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A B S T R A C T

Spatial pattern formation is abundant in nature and occurs in both
living and non-living matter. Familiar examples include sand ripples,
river deltas, zebra fur and snail shells. In this thesis, we focus on pat-
terns induced by mechanical stress, and develop continuum theories
for three systems undergoing pattern formation on widely different
length scales. On the largest scale of several meters, we model colum-
nar jointing of igneous rock. Using analytical calculations and numer-
ical simulations, we derive a scaling function, which quantitatively re-
lates the column diameter to material parameters and cooling condi-
tions. On the scale of micrometers, we model breast cancer tissue as a
viscoelastic active fluid. The model captures experimentally observed
statistical characteristics as well as the cell division process, and hints
at substrate friction being important for cell speed distributions. On
the smallest scale of nanometers, we study thin films of block copoly-
mers, which have potential applications as self-organizing templates
for microelectronics. By performing a thin-shell expansion of a well-
known model for block copolymers, we develop an effective model
for the impact of curvature on pattern formation and ordering kinet-
ics in a thin curved film.
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R E S U M E

Naturen er rig på spektakulære mønstre i både levende organismer
og ikke-levende materialer. Velkendte eksempler inkluderer sandkrus-
ninger, floddeltaer, zebrapels og sneglehuse.

I denne afhandling, fokuserer vi på mønstre induceret af mekanisk
stress og udvikler kontinuumsteorier for tre forskellige systemer, der
danner mønstre på vidt forskellige længdeskalaer. På meterskala mod-
ellerer vi søjleforkløftninger i magmatiske bjergarter. Ved hjælp af
analytiske beregninger og numeriske simulationer udleder vi en ska-
leringsfunktion, der kvantitativt relaterer søjlediameteren til materi-
aleparametre og kølingsbetingelser.

På mikrometerskala modellerer vi brystkræftcellevæv som en viskoe-
lastisk aktiv væske. Den foreslåede model er i stand til at beskrive de
eksperimentelt observerede statistiske karakteristika såvel som celledel-
ingsprocessen. Modellen antyder, at friktionen mellem celler og un-
derlag er vigtig for at kunne beskrive cellernes fartfordeling.

På nanometerskala studerer vi tynde film af blok copolymerer. Disse
film har potentiale som selvorganiserende skabeloner for mikroelek-
tronik. Ved at ekspandere en velkendt model for blok copolymerer
i filmtykkelsen divideret med den karakteristiske krumningslængde,
udleder vi en effektiv to-dimensionel model, der beskriver hvordan
filmens krumning influerer mønsterdannelse og dynamikken af de-
fekter.
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1
I N T R O D U C T I O N & O B J E C T I V E S

This thesis covers three largely separate projects concerning the physics
of both living and non-living matter on length scales ranging from
nanometers for polymers over micrometers for breast cancer cells to
several meters for geological systems (Figure 1.1). Though separate,
the projects evolve around two common themes: pattern formation
and quantitative modeling of experiments.

(a) Columnar joints [4].
Topic considered in
Chapter 2 and publica-
tion [1].

(b) Cancer cells [5].
Topic considered in
Chapter 3 and publica-
tions [2, 3].

(c) Block copolymers [6].
Topic considered in
Chapter 4. Not yet
published.

Figure 1.1: The topics covered in this PhD thesis range from length scales
of meters for columnar jointing (a) over micrometers for breast
cancer cells (b) to nanometers for block copolymers (c).

On the largest scales, we will consider columnar jointing - the spec-
tacular geometric patterns formed during cooling of igneous bodies
such as lava lakes (Figure 1.1a). Several outstanding questions exist
regarding this almost man-made looking phenomena, but we will fo-
cus on how a single length scale, the column diameter, is selected and
develop a quantitative model for this selection process. This model
will allow us to relate the column diameter to measurable material
properties and cooling conditions.

On the scale of micrometers, relevant for human and murine cells,
we focus on the collective motion of breast cancer cells (Figure 1.1b).
Though chemical signaling pathways are important for cancer cell mi-
gration, we focus on the mechanical aspects. Inspired by viscoelastic
fluids, we develop a model for cancer cell migration, to understand
which features of the cell dynamics can be described by a purely me-
chanical framework.

On the nanometer scale of block copolymers, we focus on the striped
texture formed by phase separation of immiscible blocks (Figure 1.1c).
As films of these copolymer textures can be used as templates for e.g.
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2 introduction & objectives

microelectronics, we are interested in how curvature effectively acts
as an ordering field and controls the defect distribution in the result-
ing patterns. This question is approached using a phenomenological
free energy model for block copolymers, and studying the thin film
expansion of this model. We note, that the chapter on textures in block
copolymers is ongoing work, and does not yet exist in a manuscript
form.

All three projects have been approached using continuum field
models. Either in the form of classical continuum mechanics or via
phenomenological models, where the free energy is expanded in a rel-
evant order parameter. The continuum approach has the advantage of
allowing a large number of individual, locally interacting constituents
to be considered due to the coarse graining. Furthermore, the contin-
uum approach allows certain analytical calculations to be performed.
The developed continuum models were supplemented with numer-
ical implementations to validate the models and to assess how the
models behave in regimes that are not analytically accessible.

This thesis is a synopsis and intended as a summary, drawing up
the big lines. Many details and calculations are not included in the
thesis, but are available in the manuscripts listed under Publications
and their appendices. We note, that many figures in this thesis are
reproductions of figures in these manuscripts. The thesis is divided
into three chapters, each covering a separate research project as vi-
sualized by Figure 1.1. Each chapter contains an introduction to the
problem, a discussion of the project results and outlines future re-
search directions. Concluding remarks and a general summary are
given in Chapter 5.



2
S C A L E S E L E C T I O N I N C O L U M N A R J O I N T I N G

Columnar joints are spectacular geometrical patterns of polygonal
fracture networks found across the world, typically in areas with
rocks of volcanic origin (Figure 2.1a-2.1c). This almost man-made look
of polygonal columns have historically inspired names such as Devil’s
postpile and Giant’s Causeway for columnar jointed sites, but today
it is clear that columnar joints are a naturally occurring phenomena.

(a) Columnar jointing in basalt. Svarti-
foss, Iceland. [7]

(b) Columnar jointing in volcanic tuffs.
Hong Kong area, China. [8]

(c) Polygonal fracture patterns. Top view
of basaltic columnar joints at Gi-
ant’s Causeway, Ireland. [4]

(d) Columnar jointing in corn starch. The
process is driven by contraction
due to dessication, not cooling. [9]

Figure 2.1: Examples of columnar jointing. The columns are formed by a
fracture network caused by contraction induced stress.

The process of columnar jointing is driven by stress caused by ther-
mal contraction. As an initial uncracked igneous body cools, it also
contracts, and any non-uniform contraction will generate stress in the
material. For igneous bodies there is a temperature gradient between
the hot interior and the cooler surroundings, leading to non-uniform
contraction. Igneous rock is in general glassy, and above the glass
transition temperature, the rock is able to viscously dissipate the gen-
erated stress. However, below the glass transition temperature, stress
starts to accumulate, eventually leading to fractures. With time, the
glass transition temperature isotherm propagates towards the hot in-
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4 scale selection in columnar jointing

terior of the rock body, dragging with it the front of fractures. As
the fracture front propagates, it self-organizes into a mostly hexago-
nal state, to minimize the fracture surface area created, thus divid-
ing the igneous rock into hexagonal columns (Figure 2.1c). We will
consider columnar jointed systems, where the crack front is a plane
network propagating normal to the cooling surfaces as in Figure 2.1
and Figure 2.2a. However, columnar jointing also occurs in other ge-
ometries, such as approximately ellipsoidal low-volume flows, where
the columns will form perpendicular to the cooling surface and the
crack front network will be an approximately ellipsoidal surface [10].

In nature, columnar joints are found with diameters ranging be-
tween a few centimeters and several meters, with column heights of
up to 30 meters. Commonly, the diameter is constant over a signifi-
cant part of the column height. These regular columns tend to have
between 5 and 7 edges, even though columns with between 3 and
8 edges have been observed as well [11–13]. The region of regular
columns (termed collonade) can be intersected by a highly disorga-
nized region (termed entablature) as illustrated in Figure 2.2a. The
entablature consists of curvy, smaller columns.

Two length scales can be obtained from field studies of colum-
nar joints. The column diameter ` and the distance between stria-
tion marks s. Striation marks are linear bands running around the
columns as illustrated in Figure 2.2b, oriented perpendicular to the
crack propagation direction. Striations form by a stepwise crack ad-
vance, with each new striation mark indicating one crack advance
event. The distance s between two striation marks therefore corre-
sponds to the crack advance length [14].

Several questions regarding columnar jointing remain partially unan-
swered. The maturation process, leading from the initial hierarchical
crack network at a cooling surface dominated by 90 degrees crack
intersections, to the hexagonal crack network in the interior of the
jointed rock dominated by 120 degrees crack intersections, is for in-
stance not completely understood, though several works on the sub-
ject exist [15–18]. It is also not clear, how and under which circum-
stances entablature is formed. Flooding events have been proposed
as the cause [19] but also a dynamical instability of the crack front
could be a candidate [20]. How the characteristic length scale of the
fracture network, and thus the column diameter is selected, is yet
another question.

In Christensen et al. [1] we focused on the selection of a character-
istic length scale, and performed a comprehensive study of columnar
jointing based on:

1. A continuum model of columnar jointing. We showed that the col-
umn diameter is a non-trivial function of the material proper-
ties and the cooling conditions, and determined this function
analytically.
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Figure 2.2: Columnar joint architecture, and terminology employed in this
section. (a) Sketch of a columnar jointed basalt flow. The flow is
imagined to be cooled by air from the top and by the ground
from below. The region termed colonnade consists of polygonal
columns with approximately the same diameter. The column di-
ameter ` is constant over the height of the colonnade. The entab-
lature is an unstructured region of smaller, curvy columns. (b)
Sketch of a single column. The crack front dividing the material
into columns propagate in incremental steps. The termination
of the crack front propagation after each incremental advance
leaves striations on the faces of the columns, here indicated by
gray lines.

2. Numerical simulations. Both discrete element and finite element
simulations of columnar jointing were performed.

3. A novel experimental model system. We proposed cooling stearic
acid as a model system, suitable for lab experiments mimicking
igneous columnar jointing.

This chapter will focus on the continuum model for columnar jointing
and how the column diameter can be related to material properties
and cooling conditions.

2.1 the internal stress of the cooling material

As columnar joints are caused by fracturing, a key quantity in describ-
ing columnar jointing is the internal stress of the material generated
by the material’s anisotropic contraction upon cooling. In a linear ap-
proximation, the internal stress will be proportional to Eβ/(1−νpois),
where E is the Young modulus, β = αT∆T the contraction, αT the co-
efficient of linear thermal expansion, ∆T a temperature change and
νpois the Poisson ratio.

If the contraction of the material β happens over a length scale w,
then the internal stress vanishes in the limit of large w and increases
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as the width w decreases. The magnitude of the internal stress σ can
therefore be written in terms of a scaling function f:

σ = Eβ f(w,νpois, . . .), (2.1)

where the scaling function f might further depend on cooling condi-
tions or material properties such as thermal diffusivity and fracture
toughness.

The scaling function approach is inspired by work on mud and
dessicating thin films, where analytical expressions for the scaling
function have been derived [21]. An asymptotic shape of the scaling
function for columnar jointing in Eq. 2.1 has been suggested in [22].
Here, we determine the dependencies and shape of the scaling func-
tion f aided by simple analytical models, numerical simulations and
experiments on cooling stearic acid.

2.1.1 The contraction length scale

The length scale w, over which the material experiences the contrac-
tion β, is governed by the heat transport in the material. In the liter-
ature, two main modes of heat transport have been considered: bulk
heat conduction and crack-aided convective cooling.

Heat conduction through the bulk of the material is a diffusive pro-
cess controlled by the thermal diffusivity D. In an infinite medium,
the only natural length scale of the temperature distribution is there-
forew ∼

√
Dt. This is the length scale over which temperature changes

and thus contraction occur, and this length scale increases with time
(Figure 2.3a). Taking the latent heat, released during solidification,
into account does not change this picture (Appendix A.1).

Crack-aided convective cooling on the other hand, assumes that
water and steam perform a convection cycle in the crack network,
efficiently extracting heat from the hot interior, resulting in a cold
zone of T = 100 ◦C propagating through the material at a constant
speed v. This moving boundary condition in an otherwise purely heat
conducting material, leads to a temperature distribution with a fixed
shape, propagating at speed v with a characteristic length scale of
temperature change w ∼ D/v, which is constant in time (Figure 2.3b).

The dominance of the crack-aided convective cooling mechanism is
supported by borehole measurements of the Kilauea Iki lava lake [23],
where the temperature profile of the cooling lava lake was measured
over a year. In the top 40 m, closest to the cooling surface of air,
a uniformly 100◦C cold zone was found, and this zone propagated
at a constant speed towards the interior of the lava lake. The spatial
shape of the measured temperature profile was in agreement, with
the convective cooling picture.

Furthermore, the crack-aided convective cooling mechanism is com-
patible with the observation, that the column diameter and the stria-
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tion width of basaltic columnar joints are typically constant over most
of the column height [12, 24, 25]. If conductive cooling dominated,
one would instead have expected the column diameter and the stria-
tion width to increase with the distance from the cooling surface, due
to the increase of the contraction length scale w.

In modeling the cooling and subsequent cracking of the material,
we will therefore employ the temperature distribution resulting from
crack-aided convective cooling.

x

T
(x
,
t)

time t0
time t1
time t2

T0

T0 +∆T

(a) Conductive cooling. Temperature evo-
lution governed by:
T(x,t)=T0+∆T erf

(
x

2
√
Dt

)

x
T
(x
,
t)

time t0
time t1
time t2

T0

T0 +∆T

(b) Convective cooling. Temperature evo-
lution governed by:
T(x,t)=T0+∆T(1−e−v/D(x−vt))θ(x−vt)

Figure 2.3: Heat transfer modes in columnar jointing. In a conductively
cooled system, the width of the temperature profile w =

√
Dt in-

creases with time as illustrated in Figure 2.3a. For a convectively
cooled system, the temperature profile width is fixed w = D/v

and the profile moves with a constant speed v and fixed shape,
see Figure 2.3b. Both systems are subject to the boundary condi-
tion T(∞, t) = T0 +∆T , where T0 is the temperature of the cool-
ing surface, e.g. air, and T0+∆T is the temperature of the molten
interior. The system in (a) is subject to T(0, t) = T0 whereas the
system in (b) is subject to T(x < vt, t) = T0.

2.1.2 The column diameter

The diameter of the columns ` in the convectionally cooled regime is
widely considered to be governed by the temperature profile speed v,
which is proportional to the rate of cooling [16, 26], though alternative
mechanisms have been suggested [27–29].

Faster cooling leads to slenderer columns, as the heat transferred
from the hot interior to the fracture network per time must equal the
cooling rate. Assuming that 1 m of crack is only capable of transfer-
ring a fixed amount of heat per time, then the length of the crack
network would have to increase, if the cooling rate increased, and
thus the column diameter would decrease [16], see Figure 2.4. Also
the geological setting (lava flow, lava lake, lava dome, sill, and dyke)
has been found to influence the column diameter, through control of
the surfaces where heat can be exchanged with the environment, and
thus influencing the cooling rate [11].
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Whether there is a one-to-one correspondence between the column
diameter ` on one hand, and the material properties (such as E,αT ,D
and fracture toughness KI,c) and cooling parameters (such as ∆T ,w)
on the other hand, is to the best of our knowledge still uncertain. A
one-to-one correspondence is frequently assumed in the literature [26,
30, 31], but one might alternatively operate with a range of possible
column diameters for each set of material and cooling parameters,
as observed in experiments on dessicating corn starch [32]. In this
work, we will therefore explore the idea of a range of possible column
diameters.

(a) Low cooling rate fracture network. (b) High cooling rate fracture network

Figure 2.4: Cooling rate and column diameter. The length of the fracture
network increases with increasing cooling rate. This is seen by
comparing the length of the fracture network within the red box
in Figure 2.4a and 2.4b. As the fracture network length increases,
the column diameter decreases.

2.2 a continuum model of columnar jointing

Our starting point is the idealized version of a system undergoing
columnar jointing shown in Figure 2.5a. Here, we have considered
all columns to be perfectly hexagonal, though real igneous columnar
jointed rock commonly shows columns with five or seven edges. We
have furthermore assumed the system to be of infinite extend, which
is a reasonable simplification since the characteristic length scale of
the columns, their diameter `, is typically much smaller than the ex-
tend of the columnar jointed region.

We will further simplify the problem by performing a plane cut
through the red dashed line of the three-dimensional model, and
considering the resulting array of semi-infinite cracks shown in Fig-
ure 2.5b. In reality, columnar joints are neither perfectly hexagonal
nor two-dimensional, and the validity of the two-dimensional model
thus ultimately relies on its agreement with three-dimensional nu-
merical simulations.

We consider the heat transfer mechanism to be crack-aided convec-
tive cooling, and in the frame (X, Y,Z) moving with the convection
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zone at speed v, the two-dimensional strip is subject to the tempera-
ture distribution:

Tw,a(X) = ∆T
(
1− e−(X+a)/w

)
θ(X+ a) −∆T , (2.2)

where ∆T is the maximal temperature difference with respect to the
undeformed state, a is the signed distance between the temperature
front and the crack tips, w = D/v is the length scale over which tem-
perature changes occur, b = `/2 is half the column diameter, and θ(X)
is the Heaviside step function. We define the dimensionless moving
frame coordinates x,y and the dimensionless control parameters δ,Pe:

x =
X

b
, y =

Y

b
, δ =

a

b
, Pe =

v

D/`
=
`

w
=
2b

w
. (2.3)

For later convenience, we have rescaled with half the column diame-
ter b. The Péclet number Pe is the ratio of the heat advection and heat
diffusion rates Pe = v/(D/`), but in the case of columnar jointing, it
can also be though of as the ratio between the column diameter and
the width of the thermal front Pe = `/w. The dimensionless tempera-
ture profile becomes:

TPe,δ(x) =
Tw,a(X)

∆T
=
(
1− e−(x+δ)Pe/2

)
θ(x+ δ) − 1. (2.4)

We take the model material to be linearly elastic and the two-dimensional
strip to be under plane stress conditions. As the speed of sound in
basalt is of the order 103 m/s [33], whereas the speed of the temper-
ature front is of the order 10−8 m/s [23] it is reasonable to assume,
that the changes in thermal fluxes happen on a time scale much larger
than the time needed to reach elastostatic equilibrium. The crack front
thus merely follows the temperature profile and propagates continu-
ously at a speed v through the material.

2.2.1 Relating column width and system parameters

To be able to relate the column diameter ` to material properties and
cooling parameters, we need to calculate the mode I stress intensity
factor KI of the crack tips in the linear elastic strip. Since the cracks
propagate straight, the mode II stress intensity factor KII is zero. We
performed the calculation using the Wiener-Hopf method along the
lines of Marder [34]. The calculations are available in [1] and the result
for the dimensionless mode I stress intensity factor κI:

κI(Pe, δ) =
KI

EαT∆T
√
b

(2.5)

is displayed in Figure 2.6. In igneous columnar jointing, fracturing
occurs incrementally, leaving striations. However, we will not model



10 scale selection in columnar jointing

(a) Idealized 3D system. Infinite array of
perfectly hexagonal columns with
diameter ` = 2b. The columns ex-
tend over X ∈ {−∞; 0} and the un-
cracked material extends over X ∈
{0;∞}. The front of crack tips is indi-
cated with a black dashed line and
is located at X = 0.

(b) Idealized 2D model. The gray strip re-
sults from a vertical cut along the
red dashed line in Figure 2.5a. We
only need to consider one column,
since the 2D plane cut is periodic
in the y-direction. The semi-infinite
cracks are indicated with zigzag
lines and extend over X ∈ {−∞; 0}.

Figure 2.5: Columnar jointing model. The system in Figure 2.5a is subject to
a temperature field Tw,a(X), which varies only in the X-direction.
Red indicates hot regions and white indicates colder regions.
We emphasize that the coordinate system (X, Y,Z) is moving at
speed v with the convection zone. It is only in this moving frame,
that the temperature front has a constant shape. The gray strip in
Figure 2.5b results from a vertical cut along the red dashed line
in Figure 2.5a and is infinite in the X-direction and periodic in
the Y-direction with Y = +b equal to Y = −b. The strip is subject
to the temperature profile Tw,a(X) in Eq. 2.2. The figure text is
adapted from Christensen et al. [1].

the striation process, but consider the crack propagation to be contin-
uous, such that the fracture criterion:

κI(Pe, δ) = κI,c (2.6)

is always fulfilled at the crack tips. Here, κI,c = KI,c/(EαT∆T
√
b) is

the dimensionless fracture toughness (the critical mode I stress inten-
sity factor). We note, that the dimensionless fracture toughness can
be expressed in terms of half the column width b and a mechanical
loading length bmin:

κI,c =

√
bmin

b
bmin =

(
KI,c
EαT∆T

)2
(2.7)

In case of a uniform thermal contraction, the Péclet number is zero
and the stress intensity factor reaches its maximal value κI(0, δ) = 1

independent of δ, see Figure 2.6. For fracturing to occur, we must
thus have κI,c = 1, leading to b = bmin and the column diameter
being equal to twice the mechanical loading length ` = 2bmin. This
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is the minimum column diameter possible - any other temperature
profile will lead to smaller values of κI and thus larger values of b
(see Figure 2.6).

Let us assume, that we fix the material properties and the temper-
ature profile, i.e. we keep bmin and w fixed. What are the possible
column diameters ` = 2b of this configuration? The fracture criterion
in Eq. 2.6 can be fulfilled for any column width:

b > bmin, (2.8)

if the crack tip position δ = a/b is changed accordingly, thus adjust-
ing κI(Pe, δ) in the interval [0, 1]. A continuous set of (Pe, δ) values
is therefore possible for each set of material properties and cooling
conditions, and the physical mechanism behind this can be thought
of as follows: imagine that the fracture spacing, and thus the Péclet
number, is increased slightly. The resulting fracture density then de-
creases, and the stress intensity at the crack tips will increase in turn.
To bring the stress intensity level at the crack tips back to the criti-
cal value, the crack tips can move further into the hot uncontracted
region by increasing δ.

2.2.2 A one-to-one relation?

The two-dimensional linear elastic model does allow a range of col-
umn diameters to occur for each set of system parameters. To test
whether this is the relevant case, or a one-to-one relation better de-
scribes columnar jointing, we performed a set of discrete element
simulations, see Section A.2.1 for details.

In the simulations, a temperature profile with the shape given by
Eq. 2.2 propagated through a three-dimensional network of connected
springs. The springs’ equilibrium length changes with the tempera-
ture and they can break when a critical stress or strain is reached. An
example of the resulting fracture network is shown in Figure 2.7. In
the simulations, the fracture toughness κI,c and the temperature front
width w are fixed. The resulting diameter of the columns 〈`〉 and the
distance between the crack tips and the temperature front 〈a〉 are
then measured, when the system has reached a state where the crack
front propagates steadily with a constant column diameter. From the
measured column diameter and the temperature front width, a Péclet
number of the simulation can be determined Pe = 〈`〉 /w.

To assess whether a range of column diameters do occur, we per-
formed simulations, where the temperature front width w was sud-
denly increased/decreased for otherwise fixed parameters. The col-
umn diameter was observed to increase/decrease correspondingly,
such that the Péclet number stayed approximately constant. In the
case, where all column diameters b > bmin were equally possible, we
would instead have expected to see cases where the column diameter
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Figure 2.6: The dimensionless mode-I stress intensity factor, κI, as a func-
tion of the distance between the temperature front and the crack
tips, δ = a/b, for different Péclet numbers, Pe = 2b/w. Solid
lines represent the analytical solution for κI(Pe, δ). For small Pé-
clet numbers, the analytical solution coincides with the negative
of the temperature profile −TPe,δ(x = 0) represented by dashed
lines. This can be understood by noting, that for small Péclet
numbers, the temperature gradient is small (i.e. the temperature
front width w is large) and a crack tip located at x = 0, a dis-
tance δ ahead of the temperature profile, experiences an essen-
tially uniform contraction, which in dimensionless form will be
equal to −TPe,δ(x = 0). We note, that the value κI = 1 corre-
sponds to the stress intensity factor for a uniform temperature
field (Pe = 0). When the Péclet number increases, the tempera-
ture gradient kicks in, and the analytical solution deviates more
and more from the negative of the temperature field.

remained constant but the distance a between the crack tips and the
temperature profile changed. The simulated systems instead picked
out one column diameter ` for each choice of the temperature profile
width w, leading to a constant Péclet number and a one-to-one corre-
spondence between the Péclet number Pe and the fracture toughness
κI,c. Even though the simulations strongly suggest a one-to-one cor-
respondence, a narrow range of allowed Péclet numbers can not be
completely ruled out.
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Figure 2.7: Example of a discrete element simulation of columnar jointing.
The figure shows the broken bonds in a typical discrete element
simulation. The polygonal geometry of the fracture network is
clearly visible. The simulations as well as the scheme for extract-
ing pairs of (Pe, κI,c) are described in Appendix A.2.1. Simula-
tions similar to the depicted one, were carried out in two dimen-
sions to produce Figure 2.8.

2.2.3 The scaling function

The one-to-one relation between the Péclet number and the fracture
toughness combined with the fracture criteria in Eq. 2.6 imply, that
the crack lead length δ must also be a function of the Péclet number
δ = g(Pe).

To determine the function g(Pe), we performed two-dimensional
discrete element simulations. As in the three-dimensional simulations,
the column diameter 〈`〉 and the distance between the crack tips and
the temperature front 〈a〉 were measured, whereas the temperature
front width w and the fracture toughness κI,c were simulation param-
eters. The two-dimensional simulation results in Figure 2.8 indicate
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that the relation between the Péclet number and the crack lead length
is a power law:

δ = g(Pe) = c1 Pe
c2 , (2.9)

where we propose the coefficients c1 = 5.4 and c2 = −1.4. The
error-bars are large, but this choice of coefficients is in agreement
with the data in Figure 2.8 and furthermore yields a best fit between
the fracture toughness and the measured Péclet number in the three-
dimensional simulations, see Figure 2.9.
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Figure 2.8: Crack lead length is a function of the Péclet number. Discrete
element simulations were performed in two dimensions and
the average column diameter, 〈`〉, as well as the average crack
lead length, 〈a〉 , were measured. We observe a power law re-
lation between the Péclet number, Pe = 〈`〉 /w, and the crack
lead length, δ = 〈a〉 /(〈`〉 /2). The plotted power law is given by
δ = g(Pe) = c1 Pe

c2 with c1 = 5.4 and c2 = −1.4. Figure text
adapted from Christensen et al. [1].

With the crack lead length expressed as a function of the Péclet
number (Eq. 2.9), we are now in a position to analytically determine
the one-to-one relation between the Péclet number Pe and the fracture
toughness κI,c. Substituting Eq. 2.9 in the fracture criterion in Eq. 2.6
yields:

κI,c = κI(Pe,g(Pe)) = f(Pe), (2.10)

where we have defined the scaling function f(Pe) = κI(Pe,g(Pe)).
The scaling function predicts, that the column diameter ` is a func-
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tion of both the material properties (E,αT ,D,KI,c) and of the cooling
conditions parametrized by (∆T , v).

The scaling function is in excellent agreement with the results of the
three-dimensional discrete element simulations, see Figure 2.9. A few
finite element simulations (Section A.2.2) were performed to check
the validity of the discrete element scheme, and they also showed
excellent agreement with both the scaling function and the discrete
element simulations. The scaling function furthermore agrees reason-
ably well with our experimental measurements of cooling stearic acid
and with field measurements from the Kilauea Iki lava lake [23]. To
the best of our knowledge, the Kilauea Ikia lava lake field study is
the only published direct measurement of the thermal front speed v.

Stearic acid

Kilauea Iki lava lake

Scaling function f (Pe)

Asymptotic f (Pe) for small Pe

DE simulations (3D)

FEM simulations (3D)
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Figure 2.9: Columnar jointing scaling function. The analytically de-
rived scaling function f(Pe) excellently describes the three-
dimensional discrete element (DE) simulations. To check the va-
lidity of the DE scheme, a few finite element (FEM) simulations
of columnar jointing were run. The FEM simulations correspond
closely to the DE simulations. The scaling function agrees reason-
ably well with estimates for the Kilauea Iki lava lake, where the
velocity of the temperature front was measured directly, as well
as with the stearic acid experiments reported in Christensen et al.
[1]. We note, that Figure 2.6 showed, that for small Péclet num-
bers, the dimensionless stress intensity factor κI,c approaches
−TPe,δ(x = 0). The asymptotic behavior of the scaling function
is therefore f(Pe)→ −TPe,g(Pe)(x = 0) for small Péclet numbers.

The relation between the scaling function and the dimensionless
fracture toughness in Eq. 2.10 allows us to estimate the temperature
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front propagation speed v from field measurements of the column di-
ameter ` = 2b, the emplacement temperature and material properties.
This is concretely done, by first calculating the dimensionless fracture
toughness κI,c = KI,c/(EαT∆T

√
b). The scaling function can then be

used to estimate the relevant Péclet number from κI,c. When the Pé-
clet number is known, the temperature front speed can be found as
v = Pe(D/`).

Figure 2.10 shows the prediction of the temperature front speed v,
calculated using the scaling function and field measurements of the
column diameter. The data cover sites in the Columbia River Basalt
Group and are available from Goehring and Morris [25]. The figure
also displays the temperature front speed, as estimated by [25] from
measurements of striae heights at the same sites. Our model system-
atically predict values of the speed a factor of about two lower than
the estimates based on striae heights. However, keeping in mind that
the two estimates are based on independent field data and different
models, the estimates are close.
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Figure 2.10: Estimates of the cooling rate from field measurements. The
temperature front propagation speed, v = Pe (D/`), is estimated
for different field locations using two different methods requir-
ing different input measurements: column diameter, 〈`〉, and
striae height, 〈s〉, respectively. The speeds on the vertical axis
are calculated using the scaling function Pe = f−1(κI,c), and
field measurements of the average column diameter 〈`〉 from
[25]. The speeds on the horizontal axis are calculated on the ba-
sis of field measurements of striae heights 〈s〉 at the same sites
following [35]. Each point represents one field location. Figure
text adapted from Christensen et al. [1].
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2.3 discussion

In this work, we argued that the process of columnar jointing selects
one Péclet number for each dimensionless critical stress intensity fac-
tor. We determined the functional form of this relationship based on
analytical calculations and numerical simulations, and found it to be
in reasonable agreement with experiments on stearic acid, geological
field data and three-dimensional numerical simulations. The scaling
function, relating the Péclet number and the dimensionless critical
stress intensity factor, can be used to estimate the velocity by which
the fracture front, and thus the cooling front, propagated through the
system, when basic properties of the rock, the emplacement tempera-
ture and the column diameter are known.

Though our simulations in two- and three dimensions indicated
a one-to-one correspondence between the Péclet number and the di-
mensionless stress intensity factor, a narrow finite range of allowed
Péclet numbers can not be ruled out. The model system of cooling
stearic acid, could be used to experimentally clarify how well the
one-to-one correspondence holds, if better control of the temperature
evolution is gained.

The model system of cooling stearic acid, has the great advantage
of tractable sizes and temperatures as well as being an affordable
harmless substance. It furthermore relies on thermal contraction, and
not contraction caused by dessication, as the often studied starch sys-
tem. Aside from testing the one-to-one relation, the stearic acid model
system could be used to investigate entablature formation as well as
the effect of an initial surface crack pattern.





3
C O L L E C T I V E D Y N A M I C S A N D D I V I S I O N
P R O C E S S E S I N T I S S U E

Schools of fish, flocking birds and dense bacterial suspensions are ex-
amples of active matter, composed of a large number of self-driven
units (Figure 3.1). As energy is constantly introduced at the local scale
of each constituent unit, these systems are continuously driven out of
equilibrium. This local injection of energy distinguishes active mat-
ter from traditional non-equilibrium systems, where external driving
such as an applied stress pushes the system out of equilibrium [36,
37].

Collective behavior, such as flocking and pattern formation on the
length scale of several constituent units, is observed in active matter
and is driven by the local interaction of the constituent units with
each other and with the surrounding medium. Also turbulent-like
states, characterized by flow vortices and the continuous creation of
swirls and velocity jets, have been observed in active matter such as
bacteria suspensions [38–40] and cell mono-layers [41].

Epithelial tissue, which is the main topic of this chapter, can be
characterized as active matter. Individual living cells constitute the
self-driven units and intra-cellular junctions allow for interaction be-
tween units.

(a) Flocking birds. Starling
murmuration at Mins-
mere, Suffolk. [42]

(b) School of fish. Barracu-
das at Sanganeb Reef,
Sudan. [43]

(c) Bacterial suspension.
A myxobacterial
flock. [44]

Figure 3.1: Examples of living active matter.

Epithelial cells line cavities in the human body such as the mouth
and lungs and cover surfaces such as the skin. The epithelial cells’
ability to form tight layers is vital for their function as protection and
mechanical support for the enclosed tissue and is achieved mainly
through the tight cell-cell junctions. The strong inter cellular interac-
tions support collective cell behavior such as wound closure, where
long range velocity correlations and collective migration are observed [45].
Also long range vortex patterns around cell division sites [46] and me-
chanical waves have been observed in epithelial tissues [47].

19



20 collective dynamics and division processes in tissue

cell line type origin note

67NR Epithelial Murine Cancerous, non-invasive

4T1 Epithelial Murine Cancerous, invasive

MCF7 Epithelial Human Cancerous, non-invasive

MDA-MB-231 Epithelial Human Cancerous, invasive

HUVEC Endothelial Human Not cancerous

Table 3.1: The proposed model is compared to experiments on confluent
mono layers of the above five cell lines. Experimental sample pic-
tures are depicted in Figure 3.2 and experimental details can be
found in Appendix B.1. The experimental data on epithelial cells
were published in West et al. [2] and the data on endothelial cells
in Rossen et al. [46].

Epithelial cells play a key role in cancer development, as most can-
cerous tissues take the form of carcinomas of epithelial origin [48].
Invasion into healthy tissue is a hallmark of aggressive cancer, and
cancer cells have been observed to migrate both as single cells and
collectively in groups or sheets [49]. Many important signaling path-
ways controlling cancer cell migration have been identified [50], but
also mechanical cues might play a role, as mechanical forces can be
transmitted over large distances in tissue [51] and cells have been
observed to migrate in the direction of minimal shear stress [52].

In our work [2, 3], we focus on the mechanical aspect of cancer
tissue dynamics, and try to understand which features of the cell
dynamics, can be described by a purely mechanical framework, when
the tissue is regarded as an active material.
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(a) Murine non-invasive breast cancer.
Epithelial 67NR cells. The window
is 300× 300 µm.

(b) Murine invasive breast cancer. Ep-
ithelial 4T1 cells. The window is
300× 300 µm.

(c) Human non-invasive breast cancer.
Epithelial MCF7 cells. The window
is 300× 300 µm.

(d) Human invasive breast cancer. Ep-
ithelial MDA-MB-231 cells. The
window is 300× 300 µm.

(e) Human endothelial cells. Endothelial
umbilical vein HUVEC cells. The
window is 600× 600 µm.

(f) Human endothelial cells. Velocity field
of Figure 3.2e obtained from PIV
analysis.

Figure 3.2: Sample of experimental data. Phase-contrast microscopy pic-
tures of confluent cell monolayers. The cancerous epithelial cells
in Figure 3.2a-3.2d are the main focus of this section, and has a
characteristic size of 20 µm. The non-cancerous endothelial cells
in Figure 3.2e-3.2f are included for comparison, and has a char-
acteristic size of 40 µm. The experiments are described in Ap-
pendix B.1.
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3.1 a continuum model for collective motion of cells

We formulate the model in terms of the local mean velocity field v
of the active material. This readily allows for comparison with ex-
periments, where confluent mono layers of cells are grown and the
velocity fields extracted by Particle Image Velocimetry (PIV). We will
compare the model to experiments on four types of cancerous epithe-
lial cells, see Table 3.1. Also a single line of non-cancerous endothelial
cells, which line blood and lymphatic vessels in animals, will be con-
sidered for completeness. Experimental details are given in Appendix
B.1.

The active material is assumed to obey momentum conservation
and to be incompressible (∇ · v = 0), such that the projected area of
each cell is conserved. For tissue, viscous dissipation and frictional
damping completely dominate over inertial forces, and momentum
conservation takes the form:

0 = −
1

ρ
∇p+ 1

ρ
∇ · σ+ f + m, (3.1)

where ρ is density, p is pressure, σ is the deviatoric stress tensor, f
is the cell-substrate friction force and m represents the motility force
generated by the self propulsion of the cells. The key ingredients of
the model are the rheology, friction and motility:

rheology : Both individual cells [53, 54] and tissues [55–59] have
been observed to respond viscoelastically when subject to me-
chanical stimuli. I.e. on short time scales, the material deforms
elastically, whereas long time mechanical loading results in vis-
cous flow and thus permanent deformation. On the time scale
of the considered experiments (several hours), the tissue expe-
riences permanent deformation, as the considered cells have a
typical speed of 1 µm/min and a cell size of 20 µm. The tissue
is therefore best described by a fluid-like rheology.

One of the simplest fluid-like viscoelastic rheologies is the Oldroyd-
B model:

σ+ λ1
∇
σ= 2η0

(
γ+ λ2

∇
γ

)
, (3.2)

where γ = 1
2(∇v + (∇v)T ) is the strain rate tensor and

∇
σ,
∇
γ

are the upper convected derivatives (see Section B.2-B.3) of the
stress and the strain rate respectively. The Oldroyd-B model can
be thought of as the result of dissolving a Maxwell fluid in a
Newtonian solvent (Figure 3.3). A pure Maxwell fluid would
have been the simplest possible rheology, but as the Maxwell
fluid does not capture the observed flow fields during cell divi-
sion, the Oldroyd-B model is used.
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(a) Maxwell fluid (b) Kelvin-Voigt solid (c) Oldroyd-B

Figure 3.3: Rheological diagrams. Constitutive equations can be visualized
as rheological diagrams, where elastic springs (denoted by their
elastic modulus G) and viscous dash pots (denoted by their vis-
cosity η) are coupled together. Stress of elements coupled in par-
allel add up. The same is true for strains in series. (a) Maxwell
fluid. Under sudden stress, the spring deforms instantaneously
whereas the dash pot deforms at a constant rate like a fluid.
When the Maxwell element is released, the spring regains its orig-
inal length, but irreversible deformation has happened due to
the dash pot. The Maxwell element is thus the simplest possible
fluid-like rheology. (b) Kelvin-Voigt solid. Under sudden stress, the
Kelvin-Voigt solid deforms with a characteristic time scale η/G.
The deformation is reversible and when released, the Kelvin-
Voigt solid regains its original shape. The Kelvin-Voigt element is
thus the simplest possible solid-like rheology. (c) Oldroyd-B fluid.
This rheology can be viewed as a Maxwell fluid described by
(G,η1) dissolved in a Newtonian fluid of viscosity η2. When sub-
ject to a sudden strain ε0, the stress decays exponentially with a
timescale η1/G towards zero.

friction : In the literature on cell continuum models, the cell-substrate
friction f has commonly been represented by a Stokesian drag-
like term linear in the velocity [60–65]:

fdrag = −αdragv.

However, this drag term is incapable of reproducing the expo-
nential tails of the speed distributions observed in the experi-
ments (see Figure 3.5a).

By considering simple stochastic processes we motivated [3],
that the simplest possible term reproducing the exponential
tails is reminiscent of dry Coulomb friction:

f = −αv̂, (3.3)

where v̂ = v/|v| is the direction of the velocity. From a micro-
scopic point of view, the friction term can be thought of as re-
sulting from the breaking of cell-substrate contacts during mo-
tion. If the energy associated with breaking/establishing a con-
tact is independent of the cell velocity, and the density of con-
tacts between cell and substrate is assumed constant, then the
energy spent as the cell moves along will only depend on the
distance moved - not on the velocity magnitude. Thus the force
is constant, as described by Eq. 3.3.
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motility : The self-propulsion of non-interacting cells is frequently
modelled as the result of an Ornstein-Uhlenbeck process:

∂m
∂t

+ (v · ∇)m = −
1

λm
m +φ(x, t), (3.4)

where m(x, t) is the local forcing arising from cell motility, λm
is the persistence time and φ is a white Gaussian noise field.
With this choice of noise, Eq. 3.4 describes a persistent random
motion of the cells, where the velocity changes on the time scale
λm.

However, the finite extend of the cells impose a minimum length
scale `m on the system, below which the velocity field should be
constant, because a single cell constitutes a coherent unit. The
length scale `m is imposed by letting φ be white noise filtered
with a Gaussian function of width `m:

φ(x, t) =
1

2π`2m

∫
ξ(x ′, t) exp

(
−
|x − x ′|2

2`2m

)
dx ′, (3.5)

where ξ(x, t) is a Gaussian white noise field of strength βm.

The literature on models of collective motion of cells covers a broad
range of approaches from agent based models [60, 66, 67], cellular
Potts models [68–70], vertex models [71] to phase field models [72]
and continuum models [46, 61–63, 73–77]. In formulating the above
model, we have sought to:

1. Make it simple. The model should be able to capture the experi-
mentally observed speed distribution, temporal and spatial ve-
locity correlation functions and the division flow field using as
few parameters as possible.

2. Allow for experimental comparison. The model is formulated in
terms of the velocity field, which is experimentally accessible
from time-lapse microscopy and PIV analysis.

3. Allow for quantification of forces. Therefore the model is formu-
lated in a mechanical framework and treats the tissue mono
layer as a material.

Furthermore, the continuum approach allows us to perform a number
of analytical calculations.

3.2 capturing bulk motion of tissue

To assess the performance of the proposed model, Eq. 3.1-3.5 were
simulated numerically and fitted to the statistical characteristics of
tissue bulk motion obtained experimentally (Section B.3).
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The results are displayed in Figure 3.5. The model is clearly ca-
pable of reproducing the exponential tails of the speed distributions
(Figure 3.5a) and closely matches the temporal correlation functions
(Figure 3.5c). The length scale of the spatial velocity correlation func-
tion is captured (Figure 3.5b), but the negative dip predicted by the
model, signaling the presence of vortices of a characteristic length
scale, is not present in the data.

We note, that the choice of either a drag term −αv or a dry fric-
tion term −αv̂ mainly affects the speed distributions. The model was
simulated numerically with the friction term replaced by the drag
term, and no considerable differences were detected in the correla-
tion functions (Figure 3.6). Our analytical calculations support this
finding, and the calculations are available in the SI of [3]. The speed
distributions in the case of drag and dry friction are however very
different, and the drag term does not result in an exponential tail.
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Figure 3.4: Bulk velocity fields. (a) Experiment. Snapshot of the velocity field
during motion in the bulk of non-invasive human MCF7 cells.
(b) Model fit. Snapshot of the velocity field of a simulation on
a periodic domain. The simulation parameters have been fitted
using the experimentally measured statistical characteristics of
the MCF7 cell.
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Figure 3.5: Statistical characteristics of tissue dynamics. Solid lines repre-
sent experimentally measured quantities, whereas dashed lines
indicate the result of a model fit. (a) Speed distribution as a func-
tion of the speed v normalized with the mean speed v0. The
model captures the exponential tails of the speed distributions.
The black lines depict the Gaussian tailed speed distribution, that
would result from a pure Ornstein-Uhlenbeck process. (b) The
spatial velocity correlation as a function of distance r scaled with
the correlation length `0. The negative dips of the model fit corre-
lation functions are not present in the data, but the agreement is
otherwise reasonable. The black lines depict the analytical corre-
lation functions in the case of a drag term replacing friction. The
solutions closely resemble the model fits. (c) The temporal velocity
correlation as a function of time t scaled with the characteristic
time `0/v0. The model fit closely matches the experiments. Also
the analytical solution in the case of a drag term matches the
experiments.
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Figure 3.6: Comparison of drag and friction. Plot of the statistical character-
istics resulting from numerical simulations using a friction term
f = −αv̂ or a drag term f = −αv in Eq. 3.1. Whereas the speed
distributions are clearly different in the case of friction and drag
(Figure 3.6a), the spatial and temporal correlation functions are
almost identical (Figure 3.6b-3.6c). The same set of parameters,
representative of the parameters fitted to the experiments, was
used for both friction and drag simulations.
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3.3 capturing the cell division process

The cell division process is of special interest in cancerous tissue, as
one hallmark of cancer is uncontrolled cell division. Experimentally,
the flow fingerprint of a cell division can be obtained by averaging
over a number of cell division flow fields aligned along the direction
of division and centered on the division site. The averaged flow fields
will be denoted by an overline v(x, t). Experiments on Madin–Darby
Canine Kidney cells revealed a force-dipole like flow field around
the cell division site [75] in accordance with previous modeling ef-
forts [74].

Cell division is not included in the model described by Eq. 3.1-
3.5, as it was found to have a negligible effect on the bulk flow in
the considered experiments. The flow field generated by a single cell
division can however be predicted by the proposed model, in the
form of the response to a force dipole turned on at time t = 0 and
turned off at time t = toff. When computing the flow field generated
by a single cell division, the friction term f in Eq. 3.1 is discarded, as
the friction should be small compared to the forces involved in the
division process, for the cell division to be feasible. Also the motility
term m in Eq. 3.1 is neglected, as we are interested in the effect of
the cell division only. This condition is experimentally obtained by
performing the aligned centered averages of flow fields.

In the absence of friction and intrinsic motility, the governing equa-
tions of the model are linear and we find an analytical solution for
the flow field created by a single cell division [3]. The spatial and
temporal dependencies separate:

v(x, t) = vStokes(x)h(t), (3.6)

where the time dependence h(t) is:

h(t) = 1− e−t/λ2 −
[
1− e−(t−toff)/λ2

]
θ(t− toff), (3.7)

and vStokes(x) is the two-dimensional Stokes flow generated by a force
dipole (two equal but opposite point forces ±b0 located at x = ±a
respectively):

vStokes(x) =
1

4π

{
[b0 · (x − a)]

(x − a)
r2+

− [b0 · (x + a)]
(x + a)
r2−

− b0 ln
(
r+

r−

)}
,

(3.8)

where r± = |x∓ a|. The velocity field in Eq. 3.6 was fitted to the time
series of experimental averaged flow fields v(x, t). We fixed the du-
ration of the force exertion toff for all four cell types, as it was not
found to significantly influence the obtained values of (λ2,b0), when
included in the fitting procedure. The time dependence described
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by Eq. 3.7 captures the experimentally observed time evolution (Fig-
ure 3.7), and also the spatial flow fields are well described by the
model (Figure 3.8).

The fit to the experimental flow fields showed, that the invasive cell
lines had a larger force to viscosity ratio b0/η0 during cell division,
than the non-invasive cell lines (Figure 3.9). This was the case for both
the human and murine cells and the difference was found to be statis-
tical significant using a two-sided student’s t-test [2]. If the cell lines
have similar viscosities, this difference hints, that the invasive cancer
cells might exert larger forces on the surrounding tissue during cell
division than their non-invasive counterparts.

Whereas the spatial flow fingerprint of cell division has previously
been described and modelled [75], the consideration of the temporal
evolution of the flow field is new. We note, that the exact form of
the time evolution function in Eq. 3.7 is governed by the rheologi-
cal model. If a pure Maxwell fluid rheology had been used instead
of the Oldroyd-B model, then the flow would have responded in-
stantaneously to the forcing, leading to a time dependence h(t) =

θ(t) − θ(t− toff), where θ(t) is the Heaviside step function.
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Figure 3.7: Time evolution of flow field during cell division. At each spa-
tial point, we denote the maximal averaged velocity component
during cell division vi,max(x) for i = x,y. The full colored
lines show the evolution of the normalized velocity components
vnorm
i (t) :=

〈
vi(x, t)/vi,max(x)

〉
x∈A averaged over an area A

close to the cell division center. The shading indicates the stan-
dard deviation. For a velocity field that separates into a spatial
solution multiplied by a time dependent function, as in Eq. 3.6,
the normalized velocity vnorm

i (t) should equal the time depen-
dence function. The experimentally observed normalized veloc-
ity evolution is qualitatively well described by the model time
dependence function h(t) given in Eq. 3.7.
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Figure 3.8: Spatial evolution of flow field during cell division. Plot of the
experimental averaged velocity field v(x, t) during cell division
of MCF7 cells, along with the velocity field v(x, t) obtained by
fitting the model prediction in Eq. 3.6 to the experimental v(x, t).
The model captures the spatial structure and the temporal evolu-
tion of the experimental velocity field well. Time zero is defined
as the onset of cytokinesis, i.e., the first image where two distinct
daughter cells are visible, and each picture depicts a domain of
200× 200 µm.
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Figure 3.9: Time evolution of forcing during cell division. The solid lines
represent the force divided by viscosity exerted by an expanding
daughter cell, and are the result of fitting Eq. 3.6 to the experi-
mental velocity time series v(x, t). For each of the four time series,
one value of b0/η0 and λ2 is obtained from the fitting procedure.
The dotted lines represent fits to the same experimental data,
when no time dependence is imposed on the model. I.e. for each
time frame tj with j = 1 : N, a Stokeslet dipole vsto(x) is fitted
to the time frame v(x, tj). The result is a time series of b0/η0 val-
ues and serves as a test of the time dependence predicted by the
model. The agreement between the time series fits (full lines) and
the time frame fits (dashed lines) is reasonable. The invasive cell
lines exert the largest force divided by viscosity during cell divi-
sion and expansion. This is the case for both human and murine
cells.
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3.4 discussion

In this section we proposed a viscoelastic continuum model for tissue
dynamics, which captured the exponential speed distribution tails as
well as the temporal and spatial velocity correlations observed exper-
imentally in five different cell lines. The model was formulated in a
mechanical framework and thus naturally allowed for quantification
of stress and forces in the tissue. The model furthermore allowed for
an analytical solution of the velocity field induced by a single cell
division. By fitting the model to the experimentally observed cell di-
vision flow fields, physical parameters such as retardation and relax-
ation times and cell division forces could be extracted. The proposed
model differs in two aspects significantly from the previous literature
on continuum models for tissue dynamics.

First, the proposed model includes a friction term similar to dry
Coulomb friction, instead of the drag-like friction term traditionally
employed [60–65]. The Coulomb type friction term is responsible for
the model being able to reproduce the experimentally observed expo-
nential tails of the tissue speed distributions. The substrate friction ul-
timately stems from a complex interplay between cell-substrate adhe-
sion contacts, substrate properties and properties of any surrounding
fluid. Experiments on the appropriateness of a drag- or a Coulomb-
like friction with the substrate are therefore of interest and could yield
valuable input to the modelling efforts.

Second, the proposed model is formulated in terms of the tissue
velocity field, and the tendency of neighboring cells to align is in-
corporated through the material rheology. This contrasts approaches,
where an explicit cell polarization field is included [61] or where the
tissue is treated as an active nematic material [37, 65, 75, 78]. Recent
experiments on kidney cell tissue revealed, that cell death and extru-
sion is highly correlated with the presence of +1/2 topological defects,
when analyzing the tissue as an active nematic material [79]. I.e. the
cell death and the subsequent extrusion is caused by the compressive
stress field of a +1/2 defect, not by chemical signaling.

These experiments indicate, that the model proposed in this work
might be too simple in its coarse graining of cell-cell interactions to
pure rheology. The proposed model is not able to describe nematic
features of the tissue, and thus can not account for the +1/2 defect
induced cell death and extrusion.

The proposed model has been designed to reproduce the exper-
imentally observed statistical characteristics of tissue dynamics and
single cell division in the tissue bulk. However, migration of tissue into
unfilled space is also an important aspect of tissue dynamics, which we
have not considered in this work. Incorporating tissue boundaries in
the proposed model, would allow for comparison and study of the
classical scratch-wound assay experiment [45, 80, 81], the observed
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fingering of tissue edges [45, 82] and the propagation of strain rate
waves in spreading tissue [47], and thus be a natural next step.

When considering cancerous tissue, tumor growth is of great in-
terest. An extensive literature on the modeling of tumor growth ex-
ists [83, 84] taking into account aspects such as evolution of tumor
morphology, cell division and death, interaction between healthy and
cancerous tissue as well as the effect of availability of resources such
as oxygen and nutrients. Several of the continuum models of tumor
growth lend themselves to different rheologies [83], and the specific
rheology in Eq. 3.2 could be implemented.

The model hinted that one distinction between invasive and non-
invasive cell types is the magnitude of the force, they exert during cell
division. It would be of interest, to consider what the model tells us
about the distinction between invasive and non-invasive cancer cells,
when considering bulk motion.



4
C O U P L I N G B E T W E E N S U B S T R AT E C U RVAT U R E
A N D T E X T U R E O F B L O C K C O P O LY M E R S

A block copolymer is composed of two or more distinct copolymers
(the blocks) linked together with a covalent bond (Figure 4.1a). If
the blocks are immiscible, then several textures with a characteris-
tic length scale can form due to phase separation. The characteristic
length scale is related to the length of the copolymer chains and is typ-
ically in the range of 10−100 nm [85]. The transition from an isotropic
homogeneous state to an ordered texture, as well as the type of tex-
ture arising are governed by the polymer molecular weight, the seg-
mental interactions, and the volumetric composition [85]. In this sec-
tion, we will focus on the cylindrical texture (Figure 4.1b-4.1c), which
for instance occurs in diblock copolymers, where the two blocks have
a comparable volume.

The cylindrical phase of a block copolymer film has the symmetry
of a two-dimensional smectic liquid crystal [86]. It is liquid-like along
one axis and described by a mass density wave along the orthogonal
axis (Figure 4.2). We will refer to it as a striped phase, inspired by
its appearance in SEM/TEM images. These striped thin films have at-
tracted attention, since they can be used as self-organizing templates
for nanofabrication of e.g. nanodots and wires [87–91] as well as de-
fect functionalization [92, 93].

(a) A block copolymer.
The constituent
polymers of block
A and B are
immiscible.

(b) Sketch of cylindrical texture.
The immiscibility of block A
and B leads to phase separation.
The sketch displays a possible
configuration for a thin film of
the block copolymer in (a).

(c) Experimental
cylindrical
texture.
TEM picture
adapted from
[6].

Figure 4.1: Block copolymers can self-assemble into a variety of ordered
states. In this chapter, we focus on thin layers of cylinder forming
block copolymers as illustrated in (a-c).

Defects are typically undesirable in these thin films but are hard to
avoid, as the self-assembly process from a disordered state into the
ordered cylindrical texture occurs via nucleation and growth or spin-
odal decomposition [94]. Several techniques aiming at reducing the

35
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number of defects exist [85, 95], such as graphoepitaxy [96, 97], shear
flow [98], electric fields [89, 99], sweeping of a temperature gradi-
ent [100] and using substrate curvature as an ordering field [101, 102].
In this chapter, we will focus on the effect of substrate curvature. It is
of interest to understand and predict the textures of minimum energy
for a given curved surface, since this is the state the block copolymers
will evolve towards, as well as to study the defect structures and the
ordering process of defect motion and annihilation.

(a) Smectic symmetry. (b) Nematic symmetry.

Figure 4.2: Symmetries. The smectic phase in (a) shows translational order
in the horizontal direction, resulting in a mass density wave, but
is liquid-like along the vertical direction. The nematic phase in
(b) possesses no translational order.

Several authors have developed models for the striped phase of
block copolymers [103, 104], where both intrinsic and extrinsic bend-
ing of the stripes are energetically penalized. Intrinsic bending oc-
curs, when the stripes deviate from geodesics of the surface. Extrinsic
bending occurs, when the stripes bend in three dimensional space.
As an example, consider only the two-dimensional top layers of the
cylinders in Fig 4.3. The stripes running along the cylinder (Fig 4.3a)
have neither intrinsic nor extrinsic bending, whereas stripes running
around the cylinder (Fig 4.3c) have no intrinsic bending but do have
extrinsic bending, because they are curved in three-dimensional space.
The type of model considered by Santangelo et al. [103] and Kamien
et al. [104], implies that stripes like to be straight in three-dimensions
and that running along the cylinder as in Fig 4.3a is preferred.

However, the opposite behavior was experimentally observed for
thin films [94, 102, 105]. In this paper, we therefore take the approach
of Pezzutti, Gomez, and Vega [94], where the free energy is domi-
nated by the deviation of the stripe spacing from its preferred value.
This approach reproduces the experimentally observed tendency of
the stripes to run around the cylinder as in Figure 4.3c. To under-
stand the effect of a deviation from the preferred stripe spacing for
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a thin film, consider first the striped thin layers in Figure 4.3a and b.
The stripe spacing in both cases has to change in the radial direction,
leading to the film being simultaneously under compression and di-
lation, see Figure 4.3 inset. The more curved the surface is, the larger
the compression and dilation. So even though the films are thin, the
third spatial dimension can not be neglected, as it effectively couples
the free energy to the surface curvature.

In this chapter we develop an effective two-dimensional model for
thin films of block copolymers by expanding the three-dimensional
Brazovskii free energy in the film thickness. We benchmark the de-
rived two-dimensional model against the known case of a cylindrical
thin film. As this chapter contains non-finalized work, we go on to dis-
cuss future directions of the research and discuss other approaches to
striped phases on curved surfaces.

4.1 the free energy functional

We model a thin film of block copolymers using a Brazovskii type
free energy functional [106], which frequently has been employed as
a continuum level description of block copolymers [94, 105, 107–109]

The Brazovskii model was originally proposed to describe order-
ing transitions in antiferromagnets and cholesteric liquid crystals and
has since inspired a range of works on phase transitions and pat-
tern formation. Notably, the Swift-Hohenberg model [110], describ-
ing Rayleigh-Bénard convection, as well as the Phase Field Crystal
model [111–113], describing crystals on atomic length scales and dif-
fusive time scales, are extensions of the Brazovskii model.

The Brazovskii mean field free energy F(ψ) is a Ginzburg-Landau
expansion in the order parameter ψ(x) performed under considera-
tion of the system symmetries. We work with the free energy density
f = F/V also employed by Pezzutti, Gomez, and Vega [94] and Ya-
mada and Komura [107]:

f(ψ) =
1

V

∫
dV

[
2(∇2ψ)2 − 2|∇ψ|2 + τ

2
ψ2 +

1

4
ψ4
]

, (4.1)

where V is the volume, ψ(x) = ρ(x) − ρ0 measures the deviation of
the local copolymer composition from the average composition ρ0 at
the critical temperature Tc. The model has one parameter, the reduced
temperature τ = (Tc − T)/Tc.

The negative sign of the gradient squared in Eq. 4.1 makes spatial
modulations of the order parameter field ψ energetically favorable.
In combination with the positive Laplacian squared, the negative gra-
dient squared favors a specific wavelength λ = 2π

√
2. To see this,

consider the free energy density of a field ψ = ψ0 sin(q0x):

f(ψ) =
(
q40 − q

2
0

)
ψ20 +

τ

4
ψ20 +

3

32
ψ40. (4.2)
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The free energy density is minimized for q0 = 1/
√
2 resulting in a

characteristic wave length λ = 2π
√
2. Any deviation from this spacing

of the stripe pattern is energetically penalized.
In the current work, we focus on thin films on curved surfaces. A

simple way to describe the free energy of the thin film is to consider
the two-dimensional surface version of Eq. 4.1 where all derivatives
have been replaced with their covariant surface equivalents:

fS̃(ψ) =
1

Ã

∫
dÃ

[
2(∇̃2ψ)2 − 2|∇̃ψ|2 + τ

2
ψ2 +

1

4
ψ4
]

. (4.3)

Here, ∇̃ denotes a covariant surface derivative on the surface S̃ and
dÃ is the area element of the curved surface. The strategy of replacing
bulk derivatives with their surface equivalents has been applied to
crystallization on curved surfaces using the related Phase Field Crys-
tal model [109, 114] as well as in treatments of nematic crystals on
curved surfaces using the Frank energy [93, 104, 115]. Replacing the
bulk derivatives with their surface equivalents preserve the model’s
energetic penalty on all other wavelengths than λ. However, this ap-
proach does not take the third dimension into account, and results for
example in all stripe orientations on a cylinder being equally energet-
ically favorable, which is not in accordance with the experimental
observations.

To properly account for the third dimension, we will start with the
three-dimensional free energy density in Eq. 4.1 and expand it in the
thickness of the film divided by the curvature length scale, to obtain
a two-dimensional free energy density which takes the curvature of
the surface into account.

4.2 geometrical setup

We consider a thin three-dimensional region Ω of thickness h around
a regular compact surface S̃ (Figure 4.4). We define ñ to be the unit
normal vector field to the surface S̃. The volume Ω is described by
the three-dimensional position vector p(u,w, ξ) parametrized by the
three parameters (u,w, ξ):

p(u,w, ξ) = p̃(u,w) + ξ ñ(u,w), (4.4)

where p̃ is the normal projection of the point p onto S̃. The distance
between p and the surface S̃ along the normal ñ at a point p̃ is given
by |ξ|. The surface is of thickness h and thus ξ ∈ [−h/2,h/2].

The tangent vectors at the point p̃(u,w) ∈ S̃ are:

ãi = ∂ip̃, (4.5)

where the tilde indicates, that the tangent vectors belong to the sur-
face S̃ and the index i runs over the parametrization parameters u,w.
The induced metric (first fundamental form) on the surface S̃ is:

g̃ij = ãi · ãj. (4.6)
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(a) (b) (c)

Figure 4.3: Stripe textures on a cylindrical surface, with different texture
orientations, given by the angle α between the stripe direction
and the axial direction. (a) When the stripe texture runs along
the cylinder axis α = 0, the finite thickness of the layer and the
curvature of the cylinder results in a slight increase of the stripe
wavelength λ with the radial coordinate, see inset. (b) Also the
stripes with orientation α = π/4 experience an increase of the
wavelength in the radial direction, although the effect is smaller.
(c) When the stripes run around the cylinder, α = π/2 they are
not affected by the curvature. The figure is inspired by [94].

The metric determinant will be denoted g̃. The metric inverse is g̃ij

and defined such that g̃ikg̃jk = δij, where repeated indices indicate
summation. The metric and its inverse can be used to raise and lower
indices. The curvature tensor (second fundamental form) of the sur-
face S̃ is:

Kij = ñ · (∂iãj). (4.7)

We will not consider changes in the curvature. Thus Kij describes all
parallel surfaces in the volume Ω, and no tilde is used. We denote
the two principal curvatures at the point p̃ as κ1(p̃) and κ2(p̃) respec-
tively. If we define the local curvature length scale, l(p̃) and the global
curvature length scale, `(p̃), as:

l(p̃) = min
[

1

κ1(p̃)
,
1

κ2(p̃)

]
` = min

p̃∈S̃
l(p̃), (4.8)
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Figure 4.4: Geometrical setup. The thin film volume Ω is comprised of a se-
ries of parallel surfaces Swith ξ ∈ [−h/2,h/2] around the central
surface S̃ with ξ = 0. The point p̃ ∈ S̃ is the normal projection
of the point p ∈ S onto S̃. The surfaces are parametrized by
(u,w), and the tangent vectors (not depicted) at p(u,w, ξ) and
p̃(u,w) are in general not identical. I.e., for the same parame-
ters (u,w), the tangent vectors change, as ξ traverses the interval
[−h/2,h/2].

then the requirement of the volume Ω being a thin shell can be for-
mulated as:

h

`
� 1. (4.9)

We consider the scalar order parameter field ψ to be constant through-
out the thickness of the shell:

ψ(p̃ + ξñ) = ψ(p̃) for all p̃ ∈ S̃, ξ ∈
[
−
h

2
,
h

2

]
. (4.10)

The covariant gradient and Laplacian of the scalar field ψ and the
divergence of the vector field v on the surface S̃ are:

∇̃iψ = g̃ij∇̃jψ = g̃ij∂jψ (4.11)

∇̃2ψ = ∇̃i∇̃iψ =
1√
g̃
∂i(
√
g̃g̃ij∂jψ) (4.12)

∇̃ · v = ∇̃i vi =
1√
g̃
∂i(
√
g̃vi), (4.13)

where g̃ is the metric determinant.
The goal is to expand the three-dimensional free energy density de-

scribed by Eq. 4.1 in the surface normal coordinate ξ, the curvature
tensor Kij in Eq. 4.7, invariants of the surface S̃ such as the mean
curvature H and the Gaussian curvature K and the surface deriva-
tives in Eq. 4.11-4.13. When this expansion has been performed, the
surface height ξ ∈

[
−h2 , h2

]
can be integrated out, and we arrive at

an effective two dimensional free energy density to lowest order in
the surface thickness to curvature ratio h/`. We assume that h/`� 1

throughout this chapter and we do not consider derivatives of the
curvature tensor.
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4.3 expansion of the free energy density

The free energy density in Eq. 4.1 has five terms, which should be
expanded. The volume element dV , the gradient squared |∇ψ|2, the
Laplacian squared (∇2ψ)2 and the two powers of the order parameter
field.

To perform these five expansions we need an expression for the
metric on the parallel surfaces gij = ai · aj. First step is to find the
surface tangent vectors of the parallel surface S:

ai = ∂ip = ∂ip̃ + ξ∂iñ = ãi + ξ∂iñ. (4.14)

Because ñ · ñ = 1 then ∂iñ · ñ = 0 and ∂iñ is orthogonal to the normal
ñ. Thus ∂iñ can be expressed as a linear combination of the mid
surface tangent vectors ∂iñ = Aki ãk. We can identify Aki by dotting
with a tangent vector:

ãj · ∂iñ = Aki ãj · ãk
−Kij = A

k
i g̃jk

Aki = −Kijg̃
jk, (4.15)

where we have used, that because ãj · ñ = 0 then ãj ·∂iñ = −∂iãj · ñ =

−Kij. With the aid of Eq. 4.15 we can rewrite Eq. 4.14 as:

ai = ãi − ξKijg̃jkãk. (4.16)

The metric on the parallel surfaces can then be expressed as:

gij = ai · aj = g̃ij − 2ξKij + ξ2g̃klKikKjl. (4.17)

Note, that the above equation is exact. The metric inverse can be
found by demanding that gikgkj = δ

j
i. To second order in the small

quantity ξ/`, the inverse metric is [116]:

gij = g̃ij + 2ξKij + 3ξ2(2HKij −Kg̃ij) +O3(ξ/`)

= (1− 3ξ2K)g̃ij + 2(ξ+ 3ξ2H)Kij +O3(ξ/`). (4.18)

The square root of the metric determinant is [116]:

√
g = Jξ

√
g̃ where Jξ = 1− 2Hξ+Kξ2. (4.19)

Here, H is the mean curvature and K the Gaussian curvature.

4.3.1 The volume element

We denote the volume ofΩ by V = vol(Ω) and the surface area of S̃ by
Ã = area(S̃). We imagine the volume Ω to be comprised of a series of
surfaces S parallel to S̃. Each of these parallel surfaces is described by
Eq. 4.4 for a fixed value of ξ, with ξ = 0 corresponding to the central
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surface S̃ (4.4). The surface area element of the central surface S̃ is
denoted dÃ, whereas the surface area element of the parallel surface
S is denoted dA. The volume element dV = dξdA depends on the
normal coordinate ξ through the area element dA. Using Eq. 4.19:

dA = JξdÃ. (4.20)

We note, that the volume V can be expressed as:

V =

∫
Ω

dV =

∫h/2
−h/2

dξ

∫
S

dA =

∫h/2
−h/2

dξ

∫
S̃

dÃ Jξ = Ãh+
h3

12
χ,

where we have introduced the integrated Gaussian curvature χ =∫
S̃ dÃ K, which for a surface with no boundary is the Euler character-

istic of the surface times 2π.

4.3.2 The gradient squared

The squared gradient of the scalar field ψ on the parallel surface S is:

|∇ψ|2 = gij(∇iψ)(∇jψ) = gij∇iψ∇jψ
= (1− 3ξ2K)g̃ij∇̃iψ∇̃jψ+ 2(ξ+ 3ξ2H)Kij∇̃iψ∇̃jψ
= (1− 3ξ2K)|∇̃ψ|2 + 2(ξ+ 3ξ2H)Kij∇̃iψ∇̃jψ. (4.21)

The expression in Eq. 4.21 depends explicitly on the normal coordi-
nate ξ and we can perform the expansion in ξ/`:

Jξ|∇ψ|2 = (1− 2Hξ+Kξ2)|∇ψ|2

= c0 + c1ξ+ c2ξ
2 + c3ξ

3 +O4(ξ/`), (4.22)

where cn(ψ) for n = 1, 2, ... is a curvature coupling term, and has the
characteristic size |∇̃ψ|2/`n. The relevant even coefficients are:

c0(ψ) = |∇̃ψ|2 (4.23)

c2(ψ) = 2HK
ij∇̃iψ∇̃jψ− 2K|∇̃ψ|2. (4.24)

The gradient contribution to the free energy density is then:∫
Ω

dV |∇ψ|2 =
∫h/2
−h/2

dξ

∫
S

dA |∇ψ|2

=

∫
S̃

dÃ

∫h/2
−h/2

dξ Jξ|∇ψ|2

=

∫
S̃

dÃ

∫h/2
−h/2

dξ
[
|∇̃ψ|2 + c1ξ+ c2ξ2 + c3ξ3 +O4(ξ/`)

]
≈ h
∫
S̃

dÃ |∇̃ψ|2 + h
3

12

∫
S̃

dÃ c2(ψ). (4.25)

Only the terms even in ξ survive the integration and the first trun-
cated term in Eq. 4.25 is therefore of the order O4(h/`).
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4.3.3 The Laplacian squared

The Laplacian squared is calculated in the same fashion as the gradi-
ent squared, and we neglect derivatives of the curvature tensor. The
Laplacian of the scalar field ψ on the parallel surface S is:

∇2ψ = ∇i∇iψ =
1
√
g
∂i(
√
ggij∂jψ)

=
1√
g̃
∂i(
√
g̃gij∂jψ)

= (1− 3ξ2K)∇̃2ψ+ 2(ξ+ 3ξ2H)
1√
g̃
∂i

(√
g̃Kij∂jψ

)
(4.26)

= (1− 3ξ2K)∇̃2ψ+ 2(ξ+ 3ξ2H)(∇̃ · v), (4.27)

where we have defined the vector field vi = Kij∇jψ, and identified
the last term in Eq. 4.26 as the divergence of v. As we do not con-
sider derivatives of the curvature tensor, we can also write ∇̃ · v =

∇̃ivi = Kij∇̃i∇̃jψ. The expression in Eq. 4.27 depends explicitly on
the normal coordinate ξ and we can perform the expansion:

Jξ(∇2ψ)2 = d0 + d1ξ+ d2ξ2 + d3ξ3 +O4(ξ/`), (4.28)

where the curvature couplings terms dn(ψ) have the characteristic
size (∇̃2ψ)2/`n. The relevant even coefficients are:

d0(ψ) = (∇̃2ψ)2 (4.29)

d2(ψ) = 4(∇̃ · v)2 + 4H(∇̃ · v)(∇̃2ψ) − 5K(∇̃2ψ)2

= 4(Kij∇̃i∇̃jψ)2 + 4H(Kij∇̃i∇̃jψ)(∇̃2ψ) − 5K(∇̃2ψ)2.
(4.30)

The Laplacian contribution to the free energy density is then:∫
Ω

dV (∇2ψ)2 =
∫h/2
−h/2

dξ

∫
S

dA (∇2ψ)2

=

∫
S̃

dÃ

∫h/2
−h/2

dξ
[
(∇̃2ψ)2 + d1ξ+ d2ξ2 + d3ξ3 +O4(ξ/`)

]
≈ h
∫
S̃

dÃ
(
∇̃2ψ

)2
+
h3

12

∫
S̃

dÃ d2(ψ) (4.31)

Only the terms even in ξ survive the integration and the first trun-
cated term in Eq. 4.31 is therefore of the order O4(h/`).
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4.3.4 Powers of the order parameter field

We note that the density field is constant throughout the thickness of
the film. In other words, ψ does not depend on ξ. The expansion of
the n’th power of ψ is:∫

Ω

dV ψn =

∫h/2
−h/2

dξ

∫
S

dA ψn

= h

∫
S̃

dÃ ψn +
h3

12

∫
S̃

dÃ ψnK. (4.32)

So if the surface has a constant Gaussian curvature, then the expres-
sion reduces to 1

V

∫
Ω dV ψ

n = 1
Ã

∫
S̃ dÃ ψ

n.

4.3.5 The final two-dimensional free energy density

Substituting Eq. 4.25,4.31,4.32 in the three-dimensional free energy
density in Eq. 4.1, we arrive at:

f(ψ) =
hÃ

V

{
fS̃(ψ) +

1

12

1

Ã

∫
S̃

dÃ h2
[
2d2(ψ) − 2c2(ψ) +

τ

2
Kψ2 +

1

4
Kψ4

]}
=
hÃ

V
[fS̃(ψ) + kS̃(ψ)] , (4.33)

which is valid up to the order of O4(h/`) and we have defined the
curvature correction term kS̃(ψ). We note, that the volume differs
from the area times the thickness V 6= hÃ, unless the surface has zero
integrated Gaussian curvature, χ = 0.

4.4 relaxation towards equilibrium

The relaxation of the conserved density field ψ towards equilibrium is
similarly to the Phase Field Crystal model described by the equation
of motion [94, 107]:

∂ψ

∂t
=M∇̃2

(
δf

δψ

)
+ η(r, t), (4.34)

where δf/δψ denotes a functional derivative, M is a phenomenolog-
ical mobility constant and η(r, t) is a noise term. The noise has zero
mean 〈η(r, t)〉 = 0 and the fluctuation-dissipation theorem relates the
noise strength η0 and the mobility constant M:〈

η(r, t)η(r ′, t ′)
〉
= 2Mη0δ(r − r ′)δ(t− t ′). (4.35)

The functional derivative of the free energy density in Eq. 4.33 can be
found in Appendix C.1.
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4.5 a benchmark problem

The expansion of the three-dimensional free energy density in Eq. 4.1
in powers of the small quantity h/`was performed for the special case
of the cylinder by Pezzutti, Gomez, and Vega [94]. They find that the
free energy is minimized when the stripes run around the cylinder
as in Figure 4.3c, thus qualitatively behaving as the experiments [94,
102, 105]. The surface free energy density derived in this chapter is
the generalization of the work by Pezzutti, Gomez, and Vega [94], and
we therefore use their result for the cylinder as a benchmark problem.

We parametrize the cylindrical surface S̃ of radius R and length L
by the cylindrical coordinates u ∈ [0, 2π],w ∈ [0,L] :

p̃ =

R cos(u)

R sin(u)

w

 (4.36)

Relevant geometrical quantities associated with the specific parametriza-
tion are:

g̃uu = R2 g̃ww = 1 g̃uw = g̃uw = 0 (4.37)

Kuu = R Kww = 0 Kuw = Kuw = 0 (4.38)

K = 0 H =
1

2R
(4.39)

We consider a striped texture making an angle α with the axis of the
cylinder, see Fig 4.3:

ψ(u,w) = ψ0 cos
[
q0(Ru cos(α) +w sinα)

]
= ψ0 cos(β), (4.40)

where for convenience, we have defined β = q0(Ru cos(α) +w sinα).
Since the Gaussian curvature vanishes everywhere, the curvature cou-
pling terms reduce to:

c2 = 2HK
ij∂iψ∂jψ

= 2HguuguuKuu∂uψ∂uψ

=
q20ψ

2
0

R2
cos2(α) sin2(β)

d2 = 4(K
ij∇̃i∇̃jψ)2 + 4H(Kij∇̃i∇̃jψ)(∇̃2ψ)

= 4(Kuu∂u∂uψ)
2 + 4H(Kuu∂u∂uψ)(g

uu∂u∂uψ+ gww∂w∂wψ)

=
1

R2

[
6

R4
(∂u∂uψ)

2 +
2

R2
(∂w∂wψ)(∂u∂uψ)

]
=
q40ψ

2
0

R2

[
6 cos4(α) + 2 cos2(α) sin2(α)

]
cos2(β)

=
q40ψ

2
0

R2

[
4 cos4(α) + 2 cos2(α)

]
cos2(β).
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So the curvature contribution to the free energy is:

kS̃ =
1

12

1

Ã

∫
S̃

dÃ h2
[
2d2(ψ) − 2c2(ψ)

]
(4.41)

=
1

12

(
h

R

)2
ψ20

[
4q40 cos4(α) + (2q40 − q

2
0) cos2(α)

]
(4.42)

=
1

12

(
h

R

)2
ψ20 cos4(α), (4.43)

where we have inserted the preferred wavelength q0 = 1/
√
2 in the

last step. The curvature contribution to the energy is minimized when
α = π/2 and the stripes on every parallel surface are able to maintain
the preferred lattice spacing controlled by q0. Thus the stripes prefer
to align with the direction of maximal principal curvature and run
around the cylinder as depicted in Figure 4.3c. The result in Eq. 4.43

is identical to the result of Pezzutti, Gomez, and Vega [94].
Note that the model on a general surface results in a local tendency of

the stripes to align with the direction of maximal principal curvature.
Thus curvature acts as a local ordering field.

4.6 future directions

Though the free energy density in Eq. 4.33 lends itself to analytical
calculations for simple surfaces, a numerical approach is necessary in
order to deal with more complicated and interesting surfaces as well
as to study the time evolution of the block copolymer textures and
the global effect of the local ordering due to curvature.

The model is currently being implemented numerically, and the ap-
proach and challenges are described in Section 4.6.4. With the numer-
ical implementation at hand, several aspects of thin block copolymer
films can be investigated. We plan to focus on 1) identifying mini-
mum energy textures, 2) studying curvature as an ordering field and
3) investigating ordering kinetics. These three aspects are discussed
in the following subsections.

4.6.1 Minimum energy texture

As discussed in the chapter introduction, the textures formed by
block copolymers are used as patterns for nano-fabrication. It is there-
fore of interest to calculate the texture with the lowest free energy for
a given curved surface, thus predicting the resulting pattern. Also the
reverse situation, of being able to identify a curved surface that will
result in a pre-specified pattern, is of interest.

A first step is to study the minimum energy configuration on a
sphere, where a total rotational defect charge of +2 is required due to
the Poincaré–Hopf theorem. Several defect configurations are possi-
ble (Figure 4.5), and the energy of these have previously been studied
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numerically [117, 118] using a self-consistent field theory for block
copolymers. A comparison with this previous work would be rele-
vant and is currently being pursued.

(a) Polar structure. (b) Spiral structure. (c) Baseball structure.

Figure 4.5: Defect structures. Examples of defect structures in a striped
phase fulfilling the requirement of a total rotational defect charge
of +2. The top panel shows the texture in three dimensions and
the lower panel displays a modified Mercator projection. Red
squares indicate cores of +1 disclinations (see Figure (a)) whereas
red circles indicate the cores of +1/2 disclinations (see Figure
(b,c)). Figure adapted from Zhang, Wang, and Lin [109].

4.6.2 Curvature as an ordering field

For substrates with a vanishing Euler number, there is no topological
requirement of defects. However, defects might still arise due to the
distortions caused by the substrate. As a first step, we therefore plan
to study the effect of a Gaussian bump on an otherwise planar sur-
face (Figure 4.6a). The stripe texture will be distorted as it passes over
the bump, and we wish to study the spatial extent of the distortion
and the angular deviation of the stripes. Similar considerations of a
Gaussian bump were done by Kamien et al. [104] using an alterna-
tive model for block copolymers. Based on their model, they devised
broad design principles to engineer the geometry of the curved sub-
strate and thereby obtain the desired block copolymer texture by self-
assembly. The model by Kamien et al. differs significantly from the
model derived in this chapter and will be discussed in Section 4.7.1.

As the texture of block copolymers self-organize during the phase
transition from a disordered state to the striped phase, defects are
completely unavoidable in the absence of any external fields. Curva-
ture can however serve as an ordering field, limiting defect formation
and enhancing defect annihilation. To investigate the role of curva-
ture as an ordering mechanism, we plan to study a series of Gaussian
ridges (Figure 4.6b), which we expect will suppress defects and align
the stripes with the direction of maximal principal curvature.
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(a) Gaussian bump. (b) Gaussian ridge.

Figure 4.6: Curvature as an ordering field. We plan to use the Gaussian
bump and the Gaussian ridge as simple test grounds for the
effect of curvature as an ordering field. Both surfaces are here
depicted with a possible stripe texture.

4.6.3 Ordering kinetics

Experiments on the ordering of striped textures in block copolymers
confined to flat surfaces have been performed, and especially the growth
of micro domains and the defect annihilation process were studied in
detail [56, 86].

The spatial size L of defect free micro domains with the same stripe
orientation was experimentally found to depend on time as L ∼ t1/4

in flat space [56, 86]. This is in accordance with previous theoretical
and numerical studies of flat space Brazovskii type models [119], and
we wish to study whether this dependence change on curved sub-
strates, where the ordering process might be enhanced by curvature.

The experiments also measured the time evolution of the defect
numbers and carefully mapped out defect annihilation processes such
as dipole and quadropole annihilation of disclinations as well as the
ability of disclinations to act as sources/sinks for dislocations [56]. It
would be interesting to compare the defect time evolution generated
by the model in curved space with the flat space experiments.

The ordering kinetics of the striped phase has been studied nu-
merically on a sinusoidal curved substrate [120]. However, these au-
thors just replaced the derivatives in the three-dimensional Brazovskii
free energy with covariant surface derivatives, in order to obtain a
two-dimensional model. Curvature thus only affected the free energy
through changes in distances on the surface, forcing the stripe spac-
ing to change. The model discussed in Gómez and Vega [120] does
therefore not consider the coupling between curvature and stripe
spacing, arising from the finite thickness of the film.
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4.6.4 Numerical implementation

The numerical implementation is ongoing work and not yet com-
pleted, but a brief overview of the intended approach is given here.
A preliminary simulation example is shown in Figure 4.7.

An essential part of the numerical implementation is the discretiza-
tion of the curved surface, its geometric attributes such as curvature
and normal vectors and the discretization of differential operators on
the surface.

The surface itself is discretized by a triangular mesh. Following
Meyer et al. [121], the mean curvature (with the normal), the Gaus-
sian curvature and the Laplacian are calculated at each vertex from
spatial averages around this vertex. Principal curvatures and prin-
cipal directions are calculated using constrained least-square fitting,
with the linear constraint, that the sum of the principal curvatures
equals twice the mean curvature. The density field ψ is discretized at
the vertices of the triangle mesh.

The covariant derivatives are calculated by:

1. Projecting the 1-ring of a vertex vi onto the tangent plane at vi
spanned by the principal directions.

2. Estimating the quadratic approxmiation of the order parameter
ψ in the tangential plane using least squares fitting.

3. Obtaining the covariant derivatives in the principal directions
from the quadratic approximation of ψ.

The time evolution of the density field is implemented using operator
splitting into a linear and non-linear part. The linear part of the time
evolution equation is solved for implicitly whereas the non-linear part
(a ψ3 term and noise) is integrated explicitly.

4.7 discussion

In this chapter we studied the striped phase of thin block copolymer
films. For these systems, the finite film thickness results in a coupling
between substrate curvature and the stripe wavelength. We derived
an effective two-dimensional free energy functional by expanding the
Brazovskii three-dimensional free energy in the ratio of the film thick-
ness to the characteristic curvature length scale. The predicted ori-
entation of the stripes on a cylinder is in accordance with previous
calculations [94] and experiments [94, 102, 105].

To explore the effect of curvature on block copolymer films further,
we are currently implementing the two-dimensional model numeri-
cally. A numerical implementation will allow us to assess the mini-
mum energy texture for a given curved substrate, to investigate the
effect of curvature as an ordering field, as well as to study the dynam-
ics of defect annihilation and creation during the ordering process.
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Figure 4.7: Preliminary simulation example. The derived effective two-
dimensional model was simulated on the surface of an ellipsoid.
Color indicates the value of the order parameter and the striped
texture is clearly present.

4.7.1 Previous models of block copolymers on curved substrates

Block copolymers on curved surface have previously been modelled
by introducing a free energy with two main ingredients: a term pe-
nalizing any deviation from the prescribed stripe spacing and a term
penalizing any geodesic or normal curvature of the stripes [103, 104].
This ad hoc inclusion of curvature in the free energy results in the
texture shown in Figure 4.3a being the lowest energy state on the
cylinder and was inspired by experiments of Hexemer [101], which
showed this behavior on the zero Gaussian curvature circle of a Gaus-
sian bump (Figure 4.8a).

However, as Santangelo et al. [103] also note, the film in these exper-
iments was not one-layered and: " How the underlying layers couple
to the two-dimensional geometry of the topmost columns is an open
question." Thus, the experiments on these approximately ten-layer
thick films by Hexemer [101] are different from the one-layer film ex-
periments by references [94, 102, 105], the latter being the inspiration
for the thin-shell model in this chapter.

We note, that as opposed to the ad hoc inclusion of curvature in
the model of Santangelo et al. [103], we have in this chapter intro-
duced substrate curvature in the free energy in a controlled way, by
expanding the three-dimensional equal stripe spacing requirement in
the film thickness and obtaining an effective two-dimensional model.
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along geodesics. However, this assumption is incompatible
with equal spacing on a curved substrate. To see this,
assume that the columns lie along geodesics and that
they are equally spaced. We start with one geodesic col-
umn. At two points on the column Lt apart, we move off
along the normal direction and trace the geodesics obeying
!n " D#n $ 0. After integrating both a fixed distance Ln,
these geodesics will end on a new column and n will still
be perpendicular to the column’s tangent vector. Here
again, the Gauss-Bonnet theorem [Eq. (2)] constrains pos-
sible column configurations. In the case of our Lt % Ln
rectangle (shown in Fig. 1), there are four vertices with
!! $ "=2 and so

 

I
@M
#gds $ &

Z
M
KdA: (4)

However, we assumed that #g $ 0 along the normal flows
and along the columns. We see this is only possible for
arbitrary rectangles ifK $ 0 on the substrate. We have thus
established the incompatibility of equal spacing and van-
ishing geodesic curvature of the columns. The true ground
state will be some compromise between a nonideal spacing
and some curvature of the columns (the configuration
shown in Fig. 1 depends on the growth history and is
unlikely to be the actual ground state). However, we note
that it is the gradient of the compression that is propor-
tional to the curvature of the normals and so, dimension-
ally, the compression energy will grow with an extra factor
of L2 (in a region of size L) compared to the bending
energy. We thus expect, at long distance scales, that the
curvature of the columns will absorb the effect of the
Gaussian curvature and that the column spacing will be
set at the ground state value, i.e., e $ 0.

Based on this discussion, it would be natural to suppose
that, since the lines of longitude are geodesics on a rota-
tionally symmetric bump, the columns lie along lines of
latitude. However, the curvature of the columns frustrates
this expectation. The intrinsic curvature does not give us a
local way of selecting one configuration over another—
one must compute the total curvature energy for different
configurations with e $ 0 (Including defects in the ground
state, along the lines of Ref. [12] is beyond the scope of this
Letter.) We turn, therefore, to the extrinsic curvature of the
columns, #n $ N " !t "r#t $ &titj@jNi, where the final
equality follows from N " t $ 0. If we express t $
cos!e1 ' sin!e2 in terms of the principal directions ei,
the extrinsic curvature becomes #n $ #1cos2!' #2sin2!,
where #i are the principal curvatures [21]. We take e1 to be
along the radial direction and e2 along the azimuthal
direction. The minimum of #2

n depends on whether K $
#1#2 is positive or negative: whenK < 0, the two principal
curvatures differ in sign and #2

n attains its minimum when
#n vanishes, i.e., tan2!0 $ &#1=#2. Deviations $ $ !&
!0 from the preferred angle have an energy per unit area of
!f $ &2B%2K$2 'O!$4#.

For simplicity, we consider a substrate which is a surface
of revolution with height function h!r#. Our arguments do

not depend on the particular shape of the bump but rather
on the generic fact that near the top K > 0 and at the
bottom, in the ‘‘skirt,’’ K < 0. Since we want to consider
smooth, azimuthally symmetric bumps, we know that h0!r#
vanishes at r $ 0 and r $ 1 and so somewhere in be-
tween, at r $ r0, h00!r0# $ 0. Since the radial direction is
also a principal direction, the principal curvature #r van-
ishes there, and subsequently K $ 0 on that circle. On this
circle, we have a universal, preferred direction for the
columns—they lie along the radial direction since
tan2!0 $ 0. Thus the circle at radius r $ r0 imparts a
boundary condition, albeit a very soft one. Near r $ r0
the restoring energy is quartic in $, not quadratic. A radial
alignment of the columns appears to be the energetically
favored solution on the ring r $ r0 for sufficiently steep
bumps. This picture is roughly borne out by experimental
observations reproduced in Fig. 2 which shows a highly
disordered columnar arrangement near the top of the bump,
a radial corona of aligned columns near the ring r $ r0,
with a dramatic transition to columnar rings at slightly
larger radius.

Focusing now on the top of a bump, where K > 0 and
r < r0, the minimum of #2

n occurs when sin2!0 $ 0. If
#2 > #1 then the minimum is at !0 $ 0 with a deviation
energy of !f( B

2 %
2!#2 & #1##1$2, while when #2 < #1,

the preferred angle is !0 $ "=2 with a deviation energy of
!f( B

2 %
2!#1 & #2##2$2. Since #1 grows from zero near

r0, the radial ordering will still be favored near the band of
vanishing K. However, depending on the details of the
bump, there will either be azimuthal or radial ordering
near the top. The incompatibility of radial ordering in the

FIG. 2 (color). (a) SEBS triblock on a surface from [17]. Dark
lines are the columns. The central region has K > 0, and the
outer region has K < 0. (b), (c) Equally spaced columns lying on
geodesics of a cylindrical surface, a surface with K $ 0. In
(b) the columns are straight in three dimensions and have #n $
0, while in (c) the columns are curved in three dimensions and
#n ! 0. Near the circle of K $ 0, the bump shares the geometry
of the cylinders.
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Figure 4.8: Block copolymers on Gaussian bump. The depicted film is
about 10 layers thick. The circle of zero Gaussian curvature K = 0,
is geometrically identical to a cylinder, and the stripes tend to be
aligned as sketched in (b). This is the opposite behavior of what
was observed on single layer films as discussed in Section 4.7.1.
The single layer films were observed to align as in Figure (c). The
figure is adapted from Santangelo et al. [103].

4.7.2 Nematic approaches

The experimental system of block copolymers considered in this chap-
ter has smectic symmetry (Figure 4.2a). The smectic phase is however
closely related to the nematic phase (Figure 4.2b), where the nemato-
gens show orientational order but no mass density wave.

Napoli and Vergori [122, 123] modelled a thin layer of a nematic
phase on a curved substrate. They obtained an effective two-dimensional
model by expanding the three-dimensional Frank elastic energy of
nematic liquid crystals to zeroth order in the small parameter h/`
(film thickness/curvature length scale). This is the same strategy, as
we have used in this chapter. They also considered a cylindrical sur-
face and found, that the absolute free energy minimum occurs, when
the director field points along the cylindrical axis. This orientation
of the director is similar to the block copolymers, where the director
is perpendicular to the stripes (see Figure 4.2a), leading to the direc-
tor pointing along the cylindrical axis, when the stripes run around
the cylinder as in Figure 4.3c. A nematic approach was also used by
Mbanga, Grason, and Santangelo [124] who studied defects in a ne-
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matic phase on a catenoid, and by Segatti, Snarski, and Veneroni [125]
who investigated the behavior of Napoli and Vergori’s model [122,
123] on a torus.

The striped texture of block copolymer films considered in this
chapter, is however not nematic, but the nematic models could be
relevant for other related materials.



5
C O N C L U S I O N

In this thesis we summarized and discussed our work on the three
largely independent projects of columnar jointing, tissue dynamics
and block copolymers on curved surfaces. The three topics were stud-
ied using continuum modeling, analytical calculations and numerical
simulations.

We developed a simple linear elastic model for columnar jointing
and argued from numerical simulations, that one Péclet number is
selected for each dimensionless critical stress intensity factor. This ob-
servation allowed us to analytically derive a scaling function, giving
the functional relation between the Péclet number and the dimension-
less critical stress intensity factor. The derived scaling function was
in excellent agreement with numerical simulations and with the few
existing experimental measurements. The scaling function allowed
us to estimate the speed of the crack front, if the column diameter
and certain material parameters have been measured. Using the field
measurements of Goehring and Morris [25], the crack front velocities
were estimated and the results compared well with the independent
estimates of Goehring and Morris [25].

Aiming at simplicity and the possibility for quantitative compar-
ison with experiments, we formulated a continuum model for tis-
sue dynamics. The model treated the tissue as a viscoelastic active
fluid experiencing a dry friction with the underlying substrate. The
model captured the spatial and temporal velocity correlations of ex-
periments on breast cancer tissue as well as the speed distributions,
which showed exponential tails. The model allowed for an analytical
solution of the flow field generated by a single cell dividing, and the
solution compared well with experimental observations.

To gauge the effect of curvature on thin films of cylinder form-
ing block copolymers, we expanded the three-dimensional Brazovskii
free energy for block copolymers in the ratio of film thickness to
curvature length scale. By this procedure, we obtained an effective
two-dimensional model, that incorporated the coupling between sub-
strate curvature and stripe spacing. The obtained model reproduced
the expected behavior of a thin layer of block copolymers on a cylin-
der, with the stripes running around the cylinder. We outlined future
research directions, which we want to pursue using a numerical im-
plementation of the model. These include identifying the minimum
energy texture for relevant surfaces, studying the effect of curvature
as an ordering field and the ordering kinetics of defect creation and
annihilation.
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A
A P P E N D I X : S C A L E S E L E C T I O N I N C O L U M N A R
J O I N T I N G

a.1 conductive cooling with latent heat

A common igneous rock like basalt has a liquidus temperature of
about TL = 1200◦C, a solidus temperature of about TS = 1000◦C and
a glass transition temperature of about TG = 725◦C [14, 126]. Above
the liquidus temperature, TL, the material is a homogeneous melt, be-
low TL melt and solid material coexist, and below the solidus, TS, the
material is solidified. The glass transition, TG, is a second order phase
transition, where the thermal expansion coefficient and the Young’s
modulus change abruptly. Below TG the system can no longer accom-
modate shrinkage by viscous relaxation, it becomes hard and brittle
and effective stress starts to accumulate.

To gain insight in the temperature evolution of solidifying igneous
rock, we consider a homogeneous and isotropic half-space X > 0. The
X-axis is pointing into the igneous body, and at the interface X = 0

the body is in contact with a cooling substance (air, ground) such that
the temperature is always T(X = 0, t) = T0. Initially at time t = 0 the
body is uniformly at the emplacement temperature T(X, t = 0) = T1.
Only the X−direction enters the heat diffusion equation, as the body
is taken to be homogeneous and isotropic as well as infinite in the Y−
and Z−direction:

∂T(X, t)
∂t

= D∇2T(X, t). (A.1)

For the above specified boundary and initial conditions, the resulting
temperature distribution is:

T(X, t) = T0 + (T1 − T0) erf
(

X

2
√
Dt

)
, (A.2)

where the error function is defined as: erf(η) = 2√
π

∫η
0 e

−τ2dτ.
The temperature distribution in Eq. A.2 does not take latent heat

into account. Basalt releases the majority of latent heat in an interval
of 1025◦C− 1125◦C [19], which is not easily incorporated in analytical
models. Instead of completely neglecting latent heat, as in Eq. A.2,
we can assume that solidification happens at a single temperature TS.
The solidification front is then always located at the TS isotherm with
position xm(t), such that T(xm(t), t) = TS.

We split the temperature field of the igneous body into two parts:
one field, Ts(x, t), describing the solidified part of the body for x 6

55
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xm(t) and one field, T l(x, t), describing the still molten part for x >
xm(t). Continuity of temperature at the phase boundary demands:

Ts(xm) = T l(xm) = TS (A.3)

If we consider solutions of the type T(η), then the similarity vari-
able η = x/2

√
Dt must take a constant value δ on the solidus line

at xm(t) in order to always fulfill Eq. A.3. This implies that xm(t) =

2δs
√
Dst = 2δl

√
Dlt and therefore δl = δs

√
Ds/Dl.

We assume, that the air cools the surface of the igneous body to the
temperature T0, and that the liquid initially has the temperature T1:

Ts(0, t) = T0 T l(x, 0) = T1 (A.4)

Solving Eq. A.1 for each of the two temperature fields Ts(x, t) and
T l(x, t) with the boundary conditions in Eq. A.3-A.4 yields:

Ts(x, t) = T0 +
TS − T0
erf(δs)

erf
(

x

2
√
Dst

)
(A.5)

T l(x, t) =
T1 erf(δl) − TS

erf(δl) − 1
+

TS − T1
erf(δl) − 1

erf
(

x

2
√
Dlt

)
(A.6)

The parameters δs, δl can be determined through considerations of
the latent heat release. In our half space model, energy conservation
implies that the difference in heat flux density through the phase
boundary plane x = xm(t) must equal the release of latent heat:

Ks
∂Ts(x, t)
∂x

∣∣∣
x=xm

−Kl
∂T l(x, t)
∂x

∣∣∣
x=xm

= ρlL
dxm(t)

dt
(A.7)

where Kl,Ks are the thermal conductivities of the solid and liquid
phase respectively, ρl is the liquid density and L is the latent heat of
the igneous rock. From Eq. A.7 we then get an implicit equation that
together with δl = δs

√
Ds/Dl determines δs:√

DsLρlδs
√
π =

e−δ
2
s

erf(δs)
Ks(TS − T0)√

Ds

+
e−δ

2
l

erf(δl) − 1
Kl(T1 − TS)√

Dl
(A.8)

For air of temperature T0 = 20◦C and similar thermal diffusivities
and conductivities in the liquid and solid igneous phase, one obtains
δl = δs = 0.74 for the physical parameters of lava listed in Table 2 of
Degraff, Long, and Aydin [19]. An example of the obtained tempera-
ture profile for these parameters is shown in Figure A.1.

The temperature field in the solid phase described by Eq. A.5 is
aside from constant factors identical to the temperature field in Eq. A.2
where only one phase was considered. The inclusion of latent heat
does therefore not alter the qualitative time and space dependence of
the temperature field. As in the case of no latent heat, we therefore ex-
pect the striae height, s, to increase with the distance from the cooled
surfaces.
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Figure A.1: Example of a temperature field resulting from pure diffusive
heat transport when considering the release of latent heat at the
solidification front. The temperature field is depicted at three
different times, t = 1, 4 and 8 months, together with the position
of the solidification front xm(t). The parameters described in the
text with δl = δs = 0.74 are used.

a.2 numerical simulations

For convenience, the description of the numerical simulations of colum-
nar jointing given in Appendix B-C of Christensen et al. [3] is repro-
duced in this section.

a.2.1 Discrete element simulations

To model the cracking of an elastic medium, we use a discrete element
method with nodes arranged in a cubic lattice with a lattice constant
L0. The nodes are interacting with their nearest-neighbors (NN) and
next-nearest-neighbors (NNN) through Hookean springs with spring
constants k1 and k2 for NNs and NNNs, respectively. The spring con-
necting the nodes i and j has an equilibrium length Leqij and holds an
elastic energy quadratic in the deviation from the equilibrium length,

Uij =
1

2
kij(Lij − L

eq
ij )

2 (A.9)

where xi denotes the position of the i’th node and Lij = |xi − xj|. The
total energy of the system is given by the sum over all springs Utot =∑
Uij. The elasticity tensor corresponding to these interactions can

be written in the form [22]:

Ciiii = (k1 + 2k2)/L
0 Ciijj = Cijji = Cijij = k2/L

0. (A.10)
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The thermal contraction of the system is modelled by changing the
local equilibrium distance between the nodes. Like in the previous
section, we shall consider a contraction front on the form of Eq. 2.2:

L
eq
ij (X,X0) = L0ij

[
1+αT∆T

(
1− e−

X−X0
w

)
θ (X−X0) −αT∆T

]
(A.11)

where X0 = vt = D
wt is the position of the temperature front, which

moves through the system with time. Since elastic relaxation hap-
pens many orders of magnitude faster than thermal relaxation, the
simulations proceed by advancing the contraction front a length dX0,
relaxing the system to elastostatic equilibrium, and repeating the pro-
cess. The value of dX0 does not affect the resulting fracture pattern.
The state of elastostatic equilibrium or force balance is reached by
minimizing the elastic energy, i.e. finding the lattice configuration for
which ∇U = ∇

∑
Uij = 0. To that end, we apply a conjugate gradient

method in the multidimensional configuration space. In the simula-
tions, we use a failure criterion where an elastic bond in the lattice is
broken when it is strained, εij, beyond a critical strain εc:

εij > εc. (A.12)

With this threshold, bonds do not break during compression, i.e. the
fractures forming the columnar joints will mostly grow at the trailing
edge of the contraction front. Note, that while this asymmetry in the
fracture criterion have little impact on the morphology of the steady
state patterns, it may influence the fracture patterns formed close to
the boundary of the system, i.e. where the front is initiated.

If more than one bond is strained beyond the critical level, the bond
with the highest strain is broken and the lattice is relaxed to the new
state of elastostatic equilibrium. We then check whether other bonds
still exceed the critical stress. If a bond still exceeds the critical stress
the process is repeated until no such bond exists and then finally we
advance the contraction front by a small increment, dX0. In that way,
bonds are broken one-by-one until none of them exceeds the critical
strain.

Note that in the simulations the temperature profile starts out with
the steady state shape and therefore the initial cracks nucleating at
the surface of the simulation system might not have any resemblance
to the columns close to the cooling surface in real system. After a
transient dynamics over a length of approximately 2w, the cracks in
the simulations form a regular polygonal pattern equivalent to the
columnar joints. An example of a simulation is shown in Figure 2.7.
When the regular polygonal crack pattern has formed, then the av-
erage column diameter 〈`〉 is measured. From this measurement, the
Péclet number Pe = 〈`〉 /w for the simulation can be determined.

The fracture criterion KI = KI,c given in Eq. 2.6 is in the simula-
tions implemented through a critical strain. The dimensionless crit-
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simulation parameter value

Poisson’s ratio νpois = 0.2

Critical strain εc ∈ [0.07, 2.60] · 10−2

Maximal contraction αT∆T ∈ [0.01, 0.04]

Dim.less. critical stress intensity factor1a κI,c =
εc

αT∆T

Temperature front width w ∈ [1, 24]

Table A.1: List of simulation parameters used in the discrete element simu-
lations. In Figure 2.9 the value of κI,c has been multiplied with
(1− νpois) to make it comparable with the scaling function de-
rived for 2D.

ical stress intensity factor is related to the critical strain as: κI,c =

KI,c/(EαT∆T
√
b) = εc/(αT∆T). This should not affect the above ob-

servations.

a.2.2 Finite element simulations

The material undergoing cooling is approximated by a box [0, 4] ×
[0, 1]× [0, 1] with periodic boundary conditions applied on the faces
parallel to the X-axis. The computational domain is finely discretized
using tetrahedral elements (4 million tetrahedra). We assume the ma-
terial to be isotropic and Cauchy elastic in the simulation, with the
Young’s modulus E and Poisson ratio νpois = 0.25. The assumption
of small displacements is valid in the context of columnar joint for-
mation and the elasticity model is appropriate for simulating infinite
systems.

We use the von Mises yield criterion, which states that failure oc-
curs when the von Mises stress, σM, exceeds the material’s yield
strength, σc, chosen in simulation to be equal σc = 0.01E. We use a
standard, linear Galerkin method to discretize the constitutive equa-
tion.

The propagating temperature front and corresponding thermal con-
traction are modelled as a body force:

β(X,X0) = αT∆T
(
1− exp−(X−X0)/w

)
θ(X−X0) −αT∆T (A.13)

where the maximum contraction is αT∆T = 0.2, the contraction front
is located at X0 = vt = D

wt and the slope 1/w varies between 12 and
18. The simulation method at each time step advances the contraction
front a step dX0, updates the equilibrium von Mises stress values, and
proceeds to fracture resolution. The fracture resolution is performed
by finding the element with the maximum von Mises stress exceed-
ing σc and removing it from the computational mesh (by labeling it
as air). This is followed by reassembling the stiffness matrix and re-
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simulation parameter value

Poisson’s ratio νpois = 0.25

Tensile strength σc = 0.01E

Maximal contraction αT∆T = 0.02

Dim.less. critical stress intensity factor κI,c =
σc

EαT∆T
= 0.5

Temperature front width w ∈ [1/18, 1/12]

Table A.2: List of simulation parameters used in the finite element simula-
tions. In Figure 2.9 the value of κI,c has been multiplied with
(1− νpois) to make it comparable with the scaling function de-
rived for 2D.

equilibrating the system. Those two steps are then repeated as long
as there are elements with σM > σc in the mesh. Re-equilibration,
which amounts to solving the constitutive equations with a new stiff-
ness matrix, is a computationally intensive process. Hence, in order to
improve the method’s performance we introduce two simplifications:

• System relaxation in the fracture resolution step is performed
on a submesh composed of elements lying in the X-distance 0.1
from the temperature front (which is equivalent to treating the
excluded region as fluid).

• Instead of only removing a single element at a time, all elements
whose von Mises stress are greater than γσc, γ > 1 are all re-
moved at once, where γ is chosen in a way that it does not affect
the resulting fracture pattern (determined in our simulation to
be γ = 1.1).

The resulting set of removed tetrahedra displayed in Figure A.2 gives
a representation of the columnar fracturing pattern, and can be used
to measure the typical column diameter 〈`〉. The FEM results for pairs
of (Pe, κI,c) obtained for fixed w and κI,c = KI,c/(EαT∆T

√
b) =

σc/(EαT∆T) are in agreement with the discrete element simulation
results, see Figure 2.9. In the figure, κI,c is multiplied with (1−νpois)

to be comparable with the scaling function which is derived for 2D.
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Figure A.2: Example of the resulting fracture network in a finite element
simulation of columnar jointing for w = 1/15 and the parame-
ters displayed in Table A.2.





B
A P P E N D I X : C O L L E C T I V E D Y N A M I C S A N D
D I V I S I O N P R O C E S S E S I N T I S S U E

b.1 experiments on epithelial and endothelial tissues

The experiments on confluent monolayers of epithelial and endothe-
lial cells used in this thesis, were performed by Lene Oddershedes lab
at the Niels Bohr Institute. The data on epithelial cells have previously
been published in West et al. [2] and the data on endothelial cells in
Rossen et al. [46]. Details of the cell culturing and data analysis can
be found in these two references.

b.1.1 Epithelial cells

Four breast cancer cell lines, listed in Table 3.1 of the main text, were
considered. The human non-invasive MCF7 cells show an epithelial-
like round shape, whereas the invasive human MDA-MB-231 cells
are elongated and mesenchymal-like. The picture is turned around
for the murine cells, where the non-invasive 67NR cells show an elon-
gated shape, and the invasive 4T1 cells are round. The cells all have a
characteristic size of about 20µm.

Each cell type was seeded and cultured until a confluent mono
layer was obtained after approximately 24 hours. The mono-layers
were imaged in phase-contrast microscopy with an image taken every
2 minutes. The image sequences were analyzed with Particle Image
Velocimetry (PIV) [127] to obtain the time evolution of the velocity
fields.

The averaged time series of cell division displayed in Figure 3.8 of
the main text were obtained by:

1. Manually identifying a dividing cell with no other dividing cells
being closer than 150µm.

2. Centering the dividing cell in a 300× 300µm frame.

3. Rotating the frame such that the daughter cells move horizon-
tally away from the division site.

4. Taking the average of the velocity fields for at least 30 such
centered and rotated events.

63
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b.1.2 Endothelial cells

The human umbilical vein endothelial cells (HUVEC) were seeded
and cultured until a confluent mono layer was obtained after approx-
imately 3 days. The mono-layers were imaged in phase-contrast mi-
croscopy with an image taken every 10 minutes. The image sequences
were analyzed with Particle Image Velocimetry (PIV) to obtain the
time evolution of the velocity fields. The HUVEC cells have a charac-
teristic size of about 40µm.

b.2 convected derivatives

The physical laws governing the behavior of a material should not
depend on the observer. In other words, constitutive equations for
material rheology should be material frame indifferent (objective), as
we do not expect stress to develop in a body, just because we run
in a circle around it [128]. Note, that the frame indifference apply
to any moving frame (Euclidean), not only frames which move with
constant translation (Galilean).

b.2.1 Objective vectors and tensors

Let us consider observer A to be at rest. By x we denote the coordi-
nates of a material particle as observed by A. The second observer B
rotates and translates relative to observer A, and sees the same mate-
rial particle perform the motion:

x̂ = R(t)x + x0(t) + x, (B.1)

where R(t) is a rotation matrix and x0(t) characterizes the transla-
tional motion. I.e. the mapping from x to x̂ is an Euclidean transfor-
mation. If the rotation is fixed in time R(t) = R0 and the translational
velocity is constant plus a shift of origin x0(t) = v0t + a, then the
transformation is Galilean.

An Euclidean objective vector w and tensor τ transforms as:

ŵ = R(t)w (B.2)

τ̂ = R(t) τRT (t). (B.3)

Let us denote the material derivative (∂t + v · ∇) by an overline dot.
The velocity gradient∇v is an example of a non-objective tensor [128]:

∇̂v̂ = R(t)∇vR(t)T+Ṙ(t)RT (t) (B.4)
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due to the term marked with blue, whereas the strain rate tensor
γ = 1

2(∇v + (∇v)T ) is objective:

γ̂ =
1

2
(∇̂v̂ + (∇̂v̂)T )

= R(t)

[
1

2
(∇v + (∇v)T )

]
R(t)T +

1

2

[
Ṙ(t)RT (t) + R(t) ṘT (t)

]
= R(t)γR(t)T +

1

2

˙︷ ︸︸ ︷
R(t)RT (t)

= R(t)γR(t)T , (B.5)

since for rotation matrices, R(t)RT (t) = I, where I is the identity ma-
trix and its material derivative vanish İ = 0.

However, even though a quantity is objective, its material derivative
is not in general objective. The material derivatives of the objective
quantities w and τ transform as:

˙̂w = R(t)(t) ẇ+Ṙ(t)w (B.6)
˙̂τ = R(t) τ̇ RT (t)+Ṙ(t) τRT (t) + R(t) τ ṘT (t) (B.7)

and the blue parts of the equations are in excess, leading to the conclu-
sion, that ẇ and τ̇ are not objective. For the constitutive equation to be
objective, we demand that it is only comprised of objective quantities
such as the strain rate tensor and objective time derivatives, which
we still have to identify.

b.2.2 Objective time derivatives

Let us define the vorticity tensor:

Ω =
1

2
(∇v − (∇v)T ) (B.8)

which is not objective and transforms as [128]:

Ω̂ = R(t)ΩRT (t)+Ṙ(t)RT (t). (B.9)

We can then define the Gordon-Schowalters family of convected deriva-
tives for objective tensors τ:

Daτ

Dt
= τ̇−Ωτ+ τΩ− a(γτ+ τγ), (B.10)
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where the derivative is parametrized by the scalar a. This family of
tensor derivatives is objective:

Daτ̂

Dt
= ˙̂τ− Ω̂τ̂+ τ̂Ω̂− a(γ̂τ̂+ τ̂γ̂)

= R(t) τ̇ RT (t) + Ṙ(t) τRT (t) + R(t) τ ṘT (t)

−
[
R(t)ΩRT (t) + Ṙ(t)RT (t)

]
R(t) τRT (t)

+ R(t) τRT (t)
[
R(t)ΩRT (t) + Ṙ(t)RT (t)

]
− a
{
R(t)γRT (t) R(t) τRT (t) + R(t) τRT (t) R(t)γRT (t)

}
= R(t) τ̇ RT (t) + Ṙ(t) τRT (t) + R(t) τ ṘT (t)

− R(t)ΩτRT (t) − Ṙ(t) τRT (t)

+ R(t) τΩRT (t) + R(t) τRT (t) Ṙ(t)RT (t)

− aR(t) {γτ+ τγ}RT (t)

= R(t) τ̇ RT (t) − R(t)ΩτRT (t) + R(t) τΩRT (t) − aR(t) {γτ+ τγ}RT (t)

= R(t)

(
Daτ

Dt

)
RT (t) (B.11)

where we have used that R(t)RT (t) = I, such that Ṙ(t)RT (t) = −R(t)ṘT (t).
The scalar parameter a interpolates between the upper and lower con-
vected derivatives. The last term of the Gordon-Schowalters deriva-
tive Eq. B.10, proportional to a, describes the effect of the fluid defor-
mation. For a = 0, we obtain the Jaumann derivative, which describes
the time derivative with respect to a frame that rotates with the flow.
For a = 1 we obtain the upper convected derivative and for a = −1

we obtain the lower convected derivative, which describes the effect
of respectively convecting the contravariant and covariant basis vec-
tors of the coordinate system with the flow [129].

b.3 numerical simulations

The proposed model for tissue dynamics is described by the equation
system (introduced in Chapter 3, Eq. 3.1-3.5):

0 = −
1

ρ
∇p+ 1

ρ
∇ · σ−αv̂ + m (B.12)

σ+ λ1
∂σ

∂t
= 2η0

(
γ+ λ2

∂γ

∂t

)
(B.13)

0 = ∇ · v (B.14)
∂m
∂t

+ (v · ∇)m = −
1

λm
m +φ(x, t) (B.15)

φ(x, t) =
1

2π`2m

∫
ξ(x ′, t) exp

(
−
|x − x ′|2

2`2m

)
dx ′ (B.16)〈

ξi(x, t)ξj(x ′, t ′)
〉
= βmδ

(2)(x − x ′)δ(t− t ′)δij. (B.17)

Note, that the upper convected derivatives in Eq. 3.2 have been re-
placed by partial time derivatives in the corresponding Eq. B.13. This
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replacement can be justified, since the viscoelastic time scale is much
smaller than the deformation time scale in the cell experiments. To
clarify this point, consider the upper convected derivative of a tensor
ψ:

∇
ψ=

∂ψ

∂t
+ (v · ∇)ψ−

[
ψ · (∇v) + (∇v)T ·ψ

]
. (B.18)

The upper convected derivative in Eq. B.18 can be cast in dimension-
less form, if we define the characteristic time scale tψ on which ψ
changes, the characteristic flow velocity Uv and the characteristic flow
length scale Lv. Denoting dimensionless quantities by an apostrophe,
the dimensionless form of the upper convected derivative is:

∇ ′
ψ=

∂ψ

∂t ′
+
tψUv

Lv

{
(v ′ · ∇ ′)ψ−

[
ψ · (∇ ′v ′) + (∇ ′v ′)T ·ψ

]}
.

(B.19)

When the velocity gradients, characterized by Uv/Lv, are small com-
pared to the characteristic time tψ, then the upper convected deriva-
tive reduces to a partial time derivative. This is the case for the consid-
ered experiments, where the cells have a characteristic flow velocity
Uv ∼ 1 µm/min and a characteristic size of Lv ∼ 20 µm. The character-
istic viscoelastic time can be estimated as the retardation time tψ ∼ λ2
obtained from the cell division process (Section 3.3). Thus, the quan-
tity (tψUv/Lv) ∼ 0.05 is small and we replace the upper convected
derivative by a partial time derivative.

b.3.1 Dimensionless form

The governing equations are cast in a dimensionless form by scaling
with the motility length `m, the time scale λm and the total viscosity
η0:

∇p = ∇ · σ− aαv̂ + m (B.20)

σ+ a1
∂σ

∂t
= 2

(
γ+ a2

∂γ

∂t

)
(B.21)

0 = ∇ · v (B.22)
∂m
∂t

+ (v · ∇)m = −m +φ(x, t) (B.23)

φ(x, t) =
1

2π

∫
ξ(x ′, t) exp

(
−
|x − x ′|2

2

)
dx ′ (B.24)〈

ξi(x, t)ξj(x ′, t ′)
〉
= aβδ

(2)(x − x ′)δ(t− t ′)δij. (B.25)

All quantities in Eq. B.20-B.25 are now dimensionless, and we have
defined the four dimensionless control parameters:

a1 =
λ1
λm

a2 =
λ2
λm

aα =
ρ

η0
`mλmα aβ =

(
ρ

η0

)2
λ3mβm.
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cell line mean speed v0 corr . length `0

[µm/min] [µm]

4T1 0.27± 0.06 25.8± 0.9
67NR 0.13± 0.03 26.5± 1.1
MCF7 0.23± 0.02 19.6± 0.7
MDA-MB-231 0.7± 0.2 13.7± 0.4
HUVEC 0.5± 0.1 28.0± 0.1

Table B.1: Measured characteristics of experimental velocity fields in bulk
experiments. The correlation length `0 was found by fitting a sin-
gle exponential Cvv(r) = e−r/`0 to the spatial correlation func-
tions displayed in Figure 3.5.

b.3.2 Numerical scheme

The model given by Eq. B.20-B.25 was simulated numerically in a pe-
riodic two-dimensional box of 256× 256 grid points using a pseudo-
spectral method. The Fast Fourier Transform algorithm was used
to perform Fourier- and inverse Fourier transforms, and non-linear
terms were evaluated in real space. The exponential time differenc-
ing scheme [130] was used to perform the time integration of the
stress tensor and the noise term. The velocity field and the pressure
was found by a relaxation procedure in each time step.

b.3.3 Fitting procedure

For each of the five cell lines, the experimental speed distribution
P(v), the spatial velocity correlation function Cvv(r) and the tempo-
ral velocity correlation function Cvv(t) were calculated from the ve-
locity fields obtained by PIV analysis. Also the mean speed v0 and
the correlation length `0 were calculated for the experiments (Ta-
ble B.1). From these quantities the normalized experimental speed
distribution P(w = v/v0), the spatial velocity correlation function
Cvv(z = r/`0) and the temporal velocity correlation function Cvv(s =
t/(v0/`0)) displayed in Figure 3.5 were found.

The model was fitted to the experiments, by varying the four con-
trol parameters a1,a2,aα,aβ, calculating P(w),Cvv(z) and Cvv(s)

for each simulation, and choosing the control parameter set, that
minimized the chi squared between the experimental and simulated
P(w),Cvv(z) and Cvv(s).

When the control parameters a1,a2,aα,aβ have been fitted, the
value of the motility time scale λm and length scale `m can be deter-
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cell line λ1 λ2 λm `m α
(
ρ
η0

)
βm

(
ρ
η0

)2
(min) (min) (min) (µm) (µm·min)−1 (min)−3

4T1 1.6 0.4 7.8 10 0.002 0.003

67NR 2.9 0.7 7.1 12 0.001 0.001

MCF7 1.2 0.3 3.0 9 0.003 0.010

MDA-MB-231 2.2 0.2 4.3 7 0.015 0.125

HUVEC 1.6 0.4 7.8 10 0.002 0.003

Table B.2: Fitted parameters for bulk cell motion. The viscosity and density
have not been measured, and α,β are therefore given as α (ρ/η0)

and βm (ρ/η0)
2 respectively.

mined from the mean speeds and correlation lengths of experiments
(`0, v0) and simulations (`sim

0 , vsim
0 ):

`m =
`0

`sim
0

λm =
vsim
0

v0
`m.

The remaining four physical parameters can then be found from the
dimensionless control parameters resulting from the fits:

λ1 = λma1 λ2 = λma2 α =

(
η0
ρ

)
aα

λm`m
β =

(
η0
ρ

)2 aβ
λ3m

The parameters obtained by fitting to the experimental data are dis-
played in Table B.2. With these parameters, the periodic two-dimensional
domain corresponded to a box of length ∼ 200µm in physical units.
The time step was ∼ 0.01min in physical units.





C
A P P E N D I X : C O U P L I N G B E T W E E N S U B S T R AT E
C U RVAT U R E A N D T E X T U R E O F C O - B L O C K
P O LY M E R S

c.1 functional derivative of the free energy

If G(ψ) is a functional of ψ, then the functional derivative δG/δψ can
be identified as:

dG(ψ(p̃) + εφ(p̃))
dε

∣∣∣∣
ε=0

=

∫
dÃ

δG

δψ
φ(p̃), (C.1)

where φ(p̃) is an arbitrary function and εφ(p̃) is the variation of
ψ(p̃). The functional derivative of the free energy is:

δf

δψ
=
hÃ

V

[
δfS̃
δψ

+
δkS̃
δψ

]
, (C.2)

where:

Ã
δfS̃
δψ

= τψ+ψ3 + 4∇̃2ψ+ 4∇̃4ψ (C.3)

Ã
δkS̃
δψ

=
h2

12

[
2
δD2
δψ

− 2
δC2
δψ

+ τKψ+Kψ3
]

. (C.4)

Here, we have considered surfaces with no border and defined the
functionals:

C2(ψ) =

∫
dÃ c2(ψ)

D2(ψ) =

∫
dÃ d2(ψ).

The functional derivative of C2 is identified from:

dC2(ψ(p̃) + εφ(p̃))
dε

∣∣∣∣
ε=0

=

∫
dÃ
[
2HKij(∇̃iψ∇̃jφ+ ∇̃jψ∇̃iφ)

− 2K(∇̃iψ∇̃iφ+ ∇̃iψ∇̃iφ)
]

=

∫
dÃ
[
4HKij∇̃iψ∇̃jφ− 4K(∇̃iψ∇̃iφ)

]
=

∫
dÃ
[
− 4HKij∇̃j∇̃iψ+ 4K∇̃i∇̃iψ

]
φ,

using the fact that the curvature tensor Kij and the metric gij are sym-
metric as well as integration by parts. (For a surface with no boundary,
Stokes theorem yields

∫
dÃ ∇i(qwi) = 0 where q is a scalar and wi

a vector field. Using that the covariant derivative obeys the product
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rule we get
∫
dÃ q∇iwi = −

∫
dÃ wi∇iq). The functional derivative

of C2 is:

δC2
δψ

= −4HKij∇̃i∇̃jψ+ 4K∇̃2ψ. (C.5)

Following the same procedure, we get:

δD2
δψ

= 8KlmKij∇̃l∇̃m∇̃i∇̃jψ− 10K∇̃4ψ

+ 4H
[
∇̃2(Kij∇̃i∇̃jψ) +Klm∇̃m∇̃l(∇̃2ψ)

]
.

The functional derivative of the free energy density is in total:

δf

δψ
=
h

V

[(
1+

h2

12
K

)
(τψ+ψ3) + 4∇̃2ψ+ 4∇̃4ψ+

h2

12

(
2
δD2
δψ

− 2
δC2
δψ

)]
.

(C.6)
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