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Abstract

A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum elec-

trodynamic (QED) effects and is thought to be the key ingredient for many applications in quantum-

information processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute

a robust platform for realizing a 1D atom, and are the subject of theoretical and experimental inves-

tigations in this thesis. We use finite element method in 3D to calculate the local density of states

(LDOS) in photonic-crystal membranes. The detailed spatial maps show strong inhibition of LDOS

in the bandgap of the PhC, as large as 160 times. The method is extended to PCWs using a set of

active boundary conditions. The extended method allows separating the contribution to the LDOS

from the propagating mode and the radiation continuum. The detailed spatial maps of the LDOS

show that for a broad spectral range, the contribution from the radiation continuum is much less

than the contribution from the guided mode. The coupling efficiency between an embedded emitter

and the PCW is shown to be higher than 90% for a wide range of dipole positions, frequencies and

orientaitions, which qualifies the system as a candidate for a 1D atom. One of the signatures and

functions of a 1D atom is the nonlinear optical response at the single-photon level. A PCW chip is

designed to experimentally study the transmission spectrum of an embedded QD. The transmission

spectrum is shown to be modified by 30% around the resonance of the QD. The power dependence

of the transmission shows a nonlinearity with a critical power of 1.9 nW, which corresponds to an

average number of 0.8 photons per lifetime of the emitter at the position of the QD. The autocorre-

lation function of the transmitted field shows bunching of the transmitted photons as expected from

the theory. The value of g(2)(0) is around 1.08. The results confirm the observation of an on-chip

giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to

investigate the effect of Anderson localization on the electrodynamics of QDs in PCWs. A large data

set of the statistics of Purcell-enhancement of QDs in Anderson-localized cavities is presented. The

average Purcell-enhancement of 4.5 times, with a peak value of 12 is observed for QDs randomly

positioned in Anderson-localized modes of a PCW.
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Resumé

Et 1D atom, en enkelt kvante emitter koblet til en enkelt optisk tilstand, udviser mange kvante

elektrodynamiske (QED) effekter og betragtes som den væsentligste del af mange anvendelser inden-

for kvanteinformations behandling. Enkelte kvante-punkter (quantum dots, QD) i fotonisk-krystal

bølgeledere (photonic-crystal waveguides, PCW) udgører en robust platform for realiseringen af et 1D

atom, og er emnet for en teoretisk og eksperimentel undersøgelse i denne afhandling. Vi bruger en-

delig elementers metode i 3D til at beregne den lokale tilstandstæthed (local density of states, LDOS)

i fotonisk-krystal membraner. Det detaljerede rumlige kort viser kraftig undertrykkelse af LDOS i

b̊andgabet af den fotoniske krystal, s̊a meget som 160 gange. Denne metode udvides til PCWer ved at

benytte et sæt af aktive grænsebetingelser. Denne udvidede metode tillader separering af bidragene

til LDOS fra den propagerende tilstand og str̊alings kontinuumet. Det detaljerede rumlige kort over

LDOS viser, at for et bredt spektralt omr̊ade er bidragende fra str̊alings kontinuumet meget mindre

end bidraget fra den guidede tilstand. Koblingseffektiviteten mellem en indlejret emitter og PCWen

vises at være højere end 90% for et bredt omr̊ade af dipol-positioner, -frekvenser og -orienteringer,

hvilket gør systemet til en kandidat for et 1D atom. En af signaturene og funktionerne af et 1D atom

er den ikke-lineære optiske respons p̊a enkelt-foton niveauet. En PCW-chip er designet til eksperi-

mentelt at undersøge transmissionsspektret af en indlejret QD. Transmissionsspektret vises at være

ændret med 30% omkring QDens resonans. Effekt-afhængigheden af transmissionen viser en ikke-

linearitet ved en kritisk effekt p̊a 1.9nW, hvilket svarer til et gennemsnitligt antal p̊a 0.8 fotoner per

livstid af emitteren ved QDens position. Autokorrelationsfunktionen af det transmitterede felt viser

en samling (”bunching”) af de transmitterede fotoner, som forventet fra teorien. Værdien af g(2)(0)

er omkring 1.08. Resultaterne bekræfter observationen af en stor on-chip optisk ikke-linearitet og

den 1D-atomare opførsel. En anden retning i denne afhandling har været at undersøge effekten af

Anderson-lokalisering p̊a elektrodynamikken af QDerne i PCWer. Et stort datasæt med statistikken

fra Purcell-forstærkning af QDer i Anderson-lokaliserede kaviteter præsenteres. Den gennemsnitlige

Purcell-forstærkning p̊a 4.5, med en peak-værdi p̊a 12, er observeret for QDer vilk̊arligt positioneret

i Anderson-lokaliserede tilstande af en PCW.
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Chapter 1

Introduction

Indium-Arsenide (InAs) quantum dots (QDs) embedded in Gallium-Arsenide (GaAs) have interest-

ing properties for quantum optics. The internal structure of a single InAs QD offers sharp optical

transitions with large dipole moments and relatively decoherence-free spin states. Additionally, nanos-

tructures may be formed in the host GaAs to efficiently interface the QD to an optical field. Ultimately,

a QD can be made to interact with just a single optical mode, which constitutes an artificial 1D atom.

A 1D atom is a key ingredient in realizing many building blocks for quantum information processing,

e.g. optical nonlinearities at the single photon level, single-photon transistors and photon sorters.

Photonic crystals (PhC) are the most successful nanostructures for controlling light behavior and

their potential for quantum electrodynamics has been highlighted in several earlier works. In this

thesis, we study photonic-crystal waveguides (PCWs) in detail and utilize them for different quantum

optics experiments with InAs QDs. This chapter gives a short introduction to the InAs QDs, their

structural and optical properties, as well as an overview of the photonic-crystal nanostructures, with

particular emphasis on PCWs. The last section of this chapter includes the outline of the thesis.

1.1 Quantum dots as artificial atoms

In this section, we review the definition and properties of a quantum dot (QD). A QD is an island of

a semiconductor with a smaller bandgap inside another semiconductor with a larger bandgap [1, 2],

see figure 1.1(a). A QD is typically several nanometers high in the growth direction and tens of

nanometers long in the directions normal to the growth axis. These dimensions are smaller than the

exciton Bohr radius of the island material, hence the island acts as a three dimensional confinement

potential for charge carriers. Consequently, the energy levels inside the QD are discretized, in close

analogy to the discreet energy levels of an atom. This has given the QDs the name ”artificial atom”.

Figure 1.1(b) shows the energy-level structure of a InAs/GaAs QD. The host material, GaAs, has a

bigger bandgap than the island material (InAs). Therefore, several localized energy levels form in the

1
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GaAs

InAs

(a) (b)

GaAs

InAs
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hh

s‐shell
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wetting layer

Conduction band
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Figure 1.1: (a) Schematic image of a InAs/GaAs QD, courtesy of M. L. Andersen. (b) Energy

structure of a InAs/GaAs QD, showing the electron state s-shell and p-shell and the heavy hole state.

The s-shell is characterized by total angular momentum ±1/2 and the highest energy hole band (hh)

is characterized by total angular momentum |±3/2〉. The wetting layer is marked as the blue regions.

conduction band and valence band of the island material. The energy levels inside the conduction band

are named s-shell, p-shell, and so on. The energy levels inside the valence band are named, heavy-hole

band (hh), and light-hole band (lh) in the simplest picture. For a symmetric QD, the energy levels are

identified by their total angular momentum and projected orbital angular momentum in the growth

direction, |J, jz〉. For the rest of this section, we focus on the s-shell states and the hh level states,

since the optical transitions between these two levels have the largest oscillator strength [1, 3]. The

s-shell is doubly degenerate and has two orbitals |1/2, 1/2〉 and |1/2,−1/2〉. We represent an electron

in the |1/2, 1/2〉 orbital as | ↑〉, and an electron in the |1/2,−1/2〉 as | ↓〉, corresponding to spin state

of the electron. The hh band, on the other hand, has two levels that are characterized as |3/2,±3/2〉.
The holes in these orbitals are denoted as | ⇑〉 and | ⇓〉 respectively.

Different charge configurations are possible inside a QD. The ground state of the QD (|g〉) can

be neutral or charged. The first excited states of a neutral QD are the neutral excitons (|X0〉).
A neutral exciton is a combination of an electron and a hole. The four possible |X0〉 states are

| ↑⇓〉, | ↓⇑〉, | ↑⇑〉, and | ↓⇓〉. jz for the first two excitons is ±1 and hence the two excitons can

recombine optically and emit a circularly polarized photon. The last two are dark excitons (jz = ±2)

and are optically inactive. However, an actual QD lacks the rotational symmetry and hence the

excitons hybridize [1, 3–5]. Due to the symmetries of the underlying crystal orbitals, the two bright

excitons hybridize together while the dark ones hybridize with each other. The resulting excitons

are 1√
2
(| ↑⇓〉 ± | ↓⇑〉) and 1√

2
(| ↑⇑〉 ± | ↓⇓〉). The projected orbital angular momentum for the new

excitons are jz = 0 and jz = ±2 respectively. Therefore, the bright excitons emit linear photons

and the dark excitons remain dark. Other mechanisms can mix the dark and the bright states

together, e.g. magnetic fields. Phonons can also mediate interaction between the dark excitons and

the bright excitons through spin flip processes [6, 7]. Figure 1.2 shows the level diagram of a neutral

exciton. The two bright excitons ( 1√
2
(| ↑⇓〉 ± | ↓⇑〉) ) decay radiatively to the ground state. There

is also a nonradiative decay channel for the bright excitons (not shown in the figure). However, this

nonradiative decay is around an order of magnitude slower than the radiative decay for InAs QDs.

2
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Figure 1.2: (a) Level structure of a neutral exciton. The two bright states ( 1√
2
(| ↑⇓〉 ± | ↓⇑〉) ) emit

linearly (V/H) polarized photons. The normalization constant 1√
2

has been dropped in the figure.

Spin flip processes couple the two dark states to the two bright states. The dark states can also decay

to the ground level through nonradiative processes. (b) The level diagram of a negatively charged

QD. The two X− states emit right and left circular photons. As long as the magnetic field in plane

of the QD is zero, the diagonal transitions are forbidden due to spin selection rules.

A QD can also be charged, that is an electron or a hole can be in the QD for a long time. The

four possible ground states for the charged QD are: | ↑〉, | ↓〉,| ⇑〉, and | ⇓〉 [5, 8]. When an electron-

hole pair is added to the extra charge in the QD, a charged exciton forms (X+ or X−). The four

possibilities for a charged exciton are: | ↑↓⇓〉, | ↑↓⇑〉, | ↑⇑⇓〉, | ↓⇑⇓〉, where the first two are associated

with an extra electron trapped int the QD and the later two are associated with an extra hole . For all

these configurations jz = ±1 and hence all of them are optically active and emit circularly polarized

photons. Figure 1.1(b) shows the level structure of a QD, with an electron trapped in it (X−). As

long as the in-plane magnetic field is zero, the diagonal transitions (shown as doted black arrows) are

very weak and in the ideal case spin forbidden [8, 9].

A QD, regardless of its charge state, can be excited in several ways. The most common method

is to excite the QD by creating charge carriers in the host material, which subsequently fall to the

wetting layer and then to the QD (above-bandgap excitation). For a InAs/GaAs the above band gap

excitation requires a pump wavelength of lower than 800 nm. Alternatively, one can directly excite the

carriers inside the wetting layer (wetting layer excitation). The typical wavelengths for wetting layer

excitation are around 850 nm. The third method would be to excite the carriers directly to a higher

excited state of the QD (p-shell excitation). The mentioned methods pump carriers incoherently to

the s-shell of the QD, and are used in limited cases, mostly for spectral analysis. Alternatively, one

can directly excite the exciton by a laser that has the same energy as the exciton transition (resonant

excitation). The resonant excitation allows to coherently interface the state of a photon directly to

the internal state of the QD and is required in the quantum information applications [5]. In the next

section, we discuss PhCs and their potential for controlling light in nanometer scales.
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CHAPTER 1. INTRODUCTION

1.2 A short introduction to photonic crystals

Photonic crystals are the optical analog of semiconductor crystals [10, 11]. A PhC is a periodic

modulation of the refractive index of a homogenous medium on the scale of the wavelength. The light

propagation in a PhC is governed by Bloch modes which have the periodicity of the crystal. Similar

to semiconductors, PhCs also have energy gaps in their dispersion diagram where light propagation

is inhibited [12]. A 3D modulation of the refractive index allows to produce full bandgaps for light

propagation; however, from the fabrication point of view it is more appealing to work with lower

dimensional materials. PhC membranes are a class of PhCs where the light propagation in two planar
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Figure 1.3: (a) A pictorial sketch of a PhC membrane. (b) Bandstructure of the PhC for propagation

in different crystallographic directions (Only the TE modes are plotted). The hexagonal in the middle

shows the Brillouin zone. The blue region is the light cone, where the modes are not bound to the

membrane. The yellow area indicates the bandgap for the TE modes.

dimensions is controlled by the modulation of the refractive index of the material, and in the third

direction the light is confined to the membrane by total internal reflection. Figure 1.3 shows triangular

lattice of air holes in a membrane. The modes of the membrane can be classified as transverse magnetic

modes (TM) and transverse electric (TE) modes, according to their symmetry with respect to the

center of the membrane. The particular geometry of the crystal has a bandgap only for the TE modes.

The lattice constant of the PhC is a and the hole radius is r. Figure 1.3(b) shows the energy of TE

modes for different propagation directions. The solid black lines are the eigenmodes of the membrane.

The blue area in this plot is the light cone, where the modes are not bounded to the membrane. The

interesting section of this bandstructure is the area colored yellow, where no modes are supported

inside the PhC. Depletion of optical modes has several consequences. For instance, the spontaneous

emission from an emitter is inhibited at these frequencies which is an important feature for quantum

electrodynamics of the emitter. This is the topic of chapter 3. Furthermore, a geometrical defect

(for instance a displaced or removed hole) creates tightly localized modes in the bandgap of the PhC.

This fact is the operational concept of most of the PhC based devices [12], such as PhC cavities and

waveguides. PhC cavities and waveguide have attracted a tremendous interest in the recent decades

and have been successfully used for a wide range of applications [12].
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Figure 1.4: The structure of a PCW can be seen as an inset on the right side of the figure. (a)

Bandstructure of the PCW. The three guided TE modes are shown as solid black lines. The red

rectangle and the red circle mark Ng = 5 and Ng = 58 respectively. The light propagation is slowed

down in the PCW and ultimately reaches zero when the frequency approaches the band-edge of the

primary mode. The gray regions are membrane guided modes. These modes are bounded to the

membrane but not to the waveguide. The blue area is the light cone. (b) The group index (Ng) as a

function of the frequency.

One of the interesting nanostructures based on PhCs is the PCW. A photonic-crystal waveguide

(PCW) is created by removing a row of holes from a perfect PhC, see the inset in the right side of

figure 1.4. Figure 1.4(a) shows the bandstructure of a PCW. The solid black lines are the guided

modes of the waveguide. At the frequency of these modes, the light is tightly bound to the defect-line

and only propagates along the defect-line; other optical modes are still inhibited as for the PhC. Three

different waveguide modes are visible in figure 1.4. The interesting feature of the guided modes is

the low group velocity of these modes close to the bandedge(kx = π/a). At these frequencies, the

light propagation slows down and ultimately at the band-edge the propagation speed reaches zero.

Figure 1.4(b) shows the group refractive index, Ng, for the lowest-energy mode of the waveguide. The

slow-down of the light is important for several applications, for instance small-footprint delay lines.

Another consequence of slow propagation velocity is the stronger interaction of the light and matter

inside the PCW.

The interaction between the primary mode and an embedded quantum emitter is very efficient

for two reasons. First of all, the decay rate of a quantum emitter inside a PCW is proportional to

Ng of the waveguide, and hence the decay rate of the emitter is highly enhanced close to the PCW

edge. Secondly, all other optical modes are inhibited, which means that the coupling to these modes

is decreased significantly. These two properties make a PCW an ideal candidate for a 1D atom. In

the next section, we discuss the concept of 1D atom and its applications.
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(a) (b)

Figure 1.5: (a) The far-field pattern of an atom. The dipole moment of the atom is oriented along the

red arrow. Photons are emitted on a toroid-like shape in free space. (b) An atom efficiently coupled

to a waveguide mode. All the photons emitted from the atom couple to the waveguide. Hence, the

waveguide acts as a deterministic interface to the atom.

1.3 1D atom

Two-level systems are considered as the building blocks of the quantum computers [13]. In the

quantum optical approach to a quantum computer, atoms or artificial atoms are the candidate for the

two-level system [14,15]. However, a deterministic interface between the atom and flying photons is a

must for scalable quantum information processing [15, 16]. Unfortunately, the emission pattern of an

atom is distributed over a 4π solid angel and a deterministic interface to a bare atom is impossible.

Figure 1.5(a) shows the far-field emission pattern of a dipole emitter, for instance. On the other hand,

it is possible to couple the individual atoms to single localized or propagating modes. In such a case,

the coupling efficiency of the atom to the target mode can be measured as the ratio of the decay-rate

of the atom to the target mode over the total decay rate of the atom β =
Γtarget

Γtarget+γ
, where γ is the

decay to all other modes. Ultimately in the case that γ << Γtarget, β approaches one, which means

all the photons emitted from the atom are collected to a single mode. Such a system is called a 1D

atom [17], since all the photons that are launched to the mode will interact with the atom and all

the photons that are scattered from the atom will couple to the single mode. Figure 1.5(b) shows a

schematic demonstration of a 1D atom.

A number of different platforms have been proposed to realize a 1D atom. Experimentally, mi-

crowave qubits coupled to superconducting waveguides [18], single atoms coupled to micro-cavities

[19, 20] and waveguides [21], single QDs coupled to PCWs and dielectric nanowires [22–24], and ni-

trogen vacancy centers coupled to plasmonic nanowires [25] have been shown to exhibit properties

similar to a 1D atom.

Theoretically 1D atom opens numerous opportunities for scalable quantum computing [15]. A true

1D atom will enable deterministic CNOT gates [15], photon sorters [26], Bell-state analyzers [26], and

single-photon transistors. Along with these, a 1D atom enables obtaining optical nonlinearities on

single photon levels, where the response of the system for one incident photon and two incident photons

is different. Such a giant nonlinearity can have applications for quantum and classical information
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processing. Single-photon nonlinearity from an artificial atom (QD) coupled to a PCW is the topic of

the last chapter of the thesis.

1.4 Outline of the thesis

This thesis is organized as follows. Chapter 2 deals with the effect of disorder in PCWs and Anderson

localization. We experimentally probe the statistics of the lifetime enhancement from QDs coupled

to Anderson-localized cavities. Also, we observe and model the effect of disorder on the band-edge of

the PCWs.

Chapter 3 includes an extensive modeling of quantum electrodynamics of a dipole emitter in a

PCW. We present a method to extract the exact local density of states in a PCW, and to separate

the contribution from the guided mode and the radiation modes of the waveguide. Finally we discuss

the relevance of the modelings to very recent experiments. The results in this chapter reemphasize

the potential of QDs embedded in PCWs as a platform to realize a 1D emitter.

In chapter 4, the experimental details of resonantly exciting QDs in PCWs are presented. The

ground state of the QDs is a metastable state, and a weak aboveband laser helps stabilize this ground

state. We examine the effect of the aboveband laser intensity and wavelength on the optical properties

of a QD. The results in this chapter lay the grounds for the work in chapter 5. In chapter 5, we

experimentally demonstrate optical nonlinearity in the transmission of a 1D artificial atom, composed

of a QD embedded in a PCW. The power dependence of the transmission of the artificial atom shows a

nonlinear behavior, where the critical photon number is below one photon. The single photon nature

of the nonlinearity is further confirmed by the modified photon statistics of the transmitted field. The

demonstrated nonlinear transmission of the 1D artificial atom has a broad range of applications from

photon sorters and switches to single-photon transistors.
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Chapter 2

Classical and quantum

electrodynamical effects in disordered

photonic-crystal waveguides

This chapter partly builds on reference [27]. In this chapter, we present a statistical study of the

Purcell enhancement of the light emission from quantum dots coupled to Anderson-localized cavities

formed in disordered photonic-crystal waveguides. We measure the time-resolved light emission from

both single quantum emitters coupled to Anderson-localized cavities and directly from the cavities that

are fed by multiple quantum dots. Strongly inhibited and enhanced decay rates are observed relative

to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report

an average Purcell factor of 4.5±0.4 without applying any spectral tuning. Also, we study and model

the effect of disorder on the band-edge of the photonic-crystal waveguides. The experimental data

show a blueshift and broadening of the band-edge of the photonic-crystal waveguide with increasing

amount of disorder in the sample, in qualitative agreement with the numerical models.

2.1 Introduction and literature review

Photonic crystals are arguably one of the best approaches to engineer light propagation and inter-

action [12, 28]. During the past decades, significant effort has been spent on designing and utilizing

photonic crystal based devices for various applications both in classical and quantum optics [29, 30].

In the classical domain, cavities with Q-factors reaching 2 million [31], nonlinear optical interactions,

frequency conversion [32], and very low-power optical switching have been demonstrated [33]. In

the quantum regime, controlled spontaneous emission [34,35] with modifications of the emission rate

approaching two orders of magnitude [36] and strong coupling between a single quantum dot and a

photon in a photonic-crystal cavity [37] have been achieved.
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As discussed in chapter 1, PhCs are dielectric structures where a periodic variation of the refractive

index leads to the formation of a frequency range, the photonic band gap, where the electromagnetic

wave propagation is strongly suppressed [12]. One possible implementation of a two dimensional PhC

can be obtained by etching a hexagonal lattice of holes in a membrane of a high refractive index

material. In such a PhC, a photonic-crystal waveguide (PCW) is formed by leaving out a row of

holes, see figure 2.1(a). In that case, light is tightly confined and effectively guided along the missing

row of holes due to the presence of an in-plane band gap in the PhC and by total internal reflection

within the membrane. Three different (longitudinal) waveguide modes are found in the band gap, cf.

the dispersion diagram of figure 2.1(b) and the mode profiles in Figs. 2.1(c) and 2.1(d).

At the edges of a PhC band gap and close to the cut-off of the waveguide modes, the LDOS is

strongly enhanced and even diverges in the case of a perfect crystal. This effect is called the Van-Hove

singularity and implies an ideally vanishing waveguide mode group velocity thus forming a standing

wave. In real structures, fabrication imperfections smooth this singularity, but a strongly enhanced

LDOS still prevails near the cutoff of the waveguide mode [38]. This ability to enhance the LDOS

makes PhCs and PCWs very useful for slowing down light [39], optomechanical experiments [40] and

deterministic photon-emitter interfaces [22,23] for quantum-information applications.

The presence of disorder in a PhC, ultimately due to the limited precision of the fabrication process,

breaks the discrete translational symmetry of the structure, see figure 2.1(a). Disorder degrades the

performance of the PhC-based structures in several ways. Disorder induces propagation loss in the

PCWs [41–45], and decreases the quality factor of the PhC cavities. Disorder can also shift the spectral

position of the PhC cavities and waveguides [46, 47]. It also forms localization by inducing random

multiple scattering of light and creates one-dimensional Anderson-localized modes [11,48].

The Anderson-localized modes approximately inherit the polarization properties of the propagating

modes in the waveguide, as seen in figure 1(c) and 1(d). Due to their random nature, a statistical

analysis is required to extract the spectral and spatial properties of these modes. They appear around

and below the cut-off frequency of the waveguide mode or at the band-edge forming a so-called Lifshitz

tail [49, 50], as marked in figure 2.1(b) by the shadowed regions for the waveguide modes. After

ensemble averaging over all configurations of disorder, the electric field from an embedded emitter will

decay exponentially in space with a characteristic length called the localization length (ξ) [51]. A finite-

element calculation of the Ey components of two different Anderson-localized modes is shown in figures.

2.1(c) and 2.1(d) that is compared to the Bloch modes of the ideal periodic structure. Remarkably,

such random cavities in a PCW have been found to have quality (Q) factors and mode volumes that are

comparable to state-of-the-art engineered cavities [52–54], both in silicon-based structures [52] and in

optically active materials such as GaAs [55], with the benefit of having less stringent requirements on

sample fabrication precision. Disorder-induced cavities have attracted significant attention and have

been proposed for light harvesting [56], used in cavity quantum electrodynamic (QED) experiments

[55], and for random lasing [57,58].

Several groups have studied the effect of disorder and the formation of Anderson localization in

photonic-crystal waveguides [44, 46, 47, 50, 52, 55, 58–67]. Topolancik et al. studied light transmission
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Figure 2.1: (a) Scanning-electron micrographs of photonic-crystal waveguides with different amounts

of intentional disorder in the hole position. Dashed circles indicate the positions of the holes in a

perfectly periodic structure. (b) Dispersion relation for an ideal photonic-crystal waveguide showing

the fundamental (dashed blue line) and high-energy (green) guided modes from a full 3D simulation

of a photonic-crystal membrane structure. The blue area corresponds to the light cone where the

radiation is not bound to membrane. The band gap of the photonic crystal extends from a/λ = 0.255

to the top of the figure. The shadowed area near the cutoff of the guided modes indicate the spectral

range where Anderson-localized modes appear. The red curve is a sketch of the local density of optical

states of a disordered structure. (c) and (d) Illustration of Anderson-localized modes obtained from

2D finite-element calculation of the Ey component of the electric field in a disordered perturbed PCW

with σ = 1% introduced disorder in the hole positions (left) and along an unperturbed PCW (right)

corresponding to the high-energy (λ = 850 nm) (c) and fundamental (λ = 930 nm) (d) guided modes

shown in (b).

in photonic-crystal waveguides and observed strong localization around the primary guided mode

of the PCW due to Anderson localization [52]. They later reported on Q-factors in the range of

6 × 105 in the telecommunication wavelengths, due to Anderson localization. Baron et al. studied

light transport in photonic-crystal waveguides and coupled cavity waveguides theoretically. They

predicted that exponential decay of the light transmission in presence of disorder holds for photonic-

crystal waveguides, although the strong dispersion. They also predicted that the exponential decay

law would not hold for grating nanowire waveguides [63]. Other groups mapped out the near-field

profiles in presence of disorder [50, 64]. They observed light localization around the band-edge of the

waveguide and mapped the extinction length of the Anderson-localized cavities.

Several works from our group studied Anderson-localized modes with embedded emitters. The

advantage of embedded emitters is the ability to excite the AL modes that are deeply embedded in
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the waveguide. Smolka at. el. used the statistical distribution of the Q-factors of Anderson-localized

cavities to discriminate the loss length and localization length in disordered PCW [62]. They studied

samples with different amounts of extrinsic disorder. According to their results, the localization length

and loss length on the samples with fabrication limited disorder are 7µm and 600 µm respectively.

It was also reported that the loss length decreases and localization length increases with increasing

amount of disorder. Garćıa et al. studied the broadening of the Lifshitz tail versus different amounts

of disorder [67]. They compared the results to the numerical simulations, successfully mapping the

fabrication limited disorder to the uncertainty in the position of air holes in PCW. According to the

results, the fabrication limited disorder is equivalent to 1.2nm uncertainty in the air hole position.

The other advantage of using samples with embedded emitters is to study the local density of

states in the nanostructure. Sapienza et al. studied decay rate of single emitters embedded in dis-

ordered PCWs and observed strong enhancement of the decay rate of QDs due to coupling to the

Anderson-localized modes [55]. The Anderson localization nature of the cavities was verified through

the statistical distribution of intensity of the localized modes. The probability of entanglement be-

tween a single quantum dot and a photon in an Anderson-localized mode was investigated in refer-

ence [66], where a probability of 1% was found for parameters corresponding to recent samples and

experiments. In addition, from the statistical distribution of Purcell factors the probability to observe

largely enhanced decay rates was assessed.

The complex nature of multiple scattering of light requires a statistical approach that accounts for

the statistical distribution of the relevant physical parameters describing the system. The main goal

of this chapter is to give the first experimental study of the statistics of the decay rate of emitters

embedded in disordered PCWs. We present statistical measurements of the decay dynamics of QDs

in disordered PCWs both for the case where the cavities are probed directly and for the case that

single quantum dots are tuned into resonance with Anderson-localized modes. The data sets provide

two alternative ways of experimentally extracting Purcell factor statistics. In the first presented data

set we measure the decay dynamics of the Anderson-localized modes and extract the fastest rate of

the multi-exponential decay curves. This procedure records the rate of the quantum dot that is best

coupled to this particular Anderson-localized mode while the detuning between the emitter and the

cavity is not optimized. For the second data set, we tune a single quantum dot through resonance

of an Anderson-localized mode. This uncovers the full potential of the Anderson-localized modes but

at the expense that the measurements are time consuming thereby limiting the amount of statistical

data that can be collected. From our measurements, we evaluate the light-matter interaction strength

and compare the experimental data to the theoretically predicted distributions illustrating that the

best observed cavities are at the onset of the strong-coupling regime.

In the second part of this chapter, we experimentally study the broadening of the Lifshitz tail and

its position versus disorder. We create spectrally resolved, spatial maps of Anderson-localized cavities

by scanning along the PCW. We observe a blue shift of the PCW mode with increasing amount

of disorder. We also observed broadening of the Lifshitz tail by increasing disorder as expected. We

compare our experimental results to theoretical predictions based on an eigenvalue expansion method.

The experimental data helps identifying the more suitable model for the eigenvalue expansions. The
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experimental data and theoretical predictions are in qualitative agreement.
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Figure 2.2: (a) Two-dimensional finite-element calculation of the Ey component of an Anderson-

localized mode along a PCW with σ = 1% introduced disorder. The inset shows two dipoles placed

at a node (green) and an anti-node (blueblack) of the cavity, thus experiencing a very different local

density of optical states. (b) Sketch of the experimental setup. See main text for detailed explanations.

(c) Emission spectra of the sample under high excitation power (dashed curve) showing the Anderson-

localized modes, and under low excitation power ( solid curve) showing Anderson-localized modes

and quantum dot lines. (d) Examples of time-resolved photoluminescence decay curves of different

Anderson-localized cavities fitted with multi exponentials (dashed lines). The pronounced differences

in the decay times are attributed to the different spatial and spectral positioning of the dominant

emitter feeding the cavities.
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2.2 Quantum electrodynamical effects of Anderson-localized modes

In this section, we describe the experimental procedure and results showing the effect of Anderson-

localized cavities on the local density of states in a PCW waveguide.

2.2.1 Experimental methods

The samples studied are 150 nm thick GaAs membranes with an embedded layer of self-assembled

InAs quantum dots in the center with a density of 80 µm−2 that emit light in the 890 nm - 1000 nm

wavelength range. A set of 100 µm long PCWs with a hexagonal lattice of holes and varying lattice

constant (a) and hole radius (r) are etched in the membrane. All waveguides are at least 10 times

longer than the measured localization length [62], assuring that Anderson-localized modes are formed

near the cut-off of the waveguide mode. Various types of disorder likely contribute to the intrinsic

disorder, including uncertainties in the positions and radii of the holes as well as surface roughness.

Apart from the intrinsic fabrication imperfections in shape, size, and position of the holes, additional

engineered disorder is introduced in the sample by randomly varying the position of the three rows of

holes on each side of the waveguide according to a normal distribution with a mean value of zero and

a variance of σ × a, where σ is varied from 0% to 12% (cf. figure 2.1(a)). Figure 2.2(a) schematically

represents two quantum dots at two different positions showing the two potential dipole orientations

with respect to the Ey field component of an Anderson-localized mode in a PCW. To carry out the

optical measurements, the sample is placed in a liquid Helium flow cryostat and cooled down to 10

K, see figure 2.2(b). A pulsed Ti:Sapphire laser with 5 pico-second pulse width emitting at 800 nm

is focused on the sample through a microscope objective with NA = 0.55 from the top to a spot size

of about 1.4 µm2, and the emission from the quantum dots is collected through the same microscope

objective. The cryostat is mounted on translational stages to control the excitation and collection

spot with an accuracy of 100nm. The emission is polarization filtered with a half-wave plate and a

polarizing beam-splitter, coupled to a polarization maintaining single mode fiber for spatial filtering,

and sent to a monochromator with spectral resolution of 50 pm. The filtered light is finally detected

with a CCD for spectral measurements or with an avalanche photo diode (APD) for time-resolved

measurements.

In order to create wavelength resolved spatial maps of the Anderson-localized modes, we excite

the sample with high-power aboveband which results in saturation of the single dots. The resulting

inhomogeneous emission from the ensemble of quantum dots excites the localized modes efficiently.

We move the collection spot along the waveguide and record the intensity of emission on the CCD of

the spectrometer, see figure 2.2(b) for sketch of the experimental setup. We extract an approximate

DOS by summing up all the observed intensities along the waveguide and normalizing it.

Time-resolved measurements are performed using two different approaches. In the first one, a set of

waveguides with lattice constant a = 240nm, hole radius r = 74nm, and different disorder degrees (0-

5% and 9%) are investigated, where the cut-off of the fundamental guided mode is at 930 nm. For high
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pump powers (57 µW/µm2), the spectral properties of the Anderson-localized modes are determined.

The excitation power is then reduced to 0.57 µW/µm2, cf. figure 2.2(c), which is close to the saturation

power of a single quantum dot and time-resolved measurements are performed on the cavity emission

spectrum. In such time-resolved measurements on the cavity peak, emission is recorded from all

the quantum dots that are coupled to the cavity mode implying that the decay curves are generally

multi-exponential. We concentrate here on the fastest component of the decay curves corresponding

to emission from the quantum dot that couples best to the cavity. The measured decay curves (see

figure 2.2(d) for representative examples) are fitted satisfactorily well with either single exponential,

bi-exponential, or triple-exponential models after convolution with the 66 ps wide instrument response

function of the setup acquired by sending the excitation laser reflected off the sample substrate through

the setup. The same procedure is repeated for all of the observed Anderson-localized modes in the

samples and very large variations are observed between different cavities. This procedure enables us

to acquire a large data set for the statistical analysis, which provides a lower bound on the actual

Purcell enhancement that can be obtained in the system, since the detuning between the quantum

dots and cavity modes is not controlled. In the second approach, the Purcell factor is probed directly

by time-resolved photoluminescence experiments on a single quantum dot emission line after tuning

it into resonance with an Anderson-localized cavity by varying the temperature from 10 K to 30

K [68]. The fast decay rate originates from the recombination of the bright exciton of the resonant

quantum dot. The Purcell factor is extracted by relating the measured decay rates to the average

decay rate of 1.1 ns−1 obtained from quantum dots in a homogeneous environment. The optimum

Purcell factor for a quantum dot perfectly matched spatially and spectrally to a cavity is given by

FP = 3Q(λ/n)3/4π2V , where n = 3.44 is the refractive index of the membrane and Q and V are

the quality factor and mode volume of the cavity. From this relation, a conservative upper bound

on the mode volume of the Anderson-localized cavity can be extracted. It is worth mentioning that

intrinsic non-radiative processes give rise to a small residual recombination rate in the quantum dots,

which in the case of radiatively suppressed quantum dots leads to an underestimation of the inhibition

factor [36]. For the enhanced quantum dots, on the contrary, the non-radiative decay rate is usually

negligible.

2.2.2 Far-field mapping of the Anderson-localized modes along the photonic-

crystal waveguide

We reconstruct the spatial distribution of the Anderson-localized modes along PCWs for different

amount of disorder. Figure 2.3 shows a sample scan along the waveguide with σ = 2% at the spectrum

around the primary mode of the waveguide. The bright peaks in this figure correspond to Anderson-

localized cavities. Several localized modes are observed while scanning the collection spot along the

waveguide. The band-edge of this mode is around λ =933 nm. The Anderson-localized modes are

spread around this value. These localized modes have Q-factors in the order of 3000. It is difficult to

extract the spatial extent of the localized cavities from this data, since the crowded spectrum in figure

2.3. Previous work [62] estimated the localization length for σ = 2% to be around 4µm (assuming a

distribution of losses). The localized modes in figure 2.3 appear to extends in the range of few µms
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Figure 2.3: . Wavelength resolved spatial scan along the waveguide. We record the light intensity on a

spectrometer while scanning the excitation and collection spot. The strong peaks along the waveguide

are attributed to the Anderson-localized modes. The waveguide has 2% extrinsic disorder.

which qualitatively agree with the more accurate quantification in [62]. Next section presents the

time-resolved analysis of emission from these localized modes.

2.2.3 Time-resolved measurements on Anderson-localized cavities

In this section, we present the experimental data of the spontaneous emission dynamics recorded

when collecting light from the Anderson-localized cavities. We study the two different waveguide

branches and for different degrees of disorder. We observe a distribution of Purcell factors reflecting

the statistical distribution of coupling coefficients due to the random nature of the Anderson-localized

cavities and the spatial and spectral matching of the quantum dot emitters to the cavities. Figure

2.4 shows the statistics of the measured Purcell factor. The histogram in figure 2.4(a) shows the case

of the secondary waveguide mode which can be probed with the quantum dots by choosing a sample

with a = 260 nm and r = 78 nm, and in this case we focus on σ = 0% (i.e., only intrinsic disorder).

We observe an average Purcell factor of 1.7 together with a variance of 0.5. We stress that the Purcell

factor obtained from these types of measurements constitute lower bounds of the actual Purcell factor

of a quantum dot tuned into resonance.

We also study the fundamental waveguide mode while varying σ from 0% to 9%. For this purpose,

a waveguide with parameters a = 240 nm and r = 74 nm is chosen, which has a band-edge at

932nm. The histograms in Figs. 2.4(b) to 2.4(d) include the experimentally extracted Purcell factor

distributions for the waveguides with σ = 0%, 3%, and 9%, respectively. The localized modes are

found to span a spectral range between 3 nm and 7 nm. Compared to the measurements made at

the high frequency waveguide mode, cf. figure 2.4(a), the Purcell factors are generally found to be

considerably higher and have a broader distribution for the fundamental mode where also higher cavity

Q-factors are observed, see insets of Figs. 2.4(a) to 2.4(d). The observed Purcell factors in this case

range from 0.2 to 12, i.e., very pronounced suppression and enhancement is observed reflecting the

broad range of coupling efficiencies found due to the statistical properties of the cavities. Figure 2.4(e)
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Figure 2.4: (a) Histogram of the measured decay rates from the Anderson-localized modes appearing

along an unperturbed PCW (σ = 0%) with a = 260 nm and r = 78 nm for the high-energy guided

mode. The inset shows the histogram of the cavity Q-factors. (b),(c) and (d) Histograms displaying

the Purcell factor measured on Anderson-localized modes for the fundamental guided mode of a PCW

with a = 240 nm and r = 74 nm and for σ = 0%, σ = 3% σ = 9%, respectively. The insets show the

measured Purcell factor vs. the corresponding cavity Q-factor. The lack of clear correlation between Q

factor and decay rates is attributed to the uncontrolled spatial and spectral matching of the dominant

emitter to the cavity. (e) Mean and variance of the measured Purcell factors vs. disorder degree for

the data of (b)-(d). The variance is defined as Var(Fp) = 〈F 2
p 〉 − 〈Fp〉2 and the error bars in 〈Fp〉 are

the square root of the variance.

shows the mean and variance of the Purcell factor for waveguides with different amounts of disorder.

The mean value of Purcell factor for individual distribution varies between 3.5 to 5.8 depending on

the degree of disorder. There is also a clear trend in the mean value of Purcell factors versus extrinsic

disorder. Increasing intentional disorder up to 3% tends to increase the mean value of the Purcell

factor from 3.5 to 5.5 while further increase in the disorder amount decreases the mean value of the

Purcell factor. The collected statistics reveal that there is a significant enhancement of light-matter

interaction in the disordered medium.

We note that the uncertainty on each individual Purcell factor, due to the uncertainty in the fitting
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PHOTONIC-CRYSTAL WAVEGUIDES

routine of the decay rate, is in the range of ∆Fp ≈ 0.4. This value is smaller than the square root of the

variance of the Purcell factor reported in figure 2.4(e). The variance of the Purcell factor distributions

shown in figure 2.4(e) is due to the inherent statistical distribution of the Anderson-localized cavities

including the random positioning of the individual QDs with respect to the cavities. While the former

is determined by the amount of disorder in the structure [62], the latter is independent of disorder.

The interplay between these two mechanisms gives rise to the non-trivial dependence of the variance

of the Purcell factor with disorder in figure 2.4(e).

2.2.4 Time-resolved measurements on single quantum dots
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Figure 2.5: (a) Emission spectrum of the fastest quantum dot (Purcell factor of 23.8±1.5) while

temperature tuning it through resonance of an Anderson-localized mode. (b) Decay curve recorded

from the quantum dot in (a) at resonance with the cavity. The fit is shown as the solid red line. The

green curve is the instrument response function(IRF) of the detector). (c) Purcell factor statistics

obtained after tuning single quantum dots into resonance for a PCW with r = 69 nm, a = 230 nm, and

σ = 1% (Blue histogram). The red histogram shows the theoretically calculated distribution using the

theory in [66]. (d) Extracted upper bound on the mode volume vs. the corresponding cavity Q-factor.

In the previous section, we found a maximum in the average Purcell factor for quantum dots
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2.3. EFFECT OF DISORDER ON THE SPECTRAL POSITION OF BAND-EDGE

coupled to Anderson-localized cavities appearing near the cutoff of the fundamental guided mode1. In

order to measure the Purcell factor more precisely, the detuning between quantum dot and cavity is

controlled through temperature and the decay rate is extracted on resonance. Figure 2.5(a) shows the

spectrum of a single quantum dot while temperature tuning it across the resonance of an Anderson-

localized cavity. We have repeated this procedure for a total of 10 different quantum dots along the

PCW. The statistics are plotted in figure 2.5(c), where we observe Purcell factors in the range of 4 - 7

together with a quantum dot with a Purcell factor as high as 23.8. For comparison, the theoretically

predicted distributions are also plotted in figure 2.5(c). The theory predicts a wide range of Purcell

factors but the experiment has focused on extracting the large-value tail of the distribution due to the

limited statistics available in the experiment. The inset in figure 2.5(c) plots the measured Purcell

factors vs. the cavity Q, where no clear correlation is observed, which is attributed to the fact that

the quantum dots are positioned randomly relative to the electric field of the localized cavities. Using

the theoretical expression for the Purcell factor, we can estimate upper bounds on the mode volume

of the individual Anderson-localized modes that are plotted in figure 2.5(d). The extracted values

range between 0.5 to 2.2µm3, where we stress that spatial mismatch mentioned above will imply that

these values are significantly overestimated, and likely to be consistent with the mode volumes in the

range of 0.07 - 0.1µm3 recently obtained from random lasing experiments [58].

Finally, we analyze in detail the case of a Purcell factor of 23.8±1.5, shown in figure 4(b). In this

case, the upper bound for the mode volume is 0.40±0.03 µm3 and the spatial positioning and dipole

orientation is likely to be close to optimal. The criterion for strong coupling between a quantum

dot and a cavity is g/κ > 1/4, where κ = 2πc/λQ is the loss rate of the cavity, g is the coupling

strength between the emitter and the cavity, c is speed of light in vacuum, and λ is the wavelength of

the emitted photon. For this particularly fast quantum dot, this ratio is g/κ = 0.130 ± 0.004, which

indicates that the cavity is in the weak-coupling regime, but close to the onset of strong coupling.

Another important figure-of-merit is the β-factor that specifies the fraction of recombination events

of the quantum dot that leads to a photon in the cavity. An estimate of β is obtained by comparing

the decay rate of the quantum dot when tuned away from resonance to the rate on resonance [38].

We obtained β = 86% for the highly enhanced quantum dot. This number is limited by the applied

tuning range of the quantum dot in this experiment. From the measurements on other quantum dots

that are suppressed and therefore not well coupled to cavity modes we estimate that a typical rate for

coupling to other channels than the cavity would be 0.15 ns−1. From such an estimate we conclude

that the quantum dots are coupled to the Anderson-localized cavities with β-factors reaching as high

as 99%.

2.3 Effect of disorder on the spectral position of band-edge

In addition to backscattering and Anderson localization, disorder is also responsible for the spectral

shift of the PhC cavities and PCW bands [46,47,59]. It has been observed that the transmission of a

PCW decreases and peak transmission blue shifts with increasing amount of disorder [59]. However,

1Data taken by Luca Sapienza and Henri Thyrrestrup
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a band-edge shift is hard to observe in transmission-type measurements, since three different mecha-

nisms, i.e Anderson localization, out of plane scattering, and photonic gap, reduce the transmission

of the waveguide indistinguishably. However, spectral shifts in the position of the Anderson-localized

modes clearly indicate a shift in the band-edge of the PCW.

(a) (b) (c)

(d) (e) (f)

920 930 940
0

20

40

60

80

100

l (
m

)

  (nm) 

=intrinsic%

 

 

0

1

920 930 940
0

20

40

60

80

100

l (
m

)

  (nm) 

=1%

 

 

0

1

920 930 940
0

20

40

60

80

100

l (
m

)

  (nm) 

=2%

 

 

0

1

920 930 940
0

20

40

60

80

100

l (
m

)

  (nm) 

=3%

 

 

0

1

920 930 940
0

20

40

60

80

100

l (
m

)

  (nm) 

=4%

 

 

0

1

920 930 940
0

20

40

60

80

100

l (
m

)

  (nm) 

=5%

 

 

0

1

I
0

I
0

I
0

I
0

I
0

I
0

Figure 2.6: . Wavelength resolved spatial scan along the waveguide for six different amounts of

extrinsic disorder. σ = 0% (intrinsic disorder) to 5% corresponding to (a) to (f). The y axis is the

position along the waveguide and the x axis is the wavelength in free space. The spectral position

of Anderson-localized modes, and hence the band-edge, appears to blue shift with increasing amount

of σ. Broadening of the Lifshitz tail with increasing amount of disorder is also clear. Length of the

localized modes increase with increasing Disorder in correlation with the increase in localization length

observed before.

In this section, we map out the light scattered from the Anderson-localized modes along the PCW

for waveguides with different amounts of disorder ranging from σ = 0% to σ = 5%. The experimental

method is described in section 2.2.1. Figure 2.6 shows the wavelength resolved spatial map along these

waveguide. All these waveguides have the parameters a =240 nm and r =74 nm. However it is evident

from figure 2.6 that the position of the Anderson-localized modes blue shifts with increasing amount

of disorder. It is also worth mentioning that the waveguide with σ = 2% is an outlier to this trend.

As expected from the theory in [67] the Lifshitz tail, increases with increasing amount of disorder and

the localized modes appear over a broadened range.

Note that the area between l = 0 to 5µm and also l = 95 to 100µm appear to have slightly

different band-edges compared to the rest of the waveguide. This is more clear for the three waveguides
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2.3. EFFECT OF DISORDER ON THE SPECTRAL POSITION OF BAND-EDGE

σ = 0% to 2%. The reason for this shift is the edge effects present in this area. For all the conclusions

drawn hereafter, these regions are neglected.

Fabrication related issues, such as scanning electron microscope proximity effects, and other mask

production and etching steps can easily change the parameter of a PCW and cause shifts in the band

edges. However, these effects are less likely to be the source of the shifts observed, since these effects

are sensitive to larger area variations on the sample and the variations in the hole positions cancel out

when averaged over scale of a waveguide.

2.3.1 Numerical modeling of disorder induce band-edge shift

In order to gain further understanding of the observed band shifts and to compare the shifts to

the theory, we carried out numerical modeling. In reference [47], a mean blue shift and broadening

of waveguide band-edge with disorder was predicted. The theory in reference [47] is an eigenvalue

expansion method that takes into account the rapidly varying refractive index profile at the air and

material interface. The mean shift of the band-edge is attributed to local field effects. This shift is

absent when the slowly varying material/air interface assumption [69] is made. Full details about the

modeling method can be found in [47,70] 2.

The mean value of the waveguide band shift is given by [47,70]:

E
[
∆ω(1)

]
= −ω0

2

∫
cell

E [E∗(r).P (r)] , (2.1)

where E∗(r) is the electric field in the unperturbed eigenmode, P (r) is the polarization function that

characterizes disorder, and E is the ensemble averaging symbol. The variance of the band-edge shift

can be calculated as:

E
[
∆ω(2)

]
=
ω2

0

4

∫
cell

E [E∗(r).P (r)E∗(r′).P (r′)] drdr′, (2.2)

The choice of the right polarization model is very important to calculate these shifts correctly. Two

models that have been widely used for modeling dielectric perturbations: weak-index contrast, and

smooth-perturbation. We model P (r) with the bump-perturbation polarization model with cylindrical

bump shapes [69,70]. This model is valid for abrupt interfaces of arbitrary shape which is the relevant

type of perturbation in this work. As was noted in reference [47], resonance shifts in the band structure

are due to local field effects and are not predicted by either the weak-index contract or the smooth-

perturbation models. In contrast to [47], in this work the disorder is applied to the position of the

holes, which is the relevant case for our experiments.

Since disorder shifts and broadens the mode edge, a useful quantity for experimental comparison is

the density of states, DOS. To compute the DOS, we remind the reader that the definition of DOS bears

close resemblance to the mathematical definition of a probability density function (PDF). We calculate

DOS for a disordered PCW by creating a disordered band structure where ω(k) = ω0(k) + ∆ω(k).

2The numerical work has been done in Professor Stephen Hughes group in Queen’s University and I am thankful to

Nishan Mann for providing the data in figure 2.7(a).

21



CHAPTER 2. CLASSICAL AND QUANTUM ELECTRODYNAMICAL EFFECTS IN DISORDERED

PHOTONIC-CRYSTAL WAVEGUIDES

ω0(k) is the frequency corresponding to eigenvalue k of the perfect structure and ∆ω(k) is a random

variable with mean E
[
∆ω(1)

]
and variance E

[
∆ω(2)

]
. The data set of ω(k) allows us to calculate the

ensemble averaged DOS.

2.3.2 Comparison to experimental results
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Figure 2.7: . (a) Theoretical curves showing LDOS in disordered PCW. (b) Experimental results

showing DOS versus different amounts of disorder. The theoretical predictions qualitatively match

the experimental results. Theoretical and experimental results show a blue shift for the band-edge

with increasing amount of disorder.

We used the model described in the previous section to calculate the ensemble averaged DOS.

Figure 2.7 shows the theoretical ensemble averaged DOS for waveguides with σ = 0% to 5%. We use

the intrinsic amount of disorder for the case of σ = 0%. For each waveguide, we ensemble average

over 500 disorder instances. For all σ, the observed band-edge shift is towards higher frequencies. The

band-edge broadens with increasing amount of disorder as expected. We note that the prediction of

a mean blue shift is non-trivial and is solely due to the asymmetric polarizabilities present in bump

perturbation polarization model.

Experimentally, the DOS can be extracted as an average LDOS over the spatial degrees of freedom.

To do so, we integrate the data in 2.6 along the y axis and normalize the resulting spectrum to its

maximum. Figure 2.7(b) shows the experimentally extracted DOS for σ = 0% to σ = 5%. The

experimentally extracted normalized DOS peak appears to blue shift and broaden with increasing

disorder, in qualitative agreement with numerical predictions in part (a).

The lack of solid quantitative agreement between results in 2.7(a) and (b) can be attributed to

several facts. First of all, the theory predicts the DOS for an infinitely periodic disordered unit cell

and then does the ensemble averaging [47, 70]. This is an approximation for the experiments, since

the actual waveguides are made up of unit cells with different instantiations of disorder. Secondly,

the localized modes that form in aperiodic disordered waveguides do not appear in the periodically

disordered waveguide case. And finally, multiple scattering becomes important for waveguides with

σ > 2% and Ng > 20. Therefore, the periodic disordered model, provides and upper bound on the
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mode edge broadening and a non-perturbative multiple scattering model would be needed to properly

deal with the localized modes.

2.4 Conclusions

In this chapter, we have presented a statistical analysis of the emission dynamics from single quantum

dots embedded in disordered PCWs. The measurement of the decay dynamics from the Anderson-

localized modes enables efficient collection of a large amount of data. These measurements provide

detailed insight about the statistical properties of QED in disordered PCWs. We observe a dependence

of the distribution of the Purcell factor with the amount of disorder. We attribute this dependence

to the interplay between the statistical distribution of the Anderson-localized modes and the random

positioning of the individual QDs with respect to them. Measuring the decay rate of single quantum

dots that are spectrally tuned across the cavities allows to reliably extract the Purcell factor. Hence,

we observed Purcell factors in the range of 4-7 together with an extraordinarily large Purcell factor of

23.8±1.5. The experimental data are compared to theory where a very broad distribution of Purcell

factors is expected that cannot be fully resolved in the present experiment. This work demonstrates

the promising potential of disordered nanophotonic structures for QED experiments and shows that

the transition to the strong-coupling regime should be within experimental reach [71].

In the second section of this chapter, we spectrally mapped the Anderson-localized cavities in

PCWs with various amounts of disorder. The spectral position of these mode appeared to systemat-

ically blue shift with increasing amount of disorder. Also the Lifshitz tail broadened with increasing

disorder. From the spatial maps of Anderson-localized modes, we extracted the normalized DOS. We

compared these results to numerical results based on bump-perturbation polarization model. A good

qualitative agreement between the theoretical predictions of the band-edge shifts and the experimental

results was observed. The inclusion of the local field effects for the correct prediction of band-edge

shifts is crucial.
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Chapter 3

Numerical modeling of quantum

emitters in a modified local density of

states

This chapter partly builds on reference [72]. As discussed in the introduction chapter, the density of

states in a photonic crystal (PhC) is significantly modified compared to a homogenous medium. In this

chapter, we study the local density of states (LDOS) in membranized photonic crystal nanostructures.

We develop a 3D numerical model based on finite element method to simulate LDOS in PhCs and

photonic-crystal waveguides (PCW). The method is used to extract detailed spatial maps of the LDOS

in PhCs. For a PCW, the method is extended to separate the LDOS contribution from radiation

continuum and the contribution from the PCW mode. We plot detailed spatial maps of coupling to

the radiation continuum, and the β-factor. The results are compared to recent experiments. In the

last part, the out-coupling from PCWs is considered. We model the far-field pattern of two different

out-couplers that are normally used in the experiments. Our results show that the coupling efficiency

between a PCW and embedded dipoles is close to unity (>90%) for a wide range of frequencies and

spatial positions of the dipole. The results in this chapter highlight potential of two level emitters

embedded in PCWs as robust 1D atoms.

3.1 Introduction and literature review

The environment of an emitter can drastically modify its emission dynamics. It was first predicted

by Purcell that placing an emitter in a cavity would increase its decay rate [73]. A change in the

decay of the emitter close to planar interfaces was first observed by Drexhage [74]. Two decades later,

the enhancement of microwave transitions of Rydberg atoms in high-Q cavities was reported [75].

Around the same time it was realized that the spontaneous emission rate of a quantum emitter can
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also be suppressed by placing it in a photonic band gap [10, 76]. These led to a significant effort in

understanding and controlling the effect of the environment around a quantum emitter. The strong

coupling of an atom to a single mode of a cavity, where interaction between a single mode is much

stronger than rest of the modes, was subsequently observed [77, 78]. Theoretically it was predicted

that the spontaneous emission rate of a quantum emitter can also be suppressed by placing it in a

photonic band gap [10, 11, 76]. Further theoretical work has concentrated on detailed understanding

of the effect of the environment on decay dynamics of a quantum emitter [79–85].

Quantum dots have a particular advantage when it comes to engineering the photonic environment

around them. The first experiment demonstrated a Purcell enhancement of 5 with quantum dots in

micropillars cavities [86]. In the last decade enhancement and inhibition of emission from single

quantum dots in inverse-opal photonic crystals [34], membrane photonic-crystal cavities [35, 87], and

micropillars cavities [88,89] was experimentally demonstrated [90]. Several groups also achieved strong

coupling between single quantum dots and different nanostructures [37, 91–93]; see [94] for a review

of this topic.

Further theoretical studies demonstrated the possibility of strong modification of spontaneous

emission from quantum emitters in photonic crystals with partial band-gap (photonic-crystal mem-

branes). Koenderink, et al. numerically showed that, it is possible to strongly inhibit emission from

quantum emitters in the band gap of a triangular photonic-crystal membrane [81]. Later, Wang et al.

measured inhibition factors of up to 70 in the bandgap of photonic-crystal membranes [36,95].

It was proposed that photonic-crystal waveguides can enhance the emission rate of a dipole to

the single mode of the waveguide [96] over a very broad bandwidth. Also, it was understood that

the combination of inhibition of the radiation to the membrane modes and the enhancement of the

radiation to the waveguide mode, results in most of the emission from the emitter to funnel into the

single mode of the waveguide [97,98].

The ratio of the power coupled to the waveguide mode over the total power emitted from the emitter

is defined as ”β-factor”. A high β-factor is desirable for most of applications and particularly to realize

a 1D atom. Several experiments have shown very high β-factors for single quantum dots in photonic-

crystal waveguides. Lund-Hansen et el. reported β-factors of up to 89%. Since, several groups have

measured β-factors as high as 98% for quantum emitters coupled to single guided modes [22,23,99–102].

This chapter is organized as follows: We first review the equations governing the dynamics of

spontaneous emission of an emitter in an arbitrary medium. The second section gives an overview

of the finite element method (FEM) and its application to solution of partial differential equations.

Next, we apply frequency domain FEM in 3D to calculate the local density of optical states in a

PhC and derive detailed spatial maps for LDOS in the bad gap of PhC. The section 3.5 aims at

calculating the LDOS in a PCW and separating the contributions from primary guided mode and the

radiation continuum. We develop special Dirichlet boundary conditions to deal with the boundaries

of the waveguide and to reduce the reflections from simulation domain boundaries. We create spatial

maps showing the position dependence of the coupling to the leaky modes and the spatial map of

coupling efficiency to the waveguide mode. We briefly discuss the relevance of these simulations for
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recent experiments. In the last part of this chapter we consider out-coupling from PCW and calculate

far-field patterns of second order Bragg gratings and inverse taper out-coupler.

3.2 Spontaneous emission rate of a quantum emitter

The interaction of a two level emitter with a reservoir of electromagnetic modes is described by the

Jaynes-Cummings Hamiltonian [103].

Ĥ =
∑
k

~ωkâ†kâk +
1

2
~ω0σ̂z +

∑
k

[
~gkσ̂+âke

i(ω0−ωk)t + h.c.
]
, (3.1)

where âk, â†k are annihilation and creation operators, for mode k, σ̂z = |e〉 〈e| − |g〉 〈g|, σ̂+ = |e〉 〈g|
are the emitter-population operators. The coupling strength between the emitter and the mode k

of the reservoir is gk(r0) = i~d · Ê†k(r0)/~ , where d̂ is the dipole moment of the emitter, Êk =√
~ωk
2ε0

ûk(r), and ûk(r)s are eigenvectors of the nanostructure and satisfy the normalization condition∫
dr3ε(r)ûk(r) · ûk(r)∗ = δkk′ .

The equation of motion for the population of the excited state of the emitter can be simplified

as [30]:
∂ce(t)

∂t
= − d2

2ε0~

∫ ∞
0

dω ωρ(r0, ω, êd)

∫ t

0

dt′ce(t
′)ei∆(t−t′), (3.2)

where ce(t) is the probability amplitude of the emitter being in the excited state, ∆ = ω0 − ω, d is

the amplitude of d̂, and ρ is the local density of states (LDOS) which is defined as [30,104,105]:

Im
[
ê∗d ·
←→
G (r, r, ω) · êd

]
=
πω

2

∑
k

|êd · ûk(r)|2 δ(ω − ωk)

=
πω

2
ρ(r, ω, êd).

(3.3)

êd is a unit vector oriented along the dipole moment,
←→
G (r, r, ω) is the Green’s tensor and is defined

as the solution to the Helmholtz equation with a delta current source located at r′ [30].

Under Wigner-Weisskopf approximation equation 3.2 simplifies to :

∂ce(t)

∂t
= −Γce(t),

Γ =
πd2

ε0~
ω0ρ(r, ω, êd).

(3.4)

where Γ is the radiative decay rate of the emitter in the medium.

It is often appealing to compare the decay rate of an emitter in a nanostructure to its decay rate in

a reference medium. The Purcell factor is defined as Fp = Γ/γ0, where γ0 is the decay rate of emitter

in a reference medium. This allows to cancel out the trivial dependencies on oscillator strength and

frequency. The decay rate of an emitter in a homogenous medium is γ0 = nω3|d|2
3πε0~c3 , where n is the

refractive index of the homogenous medium. Hereafter, the term Purcell-factor and normalized LDOS

are used interchangeably, since this is implied by definition of Purcell factor.
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(a) (b)FDM mesh FEM mesh

Figure 3.1: A typical mesh (a) for FDM modeling, and (b) for FEM modeling of a 2D problem. Finite

element mesh is much more accurate in resolving the sharp edges.

It is challenging to get analytical solutions for Green’s tensor for most ε(r) configurations, and

one has to revert to numerical methods for a solution. In this thesis, we use finite element method to

numerically calculate the projected local density of states for various 3D photonic crystal nanostruc-

tures.

3.3 Preface to finite element modeling

In this section, we briefly introduce the finite element modeling and concepts and related concepts.

Different approaches for obtaining numerical solution of the differential equation:

L{u} = f(u, r), (3.5)

have emerged since the 1950s. In this equation L is the differential operator of order m, vector r ∈ Rn

is the vector of n independent variables, and u is the dependent variable. Most approaches are based

on discretizing the generally continuous domain of the r ∈ Rn to ri ∈ Nn, where N is a finite

numerable subset of R. The subdomain Nn is called a mesh.

The next task is to find ui so that ui ≈ u(ri). The initial approach was to choose Nn = N1⊗N2⊗
...Nn. This approach is called finite difference method (FDM). Following this approach the operator

L can be converted to an algebraic sum of the uis. Hence, the equation 3.5 can be converted to

linear system of equations and solved respectively. This approach provides very powerful tool to solve

differential equations, however the discretization of the domain Rn is limited to rectangular meshes

which is a draw back when dealing with complex geometries [106, 107], see 3.1 for a typical FDM

mesh.

The alternate approach is to discretize the Rn to a set of subdomains. The geometry of the

subdomains are not restricted to rectangles and can be any polyhedrons. The common shapes for

the mesh elements are tetrahedrons and hexahedrons in 3D case. There are several formulations for

solving equation 3.5 using an inhomogeneous mesh. The core of these formulations is to convert
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equation 3.5, called the ”strong form”, to a an integral form.∫
Ω

L{u}v −
∫
Ω

f(u, r)v = 0, (3.6)

where Ω is the modeling domain and v is an arbitrary function.

Equation 3.6 is called the weak form. It is possible to prove that if u satisfies the weak form

equation for any v, it is a solution to the strong form also. Often, depending on the nature of L,

Gauss or Green’s formula is applied to equation 3.6 to soften the requirement on the continuity of u

and also to lower the rank of L. For example consider the equation

∇.(−c∇u) = f. (3.7)

The weak form of this equation simplifies to:∫
Ω

c∇u.∇v −
∫
Ω

fv −
∫
∂Ω

c∇u.nv = 0. (3.8)

The third term in this equation is the boundary condition requirement. A solution u to the above

equation needs to be differentiable just once, while the solution to the original equation needs to be

twice differentiable with respect to independent variables. In principle, the solution u to equation 3.8

should be tested for all v defined over Rn [108]. However, this is practically impossible and normally u

is tested against an orthonormal set of functions eji, where subscript i refers to the mesh element and

j runs over the orthonormal set [107]. Often one chooses the set eji so that each eji is only nonzero

over element i [107]. Also, following Galerkin’s method, and without loss of generality, ui is written

as:
ui =

∑
j

Cijeji. (3.9)

Inserting equation 3.9 to 3.6, the integro-differential equation 3.6 can be turned to a system of linear

equations. Note that the eis are local to mesh elements and
∫

Ω
eiΩaejΩb = δij,ab [107].

For the mesh element i, the size of {eji} determines the order of element, or in other words, the

number of degrees of freedom for the mesh element. Obviously, the accuracy of the solution depends

on the size of {ej}. It is very important to check the accuracy of the solution set {ui}. A convergence

is reached when the solution does not depend on the size of {ej} within certain deviations.

The main advantage of FEM over FDM is at dealing with complex structures. Due to the flexible

shape of the elements, FEM is able to resolve the geometry of the structure with much better accuracy,

hence the results of the solution converge at much bigger element sizes than that of the FDM [106,107].

Figure 3.1a and 3.1b show a complex object with FDM and FEM meshes in the background. As it is

clear, FEM resolves the geometrical features of the object much better, thanks to its flexible mesh.

On the other hand, the linear system of equations resulting from FEM are generally harder to

solve and require careful ordering of the elements in the solution matrix. Also meshing the simulation

domain into smaller subdomains is challenging and requires smart meshing strategies.

Fortunately, a wide range of commercial and open-source FEM packages are available that deal

with the numerical complexities, ANSYS, COMSOL, and Maxwell, to name a few. For the propose
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of this thesis we will be using a commercially available package, COMSOL. The software package has

a wide range of tools dedicated to electromagnetic problems. The package has features to handle the

problem of meshing the simulation domain and also provides access to a wide range of direct, iterative

and preconditioned iterative solvers among many other features.

3.4 Decay rate of a dipole in a photonic crystal

As discussed in 1.2, a PhC is a highly dispersive and the mode density is very different from homoge-

nous media. Figure 3.2 shows the band diagram of a membrane photonic crystal along the Brillouin

zone edge. The membrane guided modes, solid black lines in figure 3.2 , are bounded to the PhC

membrane by total internal reflection. The blue area in figure 3.2 corresponds to the radiation modes.

These modes are not bound to the membrane and leak to the surrounding environment. Also note

that these modes are present at all frequencies. In general, the decay rate of an emitter is a sum of

contributions from these to set of modes, Γ = Γmembrane + γrad.
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Figure 3.2: Dispersion diagram of a PhC membrane along the border of the irreducible Brillouin zone

for transverse electric modes. The blue shaded areas represent the light cone. The yellow region is

the partial band gap of the structure. The red triangle represents the irreducible Brillouin zone. The

green line indicates the frequency studied in 3.4.

The yellow area in 3.2 is the band gap of the PhC. For this energy range the membrane guided

modes are suppressed. That means the only channels for an emitter to decay are the radiation modes,

Γ = γrad.

It is challenging to calculate all the eigenvectors of such a band diagram, since it involves discretiz-

ing the continuum of the radiation modes. As a result, we solve the full 3D Maxwell’s equation for a

small current element which represents a dipole emitter. We post process these solutions to calculate

the power emitted by the current element and extract the normalized LDOS (Fp). The next section
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describes details of the simulations.

3.4.1 Details of implementation

As mentioned in the previous section the approach in this thesis is to solve the inhomogeneous

Maxwell’s equations rather than eigenvalue expansion. We extract Γ for two orthogonal in-plane

dipole orientations, x and y that are located in the center of waveguide. However, the approach

presented in this section is general and can be used for any type of in-plane dipoles.

We calculate the LDOS in different photonic crystal nanostructures by solving the inhomogeneous

Helmholtz equation for a classical dipole numerically using frequency domain FEM. We model the

dipole with a very small current element J0 running in direction ~e, ~e ∈ ~x, ~y. The total power emitted

from this current source is proportional to the decay rate of a quantum emitter with dipole strength

d at the position of the source

Γ =
Pd2

~ω3J2
0

. (3.10)

This equation can also be written as P/P0 = Γ/Γ0, where Γ0 and P0 are the respective decay rate

of quantum emitter and power radiated from a classical current source in a homogenous medium.

The total power emitted from this dipole can be extracted as Ptotal = 1/2Re[J0

∫
L
~E.dl], where the

integration is a line integration over the length of the current element [85] or for a point dipole as

1/2Re[ ~J0 · ~E] [81]. J0 is the amplitude of the vector ~J0. These equations are equivalent to integrating

the Poynting’s vector over a closed surface around the current source.

Ptotal = 1/2Re[

∮
s

~E × ~H† · ~ds] (3.11)

For all the simulations in this thesis we consider dipoles that are oriented in the plane of the

membrane, x-y plane in figure 3.3 and are located in the center of membrane. Since the symmetry

of the structure across the plane z = 0, the solutions of Maxwell’s equations also have the mirror

symmetry across the z = 0 plane and (Ez(z = 0) = 0 and ∂
∂z{Ex, Ey}|z=0 = 0). In other words, the

dipoles that are oriented in plane of the PCW and are positioned in the center of the membrane do

not couple to the TM modes. As a result, the simulation domain can be cut to half along z = 0.

Figure 3.3 show the simulation domain for a PhC membrane, with lattice constant a and hole

radius r. The simulation domain consists of a PhC membrane (colored gray in figure 3.3), an air box

of height h, and perfectly matched layers (PML) [109]. The blue box in figure 3.3 is the PML, which

absorbs the incoming waves. The red box in figure 3.3 inset, depicts the surface s in equation 3.11,

used for extracting the total power emitted by the dipole. The refractive index of the PhC membrane

is assumed to be 3.5 corresponding to refractive index of GaAs around 900 nm at 10 Kelvin. Table 3.1

contains the parameters characterizing the simulation domain.

The photonic crystal is terminated in the homogenous membrane which in turn is terminated

by PMLs to absorb the light escaping from the PhC. One should note that the interface between
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Figure 3.3: Cut through view of the simulation domain. The blue box around the membrane is the

PML. The PMLs cover air boundaries and the material boundaries. The inset shows a zoom in on

the location of the dipole. The double sided arrow shows the current element. Poyinting’s vector

integrated over the red box gives the amount of power radiated from the current source. Note that

dz is half of the actual membrane thickness due to symmetry conditions across z = 0. The dimension

in the figure are not to the scale.

Table 3.1: Parameter list for the simulation domain of the dipole in PhC membrane.

Parameter l w h dz lPhC wPhC wPML

Value 4.2µm 5.1µm 1.6µm 80nm 15a 9
√

3a 0.5µm

the homogenous membrane and the PhC can give rise to finite size effects. However, for the case

of PhC membrane, we are mainly interested in the frequency range of bandedge, where the in-plane

light propagation is negligible for sufficiently large PhCs. The PMLs are effective for the waves in

homogenous medium, so the light radiated to the air domain gets absorbed by them.

3.4.2 Results

In order to map the spatial dependence of the Purcell factor in the PhC membrane, we run the

simulations for different dipole positions inside the cubic unit cell and extracted the corresponding

Fp. Figure 3.4(a) and (b) show the position dependence of projected LDOS for a dipole in the band

gap of the PhC. As expected, the radiative decay of the emitter is inhibited due to reduced density of

optical states. As evident from 3.4(a) and (b)the Fp in the band gap strongly depends on the position

of the emitter and its orientation. For optimally located dipoles, the radiative decay is inhibited by

factors of around 160.

These results compare nicely with the theoretical results reported by Koenderink et al. [81], where

finite difference time domain was used. The main challenge in time domain simulations is to accurately
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Figure 3.4: (a) and (b) Spatial maps for Purcell factor (normalized LDOS) of an emitter in the band

gap of a PhC membrane, (a) for a x-oriented emitter, and (b) for a y-oriented emitter. The frequency

of the emitter corresponds to the vertical green line in part (c) of this figure. The γ0 is assumed to

be the decay rate of an emitter in homogenous material with n = 3.5. The radiative emission for the

emitter is suppressed by factors of up to 160 depending on the position of the dipole. (c) Frequency

dependence of Fp for x- and y-oriented emitters, positioned at the points depicted by arrows in parts

(a) and (b).

transform the power emitted by the dipole from time domain to frequency domain. When comparing

the results with [81], one should note that the results in [81] are normalized to radiation from the

emitter in air.

Figure 3.4(c) shows the frequency dependence of the Fp for a dipole positioned in the point of

arrows in Figures 3.4(a) and (b) for the two orientations x (red line), and y (blue line). As expected

the Fp varies very slowly in the band gap of the PhC for both dipole orientations and the high

inhibition is maintained for all of the band gap. For the frequency ranges outside the bandgap there is

a significant coupling to the TE modes present which results in a increased decay rate of the emitter.

The residual LDOS at frequencies of ban gap is due to coupling to the radiation continuum.

It is also instructive to look at the field profile resulting from the dipoles located in the band gap.

Figure 3.5 shows the norm of electric field for two different dipole orientations. The coupling between

the dipole and evanescent modes results in these mode profiles. This observation can be interpreted as

dipole induced localization of light in the band gap [110]. These localized modes might be interesting
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Figure 3.5: Field profile for x- and y-oriented dipoles at band gap frequencies. The dipole couples to

a set of evanescent modes which form the field profiles above. These mode can also be interpreted as

dipole induced localization of light.

for different QED proposes, e.g. coupling of two atoms or quantum dots. Also note that the loss

rate from these cavities is Fpγ0 of the quantum emitter responsible for the localization. The localized

modes formed around an InAs QD, have Q-factors in the range of 107. This value is a conservative

estimate based on experimental results.

These results further shed light on the potential of photonic crystals for QED applications where

they open a possibility to efficiently interface a single emitter.

3.4.3 Connection to the experimental results

It is interesting to compare the results of simulations in this section to some of the reported in recent

experiments [36, 111]. Julsgaard et al. measured decay rate of ensemble of quantum dots in a PhC

for different frequencies. They observed an average inhibition of factor of 6 for the emission inside

the band gap [111]. Wang et al. studied the decay rate of single quantum dots in the center of a

PhC membrane. They observed that the radiative component of the decay rate of the single quantum

dots was suppressed inside the band gap of a PhC compared to a uniform membrane. The average

inhibition observed was around 20. They also reported suppressions as high as 70 for quantum dots

inside the band gap [36]. These results lie within the theoretical calculations in the previous section.
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3.5 Electrodynamics of a dipole in a photonic-crystal waveguide

In this, section we study LDOS in a PCW and discriminate contributions from different modes. Figure

3.6(a), shows the band diagram of the TE modes for a membrane PCW. The propagation of light

in a PCW is governed by Bloch theorem [12]. The Bloch modes have the periodicity of the crystal

lattice in the direction of the waveguide with a phase factor, ~EBloch = ~Ewge
ikx, where ~Ewg is periodic

over unit cell. Moreover, inside the band gap of the photonic crystal, light is mainly guided by three

highly confined modes, and for a major part of the spectrum light transmission is single moded (figure

3.6(a), solid black lines). Light propagation in the individual waveguide modes is highly dispersive.

The propagation velocity of the wave is reduced as its frequency approaches the band-edge and the

group index of the propagation theoretically diverges. Since the partial band gap of the PCW,

there exist a continuum of modes that are not confined to membrane and leak to the surrounding

environment (blue area in figure3.6(a)). In the context of light propagation, disorder in the PCW

couples the guided modes of the PCW and the continuum which leads to leaks and propagation losses

in the PCW as discussed in 2. In what follows, we study the effect of different modes of the band

structure on the decay dynamics of embedded quantum emitters.
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Figure 3.6: (a) Band diagram of a PCW membrane for TE modes. The solid black lines are the TE

guided modes of the waveguide. The gray regions mark the membrane guided modes of the structure.

The blue region is the continuum of the radiation modes that are not bounded to the membrane at all.

The red circle and square mark the frequencies corresponding to Ng = 5 and Ng = 58 respectively.

(b) The sketch of a quantum emitter in the middle of a PCW showing the coupling to radiation modes

and to the bounded mode, blue region and solid black lines in part (b) of this figure.

The modes in figure 3.6 can be classified into three categories, the guided modes of PCW (the

solid black lines in figure 3.6(a)), the membrane guided modes (the gray region in figure 3.6(a)) and

the continuum of the radiation modes (colored as blue in figure 3.6(a)). At each frequency, the total

decay rate of the emitter can be written as a sum of the contribution from these three set of modes
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plus contributions from coupling to TM modes:

Γemitter =Γwg(w)+

γrad(w) + γmembrane(w) + γTM(w).
(3.12)

As discussed before, we are mainly concerned with dipoles that are located in the center of the

membrane and oriented in plane of the membrane, and hence do not couple to antisymmetric modes

of the membrane (TM modes). The frequency range of interest for a PCW is also mainly the region

around the primary guided mode. In this spectral region, the membrane guided modes are suppressed

and the light is strongly confined to the center of the waveguide. An emitter located close to center

of the waveguide couples to two main sets of modes: the primary mode of the waveguide and the

continuum of the radiation modes, see illustration in figure 3.6(b).

The solution to the Maxwell’s equations under these conditions is:

~E = Ar0 ~Ewge
ikx +Al0 ~E

†
wge
−ikx +

∑
k

ck~urad, (3.13)

where, ~Ewge
ikx is the right propagating eigenvector of the primary waveguide mode. The Green’s

tensor for waveguide modes in this frequency range, neglecting the radiation modes, can be written

as:

←→
G (r, r0, ω) =

iωε0

2
∫

unitcell

Re[ ~E†wg × ~Hwg]dr3
×
[
Θ(x− x0) ~Ewg(r)⊗ ~E†wg(r0)eik(x−x0)

+Θ(x0 − x) ~E†wg(r)⊗ ~Ewg(r0)e−ik(x−x0)
]
.

(3.14)

The electric field generated from a point dipole based on the Green’s tensor is:

~E =
1

ε0

←→
G (ω, r, r0) · ~d(ω, r0). (3.15)

Using the three equations above the general form of the coefficients Ar0 and Al0 for an arbitrarily

oriented dipole moment can be derived as:

A
l(r)
0 =

iω ~E
(†)
wg (r0) · ~d(r0)

2
∫

unitcell

1/aRe[ ~Ewg × ~H†wg].~xdr3
Θ((±)(x− x0)). (3.16)

Hereon, we use A
l(r)
0 = A

l(r)
0 (x = x0). It is straight forward to calculate the Γwg using the eigenvalue

ωk, the corresponding eigenvector ~Ek(ω, r), equation 3.16, and [85,97]:

Γwg = Fwg
p γ0, , Fwg

p =
6π2c3ε0| ~Ewg · ~e|2

ω2
∫

unitcell

nRe[1/a ~Ewg × ~H†wg] · ~xdr3
, (3.17)

where γ0 = nω3|µ|2
3πε0~c3 is the decay rate of emitter in the membrane material, n is the refractive index of

the membrane material and Fwg
p is the Purcell factor due to coupling to waveguide mode.

The parameter quantifying the fraction of radiation coupled to the primary waveguide mode is

defined as:

β =
Γwg

Γtotal
. (3.18)
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For the case of an emitter at the spectral range of the primary PCW mode, β =
Γwg

Γwg+γrad
.

Calculation of γrad in the same way is involved and requires discretization of the radiation contin-

uum, which has its own complications [98], and is in general very time consuming. Our approach to

this problem is to solve for the full Maxwell’s equations for a dipole in the waveguide using frequency

domain FEM as in previous section and then separate the contributions from the two set of the modes.

3.5.1 Simulation method

We extract γrad for two orthogonal in-plane dipole orientations, x and y that are located in the center

of waveguide. The approach presented in this section is general and can be used for any type of

in-plane dipoles. As in section 3.4.1 the particular orientation of the emitters and the symmetry of

the structure in z direction allows to cut the simulation domain to half in the z-direction. Also as in

the previous section we model a dipole by a small current element.

For a PCW, the main challenge in solving Maxwell’s equations is to decouple the physical size

of solution domain from the results. It is also highly desirable to limit the geometrical size of the

simulation domain to the minimum possible. The general approach towards these goals has been to

introduce an absorber in the boundaries of a finite simulation domain and adiabatically absorb the

incoming wave [109,112]. This approach is fully justified under two assumptions: the field impinging

on the boundary should be a mode of the geometry that is invariant in the direction perpendicular to

the boundary, and the solutions of the Maxwell’s equations have to be propagating waves rather than

evanescent fields in the direction normal to the boundary. In our case the simulation domain satisfies

the requirements of PML in the three boundaries, y = minimum, y = maximum and z = maximum,

hence we can apply PML boundary conditions, see figure 3.7. Conversely, a PCW does not satisfy the

first requirement above in the propagation direction (x), since its periodic nature in this direction. The

generalization of the PML concept to photonic crystals has also proved to be inefficient in reducing

the reflections from the boundaries of simulation domain [113].

In order to mimic an open system in the waveguide direction (x), we apply Dirichlet boundary

conditions, ~E|x± = C± at the two ends of the waveguide (x±). In general the value of C± is a sum

of contributions from primary mode of the waveguide and the radiation continuum. We assume that

the main contribution to C± is from the primary mode of the waveguide, neglecting the contributions

from the radiation modes on these boundaries. We check the validity of this assumption by running

a convergence test over the length of the simulation domain. Using equation 3.13, the value of the

electric fields at the right and left boundaries (x±) is:

E|x± = −|Ar(l)0 |e−iφ ~E(†)
wge
±ikx± , (3.19)

where φ is the phase of the projected electric field on the dipole at the position r0, and r0 is the position

of the dipole in the unit cell. We call these boundary conditions “active boundary conditions”. The

amplitudes A
r(l)
0 can be calculated by plugging eigenvalues to the equation 3.16. In the case of linear

dipoles, these amplitudes simplify to:
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|Ar0| = |Al0| =
√√√√ ~ωΓwg

2
∫

unitcell

1/aRe[ ~E†wg × ~Hwg].~xdr3

φ = Arg(−i ~Ewg(r0).~d).

(3.20)

In general, the γrad may be extracted by subtracting Γwg from Γtotal, where Γtotal is the power

integrated on the small box around the emitter and Γwg is extracted from equation 3.17. However,

for the case of a PCW γrad � Γwg and smallest reflections and numerical inaccuracies in Γwg spoil

γrad. This can be avoided by calculating the γrad directly through integrating Poynting’s vector over

a box surrounding the current source and leaving out the integration over the boundaries normal to

waveguide direction (x in figure 3.7), see green box in figure 3.7.
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Figure 3.7: A cut through of the simulation domain. The blue box is the PML layer around the air

domain. The green box is the integration surface that captures the radiation modes and the red plane

is where the active boundary conditions are applied.

Figure 3.7 shows the geometry of the simulation domain. The PCW membrane has a length of

l = (2n + 1)a and a width of w =
√

3(2m + 1)a and is surrounded by an air box of height Dz. The

refractive index of the PCW membrane is chosen to be 3.5 corresponding to refractive index of the

GaAs. The simulation domain is encapsulated by perfectly matched layers (PML) on all sides (blue

box in 3.7). The width of the PML layer is wPML. Active boundary conditions override the PMLs on

the two ends of simulation domain normal to the waveguide direction (red plane in figure 3.7). The

height of these planes are hbnd and they cover the full waveguide in the y direction. The green box

in figure 3.7 resembles the box that captures the radiation modes. lb,wb and hb are the length, width

and height of the radiation box. Note that the figure 3.7 is a sketch and the dimensions do not have

the right ratio.
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Table 3.2: Parameter list

Parameter l w Dz lb wb hb hbnd dz

Value 33a 9
√

3a 1.6µm 7.6µm 8
√

3a 0.6µm 0.5µm 80nm

Table 3.2 gives parameter values used in the simulations in the rest of the article. To establish

these numbers we have carried out numerous convergence tests. Some of the results of convergence

tests will follow at the end of this section.

The simulation procedure is as follows: We first carry out an eigenvalue calculation to determine

the frequency, Ng, eigenvector of the primary guided mode and the F pwg for the dipole position. Using

equation 3.19 we determine the correct amplitudes for the respective boundaries of the waveguide.

Next we run a finite element frequency simulation of the dipole in PCW with the active boundary

conditions. The total power emitted from the waveguide is calculated by integrating Poynting’s vector

over a small box around the dipole. The γrad is extracted by integrating the Poynting’s vector over

the radiation box. In the next section the results of these simulations are presented.

3.5.2 Results

Application of the active boundary conditions suppresses the reflection from the boundaries of the

simulation domain very effectively. Figure 3.8(a) and (b) illustrate the |E| for a y-oriented dipole in

the antinode of the Ey field for two different Ngs, 58 and 5 respectively, corresponding to slow and

fast light propagation in PCW . The dipole position and orientation is marked by double sided arrow.

The plots are zoom-ins around the position of the dipole. It is worth emphasizing that the value of

|E| is divergent at the point of the dipole, hence the color bars in figure 3.8 are saturated.

The field intensities on the right and left side of the simulation domain are uniform as expected

from an infinite system. However the field profile is more intense around the dipole. These features

are due to coupling of the dipole to evanescent modes of the PCW that are absent in the band diagram

of figure 3.6. This can also be thought of dipole induce cavities in the waveguide. It is also important

to mention that the shape of these localized modes totally depend on the position, orientation and

frequency of the responsible dipole.

Due to the high suppression of the non-guided modes in a photonic crystal in addition to the en-

hancement of light emission to the primary waveguide mode, the β factor for the embedded emitters

is known to be high [97, 98]. However an extensive study showing the position and frequency depen-

dence of the γrad and hence the β-factor has been missing. Figure 3.9 provides a deeper insight to the

issue. The three columns of this figure, from left to right, correspond to spatial maps of the Purcell

factor due to coupling to primary waveguide mode Fwg
p , Purcell factor due to coupling to radiation

continuum (F rad
p = γrad

γ0
), and the β-factor. Upper half of the figure shows the spatial maps of the

listed parameters for x and y oriented dipoles with a frequency corresponding to Ng = 5 (fast light

region). As clear from right hand column of figure 3.9(a) and (b), the waveguide mode in the fast
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Figure 3.8: (a) Norm of the electric field from a y-dipole in the anti-node of the Ey for Ng = 58

and (b) Ng = 5. The blue arrow shows the dipole position and its orientation. The chevron like

feature around the dipole is the dipole-induced cavity. The color scale is saturated due to divergence

of electric field at the point of dipole.

light region is more confined to the center of the waveguide. The maximum value of the Fwg
p reaches

1.1 for y-oriented dipole and 0.5, hence the spatial distribution of the high β-factors are concentrated

in the central part of the PCW.

The lower half presents the results for a dipole in the slow light regime (Ng = 58). The maximum

of the Fwg
p for both x- and y oriented dipoles is around 9 due to slow light propagation. It is also

interesting to compare the γrad for the two frequencies in figure 3.9 for parallel dipoles. The maximum

value of F rad
p for x-oriented dipole in slow light regime differs from the F rad

p for x-oriented dipole in

fast light regime by 0.013. This difference for the y-oriented dipoles is 0.007. In both cases it appears

that going from the slow light to fast light regime the maximum of the coupling to the radiation

modes increases by roughly 10%. However this not monotonically true for all positions of the dipole

and actually there are significant differences depending on the position of the dipole. The values of

F rad
p , and their spatial dependence is similar to the case of a dipole in a perfect photonic crystal, as

in section 3.4.2.
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Figure 3.9: The spatial dependence of the waveguide Purcell factor (left column), the Purcell factor

resulting from coupling to unguided radiation modes (center column), and the corresponding radiative

β-factor, right column. (a) and (b) are at Ng = 5, and (c) and (d) are at Ng = 58. (a) and (c) plots

are for x-oriented dipoles and (b) and (d) for y-oriented dipoles. Note the highly nonlinear scale on β

factor maps in (c) and (d).

The spatial maps of the β-factor are also very intriguing. In the fast light regime, where the Fwg
p is

relatively low, β-factors above 93% are readily visible. However, The high β-factor positions in figure

3.9(a) and (b) are limited to the center of the waveguide. Interestingly, for the dipoles in the slow light
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Figure 3.10: F rad
p |Ng=5 − F rad

p |Ng=58 for x-oriented dipoles (a), and for y-oriented dipoles (b). The

frequency dependence of the coupling to radiation continuum is found to be highly nontrivial and

position dependent. (c) Frequency sweep of F rad
p for x and y-oriented dipoles in the antinode of Ey.

region of the spectrum, the beta factor is higher than 0.99 for a very wide range of the dipole positions.

Also note that the color bar in the 3.9c and d is highly nonlinear. Accurate Spatial positioning for

many of the quantum emitters considered for scalable quantum information processing, e.g. quantum

dots, nitrogen vacancy centers and etc., is challenging. The very wide spatial range of the β-factor for

dipoles in the slow light region of the PCW can help relieve the requirement on spatial positioning of

the emitters. These results are in well agreement with the previous work [96–98]. Furthermore, these

results give a more extensive and detailed understanding of the potential of PCWs for efficient single

emitter-photon interface, as well as single photon sources.

Figure 3.10 presents the frequency dependence of the coupling to radiation modes for the two

dipole orientations. We plot the difference in F rad
p between Ng = 58 and Ng = 5 for different dipole

positions. Figure 3.10(a) shows F rad
p |Ng=5 − F rad

p |Ng=58 for x-oriented dipoles. The value of F rad
p

appears to be higher by a factor of 2 at fast light region along the center of the waveguide. The main

dispersive behavior for y dipoles is also observed in the center of the waveguide. However the increase

in F rad
p for x-oriented dipole is more than y-oriented dipole. It is also interesting to note that this

dispersive behavior happens at the node of the Ex of the PCW mode (x component of the electric

field). Figure 3.10(c) shows detailed frequency dependence of F rad
p for x- and y-oriented dipoles at

the antinode of Ey (the same spatial positions as 3.8).

The next section presents some of the convergence tests carried out to ensure the validity and

accuracy of the results presented so far.
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3.5.3 Convergence test results
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Figure 3.11: (a) Dependence of γbox on the size of the integration box. For much of the parameter

range γbox is within 5% of the γrad. (b) Dependence of the γbox on the actual size of the simulation

domain. Both a and b are calculated for y-oriented dipole in the anti-node of the Ey field. The

frequency of the dipole corresponds to Ng = 58.

Figure 3.11 presents some of the convergence tests carried out to ensure validity of the simulations

and choice of the radiation box size. We choose γbox/γrad as the target parameter for convergence

tests, where γbox is the amount of radiation captured by radiation box of size hb and lb and γrad is

the final value of γrad. It is clear from figure 3.11(a) that as long the box is long enough or the height

of the box is short the value of γbox is independent of the size of the radiation box, within 5%. A

change in the length of the box from 15a to 40a results in around 5% change in the target parameter.

Part (b) of figure 3.11 shows the dependence of the γrad on the size of actual simulation domain. The

results in figure 3.11 are obtained using a y-oriented dipole at Ey antinode and Ng = 58.

We also studied the effect of the mesh size on the γrad. Some of the results can be found in

appendix B. However, due to the meshing strategy, the results are rather robust to the meshing of the

simulation domain. Details about the meshing of the simulation domain can be found in appendix B.

In the lower part of the figure 3.11(a), the value of γbox/γrad appears to decrease with decreasing

height of the box in this range. However, one should also note that size of the active boundary condition

is equal to 6dz. Hence, the integration over the radiation box, in this range captures contributions

from the waveguide mode. Moreover, as discussed in appendix A, there is always a residual reflection

at the boundaries of the waveguide and this residual reflection mostly is radiated to the air domain

and captured by the lower radiation boxes.

We repeated the same tests for dipoles at a few more positions, orientations and frequencies and

got similar results in terms of convergence. Hence, we conclude that the results in section 3.5.2 are

accurate within 5%.
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3.5.4 Comparison to experiments

Slow Fast GratingFastGrating

Figure 3.12: An sketch of the sample designed to extract the β-factor experimentally. The white circle

in the center of the figure resembles a QD. The emitted photons mostly couple to the waveguide mode.

The two sections on the right and left, indicated as fast, are the fast light regions. The two second

order Bragg gratings couple the waveguide mode perpendicularly out of the sample. The green spot

in the center of the waveguide is the aboveband excitation of the quantum dots.

Substantial experimental effort has been spent on demonstrating high coupling efficiency between

quantum emitters and PCWs [22, 23, 99–102]. In a recent work [23], our group tried to estimate the

maximum of coupling to F rad
p and use this to establish a lower limit on the value of the β-factor.

We studied InAs quantum dots that were embedded in the center of a GaAs membrane. Two sets

of samples with different types of out-couplers were used. Figure 3.12 shows one the designs for this

work. The design involves a slow light section in the center of waveguide, marked as slow in 3.12.

This section is designed to have relatively high Ngs in the frequency around the peak of the QD

inhomogeneous broadening. However, the waveguides with high Ng are relatively more lossy and it

is harder to couple the light out of them [42, 43, 49]. Hence, we couple the high Ng section to the

two modified waveguides where the lattice constant is stretched propagation direction. This region

is marked as fast in 3.12. The fast light region spectrally overlaps with the slow light frequencies of

the slow section [114]. For the main part of the experiments, the sample is terminated with second

order Bragg gratings on the both ends 3.12 [115,116], see the next section for more details about the

out-couplers. The other design has the same structure as this one, however one of the out-couplers

is replaced by an inverse taper to allow photon collection from the side of the waveguide [117]. The

insets in 3.13 (a) and (b) show SEM images of the different out-couplers used. See chapter 4 or

reference [23] for more details on the working principle of a similar structure. The two out-coupler

act well to suppress the reflection back into the waveguide.

In order to establish an upper bound on the coupling of QDs to radiation modes, we collected the

light from the two out-couplers and looked for the dots that showed inhibited decay rates. In order

to suppress the coupling to the waveguide further, samples were terminated by photonic crystals in

one end, hence creating Fabry-Pérot resonances. The slowest inhibited dot found on these waveguides

44



3.5. ELECTRODYNAMICS OF A DIPOLE IN A PHOTONIC-CRYSTAL WAVEGUIDE

was chosen as a reference dot. This dot was spectrally in between two Fabry-Pérot resonances. The

decay rate of this dot was assumed to be totally due to coupling to radiation modes, Γref , neglecting

the waveguide contribution. Extensive details regarding the method can be found in [23]. This value

is a upper bound on γrad, and as an upper bound, it agrees well with the simulation results from the

previous section. Also, this value is higher than the value of coupling to the radiation modes from the

dots sitting in the stretched lattice waveguide in where the decay to waveguide is enhanced [23].
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Figure 3.13: An statistical study of the coupling to the waveguide mode from single quantum dots.

(a) The statistics collected from the sample with Bragg gratings in both ends. (b) Statistic of decay

rate from a sample where one end is terminated with a Bragg grating and the other end is terminated

with an inverse taper. The insets show the SEM image of the respective out-couplers. The gray areas

in both sections of the figure are the band gaps of the corresponding waveguide.

Two set of samples with out-couplers in both ends were used to collect statistics of quantum dot

decay rates. The β-factor was extracted from the experimental data as β = Γdot−Γref
Γdot

. The quantum

dots were excited using a pulsed laser at 800 nm. A total of 71 dots were studied in the two waveguides.

Most of the dots studied had Fps in the range of 2-3. Figure 3.5.4 shows the β-factor of the dots versus

their emission wavelength. Figure 3.5.4 (a) is the data collected from a sample with gratings on both

ends (similar to sketch in 3.12). The data in the right panel of 3.5.4 are extracted from the waveguides

with tapers in the end. Both samples show relatively high β-factors. For most of the dots the β-factor

is higher than 85%. Also, there is a clear correlation between the wavelength of the emission and the

β-factor. As expected, due to the slow light effect, the decay rate of the dots is enhanced close to

the band-edge of the waveguide. The β-factor reported in this work constitutes a lower bound on the

actual beta factors mainly because the reference dot is still coupled to the waveguide. This means

that the decay rate of the dot has a component that comes from the waveguide mode contribution.

Further measurement under P-shell excitation on the same waveguides revealed a quantum dot

with decay rate of 6.28 ns−1. The β-factor for this dot is extracted to be 98.8% which is the highest

measured in this work. The single quantum dot nature of the emission line was verified with Hanbury-

Brown-Twiss measurement. These measurements combined with the theoretical results in section 3.9

further proves the potential of PCWs for deterministic light matter interaction, and opens the path

for realization of 1D atoms, on-chip photon transistors, CNOT gates, and deterministic single photon

sources.
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3.6 Out-coupling of light from planar nanostructures

The efficient out-coupling of photons from planar nanostructures like PCWs is the next step towards

utilizing these structures for QED applications. In this section we numerically study the efficiency of

different out-couplers in-coupling the light out of waveguides. To do so, we calculate the electric and

magnetic fields close to the nanostructure and use a far-field transformation to calculate the far-field

pattern of the nanostructure. The coupling to the objective is obtained as the ratio of the power in

the N.A. of the objective to the total power emitted from the nanostructure.1

A second order Bragg grating has the advantage of coupling the light orthogonally out of the chip.

This is particularly advantageous for the samples that are sitting in a cryostat. Periodic gratings alter

the propagation of light by adding momentum to its original momentum. A grating with periodicity

l adds a momentum equal to m2π/l to impinging light. The operation principle of the second order

Bragg grating is based on canceling out the in-plane momentum of the light k, by a periodic grating

which has the periodicity of the wavelength [115]. The inset in figure 3.13 shows a SEM image of a

second order grating. This grating consists of a periodic array of air layers and GaAs layers, where

width of the air layer and material layer are equal to λ0/2 and λ0/2n respectively. A field propagating

in the plane of the grating with momentum k receives a momentum equal to −k and couples out of

the grating. We have experimentally observed that two periods of the grating is enough to efficiently

couple the light out of the waveguide.

The inverse taper out-couplers work based on adiabatic coupling of the light out of waveguide [117].

The inset in figure 3.5.4 shows a SEM image of a inverse taper grating. The optimal length of this

grating is around 6a [117]. In a grating type structure 50% of the light is lost due to the symmetry

of structure. On the contrary, all the light coming out of a taper propagates in the same direction,

which means that, in principles, all of it can be collected.

Considerable effort has been spent of optimizing the collection efficiency of light emitted from the

photonic nanostructures, mainly the photonic crystal cavities [118–121]. These studies normally tie

with the Q-factor optimization of the cavities (to certain degree Q-factor and collection efficiency are

competing parameters) [54,122–124]. The ideal case would be to have all the emitted photons go out

within the N.A. of the collection objective. Also it is highly desirable to obtain a Gaussian shape for

the far-field pattern, so that the coupling to single mode fiber is more efficient.

According to Huygens principle, knowledge of electric and magnetic field on a surface Ω enclosing

all the sources is enough to extract the field distribution at any point outside the surface, see figure

3.14 for an sketch. Based on this principle, the electric field at a point can be calculated using the

Stratton-Chu integral equation [125,126].

~Efar =
ik

4π
~r0 ×

∮
Ω

[~n× ~E − ηr0 × (~n× ~H)]eik~r·~r0dS, (3.21)

where Ω is the surface enclosing the sources, n is the normal to integration surface, E and H are the

1I thankfully acknowledge significant contributions from S. Mahmoodian to the results of this section.
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O

r

rr
0



Figure 3.14: A sketch showing the far-field calculation principles. O is the center of the coordinate

system. Knowledge of the electric and magnetic fields on the surface Ω is enough to calculate the field

intensities anywhere outside this surface.

electric and magnetic fields on the surface of integration, and η is the impedance of the medium (refer

to figure 3.14 for r0 and r). The built-in feature of COMSOL, numerically computes the integral in

equation 3.21 to calculate the electric field at far distances from the integration surface. Alternatively,

flowing the procedure in [122] the far-field can be related to the near-field , using the fourier transform,

with assumption that Ω is a infinite plane. We have verified that the two methods produce the same

results.




(a) (b)

Figure 3.15: The far-field domains for (a) taper out-couplers and (b) for grating out-couplers.

Figure 3.15 shows the integration domains used to calculate the integral in equation 3.21. For the

taper out-couplers, we choose to use a hemisphere surface as the integration domain, since it better

captures the field pattern around the taper, while a flat surface works better for the grating structure,

since it is a planar geometry. The diameter of the hemisphere in 3.15(a) is chosen to be 6a. The

set up of the rest of simulation domain is similar to 3.7, except for the fact that the active boundary

conditions are not necessary for this type of calculations. We use a dipole source in the waveguide

to excite the out-couplers. We sweep the frequency of the dipole source to obtain the frequency

dependence of the collection efficiency from the out-couplers.

Figure 3.16(a) shows the collection efficiency of inverse taper out-coupler. The rectangles in figure

3.16(a) mark the collection efficiency with NA of 0.82 and circles correspond to collection by NA =

0.65. Collection efficiencies of order of 0.7 are readily achievable with the taper design. The collection

efficiency appears to be broadband and almost constant over a range of 40 nm. Figure 3.16(b) shows

the far-field pattern of |E|2 for the taper at the wavelength marked by red circle in part (a). The field
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Figure 3.16: (a) The collection efficiency to the first lens from the tapered out-couplers versus wave-

length. Circles mark the collection efficiency by an objective with NA=0.65 and rectangles mark

NA=0.82 (b) the far-field pattern of the taper out-coupler for the frequency marked as red color in

part (a). The dashed circle is the NA=0.65. (c) and (d) the same as (a) and (b) but for second order

Bragg gratings. Note that the maximum efficiency achievable for a grating out-coupler is limited to

50%.

profile appears to have a shape close to a Gaussian in z direction. However, in the y direction the

field profile appears to deviate from a Gaussian and has two side lobes.

Figure 3.16(c) shows the collection efficiency of a second order Bragg grating out-coupler. The

maximum achievable collection efficiency is around 35% for NA of 0.82. This value appears to be

broadband within 40 nm. Figure 3.16(d) shows the far-field pattern of the electric field. The field

pattern significantly deviated from an ideal Gaussian, which means that the coupling to the fiber will

be worse than the inverse taper design.

The designs above can be further improved by putting a ridge waveguide between the out-coupler

and the photonic crystal section, which was studied later in the group. Also, for the Bragg grating

design, including a distributed Bragg reflector underneath the sample will help to couple back the down

going part of the field and hence improve the collection efficiency. Similarly the distance between the

membrane and the substrate can be engineered to achieve better collection efficiencies as done for

cavities in the past [118,120].
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3.7 Conclusions

We have used frequency domain finite element method to solve Maxwell’s equations and extract local

density of states for emitters in different photonic crystal nanostructures. Previous work had already

shown significant inhibition of the decay rate of emitter due to the effect of the photonic band gap. By

sweeping the position of the emitter, we created very detailed maps, showing spatial and orientation

dependence of decay rate of emitters in the band gap of a photonic-crystal membrane. Our results

indicate that local density of states in a PhC membrane is highly position dependent, and is inhibited

by factors of 10 to 180. These value tend to be broadband, for frequencies in the band gap of PhC.

We studied the position and frequency dependence of LDOS in a PCW. We separated the con-

tributions to the LDOS from the leaky mode continuum and the waveguide mode. This allowed us

to calculate the coupling efficiency of emitters to a PCW. The main challenge in these calculations

was to effectively terminate the waveguide without significant reflections. We overcame this by using

active boundary conditions on two ends of the waveguide. We further used a second box that captures

the radiation continuum and not the waveguide mode to calculated the power emitted to the leaky

modes and to further increase the accuracy of our results. The results show that the coupling to the

radiation modes is not significantly modified from the case of a PhC. The spatial maps confirmed a

high suppression of coupling to radiation modes. We also showed that at high Ngs the β-factor is

in general higher than 98% and that the value of β in slow light regime is relatively insensitive to

the position of the emitter. The results also showed that even in low Ngs, very high β-factors are

achievable in the center of PCW. Backed by these results, in a collaboration inside the group, we

could experimentally demonstrate very efficient coupling between GaAs QDs and PCWs. β-factors

as high as 98% were experimentally observed.

The calculation of the electric field profiles for PhCs and PCWs further revealed possibility of

light localization due to the presence of a dipole, dipole induced cavities. For the case of PhC, these

cavities have Q-factors in the range of Fpγ0. For a GaAs QD in the PhC membrane this value would

be on the order of 107 . This field localization around the dipole might be useful in creating strong

dipole-diploe interaction at short ranges.

Finally, we studied different out-couplers and numerically extracted their far-field patterns and

collection efficiencies. Our results indicate that collection efficiencies of up to 80% are possible.

Further work in our group has shown that the collection efficiency can be improved by using a mode

adapter between the out-coupler and the PCW. These out-couplers play an important role in efficiently

extracting the light from the chip.
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Chapter 4

Resonant excitation of quantum dots

in photonic-crystal waveguides

As discussed in the previous chapter, a photonic-crystal waveguide provides a nearly deterministic

interface to the embedded quantum dots. This allows the embedded quantum dots to modulate

the transmission spectrum of the waveguide. In this chapter, we present the experimental details of

resonantly exciting a quantum dot in a photonic-crystal waveguide (PCW). We discuss the geometry

of the sample that allows us to probe the transmission of the PCW inside a cryostat, while maintaining

the efficient coupling of the embedded emitters to the propagating mode of the waveguide. The s-shell

transition of InAs quantum dots is dark to the resonant laser due to the background doping and

charge traps around the QD. It is known that a weak aboveband laser incident on the sample can

activate this transition. We reassess how the weak aboveband laser can reactivate the QD transitions

and make them visible to the resonant laser. Most of the literature in solid state quantum optics

community deal with QDs embedded in bulk GaAs. We adapt these techniques to PCWs. In our

preliminary measurements, we observe the QD transitions as extra noise in the transmission spectrum

of the waveguide. Also we observe a transmission dip of 3% in our preliminary measurements. In

our main measurement, we observe a contrast of up to 30% in the transmission spectrum of the

waveguide. Auto correlation measurements on the transmitted light confirm the single quantum dot

origin of the observed transmission dip. The sample degrades over time, nevertheless we are able

to obtain resonant excitation in our sample even after long periods by changing the wavelength of

the aboveband laser. The results pave the way for resonant excitation of QDs in the Purcell regime

inside a PCW , which enables many exciting experiments such as the observation of the giant optical

nonlinearity, demonstration of single photon switching, and photon sorting. The next section provides

a review of the past experimental effort to excite quantum dots resonantly in the bulk GaAs material

as well as in different nanostructures.
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4.1 Introduction and literature review

Scalable quantum computing in any platform, requires coherent and efficient interaction between the

qubits. Photons are considered as the means to mediate the coherent interaction in proposals based on

atoms [15], molecules, superconductors [127], and quantum dots [128]. Most of the proposals involve

single photons on resonance with the internal energy levels of the qubits to mediate this interaction.

However, resonant interaction between photons and quantum dots is not straight forward and was not

realized until recently [129–133].

The first attempts to observe photoluminescence from single quantum dots were limited to above-

band excitation schemes [134–137]. Later, different strategies such as differential reflection and trans-

mission as well as higher shell excitation were employed to study QDs [138–143]; see also [144] and

references there in. However, resonance fluorescence from single QDs remained an open challenge

until recently. The main challenges towards observation of resonance fluorescence was to separate the

fluorescence from the excitation laser. Muller et al. used a planar geometry and excited a quantum

dot from the side of the sample while collecting emission from the top [129]. This allowed to sepa-

rate the excitation laser from the emission of the QD and to observe anti-bunching in the collected

photons. Around the same time, several other groups managed to resonantly excite the quantum

dots using different methods [132, 133]. Shortly after, spin resolved resonance fluorescence, coherent

spin initialization and readout was demonstrated [145, 146]. Two experiments demonstrated that a

single QD can coherently modulate the intensity of a laser beam [147,148]. Very recently, two groups

demonstrated generation of ultra coherent photons from single quantum dots under weak coherent

excitation [149,150]. A major advantage of exciting the QDs resonantly is to eliminate the dephasing

and recently highly indistinguishable single photons from single quantum dots were observed under

resonant excitation [151]. However, s-shell transitions of a quantum dot are inhomogeneously broad-

ened because of spin and charge fluctuations in the environment of the QD [152–157] and fourier

transform limited transitions are observed only in short time scale (10µs) [152].

Majority of the QDs are grown with Stranski-Krastanov method, also referred to as self-assembly

method. Since the particular growth method several traps also form around the QDs. Charge trapping

and escape happens frequently in these traps [152]. As a result, the charge configuration of the QD

environment changes over time scales of milliseconds. These charges affect the transition frequency

of the QD through coulomb interaction. However, the resulting energy shifts are on the order of the

linewidth of the QD transition, and hence the result is broadening of the QD transition (spectral

diffusion). The spin of the nucleus of the atoms that form the QD can also give rise to a similar

effect through the Overhauser effect [152]. Also, a single charge, electron or hole, trapped inside the

QD can shift the QD transition by several milli-electron volts. Such a charge can have lifetimes of

microseconds to milliseconds. This type of charging effects result in blinking of the QD transition.

In order to achieve resonance fluorescence from QDs with high yield, two approaches have been

used. The first approach is to place the QD layer inside a p-i-n diode and apply a forward bias. This

allows to deterministically define the charge state of the QD and reduce the charge fluctuations in

the environment [144, 145, 147, 149, 152, 158]. Another approach is to use a weak aboveband laser to
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optically activate a given transition in the QDs [150,156,159–162].

Reference [161] gives a detailed description of the effect of a faint aboveband laser on the resonance

fluorescence from a QD. According to them, the background doping in the environment of the QD gives

rise to residual carriers in the QD an the traps around it. This residual charge blocks the emission of the

ground state of the QD. According to the article, fluorescence from 90% of the dots is quenched when

probed purely resonantly. Adding a weak aboveband laser creates a certain electrostatic equilibrium

in the environment of the dot and revives the fluorescence from the ground state. The typical power

necessary for the photo-neutralization of the QD is a few tens of pW and does not result in noticeable

emission from the QD. Interestingly, the weak aboveband laser shifts the transition energy of the QD

state by several GHz. The time scales for the photo-neutralization of the QDs is around 10µs, and

the QD remains active for hundreds of micro seconds after the aboveband laser is turned off.

Efficient collection of the emission from QDs is another challenge for utilizing them in quantum

information processing. All of the experiments discussed above are done with quantum dots in ho-

mogenous environment or with very wide waveguide-like structures where collection efficiencies are

very poor [163, 164]. Utilizing nanostructures around the quantum dots allows to efficiently collect

the emission and deterministically interface the QDs with single photons [22–24, 165], see also [30]

and references there in. However, resonant excitation of quantum dots in nanostructures has its own

complications. In general, the dimensions of a nanostructures are on the order of wavelength of the

photon. This means that the distance between the QD and the material interfaces are in around 1/4

of wavelength of the emission. This may increase dephasing, blinking, and other effects due to the

short distance between the QD and the surfaces [93].

The first resonant experiments were done using quantum dots strongly coupled to nanophotonic

cavities [166,167]. Englund et al. measured reflection from a QD strongly coupled to an L3 photonic

crystal cavity. They used a heating pad to scan the QD-cavity system through a CW laser [166,168].

Srinavasan et al. achieved resonant excitation of polaritons in a strongly coupled microdisk-QD

system [167]. Later, several other groups also reported resonant excitation of a strongly coupled

QD-cavities systems [169–171]. The main advantage of a strongly coupled QD-cavity system is the

broadened cavity polaritons. This helps fight spectral diffusion and dephasing of the quantum dot

transitions.

Significant effort has also been spent on exciting the QDs in nanostructures in the Purcell regime.

Faraon et al. managed to excite a QD weakly coupled to a PhC cavity and observed a transmission

contrast of 30% [116]. However, they only reported a single measurement without further analysis.

Rakher et al. demonstrated up to 50% contrast in reflection of a quantum dot weakly coupled to a

micropillar cavity [172]. They embedded the QD layer in a p-i-n which allowed them to control the

electric field at the QD layer and deterministically charge the QD. Arnold et al. recently reported

resonant excitation of trions in micropillar cavities and observed phase shifts up to 6% [173]. In

reference [174], the authors managed to observe the transitions of a charged quantum dot coupled to a

L3 PhC cavity. They used a p-i-n structure to apply an electric field over the QD layer. Unfortunately,

the article does not give any numbers for the linewidth of the transitions; however, the current running
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through the device is mentioned to be up to 20 mA and even shifts the cavity resonance by a few GHz.

Pinotsi et al. also tried to use a p-i-n diode to stabilize the transitions of a QD in a L3 PhC cavity.

They managed to observe photoluminescence, however the linewidth of the detected photons was far

from being fourier transform limited [175]. Two groups observed resonance fluorescence from QDs in

membrane photonic waveguides [176, 177]. In both cases, the approach was to excite the QD with a

laser beam that was orthogonal to the waveguide and suppress the direct scattering of the resonant

laser to the waveguide by its polarization [176,177]. Another interesting approach is to create Fabry-

Perot cavities between a distributed Bragg mirror underneath the QD layer and a mirror formed on

the tip of a fiber [178]. This a1llows to efficiently interface the QD to the cavity through Purcell

enhancement and directly couple the cavity to the fiber.

Electrical gating of quantum dots, in the case of QDs in bulk medium and also in the case of

micropillar cavities, work very well to suppress the charge fluctuations and deterministically prepare

the ground state of the QD. There are a few reports of electrical tuning of the QDs in thin membranes

[174, 175, 179], however these implementations suffer from different problems and all have failed to

observe linewidth limited transitions. As discussed earlier, there are several reports of using a weak

aboveband lasers to stabilize the QD transitions and reduce the spectral diffusion [151, 161]. In this

thesis, we also use a weak laser, either at 800 nm or at 850 nm to activate the ground state of our

emitter.

Our aim is to excite the QD coupled to a PCW resonantly. Next section discusses the experimental

considerations including the sample structure and the experimental setup.

4.2 Experimental considerations

As discussed in the previous chapter, a QD in A PCW is efficiently coupled to the waveguide mode. As

a result, the photons launched to the waveguide will interact strongly with the QD. When frequency

of the laser is on resonance with the transition line of the QD, the photons get reflected. This is a

result of interference between the photons scattered from the QD and the photons transmitted [180],

see next chapter for more theoretical details. This effect can be seen in the transmission spectrum of

the waveguide when scanning the laser over the linewidth of the QD. However, the reconstruction of

the transmission spectrum of the waveguide is complicated by several effects, i.e. charge diffusion and

blinking of the QD line, as well as the residual Fabry-Perot resonances caused by imperfect optical

components.

As discussed before, a weak repump laser can cure the blinking and the spectral diffusion to a

certain degree. We also modulate this laser to turn the QD transition ON and OFF during the scans.

This way we get a reference signal to normalize the transmission spectrum of the waveguide and

eliminate the effects from the imperfect optical components. Next section discusses the structure of

the sample.
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4.2.1 Sample structure
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Figure 4.1: . (a) A sketch of the sample. The slow-light sections are marked as slow. (b) Bandstructure

of the sample. The blue lines are the bands belonging to the slow-light section and the red ones belong

to fast-light section. The green shaded region marks the continuum of the radiation modes and black

regions mark the modes guided in the photonic-crystal membrane. The slow-light waveguide and the

fast-light waveguides spectrally overlap in the yellow shaded region and hence the light transmission

in the yellow shaded region is enhanced. (c) The far-field pattern of the out-coupling gratings. The

white circle is collection to N.A. 0.65

In this section, we outline the design parameters of the sample used for the main part of the

experiments. The designed sample is shown schematically in figure 4.1(a). It is composed of a slow-

light PCW, which is coupled to fast-light PCWs on both sides, which are coupled to a ridge waveguide

and then an output grating. The membrane has a thickness of 160 nm and is entirely composed of

GaAs which has a refractive index of n = 3.464 at 10 Kelvin. The membrane has a single layer of InAs

quantum dots in the center. The slow-light photonic waveguide is patterned with a triangular array

of holes with radius r =72 nm and lattice period a = 235 nm. A line defect of missing holes in the

array forms the waveguide. The fast-light PCW has the same parameters as the slow PCW, but the

lattice period is stretched to 1.07a along the propagation direction. As shown in figure 4.1(b), this

ensures that, at wavelengths where the group velocity of the slow-light region is low, the fast-light
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waveguide supports a mode with a larger group velocity. The slow-light section is 8.00µm long, while

the fast-light section is 15.6 µm long. A short slow-light section is used to minimize disorder induced

backscattering and out-of-plane scattering, as it has previously been shown that both increase with

decreasing group velocity [42] . Even though the transition from the slow-light waveguide to the

fast-light waveguide is abrupt, it has been shown that evanescent modes mediate efficient coupling

between two such waveguides [114], and thus a high transmittance is expected. The fast PCWs are

coupled to ridge waveguides with a width of
√

3a corresponding to the center-to-center distance of the

rows of holes adjacent to the waveguide. The ridge waveguides are then tapered down to a width of

266 nm over a length of 5×1.07a. The waveguide on the right in figure 4.1(a) arcs through 90 degrees

before it reaches the grating. This arc has a large radius of curvature of 5a which reduces bend losses.

The out-coupling gratings are based on the design presented in Ref. [116]. The gratings act as a

second order Bragg reflector that couples light in the ridge waveguide mode to out-of-plane modes.

The grating is composed of alternating layers of concentric circles separated by λ/2n, where n is the

refractive index of air/GaAs, and λ = 922 nm is the design wavelength. We have improved on the

design in Ref. [116] by coupling into each grating from a ridge waveguide of width λ/n which enhances

the magnitude of the field that falls in to the numerical aperture of our collection lens. This far-field

radiation pattern is illustrated in figure 4.1(c). The white circle indicates the numerical aperture of

our collection lens which is NA = 0.65. We have computed that ∼ 90% of the light coupled upwards is

collected by the first lens. Two gratings are arranged to have orthogonal polarization in the far-field

to further avoid excitation laser from coupling to collection optics.

4.2.2 Experimental setup

Figure 4.2 shows sketch of the experimental setup. The sample is sitting inside a helium flow cryostat.

The pressure inside the sample chamber is normally down to 1× 10−6 mBar. The sample holder is in

contact with a copper cold-finger. A temperature sensor and a heater are in thermal contact with the

cold finger. The cold finger is cooled down through direct contact with helium flow that comes from a

helium dewar. A temperature controller keeps the temperature constant (typically around 6.5 K) by

controlling the helium flow and the heater. The cryostat is mounted on a pair of motorized positioning

stages with the resolution of 100 nm. This allows us to move the sample relative to the collection and

excitation spot, as shown in figure 4.2(a).

A modified microscope is used to optically access the sample. Both the resonant and the repump

laser are focused on the sample through an Olympus objective with N.A. = 0.65. The excitation

and collection are separated using a 50% beamsplitter inside the microscope, see figure 4.2(a). The

collected light is sent through a halfwave plate and a polarizing beamsplitter to filter its polarization,

as shown in 4.2(b). A long-pass optical filter is used in the collection to cut out the direct reflection of

the repump laser and also any emission below the cutoff wavelength. At the end, the collected light is

coupled to a single mode fiber. The single mode fiber acts as an spatial filter that limits the collection

spot to 1.4µm2. The collected light is then sent to a pair of fiber-coupled APDs for photon counting

and auto correlation type measurements.
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(a)
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Figure 4.2: . Sketch of the experimental setup. (a) The sample is sitting in a helium flow cryostat. The

cryostat is mounted on a pair of stages with 100 nm spatial resolution. A modified optical microscope

is used to optically access the sample. The collection and excitation lasers are separated using a 50%

beamsplitter. (b) The collected light is sent through a halfwave plate and polarizing beam splitter and

coupled to a single mode fiber. The collected light is later detected using two fiber-coupled APDs. (c)

A narrow-band CW laser is scanned through the resonance of the QD. The sketch in the right hand

side shows the internal structure of the laser. The intensity of the laser is stabilized using an AOM

and a PID loop. The laser light is sampled and sent to a high precision wavemeter to monitor the

wave length and assure single mode operation. (d) The repump laser is regulated with an AOM. The

experiment and the data acquisition is controlled through microcontroller to a high degree.

A narrow band CW laser, DLpro 940 from Toptica, is used to excite the QD lines resonantly,

referred to as resonant laser. DLpro 940 is an external cavity tunable laser in Littrow configuration,

see 4.2(c). The laser operates from 904 nm to 985 nm. The diode is composed of a broad-band internal

cavity, and a narrow-band external cavity. The external cavity is formed between the diode and a

grating. The design uses two mechanisms to tune the laser wavelength. For long range tuning, the

angle of grating is changed. For short range tuning (up to 50 GHz), the grating angle is changed using

a piezo-actuator in fine steps. The same signal is also fed-forward to change the diode current, which

changes the frequency of the internal cavity. This combination provides a mode-hope free scanning

range up to 50 GHz and linewidths better than 20 MHz. However, as a result of modulation of the

diode current the output power of the laser varies as the wavelength is scanned. We use an acusto-

optical modulator (AOM) and a PID loop to stabilize the output power of the laser. The signal to

control the diode current and the grating controller are connected to the computer, which controls
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the experiment.

We monitor the resonant laser using a high precision wavemeter (WS7 from HighFinesse). The

wavemeter works based on interference patterns generated in its interferometers. The spatial inter-

ference patterns from a Fizeau interferometer are projected on a CCD line array and read out. The

wavemeter has a relative accuracy of around 10 MHz. The wavemeter also outputs the interference

patterns. We monitor these patterns to assure the single mode operation of the laser. Figure 4.3

shows two different interference patterns while scanning the laser frequency. The y-axis in this figure

shows the pixel number on the CCD array while the x-axis shows the scan step. The pattern in

figure 4.3(a) is smooth, the peaks are equally spaced and vary continuously as the laser frequency is

scanned. On the contrary, the pattern in figure 4.3(b) changes abruptly around the step number 200.

At this point, the laser has more than one frequency component. It is also important to note that the

wavemeter might still read a single frequency, although the laser has several frequency components.

We also monitored the laser with a Fabry-Perot interferometer to check the validity of this method

and we did not run into any contradictions.

(a) (b)

200 400 600 800 1000 1200

500

1000

1500

2000

D
e
te
ct
o
r 
p
ix
e
l n
u
m
b
e
r

Scan step

 

 

0

1

200 400 600 800 1000 1200

500

1000

1500

2000

D
e
te
ct
o
r 
p
ix
e
l n
u
m
b
e
r

Scan step

 

 

0

1

Figure 4.3: Sample interference patterns recorded from the interferometer. (a) A scan without mode

hop or mode competition. The laser is single-moded during the scan and the wavelength is swept

continuously. (b) A sample scan with a mode competition. The interference patterns are ruined

between scan steps 200 to 400. This indicates that there are more than a single lasing line.

We use a widely tunable Ti:Sapph laser in CW mode as the repump laser. In the early versions of

the experiment, the laser beam went through a chopper wheel to switch the laser on and off. However,

for the most of the later measurements, the laser beam is sent through an AOM to control the laser

intensity in timescales of µs, as shown in figure 4.2(d). A polarizing beamsplitter and a half-wave

plate are used to match the polarization of the laser to the secondary waveguide mode. The AOM

is controlled by the microcontroller to realize different measurements which will be discussed later in

this chapter.

The structural configuration of the setup with cryostat sitting on high precision stages makes the
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optical path rather unstable and the alignment of the setup drifts over time scales of seconds. In

extreme cases, the transmission of the system can vary by 50% over time scales of minutes. Therefore,

for the transmission type measurements, it is very important to have a reference measurement to

eliminate these types of fluctuations. Also parasitic Fabry-Perot resonances due to imperfect optical

components can make the transmission type measurements hard to interpret. The best method to

circumvent these problems is to turn off the QD transition and acquire a reference transmission

measurement [147, 148]. One can then normalize the transmission of the system while the QD is

active to the reference transmission. If the two measurements are done with very short delays, the

resulting spectrum is only affected by the presence of the QD.

The repump laser plays an important role in modulating the QD transition and providing the

reference measurement. The repump laser can be used in two different ways to obtain a reference

signal. One method is to shift the QD transition frequency by increasing the intensity of the repump

laser. The other method would be to turn off the repump and wait for a short amount of time for the

QD transition to go dark and then acquire a reference measurement. Throughout this chapter we will

use both methods. However, we use the second method for the measurements in the next chapter.

The signal from one of the APDs is sent to a pulse shaping circuit and then to a microcontroller

that counts the number of detection events in given time windows. The microcontroller switches the

intensity of the repump laser ON and OFF, switches the APDs on and off through the gating signal

and sends marker signals to the time correlator. The microcontroller is connected to the computer

through a USB port. This connection is used to acquire the data and to send commands to the

microcontroller.

A typical scan runs as follows: The computer changes the voltage of the diode laser, reads out the

frequency of the laser from the wavemeter, and subsequently sends a command to the microcontroller

providing certain instructions on the modulation of the repump laser and photon counting intervals.

Depending on the command received from the computer, the microcontroller turns the repump signal

ON and OFF for a certain amount of time and activates the APDs. It starts the data collection,

typically for 40 ms, and sends the collected data to the computer at the end. The cycle continues until

the desired scan range is reached.

4.3 Preliminary experiments on the first generation of samples

We did the initial transmission type measurements on the sample that was also used for demonstrating

the efficient QD-PCW coupling, in section 3.5.4. The sample is 160 nm thick and has a nominal QD

density of 100/µm2. Figure 4.4(a) shows the SEM image of the sample. The main difference between

this sample and final design ( discussed previously in section 4.2.1) is the out-couplers that are directly

connected to the PCW. The lattice constant of the slow section is equal to 235 nm and the hole radius

is 73 nm. We first characterize the sample under aboveband excitation. Figure 4.4(b) shows the

emission spectrum of the sample under strong aboveband excitation on the slow-light section while

the emission is collected from the grating. The band-edge of the slow-light section is around 926 nm
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Figure 4.4: (a) SEM image of the sample, showing half of the sample with a grating out-coupler.

This sample was the first generation of samples and the grating is directly connected to the PCW.

(b) Emission spectrum of sample under high-power aboveband excitation.

and the waveguide has a good transmission over 25 nms.

We turn down the aboveband power and look for single dot lines in the aboveband spectrum. We

then turn off the aboveband laser and couple the resonant laser through one of the gratings. Next, we

tune the resonant laser to −0.5 nm from the observed QD lines and scan it for around 1 nm in several

steps. The intensity of the resonant laser was around 400 pW on the sample which corresponds to

∼ 5000 detection events per second on the APDs. However, we failed to observe any signal that we

could explicitly attribute to the QD lines observed under aboveband excitation. After several scans

over a wide range of frequencies, we noticed extra noise at certain frequency ranges, see figure 4.5(a).

These wiggles were previously observed in our group [181] while scanning for the QDs in the same

structure. This noisy behavior is most likely related to a QD transition which blinks at time scales

of seconds and hence modulates the transmission of the PCW at these time scales. Since the each

measurement step takes around one second, the blinking behavior appears as excess noise in the data.

The temperature dependence of these wiggles was also checked and it was observed that the wiggles

red shift with increasing temperature, as expected from a QD line [181]. The other clear feature in

these scans is the relatively narrow Fabry-Perot like fringes in the transmission signal, see for example

4.5(a). These parasitic Fabry-Perot resonances result from residual reflections in the optical setup,

most probably between the sample and the beamsplitter on top of the microscope.

We briefly study the time scales of these fluctuations. Figure 4.5(b) shows a time trace of the

transmission of the waveguide while very slowly (10 MHz per second) varying the laser frequency in

the center of these wiggles. Clearly, the intensity of the transmitted light varies in abrupt steps down

to certain values on time scales on the order of tens to hundreds of milliseconds. A similar behavior

has been observed in the past for resonance fluorescence from QDs [132, 144, 152], often on slightly
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Figure 4.5: (a) Transmission spectrum of the waveguide while scanning the resonant laser over short

spectral range. The important feature in this scan is the excess noise on the right hand side of the

plot, marked by a bracket. Also notice the fine Fabry-Perot peaks in the scan. These are due to

multiple reflections between some of the optical elements in the setup. (b) A time trace taken while

slowly (10 MHz per second) scanning the resonant laser around 325.605 THz. The transmitted number

of photons changes in abrupt steps. (c) Collection of several short range scans. The big transmission

peak results from the reflections in the transition from the slow waveguide to the fast waveguide. (d)

A zoom in on the area marked by the red circle in part (c). The observed wiggles are more intense

than in part (a).

shorter time scales. Most probably these abrupt changes in the transmission of the waveguide are due

to blinking in the QD transition through a carrier escape or trapping of a charge inside the QD or

traps around it. It is also important to mention that during these scans the laser frequency is changed

in steps of 10 MHz per second and duration of some of the fluctuations in the photon detection events

correlate with this value. However, we double checked that laser spectrum was single peaked all the

time. The only other explanation for these dips could be higher order resonances of some other dots.
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Fluctuations in figure 4.5(b) with a width of one second correspond to approximately 10 MHz change

in the laser frequency. However, one would expect a much broader resonance than 10 MHz for the

higher transitions of a QD. We also observed that these wiggles disappear when we apply a weak

aboveband laser and reappear when the aboveband is cut off. We tried to use this fact to obtain a

differential signal; however, the revival time of the transition was longer than 1 second.

Figure 4.5(c) shows a transmission spectrum of the waveguide over a spectral range of 600 GHz.

The big peak in the center of the spectrum is most probably due to residual reflections at the interface

of the slow and the fast waveguide. These reflections form cavities with Q-factors up to 1000. We

observed several of the mentioned wiggles at different frequencies, one is marked in 4.5(c) with red

circle. Figure 4.5(d) shows a zoom-in on the most intense signal observed in the measurement with

contrast on the order of 20-30%.
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Figure 4.6: (a) Normalized transmission spectrum of the waveguide (T/T0). T/T0 is a flat line when

there are no QDs in resonance with the laser. We used a chopper to modulate the aboveband laser

and we integrate the counts in the ON and OFF periods of the laser and divide the counts in the ON

window by the counts in the OFF periods to obtain the (T/T0). (b) A QD creates a small dip in the

transmission of the system. We made sure that the feature is not due to laser itself. The width of the

dip is as wide as 15 GHz, and it is broadened due to charge fluctuations and pure dephasing. Solid

black lines are guides to the eye.

Parasitic Fabry-Perot resonances in these measurements make it hard to observe the signatures of

QDs. One way of eliminating the effect of the parasitic Fabry-Perot resonances and other fluctuations

in the transmitted field intensity is to shift away or turn off the QD and take a reference measurement,

as discussed before. One can divide the actual measurement with the reference measurement to extract

the T/T0. T/T0 only includes the signal from the QD and all the parasitic effects are eliminated.

Figure 4.6(a) shows an example of such a measurement. This type of spectrum is called transmission

spectrum of the system. The transmission spectrum for the most of scans we have done is a flat line

as in figure 4.6(a). The advantage of these types of measurement is to remove any fluctuations in

the detected light intensity that are not from the QD layer. Elimination of the parasitic Fabry-Perot

resonances allows detecting the small signals easily. Figure 4.6(b) shows a dispersive transmission dip

observed during these scans. The dip has a full width half max of 15 GHz. This linewidth is too wide
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for a typical QD line and is most probably broadened due to charge fluctuations in the environment.

We checked that this feature is not due to flaws in the measurement setup, e.g. laser having several

frequency components or chopper wheel acting asynchronously. We also observed a spectral shift in

this dip, with increasing the aboveband power, which is another signature typical of QDs [161].

Theoretically, we expected much stronger and stable dips in our transmission. However, lack of

strong contrast in the transmission measurements can be attributed to several facts. First of all, the

high density of the QD on the sample could play a role. Most experiments that have reported strong

resonant signals and narrow linewidths are done on samples with low densities of QDs [153,154]. This

could be due to the fact that a lower density of QDs means less defects and less traps in the QD

environment. The second important reason could be the fact that the sample was fabricated one

year before the first resonant measurements were performed on it and it was used for several other

measurements. The sample could degrade from oxidization and also the many cool-down and heat-up

procedures (thermal cycles). Moreover, during the period that the sample was in the cryostat, there

was an accident where the vacuum broke while the sample was still cold. A thick layer of ice formed in

the cryostat and on the sample which might have created defects on the surface of the sample as well

and further degraded its quality. Hence, we fabricated a new batch of structures on a lower density

sample and repeated the measurement. The next section describes some of these measurements.

4.4 Measurements on the second generation of the samples

We fabricated a new set of structures on a sample with lower density of QDs. The design of the

sample is discussed in section 4.2.1. The insert in figure 4.1(a) shows SEM image of the sample. The

density of the dots on the new generation of the samples is around 10/µm2. We observed two slightly

different behaviors during the course of the measurements. We observed a strong contrast around 30%

during first 3 days as the sample was fresh. However, after a few thermal cycles, the contrast of the

signal dropped, the band-edge of the waveguide moved slightly and the response of the QD transition

to the repump laser changed. We present the measurements in the chronological order as they were

performed.

4.4.1 Early stages of the measurement

We started by characterizing the sample under aboveband excitation and later measured its trans-

mission spectrum. Figure 4.7 shows the emission spectrum of the sample under strong and weak

aboveband excitation. We excited the sample in the middle of the slow-light waveguide and collected

the emission from the straight out-coupler. The excitations wavelength was 800 nm. Figure 4.7(a)

shows the emission spectrum under strong aboveband excitation. Under strong excitation, the sin-

gle emitter lines are saturated and hence the spectrum is dominated by the density of states of the

nanostructure. The band-edge of the slow-light waveguide is at 916.7 nm, and as explained earlier,

the transmission and emission spectrum of the waveguide are dominated by the overlap of slow-light
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band and fast-light band, the yellow area in 4.1(a). Part (b) of the figure shows the emission spectrum

under weak aboveband excitation. Several single emitter lines with different intensities are visible.
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Figure 4.7: (a) Emission spectrum of the second generation sample under high-power aboveband

excitation. The excitation spot is in the slow-light region of the structure. The excitation wavelength

is around 800 nm. The excitation power corresponds to 20µW on the sample. The sharp feature

around 916.7 nm is the band-edge of the waveguide. In this excitation regime the single dot lines

are saturated and the emission spectrum corresponds to the DOS of the nanostructure. (b) Emission

spectrum of the waveguide under the same conditions as in part (a) but at a much lower power. The

excitation power corresponds to 150 nW before the lens. Several single dot lines are visible in the

spectrum. The black arrow points to the exciton that is the target of most of the experiments in this

thesis.

After identifying several QD lines under aboveband excitation, we started the resonant transmission

type measurement. We tuned the resonant laser to close proximity of one of the QD lines, marked

with arrow in 4.7(b). We launched the resonant laser in to the waveguide from the bent grating and

collected the transmission from the straight grating. The intensity of the resonant laser is denoted

by Presonant hereafter. For the measurements discussed in this subsection, we used a 800 nm repump

laser to produce reference T0, and also to activate the QD transitions [161]. We modulated the repump

laser with a frequency of 500 Hz. The power of the repump laser is denoted by Prepump hereafter.

Also it is worth adding that the resonant transmission measurements reported in this subsection were

done after four cool-down and heat-up cycles.

Figure 4.8 shows the transmitted photon rates during the ON and OFF periods of the repump

laser. A clear dispersive signal is observed around 328.01 GHz during the OFF periods of the repump

laser 4.8(a) top. This signal is observed within 30 GHz distance from the observed emission line,

marked with arrow in 4.7(b). During the ON periods of the repump laser, the QD transition is not

observed in the transmission spectrum. Most probably, the QD line shifts to a higher frequency;

however, we scanned the region around ±100 GHz from the initial position of this signal and we did

not find any other signatures. This could mean that the ground state of the QD changes to a different

configuration, most probably to a different charge configuration. Interestingly enough the transition

revives quickly after the repump is turned off. Figure 4.8(b) shows the transmission spectrum of the
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Figure 4.8: (a) The transmitted photon flux during the OFF periods of the repump laser, top and

during the ON periods, bottom. (b) Transmission spectrum of the waveguide under conditions in (a).

The spectrum is obtained as ratio of the top plot over the bottom plot in part (a). The Prepump was

around 1 nW. As seen on these scans, during the repump ON period, the QD signal is shifted away

(or turned off) to a high degree. (c) and (d) The same as (a) and (b) but with much lower repump

intensity. When repump laser is turned down, the revival effect prevails while the QD does not shift

away during the ON period. Also clearly the width of the signal in part (c) appears to be larger than

part (a).

sample, T/T0. We divide the signal in the top part of the part 4.8(a) by the one in the bottom part

to get T/T0. As clear from 4.8(a) and 4.8(b), a peak and a dip is observed in the transmission of the

system. This is due to a Fano-type resonance between the reflections on the slow to fast waveguide

transitions and the light scattered from the QD. More details and a full theoretical treatment will be

presented in the next chapter.

Figure 4.8(c) and (d) present the transmitted photon flux and the transmission spectrum of the

65



CHAPTER 4. RESONANT EXCITATION OF QUANTUM DOTS IN PHOTONIC-CRYSTAL

WAVEGUIDES

waveguide under very weak repump intensity, Prepump =10 pW. The dispersive behavior can still be

observed in 4.8(c); however, the transmitted photon fluxes in the two periods of repump ON and OFF

are almost the same. Also the width of the signal in part (c) appears to be wider than the one in part

(a). We attribute this to reduced spectral diffusion as a result of the applied repump laser [152]. We

repeated these measurements while the repump laser was turned off totally and the dispersive signal

from the QD totally washed away.

Another interesting feature of these measurements is the suppression of the parasitic Fabry-Perot

resonances observed in the first generation of samples, see figure 4.5. The new design of the gratings

with the attached ridge waveguides and also the orthogonal polarization of the two out-coupling

gratings help to suppress these artifacts.

4.4.2 Later stage of the measurements
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Figure 4.9: (a) The emission spectrum of the sample under high power aboveband excitation. The

band-edge of the sample appear to have shifted by as much as 2 nanometers relative to initial value.

Also the band-edge is not as sharp as the initial measurements. (b) Emission spectrum of the sample

under weak aboveband excitation, red dotted curve. This spectrum is very similar to the one in figure

4.7(b). The gray area with blue outline shows the transmission spectrum of the waveguide over a

large range. This spectrum has a resolution around 30 GHz.

The sample quality degrades over time because of oxidization and also due to the cool-down and

heat-up cycles. After several days of the measurement the sample spectrum changed. Interestingly,

this change was abrupt and potentially due to the cool down procedure where the helium flow was not

regulated correctly and the heater worked under full power for several minutes at the same time as

there was a high helium flow. Figure 4.9(a) shows the emission spectrum of the waveguide after the

abrupt change of the spectrum. The band-edge appears to have shifted as much as two nanometers.

Also the shape of the band-edge is now smoother compared to the past. The dotted red line in figure

4.9(b) shows the emission spectrum under low-power excitation. The low power spectrum is very

similar to the low power spectrum in earlier stages of the measurement, see figure 4.7(b).
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Figure 4.10: (a) Time-resolved photoluminescent from the QD under pulsed wetting layer excitation.

The red curve is fit with a single exponential function. The green curve is the IRF of the setup.

(b) Auto correlation measurement of the emission. The anti-bunching around the zero time-delay

indicates that the line understudy belongs to a single emitter. The g2(0) is 0.3. The inset shows the

g2(τ) on time scale of 1µs. The QD does not blink on these time scales.

The gray area with blue outline in figure 4.7(b) shows the transmission spectrum of the sample.

This spectrum has been obtained by tuning the resonant laser under 30 GHz step and collecting the

transmitted light intensity. In this stage of the measurement the dot line of interest for us is close to

the resonance of the Fabry-Perot cavity.

Now that we have found a suitable candidate we perform a detailed characterization before pro-

ceeding to the resonant transmission measurements. The blue curve in figure 4.10(a) shows the

time-resolved photoluminescence for the QD line under wetting layer excitation. The curve fits well

with a single exponential function. The red curve is the fit from the theory. The fitting procedure is

the same as explained in 2.2.1. From the theoretical fit, the decay rate of the QD is 2.6 ns-1. From

the single exponential nature of the decay, we conclude that the exciton line is a charged exciton.

This conclusion is based on the observation that the neutral exciton have dark states and the spin flip

between the bright and dark state results in a bi-exponential decay in the photoluminescence curve [7].

Figure 4.10(b) shows the autocorrelation measurement of the QD line under wetting layer excita-

tion. The excitation power is around the saturation power. The clear anti-bunching around the zero

time-delay confirms that the line under study is a single exciton line. We extract the value of g2(0)

by integrating the counts in a 13 ns window around the zero delay peak, marked by yellow area in

4.10(b), and dividing it by the average of the area under 5 of the near peaks. We extract the value of

g2(0) to be 0.3. This confirms that the transition is coming from a single QD. The inset is this figure

shows the g2(τ) over longer time scales. The graph appears to be flat indicating lack of any blinking

on time scale of µs.

Following these characterization steps we continue to resonant transmission scans. We use a
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Figure 4.11: (a) The transmitted photon flux, top panel, and the transmission spectrum of the

waveguide, bottom panel, under resonant excitation with 4 pW. The yellow and the green curves

belong to the ON and the OFF periods of the repump laser respectively. The repump power is

25 pW. The QD line does not wash away in the OFF period of the repump laser. Hence, the

transmission spectrum is normalized to a different reference measurement. (b) The same as (a) but

with Prepump =2.3 nW. We extract the transmission spectrum by dividing the photon flux in the

OFF periods of repump laser by the photon flux in the ON periods of the repump laser. Note that

we have subtracted background counts in the repump on period when extracting the lower panel in

this section. (c) Same as the pervious parts but with 240 pW resonant laser and 150 pW repump

power. The QD transition turns off quickly after the aboveband laser is turned off hence we extract

the transmission spectrum by dividing the photon flux in the ON period to the photon flux in the

OFF period. (d) The repump power is 2.3 nW and the resonant power is 240 pW. The bottom panel

is extracted by dividing the photon flux in the ON period by a reference measurement that was taken

later with repump laser turned off. However, the curve is not flat far from the QD transition, due to

setup drifts. This makes the curve unreliable and hard to interpret.
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repump laser close to the edge of the wetting layer to get a better contrast. The measurement

procedure is the same as section 4.4.1. The repump laser is turned ON and OFF with a frequency of

500 Hz. We integrate the photon flux during the ON and OFF periods. We extract the transmission

spectrum of the resonant laser by dividing the two numbers. However, depending on the intensity of the

repump and the resonant laser, the QD transition behaves differently over the ON and OFF periods.

Figure 4.11 shows the transmitted photon flux and the transmission spectrum of the waveguide under

different resonant and repump powers. The top panel in figure 4.11(a) shows the transmitted photon

flux and the bottom panel shows the transmission spectrum. The repump laser power is relatively low,

Prepump =25 pW. The resonant laser intensity is Presonant =4 pW. When Prepump and Presonant are

low, the transition is revived and the blinking is cured by the repump laser during the ON period of

the repump laser. However, during the OFF period of the repump laser the transition does not go to

the dark state due to the low Presonant and relatively short OFF periods (2 ms). For low resonant and

repump powers, the photon flux is equal during the ON and OFF periods of the repump laser. Hence

one needs to normalize to the photon flux to a reference measurement to extract the transmission

spectrum. We extract the reference measurement by turning the repump laser totally off during a

measurement.

Part (b) of figure 4.11 shows the same plots as (a) but with a higher value of repump laser,

Prepump =2.3 nW. The repump laser revives the QD line during the ON periods. However, since the

Prepump is high enough, the QD frequency shifts away during the ON period. Note that the resonant

laser is still low and the transition does not go to the dark state during the OFF periods of repump

laser. When the repump power is high and the resonant power is low, the QD transition washes away

during the ON periods of repump laser and the transmission spectrum can be extracted as the ratio

between the photon flux in the two windows. The transmission dip in 4.11(b) is two times less than

the ones observed in 4.8 which we attribute mainly to increased spectral diffusion and blinking of the

QD transition, see next chapter for a detailed description and analysis.

Parts (c) and (d) of this figure show the photon flux and transmission spectrum of the system for

significantly higher resonant laser power, Presonant =240 pW. The Prepump is 150 pW in part (c), and

Prepump =2.3 nW in part (d). When Presonant is increased while the Prepump is relatively low, figure

4.11(c), the QD transition quenches shortly after the repump laser is turned off and stays off as long

as the repump laser is OFF. Therefore, we divide the counts on the ON period by the counts in the

OFF period to extract the transmission spectrum of the waveguide. The dip in transmission spectrum

in part (c) is half the dip in parts (a) and (b) as a result of the higher excitation power and saturation

of the emitter.

Figure 4.11(d), shows the photon flux and the transmission spectrum of the system when the

repump laser and the resonant laser are both high. The photon flux is around the same value in the

ON and the OFF periods of the repump laser. Therefore, we normalize the transmission spectrum

to the reference measurement. The main issue with normalizing to a reference measurement that is

taken after some time is that the drift in the alignment of the optical setup changes the transmitted

photon flux, hence the extracted spectrum is not clean and reliable, as seen in the bottom panel of

part (d) compare to the bottom panel of the part(c).
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Figure 4.12: Autocorrelation function of the transmitted light while the laser is on resonance with the

transmission dip. The resonant laser power is 167 pW and the repump laser power is around 400 pW.

The g2(0) is around 1.1. This value is without any de-convolution of the IRF of the detection setup,

and the actual g(2)(0) is as high as 1.25 after deconvolution with the setup IRF. This will be discussed

in details in the next chapter.

At this stage, we check the photon statistics of the transmitted light. According to the theory [182],

in the case of a single emitter efficiently coupled to the waveguide, the transmitted photons bunch. For

a coherent field, significant portion of the single photon components get reflected by the emitter, while

multi-photon components have an enhanced probability of being transmitted; see next chapter for a

complete explanation. In order to assure that the dip in the transmission spectrum is due to a single

emitter, we did auto-correlation measurements on the transmitted light while the resonant laser was

tuned in the dip in the transmission spectrum of the waveguide. We choose the Presonant to be 167 pW

and the repump laser power is around 400 pW. Figure 4.12 shows the results of the autocorrelation

curve versus delay-time, G2(τ). The peak around the zero time-delay indicates bunching of the

transmitted photons as expected from the theory. The value of the normalized autocorrelation function

at zero delay (g2(0)) is around 1.1. This value is directly read out from the curve without de-convolving

the (g2(τ)) and the actual value is around 1.25, since the IRF of the measurement setup is relatively

broad. This will be discussed in the next chapter in more details. As a sanity check, we turned the

repump laser OFF and repeated the measurement. The result was a flat histogram as expected from

a coherent state.

4.4.3 The final measurements

The data recorded in the previous section clearly shows modulation of the transmission of a PCW

with a single quantum dot. However, the data quality is not very good and the behavior of the QD

transition versus Prepump makes it hard to interpret the data. In order to extract the transmission

spectrum of the waveguide more reliably, we decreased the modulation frequency of the repump laser

to 2.5 Hz. The reason behind this is that when the repump laser is off for significantly long times the

QD transition would go off for the range of the Prepump and the Presonant in our experiments. This
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will be further investigated in the rest of this chapter when we investigate the lifetime of the ground

state.

Figure 4.13(a) shows the transmitted photon flux under Presonant = 1.4 pW. The yellow curve

shows the detected count rates during the ON periods of the repump laser while green curve shows the

count rates during the OFF periods of the repump laser. The whole measurement now takes longer

than before, around 12 minutes. The bigger fluctuation on the detected photon flux (the left hand side

of the left side 4.13(a)) are due to drifts in the position of stages under the cryostat. Figure 4.13(b)

shows the transmission spectrum of the system reconstructed from part (a). The small peak and slight

asymmetry in the transmission spectrum are results of the Fano-resonance in the system. However,

since the QD is close to the resonance of the cavity, the Fano-resonance shape is less pronounced than

in figure 4.8.

The top panel in part (c) of figure 4.13 shows the transmitted photon flux and the transmission

spectrum of the system under much higher resonant laser power, 4.17 nW. The collected light has to

be attenuated by a factor of around 50 to avoid damages to the APDs. The repump laser intensity

is set to Prepump = 850 pW. The bottom panel shows the transmission spectrum of the system.

The contrast of the dip decreases with increasing resonant laser power due to saturation of the QD

transition. Figure 4.13(d) shows the same quantities but with Prepump = 1.5 nW. The transmission

dip appear to be narrower when the repump laser is higher. We attribute this to reduction of charge

fluctuations for higher repump laser power. However, a further increase in Prepump by a factor of two

totally quenches the transmission dip during the ON periods of the repump laser. The behavior is

very similar to the one reported in the supplementary of reference [177].

4.4.4 Effect of the repump wavelength and intensity on the transmission dip

As seen in the previous section, the repump laser has several effects on the QD transition ( the dip in

the transmission spectrum). We first study the effect of the repump laser wavelength on the contrast in

the transmission spectrum of the system. Figure 4.14 shows the observed transmission dip versus the

wavelength of the repump laser. The transmission dip appears to be maximum when the wavelength

of the repump laser is around the wetting layer of the sample. This is probably due to the fact that

creating charge carriers in the wetting layer more effectively influences the QD and the traps around

it. In contrast when the wavelength of the repump laser is around 830 nm and below, more carriers

are created in the bulk GaAs, which results in more free charges in the environment of the QD. The

other interesting feature in figure 4.14 is the sharp increase in the dip contrast around 858 nm. The

same behavior is observed in the PLE spectrum of the sample. That is, the emission intensity of the

QD line increases sharply around this wavelength. We attribute this to an absorption resonance inside

the wetting layer. Note that the solid black line is a mere guide to the eye, and our measurements are

particularly down sampling the range between 840 nm to 850 nm. Since the photo-absorption is low

in this range, the repump laser is not expected to be effective.

We also observe a shift of the transmission dip with increasing repump power. Figure 4.15 shows
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Figure 4.13: (a) The transmitted photon flux under weak resonant excitation (Presonant = 1.4 pW).

Prepump = 175 pW and the repump laser is modulated with 2 Hz to assure that the QD transition

becomes dark during the OFF period of the repump laser. The yellow curve and green curve show

the transmitted photon flux in the ON and OFF periods of the repump laser respectively. (b) The

transmission spectrum of the waveguide under the same conditions as (a). Overtime the transmission

dip has reduced to around 8% due to sample degradation. (c) The transmitted photon flux, and the

transmission spectrum under strong resonant excitation, Presonant = 4.17 nW. The count rates are

after attenuation by a factor of 50. The attenuation is necessary to avoid damages to the APDs. The

repump laser power is 850 pW. (d) The same as (c) but with Prepump = 1.5 nW. The width of the

transmission dip reduces with increased repump laser power.

the frequency of the transmission dip versus Prepump. The measurement procedure is the same as in

figure 4.11 (The repump laser is turned ON and OFF at 500 Hz). The frequency of the transmission

dip appears to first red shift and then blue shift while increasing the repump laser intensity. This shift

is also observed in reference [161] and attributed to the quantum confined stark shift due to charge

configurations in the environment of the QD. The intensity of the resonant laser is around 8 pW for
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Figure 4.14: Contrast of the transmission dip versus the repump wavelength. Presonant is around

8 pW. The repump laser intensity is varied to get the maximum contrast. The transmission dip

appears to be maximum when the wavelength of the resonant laser is inside the wetting layer. The

sharp peak around 858 nm is due to some absorption resonance inside the wetting layer. The solid

black line is a mere guide to the eye and particularly down samples the range of 840 nm to 850 nm.

The sample is not absorptive in this range, hence we do not expect any effect from the repump laser

in reviving the QD transition.
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Figure 4.15: (a) Position of the transmission dip versus repump laser power. The resonant laser

power corresponds to 8 pW. Solid black curve is guide to the eye. The transition of the QD first

red-shifts with increasing repump laser power and then blue shifts.

these measurement.

4.4.5 Measurement of the ground state lifetime and revival time constant

As observed so far, the ground state of the exciton is a meta-stable state, either associated with the

presence of certain charge configuration in traps around the QD or the presence of a single electron
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Figure 4.16: (a) Decay of the ground state to dark state as a function of time. At t=0 the repump

laser is turned OFF and the change in transmission versus time is recorded. The procedure is repeated

for several periods and the results are summed. (b) Revival of the ground state from dark state as a

function of time. At t=0 the repump laser is turned on and again the change in transmission versus

time is recorded. The solid red lines are single exponential fits to the data. From the fits in (a) and

(b) we extract a ground state lifetime of 10 ms and a revival time constant of 1.8 ms. The intensity of

the resonant laser and the repump laser are 6.2 pW and 500 pW respectively. The measurements in

(c) and (d) are the same as (a) and (b) except for Presonant = 62 pW and Prepump = 1 nW. In these

cases τc and τg are extracted to be 3.3 ms and 0.66 ms.

inside the QD to form a charged exciton. In order to figure out the lifetime of this ground state and

the time scales required for preparing the correct ground state, we monitor the transmission of the

system versus time while toggling the repump laser ON and OFF at one Hertz. The resonant laser

is tuned into the center of the transmission dip. Figures 4.18(a) and (c) show the time evolution of

the transmission. The repump laser is initially ON for a long time and is turned OFF at time zero.

The transmission of the waveguide appears to increase over time scale of τg. This time constant is

the lifetime of the ground state of the QD. For the measurements in part (a) the intensity of the

resonant laser and the repump laser are 6.2 pW and 500 pW respectively. From single exponential fit

to the data in part (a), we extract a ground state lifetime of 10 ms for above specified powers. For the

measurements in part (c), Presonant = 62 pW and Prepump = 1 nW and we extract τg =3.3 ms. Figure
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4.18(b) and (d) show the time evolution of the waveguide transmission during the ON period of the

repump laser. At time zero, the repump laser is turned on after being OFF for 0.5 s. The transmission

of the waveguide appears to drop with a time constant of τc. We attribute this time constant to the

time it takes to revive the QD transition. The intensity of the repump and resonant laser in parts

(b) and (d) correspond to the ones in (a) and (c) respectively. From single exponential fits to these

curves, we extract τc to be 1.8 ms for part (b) and 0.6 ms for part (d).

4.4.6 Others efforts to increase the transmission dip contrast

We tried several methods to increase the contrast of the dip in the transmission spectrum of the

system. In reference [152], it is shown that by decreasing the total measurement time, it is possible

to obtain fourier transform limited transitions. However, this requires that the total measurement

time is less than the time scale of the charge and spin noises in the environment. We believe that the

dominant noise in our case is the charge noise, since the spin noise is independent of the sample [152]

and has much lower amplitude than we observe. Hence, we tried to do the transmission scans in as

short time scales as possible. However, the shortest time scales we achieved were around 0.2 s, which

is much longer than the expected time scales.

Another factor limiting the transmission dip could be the phonon sideband of the QD transition.

In order to check the influence of these sidebands, we filter the transmission using a monochromator

setup with full-width half-maximum of 30 GHz. Figure 4.17(a) shows the transmitted photon flux

after being filtered with the monochromator. The two slopes in this figure are due to sharp spectral

response of the monochromator. Figure 4.17(b) shows the transmission spectrum corresponding to the

part (a). The transmission spectrum in figure 4.17(b) is very similar to the one in 4.13(c). Therefore,

we conclude that the phonon sidebands are not the limiting factor in our case.
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Figure 4.17: (a) the transmitted photon flux after being filtered with a monochromator. The resonant

laser and repump laser intensities are Presonant = 4.17 nW and Prepump = 800 pw. The slopes in plot

are due to spectral response of the monochromator. (b) The transmission spectrum corresponding

to(a). The transmission spectrum is very similar to the one in 4.13(c).

75



CHAPTER 4. RESONANT EXCITATION OF QUANTUM DOTS IN PHOTONIC-CRYSTAL

WAVEGUIDES

The oxides on the surfaces of the nanostructure could also be responsible for increasing the charge

fluctuation in the environment since they act as active trap sites. We tried to etch away these oxides

using a digital etching step. However, the band-edge of the PCW shifts to lower wavelengths after

the digital etching step and the QD was not inside the primary band of the waveguide any more. In

order to shift the waveguide mode back to the initial wavelength, we deposited HfO2 on the sample

using monolayer deposition techniques. Figure 4.18 shows the emission spectrum of the waveguide

after the deposition. The band-edge of the waveguide is at the desired wavelength; however, the low

power emission spectrum is significantly more polluted than before and high background emission can

be seen in the emission spectrum. Also the single emitter lines are clearly broader than expected. We

tried the same measurement as in the past, however we failed to see any resonant signal from the QD.
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Figure 4.18: Emission spectrum of the sample after HfO2 deposition, (a) under high-power excitation,

and (b) under low-power excitation. The band-edge is approximately around the same wavelength it

was before digital etching. The QD transitions are also around the same value as before. However,

there is significant background emission, and the emission spectrum is much more polluted compared

to the spectrum before the deposition, figure 4.7. Also, the emission peaks in part (b) are much wider

than the peaks in figure 4.7.

We later fabricated 3 other samples and tried the resonant measurements on them. In the first

fabrication run, the band-edge of the waveguides was outside the range of the available CW lasers.

In the second run, the aboveband emission spectrum of the sample was much dimmer than the initial

measurements in figure 4.7 and 4.9 indicating that something might be wrong with the piece of the

QD wafer. The third sample was similar to the primary sample of these measurements and we tried

the resonant measurements on 4 different waveguides in that sample; however, we did not get a

resonant signal. Although the yield is low, this observation is not a surprise. The resonant scattering

is known to be low-yield when there is no control over electrostatic environment of the QD (no electric

contacts) [160] and references there.
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4.5 Conclusions and outlook

In this chapter, we presented the experimental effort towards resonant scattering from InAs quantum

dots in photonic-crystal waveguides. We designed a PCW structure composed of a slow light PCW

which enables efficient light matter coupling, and two fast light PCWs that facilitate the light coupling

and transport on the chip. We observed several different behaviors from QDs in our measurements. In

the preliminary stage of the measurement, we observed excessive noise in the transmission spectrum

of our waveguide which we attributed to the embedded emitters. We used a repump laser to activate

the transitions of our QDs and we observed 3% dip in the transmission of our system on the first

generation of samples. Later, We observed up to 30% contrast in the transmission spectrum of the

sample with lower density of dots. The sample degradation was a serious problem during the course of

the measurement. However, we were able to counter the degradation using different repump schemes.

We also reported the behavior of the QD transition as a function of the repump power and wavelength.

Finally, we studied time scales related to activation and deactivation of the QD transition as a result

of applied repump laser.

The results reported in this chapter can be further improved in several ways. Firstly, a post

processing step can be added to the measurement procedure. One possible implementation of the post

processing step is as follows. The resonant laser intensity is increased to high levels over short time

scales, ≈1 µs. The transmitted count rates are integrated in this window. Based on the count rates

in this window one keeps or discards the measurement results in the subsequent window. Another

possibility would be to resonantly characterize the sample and identify the QDs with reasonable

resonant count rates and then build nanostructures around them. This could increase the chances of

observing resonant signal from QDs in the nanostructures. Finally, implementing electric gates on the

sample can allow one to apply an electric field across the QD layer. This electric field can help pin

the charge state of the QD and also reduce the charge noise in the environment of the dot.
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Chapter 5

Single-photon nonlinearity induced by

a single quantum dot in a

photonic-crystal waveguide: theory

and experiment

This chapter partly builds on reference [183]. As mentioned and discussed in the earlier chapters, an

efficiently coupled QD-PCW is a versatile platform for quantum optics at the fundamental photon

levels. Optical nonlinearities at the single photon level, where one photon and two photons interact

differently with the system, are one of the important blocks for classical and quantum information

processing. In this chapter, we experimentally show that a single quantum dot can efficiently modulate

transmission of a PCW and modify the photon statistics of the transmitted field. We measure the

transmission spectrum of a PCW around the resonance frequency of a well-coupled QD and show that

the QD induces a dip in the transmission spectrum of the PCW. We study the power dependence of

the transmission dip and observe that the critical photon number for saturation of the transmission

spectrum is below 1. The photon statistics of the transmitted field show a pronounced bunching of

the photons as a result of the single photon components being preferentially reflected. The raw value

of normalized autocorrelation around the zero delay time is 1.08 and we estimate it to be around 1.17

after deconvolution with the instrument response function of the setup.

The power dependence of the transmission, and also the bunching in the photon statistics of the

transmitted field, indicate an optical nonlinearity at single photon level, and further highlight the

potential of PCWs for quantum optical experiments and quantum information processing. Further

work in the direction of these results would enable photon sorters, QND detectors, and single photon

transistors.
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PHOTONIC-CRYSTAL WAVEGUIDE: THEORY AND EXPERIMENT

5.1 Introduction and literature review

Nonlinear interaction between photons has far-reaching applications in classical and quantum in-

formation processing [14, 15]. However, optical interaction between photons is very weak and only

observable at high intensities. Kerr type nonlinearities in bulk crystals occur at relatively high power

scales. Nonlinearities originating from single atoms are also generally weak as result of the small opti-

cal cross section of the single emitters. One approach to increase the optical cross section of the atoms

would be to use an ensemble of atoms. However, the number of photons required to saturate and

ensemble of atoms increases with the number of atoms involved, hence limiting the efficiency of this ap-

proach [184]. Alternatively, one can focus the light beam using lenses with high numerical apertures

and hence increase the emitter-field interaction. Pioneering work with different quantum emitters

has already proven significantly enhanced nonlinear interaction mediated by atoms [185], quantum

dots [147, 148] and dye molecules [186] in this configuration. Although this approach provides orders

of magnitude enhancement compared to a nonlinear crystal, the photon-photon interaction is still

weak for any application in quantum optics. Cavity quantum electrodynamics offers an alternative to

achieve strong nonlinear interactions at the single photon level.

Single emitters efficiently coupled to localized cavity or single propagating modes exhibit photon

level nonlinearities in their response [184]. A localized mode, a cavity or a waveguide mode, enhances

the interaction time of the emitter and the photon and thereby increases the interaction strength. In

the atomic optics community, several works with single atoms coupled to different types of cavities

have already demonstrated nonlinear interactions at few photon levels [19,21,187,188], also see recent

review article [184]. Very recently, Tiecke et al. reported switching the phase of a light field based on

internal state of an atom [20]. Excitingly, photon-photon switching at few photon level was reported

in reference [189].

As discussed in chapter 3, engineered nanostructures enable efficient and deterministic interfacing

of the quantum emitters. As a result, observation of optical nonlinearities on the single photon level

is possible. There are several reports of optical nonlinearities at few-photon levels in the quantum

dot community, with QDs strongly coupled to different cavities. Englund et al. reported optical

nonlinearity in the few photon limit in the reflection spectrum of an strongly coupled QD-cavity

system [166]. They used an L3 photonic crystal cavity with embedded quantum dots and achieved a

contrast of 60% in the reflection spectrum of the cavity due to a strongly coupled quantum dot. They

extracted the kink of the saturation to be around 0.5 photons inside the cavity which corresponded

to 20 nW. Later, the same group studied the quantum nature of this nonlinearity by measuring the

autocorrelation function of the reflected photons. They measured the g2(τ) versus detuning of the

excitation laser from the polariton peaks and observed photon bunching at the cavity frequency and

anti bunching when on resonance with the polaritons line [168]. In a third publication from the same

group, they reported switching of the reflection of the system [190], where switching of the phase of

the reflected field was achieved with around 5 intra-cavity photons.

Around the same time Srinavasan et al. reported the nonlinear response of a strongly coupled

QD-microdisk cavity [167]. Their system was composed of a fiber side coupled to a microdisk cavity.
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They measured the transmission and reflection of the fiber as a function of excitation wavelength and

QD-cavity detuning. They observed around 35% contrast in the transmission of the system and the

kink of the saturation around 0.1 pW.

Other groups also reported few photon level nonlinearities and optical switching with strongly

coupled QD-cavities. Reinhard et al. studied the photon statistics of a strongly coupled QD- L3

cavity. They used a procedure to position the quantum dots deterministically in the antinode of the

cavity and they could obtain a coherent coupling strength of 141µeV [169]. They observed g(2)(0) = 1.5

in resonance with the bare cavity peak and g(2)(0) = 0.55 at resonance with the polariton peaks. In

a later work, the group demonstrated fast photon switching using the same system [191]. Nonlinear

behavior of quantum dots strongly coupled to micropillar cavities has also been studied [170, 192].

Loo et al. also reported few photon level nonlinearity in transmission spectrum of a strongly coupled

QD-micropillar cavity. They observed a 25% contrast in the reflection of the cavity and a critical

intra-cavity photon number of 0.03 corresponding to 8 photons on the sample per pulse where the

pulse width was on the order of the cavity life time [170]. Around the same time two other groups

demonstrated optical switching using L3 cavities strongly coupled to a QD [193, 194]. Kim et al.

demonstrated switching of the polarization of an optical field based on the internal state of a QD.

They used the V system resulting from two dipoles of a neutral QD. One of the two dipoles (|1〉)
was in strong coupling with the cavity while the other one (|2〉) was decoupled from the cavity. They

controlled the polaritons of the |1〉-cavity by optically driving the |2〉 transition, and hence obtained

switching.

All the nonlinearities reported in the quantum photonic community are with QD strongly coupled

to nanocavities. However, the main requirement for strong nonlinearities is a highly efficient interaction

between the light field and a single quantum emitter. As discussed in chapter 3 nanostructures can

provide efficient interface to the coupled emitters in the Purcell regime of QED. Accordingly, a single

emitter can offer strong nonlinearities without the need for strong coupling with a cavity [16,21,188].

Several groups in the atomic optics community have very recently demonstrated such a possibility

[20, 21, 188]. In this respect quantum dots embedded in photonic crystals are ideal candidates since

the high coupling efficiency between a PCW and the embedded QDs for a very broad bandwidth has

already been demonstrated, see chapter 3 and the references in there.

The main advantage a waveguide over a cavity is its broad bandwidth and true on-chip operation.

A long cavity lifetime (large Q-factor and small linewidth) is the main requirement for achieving strong

coupling between a QD and a cavity. However, such systems require a mechanism to tune the QD to

the resonance of the cavity. More importantly, high Q-factor cavities in general have a non-Gaussian

far-field with multiple side peaks [120]. The particular far-field pattern makes these cavities hard to

interface efficiently with a fiber. Side coupling these cavities to an on-chip waveguide is either not

efficient, or results in significant reduction in the Q-factor of the cavity. On the contrary, a system like

a PCW, in addition to being an efficient interface to the QD, allows for direct scaling of the system

without the need to couple the light out of the chip. Even the detection can be done on-chip using

integrated superconducting detectors [177].
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In this chapter, we demonstrate a giant optical nonlinearity in a PCW. The nonlinear behavior is

resulting from saturation of a QD coupled to the PCW with high efficiency. The next section starts

with a simple description of light scattering from an atom well-coupled to a single mode and then

gives exact formulas for a real emitter in a PCW, including residual reflections from different parts of

the PCW and effects like spectral diffusion of the QD.

5.2 Theoretical background

In this section, we theoretically analyze the transmission of a single mode efficiently coupled to a single

quantum emitter. We refer to the quantum emitter as QD and the 1D system as PCW hereafter,

since these terms are more relevant for the experimental work presented in this chapter; however, the

results are general and apply to any emitter coupled to a 1D-like system.

From classical scattering problem, it is known that the electric field in a homogenous medium with

a single polarizable object can be written as a sum of the incident field and the field scattered from

the object [105,195].

ÊTotal = Êincident + Êscattered, (5.1)

where ÊTotal is the total field in the medium, Êincident is the field applied to the medium, and Êscattered

is the field scattered by the object.

For a QD sitting at x = 0, the coherent part of the scattered electric field is related to the

expectation value of the atomic operator s− = |g〉〈e| as [103,196]:

ÊQD = i

√
Γ

2
〈s−〉

(
ÊPCW(−k, x)Θ(−x) + ÊPCW(k, x)Θ(x)

)
, (5.2)

where the Θ is the heaviside function, ÊPCW is the eigenmode of the waveguide, and first term is the

field scattered to the left side of the QD and the second term is the field scattered to the right side of

the QD and Γ is the decay rate of the emitter. Note that the scattered field is π/2 out of phase with

the 〈s−〉.

The general equations for 〈s−〉 under resonant excitation can be found in any quantum optics

textbook, see for example [103,197]. One can easily get the formula for a QD in a 1D system, see first

part of this section or reference [196] for an exact derivation. In the weak excitation regime from one

side of the PCW, as in section 5.1, 〈s−〉 is equal to:

〈s−〉 = i

√
2

Γ
Eincident, (5.3)

where Eincident is the amplitude of the field incident on the QD from the left side of the PCW. As

clear from the equation 5.1 and equation 5.4, the field scattered from the QD in the weak excitation

regime is π out of phase with the excitation filed. Hence, the two fields interfere destructively in the

forward direction, and the field intensity on the right hand side of the QD is zero, as pictured in figure

5.1(a).
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(a) (b)

Figure 5.1: (a) At low excitation powers the scattering from the QD is coherent. The photon scattered

in the forward direction and the incident photon interfere destructively and cancel out, hence the

transmission probability of the photon vanishes in the ideal case. (b) When several photons interact

with the QD at the same time, the QD saturates and the multi-photon components have a higher

probability of being transmitted.

In the strong driving limit, the QD is saturated by the incident field. In this regime, 〈s−〉 is

proportional to i
E2

incident
. This term vanishes in the strong excitation limit, hence all the field incident

on the QD is transmitted, as depicted in figure 5.1(b). In the quantum picture, this saturation

already happens for the 2 photon components of the field and the two photon components have a

higher probability of being transmitted [181]. Therefore, the saturation of the QD combined with its

efficient coupling to the PCW provides an optical nonlinearity at the single photon level.

In the following subsections we derive theoretical formulas to model dynamics of photon scattering

off a QD in a PCW. We start with the Hamiltonian for a QD coupled to a single mode and derive the

formulas for the transmission coefficient of the QD-PCW system. We later study the quantum effects

that stem from the photon nonlinearity of the system.

5.2.1 Full equations for the transmission coefficient
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Figure 5.2: A pictorial demonstration of different effects present when a QD is coupled to the propa-

gating mode of a waveguide. There are reflections between different sections of the waveguide that give

rise to Fabry-Perot resonances in the waveguide. The emission from the QD also couples to radiation

modes with a decay rate of γ. The model for this system is equivalent to the case of a double sided

cavity coupled to propagating modes of an ideal waveguide. The left hand side of the waveguide is

the input port and the right hand side is the output port.

In this section we study the transmission coefficient of a PCW with a QD efficiently coupled to
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it. Figure 5.2 shows the physical picture of the system. A QD in a PCW has several decay channels

other than the PCW mode, leaky modes discussed in chapter 3. The coupling to these modes is

modeled with their decay rate γ. Also, there are always residual reflections between different sections

of a PCW. This situation is very similar to the case of a QD inside a double-sided cavity efficiently

coupled to a waveguide on the two ends. We model the effect of these residual reflections through the

quality factor of the cavity (Q)1.

The Hamiltonian of the system can be written as:

H =~ω0ŝz + ~(ω0 + δ)â†â+ i~g(ŝ†−â− â†ŝ−), (5.4)

where the first two terms are the energy of atom and the cavity, and the last two terms model the

interaction of the QD and the cavity, and g is the coupling strength between the cavity and the QD.

In figure 5.2, arout and alout are the right and left propagating fields in the output port ( right hand

side of figure 5.2), and arin and alin are the right and left propagating fields in the input port (left

hand side of figure 5.2). We assume that the system is excited from the left hand side (alout = 0). We

treat the excitation laser as a classical field and include it in the equations by the field amplitude. As

described before the total field in the system can be written as a sum of the incident field (arin) and

the field scattered from the cavity2. That is:

arout = i
√
κ〈â〉,

alin = arin + i
√
κ〈â〉,

(5.5)

where κ is the decay rate of the cavity to the waveguide. The Heisenberg equations of motion for the

cavity and the atom can be written as:

˙̂s− = i∆ωŝ− − 2gszâ−
1

2
(γ + 2γ0)ŝ− +G,

˙̂sz = g(ŝ†−â+ â†ŝ−)− γ(ŝz +
1

2
) +K,

˙̂a = −i(−∆ω + δ)â− κâ− gŝ− + i
√
κarin +H

(5.6)

where γ is the decay rate of the emitter to the leaky modes, ∆ω = ω−ω0 is the detuning between the

excitation laser and the QD 3, and γ0 is the pure dephasing rate of the emitter. For our system, the

QD-cavity coupling is in the Purcell regime, that is κ >> g (also referred to as bad cavity limit [182]).

In this limit, the cavity field can be assumed to be in a stationary state ( ˙̂a = 0). Substituting this

to equations in 5.6, one can simplify the equations of motion for the expectation values of atomic

operators as:

ṡ− = i∆ωs− −
ΓWG

2

(
1

f
+ t0

)
s− − 2iΩt0sz,

ṡz = −ΓWG

(
Re (t0) +

γ

ΓWG

)
(sz + 1) + i

(
Ωt0s

∗
− − c.c.

)
,

(5.7)

1This section benefits from the work in reference [196]. However, for most equations in the article, pure dephasing

is neglected. In addition, the reference mainly extracts the coherent component of the transmitted field. Moreover we

study the quantum statistical properties of the transmission.
2Note that for a cavity embedded in a waveguide, if the cavity is removed, the incident light is reflected back.
3The definition of ∆ω is different from reference [196] by a minus sign.
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with

f =
ΓWG

2γ0 + γ
,

t0 =
1

1 + i(δ−∆ω)
κ

.
(5.8)

where we have used sz = 〈ŝz〉 and s− = 〈ŝ−〉. ΓWG = 2g2

κ is the decay rate of the QD to the waveguide

mode, and Ω = arin
√

ΓWG/2 is the Rabi frequency of the input field.

The steady-state solution of the equations of motion can be readily derived [196]:

s− = − 4

ΓWG

iΩt0sz

t0 + γ
ΓWG

+ 2γ0
ΓWG

− 2i∆ω
ΓWG

,

sz =
−0.5

1 + Ω2/Ω2
c

.

(5.9)

where

Ω2
c =
|2i∆ω − (γ + t0ΓWG + 2γ0)|2 [γ + ΓWG Re(t0)]

8|t0|2[γ + 2γ0 + ΓWG Re(t0)]
. (5.10)

is the critical Rabi frequency and corresponds to sz = − 1
4 . For the purpose of evaluating the nonlin-

earity in terms of the number of input photons, it is instructive to define a parameter nτ = 2Ω2

Γ2 . This

parameter corresponds to the mean photon flux in the input field per lifetime of the emitter. The

critical photon number can then be define as nc = 2(Ω
Γ )2. For a QD in resonance with the cavity and

∆ω = 0, the critical photon number is:

nc =
(1 + 2β γ0Γ )

4β2
. (5.11)

where β = ΓWG

γ+ΓWG
is the collection efficiency of the photons scattered from the QD, as defined and

discussed in chapter 3. The critical excitation power Pc corresponds to ~ωncΓ. The transmission and

reflection coefficients of the field can be extracted as:

t =
〈arout〉
arin

,

r =
〈alin〉
arin

.

(5.12)

The transmission coefficient of the system under the assumption ∆ω = 0 and δ = 0 can be simplified

to:

t = 1− Γβ

(Γ + 2γ0β)(1 + nτ/nc)
. (5.13)

It is instructive to plot the transmission of the system versus power and detuning. Figure 5.3(a) shows

transmissions of the QD-PCW system versus excitation power and the detuning from the QD, while

Q = 1000, β = 0.96 and δ = 200 GHz. Figure 5.3(b) shows the transmission of the waveguide versus

detuning from the QD at low excitation powers. A peak and a dip are visible in the transmission

around the resonance of the QD. The dip is a result of coherent reflection of the incident photons by

the QD transition as discussed so far. The peak, however, is a result of interference between the light

scattered from the QD and the light scattered from the cavity [180]. The Fano-resonance between

the light scattered from the QD and the cavity scattering induces a transparency window. In this

window, the transmission of the system is higher than transmission of the bare cavity [198]. Figure

5.3(c) shows transmissions of the system versus excitation power when at resonance with the QD
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frequency. The transmission of the system is inhibited by the QD at low excitation powers. As also

seen from equation 5.13, the transmission of the system (|t|2) has a quadratic power law dependence

and pronounced saturation is seen while increasing the excitation power.

(a) (b)

(c)

‐10 ‐5 0 5 10

10
‐2

10
‐1

10
0

10
1

10
2

n


/

 

 

0

1

‐10 ‐5 0 5 10
0

0.5

1

|t
|2

/

10
‐2

10
‐1

10
0

10
1

10
2

0

0.5

1

|t
|2

n


|t|
2

Figure 5.3: (a) The transmission of the PCW-QD system versus power and detuning from the QD. (b)

The transmission of the system in the very weak input power regime. The peak in the transmission is

a result of Fano-resonance between the cavity and the QD, where QD opens a transmission channel.

(c) Transmission of the system versus excitation power on resonance with the QD (∆ω = 0). The

parameters used for these plots are Q = 1000, β = 0.96 and δ = 200 GHz.

Note that equations 5.12 are only valid for the coherent part of the transmitted field. The coher-

ent part of the transmission is the relevant quantity when doing homodyne measurements. For the

photon counting measurements, as in this thesis, the measured transmission of the system is the total

transmitted field, which is a sum of coherent and incoherent parts. The incoherent component of the

scattering from the QD can be extracted as:

Pincoh

arin
2 = 1−

(
|t|2 + |r|2 + γ|〈s〉|2/arin

2
)
. (5.14)

and the total transmission can be evaluated as:

T = |t|2 + βPincoh/2a
r
in

2. (5.15)

Figure 5.4(a) shows the coherent and incoherent components of the transmitted field and the coherent

component of the reflection versus excitation power. The parameters used for this plot are Q = 1000,

β = 0.96 and δ = 0. The system with these parameters constitutes a nearly ideal system. Most of

the light transmitted at low excitation powers appears to be incoherent; however, the higher power

transmission appears to be totally coherent. Also, most of the reflection at low power excitation

appears to be coherent with the incident laser. Part (b) of this figure shows the total transmission of

the system and the coherent transmission of the system. The total transmission of the system has a

linear power law dependence at low powers, typical of a single emitter.

Finally, the transmission spectrum of the system can be reconstructed as:

T

T0
=
T

t20
. (5.16)
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Figure 5.4: (a) The coherent transmission (blue), incoherent transmission (red), and the coherent

component of the reflection of the QD-PCW system versus resonant power for a nearly ideal system.

At the low power regime most of the transmission is incoherent, since the parameters in this mode are

close to a nearly ideal system and most of the incident field is coherently reflected. At higher powers

the transmission is mostly coherent. Also note that Rincoh = Tincoh (b) The total transmission of the

system (green) and the coherent component of the transmission (blue) versus resonant power. The

parameters used for these plots are Q = 1000, β = 0.96 and δ = 0.

This equation is the most relevant equation for modeling the experimental data. The optical nonlin-

earity discussed so far also has implications for the statistics of the transmitted photons. In the next

section, we present a theoretical models to compute g(2)(τ) of the transmitted light.

5.2.2 Autocorrelation function of the transmission

The quantum nature of the light is presented in its photon statistics. The easiest method to exper-

imentally characterize a light field is to measure the correlation on the arrival times of its photons

(G(2)(τ)) [103].

G(2)(τ) = 〈â†(0)a†(τ)a(τ)a(0)〉. (5.17)

In our case we, we are mostly interested in the statistics of the transmitted field. The G(2)(τ) for the

transmitted field can be written as:

G(2)(τ) = 〈

(
t0a

r
in − i

√
ΓWG

2
t0ŝ
∗
−(0)

)(
t0a

r
in − i

√
ΓWG

2
t0ŝ
∗
−(τ)

)
×(

t0a
r
in + i

√
ΓWG

2
t0ŝ−(τ)

)(
t0a

r
in + i

√
ΓWG

2
t0ŝ−(0)

)
〉.

(5.18)

As discussed in the previous chapter, in the final stage of the measurement, the QD of interest was

close to resonance with the cavity. For the simplicity we set t0 = 1 and δ = 0 here on. Under these
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assumptions the G(2)(τ) can be simplified as:

G(2)(τ) =arin
4 − 4

√
ΓWG

2
arin

3 Im [〈ŝ−(0)〉] + ΓWGa
r
in

2

(
1

2
+ 〈ŝz(0)〉

)
+

ΓWGa
r
in

2 Re
[
〈ŝ†−(0)ŝ−(τ)− ŝ†−(0)ŝ−(τ)

†〉
]

+ ΓWG

√
ΓWG

2
arin Im

[
〈ŝ†−(0)ŝz(τ)〉

]
− ΓWG

2

√
ΓWG

2
arin Im [〈ŝ−(0)〉] + ΓWG

√
ΓWG

2
arin Im

[
〈ŝ†−(0)ŝ†−(τ)ŝ−(0)〉

]
+

(
ΓWG

2
)2〈ŝ†−(0)ŝz(τ)

†
ŝ−(0)〉+

1

2
(
ΓWG

2
)2

(
1

2
+ ŝz(0)

)
.

(5.19)

The normalized auto correlation function g(2)(τ) can be written as:

g(2)(τ) =
G(2)(τ)

〈
(
arin − i

√
ΓWG

2 ŝ∗(τ)

)(
arin + i

√
ΓWG

2 ŝ(τ)

)
〉2

(5.20)

In order to calculate g(2)(τ), one needs to apply the quantum regression theorem [103] to the equa-

tions in 5.7 and get the equations governing the two time (〈ŝi(0)ŝj(τ)〉) and three time averages

(〈ŝi(0)ŝj(τ)ŝk(0)〉) in equation 5.20. In both cases, the resulting equations are of the form 〈 ˙̂
S〉 =

M〈Ŝ〉+D. For the two time averages these have the following form

d

dτ
〈 ˙̂
S〉 =


〈ŝ†−(0)ŝ†−(τ)〉
〈ŝ†−(0)ŝ(τ)〉
〈ŝ†−(0)ŝz(τ)〉

 , M =


−i∆ω − f1 0 2iΩ

0 i∆ω − f1 −2iΩ

iΩ −iΩ γ + ΓWG



D =


0

0

−0.5(γ + ΓWG)s∗−

 , f1 = γ/2 + γ0 + ΓWG/2.

(5.21)

For the three time averages, the matrix M is the same as above. The other two vectors are:

d

dt
〈 ˙̂
S〉 =


〈ŝ†−(0)ŝ†−(τ)ŝ−(0)〉
〈ŝ†−(0)ŝ(τ)ŝ−(0)〉
〈ŝ†−(0)ŝz(τ)ŝ−(0)〉

 , D =


0

0

−0.5(γ + ΓWG)(0.5 + sz)

 . (5.22)

These equations can be solved analytically only in the very simple cases, e.g. ∆ω = 0 or τ = 0

[16, 181, 182]. However, the analysis in this thesis require the g(2)(τ) versus detuning and power.

Hence, we revert to solving these equations numerically.

Figure 5.5(a) shows the time dependence of the autocorrelation function versus different values of

γ0. For this plot, we use nτ = 0.06 and β = 0.96. The strong bunching around zero time delay is a

consequence of the saturation of the emitter when excited with multiple photons. Physically it can

be interpreted as follows: when single photons arrive at the emitter one by one (weak excitation),

they are coherently reflected by the emitter. When two photons arrive at the emitter with relatively

short delays, the QD is saturated and both photons have a higher probability of being transmitted

as opposed to the single photons [181]. Therefore, detection of a photon increases the probability of

detecting a second photon in short time delays afterwards. Figure 5.5(b) shows the behavior of the

g(2)(0) as a function of the nτ for different values of β. When β is high ( relevant for blue and green
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Figure 5.5: (a) g(2)(τ) versus time for different values of γ0. The main feature of the g(2)(τ) is the

bunching of the photons around the τ = 0. This is a direct consequence of the nonlinear transmission

of the system. For this plot, we use the parameters β = 0.96 and nτ = 0.06. (b) The g(2)(0) versus

excitation power for different values of β and γ0 = 0.5Γ. The bunching of the photons decreases as

the excitation power increases as a direct consequence of the saturation of the emitter.

curves), the transmission probability of single photon components increases with increasing nτ , hence

g(2)(0) approaches one. When β is around 0.5, the auto correlation function of the field has different

behavior. For β = 0.5, there is a pronounced anti-bunching of the photons at low excitation powers,

followed by a bunching at intermediate excitation powers.

Another phenomena relevant to the QDs is the spectral diffusion of the QD transition [152, 161],

where the transition frequency of the emitter changes in time scales longer than the lifetime of the

emitter. In the next section, we present the theoretical method to include effect of the spectral

diffusion in the models presented so far.

5.2.3 Effect of spectral diffusion and blinking of the emitter

The energy of the s-shell transition of a QD is known to change over time scales much longer than the

lifetime of the emitter mainly due to changes in the charge and spin configuration of the environment

of the QD [152,155,166,199]; these effects have been discussed in detail in previous chapter. As long

as these shifts are within several linewidths of the emitter, the result is spectral broadening of the

QD transition (referred to as spectral diffusion here on). When these shifts are much larger than the

linewidth of the emitter the result is blinking of the QD transition.

The spectral diffusion can be modeled by including a random detuning in the transition frequency

of the QD, that is ω = ω0 + δ0 where ω0 is the resonance frequency of the QD and δ0 is a random

variable with a Gaussian probability distribution:

P (δ0) =
1√

2πσ2
e−

δ20
2σ2 . (5.23)

In order to obtain the time averaged effect of these fluctuations on the transmitted light intensity and
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its statistics, equations 5.16 and 5.20 have to be convoluted with equation 5.23:

T ∗ =

∫ 10σ

−10σ

T (∆ω − δ0)P (δ0) dδ0 (5.24)

g(2)∗(τ) =

∫ 10σ

−10σ

g(2)(τ,∆ω − δ0)P (δ0) dδ0. (5.25)

On the other hand, the blinking of the QD can be characterized as the ratio between the time the

QD spends in the dark state over the sum of the time spent in the bright and the dark states (α).

The effect of blinking can be modeled as:

Texp = (1− α)T ∗ + α× 1, (5.26)

g(2)
exp(τ) = (1− α)g(2)∗(τ) + α× 1. (5.27)

Physically, these equations can be interpreted as follows: when the QD is in the dark state (with

probability of α) the transmitted light is the coherent laser state and when the QD is in the bright

state (with probability (1 − α)) the transmission spectrum and the g(2)∗(τ) are given by equations

5.24 and 5.25 [168,169]. Hence a weighted average of the two states gives the experimentally observed

transmission spectrum and the g(2)(τ).

In the next section, we present the experimental results where we show that giant optical nonlin-

earities are within reach with QDs efficiently coupled to PCWs.

5.3 Experimental demonstration

In this section, we present the experimental results, where we resonantly excite a QD which is efficiently

coupled to a PCW. The sample used for the experiments is the same as the one in section 4.4. We

start by shortly reviewing the structure of the sample and the preliminary measurements.

Figure 5.6(a) and (b) show the principle of operation of the nonlinearity and the structure of the

sample. As evident from equation 5.13, high β- factor is beneficial for operation of nonlinearity on

single photon levels. Therefore, we choose the quantum dots that are in the slow light section of the

waveguide (central section of (a) and (b) of figure 5.6). As discussed in chapter 3, the β-factor in this

region is close to unity. The green spot in the center of part (b) represents the repump laser. Figure

5.6(c) shows a SEM image of the three parts of the sample, the out-coupling grating, the slow light

region, and the in-coupling grating.

Technical details of resonantly exciting the QD is covered in chapter 4. Part (d) of figure 5.6, shows

the transmission spectrum of the waveguide around the resonance of the QD. The transmission of the

waveguide is modulated by around 30% due to presence of the QD. The peak in the transmission

spectrum is due to a Fano-resonance between the scattering from the QD and the scattering from the

cavity, as discussed in section 5.6. The solid black line in part (d) is the fit using equation 5.26. We

extract β = 0.88, Γ = 4.6 GHz and σ/Γ = 3.

90



5.3. EXPERIMENTAL DEMONSTRATION

0.8

0.9

1

1.1

1.2

Tr
an

sm
is
si
o
n

‐41 ‐21 0 21 41 62

Detuning (eV)

‐10 ‐5 0 5 10 15
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Tr
an

sm
is
si
o
n

Detuning (GHz)

(a)

(b)

(c)

(d)

(e)

Figure 5.6: (a) Operational principle of resonant scattering with a single quantum dot in a photonic-

crystal waveguide. We choose the quantum dots that are in the slow light waveguide. Due to the high

β in the slow light section, most of the single photons are coherently reflected. (b) Pictorial sketch of

the sample. As discussed in section 4.2.1, the structure of the sample allows the efficient in-coupling of

the photons to the chip and subsequently to the slow light section. (c) An SEM image of the fabricated

sample, showing the two out-coupling gratings and the slow light sections. (d) Transmission spectrum

of the waveguide around the resonance of the QD. The excitation power was ∼ 50 pW on the sample.

The transmission dip is a result of photons being reflected by the QD. The peak is due to a Fano-

resonance between the QD and the cavity, as discussed earlier. The solid black line is the theoretical

fit to the data from equation 5.26. From this fit, we extract β = 0.88, Γ = 4.6 GHz and σ/Γ = 3. (e)

The solid redline is the theoretically expected transmission of the PCW around the resonance of the

QD, i.e. γ0 = 0 and σ = 0. The solid black line is the fit from part (d).

The red curve in part (e) of figure 5.6 shows the transmission spectrum of the waveguide after

deconvolution with the spectral diffusion of the QD. According to this plot, significant modification

of the transmission spectrum can be achieved if the spectral diffusion of the QD is controlled. There

are several methods to reduce and eliminate the spectral diffusion [152,155]. One method would be to

implement electrical gates on the sample and pin down the Fermi-level across the QD layer [149,152].

Additionally, one can stabilize the transition of the QD using active feedback from the QD [154].

Another possibility could be to devise a post processing method and post select the results based on

transmission of waveguide on time scales of microseconds, as described in the conclusion section of

the chapter 4 (this method is very popular in atomic optics community, e.g. [20]). The results in parts

(d) and (e) of figure 5.6 emphasize the exciting possibilities offered by PCWs for efficient light matter

interfaces. In the next section we study the nonlinear behavior of the PCW transmission as a result

of QD presence.
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5.3.1 Nonlinear transmission of the photonic-crystal waveguide
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Figure 5.7: (a) Transmission spectrum of the waveguide while nτ ∼ 0.11, and (b) nτ ∼ 1.3. The

solid black lines are fits using the equation 5.26. (c) Power dependence of the transmission dip. The

bottom axis shows the average photon flux per lifetime of the emitter. The top axis shows the power

incident on the sample. The solid black line is the theoretical model from equation 5.26. The nc is

indicated with a vertical red line. A strong saturation of the transmission is observed at high nτ . (d)

The theoretical fit from part (c) after deconvolution with the spectral diffusion of the QD.

In the later stages of the measurement the contrast in the transmission of the PCW decreased,

most likely due to numerous cool-down and heat-up cycle, as discussed earlier in section 4.4.2. We

measure the transmission of the waveguide versus resonant power to quantify the nonlinearity. The

experimental setup is the same as section 4.2.2. We use APDs to quantify the transmission of the

setup, therefore we detect the total transmission of the waveguide as opposed to homodyne type

measurements which only probe the coherent part. Figure 5.7(a) and (b) show two sample transmission

spectrums, corresponding to an excitation power of 0.12 nw and 2.2 nw, corresponding to weak and

intermediate excitation powers respectively. Figure 5.7(c), shows the transmission dip versus nτ .

Three different regimes are visible: coherent scattering regime, incoherent scattering regime and

saturation. At very low powers the value of the transmission dip is independent of the excitation

power for over more than an order of magnitude. At higher powers the transmission is a sum of

coherent and incoherent scattering with a linear power law dependence with a slope of one. At even
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higher laser powers, the emitter is saturated and the transmission is dominated by the resonant laser

and reaches the steady value of one. Solid black line is the theoretical model from equation 5.26. This

fit is obtained by recursively fitting the data in this plot and the g(2)(0) which follow later in this

chapter. The full fitting procedure is described in appendix C. From these fits we extract nc = 0.81.

The other parameters are extracted to be γ0/Γ = 0.79, β = 0.88, σ/Γ = 3.6, and α = 0.4. Part (c) of

the figure, shows the power dependence of the transmission dip as a function of excitation power after

deconvolution with spectral diffusion of the QD. The power incident on the sample and the extracted

nτ are different by a factor of three which implies that the in-coupling efficiency of the photons is

around 23%. Next, we study the photon statistics of the transmitted field and its behavior versus

resonant laser power.

5.3.2 The photon statistics of the transmitted field

In order to further confirm the low power optical nonlinearity, we do autocorrelation measurements

on the transmitted field. The autocorrelation measurement allows us to probe photon statistics of the

transmitted field. The configuration of the setup is discussed in chapter 4. Briefly, the CW resonant

laser is tuned into the transmission dip, and locked to a high precision wavemeter. The collected light

from the out-coupler is coupled to a single mode fiber and then split in to two with a fiber-beamsplitter

and sent to two fiber coupled APDs. We look at the time delay between detection events on the APDs.

Figure 5.8(a) and (b) show the raw autocorrelation histograms for two different excitation powers,

roughly corresponding to the ones in figure 5.7(a) and (b) respectively. We observe the expected

bunching of the photons around zero time delay. The strong bunching around zero delay times

indicates lack of single photon component in the transmitted light as predicted by theory. In order

to sanity check the measurements, we detuned the resonant laser far from the transmission dip and

repeated the measurement. As a second check we turned off the repump laser. Both cases produced

a flat g(2)(τ) as expected.

Figure 5.8(c) shows the power dependence of the g(2)(0). The value of the g(2)(0) decreases with

the increasing excitation power as a result of the saturation of the QD. The solid black line is the

theoretically predicted values, based on the parameters γ0/Γ = 0.79, β = 0.88 and σ/Γ = 3.6. As

discussed in the previous section these parameters are extracted from a recursive fit of data in figure

5.7(c) and figure 5.8(c). The fitting procedure is described in appendix C. We estimate a critical

photon number of (nc = 0.81), which corresponds to 1.9 nW on the sample. Figure 5.8(d) shows the

theoretical model when we set the spectral diffusion of the QD to zero. This plot further demonstrates

the potential of the efficiently coupled QD-PCW as a light-matter interface at fundamental limits of

light intensities, at the single photon level.

Another factor limiting the observed bunching in g(2)(0), is the instrument response function of

the measurement setup. Figure 5.8(a) shows the IRF of the setup for autocorrelation measurements.

This IRF is extracted by sending 5 ps pluses through the setup and recording the autocorrelation

function of the collected light. The fullwidth at half maximum of the IRF curve is around 0.5 ns, very
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Figure 5.8: (a) and (b), Sample autocorrelation histograms of the transmitted field for the powers

corresponding to the ones in figure 5.7(a) and (b) respectively. The bunching around zero time delay

is a direct consequence of elimination of the single photon components. (c) Power dependence of the

g(2)(0). The bottom axis shows the average photon flux per lifetime of the emitter. The top axis

shows the power incident on the sample. The solid black line is the theoretical model from equation

5.27. The nc is indicated with a vertical red line. A strong saturation of the transmission is observed

at high nτ . (d) The theoretical fit from part (c) after deconvolution with the spectral diffusion of the

QD.

close to the lifetime of the QD (0.4 ns). Figure 5.8(b) is g(2)(0) after deconvolution with the IRF of

the setup. We plot the fit in 5.8(c) while setting the IRF of the setup to a delta function. The IRF of

the setup appears to be limiting the observed bunching (g(2)(0)− 1) by a factor of more than 2 when

in the low power regime.

The power dependence of the transmission of the waveguide, along with the antibunching in

the autocorrelation measurements, confirm an optical nonlinearity at single photon level. Such a

nonlinearity may find applications in classical optical and quantum optical computing. For instance,

in the classical regime, one maybe able to build few photon switches that can outperform the electronic

transistors for classical computing [200]. In the quantum regime, the observed nonlinearity can be

used for quantum demolition photon number detection [26,201], along with nonclassical squeezed state
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Figure 5.9: (a) Instrument response function of the setup for autocorrelation measurements. The

fullwidth at half maximum of the IRF is 0.5 ns, mainly limited by the time response of the APDs.

(b) The g(2)(0) as a function of power, after deconvolution of the IRF. This curve is obtained by

evaluating the fit in 5.8(c) and setting the IRF to be a Dirac function.

generation [16,202], and photon sorting based on the number of photons in the field [26].

5.4 Conclusions and outlook

The resonant excitation of single emitters coupled to broadband structures like waveguides paves

the way towards many exciting experiments in quantum optics. In this chapter, we studied the

transmission of a photonic-crystal waveguide, with a quantum dot efficiently coupled to it. Close to

resonance of a efficiently coupled QD, we observed contrasts of up to 30% in the transmission of the

waveguide. We observed Fano-resonances between the reflections in waveguide interfaces and the QD,

which indicated coherent scattering from the QD. The transmission spectrum of the waveguide versus

laser power, showed a pronounced saturation at very low photon intensities, 1.9 nW. Significant photon

bunching in the statistics of the transmitted field confirmed that the single photon components had

been eliminated. We measured a g(2)(0) = 1.08, which was limited by the IRF of the measurement;

we estimate that it is around 1.17 after deconvolution with the IRF. Autocorrelation measurements

further confirmed the single photon level nature of the nonlinearity and coherence of the scattering

from the QD.

These experimental results confirm a giant optical nonlinearity at single photon levels. A natural

next step would be to do homodyne type measurements on the transmitted field. This would allow

translating the nonlinearity in the photon intensity to nonlinear phase shifts and polarization switch-

ing. Additionally, using a magnetic field perpendicular to the sample will sperate the two dipoles of

the charged exciton and form a lambda system. Such a system opens up the route towards single

photon transistors and Bell-state analyzers [16,26,203–205].

95





Appendix A

Convergence analysis of the height of

the active boundary conditions

One of the important parameters in calculations in section 3.5 is the height of the active boundary

conditions. Figure A.1 shows the x component of the Poynting’s vector (Sx) for 3 different boundary

heights at z =0.6µm. The common feature centered at x = 0 is due to coupling to the radiation modes

from the dipole emitter. The power flows outwards from the dipole into the right and left. However, in

figure A.1(a), where the boundary height is very low, the power is flowing in to the simulation domain

from the two ends of the simulation domain, hence the sign of the Sx. This means that the size of

the active boundaries is not tall enough and results in excess reflections. Nevertheless, increasing

the height of the active boundaries reduces the power reflected from the right and left boundaries.

Figures A.1(b) and (c) show Sx for hbnd =360 nm and hbnd =560 nm. The power reflected from the

two boundaries appears to be decreasing with increasing height of the active boundaries.

Figure A.2 shows the dependence of the γrad on the height of the active boundaries for the x- and

y-oriented dipoles. The simulation domain is 33a long. The dipoles are located at the antinode of Ey

and the frequency corresponds to Ng = 58. γrad for the x-oriented dipole (red line in figure A.2) is

rather independent of the height of the active boundaries, consistent with the fact that the antinode

of Ey overlaps with the node of Ex and hence the dipole does not couple to the waveguide mode. The

blue curve in figure A.2 shows the dependence of γrad for the y-oriented dipole. The γrad decreases

with increasing hbnd till around hbnd = 400 nm and stays almost constant with further increase in

hbnd. For the simulations in section 3.5.2 the height of the active boundaries was chosen to be 500 nm.
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CONDITIONS
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Figure A.1: x component of Poynting’s vector at z = 600 nm for three different height of active

boundaries. (a) hbnd = 200 nm, (b) hbnd = 360 nm, and (c) hbnd = 560 nm.
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Appendix B

Mesh convergence tests

Meshing the simulation geometry can affect convergence of the simulation results significantly. The

COMSOL package has very efficient methods to generate meshes of varying size depending on the

geometric features of the simulation domain. However, certain guidelines are helpful for adapting the

mesh to the requirements of LDOS and far-field calculations.

Figure B.1: A 2D mesh showing three triangular elements. The red dots are the mesh nodes.

We use the 2D mesh in figure B.1 to explain a few simple terms about meshing FEM domains

before we proceed with the rest of this appendix. Note that all the simulations done in this thesis are

3D, however, meshing concepts are similar in 2D and 3D cases. A simulation domain is divided to

mesh elements of different size and possibly geometry. Each red dot in figure B.1 is called a node and

each of the triangles is called a mesh element. The mesh in figure B.1 is composed of three triangular

mesh elements and 5 mesh nodes.

When meshing a structure, COMSOL uses the maximum allowed size of elements as the user

control parameter. That means one can limit the maximum distance between the mesh nodes as

an input parameter to the meshing algorithm. It is important to note that the software calls this

parameter ”Maximum element size”. However, this is a misnomer and can lead to confusions, since a

mesh element is a surface in 2D case, and a volume in 3D case.

Figure B.2 shows the cut through of a sample mesh in the center of membrane. The cyan region

on the left side of the figure B.2(a) is used for eigenvalue calculation. The eigenvalue calculation

domain has the identical mesh as the two ends of the waveguide (the cyan regions on two ends of the

101



APPENDIX B. MESH CONVERGENCE TESTS

PML

(a)

(b) (c)

Figure B.2: A cut through of simulation domain with the respective mesh at z = 0. The cyan region

on the left shows the unit cells used for eigenvalue calculation. The blue regions are the PMLs.

figure B.2(a)). This removes any need for interpolation of results between the simulation domains and

improves the accuracy of the simulations. The mesh in the PML is direct translation of the mesh in

the boundary of the PML domain. We use very fine meshing around the emitter and inside the box

surrounding the emitter to assure that the dipole emitter is well resolved.

The maximum mesh element size in the membrane and also inside the air holes is l0/n, where n

is the refractive index of the material. The mesh size inside the box surrounding the emitter is 10

times finer than this value. The mesh element size in the air domain is set to l0. The suggestion from

the software is to use at least 5 mesh elements per wavelength in material of interest for accuracy of

simulation results. However, different simulations have different requirement and different sensitivities

to mesh element size at different regions of simulation domain. For most of the simulations we use

l0 = λ/11. In order to assure that the results are independent of the mesh parameter, we studied

the dependence of γbox/γrad on the value of maximum mesh element size . Table B.1 presents the

results from this study. The data shows that the value of control variable changes less than 0.5% with

doubling the mesh element size. Based on this, we conclude that the simulations are insensitive to

102



the mesh element size.

Table B.1: Dependence of γbox/γrad on the mesh element size.

Maximum element size (nm) 150 120 100 90 80

γbox/γrad 1.0016 1.0022 1.0009 1.0025 1

We run these simulations on a machine with 256 GB of memory, and 4 cpus each with 4 cores.

Typically, with mesh elements of 100 nm and simulation domain length of 33a, the total number of

degrees of freedom is around 20 million. It takes 1 hour to get the electric field and LDOS for one

dipole. We use the general residual method solver (GMRES) to diagonalize the resulting matrices. We

use the multifrontal massively parallel solver (MUMPS), on a coarse mesh, to obtain a preconditioning

for the matrices.
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Appendix C

Procedure for modeling the

experimental data in chapter 5

The experimental data in figures 5.7(a) and (b) is modeled using equation 5.26 and the resulting fits

are shown as solid black lines in the respective figures. In this section, we explain how we arrived at

these fits. The 5 parameters that govern the nonlinear response of the system are Γ, β, σ, α and γ0.

In the fits, we additionally have a sixth parameter A0, which is a scaling factor that relates the power

incident on the sample to the photon flux at the position of the QD. It includes all the factors relating

to the in-coupling of the resonant laser and its propagation to the position of the QD.

from independent time-resolved measurements, we extract a QD decay rate of Γ = 2.6 ns−1. This

brings us down to 5 fit parameters, one of which is the scaling factor for the incident power, A0. The

scaling factor is defined as 〈n〉 = A0Pinput, where Pinput is the power measured on the sample in units

of nano Watts. From equation 5.13, it is clear that the transmission of the waveguide is independent

of the power for excitation powers much lower than the critical power, and thus the fit becomes

independent of the scaling factor at these powers. Therefore, we fit the transmission spectra recorded

at very low resonant power, the four points in the right hand side of the figure 5.7(c), using the 4

remaining fit parameters. We extract an average value of (β = 0.85 ± 0.18) from these fits. Figure

5.7(a), shows one of these transmission measurements at very low powers along with the theoretical

fit. From this fit, we get (β = 0.84± 0.22), σ/Γ = 2.65± 0.9, γ0/Γ = 0.63± 1.4, and α = 0.5± 0.07.

Note that we can also fit the same curve with three parameters (β = 0.82± 0.20), σ/Γ = 3.35± 0.2,

and α = 0.5 ± 0.07, which indicates that it is not possible to separate the contribution of γ0 and σ

from just the transmission curves.

While A0 is guaranteed to remain fixed over the entire range of resonant powers investigated in

figure 5.7(c) and figure 5.8(c), we expect the spectral diffusion and the pure-dephasing to vary. This

is partly due to the fact that we have to change the power of the repump laser as we increase the

resonant laser power. We fix the value of β and α extracted from the above fit and only use the
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extracted values for σ and γ0 as our starting guess. Next, we recursively fit the data in figure 5.7(c)

and figure 5.8(c), with the three remaining parameters, σ, γ0 and A0. This we do in the following

way: we start with a guess for γ0 and fit the data in figure 5.7(c) and extract σ and A0. We then fit

the data in figure 5.7(c) with γ0 as fitting parameter, while using σ and A0 extracted in the previous

step. Next, we use the value of γ0 from the last step and redo the fits for σ and A0. We repeat

this process until a steady state for the values of γ0, σ, and A0 is reached. Later, we also fit the

individual transmission curves versus power, using the value of A0 and extract an α for each data

point. We then average the value of α and feed it back to the recursive fitting routine. We find that

the value of α changes between 0.25 and 0.5 for different curves. From the recursive fits, we extract

γ0/Γ = 0.79± 0.23, σ/Γ = 3.6± 0.45, A0 = 1.84× 107 ± 40%, and α = 0.4. We note that the values

for the spectral diffusion and pure-dephasing extracted in this way should be thought of as an average

value over the investigated power range. The final fits are shown as black curves in figure 5.7(c) and

figure 5.8(c).

The fit in figure 5.6(d) was also obtained using equation 5.24, however, this measurement was taken

in the short period before the sample degraded and unfortunately we cannot take advantage of the

same type of detailed study of the power dependence and the decay rate to analyze this measurement.

From this fit we obtain Γ = 4.8 ns−1, β = 0.88 and σ/Γ = 3.

It is worth mentioning that it is possible to fit the power dependence of the transmission and

g(2)(0) curves with either only dephasing or diffusion, while setting the other one to zero. However,

it is not possible to consistently fit the power dependence of transmission and power dependence of

g(2)(0) with only dephasing or only diffusion. Figure C.1 shows the result of recursively fitting the

data in figure 5.7(c) and 5.8(c) with two parameters γ0 and A0. The fit to the experimental data is

very poor.
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Figure C.1: The theoretical modeling of the experimental data without diffusion. (a) the transmission

of the waveguide and the closest fit. (b) g(2)(0) and the closest fit.
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A. Holleitner, M. Kaniber and J. J. Finley. A Waveguide-Coupled On-Chip Single-Photon Source.

Phys. Rev. X 2, 011014 (2012).

[102] T. Reichert, S. Lichtmannecker, G. Reithmaier, M. Zeitlmair, J. Wembacher, A. Rauscher,

M. Bichler, K. Müller, M. Kaniber and J. J. Finley. Highly directed emission from self-assembled

quantum dots into guided modes in disordered photonic-crystal waveguides. Phys. Rev. B 90,

115310 (2014).

[103] M. O. Scully and M. S. Zubairy. Quantum Optics (Cambridge University Press, 2001).

113



BIBLIOGRAPHY

[104] S. M. Barnett, B. Huttner, R. Louden and R. Matloob. Decay of excited atoms in absorbing

dielectrics. J. Phys. B: At. Mol. Opt. Phys. 29, 3763 (1996).

[105] L. Novotny and B. Hecht. Principles of nano-optics (Cambridge University Press, 2007).

[106] J. N. Reddy. An introduction to the finite element method. 2.2 (McGraw-Hill New York, 1993).

[107] R. D. Cook et al. Concepts and applications of finite element analysis (John Wiley & Sons,

2007).

[108] I. M. Vinogradov and M. Hazewinkel. Encyclopaedia of mathematics (Kluwer Academic Publ,

2001).

[109] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comp.

Phys. 114, 185 (1994).

[110] J. Douglas, H. Habibian, A. Gorshkov, H. Kimble and D. Chang. Atom induced cavities and

tunable long-range interactions between atoms trapped near photonic crystals. arXiv:1312.2435

(2013).

[111] B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel and

P. Lodahl. Decay dynamics of quantum dots influenced by the local density of optical states of

two-dimensional photonic crystal membranes. Appl. Phys. Lett. 93, 094102 (2008).

[112] K. S. Kunz and R. J. Luebbers. The finite difference time domain method for electromagnetics

(CRC press, 1993).

[113] A. F. Oskooi, L. Zhang, Y. Avniel and S. G. Johnson. The failure of perfectly matched layers,

and towards their redemption by adiabatic absorbers. Opt. Express 16, 11376 (2008).

[114] J. P. Hugonin, P. Lalanne, T. P. White and T. F. Krauss. Coupling into slow-mode photonic

crystal waveguides. Opt. Lett. 32, 2638 (2007).

[115] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft,

K. De Mesel and R. Baets. An out-of-plane grating coupler for efficient butt-coupling between

compact planar waveguides and single-mode fibers. IEEE J. Quant. Electron. 38, 949 (2002).

[116] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff and J. Vučković. Dipole induced
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[139] A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot and P. M. Petroff.

Voltage-controlled optics of a quantum dot. Phys. Rev. Lett. 93, 217401 (2004).

[140] B. Alén, F. Bickel, K. Karrai, R. J. Warburton and P. M. Petroff. Stark-shift modulation

absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235 (2003).
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reflectivity with a single quantum dot. Nature 450, 857 (2007).

[167] K. Srinivasan and O. Painter. Linear and nonlinear optical spectroscopy of a strongly coupled

microdisk-quantum dot system. Nature 450, 862 (2007).

[168] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff and J. Vučković. Coherent generation
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