE-Small int 33.34 0.47 10.89 6.37E-28
Now-VE-Pancreas 33.35 0.48 10.88 7.01E-28
Now-DE-Lung 33.38 0.47 11.01 1.80E-28
Now-VE-Colon 33.62 0.45 11.65 1.11E-31
Now-DE-Liver 33.72 0.46 11.61 1.88E-31
Now-DE-Thymus 33.85 0.45 11.93 4.03E-33
Now-VE-Liver 33.96 0.48 11.80 2.05E-32
Now-DE-Thyroid 34.24 0.43 12.92 1.70E-38
Now-mes5 34.36 0.49 12.23 1.12E-34
Now-VE-Thymus 34.51 0.48 12.61 8.80E-37
Now-DE-Colon 34.75 0.57 11.75 3.34E-32
Now-mes4 35.19 0.46 13.90 3.37E-44
Now-mes2 35.78 0.50 14.17 7.39E-46
Now-mes1 35.93 0.44 15.35 1.91E-53
Now-Midline1 36.48 0.49 15.37 1.23E-53
Now-mes3 36.55 0.44 16.36 1.74E-60
Now-VE-Thyroid 36.94 1.40 7.27 1.78E-13
Now-mes0 36.98 0.45 16.93 1.26E-64
Now-mes7 37.30 0.52 16.17 4.44E-59
Now-mes6 37.31 0.59 14.96 6.53E-51
Now-emVE0 37.38 0.55 15.70 7.72E-56
Now-TE 37.75 0.61 15.17 2.95E-52
Now-ExE 37.76 0.47 17.69 2.52E-70
Now-Endothelial 38.52 0.45 19.34 1.22E-83
Now-Midline3 39.32 0.51 19.19 2.06E-82
Now-Midline0 40.12 0.60 18.60 1.60E-77
Now-Midline2 40.13 0.61 18.38 1.01E-75
Now-GermCells 40.49 0.47 21.98 2.05E-107
Now-exVE 40.80 0.49 21.79 1.33E-105
Now-EPI 41.14 0.46 23.26 6.11E-120
Now-emVE3 43.77 0.54 25.03 1.34E-138
Now-VE 45.58 1.86 10.14 1.93E-24
Now-emVE4 46.03 0.62 25.73 2.55E-146
Now-emVE1 48.53 0.65 28.17 7.80E-175
Now-PrE 49.81 0.64 30.24 4.06E-201
Now-YsE 66.10 1.27 29.56 2.28E-192
Now-ICM 70.17 0.60 58.92 0
Now-ParE 165.15 2.78 49.39 0
Now-Blood 561.08 11.53 46.35 0
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Liver Std sigma pvalue
Now-VE-Liver 24.46 0.28 0.00 -
Now-DE-Liver 25.54 0.29 2.68 0.00367958
Now-DE-Lung 28.80 0.27 11.23 1.40E-29
Now-mes4 29.41 0.27 12.71 2.44E-37
Now-DE-Thymus 29.42 0.27 12.80 8.00E-38
Now-mes2 29.97 0.42 10.88 7.10E-28
Now-VE-Lung 30.10 0.38 11.91 4.98E-33
Now-DE-Small int 30.50 0.26 15.79 1.95E-56
Now-DE-Pancreas 30.80 0.33 14.55 2.83E-48
Now-DE-Thyroid 31.17 0.31 16.15 5.72E-59
Now-mes0 31.31 0.28 17.29 2.86E-67
Now-Gut tube 31.48 0.34 16.02 4.42E-58
Now-VE-Thymus 31.85 0.39 15.32 2.94E-53
Now-mes5 31.87 0.26 19.51 4.29E-85
Now-DE-Colon 31.89 0.50 12.90 2.29E-38
Now-DE 31.92 0.23 20.49 1.46E-93
Now-mes1 32.00 0.23 20.72 1.09E-95
Now-VE-Colon 32.02 0.25 20.16 1.15E-90
Now-VE-Small int 32.16 0.28 19.45 1.50E-84
Now-mes6 32.22 0.60 11.72 4.81E-32
Now-mes3 32.72 0.24 22.57 3.83E-113
Now-VE-Pancreas 33.09 0.35 19.12 8.91E-82
Now-mes7 33.48 0.31 21.62 5.61E-104
Now-VE-Thyroid 34.18 1.55 6.19 3.07E-10
Now-ExE 34.78 0.34 23.41 1.74E-121
Now-Midline1 35.73 0.40 23.06 6.44E-118
Now-Endothelial 36.36 0.38 25.07 5.02E-139
Now-TE 36.69 0.59 18.66 5.71E-78
Now-GermCells 37.61 0.33 30.65 1.31E-206
Now-EPI 37.75 0.31 31.95 2.76E-224
Now-Midline3 37.88 0.46 25.14 9.60E-140
Now-emVE2 38.85 0.37 31.01 1.72E-211
Now-Midline2 40.37 0.61 23.59 2.36E-123
Now-Midline0 40.37 0.59 24.37 1.91E-131
Now-emVE0 42.57 0.37 39.39 0
Now-exVE 44.99 0.26 54.33 0
Now-emVE3 47.33 0.42 45.24 0
Now-VE 48.02 1.80 12.91 1.93E-38
Now-emVE4 49.44 0.53 41.81 0
Now-PrE 51.82 0.61 41.03 0
Now-emVE1 54.29 0.48 53.72 0
Now-YsE 66.83 1.19 34.80 1.13E-265
Now-ICM 69.61 0.56 71.99 0
Now-ParE 166.86 2.77 51.14 0
Now-Blood 560.78 11.54 46.47 0

Midgut Std sigma pvalue
Now-DE-Pancreas 26.46 0.54 0.00 -
Now-Gut tube 27.63 0.53 1.55 0.0601567
Now-VE-Pancreas 28.21 0.48 2.42 0.00784586
Now-VE-Lung 28.46 0.57 2.56 0.00518552
Now-DE-Lung 29.10 0.57 3.36 0.000393471
Now-DE-Liver 29.86 0.57 4.33 7.57E-06
Now-DE-Small int 30.00 0.55 4.59 2.27E-06
Now-DE-Thymus 30.02 0.56 4.60 2.09E-06
Now-VE-Small int 30.09 0.52 4.85 6.10E-07
Now-DE-Thyroid 30.36 0.55 5.07 1.98E-07
Now-VE-Thymus 30.78 0.56 5.55 1.47E-08
Now-VE-Liver 30.83 0.56 5.59 1.13E-08
Now-mes4 30.96 0.54 5.86 2.25E-09
Now-mes2 31.66 0.60 6.46 5.15E-11
Now-VE-Colon 31.81 0.51 7.20 2.97E-13
Now-DE-Colon 31.90 0.66 6.38 8.99E-11
Now-DE 32.29 0.52 7.80 3.08E-15
Now-mes0 32.64 0.53 8.15 1.77E-16
Now-VE-Thyroid 33.41 1.57 4.19 1.40E-05
Now-mes6 33.51 0.69 8.07 3.48E-16
Now-Midline1 33.69 0.56 9.29 7.43E-21
Now-mes1 34.04 0.50 10.29 3.88E-25
Now-mes5 34.09 0.50 10.35 2.15E-25
Now-mes3 34.58 0.49 11.15 3.49E-29
Now-mes7 35.96 0.54 12.40 1.31E-35
Now-Midline3 36.21 0.59 12.24 9.22E-35
Now-Endothelial 36.37 0.53 13.07 2.30E-39
Now-emVE2 37.09 0.55 13.73 3.34E-43
Now-ExE 37.27 0.51 14.52 4.22E-48
Now-TE 38.26 0.64 14.14 1.07E-45
Now-GermCells 39.19 0.51 17.07 1.17E-65
Now-Midline2 39.65 0.67 15.28 4.97E-53
Now-Midline0 39.70 0.65 15.63 2.14E-55
Now-EPI 39.97 0.48 18.74 1.12E-78
Now-emVE0 42.94 0.52 21.97 2.65E-107
Now-exVE 45.92 0.43 28.08 9.55E-174
Now-emVE3 46.60 0.50 27.38 2.57E-165
Now-VE 46.86 1.65 11.73 4.31E-32
Now-emVE4 48.74 0.59 27.96 2.23E-172
Now-PrE 51.20 0.62 30.03 1.88E-198
Now-emVE1 55.16 0.58 36.11 6.79E-286
Now-YsE 69.14 1.23 31.84 8.09E-223
Now-ICM 70.35 0.61 54.01 0
Now-ParE 164.01 2.78 48.61 0
Now-Blood 561.00 11.53 46.31 0
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FP Std sigma pvalue
Now-DE-Lung 23.29 0.15 0.00 -
Now-mes4 23.48 0.20 0.80 0.213125
Now-DE-Thymus 23.83 0.15 2.51 0.00606712
Now-mes2 24.70 0.46 2.92 0.00173821
Now-DE-Liver 25.66 0.18 10.17 1.37E-24
Now-DE-Small int 26.01 0.18 11.64 1.32E-31
Now-VE-Lung 26.07 0.34 7.48 3.75E-14
Now-mes1 26.17 0.18 12.29 5.22E-35
Now-VE-Thymus 26.71 0.36 8.78 8.49E-19
Now-mes0 26.75 0.24 12.39 1.44E-35
Now-DE 26.78 0.17 15.64 2.08E-55
Now-mes3 26.83 0.18 15.23 1.06E-52
Now-mes6 27.41 0.68 5.93 1.49E-09
Now-DE-Colon 27.50 0.52 7.75 4.54E-15
Now-mes5 27.72 0.24 15.58 5.32E-55
Now-DE-Pancreas 27.92 0.30 13.61 1.69E-42
Now-DE-Thyroid 28.01 0.23 17.32 1.70E-67
Now-mes7 28.11 0.31 14.15 9.05E-46
Now-VE-Liver 28.22 0.21 18.90 5.75E-80
Now-VE-Colon 28.27 0.18 21.57 1.89E-103
Now-VE-Small int 29.50 0.22 23.57 3.52E-123
Now-Gut tube 29.58 0.31 18.03 5.75E-73
Now-ExE 31.13 0.39 18.80 3.90E-79
Now-VE-Thyroid 31.22 1.76 4.49 3.49E-06
Now-Midline1 31.75 0.41 19.56 1.82E-85
Now-VE-Pancreas 31.81 0.32 23.89 1.75E-126
Now-Endothelial 32.18 0.39 21.44 3.07E-102
Now-GermCells 33.37 0.32 28.17 7.62E-175
Now-EPI 33.61 0.31 30.31 4.82E-202
Now-TE 33.75 0.63 16.07 2.20E-58
Now-Midline3 34.30 0.46 22.68 3.80E-114
Now-Midline0 35.60 0.63 18.92 3.80E-80
Now-Midline2 35.69 0.67 17.94 2.71E-72
Now-emVE2 38.13 0.40 34.72 2.27E-264
Now-emVE0 42.46 0.40 44.75 0
Now-emVE3 45.80 0.42 50.89 0
Now-exVE 45.82 0.27 73.31 0
Now-VE 46.36 1.84 12.51 3.45E-36
Now-emVE4 48.16 0.53 45.14 0
Now-PrE 49.93 0.64 40.61 0
Now-emVE1 55.99 0.51 60.98 0
Now-ICM 67.43 0.57 74.76 0
Now-YsE 71.03 1.19 39.87 0
Now-ParE 166.46 2.79 51.31 0
Now-Blood 560.48 11.54 46.54 0

Node Std sigma pvalue
Now-Midline0 25.94 0.30 0.00 -
Now-Midline2 27.01 0.30 2.55 0.0054152
Now-VE-Lung 33.85 0.36 16.92 1.60E-64
Now-DE 34.33 0.42 16.38 1.23E-60
Now-DE-Lung 34.36 0.40 17.03 2.58E-65
Now-DE-Thymus 34.61 0.39 17.74 1.11E-70
Now-DE-Colon 34.69 0.53 14.34 5.78E-47
Now-DE-Small int 34.86 0.39 18.27 7.02E-75
Now-DE-Pancreas 35.09 0.37 19.41 3.41E-84
Now-VE-Colon 35.41 0.36 20.27 1.09E-91
Now-Midline1 35.46 0.43 18.12 1.02E-73
Now-mes4 35.46 0.41 18.93 3.48E-80
Now-mes1 35.59 0.40 19.27 5.06E-83
Now-DE-Thyroid 35.63 0.33 21.65 3.28E-104
Now-DE-Liver 35.68 0.39 19.89 2.50E-88
Now-VE-Thymus 35.71 0.41 19.16 4.29E-82
Now-mes2 35.76 0.47 17.67 3.60E-70
Now-mes5 35.87 0.41 19.74 5.32E-87
Now-Gut tube 35.92 0.40 19.96 6.29E-89
Now-mes3 36.11 0.40 20.45 3.25E-93
Now-mes7 36.73 0.49 18.74 1.14E-78
Now-mes0 37.05 0.39 22.76 5.25E-115
Now-VE-Small int 37.14 0.37 23.44 7.97E-122
Now-VE-Liver 37.33 0.38 23.54 7.94E-123
Now-mes6 37.40 0.54 18.53 6.00E-77
Now-Midline3 37.78 0.48 21.08 5.91E-99
Now-VE-Pancreas 37.98 0.36 25.82 2.81E-147
Now-VE-Thyroid 38.44 1.40 8.72 1.34E-18
Now-ExE 39.79 0.43 26.49 5.63E-155
Now-GermCells 39.96 0.42 27.22 2.00E-163
Now-Endothelial 40.29 0.42 27.75 9.47E-170
Now-TE 40.69 0.56 23.28 3.39E-120
Now-emVE2 41.14 0.46 27.79 2.67E-170
Now-EPI 41.37 0.41 30.35 1.43E-202
Now-emVE0 46.25 0.45 37.90 0
Now-emVE3 49.79 0.45 44.25 0
Now-exVE 50.15 0.32 55.15 0
Now-VE 50.97 1.69 14.58 1.78E-48
Now-emVE4 52.12 0.54 42.36 0
Now-PrE 54.70 0.62 41.66 0
Now-emVE1 59.08 0.51 55.96 0
Now-ICM 71.21 0.58 69.88 0
Now-YsE 73.87 1.16 40.06 0
Now-ParE 167.54 2.76 51.00 0
Now-Blood 561.19 11.53 46.41 0
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Notochord Std sigma pvalue
Now-Midline1 25.63 0.43 0.00 -
Now-DE-Lung 26.99 0.24 2.74 0.00311148
Now-VE-Lung 27.01 0.23 2.82 0.00237791
Now-DE-Thymus 27.34 0.24 3.45 0.000280278
Now-mes4 27.48 0.25 3.71 0.000104072
Now-DE-Small int 27.55 0.27 3.78 7.87E-05
Now-DE-Colon 27.61 0.54 2.88 0.00201986
Now-VE-Colon 27.95 0.23 4.74 1.09E-06
Now-mes2 28.26 0.41 4.41 5.18E-06
Now-DE-Pancreas 28.44 0.25 5.60 1.10E-08
Now-DE-Liver 28.61 0.24 6.02 8.68E-10
Now-VE-Thymus 28.69 0.34 5.55 1.42E-08
Now-DE-Thyroid 28.94 0.21 6.87 3.25E-12
Now-Midline3 28.95 0.51 4.96 3.59E-07
Now-Gut tube 29.33 0.32 6.90 2.64E-12
Now-mes0 29.62 0.26 7.91 1.31E-15
Now-DE 29.79 0.24 8.44 1.59E-17
Now-mes1 30.09 0.24 9.00 1.13E-19
Now-VE-Liver 30.35 0.25 9.43 2.03E-21
Now-mes6 30.36 0.58 6.55 2.90E-11
Now-VE-Small int 30.45 0.25 9.66 2.15E-22
Now-mes3 30.77 0.25 10.24 6.54E-25
Now-mes5 30.85 0.29 10.08 3.31E-24
Now-VE-Pancreas 31.64 0.29 11.51 6.10E-31
Now-VE-Thyroid 32.42 1.60 4.09 2.16E-05
Now-mes7 32.63 0.35 12.58 1.41E-36
Now-Endothelial 33.16 0.37 13.30 1.20E-40
Now-ExE 34.49 0.35 16.01 5.46E-58
Now-Midline2 35.20 0.58 13.27 1.71E-40
Now-Midline0 35.42 0.56 13.80 1.22E-43
Now-GermCells 36.48 0.35 19.45 1.39E-84
Now-TE 36.62 0.55 15.74 4.18E-56
Now-EPI 37.37 0.31 21.98 2.02E-107
Now-emVE2 37.46 0.41 19.94 8.97E-89
Now-emVE0 43.24 0.41 29.49 1.99E-191
Now-emVE3 46.59 0.42 34.96 4.13E-268
Now-exVE 46.98 0.27 41.85 0
Now-VE 47.17 1.71 12.23 1.11E-34
Now-emVE4 48.78 0.51 34.49 5.06E-261
Now-PrE 51.33 0.60 34.94 9.61E-268
Now-emVE1 56.51 0.50 46.78 0
Now-ICM 69.27 0.57 61.29 0
Now-YsE 71.37 1.19 36.03 1.39E-284
Now-ParE 165.75 2.78 49.81 0
Now-Blood 560.74 11.54 46.34 0

PE Std sigma pvalue
Now-PrE 76.11 1.69 0.00 -
Now-VE 77.47 2.95 0.40 0.345191
Now-DE-Pancreas 87.62 1.68 4.83 6.96E-07
Now-VE-Lung 88.01 1.69 4.98 3.25E-07
Now-Gut tube 88.17 1.67 5.08 1.89E-07
Now-VE-Pancreas 88.44 1.67 5.19 1.04E-07
Now-DE-Lung 88.75 1.70 5.27 6.89E-08
Now-mes5 88.82 1.72 5.28 6.52E-08
Now-DE 88.91 1.70 5.33 4.82E-08
Now-DE-Thymus 88.97 1.70 5.36 4.08E-08
Now-Endothelial 89.10 1.66 5.49 2.04E-08
Now-VE-Thymus 89.15 1.68 5.47 2.21E-08
Now-mes4 89.16 1.70 5.44 2.66E-08
Now-ExE 89.17 1.72 5.42 2.98E-08
Now-DE-Small int 89.26 1.70 5.49 2.00E-08
Now-DE-Thyroid 89.37 1.67 5.58 1.22E-08
Now-VE-Liver 89.39 1.69 5.55 1.39E-08
Now-DE-Liver 89.41 1.70 5.56 1.38E-08
Now-VE-Small int 89.45 1.69 5.59 1.16E-08
Now-mes2 89.47 1.70 5.57 1.25E-08
Now-VE-Colon 89.49 1.69 5.60 1.09E-08
Now-mes1 89.52 1.71 5.58 1.18E-08
Now-TE 89.53 1.72 5.56 1.32E-08
Now-Midline1 89.64 1.66 5.71 5.79E-09
Now-DE-Colon 89.79 1.67 5.76 4.29E-09
Now-emVE2 89.81 1.66 5.78 3.84E-09
Now-mes0 89.83 1.68 5.76 4.33E-09
Now-mes3 89.92 1.70 5.76 4.09E-09
Now-mes6 89.98 1.70 5.78 3.69E-09
Now-mes7 90.53 1.70 6.01 9.09E-10
Now-Midline3 90.76 1.63 6.24 2.21E-10
Now-VE-Thyroid 90.87 1.76 6.06 6.99E-10
Now-emVE0 91.12 1.65 6.36 1.02E-10
Now-exVE 91.75 1.64 6.63 1.63E-11
Now-GermCells 91.79 1.67 6.60 1.99E-11
Now-EPI 92.03 1.67 6.70 1.07E-11
Now-emVE3 92.17 1.61 6.88 3.00E-12
Now-emVE4 92.48 1.62 7.00 1.29E-12
Now-Midline2 92.55 1.66 6.94 1.93E-12
Now-Midline0 92.60 1.65 6.99 1.39E-12
Now-emVE1 97.15 1.57 9.12 3.61E-20
Now-ICM 105.40 1.51 12.93 1.43E-38
Now-YsE 105.78 1.58 12.83 5.69E-38
Now-ParE 106.02 3.09 8.48 1.11E-17
Now-Blood 566.75 11.41 42.53 0
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PS-e6.5 Std sigma pvalue
Now-mes1 25.12 0.25 0.00 -
Now-mes3 25.69 0.22 1.71 0.0436155
Now-mes5 25.97 0.27 2.32 0.0102676
Now-mes7 26.14 0.39 2.21 0.0134301
Now-DE-Lung 26.59 0.21 4.51 3.28E-06
Now-DE 26.75 0.21 4.96 3.48E-07
Now-EPI 26.89 0.30 4.50 3.33E-06
Now-DE-Thymus 26.89 0.21 5.42 2.95E-08
Now-mes4 27.05 0.23 5.70 5.85E-09
Now-DE-Liver 28.05 0.20 9.10 4.71E-20
Now-DE-Small int 28.17 0.23 8.95 1.85E-19
Now-mes2 28.19 0.45 5.92 1.59E-09
Now-ExE 28.70 0.41 7.46 4.27E-14
Now-VE-Lung 29.44 0.41 9.00 1.13E-19
Now-DE-Colon 29.54 0.53 7.53 2.56E-14
Now-VE-Colon 29.91 0.21 14.71 2.60E-49
Now-mes0 29.97 0.26 13.46 1.31E-41
Now-VE-Liver 30.14 0.24 14.47 9.52E-48
Now-VE-Thymus 30.37 0.44 10.43 9.11E-26
Now-mes6 30.56 0.65 7.79 3.33E-15
Now-DE-Pancreas 31.64 0.34 15.38 1.13E-53
Now-TE 31.80 0.70 9.04 8.13E-20
Now-VE-Small int 32.09 0.25 19.70 1.13E-86
Now-Gut tube 32.42 0.35 17.07 1.30E-65
Now-DE-Thyroid 32.52 0.25 20.72 1.19E-95
Now-GermCells 32.53 0.32 18.07 2.71E-73
Now-VE-Pancreas 35.01 0.33 23.67 3.34E-124
Now-VE-Thyroid 35.22 1.67 6.00 9.88E-10
Now-Endothelial 35.36 0.40 21.84 4.96E-106
Now-Midline1 35.73 0.43 21.15 1.25E-99
Now-Midline0 36.52 0.68 15.63 2.12E-55
Now-Midline2 36.75 0.72 15.26 6.56E-53
Now-Midline3 38.04 0.47 24.37 1.61E-131
Now-emVE2 39.05 0.41 29.16 3.22E-187
Now-emVE0 42.27 0.40 36.01 3.16E-284
Now-emVE3 44.68 0.44 38.75 0
Now-VE 45.22 2.00 9.98 9.47E-24
Now-exVE 45.46 0.28 54.41 0
Now-emVE4 47.27 0.55 36.62 5.89E-294
Now-PrE 48.93 0.67 33.06 5.86E-240
Now-emVE1 56.11 0.53 53.13 0
Now-ICM 66.05 0.59 64.15 0
Now-YsE 71.59 1.17 38.94 0
Now-ParE 166.89 2.78 50.71 0
Now-Blood 560.42 11.55 46.35 0

PS-e7.5 Std sigma pvalue
Now-mes1 23.77 0.20 0.00 -
Now-mes4 24.53 0.20 2.68 0.00370713
Now-mes3 24.83 0.22 3.51 0.00022377
Now-DE-Lung 25.00 0.17 4.63 1.83E-06
Now-DE-Thymus 25.21 0.18 5.33 5.01E-08
Now-mes5 25.44 0.26 5.06 2.06E-07
Now-mes2 25.64 0.43 3.90 4.90E-05
Now-DE 26.35 0.20 9.07 6.04E-20
Now-DE-Small int 26.38 0.20 9.23 1.40E-20
Now-DE-Liver 26.91 0.19 11.24 1.30E-29
Now-mes7 27.13 0.31 8.99 1.28E-19
Now-DE-Colon 27.15 0.54 5.87 2.15E-09
Now-mes0 27.35 0.24 11.45 1.21E-30
Now-VE-Lung 27.65 0.37 9.26 1.01E-20
Now-VE-Colon 27.79 0.18 14.81 6.38E-50
Now-mes6 28.13 0.63 6.54 3.01E-11
Now-VE-Thymus 28.34 0.40 10.11 2.51E-24
Now-VE-Liver 29.05 0.22 17.65 5.47E-70
Now-DE-Pancreas 29.49 0.31 15.44 4.17E-54
Now-ExE 29.68 0.40 13.13 1.11E-39
Now-Gut tube 30.13 0.32 16.64 1.69E-62
Now-DE-Thyroid 30.36 0.23 21.56 2.19E-103
Now-VE-Small int 30.44 0.23 21.95 4.25E-107
Now-EPI 32.51 0.32 22.88 4.03E-116
Now-GermCells 32.53 0.33 22.69 2.65E-114
Now-Midline1 32.56 0.46 17.61 9.96E-70
Now-Endothelial 32.72 0.39 20.26 1.35E-91
Now-TE 32.95 0.66 13.31 1.04E-40
Now-VE-Pancreas 33.07 0.32 24.70 5.50E-135
Now-VE-Thyroid 33.27 1.70 5.56 1.38E-08
Now-Midline0 34.57 0.66 15.54 9.08E-55
Now-Midline2 34.77 0.70 15.03 2.17E-51
Now-Midline3 34.91 0.47 21.58 1.29E-103
Now-emVE2 38.00 0.40 31.43 3.78E-217
Now-emVE0 42.10 0.40 40.61 0
Now-emVE3 45.31 0.43 45.62 0
Now-exVE 45.44 0.26 65.30 0
Now-VE 45.61 1.84 11.81 1.75E-32
Now-emVE4 47.68 0.54 41.45 0
Now-PrE 49.33 0.65 37.51 0.28E-307
Now-emVE1 55.77 0.52 57.20 0
Now-ICM 67.25 0.58 70.82 0
Now-YsE 71.08 1.18 39.47 0
Now-ParE 166.08 2.79 50.90 0
Now-Blood 560.47 11.54 46.48 0
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DE1 Std sigma pvalue
Now-DE 22.87 0.20 0.00 -
Now-DE-Lung 23.83 0.17 3.64 0.00013394
Now-DE-Thymus 23.88 0.18 3.75 8.93E-05
Now-mes4 24.60 0.20 6.18 3.12E-10
Now-mes1 25.09 0.19 8.07 3.58E-16
Now-DE-Small int 25.37 0.19 9.15 2.80E-20
Now-DE-Liver 25.52 0.19 9.55 6.60E-22
Now-VE-Lung 25.60 0.32 7.17 3.63E-13
Now-mes5 25.64 0.25 8.72 1.41E-18
Now-mes2 25.82 0.44 6.12 4.56E-10
Now-mes3 25.99 0.19 11.34 4.21E-30
Now-VE-Thymus 26.67 0.36 9.18 2.18E-20
Now-mes7 26.89 0.36 9.82 4.66E-23
Now-DE-Colon 27.10 0.53 7.43 5.53E-14
Now-mes0 27.17 0.23 14.22 3.66E-46
Now-DE-Pancreas 27.46 0.29 13.00 6.52E-39
Now-VE-Colon 27.56 0.18 17.22 9.24E-67
Now-VE-Liver 27.73 0.22 16.33 2.87E-60
Now-DE-Thyroid 28.00 0.23 16.79 1.44E-63
Now-Gut tube 28.12 0.30 14.48 8.33E-48
Now-mes6 28.22 0.64 7.97 8.15E-16
Now-VE-Small int 28.57 0.23 18.79 4.43E-79
Now-ExE 29.60 0.37 15.89 3.45E-57
Now-VE-Pancreas 30.92 0.31 21.72 6.25E-105
Now-Midline1 31.19 0.42 18.05 3.72E-73
Now-VE-Thyroid 31.26 1.70 4.89 4.97E-07
Now-EPI 31.68 0.31 23.80 1.64E-125
Now-TE 31.97 0.64 13.52 5.61E-42
Now-Endothelial 32.34 0.38 21.89 1.61E-106
Now-GermCells 32.42 0.33 24.70 5.24E-135
Now-Midline0 32.88 0.65 14.67 5.04E-49
Now-Midline2 33.35 0.69 14.55 2.82E-48
Now-Midline3 33.58 0.46 21.38 1.14E-101
Now-emVE2 34.71 0.43 25.17 3.93E-140
Now-emVE0 39.98 0.44 35.33 1.19E-273
Now-emVE3 42.79 0.42 42.94 0
Now-exVE 43.92 0.27 63.04 0
Now-VE 44.35 1.92 11.15 3.69E-29
Now-emVE4 45.25 0.55 38.52 0
Now-PrE 48.49 0.65 37.82 0
Now-emVE1 54.33 0.52 56.22 0
Now-ICM 66.63 0.58 71.03 0
Now-YsE 70.04 1.20 38.64 0
Now-ParE 166.09 2.79 51.20 0
Now-Blood 560.48 11.54 46.56 0

DE2 Std sigma pvalue
Now-DE 22.62 0.15 0.00 -
Now-DE-Lung 23.20 0.15 2.73 0.0031285
Now-DE-Thymus 23.66 0.16 4.71 1.22E-06
Now-DE-Small int 24.47 0.16 8.60 4.05E-18
Now-VE-Lung 24.55 0.31 5.59 1.16E-08
Now-DE-Liver 24.57 0.18 8.48 1.14E-17
Now-mes4 24.85 0.18 9.66 2.15E-22
Now-mes1 25.42 0.16 13.03 3.90E-39
Now-mes5 25.66 0.23 11.25 1.10E-29
Now-mes2 25.93 0.41 7.56 2.06E-14
Now-mes3 26.18 0.17 15.85 7.36E-57
Now-DE-Pancreas 26.21 0.27 11.61 1.93E-31
Now-VE-Thymus 26.34 0.37 9.45 1.68E-21
Now-VE-Liver 26.56 0.21 15.36 1.47E-53
Now-DE-Colon 26.58 0.53 7.20 2.99E-13
Now-VE-Colon 26.71 0.17 18.40 6.50E-76
Now-mes7 26.79 0.34 11.18 2.42E-29
Now-VE-Small int 27.07 0.21 17.37 6.85E-68
Now-Gut tube 27.24 0.29 14.09 2.31E-45
Now-DE-Thyroid 27.38 0.24 17.09 9.21E-66
Now-mes0 27.89 0.22 19.99 3.61E-89
Now-mes6 28.26 0.62 8.84 5.00E-19
Now-VE-Pancreas 29.28 0.31 19.59 9.95E-86
Now-ExE 29.29 0.35 17.42 2.75E-68
Now-VE-Thyroid 30.60 1.73 4.59 2.23E-06
Now-TE 31.23 0.64 13.12 1.21E-39
Now-Midline1 31.68 0.41 20.99 4.20E-98
Now-GermCells 32.21 0.31 27.70 3.78E-169
Now-Endothelial 32.24 0.37 24.08 2.13E-128
Now-EPI 32.30 0.31 28.01 6.99E-173
Now-emVE2 32.43 0.41 22.47 4.12E-112
Now-Midline3 34.58 0.46 24.68 9.55E-135
Now-Midline0 34.74 0.65 18.25 1.12E-74
Now-Midline2 34.86 0.68 17.62 9.39E-70
Now-emVE0 38.75 0.42 36.23 1.08E-287
Now-exVE 42.31 0.26 65.29 0
Now-emVE3 43.01 0.43 44.42 0
Now-VE 43.79 1.92 11.00 2.00E-28
Now-emVE4 45.68 0.55 40.38 0
Now-PrE 47.56 0.65 37.37 6.31E-306
Now-emVE1 52.58 0.53 54.08 0
Now-ICM 66.59 0.57 74.16 0
Now-YsE 68.63 1.22 37.45 3.35E-307
Now-ParE 165.30 2.79 50.99 0
Now-Blood 560.48 11.54 46.60 0
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3D-ESC protocol 3D-AChir protocol 3D-AChir protocol

3D-Ach-D4 3D-D4 3D-D6
DE2 25,79 ± 0,26 0,00 0,50 DE2 19,52 ± 0,20 0,00 0,50 DE2 25,67 ± 0,38 0,00 0,50
DE1 27,10 ± 0,30 3,36 3,9E-04 DE1 20,03 ± 0,22 1,72 4,3E-02 DE1 26,92 ± 0,38 2,32 1,0E-02
Hindgut2 27,64 ± 0,26 5,06 2,1E-07 Foregut 22,46 ± 0,20 10,44 8,2E+00 Foregut 27,06 ± 0,31 2,85 2,2E-03
Foregut 27,74 ± 0,26 5,32 5,3E-08 PS1 22,52 ± 0,30 8,42 1,9E+00 Hindgut2 27,45 ± 0,34 3,50 2,3E-04
Hindgut1 28,06 ± 0,28 5,99 1,0E-09 Hindgut2 22,53 ± 0,21 10,45 7,4E+00 Hindgut1 28,74 ± 0,35 5,96 1,3E-09
NP 28,92 ± 0,29 8,15 1,9E+00 PS2 22,85 ± 0,27 9,98 9,1E+00 InterVE 28,77 ± 0,48 5,09 1,8E-07
PS2 29,52 ± 0,32 9,14 3,2E+00 Hindgut1 23,25 ± 0,24 12,09 6,1E+00 AVE 29,33 ± 0,38 6,83 4,2E-12
PS1 29,71 ± 0,34 9,30 6,9E+00 NP 23,69 ± 0,22 13,99 8,9E+00 NP 30,38 ± 0,36 9,05 7,3E+00
InterVE 30,15 ± 0,36 9,80 5,5E+00 Notochord 25,55 ± 0,29 17,13 4,4E+00 PS2 30,45 ± 0,39 8,83 5,3E+00
Notochord 30,25 ± 0,32 10,83 1,2E+00 Liver 27,58 ± 0,26 24,76 1,3E+00 Notochord 30,61 ± 0,35 9,63 2,9E+00
Liver 31,54 ± 0,32 14,15 8,9E+00 InterVE 28,23 ± 0,46 17,44 2,2E+00 PS1 30,80 ± 0,41 9,20 1,8E+00
Midgut 31,67 ± 0,53 10,02 6,2E+00 AVE 28,33 ± 0,28 25,72 3,2E+00 Liver 30,82 ± 0,31 10,52 3,5E+00
AVE 31,96 ± 0,29 ### 1,5E+00 Midgut 28,39 ± 0,56 14,88 2,1E+00 Midgut 31,12 ± 0,56 8,11 2,5E+00
Node 36,22 ± 0,40 21,99 1,8E+00 Node 32,54 ± 0,44 26,84 5,8E+00 Node 36,10 ± 0,42 18,36 1,3E+00
EmVE 39,83 ± 0,50 24,85 1,4E+00 EmVE 37,35 ± 0,53 31,39 1,6E+00 EmVE 36,34 ± 0,55 16,05 2,9E+00
ExVE2 51,26 ± 0,57 41,04 0,0E+00 ExVE2 49,50 ± 0,61 46,95 0,0E+00 ExVE2 48,31 ± 0,62 31,15 2,4E+00
ExVE1 63,49 ± 0,68 52,04 0,0E+00 ExVE1 62,07 ± 0,72 57,16 0,0E+00 ExVE1 61,21 ± 0,73 43,26 0,0E+00
PE 88,95 ± 1,79 34,93 1,2E+00 PE 88,77 ± 1,82 37,73 0,0E+00 PE 88,86 ± 1,79 34,46 1,5E+00

3D-Ach-D4+D6 3D-D4A 3D-D6A
DE2 24,09 ± 0,49 0,00 0,50 Foregut 23,56 ± 0,67 0,00 0,50 DE2 23,24 ± 0,59 0,00 0,50
DE1 24,89 ± 0,52 1,11 0,13 DE2 23,61 ± 0,81 0,04 0,48 DE1 24,11 ± 0,56 1,07 0,14
Foregut 24,93 ± 0,50 1,20 0,12 PS2 23,77 ± 0,93 0,19 0,43 Foregut 24,20 ± 0,50 1,25 0,11
Hindgut2 25,71 ± 0,47 2,38 8,6E-03 DE1 24,08 ± 0,83 0,49 0,31 Hindgut2 25,37 ± 0,54 2,66 3,9E-03
Hindgut1 26,27 ± 0,47 3,20 6,9E-04 Hindgut2 24,41 ± 0,67 0,90 0,18 Hindgut1 26,71 ± 0,54 4,35 6,8E-06
NP 26,60 ± 0,49 3,62 1,5E-04 Hindgut1 24,57 ± 0,66 1,07 0,14 PS2 27,42 ± 0,56 5,17 1,2E-07
PS2 27,32 ± 0,50 4,62 1,9E-06 NP 25,33 ± 0,78 1,72 4,3E-02 PS1 27,46 ± 0,59 5,09 1,8E-07
PS1 27,77 ± 0,52 5,13 1,4E-07 PS1 25,65 ± 0,97 1,78 3,8E-02 NP 27,60 ± 0,55 5,38 3,6E-08
Notochord 28,89 ± 0,49 6,90 2,6E-12 Notochord 26,25 ± 0,61 2,96 1,5E-03 AVE 28,55 ± 0,54 6,65 1,4E-11
Liver 29,73 ± 0,45 8,48 1,1E+00 Liver 28,22 ± 0,61 5,15 1,3E-07 InterVE 28,69 ± 0,62 6,39 8,5E-11
Midgut 30,14 ± 0,62 7,61 1,4E-14 Midgut 30,00 ± 0,71 6,61 1,9E-11 Liver 28,87 ± 0,48 7,44 4,9E-14
InterVE 30,17 ± 0,54 8,32 4,5E+00 InterVE 32,18 ± 0,65 9,23 1,3E+00 Notochord 29,31 ± 0,52 7,76 4,4E+00
AVE 30,57 ± 0,54 8,88 3,5E+00 AVE 32,94 ± 0,63 10,22 7,9E+00 Midgut 29,95 ± 0,67 7,52 2,8E-14
Node 35,62 ± 0,54 15,82 1,2E+00 Node 34,08 ± 0,63 11,40 2,2E+00 Node 35,35 ± 0,54 15,10 8,2E+00
EmVE 39,03 ± 0,61 19,13 7,2E+00 EmVE 40,24 ± 0,65 17,82 2,3E+00 EmVE 36,03 ± 0,69 14,14 1,1E+00
ExVE2 50,85 ± 0,63 33,64 2,1E+00 ExVE2 51,42 ± 0,67 29,32 3,1E+00 ExVE2 48,30 ± 0,71 27,20 2,9E+00
ExVE1 63,20 ± 0,72 44,96 0,0E+00 ExVE1 63,43 ± 0,75 39,66 0,0E+00 ExVE1 61,22 ± 0,78 38,79 0,0E+00
PE 88,91 ± 1,80 34,79 1,9E+00 PE 89,40 ± 1,81 34,15 7,2E+00 PE 88,59 ± 1,80 34,49 5,7E+00

3D-Ach-D6
Hindgut2 29,20 ± 0,30 0,00 0,50
Foregut 29,44 ± 0,29 0,58 0,28
DE2 29,49 ± 0,30 0,70 0,24
Hindgut1 30,30 ± 0,29 2,62 4,4E-03
DE1 30,34 ± 0,31 2,65 4,0E-03
Notochord 31,53 ± 0,32 5,35 4,3E-08
NP 31,79 ± 0,30 6,07 6,6E-10
Midgut 31,79 ± 0,53 4,24 1,1E-05
AVE 31,85 ± 0,30 6,22 2,5E-10
InterVE 32,75 ± 0,45 6,56 2,6E-11
PS2 33,09 ± 0,31 8,98 1,4E+00
Liver 33,83 ± 0,33 10,36 1,8E+00
PS1 34,50 ± 0,33 11,97 2,5E+00
Node 37,58 ± 0,37 17,54 3,7E+00
EmVE 39,61 ± 0,50 ### 1,9E+00
ExVE2 50,84 ± 0,59 32,62 9,4E+00
ExVE1 63,16 ± 0,69 45,15 0,0E+00
PE 88,96 ± 1,78 33,16 1,8E+00

diff in 
sigma

sigma in 
pvalue

diff in 
sigma

sigma in 
pvalue

diff in 
sigma

sigma in 
pvalue

diff in 
sigma

sigma in 
pvalue

diff in 
sigma

sigma in 
pvalue

diff in 
sigma

sigma in 
pvalue

diff in 
sigma

sigma in 
pvalue

Table 6.2: CAT distance table from aligning the 3D-ESC and 3D-AChir in vitro protocol to
the in vivo cell-types within Rothova2022. Green indicated the nearest neigh-
bor(s). The “±” denotes the standard deviation on the distance, calculated
from the bootstrap. The names on top of each sub-table, e.g. D4a, is the
label for a cluster from the in vitro experiments. The D followed by a number
denotes the day along the differentiation of the cells that make up the cluster.
The clusters were obtained using unsupervised clustering.
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A key question in developmental biology is resolving cell lin-
eages, their contribution to organ function and how to reca-
pitulate this process in vitro. A large proportion of visceral 

organs are specified from the endoderm lineage. In eutherian mam-
mals, endoderm is specified in two waves. The first occurs during 
pre-implantation development when the largely extra-embryonic 
primitive endoderm (PrE) forms from the inner cell mass and seg-
regates from the embryonic epiblast. The second occurs at gastrula-
tion with the specification of definitive endoderm (DE)1,2 from the 
epiblast, the major progenitor population of the visceral organs. 
Although initially identified as embryonic and extra-embryonic3, 
these routes are less divergent than previously thought4–8, and 
despite their different trajectories, they are induced by similar sig-
nalling pathways and transcription factors (TFs)9.

At embryonic day (E) 4.5, the PrE further differentiates towards 
the parietal endoderm (PE) and visceral endoderm (VE)10. The 
PE provides mechanical protection and nutrient absorption, while 
the VE supports nutrient provision and has a role in patterning 
the embryo11,12. Before gastrulation, the VE expands to cover the 
embryos surface, and at E5.5, it specializes into embryonic VE 
(EmVE, overlaying the embryonic epiblast) and extra-embryonic 
VE (ExVE, overlaying the extra-embryonic ectoderm)12. The distal 
E5.5 EmVE then migrates anteriorly, forming the anterior visceral 
endoderm (AVE), a signalling centre that restricts primitive streak 
(PS) formation to the embryo’s posterior region12,13.

DE induction occurs in a temporal sequence that reflects ante-
rior–poster (A–P) identity. During early gastrulation, endoderm 
cells express markers associated with anterior identity14,15. The first 
DE emerges along the midline from the embryo’s distal tip, giving 
rise to anterior definitive endoderm (ADE), the anterior most axial 

tissue migrating ahead of the axial mesoderm (node, notochord and 
prechordal plate)16. Subsequently, DE is recruited from the epiblast, 
emerging from the PS region up to E7.5 (ref. 17). While previously 
the DE was thought to displace the VE, recent lineage tracing4, 
imaging6,18 and transcriptomic7,8,18 data suggest that epiblast cells 
emerge from the PS to intercalate with the VE. The resulting endo-
dermal epithelium contains both embryonic and extra-embryonic 
progenitors of the embryonic gut4,7,8,19.

Naïve embryonic stem cells (ESCs) are pluripotent cell lines 
derived from the pre-implantation embryo. Previous attempts 
to generate in vitro cell types recapitulating organ function have 
focused on using pluripotent and, specifically, ESCs, to generate 
DE20–22, but the definition of DE was historically based on a lim-
ited marker set22–24. Moreover, cytokines known to promote DE can 
induce PrE in naïve ESC cultures9, calling for better characterization 
of in vitro differentiation trajectories.

In this Article, we address alternative differentiation routes 
towards endoderm by following FOXA2, a TF expressed in the 
embryonic and extra-embryonic endodermal primordia25. We used a 
FOXA2Venus reporter mouse26 and performed fluorescence-activated 
cell sorting (FACS) of FOXA2POS populations for single-cell tran-
scriptomics using massively parallel single-cell RNA sequencing 
(MARS-seq)27. With a modest number of cells and a simple com-
putational tool, we identify intermediates and derive insights into 
endoderm specification in vivo and in vitro.

Results
FOXA2-based MARS-seq enhances lineage resolution in the 
endoderm. We used MARS-seq to determine the transcriptome 
of FOXA2POS FACS-isolated embryonic cells to produce a detailed 

Identification of the central intermediate in 
the extra-embryonic to embryonic endoderm 
transition through single-cell transcriptomics
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Alba Redo Riveiro1, Madeleine Linneberg-Agerholm1, Eyal David3, Ido Amit   3, Ala Trusina   2 ✉  
and Joshua Mark Brickman   1 ✉

High-resolution maps of embryonic development suggest that acquisition of cell identity is not limited to canonical germ layers 
but proceeds via alternative routes. Despite evidence that visceral organs are formed via embryonic and extra-embryonic tra-
jectories, the production of organ-specific cell types in vitro focuses on the embryonic one. Here we resolve these differentiation 
routes using massively parallel single-cell RNA sequencing to generate datasets from FOXA2Venus reporter mouse embryos and 
embryonic stem cell differentiation towards endoderm. To relate cell types in these datasets, we develop a single-parameter 
computational approach and identify an intermediate en route from extra-embryonic identity to embryonic endoderm, which 
we localize spatially in embryos at embryonic day 7.5. While there is little evidence for this cell type in embryonic stem cell 
differentiation, by following the extra-embryonic trajectory starting with naïve extra-embryonic endoderm stem cells we can 
generate embryonic gut spheroids. Exploiting developmental plasticity therefore offers alternatives to pluripotent cells and 
opens alternative avenues for in vitro differentiation.
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map of endodermal populations emerging during gastrulation 
(Fig. 1a–c). Homozygous FOXA2Foxa2-Venus/Foxa2-Venus were crossed to 
C57bL/6 to ensure genetically uniform FOXA2 expression (Fig. 1a). 
After stringent quality filtering, our in vivo dataset comprised 6282 
FOXA2POS cells, forming 18 distinct clusters spanning E6.5 to E9. 

5 (Fig. 1c and Extended Data Fig. 1a). The cluster identities were 
assigned by expression of lineage-specific markers selected from 
differentially expressed genes (DEGs) (Supplementary Dataset 1; 
examples in Extended Data Fig. 1b) and confirmed with the Mouse 
Genome Informatics database28. The identified clusters contain all 
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Fig. 1 | Single-cell sequencing and analysis of embryonic Foxa2PoS lineages. a, FOXA2POS mouse embryos collected at stages between E6.5 and E9.5.  
b, Schematic of MARS-seq preparatory steps. Single FOXA2POS cells from mouse embryos were isolated and sorted by FACS into wells for sequencing. Each 
sorted cell’s specifications (such as forward scatter, proxy for cell size, and FOXA2-Venus intensity, a proxy for FOXA2 protein levels) were recorded and 
linked to a specific well or cell. c, UMAP dimensional embedding of 6282 FOXA2POS cells partitioned into 18 clusters. d, FACS and cell cycle chart representing 
the cell size (radius of circles), Foxa2 messenger RNA (mRNA) level (x axis), FOXA2 protein level (y axis) and cell cycle phase (colour of pie charts, G1 phase 
in red, G2M phase in green and S phase in blue) for specific clusters. Grey dashed lines correspond to 33% fractiles of all cells. FP, floor plate.
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known FOXA2POS progenitors between E6.5 and E9.5, including 
PS, node, notochord, floor plate (FP), DE, VE and PE (Fig. 1c and 
Extended Data Fig. 1b).

With MARS-seq, we can relate transcriptomes to FOXA2 pro-
tein levels, cell size, discrete embryonic regions and embryo age 
(Extended Data Fig. 2a,b and Supplementary Dataset 2) since 
embryos were imaged, E8.5 to E9.5 embryos dissected (Extended 
Data Fig. 2c) and every cell FACS-indexed (Fig. 1b–d). As FOXA2 
is a recognized early node marker17, we explored this cluster as a 
proof of principle for our dataset. We found that the node popu-
lation comprised E7.5 cells (Supplementary Dataset 2), consis-
tent with its developmental emergence. The primary descendants 
of the node, the notochord, first appeared at E7.5, with the cells 
clustered together irrespective of their anterior or posterior origin 
(Supplementary Dataset 2). A second node-derived population con-
tains the FP progenitors and is characterized by the expression of 
markers for both caudal (Nkx2.6, Hoxa1, Hoxb1 and Hoxa2 posi-
tive) and rostral (Fezf1) neural cells.

We identified clusters with high FOXA2 protein levels as those 
associated with patterning centres that are either node derived or 
exhibit similar patterning activity, including notochord, FP and 
AVE. Similarly, one of our DE clusters, early DE (DE1), that expresses 
anterior markers such as Cer1, Fzd5 and Lhx1 also expresses high 
levels of Foxa2. This analysis also suggested that node and noto-
chord are some of the largest cells in our dataset (Fig. 1d).

To explore the nature of gastrulation-stage FOXA2POS popula-
tions, we performed subclustering of early cell types, specifically 
PS, DE, node and VE (Extended Data Fig. 2d). Here we identified 
two node subpopulations, one largely in G1 and the other actively 
proliferating (referred to as Node-pr, Extended Data Fig. 2d,e; 
Supplementary Dataset 3). Node-pr may represent the founders 
of primed pluripotent epiblast stem cells, as these are thought to 
resemble anterior later PS (PS2)29.

From global clustering (Fig. 1c) and gastrulation-stage sub-
clustering (Extended Data Fig. 2d), we observed two PS clus-
ters expressing lower levels of FOXA2 than midline (node and 
notochord) and AVE clusters (Fig. 1d). These PS clusters largely 
resolved on the basis of developmental timing. We identified 
both early and late cells in single embryos, suggesting that they 
represent phases of differentiation rather than embryonic stage 
(Supplementary Dataset 2). While cells in both PS clusters appear 
to proliferate rapidly30 and spend little time in G1, the PS2 are pre-
dominantly in S phase (Fig. 1d).

In contrast to the previously published datasets7,8, MARS-seq 
of FOXA2POS populations resolved two clusters of DE cells (DE1 
and later DE (DE2)) (Fig. 1c and Extended Data Fig. 2d) consistent 
with two stages of DE differentiation. These clusters are induced 
with different dynamics, with the majority (91%) of DE1 forming 
at E7.5 and DE2 between E7.5 and E8.5 (Extended Data Fig. 2b and 
Supplementary Dataset 2).

The five annotated VE clusters all grouped together by uni-
form manifold approximation and projection (UMAP)31 and sep-
arated from the embryonic clusters (Fig. 1c and Extended Data  
Fig. 2d). Four VE clusters corresponded to distinct regions of the 
VE: VE overlaying the putative extra-embryonic region (ExVE1 and 
ExVE2); the embryonic region (EmVE); and AVE. Both ExVE clus-
ters are primarily in G1 and appear different in size (Fig. 1d), while 
lineages overlying the embryonic region (EmVE and AVE) prolifer-
ate more actively (Fig. 1d).

The fifth VE cluster expressed both canonical VE markers, 
namely Trap1a, Sepp1 and Apoc1, and DE markers Trh32, Gpx2 and 
Cpm (Supplementary Dataset 1). The unique expression profile of 
this cluster suggested it could represent a transition state in the con-
version of VE to DE, and this cluster is referred to as intermediate 
VE (InterVE). In support of this, we identified Trap1a as specifically 
upregulated in the InterVE population (Supplementary Dataset 1),  
which has previously been used as a marker gene for tracking VE 
contribution to gut endoderm in vivo19. The InterVE consisted of 
mainly E7.5 but ranged up to E9.0 cells, scattered in both ante-
rior and posterior embryonic regions (Extended Data Fig. 2b and 
Supplementary Dataset 2), and like the EmVE, AVE, DE1 and DE2, 
these cells are also proliferating (Fig. 1d).

Mapping FOXA2 populations onto a global endoderm map. A 
central challenge in single-cell transcriptomics is performing reli-
able cross-dataset comparisons33,34. Many current approaches iden-
tify cell-to-cell similarities across datasets, after which cells are 
combined and the joint dataset clustered, which requires limiting 
the comparison to a subset of genes and adjusting non-trivial heu-
ristic parameters33–36. To take all genes into account, we developed 
a single-parameter approach to compare cell clusters both within 
and between datasets called Cluster Alignment Tool (CAT). Rather 
than comparing datasets at the level of single cells, we ask which cell 
clusters are most similar to each other. We first identify the overall 
gene profile of a cluster by averaging gene expression across the cells 
within a given cluster (Fig. 2a). To find the best matching pair, here 
referred to as ‘alignment’, we perform nearest neighbour search, that 
is, calculate all pairwise Euclidean distances between the clusters 
and identify the cluster pair with the shortest distance (Extended 
Data Fig. 3a). A cluster can align to several other clusters if their 
distances do not differ significantly from the shortest, and to assess 
the significance, we perform bootstrapping (with P > 0.05 cut-off) 
(Fig. 2b and Extended Data Fig. 3b).

To validate CAT, we compared lineages defined by FOXA2 
expression in our MARS-seq to publicly available 10x Genomics 
data7 (Nowotschin et al., 2019) referred to as Now-2019 (Fig. 2c and 
Extended Data Fig. 3c). CAT correctly aligned equivalent clusters, 
including our dataset’s foregut to Now-lung, node to Now-midline 
and hindgut to Now-colon (Extended Data Fig. 3c), with a few excep-
tions (Extended Data Fig. 3c). Subclustering of the Now-mesoderm, 

Fig. 2 | CAT and identification of the InterVE cluster as an intermediate population between VE and DE. a,b, A schematic illustration of CAT (a) and 
the identification of alignments (b). The single-cell matrix is reduced to represent the cluster’s bulk RNA-seq values, and the Euclidian distances are 
calculated between all cluster pairs. In b, the distances between clusters are illustrated by arrows and dashed circles, histograms represent bootstraps 
of cluster–cluster distances and the significant closest pairs are highlighted in green. c, Sankey diagram visualizing the CAT alignments between our 
dataset and the subclustered Now-2019 dataset (Now). Thickness of the line is inversely proportional to the pairwise distance. d, Network projection of 
significant CAT alignments highlights the position of InterVE together with the embryonic but not the VE lineages. e, Expression of four InterVE markers 
(Trh, Trap1a, Gsn and Slc39a8) in E7.5 cells from Now-2019 dataset. In these cells, the VE origin is assessed by AFP-GFP lineage tracing. The InterVE 
markers are predominantly expressed in the VE-origin cells (AFP-GFPPOS). The bars represent standard error of the mean. The number of samples (n) is: 
E7.5 GFP+ #1: 4,085; E7.5 GFP+ #2: 5,007; E7.5 GFP+ #3: 8,717; E7.5 GFP− #1: 3,426; E7.5 GFP− #2: 3,793; E7.5 GFP− #3: 6,723. Mann–Whitney U test was 
used to determine the significance between GFP+ and GFP− samples; ***P ≤ 0.001 (P = 5 × 10−130 for Trh and P = 0 for the rest of markers). f, Results of 
RNA velocity analysis on VE- and DE-related lineages showing that the InterVE is from the VE lineages. Arrows represent the direction and magnitude of 
changes in gene expression. Although a few arrows point in the opposite direction to major developmental trends (for example, foregut to DE2) these are 
all at the lowest level of significance and are likely due to known limitations of RNA velocity. g, Directed PAGA constructed on the basis of RNA velocity 
highlights the direction of InterVE differentiation to DE2. FG, foregut; FP, floor plate; HG, hindgut; LIV, liver; MG, midgut; NOTO, notochord.
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Now-midline and Now-EmVE resulted in a better mapping onto 
the complete Now-2019 dataset (Fig. 2c), regardless of the direc-
tion of the comparison (Extended Data Fig. 3d). Particularly, the 
DE1 aligned specifically to Now-DE, InterVE to Now-EmVE2 and 
notochord to Now-midline1 (Fig. 2c). While the majority of align-
ments improved by subclustering, our FP cluster still stood out as 
aligning with Now-Mes and Now-lung clusters (Fig. 2c). We inves-
tigated what gene expression is shared between these three clusters 

and identified the top five significant genes with P < 10−10 (Prtg, 
Apex1, Mdk, Fxyd6 and Pcbp4), all of which have known expression 
in neural lineages28.

We then used CAT to map relationships between lineages within 
our dataset and observed alignments that fit with known lineage 
relationships, including node to DE1 and notochord; liver to fore-
gut; DE1 to DE2; AVE to EmVE; ExVE to EmVE (Extended Data 
Fig. 3e), although the InterVE cluster aligned to DE2 but not the 
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other VE clusters. The CAT-inferred lineage alignments are sum-
marized in a network (Fig. 2d) with the nodes representing lin-
eages, the links representing alignments and directionality based 
on the orientation of the comparison. In the CAT network, VE and 
embryonic lineages are separated from each other, but the InterVE 
population is located at the edge of the embryonic subnetwork 
linked to DE2 (Fig. 2d). The unique position of InterVE between 
the embryonic and extra-embryonic endoderm identity was also 
reflected in principal component analysis (PCA) (Extended Data 
Fig. 3f), partition-based graph abstraction (PAGA)37 and trajectory 
inference (Extended Data Fig. 4a,b). The visceral quality of InterVE 
is apparent from its alignment to the Now-EmVE2 cells of visceral 
origin, based on AFP-GFP lineage tracing, (ref. 7) (Supplementary 
Dataset 4 and Fig. 2c) that also express InterVE markers (Fig. 2e).

To resolve the directionality of differentiation, we implemented 
RNA velocity38 (Fig. 2f,g) and this indicates InterVE is differentiat-
ing from VE lineages. The strongest link in directed PAGA projec-
tion (Fig. 2g) further confirms differentiation of InterVE to DE2 
(Fig. 2d). Also indicated by our CAT analysis, the relationship 
between DE1 and DE2 is consistent with RNA velocity, suggesting 
that DE2 is initially formed from early PS (PS1) via DE1 and pos-
sibly later from InterVE (up to E8.5). While some DE1 cells appear 
related to PS2, these are limited to E7.5 and the E8.5 PS2 cells asso-
ciated with notochord (Fig. 2f).

Taken together, this implies a continuum of DE differentiation 
that begins with the E6.5 PS and ends with E8.5 visceral endoderm. 
The contribution of InterVE to DE2 is also confirmed by DEG anal-
ysis showing InterVE markers progressively being downregulated in 
DE2 as it matures at E8.5 (Supplementary Dataset 5).

Functional properties of VE in transition to DE. InterVE markers 
are expressed individually in various definitive and visceral lineages, 
but are co-expressed within the InterVE (Fig. 3a and Extended Data 
Fig. 5a). While transdifferentiation of VE to embryonic endoderm 
has been described previously4,7,8,19, the means of this transforma-
tion has not been defined. To understand the differences between 
InterVE, VE and DE populations, we performed Gene Ontology 
(GO) analysis of DEGs39 (Fig. 3b and Supplementary Dataset 6). 
The GO terms downregulated in InterVE compared with VE were 
the same categories upregulated in InterVE compared with DE2 (the 
closest cluster pair for InterVE in our CAT analysis). Additionally, 
there were no significantly downregulated terms when InterVE was 
compared with DE2, suggesting that InterVE had acquired DE iden-
tity, but not yet lost the visceral signature (Fig. 3b). DEGs upregu-
lated in InterVE relative to VE were linked to proliferation, actin 
cytoskeleton and migration, whereas those downregulated relative 
to VE, or upregulated with respect to DE2, included lipid, extracel-
lular matrix (ECM) and Smad pathways (Fig. 3b).

We then assessed the behaviour of gene groups linked to specific 
GO functional categories39,40 (GO-FCs; Supplementary Dataset 7). 
First, we compared cumulative gene expression in a cell for each 
GO-FC, visualized by box plots, in the sequence of clusters leading 

from VE to DE (Fig. 3c). These confirmed the GO analysis results 
(Fig. 3b) and highlighted the transitions in lysosome, Smad, retinoid 
metabolism and lipid-related genes that were specifically down-
regulated in the InterVE cells compared with VE (Fig. 3c). Only a 
few specific GO-FCs were upregulated (for example, Smoothened) 
as cells progress from VE through InterVE into DE (Extended 
Data Fig. 5b). VE and embryonic gut-tube derivatives share com-
mon basement membrane features, and this GO-FC is specifi-
cally reduced in both DE2 and DE1 (Fig. 3d). To further resolve 
functional trends, we used CAT to compare function-specific lin-
eage expression states and uncovered candidate functions regulat-
ing the transition from VE to DE (Fig. 3d–f and Extended Data 
Fig. 5c,d). When applied to the entire set of functional categories, 
alignments formed three groups: those where InterVE had already 
acquired DE-like functional properties, those where InterVE 
retained VE-like properties, and a set of functional alignments 
where InterVE was still in transition and aligned to both VE and DE  
(Fig. 3e). When these are visualized as CAT networks (Fig. 3f), 
InterVE became disconnected from the other VE clusters and con-
nected to the DE2 or hindgut clusters based on cell–cell junction, 
amino-acid metabolism and Hippo and Notch pathways GO-FCs 
(Fig. 3f and Extended Data Fig. 5c). In contrast, canonical Wnt 
signalling specifically connected the InterVE with AVE, but not 
with the other embryonic lineages (Fig. 3f). Consistent with the 
GO-FC box plot for basement membrane (Fig. 3d), CAT network 
for this category positions InterVE between VE and embryonic gut 
(Extended Data Fig. 5d), suggesting that the basement membrane 
composition of the VE is adopted by the prospective gut tube. Thus, 
RNA velocity, CAT and GO analyses together suggest that, during 
the transition from VE to DE, InterVE acquires definitive identity 
more efficiently than it loses its visceral identity.

Spatial localization of InterVE cells in E7.5 embryos. Historically, 
the localization of the cells expressing VE markers was used to 
conclude that VE cells are displaced41, although genetic lineage 
tracing suggests this model is incorrect. To localize InterVE cells 
in E7.5 embryos, we used Resolve Molecular Cartography (MC) 
for spatial transcriptomics (ST) implemented for quantitative mul-
tiplexed spatial mRNA analysis at single-molecule and single-cell 
resolution (Fig. 4 and Extended Data Fig. 6). Markers like Afp 
illustrate why displacement was an attractive hypothesis, as Afp 
expression at E7.5 is not detectable in VE regions overlapping with 
emergent DE (distal tip or prospective anterior region). However, 
in line with lineage tracing Trap1a persists in cells that have lost 
Afp expression (Fig. 4a).

We used a decision tree algorithm trained on MARS-seq data to 
predict InterVE cells in ST (Fig. 4b,c and Extended Data Fig. 6a). 
From this, we compiled a list of key InterVE markers (Extended 
Data Fig. 6a) that could assign InterVE identity in ST data (Extended 
Data Fig. 6b–d). Identified InterVE cells are primarily located on 
the anterior surface of the embryo, although there are also posterior 
cells (Fig. 4d and Extended Data Fig. 6d). The ST-identified InterVE 

Fig. 3 | Functional properties of VE in the transition to DE. a, Heat map representing selected DEGs in InterVE cluster. The DE-expressed genes (top of 
the heat map) and VE-expressed genes (bottom) are co-expressed in the InterVE cluster. b, GO-term analysis of genes down- and upregulated in InterVE 
versus other VE clusters or versus DE2. The scheme illustrates that InterVE acquires DE2 identity faster than it loses its VE signature. c, Cumulative gene 
expression of genes in three GO-FCs identified by GO analysis in b. d, Cumulative gene expression of genes in GO-FCs not revealed by GO analysis. Box 
plot in c and d shows median value, bordered by upper/lower (75/25) percentile, whiskers showing maximum/minimum value in 1.5 interquartile range 
(IQR) and outliers as black dots. Two-sided Mann–Whitney U test was used to determine the significance between AVE and InterVE as well as DE2 and 
InterVE; *P < 0.05, **P < 0.01 and ***P < 0.001.NS, nonsignificant. The number of samples (cells), in each box plot are given in Supplementary Table 2. 
e, Table summarizing CAT alignments between InterVE and the rest of our in vivo dataset using specific GO-FC. The InterVE alignments are grouped into 
three categories based on the alignment to either DE lineages (blue), or to both VE and DE lineages (green), or to VE lineages only (yellow). f, Examples of 
CAT networks based on GO-FC in e representing pathways in d. In contrast to the cumulative gene expression in d, the CAT network for Hippo signalling 
GO-FC clearly illustrates that the InterVE aligns to DE but not VE lineages, while for the Wnt-canonical signalling GO-FC, the InterVE aligns to VE and not 
to DE lineages. The VE lineages are visualized in yellow, DE lineages in blue, InterVE in green and other lineages in pink.
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expression profiles are comparable to MARS-seq InterVE, show-
ing characteristic co-expression of DE and VE markers (Fig. 4d 
and Extended Data Fig. 6b,c). The abundance of anterior InterVE 
is consistent with our trajectory inference, where InterVE contrib-
utes to DE2, a cluster consisting of both anterior and posterior cells  
(Fig. 2f,g). To further probe the anterior origin of InterVE, we iden-
tified AVE clusters in Nowotschin-2019 dataset (Extended Data 
Fig. 6e,f) and find that E7.5 InterVE (Now-EmVE2) aligns to E6.5 
AVE (Now-EmVE0) (Supplementary Dataset 4 and Extended Data 

Fig. 6g). These data suggest that early InterVE is anterior in origin 
and later InterVE is posterior. In line with this, PAGA analysis per-
formed on the Now-2019 InterVE cluster (Now-EmVE2) (Extended 
Data Fig. 6e) suggests that InterVE contribution spans the entire 
endodermal A–P axis.

In vitro differentiation of endoderm lineages. In vitro differen-
tiation to DE has focused heavily on cell surface markers, such as 
CXCR4 or C-KIT22,42, to identify DE precursors. We assessed the 
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expression of these canonical markers in our dataset and found that 
their RNAs are also expressed broadly throughout the VE (Extended 
Data Fig. 7a). As these markers may not be adequate to distinguish 
DE from VE, we asked whether established in vitro DE differentia-
tion successfully mimics in vivo development.

We differentiated ESCs towards DE in a two-dimensional (2D) 
environment21 (Supplementary Dataset 8) using a double fluo-
rescent reporter for Goosecoid (Gsc), a marker for early PS, node 
and later anterior PS, and, for Hhex, a marker for the later anterior 
endoderm (Gsc-GFP/Hhex-RedStar)43. This enabled the sorting 
of specific differentiation stages, with Gsc-low cells representing 
PS1, Gsc-high anterior PS and Gsc/Hhex double-positive nascent 
DE44 (Extended Data Fig. 7b). We performed MARS-seq to iden-
tify differentiating ESCs as they acquire an endodermal identity 
(Supplementary Dataset 9). In this dataset, referred to as 2D-ESC, 
we assessed the expression of PS, DE and VE markers in distinct 
clusters (Extended Data Fig. 7c,d).

Similar to comparisons of in vivo datasets across different plat-
forms (Fig. 2c and Extended Data Fig. 3c), comparing in vitro data 
with in vivo data in high-dimensional space is nontrivial. Commonly 
used approaches to tackle this include correlational analyses on sub-
sets of marker genes45 or testing co-localization in a dimensional 
embedding46,47. We combined our in vivo FOXA2POS data together 
with the in vitro-derived DE cells and applied fastMNN34 batch 
correction followed by UMAP visualization on the entire gene set. 
This resulted in segregation of cells based solely on their in vitro 
or in vivo origin (Fig. 5a). Since CAT does pairwise comparisons 
one at a time, we can directly ask which in vitro states best match 
in vivo counterparts without dealing with global patterns of cluster 
co-localization or batch-like segregations observed in dimensional 
embedding. On the basis of CAT, we found 2D-ESC differentiation 
recapitulates the expected developmental stages, with the inter-
mediate stage of differentiation (day 4) aligning with in vivo PS  
(Fig. 5b) and early DE lineages (DE1 and DE2). While the clusters 
aligning to DE1 appear at later timepoints in differentiation, we 
presume this is because both early and anterior endoderm express 
common sets of markers (Cer1, Lhx1, Otx2 and Hesx1)14,15 and this 
alignment reflects the anterior character acquired by these cultures 
in late stage differentiation. Overall, later stages of in vitro differ-
entiation (day 5 and day 6) aligned to DE (Fig. 5b) with two small 
clusters aligning to foregut and hindgut. Each of these small clusters 
has additional alignments to InterVE and FP, respectively.

On the basis of a limited set of markers, we have previously 
shown that PI3K modulates DE differentiation and its inhibition 
results in posterior/pan-endodermal DE that retains plasticity, sug-
gesting delayed differentiation43. To distinguish between posterior-
ization and delay, we perturbed PI3K signalling with the antagonist 
LY294002 (PI3Ki) (Extended Data Fig. 7c,d and Extended Data  
Fig. 8a) and assessed differentiation by CAT. Rather than delay-
ing differentiation and increasing alignment to PS, we observed an 
expansion in alignments to DE2 and hindgut (Fig. 5c). As DE2 no 
longer expresses early DE markers that remain expressed in the ante-
rior endoderm, we conclude that the Pi3K inhibitor homogenizes 
in vitro differentiation, while eliminating anterior gene expression 
associated with prospective foregut. The increase in alignments to 
DE2 in PI3Ki-treated cells is also confirmed, when data from these 
experiments are clustered together (Extended Data Fig. 8b,c).

Given the success of 3D culture systems as models for embry-
onic differentiation48,49, we considered whether it alters differentia-
tion trajectories. We guided wild-type (WT) E14 naïve mouse ESCs 
towards epiblast-like cells (EpiLC)50 and further differentiated using 
3D protocols (Supplementary Dataset 8). We sorted DE from dif-
ferentiation with E-CAD and CXCR4 and performed single-cell 
RNA-seq (Extended Data Fig. 7c,d). We found that these 3D-cultured 
cells clustered together with 2D-ESCs (Extended Data Fig. 8d), 
and while differentiation in 2D produced both DE1 and DE2, 3D 
differentiation enhanced the fraction of DE2 cells (Fig. 5b–d).  
To promote differentiation towards an anterior identity, we stim-
ulated Nodal and Wnt signalling (increased Activin A and GSK3 
inhibitor CHIR99021; Supplementary Dataset 8 and Extended Data 
Fig. 7c,d). This restored anterior clusters and accelerated differ-
entiation, producing fore- and hindgut identities (Fig. 5e). These 
observations suggest that the ESC differentiation protocols tested 
here are biased towards the generation of DE2 and show little or no 
alignment of in vitro clusters to visceral endoderm.

To identify molecular differences between the in vitro differenti-
ated cells and their in vivo counterparts, we introduced a similarity 
measure (Extended Data Fig. 8e). We defined expected in vivo tar-
get lineages for in vitro differentiation and compared in vitro clus-
ters with these targets (Fig. 5f and Supplementary Dataset 10). The 
similarity score uses the set of CAT alignments for specific signal-
ling pathways to quantify how well in vitro protocols recapitulate 
in vivo signalling. This analysis identified the Hippo, Smad, Wnt 
non-canonical and FGF pathways (Supplementary Dataset 10) as 
candidates for future manipulation in differentiation protocols.

Generating gut spheroids from naïve extra-embryonic endoderm. 
Despite identifying InterVE as a key intermediate in embryonic gut 
specification, we did not detect a prominent visceral population in 
tested in vitro differentiation protocols (Fig. 5b–e). We therefore 
asked if we could generate in vitro embryonic gut starting with 
naïve extra-embryonic endoderm (nEnd) stem cells9. MARS-seq 
performed on nEnd showed that these express similar genes to 
in vivo PrE (Now-PrE) and parietal endoderm (Now-ParE). As a 
result, Now-PrE and nEnd form a hierarchal cluster that includes 
Now-ParE (Fig. 6a and Extended Data Fig. 9a). Consistent with this, 
nEnd aligns to Now-PrE and Now-VE clusters when analysed by 
CAT (Fig. 6b).

To determine whether nEnd could produce embryonic gut cell 
types via an InterVE intermediate, we differentiated nEnd into gut 
spheroids (nEnd spheroids), adapting an existing human ESC dif-
ferentiation protocol51 (Fig. 6c-d). By the end of differentiation, we 
identified spheroids expressing the gut markers CDX2 and FOXA2 
(Fig. 6d) in CDH1 positive epithelial cells (Extended Data Fig. 9b). 
To assess the trajectory of differentiation, we performed quantita-
tive PCR with reverse transcription (RT–qPCR) (Extended Data 
Fig. 9c) and found InterVE markers to be dominant in the spheroid 
stage. To resolve distinct subpopulations, we performed MARS-seq  
(Fig. 6e and Extended Data Fig. 9d) and identified clusters expressing 
InterVE and gut markers in nEnd spheroids (Fig. 6e and Extended 
Data Fig. 9d). RNA velocity shows a clear trend of the population 
expressing InterVE markers differentiating into the gut-like and 
the other cell types found at this stage of differentiation (Fig. 6f and 
Extended Data Fig. 9c–e). To compare the two in vitro routes (DE 

Fig. 4 | ST reveals InterVE in E7.5 embryos. a, Average mRNA counts per cell in a sagittal section of E7.5 embryo for selected genes (Foxa2, Brachyury, 
Trap1a and Afp). b, An example of the decision tree trained on MARS-seq data to predict if a cell is InterVE or not. Nodes (black ovals) represent the 
criteria for making the yes (green arrow) or no (red arrow) decisions. Leaves (light-blue ovals) are the ends of the decision branches. c, Heat map of 
gene expression patterns for genes used in the ST study. The genes, selected on the basis of the decision tree, were chosen to identify InterVE out of the 
related VE and DE genes. d, DAPI-stained sagittal section of E7.5 embryo. Each colour dot or square represents a single mRNA molecule. Cell boundaries, 
obtained in QuPATH, are outlined in grey, and the InterVE cells identified by decision tree are outlined in yellow and pointed by white arrowheads. The DE 
lineage markers (Trh and Tmsb10) are in shades of blue; the VE lineage markers are in shades of pink (Trap1a and Sepp1) and yellow (Fmrn1b).
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from 2D-ESCs and VE in nEnd spheroids), we assessed the direc-
tion of differentiation by RNA velocity (Extended Data Fig. 9e,f). We 
found that 2D-ESC progresses to DE via a PS-like stage, whereas the 
nEnd-spheroid route involves a cluster expressing Inter-VE markers.

We then used CAT to further assess nEnd differentiation 
(Extended Data Fig. 9g). As PrE is absent in our dataset and PE 

is its closest analogue (Fig. 6a), nEnd aligns to PE. We also find 
alignments to PE later in differentiation, suggesting aspects of the 
nEnd signature persist throughout differentiation. During dif-
ferentiation, the first cluster to align to both InterVE and regions 
of the embryonic gut, including DE2, is cluster 3 (nEnd′), the 
pre-population for spheroid formation. In agreement with marker 
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analysis (Fig. 6e and Extended Data Fig. 9c,d), the gut-like clus-
ter 6 aligns to midgut. This cluster retains considerable visceral 
identity, consistent with the persistence of visceral signatures in 
several in vivo datasets7,19. While key InterVE markers are most 
pronounced in cluster 2, the robust expression of these appears 
insufficient to drive alignment to InterVE and overall gene expres-
sion pulls this cluster towards PE.

Taken together, the combination of CAT, RNA velocity and 
marker analysis suggests that nEnd priming initiates a shift to 
InterVE/DE2 that is continued in nEnd spheroids as they give rise 
to gut derivatives. Although visceral signatures persist throughout 
differentiation and the exact sequence of differentiation events 
needs to be resolved, our findings suggest nEnd differentiation to 
gut-like derivatives proceeds via an InterVE-like intermediate.
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the cluster. The thickness of the lines is given by the cluster bar length divided by the number of alignments. The bar length on the right is given by the 
sum of the line widths and reflects the fraction of in vitro cells best matching the specific in vivo lineage. f, Table representing the similarity of the in vitro 
cells to the appropriate in vivo lineages. For each of the protocols (2D, 2D-PI3Ki, 3D and 3D-AChir) GO-FCs are coloured according to similarity measure, 
S, (median over similarities calculated for individual clusters in each protocol; Extended Data Fig. 8e) with high similarity in green and low similarity in 
red. All in vitro protocols have low similarity to in vivo DE lineages in Hippo signalling GO-FC. D4, day 4; D5, day 5; D6, day 6. The names for the in vitro 
clusters include the days from which they are derived and a letter label (a–c) to distinguish different clusters that occur at the same timepoint.
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Discussion
Empowered with diverse computational tools and MARS-seq, we 
uncovered the trajectories from visceral to definitive endoderm via 

an intermediate cell type, InterVE. We placed in vitro differentiation 
in the context of in vivo development and assessed the sequence of 
developmental events leading to organ ontogeny in the endoderm.
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Fig. 6 | An in vitro model for generating gut spheroids (nEnd spheroids) from extra-embryonic endoderm. a, Heat map representing differentially 
expressed PrE genes from Now-2019 dataset. The two nEnd clusters, nEnd1 and nEnd2, form a hierarchical cluster together with Now-PrE and 
Now-ParE. b, Sankey diagram representing alignments between in vitro clusters from 2D-ESC differentiation and the Now-2019 dataset. nEnd aligns 
specifically to Now-PrE and Now-VE clusters. c, A scheme of the nEnd-spheroid differentiation protocol. d, Images of the cell cultures in the progression 
of nEnd-spheroid differentiation. Results are representative of four independent experiments. e, Dot plot showing nEnd, InterVE and gut markers in 
MARS-seq dataset consisting of nEnd cells differentiating into nEnd spheroids. The cluster 2 exhibits a pattern of InterVE markers while Cluster 6 
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Comparing single-cell RNA-seq datasets is plagued by a ‘curse 
of dimensionality’, as it requires the non-trivial assessment of ~104 
gene-expression values. Paradoxically, the more genes character-
ized, the less meaningful cell–cell distances become with noise 
in gene expression further amplifying this effect52–54. While most 
current methods reduce the number of dimensions by limiting 
data to a subset of genes, for example, those with highly variable 
gene expression33–35,45, we focused on reducing noise as opposed to 
dimensions, performing comparisons with just one free parameter— 
the significance cut-off. CAT proved particularly useful when com-
paring in vitro datasets to in vivo lineages, where noise created by 
environmental differences tends to dominate co-localization in a 
dimensional embedding (for example t-SNE55, UMAP31 or PCA56). 
Using this tool we found PI3K activity sustains heterogeneity and 
anterior identity. Its inhibition homogenizes nascent DE towards 
a later endodermal cell type lacking regional identity (DE2), pro-
viding important developmental context for the common use of 
the PI3K inhibitor in human ESC differentiation towards different 
endodermal derivatives57,58.

In vitro ESC differentiation has mostly been concerned with 
producing DE via a PS-like mesendoderm intermediate23. While 
cells traversing the PS contribute to DE, recent studies suggest 
a substantial contribution of VE cells previously thought to be 
extra-embryonic in nature7,8,19. In intestinal differentiation start-
ing with extra-embryonic nEnd, cells embark on a visceral trajec-
tory towards embryonic gut, suggesting that the inclusion of VE in 
ESC differentiation could help with the generation of more physi-
ological cell types. Moreover, as CAT analysis suggests InterVE and 
DE2 identity are already induced in the second stage (nEnd′) of 
nEnd-spheroid differentiation, further optimization of the protocol 
described here could produce robust approaches towards the gen-
eration of visceral organs.

Our dataset relates levels of the central endoderm TF, FOXA2, 
to single-cell transcriptomes and suggests that the highest levels of 
FOXA2 are associated with embryonic signalling centres such as the 
node, AVE, ADE and FP, consistent with FOXA2 mutant pheno-
types59. A central feature of these organizing centres is the produc-
tion of signalling antagonists, and our data suggest their induction 
requires the highest level of FOXA2 protein, implying they might rep-
resent low-affinity targets in canonical feedback inhibition circuits60.

As FOXA2 expression delimited the progenitor set present in our 
data, it served to better resolve specific lineage relationships in the 
endoderm. Complemented by spatial transcriptomics, both CAT 
and RNA velocity suggest that different regions of VE contribute 
to the specific endoderm cluster, DE2, in a time-dependent fashion 
and these contributions span the entire A–P axis. The generation 
of embryonic gut via two distinct routes, InterVE and DE1, sup-
ports the continuum of DE differentiation in development. Early 
DE is derived from the epiblast via the PS starting at E6.5 and later 
endoderm recruitment via the VE occurs from E7.5, with both 
progenitor types converging on a more mature DE2 cell type. This 
biphasic recruitment to endoderm is consistent with the reported 
early lineage restriction event where epiblast-derived DE specifica-
tion is finalized by E7.5 (ref. 61). The extent to which VE can pro-
duce additional endodermal cell types remains to be seen, but our 
work suggests that the use of both embryonic and ‘extra-embryonic 
lineages’ as starting endodermal cell types will benefit future stem 
cell applications.
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Methods
Statistical analysis and reproducibility. No statistical methods were used to 
pre-determine sample size. Data distribution was assumed to be normal, but this 
was not formally tested. The experiments were not randomized. Data collection 
and analysis were not performed blind to the conditions of the experiments.

Data collection was performed using Microsoft Office Excel (16.16.2), and 
statistical analysis was performed using GraphPad Prism (9) (Fig. 3b and Extended 
Data Fig. 9c). All statistical tests performed, sample sizes and P values are specified 
in figure legends.

Mouse maintenance and embryo collection. FOXA2:Venus mice26 were 
generously provided by Heiko Lickert. Animal work was authorized by the Danish 
National Animal Experiments Inspectorate (Dyreforsøgstilsynet, license no. 2018-
15-0201-01520) and performed according to national guidelines. Mice were kept 
in rooms at a temperature of 22 °C (±2 °C), with a humidity of 55% (±10%), air in 
the room was changed eight to ten times per hour, according to Danish regulations 
for animal experiments. Natural mating was set up in the evening. Mouse females 
(C57bL/6; 8–30 weeks old) were mated with homozygous FOXA2:Venus males 
(8–60 weeks old) to produce heterozygote FOXA2:Venus embryos and ensure 
uniform FOXA2:Venus expression. Females were checked for plugs the following 
morning, which was established as E0.5. Embryos were collected from E6.5 until 
E9.5. E8.5 embryos were sorted on the basis of somite number into more detailed 
stages (E8.0, E8.25, E8.5, E8.75 and E9.0) and divided into anterior and posterior 
parts. E9.5 embryos were dissected to minimize neural tube and increase the gut 
cell contribution (Extended Data Fig. 2c).

Mouse ESC culture and differentiation. Mouse ESCs used in this study are E14JU, 
with a 129/Ola background or Gsc-GFP/Hhex-RedStar double reporter line43. 
Both lines were cultured in 0.1% gelatin-coated plates and maintained in complete 
ESC medium62: GMEM (Sigma G5154) supplemented with 10% FBS (Gibco), 1× 
MEM non-essential amino acids (Thermo Fisher 11140-035), 2 mM l -glutamine 
(Thermo Fisher 25030-24), 1 mM sodium pyruvate (Thermo Fisher 11360-039), 
100 μM 2-mercaptoethanol (Sigma) and 1,000 U ml−1 leukaemia inhibitory factor 
(LIF) (made in house).

For naïve culture condition63, ESCs were maintained in N2B27 supplemented 
with 3 μM GSK3βi (CHIR99021: Axon) and 1 μM MEKi (PD0325901: Sigma) and 
1,000 U ml−1 LIF.

DE, nEnd and nEnd-gut spheroid differentiations. Detailed overview of all 
DE differentiations43,44, nEnd differentiation and culture9,64,65, and gut spheroid 
protocols51,66 are summarized in Supplementary Dataset 8.

Immunofluorescence. The nEnd spheroids were washed and fixed in 4% PFA 
at room temperature for 10 min (Fisher Scientific, PI-28906). Samples were 
subsequently permeabilized in 0.5% Triton and blocked in 3% donkey serum. 
Primary antibodies were incubated in 1% donkey serum, 0.1% Triton in PBS at 
4 °C for 48 h, and subsequently incubated with the appropriate secondary antibody 
(AlexaFluor, Molecular probes) and DAPI at room temperature for 2 h. See 
Supplementary Dataset 11 for a list of antibodies and concentrations used. The 
samples were imaged using Leica SP8 confocal microscope with Las X software 
(3.5.7.23225) and processed in Imaris 9.6.

RT–qPCR. Total RNA was collected using the RNeasy Mini Kit (Qiagen). One 
micogram of total RNA was used for first-strand synthesis using SuperScript III 
reverse transcriptase according to the manufacturer’s instructions. Complementary 
DNA corresponding to 10 ng of total RNA was used for RT–qPCR analysis using 
the Roche LC480 LightCycler (1.5.1.62.SP3), and target amplification was detected 
with the Universal Probe Library system. See Supplementary Dataset 12 for a list of 
primers and probes used.

Single-cell preparation. Embryos were dissociated with accutase (Sigma) into 
single cells immediately after collection. The collected embryos were mixed with 
mouse ESCs, which were counterstained with CellVue Maroon Cell Labeling Kit 
(Thermo Fisher, #88-0870-16) to enlarge the number of cells in the sample and 
to avoid loss of the scarce FOXA2POS cells during centrifugation. Samples were 
then incubated with accutase and DNAse (10 U μl−1) at 37 C for 8–10 min and 
pipetted up and down multiple times to ensure a good single-cell suspension. The 
accutase was diluted by addition of FACS buffer (10% FBS in PBS). The cells were 
washed with FACS buffer twice and re-suspended in FACS buffer with DAPI in a 
round-bottom polystyrene tube.

The in vitro differentiated cells (Gsc-GFP/Hhex-RedStar double reporter line) 
were dissociated by 0.1% trypsin and transferred to a FACS-DAPI buffer in a FACS 
collection tube. The E14JU differentiated ESCs were stained with APC-conjugated 
CXCR4 (BD Bioscience, #558644, at dilution 1:400 in FACS buffer) and E-CAD 
antibodies (eBioscience, #50-3249, at dilution 1:400 in FACS buffer) for 20 min and 
washed three times in FACS buffer.

Flow cytometry and single-cell index sorting. Cells were sorted using a BD 
FACS Aria III (BD FACSDiva Software version 8) with a 100 µm nozzle and 20 psi 

sheath pressure. FCS Express version 6 was used for post-acquisition analysis. 
The boundary between positive and negative populations was set on the basis of 
negative population of control ESCs. Forward scatter (FSC) and side scatter (SSC) 
were used to define a homogeneous population, FSC-H/FSC-W gates were used to 
exclude doublets and dead cells were excluded on the basis of DAPI staining.  
A gating strategy example can be found in Extended Data Fig. 2a.

Sorting speed was kept at 100–300 events per second to eliminate sorting two 
or more cells into one well. Single-cell sorting was verified colorimetrically67. Cells 
were sorted directly into lysis buffer containing the first RT primer and RNase 
inhibitor, immediately frozen and later processed by the MARS-seq1 protocol27.

Single-cell RNA-seq low-level processing and filtering. All single-cell 
MARS-seq libraries were sequenced using Illumina NextSeq500 (4.0.1) at a 
median sequencing depth of 225,000 reads per single cell. For detailed statistics in 
single-cell resolution on barcodes, reads, mapping and genes, see Supplementary 
Dataset 13. Sequences were mapped to mouse mm9 genome, de-multiplexed and 
filtered27,68, extracting a set of unique molecular identifiers (UMIs) that define 
distinct transcripts in single cells for further processing. We estimated the level of 
spurious UMIs in the data using statistics on empty MARS-seq wells27. Mapping of 
reads was done using HISAT (version 0.1.6) (ref. 69); reads with multiple mapping 
positions were excluded. Reads were associated with genes if they mapped to an 
exon. The pre-processing single-cell RNA-seq pipeline can be found at https://
tanaylab.github.io/old_resources/pages/672.html.

Pre-processing of single-cell data for downstream analysis. To pre-process our 
data, we loaded the entire raw count matrix dataset (in vivo and in vitro) together 
with the metadata using scanpy70. We filtered away cells with very low numbers of 
genes detected. Our cut-off for minimum number of genes was 1,436. This is the 
lower tail of the distribution, corresponding to the median of gene detected per 
cell, minus one standard deviation of gene detected per cell. When we performed 
CAT analysis, we also removed genes with no overall expression and genes present 
only in the cells with top 500 most read counts.

Seurat processing pipeline. The raw dataset was subset using filtered cells and 
converted to Seurat (v3.1.3) object together with metadata. Additionally, empty Zero 
stage was removed as well ERCC genes. As estimated mitochondrial content was 
below 2%, no extra filtering was necessary. The raw UMI counts were normalized 
to 10,000 and log-transformed using ‘NormalizeData’ followed by identifying 2,000 
highly variable genes using ‘FindVariableFeatures’ with default settings. For batch 
correction, we used ‘RunFastMNN’ from batchelor package, which was integrated 
into Seurat’s ecosystem. The corrected counts were used to construct a shared 
nearest neighbour graph using the first 20 dimensions. We used Louvain clustering 
with resolution of 1.2 to identify higher number of clusters in the dataset followed 
by UMAP visualization using again the first 20 dimensions. Lastly, for each cell in 
the dataset, we estimated cell cycle phase by converting Seurat’s cell cycle genes from 
human to mouse71 and used these as input for the ‘CellCycleScoring’ function.

PAGA. To perform trajectory and pseudotime inference, we replicated the steps 
from the previous analysis using Python package scanpy. We initially de-noised 
the dataset using built-in function ‘diffmap’ with default settings followed by 
running ‘paga’ for previously annotated clusters (excluding PE), which construct 
a connected graph representation of the dataset. Finally, we set cluster PS1 as our 
initial starting point for inferring pseudotime using ‘dpt’ function.

CAT. Averaging over clusters to lower noise. Our method is based on exploiting 
pre-defined clusters that can be obtained by commonly used clustering algorithms72 
or defined by, for example, meta-cell analysis73.

In high dimensions, noise effectively pushes all datapoints away from each 
other, limiting the ability to meaningfully distinguish between nearest and furthest 
neighbours of cells. To overcome this, we averaged out the noise by calculating 
the mean gene expression of each cluster, thus increasing the contrast between 
cluster-cluster distances, with the cost of limiting us to cluster-scale resolution.

Normalizing gene expression to avoid bias towards highly expressed genes in distance 
calculation. All single-cell datasets were normalized to 10,000 transcripts per cell, 
except the data for organoid comparisons where to we did log normalization. Log 
normalization compensated for lower read depth in the organoid data. Before 
calculating the distance between the cluster means, we normalized each gene, xi, 
by the non-zero median, that is, median expression for all cells expressing the 
gene. Thus, a vector of genes, X = {xi} is normalized to ˜X =

X
NonZeroMedian, where 

NonZeroMedian = median(X = {xi} , xi > 0). This normalization ensured that 
high-expressed genes contribute to the distance calculation to a similar extent as 
low-expressed genes.

As the only adjustment to the Now-2019 dataset, we re-scaled the gene expression 
such that the distributions of median gene expression in both datasets were matching.

Calculating distance between clusters. The distance between all pairs of cluster 
means was calculated using the Euclidean norm for simplicity; however, different 
distance metrics also work.
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Bootstrapping the distances to get uncertainties. To determine the uncertainties 
in the distance measurements, we bootstrapped each cluster 1,000 times with 
replacement, to its original size, and calculated the distances between averages 
of each re-sampled cluster. For each cluster pair, we thus obtained distribution 
of cluster–cluster distances and corresponding mean and standard deviation. 
The resulting distributions, based on sampled averages with replacement, are 
approximately Gaussian.

Significant nearest neighbours. The closest neighbour was always counted as a 
nearest neighbour. If the difference between the closest and another neighbour 
was less than 1.6 standard deviations (corresponding to P > 0.05, one-sided), 
we deemed that we cannot meaningfully distinguish which is the nearest, and 
both clusters were counted as the nearest neighbours. All CAT comparisons 
and alignments are directional: from A’s perspective, B may be a closest match, 
although from B’s perspective, some other cluster may match better.

Sankey diagram. To visualize the CAT alignments, we used Sankey plot from 
‘plotly’ library in R, where the thickness of the line is inversely proportional to the 
pairwise distance (Figs. 2c and 6b and Extended Data Fig. 3c–e). In Fig. 5b–e and 
Extended Data Fig. 8b,c, thickness of the lines is given by the cluster height divided 
by the number of alignments.

Analysing the alignment of FP to Now-Mes and Now-lung. To find out why FP aligns 
to Now-Mes and Now-lung, we did pairwise DEG in the following way. First, we 
identified list of DEGs between (1) FP and the Now-lineages (excluding Now-Mes4 
and Now-DE-lung), (2) Now-Mes4 and Now-lineages (excluding Now-DE-lung) 
and (3) Now-lung and Now-lineages (excluding Now-Mes4). We considered 
only upregulated genes with an adjusted (Benjamini–Hochberg) P value <10−10. 
The genes common to the three gene lists (overlap of gene lists in (1)–(3)) are 
the genes that are consistently upregulated among the three clusters compared 
with the rest and contribute to the particular alignment of the FP to Now-Mes4 
and Now-DE-lung. Passing these genes through MGI-GXD28 shows that they are 
expressed in neural lineages, thus explaining their presence in our dataset’s FP 
cluster.

Networks. Networks were visualized by directionally connecting clusters to their 
nearest neighbours with the strength of the connection equal to 1 divided by 
the mean bootstrapped distance. The layout of the network was calculated using 
the Fruchterman–Reingold force-directed algorithm implemented in Python 
framework NetworkX.

Similarity score. Similarity score was calculated as follows:
First, for each cluster or condition, we pre-defined the set of in vivo lineage 

targets, that is, in vivo lineages that in vitro cells were expected to reproduce. 
We referred to these as targets, T = {T1, T2, …}, where, for example, T1 = PS1 
(Supplementary Dataset 10).

Second, for each in vitro cluster ‘D’, we compared the obtained nDE CAT 
alignments with the in vivo lineages, E = {E1, E2, …, EnDE} with the set of targets, 
T. (Extended Data Fig. S8e, for example nDE = 3 in bottom left).

If E and T do not overlap, that is, have no lineages in common, we assume 
no similarity and set similarity score, S = 0 (Extended Data Fig. 8e, top right). If 
E and T overlap, that is, share at least one lineage, we evaluate to what extent the 
alignments to non-target lineages is erroneous and to what extent these reflect that 
fact that all lineages from CAT alignments share similar traits due to overlapping 
function (for example, a given signalling pathway).

We can quantify this functional similarity among any nDE in vivo lineages 
as a fraction of identified vivo-to-vivo alignments, nEE, to the number of all 
possible alignments among nDE lineages, nDE (nDE − 1) (number of links 
in a fully connected graph with nDE nodes). Thus, the functional similarity 
FS =

nEE
nDE(nDE−1) is 0 when no in vivo lineages align to each other and FS = 1 

when all align to all.
We can then quantify the unspecificity of a given alignment as 

U =
nDE
NE

(1 − FS). When in vivo lineages do not share traits in common, (FS = 
0), the unspecificity is given by the fraction of possible vitro-to-vivo alignments 
divided by the number of all in vivo lineages, NE, nDENE

. On the other hand, when 
all lineages are completely similar to each other (FS = 1), the expression becomes 
0, and the large number of vitro-to-vivo alignments does not count towards low 
specificity.

As it is more natural to think in terms of specificity (and 
similarity), rather than unspecificity, we define similarity score as 
S = 1 − U = 1 −

nDE
NE

(

1 −

nEE
nDE(nDE−1)

)

. Examples of how the similarity is 
calculated are shown in Extended Data Fig. 8e.

To estimate how in vitro conditions perform, we calculated similarity scores  
for each cluster and for each GO-FC (Supplementary Dataset 10). A similarity 
score per condition (Supplementary Dataset 10) was calculated by taking a  
median over cluster-specific similarity scores in each condition (Supplementary 
Dataset 10). To identify genes that differ most from the target lineages, we ranked 
gene contributions to the distances and listed those contributing with 0.1 or more 
as the genes causing low similarity.

FACS plots. The position of each cluster in the plot was calculated by first doing 
a kernel density estimation over the log of the protein fluorescent signal from the 
FACS (GFP-A) index sort data and the log of the processed single-cell transcript 
count of the same, for all cells in each cluster and then finding the maximum 
of the distribution. The calculation was done using the Gaussian kernel density 
estimation function from the scipy.stats74 using a Python framework with default 
parameters.

The pie charts summarizing the cell-cycle composition of each cluster’s cells 
was found using the ‘CellCycleScoring’ mentioned in the Seurat processing 
pipeline. The size of the pie charts represents the normalized average size of the 
cells in the cluster. The information about the size is the log of the FSC-A (area) 
signal from Cell Sorter. The sizes are normalized so the smallest cluster has a log 
(FSC-A) value of 10.28 and the biggest has one of 11.47.

Resolve BioSciences’ MC technology. Sample preparation and cryo-sectioning. 
FOXA2Venus embryos were collected at E7.5 and fixed in PAXgene fixative 
(QIAGEN) for 1 h, then stabilized in PAXgene stabilizer (QIAGEN) for 2 h and 
transferred to 30% sucrose in PBS for 30 min. The embryos were transferred into 
OCT (Sakura) and snap-frozen in liquid nitrogen. The samples were stored at 
−80 °C until cryo-sectioning into 10 μm sections using a HM560 cryostat onto 
Resolve cover slips without any freeze–thaw cycle.

MC. Tissue sections were thawed and used for MC according to the manufacturer’s 
instructions (protocol 3.0). Briefly, tissues were primed followed by overnight 
hybridization of all probes specific for the target transcripts. Samples were 
washed the next day and fluorescently tagged in a two-step colour development 
process. Regions of interest were imaged75 and fluorescent signals removed during 
de-colourization. Colour development, imaging and de-colourization were 
repeated for a total of eight rounds to build a unique combinatorial code for every 
target transcript that was derived from raw images as described below.

Probe design. The probes for 27 genes were designed using Resolve’s proprietary 
design algorithm76. Supplementary Dataset 14 highlights the gene names and 
catalogue numbers for the specific probes designed by Resolve BioSciences.

Imaging, spot segmentation and decoding. Imaging and signal decoding were 
performed according to standard procedures75–77. Briefly, samples were imaged 
on a Zeiss Celldiscoverer7, using the 50× Plan Apochromat water immersion 
objective with an NA of 1.2 and the 0.5× magnification changer, resulting in a 25× 
final magnification. Imaging was automated with a custom Python script using the 
scripting API of the Zeiss ZEN 3.2 software (open application development). All 
images and transcript coordinates are based on a pixel size of 138 × 138 nm.

Images were corrected for background fluorescence. The brightest maxima 
per plane were determined and the z-groups with the highest absolute brightness 
were stored as a 3D-point cloud. To align the raw data images from different 
imaging rounds, images had to be corrected. To do so, the extracted feature point 
clouds were used to find the transformation matrices with an iterative closest point 
cloud algorithm to minimize the error between two point clouds. On the basis of 
the transformation matrices, the corresponding images were aligned with rigid 
transformation using trilinear interpolation.

The aligned images were used to create a profile for each pixel that was used 
to decode signals and define transcript location in x, y and z. The fraction of false 
positives in the decoded signals was estimated by decoding signals for blank codes 
that were not assigned to a probe in the experiment.

Final signal segmentation and decoding. Cell segmentation. To assign RNA counts 
to individual cells, we have segmented cells using QuPath78 on DAPI images with 
following adjusted settings: pixel width and height (0.138 μm), sigma (1 μm), 
minimum area (2 µm2) and cell expansion (3 μm). Using proprietary ImageJ79 
plugin from Resolve BioSciences (Polylux), we were able to import the cell 
segmentation borders and extract a final count matrix similar to that obtained 
in single-cell RNA-seq experiment. The spatial information derived from the 
image is in count matrix format, with rows representing single RNAs and columns 
representing its x and y positions of mRNA inside the identified cell. To visualize 
mRNA counts in single cells preserving spatial information, as in Fig. 4a, the count 
matrix was processed by Python package Squidpy80 and for each segmented cell we 
computed centroid using shapely package.

Decision trees to identify InterVE features or genes from MARS-seq data. To 
find the most important genes for InterVE identification, we used a supervised 
decision tree implemented in the XGBoost python package81. The MARS-seq 
dataset was subset to E7.5 cells, non-zero median normalized and split into 
training (70%) and validation set (30%). Each cell was labelled as either InterVE 
or not InterVE. We used GridSearchCV79 to estimate the best parameters for the 
binary model. Finally, tenfold cross-validation was used to estimate the overall 
prediction accuracy. We have re-trained the model ten more times with different 
random seed and stored features (genes important for InterVE classification) from 
each iteration. The final list of InterVE markers (Fig. 4c) was compiled manually, 
taking into account the consistency of feature/gene ranks in the ten repeats and 
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the distinct expression pattern across VE, DE and InterVE that made the most 
biological sense.

Decision trees to identify InterVE cells from MC data. To predict InterVE cells 
from MC data, we have trained a final model on MARS-seq data using only 25 
genes (Extended Data Fig. 6b,c) following all the steps above. By running this final 
model on non-zero-median-normalized MC data, we were able to identify InterVE 
cells in individual sections. The selected single RNAs (Fig. 4d) as well as outlines of 
predicted InterVE cells were visualized using ImageJ and Polylux.

RNA velocity. To our knowledge, MARS-seq reads are not supported by any 
RNA velocity82 tools at the moment. We have therefore created a custom in-house 
script that converts the reads into 10x format allowing us to run ‘StarSolo’ with 
the ‘scVelo’ feature described in refs. 82,83. The script can be found on our GitHub 
repository.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The single-cell RNA-seq data used in this study is in the Gene Expression Omnibus 
under accession number GSE164464. Previously published Nowotschin-2019 data 
that were re-analysed here are available under accession code GSE123046. Source 
data are provided with this study. All other data supporting the findings of this 
study are available from the corresponding author on reasonable request.

Code availability
All analyses, package versions as well as development environments for 
reproducibility purposes are publicly available at https://github.com/brickmanlab/
rothova-et-al-2022. Implementation of CAT and the related pre-processed datasets 
are publicly available at https://github.com/brickmanlab/CAT. The interactive CAT 
app is available at https://align-clusters.com.
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ARTICLE

Chemicals orchestrate reprogramming with
hierarchical activation of master transcription
factors primed by endogenous Sox17 activation
Zhenghao Yang1,9, Xiaochan Xu2,9, Chan Gu 3,9, Jun Li 2, Qihong Wu3, Can Ye4,

Alexander Valentin Nielsen 5, Lichao Mao1, Junqing Ye6, Ke Bai1, Fan Guo 3✉, Chao Tang 2,7,8✉ &

Yang Zhao 1,2,4✉

Mouse somatic cells can be chemically reprogrammed into pluripotent stem cells (CiPSCs)

through an intermediate extraembryonic endoderm (XEN)-like state. However, it is elusive

how the chemicals orchestrate the cell fate alteration. In this study, we analyze molecular

dynamics in chemical reprogramming from fibroblasts to a XEN-like state. We find that Sox17

is initially activated by the chemical cocktails, and XEN cell fate specialization is subsequently

mediated by Sox17 activated expression of other XEN master genes, such as Sall4 and Gata4.

Furthermore, this stepwise process is differentially regulated. The core reprogramming

chemicals CHIR99021, 616452 and Forskolin are all necessary for Sox17 activation, while

differently required for Gata4 and Sall4 expression. The addition of chemical boosters in

different phases further improves the generation efficiency of XEN-like cells. Taken together,

our work demonstrates that chemical reprogramming is regulated in 3 distinct

“prime–specify–transit” phases initiated with endogenous Sox17 activation, providing a new

framework to understand cell fate determination.
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Somatic cells can be reprogrammed to become pluripotent by
nuclear transfer into oocytes, by delivery of transcription
factors or by treatment with a cocktail of chemicals1–3.

These somatic reprogramming techniques hold great promise in
regenerative medicine for providing an unlimited source for
functional cells. In comparison with the other two strategies,
chemical reprogramming is attractive for future applications due
to its non-integrative nature, ease to be standardized and tem-
porally controlled, and lower tumorigenicity3,4.

In recent years, the understanding of the cell dynamics and the
molecular mechanisms of chemical reprogramming has gone
deeper and broader. For instance, an extraembryonic endoderm
(XEN)-like state bridges the chemical reprogramming towards
chemically reprogrammed into pluripotent stem cells (CiPSCs)
from different somatic cell types4,5. Dynamic early-embryonic-
like programs are found critical for the transition of XEN-like
state into a pluripotent state6. In addition, the chemical repro-
gramming efficiency has been found greatly improved by addi-
tional chemical boosters, such as bromodeoxyuridine, retinoic
acid agonists, Dolt1L inhibitors, and glycogen synthase kinase 3
inhibitors, and CiPSC can even be induced with a chemically
defined medium4,7–9.

Furthermore, chemical reprogramming strategies have been
extended to inducing direct cell lineage conversion into functional
cell types without an intermediate pluripotent state. For instance,
neural progenitors10, functional neurons11,12, cardiomyo-
cytes13,14, skeletal muscles15, brown adipocytes16,17, astrocytes18,
endoderm progenitor-like cells19, and photoreceptor-like cells20

are reported to be induced from fibroblasts with chemicals alone.
Besides, endoderm progenitor cells are induced from gut epi-
thelium with pure chemicals21, and human fetal astrocytes are
converted into functional neurons by chemical combinations22.

Intriguingly, the small molecules essential for XEN induction,
CHIR99021 (a GSK3 inhibitor), 616452 (Repsox, an ALK5
inhibitor), and Forskolin (a cAMP agonist) have frequently been
used for the direct induction of the many of different cell types
noted above. Unlike the master genes used in transgenic repro-
gramming, which are associated with the target cell type, these
chemicals always target signaling pathways that play roles in
different cell types and are not associated with any specific cell
lineage. Therefore, it is still unclear how the chemical cocktails
determine the target cell type, and the molecular dynamics during
chemically induced cell fate transition are still elusive23.
Here, to better understand how chemically induced cell fate

alteration and determination are orchestrated, we studied
the chemical reprogramming process from fibroblasts to XEN-
like cells in terms of the time-course and at the single-cell reso-
lution. We revealed that cell fate transition was primed by
endogenously expressed Sox17, which mediated further hier-
archical activation of master transcription factors in chemical
reprogramming. We further investigated the role of small mole-
cules in various stages throughout the process.

Results
Chemically induced Sox17 expression initiates XEN-like cell
fate reprogramming. To investigate how the chemical cocktail
determines XEN-like cell fate during C6FAE-mediated repro-
gramming (C, CHIR99021; 6, 616452; F, Forskolin; A, AM580; E,
EPZ004777) (Fig. 1a), we analyzed the reprogramming process at
10 time points over a course of 20 days with single-cell RNA-
sequencing (Fig. 1b). In comparison with the existing dataset6,
our data detected more UMIs and genes, and the expression
pattern of XEN and fibroblast master genes in various periods
were comparable (Supplementary Fig. 1a–d). Importantly, MEF
cells and XEN cells (day 20) merged perfectly with those in the

existing dataset (Supplementary Fig. 1e), indicating the fidelity of
our single-cell RNA-seq data.
By principal component analysis (PCA) of single-cell RNA-seq

data from days 0 to day 20, we found that cells in the earlier stage
were quite close to each other and then separated gradually, and
ultimately divided into two branches (Fig. 1c). This bifurcated
reprogramming trajectory was also confirmed by pseudo-time
analysis (Supplementary Fig. 1f). These two branches mainly
consisted of cells from day 12 and day 20 and they belonged to
different clusters in which cells were grouped using Louvain
clustering with a resolution 0.9524–26 (Supplementary Fig. 1g).
We evaluated cell identities by using the analytical technique
based on quadratic programming with 100 genes representing for
MEF cell identity and 100 genes representing for XEN cell
identity27. The left branch had established the major XEN
identity without MEF identity (Fig. 1d and Supplementary
Fig. 1h), indicating successful reprogramming into XEN-like cells
and was further referred to as “the proceeding branch”. While,
the right branch reserved the major profiles of MEF identity,
without the establishment of XEN identity, which was further
termed as “the trapped branch”. The cells located at the
proceeding branch had a remarkable higher expression of the
XEN master genes Sox17, Sall4, and Gata4, which were reported
to promote the differentiation into XEN cells from mouse
embryonic stem cells by forming a self-activation loop28–31

(Fig. 1e). The trapped branch included cells with a lower
expression of Sall4 and Gata4 while still retained the high
expression of fibroblast master genes, such as Osr1, Prrx1, and
Twist2 (Fig. 1e). Interestingly, very few cells had low scores of
MEF identity before XEN-like cells were induced. This indicates
no distinct de-differentiated, or other kinds of intermediate,
cells during chemical reprogramming from MEFs to XEN-like
cells (model 1–4 in Fig. 1a).

We noticed that the major differences between the proceeding
and the trapped branches were the differential expression of XEN
and fibroblast master genes. The expression of XEN master
transcriptional factors (TFs), especially Sox17, were enriched in
the proceeding branch (Fig. 1e and Supplementary Fig. 1i).
Besides, the order of the activated expression of XEN master TFs
was Sox17, Sall4, Gata4, and Foxa2, suggesting that Sox17 was
upstream of the other XEN TFs (Supplementary Fig. 1j–l).
In line with the above, we found that Sox17 knockdown

impaired the activation of most of the XEN TFs, Gata4, Sall4, and
Foxa2, as well as XEN-like colony formation (Fig. 1f). Meanwhile,
Sox17 overexpression promoted the upregulation of Sall4, Gata4,
and Foxa2 (Fig. 1g). Then, we analyzed the co-expression of XEN
master gene expression every day throughout the reprogramming
process by immunofluorescence. We found that the expression of
Sox17 was detected as early as day 4. Sall4, Gata4, and Foxa2-
expressing cells were all subpopulations of Sox17-expressing cells
that emerged in day 5-8 (Fig. 1h), indicating Sall4, Gata4, and
Foxa2 were only activated in Sox17-positive cells.
These findings suggest that chemical-mediated XEN-like cell

reprogramming is mediated by the endogenously activated Sox17
in fibroblasts (Fig. 1i).

XEN-like cell fate specification and transition with the accu-
mulated master TFs downstream of Sox17. To further investi-
gate how the cell fate reached a XEN-like state after Sox17
activation, we focused on the activation of Gata4, Sall4, and
Foxa2. We found that Gata4-positive cells were a subset of Sall4-
positive cells and no Gata4-positive/Sall4-negative cells appeared
before day 6 by analyzing the co-expression of Gata4 and Sall4
using immunostaining. This suggests Gata4 activation is only in
Sall4-expressing cells (Fig. 2a, b). Afterward from day 7 to day 12,
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the number of Gata4-positive colonies greatly increased while the
number of Sall4-positive colonies declined (Fig. 2c). Finally, at
day 12, Sall4-positive cells turned out to be a subpopulation of
Gata4-positive cells (Fig. 2a). This was probably due to the self-
repression function of Sall4 expression as reported32 or resulted
from another wave of Gata4 activation without Sall4. Staining for
Foxa2 revealed a subpopulation of Gata4 expressing cells, leading

us to believe that Gata4 might be upstream of Foxa2 in cell fate
specification (Fig. 2d).

In a knockdown experiment of Sall4 the expression of Gata4
and Foxa2 was severely disrupted, suggesting that Sall4 is the
upstream regulator of Gata4 and Foxa2, which is consistent with
the immunostaining data (Fig. 2e). Knockdown of Gata4
decreased the expression of Foxa2 but had no influence on the
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Fig. 1 Chemically induced Sox17 expression initiates cell fate reprogramming towards XEN-like cells. a Potential models for cell fate reprogramming. The
“directly switch model” proposes cell fate switch directly without any intermediate cell type (1); The “de-differentiate and re-differentiate model” indicates
cell fate reprogramming mediated by a multipotent stem cell with the differentiation potential into both the initial and target cell types (2); The “discrete
state transit model” assumes cell fate reprogramming process with gradual fading of the initial cell features and gradual formation of the target cell
identities (3); The “reset and reconfigure model” refers to cell fate reprogramming with the erasing of initial cell identity before the establishment of target
cell identity (4); The “prime, specify and transit model” indicates cell fate reprogramming with priming and specification state without substantial alteration
of initial cell identities before cell fate transition into the target cell types (5). b Schematic diagram of chemical-mediated XEN-like cell reprogramming.
c PCA projection of all individual cells during the reprogramming process. d8c, single cells picked from colonies of day 8; d12c, single cells picked from
colonies of day 12; dMEF and XEN identity in the PCA projection. For each cell on the XEN reprogramming path, the similarity to bulk RNA-seq from either
MEFs or XEN-like cells as calculated using quadratic programming. e Expression of XEN master genes (Sox17, Sall4, Gata4) and MEF master genes (Osr1,
Prrx1, Twist2) in the PCA projection. f Relative mRNA levels of XEN genes induced by C6FAE on day 12 with the knockdown of Sox17 (n= 3). g Relative
expression of XEN genes induced by C6FAE on day 12 with the overexpression of Sox17 (n= 3). h Co-staining of Sox17 and other XEN master genes
induced by C6FAE on day 12. Scale bar, 100 μm. The percentage of Sall4, Gata4 and Foxa2-positive cells emerged in Sox17-positive cells were labeled in the
lower right corner of each picture. i Schematic of the stepwise XEN induction mediated by Sox17 activation. Significance was assessed compared with the
controls using a one-tailed Student’s t-test. ***p < 0.001; **p < 0.01; *p < 0.05.
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Fig. 2 Cell fate specification and transition into XEN-like cells with the accumulated expression of master TFs after Sox17 activation. a Co-staining of
Sall4 and Gata4 induced by C6FAE on day 6 and day 12. Scale bar, 100 μm. b Quantitation of Sall4+/Gata4+, Sall4+/Gata4-, Sall4-/Gata4+ colonies
per well of 12-well plate induced by C6FAE on day 0, 6, and 12. c Numbers of Sall4 or Gata4-positive colonies per well of 12-well plate at different time
points. d Co-staining of Gata4 and Foxa2 induced by C6FAE on day 12. Scale bar, 100 μm. The percentage of Foxa2-positive cells emerged in Gata4-
positive cells were labeled in the lower right corner of the picture. e Relative mRNA levels of XEN genes induced by C6FAE on day 12 with the knockdown
of Sall4 (n= 3). f Relative mRNA levels of XEN genes induced by C6FAE on day 12 with the knockdown of Gata4 (n= 3). g Schematic diagram of the
hierarchical regulation circuitry among XEN master genes. h Transcription factor correlation network of XEN-like cells and MEFs. Green lines represent
positive correlation and red lines represent the negative correlation. i Relative mRNA levels of MEF master genes with the overexpression of Gata4 (n= 3).
j Relative mRNA level of XEN genes with the knockdown of MEF genes. Sh-OPT stands for triple knockdown of MEF master genes, Osr1, Prrx1, and Twist2
(n= 3). Significance was assessed compared with the controls using a one-tailed Student’s t-test. ***p < 0.001; **p < 0.01; *p < 0.05.
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transcription of Sall4 (Fig. 2f), which further supported that
Foxa2, but not Sall4, is a downstream factor of Gata4. In
summary, we found the activation of Gata4 and Sall4 was
regulated differently, and the mutual regulation between them
was dynamic. Figure 2g shows the hierarchical regulatory
network of XEN master TFs.
The regulatory network for the cell fate specification and the

transition was established after the core network of XEN master
TFs was constructed (Fig. 2h). The cell fates of MEF and XEN-
like were seen mutual antagonizing from the regulatory network.
In the transition process, the up-regulation of XEN master TFs
promoted the down-regulation of fibroblast master TFs, and vice
versa (Fig. 2i, j and Supplementary Fig. 2). Such a positive
feedback loop could account for the fast transition from
fibroblasts to XEN-like cell fates in the final stage of reprogram-
ming, which was exhibited in the single-cell analysis (Fig. 1f and
Supplementary Fig. 1h).
Taken together, the core XEN transcriptional network,

including Sox17, Sall4, Gata4, and Foxa2, was established
consecutively and hierarchically, and thus completing the cell
fate specification and transition process in the end. These findings
supported the “prime, specify and transit” model that previously
speculated (model 5 in Fig. 1a).

Chemicals are essential for Sox17 expression while play dif-
ferent roles in the specification and transition process. Since
CHIR99021, 616452 and Forskolin are pivotal to chemical
reprogramming to XEN-like cells (Supplementary Fig. 3a), we
further explored whether they were necessary to the entire pro-
cess of reprogramming. We found that the chemical compounds
worked with a stepwise approach.
Subtracting any one of CHIR99021, 616452 and Forskolin,

respectively, from C6FAE from day 0 hampered the expression of
XEN master TFs, especially the major TF, Sox17 (Supplementary
Fig. 3b). We then withdrew CHIR99021, 616452 and Forskolin
after 4-day induction when Sox17 was already activated albeit at a
lower level (Fig. 3a). We found that the presence of CHIR99021
and Forskolin was essential for Gata4 activation, while the
addition of 616452 was critical for the up-regulation of Sall4
(Fig. 3a). The expression of Foxa2 was also greatly impaired when
CHIR99021 or Forskolin was removed (Fig. 3a), which is
consistent with our previous finding that Foxa2 activation might
be downstream of Gata4 activation.

We further studied the requirement of CHIR99021, 616452,
and Forskolin for the protein expression of Sall4 and Gata4, by
subtracting CHIR99021, 616452, and Forskolin after day 6, when
Sox17-positive cell number was greatly increased. Similar to the
transcriptional level, 616452 was essential for the expression of
Sall4 protein, and chemical cocktails containing 616452 after 6-
day treatment of C6FAE were sufficient to induce the expression
of Sall4 protein (Fig. 3b, c). Moreover, we detected the expression
of Gata4 in Sall4-positive colonies when CHIR99021 or Forskolin
was subtracted from the cocktail after day 6 in the presence of
616452 (Fig. 3b, c). It was consistent with our previous findings
that Sall4 activated Gata4 expression. Interestingly, when 616452
was removed from the cocktail after day 6, in the presence of
CHIR99021 and Forskolin, Gata4 expression was still detected at
a high level, and Sall4 expression was substantially impaired. This
indicates CHIR99021 and Forskolin were sufficient to induce
Gata4 expression after the activation of Sox17, which is
independent of Sall4 expression (Fig. 3d, e). This was also
consistent with another wave of Gata4 expression that was found
after 6 days of C6FAE treatment (Fig. 2a–c).

In summary, it was the cooperation of CHIR99021, 616452 and
Forskolin that activated Sox17; thereafter, CHIR99021/Forskolin

and 616452 activated the expression of Gata4 and Sall4,
respectively, in the specification stage, which further established
the entire core regulatory network of XEN (Fig. 3f). After day 8,
CHIR99021, 616452, and Forskolin were not essential for XEN
gene expression (Supplementary Fig. 3c), suggesting that the
transition phase was a self-organizing process by XEN master
genes. These were also in line with the findings that the
transduction of Sall4 and Gata4 was able to replace the function
of CHIR99021, 616452 and Forskolin in inducing XEN-like
colonies4. Overall, CHIR99021, 616452, and Forskolin played
different roles in the reprogramming processes before and after
Sox17 expression although they were required for both of the two
phases.

Endogenously activated BMP signaling is critical for Sox17
activation and XEN induction. We further explored the
upstream factors of Sox17 after chemical treatment. Using bulk
RNA-sequencing in the very early stage of XEN reprogramming,
we found that Bmp2 was one of the factors that were activated
before Sox17 expression (Fig. 4a and Supplementary Fig. 4a).

To investigate the roles of Bmp2 in the activation of Sox17 and
the subsequent reprogramming into XEN-like cells, we inhibited
Bmp signaling with small molecule inhibitors Dorsomorphin
and DMH1. We found that both the transcription of Sox17 and
the number of Sox17-positive colonies remarkably decreased
(Fig. 4b–d). Meanwhile, the overexpression of Bmp2 promoted the
activation of Sox17 drastically (Supplementary Fig. 4b–e). Adding
recombinant BMP2 or BMP4 in the reprogramming medium also
improved the messenger RNA (mRNA) level of Sox17 and the
number of Sox17-positive colonies (Fig. 4e–g). Consistently,
Dorsomorphin and DMH1 compromised the upregulation of
Sox17 expression by BMP2 or BMP4 (Supplementary Fig. 4f–i).
Importantly, the mRNA level of other XEN master genes

(Sall4, Gata4, Foxa2) and the efficiency of XEN-like cell induction
were hampered by Dorsomorphin and DMH1 (Fig. 4h, i), and
were promoted by BMP2 and BMP4 (Fig. 4j, k). Also, we found
that BMP4 notably promoted the up-regulation of Sox17 in the
iCD1 serum-free medium used in CiPSC induction9 (Supple-
mentary Fig. 4j). However, the effects of BMP4 on the activation
of Sox17 relied on the presence of C6F. BMP4 could not replace
the role of C6F on the activation of Sox17 (Supplementary
Fig. 4k).
These results indicate that the early activation of endogenous

Bmp signaling by chemical cocktails promoted the expression of
Sox17 and thus facilitated the stepwise induction of XEN-like cells
(Fig. 4l and Supplementary Fig. 4l).

The chemical boosters, CH55 and VPA, benefit Sox17 activa-
tion and XEN specification differently. The two phases before
and after Sox17 expression revealed in our study, raised
the possibility that the chemical boosters played different roles in
the stepwise process from fibroblast to XEN-like cells. Thus, we
compared the gene expression profiles induced with and without
the previously reported chemical boosters, CH55 and valproic
acid (VPA), in the presence of C6FAE3,5. Interestingly, CH55
promoted the expression of Sox17 notably in the first 4 days, even
on the basis of exogenously provided Bmp4 (Supplementary
Fig. 5a), while had nearly no function in further activation of
other XEN genes from day 4 to 12 (Fig. 5a, c). VPA was found to
promote the up-regulation of most XEN genes and XEN identity
from day 4 to day 12 (Fig. 5b, c). However, VPA has no beneficial
effect on Sox17 expression in the first 4 days, suggesting that VPA
improved XEN reprogramming efficiency by supporting the
up-regulation of the XEN network after the activation of endo-
genous Sox17.
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We also found that the cocktail mainly induced “smoothed”
colonies co-expressing Sox17, Gata4, and Sall4 in the presence of
VPA (VC6FAE). Without VPA, it induced many “fuzzy” colonies
with robust Sox17 expression and very low expression of Sall4 and
Gata4 (Supplementary Fig. 5b–d). The fuzzy colonies had higher
mRNA levels of the fibroblast master genes, Osr1, Prrx1 and
Twist2 (Supplementary Fig. 5e) and could rarely be induced into
XEN-like cells (Supplementary Fig. 5f, g). Importantly, smoothed
colonies, but not fuzzy colonies, could be induced into pOct4-
GFP-positive CiPSCs (Supplementary Fig. 5h, i). VPA promoted
the induction of pOct4-GFP-positive CiPSCs (Supplementary
Fig. 5j). These results support that VPA improves the C6FAE-
mediated XEN reprogramming by promoting the XEN specifica-
tion process, which was previously reported to bridge chemical
reprogramming from fibroblasts to pluripotency4,5.
We further determined whether using chemical boosters, CH55

and VPA, in a stepwise manner could promote the XEN
reprogramming efficiency. We found that treating the cells with
CH55 only in the first 4 days was more efficient than treating for
the entire process in promoting the expression of Sox17 and Sall4
(Fig. 5d). Also, VPA induced a higher level of Gata4 and Foxa2
mRNA when using in the last 8 days rather than in the entire
process (Fig. 5e). Collectively, the sequential use of CH55 and

VPA in different steps reached the highest efficiency of XEN-like
colony generation (Fig. 5f, g). Taken together, these findings not
only suggested the “prime, specify and transit” model in chemical
reprogramming but also revealed the roles of the chemicals on the
stepwise processes (Fig. 1a, h).

Discussion
A major question in chemical reprogramming is “how does a set
of chemicals, which bear no obvious relation to any genes or
molecules that are directly associated with a specific cell type,
enable the determination of a specific cell fate”. In this study, we
made a significant conceptual leap towards an answer to this
question. We demonstrated that the chemical reprogramming
was a stepwise process by studying the molecular roadmap from
fibroblasts to XEN-like cells. First, the chemicals orchestrated a
priming state with the activated expression of Sox17, a master
gene of XEN, without substantial cell fate alteration or determi-
nation. Afterward, the chemicals further guided hierarchical
accumulation of endogenous master transcription factors for cell
fate specification. Finally, cell fate was transited with the combi-
nation of those activated master transcription factors. In brief,
chemicals used in reprogramming guided the hierarchical
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Fig. 3 CHIR99021, 616452, and Forskolin are essential for Sox17 expression while play different roles in the specification and transition process.
a Relative mRNA levels of key XEN master genes on day 12 with removing C, 6, and F, respectively, from day 4 (n= 3). b Immunostaining of Sall4 and
Gata4 on day 12 after removal of C, F from day 6. Scale bar, 100 μm. c Sall4-positive colony numbers on day 12 after removal of C, 6, and F, respectively,
from day 6 (n= 3). d Immunostaining for Sall4 and Gata4 on day 12 after removal of 6 from day 6. Scale bar, 100 μm. e Gata4-positive colony numbers
on day 12 after removal of C, 6, and F, respectively, from day 6 (n= 3). f Schematic of the roles of C, 6, and F in the regulation of XEN master genes.
Significance was assessed compared with the controls using a one-tailed Student’s t-test. ***p < 0.001; **p < 0.01; *p < 0.05.
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activation of master genes in the cell-fate-associated regulatory
network in a stepwise manner.
Therefore, we indicate that the chemicals previously used in the

entire process from fibroblasts to XEN-like cells had different
functions in different phases and played different roles in acti-
vating different genes. The core chemicals CHIR99021, 616452,
and Forskolin (C6F) were all essential to stimulate Sox17
expression in the priming phase. Afterward, they supported the
activation of other master genes, such as Sall4 and Gata4 for the

XEN cell fate specification in the Sox17 expressing cells differ-
ently. CHIR99021 and Forskolin facilitated Gata4 expression,
while 616452 enabled the expression of Sall4. CH55 and BMP
signaling functioned through elevating Sox17 activation, while
VPA functioned through activating the other XEN master genes
in the Sox17 expressing cells.

Importantly, the “prime–specify–transit” model may be
extended to other chemical reprogramming systems according to
the gene expression profiling data during the reprogramming
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processes. For instance, in the chemical reprogramming process
from fibroblast to neural stem cells, Sox2 was activated very early
by small molecules in the first 4 days and might initiate a priming
state to neural stem cell33. After that, neural stem cell core reg-
ulators network was built up, which was reminiscent of a speci-
fication process. Besides, the molecular dynamics during the
chemical reprogramming from fibroblast to photoreceptor-like
cells (CiPCs) was probably initiated by the activation of
photoreceptor-specifying transcription factors, such as Rorb,
Ascl1 and Pias3, reminiscent of a priming phase20. The stepwise
manner in the activation of the master transcription factors
suggested identifying the key molecular events in a chemical
reprogramming process could help to optimize the protocol in a
stepwise manner to achieve higher efficiency.
Unexpectedly, although cells in the priming phase had already

expressed some of the XEN master TFs, they were still fibroblast-

like with a high level of the fibroblasts program, as well as the
high expression of fibroblast master genes. This was rather dif-
ferent from an intermediate multipotent cell type that was pre-
sumed in previous reports34,35 and from the other possible
intermediates that were speculated before this study (Fig. 1a). The
“Disc model” for cell fate reprogramming matches these findings
since cell fate priming helps the cell to escape the attractor of an
initial cell type without cell fate determination, while the hier-
archically accumulated expression of endogenous transcription
factors provides the “guide rail” to determine a cell fate pro-
gressively, without entering into a multipotent attractor36.

Our findings also highlight the importance of activating some
or even one master transcription factor of the target cell type in
developing a chemical reprogramming system. In the repro-
gramming process to XEN-like cells, the activation of Sox17 was a
molecular event that was not easy to be triggered. It required
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most chemicals in the cocktail like C, 6, F and CH55, and even
took advantage of the endogenously activated expression of
BMP2 or other BMP signaling stimuli from serum or KSR.
Thereafter, Sox17 expression made the subsequent molecular
events possible and easier. Thus, the activation of one or more
transcription factors in a cell type may represent the major
molecular basis for cell plasticity. The cells initially express one or
more transcription factors of another cell type may have super-
iority in cell fate transition in chemical reprogramming.
Moreover, since the chemicals C, 6, F, and their combinations

have been widely used in different chemical reprogramming
systems and generate many different cell fates8,12,13,15–17,19,20, it
is still unclear whether Sox17 activation is a specific outcome of
the chemical treatment and whether these chemicals can prime
the cells and facilitate cell fate conversion into other lineages
simultaneously. These are some of the questions we intend to
address in our future study.

Methods
MEF isolation. MEFs were isolated from E13.5 embryos of ICR mouse. After the
removal of head, limbs, and viscera, embryos were minced with scissors and dis-
sociated in trypsin-EDTA at 37 °C for 10 min. After centrifugation, MEF cells were
collected and cultured in MEF medium, which included: high-glucose Dulbecco’s
modified Eagle’s medium (DMEM) supplemented, 10% fetal bovine serum (FBS),
1% GlutaMAX, 1% nonessential amino-acids (NEAAs), and 1% penicillin-
streptomycin. Oct4-EGFP mice were obtained from The Jackson Laboratory
(004654). This study was performed under in accordance with protocols by Peking
University laboratory animal research center.

Generation of XEN-like cells from fibroblasts. Twenty-thousand MEF cells were
seeded into a well of 12-well plate. Twenty-four hours later later, the medium was
changed to XEN reprogramming medium, which included: KnockOut DMEM
supplemented, 10% KnockOut Serum Replacement (KSR), 10% FBS, 1% Gluta-
MAX, 1% NEAAs, 0.055 mM 2-mercaptoethanol, 1% penicillin–streptomycin
(Invitrogen), 50 ng/ml basic fibroblast growth factor (bFGF), and the small-
molecule cocktail VC6FAE (0.5 mM valproic acid, 20 μM CHIR99021, 10 μM
616452, 50 μM Forskolin, 0.05 μM AM580, and 5 μM EPZ004777). XEN repro-
gramming medium was changed every 4 days for 12 to 20 days.

Immunofluorescence. Primary antibodies were those specific to rabbit anti-SALL4
(Abcam, 1:500), goat anti-SOX17 (R&D, 1:500), goat anti-GATA4 (Santa
Cruz, 1:300), goat anti-GATA6 (R&D, 1:200), rabbit anti-Nanog (Sigma
Aldrich, 1:200). The secondary antibodies used were FITC-conjugated secondary
antibodies and TRITC-conjugated secondary antibodies (Jackson ImmunoR-
esearch, 1:200).

Cells were fixed in 4% paraformaldehyde for 15 min at room temperature.
Then, removing 4% paraformaldehyde and washing cells with PBS for two times.
cells were permeabilized and blocked in PBS containing 0.2% Triton X-100 and 3%
donkey serum for 1 h at room temperature. Then the cells were incubated with
primary antibodies at 4 °C overnight. After washing three times with PBS,
secondary antibodies (Jackson ImmunoResearch) were incubated at 37 °C for 1 h.
The nuclei were stained with DAPI (Roche Life Science) for 5 min.

Quantitative reverse transcription PCR (RT-qPCR). RT-qPCR was performed
according to protocols. Briefly, total RNA samples were extracted by using the
EasyPure RNA Kit (TransGen Biotech) and were reverse transcribed into com-
plementary DNA (cDNA) using TransScript One-step gDNA Removal and cDNA
Synthesis SuperMix (TransGen Biotech); Real-time PCR was performed on a
Quantagene q225 System (KUBO technology) using 2 × T5 Fast qPCR Mix
(TSINGKE Biological Technology).

Single-cell RNA-seq. Individual cell at different time points was manually picked
after digestion, lysed and subjected to cDNA synthesis37,38. Single-cell cDNA was
then amplified and fragmented as published steps37,38. The sequencing library was
constructed (New England Biolabs) and sequenced with paired-end 150-bp reads
on an Illumina HiSeq X-Ten platform (Novogene). Raw reads were firstly separated
by cell barcodes, then trimmed, and aligned to the mm9 mouse transcriptome and
de-duplicated by UMIs information as described previously39.

Pseudotime analysis. Monocle (v2.6.4) were adopted to perform the pseudotime
analysis. Differentially expressed genes (DEGs) identified from each cell type were
used as ordering genes. The whole workflow followed the recommended pipeline
with default parameters.

Integration analysis of gene expression between data in this study and in
Zhao et al.6. Cells from day 0 to day 20 in this study, and cells belong to MEFs,
Stage I day 5, Stage I day 12 and XEN-like cells in Zhao et al.6 were used to perform
the integration analysis. To integrate different data sets, CCA algorithm from
Seurat was used.

Statistics and reproducibility. All experiments contain at least three independent
biological replicates. No randomization or blinding was used. The statistical analysis in
this paper uses Student’s t-test. p-value of <0.05 is considered a significant difference.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The accession number for the RNA-seq and single-cell RNA-seq data reported in this
paper is NCBI GEO: GSE144097. Source data underlying plots shown in figures are
provided in Supplementary Data 1. Full blots are shown in Supplementary Information.
All other data, if any, are available upon reasonable request.
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Somatic cells can be chemically reprogrammed into a pluripotent stem cell (CiPSC) state,
mediated by an extraembryonic endoderm- (XEN-) like state. We found that the chemical
cocktail applied in CiPSC generation initially activated a plastic state in mouse fibroblasts
before transitioning into XEN-like cells. The plastic state was characterized by broadly
activated expression of development-associated transcription factors (TFs), such as
Sox17, Ascl1, Tbx3, and Nkx6-1, with a more accessible chromatin state indicating an
enhanced capability of cell fate conversion. Intriguingly, introducing such a plastic state
remarkably improved the efficiency of chemical reprogramming from fibroblasts to
functional neuron-like cells with electrophysiological activity or beating skeletal muscles.
Furthermore, the generation of chemically induced neuron-like cells or skeletal muscles
from mouse fibroblasts was independent of the intermediate XEN-like state or the
pluripotency state. In summary, our findings revealed a plastic chemically activated
multi-lineage priming (CaMP) state at the onset of chemical reprogramming. This state
enhanced the cells’ potential to adapt to other cell fates. It provides a general approach to
empowering chemical reprogramming methods to obtain functional cell types bypassing
inducing pluripotent stem cells.

Keywords: chemical reprogramming, cell plasticity, chromatin accessibility, cell fate transition, direct
reprogramming

INTRODUCTION

Somatic cells can be chemically reprogrammed into functional cell types indirectly by first becoming
pluripotent through a XEN-like state (Hou et al., 2013; Zhao et al., 2015) or directly without an
intermediate pluripotent state. The application superiority of the chemical reprogramming strategy
over the transgenic approach in inducing cell fate reprogramming is well established (Zhao, 2019).
For example, small molecules are genetically non-integrative, easy to be manipulated, cell-culture
standardized, and cost-effective. Chemical cocktails could also help increase efficiency in generating
a defined cell type (Zhao et al., 2015). To date, chemical reprogramming has been a promising
strategy for obtaining functional cell types in regenerative medicine. Fibroblasts were reported to be
reprogrammed into many cell types, including neural progenitors (Cheng et al., 2014), neuron cells
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(Hu et al., 2015; Li et al., 2015; Mahato et al., 2020; Yin et al.,
2019), cardiomyocytes (Fu et al., 2015; Cao et al., 2016), skeletal
muscles (Bansal et al., 2019), brown adipocytes (Nie et al., 2017;
Takeda et al., 2017), astrocytes (Tian et al., 2016), and endoderm
progenitor-like cells (Cao et al., 2017; Wang et al., 2016).

However, the roles of chemicals in reprogramming systems are
still elusive, which hampered the development of chemical
cocktails for an assigned cell type. In the transgenic approach,
the reprogramming factors are always the target cell type enriched
TFs. Those TFs are associated with the target cell type’s
development or differentiation. They have been intensively
studied in somatic reprogramming into induced pluripotency
stem cells (iPSCs) and direct lineage reprogramming (Takahashi
and Yamanaka, 2006; Xu et al., 2015). They directly serve as the
pioneer factors to shape specific cell type favored epigenetic states
and activate the expression of other master TFs for cell fate
reprogramming (Iwafuchi-Doi and Zaret, 2014). Unlike these
reprogramming genes, the mechanisms of chemicals in
reprogramming and determining a cell fate are far from known.

Notably, the small molecules essential for CiPSC induction,
CHIR99021 (a GSK3 inhibitor), 616452 (Repsox, an ALK5
inhibitor), and Forskolin (a cAMP agonist) and their
combinations have been frequently used for the direct
induction of different cell types (Zhao, 2019). It suggests that
some common mechanisms are underlying these chemical-
induced cell-type reprogramming processes. Understanding the
mechanisms is beneficial to developing additional chemical
reprogramming systems based on the same rationale.

Herein, we found that mouse fibroblasts were initially induced
into a plastic chemically activated multi-lineage priming (CaMP)
phase in chemical reprogramming before further specification
into specific lineages. The CaMP phase was characterized by
heterogeneous expression of multiple developmental genes and a
global gain of chromatin accessibility. It was induced
concomitantly by core small molecules, CHIR99021, 616452,
and Forskolin. Introducing the CaMP phase with a chemical
pretreatment, we improved the chemical reprogramming systems
from fibroblasts directly into functional neuron-like cells and
beating myocytes.

MATERIALS AND METHODS

Mice
All procedures involving mice were approved by the Institutional
Animal Care and Use Committee (IACUC) and Use Committee
at the Peking University, Beijing. For lineage-tracing
experiments, 12–16 weeks Col1a2-CreERT2 and Rosa26tdTom
mice were used. For in vivo labeling, all pregnant female mice
have received intraperitoneal injections of tamoxifen (20 mg/ml,
Sigma, United Kingdom) at a dose of 4 mg/30 g body weight
before the isolation of MEF.

MEF Isolation
MEF medium: high glucose Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS), 1%
GlutaMAX, 1% nonessential amino acids (NEAAs), 0.055 mM 2-

mercaptoethanol, and 1% penicillin-streptomycin. Mouse
embryonic fibroblasts (MEFs) were isolated from ICR mouse
embryos. Briefly, after removal of the head, limbs, and viscera,
E13.5 embryos were minced with scissors and dissociated in
trypsin-EDTA at 37°C for 10 min. After adding MEF medium
and centrifugation, MEF cells were collected and cultured.

Generation of XEN-Like Cells From
Fibroblasts
XEN reprogramming medium: KnockOut DMEM supplemented
with 10% KnockOut Serum Replacement (KSR), 10% FBS, 1%
GlutaMAX, 1% NEAAs, 0.055 mM 2-mercaptoethanol, 1%
penicillin-streptomycin (Invitrogen), 50 ng/ml basic fibroblast
growth factor (bFGF), and the small-molecule cocktail
VC6FAE (0.5 mM valproic acid, 20 μM CHIR99021, 10 μM
616,452, 50 μM Forskolin, 0.05 μM AM580, and 5 μM
EPZ004777). MEFs were seeded at 20,000 cells per well of a
12-well plate with an MEF culture medium. For XEN induction,
the medium was changed to XEN reprogramming medium the
next day, and it was changed every 4 days for 12–20 days.

Induction of Skeletal Muscle Cells From
CaMP State
Skeletal muscle reprogramming medium: DMEM/M199
medium (4:1) supplemented with 10% KSR, 10% FBS, 1%
GlutaMAX, 1% NEAAs, 1% penicillin-streptomycin
(Invitrogen), and the small-molecule cocktail C6FS (20 μM
CHIR99021, 10 μM 616,452, 50 μM Forskolin, and 3 μM
SB431542). MEFs were seeded at 20,000 cells per well of a
12-well plate with an MEF culture medium. For skeletal muscle
cell induction, the medium was changed to XEN
reprogramming medium the next day (day 0), and the
medium was switched to skeletal muscle reprogramming
medium at day 4 to induce myocytes for 8–12 days. The
skeletal muscle reprogramming medium was changed every
4 days.

Induction of Neuron-Like Cells From CaMP
State
Neuron-like cells reprogramming medium: neurobasal plus
medium supplemented with 2% B27-plus supplement, 1%
GlutaMAX, 1% penicillin-streptomycin (Invitrogen), and the
small-molecule cocktail CFI (3 μM CHIR99021, 10 μM
Forskolin, and 10 μM ISX-9).

MEFs were seeded at 20,000 cells per well of a 12-well plate
with an MEF culture medium. For neuron-like cells induction,
the medium was changed to XEN reprogramming medium the
next day (day 0), and the medium was switched to neuron-like
cells reprogramming medium at day 4 to induce neuron-like cells
for 8–12 days. For neuron-like cells maturation, cells were plated
on astrocytes at day 12 or day 16, and further culture for 16 days
was supplemented with BDNF (20 ng/ml) and GDNF (20 ng/ml).
Neuron-like cells reprogramming medium was changed every
4 days.
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Isolation of Astrocytes
Astrocyte medium: DMEM/F12 supplemented with 10% FBS, 1%
GlutaMAX, 1% nonessential amino-acids (NEAAs), and 1%
penicillin-streptomycin.

After the newborn mice were anesthetized on ice and
sacrificed, they were disinfected with 75% alcohol for 5 min.
Brain tissue was taken and cut into pieces of 4 mm3 with
scissors. Pieces of brain tissue were collected and digested with
2 ml 0.25% trypsin and 0.1 ml DNase I (2 mg/ml) for 20 min at
37°C. The digestion was stopped with 2 ml astrocyte medium and
centrifuged for 5 min at 1,500 rpm. About 600,000 cells were
resuspended with 10 ml astrocyte medium and plated into 10 cm
dish. The supernatant was taken into a new T75 flask after 30 min
and cultured for 7–10 days. After that, cultured cells were shaken
on a shaker for 16 h at 250 rpm. Adherent astrocytes were
digested and plated for neuron-like cells maturation.

Isolation of Neuron Cells
Neuron culture medium: neurobasal plus medium supplemented
with 2% B27-plus supplement, 1% GlutaMAX, 1% penicillin-
streptomycin. The plating medium was prepared with a neuron
culture medium supplement with 10% FBS.

After the newborn mice were anesthetized on ice and
sacrificed, they were disinfected with 75% alcohol for 5 min.
Brain tissue was taken and cut into pieces of 9 mm3 with
scissors. Pieces of brain tissue were collected and digested with
3 ml 0.1% trypsin and 0.1 ml DNase I (2 mg/ml) for 9 min at
37 °C. We discarded the supernatant and add 4 ml plating
medium. After that, we discarded the supernatant, added
1.5 ml plating medium and 0.1 ml DNase I (2 mg/ml) and
pipette 20 times, and collected the supernatant. We repeated
this step one more time and centrifuged the collected supernatant
for 5 min at 1,000 rpm. Cells were seeded at 25,000 cells per well
of a poly-L-lysine pre-coated 12-well plate with a plating medium.
We then gently shook the 12-well plate and switched the medium
to neuron culture medium 6 h later, and cells were cultured
at 37°C.

Isolation and Culture of Myocytes
After the newborn mice were anesthetized on ice and sacrificed,
they were disinfected with 75% alcohol for 5 min. Limb tissue was
taken and cut into pieces of 0.1 mm3 with scissors. Pieces of limb
tissue were collected and digested with 6 ml 0.25% trypsin and
0.2 ml DNase I (2 mg/ml) for 20 min at 37°C, pipette tissue every
5 min. Cells were centrifuged for 10 min at 1,000 rpm and
500,000 cells were plated into 10 cm dish for 2 h. Cells in the
supernatant were transferred into a new 10 cm dish for further
culture. After 3 days, the medium was switched into skeletal
muscle differentiation medium (DMEM medium supplement
2% horse serum) for further culture.

Immunofluorescence
Cells were washed with PBS and fixed in 4% paraformaldehyde
for 15 min at room temperature. After washing twice with PBS,
cells were permeabilized and blocked in PBS containing 0.2%
Triton X-100 and 3% donkey serum for 1 h at room temperature.
Then, the cells were incubated with primary antibodies at 4°C

overnight. After washing three times with PBS, secondary
antibodies (Jackson ImmunoResearch) were incubated at 37°C
for 1 h. The nuclei were stained with DAPI (Roche Life Science)
for 5 min. Primary antibodies were those specific to rabbit anti-
SALL4 (Abcam, 1:500), mouse anti-Tubb3 (Biolegend, 1:300),
rabbit anti-Synapsin 1 (Abcam, 1:500), rabbit anti-Map2
(Millipore, 1:200), rabbit anti-Neun (Millipore 1:500), rabbit
anti-GABA (Sigma, 1:300), anti-mouse neurofilament 200
(Millipore 1:300), rabbit anti-vGlut1 (Synaptic system, 1:300),
mouse anti-myosin heavy chain (R&D, 1:300), mouse anti-MyoD
(Thermo fisher, 1:200), mouse anti-myogenin (Thermo fisher, 1:
200), and mouse anti-α-actinin (Sigma, 1:500). The secondary
antibodies used were FITC-conjugated secondary antibodies and
TRITC-conjugated secondary antibodies (Jackson
ImmunoResearch, 1:200).

RT-qPCR
Total RNA was extracted using the EasyPure RNA Kit (TransGen
Biotech) and was reverse-transcribed into cDNA using
TransScript One-step gDNA Removal and cDNA Synthesis
SuperMix (TransGen Biotech). Real-time PCR was performed
on a Quantagene q225 System (KUBO technology) using 2×T5
Fast qPCR Mix (TSINGKE Biological Technology).

ATAC-Seq
ATAC-seq libraries were prepared using Trueprep DNA library
Prep Kit V2 for Illumina (vazyme). Totally, 50,000 cells were used
for every single reaction. Cells were washed in 100 μl cold PBS
and resuspended in 50 μl lysis buffer (10 mM Tris-HCl pH 7.4,
10 mM NaCl, 3 mM MgCl2, 0.5% NP-40) for 10 min, and nuclei
were spun at 500 g for 10 min using a refrigerated centrifuge.
Then, the pellet was resuspended in 50 μl transposase reaction
mix and incubated at 37°C for 30 min. The samples were purified
and purified, and then libraries were amplified by PCR for 13
cycles. The libraries were sequenced using an Illumina HiSeq
2,500 machine.

RNA-Seq
We treated MEF cells with C6FAE, 6FAE, CFAE, or C6AE from
day 0 and extracted total RNA on day 4, day 8, and day 12. Total
RNA was extracted using the EasyPure RNA Kit (TransGen
Biotech). Library construction was completed by Novogene
company. The libraries were sequenced using an Illumina
HiSeq 2,500 machine.

Electrophysiology
Whole-cell patch-clamp recordings were performed by Scope
Research Institute of Electrophysiology. All currents were
recorded using a MultiClamp 700 A amplifier. For whole-cell
patch-clamp recordings, the ACSF (artificial cerebrospinal fluid)
extracellular solution contained 128 mM NaCl, 30 mM glucose,
25 mM HEPES, 5 mM KCl, 2 mM Ca2+, and 1 mM MgCl2. The
pH of the bath solution was adjusted to 7.3 with NaOH, and
osmolality was 300–305 mOsm/L. The pipette solution consisted
of 135 mM KCl, 5 mM Na-phosphocreatine, 10 mM HEPES,
2 mM EGTA, 4 mMMg-ATP, and 0.5 mM Na2-GTP. The pH
of pipette solution was adjusted to 7.3 with KOH and osmolality
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to 280–290 mOsm/L. Whole-cell patch-clamp recordings were
carried out using a HEKA EPC10 amplifier with PatchMaster
software (HEKA; Instrument Inc., Lambrecht/Pfalz, Germany).
To record the sodium and potassium currents, cells were held at
−80 mV and depolarized from −80 to +80 mV in 10 mV
increments for 1 s. The sample and sweep intervals were 20 µs
and 2 s, respectively. To record spontaneous excitatory
postsynaptic currents (EPSCs), induced neuron-like cells were
held at −70 and 0 mV, respectively.

Data Processing and Analysis
The data used in the RNA-Seq analysis was combined with our
previous data (Yang et al., 2020), and we additionally performed
RNA-Seq on the C6F5UE treatment group. Gene expression levels
were normalized as log2 (FPKM+1) in all bulk RNA-Seq data. For
temporal bulk RNA-Seq data clustering in each cocktail treatment,
genes that have detected FPKM >1 at least at one sample remained
to perform K-means clustering and were grouped into 20 clusters.
For the cell fate induction experiment, genes that vary>1 among all
samples remained to perform heterarchical clustering. PCA was
done with all normalized gene expression levels with scaling the
normalized expression for each gene by z-score among samples.
Day 16 and XEN data were adapted fromGEODatasets (GEO IDs:
GSE73631). For dropout experiments, gene expression under
C6FAE conditions was first compared in MEFs on day 4 and
day 8. TFs that increased at least by 1.5 were identified as
upregulated and retained for the follow-up analysis.

Single-cell data was adapted from the previously published
dataset (GEO IDs: GSE144097). We used Seurat (Stuart et al.,
2019) package to do t-distributed stochastic neighbor embedding
(t-SNE) projection and visualization. The three germ layer
transcriptional factors correlation was calculated with the
spearman correlation coefficients between gene pairs with
log2(UMI count +1) and visualized with heatmap.2 function
from ggplot2 package.

ATACseq analysis includes peak calling with MACS (version
2.1.2) (Zhang et al., 2008), differential peak detection with RPKM,
and visualization with EnrichedHeatmap (Gu et al., 2018). Two
biological replications of Control and CaMP samples were
processed and CaMP enriched peak regions and Control
enriched peak regions were labeled. Coverage tracks of the
samples were generated with the alignment of reads (BAM file)
with the bamCoverage function from deepTools (Ramirez et al.,
2014). The number of reads per bin was calculated and normalized
by reads per kilobase per million mapped reads (RPKM).

These analyses were done with MATLAB and R script.

RESULTS

Chemical Reprogramming Cocktails
Initially Activated the Expression of a Broad
Spectrum of Development-Associated
Transcription Factors
To investigate how chemical compounds alter cell fate, we
previously studied the chemical reprogramming process from

mouse embryonic fibroblasts (MEFs) to XEN-like cells. The study
revealed a hierarchical activation of XEN cell master TFs primed
by Sox17 and the different roles of essential chemicals during the
process (Yang et al., 2020). In parallel to that study, we measured
the global gene expression profiles by RNA sequencing during
reprogramming. We treated the initial MEFs with chemical
cocktails composed of CHIR99021 (C), 616452 (6), Forskolin
(F), AM580 (A), and EPZ00477 (E) and collected the samples at
days 0, 4, 8, and 12 (Figure 1A).

The gene expression induced by C6FAE showed various
dynamics (Figure 1B). The genes were categorized into four
major groups stepwise (Figures 1B,C): downregulated fibroblast
genes in the first 4 days, upregulated genes from day 4 to day 12,
upregulated XEN genes, and decreased master genes of fibroblast
in the last period. Unexpectedly, those upregulated genes during
fibroblast reprogramming to XEN-like cells included a broad
spectrum of lineage-associated TFs, such as Ascl1, Zic1, Hand2,
Hey2, Nkx6-1, and Gata2, which, respectively, regulate the
development of ectoderm, mesoderm, and endoderm (Figures
1B,C). The top-ranked Gene Ontology terms of these lineage-
associated genes included “regulation of developmental process,”
“multicellular organismal development,” and “system
development” (Figure 1D).

We also detected the activation of lineage-associated TFs in
a chemical reprogramming system with additional chemical
boosters for XEN generation, VPA, UNC0638 (Hou et al.,
2013), and CH55 (Zhao et al., 2018) (Supplementary Figure
S1). These different chemical cocktails activated lineage-
associated TFs before XEN cell fate transition (Figure 1E).
The activation timing for 56%–71% of these TFs can be as
early as day 4 (Figure 1F). Interestingly, these upregulated
lineage-associated TFs were highly overlapping in different
chemical cocktails (Figure 1G). Thus, we refer to the
induction phase with the activation of multi-lineage TFs,
including Sox17 for XEN-like cell induction (Yang et al.,
2020), as chemically activated multi-lineage priming
(CaMP).

The XEN master genes Sall4 and Gata4 were significantly
activated in the latest stage after the CaMP state (Figure 1C). It
indicates that XEN cell fate was induced in a “plasticization and
specification” manner rather than determined in the initial stage
of chemical reprogramming (Figure 1H).

Heterogeneous Expression of Endogenous
Development-Associated Transcription
Factors in Single Cells
The upregulated developmental genes could be activated in 1 cell
simultaneously or in different cells heterogeneously. To clarify
these two scenarios, gene expression in individual cells needs to
be investigated. Thus, we re-analyzed our single-cell RNA-
sequencing data obtained with SMART-seq2 (Yang et al., 2020).

We first confirmed that the upregulated TFs expression
profiles are consistent in bulk RNA-Seq and single-cell RNA-
Seq (Figure 2A). Cells from early induction time points (d0–d8)
were mixed on the dimensional reduction projection by
t-distributed stochastic neighbor embedding (t-SNE) with
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FIGURE 1 | Chemical cocktails activate the endogenous expression of transcription factors for multiple lineages. (A) Schematic diagram of chemical
reprogramming and bulk RNA-Seq sampling. (B) Clustering of temporal gene expression dynamics in the early stage of chemical reprogramming. K-means clustering
partitioned genes which FPKM >1 at least one-time point into 20 clusters. Known transcription factors (TFs) governing three germ layers development are labeled to the
corresponding clusters. (C) Representative gene expression dynamics during the early stage of chemical reprogramming. Left top: continuous decline; right top:
increase and decline; left bottom: continuous increase; right bottom: late decline. (D) Chemical cocktail, C6FAE, upregulated genes in development-associated GO
categories. Gene ontology analysis was performed with genes that expressed at least 1.5 larger than MEF in normalized measurement (log2(FPKM+1)) at day 4, day 8, or
day 12. (E) Number of upregulated TFs with different chemical cocktail treatments. Height of bars: total numbers; grey: TFs upregulated in the first 12 days and in XEN
cell type; black: TFs upregulated in the first 12 days but not in XEN cell type. (F) Percentages of upregulated TFs at different time points with different cocktail treatments.
TFs were aligned to the time points based on the first time they show 1.5 larger than MEF in normalized expression. (G) Venn diagram of upregulated TFs within different
cocktail treatments (day 4, 8, or 12) and XEN cells compared with MEF. (H) Two steps schematic highlighting CaMP state in the early stage of XEN induction.
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upregulated TFs detected from bulk RNA-Seq (Figure 2B). Cells
harvested at day 20 (d20) stretched out of the major population
and highly expressed XEN lineage marker genes, Sox17 and Sall4,
indicating successfully adapted XEN cell fate (Figure 2C). Cells
harvested at day 12 (d12) close to the main group kept the
expression of MEF master genes (Twist1 and Prrx2) and a low
level of Sox17 (Figure 2C). This result denied the hypothesis that
upregulated TFs were expressed in a group manner while
supporting the other one together with the scatter pattern of
their expression on the t-SNE map (Figure 2D). Thus, lineage-

specific genes upregulated their mRNA levels in the early days
heterogeneously.

Furthermore, correlation analysis shows that the expression of
three germ layer master TFs also does not cluster the genes into
groups (Figure 2E). The pairs of these TFs have low Spearman
correlation coefficients except that a few pairs have slightly high
coefficients around 0.5, such as Irx3 and Irx5, Mafb and Mafg,
and Tbx3 and Msx1 (Figure 2F). This may be due to their
inherent co-expression patterns or regulation relationships
during development (Reinke et al., 2010; Gaborit et al., 2012;

FIGURE 2 | Heterogeneous expression of endogenous development-associated transcription factors in the CaMP phase. (A) Consistent with bulk RNA-Seq,
upregulated TFs significantly increased expression in cells during the first 12 days of C6FAE induction compared with d0 (MEF) measured by single-cell RNA-Seq. The
difference of expression for each gene is calculated as the difference of mean log2(UMI counts+1). p-value is calculated with two samples unpaired t-test. (B) t-SNE
projection of single cells with upregulated TFs list from bulk RNA-Seq during the XEN reprogramming process. d8c and d12c, cells picked from colonies of day 8
(d8c) and day 12 (d12c). (C) Expression of XEN master genes (Sox17, Sall4) and MEF master genes (Twist1, Prrx2) in the t-SNE projection. (D) Examples of gene
expression of activated development-associated TFs in individual cells on the t-SNE projection. (E) Spearman correlation between each pair of the three germ layer
master genes. Left top: in the color key, color indicates the value (blue to red: −1 to 1), and histogram (black curve) indicates the statistic of Spearman correlation
coefficients in the heatmap. (F) Schematic diagram of stochastic activation of endogenous TFs in the CaMP state.
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FIGURE3 |Chemicals induced a global gain of chromatin accessibility at CaMPphase as early as day 4. (A)Comparison of chromatin accessibility signals detected
by ATAC-seq between Control and CaMP samples at day 4. Differential peak regions are shown with ±1 kb extension. The peak region signals were normalized with
RPKM and clustered into “Control enriched region” and “CaMP enriched region.” The above panels show themean RPKM value of corresponding columns and clusters.
Both Control and CaMP conditions have two biological repeats. (B) Gene expression changes (RNA Diff.) and chromatin accessibility level changes (ATAC Diff.) of
three germ layer master genes after 4 days of treatment of C6FAE compared with MEF. Different levels are quantified with the difference of log2(FPKM+1) and log2
(RPKM+1), respectively. (C) ATAC signal visualization of representative activated TFs with enhanced chromatin accessibility. RPKM range shown is scaled to the same
among the four samples. (D) ATAC signal visualization of the pluripotency marker gene, Pou5f1. RPKM range shown is scaled to the same among the four samples.
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Munshi, 2012). Thus, the endogenous expression of TFs for
multiple lineages was activated more stochastically. Therefore,
the early initiated plastic state was formatted as heterogeneous
priming (Figure 2F).

Chemicals Induced a Global Gain of
Chromatin Accessibility at CaMP State as
Early as Day 4
We further explored the chromatin accessibility change of the
CaMP state by ATAC-sequencing (ATAC-seq). We detected
elevation in chromatin accessibility of the upregulated TFs
after 4 days of treatment with chemical compounds.

Interestingly, we found that the CaMP phase significantly
opened chromatin accessibility for a large number of genes
compared to Control, and only a small proportion of genes
had their chromatin accessibility state closed (Figure 3A).
This finding was consistent with a substantial upregulation of
gene expression induced by chemical compounds. The
upregulated level of the activated three germ layer TFs in
expression detected by RNA-Seq was positively correlated with
the chromatin accessibility change (Figure 3B). In particular,
some of the activated lineage-specific TFs, such asMsx1, Nkx6-1,
Tbx3, Zic2, and Ascl1, had strong upregulation of chromatin
accessibility after C6FAE treatment (Figure 3C). A few TFs in
this list do not show a significant increase in chromatin

FIGURE 4 |Core reprogramming chemicals (C6F) concomitantly induce the CaMP phase. (A) Venn diagram of TFs activated by C, 6, and F, respectively. The gene
list was limited to 150 TFs activated by C6FAE. Genes were assumed to be activated by C, 6, or F at day 4 (or day 8) when they were upregulated more than 1.5 in
normalized FPKM with the treatment of C6FAE while not being with subtracted each chemical. (B) TFs regulated by C, 6, and F during the first 4 days of XEN
reprogramming. The expression of these TFs on day 4was compared with their expression in MEFs in normalized FPKM. The color key is proportionate to the value
of data of day 4 subtracted by data of MEFs. (C, D) TFs expressed differently when C, 6, and F were removed from the cocktail C6FAE in the first 4 days (C) and 8 days
(D). Red points: upregulated genes in C6FAE treated cells; blue points: downregulated genes in C6FAE treated cells. Arrows represent promotion, and horizontal lines
represent inhibition. The darker lines mean stronger regulation.
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FIGURE 5 | Direct chemical reprogramming system into neuronal lineage was empowered with CaMP induction. (A) Immunostaining for the chemically induced
neuron-like cells with the CaMP pretreatment. Scale bar, 100 μm; CFI, CHIR99021/616452/Forskolin/ISX-9. (B) Immunostaining of CaMP-CFI induced functional
synapses identified by Syn1 immunostaining. Scale bar, 100 μm. (C) Relative mRNA expression of typical neuronal marker genes induced with or without CaMP
pretreatment. (D) The efficiency statistics of matured neuron-like cells identified by immunostaining. (E) Gene expression heatmap of all differentially expressed
genes (normalized FPKM changed more than 1.5 among the samples) in neuron-like cells induced with or without CaMP step. The color key, Z-score of normalized
FPKM. (F) Gene expression heatmap of typical neuron genes in neuron-like cells induced with or without CaMP step. The color key, Z-score of normalized FPKM. (G)

(Continued )
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accessibility due to their original highly open chromatin state
(Supplementary Figure S2).

Moreover, chromatin accessibility of pluripotent genes Pou5f1
was still not opened after 4 days of treatment with C6FAE
(Figure 3D), which meant the global open of chromatin
accessibility was not caused by the activation of the
pluripotent gene. Overall, the change of chromatin accessibility
was further in line with the activation of the development-
associated TFs in the CaMP state.

Core Reprogramming Chemicals (C6F)
Concomitantly Induce the CaMP Phase
We further investigated the roles of the essential reprogramming
chemicals, CHIR99021, 616452, and Forskolin (C6F) in inducing
the plastic CaMP phase. We compared the bulk RNA expression
profiles of samples with the treatment of partial cocktails and
those with full cocktails. CHIR99021, 616452, and Forskolin were
essential for the transcriptional activation of most lineage-specific
TFs in the CaMP state. Most of the TFs activated by the cocktail of
C6FAE could not be activated without any one of CHIR99021,
616452, and Forskolin (Figures 4A,B). Subtracting any one of
CHIR99021, 616452, and Forskolin from day 0 also hampered the
expression of the XEN master TFs (Figures 4C,D). Thus, The
cooperation of the three core chemicals activated the expression
of those TFs in the CaMP phase.

In summary, CHIR99021, 616452, and Forskolin
concomitantly initiated the CaMP state. All of them
contributed to transcriptional activation of development-
associated TFs, which explained why most previous chemical
reprogramming systems used these three small molecules or
those targeting the same pathways.

Direct Chemical Reprogramming System
Into Neuronal Lineage Was Empowered
With CaMP Induction
Inspired by the molecular frameworks during cell fate
specification in another study of us (Yang et al., 2020), the
endogenously activated TFs of multiple lineages in the CaMP
induction might be beneficial to induce cell types of other
lineages. We found that the TFs of neurons, including Ascl1, a
master gene for neuronal reprogramming, were also activated in
the CaMP phase. It is possible to induce the neuron-like cells after
CaMP induction more efficiently.

By initially introducing CaMP state and changing the
culture medium to which favored neuronal maintenance in
culture and fine-tuning the composition of chemical cocktails
after the CaMP phase, we found that a cocktail, CHIR99021,
Forskolin, and ISX9 (CFI), drastically induced the transition
from the CaMP to neuron-like cells only after the pretreatment

of C6FAE for 4 days. The resulting induced neuron-like cells
had more classic neuronal cell morphology and expressed
typical neuronal markers Tuj1, Map2, Syn1, neuronfilam
200, and functional markers vGlut1, GABA, Rbfox3,
Gabbr2, and Chat (Figures 5A–C). The efficiency of
matured neuron-like cells identified by functional synapses
marker-Syn1 and Tuj1 co-staining was about 1.7%, and the
proportions of GABA or vGlut1 positive cells were about 0.5%
and 0.3%, respectively (Figure 5D). In comparison, cells
induced without the CaMP pretreatment expressed nearly
no mature neural markers after 28 days of induction
(Figure 5D).

By RNA sequencing, we found that neuron-like cells induced
through CaMP had activated the expression of neuron-specific
genes and similar expression profiles to primary neurons.
(Figures 5E,F). By the principal component analysis, we
found that the neuron-like cells induced through CaMP
induction had transcriptional states closer to primary
functional cells than cells induced without CaMP priming
(Figure 5G). Importantly, action potential, spontaneous
excitement potential, and spontaneous excitatory
postsynaptic currents (EPSCs) were recorded in induced
neuron-like cells after co-culture with astrocytes (Figures
5H–J and Supplementary Table S1).

Direct Chemical Reprogramming System
Into Myocytes Was Empowered With CaMP
Induction
Similarly, we optimized the myocytes’ induction through the
CaMP state. By treating cells in the CaMP phase with myocyte
culture medium containing CHIR99021, 616452, Forskolin, and
SB431542 (C6FS), we induced contractile and multinucleated
skeletal muscle cells expressing MyHC, Myog, Myod1, ɑ-
actinin, and Tnnt3 in 8–12 days, more efficient and faster
than induction with only C6FS (Figures 6A,B and
Supplementary video S1). The efficiency of MyHC and ɑ-
actinin double-positive skeletal muscle cells was over 4% with
P2 MEFs as starting cells. The efficiency of MyHC and ɑ-actinin
double-positive skeletal muscle cells was over 4%, and the
efficiency could reach 30% with P1 MEFs as starting cells. In
comparison, few skeletal muscles cells could be induced without
CaMP induction or specification stage with myocyte medium
(Figure 6C).

By RNA sequencing, we found that the skeletal muscle cells
induced through CaMP had activated the expression of myocyte-
specific genes (Figures 6D,E). By principal component analysis,
we found that the myocytes induced through CaMP induction
had more comparable transcriptional profiles to primary
functional cells than the cells induced without the CaMP
priming (Figure 6F).

FIGURE 5 | PCA projection of neuron-like cells reprogramming processes analyzed with all differently expressed genes. The coefficient of variation (CV) was calculated
for each gene among samples, and the PCA was performed with genes with CV larger than 0.1. (H) Action potentials of CaMP-CFI induced neuron-like cells after co-
culture with astrocytes. One exemplary action potential trace was highlighted. (I) Spontaneous excitement potential of CaMP-CFI induced neuron-like cells after co-
culture with astrocytes. (J) Spontaneous excitatory postsynaptic currents of CaMP-CFI induced neuron-like cells after co-culture with astrocytes.
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FIGURE 6 | Direct chemical reprogramming system into myocytes was empowered with CaMP induction. (A) Induction of skeletal muscle cells with the CaMP
pretreatment. Scale bar, 100 μm; C6FS, CHIR99021/616452/Forskolin/SB431542. (B)Relative mRNA expression of typical skeletal muscle marker genes induced with
or without CaMP pretreatment. (C) The efficiency statistics of induced skeletal muscle cells identified by immunostaining. (D)Gene expression heatmap of all differentially
expressed genes (normalized FPKM changed more than 1.5 among the samples) in skeletal muscle cells induced with or without CaMP step (analyzed by RNA-
Seq of more than 30 clusters of induced skeletal muscle cells). The color key, Z-score of normalized FPKM. (E) Gene expression heatmap of typical skeletal muscle
genes in skeletal muscle cells induced with or without CaMP step (analyzed by RNA-Seq of more than 30 clusters of induced skeletal muscle cells). The color key,
Z-score of normalized FPKM. (F) PCA projection of myocytes reprogramming processes analyzed with all differently expressed genes. The coefficient of variation (CV)
was calculated for each gene among samples, and the PCA was performed with genes with CV larger than 0.1.
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FIGURE 7 | Cells induced from the CaMP state are not derived from progenitor cells or pluripotent stem cells. (A) Schematic diagram of Col1a2-derived lineage-
tracing system. (B) Immunofluorescence for Tuj1-positive neuron-like cells and MyHC-positive myocytes that induced from Col1a2-positive fibroblasts. (C)
Immunostaining for neuron-like cells induced from TTFs with CaMP pretreatment. Scale bar, 100 μm. (D) Immunostaining for skeletal muscle cells induced from TTFs
with CaMP pretreatment. Scale bar, 100 μm. (E) Relative mRNA expression of hallmark pluripotent genes (Nanog, Oct4, and Esrrb) through the neuron-like cells
induction process. (F) Relative mRNA expression of hallmark pluripotent genes (Nanog, Oct4, and Esrrb) through the skeletal muscle cells induction process. Data are
presented as mean ± SD, ***p < 0.001; **p < 0.01; *p < 0.05, t-test.
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Cells Induced From the CaMP State Are Not
Derived From Progenitor Cells or
Pluripotent Stem Cells
To determine whether the induced neuron-like cells and
myocytes were derived from fibroblasts and to rule out the
contamination of progenitor cells in fibroblast culture, we
applied the Col1a2 lineage-tracing system during the induction
of neuron-like cells and myocytes. By immunostaining, we found
that Tuj1 or MyHC expressing cells were mostly induced from
Col1a2 expressing cells, suggesting that neuron-like cells were
induced from fibroblasts rather than contaminated progenitors
(Figures 7A,B). Furthermore, we induced adult mouse tail tip
fibroblasts into neuron-like cells and beating myocytes expressing
specific markers by introducing CaMP state (Figures 7C,D),
which confirmed that CaMP induced plasticity in TTFs and
further ruled out the contamination of neural progenitor cells
in MEFs.

Besides, we had not detected the endogenous expression of
pluripotent genes, such asNanog, Esrrb, andOct4, throughout the
chemical reprogramming processes by RT-qPCR analysis
(Figures 7E,F). The Oct4-GFP was not activated during the
chemical reprogramming processes to neuron-like cells and
myocytes by daily observation. These indicated that the
neuron-like cells induction processes initiated by CaMP
pretreatment did not activate the pluripotent genes.

Moreover, we found that the neuron-like cells and myocytes
induced through the CaMP phase did not require the
intermediate XEN-like states. The gene Sall4, a typically
expressed master TF of XEN cells, had low expression in the
process of reprogramming. The knockdown of XEN master
genes, Sall4 and Gata4, impaired the formation of XEN-like
colonies but did not decrease the induction efficiency of
neuron-like cells or myocytes (Supplementary Figure S3). It
indicated a more direct cell fate conversion from fibroblasts to
target cell types without establishing the XEN-like cell identity
(Figure 8). These findings supported that cell plasticity with

neuron-like cells and myocyte lineage specification potential was
induced during the CaMP process.

DISCUSSION

In this study, we found that the cell fate specification was not
initially determined in the chemical reprogramming process.
Instead, a plastic CaMP state was induced, with the
heterogeneous expression of multiple developmental genes,
and without the determination to any specific cell fate. The
establishment of such cell plasticity may account for the
common roles of these key chemicals used in the CaMP
induction in inducing different cell types.

Our findings provide a new understanding of cell plasticity
and stability. Although it has been reported that the master
regulators of cell fates, such as tumorigenicity-related genes,
are always regulated strictly by multiple epigenetic
mechanisms (Graf and Enver, 2009; Li et al., 2016; Dhar et al.,
2018), our findings suggest that a considerable number of
developmental-associated TFs are not quite strictly regulated
in fibroblasts. These suggest that somatic cells possess
plasticity in response to exogenous stimuli, in terms of
expressing master genes for another cell fate, which could be
an initial step and a priming phase for cell fate conversion (Dhar
et al., 2018). In addition, the CaMP state would be reminiscent of
pluripotent stem cells (PSCs) regarding their specification
potential into cells of differentiated germ layers, such as
myocytes and neuron-like cells as indicated in this study, as
well as extraembryonic cell types like XEN-like cells in the
previous report (Zhao et al., 2015). Even PSCs have a priming
state with stochastically low expression of developmental genes
(Bernstein et al., 2006), similar to the stochastic activation of
developmental genes in the CaMP cells revealed in this study.
These may suggest similar molecular bases for cell plasticity in the
CaMP phase and pluripotent cells. In contrast, cells in the CaMP
phase differ from pluripotent stem cells regarding their different
gene expression profiles, spontaneous differentiation potential,
and development potential in a single cell.

Furthermore, cells in the CaMP phase may not have the
potential to differentiate by nature, with the fact that the
treatment of chemicals and culture medium after CaMP are
also essential for determining the cell fate specification
derivate. Our previous study found that the trigger for cell fate
specification is also very critical to hierarchically activating all the
essential TFs for cell fate determination and transition (Yang
et al., 2020). The initial fibroblasts program could not be
substantially impaired unless major master TFs for another
cell type are all co-expressed in the final transition stage (Yang
et al., 2020). These support the concept that cell fate is somehow
stable and not easily reversible, although easily primed.

In comparison, the process of transgenes OSKM- (Oct4, Sox2,
Klf4, and c-Myc) induced pluripotent stem cell (iPS) generation is
also a similar biphasic process, with an early stochastic gene-
activation stage induced mainly by c-Myc and a late, more
determined process mainly orchestrated by OSK, downstream
of Sox2 expression (Sridharan et al., 2009; Buganim et al., 2012;

FIGURE 8 | Graphical abstract of the plastic CaMP state amenable to
direct lineage reprogramming.
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Polo et al., 2012). Recently, the heterogeneity of early-
reprogramming cells expressing considerable development-
associated genes induced by OSKM has also been reported
(Schiebinger et al., 2019). These suggest that the biphasic
“plasticization and specification” process revealed in our study
could be a general principle for cell-fate reprogramming for both
chemical and transgenic reprogramming.

Importantly, by harnessing the CaMP state induced in the initial
stage of chemical reprogramming, we improved the reprogramming
systems towards neuron-like cells and myocytes with pure chemicals
by pretreating the cells with the CaMP inducing chemical cocktails.
Moreover, the restingmembrane potential of CaMP-induced neuron-
like cells was –48.68 ± 2.43mV (Supplementary Table S1), which
was significantly lower than other reported chemical-induced neurons
(–25 or –35mV). It indicates that CaMP-induced neuron-like cells
had more complete ion channels and were functionally closer to
primary neurons. Besides, rather than using limited genes as
biomarkers (typically done in other reported chemical
reprogramming systems) (Hu et al., 2015; Li et al., 2015; Li et al.,
2017), we compared all differentially expressed genes among samples.
We found that CaMP-induced neuron-like cells had more similar
transcriptional profiles to the primary functional cells. Overall, the
CaMP-induced neuron-like cells were more mature in transcriptional
profile and function than those previously reported. It would also be
interesting to further determine whether chemical reprogramming
through the CaMP state can be extended to obtain other functional
cell types as a general strategy for developing chemical
reprogramming systems and even be applied to human cells.

Similar to this strategy, a cell activation and signaling-directed
(CASD) strategy, has been reported by transiently overexpressing
Yamanaka factors, OSKM, to obtain different functional cell types,
such as hepatocytes, pancreatic beta cells, and cardiomyocytes (Efe
et al., 2011; Li et al., 2014; Wang et al., 2014; Zhu et al., 2014),
although it was found that this strategy involved the transient
acquisition of pluripotency (Bar-Nur et al., 2015; Maza et al., 2015).
However, in chemical reprogramming through the CaMP state, it is
not likely that chemicals induced a pluripotent state in the initial
first 4 days of the 40 days long chemical reprogramming process
towards CiPSCs. The chemicals rather established a more plastic
state with amore active epigenetic state beneficial for transcriptional
activation. Besides, it has been reported that the XEN-like cells
induced during chemical reprogramming to CiPSCs are also plastic
and can be further induced into other cell lineages, such as neurons
or hepatocyte-like cells (Li et al., 2017). In comparison, our study
showed that cell plasticity can be induced at the very beginning of
chemical reprogramming for further cell specification, even before
the establishment of XEN cell identity and without substantial
silencing of core transcriptional networks of fibroblasts.

In comparison with cell differentiation from induced
pluripotent stem cells or expandable XEN-like cells, cell fate
lineage reprogramming systems through the CaMP state are
more direct, bypassing the concerns of potential tumorigenicity
resulting from uncontrolled cell expansion in in vivo applications
and has the potential to be induced to cell types of all three germ
layers. As a result, direct cell fate reprogramming through the
CaMP state may be a new paradigm and a shortcut to obtaining
functional cells for regenerative medicine (Figure 8).

CONCLUSION

This study enlightens the understanding of chemical
reprogramming by dissecting the contribution of
reprogramming chemicals to the activation of development-
associated transcription factors. It proves a new approach to
obtain functional cell types through a CaMP state in the future of
regenerative medicine.
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Stochastic priming and spatial cues orchestrate
heterogeneous clonal contribution to mouse
pancreas organogenesis
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Spatiotemporal balancing of cellular proliferation and differentiation is crucial for postnatal

tissue homoeostasis and organogenesis. During embryonic development, pancreatic

progenitors simultaneously proliferate and differentiate into the endocrine, ductal and acinar

lineages. Using in vivo clonal analysis in the founder population of the pancreas here we

reveal highly heterogeneous contribution of single progenitors to organ formation. While

some progenitors are bona fide multipotent and contribute progeny to all major pancreatic

cell lineages, we also identify numerous unipotent endocrine and ducto-endocrine bipotent

clones. Single-cell transcriptional profiling at E9.5 reveals that endocrine-committed cells are

molecularly distinct, whereas multipotent and bipotent progenitors do not exhibit different

expression profiles. Clone size and composition support a probabilistic model of cell fate

allocation and in silico simulations predict a transient wave of acinar differentiation around

E11.5, while endocrine differentiation is proportionally decreased. Increased proliferative

capacity of outer progenitors is further proposed to impact clonal expansion.
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Defining the rules governing embryonic organ development
and postnatal tissue homoeostasis is essential for under-
standing disease pathology and for the generation of

functional cell types for regenerative medicine purposes. Seminal
studies have demonstrated how rapidly proliferating postnatal
tissues such as the skin and the intestine are homeostatically
maintained by equipotent stem cells undergoing seemingly
stochastic cell fates choices by neutral competition for limited
niche signals1–4. In contrast to postnatal tissue homoeostasis,
embryonic development of most organs occurs at a state of
system disequilibrium, as a population of progenitors expands
while simultaneously giving rise to differentiating progeny.
Although optimality in the design of strategies ensuring rapid
organ development has been proposed5, little is known regarding
how global embryonic organogenesis is orchestrated when
deconstructed into clonal units originating from single progeni-
tors at the onset of organ bud formation. Studies of retinal
development have provided compelling evidence for a stochastic
process of cell fate choices using both in vitro6 and in vivo
approaches7. However, a deterministic model of embryonic
neocortical development was proposed8, based on the observation
of similar behaviour of the two daughters of individual cells.
These discrepancies in organ design emphasise the need for
studies investigating individual cell progenies in other organ
systems. Here we investigate how the allocation of endocrine and
acinar fates is balanced with progenitor expansion from the
beginning of pancreas formation using clonal analysis and single-
cell molecular profiling.
Embryonic mouse pancreas development is initiated at around

embryonic day (E)9.0 by the specification of pancreatic
progenitors at the dorsal and ventral sides of the posterior foregut
endoderm9. Though induced by different mechanisms, the two
anlage are composed of expanding Pdx1+Hnf1b+Sox9+Ptf1a+

progenitors forming bud-like structures protruding into the sur-
rounding mesenchyme10. A small number of Neurog3+ endocrine
precursors giving rise to the endocrine lineage of the pancreas are
also found in these early buds11, 12. Morphogenetic processes
occur concomitantly leading to the formation of lumens and their
organisation into a plexus and subsequent tree-like branches13, 14.
While the distal tip-domain is comprised of Ptf1a+ unipotent
acinar progenitors after E13.515, 16, the Hnf1b+ trunk domain is
bipotent and gives rise to endocrine cells, as well as the ductal
cells that will eventually line the epithelial network draining
acinar digestive enzymes to the duodenum17–19. Following
specification towards the endocrine lineage, Neurog3+ endocrine
precursors delaminate from the epithelial trunk domain to form
immature islet clusters that will eventually mature into the
endocrine Islets of Langerhans20. Although population-based
lineage tracing has demonstrated the multipotency of the early
pancreatic progenitors by virtue of their capability to give rise to
progeny in the three major pancreatic lineages12, 15–17, 21

(Fig. 1a), no study has addressed the clonal contribution of the
proposed multipotent pancreatic progenitors (MPCs) to pancreas
organogenesis. One previous clonal analysis indeed restricted its
focus on the progeny of single endocrine precursors examining
their postnatal expansion22. Recent studies have demonstrated
that pancreatic trunk progenitors undergo stochastic priming
towards the endocrine lineage at mid-gestation19, and thus we
questioned whether there are subpopulations of pancreatic
progenitors exhibiting restricted lineage potencies from the onset
of embryonic pancreas development or whether progeny from
equipotent progenitors undergo stochastic lineage commitment.
In this study, using clonal analysis of E9.5 pancreatic progeni-

tors, when the pancreatic primordium has just been specified, we
demonstrate that individual pancreatic progenitors contribute
heterogeneously to pancreas organogenesis both in progeny size

and fate composition. While some progenitors are multipotent
per se, giving rise to acinar, endocrine and ductal progeny, we
also demonstrate the existence of bipotent ducto-endocrine and
unipotent endocrine cells forming half of the primordium. This
population represents cells at different stages of progression on the
endocrine differentiation path, including proliferative endocrine-
committed cells, and exhibits undetectable to low levels of PTF1A.
In contrast, bipotent and multipotent clones do not exhibit dif-
ferent expression profiles, suggesting they are not molecularly
distinct cell populations. We show that clonal expansion and fate
heterogeneity are compatible with a simple model of probabilistic
cell fate acquisition operating downstream of spatially controlled
proliferative and fate-biasing patterning cues.

Results
Single E9.5 pancreatic cells produce heterogeneous progeny. To
investigate how individual cells among the about 500 cells that
have just been specified to found the pancreas contribute to
organogenesis, we devised a lineage tracing strategy making use of
the Rosa26CreER driver (Fig. 1b). The ubiquitous activity of the
Rosa26 locus ensures CreER expression throughout the develop-
ing embryo and hence also enables non-biased labelling of
pancreatic cells23. We selected the mT/mG24 reporter over other
multicolour reporters to be able to mark the differentiation status
of clonal progeny. This required the dosage of very low levels of
the active tamoxifen metabolite 4-OH tamoxifen (4-OHTm) to
reach labelling of only one cell per pancreatic primordium within
the 24 h following injection25. The labelling index of 11.8%
(20 epithelial clones in 170 embryos) ensured a low risk of
labelling two progenitors in the same pancreatic bud as of 1.4%
(0.118×0.118). Whole-mount staining of E14.5 pancreata
for endocrine (PAX6), progenitors lining the ducts (SOX9) and
acinar (CPA1) markers enabled us to determine the fate of
labelled GFP+ progeny at E14.5, a stage by which acinar cells are
committed (Fig. 1c–h)12, 15–17. We observed a large extent of
clone size heterogeneity, ranging from single-cell clones to clones
consisting of hundreds of cells (Fig. 1h). Single GFP+ cells
belonged to the endocrine lineage based on immunoreactivity
for PAX6, cell morphology and location outside the pancreatic
epithelium in islet-like structures (Fig. 1d, f, g). These single cells
are expected to result from labelling non-proliferative endocrine
cells, their Neurog3-expressing precursors or pancreatic pro-
genitors differentiating directly into the endocrine lineage without
dividing. We also observed 2- and 3-cell endocrine clones, sug-
gesting that a labelled endocrine-biased progenitor had under-
gone a single or two rounds of divisions. In line with the
postulated existence of multipotent progenitors based on non-
clonal analyses, multipotent clones of 40–250 cells were found,
consisting of ductal, endocrine and acinar progeny (Fig. 1h).
Moreover we did observe bipotent clones of 6–100 cells
harbouring only ductal and endocrine progeny, indicating that
not all E9.5 progenitors contribute to the acinar lineage during
pancreas organogenesis. However, we did not observe unipotent
acinar clones arising from E9.5 progenitors. While confirming the
existence of MPCs at the single-cell level, our results reveal
heterogeneity in potency and contribution to pancreas organo-
genesis from single pancreatic cells. Furthermore they uncover
the existence of bipotent progenitors as early as E9.5 and that half
of the cells in the early pancreatic anlage give rise to solely
endocrine progeny, a surprising finding considering that the adult
endocrine cells only account for about 1% of the adult organ26.

Heterogeneous marker expression in E9.5 progenitors.
Heterogeneity in the clonal progeny may be either due to an
intrinsic lineage bias in sub-populations of E9.5 progenitors or
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due to the stochastic fate allocation of clonal progeny during
progressive organisation and compartmentalisation of the
pancreatic epithelium. To test the first hypothesis, we conducted
single-cell qRT-PCR following FACS isolation of dorsal foregut
progenitor cells at E9.5 (Fig. 2a). tSNE-mediated dimensionality
reduction of single cells revealed the existence of three distinct
populations (Fig. 2b). On the basis of the expression of known
lineage markers, we classify these three clusters as pancreatic
endocrine (Neurog3+ and Glucagon+), pancreatic progenitors
(Pdx1+ and Sox9+) and duodenal progenitors (Cdx2+, absence of
Pdx1 and Sox9). Interestingly, cells characterised as belonging to
the endocrine lineage organised on one projection axis forming a
pseudo-temporal trajectory starting from Neurog3+ endocrine

precursors and progressing with the expression of markers
associated with progressive endocrine maturation (Fig. 2c).
These molecularly distinct cells are expected to contribute to the
non-proliferative endocrine-committed cells observed in the
lineage tracing. When focusing the dimensionality reduction
on Pdx1+ pancreatic progenitors only, we observed marked
heterogeneities in expression of various pancreas-associated
transcription factors. Since at E14.5 Ptf1a marks acinar cells at
the tip while Nkx6-116, 27, Hnf1b17 and Hes118 mark bipotent
progenitors in the trunk, we investigated whether cells expressing
these markers at E9.5 already had specific molecular signatures
suggestive of emerging tip and trunk fates. However, in spite of
heterogeneous expression of these markers, no global gene
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of lineage relationships based on previous global lineage tracing. b Schematic overview of strategy applied to identify fates of clonal progeny from
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signature was associated with Nkx6-1, Hnf1b or Hes1, and these
three markers showed no cross-correlation (Fig. 2d, e; Supple-
mentary Figs. 1–4). Although Ptf1a expression did not correlate
strongly with specific single markers, Ptf1a+-cells clustered after
tSNE-mediated dimensionality reduction, suggesting that they are
more similar to each other than to other progenitor cells. This
molecular analysis uncovers that cells committed to endocrine
differentiation can be molecularly identified, whereas
subpopulations of multipotent or bipotent progenitors identified
by clonal analysis cannot be molecularly predicted with this set
of markers.

Spatial patterns of progenitor marker expression. To further
assess heterogeneity in markers at the protein level, we used
whole-mount immunostaining of E9.5 gut tubes and quantitative
image analysis (Fig. 3a, b). We observed heterogeneous expres-
sion levels of HES1, SOX9 and PTF1A, whereas HNF1B and
PDX1 were more homogeneously expressed among progenitors
(Fig. 3c, d). Using 3D Voronoi-Delaunay triangulation (Fig. 3a)

and measurements of the correlation in expression levels between
neighbouring cells, we observed that HNF1B is expressed at
higher levels towards the more posterior side of the pancreatic
bud and in the gut tube and that PTF1A expressing cells appear
clustered at a medial-bilateral location in E9.5 dorsal buds. Other
transcription factors did not show any regionalisation
of expression levels (Fig. 3d). These results demonstrate that
the transcriptional profiles observed by single-cell qRT-PCR
are translated into similar global profiles at the protein level, and
that the levels of PTF1A and HNF1B display regionalised patterns
in the E9.5 bud.

Distinct clonal progeny of Hnf1b- and Ptf1a-expressing cells.
The differential expression of PTF1A and HNF1B at E9.5 and
the subsequent segregation of these markers to the tip and
trunk domain, respectively, led us to investigate whether
single progenitors expressing Ptf1a or Hnf1b at E9.5 contribute
differential progeny by clonal analysis using Ptf1aCreER- and
Hnf1bCreER drivers (Fig. 4a). The Hnf1bCreER-driver (labelling
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of these markers seems uncorrelated and does not partition Pdx1+ progenitors into tip- and trunk-biased clusters
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index: 35 clones in 120 pancreata, 29%; probability of double
labelling, 8%) resulted in a similar pattern of clones as observed
with Rosa26CreER, that is unipotent endocrine, bipotent ducto-
endocrine as well as multipotent clones (Fig. 4b, c and f).
However, the endocrine-committed clones were less frequent,
constituting 33% instead of 50% of the total clone repertoire,
likely due to the fact that unlike Rosa26, Hnf1b is not expressed in
mature endocrine cells28. In addition, we detect HNF1B
immunoreactivity in 67.7± 3.8% of the NEUROG3-expressing
endocrine precursors at this stage, while Rosa26 is expected to
be expressed in all (Supplementary Fig. 5). A similar frequency
of endocrine-committed precursors was observed when
tracing Hnf1bCreER-labelled cells from E9.5 to E10.5 (Supple-
mentary Fig. 6). Interestingly, we observed a clone consisting
solely of 6 endocrine cells. Combined with the two 3-cell clones
seen in the Rosa26 tracing, this suggests that some endocrine-
biased progenitors can undergo multiple rounds of divisions
(Fig. 4b, f; clone # 12), in line with the recent observation that
cells with low levels of Neurog3 transcription can proliferate29.
The low-differentiation rate towards the endocrine lineage
(p= 0.12± 0.007, Supplementary Fig. 7) makes independent
probabilistic entry of progeny into the endocrine lineage highly

unlikely, suggesting that the E9.5 pancreatic bud contains
progenitors biased towards multigenerational endocrine
specification. On the other hand, we never observed unipotent
acinar clones arising from E9.5 progenitors. Furthermore, acinar-
containing clones always contained ductal and endocrine
progeny, suggesting that acinar-lineage allocation has not yet
occurred in any cell at E9.5. The proportion of multipotent clones
was similar to what was observed using the Rosa26CreER driver
after correction for the absence of labelling of mature endocrine
cells by Hnf1bCreER. Though only five of the clones were found in
the ventral pancreas, which is smaller than the dorsal, they were
bi- or multipotent but not endocrine committed, possibly due to a
delay in endocrine program onset in the ventral pancreas.
This suggests that the assumed labelling of progenitors with
high-expression levels of Hnf1b expression at E9.5 does not bias
lineage contribution to the trunk domain (Fig. 4f). Similarly,
Ptf1aCreER-based lineage tracing did not bias progenitors towards
the acinar lineage, either (Fig. 4d, e and g). However, cells traced
by Ptf1aCreER (labelling index: 13 clones in 30 dorsal pancreata,
44%; probability of double labelling, 19%) did not form
endocrine-only clones, unlike what was seen with Rosa26CreER-
and Hnf1bCreER-drivers. This suggests that cells exhibiting high
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Ptf1a expression at around E9.5 do not immediately form
endocrine cells, unlike progenitors traced by Rosa26CreER and
Hnf1bCreER, though they retain endocrine differentiation capacity
as these cells give rise to endocrine-containing clones later in
their clonal evolution. This hypothesis is supported by Ptf1a anti-
correlation with early markers of endocrine differentiation such
as Mfng and Neurog3 in our single-cell qRT-PCR analysis at E9.5
(Supplementary Fig. 3).

A probabilistic model of progenitor progeny fate allocation.
The apparent lack of tip-trunk biased progenitors suggested by
both single-cell analysis and tracing at E9.5 led us to investigate
whether a model of probabilistic cell-fate choices could recapi-
tulate the in vivo clonal distribution data. To this end, we con-
structed a mathematical model of in silico clonal growth by
simulating cell divisions over a period spanning the in vivo clonal
tracing. Every time a cell gave rise to progeny through cell
division, clonal progeny were fate-allocated with a probability of
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probability f and acinar (purple) with probability 1 − f. We compare two models: in Model 1 the probability f is constant between E9.5 and E14.5, and in
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for the exact functional form of f for Model 2. While acinar cells continue replicating, endocrine cells are assumed not to replicate. For all replicating cells
the cell-cycle lengths are drawn from the gamma distribtuion from19 (right panel). For every parameter set both models were simulated 2500 times.
b Examples of the in silico clonal lineages. c Fraction of cell types from individual clones at E9.5, 11.5, 12.5 and 14.5 (corresponds to experimental data in
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differentiating c and a probability of becoming endocrine cf or
acinar c(1 − f) (Fig. 5a). Here f is a bias towards endocrine fate; f
= 0.5means that cells are equally likely to be allocated exocrine or
endocrine fates. Simulated cell cycle lengths were randomly
drawn from a gamma-distribution based on our measurements
in vitro19 and those of Bankaitis et al.30 in vivo. Progeny
committed to the endocrine lineage were approximated to be
non-proliferative while acinar cells proliferated. For simplicity
the acinar proliferation rate was approximated to be similar to
progenitors, which is a small underestimation15. In total 2500
clones were simulated spanning a parameter space of probabilities
for both c and f (Fig. 5b, d). Two models were compared, one
with fixed probability of becoming endocrine rather than exocrine
f= q, or one where f varied over time with a minimum q around
E12 (Fig. 5a). The minimum around E11.75-E12 is suggested by
the observation that the number of NEUROG3-expressing cells
has a minimum at this time point31.
To quantitatively compare simulation results with the data, we

focused on two types of datasets. First, histograms in Figs. 1h and 4f
contain information about the clonal variance in fractions of acinar
and endocrine cells at one time point E14.5. For simplicty we focused
on the variance in fractions of acinar cells and to increase sample size
combined the datasets in Figs. 1h and 4f into one. Second, the
staining of pancreata at four time points in Supplementary Fig. 7d
does not contain information about the clonal variance but
reperesents the typical cell fractions. To compare our models with
the first data set we recorded the acinar fraction from simulated
lineages with at least one acinar cell for each parameter set
(Supplementary Fig. 8a–e). We estimated the underlying probability
density function (PDF), shown on top of the histogram in
Supplementary Fig. 8e by Kernel Density estimation with bandwidth
0.5 (see Supplementary Fig. 9 and methods for details).

To compare our models with the second data set, we grouped
together 100 clones to approximate the data from stained
pancreata in Supplementary Fig. 7d. Here we used both acinar
and endocrine fractions at E10.5, 11.5, 12.5 and 14.5 to estimate
PDFs as described above. This allowed us to estimate the
likelihood that the experimental data points came from the PDF

derived from the simulations. In other words we estimated how
likely it is for simulations to produce exactly those fractions
observed in vivo. The likelihood that both datasets agree with
the model was a product of each of the two likelihoods
(Methods, Model Implementation). Spanning a parameter space
for c and q (Supplementary Fig. 10), we observed that both the
model 1 with fixed endocrine/acinar probability and the model 2
displaying temporal variations in this ratio had a parameter space
of good likelihood for c and q (Fig. 5e). However, the model 2
with a time-variable probability of becoming acinar peaking at
around E12 was superior at describing the data according to the
Akaike Information Criteria (AIC, see Methods). The shape of
the optimal parameter space is also in support of model 2:
once the probability to become acinar is set to peak around E12
(model 2), the performance of the model becomes less
constrained by parameter q. The statstical approach used allows
us to identify the best model, but a combination of limited
amount of biological data and high stochasticity prevents us from
statistically testing how well each model match the data. Taken
together, our mathematical modelling suggests that the clonal
analysis data are compatible with a model of probabilistic cell fate
choices and predicts that when the probability of becoming
endocrine is low at around E12, the progenitors most efficiently
commit to the acinar lineage at this time point.

Acinar-committed cells are detected from E11.5 to 12.
According to the model prediction, acinar-committed cells should
be undetectable at E9.5, as we have seen, but should be easily
identified by clonal lineage tracing from E11.5 (Fig. 5f). Previous
non-clonal tracing with Ptf1aCreER suggested that all cells
expressing Ptf1a were acinar-committed at E14.5–E15, whereas
some were still multipotent at earlier time points15. However,
previous observations did not address whether some cells may
be acinar-committed earlier. Tracing using Ptf1aCreER;mT/mG
mice injected with 4-OHTm at E11.5 revealed bipotent and
tripotent clones, as at earlier time points and also showed that 8%
of the PTF1A-traced cells were already acinar-committed (Fig. 6),
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reinforcing the notion of heterogeneity in progenitor behaviours
at the clonal level during pancreas organogenesis.

Spatial differences in proliferation impacts clonal growth. In
addition to the compatibility of the in vivo clonal heterogeneity
with a probabilistic model of cell cycle progression and cell fate
allocation, we questioned whether spatial patterns of differential
proliferation rates might also impact clone size. To interrogate
the proliferative capacity of pancreatic epithelial subdomains we
performed a label dilution experiment using Pdx1-tTA;tetO-H2B-
GFP embryos (Fig. 7a). These embryos display ubiquitous H2B-
GFP expression in Pdx1+ progenitors, however upon doxycycline
(Dox) administration, H2B-GFP expression is suppressed and

will be linearly diluted by equal partition to daughter cells upon
cell division32. By tracing the extent of label dilution from E9.5
to E12.5 and E14.5, we observed label retention in SOX9NegE-
CADLow cell clusters corresponding to non-proliferative endo-
crine cells derived early after suppression of H2B-GFP expression
(Fig. 7b, c). Label dilution following continuous Dox adminis-
tration from E9.5 was evident in SOX9+ progenitors compared to
endocrine cells at E12.5, and this was even more apparent at
E14.5 (Fig. 7b, c). At E14.5, cells located in the central portion
of the SOX9+ epithelium still displayed retention of H2B-GFP
signal, whereas SOX9+ progenitors in lateral branches and the
more distal portion of the epithelium displayed label dilution.
This was also apparent when administering Dox at E11.5 and
tracing to E14.5 (Fig. 7d). These results suggest that pancreatic
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SOX9+ ductal progenitors undergo preferential proliferation
at the peripheral epithelial domains. Such preferential label
retention within the central epithelial domain was additionally
confirmed by plotting the 2D kernel density estimation of SOX9+

and GFP-retaining SOX9+ progenitors (Fig. 7e). To investigate
whether the size of clones from our lineage tracing correlated
with the spatial location of H2B-GFP retaining SOX9+ progeni-
tors, we sought to map the spatial location of clones onto
the domains of differential label retention. Because of the
non-stereotypic macroscopic anatomy of the pancreata between
embryos, we turned to a simplistic model of spatial mapping,
where we projected the location of a cell or group of cells on an
axis extending from the tip of the dorsal pancreas to the duodenal
root of the dorsal pancreas. This method confirms the enrichment
of H2B-GFP-retaining SOX9+ cells in a central domain of the
pancreas epithelium at E14.5 (Fig. 7f) and indicates that the
largest Hnf1bCreER-derived clones tend to map to the tip
(Fig. 7g–i). These results suggest that the spatial location impacts
the proliferation of clonal progeny by dispersal to spatial niches
with distinct proliferative capacity.

Discussion
In this study we aimed at uncovering whether the roughly
500 cells that found the mouse pancreas contribute homo-
geneously to the size of the final organ and to its different
functional cell types. The multipotent state of the early pancreatic
progenitor population has been inferred from population-based
lineage tracing studies, masking potential heterogeneity in single-
progenitor contribution to organ formation12, 15, 21. We tested
whether there are subpopulations with biases in proliferation or
differentiation capacity, and whether they can be predicted by
their molecular expression profile or by their initial location in
the primordium.
We find that single E9.5 pancreatic cells exhibit heterogeneous

contribution to organ formation, as we identify unipotent
endocrine, bipotent ducto-endocrine and multipotent clones by
lineage tracing at clonal density (Fig. 8). Among these categories,
only the unipotent endocrine-committed cells can be predicted
by single-cell molecular profiling at E9.5. These cells account for
50% of founder cells and encompass the already differentiated
endocrine cells and Neurog3-expressing endocrine progenitors
each accounting for about 12% of pancreatic cells at this stage
(Supplementary Fig. 7). In addition, early endocrinogenesis
encompasses other endocrine-biased cells, some of which may be
replicative, possibly expressing low levels of Neurog329. The size
of this population is estimated to about 25% of all pancreatic cells
based on both Rosa26CreER and Hnf1bCreER lineage tracing.

Although we did not identify any positive predictor for such
endocrine-biased progenitors, Ptf1a is a negative correlator based
on the rarity of unipotent endocrine clones from Ptf1aCreER-based
lineage tracing, as well as the negative correlation with known
endocrine specifiers from single-cell qRT-PCR (Supplementary
Fig. 3). This is in agreement with the previous observation that
early endocrine cells can form in the absence of Ptf1a33, 34. The
fact that 50% of the cells in the emerging pancreatic primordium
are biased to the endocrine lineage is surprising, since the
endocrine cells make only 1–2% of the adult pancreas26. As the
largely non-proliferative nature of endocrine-biased cells extends
the time required to generate an organ of proper size, the
generation of such a high fraction of endocrine cells at early
stages of organogenesis contradicts expectations of optimal design
theories5. These cells may thus carry important functions for the
development of the mouse pancreas, perhaps by producing
growth-stimulating components.
Despite heterogeneous and spatial differences in expression of

pancreatic progenitor-associated transcription factors within
the E9.5 bud, the bipotent ducto-endocrine and multipotent
progenitors cannot be discriminated by single-cell qRT-PCR
using our selected gene targets. Investigating more targets,
protein expression or their modifications may however uncover
subpopulations. Nevertheless, the heterogeneity in clone sizes and
differentiation is compatible with a stochastic model of cell-fate
allocation during clonal history. Comparison of several models
shows that the model that best fits the data is one where cells have
a probability of differentiation and where differentiation bias
towards endocrine over acinar fates changes over time between
E9.5 and 14.5. This would imply a double molecular gate, one
controlled by the Notch pathway that controls differentiation,
and a switch controlled by an unknown molecular cue that selects
between endocrine and acinar fates. There is ample data
supporting that Notch controls the differentiation of both acinar
and endocrine lineages10, 35–38. In the model displaying optimal
fit with our experimental data, the progenitors are predicted to
have a low probability of becoming endocrine at around
E11.5–E12, as supported by the progressive decrease and
subsequent reappearance of NEUROG3 cells at this time point31.
The model predicts that this corresponds to a wave of acinar
cell commitment centred at around E11.5–E12 that we can
experimentally capture (Fig. 6).

We also report spatial heterogeneity in progenitor proliferation
which may underlie the observation of progenitors that divide
only once to extreme progenies of hundreds of cells in 5 days.
Recently it was demonstrated that the progeny of dividing E10.5
pancreatic progenitors in the central area of the pancreas tends to
remain central but that this rule is not strict39. The combined

Fig. 7 The pancreatic epithelium displays regional differential proliferation explaining impacting clone size. a Schematic overview of strategy implemented
to identify spatial differences in proliferative capacities. E9.5 oral gavage and subsequent continuous administration of doxycycline (Dox) prevents
expression of H2B-GFP in Pdx1;− tTA/;tetO-H2B-GFP embryos, enabling proliferation-induced label dilution in pancreatic progenitors. b 3D MIP of whole-
mount immunostainings of dorsal pancreata at various stages following Dox administration at E9.5. Note the gradual decrease in GFP signal in SOX9+ cells
and the presence of strongly label-retaining endocrine clusters and low-retaining central progenitors, as well as the absence of label retention in the distal
epithelium and in lateral branches by E14.5 (n= 3 at E9.5 and n= 4 each at E12.5 and E14.5). Representative images were extracted from those. Scale bars,
30 µm (E9.5), 80 µm (E12.5) and 150 µm (E14.5). c Optical sections of E12.5 (top) and E14.5 (bottom) dorsal pancreata following Dox administration
at E9.5. E-CADLow endocrine clusters display strong label retention, whereas label-dilution is more pronounced in the proliferative SOX9+ progenitors.
Distal lateral branches at E14.5 display complete absence of H2B-GFP retention. Scale bars, 50 µm (E12.5) and 30 µm (E14.5). d Following E11.5 Dox
administration, the central portions of the E14.5 pancreas retains H2B-GFP signal, whereas lateral branches exhibit label dilution (n= 3 at E11.5 and n= 1
at E14.5, from which representative images were extracted). Scale bars, 70 µm (E11.5) and 150 µm (E14.5). e Kernel density estimation of SOX9+

progenitors and the density of the top 10% highest GFP-retaining SOX9+ cells. Note the central location of GFP-retaining cells. f One-dimensional
projection of SOX9+ progenitors and the top 10% of GFP-retaining cells onto a diagonal line running along the length axis of the dorsal pancreas
demonstrate enrichment of GFP-signal in distinct domains of the pancreatic epithelium. g, h 3D MIP showing the spatial distribution of clonal progeny in a
small clone in the central, proximal epithelium and a large distal clone, respectively. Scale bars, 150 µm. i Comparison of spatial distribution of smallest and
the half of largest clones from Hnf1bCreER-mediated E9.5-E14.5 clonal analysis (n= 12 clones in total)
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effect of probabilistic cell fate choices operating downstream
of spatially biased progenitor proliferation and differentiation
thus ultimately determines the contribution of progeny from
proliferating progenitors to pancreas organogenesis.
Similar to our observations, differential potency and lineage

contribution of progenitors expressing early organ markers have
recently been demonstrated during heart development40. Our
findings might facilitate the identification of niche-derived signals
supporting in vitro generation of specific pancreatic cell types
for regenerative medicine purposes and help elucidate the
rules governing embryonic organogenesis by the concerted
spatio-temporal orchestration of clones with variable contribu-
tions to organ formation.

Methods
Mice. Mice (Mus musculus) of mixed background were housed at the University of
Copenhagen. All experiments were performed according to ethical guidelines
approved by the Danish Animal Experiments Inspectorate (Dyreforsøgstilsynet).
The following genetically modified mouse lines were used: Pdx1-tTA41,
tetO-HIST1HBJ/GFP(tetO-H2B-GFP)42, Hnf1btm(CreER) (Hnf1bCreER)17, Gt
(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (mT/mG)24, Ptf1aCreERTM
(Ptf1aCreER)16, Tg(Hes1-EGFP)1Hri (Hes1-eGFP)43, Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J
(Rosa26CreER)23. The data were collected on male and female embryos.

Whole-mount immunohistochemistry. Embryonic gut tubes or isolated pancreata
were fixed in 4% paraformaldehyde (PFA) for 10–30 min on ice depending on
tissue size. After washing in PBS and dehydration in methanol (MeOH), fixed
tissue was stored in 100% MeOH at −20 °C. Rehydrated samples were transferred
to PBS + 0.5% Triton X-100 (PBST). Samples were blocked overnight at 4 °C in
PBST + 1% bovine serum albumin (BSA) or in blocking solution from the
Mouse-on-Mouse (MOM) detection kit (Vector laboratories) if using mouse
primary antibodies (For details of antibodies and and concentrations use, please see
Supplementary Table 1). Primary antibodies were incubated in PBST + 1% BSA or
MOM diluent for 48 h at 4 °C. Samples were washed all day in PBST with a
minimum of five washing buffer changes before addition of secondary antibodies
and DNA staining dyes such as 4′,6-diamidino-2-phenylindole (DAPI) or DRAQ5.
Biotinylated antibodies and secondary antibodies were supplied in PBST + 1% BSA
or MOM diluent for 48 h at 4 °C followed by tissue washing and dehydration to
100% MeOH. Samples were stored at −20 °C in 100% MeOH until imaging.

Sample clearing and imaging. For imaging of whole-mount stained pancreata and
subsequent 3D reconstruction, samples were subjected to clearing, hereby reducing
light scattering. Optical clearing was performed by submerging samples in a
1:2 solution of benzyl alcohol:benzyl benzoate (BABB). Cleared samples were
subsequently mounted in glass concavity slides and submerged completely in
BABB to maintain refractive index matching and sample transparency. Cleared
samples were imaged using a Leica SP8 confocal microscope with a 20×/0.75 oil
immersion objective at 1024 × 1024 resolution. Samples were imaged in an 8-bit
format unless otherwise indicated.

In vivo clonal analysis. 4-OH tamoxifen (4-OHTm, Sigma, H6278) was
prepared as a 10 mg/mL stock solution in 10% ethanol and 90% corn oil and

subsequently diluted in vehicle solution (10% ethanol, 90% corn oil) to obtain the
desired concentration. For E9.5 to E14.5 clonal analyses, mice carrying Hnf1bCreER;
mT/mG, Ptf1aCreER;mT/mG and Rosa26CreER;mT/mG embryos received a single
intraperitoneal injection of 4-OHTm at E9.5, at a concentration of 11.5 μg/g,
57.5 μg/g and 1.35 μg/g, respectively. The dosage of 4-OHTm required to reach
labelling at clonal density was initially determined by performing dose titration
of E9.5 injections and analysis of clone density at E10.5 by whole-mount
immunostaining. The temporal accuracy of labelling was tested using the
Ptf1aCreER;mT/mG. As PTF1A expression starts at E9.5, we injected57.5 μg/g
4-OHTm at E7.5 or E8.5 and observed no labelled cell at E14.5 in 9 embryos
analysed in total (4 embryos from E7.5 injection and 5 from E8.5 injection). Using
ImarisTM software, GFP+ cells were identified in 3D reconstructed pancreata, and
the fate of cells determined by immunostaining for various pancreatic lineage
markers. For the E9.5-E10.5 short-term clonal analysis, GFP+ labelled cells were
considered to be of clonal origin if one cell was seen or if the distance between
recombined cells was less than 30 μm after the tracing period, based on the
estimates of cell migratory capacity from Kim et al.19. For the mapping of clone
position in the E10.5 bud, embryos harbouring one labelled cell or two labelled
sister cells were considered for the analysis.

Single-cell qRT-PCR. E9.5 gut tube regions spanning the pancreatic bud and
proximal duodenum were isolated from Hes1-eGFP embryos and stored in PBS on
ice until all gut regions had been collected. Embryonic mT/mG tissue was added as
a tissue spike-in to generate a bulk pellet mass preventing loss of the scarce GFP+

cell population. The pooled Hes1-eGFP gut tubes and mT/mG embryonic tissue
was dissociated in 0.05% trypsin-EDTA (Gibco) containing 200 U DNase I (Roche)
for 15 min at 37 °C with manual trituration using a p1000 pipette. Following
dissociation, PBS + 10% FCS was added to inactivate the trypsinisation, and
the single-cell suspension was centrifuged and re-suspended in PBS + 10% FCS
followed by another round of centrifugation. The single-cell suspension was
re-suspended in PBS + 10% FCS + DAPI to allow exclusion of DAPI+ dead cells.
260 single GFP+ cells were sorted into 96-well plates containing 5 μL CellsDirect
2× reaction mix (Invitrogen) and 0.05 U SUPERase-InTM RNase inhibitor
(Thermo Fischer). 96-well plates containing single cells in CellsDirect were stored
at −80 °C until ready to perform single-cell qRT-PCR reaction.

Prior to single-cell qRT-PCR, all primer pairs (Supplementary Table 2)
had been validated on E14.5 bulk pancreatic cDNA using standard qRT-PCR.
A mix containing forward and reverse primers for all 96 target genes were prepared
in TE-buffer, generating a final concentration of 500 nM for each primer. mRNA
from single cells was next subjected to one-step reverse transcription and specific
target amplification according to the Fluidigm protocol ‘One-Step Single-Cell Gene
Expression Using EvaGreen® SuperMix on the BioMarkTM HD system’. Upon
loading of 96 × 96 chips, a 5-fold standard series of E14.5 bulk cDNA was added to
five chip inlets, allowing identification of specific gene product detection by
comparison of melt profiles of single-cell amplifications and bulk reactions.
Using Fluidigm Real-Time PCR analysis software, data from three independent
chip runs were combined, and individual reactions were passed (203)/failed (57)
according to software peak detection and melt peak temperature being in range
with bulk reactions. Expression of housekeeping genes was used as inclusion
criterion for downstream analysis of individual cells. Single-cell qRT-PCR data
were subsequently analysed using Fluidigm SINGuLARTM Analysis Toolset, while
global gene correlation tSNE-mediated dimensionality reduction was performed
using a Python-based script (code available upon request). For the analysis of
Pdx1+ pancreatic progenitors, cells were categorised as being positive for Pdx1 if
displaying CT values <20 for Pdx1.

E10.5 - 24h post label induction E11.5 - tip/trunk segregation onset E14.5 - tip/trunk segregation complete

Acinar cells

Endocrine
cells

Trunk
progenitors

Fig. 8 Proposed model of orchestration of pancreas organogenesis by heterogeneous clones. Although initially possessing the same intrinsic potency, the
spatial position of induced clones in the pancreatic bud influences expressed in vivo potency by dispersing clonal progeny to different niches. While
peripherally labelled cells (yellow outline) will be exposed to acinar-inducing cues concomitant with generation of trunk-fated progeny during branching
morphogenesis, centrally labelled cells (red outline) are less likely to experience acinar-inducing signals and thus produce ducto-endocrine bipotent clones.
Stochastic priming of centrally located progenitors towards the endocrine lineage might further generate heterogeneity in clonal contribution to the ductal
and endocrine lineage
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Model implementation. We started simulating each clone from a cell in a
progentor state and when comparing with clonal data (Figs. 1h and 4f), we only
included clones with at least one progenitor. The model thus underestimates the
number of clones fully commited to endocrine cells, but it does not affect our
results since we only look at the acinar fractions. The algorithm follows the steps
below.

First, start with cell in a progentor state. Second, draw a cell cycle length, tcc,
from a Gamma-distribution from19. To account for the unknown start of the cell
cycle for the first cell, choose a random start between 0 and tcc. Third, after time
counter reaches tcc the cell divides and adopts one of three possible fates according
to the diagram in Fig. 5a: Progenitor probability 1 − c, acinar fate with probability c
(1 − f) and endocrine fate otherwise. Fourth, assign two new cell-cycle lengths from
the Gamma distribution. Fifth, repeat steps 3–4 for all cells.

For model 1: f= q, while for model 2: f q; tð Þ ¼ qþ 0:5 1� qð Þð1þ cosð2πtÞÞ
To estimate a probabilityprobaiblity density function (PDF) for a distribution of

discrete datapoints we use KDE. In effect it is a smoothening step, where each data
point is represented by a kernel (in our case gaussian with sigma= 6.5 for data sets
from Supplementary Fig. 7d and sigma= 0.015 for combined data set Figs. 1h and
4f, also referred to as bandwidth)44.

We find the likelihood, L, of an observation, xi, being consistent with the model
by evaluating the PDF at xi, PDF(xi). The likelihood that all datapoints in a data set
are consistent with the model is a product of their individual likelihoods. If there
are two different data sets, their likelihoods are thus

L1 ¼
Q

i
PDF1 xið Þ; L2 ¼

Q

j
PDF2 xj

� �
; and the likelkihood of both datasets

agreeing with the model is L=L1L2.
The AIC is a method for selecting among models. It does not give an absolute

estimate of how well each of the models fits the data but AIC= 2k − ln(L) where
k is the number of variables and L is the maximum likelihood, i.e., corresponding
to the optimal parameter set45. The model with the lowest AICc is the preferred
model. The relative probability that an inferior model is as good as the preferred
model can be calculated by use of the equation pi= exp(AICmin −AICi).

Label retention experiments and image analysis. Pregnant mice carrying
Pdx1-tTA;tetO-H2B-GFP were subjected to oral gavage of 200 μL of 2 mg/mL
doxycycline hyclate (Dox, Sigma), 3.5% vol/vol sucrose in H2O at E9.5 or E11.5,
and subsequently this solution replaced ad libitum water supply to maintain
repression of H2B-GFP expression. Following whole-mount immunostaining,
cleared samples were imaged at 12-bit depth and subjected to 3D reconstruction
and downstream analysis in ImarisTM (Bitplane). Progenitor cells were identified
by SOX9 immunoreactivity, and the pancreatic epithelium was masked based on
SOX9 staining in order to exclude label-retaining endocrine cells from further
analysis. The xyz position of SOX9+ progenitors was obtained using the ImarisTM

spot detection algorithm on the SOX9-masked channel, additionally enabling
extraction of mean GFP immunostaining intensity signal from the volume of the
spot encompassing SOX9+ nuclei. Kernel density estimation of SOX9+ and the top
10% of GFP cells was applied to estimate the 2D distribution of these two cell
populations. For the one-dimensional analysis of GFP retaining cell distribution,
the distal-most point of the dorsal pancreatic epithelium and the centre of the
dorsal pancreatic epithelium just proximal to the turning of the ductal structure
connecting the dorsal pancreas to the ventral was used to extract the equation for
the diagonal line running between these two points along the length axis of the
dorsal pancreas. Using standard trigonometry, the xy-coordinates of SOX9+

progenitors and the xy-coordinates of the top 10% GFP-retaining SOX9+ cells
were used to project these cells onto the diagonal line and ultimately to calculate
the xy-coordinates of the intersection between the diagonal and projection line.
Finally, the distance between the intersection point and the distal landmark
was calculated, allowing kernel density estimation of SOX9+ cells and the top
10% GFP-retaining SOX9+ cells along this one-dimensional length axis.

For the analysis of spatial distribution of clones according to total clone size,
clones from Hnf1bCreER-mediated E9.5–E14.5 lineage tracing amenable to analysis
were classified as small and large so that both groups contained an equal number of
clones.

Quantification of endocrine precursor cell ratios. Quantification of the ratio of
endocrine precursors, namely, SOX9, NEUROG3, PAX6 and PTF1a,
progenitors and acinar precursors obtained at E9.5, E10.5, E11.5, E12.5 and E14.5
(Supplementary Fig. 7). At E9.5, cells were manually counted. At E10.5–E12.5, cell
numbers were determined using ImarisTM spot detection. For the quantification of
putative acinar progenitors at E11.5 and E12.5, PTF1AHigh cells were quantified
based on mean intensity of nuclear PTF1A above 80 grey scale values from 8-bit
format images. This pixel intensity threshold was selected based on the intensity of
PTF1A+ cells segregated to the periphery at E11.5 and E12.5, although PTF1A+

displaying mean intensity values above the threshold are still found scattered
within the central epithelium. At E14.5, absolute cell numbers were determined
using a custom built image segmentation and analysis software.

Neighbour identification by Voronoi-Delaunay triangulation. The xyz
coordinates of E9.5 pancreatic progenitors were obtained after manual spot
detection of SOX9+ nuclei in 3D reconstructed images of E9.5 gut tubes. The

mean fluorescence intensity of the applied staining for pancreatic transcription
factors were extracted from the spot volume. Voronoi-Delaunay triangulation
was implemented using a python-based script, and a 10 μm distance threshold
was applied in order to identify nearest neighbours with biological meaning.
The coefficient of variation, as well as the mean intensity of neighbours was
computed from corresponding fluorescence intensities of neighbour-connected
cells, in order to visualise spatial patterns of heterogeneity and regionalisation
of transcription factor expression levels.

Code availability. Python and Python-Notebook code files, along with an
explanatory Read-me file, linked to Fig. 5 are provided as Supplementary Soft-
ware, under the GNU General Public Licence (GPL). Codes are available upon
request for label retention experiment quantifications and Voronoi-Delaunay
triangulations.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request.
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