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Ithaka
BY C. P. CAVAFY

TRANSLATED BY EDMUND KEELEY

As you set out for Ithaka

hope your road is a long one,

full of adventure, full of discovery.

Laistrygonians, Cyclops,

angry Poseidon—don’t be afraid of them:

you’ll never find things like that on your way

as long as you keep your thoughts raised high,

as long as a rare excitement

stirs your spirit and your body.

Laistrygonians, Cyclops,

wild Poseidon—you won’t encounter them

unless you bring them along inside your soul,

unless your soul sets them up in front of you.

Hope your road is a long one.

May there be many summer mornings when,

with what pleasure, what joy,

you enter harbors you’re seeing for the first time;

may you stop at Phoenician trading stations

to buy fine things,

mother of pearl and coral, amber and ebony,

sensual perfume of every kind—

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to learn and go on learning from their scholars.
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Keep Ithaka always in your mind.

Arriving there is what you’re destined for.

But don’t hurry the journey at all.

Better if it lasts for years,

so you’re old by the time you reach the island,

wealthy with all you’ve gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you wouldn’t have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.

Wise as you will have become, so full of experience,

you’ll have understood by then what these Ithakas mean.
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Abstract
Bacteria and their viruses, bacteriophages (or phages), are arguably the most representative

biological organisms on planet Earth. Apart from being amongst the most ancient entities, they
are unparalleled in sheer numbers, biomass, and diversity. Ubiquitous in nature, their interactions
profoundly affect their environments and, consequently, humans. This thesis offers a study into
the ecosystems of this host-parasite pair, focusing on population dynamics.

Laboratory studies of phage-bacteria dynamics predominantly operate under optimal condi-
tions. However, in nature, phages and bacteria often face suboptimal conditions, ranging from
limited resources to intense pressure from competition or predation. This thesis delves into phage-
bacteria ecosystems under such challenging conditions, employing a spectrum of scientific method-
ologies. These methodologies range from data-driven theoretical analysis and collaborative work
with experimentalists to purely experimental research.

Chapter 1 introduces the foundational terms and ideas necessary for a reader to navigate this
work. Chapter 2 dives deep into the dynamics between phages and bacteria in the ocean’s up-
per layers. Through a theoretical modeling approach, it elucidates mechanisms that can sustain
diversity under intense competition for resources. Additionally, this chapter deciphers the un-
derlying dynamics of infection patterns observed in previous field studies. Our research reveals
patterns of network self-organization that promote specialization, thereby reducing competition
between strains. Notably, even slight deviations from perfect specialization can profoundly benefit
slower-growing bacteria. These bacteria, although growing at a reduced rate, can outcompete and
potentially eliminate even the fastest-growing strains, through shared phage interactions. Our
results challenge the notion of using growth rate as a definitive metric for fitness, hinting instead
at an evolutionary process that proceeds in waves.

Chapter 3 delves into the phenomenon of bacterial dormancy, particularly under suboptimal
conditions for growth and pressure from viruses. This work combines both experimental and
theoretical methods to study sporulation in Bacillus Subtilis, which serves as a model for dormancy
in Gram-positive bacteria. Apart from the widely accepted starvation-trigger for sporulation, this
chapter reveals that the presence of viruses can also induce sporulation. Our findings suggest
that susceptible cells can turn into dormant as a response to a molecular signal released upon cell
lysis. In spatial environments, this leads to a collective defense in Bacillus Subtilis communities,
which helps contain the spread of the viruses. This work is the first to document virally induced
sporulation in Bacillus Subtilis and its significant role in offering protection at the population level
by restricting the spread of viral infections.

Chapter 4 is devoted to a purely experimental study of how a host’s metabolic state affects
phage infection. Initial results resonate with previous findings, suggesting that phages might be
selective, choosing not to infect Escherichia coli cells in a low metabolic state—an often charac-
teristic state of cells facing challenging environmental conditions in nature. The primary goal of

7



this research is to assess the prevalence of this behavior across various phage-bacteria systems.
In summary, this thesis underscores that suboptimal conditions commonly found in natural

systems can profoundly influence phage-bacteria dynamics.
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Dansk Resumé
Bakterier og deres vira, bakteriofager (eller fager i kort form), er sandsynligvis de mest

repræsentative biologiske organismer på planeten Jorden. Som nogle af de ældste enheder dominerer
de i ren antal, biomasse og diversitet. Allestedsnærværende i naturen påvirker deres interaktioner
dybt deres miljøer og, som en konsekvens, mennesker. Denne afhandling tilbyder en undersøgelse
af økosystemerne af dette vært-parasitpar med fokus på befolkningsdynamik.

Laboratoriestudier af fage-bakteriedynamik opererer overvejende under optimale forhold. I
naturen står fager og bakterier dog ofte over for suboptimale forhold, der spænder fra begrænsede
ressourcer til intens konkurrence- eller rovdyrstryk. Denne afhandling går dybt ind i fage-bakterie
økosystemer under sådanne udfordrende forhold og bruger et spektrum af videnskabelige metoder.
Disse metoder spænder fra datadrevet teoretisk analyse og samarbejde med eksperimentatorer til
rent eksperimentelle bestræbelser.

Kapitel 1 introducerer de grundlæggende termer og ideer, der er nødvendige for en læser for at
navigere i dette arbejde. Kapitel 2 undersøger dybt dynamikken mellem fager og bakterier i havets
øverste lag. Gennem en teoretisk modelleringsmetode belyser den mekanismer, der kan bevare di-
versitet under intens konkurrence om ressourcer. Desuden afkoder dette kapitel den underliggende
dynamik i infektionsmønstre observeret i tidligere feltstudier. Vores forskning afslører netværks
selvorganisationsmønstre, der fremmer specialisering, og dermed reducerer konkurrence mellem
stammer. Bemærkelsesværdigt er, at selv små afvigelser fra perfekt specialisering kan drage stor
fordel af langsommere voksende bakterier. Disse bakterier, selvom de vokser med en reduceret
hastighed, kan udkonkurrere og potentielt eliminere selv de hurtigst voksende stammer gennem
delte fage interaktioner. Vores resultater udfordrer forestillingen om at bruge væksthastighed som
en afgørende målestok for fitness, antyder i stedet en evolutionær proces, der skrider frem i bølger.

Kapitel 3 går dybt ind i fænomenet bakteriedvalitet, især under suboptimale vækstforhold
og tryk fra vira. Dette arbejde kombinerer både eksperimentelle og teoretiske metoder for at
studere sporulering i Bacillus Subtilis, hvilket tjener som en model for dvale i gram-positive bak-
terier. Bortset fra den almindeligt accepterede sultudløser for sporulering afslører dette kapitel, at
tilstedeværelsen af vira også kan inducere sporulering. Vores resultater tyder på, at modtagelige
celler kan blive dvale som et svar på et molekylært signal frigivet ved cellelysis. I rumlige miljøer
fører dette til et kollektivt forsvar i Bacillus Subtilis samfund, hvilket hjælper med at indeholde
spredningen af vira. Dette arbejde er det første til at dokumentere viralt induceret sporulering
i Bacillus Subtilis og dens betydelige rolle i at tilbyde beskyttelse på befolkningsniveau ved at
begrænse spredningen af virale infektioner.

Kapitel 4 er viet til et rent eksperimentelt studie af, hvordan en værts metaboliske tilstand
påvirker fageinfektion. Indledende resultater genlyder med tidligere fund, hvilket antyder, at fager
kan være selektive og vælge ikke at inficere Escherichia coli-celler i en lav metabolisk tilstand
- en ofte karakteristisk tilstand af celler, der står over for udfordrende miljøforhold i naturen.
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Hovedmålet med denne forskning er at vurdere udbredelsen af denne adfærd på tværs af forskellige
fage-bakteriesystemer.

Sammenfattende understreger denne afhandling, at suboptimale forhold, som ofte findes i
naturlige systemer, kan have en dybtgående indvirkning på fage-bakteriedynamikker.
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1 Introduction

1.1 Bacteria and bacteriophages

This thesis has two ”heroes”: bacteria and bacteriophages. Bacteria are prokaryotic unicel-
lular organisms, which means they lack a defined nucleus and other membrane-bound organelles
that are typically found in eukaryotic cells (e.g. mitochondria and chloroplasts) [1]. Bacteria
comprise one of the two main subdomains of Prokaryotes (the other being Archaea) [2]. Central
to their anatomy (see Figure 1) is the cytoplasmic membrane, a phospholipid barrier that encloses
the cell’s contents and regulates the passage of substances [1, 3]. Within this membrane lies the
cytoplasm, a mixture of macromolecules (like proteins, lipids, nucleic acids, and polysaccharides),
small organic molecules (primarily the building blocks for macromolecules), ribosomes, which are
responsible for protein synthesis, and the bacterial genetic material [3]. The genetic material,
typically a circular chromosome, is situated in an irregularly shaped area of aggregated DNA,
RNA and proteins known as the nucleoid [4].

Figure 1: Schematic representation of bacterial anatomy. The illustration showcases the basic morphological features of bacteria.
It should be noted that not all bacteria possess all of these features. (Adapted from the Wikipedia page on ”bacteria” and credited to
Ali Zifan).

Apart from these features that are common to all bacteria, a cell can also contain plasmids,
small circular DNA fragments separate from the main chromosome, often carrying genes that con-
fer unique abilities, like antibiotic resistance [5]. Furthermore, many bacteria feature structures
like flagella for movement, and pili or fimbriae for attachment and interaction with their environ-
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ment [6, 7, 8, 9]. Most bacterial cells possess a rigid cell wall which provides structural strength
and prevents the cell from bursting due to osmotic pressure. This cell wall, primarily made of
peptidoglycan, is external to the cytoplasmic membrane and is more robust than the membrane
itself [1].

The structure and composition of the cell wall, particularly the amount of peptidoglycan, can
differentiate bacteria into two primary categories based on the Gram stain method (see Figure 2):
Gram-positive and Gram-negative [10]. Gram-positive bacteria have a cell wall that is predom-
inantly made up of peptidoglycan, sometimes constituting as much as 90% of the wall [1]. This
thick layer of peptidoglycan (or even multiple layers of peptidoglycan stacked upon one another)
provides the cell with structural strength and rigidity [11, 1]. Conversely, Gram-negative bacte-
ria possess a more intricate cell wall [1]. While they do contain peptidoglycan, it forms only a
thin layer [12]. The majority of their cell wall is composed of an outer membrane, known as the
lipopolysaccharide layer (LPS) [13, 14]. In the Gram stain method, cells are initially stained with
crystal violet, then decolorized and counterstained with a pink stain [1, 15]. Gram-positive cells,
with their thick peptidoglycan layer, retain the crystal violet dye and appear purple (see Figure
2). In contrast, gram-negative cells, due to their thinner peptidoglycan layer and outer membrane,
do not retain the dye and instead take up the counterstain, resulting in a pink appearance [1, 15].

Figure 2: The Gram stain method. At the center of the figure, an example of the results of this fundamental microbiological method
is displayed. The method classifies bacteria into two categories based on the properties of their cell walls, resulting in distinctive colors:
(a) Gram-positive and (b) Gram-negative. (Adapted from [1]).

A significant characteristic of certain Gram-positive bacteria is their ability to form endospores
[16, 17]. These specialized, dormant structures offer remarkable resistance to adverse environmen-
tal conditions, ensuring bacterial survival during challenging periods [18]. When conditions become
favorable again, endospores can germinate and return to their active, vegetative state [16]. This
characteristic is exemplified in Bacillus subtilis, a model organism for Gram-positive bacteria [19],
and the subject of Chapter 3, which delves into its sporulation process. In contrast, the model
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organism for Gram-negative bacteria is Escherichia Coli [1], and is the central topic of Chapter 4.
Bacterial morphological diversity is not limited to differences in cell wall structure and Gram-

type classification. Bacteria exhibit great diversity in their size ranging from 0.15–0.2 µm in
diameter to as much as 700 µm long [1]. They also come in a great variety of shapes [20, 21]. Bac-
teria can be cocci (spherical), bacilli (rod-shaped), or vibrio, which are slightly curved, resembling
a comma (see Figure 3). Some bacteria adopt a spiral shape, known as spirilla, while others take
on a more tightly coiled form called spirochaetes. There are even rare instances of star-shaped
bacteria. Furthermore, the way bacteria arrange themselves post-division can vary. Cocci might
form elongated chains, as seen in Streptococcus, or assemble in cube-like structures like Sarcina.
Others, like Staphylococcus, group in grape-like clusters. Bacterial diversity is also reflected in
their growth rate: the rate at which a population increases in number over time, primarily driven
by their mode of reproduction, binary fission [3]. In this asexual process, a single bacterial cell
duplicates its genetic material and splits into two identical daughter cells [3]. However, growth
rates can vary widely among bacterial species, influenced by environmental factors and specific
metabolic characteristics. Bacteria also display a vast range of metabolic capabilities [1]. For
example, some bacteria are aerobic, relying on oxygen for their metabolic processes. In contrast,
anaerobic bacteria thrive in environments devoid of oxygen. Facultative anaerobes are particu-
larly versatile, capable of living in both oxygen-rich and oxygen-poor conditions, adjusting their
metabolic pathways accordingly.

Figure 3: Morphological diversity of bacteria. Bacteria are among the most diverse living organisms. This figure depicts
photomicrographs and drawings of the most characteristic types of bacteria. (Adapted from [1]).

Bacterial diversity, spanning their morphological, metabolic, and reproductive characteris-
tics, is a testament to their adaptive capacities and the vast range of environments they inhabit
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[22, 23, 24, 25]. This diversity is not a mere coincidence but a reflection of their genetic adaptability
tailored to specific ecological niches. The field of microbial ecology, which studies microorganisms
in their natural habitats, underscores the profound influence of the environment in shaping mi-
crobial characteristics [1].

Microorganisms, predominantly bacteria, are ubiquitous, populating every conceivable envi-
ronment on Earth [22, 23, 24, 25]. From the deepest ocean trenches to the highest mountain peaks,
from the human gut to the polar ice caps, bacteria have cemented their ubiquitous presence. Their
sheer numbers are staggering, with an estimated 1030 microbial cells on Earth, dwarfing even the
estimated 1022 stars in the universe [26, 1]. Not only do they constitute a significant fraction
of the Earth’s biomass, but they also hold vast reservoirs of essential nutrients, with their com-
bined nitrogen and phosphorus content surpassing that of all plant and animal cells combined [1].
Such vast numbers and genetic diversity have allowed them to colonize even the most extreme
environments, with extremophiles defining the physiochemical boundaries of life [22, 23, 24, 25].

This vast diversity necessitates significant time for its development. Bacteria, being among the
most ancient life forms on Earth (as shown in Figure 4A), have had the luxury of this extensive
timescale [27]. Originating approximately 3.5 billion years ago, while most plant and animal
phyla have emerged in the last 600 million years, bacteria have had billions of years to evolve,
experiment, and diversify. This prolonged evolutionary journey has enabled bacteria to not only
adapt to a myriad of environments but also to profoundly influence and shape them [1]. Their
pivotal role in global processes, from nutrient cycling to shaping climate patterns, highlights their
enduring ecological importance [28, 29, 30, 31].

Given their omnipresence, bacteria naturally exert a profound influence on human environ-
ments and are integral to many human activities [1]. In agriculture, bacteria assist plants through
symbiotic relationships, facilitating processes like nitrogen fixation, thereby reducing the reliance
on synthetic fertilizers [1]. Within the rumens of animals such as cattle and sheep, microbial
communities break down cellulose, allowing these animals to extract nutrients from otherwise in-
digestible plant matter [1]. The food industry heavily depends on bacterial fermentation, which
enhances both the shelf life and flavor of products, including dairy, baked goods, and bever-
ages [32]. Beyond food production, bacteria play central roles in pharmaceuticals and biofuel
production[1, 32]. Additionally, they have a pivotal role in environmental management, notably
in bioremediation, where they help cleanse environments of pollutants [33].

While the majority of bacteria are beneficial [34], some can pose threats to human health [35].
Diseases caused by pathogenic bacteria, such as tuberculosis or cholera, have historically been
significant health concerns and major factors of human mortality [36] (see Figure 4B). It was,
in fact, the devastating impacts of these diseases that spurred early scientific investigations into
bacteria, leading to the discovery of their ubiquitous presence and diverse roles [1].

To combat pathogenic bacteria, the primary weapon in our arsenal has been antibiotics [32].
These antimicrobial agents, naturally produced by certain bacteria and fungi, target essential
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Figure 4: The history of bacteria. A Bacteria are one of the earliest life forms on Earth. The illustration in the left subpanel
displays a timeline of bacterial presence on Earth compared to other life forms. The right subpanel depicts the estimated timepoints
of divergence between the three domains of life on a billion-year scale. The divergence of bacteria from the Last Universal Common
Ancestor (LUCA) is estimated to have happened around 3.7-3.8 billion years ago [1]. B Bacteria profoundly impact their environments,
including humans. This diagram highlights the primary causes of death per 100,000 people in the US at the beginning of the 20th
and 21st centuries. As illustrated, infectious diseases caused by pathogens were the primary cause of death in humans at the start
of the 20th century. Today, thanks to advances in microbiology and medicine, this trend has reversed, significantly improving human
health and longevity. (Both figures are adapted from [1]. The data in panel B come from the United States National Center for Health
Statistics and the Centers for Disease Control and Prevention).

molecular processes in bacterial cells [3]. For example, antibiotics like penicillin and its derivatives
specifically inhibit the synthesis of peptidoglycan, a crucial component of the bacterial cell wall
[37, 1]. Due to this specificity, some antibiotics are effective only against certain bacteria; for in-
stance, vancomycin is potent against Gram-positive bacteria but leaves Gram-negative pathogens
unaffected [1]. Beyond the cell wall, other antibiotics target vital processes such as DNA repli-
cation, RNA synthesis, and protein translation [1]. The overarching strategy is to harness the
weapons of one microbe against another. Historically, even before the advent of antibiotics, there
was an approach that employed bacterial viruses, known as bacteriophages, to combat bacterial
infections [38, 39, 40, 41].

Bacteriophages (meaning ”bacteria eaters” in Greek), or simply phages, are viruses that
specifically target and infect bacteria [39, 40, 41]. Viruses, including bacteriophages, are not tra-
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ditionally considered living organisms because of their obligatory parasitic nature, which requires
a host cell for their reproduction [42]. Given their dependence on bacteria, phages can be found in
virtually every environment where bacteria exist from aquatic environments, soils and the human
body, to geothermal hot springs and the acidic environments of sulfuric lakes [1].

Figure 5: Bacteriophage anatomy and morphological diversity. Transmission electron micrographs of bacteriophages A T4, B
T2, C P22, and D fd. Panel A displays the basic morphological features of a phage. Nevertheless, as panels B-D show, bacteriophages,
being the most diverse organisms on Earth, do not necessarily share all of these features. (The electron micrograph of panel A is adapted
from [1] and credited to M. Wurtz. The remaining electron micrographs are adapted from Wikipedia pages for ”bacteriophages” and
”filamentous bacteriophages”, with credits to Sherwood Casjens and Elaine Lenk (panels B and C), and to Marvin and Hoffmann (panel
D).)

Their ubiquity is also reflected in their staggering sheer numbers [43]. Bacteriophages are
estimated to outnumber all other organisms combined, including bacteria. In many environments,
phages can be found in quantities up to ten times greater than bacteria [43]. Their numbers
combined with their presence across diverse habitats, contribute to their unparalleled genetic
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diversity, most of which remains elusive [1]. Particularly, viral metagenomic studies, which analyze
the sum total of all viral genes in a given environment, reveal that approximately 75% of the gene
sequences identified have no known counterparts in existing viral or cellular gene databases. In
contrast, bacterial metagenomes typically contain only about 10% of such unknown genes [1].

One of the primary indicators of this diversity is the variation in their sizes [40]. While a
typical phage might range between 50 to 200 nanometers, there are instances of phages as small
as 20 nanometers and jumbo phages that exceed 500 nanometers [44]. This size variation often
correlates with the complexity of their genetic content, with larger phages generally possessing
more extensive genomes. Morphologically, phages exhibit a wide array of structures [42, 40].
The tailed bacteriophages, characterized by their icosahedral head capsids, and their tails, are
perhaps the most recognized due to their prevalence and association with well-studied bacterial
species such as Escherichia coli [42, 40] (see Figure 5A). The head capsids engulf their genome
(DNA or RNA) and the tails (whenever present) facilitate the attachment and injection of genetic
material in the host. However, the phage world encompasses a broader spectrum of shapes, from
filamentous forms to those that are more spherical or amorphous [42, 40] (see Figure 5B-D).
Each morphological type, determined by evolutionary pressures, often signifies a specific mode
of interaction with its bacterial host. The specificity of phages in terms of host range is another
dimension of their diversity. Many phages are highly specific, targeting a single bacterial strain
with remarkable precision [42, 40]. This specificity arises from the interactions between the phage
and specific receptors on the bacterial surface (see Figure 6), which can range from proteins and
carbohydrates to complex structures like flagella or pili [1]. However, some phages exhibit a
broader host range, capable of infecting multiple bacterial strains or even different species [45].
This variability in host specificity not only impacts bacterial population dynamics but also plays
a role in bacterial evolution, especially through processes like horizontal gene transfer [46, 47, 48].

Post-infection, bacteriophages exhibit complex reproductive strategies which are pivotal to
the understanding of their interactions with bacterial hosts [42, 40, 46, 49]. Upon successful
attachment and injection of their genetic material into a bacterial cell, phages commit to one of
two primary life cycles: lytic or lysogenic [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].

In the lytic cycle (see Figure 7), the phage hijacks the host’s cellular machinery to replicate
its genetic material and synthesize phage-specific proteins. This process results in the assembly of
new phage particles within the host cell. Eventually, the bacterial cell undergoes lysis, a process
facilitated by phage-produced lytic enzymes that break down the bacterial cell wall, in a burst
that releases a multitude of new phages, often referred to as progeny, that are ready to infect other
susceptible bacterial cells. This cycle is typically rapid and results in the destruction of the host
bacterium. In the lysogenic cycle (see Figure 7), rather than immediately replicating and producing
progeny, the phage integrates its genetic material into the host’s genome, becoming what is known
as a prophage. In this state, the phage remains inactive, replicating in tandem with the bacterial
chromosome. During lysogeny, the host, now known as a lysogen, can acquire new properties from
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Figure 6: Genetic material injection during phage infection. Bacteriophages infect their bacterial host cells by binding to a
surface receptor and then injecting their genetic material into the host. The details of the receptor and the injection process are highly
specific to each host-parasite pair. This figure displays a top image and a bottom illustration depicting the genetic material injection
process for the bacteriophage T4. (Adapted from [1]).

Figure 7: The lytic and lysogenic life cycles of bacteriophages. This illustration depicts the key steps of both processes. It’s
important to note that not all phages can undergo both life cycles. (Adapted from [63]).

22



the prophage which might even be beneficial. However, under specific environmental triggers (or
sometimes even spontaneously), the prophage can be prompted to exit the lysogenic state and
transition into the lytic cycle, leading to active phage replication and eventual lysis of the host
cell. Certain bacteriophages, such as the T-even phages or the SPO1 phage, are exclusively lytic
[1]. These phages, also known as virulent phages, are the central subjects of chapters 2 and 3.
In contrast, lysogenic phages, also termed temperate phages, have the capability to opt between
a lytic and a lysogenic life cycle[50]. While this decision-making process is stochastic, it is not
entirely random [56, 62]. Numerous factors, including environmental conditions, the presence of
co-infecting phages, the metabolic state of the host, and even cell volume, play a role in influencing
this choice [61]. For instance, under optimal conditions, the λ phage, which is the main subject of
chapter 4, predominantly opts for the lytic pathway, with over 90% of infections resulting in lysis
[49]. However, this propensity shifts dramatically under less favorable conditions [49]. Nutrient
scarcity or high multiplicities of infection increase the probability of lysogeny, highlighting the
phage’s adaptability in response to environmental signals [49].

Bacteria are not merely passive targets for phage infections. They have evolved a plethora
of strategies to counteract phage invasions [49, 64, 65]. Some bacteria acquire resistance through
mutations, rendering them devoid of the surface receptors necessary for phage attachment. Others
have developed immunity mechanisms that prevent phage development once they’ve entered the
cell. This includes the Restriction Modification systems, which degrade foreign DNA, and the
CRISPR-Cas system, offering adaptive immunity against specific phage sequences [49, 64, 65].
Additionally, Toxin-antitoxin systems can induce cell death upon phage infection, and abortive
infection mechanisms can halt phage replication [49, 64, 65]. They have developed their own
countermeasures to bypass or neutralize these bacterial defenses, ensuring their propagation. This
dynamic interplay has given rise to a relentless microbiological “arms race” centered on cellular
survival and viral proliferation [49].

This dynamic relationship between bacteria and bacteriophages is manifested across a wide
range of scales. In this thesis, we adopt a coarse-grained approach, focusing on phage-bacteria
ecology at the level of population dynamics.

1.2 Phage-bacteria ecology and population dynamics

This thesis delves into the intricate world of phage-bacteria ecosystems on the scale of in-
teractions of their populations [66, 46]. A foundational framework often employed to study such
systems is the Lotka-Volterra system of equations [67, 68]. Originally conceptualized to de-
scribe predator-prey interactions in ecological systems, Lotka-Volterra equations, are pivotal for
the field of microbial ecology [66, 46, 1]. At its core, ecology is the study of the relationships
between living organisms and their environments [69, 46, 70]. To study phage-bacteria ecology
within a population dynamics framework, we need to define on a population level, a few vari-
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ables that are related to the characteristics of an organism’s life cycle and influence its reproductive
success. These are known as life history traits [46] and include:

• Growth rate: The rate at which a population increases in size.

• Decay rate: The rate at which a population decreases due to natural causes.

• Infection rate: The frequency at which phages successfully infect bacterial cells.

• Latent period: The time interval between the infection of a bacterium by a phage and the
release of new phage particles.

• Burst size: The number of new phage particles released from a bacterium post-infection.

Each of these traits plays a crucial role in shaping the dynamics of the phage-bacteria sys-
tem and will be mentioned recurrently throughout this work. The following system of equations
constitutes a simple example of Lotka-Volterra equations utilizing life history traits to describe
phage-bacteria population dynamics [49].

dB

dt
= kB︸︷︷︸

bacterial growth

− αB︸︷︷︸
bacterial decay

− ηPB︸ ︷︷ ︸
infection rate

dP

dt
= βηPB︸ ︷︷ ︸

viral lysis

− δP︸︷︷︸
viral decay

where B and P are the population densities of bacteria and phages respectively. The bacterial
population grows with growth rate k, while there is also some natural decay at rate α. In the
absence of hosts, the viral population decays at a rate δ. However, when both bacteria and phages
are present, phages infect bacteria at an infection rate η, and utilize bacterial resources to replicate
inside the host. For the sake of simplicity in this example, we neglect the latency period during
which phages multiply inside the host (see chapter 3 for inclusion of latency time). Eventually,
the infected bacteria burst, releasing new phages in a process characterized by a burst size β. This
results in an increase in phage numbers and a corresponding decrease in bacterial populations.
This example lays the foundational framework for the approach we will adopt in the subsequent
chapters.

1.3 Chapter overview

The overall theme of the thesis is population dynamics of phage-bacteria ecosystems under chal-
lenging conditions. Presented below is a concise overview of the primary content and focus of each
chapter.
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Chapter 1: The current chapter is an introduction to the fundamental terms and ideas needed
for a reader to follow this thesis.
Chapter 2: A study on the eco-evolutionary dynamics of phage-bacteria in the upper layers of
the ocean. This theoretical study delves into the dynamics that allow for the steady coexistence of
phage-bacteria ecosystems in environments characterized by high competition for limited resources.
It also addresses the infection patterns observed in previous studies providing new insights about
the underlying mechanisms and network structure. Our research shows that in order to reach
stability, the infection network self-organizes to increase specialization and decrease competition.
In a such a system, slow growing strains can outcompete and eliminate faster growing strains by
sharing a phage strain with it. This work was conducted under the supervision of Prof. Kim
Sneppen and co-supervised by Assoc. Prof. Namiko Mitarai, leading to two publications.
Chapter 3: This chapter is devoted to the study of dormancy, focusing specifically on the interplay
between sporulation in Bacillus Subtilis and virus-host interactions, and the consequent effects on
the spatial dynamics of phage-bacteria communities. This work was initiated during my visit to the
Weitz lab at Georgia Tech, in Atlanta, Georgia, USA, and spanned the entirety of my program’s
final year. It incorporates both experimental and theoretical findings, demonstrating for the first
time that sporulation in Bacillus Subtilis can be virus-induced, offering collective protection to
cell populations. Experiments were conducted by Dr. Andreea Măgălie as part of her thesis work
in collaboration with Dr. Daniel Schwartz and under the supervision of Prof. Jay Lennon at
Indiana University, Bloomington, Indiana, USA. I was responsible for spatial model development,
parameterization, and analysis in collaboration with Dr. Măgălie and under the supervision of Dr.
Jacopo Marchi and Prof. Joshua Weitz (currently faculty at the University of Maryland, College
Park, Maryland, USA). The research is now essentially complete and is awaiting submission after
minor editorial work.
Chapter 4: In this chapter, we experimentally explore the effect of the host’s metabolic state on
phage infections. Our results replicate previous findings, showing that the λ phage can opt not
to infect Escherichia coli hosts that are in a low metabolic state. Our study aims to explore the
generality of this viral feature. This research is conducted under the supervision of Prof. Kim
Sneppen and Assoc. Prof. Namiko Mitarai and with the help of Prof. Stanley Brown. The work
is currently in progress.

25



2 Phage-bacteria dynamics in the Ocean

2.1 Introduction

Until recently, unpolluted seawater was considered an environment with an unimportant viral
presence. Although electron microscopy was invented in the 1930s, it took over five decades
before anyone undertook a comprehensive survey of uncultured natural seawater for microbial life.
This perception shifted dramatically in 1989 with a study by Bergh et al. [71]. Their research
demonstrated that the density of viruses in the upper layers of the sea was between 103 and 107

times higher than previously estimated. But how do viruses manage to sustain populations of that
size? Which are their hosts, and what is the diversity of such an ecosystem? Moreover and even
broadly, how and to what extent does such a ubiquitous and abundant ecosystem interact with
other ecosystems, marine or not, that were previously considered independent? The subsequent
efforts to answer such questions established this discovery as a seminal moment, with implications
far beyond the study of microbial ecosystems alone.

Today we know that the number of microbial entities in the oceans is astronomical. Bacte-
riophages are the most abundant of them all, with their number estimated to be on the order
of 1031, corresponding to approximately a trillion phages for every grain of sand in the world
[43, 41]. Bacteria follow in numbers with estimations suggesting that the world’s oceans contain
1030 individual bacteria cells [26].

Apart from dominating in sheer numbers, this host-parasite pair plays a central role in oceanic
ecosystems. Bacteria are one of the most dominant contributors to marine biomass [72, 73]. They
play a critical part in global biogeochemical cycle and exert influence on other ecosystems, thereby
molding the overall microbial genomic diversity [74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. Furthermore,
they are linked to diseases affecting a wide range of species – from coral reefs and marine plants
to animals and humans – impacting both individual organisms and entire populations [1, 84].

Remarkably, many of these bacteria inhabit environments characterized by scarce resources
and intense predation from bacteriophages. It is believed that bacteriophage predation accounts
for the decimation of half the oceanic bacterial population daily [85, 86, 1]. Yet, in the face of
such adversity, this host-parasite tandem continues to coexist within stable and diverse ecosystems.
This chapter aims to delve into the dynamics that underpin such resilient ecosystems.

2.2 Ecosystems of phages and bacteria in the upper layers of the
Oceans

Unlike deeper ocean zones, the epipelagic zone, which spans from the sea’s surface to a depth of
200 meters, generally lacks natural barriers that would insulate local ecosystems from external
influences [87, 88]. It is, therefore, an open ecological environment for microbes, meaning that
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new strains of phages or bacteria can enter local patches of the sea that were not present before.
Furthermore, the amount of available resources for bacteria is relatively limited. Consequently,
one could logically deduce that this would not be a favorable environment for the rich and diverse
phage-bacteria ecosystems. After all, the bacteria face a dual pressure: they’re exposed to preda-
tion due to the absence of hideouts and must compete with other bacteria for limited resources. In
striking contrast to that, there is an abundance of viruses and bacteria that coexist in stable and
diverse ecosystems over many such local patches across the oceans [89, 90, 71, 91, 92, 93, 94, 45].
The question therefore is; what is the structure of the phage-bacteria interaction network that
shapes and maintains the diversity in such ecosystems?

Figure 8: The epipelagic zone. This
chapter focuses on phage-bacteria ecosys-
tems in local patches at the epipelagic
(photic) ocean zone, which spans the upper
200m of the ocean.

To answer this question, Moebus and Nattkemper [95] em-
barked on an expedition to the Atlantic Ocean and collected
water samples from various stations in many different locations.
Based on their field and laboratory investigations, they recon-
structed the largest to-date network of phage-bacteria interac-
tions for marine ecosystems. More recently, Kauffman et al. [96]
revisited this study, employing state-of-the-art genomics tech-
niques to assess a network of an equivalent magnitude of bacte-
rial strains, phage strains, and interactions.

Their analyses revealed that the overarching structure of the
phage-bacteria interaction network is nested-modular, charac-
terized by a preponderance of one-to-one interactions between
parasite-host pairs [97, 98] (see main panel in Figure 9). These
modules suggest that there is a geographic element behind this
specificity. However, the effect is not strong enough to exclu-
sively suggest local eco-evolutionary adaptations since there are
phage strains that can infect hosts that are thousand of kilome-
ters away [95, 49, 46].

Examining individual local stations, as in the study by
Haerter et al. [99], reveals a balance between the number of
phage and bacterial strains (see subpanel in Figure 9). How-
ever, the total strain count can differ considerably between sta-
tions. To simulate these local ecosystems, Haerter and colleagues
treated them as open systems where bacteria fully share re-
sources. It is a well-established theoretical concept that two
species that fully share resources cannot coexist, as they would
occupy the same biological niche. This idea is encapsulated in
the ”competitive exclusion” principle. Though the principle was finalized and named by Hardin
in 1960, elements of it can be traced back to the works of Darwin [100, 101, 68, 102, 103, 104].
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Figure 9: Data on phage-bacteria ecosystems at the epipelagic zone of the Atlantic Ocean. A) By repeating the study
of Moebus and Nattkemper [95] and the analysis of Flores et al. [97], Kauffman et al. validated that the infection network of phages
and bacteria across all stations has an overall nested-modular structure with abundant one-to-one interactions [96]. Here, every row
corresponds to a specific bacterial strain, and every column to a phage strain. The order of the rows has been reshuffled similarly to
Flores et al. to unravel the nested-modular pattern [97]. B) As demonstrated by Haerter et al. [99], an analysis of the data at each
local station reveals balanced diversity between phages and bacteria. This panel comes from the work of Haerter et al. [99] on the
data of Moebus and Nattkemper [95]. Each dot corresponds to data on the number of phage and bacteria strains from a different local
station, while the size of the dot represents the observed frequency of each combination.

According to the principle, the system should not be able to sustain more than one bacterial
strain. The fastest-growing strain would simply out-compete the other. However, this balance
shifts with the introduction of phages [105, 106]. If a phage strain enters the system by attack-
ing the slower-growing strain, then it would just accelerate its demise. But, by suppressing the
population of the faster-growing host strain, the phage can alleviate competition for the slower-
growing strain, freeing up resources and enabling all three strains to coexist [49]. The concept
can be extended by sequentially adding slower and slower-growing bacteria paired up with bac-
teriophages that suppress their number to allow the new slower-growing bacterial strain to enter.
This predator-mediated stable coexistence is known as the ”Kill the Winner” hypothesis [92, 107]
and has been one of the main mechanisms that show how predators can foster stable and diverse
ecosystems.

Similarly to bacteria, phages are also subject to the competitive exclusion principle when they
fully share their hosts. In such a predator-prey system, Haerter et al. showed that the recorded
balanced diversity stems from these two levels of competitive exclusion at play [99]. By generalizing
the principle, they showed that prey strains can outnumber predator strains at most by as much
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as the number of shared resources. Therefore, a simplifying assumption of one common resource
leads to a system that can be stable only if the number of prey is either equal to or exceeds
the number of predators by one. As diversity builds up sequentially with new bacterial strains
needed to support the entrance of new phage strains, the parameter space that allows for stable
coexistence of all the species becomes progressively narrower, setting in effect an upper limit to
the total amount of species that one can have in an ecosystem like that.

2.3 From Kill the Winner to Eliminate the Winner

2.3.1 Model description

In the study of Haerter et al., the infection networks are either fully nested (meaning that every
bacterium is resistant to any phage that preexisted its entrance in the system and susceptible to
all the rest) or fully diagonal (absolute specialization with each phage infecting only one bacterial
strain) by design. These constitute theoretical limit cases not typically encountered in natural
ecosystems. There are several other possibilities for network structures (like modular or random
interaction networks), and every such structure typically manifests itself as a distorted pattern
under the random noise of the environment [45].

In our study [108], we extend the work of Haerter et al. by generalizing the constraints on
network structures. Our models allow for interactions to be either completely random between
strains (designated as Model R in Figure 10) or nested but with some randomness in the realization
of each interaction (Model N in Figure 10). This approach allows us to test the widely-reported
nested structure of such ecosystems in existing literature [95, 96, 99, 97, 109, 110, 45]. We simulate
a well-mixed ecosystem in which new phage and bacterial strains are introduced stochastically and
equiprobably. Our simulations start with a single bacterial strain, and new strains are introduced
sequentially in an event-based algorithm, where every time point corresponds to a new species
invasion attempt in a system at steady state. Therefore, after the addition of the new strain, we
let the system evolve dynamically until it reaches equilibrium. If the invasion attempt is successful,
the diversity (measured as the number of species in the system) increases by one. If not, the system
is rendered unstable, leading to the extinction of one or more species as the ecosystem evolves
toward a new steady state. A new strain is allowed to attempt invasion only after the system has
reached equilibrium, and this cycle is then repeated.

The dynamics of our system are described by the following generalized Lotka-Volterra system
of equations [67, 68, 105, 109, 99] for a set of bacteria and phage strains, with population densities
that are given by Bi and Pk respectively and with implicit resources that are fully shared between
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Figure 10: Schematic depiction of Models R and N. The arrangement of the schematics is based on their chronological introduction
into the system, going from left to right. The arrows indicate a new event. It is worth noting that in Model R, a newly introduced
phage might target a bacterium that was not the most recently added. Phages target any bacteria that is not already under attack
by other phages, although only one bacterial strain can be in this ”free” state. On the contrary, Model N’s assumption of resistance
as a prerequisite for entrance dictates that the most recently introduced bacteria will necessarily be free of phages. For the rest of the
text green circles will symbolize bacterial strains, while red circles will represent phage strains. The resources will be omited since the
bacteria share them fully. (Created with BioRender).

the bacterial strains:

dBi

dt
= kiBi

(
1−

N∑
j=1

pjiBj

)
− αBi − Bi

M∑
k=1

ηkiPk

dPk

dt
= Pk

N∑
m=1

βkηkmBm − δPk

The population density parameters are quantified in units of the environment’s carrying capac-
ity, while parameters relevant to rates are quantified in terms of the maximum possible bacterial
growth rate. These parameters are derived from referenced oceanic studies and include the bac-
terial growth rate of strain i, ki, which is of the order of 2/day [85], the bacterial death rate,
α = 0.1 [85] and the phage decay rate δ = 1 [86]. ηki and βk represent the infection rate of
bacterial strain i by phage strain k and the burst size of the phage strain k, respectively. For our
simulations we assume uniformly distributed ki ∈ [0, 1], ηki ∈ (0, 1) and βk ∈ [1, 50], characteristic
of each strain or, in the case ηki, characteristic of each strain-strain interaction. Finally, bacteria
j and i are assumed to interact only purely competitively in a struggle for a fully shared resource
(pji = pij = 1).

Since the data from local stations correspond presumably to phage-bacteria ecosystems at
equilibrium, we focus on systems at steady-state, similarly to Haerter et al. [99]. This sets a time-
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scale for the dynamics that justifies our latency omission simplification. Therefore, our model
ecosystem evolves under the following algorithm: Every newly introduced strain has a population
density of 106. We evaluate whether the linear equations at a state corresponding to 1

Bi

dBi

dt
= 0

and 1
Pk

dPk

dt
= 0 lead to non-degenerate and feasible (positive) solutions. If so, the system moves

to a new steady-state that includes this strain. If not, we identify the strains that are driven to
extinction before acquiring a new system that can attain a steady state. To do this, we start
from the conditions at the time of invasion (conditions of the previous steady state and the new
strain that attempts to establish itself) and let the system evolve by integrating with the fourth-
order Runge-Kutta method. We consider as extinct every strain with population density below a
minimal threshold (10−20) [108].

We assume that new phage-bacteria interactions can only be established at the introduction of
each strain in the system and, once settled, remain unchanged. In our Model R (see Figure 10), we
relax any presumptions regarding phage-bacteria interaction networks by introducing randomness
in the materialization of interactions upon entrance. More specifically, any invading bacterial
strain can get infected by a preexisting phage strain with probability p ∈ [0, 1]. Similarly, newly
introduced phage strains infect bacterial strains without predators with probability 1 and any other
strain with probability p ∈ [0, 1]. Thus, for p = 0, Model R produces a fully diagonal network
similar to the one from [99], while p = 1 results in a fully connected phage-bacteria network.

Given the repeatedly reported nestedness of marine phage-bacteria networks in literature [95,
92, 97, 45, 109, 99, 110, 96], we constructed a second model, named Model N. This model is
intentionally nested to serve as a comparative framework against Model R (Figure 10). Model N
is built on the assumption that invasions can only happen by bacterial strains that are resistant
to all existing phages. As in Model R, new phage strains infect with probability 1 any phage-
free bacteria and with probability p ∈ [0, 1] every other bacterial strain. However, unlike Model
R, only bacteria fully resistant to all preexisting phages can enter the system. This leads to a
historical organization of the phage-bacteria network, where newer bacterial strains are attacked
only by the most recent phage strains, thus typically having fewer and newer predators than the
older bacterial strains. As a result, the extreme cases p = 0 and p = 1 of Model N correspond to
the network structures studied by [99], namely a diagonal and a fully nested network respectively
[99]. In the following subsection, we will present a summary of our results (for a more detailed
approach, see the manuscripts included in the end of the current chapter [108, 111]) and showcase
that emergent patterns make the two models converge in the parameter region of interest for our
system.

2.3.2 Results and Discussion

Our modeling approach has been guided by the reported balanced diversity at the local stations
[99]. As corroborated by the upper panel of Figure 11 and Figure S1 of the supplementary material
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from [108], our models can replicate the reported diversity both in terms of the total number of
species and in terms of equivalence between the number of phage and bacteria strains.

Figure 11: The evolutionary dynamics of Model R. The central panel shows the growth rates of the system’s bacteria at each
time-point for a short but representative period of 500 time-steps, corresponding to 500 consecutive stable ecosystems and invasion
events. The selection of p = 0.2 for a cross-link probability is just indicative of the parameter region that we expect to be based on the
analysis from [99]. Each horizontal line signifies a distinct bacterial strain, and its position on the y-axis corresponds to its growth rate.
Therefore, the bigger the bacteria line, the longer the survival time of this bacterial strain. The upper panel illustrates the evolution
of the number of all strains (phages and bacteria as a black curve) and of the bacterial strains (red curve) with time, with the bacteria
curve being practically a vertical projection of the central plot. The number of bacterial strains is about half the number of the ”all
strains” curve as in the observations at the local stations [99]. An important feature of the combined information of the central and
upper plot is the extinction events that can reach system-size magnitudes and affect even the fastest-growing strain. The right side
panels are effectively a horizontal projection of the central plot over 10000 time-steps. The inner histogram displays the distribution
of the invasion probability of a bacterial strain as a function of its growth rate pentry(k)∆k. The outer histogram shows the average
number of bacterial strains distribution in the system at each time-step as a function of their growth rate NB(k)∆k. The bin size
for both histograms is ∆k = 0.1. The combined information from the central and right side panels is a manifestation of the inherent
advantage in invasiveness and survival that comes with a high growth rate. (Reprinted from [108]. The qualitative features are similar
to the one of Model R as shown in the supplementary figure S1 of Marantos et al. [108])

Interestingly, even though the net growth rate at steady-state is zero, a significant advantage
emerges from a high basal Malthusian growth rate. This is illustrated in the central as well as
in the right side panels of Figure 11, demonstrating that higher bacterial growth rates increase
the likelihood of successful invasions and prolonged survival within the system. Despite that, and
even more interestingly, we show that we can have extinctions of even system-size magnitudes and
that having a higher growth rate does not guarantee protection (showcased at the central and the
upper panel). The repeated observation that even the fastest-growing strain can get eliminated
by a slower-growing strain prompted a more in-depth examination of the network structure and
dynamics in order to decipher the underlying mechanisms behind these extinction events.

A closer examination of the network dynamics revealed an infection network that self-organizes
toward a ”Kill the Winner” structure. Recognizing this pattern requires focusing not only on the
presence of a phage-bacteria strain link but also on its strength, defined as the magnitude of βη
(see Figure 12 and Figure 13A). This analysis illuminates a pattern of emergent specialization
(see Figure 13A). In order to reach stability, each phage strain needs to predominantly live off

32



Figure 12: Indicative representations of infection
networks for both models. These schematics illus-
trate exemplary ecosystems of phages and bacteria, with
the top part of the figure corresponding to the nested
model (Model N) and the bottom part to the random
model (Model R) when simulated with cross-link proba-
bility p = 0.5. The key difference between the two models
is that Model N requires phages to target only the bac-
teria that existed at the time of their introduction. The
sizes of the circles are proportional to the population den-
sity of the corresponding strains, while the arrow widths
reflect the βη value of their respective interactions. No-
tably, the bacterial historical assembly typically coincides
with their growth rate ordering since older bacteria tend
to have higher k. Conversely, older phages can prey on
newer bacteria in the Model R, leading to a more stochas-
tic structure. Finally, this figure has a feature of high
importance that is common for both models. The spe-
cialization indicated by the strong parallel infection links
that result in one-to-one phage-bacteria pairs regarding
dominant interactions. (Reprinted from Marantos et al.
[108]).

the bacterial strain that is the most vulnerable to their attacks while being the most successful
at invading this strain compared to all other phage strains in the system. This arrangement
fosters system stability and robustness as specialization minimizes competition and the likelihood
of competitive exclusion.

Furthermore, as demonstrated in Figure 13B, C, Model N, and Model R converge as p → 0.
Since the analysis of [99] showed a correspondence of 1.4 bacterial strains for every phage strain,
we expect to be at the region of low p. Therefore, we show that the assumption for bacterial
resistance to all existing phage strains as a prerequisite for bacterial invasion is not only plausible
but not even necessary to be imposed as a condition since it is an emergent property of the
system. Consequently, we have an emergent nested yet close to being diagonal network resulting
from dynamics that lead to higher stability and robustness only when competition is minimized.

Therefore, we have a one-to-one network [45] with a few additional weaker links. These weaker
links, though, prove to be quite crucial for the eco-evolutionary dynamics as they favor the slow-
growers significantly. In Figure 13D, we show that even the slightest chance of an extra weak link
disturbs the traditional one-to-one ”Kill the winner” organization substantially by increasing the
chance of elimination of the faster-growing strain and by distributing the resources more evenly
between bacterial strains with different growth rates.

Ultimately, as illustrated in Figure 14, this weaponization of a common phage-predator by a
slower-growing but resistant bacterial strain against a faster-growing but susceptible strain has
been identified as the main mechanism that drives the extinction of even the fastest growing
strains. These extra links allow for predator sharing through formations of Susceptible bacteria-
Resistant bacteria-Phage triplets that consequently lead to a generalized version of the dynamics
observed in three species systems with two prey and one common predator [106, 49, 90]. As a
consequence, we go from self-organized ”Kill the Winner” dynamics where the presence of phage-
predators allows for coexistence of fully competing bacterial strains through suppression (”killing”)
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Figure 13: Network structure analysis in relation to cross-link probability p. A) Each strain possesses a number of infection
links with other strains, the ”strength” of which is denoted by βη. Here, we show that in ∼ 90% of all stable ecosystems, the
strongest links (highlighted as bold arrows) between phages and bacteria align, leading to pairwise specialized predatory connections
that resemble a ”Kill the Winner” organization. Here, each arrow color corresponds to a different phage. Such a prevalence of the ”Kill
the Winner” structure was observed in both models (with a slight decline from roughly 90% at p ∼ 0.1 to 80% at p ∼ 1). This indicates
that ecosystem stability requires predominantly phages that are optimally adapted to infect the bacterial strains that are the most
susceptible to them. B) This Figure shows the average and maximal diversity over 10000 time-steps as a function of p. The trend is
that diversity increases as cross-links (and therefore niche similarity between phages) decrease. At p = 0, the infection matrix becomes
diagonal, and both models are indistinguishable and similar to the schematics of sub-panel i. As in the ”Kill the Winner” model, the role
of phages is limited to nullifying bacterial competition, thus resulting in peak diversity. As p increases and approaches unity, the two
models progressively diverge, driven by the ”resistance for entry” assumption difference that is manifested significantly given enough
cross-links. The maximum and total diversity are also decreasing as extra links increase the similarity between strains and, therefore,
competition. Model N will be able to sustain more strains since its assembly rules result in fewer and more hierarchically ordered
links than Model R, where competitive exclusion depends much more on the varying strength of the infection link βη. Subpanels ii
and iii show the differences in network structure for the limiting case p = 1 for Model N and Model R, respectively. C) This is an
analysis of Model R, which shows the fraction R/B of bacteria that successfully invade and contribute to the system’s diversity while
being resistant to all preexisting phages. Interestingly, even for relatively large p-values, Model R’s assembly rules become essentially
equivalent to Model N’s. Therefore, the inherent principle of bacterial resistance for successful entry in Model N emerges in Model R as
a prerequisite condition for establishing a large, stable, and robust ecosystem. D) Here, we plot the Elimination Factor E of fast from
slow growers, defined as the least squared fit of the time-averaged number of bacteria in relation to growth rate NB(k) ∝ exp

(
k
E

)
, as

a function of the cross-link probability. The right-hand side sub-panels demonstrate examples (for Model R but similar to Model N) on
the derivation of the Elimination Factor from the scaling relationship between steady-state diversity and the growth rate k. The two
side panels are related to model R. For p = 0, our model behaves like the classic ”Kill the Winner” model. As shown, even the slightest
increase in the chance for a cross-link has a significant effect on the value of the Elimination Factor. A higher E-value translates to
smaller differences between the faster and the slower growers in representation in the system. The same effect can be seen in the chance
of entering the system (see supplementary Fig S2 in Marantos et al. 2022). Therefore, even a few additional links suffice to increase
the risk of elimination for fast growers significantly and distribute the resources among bacteria of different growth rates more equally.
(Adapted from Marantos et al. [108])

of the population size of the most competent competitor to an actual elimination of the winner.
This result sets limits on connections between fitness and reproductive rate maximization since
having a higher growth rate can result in higher fitness only for the time-windows where common
predators are absent or have an unimportant effect. The presence of shared predators intermits the
growth rate maximization evolutionary ”game” by altering it with the introduction of resistance
as a key factor.
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Figure 14: Extinction events. A-F) Events where faster growing yet more susceptible to phage attacks strains (S) are eliminated by
slower growing but more resistant ones (R). Each dot represents such an event that occurs only when a phage infects both S and R. The
x-axis displays the infection rate ratio ηR/ηS , and the y-axis shows the growth rate ratio kR/kS . Each dot signifies an event instigated
by the introduction of a new strain. The color distinction clarifies the invasive strain type: red for phages and green for bacteria. In
Model N (A-B), only phage introductions lead to extinctions, as new bacteria are always resistant to all existing phages, and slower
growers cannot out-compete their faster counterparts without assistance. Conversely, in Model R, fast-growing bacterial extinctions can
be triggered by both phage and bacteria invasions (C-F). G) We have analytically identified the regions of coexistence and extinction of a
simplified system with two fully competing bacteria and a common phage-predator (see Supplementary S1 Appendix). The inner panel
shows the triplet-motif, where growth rates are symbolized by circle sizes, and susceptibility is depicted by arrow thickness. Therefore,
a larger circle labeled ’S’ indicates faster growth but higher phage susceptibility, and a smaller circle labeled ’R’ denotes slower growth
but greater resistance. Coexistence occurs (yellow region) within a specific parameter set where the slower-growing bacterium is less
susceptible to the phage than its faster-growing counterpart. [106, 49]. Notably, an even broader parameter range exists where the
slower bacterium can out-compete and eliminate its faster counterpart. (H) These schematics depict the network’s progression as new
strains are introduced. As the system expands, the coexistence parameter region shrinks, and extinctions, indicated by grey arrows,
become increasingly likely. (Adapted from Marantos et al. [108]).
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2.4 Conclusion

Our study delves into the complex relationships between phages and bacteria in the upper layer
of the ocean, an ecosystem with significant ecological, biogeochemical, and even public health
ramifications [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 1]. It is a theoretical investigation into a
potential mechanism that can describe previous experimental findings. Specifically, we focus on
the observations of an overall nested-modular infection network with an abundance of one-to-one
interactions and on the balanced diversity between phage and bacterial strains in local oceanic
patches [95, 99, 96].

In these patches, limited resources lead to intense competition among bacteria, challenging
the maintenance of diverse microbial communities. Several mechanisms have been proposed as
a solution to this paradox [111, 89]), including the cross-feeding of metabolites among different
species [112, 113, 114], a variability in preference for slightly different resources [115], and spatial
in-homogeneity [116, 117]. In this study, we have approached this problem with the concept of
predator-mediated diversity [105, 106, 92, 99, 49]. Using models that consider random bacterial
or phage invasions and shared food sources, we were able to replicate the observed diversity in
these communities. Our analysis reveals that despite the benefits of rapid growth, faster-growing
bacterial strains are still vulnerable to extinction events that can even reach system-size. By
focusing on the ”strength” of the interactions, we show emergent specialization. The system
tends to self-organize into a ”kill-the-winner” structure, where phages target the most susceptible
bacterial strains, reducing competition and increasing overall stability.

Our model diverges from the classic ”kill-the-winner” model by introducing additional links
that give an edge to slower-growing bacterial strains. We identified a specific mechanism, a triplet
motif of susceptible fast-growing strain, resistant slower-growing strain, and a phage that allows
the slower growers to out-compete their faster counterparts (see Figure 15).

Although our model is based on an open system where newly added species’ properties are cho-
sen independently of existing species, it successfully recreates real-world observations and points
to how ecosystems self-organize for stability and robustness. Despite that, we acknowledge that
the new species with properties that correlate with existing species may appear due to muta-
tion [118]. Prior research has demonstrated that co-evolution within a closed system can lead to
nested-modular interaction networks [118] and increased specialization [119]. Nevertheless, pre-
vious findings indicate that the occasional influx of external phages to a subsystem accelerates
local adaptation by introducing greater genetic variation [120]. Integrating elements of mutation
and external invasions in one model could provide a more comprehensive understanding of these
complex phage-bacteria ecosystems.
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Competitive 
exclusion

Kill the Winner Eliminate the 
Winner

Figure 15: From Competitive exclusion to Eliminate the Winner According to the Competitive exclusion principle, two
bacterial strains that fully share their resources cannot coexist; the faster-growing strain will eventually outcompete and drive the
other to extinction. If a phage infected the slower-growing strain, this would merely expedite the process. However if the phage
targets the dominant (or ”winning”) strain, coexistence between the two bacterial strains becomes feasible, thereby fostering ecosystem
diversity. Our study indicates that in our phage-bacteria ecosystem, a ”Kill the Winner” dynamic naturally emerges, as this minimizes
competition between bacterial strains. Interestingly, if phages are permitted to infect multiple bacterial strains, a slower-growing yet
more resistant strain can outcompete a faster-growing strain, if the latter is more susceptible to their shared parasite. (Created with
BioRender.com)
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Abstract

Phages and bacteria manage to coexist and sustain ecosystems with a high diversity of

strains, despite limited resources and heavy predation. This diversity can be explained by

the “kill the winner” model where virulent phages predominantly prey on fast-growing bacte-

ria and thereby suppress the competitive exclusion of slower-growing bacteria. Here we

computationally investigate the robustness of these systems against invasions, where new

phages or bacteria may interact with more than one of the resident strains. The resulting

interaction networks were found to self-organize into a network with strongly interacting spe-

cialized predator-prey pairs, resembling that of the “kill the winner” model. Furthermore, the

“kill the winner” dynamics is enforced with the occasional elimination of even the fastest-

growing bacteria strains due to a phage infecting the fast and slow growers. The frequency

of slower-growing strains was increased with the introduction of even a few non-diagonal

interactions. Hence, phages capable of infecting multiple hosts play significant roles both in

the evolution of the ecosystem by eliminating the winner and in supporting diversity by allow-

ing slow growers to coexist with faster growers.

Author summary

We demonstrate that in an open system of phages and bacteria with very limited

resources, a bacterial strain that has a high growth rate can still be outcompeted by a

slower-growing strain if they have a common phage. The impact of this on ecosystem

structure is significant as soon as there is a small probability to have a common phage

among bacterial strains. Furthermore, by analysing the structure of the interaction net-

work we show that it self-organizes into a network with strongly interacting specialized

predator-prey pairs, in order to reduce phages competition. Nevertheless, the presence of

the remaining links is very important for the network dynamics since even a few of them

significantly enhance the frequency of slower-growing strains.

Introduction

The epipelagic oceanic zone (0–200 meters depth) is an open environment with sub-parts that

have some influx of new phage and bacterial strains. Such an environment makes it very hard
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for bacteria to hide from phages, exposing them to direct predation. In fact, it has been esti-

mated that phages kill 15–40 % of the ocean’s bacteria every day [1]. Despite that, phages and

bacteria manage to coexist. This was quantified e.g. by the colossal work of Moebus and Natt-

kemper [2], where they collected water samples from many different locations in the Atlantic

ocean and reconstructed a large microbial network of interacting phages and bacteria. An

updated version of the study has been recently conducted by [3], confirming the patterns

found in Moebus and Nattkermper data and further revealing additional information on the

ecosystem from genome sequencing. Yet, how the phage-bacteria system can maintain diver-

sity in such an open environment is still a standing question in ecology [4–9].

Two strains of bacteria (or phages) that fully share their resources (hosts) cannot coexist.

This statement is known as the competitive exclusion principle [10–15], and more generally,

the number of consumers that coexist cannot exceed the number of resources [16]. This prin-

ciple reflects a detrimental competition between the fastest-growing strain and any slower-

growing ones. Survival of the fastest grower and its tempting connection to the survival of the

fittest [10] lead Fisher and his followers to use net growth rate as a measure of fitness [17]. This

view was challenged by the “kill the winner” scenario of Thingstad [8] where steady-state pop-

ulations are maintained by predators independent of their Malthusian growth rates. In steady

state the net growth rate of all the species is zero, suggesting a neutral selection without fitness

bias for further evolution. In this work we will augment this perspective, and show that basal

Malthusian growth rate still plays a role for the long term survival.

The “kill the winner” scenario considers a system of multiple specialist phage-bacteria rela-

tions where all bacteria are limited by the same resource. In this scenario, the fastest-growing

bacteria will be preferentially targeted by phage predation due to their large biomass and by

suppressing their biomass, they leave space for slower-growing bacteria to enter the system

and coexist.

This concept was extended to the sufficient condition for the coexistence of diverse bacteria

strains and virulent phage strains by Haerter et al. [18]. They showed that irrespective of the

phage-bacteria interaction network structure, the number of bacteria strains can exceed the

number of phage strains at most by the number of independent resources for bacteria. As

diversity increases the remaining resources diminish due to consumption by an increasing

number of marginally abundant susceptible bacteria, resulting in “a narrowing staircase” of

coexistence [18, 19]. To increase the diversity with a limited number of resources, the system

needs to evolve with keeping the balanced diversity of phages and bacteria, which was in agree-

ment with the experimental data [2, 20].

The above works revealed the conditions for the phage-bacteria interaction networks that

allow coexistence. As example systems that satisfy the conditions, analyses in [18, 19] focused

on the diagonal and nested organization of the phage-bacterial network. However, there are

different networks that satisfy these conditions. It may be diagonal as in the “kill the winner

model” [8], it may be nested [9, 20–22], or it may be more randomly organized. The actual eco-

system realized in nature should depend on the history of species assembly [21–24]. Having the

phage-bacteria ecosystem in an open oceanic condition in mind, we here explore how the eco-

system assembles with a stochastic invasion of phages and bacteria by using dynamic models of

a well-mixed microbial ecosystem. In particular, we quantify the importance of the bacterial

growth rate as their fitness and how the phages can mediate the successful invasion of slow

growers. We find that although the classical “kill the winner” suppression of the fastest grower

is the norm, the fastest-growing bacteria typically exist longer than the slower grower. Despite

that, occasionally a slow-growing bacteria completely eliminates a faster grower, reflecting true

“kill the winner” events. These types of events also limit the lifetime of the fastest-growing bac-

teria without the need of assuming extinction by fluctuations in small population numbers [25].
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Methods

Model

In our model, we analyze how the ecosystem naturally assembles in an open system where new

bacteria and phage strains are introduced occasionally. For simplicity, we consider a well-

mixed ecosystem of bacteria and virulent phages [8, 18, 20]. We assume that the resources are

fully shared between all bacterial strains, i.e. if there are no phages, there will be only one bacte-

rial strain that can stably exist in the environment; the fastest growing one. We consider mac-

roscopic populations of strains and ignore latency as we focus on systems that reach steady-

state before each new addition of a phage or bacterial strain. More specifically, for a given set

of strains, the dynamics of bacterial (Bi) and phage (Pk) population densities are assumed to be

governed by a set of generalized Lotka-Volterra equations [12, 18, 21, 26, 27]:

dBi

dt
¼ kiBi 1 �

XN

j¼1

pjiBj

 !

� aBi � Bi

XM

k¼1

ZkiPk

dPk

dt
¼ Pk

XN

m¼1

bkZkmBm � dPk

The rate parameters are measured in units of the maximal possible bacterial growth rate and

all the density parameters in units of the carrying capacity of the environment. ki is the bacte-

rial growth rate of strain i reported to be of order 2/day [28]. α = 0.1 is the universal death rate

of bacteria (e.g. due to protist predation that is expected to amount to half bacterial death in

the oceans [28]) and δ = 1 is the decay rate of phages (phage decay rates in the ocean is about

2/day [29]). pji represents interactions between bacterial strain j and bacterial strain i, and is

here assumed to be purely competitive (pji> 0). ηki is the infection rate of bacterial strain i by

phage strain k whereas βk is the burst size of the phage strain k.

We start our simulation with a system of only one bacteria strain with a growth rate selected

uniformly 2 [0, 1] in the steady-state of non-zero population size (this requires the growth rate

bigger than α). Then, at each update step, we allow either a phage strain or a bacterial strain to

invade the system. These additions are arbitrarily set to be equiprobable, but the qualitative

messages of our work do not change substantially if invasion rates are asymmetric. A new

strain is only allowed to invade when the population sizes are stabilized, which represents our

next updating step. Thus our timescale corresponds to a series of events that lead to coexisting

steady states of phage and bacteria strains.

We assign each bacterial strain a growth rate ki selected uniformly 2 [0, 1]. Moreover, pji =

pij = 1 which reflects bacteria that interact directly by competing for a shared resource. ηki 2
(0, 1) is sampled randomly and is considered to be a characteristic of every phage-bacterial

strain interaction, while βk 2 [1, 50] and is uniformly distributed and is a characteristic of each

phage strain. Every new strain that is introduced to the system starts with a population density

of 10−6.

In the actual computation of the steady-state of a given strain combination, we follow Haer-

ter et al. [18] and consider linear steady-state equations ( 1

Bi
dBi
dt ¼ 0 and 1

Pk
dPk
dt ¼ 0) to evaluate

whether these linear equations provide non-degenerate and feasible (positive) solutions. If the

system with a newly added strain yields a feasible steady-state solution, the strain is added and

the system is updated to this new steady state. Each time an added strain implies that solutions

do not fulfil these criteria, at least one strain is bound to go extinct. When this happens in our

computational models, we need to identify which strains should be dropped out of the system.

To do this we start from the steady-state populations of the previous time step and integrate
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the equations with the Runge–Kutta fourth-order method until one strain population falls

below a very small threshold (10−20).

We consider two models for the possible phage-bacteria interactions with a newly added

strain (Fig 1). Model N (nested by construction) is based on the assumption that only bacterial

strains resistant to all existing phages can enter the system. The phages that try to invade the

system attack the bacterial strain that does not have a phage predator and in addition every

other bacteria with probability p 2 [0, 1]. This choice reflects the dominant population of the

“phage-free” bacteria.

Model N will organize the bacteria historically, with the oldest being potentially infected by

all phages, while the younger are only exposed to recently introduced phages. The model N

will produce a diagonal network when p = 0 and a fully nested network when p = 1, the two

extremes of nested networks that were studied in [18]. Here we generalize by further allowing

for any value of p which will again yield sustainable interactions for balanced diversity. One of

the main reasons for the study of model N is that there is a general consensus in the commu-

nity that marine phage-bacteria networks exhibit significant nestedness [2, 3, 8, 9, 18, 20–22].

In Model R (random assignment of attack) we relax the rule about nested order of attack.

Thus here we allow any of the already existing phages to attack the newly introduced bacteria

with some probability p 2 [0, 1]. Further, as in model N, a new phage is set to attack a bacterial

Fig 1. Schematic representation of Models N and R. The green (red) circles correspond to bacteria (phage) strains, hierarchically ordered from oldest

to newest in the system (numbers). Notice that in model R, the new phage may attack a bacteria that is not the latest added. It just attacks whoever of the

bacteria are not attacked by other phages (there can only be one of these). In model N the last added bacteria will automatically be the phage free one.

https://doi.org/10.1371/journal.pcbi.1010400.g001
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strain that doesn’t have predators with probability 1 and every other bacteria with probability

p 2 [0, 1]. The model R will produce a network with all possible bacteria-phage pairs con-

nected when p = 1.

Results

Fig 2 illustrates the dynamics of model R in time units of subsequent bacteria or phage inva-

sion trials (see S1 Fig of the parallel plot for model N, which shows similar features). The cen-

tral plot show existence of individual bacteria in terms of their growth rate.

The upper panel presents the vertical projection of the central plot in terms of the number

of bacteria strains (red) and the total number of bacteria and phage strains (black). The fact

that the total number of the strains is up to two times larger than the number of bacteria is in

line with the balanced diversity manifested in the observational data analyzed by [18]. Also,

the total number of strains is in agreement with the expectation from the narrowing staircase

of the evolving “kill the winner” scenario of [18]. Furthermore, it is seen that even system’s size

extinction events are possible, reflected in occasional collapses to only one strain.

The right-hand side panels constitute a horizontal projection of the central figure. The first

one (starting from the left) shows the growth-rate dependent probability density pentry(k) of

bacteria to enter the system, while the second plot shows the average number density NB(k) of

Fig 2. Evolutionary dynamics in Model R. The central plot shows the dynamic replacements of bacterial strains with time (cross-link probability

p = 0.2). Each horizontal line corresponds to a bacterial strain, with the ordinate indicating its maximal growth rate. The top panel captures the number

of bacterial strains (red line) and the total number of phages and bacteria (black line). The first right-hand panel displays pentry(k)Δk, the distribution of

the probability of a bacterial strain to enter the system as a function of its growth rate sampled over 10000 time-steps. The second right-hand panel

shows NB(k)Δk, the distribution of the average number of bacteria that exist at each time-step in the system as a function of their growth rate over 10000

time-steps. The bin size for sampling in k-space is taken to be Δk = 0.1.

https://doi.org/10.1371/journal.pcbi.1010400.g002
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bacteria that exist at every time-step as a function of their growth rate. It is immediately appar-

ent that there is a systematic tendency to favour a high growth rate. The central plot corrobo-

rates that result, as one can see that bacteria with high growth rates tend to live longer. Thus,

although “kill the winner” is at play on a population level, with populations of fast growers

being suppressed by phages, there is some long term advantage to being a fast-growing strain.

However, there are situations where the fastest growing strain can be driven to extinction by a

slower-growing one.

In order to understand the dynamics that govern those extinctions, we explore the network

structure around strain extinction events. In Fig 3 we examine events where the fastest-grow-

ing bacteria (S) is replaced by a slower grower (R). We found that, when there is such an event,

there is always a phage that infects both S and R. Therefore, the events are characterized by the

ratio of the growth rate of the slow grower to the fast grower kR/kS in the vertical axis and the

ratio of the common phage’s infection rate to each strain ηR/ηS in the horizontal axis. Each of

these events is marked by a dot and was triggered by the invasion of a new strain in the system.

The colour of the dots indicates the type of these invasive strains (red for phages and green for

bacteria). In Model N (Fig 3A and 3B), it is always the introduction of a phage that initiates the

extinction because a slow-growing bacteria cannot eliminate any faster-growing bacteria with-

out help. In contrast, in model R, extinctions of fast growing bacteria can be initiated by both a

phage or a bacteria that support an already present phage (Fig 3C–3F).

These patterns can be easily understood when we consider the simpler system of only two

competing bacteria and see how the system’s diversity could possibly increase as a new strain

is added to the system. In our single food source scenario, a faster and a slower-growing bacte-

rium can only coexist with the help of a phage. Coexistence is then possible for a rather narrow

set of parameters, provided that the slower grower is less exposed to the common phage than

the faster grower (therefore represented as a bigger circle with S for faster-growing but more

susceptible to phage attacks and a smaller circle with R for slower-growing but more resistant).

This set of parameters is illustrated by the yellow area in Fig 3G [30, 31]. Remarkably, there is

an even bigger range of parameters where the slower grower can out-compete the fastest

grower and dominate the system. And of course, there is the biggest range of parameters

where the fast-growing bacteria eliminates the slow grower (see S1 Appendix for the analytical

calculation of these parameter regions). The striking similarity of the region where the faster

growing but susceptible to the common phage goes extinct, between the Fig 3A–3F and 3G,

constitutes a strong indication that the main mechanism through which a slower growing but

resistant bacterial strain can out-compete a faster-growing yet susceptible to the common

predator strain is through this triplet motif.

However, model N and R differ in the invasions that drive such extinctions. In Model N

(Fig 3A and 3B), it is always the introduction of a phage that initiates the extinction, because of

the assumption that the bacteria just entering the system are resistant to all existing phages.

Therefore, the triplet with common phage can only be formed with the introduction of a

phage strain that attacks both the faster-growing strain and the free, slow-growing bacteria

that entered the system last before it.

On the other hand, extinctions in model R can be initiated by both a phage and a bacteria

(Fig 3C–3F). When the probability p for connecting to existing strains is small, phages and

bacteria invasions are equally likely to cause extinctions (see Fig 3C and 3E). However as p
increases the extinction of the fastest grower is increasingly triggered by the invasion of a bac-

teria (Fig 3D and 3F). This reflects triplets formed by the bacteria that invade while having a

link to an existing phage that is already preying on another bacteria. In a fully connected net-

work as obtained for p = 1 in Model R, the probability for the formation of these triplet motifs

is 1 already for total number of strains N = 3 and their number grows with the number of
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Fig 3. Extinction events. (A-F) Elimination of the fastest grower (S) by a slower-growing bacterial strain (R), using one

common phage. The x-axis show ratio ηR/ηS of infection rates to the bacterial strain, while y-axis marks the ratio kR/kS of

growth rates. Red dots mark events initiated by a phage while green dots mark events initiated by new a bacterial strain.

(G) Analytically calculated regions of coexistence and extinctions for the above system (see S1 Appendix). The insert

shows the motif with growth rates marked by circle size and susceptibility by the thickness of arrows. The yellow region

marks the coexistence of all three strains. (H) Illustration of the evolution of the network as strains are added. Extinctions

(grey arrows) are more likely as the system grows.

https://doi.org/10.1371/journal.pcbi.1010400.g003
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bacteria strains Nbacteria as N2
bacteria for N> 3. Therefore the closer our network is to the fully

connected one, the higher the number of triplets that should be sustained (Fig 3H). As a result

coexistence region becomes progressively narrower, setting practically an upper limit to the

system’s size and an increase in the number of extinction events of the fastest growing bacterial

strain.

In addition to the replacement of the fastest grower, the detailed study of the network struc-

ture illuminates some interesting patterns in phage-bacteria ecology. In Fig 4, we show exam-

ple networks from model N and model R at p = 0.5. Here, the link width is proportional to βη,

which signifies the importance of the link. We see that both networks exhibit parallel strong

links forming phage-bacteria pairs, even though a phage can infect multiple hosts and a host

can be attacked by multiple phages. In other words, the predator-prey pairs are fairly special-

ized, reflecting a return to the “kill the winner” organization (where each strain had only one

link).

We quantified how often this specialization is seen in our model (Fig 5A). We found that in

about 90% of all stable ecosystems, all the strains form pairwise specialized predatory links that

resemble the “kill the winner” structure. This means that stable ecosystems typically require

phages that are disproportionately more adapted to infect the bacterial strain which is the most

vulnerable to their attacks. This high prevalence of emergence of “kill the winner” systems was

seen for both the N and the R model, decreasing from about 90% at p* 0.1 to 80% at p* 1.

This close to the diagonal organization of predatory links in the bacteria-phage interaction

matrix reflects a selection that minimizes similarity between phages and thereby reduces the

competitive exclusion between the phages.

Fig 5B illustrates how the diversity decreases as the probability p of predatory links increases.

In the p = 0 case where the interaction matrix is diagonal (See the subpanel Fig 5Bi), diversity is

the highest because the role of the phages is limited to neutralizing bacterial competition.

Hence, model N and model R are indistinguishable. As p increases the diversity decreases,

reflecting a gradual change toward a system where all phages share the same resource (at p = 1)

and competitive exclusion is only limited by different predation strengths of different phages

(the βη’s). Furthermore, for larger p that maximal diversity in model N increasingly differs

from that predicted by model R. This reflects the difference of the network structure at p = 1

for model N (subpanel Fig 5Bii) and model R (subpanel Fig 5Biii): more hierarchical predation

increases phages’ differences, which in turn decrease competitive exclusion. This tendency can

also be seen in Fig 4, where phages in model N have a clear hierarchy of population sizes, while

in model R phages have similar population sizes to each other due to competition.

Competitive exclusion implies that a system with more phage strains than bacterial strains

is unstable [18]. Therefore, a growing diversity needs an introduction of a new bacterial strain.

Subsequently, such a new bacteria makes it relatively easy for a new phage strain to invade,

provided that it is the main predator of that last bacterial strain. Fig 5C demonstrates that

model R effectively behaves as model N, in the sense that successful invading bacteria that add

to the diversity nearly always are resistant to all existing phages. Fig 5C shows the fraction R/B

of such events where the invader is resistant to all phages. For small and moderate p values one

sees that increase in diversity almost always relies on invaders having such universal resistance,

i.e. R/B* 1. First, for p exceeding 0.8, this fraction decreases. At p* 1 any invading bacteria

are set to be attacked by all phages in the system, and thus R/B is forced to be 0. This suggests

that the “bacterial resistance as a prerequisite for entrance” assumption that was intrinsic to

model N emerges as a consequence of also the more relaxed assumptions in model R. This also

suggests that the results from the nested model simulations from Ref. [18] would be recapitu-

lated by model R although with a smaller overall diversity.
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Fig 4. Example of interaction networks. The upper and lower panels show ecosystem examples for respectively the nested (N) and the random model (R).

In model N the phage can only prey on bacteria that were present when the phage was introduced. This often concurs with the ordering after growth k, as

older bacteria typically have larger k. In the model R an old phage can (with probability p) prey on a new bacteria which opens for the more random

organization. Simulation is done with p = 0.5 and the sizes of the circles are proportional to the population. The width of the arrows is proportional to βη of

the corresponding interaction. Notice the parallel strong links that give rise to phage-bacteria pairs regarding dominant interactions.

https://doi.org/10.1371/journal.pcbi.1010400.g004
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Overall we have seen that the two models are indistinguishable for small p: They have the

same upper diversity limits, and their diversity increases with the successful addition of a

new bacterial strain, which subsequently allows for the addition of a new phage strain and the

extinctions of their fastest-growing bacteria obey the same rule. Their difference only emerges

for larger p, where invading bacteria to a larger extent drives diversity down, resulting in

increased relative diversity for model R as p increases beyond 0.2.

The most interesting aspect of varying p is the fact that it modulates the classical “kill the

winner” scenario associated with p = 0 to a situation where the slow-growing bacteria do even

better when p is just slightly above 0. This is quantified in Fig 5D where we plot the elimination

factor E of the fastest grower compared to the slower-growing bacterial strains. This is defined

by the least square fit of

NBðkÞ / exp
k
E

� �

Fig 5. Analysis of evolved networks as a function of cross-link probability p. (A) Each phage (bacteria) has a number of links of different “strength”

βη. In*90% of stable ecosystems, the strongest links (bold arrows) from phage and to bacteria coincide for all strains, forming pairs. Different arrow

colors correspond to different phages. (B) Average and maximal diversity obtained for 10000 additions to the system. The sub-panels show

characteristic networks at the corresponding points. (C) Analysing events in Model R where a new bacterial strain leads to increased diversity. The

panel show the fraction of these events where the new bacteria are resistant to all preexisting phages. (D) The Elimination factor E of fast to slow

growers as a function of p. The side panels show how the elimination factor is obtained from the scaling of steady-state diversity with the growth rate k.

Both side panels correspond to model R.

https://doi.org/10.1371/journal.pcbi.1010400.g005
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for k 2 [0.3, 0.9], where NB(k) is the time-averaged number of bacteria as a function of the

growth rate (see the right panels of Fig 5D for examples). A higher value of E represents rela-

tively less diversity of faster bacteria compared to slower growers and correspondingly to a

larger risk to be eliminated. Thus higher E represents an increased effect of eliminating the

winner, while a low E* 0.2 at p = 0 reflects the traditional “kill the winner” model. We see

that already for p = 0.05, a sharp rise of E* 0.28 is observed. This leads to a much more equal

distribution of resources between bacteria with different sizes of growth speeds. This sharp

mitigation of the advantage of the fastest growers with the slight probability for cross-link can

also be seen in the entry to the system characterized by pentry(k) (cf. Fig 2), which is analyzed in

the S2 Fig.

For p≳ 0.8 Model R has markedly different behaviour from model N. This is seen in Fig

5C and 5D and S2 Fig. At such high p values the invading bacteria are attacked by most of the

resident phages, and the few gains in diversity are often caused by invading bacteria that are

susceptible to resident phages (Fig 5C). This makes differences between phages small and most

parameters lead to eliminations by competitive exclusion. Furthermore, the phage load among

bacteria becomes similar, and bacteria to a larger extent compete through their growth rate. As

a consequence the maximal diversity decreases (Fig 5B) and the slope E drops (Fig 5D) for p
above 0.8.

Discussion

This work investigated open systems of phages of bacteria, mimicking a small patch of the

ocean exposed to meandering phages and bacteria from outside the patch. Such sub-systems

were sampled in the Atlantic ocean by [2, 32] and analyzed in [20] and [18]. Flores et al. [9, 20]

highlighted the nested structure of the overall interaction network, while Haerter et al. [18]

emphasized the balanced diversity of phages and bacteria at each local patch. By considering

each patch as an open dynamical system we here studied the emerging structure and robust-

ness of the local microbial networks.

Our model considers subsequent random invasions of individual phage strains or bacterial

strains. We observe dynamics where any strain is exposed to extinctions; even the fastest-

growing bacteria (Fig 2). Hence diversity of the developing one patch system occasionally col-

lapses to one, thereby mimicking the wide range of diversities reported from a number of sam-

ples from the Atlantic ocean (see [2, 18, 33, 34]).

The elimination of even the fastest grower by a slower-growing strain separates our model

from the standard “kill the winner” model. The growth speed of the fastest grower is not

monotonic in time [18] or requires small populations eliminated by noise as suggested by [25].

Furthermore, the term “kill” by Thingstad [8] refers to repression in numbers that leads to

coexistence, while our analysis demonstrates the pronounced effect of occasional elimination

of the fastest grower. In other words, while the growth rate-based fitness measure in the Fisher

sense [17] is dynamically driven to a maximum value, this optimal is punctuated when a com-

mon predator exposes the system to extreme consequences of apparent competition [5]. Fig 3

demonstrated the basic motif for this elimination of fast growers [5, 30, 31], highlighting the

requirement of a weaker phage exposure (lower η) for becoming a winner in spite of being a

slower grower.

The concept of using phages as a weapon has been investigated previously by [35], where

an immune strain with a prophage was using phages from spontaneous induction events to

invade a sensitive strain. Thereby a temperate phage was able to lead to a population redistri-

bution that only could be maintained if lysogens of the two strains had the same growth rate.

In fact, even if the sensitive strain was always lysed by infections one would typically end in a
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“kill the winner” type coexistence between a slower-growing lysogen and the faster growing

sensitive strain.

Our evolving systems with virulent phages exhibit lower diversity when the apparent com-

petition is increased (larger p in Fig 5B). This is what naively should be expected because

higher p tends to diminish differences between predators, thereby increasing competitive

exclusion. Remarkably, an increase in the frequency p of phage-bacteria interactions still leads

to systems where each phage has a dominant host, and the host in turn is mainly predated by

this same phage. In effect, the observed systems self-organise to resemble the diagonal “kill the

winner” network supplemented with weaker cross-links (Fig 5A and 5C). This specialization

emerges in order to minimize the competition between the phages and avoid competitive

exclusion. This is different from the reasoning in classic trade-off theory, where specialization

in interaction arises because it is costly for bacteria to sustain resistance to past phages and for

phages to attack rare hosts [36, 37].

Perhaps the most remarkable aspect of cross-links is that they greatly favour the weak grow-

ers. Allowing phages to have more hosts, the pressure on the fast grower enhances and leads to

a substantially larger diversity of the slow growers (Fig 5D and S2 Fig). The robustness of this

effect is seen by the change in relative abundance when changing the model from the “kill the

winner” scenario [8] with an implicit p = 0 to an “Eliminate the winner” model with a remark-

ably small but finite p* 0.05.

From a wider perspective, this paper investigated how the structure of microbial networks

depends on the rules at which they are assembled [21–24]. We demonstrated that the domi-

nant interaction structures in the obtained networks were robust to the assumption of whether

additions were specialized, nested or random. We further found that the total diversity

decreased with the likelihood that newly added species interact directly with resident species.

Importantly, the most general model (R) obtained nested microbial networks as an indirect

effect of competitive exclusion against invading bacteria. Nestedness and specialization may

thus emerge in an open system, without the need for an evolution constrained by mutating

genomes in a more closed system. That such evolutionary dynamics lead to similar network

structures was demonstrated by [38].

Overall, predators are regulators of diversity already in the original “kill the winner”

model [8], and mediators of competition already in the original “apparent competition”

model [5]. But here they also put limits on any absolute measure of fitness in terms of repro-

ductive rate. They are the mechanism for killing the winner at a new scale, where the winner

is really eliminated and a new race for a new fastest grower can be restarted. Therefore evolu-

tion/replacement dynamics proceed in waves [39], often restarting when the fastest grower is

replaced.

Supporting information

S1 Appendix. Analytical calculations of Fig 3G.

(PDF)

S1 Fig. Evolutionary dynamics in Model N. The central plot shows the dynamic replacements

of bacterial strains with time (cross link probability p = 0.2). Each horizontal line corresponds

to a bacterial strain, with the ordinate indicating its maximal growth rate. The top panel cap-

tures the number of bacterial strains (red line) and the total number of phages and bacteria,

(black line). The first right hand panel displays the distribution of the probability of a bacterial

strain to enter the system as a function of its growth rate sampled over 10000 time-steps. The

second right hand panel shows the distribution of the average number of bacteria that exist at
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each time-step at the system as a function of their growth rate over 10000 time-steps.

(TIF)

S2 Fig. Entry advantage related to growth rate. The central plot shows the relative entry

advantage GA of the fastest grower compared to the slower grower. The right subpanels display

the definition of GA as GA ¼
slope

Pentryðk¼0:3ÞDk from the fitting of the distribution of the probability

that a bacterial strain of growth rate k invades the system successfully. Both side panels corre-

spond to model R but they would be practically the same for model N as one can see from the

central panel.

(TIF)
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Introduction
Bacteriophages play a critical role in balancing and
sometimes reshaping microbial ecosystems, supporting
the diversity of bacterial strains [1e4] and in facilitating
the transmission of genes between different bacterial

strains [5] and species [6]. Genetic engineering and
gene-editing in modern biotechnology are by-products
of the fitness gain of bacteria when they protect them-
selves from phages by restriction-modification enzymes
[7,8] or CRISPR systems [8e11]. Future explorations in
phage resistance mechanisms will likely unravel other
aspects [12e16] of the aeon-long war between these
dominating life forms [17,18] on our planet. Here, we
will review parts of this vast area of research that
modulate these interactions to make the system more
sustainable in the long term (Figure 1), focusing on 1)

phages’ ability to reshuffle optimal bacterial growth, 2)
the effect of spatial refuges against unlimited phage

predation, and 3) implications of the phage lysis
dependence on the physiological state of hosts.

Eliminating the winner: ongoing reshuffling
of bacterial fitness
The resource competition and resulting exclusionmake it

hard for bacterial species to coexist when they require
similar nutrients for growth [19,20]. This challenges the
observation of diverse microbial communities. Several
mechanisms have been proposed, including the cross-
feeding of metabolites among different species [21e23],
a variation of affinity to slightly different nutrient sources
[24], and spatial in-homogeneity [25,26].

This situation changes dramatically once we consider
bacteriophages [1,3,4,27e29]. Virulent phage special-
ized in predating on bacterial species keeps the bacterial

species population down, and the growth rate of the
bacteria is only reflected in the phage population size
[30], making the nutrient available for more slowly-
growing bacterial competitors that otherwise cannot
coexist. This phenomenon is called ‘Kill the Winner’
[1], and it predicts that slow and fast-growing bacterial
species stably co-exist. Notably, however, the slower-
growing bacteria are exposed to elimination by
invading faster-growing bacteria, provided these in-
vaders sometimes have time without phage predators.
An open system with an occasional invasion of new

bacteria and phage species tends to evolve towards a
state with faster-growing bacterial species intermit-
tently [3,4,31].

However, if individual phage species can prey on several
bacteria species, the long-term prediction deviates from
this scenario. Such cross-interactions make the apparent
competition [32] possible, where the slowly growing
bacteria may out-compete the faster grower [4] by being
less susceptible to the common phage, even when the
bacterial species compete for the nutrient source. This is

illustrated in Figure 2, where we follow the development
of an open microbial ecosystem as a function of time
counted as the number of bacterial or phage species that
enter the system [4]. The model assumes one common
food source for all species. It is simulated in the quasi-
steady state approximation where new species are only
added when the temporal dynamics of previous species
are settled to a steady state. The interaction between the
existing species and the newly added species is assigned
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randomly, with the possibility of cross-interactions
(Figure 2). Figure 2 illustrates the growth rate for each
co-existing bacteria, with a colour that marks the bacte-

rial population in units of total carrying capacity.

Figure 2 shows that 1) even bacterial hosts with very
high growth rates can be eliminated, 2) newly intro-
duced bacteria often settle at relatively high populations
soon after the introduction and subsequently tend to

lose population with additions of other competing
strains or phages, and 3) High populations of any
particular strain are highly transient, while states with
about 10% or lower population density stay longer
without big changes.

While this model analysed a completely open system
where newly added species properties are chosen

independently of existing species, new species may
appear due to mutation in a closed system. Hence,
their properties are correlated with existing species
[33]. Such a coevolution model gives a nested-modular
structure to the resulting interaction network [34]. A
recent study following a coevolving wild population has
indicated a local adaptation, i.e., phages are best at
infecting the co-occurring hosts [35]. Interestingly, it
has been shown that occasional immigration of phages
from outside of a subsystem accelerates the local
adaptation by introducing more genetic variation [36].

For a quantitative understanding of phage-bacteria
ecosystem data [37,38], a complete approach would
be combining local co-evolution with invasion from
outside of the system.

Space mediated defence: micro-colony and
self-organised spatial refuges against
phages
The above consideration of co-existence suffers from
the classical limitations of ecosystem stability for well-
mixed systems described by differential equations

Figure 1

Modulation of phage–bacteria interactions for sustainable diversity.
Created with Biorender.com.

Figure 2

From Kill the winner to Eliminate the winner. The plot shows the time evolution of the coexisting bacterial species’ growth rate (vertical axis) and pop-
ulation size (colour bar). The lower panel shows a long time course, and the upper panel shows the magnification of the indicated duration. The box figure
shows a schematic description of the model (Created with Biorender.com). There is one nutrient source for bacteria feeding all the bacterial species, and
phages can predate on one or more bacterial species with variable strength (solid allows). New phage or bacterial species are added to the system one
by one randomly after the system reaches the steady state. The predation link between the newly added and existing species (dotted arrows) is drawn
randomly. The details of the model are given in the study by Marantos et al. [4] as model R.
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[39]. However, in real ecosystems, forming spatial ref-
uges is crucial [25]. For example, coral reefs support a
huge diversity of life by providing hiding places against
larger predators. The diverse possibility of how a life
form can provide hiding for some life forms from their
competitors makes formal modelling difficult. One such
toy model was to consider the non-transient interactions
between lichen species on a rock surface [40], predict-

ing the existence of stable states with high diversity
when each species directly interfere only a fraction of
other species and if the fraction is below a threshold.

Even a sub-millimetre scale of spatial heterogeneity is
sufficient for a microbial system to provide a spatial
refuge. Here we consider phages interacting with bac-
teria on a colony boundary [43,44]. In particular, we
study bacterial colonies’ survival when exposed to a virus
[41,42]. One sees a plaque in Figure 3 formed on a
bacterial lawn initially infected by a single virulent

phage [41]. Here, a small number of phages were mixed
with bacteria in a soft agar, cast on a hard agar with
nutrients, and incubated. Subsequently, most single
bacteria grew into small colonies since the agar was too
viscous for bacteria to be motile. Some bacteria were
attacked by the phage or by its progeny as phages grow
and spread by diffusion between the growing micro-
colonies. Noticeably, increasing remnants of phage-
attacked colonies are observed as one approaches the
periphery of the plaque from the inside. This indicates
that larger colonies upon phage attack provide some

resistance against phage proliferation, and thus that
bacteria inside a colony are partly protected.

In [42], we infected colonies of various sizes with a
virulent mutant of the temperate bacteriophage P1. We
found that colonies larger than w105 cells at the first
phage attack survived and grew under phage predation,
while smaller colonies could not. The possible mecha-
nism is illustrated in agent-based simulations in Figure 3.
The phages are modelled as point particles that diffuse in
space and infect a bacterial cell upon encountering it. As
a result, cells on the colony surface are infected at high

multiplicity [45], and phages cannot diffuse long inside a
colony before they are adsorbed. The colony becomes
surrounded by infected and dying bacteria while its non-
infected inside grows. When the growth of the bacteria
inside the 3-dimensional colony exceeds the death on the
2-dimensional surface layer, the colony can survive. Thus,
a tipping point for colony survival primarily depends on
phage adsorption and phage latency time relative to the
bacterial growth rate [42].

The collective protection from phage attack in a colony

is empowered further when the bacteria produce
extracellular structures that constitute a large part of the
biofilm [46]. For example, the collective protection by
expression of curli polymer that can trap T7 phage en-
ables matured enough Escherichia coli biofilm to keep

growing under phage attack [47,48]; more complex
collective protection has been reported recently in a
multispecies biofilm [49]. A simulation study confirmed
that the mobility of phage is the key when attacking a
biofilm [50].

From a larger perspective, a medium with many colonies
will naturally be able to sustain phage attacks and be
much more robust than the homogeneously mixed
system. While the dense colony appears as a large target
for phage to encounter by diffusion, the overall adsorp-
tion rate will be reduced compared to all the cells being
dispersed uniformly in the media [51,52]. The more the
phage encounter is delayed, the larger the microcolony
becomes, providing better collective protection. When
effectively simulating the shielding of phage attack at
the colony surface and the phage diffusion between

Figure 3

Role of microcolonies and space. The top image visualizes plaque formed
by CI− mutant of the l phage, which acts as a virulent phage when
infecting a sensitive Escherichia coli cell (Image from the study by Mitarai
et al. [41]). The white does are bacterial colonies. The killing zone by
phage (plaque) appears as a darker region. The radius of the plaque is
about one millimetre. The bottom panel shows a simulation of a micro-
colony attached by a phage from outside (Cross sections are shown,
image from the study by Eriksen et al. [42]). Blue spheres are uninfected
bacterial cells, and yellow to red spheres are the infected cells in the la-
tency period. Phage particles are not visualised. When the first phage
attack is early (i.e., the colony is small, top panel), all the cells can
eventually be killed. In contrast, when the colony size upon the first phage
attack is large enough, the colony can keep growing despite the contin-
uous killing by the phage on the surface.
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colonies, robust survival of bacteria and phage have been
predicted when bacteria grow as microcolony [53].

How to deal with an inactive host:
dependence on the host’s physiological
condition
Since the production of the phage depends on the
infected host’s ability to replicate genetic materials
(DNA or RNA) and produce proteins (though some
phages bring in genes for machinery), the phage growth

inevitably depends on the host’s physiological states. It
has been demonstrated that phage production decreases
as the bacterial growth rate slows down [54e59]. A
mathematical analysis has demonstrated that such
physiology dependence can support a new mode of
coexistence between bacteria and virulent phage [60].
It is necessary to consider the phage production
dependence on the bacterial growth rate to reproduce
the plaque morphology and final size in a mathematical
model [41]. However, it is worth noting that exceptions
such as T7 can keep spreading in a stationary phase loan

at a limited speed [61]. Since bacterial growth is limited
in various natural environments, it is crucial to investi-
gate the physiology dependence to fully understand the
phage-bacteria ecosystem and evolution.

Interestingly, the host physiology dependence is not
limited to the phage yield after infection. Recently, we
found that a phage preferentially adsorbs to metaboli-
cally active bacteria [62]. More specifically, the wild
type l-phage adsorption dropped significantly when the
host cell was metabolically inactive, possibly by

detecting the hyperdiffusion of the receptor protein in
growing E. coli [63] that ceases on energy depletion
[64]. This phenomenon requires a particular design of
the wild type l-phage’s tail protein that allows the virus
to bind reversibly, which is lost in a l host range mutant
[65]. The preference to infect metabolically more active
cells may increase overall phage growth in an environ-
ment where hosts with different physiological states
are accessible.

Should a phage always avoid injecting its genetic ma-

terial into a metabolically inactive host? Of course,
infecting a dead host cell will be a pure waste for a
phage. However, infecting a dormant but alive host
[66,67] may have a long-term benefit. An interesting
example is a phage which infects bacteria such as Bacillus
subtilis that can form an endospore under certain stressed
conditions. Endospores are metabolically inert but can
survive under extreme stresses and germinate to regrow
when the condition is right again after an immense
period [68]. Many phages that infect spore-forming
bacteria can form a ‘virospore’, i.e., an endospore
where the phage genome is also encapsulated [69,70].

When a virospore germinates, the phage can undergo the
lytic cycle to produce phage progeny. Another example is

a phage infecting a dormant persister E. coli cell, where a
lytic phage stayed silent while the host was in dormancy,
but as soon as the host resumed its growth, phage
replication also resumed to complete the lytic cycle
[71]. It has been proposed [72e75] that survival in a
very low host density environment is a possible selection
pressure for phage to be temperate, i.e., a phage can
enter the lysogeny [76] where it stays dormant, and its

genetic material can be replicated with the host repli-
cation. Even though the ‘pseudolysogeny’-like [77]
behaviour by infecting dormant cells does not provide
immediate growth of the phage population, it may serve
as a time capsule for a virulent phage to survive a harsh
environment for a phage particle.

Outlook
We have presented a few aspects of phage-bacteria
interactions that make the coexistence of many spe-
cies more sustainable (Figure 1). The ‘Eliminate the
winner’ due to possible interaction network structure
opens for slow growers to remain in the ecosystem. A
dense bacterial colony provides ‘shielding for bacteria
deep inside the colony by cells on the surface,
absorbing most of the phages attacking from outside.

The phage proliferation dependence on host physi-
ology may reduce the impact of phage attack when
infected dormant cells do not produce progeny (‘Phage
loss’). At the same time, if a phage can resume prolif-
eration when an infected dormant cell resuscitates,
infecting a dormant cell may work as a ‘Time capsule’
for the phage where the cell and phage stay dormant
together and preserved through a crisis that is hard for a
phage to survive alone.

These modulations are not specific to certain molecular
mechanisms and therefore expected to be effective in

phage-bacteria ecosystems in general. In addition,
players in these systems exhibit many other strategies
that makes the system even more sustainable. We have
briefly mentioned the lysis-lysogeny choice in
temperate phage [72e75]; such temperate phage may
themselves carry genes that prevent invasion of other
phage types [78] or genes that allow using other phage
genomes to produce offspring (pirate phages [79e81]).
Many phage defence mechanisms and anti-phage
defence mechanisms obviously contribute to sustain-
ing the phage-bacteria coexistence and diversity arising

from coevolution [7,8,11,16]. The fascinating diversity
of molecular mechanisms challenges the theoretical
microbial ecology to provide a unified picture to help us
navigate different systems’ individuality.
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3 The role of dormancy in phage-bacteria dynamics

3.1 Introduction

Microorganisms are arguably the most abundant and diverse organisms on Earth [1]. The previous
chapter was dedicated to the mechanisms under which microbiological ecosystems can sustain
their diversity in the upper layers of the oceans under severe pressure imposed by viruses and
limited resources. However, from a global perspective, these conditions are far from extreme.
Microorganisms can colonize almost every conceivable habitat, ranging from high-temperature hot
springs [25, 22] to hyperarid, irradiated deserts [24] and the cold, high-pressure deep-sea sediment
[23]. Most of these environments are characterized by their fluctuating and unpredictable nature,
often leading to prolonged periods where conditions are not only suboptimal for growth and
reproduction, but also for basic cellular maintenance [121, 26, 122, 123, 124, 125, 126]. Given the
frequency with which microorganisms are encountered in these challenging habitats, it has been
argued that energy limitation constitutes a pervasive constraint on microbial growth [127, 128,
129].

3.1.1 Microbial dormancy, seed-banks and host-paracite interactions

To adapt to energy limitations and fluctuating environmental conditions, many microorganisms
enter dormancy, a reversible state of reduced metabolic activity [130, 131]. By entering a dormant
state, cells can temporarily reduce their energetic requirements by halting growth and cutting down
maintenance costs until environmental conditions improve [132, 133, 131]. However, opting for
dormancy comes with its trade-offs. Dormant cells forgo reproductive opportunities and allocate
valuable internal resources to the maintenance of resting structures and ongoing energy needs
[134, 135, 136]. To minimize these costs, dormant cells must invest in the costly development
and maintenance of specialized mechanisms that enable them to recognize and react to signals
indicative of favorable conditions. Therefore, dormancy can be seen as an adaptive bet-hedging
strategy where the cells sacrifice short-term reproductive success for long-term benefits under
fluctuating and often challenging environmental conditions [130].

This adaptation is often crucial for survival as it has evolved multiple times independently
across a phylogenetically diverse range of microorganisms [137]. From the human gut to the
immense depths of the world’s oceans, dormancy is consistently observed [138, 131]. For instance,
over 80% of the microbial biomass in soils remains metabolically inactive [139, 131, 140]. Dormancy
also plays a pivotal role in human diseases like anthrax, cholera, and tuberculosis [141] and in
explaining how pathogenic persister cells can withstand high antibiotic concentrations [142, 143,
144, 145, 146]. In light of its implications, there is a growing interest in the scientific community
to study and decode the intricacies of dormancy.

Key insights from the studies so far have revealed that microorganisms can transition be-
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Figure 16: Microorganisms in a dormant state. Dormancy is a widespread bet-hedging strategy against adverse conditions
in the microbial world. This figure shows examples of dormancy in a arbuscular mycorrhizal fungus, b cyanobacteria, c Klebsiella
pneumoniae and Pseudomonas aeruginosa, and d Viridibacillus arvi. It should be noted that not all forms of dormancy are associated
with a distinctive and externally observable structure. (Adapted from [131]. Credits to A. Brennwald (picture a), Y. Tsukii (picture
b), and Dennis Kunkel (picture d)).

tween active and dormant phases relatively rapidly [147, 148, 149]. Although such transitions can
sometimes be stochastic [150], they are often modulated by environmental factors like temperature
[132], pH levels [151], hydration conditions [152], and resource availability [153]. The accumulation
of dormant cells gives rise to a ”seed bank”, a reservoir of dormant individuals that encapsulates
genetic and phenotypic diversity until the environmental conditions become favorable enough to
allow for potential resuscitation [131, 154]. This happens via the storage effect, which suggests
that environmental fluctuations lead to variations in population growth, resulting in the emergence
of long-lived organisms [131]. Interestingly, the durability of dormant entities is highly variable.
While some dormant microorganisms are susceptible to environmental stresses, succumbing within
days [155], others can endure extended periods that reach hundreds of thousands or even millions
of years! Remarkably, dormant cells have been revived from ancient materials, such as amber and
halite crystals, that are hundreds of millions of years old [156]. Hence, the longevity of dormant

62



cells can dramatically surpass the average life span of actively reproducing ones [157, 158].
The extended life span of dormant cells plays a crucial role in biodiversity maintenance [159]

and in community stability, robustness, and recovery [160, 161]. Furthermore, studies on trophic
interactions reveal predators’ preference for active over dormant prey [162] and reduced suscepti-
bility of inactive hosts to parasitic infections [163]. From an evolutionary perspective, seed banks
can reduce the frequency of mutations and weaken the effects of random drift and natural se-
lection [164]. These discoveries, complemented by recent studies [107, 165, 166, 167, 168, 169],
support Lenski’s ”physiological refuge” concept [170, 171] and suggest that the role of dormancy
in host-parasite eco-evolutionary dynamics has been overlooked.

3.1.2 Sporulation in Bacillus subtilis: A model for the study of dormancy

A number of species enter dormancy by producing a specialized structure. This makes the dormant
state easier to identify and study. One of the most well-studied forms of dormancy is the production
of endospores in Bacillus subtilis.

Part of the Firmicutes phylum, Bacillus subtilis, is typically found in plants as an epiphyte and
within the rhizosphere [19]. Its fast growth, easy cultivation, and ability to switch from classical
binary fission to asymmetrical division during spore formation captured the scientific commu-
nity’s attention. This led to extensive studies that made Bacillus subtilis the best-studied model
organism of the Gram-positive lineage [1]. Today, Bacillus subtilis has important environmental
applications in plant protection and growth promotion and industrial applications in the produc-
tion of fine chemicals, probiotics, vitamins (e.g., riboflavin) and in the food industry (e.g., Natto)
[19].

During the process of endospore formation, or ”sporulation”, an asymmetrical division occurs
(see Figure 17), producing a smaller prespore and a larger mother cell, each with distinct transcrip-
tion patterns [172]. Originating over 2.3 billion years ago, sporulation is not a feature exclusive to
B. Subtilis [173]. It is an ancient evolutionary trait, with studies suggesting that the last bacterial
common ancestor (LBCA) had endospore-forming capabilities [174]. These spores are widespread
and ubiquitous, with a staggering 1029 endospores estimated in marine sediments alone [126].

Remarkably resilient, dormant endospores can withstand extreme conditions, from intense heat
and radiation to the vacuum of space for extended periods before germinating and returning to
vegetative growth [175, 176]. Their biological inertness allows some bacteria to persist for millennia
[177]. Impressively, even after such prolonged dormancy, a slight change in resource availability can
reactivate these spores within minutes [16]. Despite the presence of stochastic switching between
active and inactive states [150], this complex and energetically demanding process that involves
the upregulation of more than 500 genes [178] is believed to be tightly regulated by environmental
cues and initiated by starvation [179]

The starvation-triggered switch to sporulation marks the first significant phase in this process
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Figure 17: Sporulation process in Bacillus Subtilis. This illustration shows the key stages of B. Subtilis sporulation process and
their reversible connection with the vegetative state of the cell. (Adapted from [1])

(see Figure 17). The second one is when the spore is formed. Not only do these mature spores
safeguard the host’s DNA against extreme temperatures, UV radiation, and chemicals [180, 18, 16],
but they also shield the host from bacteriophages. Viral protection is achieved through an outer
layer that either lacks completely or has significantly fewer phage receptor binding domains [181].
As a result, phage adsorption to spores can be dramatically decreased, or even completely halted,
in comparison to growing cells [181]. However, if phages penetrate cells prior to the spore’s
maturation, the resulting spore may carry both cellular and viral genomes, posing latent risks to
the hosts over extended periods.

Taking everything into account, it is evident that sporulation can have an important impact on
parasite-host interactions, not only at an individual level but also on a population level. A serial
transfer coevolutionary experiment has demonstrated that sporulation can transiently stabilize
the oscillatory population dynamics prompted by phages [181]. Additionally, there is evidence
suggesting that phages can obtain transcription factors and influence sporulation within the host,
though the effects on infection dynamics remain elusive [182]. These studies have limitations,
primarily because they focus on infection dynamics in well-mixed liquid media. In contrast, phage
infections of B. Subtilis bacteria predominantly occur in soils and on surfaces. These environments
offer an inherently spatial context and present distinct selection criteria when compared to viral
infections in liquid cultures. This chapter aims to explore the effects of dormancy on phage-bacteria
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interactions at the community level in such spatial settings, and delve deeper into potential factors
triggering sporulation.

3.2 Experimental methods and results

3.2.1 Sporulation limits viral plaques

To investigate the influence of dormancy on the infection dynamics between Bacillus subtilis
and its bacteriophages in a spatial context, our collaborator Dr. Andreea Măgălie designed and
conducted plaque assays under the supervision of Dr. Daniel Schwartz and Prof. Jay Lennon (see
Măgălie et al. Manuscript). Plaque assays are standard and fundamental laboratory methods
where a dilution of virus is placed on a petri dish containing a lawn of susceptible cells [1]. As the
viruses diffuse, infect, and lyse the cells, clear zones, known as plaques, form. Each circular plaque
originates from a single virus particle and represents a localized area where the cells have been
destroyed due to the presence of that virus. Plaque assays are utilized to visualize and quantify
virus-host interactions, determine phage titers and cell-virus life history traits, and purify clonal
viral populations [183, 184, 185]. Importantly, plaque assays also enable us to explore bacterial
antiviral strategies and their impact on limiting plaque propagation [186].

Our assays involve two ∆6 Bacillus subtilis strains (see Măgălie et al. Manuscript). The
first is a wild type (WT) that can undergo sporulation, while the second is a SPOIIE mutant
characterized by a SPOII mutation at locus E. This mutation halts sporulation during the
asymmetrical division stage II (see Stage II at Figure 17). For ease of reference, we denote
the WT as S+, and the SPOIIE as S− (see Măgălie et al. Manuscript). After being streaked
from glycerol stocks, the bacterial cultures were let to grow overnight at 37◦C in the widely used
for sporulation medium DSM (Difco Sporulation Media) [187, 175, 188]. Post overnight growth,
cells were inoculated from a singular colony and incubated for approximately 5 hours until they
reached OD ≈ 0.5. Subsequently, the bacterial strains were exposed to the wild-type lytic
bacteriophage SPO1, while the wild-type lytic bacteriophage SPP1 was also used for comparison
(see Supplementary Information in Măgălie et al. Manuscript). Following the ’tube free agar-
overlay’ protocol [189], a mixture of cell culture, viral solution, and soft agar was applied to petri
dishes. Consequently, the plates were incubated overnight at 37◦C. The growth dynamics of SPO1
plaques were recorded in a time-lapse over 15 hours. Plaque sizes were analyzed using image
techniques detailed in Măgălie et al. Manuscript.

Starting at the 3-hour mark, both S+ and S− plaques grow, maintaining a similar rate for
about 2 hours. However, while the S+ plaques plateau just after 5 hours, the S− plaques continue
growing until reaching a plateau at 13 hours, making them roughly three times larger than the
S+ plaques. This early termination of growth in sporulating as opposed to non-sporulating hosts
points to microscopic mechanisms, implying that sporulation curtails the phages’ lysing ability,
leading to smaller plaques.
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Figure 18: Plaque growth time lapse for WT (S+) and SPOIIE (S−) hosts. A plaque assay was conducted at 37◦C, capturing
images every 5 minutes across a span of 15 hours. Image analysis methods (as detailed in the Măgălie et al. Manuscript) allowed for
plaque size determination. The solid line represents the mean size across all plaques, while the shaded area indicates the standard
deviation. On the top part of the figure we show 1cm x 1cm pictures of the plaques side by side for WT (S+) and SPOIIE (S−) hosts
at t = 5 hrs and t = 13 hrs respectively. (Adapted from the preprint of Măgălie et al. The intermediate images of individual plaque
trajectories can be found in the Supplementary Information).

3.2.2 Sporulation is enhanced around the plaques’ edges

To study the microscopic impact of sporulation on the dynamics of the plaques, our experimental
collaborators developed an inverted plaque assay (details in Măgălie et al.). For the inverted
plaque assay, the bacterial cultures were grown to re-store exponential growth. Alongside, a viral
dilution was prepared in Eppendorf tubes. Once the bacterial culture reached an OD of around
0.5, a sample was centrifuged and then mixed with a portion of the viral solution. A small amount
of this blend was then placed on a glass-bottom petri dish tailored for microscopic imaging (see
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Figure 20).
Simultaneously, agar pads were crafted by solidifying DSM media with agarose in a larger petri

dish, as per the method from [190]. Using sterile methods, these pads were cut into nine squares
(Figure 19A-D). Each square was positioned over a sample droplet on the glass dish. A single
glass-bottom petri dish can accommodate up to four such setups. Once arranged, the petri dish
was sealed and placed in a 37°C incubator for 8-12 hours, after which it was ready for imaging
(Figure 19E).

Figure 19: Inverted plaque assay protocol. Panels A to D chronologically illustrate the preparation of the agar pad for the
inverted plaque assay. The agar is sliced with a sterile scalpel, ensuring the square pads remain in place while the excess agar is
carefully removed. Panel E showcases a top-down perspective of the assay, with a fourfold magnification emphasizing the distinctive
darker plaques of phage SPO1 on the S+ host in DSM media. (Adapted from the preprint of Măgălie et al.).

A re-assessment of the plaque sizes for S+ vs S− hosts corroborated the results of the first
assay by showing that S+ plaques are roughly 3 times smaller than that of the S− host (see
Supplementary Information in Măgălie et al. Manuscript). Additionally, the inverted plaque
assay allowed for microscopic analysis of the region containing the plaque. Crucially to our work,
it allowed for a quantification of the sporulation levels. In Figure 21A, we can see the viral
plaque as it appears in a bright-field image of the inverted plaque assay. If the same plaque is
captured with a fluorescent channel sensitive to Green Fluorescent Protein (GFP) emitted by the
genetically modified spores, then the patterns of sporulation become apparent (see an example
of the idea in Figure 20). In Figure 21B, sporulation is notably absent inside the plaque and in
regions distant from it. However, intriguingly, there is a pronounced enhancement of sporulation
at the plaque’s periphery. This observation was quantitatively supported by measuring the GFP
intensity distribution with distance and proved consistent across various experiments and stages of
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plaque growth (see Figure 19). The process for evaluating average GFP intensity after adjusting
for background fluorescence is elaborated on in Măgălie et al.

Figure 20: Examples of sporulation imaging. The amalgamation of advanced microscopy, sophisticated genetic methods, and
the distinct, detectable characteristics of spores has facilitated dynamic observations and studies of the sporulation process. The
photomicrographs in the left column of this figure depict the transformation of a Bacillus Subtilis spore into a vegetative cell. Conversely,
the right column showcases a fluorescent photomicrograph representing the reverse process where a cell initiates sporulation. (Adapted
from [1]. Credits go to Judith Hoeringer and C.L. Headley for the left column and Kristen Price for the right column).

While the absence of sporulation in the plaque’s inner regions is anticipated due to the clearing
of hosts by viruses, the enhanced sporulation at the periphery and its link to the reduced plaque
sizes for S+ urgently requires a theoretical explanation.

3.3 Theoretical methods and results

3.3.1 Modeling with resource-only induced dormancy can reproduce the plaque
growth dynamics, but not the spore enhancement around the plaques

As mentioned in the introduction, it is widely accepted in the scientific community that sporulation
in Bacillus subtilis is triggered by starvation when resource levels are low [191, 192, 131]. Therefore,
we developed a PDE model where dormancy is solely a function of available resources to delve
deeper into the factors influencing plaque growth. We formulate the mathematical model using a
Lotka-Volterra-like system of equations, where viruses V diffuse across a bacterial lawn containing
either sporulating (S+) or non-sporulating (S−) susceptible bacteria S, that grow on explicit
resources R. Susceptible bacteria can turn into infected cells I when viruses adsorb to them
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Figure 21: Sporulation is enhanced at the plaque periphery. A and B Bright-field (panel A) and fluorescent (panel B) images
from the inverted plaque assay, both captured at 40x magnification. The assay was conducted using DSM media and the SPO1 phage.
The GFP image underwent processing to intensify contrast and diminish background noise. (more details on image analysis can be
found in Măgălie et al. Manuscript) C GFP intensity as a function of the distance from the plaque’s center. This is a radial analysis of
the image in panel B. The solid line represents the mean, and the shaded area is the standard deviation. D-F Fluorescent images from
the inverted plaque assay showing the evolution of sporulation distribution. The timeframes correspond to approximately 7 hours, 8
hours and 12 hours for D, E and F respectivelly. (Adapted from the preprint of Măgălie et al.).

until they are lysed. The Susceptible bacteria can also transition into dormant cells D, which are
resistant to phage adsorption.

More specifically, dormancy is initiated at a low rate when resources are high (accounting for
stochastic dormancy [193, 131]) and at a much higher rate when resources are depleted. We refer
to this model as Model R (see Figure 23) and present the associated two-dimensional system of
partial differential equations below:
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∂R̃

∂t
= − g(R̃)S︸ ︷︷ ︸

cell growth

+ DR∇2R̃︸ ︷︷ ︸
resource diffusion

∂S

∂t
= g(R̃)S︸ ︷︷ ︸

cell growth

− ϕSV︸︷︷︸
viral infection

− f(R̃)S︸ ︷︷ ︸
dormancy initiation

∂I1
∂t

= ϕSV︸︷︷︸
viral infection

− η(R̃)nII1︸ ︷︷ ︸
to next infected state

∂Ii
∂t

= η(R̃)nIIi−1︸ ︷︷ ︸
from previous infected state

− η(R̃)nIIi︸ ︷︷ ︸
to next infected state or viral lysis

∂V

∂t
= βη(R̃)InI︸ ︷︷ ︸

viral lysis

− ωV︸︷︷︸
viral decay

−ϕ(S + Itotal)V︸ ︷︷ ︸
viral infection

+ DV∇2V︸ ︷︷ ︸
viral diffusion

∂D

∂t
= f(R̃)S︸ ︷︷ ︸

dormancy initiation

R̃(x, t) denotes the rescaled resource density in units of cells/mL. This rescaling is defined as [R̃] =
[R/ϵ] =

µg
mL
µg

cells
= cells

mL
, with ϵ signifying the conversion rate from resources to bacteria, expressed in

µg/cells. Similarly, S(x, t), I(x, t) and D(x, t) represent the densities of susceptible, infected, and
dormant bacteria respectively, each in units of cells/mL. V designates the phage density, given in
viruses/mL. Given our experimental setup, bacteria are considered immotile, non-diffusing entities
that grow by metabolizing resources. In contrast, resources and viruses are assumed to diffuse.
Susceptible cells can either get infected by virulent phages with an infection rate of ϕ or transition
to dormancy in response to resource scarcity. When infected, these cells undergo a sequence
of stages nI of infected states Ii (cumulatively represented as Itotal =

∑nI

i=1 Ii), resulting in an
effective latent period which follows an Erlang distribution. After this latent period, the infected
cells can burst, releasing new free viruses with burst size β. Virus particles can bind to cells at an
absorption rate ϕ and degrade at a decay rate ω. The bacterial growth rate g(R̃), dormancy rate
f(R̃) and latent time η(R̃) are all resource-dependent and given by:

g(R̃) = rmax
R̃

K̃g + R̃
(1)

f(R̃) =
dmax

1 + es(R̃−σ)
(2)

η(R̃) = ηmax
g(R̃)

g(R̃0)
. (3)

The growth rate function follows the Monod equation were rmax is the maximum bacterial growth
rate and K̃g the rescaled Monod constant (similarly to R, [K̃g] = [Kg/ϵ] =

µg
mL
µg

cells
= cells

mL
). The
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Parameters common to all models
Variable Meaning Value Unit Source

R0 Initial resource level 103 µg/mL Estimate
R̃0 Rescaled initial resource level 109 (cells)/mL Estimate
S0 Initial cell density 107 (cells)/mL This work
V0 Initial viral density 106 (viruses)/mL This work
rmax Maximum bacterial growth rate 2 hrs−1 Literature
ε Resource to bacteria conversion rate 10−6 µ g/(cell) Estimate
Kg Monod constant 3.2 ·R0 µ g/mL This work
K̃g Rescaled Monod constant 3.2 · R̃0 (cells)/mL This work
ϕ Infection rate 1.8 · 10−8 mL/(hrs · (virus)) This work/Literature

ηmax Maximum latent rate 4/3 hrs−1 Literature
dmax Maximum transition to dormancy rate 1 hrs−1 This work
β Burst size 100 (viruses/cell) Literature
ω Viral decay 0.001 hrs−1 Literature
DR Resource diffusion constant 4 · 105 µm2/hrs Literature
DV Phage diffusion constant 2 · 103 µm2/hrs Estimate/Literature
nI Number of infected states 10 This work
s ”Sharpness” of transition to dormancy 10−7 Estimate

Table 1: Parameters common to all models (Adapted from the preprint of Măgălie et al.)

dormancy rate function is assumed to be solely dependent on resources. However, sporulation
becomes significant only when the resource density approaches a fraction σ of the Monod’s con-
stant. The value of parameter s determines the ’sharpness’ of the transition to dormancy. Finally,
we choose a resource-dependent lysis rate proportional to the growth rate g(R) [194, 195]. This
approach is rooted in the observation that plaque growth ceases when bacteria deplete nutrients.
For the initial conditions (t = 0), we assume uniformly distributed susceptible cells and resources
on a plane while the viruses are concentrated at the central point of the area of interest. Neither
dormant nor infected cells are present initially. Table 1 contains each model parameter’s meaning,
value, and units (see Măgălie et al. for a more detailed approach).

Model R can replicate the plaque growth dynamics with great precision. This becomes clear by
comparing the experimental results in Figure 18 with the theoretical predictions in Figure 22A, B.
Our theoretical analysis suggests that sporulation can contain the plaque expansion by reducing
the available targets for infection for the free viruses in the S+ case compared to the S− one.
Therefore, plaque growth ceases earlier, resulting in smaller plaques in the S+ strain. In a model
with starvation-induced sporulation and uniformly distributed initial resources, dormancy is most
evident in plate regions with the highest bacterial concentrations. These regions, distant from the
plaque, are where phages have minimal presence and exhibit the highest resource consumption.
Phages originating from the plaque’s center will diffuse and expand until they encounter an area
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densely populated with dormant cells, inhibiting further infection and plaque growth. This wave
of dormancy that halts their expansion, though, would have to travel from outwards to inwards.
This inhibitory dormancy wave moves from the outer regions inward. Therefore, a model relying
solely on resource exhaustion as a trigger for dormancy cannot replicate the observed sporulation
enhancement circle at the plaque’s periphery. This is corroborated by comparing the distribution
of the GFP intensity in Figure 21 with the modeling results on the distribution of dormant cells
in Figure 24A, B.

The evident gap in our understanding underscores the need to introduce a yet-to-be-identified
component capable of directing the dormancy trigger signal wave from the plaque’s center out-
wards. Given that viruses are the only entities moving outward from the plaque’s center, they
emerge as a compelling choice, pointing to an avenue for model refinements and exploration.

3.3.2 Phage-triggered sporulation can enhance dormant cells at the edge of the
plaque

We explore the possibility of virally induced dormancy by introducing it as an additional sporu-
lation trigger alongside the traditional starvation-induced one. In the new Model V, when a cell
encounters a viral particle, it can enter dormancy with probability p ∈ (0, 1) or get infected with
probability 1 − p. Identical plaque growth dynamics are observed across multiple (p, σ) combi-
nations, with the (p = 0, σ = 0.282 K̃g) combination corresponding to Model R. To incorporate
a time delay in spore formation, we present a possible series of consecutive states nE as part of
transitioning to dormancy. Therefore, this process follows an Erlang distribution. For nE = 0,
the transition to dormancy is instantaneous, whereas nE > 0 introduces a time delay. We select
the net transition rate between the E-states to be λnE, where λ = 4

3
hrs−1, to ensure the mean

transition rate remains constant with variations in the number of states. During these initial
stages of dormancy, cells are still vulnerable to phage infections, unlike the mature spores. Except
for these differences, Models R and V share the same variables with values set on Table 1. Model
V is described by the following set of equations. Elements in black are derived from Model R,
whereas the terms in red are introduced in Model V.
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∂R̃

∂t
= − g(R̃)(S + Etotal)︸ ︷︷ ︸

cell growth

+ DR∇2R̃︸ ︷︷ ︸
resource diffusion

∂S

∂t
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cell growth
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dormancy initiation
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viral infection
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∂I1
∂t

= (1− p)ϕ(S + Etotal)V︸ ︷︷ ︸
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− η(R̃)nII1︸ ︷︷ ︸
to next infected state
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∂V
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= βη(R̃)nIInI︸ ︷︷ ︸

viral lysis

−ϕ(S + Itotal + Etotal)V︸ ︷︷ ︸
viral infection

− ωV︸︷︷︸
viral decay
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viral diffusion

∂E1

∂t
= f(R̃)S︸ ︷︷ ︸

dormancy initiation

+ pϕSV︸ ︷︷ ︸
dormancy initiation

− λnEE1︸ ︷︷ ︸
dormancy process

− (1− p)ϕE1V︸ ︷︷ ︸
infection of exposed transitioning cells

∂Ei

∂t
= λnEEi−1︸ ︷︷ ︸

from previous transitioning state

− λnEEi︸ ︷︷ ︸
to next transitioning state or to dormancy

− (1− p)ϕEiV︸ ︷︷ ︸
infection of exposed transitioning cells

∂D

∂t
=


f(R̃)S︸ ︷︷ ︸

dormancy initiation

+ pϕSV︸ ︷︷ ︸
dormancy initiation

, nE = 0

λnEEnE︸ ︷︷ ︸
transition to dormancy

, nE > 0

where Etotal =
∑nE

i=1 Ei.
In Model V, the diffusing viruses trigger dormancy by contact at the expanding plaque’s

forefront, where most of the bacteria have not yet been lysed. Phage-induced dormancy decreases
towards the center, as most of the cells there are lysed. Additionally, if resources remain above
σ, dormancy also decreases further away from the plaque’s front, where phages are absent and
cannot trigger dormancy. Consequently, the model can reproduce the experimentally observed
peak in sporulation around the plaque’s edges semi-quantitatively, as evident in the comparison
between experimental and modeling results in Figure 21 and Figure 24C, D respectively at t = 5
hrs.

Consistent with our experimental data, the peak in sporulation is transient, appearing at t ≈
3 hrs and lasting until t ≈ 7 hrs (see Figure 24C, D). Given a 4-5 hour gap between dormancy
transition and GFP expression, this simulated onset at t ≈ 3 hrs matches well with our empirical
data, where the peak is noted at t ≈ 8 hrs (see Figure 21). As resources get exhausted, nutrient
scarcity triggers dormancy, making this model eventually converge to the same steady-state spore
density as Model R. Given that the presence of viruses immediately produces some spores, this
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Figure 22: Impact of sporulation on plaque size for Models R, V, and M. A A representative image of the spatial simulation
of bacterial densities for Model R. The snapshot is captured at t = 15 hrs, which corresponds to the endpoint of both experiments
and simulation as shown in B. B-D Overlay of experimental data and simulation results shows the time evolution of the mean plaque
radius for the S− and S+ strains in Models R, V, and M, respectively. The panels demonstrate that all of our models can replicate the
plaque growth dynamics. We define a plaque in the simulations as any region where the cell density is below 10% of its peak value at
that moment. The results are robust to threshold changes, ascribed to the sharp change in density at the plaque boundaries. Panels C
and D present simulations of Model V and Model M, respectively, for nE = 10, but the results are reproducible across different values
of nE (see Măgălie et al. for more details). (Adapted from Măgălie et al.).

model produces dormant cells from early in the plaque’s development, with spores within the
plaque building up right away from its center (see Figure 24C, D). In contrast, experimental
observations typically show a spore-free central region of the plaque, as depicted in Figure 21.

The results in Figure 24C, D are based on the assumption that the transition from Susceptible
to Dormant cell is instantaneous. However, transitioning to the spore state is a process that takes
time, during which sporulating cells remain vulnerable to lysis by phages [1]. By introducing
a delay in the dormancy process via a series of multiple intermittent states nE, the dormancy
peak around the plaque vanishes, as depicted in Figure 24E, F. This is because the bacteria that
transition to dormancy are in a phage-dense environment. Therefore, the time window is too
short for them to build up their defenses, making them vulnerable to infections and lysis by other
phages. By introducing a time delay in the transition to sporulation, Model V becomes equivalent
to Model R, as the diminishing resources emerge as the sole significant catalyst for dormancy.
Nevertheless, Model V consistently captures the plaque growth dynamics, irrespective of the time
delay, as evidenced in Figure 22C.
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The fragility of the sporulation ring arises from the implications of assuming sporulation ini-
tiation through direct contact with viruses. An alternative hypothesis suggests that sporulation
could be induced indirectly by a molecular component released upon infection and/or cell lysis. If
this molecule is smaller than the viruses, its faster diffusion could preemptively trigger sporulation
in cells, serving as a timely alert for the approaching viruses. We refer to this model as ’Model
M’. This model integrates new parameters, namely the rate at which molecules are adsorbed by
susceptible bacteria, µ = 5 · 10−11mL/(hrs · (cells)), the number of molecules released upon lysis
m = 104 and the molecule diffusion constant DM = 4 · 105µm2/hrs. Furthermore, σ = 0.2K̃g and
molecular concentrations are expressed in cells/mL - representing the equivalent density of cell to
spore transitions molecules can trigger (similar to the expression of resource density in terms of
equivalent cell density). Model M is described by the following system of equations. The black
elements come from Model R, the red terms were introduced in Model V, and the blue ones are
unique to Model M. For the connection between the three models, see also the schematics in Figure
23.

∂R̃

∂t
= − g(R̃)(S + Etotal)︸ ︷︷ ︸

cell growth

+ DR∇2R̃︸ ︷︷ ︸
resource diffusion

∂S

∂t
= g(R̃)S︸ ︷︷ ︸

cell growth

− ϕSV︸︷︷︸
viral infection

− f(R̃)S︸ ︷︷ ︸
dormancy initiation

− µMS︸ ︷︷ ︸
dormancy initiation

∂M

∂t
= mη(R̃)InI︸ ︷︷ ︸

molecule from lysate

− µMS︸ ︷︷ ︸
dormancy initiation

+ DM∇2M︸ ︷︷ ︸
molecule diffusion

∂I1
∂t

= ϕ(S + Etotal)V︸ ︷︷ ︸
viral infection

− η(R̃)nII1︸ ︷︷ ︸
to next infected state

∂Ii
∂t

= η(R̃)nIIi−1︸ ︷︷ ︸
from previous infected state

− η(R̃)nIIi︸ ︷︷ ︸
to next infected state or viral lysis

∂V

∂t
= βη(R̃)InI︸ ︷︷ ︸

viral lysis

−ϕ(S + Itotal + Etotal)V︸ ︷︷ ︸
viral infection

− ωV︸︷︷︸
viral decay

+ DV∇2V︸ ︷︷ ︸
viral diffusion

∂E1

∂t
= f(R̃)S︸ ︷︷ ︸

dormancy initiation

+ µMS︸ ︷︷ ︸
dormancy initiation

− λnEE1︸ ︷︷ ︸
dormancy initiation

− ϕE1V︸ ︷︷ ︸
infection of exposed transitioning cells

∂Ei

∂t
= λnEEi−1︸ ︷︷ ︸

from previous transitioning state

− λnEEi︸ ︷︷ ︸
to next transitioning state or to dormancy

− ϕEiV︸ ︷︷ ︸
infection of exposed transitioning cells

∂D

∂t
= λnEEnE︸ ︷︷ ︸

transition to dormancy

In line with the experimental observations, Model M can replicate both the reduced plaque
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Figure 23: Schematic representation of Models R, V, and M. Each shape corresponds to distinct elements in the system.
Specifically, squares represent explicit limited resources (R), susceptible bacteria (S), infected bacteria (I), dormant bacteria (D), bacteria
transitioning to dormancy upon virus encounter (E), free viruses (V), and signalling molecules (M). The smaller boxes contained in
the E and I sections indicate the potential count of E and I states, symbolized by nE and nI , respectively. The time cells spend in a
specific state is dictated by the number of the states. For the E states, nE can be set equal to zero, corresponding to a direct transition
from the Susceptible state to the Dormant state. The arrows represent interactions, and the direction they point to signifies causality.
The central elements of Model R, Model V, and Model M are highlighted in green, red, and blue, respectively. These are the Resource
for Model R, where we assume resource-only dependent dormancy, the Virus for Model V, where dormancy can be triggered by viral
contact aside from starvation and the Molecule for Model M, where we assume a small molecule in the lysate as an additional initiator
for dormancy. Common elements across all models are marked with solid lines, while model-specific components are outlined with
dashed lines, each in its respective color.

size in S+ and the growth dynamics as shown in Figure 22D. But in contrast to the other models,
Model M can also reproduce the transient sporulation peak at the plaque’s periphery even when
accounting for a time delay in the transition to dormancy. An example for t = 5 hrs is shown in
Figure 24 G-J, but the observed phenomenon persists for roughly the same time period represented
by the nE = 0 Model V. This happens because the small molecule diffuses faster and reaches the
susceptible cells before the phages do. While phages will reach a number of these cells before
they can fully develop their defenses, there exists a distance where the signalling molecules arrive
early enough to allow cells adequate time to transition to dormancy before the viruses approach.
At that distance, we will have the formation of the ring of sporulation that will block the phage
expansion, resulting in a smaller plaque. Given an absorbable molecule, as in our model, its
quantity would diminish while traveling outward. In the absence of new phage targets for lysis and
molecule production, this leads to a localized and prolonged enhancement of sporulation around
the plaques. This phenomenon persists until the outer region resources fall below σ. Unlike Model
V, this model also accurately replicates a central region within the plaque that’s devoid of both
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spores and cells (see Figure 24H, J) as observed experimentally (see Figure 21).

Figure 24: Simulated plaque growth and distribution of dormant cells for the S+ host at t = 5 hrs after phage addition.
The layout of the simulation results follows that of Figure 21B,C. Rows categorize results by model type: Models R, V, and M. The
left column panels A, C, E, G, and I depict dormant cell densities’ 2-D spatial distribution at t = 5 hrs. This is the central time point
within the t � 3 - 7 hrs window when our simulations show a transient spike in sporulation around the plaque. The right column panels
B, D, F, H, and J present the radial profile of dormant cells’ distribution. Displayed on the primary y-axis, the solid line shows the
radial distribution of dormant cells at t = 5 hrs, offering a one-dimensional perspective corresponding to the left panel in its row. The
dashed line on the secondary y-axis traces the evolution of these results at t = 15 hrs.
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3.4 Conclusion

While most experimental studies are conducted under optimal conditions for bacterial growth,
in nature, bacteria often encounter challenging environmental conditions [131, 196]. Our study
focuses on sporulation in Bacillus subtilis, a widely studied dormancy process in a model organism
for Gram-positive bacteria. We show that sporulation in Bacillus subtilis is not solely a function
of resource availability but can also be induced by viral presence, with profound implications
for phage-bacterial community dynamics. This complements earlier research highlighting that
dormancy in Listeria [197] and Archaea [167] can be virus-induced. However, while previous works
suggest direct viral contact as a trigger, our results lean towards an indirect mechanism mediated
by a small molecule released upon cell lysis, akin to the recent discovery by [186] regarding phage
tolerance in Bacillus subtilis. Identifying this molecule and understanding the exact sporulation
triggering mechanisms remains an exciting frontier for subsequent investigations.
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I. ABSTRACT

Dormancy is a common life history trait that allows individuals to enter a reversible state of reduced metabolic
activity . Among microorganisms, an archetypal example of dormancy involves the generation of endospores by
Bacillus and its relatives. While endospores confer tolerance to environmental stressors like energy limitation and
other abiotic conditions, they can also provide protect cells against virus infection . Here, we explore the effects of
sporulation on viral infection dynamics by examining the spatiotemporal spread of phage on B. subtilis populations
in a spatially structured environment. By comparing phage front dynamics in a sporulating bacterial strain to a
non-sporulating one, we show that sporulation decreases in plaque size by 2.x fold. This reduction arises due to an
early termination of the front rather than due to a change in front speed. Via a microscopic plaque assay protocol
we observe that spores are enhanced around the edges of the plaque. We then develop and evaluate mathematical
models of phage, bacteria, and spore dynamics to explore the effect of sporulation on phage-bacteria interactions and
on plaque formation. Our results suggest that sporulation is responsive to viral-induced lysis - likely via the release
of small molecules that diffuse before the arrival of virions - opening new avenues to explore the entangled fates of
phage and their bacterial hosts. End on coevolution? We will also have opportunity/need to develop a Significance
section if targetting PNAS

II. INTRODUCTION1

Dormancy is a survival strategy found across different types of organisms, including bacteria. Through dormancy,2

bacteria enter a reversible low-metabolic state, allowing them to survive for long periods of time without dividing3

[1–3]. An extensively studied type of dormancy in bacteria is sporulation in Bacillus subtilis. During sporulation,4

B. subtilis goes through asymmetric cell division, followed by a lengthy developmental stage to create an extremely5

resilient spore. Spores have been shown to be resistant to extreme temperatures, UV radiation and chemicals and can6

thus survive for decades under stressful laboratory conditions and even longer in natural environments (e.g., in some7

cases, at least tens of thousands of years) [4–6]. At an ecological scale, spores also increase genetic and phenotypic8

diversity in a population, thus increasing biodiversity [7, 8]. Sporulation can thus provide multiple types of adaptive9

benefits to the host both at an individual and population level.10

Another putative benefit of sporulation is to protect the host against phage infections. Bacterial viruses, com-11

monly referred to as bacteriophages or phages, are a significant driver of bacterial mortality. Bacteria have evolved12

intracellular and extracellular mechanisms to prevent phage infection and/or inhibit the viral replication cycle [9–12].13

Sporulation provides an extreme example: the protective outer layer is distinct from that of the actively growing cell14

and can be depleted or devoid of phage receptor binding domains. As a result, phage adsorption to spores can be15

reduced significantly and potentially stopped entirely [13]. Given its protective benefits, dormancy initiation may be16

linked to the presence of viruses. In one recent example, dormancy in Listeria ivanovii cells was shown to be triggered17

in response to viral infection in the population [14, 15]. Several studies have identified transcription factors found18

in phage genomes that have the potential to change sporulation patterns in the host [16–20]. These works have led19

to the hypothesis - not yet supported by direct evidence - that phages could modulate or even control sporulation20

decisions in the host, however, to our knowledge, no work has provided any evidence supporting this claim.21

∗Electronic address: jsweitz@umd.edu - Former affiliation: School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,
USA
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Sporulation can also change the phage infection dynamics at a population level. In a serial transfer coevolutionary22

experiment, sporulation has shown to stabilize oscillatory population dynamics induced by phages [13]. This effect23

however was quickly overshadowed by evolution of other mechanisms of resistance in the host. In this work, the24

infection dynamics was carried out in a well mixed environment in liquid media. On the other hand, phage infection25

of bacteria in an explicit spatial context mimics conditions found in soils and on surfaces and also provides distinct26

selection criteria compared to viral infection in liquid cultures [21–24].27

Plaque assays are a standard technique in which bacteria and viruses grow in a spatially structured environment28

and can be used to determine phage titers and infection dynamics kinetics. In a plaque assay, bacteria and phages are29

grown on a petri dish such that phages infect and diffuse to generate a plaque, i.e., a circular clearing in the bacterial30

lawn. As such, this experimental approach has been used to determine phage infectivity and study bacterial antiviral31

strategies [25, 26]. In parallel to experimental work, mathematical and numerical methods can also be used to model32

plaque development [27, 28]. Classic models express the plaque growth rate based on viral infection parameters such as33

viral diffusion, latent time or burst size [29, 30]. Other works use this framework to model bacteria-phage interactions34

in spatial setting [31, 32]. Using mathematical models alongside experimental data of plaque assays can provide a35

means to study the effects of sporulation in a spatially complex environment.36

In this study we use plaque assays to understand how dormancy changes the infection dynamics between B. subtilis37

and bacteriophages. We use a sporulating (WT) and non sporulating (SPOIIE) host to compare and contrast how38

the plaques grow over time. We also develop an inverted plaque assay to observe the plaques at a microscopic level39

and quantify sporulation with respect to the plaque. Using mathematical models, we address the interplay between40

sporulation and phage infection dynamics. Our results give insights on how sporulation can limit the spread of41

phages in a bacteria population, reducing the plaque size, and suggest that viruses can trigger sporulation, leading to42

collective defense of B. subtilis populations.43

III. METHODS44

A. Experimental setup45

1. Bacterial strains and growth conditions46

We use two ∆6 Bacillus subtilis strains: a wild type (WT) which can sporulate, and a SPOIIE mutant which has47

a SPOII mutation at locus E. This mutation stops the cell from sporulating at the asymmetrical division stage II48

which is early in the sporulation process [33]. We note that the ∆6 Bacillus strain, a derivative of the 168 laboratory49

strain, has a reduced genome without prophages and is immotile [34].50

Daniel section on strains and genetic analysis of the transformation.51

Bacterial cultures were grown in difco sporulation media (DSM). DSM is considered a rich media and has been52

widely used to obtain high sporulation rates [35, 36]. The cells are streaked from glycerol stock and grow at 37C53

overnight. After overnight growth, cells are inoculated from a singular colony and grown at 37C and 220 rpm for ≈54

5 hours until they reach OD ≈ 0.5.55

2. Phage strains and plaque assay56

We use three wild type bacteriophages of Bacillus subtilis: SPO1, SP10 and SPP1. These are lytic bacteriophages57

and have been obtained from viral strains origin, anything else to mention?.58

The plaque assay protocol is adapted from the ‘tube free agar-overlay’ protocol [37]. In brief, 100 µl of cell culture59

at OD 0.5, 100µl of viral solution and 2.5 ml of 0.3% agar soft overlay at 55C are spotted directly on the petri dish.60

Immediately after the overlay is poured, the plates are swirled so that the bacteria and viruses are evenly distributed.61

After the overlay sets at room temperature for 10 minutes, the plates are moved to a 37C incubator to grow overnight.62

To acquire a time-lapse of the plaque assays, the plates are placed on top of a white LED screen in a 37C room.63

Top-down images are captured every 5 minutes for 15 hours. The imaging protocol is the same for end-point images64

in that plates are set on top of a white LED screen and a top-down image is acquired. The end-point images are65

taken once the plaques reach a stable state, after 15 hours at 37C.66
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3. Inverted plaque assay67

To prepare an inverted plaque assay, the bacterial cultures are grown to reach exponential phase as described in68

section IIIA 1. In the meantime a viral dilution is prepared in 1.7 ml eppendorf tubes to reach a concentration of69

≈ 4 · 104pfu/ml. This is done in order to obtain about 2000 viruses in 50µl of solution and between 20-30 in the70

final dilution. During this time, agar pads are also prepared by pouring 6 ml of DSM media with a 2% agarose71

concentration on a 60 x 15 mm petri dish (based on protocol 3.3 from [38]). Using sterile techniques, the agar is cut72

with a scalpel in 9 squares of size 1cm x 1 cm (Fig. S1 panels A-D).73

Once the bacterial cultures reach OD ≈ 0.5, 1ml of culture is centrifuged at 15000 rpm for 5 minutes. 900 µl of74

supernatant is removed before tubes are mixed in a vortex and spinned down. The remaining 100µl of concentrated75

culture is mixed with 50µl of viral solution. Immediately afterwards, 2µl of the bacteria-virus mixture are spotted76

on a 50 mm glass-bottom petri dish (prod no 14027-20 Ted Pella). These smaller plates have a 50 mm glass bottom77

and are ideal for microscopy imaging. A 1 cm x 1cm agar pad is placed on top of each droplet and each glass-bottom78

petri dish can fit four experiments. The petri dish is covered and set it in a 37C incubator for 8-12 hours after which79

it can be imaged (Fig. S1 panel E).80

B. Image analysis81

1. Time-lapse and final point image analysis82

A binarization method that separates a plaque from the bacterial lawn is used to obtain the final size of plaques83

of the traditional plaque assay. To analyze the plaque sizes over time, we obtain the plaques and their centers for84

the last frame. The centers are defined as the centroid or center of mass of a connected component and once the85

centers of the plaques are identified, a rectangular search window is defined for each plaque and used to determine86

the plaque size in the previous frames. This method is used because of the difficulty to identify plaques when the87

contrast between the plaques and lawn is not as high as it is in the last frame. A more in depth description of this88

inward moving plaque identification algorithm with intermediate images is shown in SI sections VIIA 1 and VIIA 2.89

2. GFP image analysis90

To compute the average GFP intensity relative to the center of the plaque, the background fluorescence is first91

subtracted. The corrected image is then blurred and the center of the plaque is defined based on the row and column92

GFP levels. Finally, the distance between each pixel and the center is calculated to obtain panel B in Fig. 3. A more93

in depth description is given in SI section VIIA 3.94

C. Mathematical models and simulations95

1. Mathematical modeling96

We express the mathematical model as a Lotka-Volterra model, where viruses V infect susceptible bacteria S, which97

grow on explicit resources R. Susceptible bacteria can become infected cells I when viruses adsorb to them until they98

are lysed. Susceptible cells can also transition to dormant cells D, immune to phage adsorption. To account for99

different modes of dormancy initiation, we build 3 different compartmental models: Model R, Model V and Model100

M explained below and sketched in Fig. 4. For the initial conditions, we consider susceptible cells and resources are101

uniformly distributed on a plane at time t = 0 and viruses are concentrated at the central point of the area of interest.102

There are no dormant or infected cells at the beginning.103

Model R - Resource-only dependent dormancy104

In Model R dormancy is initiated at a low rate when resources are high (accounting for stochastic dormancy105

[8, 39] and at a much higher rate when resources are depleted. This is in line with the fact that starvation-triggered106

dormancy is the most widely accepted mechanism to describe dormancy initiation in Bacilus Subtillis [8, 33, 40].107

We write the associated system of differential equations below as a two dimensional Lotka-Volterra-type model, with108
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explicit resources and dormancy that depends solely on the amount of resources:109

110

∂R̃

∂t
= − g(R̃)S︸ ︷︷ ︸

cell growth

+ DR∇2R̃︸ ︷︷ ︸
resource diffusion

∂S

∂t
= g(R̃)S︸ ︷︷ ︸

cell growth

− ϕSV︸ ︷︷ ︸
viral infection

− f(R̃)S︸ ︷︷ ︸
dormancy initiation

∂I1
∂t

= ϕSV︸ ︷︷ ︸
viral infection

− η(R̃)nII1︸ ︷︷ ︸
to next infected state

∂Ii
∂t

= η(R̃)nIIi−1︸ ︷︷ ︸
from previous infected state

− η(R̃)nIIi︸ ︷︷ ︸
to next infected state or viral lysis

∂V

∂t
= βη(R̃)InI︸ ︷︷ ︸

viral lysis

− ωV︸︷︷︸
viral decay

−ϕ(S + Itotal)V︸ ︷︷ ︸
viral infection

+ DV ∇2V︸ ︷︷ ︸
viral diffusion

∂D

∂t
= f(R̃)S.︸ ︷︷ ︸

dormancy initiation

(1)

where R̃(x, t) is the rescaled density of resources, expressed in units of cells/mL. The rescaling is performed as [R̃] =

[R/ϵ] =
µg
mL
µg

cells
= cells

mL , where ϵ denotes the rate of resource to bacteria conversion measured in µg/cells (see Table I and

Parameter estimations for details). Similarly, S(x, t), I(x, t) and D(x, t) are the densities of susceptible, infected, and
dormant bacteria, respectively, each in units of cells/mL. V designates the density of phages in viruses/mL. Given our
experimental setup, we assume immotile and non-diffusing bacteria that grow by consuming resources. In contrast,
resources and viruses are assumed to diffuse. The susceptible cells can either get infected by virulent phage with
infection rate ϕ or become dormant if the density of the resources is low. Once infected, the cells go through a series
of sequential stages nI of infected states Ii (the sum of which is given by Itotal =

∑nI

i=1 Ii), resulting in an effective
latent time delay which follows an Erlang distribution. After the latency period, the infected cells can burst yielding
new free viruses with burst size β. Virus particles can adsorb to cells at a rate ϕ and decay with rate ω. The bacterial
growth rate g(R̃), dormancy rate f(R̃) and latent time η(R̃) are dependent on the available resources and are given
by:

g(R̃) = rmax
R̃

K̃g + R̃
(2)

f(R̃) =
dmax

1 + es(R̃−σ)
(3)

η(R̃) = ηmax
g(R̃)

g(R̃0)
. (4)

The growth rate function follows the Monod equation were rmax is the maximum bacterial growth rate and K̃g the111

rescaled Monod constant (similarly to R, [K̃g] = [Kg/ϵ] =
µg
mL
µg

cells
= cells

mL ). The dormancy rate function is assumed112

to be solely dependent on resources but with sporulation starting effectively only when the resource density is close113

to a fraction σ of the Monod’s constant (for Model R σ ≈ 0.282K̃g. As a reminder, when the resources are equal114

to the Monod’s constant the growth rate is equal to the half of the growth rate). The ’sharpness’ of the transition115

to dormancy is determined by the value of parameter s. Finally, we choose a resource dependent lysis rate that is116

proportional to the growth rate g(R) [41, 42]. This choice is justified by the fact that the plaques stop growing as117

bacteria have exhausted the available nutrients. The meaning, value and units of the model parameters are contained118

in the following table. Full details of parameter estimation are in Section VIIB 2.119

120
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Parameters common to all models
Variable Meaning Value Unit Source

R0 Initial resource level 103 µg/mL Estimate

R̃0 Rescaled initial resource level 109 (cells)/mL Estimate
S0 Initial cell density 107 (cells)/mL This work
V0 Initial viral density 106 (viruses)/mL This work

rmax Maximum bacterial growth rate 2 hrs−1 Literature
ε Resource to bacteria conversion rate 10−6 µ g/(cell) Estimate
Kg Monod constant 3.2 ·R0 µ g/mL This work

K̃g Rescaled Monod constant 3.2 · R̃0 (cells)/mL This work
ϕ Infection rate 1.8 · 10−8 mL/(hrs · (virus)) This work/Literature

ηmax Maximum latent rate 4/3 hrs−1 Literature
dmax Maximum transition to dormancy rate 1 hrs−1 This work
β Burst size 100 (viruses/cell) Literature
ω Viral decay 0.001 hrs−1 Literature
DR Resource diffusion constant 4 · 105 µm2/hrs Literature
DV Phage diffusion constant 2 · 103 µm2/hrs Estimate/Literature
nI Number of infected states 10 This work
s ”Sharpness” of transition to dormancy 10−7 Estimate

TABLE I: Parameters common to all models

Model V - Direct interaction with viruses as an additional trigger of dormancy121

We expand on resource dependent dormancy and consider a scenario in which viruses can also trigger sporulation.122

Specifically, in Model V, in addition to the conventional starvation-induced dormancy, a cell may enter a dormant state123

with a probability p ∈ (0, 1) or become infected with a probability 1−p upon encountering a viral particle. This yields124

a family of (p, σ) combinations that exhibit identical plaque growth dynamics, with the (p = 0, σ = 0.282K̃g) case125

corresponding to Model R. In order to account for a time delay for spore formation we introduce a potential series of126

multiple sequential stages nE to become dormant. Hence, the dormancy initiation time follows an Erlang distribution.127

The transition to dormancy is immediate for nE = 0, while a delay is introduced for nE > 0 (Etotal =
∑nE

i=1 Ei). The128

net transition rate between the E-states is λnE , where λ = 4
3hrs

−1, so that the mean transition rate remains constant129

with varying number of states. Cells in the dormancy initiation phase can become infected by phage, whereas spores130

cannot be infected. All the rest of the variable values are the same between models R and V (as shown in Fig. 4131

and in the table of common variables for the two models). The following system of equations expands Model R (see132

equations set (1) for comparison) with the red terms that are introduced in Model V.133
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∂R̃

∂t
= − g(R̃)(S + Etotal)︸ ︷︷ ︸

cell growth

+ DR∇2R̃︸ ︷︷ ︸
resource diffusion

∂S

∂t
= g(R̃)S︸ ︷︷ ︸

cell growth

− f(R̃)S︸ ︷︷ ︸
dormancy initiation

− (1− p)ϕSV︸ ︷︷ ︸
viral infection

− pϕSV︸ ︷︷ ︸
dormancy initiation

∂I1
∂t

= (1− p)ϕ(S + Etotal)V︸ ︷︷ ︸
viral infection

− η(R̃)nII1︸ ︷︷ ︸
to next infected state

∂Ii
∂t

= η(R̃)nIIi−1︸ ︷︷ ︸
from previous infected state

− η(R̃)nIIi︸ ︷︷ ︸
to next infected state or viral lysis

∂V

∂t
= βη(R̃)nIInI︸ ︷︷ ︸

viral lysis

−ϕ(S + Itotal + Etotal)V︸ ︷︷ ︸
viral infection

− ωV︸︷︷︸
viral decay

+ DV ∇2V︸ ︷︷ ︸
viral diffusion

∂E1

∂t
= f(R̃)S︸ ︷︷ ︸

dormancy initiation

+ pϕSV︸ ︷︷ ︸
dormancy initiation

− λnEE1︸ ︷︷ ︸
dormancy process

− (1− p)ϕE1V︸ ︷︷ ︸
infection of exposed transitioning cells

∂Ei

∂t
= λnEEi−1︸ ︷︷ ︸

from previous transitioning state

− λnEEi︸ ︷︷ ︸
to next transitioning state or to dormancy

− (1− p)ϕEiV︸ ︷︷ ︸
infection of exposed transitioning cells

∂D

∂t
=


f(R̃)S︸ ︷︷ ︸

dormancy initiation

+ pϕSV︸ ︷︷ ︸
dormancy initiation

, nE = 0

λnEEnE︸ ︷︷ ︸
transition to dormancy

, nE > 0.
(5)

Model M - A messenger molecule in the lysate triggers dormancy134

Model M represent a scenario where sporulation is triggered by a small molecule that is released to the environment135

upon cell lysis. The new parameters include the rate at which messenger molecules are adsorbed by susceptible136

bacteria, µ = 5 · 10−11mL/(hrs · (cells)), the number of messenger molecules released upon lysis m = 104 and the137

molecule diffusion constant DM = 4 · 105µm2/hrs. It should be noted that σ = 0.2K̃g and molecular concentrations138

are represented in cells/mL - representing the equivalent density of cell to spore transitions molecules can trigger139

(analogous to the representation of resource concentrations in terms of equivalent cell densities).140

The following system of equations expands Model R and Model V (see equations sets (1) and (5) for comparison141

with the black and red elements in Model M respectively) with the blue terms that are introduced in Model M.142
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∂R̃

∂t
= − g(R̃)(S + Etotal)︸ ︷︷ ︸

cell growth

+ DR∇2R̃︸ ︷︷ ︸
resource diffusion

∂S

∂t
= g(R̃)S︸ ︷︷ ︸

cell growth

− ϕSV︸ ︷︷ ︸
viral infection

− f(R̃)S︸ ︷︷ ︸
dormancy initiation

− µMS︸ ︷︷ ︸
dormancy initiation

∂M

∂t
= mη(R̃)InI︸ ︷︷ ︸

molecule from lysate

− µMS︸ ︷︷ ︸
dormancy initiation

+ DM∇2M︸ ︷︷ ︸
molecule diffusion

∂I1
∂t

= ϕ(S + Etotal)V︸ ︷︷ ︸
viral infection

− η(R̃)nII1︸ ︷︷ ︸
to next infected state

∂Ii
∂t

= η(R̃)nIIi−1︸ ︷︷ ︸
from previous infected state

− η(R̃)nIIi︸ ︷︷ ︸
to next infected state or viral lysis

∂V

∂t
= βη(R̃)InI︸ ︷︷ ︸

viral lysis

−ϕ(S + Itotal + Etotal)V︸ ︷︷ ︸
viral infection

− ωV︸︷︷︸
viral decay

+ DV ∇2V︸ ︷︷ ︸
viral diffusion

∂E1

∂t
= f(R̃)S︸ ︷︷ ︸

dormancy initiation

+ µMS︸ ︷︷ ︸
dormancy initiation

− λnEE1︸ ︷︷ ︸
dormancy initiation

− ϕE1V︸ ︷︷ ︸
infection of exposed transitioning cells

∂Ei

∂t
= λnEEi−1︸ ︷︷ ︸

from previous transitioning state

− λnEEi︸ ︷︷ ︸
to next transitioning state or to dormancy

− ϕEiV︸ ︷︷ ︸
infection of exposed transitioning cells

∂D

∂t
= λnEEnE

.︸ ︷︷ ︸
transition to dormancy

(6)

D. Data and code availability143

All simulations were carried out in Python (Jupyter notebooks) and image analysis was carried out in MATLAB v144

2020a. Scripts and data are available on Github at https://github.com/WeitzGroup/Plaque early sporulation.145

IV. RESULTS146

A. SPOIIE plaques are larger than WT plaques147

We perform standard plaque assays of phage SPO1 with SPOIIE and WT hosts, as described in section IIIA 2.148

After 15 hours at 37C, the plaques stop growing in all conditions examined. The measured SPOIIE plaques are larger149

than WT plaques (Fig. 1 A). On average, the radius of SPOIIE plaques is ∼ 2.2 fold greater than the radius of150

WT plaques and a two-sample t-test confirms that the two data sets have unequal means with a p-value p < 10−3
151

(SPOIIE plaques are 1.43mm± 0.33mm and WT plaques are 0.64mm± 0.2mm). We assessed the robustness of this152

finding by comparing plaque sizes on sporulating vs. non-sporulating hosts using bacteriophage SPP1. A 3.5 fold153

plaque radius reduction was observed for bacteriophage SPP1 as the two-sample t-test confirmed unequal means with154

a p-value smaller than 10−3 (SPOIIE are 1.22mm ± 0.15mm and WT plaques are 0.35mm ± 0.12mm as shown in155

Fig. S2). These results indicate that sporulation limits the spread of phage infections in B. subtilis populations.156

B. SPOIIE and WT plaques have similar growth rates, but WT plaques stop growing early157

To quantify plaque growth dynamics, we record a time-lapse of the SPO1 plaques. We extract the plaque sizes at158

every 5 minutes over 15 hours (see methods section III B and SI section VIIA 2 for in depth details) and show growth159

curves for the SPOIIE plaques and WT plaques in Fig. 2. Both SPOIIE and WT plaques start growing at the 3 hour160

mark and continue to grow in unison for 2 hours. However, the WT plaques reach a plateau shortly after 5 hours,161

whereas the SPOIIE plaques continue to grow until reaching plateau at 13 hours (see WT and SPOIIE plate sections162
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in Figure 2). This leads to a SPOIIE mean plaque size of 1.28±0.24mm and WT mean plaque size of 0.43±0.12mm.163

We note that even though the experiments in Figures 1 and 2 have the same setup, the final WT plaque sizes are164

smaller in the time-lapse experiment compared to the endpoint one. This could be due to small differences in initial165

conditions or due to different experimental conditions, e.g. different incubators and imaging equipment are needed166

for a time-lapse compared to an endpoint experiment.167

We distinguish three phases of plaque development: a lag phase in which plaques are not visible, an enlargement168

phase in which the plaque appears to be growing at a constant rate and a final phase in which phages stop replicating169

[27]. We fit a linear function to the enlargement phase for each SPOIIE and WT trajectory to obtain 46 growth rates170

for SPOIIE plaques and 100 growth rates for WT plaques. The SPOIIE mean growth rate is 117 ± 26µm/hr and171

the mean WT growth rate is 136 ± 69µm/hr. We conclude that the two bacterial strains have similar growth rates172

even though the final mean plaque size is almost 3 times larger for SPOIIE compared to WT. The early cessation of173

plaque growth for sporulating vs. non-sporulating hosts suggests that although phage propagate at a similar rate on174

either host, there is an additional microscopic mechanisms limiting the ability of phage to lyse hosts.175

C. Sporulation is enhanced around plaques edges176

We developed an inverted plaque assay to study the impact of sporulation on the microscopic dynamics of plaques177

(see section IIIA 3). Before doing so, we first repeated our analysis of plaque size in SPOIIE vs WT hosts as measured178

using an inverted plaque assay. Consistent with the findings of a traditional plaque assay, we found that WT inverted179

plaques are smaller than SPOIIE by a factor of 2.8 and reported p-value smaller than 10−3 (Fig. S3).180

In addition to quantifying plaque size, we can use the inverted plaque assay to analyze viral plaques at a microscopic181

scale and quantify sporulation levels at the center and edge of a plaque (Fig. 3). The bright-field image of a plaque182

is shown in panel A and we see that it resembles a traditional viral plaque with a clearing in the middle surrounded183

by a bacterial lawn. Using the GFP channel in panel B, we notice that there are no spores at the center and spores184

are enhanced around the edge of the plaque compared to the bacterial lawn closer to the edge of the image. We note185

that this effect is transient and was captured 8 hours after the experiment was set up. Indeed, after a prolonged186

time period of ≈ 16h, a different experiment shows that the bacterial lawn reaches sporulation levels similar to those187

found around the plaque edge (Fig. 3 F). This suggests that sporulation is triggered early in cells that are close to188

viral-induced lysis.189

The distribution of spores can be quantified by measuring the GFP intensity as a function of the distance to the190

center of the plaque (Fig. 3 C). Consistent with there being no spores inside the plaque, the lowest GFP level is191

obtained when the distance to plaque center is less than ≈ 25µm. GFP expression is increased between ≈ 15−100µm192

before decreasing to background far from plaque centers. We note that the enhancement of sporulation around the193

plaque edge in Fig. 3B is not an isolated event and we can observe this effect in repeated experiments and at different194

stages of the plaque formation process in Fig. S6D-F.195

D. Modeling with resource-only induced dormancy can reproduce the plaque growth dynamics, but not the196

spore enhancement around the plaques197

To better understand what factors affect plaque growth, we developed and analyzed a PDE model (see section198

III C 1) of phages spreading across a bacterial lawn including either sporulating (S+) or non-sporulating (S−) bacteria.199

Our objective is to compare simulated plaque spreading dynamics at both macroscopic and microscopic scales with200

observations, in light of alternative hypotheses for sporulation initiation. We first test the scenario where dormancy is201

only resource-dependent (Model R), mimicking starvation-induced sporulation at low resource concentration, which202

is the most widely accepted dormancy initiation mechanism in B. Subtilis [8, 33, 40].203

The initiation of dormancy via resource depletion effectively reproduces the observed reduction in plaque size in our204

experiments, as evidenced by a comparison between Fig. 1 (experimental results) and Fig. 5A (simulation results).205

The underlying reason for this is that viruses in the S+ model have fewer available cells to infect compared to those206

in the S− model. Furthermore, Model R precisely replicates the dynamics of plaque growth, accurately capturing207

the early cessation of expansion observed in plaques associated with the S+ strain, as corroborated by Fig. 5B. In208

a model with starvation-induced sporulation, dormancy typically starts from the exterior part of the plate where209

bacteria growth is not controlled by phages. Therefore outside the plaque resources are abruptly depleted sooner,210

triggering dormancy in a large fraction of cells uniformly distributed out of the reach of phage activity (i.e., outside211

the plaque). Phages originating from the plaque’s center will eventually reach a region with dormant cells in high212

density, which will prevent further infection spread leading to smaller plaques for the S+ strain.213



9

Importantly, Model R cannot replicate the key, dynamical phenomenon of the enhancement of sporulation around214

the plaques, as indicated in Fig.6 A,B. This is due to the fact that in the absence of viruses (far out of the plaque)215

resources will be consumed equally triggering a uniformly distributed background of dormant cells. With increasing216

proximity to the plaque there will be less bacteria due to lysis, therefore more resources and lower dormant cell densi-217

ties. At the edge of the plaque there is a precipitous decrease in bacteria density as all cells are killed, corresponding218

to a sharp decrease in dormant cells (see Fig. 6 A,B). Therefore, in this model the only signal triggering dormancy,219

lack of resources, travels from outside the plate towards the phage-occupied center. In the absence of a dormancy220

signal coming from the center there cannot be a peak in spore density at the edge of the plaque. Thus, while the221

model offers valuable insights into the dynamics of plaque growth and bacterial dormancy, it falls short in reproducing222

the experimentally observed localized peak in dormant cell density at the plaque’s edge. This limitation highlights the223

need for incorporating a missing element in the modeling of dormancy triggers, one that can relay information from224

the plaque’s center to its periphery. Given that viruses (and viral lysate products) are the only entities present at the225

center, they are prime candidates for this role, presenting an avenue for further investigation and model refinement.226

E. Phage-triggered sporulation can enhance dormant cells at the edge of the plaque227

First, we study a model where bacteria dormancy is triggered both by resource depletion and by contact with phages228

(see Model V in Methods). In our simulations, when a cell encounters a viral particle, it can enter a dormant state229

with probability p or get infected with probability 1 − p. Model V can also reproduce the plaque growth dynamics230

(see Fig. 5C and Fig. S8). In this model, viruses diffusing just outside the plaque trigger dormancy while most of the231

bacteria have not yet been lysed, whereas the spore density decreases towards the center as there are not enough cells232

inside the plaque. Further away from the plaque, there is less phage-induced dormancy. If resources have not dropped233

yet below σ, the spore density drops, reproducing the experimentally observed peak at the edge of the plaque (see234

Fig. 6C,D). Similarly to our experiments (Fig. 3D-F), the peak in our simulations is transient, emerging at t ≈ 3 hrs235

and persisting until t ≈ 7 hrs. Given that there is a 4-5 hour interval between the transition to dormancy and the236

expression of GFP, this simulated onset at t ≈ 3 hrs closely aligns with our experimental observations, which show237

the peak at t ≈ 8 hrs.238

The peak is transient because, when all resources are depleted at the end, dormancy is triggered by a lack of239

nutrients. Consequently, Model V will relax to the same steady-state spore density profile as Model R. Therefore240

Model V can qualitatively reproduce the transient sporulation enhancement around the plaques as manifested in the241

comparison between the experimental (Fig. 3) and the modeling results (Fig. 6C,D)) at t = 5 hrs. Since the presence242

of viruses immediately produces some spores, Model V produces dormant cells from the early stages of the plaque243

formation, with spores within the plaque building up right away from its center (see Fig. 6C,D). Conversely, in the244

experiments, the central region of the plaque typically does not have spores (see Fig. 3).245

The results in Fig. 6C,D assume direct conversion from susceptible cell (S) to dormant cell (D). Reaching the spore246

state, though, requires some time in which sporulating cells could still be lysed by phages (cite Daniel). When adding247

a delay to dormancy, through the introduction of a sequence of multiple intermittent states nE (see Methods, Model248

V), Model V retains its ability to reproduce the plaque growth dynamics (see Fig. 5C and Fig. S8A) but it fails to249

reproduce the peak in dormancy around the plaque (see Fig. 6E,F and Fig. S9). The inability to capture the peak250

in dormancy is a consequence of the fact that the bacteria that initiated the slow dormancy transition due to direct251

contact with phages are in a phage-dense environment. Therefore, the cells will not have enough time to build their252

defenses before they get infected and lysed by other phages. With the introduction of time delay for transition to253

sporulation, Model V becomes effectively equivalent to Model R since the reduction in the amount of resources is the254

only consequential driver of dormancy.255

An alternative hypothesis is that sporulation is induced indirectly through some molecular cue rather than by direct256

contact. We propose a model (Model M) in which dormancy is triggered by the adsorption of a small molecule released257

from cells during infection and/or released into the environment upon lysis. Model M can reproduce the observed258

reduction of the plaque size in systems with sporulating cell strains and the plaque growth dynamics, as shown in Fig.259

5D and Fig. S8B. Notably, Model M also successfully replicates the transient peak of sporulation around the plaques260

for the same time-period as Model V with nE = 0, even with a delayed transition to dormancy (see Fig. 6G-J).261

Central to this observation is the assumption that the signaling molecule diffuses faster than viruses (compatible with262

it being much smaller). At a certain distance from the center, cells encountering the molecule complete spores at263

densities high enough to stop phage infections before phage diffuse that far. Towards the center, lysis kills cells that264

are transitioning to spores, reducing their density. Farther out than the peak, where the molecule did not get to high265

densities yet and cells did not have time to complete the sporulation process, spore density decreases again. Model M266

can also reproduce a central region of the plaque, empty of spores and cells (see Fig. 6G-J) as observed experimentally267

(see Fig. 3).268
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FIG. 1: Plaque sizes of phage SPO1 with SPOIIE and WT host. A Square cropped sections of size 2cm x 2cm from
SPOIIE (left) and WT (right) plaque assays are shown. Both plaque assays were carried as described in section IIIA 2. SPOIIE
and WT plaque assays where prepared in parallel and have the same initial and growth conditions. B Final plaque size of
the two plaque assays shown in panel A. The images were analyzed using binarization and watershed algorithm (see SI section
VIIA 1). The plaque sizes (98 plaques for SPOIIE and 137 for WT) were plotted using a violin plot and individual points
are shown as a scatter plot. The median SPOIIE and WT plaque sizes are shown through the horizontal bold lines. SPOIIE
plaques have a radius of 1.43± 0.33mm and WT plaques have a radius of 0.64± 0.2mm. A two sample t-test was performed
to reject the hypothesis that the two distributions have equal means with a p-value less than 10−3.
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FIG. 2: Time lapse of plaque growth for SPOIIE and WT host. A traditional plaque assay was performed at 37C
and images were captured every 5 minutes over a period of 15 hours. The plaque sizes were estimated for each time point (46
plaques for SPOIIE and 100 plaques for WT) using image analysis techniques described in brief in section III B and in detail in
SI section VIIA 2. Cropped sections from the time-lapse are shown at 5 and 13 hours for parts of the WT and SPOIIE plates.
The mean over all plaques is shown in the solid line and the standard deviation is shown in the shaded area. Intermediate
images of the independent plaque trajectories are shown in figure S5.
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FIG. 3: Sporulation is enhanced around plaque edges. Bright-field image of inverted plaque assay is shown in panel A
and fluorescent images are shown in panels B, D, E and F. Images A, B, D and E were taken at 40x magnification and image
F at 20x magnification. The inverted plaque assay was carried out with phage SPO1. The GFP image was adjusted to remove
background fluorescence and enhance contrast (see section VIIA 3). C GFP analysis of image in panel B. The GFP image is
blurred and the green component in every pixel is computed based on the distance to the center of the plaque (see SI section
VIIA 3). Distance to the center of the plaque is shown on the x-axis in µm and GFP intensity in the blurred image is shown
on the y axis. The solid line represents the mean and the shaded area is the standard deviation. D, E and F show inverted
plaque assays at different time points from earliest in panel D to latest in panel F. The image in panel D was taken within the
first 8 hours when only cells in the vicinity of the plaque were sporulating. The image in panel F was taken after 12 hours
when most of the cells have become spores.
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FIG. 4: Schematic comparison of Models R, V, and M. Each shape represents a specific element in the system. Squares
correspond to explicit limited resources (R), susceptible bacteria (S), infected bacteria (I), dormant bacteria (D), bacteria
transitioning to dormancy while exposed to viruses (E), free viruses (V) and signaling molecules (M). In the E and I boxes,
the smaller boxes signify the potential number of E and I states, denoted as nE and nI respectively. The number of states
defines the duration that cells spend in that state (see Methods-Mathematical Modeling III C 1). For the E states, nE can
be set equal to zero, which corresponds to a direct transition from the Susceptible state to the Dormant state. The arrows
indicate interactions, with their direction showing causal effects. The central elements of Model R, Model V, and Model M
are highlighted in green, red, and blue respectively. These are, the Resource for Model R, where we assume resource-only
dependent dormancy, the Virus for Model V, where dormancy can be triggered by viral contact aside from starvation and the
Molecule for Model M, where we assume a messenger molecule in the lysate as an additional initiator for dormancy. Elements
with solid lines are shared across all models, whereas elements with dashed lines are unique to specific models and correspond
to the model of the same color.
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FIG. 5: Impact of sporulation on plaque size for Models R, V, and M. A A snapshot from the spatial simulation
of bacterial densities in Model R, taken at 15 hours, corresponding to the terminal point of the time-series shown in B. The
simulation uses the parameters from Table I and is a representative instance of the plaques’ spatial simulation. B-D Overlay
of experimental data and computational simulations shows the time evolution of the mean plaque radius for the S− and S+

strains in Models R, V, and M, respectively. In the simulations, a plaque is defined as the area where cell density is less than
10% of the maximum density at that time point. The results exhibit robustness to variations in that threshold, attributed to
the abrupt density changes at plaque boundaries. In panels C and D, simulations for Model V and Model M respectively are
performed with nE = 10. Results are replicable across different values of nE (see Fig. S8 for the nE = 0 case).
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FIG. 6: Simulated plaque growth and distribution of dormant cells for the S+ host at t = 5 hrs after phage
addition. The arrangement of the simulation results aligns with that presented in Fig. 3B,C. Rows are organized by model
type as results for Models R, V and M. The left column (panels A, C, E, G, I) depict dormant cell densities’ 2-D spatial
distribution. The results correspond to t = 5 hrs, which is centered in the time frame of t ≈ 3 - 7 hrs during which the transient
peak in sporulation around the plaque emerges in our simulations. The right column (panels B, D, F, H, J) show the distance
profile of dormant cells distribution starting from the center of the plaque. The solid line (primary y-axis) corresponds to
results at time = 5 hrs and is effectively a 1-D slice of the left panel at the same row, showing the radial distribution of dormant
cells starting from the center of the plaque and moving outwards. The dashed line, plotted on the secondary y-axis, represents
the progression of the solid line at 15 hours.
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Fig. S1: Inverted plaque assay protocol. Panels A through D show the preparation of the agar pad for the inverted plaque
assay in chronological order. The agar layer is cut with a sterile scalpel and the excess agar is removed without moving the
square pads. E A top-down image of an inverted plaque assay is shown. The area enlarged 4 times shows the plaques (darker
circular areas) of phage SPO1 on WT host and DSM media.

Fig. S2: Plaque sizes of phage SPP1 with WT and SPOIIE host. A and B Two entire plaque assays are shown on
DSM media. WT host is shown in panel A and SPOIIE host in panel B. A small area in panel A is enlarged and shown at 2.5x
magnification so that the plaques become visible. C Final plaque size of the two plaque assays shown in panels A and B. The
images were analyzed by hand using FIJI. The plaque sizes (14 data points for SPOIIE and 16 for WT) were plotted using a
violin plot and individual points are shown as a scatter plot. The median SPOIIE and WT plaque sizes are shown through
the horizontal bold lines. SPOIIE plaques have an average radius of ≈ 1.22mm and standard deviation of 0.15mm and WT
plaques have an average radius of 0.35mm and standard deviation of 0.12mm. A two sample t-test was performed to reject the
hypothesis that the two distributions have equal means with a p-value less than 1e-16.
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Fig. S3: Inverted plaque sizes of phage SPO1 with SPOIIE and WT host. A Two inverted plaques are shown, both
obtained from an inverted microscope (SPOIIE host on the left is taken at 20x magnification and WT host on the right is
taken at 40x magnification). B Multiple plaques are measured and the final size distribution is shown for WT and SPOIIE
host (19 data points for SPOIIE and 39 for WT). The images were analyzed by hand using Fiji. The median SPOIIE and WT
plaque sizes are shown through the horizontal bold lines. WT inverted plaques have an average radius of 77 microns and 15
microns standard deviation and SPOIIE inverted plaques have an average radius of 216 microns and 22 standard deviation. A
two sample t-test was performed to reject the hypothesis that the two distributions have equal means with a p-value less than
1e-34.
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Fig. S4: Intermediate steps for the final point image analysis algorithm. Intermediate images for the steps outlined in
section VIIA 1 are shown. The steps can be described as 1 - original image, 3 - mask from threshold binarization, 5 - watershed
algorithm, 6+7-exclusion of false positives, 9-comparison of original image to final plaque centers.
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Fig. S5: Individual plaque sizes at different stages during image analysis SPOIIE plaques are shown in blue and WT
plaques are shown in orange across all panels. A Raw plaque sizes data are shown after the first part in step 4 in section VIIA 2.
The plaque size is determined based on a re-scaling and threshold algorithm, hence many early points are false positives in that
a plaque is detected when there is none in reality. B Plaque sizes at the end of step 4, after setting false positive plaques to
zero. All data in the first 33 frames is assumed to be zero. The false positives in the frames 34-70 are determined based on the
number of connected components. C Final individual trajectories for plaque sizes. The individual growth curves in panel B are
smoothed out with a moving average of size 7. These are the trajectories used to determine the mean and standard deviation
in figure 2.

Fig. S6: Additional images of inverted plaque assays at 100x magnification.The top panels A1-D1 represent the raw
GFP image and the bottom ones A2-D2 the raw bright-field corresponding image. All plaques are of phage SPO1 and DSM
media. The scale bar in each panel represents 50µm.
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Fig. S7: Intermediate steps for GFP image analysis A Original image used to calculate the background fluorescence.
This image, alongside images in panels B through E, has 1608x1608 pixels. B Adjusted background fluorescence in which the
bright spots have been replaced with an average of the surrounding area. C Original GFP image of the inverted plaque. D
Adjusted GFP image. This image is equivalent to subtracting panel B from C. E Blurred image obtained from applying an
averaging filter of size 64x64 to the image in panel D. The white ’x’ represents the center of the plaque as computed in panel F.
F The two solid lines represent the sum and row column of the GFP intensity in panel E. The two peaks for each sum are circled
with their respective colors. The midpoints of the blue and orange circles are 831.5 and 832 and represent the coordinates for
the plaque center shown in panel E.
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Fig. S8: Impact of sporulation on plaque size for Models V, and M. A,B An overlay of experimental data and
computational simulations showing the time evolution of the mean plaque radius for the S− and S+ strains in Models V and
M, respectively. The results displayed here are for nE = 0, demonstrating their consistency across different values of nE , as
further supported by the data in Fig. 5C,D.

Fig. S9: The impact of time-delayed transition to dormancy in Model V. The figure shows how changes in nE affect
the radial profile of dormant cells’ distribution for the S+ strain at t = 5 hrs. Darker shades of green represent higher numbers
of nE states. The two extreme cases nE = 0 and nE = 10 correspond to the two cases of Model V presented in Fig. 6D, F.
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V. DISCUSSION269

In this paper we studied the propagation of phage plaque formation on B. subtilis strains that can (WT) and270

cannot sporulate (SPOIIE). Through analysis of plaque front dynamics, we found that plaques on either WT or271

SPOIIE population initially grow at similar speeds but that plaques on WT populations exhibit rapid decreases in272

front speeds, reducing plaque size by 50% or more. We developed an inverted plaque assay to image plaques at a273

microscopic level and found that sporulation is enhanced around the edges of the plaque well before resource depletion274

leads to the emergence of spores in the population as a whole. We developed a series of PDE models of phage spread275

in bacterial populations as a means to explore the impact of resource-, virus, or small molecular-induced initiation of276

dormancy. In all cases, we show that dormancy initiation can lead to reduce termination of plaque growth despite277

maintaining the same initial speed. However, by comparing the radial profile of spores between models, our results278

suggest that the early appearance of sporulation around the edge of plaque boundaries is consistent with dormancy279

being triggered by a small molecule released as a result of infection (and lysis). These results provide evidence that280

proximity to viruses can trigger sporulation in Bacillus subtilis which can in turn limit viral dispersion.281

Sporulation is a complex and energetically costly bacterial strategy that can help cells survive through extreme282

environmental conditions. As demonstrated by our study, in the absence of harsh conditions, the enhancement of283

sporulation can serve as a protective mechanism for cell communities by limiting phage dispersion. We show that284

sporulation can be initiated preferentially locally, however the underlying signaling mechanism or trigger remains285

unidentified - and could be host-associated, viral-associated, or both. The observation that phages can induce sporu-286

lation aligns with the hypothesis that microbes evolved dormancy, in part, as a generalized defense against threats.287

This idea is supported by prior studies [14, 43], which reported dormancy triggered by direct contact with viruses in288

Archaea and Listeria, respectively. However, to the best of our knowledge, our study offers the first account of virally289

induced dormancy in B. Subtilis. Notably, a recent study [26] found that a small signaling molecule in the lysate can290

confer phage tolerance in B. Subtilis. Drawing connections with these studies can shed light on our proposed mecha-291

nism. Further work exploring the biochemical properties of plaques is needed in order to get a better understanding292

of the mechanism underlying spore enhancement - and its generality.293

Our findings come with caveats. First, the GFP tag used to quantify spores is expressed later in the sporulation294

pathway. As a result, direct observation of the formation of spores is time shifted by ≈4 hrs after spore initiation.295

Improvements in quantification of the initiation of sporulation would provide additional information linking spores296

and plaque fronts. Indeed, we expect that the spatial localization of signals is key for reproducibility. In contrast,297

identifying similar phenomena in liquid cultures may be challenging. In such environments, the evolution of resistance298

can rapidly influence infection dynamics given the strong selective benefit for phage-resistant mutants [13]. Finally,299

we were able to recapitulate the plaque front dynamics and radial profile of spores with a mathematical model of300

virus-host feedback and small molecular-induced dormancy and not with either the resource- or virus particle-induced301

models. Nonetheless, the robust agreement between model and data is valid in certain parameter regimes, suggesting302

that life history traits will be important to characterizing the generality across other virus-microbe systems.303

Our findings may have important implications on the effects of sporulation as a life-history trait on biomedical304

applications. By reducing viral infection in spatial settings, sporulation could significantly change the host-phage305

infection dynamics. Additionally, in light of viral entrapment in mature spores, phage induced sporulation could306

increase phage survival by providing a protective shell for phages until they are reintroduced at a later time in the307

population [44, 45]. On the other hand, phage induced sporulation could increase the survival of bacteria as seen308

by the reduction in plaque size. In closing, our findings reveal a novel mechanism by which phage infections can309

be self-limiting - leading to a collective defense mechanism that limits phage spatial spread even when nearby hosts310

remain available, albeit inaccessible.311
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VII. SUPPLEMENTARY INFORMATION321

A. Image analysis322

1. Final point analysis323

We use a binarization method to extract the plaque sizes from an image of a petri dish. Specific threshold parameters324

vary between images, however the overall structure of the code is the same. All the analysis is done in MATLAB and325

a step-wise overview of the code is shown below:326

1. Read image and convert to black and white327

2. Apply a Gaussian filter to reduce noise328

3. Apply a general threshold to obtain a mask329

4. Obtain the region properties of the mask330

5. Use the build-in watershed algorithm to break apart overlapping plaques331

6. Select regions based on circularity and area332

7. Discard any additional regions that are not plaques by hand333

8. Obtain the areas and centers of the selected regions334

9. Perform a final check of the final mask and overlay the centers with the original image335

Note that the processed image and binarization is checked against the original image at every time step. We perform336

steps 3-5 such that no true plaques are being discarded. We use steps 6-7 to ensure that any false positives are not337

counted. Intermediate images for some of the steps are shown in Figure S4.338

2. Time lapse analysis339

To analyze the time lapse of plaque growth, we first analyze the last frame to identify the plaques. We then use340

the plaque centers and axes to track the size of the plaques in previous frames. This process can be divided into 5341

steps which we describe in detail below.342

343

Step 1. Identify plaque centers in last frame344

A circular section is cropped from the original video using code adapted from MATLAB Central Answers to obtain a345

time lapse for each petri over time (link : https://www.mathworks.com/matlabcentral/answers/567441-how-to-crop-346

circle-from-an-image). We then use the same protocol as the one described in section VIIA 1 to identify the centers347

and axes of the plaques in the last frame.348

349

Step 2. Compute camera movement350

To obtain a video of the plaques over time, we set a camera to capture a top-down image of the petri dishes every351

5 minutes. We note that the camera is not perfectly still and that there is motion in the x and y direction between352

frames. We correct for this motion by tracking the edges of the white LED screen. The full image is cropped to353

contain just the corner of the LED screen. The cropped image is then binarized and 10 rows and columns are used354

to find the transition between the white screen and the background. The first black pixel for each row marks the355

transition and will be used to adjust for displacement in the x direction. Similarly, the first black pixel for each356

column marks the transition and will be used to adjust for displacement in the y direction. In the end we obtain 10357

points marking a vertical edge and 10 points marking a horizontal edge for each frame.358

359

Step 3. Identify search window based on centers, camera movement and axes lengths360

Instead of analyzing the entire petri dish at every time step, we use the information about the plaque location and size361

to analyze a narrow window for each plaque. For each frame we take the mean of the 10 point marking the vertical362

edge and 10 points marking the horizontal edge. The mean values for the two edges are compared to the ones in the363

last frame to obtain the camera movement in the x and y direction with respect to the last frame. The centers of the364

plaques are adjusted to account for this camera movement. Thus, starting from the center of the plaques in the last365

frame, we have obtained the center of the plaques in all the previous frames.366

Lastly, for each frame and each plaque we define a rectangular area centered at the adjusted plaque center. This367

rectangle has the width and length equal to the two major axes of the final plaque size. Since plaques only grow over368

time, it means that the plaque at the current frame is contained within the rectangle.369

370

Step 4. Calculate plaque in each rectangle for all plaques and frames371
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Having defined a search area for each plaque and each frame, we still need to distinguish plaque versus lawn in each372

rectangle. Since the contrast between plaque and lawn is not as high in earlier time points, we cannot directly use373

a general threshold for this algorithm. Instead we write a short script which is used for both WT and SPOIIE time374

lapse. Given rectangle X, we make the following operations:375

X = imadjust(X) ▷ rescale of intensity values376

XBW = X > 160 ▷ threshold binarization377

XBW = fillholes(XBW )378

The plaque sizes after this analysis are shown in Figure S5 panel A, however we note that there are plenty of false379

positives, i.e. areas that are not plaques but are counted as such. To fix this issue, we divide the 179 frames in 3380

time intervals and adjust the false positives to zero based on the number of connected components nCC in XBW . A381

large number of connected components is an indication of a false positive. We select the nCC thresholds by hand by382

plotting the number of connected components for each plaque over time. A brief version of the code is shown below:383

if i < 34 then384

plaque size = 0 ▷ Plaques are not visible yet385

end if386

if 34 ≤ i < 70 then387

if nCC > threshold then388

plaque size = 0 ▷ Set false positive to zero389

else390

plaque size = largest connected component in XBW391

end if392

else393

plaque size = largest connected component in XBW394

end if395

The plaque sizes after adjustment for false positives can be seen in Figure S5 panel B.396

397

Step 5. Raw data and smoothing function for each plaque398

We expect plaques to grow monotonically over time, however there is noise in the original video and in our image399

analysis algorithm. To reduce the noise and emphasize the overall trend of the plaque measurements, we take a400

moving average of size 7 for each plaque trajectory. These are the final plaque growth trajectories we use for the main401

text and they are also shown in Figure S5 panel C.402

3. GFP analysis403

We use a set of imagining analysis techniques to obtain the GFP intensity based on the distance to the center of404

the plaque shown in figure 3. The process can be described in three steps outlined below:405

406

Step 1. Calculate background fluorescence and subtract it from original image407

The original GFP image (Figure S7 panel C) has a background fluorescence level that is higher at the center of the408

image. To account for this, we use another GFP image with minimal fluorescent cells shown in panel A as a measure409

for background GFP intensity. We take out the bright spots in the original background and fill them in to obtain an410

adjusted background fluorescence shown in panel B. Finally, subtracting the adjusted background from the original411

image yields the adjusted GFP image in panel D which is used for analysis in the following steps.412

413

Step 2. Find center of the plaque414

Once we have the adjusted GFP image, we use a square averaging filter of size 64x64 to obtain a blurred image415

shown in Figure S7 panel E. Using the blurred image, we compute the GFP sum for each row and column and notice416

that there are two peaks for both the column and row sums shown in panel F. These peaks correspond to the edges417

of the plaque and we select the midpoint for the peaks to represent the x and y coordinate for the center of the plaque.418

419

Step 3. Plot GFP intensity based on distance to center420

Once we have found the center of the plaque, we compute the distance from each other pixel (16082 pixels in total) to421

the center. The pixels are grouped in 400 bins based on the calculated distance and a mean and standard deviation422

is obtained for each bin. The mean and standard deviation are the final measurements shown in figure 3 panel C.423



25

B. Mathematical modeling and simulations methods424

1. Numerical simulations425

We simulate the PDEs through a finite difference method implementation on a square lattice. Each lattice sites426

consists of a square with ∆x = 50µm= ∆y with 100 sites per side to represent a total length L = 0.5 cm. In this427

implementation, for each time step, the contribution to the derivatives given by the local reaction terms are computed428

in each site, based on the state values in that site at that given time, as when integrating ODEs. The spatial derivatives429

∂
∂x ,

∂
∂y present in the diffusion terms, which couple different positions, are discretized on the square lattice. We use430

the following stencil matrix to discretize the laplacian operator (∇2 = ∂
∂x

2
+ ∂

∂y

2
) in the diffusion terms:431

Kernel =

0.25 0.5 0.25
0.5 −3 0.5
0.25 0.5 0.25

432

This stencil needs to be convoluted with the state field that we are taking the laplacian of. For instance the diffusion433

term of resources DR∇2R at a site (x,y) can be obtained by discretising spatial derivatives to first order with respect434

to first- and second-neighbor sites:435

DR∇2R(t, x, y) =
DR

∆x2

0.25 0.5 0.25
0.5 −3 0.5
0.25 0.5 0.25

 ·

R(t, x−∆x, y +∆y) R(t, x, y +∆y) R(t, x+∆x, y +∆y))
R(t, x−∆x, y) R(t, x, y) R(t, x+∆x, y)

R(t, x−∆x, y −∆y) R(t, x, y −∆y) R(t, x+∆x, y −∆y)


=

DR

∆x2

(
− 3R(t, x, y) + 0.5

(
R(t, x+∆x, y) +R(t, x−∆x, y) +R(t, x, y +∆y) +R(t, x, y −∆y)

)
+

+ 0.25
(
R(t, x+∆x, y +∆y) +R(t, x−∆x, y +∆y) +R(t, x+∆x, y −∆y +R(t, x−∆x, y −∆y)

))
Diffusion of viruses and other molecules is given by the same equation by accounting for their specific diffusion436

constant. Together with the site-specific reaction terms, this step completes the computation of time derivatives given437

all the states variables at each time point. We can then update the system for 15 hrs using time steps of 0.01 hrs,438

by solving an explicit Runge-Kutta method of order 5(4) (Scipy’s default initial value problem solver for a system of439

ordinary differential equations) [46, 47].440

2. Parameter estimations441

• Host-growth442

A maximum growth rate of rmax = 2/hrs corresponds to a doubling time of approximately 20 min [48]. We443

constrained a set of parameters to a plausible order of magnitude based on back-of-the-envelope calculations and444

comparisons to the elements from the literature. We set the initial amount of resources (in rescaled units) as445

R̃0 = 109 cells/mL, which sets the carrying capacity for bacteria growth. Several parameters were obtained de446

novo in this work, either based on the from the experimental protocols, or inferred (qualitatively) to reproduce447

the experimental results. The Monod constant Kg corresponds to the resource level where the growth rate is half448

of its maximum value. To reproduce the experimental results we select a Monod constant that is approximately449

three times larger than the initial resources, with the growth rate changing almost linearly with resources.450

Since the maximum plaque radius is under 0.2 cm, the size of the lattice is set to L = 0.5cm. We estimate451

the initial number of cells per plate to be 100µl of culture at OD 0.5 ≈ 2 × 108 cells/mL, corresponding to452

≈ 2 × 107 cells. Given a bacterial lawn height of 400 µm and plate area of π · 4.52cm2, we estimate the453

volume of a plate where bacteria grows to be about π · 4.52 · 0.04cm3 ≈ 2.5ml. We thus obtain an estimate for454

S0 ≈ 2× 107cells/2.5ml ≈ 107cells/ml.455

• Viral infection456

Since in our deterministic models a plaque starts from exactly one virus (compatible with the standard definition457

of PFU) and the volume of one square in the lattice is V ol = 50µm · 50µm · 400µm = 1000000µm3 = 10−6ml,458

we get that V0 = 1/V ol = 106ml−1. The max latent rate ηmax and the infection constant ϕ for the Bacillus459

Subtilis-SPO1 pair is given by (citation Daniel), while for the burst size β [49], the viral decay ω [49] and the460
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resource diffusion constantDR [31] we selected plausible values that are commonly used in similar phage-bacteria461

ecology studies. The values of dmax = 1/hour, nI , nE when > 0, and the absolute magnitude of µ and m were462

set to reproduce the experimental dynamics semi-quantitatively.463

• Dormancy464

For the transition to dormancy we selected values for λ that would give a sporulation process that takes close465

to 45 minutes from a signaling event (cite Daniel). Since dormancy is the ”last resort” for a bacterium under466

stress, we select the threshold to dormancy σ to be a small percentage of the Monod constant, at about the467

point where cells grow 3 to 5 times slower than normal. In order to mimic a precise signaling process that468

triggers sporulation at critical resource level, we set the shape parameter of the resource-triggered dormancy469

Hill function, s, to be two orders of magnitude smaller than the carrying capacity R̃0. Finally we assume that470

the product between µ and m is similar to that of the infection rate ϕ and the burst size β, that is, the size471

of a peptide chain will correlate with both the ability of a cell to syntethize it in large numbers and with the472

rate at which a cell will bind to it and adsorbe it, since in a diffusion limited reaction the adsorption rate will473

scale linearly with the diffusion constant ([50]) which is inversely proportional to the particle size due to the474

Einstein-Stokes equation.475

• Spatial diffusion476

To estimate the phage diffusion constant DV we consider phages to be about two orders of magnitudes bigger477

than the molecular components constituting resources. Using Einstein-Stokes relation yields a value for DV478

that is two orders of magnitude smaller than the resource diffusion constant. As a cross check we note that479

this is compatible with values proposed in literature, albeit for different phages ([51]). We selected a molecule480

diffusion constant DM to be equal to the resource diffusion constant DR since we expect the molecule to be of481

similar size to the resources.482
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4 Do bacteriophages ”decide” on infection based on the
host’s metabolic condition?

4.1 Introduction

In the preceding chapters, we have emphasized that life under suboptimal conditions for growth
is more of the rule than the exception for the microbial ecosystems in nature. These conditions
can shape phage-bacteria interactions and subsequently influence ecosystem dynamics by applying
strong eco-evolutionary pressure, as in chapter 2, or by profoundly affecting the physiology of host
organisms, as in chapter 3.

Regarding the effect of physiological changes in host-parasite dynamics, our study focused
on Bacillus subtilis. A significant reason for this is the distinctiveness of its dormancy, as spore
formation is easily observed and has a distinctive final product [131]. However, there are many
bacteria for which dormancy lacks evident indicators. Prior research underscores the prominence
of dormancy across various environments, constituting from 25% of the total amount of cells in
the gut to nearly 50% in marine ecosystems and over 85% in soil ecosystems (see Figure 25).

Figure 25: Observations of dormancy across natural ecosystems. A variety of environments have exhibited significant popula-
tions of dormant cells. The presented figure illustrates the proportion of dormant cells in different settings, as identified either through
fluorescence in situ hybridization (FISH) or 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining (panel a). Another method uti-
lized is ribosomal RNA–ribosomal DNA terminal restriction fragment length polymorphism (TRFLP) (panel b). The provided data
represents the mean along with its standard error. (Reprinted from [131])

The spores in Bacillus lack the surface receptor that phages require for infection, thereby
safeguarding the host’s DNA [181]. This protection extends to the community level, as we have
elucidated (see our Manuscript Măgălie et al.). But what about organisms that do not exhibit
such defensive structures during dormancy?
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Dormancy is characterized by reduced metabolic activity. Although low cell metabolism is
known to impact post-infection processes [163], its influence on the initial infection step is still
not well-understood. Traditionally, infection is depicted as a lock-key mechanism, activated when
the phage’s tail protein binds to a specific receptor on the cell membrane [42, 1, 61]. Contrary to
this traditional understanding, recent findings from the Biocomplexity group here at NBI provide
intriguing insights [198]. While researching how a majority of immune E.coli cells can shield sus-
ceptible cells from λ bacteriophage infection by effectively removing phages from the environment
in a manner similar to herd immunity, they found that their results diverge from their theoreti-
cal predictions when phages move from the exponential to the stationary phase. Surprisingly, a
cross-check experiment revealed that this happens because of reduced infection of the hosts with
low metabolic activity by the free viruses.

A B

Figure 26: Schematics of Escherichia coli and bacteriophage λ A An illustration of bacteriophage λ during its infection of host
E. coli. On the right side, basic features of phage λ anatomy are shown. B The post-infection decision between lysogeny and lysis for
the temperate bacteriophage λ. Brown et al. demonstrated that another decision regarding infection is made before the initial step of
this well-studied process. (Both images are adapted from [49])

This observation is noteworthy. Given that phages rely on diffusion for movement and ne-
cessitate a burst size of approximately 100 for survival, bypassing a less-fit cell for a potentially
healthier one seems counter intuitive. Moreover, phage genomes are typically compact [46, 49].
Reserving genomic space for such processes is a significant commitment. While there are instances
of phages apparently making ”decisions”, these are generally post-infection scenarios, such as the
lysis-lysogeny ”decision” [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].

Brown et al. explained this phenomenon through the lens of λ’s reversible binding [199] and
LamB’s hyperdiffusion [200, 201]. Yet, several questions linger. Is this behavior exclusive to λ

phage, or is it prevalent across bacteriophages? If widespread, is it limited to E. coli bacterio-
phages, or is it observed in other phage-bacteria systems as well? Moreover, what mechanisms
underlie this behavior, and how does it influence host-parasite interactions and community dy-
namics? This chapter outlines our approach to these questions, though conclusive results are yet
to be drawn.
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4.2 Experimental method

The following protocol is adapted from the experimental methodology of the study by Brown
et al. [198]. This investigation focuses on phage adsorption from cells under two contrasting
metabolic states: a state of high metabolic activity due to the presence of glucose, and a state of
low metabolic activity due to the presence of potassium arsenate and sodium azide.

Each bacterial culture is initiated from an independent single colony, while each phage lysate
and phage lysates are correspondingly prepared from an independent plaque. Following overnight
growth, the bacterial culture is diluted 20-fold with rich medium and incubated for 2 hours to re-
store exponential growth. Subsequently, nutrients are removed from the bacteria by centrifugation
and resuspension with a nutrient-free buffer.

Thereafter, samples of washed bacteria are subjected to either favorable or unfavorable growth
conditions by adding glucose or potassium arsenate and sodium azide and incubating 37 ◦C. Post
incubation, phages are introduced and the incubation continues under identical conditions for an
additional 10 minutes. The free phages are then segregated from the bacteria via centrifugation.
Subsequently, a portion of the supernatant is diluted 10-fold with buffer, supplemented with
potassium phosphate to inhibit toxicity from any remaining arsenate. The phage titers are assessed
through subsequent dilutions in buffer, followed by spotting on a lawn of a susceptible bacterial
strain. The concentration of washed bacteria is estimated by measuring the A600 optical density
and by counting in a Petroff-Hausser chamber. The proportion of unbound phage is calculated by
comparing the PFU/ml concentration in the supernatant derived from bacteria-containing samples
to that in bacteria-free samples.

4.3 Results

The starting point of this project is to reproduce the experiment of Brown et al. [198] by replicating
their results for the λcIb221 phage, as shown in Table 2. This table displays the interaction results
of the λcIb221 phage with two bacterial strains: S3207 which is immune to λ [202] and S3222
which is essentially S3207 but with λ virr Mal− modifications making it resistant to phage λ

[198]. The third and fourth column of the table show the ratio of plaque forming units (PFUs)
produced by the free viruses in glucose (Glu) and arsenate and azide (As/Az) relative to the phage
titer in TMG. The fifth column calculates the Ratio of results from As/Az over Glu, defined as
Ratio = As/Az

TMG
/ Glu
TMG

.
From the results, it’s evident that for S3207, where the phages are blocked by immunity within

the host there’s a tenfold increase in free phage particles in the As/Az environment compared to the
Glu environment. This substantial effect isn’t observed with the S3222 bacteria since the phages
cannot enter due to its resistance. Hence, this stark difference underscores the significance of a
phage’s ”decision” to infect a bacterium. The results suggest that phages tend to avoid infecting
bacteria in poor metabolic states, which in our case is a result of poisoning with Arsenate and
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λcIb221

Experiment Bacteria Glu
TMG

As/Az
TMG Ratio

1
S3207 0.007 0.08 11.4

S3222 0.47 0.91 1.9

2
S3207 0.008 0.0067 8.4

S3222 0.75 0.83 1.1

Table 2: Replicating the results of Brown et al. for the phage λ

Azide. The experiment is currently being repeated with an increased MOI and a λ host-range
mutant that bypasses reversible binding [198]. Subsequently, we will proceed with applying the
protocol on other phages.

4.4 Conclusion

In their study, Brown et al. [198] reported the adsorption of the λ phage, which necessitates LamB,
is influenced by the metabolic state of the host. Currently, I am in the process of replicating their
results. The hypothesis of our study is that this sensitivity to metabolic state of the host could be a
prevalent feature among phages. Consequently, the probability of a phage infecting a cell exhibiting
reduced metabolism could be an evolutionary trait, potentially determined by the density of host
cells in the phage’s native habitat. To test this hypothesis, the experimental protocol will be
performed with multiple different E. coli phage strains, with plans to subsequently examine Vibrio
phage strains for comparative analysis. Although we are still in the preliminary stages and have
not yet obtained definitive results, we anticipate meaningful findings in the forthcoming weeks.
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4.5 Project: Do bacteriophages ”decide” on infection based on the
host’s metabolic condition?

Collaborators: Anastasios Marantos*, Kim Sneppen*, Namiko Mitarai*, Stanley Brown*

Affiliations: *Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copen-
hagen, Denmark.

My contribution: I have conceptualized and set the direction of this scientific project. I am
conducting the experiments and the data analysis and I will produce figures, and contribute to
the writing and editing of the work.

Supervision: I work under the supervision of Prof. Kim Sneppen and co-supervision of Assoc.
Prof. Namiko Mitarai.

Publication status: In Progress - This study is ongoing. It’s worth noting that this research
endeavor necessitated the acquisition of microbiological lab skills that were previously outside my
domain of expertise. Prof. Stanley Brown has been helping me learn the necessary microbiology
laboratory skills. Therefore a period of training was required. I am currently conducting the
experiments. As a result, no manuscript accompanies this chapter.
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5 Conclusion
The primary focus of this thesis is to explore the profound effects that challenging conditions exert
on the dynamics of phage-bacteria ecosystems.

The chapter on local microbial ecosystems in the ocean’s upper layers, unveiled that ecosystem
stability and robustness requires specialization in infection network patterns, when there is intense
competition for shared limited resources. Notably, even minor deviations from this self-organized
specialization have a profound effect on the emergence and survival of slower-growing bacteria .
This results in extinction events that can include even the fastest growing strain. The extinction
of the fastest growers is driven by the dynamic formation a triplet motif when one phage strain
infects both the fastest growing but more susceptible bacterial strain and a slower growing but
more resistant strain. The chapter dedicated to Bacillus Subtilis has brought forth a significant
revelation: sporulation is triggered not only by nutrient scarcity but also by the presence of viruses.
This sporulation mechanism, particularly effective in spatial environments, serves as a collective
defense strategy, considerably restricting the expanse of viral plaques. To our knowledge this is
the first account of such a mechanism, providing new insights and avenues for research in one of
the best studied organisms in Microbiology.

Finally, preliminary experimental observations presented in this study corroborate previous
findings of phages exhibiting selectivity based on the host’s metabolic state. Particularly, there is
significant evidence that λ phage tends to avoid infecting Escherichia coli cells in low metabolic
state. The aim is to continue this research on other Escherichia coli to assess the potential for a
new layer of sophistication in phage-bacteria interactions.

Overall, the findings presented here serve as both a conclusion to my research activities as a
PhD candidate and a starting point for future research in microbial ecology.
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