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Abstract

This thesis investigates superconducting qubits based on proximitized InAs/Al
nanowires. These qubits consist of semiconducting Josephson junctions, and
present a gate tunable derivative of the transmon qubit. Beyond the gateable
nature, this new qubit (the gatemon) exhibits fundamentally different charac-
teristics depending on operating regime, which is the main focus of this thesis.

First, a systematic investigation of gatemon anharmonicity is presented.
Here, we observe a deviation from the traditional transmon result. To explain
this, we derive a simple model yielding information about the transmission
properties of the semiconducting Josephson junction. In conclusion we find
that the junction is dominated by 1–3 conduction channels with at least one
channel reaching transmission probabilities greater than 0.9 certain gate volt-
ages, in clear contrast to the sinusoidal energy phase relations that describe
conventional transmon junctions.

Next, we present a new gatemon design, where a semiconducting region
is operated as a field-effect-transistor to allow transport through the gatemon
device without introducing a new dominant relaxation source. In addition,
we demonstrate clear correlation between transport and transitional circuit
quantum electrodynamics qubit measurements. In this geometry, for certain
gate voltage, we observe resonant features in the qubit spectrum, both in
transport and qubit measurements. Across the resonances, we carefully map
the charge dispersion, which, at resonance, shows clear suppression orders
of magnitude beyond what is traditionally expected. We explain this by an
almost perfectly transmitting conduction channel, which renormalizes the
charge of the superconducting island. This is in quantitative agreement with a
developed resonant tunneling model, where the large transmission is achieved
by a resonant level with nearly symmetric tunnel barriers.

Finally, we demonstrate compatibility with operation in large magnetic
fields and the destructive Little-Parks regime. As we enter the first lobe of the
oscillating qubit spectrum, we observe the emergence of additional coherent
energy transitions. We explain these as transitions between Andreev states,
which experience a path-dependent phase difference across the Josephson
junction due to the phase twists associated with the Little-Parks effect. These
observations are in qualitative agreement with numerical junction model.
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1
Introduction

Over the last hundred years our understanding of fundamental physics has
undergone fascinating and revolutionary progress with the birth and devel-
opment of quantum mechanics. The first steps of quantum mechanics came
in the early 1900 when the unification of electrodynamics had recently been
achieved by Maxwell. The understanding of other fundamental laws had led to
incredible industrial breakthroughs and some physicists even argued that our
overall understanding of the world was complete. However, in the following
period, developments in quantum mechanics radically changed the perception
of the world with pioneering work revealing the peculiar nature of quantum
mechanics. A nature revealing itself with famous examples such as the quanti-
zation of light proposed by Max Planck, which was later refined by Einstein to
explain the photoelectric effect. Not long after, Bohr explained the stability of
atoms via electron orbitals with discrete energies, again applying the concept
of quantization, and de Broglie proposed his theory on wave-particle duality.
These examples among others were unified by Heisenberg’s matrix mechanics
and Schrödinger’s wave equation, which eventually led to the probabilistic na-
ture of the now widely recognized Copenhagen interpretation. However, due
to some of the extraordinary consequences of quantum mechanics, such as
entanglement and correlations over a distance [1,2], the completeness of quan-
tum mechanics was heavily debated, famously leading to heated discussions
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2 Introduction

between Einstein and Bohr [1,3]. In more recent times quantum mechanics has
become one of the most effective models and continues to be used to explain
and accurately predict the behavior of the world around us. While the devel-
opment of quantum mechanics led to ground breaking understanding of the
fundamental world, it was believed that only ensemble averages could be mea-
sured [4]. In a famous quote from 1952 Schrödinger said that experimenting
with single particles is as likely as raising “Ichthyosauria∗ in the zoo" [5]. In
modern days, however, experiments controllably manipulate single isolated
particles on a daily basis in laboratories around the world.

Possibly inspired by the developments of quantum mechanics, in 1982 Feyn-
man argued that a computer based on “nature”, and the intrinsic quantum
mechanics therein, would be the best candidate to simulate nature itself [6].
Following this idea, concrete formulations of quantum computing and spe-
cific algorithms were developed [7–10]. Classical computers have completely
digitalized parts of modern society since the invention of the transistor in
1947 [11, 12]. Predicted by Moore’s law of exponential increase of transistors
per unit area [13], computing power has continued to reach new heights. How-
ever, as transistors are reaching sizes limited by quantum effects, Moore’s law
is facing its end, and other approaches are required for a range of complicated
simulation problems. For some of the problems still beyond our reach, a quan-
tum computer holds the promise of exponential speed up [10]. The binary
nature of the transistor is the foundation of the classical bit, which takes values
of 0 or 1, and as a result, computing power scales linearly with the number
of transistors. The quantum bit (qubit) is also built from a two-level system,
a "quantum transistor", with two eigenstates |0〉 and |1〉. Compared to the
classical bit, due to the nature of quantum mechanics, a qubit is not confined
to only two possible values but rather the state

��ψ〉
of the qubit, which can

take any superposition of the two eigenstates,
��ψ〉

� α |0〉 + β |1〉, where α
and β are the two probability amplitudes. Scaling to N entangled qubits al-
lows computation with 2N states leading to exponential speed up for certain
applications, which take advantage of the parallel nature of quantum mechan-
ics [10]. In order to build such a system, highly coherent and controllable
qubits are required. This is inherently challenging as any coupling to the envi-
ronment introduces potential coupling to noise sources. Therefore, one of the
most promising paths to a fault tolerant quantum computer relies on quantum

∗Ichthyosaurs are extinct marine reptiles.



3

error correction [10, 14, 15], where multiple faulty physical qubits are used to
encode a single logical qubit with lower error rates [16].

Several qubit platforms have shown promising results in meeting the re-
quirements for quantum computing and are being extensively researched,
such as trapped ions [17, 18], electrons confined in quantum dots [19, 20], and
photonic qubit [21,22]. Superconducting circuits based on Josephson junctions
are leading candidates, demonstrating impressive progress and many of the re-
quirements as a potential architecture [23]. These circuits can be thought of as
artificial atoms with energy spacings that are tunable by design. Distinguish-
able from a harmonic oscillator due to the crucial nonlinearity introduced by
the Josephson junction, the two lowest energy levels can be isolated, manipu-
lated and read out, effectively working as a two-level system. Since the first
demonstrations of the Cooper pair box [24, 25] the field has seen significant
developments [26]. These systems were later embedded in circuit quantum
electrodynamics architectures [27, 28], the circuit variant of cavity quantum
electrodynamics [29]. Moving to the so-called “transmon" regime [30–32]
of large Josephson to charging energy ratio, along with continuous improve-
ments in device processing and control, led to impressive progress. Coherence
times of transmon qubits regularly reach several tens of microseconds with
two-qubit gate fidelities exceeding 99 % [26], potentially above predicted error
correction thresholds for certain geometries [33], and bosonic encoded qubits
have demonstrated error corrected logical qubits [34,35]. With the first demon-
strations of quantum speed up [36] and cloud-based quantum processors [37],
superconducting qubits are proving to be serious candidates for universal
quantum computing. However, there is still a long way to, and challenges
including (but not limited to) scaling, control and connectivity continue to
pose difficult problems. Therefore, at the moment, it is too early to settle on
a single qubit technology, which justifies the continued enthusiastic research
into other potential qubit architectures.

The research in this thesis presents an alternative direction for supercon-
ducting qubits. Throughout the development of transmon qubit architectures,
the Josephson junction has, almost without exception, been based on the insu-
lating tunnel junction, built from a thin layer of aluminium oxide sandwiched
between two aluminium electrodes. Due to the insulating nature of this junc-
tion, qubits fabricated in this way are either fixed in frequency or only tunable
via a magnetic flux. Using magnetic flux pulses to change the qubit frequency



4 Introduction

relies on current flowing which potentially introduces scaling problems due
to the heat generated by this dissipative current. Recently semiconductor-
junction based superconducting qubits (gatemon qubits) in nanowires [38,39],
and other material platforms [40–42] have been demonstrated. In gatemon
qubits, the semiconducting junction results in a voltage tunable qubit fre-
quency, removing the use of heat generating current. These new qubits, how-
ever, are not yet as mature as conventional transmons in terms of coherence
times or device processing, but future improvements may see this type of
qubit present a competitive alternative to the conventional transmon. Beyond
acting as a gate tunable transmon, this new semiconducting-superconducting
hybrid device is a very rich system, which can exhibit radically different qubit
behavior. This new qubit behavior is the main focus of this thesis, involving
variable transmission properties of the underlying Andreev physics, compat-
ibility with DC transport techniques, and flux dependent coherent Andreev
states. In addition, gatemon qubits are compatible with large magnetic fields
and may therefore be used to study topological superconductivity [43, 44].
Developing topological materials that are inherently resilient to local noise
mechanisms may be a natural direction to fault-tolerant quantum comput-
ing [45], reducing the number of error prone physical error corrected qubits
required per logical qubit.

1.1 Thesis outline

This thesis reports research results on gatemon qubits based on proximitized
nanowires. The thesis continues with an explanation of the basics of circuit
quantum electrodynamics in Chapter 2, providing the reader with the neces-
sary ingredients to understand the experiments described in later chapters.
In addition, the specific theories investigated in the experimental chapters
are discussed, focussing on the fundamental aspects of the semiconducting
Josephson junctions and the consequences of these aspects. Chapter 3 details
the device fabrication processes, the experimental setup, and measurement
techniques applied in this work. This allows a reader to understand each ex-
perimental step from a blank wafer to the results presented in the experimental
chapters. The following Chapters 4–8 present the experimental research re-
sults and intend to be self-contained with additional details on theory and ex-
perimental techniques available in Chapters 2 and 3. Chapter 4 is a systematic
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study of gatemon qubit nonlinearity providing valuable information on the
transmission distribution and the underlying physics of the semiconducting
Josephson junctions. Chapter 5 present a scalable and deterministic approach
to nanowire assembly of gatemon qubits. By integrating dielectrophoretic fab-
rication techniques to the qubit design, we demonstrate successful assembly of
a six qubit device, where all qubits yield coherent operation. Chapter 6 demon-
strates that gatemon qubits are compatible with DC transport. Here, a strong
correlation between DC and qubit measurements is found. This motivates
future studies applying both measurement techniques to probe underlying
Josephson physics. In addition, the results suggest that this new qubit design
does not introduce new relaxation sources. Chapter 7 reports the observation
of enhanced suppression of charge dispersion of the superconducting island,
which is explained by transmission probabilities of the Andreev processes
across the Josephson junction reaching values near unity. This nearly perfect
transmission is explained by a resonant level inside the Josephson junction
with approximately symmetric barriers. These results establish an experimen-
tal validation of the theory of Coulomb oscillations in Josephson junctions in
a previously unexplored regime. Chapter 8 presents the final experimental
results, where the emergence of a unique subgap spectrum due to an applied
magnetic flux is observed. This opens new directions for Andreev qubit re-
search due to the fundamentally different energy spectra. Finally, an outlook
is given in Chapter 9. Together this presents a comprehensive investigation
into the fundamental aspects of a promising qubit architecture which hope-
fully will provide a strong foundation for further developments in this exciting
field.





2
Circuit Quantum Electrodynamics

Cavity quantum electrodynamics (cavity QED) describes the field of atoms
coupled to modes of light, and has a rich history of exploring the fundamen-
tal laws of quantum mechanics [29]. Placing atoms in cavities with highly
reflective mirrors opened the possibility of coherent experiments at the single
atom level. In close resemblance to cavity QED, circuit quantum electrody-
namics (cQED) describes the dynamics of artificial atoms coupled to electro-
magnetic photon modes. These photon modes are usually standing waves in
one-dimensional harmonic resonators [28] or the modes of three-dimensional
cavities [46]. When superconducting artificial atoms based on anharmonic
oscillators are coupled to these modes it is possible to create highly coherent,
isolated, and detectable quantum states, the foundation of superconducting
qubits.

This chapter presents a simple overview of the basic concepts of cQED,
required to understand the measurements presented in Chapters 4–8. First,
the superconducting LC oscillator is described, which is followed by a discus-
sion on Josephson junction-based anharmonic oscillators and transmon qubits,
mainly focussing on the fundamental consequences of building the junction
with a semiconductor. Hereafter, the basic concepts of qubit readout and ma-
nipulation are discussed. The last section discusses the prospect of combining
hybrid transmon qubits and topological superconductivity.

7
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2.1 The LC oscillator

Superconductivity is a fascinating phenomenon, where otherwise repulsive
electrons partner up in so-called Cooper pairs [47], forming a resistance-less
condensate [48,49]. Due to its remarkable electric properties, superconductiv-
ity has been an ongoing research field, since its discovery in 1911 [50], and
presents an exciting platform for many applications. One such application
is superconducting quantum circuits, described by the degrees of freedom
associated with the specific circuit elements. One of the simplest supercon-
ducting circuits to consider is the LC oscillator consisting of an inductor and a
capacitor. The dynamics of this superconducting circuit can be well described
by one degree of freedom [51], the dissipationless current flow. Applying
the lumped element approximation provides intuition of typical cQED exper-
iments. In this limit, we treat the inductor and capacitor as discrete elements
with inductance L and capacitance C, respectively, as sketched in Fig. 2.1(a).
The kinetic energy associated with the current flow I through the inductor is
given by LI2/2 � L Ûq2/2, where Ûq is the time derivative of the charge of one of
the capacitor plates q. Similarly, the potential energy associated with charging
up the capacitor is given by q2

2C . This allows us to write the Lagrangian,

L �
1
2 L Ûq2 − 1

2C
q2 , (2.1)

from which the conjugate momentum is derived,

∂L
∂ Ûq � L Ûq � LI � Φ,

where Φ is the flux through the inductor. This results in the Hamiltonian,

H � Φ Ûq − L �
Φ2

2L
+

q2

2C
, (2.2)

which describes a harmonic oscillator with mass L and spring constant 1/C.
We identify the resonance frequency ω � 1/

√
LC. To treat the system quan-

tum mechanically, we promote the coordinate and conjugate momentum to
quantum operators q̂ and Φ̂, defined to satisfy the canonical commutation
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relation,

[q̂ , Φ̂] � iℏ, (2.3)

where ℏ is reduced Planck’s constant. Be doing so and rewriting Hamiltonian
in terms of the cooper pair number operator n̂ � q̂/(−2e), and the phase
operator ϕ̂ � 2πΦ̂/Φ0, where Φ0 � h/(2e) is the flux quantum, and e is the
electron charge, we obtain,

H �
q̂2

2C
+
Φ̂2

2L
� 4EC n̂ +

EL

2 ϕ̂, (2.4)

where EC � e2/(2C) and EL � (Φ0/2π)2 /L is the characteristic inductive
energy. This allows rewriting the plasma frequency ω � 1/

√
LC �

√
8ECEL/ℏ.

As always with harmonic oscillators, we can define the raising and lowering
operators based on the conjugate variables,

â � i
1√

2Lℏω
Φ̂ +

1√
2Cℏω

q̂

â† � −i
1√

2Lℏω
Φ̂ +

1√
2Cℏω

q̂ , (2.5)

obeying [â , â†] � 1. By definition the Hamiltonian can be written,

H � ℏω
(
â† â + 1/2

)
. (2.6)

As we shall see in Chapters 4 and 7 it is often convenient to operate with the
flux as the coordinate, when describing systems involving Josephson junctions.
For the derivation of Eq. (2.4), we could have chosen Φ as our coordinate and
q as conjugate momentum. In this definition Φ correspond to the flux node,
which is the connecting branch between the two lumped elements given by
the time integral of the voltage,

Φ �

∫ t

V(t′)dt′

V(t) � ÛΦ. (2.7)

This would of course have led to the same Hamiltonian, but in this case we
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L C

(a) (b)

Figure 2.1: LC circuit sketch and potential. (a) Sketch of the circuit of an inductor
with inductance L in parallel with a capacitor with capacitance C. (b) Harmonic
potential of the LC oscillator and corresponding energy levels and transition energies
indicated (arrows). The energy scale is normalized to the harmonic transition energy
ℏωr � ℏ/

√
LC.

would write the energy stored in the inductor as Φ2/2L, which now acts as
potential energy. Similarly, the energy stored in the capacitor is given by
CV2/2, where V is the voltage difference across the capacitor. This allows
writing the energy associated with the capacitor as C ÛΦ2/2, which takes the
form of kinetic energy∗, resulting in the Lagrangian,

L �
C
2
ÛΦ2 − 1

2L
Φ2 , (2.8)

again leading to Eq. (2.4),

H �
q̂2

2C
+
Φ̂2

2L
� 4EC n̂ +

EL

2 ϕ̂. (2.9)

Figure 2.1(b) shows the solutions to Eq. (2.9). With phase as the coordinate,
the commutator relation now yields,

[Φ̂, q̂] � iℏ, (2.10)

which has the opposite sign as Eq. (2.3). This means that when choosing Φ as
coordinate the charge is defined with opposite sign. As before, we can define
raising and lowering. Based on the new choice of conjugate variables, C acting

∗With Φ as coordinate, ÛΦ plays the role of the velocity in a mechanical spring system.
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as the particle mass and with 1/L as spring constant, they are defined,

â � i
1√

2Cℏω
q̂ +

1√
2Lℏω

Φ̂

â† � −i
1√

2Cℏω
q̂ +

1√
2Lℏω

Φ̂. (2.11)

These definitions will be useful when studying qubit anharmonicity in Chap-
ter 4.

As we shall see later, LC oscillators play a crucial role in cQED acting
as the readout resonators for superconducting qubits analogues to cavities
in cavity QED. So far we have treated the inductor and capacitor as discrete
elements, which allowed deriving its Hamiltonian. However, for all the work
presented in this thesis, the readout resonators are distributed elements in
the form of coplanar waveguides (CPWs). The resonators are described by a
capacitance c and an inductance l per unit length, and are created by boundary
conditions introduced as breaks and shorts in transmission lines. Due to
the finite length, standing waves will form. These standing waves can be
treated as independent harmonic oscillators [51], each with different resonance
frequencyωn � vp/λn , where the mode wave velocity vp � 1/

√
lc and λn is the

wavelength of the nth resonator mode. The wavelengths λn will depend on
the specific boundary conditions of the CPW. For all experiments presented in
the thesis, the resonators (see Chapter 3 for additional details) are fabricated
with a break in one end and a short in the opposite end, which leads to a
voltage anti-node and a voltage node in each end, respectively. For a resonator
of length L, the wavelengths are given by λn � 4L/(2n + 1). Due to L � λ0/4
the resonators are often termed λ/4 resonators. The resulting frequencies are
given by ωn � vp(2n + 1)/4L � ω0(2n + 1), where ω0 is the frequency of the
0th mode. As ω0 is 3 times lower than the frequency of the next mode the
higher modes of the resonators can often be ignored, treating the resonator as
a single harmonic oscillator, which we do throughout this thesis.

The readout cavities can also be constructed from λ/2 resonators, where
both ends of the CPW have a break and thereby a voltage anti-node, yielding
λn � 2L/n and ωn � nvp/L � nωn . As for the λ/4 resonator, the next mode
is much higher in frequency and for most practical purposes it can be viewed
as a single harmonic oscillator.
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2.2 Anharmonic oscillators

Superconducting harmonic LC oscillators are interesting and well-described
systems. However, if we are interested in creating a system that can be used
as a qubit, harmonic oscillators are not applicable†, as the energy levels are
equally spaced. Therefore, individual energy transitions cannot be addressed
required for qubit operations. Instead, constructing a system with nonlinearly
spaced energy levels, the two lower levels can be used as the qubit system. In
the context of superconducting qubits, Josephson junctions (JJs) [54] provide
the required nonlinearity and, crucially, they are also non-dissipative.

A Josephson junction is created by separating two superconducting elec-
trodes with a non-superconducting material. In principle the junction can be
created from any material. However, a very common type of junction is the
superconductor-insulator-superconductor (SIS) JJ, which almost all conven-
tional superconducting qubits devices are based on [55]. It is well described
by a sinusoidal current phase relation (CPR) [56],

Is � Ic sinϕ, (2.12)

where Is denotes the supercurrent, ϕ denotes the superconducting phase
difference across the JJ, and Ic is the critical current, i.e the largest current the
system can sustain before turning non-superconducting. This effect is known
as the DC Josephson effect [49] and describes how the flow of current across
the JJ is modified by ϕ.

If a voltage difference V is provided across the junction the phase difference
will evolve by,

dϕ
dt

�
2eV
ℏ
. (2.13)

This effect is known as the AC Josephson effect [49]. Evaluating the time
derivative of Is and by applying Eq. (2.13), we obtain,

dIs

dt
�

d
dt

Ic sin
(
ϕ
)
� Ic cos

(
ϕ
) dϕ

dt
� Ic cos

(
ϕ
) 2eV
ℏ
. (2.14)

†This is not fully accurate as bosonic qubits encode the information in the harmonic oscilla-
tor states of resonators [52, 53]. The resonators are then coupled to transmons to provide the
nonlinearity.
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By identifying that dIs
dt takes the same form as the current-voltage (I-V) relation

of an inductor with inductance L,

V � −L
dI
dt
, (2.15)

the Josephson junction is often referred to as a nonlinear inductor with induc-
tance,

L J �
ℏ

2eIc cos
(
ϕ
) . (2.16)

By observing that L J depends on the applied current (via the dependence on
ϕ), it is clear why a JJ can be thought of as a nonlinear inductor.

(a)

EJ EC

CJ

(b)

LJ

Figure 2.2: Josephson circuit sketch and potential. (a) Sketch of the circuit of a
Josephson junction with Josephson tunneling energy EJ in parallel with a capacitor with
capacitance C J . (b) Potential of a insulator-based junction (cos

(
ϕ
)
-potential, blue) and

corresponding energy levels and transition energies indicated (arrows). The harmonic
potential is also plotted (dashed line) to illustrate the difference between the potentials.
The energy scale is normalized to the harmonic transition energy ℏωr � ℏ/

√
L J C J �√

8EJ EC .

Josephson junctions are often modeled as an ideal junction in parallel with
a capacitance [51]. This circuit is almost an LC circuit, where the Josephson
junction has substituted the inductor, see Fig 2.2(a). As with the LC oscillator,
this circuit is described by two degrees of freedom associated to two energy
scales, the charging energy of the capacitor EC �

e2

2C J
, and the energy associated

with the current flow across the JJ. This tunneling energy E(ϕ) can be calculated
by combining Eqs. (2.12) and (2.13), and by evaluating the time integral of the
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EJ CJ

Cg

Vg

Figure 2.3: Circuit sketch of the anharmonic oscillator coupled to a voltage gate Vg via
a capacitance Cg .

power P � IsV ,

E(ϕ) �
∫ t

0
Pdt′ �

∫ t

0
IsVdt′ �

∫ t

0
Is
ℏ

2e
dϕ
dt′

dt′ �∫ ϕ

0
Ic sin

(
ϕ′) ℏ

2e
dϕ′

� − ℏ2e
cos

(
ϕ
)
� −EJ cos

(
ϕ
)
, (2.17)

where EJ � ℏIc/2e is the characteristic Josephson tunneling energy. Again
treating the charging energy term as the kinetic energy, and the Josephson (“in-
ductanc”) energy term as the potential energy, we can write the Lagrangian,

L �
C J

2
ÛΦ2

+ EJ cos
(
2π Φ
Φ0

)
, (2.18)

which results in the Hamiltonian,

H � 4EC n̂2 − EJ cos
(
ϕ̂
)
, (2.19)

where the potential is plotted in Fig. 2.2(b).
For this system, the energy depends on the offset charge ng due to the

discrete flow of charge across the junction (integer numbers of Cooper pairs).
This offset is usually controlled with a gate Vg [Fig. 2.3], and the resulting
Hamiltonian is given,

H � 4EC(n̂ − ng)2 − EJ cos
(
ϕ̂
)
. (2.20)

This Hamiltonian was originally used to describe charge qubits and the Cooper
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Figure 2.4: Numerical solutions to transmon Hamiltonian. Numerical solutions to
Eq. (2.20) for four different EJ/EC showing the three lowest energy levels, E0, E1, E2
(blue, orange, green) as a function of offset charge ng . As the ratio EJ/EC is increased
in (a)–(d), the charge dispersion, defined as the amplitude of the charge fluctuations
in En , is substantially reduced. This figure is inspired by Ref. [30]. Energies En are
normalized to E01(ng � 0.25) � E1(ng � 0.25) − E0(ng � 0.25) as opposed to the more
commonly chosen E01(ng � 0.5), which is convenient for the analysis in Chapter 7.

pair box (CPB) qubit [24, 25], and can be solved numerically in the charge
basis, described the by the charge eigenstates |n〉. In this basis n̂ |n〉 �

n |n〉, where n is the number of Cooper pairs on the island, and cos ϕ̂ �

1/2
∑ (|n〉 〈n + 1| + |n + 1〉 〈n |) [51]. Numerical solutions to Eq. (2.20) are

shown in Fig. 2.4 for different ratios of EJ/EC . In order to calculate these
solutions the Hamiltonian is written with matrix formalism in a truncated
charge space‡. The CPB qubit was originally operated in the EJ/EC ≲ 1. As
seen from Fig. 2.4 the qubit transition energy E01(ng) � E1(ng) − E0(ng) has a
strong dependence on ng , leaving the CPB susceptible to charge noise limiting
coherence times [57]. By operating the CPB qubit at the sweet spot ng � 1/2,
the system is insensitive to charge fluctuations to first order due to ∂E/∂ng � 0.
Despite operating the CPB at the sweet spot the coherence times are still lim-

‡Numerical code to solve the transmon Hamiltonian are found at:
https://github.com/anderskringhoej/Dispersion.

https://github.com/anderskringhoej/Dispersion
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EJ CJ

(a) (b) (c)

EJ CΣEJCs CJ

Figure 2.5: Cooper pair box and transmon circuit sketch. (a) Circuit sketch of a single
junction in parallel with the junction capacitance C J . By shunting the circuit with a
capacitor Cs the circuit in (b) is realised, which effectively is equivalent to the circuit in
(c) with charging energy EC � e2/(2CΣ) set by the sum of capacitances CΣ � C J + Cs .

ited by the charge fluctuations. Instead, as originally proposed by Ref. [30], by
increasing the ratio EJ/EC the charge dispersion (the amplitude of the fluctua-
tions in ng of the energy levels En) is exponentially suppressed, as seen from
Fig. 2.4. The increase of EJ/EC is commonly achieved experimentally by shunt-
ing the junction with a large capacitor, see Fig. 2.5. In this case the charging
energy is now set by the sum of capacitances EC � e2/2(C J + Cs) � e2/(2CΣ),
where Cs is the capacitance of the shunt capacitor. The circuit is still equivalent
to a single junction and capacitor in parallel, now with the capacitance given
by CΣ (Fig. 2.5), and thereby still described Eq. (2.20). As Cs is typically much
larger than C J , EC is effectively set by Cs .

As observed from Fig. 2.4 the anharmonicity, defined as the difference
between the two lowest transition energies α � E12 − E01, is also decreasing
as EJ/EC is increased. However, as α only decrease with a power law [30], it
is beneficial to move to the EJ/EC ≳ 50 regime. By doing so coherence was
drastically increased [58], and impressive improvements has been achieved
since [26].

A simple and intuitive way of understanding the suppression of the charge
dispersion as EJ/EC is increased, is to think of the transmon circuit as a rotor
with a mass m attached to a rod of length l [30]. In this analogy EJ → m gl,
and EC → ℏ2/(8ml2), where g is the gravitational acceleration. Identifying
the EJ/EC � 1 regime as the regime, where the quantum rotor is experiencing
a large gravitational force, the resulting oscillations around ϕ � 0 are small.
We can apply this classical intuition to obtain some understanding of the
quantum phase fluctuations of the Josephson phase particle. As phase is
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getting localized (smaller quantum fluctuations) it naturally means that the
charge, the conjugate coordinate of phase, is getting delocalized. As charge is
no longer well defined a gate voltage cannot change the energy of the island.
This mechanism results in the decaying charge dispersion amplitudes as EJ/EC

is increased.

Qubit anharmonicity is a crucial parameter determining the maximum
speed of qubit operations. This is due to leakage out of the computational
space due to overlap with 1 → 2 transition and repulsion between the excited
states as the drive is applied [59]. To understand how qubit anharmonicity
depends on EJ/EC , we expand the potential of Eq. (2.20) around ϕ � 0, valid
in the EJ/EC � 1 regime,

EJ cos ϕ̂ � EJ −
EJ

2 ϕ̂
2
+

EJ

24 ϕ̂
4
+ O(ϕ̂6). (2.21)

If we insert Eq. (2.21) to Eq. (2.19) and omit constant terms we obtain to 4th
order,

H � 4EC n̂2 − EJ cos ϕ̂ ≈ 4EC n̂2
+

EJ

2 ϕ̂
2 −

EJ

24 ϕ̂
4
� H0 + V′(ϕ̂), (2.22)

where H0 � 4EC n̂2 + EJ ϕ̂2/2 is the Hamiltonian of a harmonic oscillator [see
Eq. (2.4)] with plasma frequency ω � 1/

√
L J C �

√
8ECEJ/ℏ. Treating V′(ϕ̂) �

−EJ ϕ̂4/24 as a perturbation to Ĥ0 allows us to calculate the corrections to the
harmonic transition energies. Evaluating the perturbation matrix elements
〈i | V′(ϕ̂) |i〉 for i � 0, 1, 2 allows deriving the anharmonicity. This is easiest
achieved by expressing n̂ and ϕ̂ in terms of raising and lowering operators â†

and â,

â � 2i

√
EC

ℏω
n̂ +

√
EJ

2ℏω ϕ̂

â† � −2i

√
EC

ℏω
n̂ +

√
EJ

2ℏω ϕ̂. (2.23)

These are the conventional raising and lowering operators of the LC oscillator
derived in Eq. (2.11), rewritten in terms of EC , EJ , n̂, and ϕ̂ by using EC � e2/2C,
EJ � (Φ0/2π)2 /L J (true to lowest order in ϕ̂), q̂ � −2en̂, and ϕ̂ � 2πΦ̂/Φ0.
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From here we obtain,

n̂ �
−i
4

√
ℏω
EC

(
â − â†

)
�

−i
2

(
EJ

2EC

)1/4 (
â − â†

)
.

ϕ̂ �

√
ℏω
2EJ

(
â + â†

)
�

(
2EC

EJ

)1/4 (
â + â†

)
. (2.24)

Inserting into Ĥ0 and V′(ϕ̂) yields,

Ĥ0 � ℏω
(
â† â + 1/2

)
, (2.25)

by definition, and

V′(ϕ̂) � −EJ
ϕ̂4

24 � −EC

12
(
â + â†

)4
. (2.26)

Applying the rotating wave approximation, i.e. neglecting terms with different
number of raising and lowering operators yields,

V′(ϕ̂) ≈ −EC

2
(
â† â† â â + 2â† â

)
. (2.27)

We are now ready to evaluate the perturbation matrix elements 〈i | V′(ϕ̂) |i〉
for i � 0, 1, 2,

〈0| V′(ϕ̂) |0〉 � 0
〈1| V′(ϕ̂) |1〉 � −EC

〈2| V′(ϕ̂) |2〉 � −3EC . (2.28)

This allows calculating the corrections to the two lower transition energies,

E01 ≈ E1 − E0 �
√

8ECEJ − EC

E12 ≈ E2 − E1 �
√

8ECEJ − 2EC , (2.29)

yielding the anharmonicity,

E12 − E01 � α ≈ −EC . (2.30)
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This result illustrates that by moving to the transmon regime, the anharmonic-
ity stays sufficiently large for fast operations while eliminating the charge
noise sources by suppressing charge dispersion. For these reasons transmon
qubits are usually designed with EJ/EC ∼ 50. In practice, qubits are typically
operated frequencies f01 ∼ 5 GHz with EC � 200–300 MHz due to practical
considerations such as qubit frequency exceeding the thermal energy, shield-
ing, and common bandwidth of electronic equipment.

2.3 Semiconductor-based superconducting qubits

Semiconductor-based Josephson junctions have been the key element for the
research of this thesis. Recently transmon qubits based on semiconducting
junctions has been demonstrated [38, 39]. When substituting the SIS junction
with a superconductor-semiconductor-superconductor (S-Sm-S) junction, the
carrier density in the junction is gate tunable. As a result the critical current
and thereby the qubit frequency is gate tunable. This is in contrast to trans-
mon qubits, where the qubit frequency is either fixed or flux tunable. Except
tuning the qubit frequency with gate voltages, the gatemon is otherwise op-
erated as a transmon. Therefore, it is tempting to think of the gatemon as
nothing but a gateable transmon qubit. And for some applications this is
also true. For instance, in the context of scaling up transmon qubits towards
successful quantum error correction schemes [14, 15, 60]. Gatemon qubits
would in principle apply equally well as transmon qubits with the potential
advantage of not having to worry about large currents running in the cryostat
for flux tuning. However, for this to be interesting, gatemon qubits would
have to demonstrate the same impressive developments in terms of perfor-
mance, gate fidelity, and hardware control that has made transmon qubits
a leading candidate for universal quantum computing [26, 36]. Although
nanowire-based gatemon qubits have shown a promising improvements in
coherence [61, 62] since the first realisations [38, 39], the qubits have not con-
sistently proved the same impressive values of coherence times as transmon
qubits. Additionally, scaling perspectives of individually placed nanowires
does not seem promising. However, promising results on other material plat-
forms as two-dimensional electron gas (2DEG), where gatemon qubits have
already been demonstrated [40], or selective area growth [63], where the en-
tire circuit are deterministically defined, suggest that scaling of these qubits
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is equally possibly to other lithographically defined qubits. These platforms
are, however, currently limited by intrinsic loss mechanisms of the substrates,
typically III-IV materials. However, if these platforms are integrated with low
loss substrates, there is no reason why gatemon qubits cannot be a serious
alternative to transmon qubits.

The main activity of the research of this thesis has been investigating fun-
damental aspects of the gatemon qubit and the semiconducting Josephson
junction, and as a result it is clear that on some key aspects a gatemon fun-
damentally differs from a transmon. To explain some of these differences of
the S-Sm-S junction it is no longer sufficient to consider the sinusoidal CPR
of Eq. (2.12), which leads to the sinusoidal energy phase relation EJ cos

(
ϕ
)
.

Instead, we consider a more general model based on the specific distribution
of the Andreev modes responsible for Cooper pair transport across the junc-
tion. These processes are known as Andreev reflections [64], where electrons
are reflected as holes at the junction boundaries generating Cooper pairs in
the superconductor. In short junction limit L � ξ, where L is the junction
width and ξ is coherence length of the junction, multiple Andreev reflections
result in a pair of Andreev bound states. Each pair has the ground and excited

state energies ±∆
√

1 − Ti sin2(ϕ̂/2), where ∆ is the superconducting gap and
Ti is the transmission probability of the Andreev mode. In the case of well-
separated ground and excited state energies, summing over all ground state
energies yields the Josephson potential,

V(ϕ̂) � −∆
∑

i

√
1 − Ti sin2(ϕ̂/2). (2.31)

Neglecting the offset charge, the general gatemon Hamiltonian is given by

Ĥ � 4EC n̂2
+ V(ϕ̂). (2.32)

Figure 2.6 shows the potential of Eq. (2.31) in the two limits of Ti → 0 and Ti

compared to the harmonic potential VHO. It is observed that for increasing Ti

the potential of Eq. (2.31) is in closer resemblance of VHO. As a consequence
it is expected that the anharmonicity is transmission-dependent. To under-
stand this theoretically, we follow the procedure of Section 2.2, where V(ϕ̂) is
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Figure 2.6: Short junction Josephson potential. The potential of Eq. (2.31) as a
function of ϕ in the two limits of transmission Ti (red and blue lines). The potentials
are normalized to the harmonic resonance frequency ωr and offset to all equal 0 at
ϕ � 0. A closer resemblance to the harmonic potential VHO (dashed line) is observed
as Ti is increased.

expanded to 4th order in ϕ̂,

V(ϕ̂) ≈ ∆
∑

i

(
Ti

8 ϕ̂
2 −

(
T2

i

128 − Ti

96

)
ϕ̂4

)
�
∆

4

∑
i

(
Ti

2 ϕ̂
2 − Ti

24 (1 − 3
4Ti)ϕ̂4

)
� EJ

ϕ̂2

2 − EJ

(
1 −

3
∑

T2
i

4
∑

Ti

)
ϕ̂4

24 , (2.33)

where the constant term is omitted and EJ �
∆
4
∑

Ti . This expansion is valid
for EJ/EC � 1, where ϕ ≈ 0. Again, the ϕ̂2-term has the same form as the
harmonic potential V0(ϕ̂) � EJ

ϕ̂2

2 . Treating V′(ϕ̂) � −EJ

(
1 − 3

∑
T2

i
4
∑

Ti

)
ϕ̂4

24 as a per-
turbation to Ĥ0 and evaluating the perturbation matrix elements 〈i | V′(ϕ̂) |i〉
for i � 0, 1, 2 allow us to calculate the anharmonicity. By inserting n̂ and ϕ̂
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[Eq. (2.24) into V′(ϕ̂)] we obtain,

V′(ϕ̂) � −EJ

(
1 −

3
∑

T2
i

4
∑

Ti

)
ϕ̂4

24 � −EC

12

(
1 −

3
∑

T2
i

4
∑

Ti

) (
â + â†

)4
. (2.34)

Evaluating the perturbation matrix elements 〈i | V′(ϕ̂) |i〉 for i � 0, 1, 2 yields,

〈0| V′(ϕ̂) |0〉 � 0

〈1| V′(ϕ̂) |1〉 � −EC

(
1 −

3
∑

T2
i

4
∑

Ti

)
〈2| V′(ϕ̂) |2〉 � −3EC

(
1 −

3
∑

T2
i

4
∑

Ti

)
. (2.35)

(2.36)

The resulting corrections to the two lower transition energies are given by,

E01 � E1 − E0 �
√

8ECEJ − EC

(
1 −

3
∑

T2
i

4
∑

Ti

)
E12 � E2 − E1 �

√
8ECEJ − 2EC

(
1 −

3
∑

T2
i

4
∑

Ti

)
, (2.37)

yielding the anharmonicity,

E12 − E01 � α ≈ −EC

(
1 −

3
∑

T2
i

4
∑

Ti

)
. (2.38)

It is noted that in the limit of Ti → 0 the conventional transmon result is
obtained, α � −EC . This is expected as the cos

(
ϕ
)

potential is the special case

of V(ϕ̂) � −∆∑
i

√
1 − Ti sin2(ϕ̂/2) for Ti → 0. This is immediately obvious if
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we expand V(ϕ̂) around Ti � 0,

V(ϕ̂) � −∆
∑

i

√
1 − Ti sin2(ϕ̂/2) ≈ −∆

∑
i

(
1 −

Ti sin2(ϕ̂/2)
2

)
� −∆

∑
i

(
1 −

1 − Ti cos
(
ϕ̂
)

4

)
� −∆4

∑
i

Ti cos
(
ϕ̂
)
+ const., (2.39)

using sin(x/2) � 1 − cos(x). Ignoring the remaining constant term and identi-
fying EJ �

∆
4
∑

i Ti , we obtain,

V(ϕ̂) ≈ −EJ cos
(
ϕ̂
)
. (2.40)

The gatemon anharmonicity is experimentally studied in great detail in Chap-
ter 4, where it is concluded that the nanowire-based semiconducting junction
of a gatemon is dominated by 1–3 transmitting modes with one mode exceed-
ing Ti � 0.9 for certain values of gate voltage.

We have seen that a simple expansion valid in the EJ/EC � 1 regime
yields key information about the properties of Josephson junctions and qubit
anharmonicity. To extend this analysis, we consider a Josephson junction with
a single channel with transmission T, still applying the short junction limit.
The Hamiltonian of this system is given by,

Ĥ � 4EC

(
i∂ϕ̂ − ng

)2
+ ĤJ , (2.41a)

ĤJ � ∆̃

[
cos

(
ϕ̂/2

)
r sin

(
ϕ̂/2

)
r sin

(
ϕ̂/2

)
− cos

(
ϕ̂/2

) ] , (2.41b)

where r �
√

1 − T is the reflection amplitude. This Hamiltonian was originally
derived for a superconducting quantum point contact and is valid provided
EC � ∆ and that the Andreev states are separated from the continuum [65].
The requirement of separated states from the continuum is less import in
the case of no direct phase biasing, and provides information of the charge
dispersion. The eigenvalues E of HJ are the bound state energies,

E � ±∆
∑

i

√
1 − T sin2(ϕ/2), (2.42)
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Figure 2.7: Andreev eigenenergies and energy gap at ϕ � π. (a) Eigenenergies

E � ±∆∑√
1 − T sin2(ϕ/2) of HJ as a function of phase ϕ for increasing transmission

T (blue to red). It is observed that the two energy branches become less separated
for increasing T until the avoided crossing is suppressed at T � 1. This illustrates
the transition from the adiabatic limit, where the phase particle are always in the
ground state, to the opposite diabatic limit. (b) The energy E(ϕ � π) as a function of T
illustrating the decrease in the separation of the energy branches for increasing T.

which are shown in Fig. 2.7(a). This Hamiltonian differs slightly from Eq. (2.32),
where we sum over ground state energies. In general summing over quasi-
particle ground state energies to obtain the potential is only valid when the
ground state energy is well separated from the excited energy branch. For
r ∼ (EC/∆)1/2 the assumption of well separated bound state energy branches
is no longer valid as Landau-Zener transitions connect the branches. The
Landau-Zener transitions are captured by Eq. (2.41) and not by Eq. (2.32). Fig-
ure 2.7(b) shows the separation at ϕ � π of the Andreev energy branches of
Eq. (2.42) for increasing values of T, illustrating the transitioning from well-
separated energy branches at low values of T to fully closing at T � 1.

In Chapter 4, where Eq. (2.32) is applied to model the anharmonicity,
the crossing from the adiabatic to the diabatic limit, where Landau-Zener
transitions become important, occurs at,

r ∼
(

EC

∆

)1/2

�

(
240 MHz
45 GHz

)1/2

⇒ T ∼ 0.995, (2.43)

where the parameters EC � 240 MHz and ∆ � 45 GHz are the parameters
estimated for the device in Chapter 4. We estimate Ti to likely be lower than
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Figure 2.8: Numerical solutions to the two-level Hamiltonian. Numerical solutions to
Eq. (2.20) (black) and Eq. (2.41) for the three different transmission probabilities T (blue,
orange, green) showing the three lowest energy levels En . Solutions for EJ/EC � 5 (a)
and EJ/EC � 10 (b) are shown. Energies En are normalized to E01(ng � 0.25).

this value, and in this limit Eq. (2.32) yields the same result as Eq. (2.41). For
the measurements discussed in Chapter 7, clear indications of crossing into the
diabatic limit are observed, suggesting transmission probabilities exceeding,

T ∼ 1 − EC

∆̃
� 1 − 540 MHz

25 GHz � 0.98, (2.44)

where ∆̃ is the “effective” gap associated with resonant tunneling (see Chap-
ter 7 and the last paragraph of this section for details on resonant tunneling).

To gain further insights of the influence of varying the transmission proba-
bilities, and in particular the limit of unity transmission, we consider numerical
solutions to Eq. (2.41). Figure 2.8 shows numerical solutions to the transmon
Hamiltonian Eq. (2.20) and the single-channel model Eq. (2.41) for fixed EJ/EC

[EJ/EC � 5 in (a) and EJ/EC � 10 in (b)]. In order to fix EJ/EC , EJ � ∆T/4
is kept constant be varying the model value of ∆. The single-channel model
for one value of T is equivalent to having N modes, each with transmission T
and ∆ � ∆′/N such that EJ � ∆

′/4 × NT. As T is increased it is observed that
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the charge dispersion amplitudes of the energy levels are decreasing. In par-
ticular as the transmission reaches unity the energy levels flatten completely.
Interestingly, this observation is independent of EJ/EC . To understanding this
quenching of the charge dispersion, we can think of a phase particle in the
ground state of Fig. 2.7(a). For low T and thereby low tunnel barrier, the phase
tunneling probability between ϕ � 0 of one quasiparticle equilibrium [66] to
the next equilibrium at ϕ � 2π is large [Fig. 2.7(a)]. This results in delocalized
phase and as a result charge (conjugate variable of phase) will be localized
and the island charge is quantized. When T increases the potential barrier
becomes higher resulting in reduced phase tunneling probability. As T ap-
proaches unity the tunneling completely vanishes due to the Landau-Zener
transitions to the excited Andreev branch. As a result phase is now localized,
leaving charge delocalized suppressing charge dispersion. A more intuitive
way of understanding the vanishing charge dispersion is by viewing a chan-
nel of unity transmission as a "short" to ground. If charges can freely move
across the junction, no external charge gate can change the energy of the is-
land. These theoretical concepts inspired a detailed experimental study of the
charge dispersion in Chapter 7, where the modeling is also described in detail.

To quantify the influence of increasing T on the anharmonicity and dis-
persion, we can compute α defined as α/h � f01(n g � 0.25) − f12(n g � 0.25)
and the dispersion amplitude of the transition frequency δ01 � f01(n g �

0) − f01(n g � 0.25) as a function of T as shown in Figs. 2.9(a, b). It is noted
that α → −EC/4 is obtained for T → 1 even for low EJ/EC , which was also
found with the perturbation method, valid for ϕ ≈ 0. To achieve ϕ ≈ 0, it
is usually a requirement to operate in the EJ/EC � 1 regime. However, due
the Landau-Zener transitions the T → 1 regime also results in localized phase
and hence the ϕ ≈ 0 approximation is still valid.

In practice when measuring the charge dispersion, quasiparticle poisoning
has to be taken into account. A poisoning event shifts the energy levels by
1e, while otherwise leaving the diagram unchanged, illustrated in Fig. 2.10(a).
These levels do not couple to each other because transport across the junc-
tion occurs in units of Cooper pairs (2e). As the poisoning rate is faster than
the measurement rate§, in a measurement, one would observe the average of

§Resolving single quasiparticle tunneling events has been demonstrated [67]. When perform-
ing averages over many spectroscopy measurements, however, the poisoning rate is larger the
measurement rate.
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Figure 2.9: Anharmonicity α (a) and dispersion amplitude δ01 (b) as a function of
transmission T. Qubit frequency f01 is defined as f01 � f01(ng � 0.25), which is the
qubit frequency at the degeneracy point of the charge dispersion. The T � 1 limit
α � −EC/4 is indicated in (a) (grey dashed line). Inset: zoom of the region near T � 1
in (b) to illustrate the influence of crossing into the diabatic limit at T ∼ 0.99.

both parity branches [58]. An example of a frequency diagram is shown in
Fig. 2.10(b), illustrating the frequency dispersion. The dispersion measure-
ments carried out in Chapters 7 and 8 verify this behavior.

One of the main conclusions of Chapter 7, is the occurrence of resonant
tunneling in the junction, which is responsible for the large transmission prob-
ability. Resonant tunneling can occur if a quantum dot is formed inside the
junction. The theory is explained in detail in Chapter 7, with this paragraph
aiming to discuss some of the potential consequences of this new qubit regime.
In the resonant regime, the Andreev bound state energy is given as solutions
to,

2
√
∆2 − E2 E2 Γ + (∆2 − E2)(E2 − ϵ2

r − Γ2)
+ 4∆2 Γ1Γ2 sin2(ϕ/2) � 0, (2.45)

where Γ1 and Γ2 are the tunnel barriers of the resonant level, ϵr is the detuning
to the chemical potential, and Γ � Γ1 +Γ2. Interestingly, these solutions closely
resemble the eigenvalues plotted in Fig. 2.7(a), see Section 7.6. However, these
solutions are no longer separated by ∆ at ϕ � 0, but rather by an “effective”
gap ∆̃, which can be tuned from 0 to ∆ depending on Γ. This new feature
provides some interesting new design freedoms. In order to take advantage
of the newly discovered quenching of the charge dispersion, one has to take
EJ ≥ ∆/4 to ensure

∑
Ti > 1. To obtain as large anharmonicity as possible,
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Figure 2.10: Numerical solutions showing poisoned charge dispersion spectrum.
(a) Numerical solutions to Eq. (2.20) for EJ/EC � 5 showing the three lowest energy
levels, E0, E1, E2 (blue, orange, green) as a function of offset charge ng (solid lines).
Quasiparticle poisoning shifts ng by 1e (dashed lines). Energy transitions 0 → 1
(black arrow) and 0 → 2 (red arrow) are indicated. Energies are normalized to the
degeneracy transition energy E01 � E01(n g � 0.25). (b) Numerical solutions in (a)
converted to transition frequencies f01(ng) � [E1(ng)−E0(ng)]/h (black) and f02(n g) �
[E2(ng) − E0(ng)]/h (red). Numerical solutions (solid lines) and 1e shifted solutions
(dashed lines) are plotted. Frequencies are normalized to the degeneracy frequency
f01 � f01(n g � 0.25).

it is desired to increase EC . This, however, puts some constraints on the
achievable qubit frequency, which increases with both EJ and EC (scales with
∼

√
8EJEC in the transmon regime), and one can thereby not freely increase

EC as desired. In the resonant tunneling regime, on the contrary, one only
requires EJ ≥ ∆̃/4 to ensure T > 1. As ∆̃ is tunable, it is in principle possible to
almost freely choose EC returning to the CPB regime, while maintaining low
charge dispersion, and by doing so increasing anharmonicity substantially
compared to conventional transmons. One has to be aware that for EJ/EC < 1,
ℏω01 ∼ ∆̃. In this regime, two “subgap states” (states within ∆̃) are expected
to be visible, and their influence on the gatemon is not clear. That said,
future devices with controllable dot structure and tunnel barriers mark a very
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interesting research direction, not only due to potential advantages in terms
of transmon parameters, but also in the context of Andreev qubits [68, 69].
In addition, a controllable, near unity transmission channel may be useful
in creating protected qubits based on cos

(
2ϕ

)
-elements [70, 71], where the

potential is more naturally achieved due to the highly transmitting modes.

2.4 Qubit readout and manipulation

In order to create any useful qubit system, it is of course necessary to be able to
manipulate and determine the qubit states. To access information about a qubit
system, an effective, non-disruptive method of qubit state readout is required.
This section describes some of the basic concepts necessary to understand
how the gatemon states are measured and manipulated. The qubit readout
and control mechanism described in this Section is derived for a conventional
SIS junction-based transmon but everything applies to any transmon qubit
regardless of energy phase relation.

2.4.1 Qubit Readout

In cQED-based superconducting qubits the states are read out by coupling the
qubit circuit to a resonator circuit via a capacitance Cg , see Fig. 2.11. In this case
the resonator is a distributed LC oscillator as discussed in Section 2.1, viewed
as lumped elements with inductance Lr and capacitance Cr with resulting
resonance frequency ωr � 1/

√
Lr Cr . This is the lowest mode of the resonator,

neglecting the higher modes as they are far away in frequency and effectively
do not couple. The coupled system (Fig. 2.11) is described by the following
Hamiltonian,

H � 4EC(n̂ − ng)2 − EJ cosϕ + ℏωr â† â + 2βeV0
rmsn̂(â + â†), (2.46)

where β � Cg/CΣ, and V0
rms �

√
ℏωr/2Cr is the root mean square voltage of

the resonator [30]. In Eq. (2.46) the two first terms are the Hamiltonian of the
uncoupled CPB-system already derived [Eq. (2.20)], the third term represents
the harmonic oscillator of the resonator, and the last term represents the
coupling. We can further rewrite the Hamiltonian in terms of the uncoupled
transmon state |i〉 and the ith transition frequency ωi to obtain the generalized
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Figure 2.11: Coupled qubit-resonator circuit sketch. Circuit sketch of the combined
qubit and resonator system where the qubit is capacitively coupled to the resonator
via the capacitance Cg , where the resonator is inductively coupled to a transmission
line via the mutual inductance M12. By sending a drive tone with frequency ωr
and measuring the heterodyne demodulated transmission voltage VH the resonance
frequency and thereby the qubit state is determined.

Jaynes-Cummings Hamiltonian [30],

H � ℏωr â† â + ℏ
∑

i

ωi |i〉 〈i | + ℏ
∑

i j

gi j |i〉
〈

j
�� (â + â†

)
, (2.47)

where gi j � 2βeV0
rms 〈i | n̂

�� j〉 /ℏ is the general coupling strength of the ith and
jth energy level. In the transmon limit EJ/EC → ∞ selections rules yields
〈i + 1| n̂ |i〉 , 0 with all other matrix elements → 0. Applying this and the
rotating wave approximation, i.e. neglecting terms that does not conserve the
number of excitations and typically oscillate fast enough to average to zero,
we obtain,

H � ℏωr â† â + ℏ
∑

i

ωi |i〉 〈i | +

ℏ
∑

i

gi ,i+1
(
|i〉 〈i + 1| â† + |i + 1〉 〈i | â

)
. (2.48)

Approximating the qubit system as an effective two-level system and rewriting
the Hamiltonian in terms of the qubit transition frequency, the spin Pauli op-
erator σz , and spin ladder operators σ+ and σ−, the original Jaynes-Cummings
Hamiltonian is obtained [27,29],

H � ℏωr â† â +
ℏω01

2 σz + ℏg
(
σ+ â + σ− â†

)
, (2.49)
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where g � g01.
There are two characteristic regimes of the Jaynes-Cummings Hamiltonian,

the resonant regime where ωr � ω01 and the dispersive regime where |ωr −
ω01 | � g. In the resonant regime the qubit and resonator system hybridize
into new states that are superpositions of resonator photon states and qubit
excitation states. These new states are split by 2ℏg, known as the vacuum-
Rabi splitting. In order to observe this effect, the experimental linewidth of
the resonator and qubit frequency must be less than g/π. For the devices
presented in this thesis typical parameters were g/(2π) ∼ 50–100 MHz, and
qubit and resonator linewidths of around 1 MHz and 5 MHz, respectively.

For the majority of qubit experiments and for all data presented in this
thesis, the qubit is operated in the dispersive regime. In order to derive key
features in this regime, the generalized Jaynes-Cummings Hamiltonian can be
expanded in g/(ωr − ω01) valid as |ωr − ω01 | � g. Employing the two-level
approximation after the expansion one obtains,

H � ℏ(ω′
r + χσz)â† â +

ℏω′
01

2 σz , (2.50)

where ω′
r � ωr −χ12/2 and ω′

01 � ω01+χ01 are the renormalized resonator and

qubit frequencies with χi j �
g2

i j
ωi j−ωr

and χ � χ01 − χ12/2. The key feature of
Eq. (2.50) is that the harmonic resonator frequency shifts with ±χ depending
on the qubit state. All cQED measurements in this thesis rely on this dispersive
shift to allow state determination. Using ω12 � ω01 + α/ℏ and g12 �

√
2g [30]

we can rewrite χ in terms of α,

χ � χ01 − χ12/2 �
g2

∆0
− g2

∆0 + α/ℏ
, (2.51)

where ∆0 � ωr − ω01. This highlights the necessity of a finite and preferably
large anharmonicity. Importantly, this measurement technique provides a
quantum nondemolition (QND) determination of the qubit state, as the state
remains in the measured state after readout (neglecting state decay).

Coupling a quantum system to the environment is necessary for access
and control, which inevitably introduces decay and decoherence mechanisms.
Fortunately, the resonator acts as a filter when detuned from the qubit fre-
quency [27], heavily reducing the dissipative environment experienced by the
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qubit [72]. Despite being detuned from the qubit, the spontaneous decay rate
of the qubit is still modified due the coupling to the resonator, known as the
Purcell effect [32, 73]. The Purcell decay rate γκ depends on ∆0, g and the
decay rate of the resonator κ,

γκ � κ
g2

∆2
0
. (2.52)

Typical parameters for the experiments of this thesis are g ∼ 50–100 MHz,
κ ∼ 30 MHz (quality factor Q � ωr/κ ∼ 1000), and ∆0 ∼ 1–2 GHz, resulting
in lower bounds of the decay rate of γ ∼ 0.1 µs−1. For high fidelity readout, it
is of interest to be able to perform fast readout and hence increasing κ. How-
ever, this would result in enhanced Purcell decay, and for this reason Purcell
filters [74] are often implemented, where the transmission line effectively is
a resonator. As this was not crucial for the research in this thesis, this extra
complication was omitted.

In summary, this section describes how individual energy states of a trans-
mon qubit systems can be read out by coupling to harmonic resonators. For all
measurements in this thesis, the resonance frequency is determined by trans-
mission measurements through an inductively coupled transmission line, as
illustrated in Fig. 2.11. For more detailed discussions of the Jaynes-Cummings
Hamiltonian and circuit quantum electrodynamics I refer to Refs. [27, 30, 51].

2.4.2 Qubit Manipulation

This subsection describes how the gatemon states are manipulated. By capaci-
tively coupling the qubit to an external voltage source, either directly as shown
in Fig. 2.3 or through the resonator as shown in Fig. 2.11, the qubit state can
by manipulated by microwave tones. This coupling to a drive modifies the
dispersive two-level Hamiltonian of Eq. (2.50), which in the rotating frame of
the drive frequency ωd yields,

H � (ℏ∆r + ℏχσz)â† â +
ℏ∆q σ̂z

2 +
ℏ

2
(
ΩR(t)σx +ΩI(t)σy

)
, (2.53)

where∆r � ωr −ωd , ∆q � ω01−ωd , andΩ(t) � ΩR(t) cos(ωd t)+ΩI(t) sin(ωd t)
is the Rabi frequency of the drive. See for instance Ref. [60] for a detailed
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derivation of the driven dispersive Jaynes-Cummings Hamiltonian. In order
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Figure 2.12: The Bloch sphere used to visualize any qubit state
��ψ〉

as a vector anywhere
on the sphere. Qubit manipulation can be viewed as rotations Rθi around any axis.

to visualize the qubit control we can think of the qubit state as a vector in
Bloch sphere, where the two poles are the ground (|0〉) and excited (|1〉) state.
Any qubit state (up to a global phase)

��ψ〉
� α |0〉 + β |1〉 can be viewed as

a vector in the sphere, and to fully control the state it is required to be able
to perform rotations around all three axes, see Fig. 2.12. From Eq. (2.53) is it
clear that by choosing the phase and amplitude of the drive, we can perform
any rotation around the x- and y-axes. In practice we achieve these rotations
by IQ modulation, as discussed in Section 3.4.2, where the modulation pulses
I(t) and Q(t) plays the role ofΩR andΩI . Due to the ∆q-term in Eq. (2.53) the
qubit state vector will rotate (in the rotating frame) with ∆q around the z-axis.
This is exactly what is employed when performing a Ramsey measurement in
Section 3.4.2, where the drive tone is slightly detuned or interleaved with a
gate pulse.
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2.5 Hybrid cQED - Majorana transmon

Topological materials suggest an exciting platform for quantum computing,
where the material is naturally protected against local noise sources [45]. When
spin-orbit coupling and Zeeman energy is present in a one-dimensional prox-
imitized nanowire, Majorana zeros modes (MZMs) are predicted to emerge [75,
76], which has been followed by compelling experimental signatures [43, 77–
79]. As a step towards a qubit based on Majorana physics, a hybrid design
merging cQED and topological superconductivity is proposed in Ref. [44]. In
this proposal each superconducting segment (each side of the Josephson junc-
tion) of a transmon device host MZMs at the ends. In a simplified picture this
gives rise to a 1e coherent coupling across the Josephson junction due to the
overlap of two MZMs, which modifies the transmon Hamiltonian,

H � 4EC(n̂ − ng)2 − EJ cos
(
ϕ̂
)
+ 2iEMγ2γ3 cos

(
ϕ̂/2

)
, (2.54)

where γ2 and γ3 are the Majorana operators of the two modes on each side of
the junction satisfying γ†i � γi , and {γi , γj} � δi j . EM is the energy splitting
associated with the overlap of γ2 and γ3, see Ref. [44] for more details. As
gatemon qubits are build by similar nanowires, where signatures of MZMs
have been observed, it is a natural platform to realize this proposal. This
requires operating the gatemon in magnetic fields of the order of 1 T, typically
required to enter the topological phase. This challenge has been addressed by
promising progress in field compatible resonators [80], and field compatible
gatemon qubits presented in Refs. [71,81] and Chapter. 8. If possible to tune the
gatemon nanowire to the topological regime, a distinct signature is expected
to be visible in the charge dispersion. Figure 2.10 shows a poisoned spectrum,
where the two island parity energy branches are visible. These branches are
uncoupled as transport across the junction occurs in units of Cooper pairs
(2e). However, if the EM-coupling term is realized, the two parity branches
will couple, and new states are created, where island parity is no longer well
defined. In this regime, depending on the range of EC , EJ , and EM avoided
crossings are expected to be detectable in the charge dispersion spectrum. In
practice this picture is too simplified and one has to take the Andreev spec-
trum into account, which together with finite junction effects may significantly
complicate this experiment and the expected signatures [82]. Despite signif-
icant experimental efforts in this thesis, and also in Refs. [71, 81, 83] no clear
signatures of Majorana physics in a cQED architecture has been demonstrated.
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Experimental Methods

This chapter presents a detailed overview of the device fabrication and the
experimental setup. While the specific fabrication details of each device de-
pends on the aim of the experiment, many of the fabrication steps are very
similar. The general workflow of device fabrication is described in Section 3.1.
The exact fabrication recipes for each device are provided in Appendices A
and B pointing out the differences between each design. Section 3.2 describes
the packaging and mounting of the devices and Section 3.3 gives a detailed
description of the experimental setup. Finally, the Chapter is concluded with
a general description of the applied measurements techniques along with
common examples of their use.

3.1 Device fabrication

The process of fabricating nanowire-based gatemon devices relies on several
complicated techniques. These processes require professional cleanroom tools
and lithography facilities. This section describes each fabrication stage in
chronological order. All the devices presented in this thesis was fabricated
on high resistive silicon substrates (above 5 kΩcm), which freeze out at mil-
liKelvin temperatures). In order to build highly coherent superconducting
qubit devices, it is crucial to have a low loss substrate and good material in-
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terfaces, which makes silicon an ideal candidate [84]. The substrate was then
covered with a thin superconducting film, ∼ 100 nm Al for the devices in
Chapters 4 and 5, and ∼ 20 nm NbTiN for the devices in Chapters 6, 7, and 8.
The use of thin NbTiN films was motivated by its higher critical field compared
to Al, allowing the use of magnetic field compatible resonators [80].

Figure 3.1: Device overview of gatemon devices. (a) Full optical image of a gatemon
device. A common transmission line is coupled to six individual readout resonators,
and one test resonator. Each of the readout resonators capacitively couple to qubit
islands, with one example highlighted (red rectangle). (b) Magnified optical image of
the highlighted region in (a). A nanowire is placed at the bottom of each qubit island
(blue rectangle). Electrostatic bottom gates control the nanowires, and are connected
via the LC-filters. Two of the crossovers connecting the ground plane on each side of
the transmission line are visible. (c) Scanning electron micrograph of the nanowire
region. Two gateable segments of ∼ 100–200 nm were formed, controlled with the
bottom gates, which was electrically isolated from the nanowire by a 15 nm HfO2
dielectric (two bright regions). Flux pinning holes were patterned in the ground plane.
This is the device design presented in Chapters 6 and 7, where the gatemon qubit has
an additional gateable region to allow DC transport. Traditional gatemon qubits only
have one gateable region, as shown in Chapters 4, 5 and 8.

The superconducting circuits were defined by either UV lithography (UVL)
or electron-beam lithography (EBL) [85]. Here, the substrate was covered with
a resist, often PMMA (polymethyl methacrylate) for EBL or AZ photo resist for
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UVL, which was damaged by the exposed beam in a desired pattern. These
patterns consist of the individual distributed quarter wavelength (λ/4) read-
out resonators, which were inductively coupled to a common transmission
line. In the same lithography step, electrostatic gates, on-chip LC-filters [86],
nanowire regions, and the qubit islands were defined. The qubit islands serve
as the shunt capacitances discussed in Chapter 2 and determine the charging
energy EC . By removing the exposed resist by a solvent-based developer, fol-
lowed by exposing the device to an etchant, the thin film was removed in the
patterned areas, constructing the circuit shown in Fig. 3.1(a). The capacitive
coupling g between the qubit islands and readout resonators depends on the
capacitance ratio β � Cg/CΣ, as discussed in Section 2.4. Both the total capaci-
tance CΣ and the coupling capacitance Cg can be estimated using electrostatic
simulations [87], allowing relative precise pre-knowledge of relevant qubit
parameters. In similar fashion the inductive coupling to the transmission line
was determined by the length of the resonator segment in close vicinity of
the transmission line and the distance to it. Desired coupling quality factors
were found experimentally by fabricating several devices and extracting their
respective quality factors. In addition, a test resonator was incorporated in the
qubit design, which allowed extraction of the internal quality factors, usually
found to be of the order of 105. Other important design choices included the
ratio between the strip line and trench width and film thickness, crucial for
matching the characteristic impedance of the resonator [88] with the rest of the
50Ω electronic environment. The film thickness only played an important role
for NbTiN-based devices due to the large (and thickness dependent) kinetic
inductance [84].

In a subsequent lithography step, following the etch, we defined gate- and
crossover-dielectric patterns. The dielectric was then deposited with atomic
layer deposition techniques in the pre-defined regions. The gate dielectric
ensured no leakage current for voltage ranges of around ±10 V. The crossover
dielectric was used to ensure that the crossovers that were deposited in a
subsequent EBL-step did not short the control lines to ground. These initial
fabrication steps were usually then same for all devices and designs, and were
therefore typically performed on a full wafer, allowing having both multiple
copies of the same structures, and different designs. Each fabrication step
ended with a removal of the resist and a cleaning of the wafer.

The next phase concerned the nanowire processing, which were often



38 Experimental Methods

carried out on a subset of the wafer, by first cleaving the wafer into several
chips. The epitaxial nanowires [89] were grown on separate wafers by Peter
Krogstrup and his team. Nanowires were then placed in the pre-defined
nanowire regions. For the device in Chapter 4, this was done with random
dry deposition [90], where many nanowires were randomly placed into the
region. More recently, and for all other devices∗ presented in the thesis, the
nanowires were placed with a micromanipulator [91], where single nanowires
were picked up with a tungsten needle from the nanowire growth chip. The
nanowires were then placed on top of the gate dielectric with sub-micrometer
precision, see Figs. 3.1b, c. Following the placement, a small segment of a
few hundred nanometers (defined by EBL) was etched to form a gateable
semiconducting segment, constituting the gatemon Josephson junction. In
a final fabrication step, one side of the Josephson junction was connected to
the ground plane and the other side was connected to the island, forming the
gatemon circuit, see Fig. 3.1(c). At this step the crossovers were also connected,
used to tie up the ground plane on each side of any strip line to reduce spurious
modes [92].

3.2 Mounting the device

In order to connect the finalized device to the electronic control equipment, the
device chip was mounted in a circuit board, typically glued to the board with
a droplet of PMMA or epoxy. A non-conducting epoxy was chosen to avoid
introducing new loss mechanisms. Hereafter, all the DC gate and microwave
control lines were connected to the individual lines on the circuit board by
Al wire bonds. In addition, multiple wire bonds connected the ground plane
of the circuit board to the ground plane of the device chip to tie the ground
plane together to minimize spurious resonance in the device. Figure. 3.2 show
examples of bonded devices mounted to the circuit boards.

Following the wire bonding, the device was mounted in a sample box.
The sample packaging plays a crucial role in achieving long qubit coherence
times and careful considerations are required. Superconducting qubits are
very sensitive to radiation, either radiation at the qubit frequencies or infrared
radiation generating quasiparticles [93,94], all leading to enhanced relaxation

∗Chapter 5 presents a deterministic alternative to the nanowire assembly based on dielec-
trophoresis.
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Figure 3.2: Device packaging. (a) Example of a bonded device chip on the circuit
boards used in Chapters 4 and 5. Eight striplines were bonded to the sample to connect
transmission lines, DC gate lines and microwave drive lines to SMP connectors. The
samples were mounted in an indium sealed Al sample box, shown in (b). (c) Example
of a bonded device of the same design and circuit board used in Chapters 6, 7, and 8. In
this design, the transmission lines were bonded to two striplines, which were connected
to SMP connectors. The remaining 14 lines on the board were DC lines connected to
the nano-d outlet shown in (d). The samples were mounted in an indium sealed CuBe
box, shown in (d) with a second cavity for DC filtering and outlet (left). The sample
was shielded with a CuBe lid and Eccosorb foam.

of the qubit devices. Therefore, it is important that the samples are properly
shielded. The Al-based samples measured in Chapter 4 were mounted in an
Al box. This box was used for the experiments that were carried out at zero
applied magnetic fields as the superconducting Al prevented changes in the
magnetic field and therefore protected the sample. The box was coated with
light absorbing paint to reduce radiation [71]. A Cu lid was placed on top of
the chip to avoid any box resonances at the qubit frequencies. Indium wires
are placed in the designed trenches [Figs. 3.2(a, b)] to further seal the box.
Hereafter, the box was mounted in another Cu box and the microwave and
DC lines are connected to the SMP and DC outlets of the Cu box. This box
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was then connected to the outlets of the mixing chamber plate, which allowed
connection to the wiring inside the cryostat. This allowing addressing the
qubit with the room temperature electronic equipment, see Section 3.3.

The NbTiN-based samples measured in Chapters 6, 7, and 8 were designed
to be compatible with large magnetic fields, and were operated in cryostats
equipped with a vector magnet. Therefore, the packing of these samples was
slightly different. The sample was mounted inside a CuBe box, chosen as
CuBe has a high thermal conductance and low electric conductance. This
minimized the heating from eddy currents when operating in large magnetic
fields, while still ensuring good thermalization. Furthermore, these samples
by design had more DC electrostatic gate electrodes. To accommodate this,
we changed from applying DC signals through the bias tees and coaxial lines
[Figs. 3.2(a, b)] to connecting directly to the DC cable assembly in the cryo-
stat via the nano-D connector [Fig. 3.2(d)]. The filtering of the DC lines is
very important to avoid introducing a new dominant relaxation source by the
coupling to the environment via the voltage gates. Therefore these devices
are designed with on-chip LC-filters [86], see Figs. 3.1(a, b). Additionally, just
before connecting the device inside the CuBe box, the DC lines were further
filtered in an indium sealed box inside a second cavity of the CuBe box, see
Fig. 3.2(d). To further limit radiation, the device was surrounded by light ab-
sorbing Eccosorb LS-26 foam. The sample box was then mounted in another
Cu box for connection to the mixing chamber. This box design was developed
after the first measurements of gatemon qubits in magnetic fields. Here, the
devices were mounted on a similar circuit board and then mounted directly
in the Cu box. In this setup, it was found that the T1 relaxation times were
limited to a few hundred nanoseconds. In a first attempt to improve this, the
devices were wrapped in the Eccosorb foam, which increased T1 and led to
the development of the current box design.

3.3 Measurement setup

This section presents a detailed overview of the electronic measurement setup
and wiring of the cryostat for all the measurements presented. Figures 3.3
and 3.4 presents schematics of the full setup used in Chapters 4 and 5, and
Chapters 6, 7, and 8, respectively. As the two setups were nearly identical it
is sufficient to only describe one of them in detail, focussing on the setup in
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Fig. 3.4. An input microwave voltage signal was generated, either by a Rohde
& Schwartz VNA or a vector signal generator. This room temperature signal
was heavily attenuated and filtered to minimize heat and noise at the sample,
operated in cryostats with base temperatures of around 10 mK. The return
signal coming from the devices passed through an additional low pass filter
and two isolators, to minimize reflections to the sample. Before reaching the
readout circuit at room temperature, the signal was amplified with a low noise
amplifier at 4 K and again at room temperature. Depending on the type of
measurements the signal returned to the VNA or the Alazar readout circuit,
controlled by the RF switch. In order to drive both the resonator and the qubit
frequency, the input signal was a combined signal from two signal generators.
These signals were modulated by the arbitrary waveform generator (AWG) to
achieve the desired pulse sequences.

The last part of the setup was the DC circuit used to gate the nanowires
and to perform transport measurements. To achieve sufficient filtering the DC
lines were filtered both at the mixing chamber plate with QDevil filters and
inside the sample box. DC voltages were generated by a QDac digital to analog
converter [95], which were used to gate the qubit (VQ) and the FET (VFET), as
explained in Chapter 6. A third DC voltage was used to bias the lead (VB).
This DC voltage was combined with an AC voltage generated by the lock-in
amplifier via the voltage divider. The returning current I was then amplified
and converted to a voltage by the Basel I-to-V converter. This voltage, which
contains DC and AC components was then measured by the multimeter (DC)
and the lock-in amplifier (AC).

The two setups presented are of similar dilution refrigerator systems, with
the setup in Fig. 3.4 equipped with a 6-1-1 vector magnet. Other differences
among the setups include removing the cryoperm magnetic shielding, and
removing Eccosorb low pass filters for field compatibility. In addition, for the
setup in Fig. 3.3 the DC lines were combined with the coaxial lines via home-
made bias tees consisting of a 10 kΩ resistor and a 5 nF capacitor. This was
necessary as the DC signal would be filtered out by the attenuators connected
to the coaxial lines. Additionally, the qubits were not driven via separate mi-
crowave drive lines in Fig. 3.4 compared to Fig. 3.3 (green lines), but instead
the qubits were driven through the resonators. This change was unrelated to
the operation in magnetic fields, but had to do with the scope of the experi-
ments being of more fundamental character, where individual control of the
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Figure 3.3: Detailed schematic of the measurement setup used in Chapters 4 and 5.
The red lines refer to microwave readout lines, the green lines refer to microwave qubit
drive lines, and the blue lines refer to DC lines, used for gating the nanowire junctions.
All microwave equipment is connected to the 10 MHz clock reference. The figure is
adapted from Ref. [96].

qubits were not needed. In order to switch quickly between vector network
analyzer (VNA) and pulsed measurements an RF switch was implemented
in Fig. 3.4. The setup in Fig. 3.3 had a traveling wave parametric amplifier
(TWPA) installed [97]. This allowed the implementation of faster readout and
single shot measurements but this was not crucial to the experiments using the
setup of Fig. 3.4 . Other measurements (not shown) were carried out in a setup
with both a magnet and a TWPA. Finally, the equipment used for transport
measurements (blue lines in Fig. 3.4) was not compatible with the devices in
Chapter 4.
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Figure 3.4: Detailed schematic of the measurement setup used in Chapters 6–8. The
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6-1-1 vector magnet. The figure is adapted from Ref. [98].

3.4 Measurement Techniques

Measurements of gatemon qubit devices are typically based on microwave
transmission measurements, which determines the resonance frequency of
the readout resonator fres. As discussed in Chapter 2, from determining fres
one can infer the state of the qubit, when operated in the dispersive regime.
The microwave measurements of this work is based on two measurement
techniques, measurements with a VNA, and pulsed AWG-based time domain
measurements, based on mixing of input signals and demodulation of output
signals. Recently, we have demonstrated the compatibility of DC/AC transport
measurements and gatemon qubits, as discussed in Chapter 6 and Ref. [98].
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These measurements were based on DC current and voltage measurements,
and AC lock-in measurements.

Despite these three measurement techniques being different, they all rely
on the same feature, the mixing of the transmitted signal with a reference tone.
Filtering out the high frequency component, the magnitude and phase of the
return signal from the sample are extracted. This process takes place in both
the VNA and in the homebuilt demodulation circuit. The lock-in amplifier
relies on the same principle but with much lower frequencies, typically 10–
100 MHz. Throughout this thesis the current to ground was measured. As the
capacitance to ground is finite the measured resistance is frequency dependent
for high frequencies, due to the decreasing impedance. As a consequence
measurements were performed with signal frequencies of tens of hertz.

3.4.1 Frequency domain measurements

Continuous one-tone RF transmission measurements have been key in this
thesis. These measurements were often acquired with a VNA. The VNA can
measure the transmission through a sample fast and has a large dynamic range.
Therefore, it is an ideal tool for initial measurements. Furthermore, the VNA
automatically demodulates the incoming signal with a reference tone reducing
the amount of additional circuit elements when the VNA is used for probing
the qubit and resonator characteristics. These measurements were mostly used
to probe the resonator, where continuous one-tone measurements are a very
valuable characterization tool. Such measurements are often used in the first
characterization of a new device. For instance, probing the power dependence
of fres is a simple measurement, which provides valuable information of the
qubit. Figure 3.5(a) shows a transmission measurement for varying resonator
drive frequency fr , performed at two different powers. It is observed that fres
shifts to a lower frequency value at low powers (−120 dBm). This is expected
due to the hybridization of the qubit and resonator, which is saturated at
high power (−60 dBm), where the uncoupled fres is obtained [27]. From this
measurement, according to the theory presented in Chapter 2, we can infer an
interaction between the gatemon and the resonator circuit. Additionally, we
can conclude that the qubit frequency f01 is larger than fres at the particular
junction gate VQ � 0 V, due to the negative Lamb shift χ01 � g2/(ωres−ω01). In
particular, as g is estimated from the device design (discussed in Section 3.1),
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Figure 3.5: Examples of common VNA measurements. (a) Transmission amplitude S21
measurement as a function of resonator drive frequency fr at drive power � −120 dBm
(blue) and −60 dBm (orange). The Lamb shift χ01 is indicated (arrow). The scan is
taken at junction gate VQ � 0 V. (b) S21 as a function of drive power and fr . A shift in
the resonance frequency fres is observed as the power is decreased, again associated
with χ01. (c) S21 as a function of VQ and fr . Multiple avoided crossings associated
with the qubit frequency f01 and fres are equal. As VQ is increased fres varies from
being above the bare value to below, indicating that f01 changes from being below fres
at low VQ to being above at larger VQ .

such a measurement allows relative precise estimation of f01. Figure 3.5(b)
shows a full power scan demonstrating the gradual hybridization as the drive
power is decreased. Similarly, measuring fres as function of VQ [Fig. 3.5(c)]
provides direct information of how f01 depends on VQ with a simple and fast
measurement. We can identify that for VQ < −1.5 V and for VQ > −0.5, f01 is
significantly lower and larger than fres, respectively. We infer this due to the
vanishing Lamb shift, leaving fres nearly gate independent in those regimes.
In the intermediate regime, we observe a highly gate-dependent spectrum and
multiple avoided crossing, indicating that the qubit is being tuned in and out
of resonance with the resonator. This nonmonotonic dependence on VQ is
typical for gatemon qubits and is discussed further in Chapters 4 and 6.

3.4.2 Time domain Measurements

To directly probe the state of the qubit and its coherence, time domain mea-
surements are required. These measurements allow manipulation of the qubit
for a given time, followed by state readout. To perform such pulsed measure-
ments, an output microwave signal is required with a frequency of 1-10 GHz
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for pulse durations as short as few nanoseconds. To achieve this, we mod-
ulate the microwave signal of the signal generators with an AWG-generated
envelope, using the IQ mixer ports of the signal generators, see Fig. 3.4. Here
I and Q represent the real and imaginary part of the signal, also sometimes
referred to as the in-phase and quadrature component, respectively. The IQ
mixer consist of two mixers and a 90◦ hybrid coupler. When an incoming
signal cos(ωt) goes through the hybrid coupler a phase shifted signal sin(ωt)
is generated, and the two signals goes to the I and Q mixer, respectively. When
the signal passes the two mixers each component if multiplied by the AWG
input of the I and Q channels, resulting in a modulated signal,

V � I(t) cos(ωt) + Q(t) sin(ωt), (3.1)

where I(t) and Q(t) are time dependent an takes any shape generated by the
AWG. For most of the measurements in this thesis, square pulses are applied
to create the measurement pulses. This is sufficient as high fidelity operation
and readout has not be a target of this thesis, rather the experiments presented
have been of “proof-of-principle” character. For high fidelity gate operation,
pulse shaping plays a crucial role. Here, Gaussian pulses and derivatives of
Gaussian pulses (DRAG) are commonly used [59].

In order to perform the actual measurements, a modulated drive pulse was
applied to the qubit, either through external drive lines (Fig. 3.3) or through
the common transmission line (Fig. 3.4). Following the qubit drive pulse, a
second pulse of frequency ωr was applied to probe the readout resonator. The
transmitted signal was then first mixed with a reference signal with frequency
ωLO, where ωLO was usually chosen such that (ωr −ωLO)/(2π) ∼ 10–100 MHz.
As a consequence, the mixed signal Vm has two frequency components and is
given by,

Vm � Ar cos
(
ωr t + ϕ

)
ALO cos(ωLOt)

�
ArALO

2
(
cos[(ωr − ωLO)t + ϕ] + cos[(ωr + ωLO)t + ϕ]

)
. (3.2)

Here, ϕ is the phase difference between the reference and the transmitted
signal, and Ar and ALO are the amplitudes of the reference and local oscillator
drive, respectively. By filtering the high frequency component away, and by
further digital down-conversion in software by the Alazar card, we can ex-
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Figure 3.6: Schematic illustrating the concept of the demodulation circuit. Two
microwave signals are generated, the drive tone with frequency fr , and a reference
signal fLO. The drive tone is applied to the sample and the transmitted signal is mixed
with the reference signal, resulting in a low and high frequency component. By filtering
the high frequency component away with a low pass filter, the low frequency signal is
measured with the Alazar card. All microwave equipment is connected to a reference
for synchronization.

tract both the amplitude and phase of the returned signal. Figure 3.6 shows
a reduced circuit illustrating the fundamental concepts of the heterodyne de-
modulation circuit. Here, heterodyne refers to the fact that the reference
and input signal have different frequencies. This allows for parallel measure-
ments of multiple readout resonators, which are probed at different detuning
frequencies.

An important aspect of this setup is the use of single side band (SSB)
modulation, where a carrier frequency is shifted by a certain frequency ωs [88,
99]. This, for instance, allows the reference signal to be generated by the same
RF source as the input signal. The main frequency is moved by ωs/(2π) ∼ 10–
100 MHz, while the reference signal remains unchanged. This is achieved by
applying two modulation pulses I(t) � cos(ωs t) and Q(t) � ∓ sin(ωs t) for the
desired pulse duration. The resulting signal yields,

V(t) � I(t) cos(ωt) + Q(t) sin(ωt)
� cos(ωs t) cos(ωt) ∓ sin(ωs t) sin(ωt)

� cos[(ω ± ωs)t], (3.3)

which allows choosing an input signal of a desired frequency. As the input
and reference signals are generated by the same source, phase drift errors are
circumvented, see Ref. [71] for more details.

We also apply SSB modulation to vary the qubit drive frequency when
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performing two-tone spectroscopy measurements. Here, a pulsed drive tone
at varying frequency fd is applied [Fig. 3.7(a)], followed by a readout tone to
extract the demodulated transmission voltage VH . The drive tone is applied
for a time comparable to the relaxation time T1, to ensure finite excited state
population. In order to vary fd , one could step the carrier frequency of the
RF source after each measurement cycle. This is a slow process that increases
acquisition time. Instead, we SSB modulate the carrier frequency by a sequence
of pre-defined waveforms from the AWG. This significantly speeds up the
acquisition time and this is how the measurement in Fig. 3.7(a) was performed.
This measurement technique is central for the anharmonicity measurements
in Chapter 4, the mapping of qubit frequency in Chapter 6, the dispersion
measurements in Chapter 7, and is also used to probe the qubit behaviour in
a magnetic field in Chapter 8.

Other very commonly used time domain measurements are Rabi measure-
ments, where a drive tone is applied at f01 for a variable time τ. As τ varies
the qubit state rotates around the equator of the Bloch sphere. The average of
VH indicates the qubit state probability (note that the mapping is not one to
one), which is observed to oscillate between the ground and excited state, see
Fig. 3.7(b). The Rabi measurement is then used to define the π-pulse, which
is the pulse that rotates the qubit an angle of π from the ground to the excited
state. Modulating the drive with either the I(t) or Q(t) determines whether
the state is driven around the x- or y-axis of the Bloch sphere. The π-pulse is
extracted by fits to a damped sinusoid, VH(τ) � A exp

(
−τ/T2) sin

(
ωτ + ϕ

)
+B,

where T denotes the characteristic Rabi decay time. This allows characterizing
the T1 times of a device by exciting the qubit with a π-pulse, followed by a
variable wait time τ between the π-pulse and readout tone. As τ increases the
qubit decays into the ground state with a characteristic exponential time scale
T1. Fits to a decaying exponential allow extraction of T1, as shown in Fig. 3.7(c).
To characterize decoherence mechanisms a Ramsey measurement is commonly
used, where the qubit is brought to the equator of the Bloch sphere by a π/2-
pulse. Applying this pulse slightly detuned from f01 will result in a rotating
state vector at this detuning frequency (in the rotating frame as discussed in
Chapter 2). By varying the wait time τ before applying a second π/2-pulse the
probability of the projected qubit oscillates, see Fig. 3.7(d). Due to dephasing,
the state probability decays with an envelope described by the decoherence
time T∗

2. We extract T∗
2 from fits to VH(τ) � A exp

[
−(τ/T∗

2)2
]

sin
(
ωτ + ϕ

)
+ B.
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The Ramsey measurement is an example of controlled driving around the
z-axis. Driving around the z-axis is often achieved by interleaving optimised
π/2-pulses with a gate pulse (or a flux pulse for conventional transmons), or
by using so-called virtual-Z gates, where changing the phase of the drive is
utilized to generate z-rotations [59, 100].

The time domain measurements in Figs. 3.7(b)–(d) also take advantage
of the sequence mode of the AWG, where all waveforms are uploaded and
running in a continuously. To automatically assign each data point to the
corresponding waveform, two triggers are applied, one for each measurement
cycle, and one for each sequence start, see Fig. 3.4. This is opposed to manually
stepping between each waveform in a sequence, which introduces significant
overlay.

3.4.3 DC transport measurements

Traditionally DC transport has not been part of transmon or gatemon qubit
measurements. However, as demonstrated in Chapter 6 and Ref. [98], by
adding a second gateable segment to a gatemon, the compatibility with DC
transport measurements is achieved. The transport measurements in this the-
sis are mainly based on two-probe voltage bias measurements. We apply a DC
bias voltage VB together with a much smaller AC voltage (usually of amplitude
dVB ∼ 10–100 µV and frequency of tens of Hertz). The resulting current IB

will contain both an AC and DC component. We amplify and convert IB to
a voltage, and measure the DC and AC components. The DC component is
measured with a voltage meter. The AC component is measured with the lock-
in amplifier, which works much like the demodulation circuit. The incoming
signal is mixed with a reference signal of same frequency and phase as the
outgoing voltage. Mixing the measured signal results in a DC component and
a component of twice the lock-in frequency. With a low pass filter the high
frequency component is filtered out as described in Section 3.4.2. As before
this allows us to extract the magnitude of the incoming AC current dIB , and
its phase (or real and imaginary components). From this we can construct the
differential conductance dIB/dVB . Typical transport measurements involve
obtaining pinch-off curves of gateable junction segments, the induced super-
conducting gap by tunnel spectroscopy, and switching current measurements.
These measurements are described and applied in Chapter 6.



50 Experimental Methods

Figure 3.7: Representative examples of common time domain measurements. (a)
Two-tone spectroscopy measurement (bottom) and the applied pulse sequence (top).
A broad pulse is applied at a variable drive frequency fd , followed by a readout pulse at
fr . Due to the dispersive shift, the measured transmission voltage VH (blue data points)
changes when the qubit is excited, resulting in the observed peak. Qubit frequency
f01 is extracted by fits to a Lorentzian line shape (orange line). (b) Rabi measurement
(bottom) and corresponding pulse sequence (top). The qubit transition is driven for
a variable pulse width τ. Measurements of VH (blue data points) reflects the state
probability when averaged over many data points. It is noted that VH is normalized
in all panels and does not map directly to the probability. A characteristic Rabi decay
time T is extracted by fits to exponentially damped sinusoids (orange line). (c) Example
of an T1 lifetime measurement. The qubit is excited by a π-pulse with variable wait
time τ before the readout pulse (blue data points). The excited state probability decays
with characteristic time T1, extracted by fits to a damped exponential. (d) Example of
Ramsey measurement to extract dephasing time T∗

2. The qubit state is brought to the
equator by a π/2-pulse with a variable wait time τ before a second π/2-pulse, which
projects the state back to the measurement axis, followed by a readout tone. T∗

2 can be
extracted by fits to VH (τ) � A exp

[
−(τ/T∗

2)
2] sin

(
ωτ + ϕ

)
+ B (orange line).



4
Anharmonicity of a Superconducting

Qubit with a Few-Mode Josephson
Junction

Coherent operation of gate-voltage-controlled hybrid transmon qubits (gate-
mons) based on semiconductor nanowires was recently demonstrated. Here
we experimentally investigate the anharmonicity in epitaxial InAs-Al Joseph-
son junctions, a key parameter for their use as a qubit. Anharmonicity is found
to be reduced by roughly a factor of two compared to conventional metallic
junctions, and dependent on gate voltage. Experimental results are consistent
with a theoretical model, indicating that Josephson coupling is mediated by a
small number of highly transmitting modes in the semiconductor junction.

This chapter is adapted from Ref. [101]. Chapter 2 provides a more detailed
derivation of the anharmonicity formula and a comparison to the two-level
model used in Chapter 7. Additional information on the device fabrication
and the measurement setup is found in Chapter 3.

This work was done in collaboration with L. Casparis, M. Hell, T. W. Larsen, F. Kuemmeth,
M. Leĳnse, K. Flensberg, P. Krogstrup, J. Nygård, K. D. Petersson, and C. M. Marcus. The
presented device was part of Ref. [96]. The analysis, modeling, and writing were done as part of
this thesis.
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4.1 Introduction

The transmon qubit is an anharmonic oscillator where the Josephson junction
(JJ) provides a nonlinear inductance that allows for the lowest two energy levels
to be selectivity addressed [30,32,55]. The anharmonicity α � E12−E01, where
Ei j is the energy difference between energy states j and i, is a critical qubit
design parameter, determining, for instance, the minimum pulse duration
∼ ℏ/|α | needed to avoid leakage into noncomputational states. Transmons
have recently demonstrated one- and two-qubit gate fidelities exceeding 0.99
in multi qubit devices [102–104].

Almost without exception, transmon qubits are based on superconductor-
insulator-superconductor (SIS) junctions that use a thin insulating barrier
(typically Al2O3) between metallic superconducting leads [46]. SIS junc-
tions are well described by a nonquadratic (cosine) energy-phase relation
VSIS � −EJ cos(ϕ), where EJ is the Josephson coupling energy and ϕ is
the phase difference across the junction [51]. The inverse inductance corre-
spondingly depends on phase, L−1

SIS � (2e/ℏ)2d2VSIS/dϕ2 � (2e/ℏ)2EJcos(ϕ).
Other types of JJs with weak links separating superconducting electrodes
made from narrow superconducting constrictions, normal metal, or a semi-
conductor [56,105,106] have energy-phase relations that differ from the cosine
form. Coherent operation of one- and two-qubit circuits using superconductor-
semiconductor-superconductor (S-Sm-S) junctions—called gatemons due to
their gate-voltage controlled EJ—were recently demonstrated using an InAs
nanowire (NW) with epitaxial Al [38, 61]. In those experiments, it was noted
that |α | was roughly a factor of two smaller than what one would expect for an
SIS junction with the same operating parameters, but the origin and parameter
dependence of this discrepancy were not investigated.

Other experiments have investigated an S-Sm-S JJ in a two-junction loop [39].
Near one-half flux quantum through the loop, the anharmonic spectrum re-
vealed signatures of a noncosinusoidal energy-phase relation in the S-Sm-S
junction. More recently, nonsinusoidal current-phase relations of nanowire
S-Sm-S junctions were directly measured from the diamagnetic response of
mesoscopic rings interrupted by single S-Sm-S junctions [107].

In this Chapter, we investigate anharmonicity as well as departure from
the standard (SIS) cosine energy-phase relation in a nanowire-based gatemon
qubit. We observe that anharmonicity depends on gate voltage and is lower
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than the corresponding SIS junction with comparable EJ . Comparing anhar-
monicity data to a model of Josephson junctions with few conduction chan-
nels, we find our data are consistent with 1–3 dominating conducting channels
contributing to the Josephson current. These results are broadly relevant to
superconducting qubits based on novel junction materials.
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Figure 4.1: Qubit device and Josephson potential. (a) Optical micrograph of one
of the qubits, Q1, in the two qubit device. The inset shows a zoom in of the junction
region. Each qubit consists of a T-shaped island shunted to ground via an InAs/Al
NW JJ. The two qubits are designed to be nominally identical and are both coupled
to individual readout resonators. (b) Scanning electron micrograph of the S-Sm-S JJ
for Q1. The JJ features an InAs NW with high transparancy epitaxial Al contacts. The
voltage V1 on the side gate modulates the density of carriers in the NW, allowing the
Josephson potential to be modified. (c) The normalized Josephson potential V(ϕ) in
the limits of Ti � 1 (blue solid curve) and Ti → 0 (red solid curve). For comparison,
a harmonic potential V0 is also shown (black dashed curve). (d) Sketch illustrating
a NW S-Sm-S JJ with a few highly transmitting channels in a quasiballistic regime as
expected in the NW. (e) Sketch of the conventional SIS tunnel junction with many low
transmitting channels.
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4.2 Theory

The gatemon qubit consists of a superconducting island with charging energy
EC , connected to ground via a single JJ made from a L ∼ 200-nm segment
of bare InAs NW with superconducting leads proximitized by a full shell of
epitaxial Al [89, 108] (details below). We consider transport in the so-called
short-junction limit L � ξ, where ξ is the junction coherence length [56]. In
the short-junction regime, originally considered by Beenakker for the case
of a metal junction, multiple conduction channels are characterized by their
transmission eigenvalues {Ti} [109]. Within this model, charge transport
across the junction occurs via Andreev processes at each S-Sm interface. For
each transmission channel, multiple Andreev reflections between the two
interfaces result in a pair of discrete subgap states or Andreev bound states,

each with ground state energy −∆
√

1 − Tisin2(ϕ/2), where ∆ is the induced
superconducting gap in the leads [68,105,110]. Summing over all conduction
channels gives the Josephson potential

V(ϕ̂) � −∆
∑

i

√
1 − Ti sin2(ϕ̂/2),

where ϕ̂ is the superconducting phase-difference operator.

The gatemon qubit is operated in the transmon regime, EJ/EC � 1, where
sensitivity to offset charge of the island is exponentially suppressed [30]. Omit-
ting the offset charge, the effective Hamiltonian is given by

Ĥ � 4EC n̂2
+ V(ϕ̂),

where n̂ is the island Cooper pair number operator, conjugate to ϕ̂. The
qubit transition frequency is given by the Josephson plasma frequency, f01 ≈√

8ECEJ/h.

To examine how anharmonicity α depends on the channel transmission
probabilities, we derive an expression for α by expanding V(ϕ̂) to 4th order
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in ϕ̂,

V(ϕ̂) ≈ ∆4
∑

i

(
Ti

2 ϕ̂
2 − Ti

24 (1 − 3
4Ti)ϕ̂4

)
� EJ

ϕ̂2

2 − EJ

(
1 −

3
∑

T2
i

4
∑

Ti

)
ϕ̂4

24 ,

where the constant term has been omitted and EJ �
∆
4
∑

Ti [30,51,60]. Here, the
ϕ̂2-term has the same form as the potential V0(ϕ̂) � EJ

ϕ̂2

2 in the harmonic os-

cillator Hamiltonian Ĥ0 � 4EC n̂2 +V0(ϕ̂). Treating V′(ϕ̂) � −EJ

(
1 − 3

∑
T2

i
4
∑

Ti

)
ϕ̂4

24

as a perturbation to Ĥ0 allows us to calculate the corrections to the harmonic
transition energies. Evaluating the perturbation matrix elements 〈i | V′(ϕ̂) |i〉
for i � 0, 1, 2 leads to

α ≈ −EC

(
1 −

3
∑

T2
i

4
∑

Ti

)
.

In the limit of Ti → 0 for all i, α ≈ −EC as is the case for transmons with
SIS JJs [30]. For Ti � 1, α ≈ −EC/4, giving a reduced qubit nonlinearity
compared to the SIS JJ case. For a detailed derivation of transmon and gatemon
anharmonicity I refer to Sections 2.2 and 2.3.

Measurements of InAs NWs give a typical mean free path l ∼ 100 nm [111]
and Fermi velocity vF ∼ 108 cm/s [112]. From measurements of similar NWs
with epitaxial Al, ∆ ∼ 190 µeV [108], giving a superconducting coherence
length of ξ0 � ℏvF/π∆ ∼ 1100 nm for the proximitized InAs leads. These
estimates give a junction coherence length ξ �

√
ξ0l ∼ 300 nm, suggesting an

intermediate regime, L ∼ ξ, that would give corrections to the short junction
model taken above [109]. Nonetheless, a number of recent experiments using
very similar nanowire S-Sm-S JJs have shown good agreement with theory in
the short junction limit and we assume this model here [107,110, 113].

Figure 4.1(c) illustrates the connection between channel transmissions and
anharmonicity by comparing the Josephson potential in two limiting cases,
Ti � 1 and Ti → 0, to a harmonic potential (α � 0). The case Ti → 0 yields
a −cos(ϕ) potential, corresponding to an SIS tunnel barrier with many low-
transmission channels [Fig. 4.1(e)]. The ballistic case Ti � 1 yields a −cos(ϕ/2)



56 Anharmonicity of a Superconducting Qubit with a Few-Mode Josephson Junction

potential, which more closely resembles a harmonic potential. For NW S-Sm-S
JJs with quasiballistic transport dominated by a few channels [Fig. 4.1(d)], one
expects and observes behavior between these two limits.

4.3 Anharmonicity measurments

Experiments were carried out using a two-qubit device, fabricated in the same
way as the device in Ref. [61] (The detailed fabrication recipe is provided in
Appendix A). Figures 4.1(a, b) show one of the qubits and its NW JJ. Control
lines and qubit islands are lithographically defined on a 100 nm thick Al film
evaporated on a high resistivity Si substrate. The JJ is constructed from a NW
with a ∼75 nm diameter InAs core and a ∼30 nm thick epitaxial Al shell [89],
where a L ∼ 200 nm segment of the shell is removed by wet etching [38, 61].
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Figure 4.2: Spectroscopy scans to probe the anharmonicity. (a) The qubit is driven by
a −103 dBm microwave pulse, which excites the qubit at the transition frequency f01.
By measuring the qubit-state-dependent demodulated cavity response |VH |, f01 can be
determined. The data points (blue) are fitted to a Gaussian (solid black curve) to locate
f01. (b) After identifying f01, the two photon |0〉 → |2〉 transition frequency f02/2 is
probed in a spectroscopy scan at−83 dBm. f01 is extracted by fitting a Gaussian around
the value found in (a) and f02/2 is identified as the maximum value of the second peak
as labeled in red. α/2h � f02/2 − f01 is indicated with the horizontal arrow.
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EJ of the JJ is voltage controlled with a side gate labelled V1 in Figs. 4.1(a, b).
The two qubits, denoted Q1 and Q2, are coupled with strength g/2π ∼ 80
MHz to individual superconducting λ/4 resonators with resonance frequen-
cies fC1 ≈ 7.66 GHz, fC2 ≈ 7.72 GHz. These measurements were performed at
20 mK in a dilution refrigerator with a similar setup as in Ref. [61]. Multiplexed
dispersive readout is performed through a common transmission line [114],
using a superconducting travelling wave parametric amplifier to improve the
signal-to-noise and reduce the acquisition time [97]. Coherence measure-
ments show qubit lifetimes and inhomogeneous dephasing times, T1 , T∗

2 ∼
1–2 µs. Both quasi-two-dimensional and fully three-dimensional electrostatic
simulations [87, 115] yield EC/h � 240 MHz, taking Si permittivity ϵ � 11.7.

Anharmonicity is measured by first locating the qubit transition frequency
f01 in a low-power scan (typically ∼−100 dBm at the sample). This is per-
formed by applying a microwave excitation with a pulse length of 1 µs through
a control line capacitively coupled to the qubit island. The microwave pulse ex-
cites the qubit into a mixed state when applied at f01, directly detectable in the
demodulated cavity response |VH |, as shown in Fig. 4.2(a). Repeating the scan
at higher power (∼−80 dBm) allows both f01 and the two-photon |0〉 → |2〉 tran-
sition frequency f02/2 to be measured simultaneously, as shown in Fig. 4.2(b).
Frequency f01 is extracted from a Gaussian fit to the |0〉 → |1〉 transition
peak, whereas f02/2 is taken to be the maximum value of the |0〉 → |2〉 peak.
Anharmonicity is then given by α � 2h

(
f02/2 − f01

)
.

Tunability of the junction allows f01 and α to be measured for different sets
of channel transmissions {Ti} by performing spectroscopy at different gate
voltages, as shown in Fig. 4.3. The right axes in Figs. 4.3(a, b) show

∑
Ti �

(h f01)2/2∆EC , taking EC from electrostatic modeling and ∆ � 190 µeV [108].
Nonmonotonic gate dependence presumably reflects standing waves in the
junction due to disorder, as discussed previously [38,61]. Figures 4.3(c, d) show
anharmonicity α as a function of gate voltages. Both qubits show reduced
anharmonicity compared to the corresponding SIS value of |α | � EC � 240
MHz×h with sizable fluctuations with gate voltage. Comparing Figs. 4.3(a)–
(d), we observe that fluctuations in α are more pronounced than those in f01.
The larger fluctuations in αmay reflect that whereas f01 only depends on

∑
Ti ,

α is determined by both
∑

Ti and
∑

T2
i , that is, it depends on both the total

transmission and the variance of the transmission coefficients. Recent work
from Goffman et al. [113], has extracted transmission coefficients for similar
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semiconductor NW JJs by fitting current-voltage characteristics to multiple
Andreev reflection theories. In this work, it was observed that individual
channel transmissions can show far more variation compared to the total
transmission, which may further account for the pronounced fluctuations in
α observed here.
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Figure 4.3: Results of the spectroscopy and anharmonicity measurements. (a) and
(b) Results of spectroscopy measurements of f01 for varying gate voltage V1 (V2) on
Q1 (Q2). The right axis indicates the total transmission

∑
Ti as converted from f01 (see

text). (c) and (d) Results for α/h measured for Q1 (Q2) as a function of gate voltage, V1
(V2).

4.4 Anharmonicity analysis

Spectroscopy data along with model calculations for several different distri-
butions for {Ti} are shown in Fig. 4.4, as functions of both gate voltage and
total transmission,

∑
Ti , extracted from Figs. 4.3(a, b). Theoretical plots show

the model for three cases of equal transmission probability T in each channel,
α � −EC

(
1 − 3

4 T
)
� −EC

(
1 − 3EJ

∆N

)
for different numbers of participating chan-

nels, N � 2, 3, and ∞. A fourth model (“Ideal QPC”) assumes that the {Ti}
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are maximally packed for a given total transmission, that is, channels are filled
in a staircase with at most one partially transmitting channel, setting a lower
bound on anharmonicity.
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Figure 4.4: Comparison of the anharmonicity data and model. Comparison of the
anharmonicity data (dark blue) to our model with four different channel transmission
distributions for the JJ. Three of the distributions assume N equally distributed channels
plotted for N � 2 (light blue), N � 3 (green) and N → ∞ (black). The fourth model
data set (red) is for an “Ideal QPC" distribution (see main text for further details). (a)
and (b) α as a function of V1 (V2) compared with the different models. (c) [(d)] α plotted
parametrically against

∑
Ti for Q1 (Q2), as determined from Figs. 4.3(a, b). The right

axes are normalized to EC highlighting the departure from the conventional transmon
result, α ≈ −EC .
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Anharmonicity data yield information about both the number and the
transmission of participating modes. In particular, data above a given N-
equal-distribution line indicates that at least N + 1 modes are participating,
whereas data below a given N-equal-distribution line place a lower bound,
Tmin >

∑
Ti/N , on the most transmissive of the participating modes. For

example, for the data in Fig. 4.4, we conclude that transport is dominated by
1-3 modes and Tmin is in the range of 0.4 to 0.9, depending on gate voltage.

4.5 Conclusions

Measured values of anharmonicity for the gatemon are reduced by a fac-
tor of ∼2 compared to corresponding transmons with SIS junctions. As a
consequence, control pulses must be a factor of ∼2 slower for the gatemon
to avoid state leakage. SIS-based transmons are typically designed with
EC/h � 200 − 300 MHz to allow for fast control pulses in the few-nanosecond
regime, while maintaining EJ/EC � 1 to ensure dephasing due to charge
noise and quasiparticle poisoning is suppressed [58]. This regime may not
be optimal for the gatemon, however, and it may be possible to increase EC

to allow faster control while remaining insensitive to charge fluctuations in
the island. This is because when any channel transmission approaches unity,
energy dispersion with charge is predicted to vanish [116]. Similarly, recent ex-
periments with a normal metal island have shown the quenching of charging
quantization in the limit of a ballistic channel [117]. In future work we will look
to better understand and demonstrate the optimal EJ/EC ratio for gatemons,
potentially exploiting this reduced (and in principle vanishing) dispersion∗

In summary, we have measured anharmonicity of a gatemon qubit, yield-
ing information about the set of transmissions of the few participating chan-
nels in the semiconductor junction. Our results indicate that three or fewer
channels significantly participate in transport, depending on gate voltage, con-
sistent with a noncosinusoidal energy-phase relation. We note that one may
further exploit higher harmonic terms in the noncosine form of the energy-
phase relations to create novel superconducting elements. For two NW JJs in
parallel in a superconducting loop, tuning the applied flux and junction gate
voltages should allow any cos(ϕ) term to be strongly suppressed while still

∗This was experimentally verified in subsequent experiments, which are reported in Chapter 7
and Ref. [118].
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having a significant cos(2ϕ) coupling [39]. Such cos(2ϕ) junction elements
have been proposed as the basis for new types of qubits that are intrinsically
protected against sources of decoherence [70, 119].





5
Deterministic Dielectrophoretic

Assisted Assembly of
Nanowire-based Gatemon Qubits

In this chapter, we demonstrate deterministically assembled nanowire-based
multi-qubit gatemon devices by integrating dielectrophoretic fabrication tech-
niques into existing qubit designs. This is achieved by applying an AC voltage
to the qubit circuit covered with a suspension of nanowires in a diluted iso-
propyl alcohol solution. In doing so, nanowires can be made to align in
predefined regions, allowing automation of further nanowire fabrication. We
present measurements of a six qubit device, where all six nanowires success-
fully align, allowing for automated fabrication. All six qubits demonstrate
coherent operation and relaxation times of 1–5 µs.

Additional information on the device fabrication and the measurement
setup is provided in Chapter 3. Apart from the dielectrophoretic assisted
nanowire assembly the specific fabrication recipe is nominally identical to the
recipe presented in Appendix A.

The dielectrophoresis setup was developed by Robert McNeil. The automatic gate- and contact
design-software was developed by Karl Petersson. Devices were fabricated in collaboration with
Robert and Karl. Measurements were performed in collaboration with Natalie Pearson.
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5.1 Introduction

Gate-controlled gatemon qubits have shown promising progress in terms of
two-qubit operation [61] and improved coherence times [62], since the first
realizations [38, 39]. In addition, gatemons feature a unique compatibility
with quantum dot physics [118, 120], and may potentially be combined with
topological materials due to their field compatibility [71,80]. Building a multi-
qubit gatemon device has so far required individual placement of nanowires.
This placement can be achieved with sub-micron precision with a microma-
nipulator (see Section 3.1) or the nanowires may be distributed randomly in
a lithographically defined region of several microns. Each technique has ad-
vantages and disadvantages, but common to both techniques is the need for
post-deposition inspection and custom design for each individual nanowire.
This custom strategy allows reliable fabrication of few-qubit devices. However,
scaling to many qubits is not feasible while relying on individual nanowire
placement, although image recognition software [62] may relax the need for
individual inspection and custom design. More scalable platforms such as two-
dimensional electron gas [40] or selectively grown patterned structures [63]
have either already been used to demonstrate gatemon qubits or show promis-
ing prospects of doing so. These platforms, however, suffer from dielectric
losses due to the growth substrate typically a piezoelectric III-IV material,
which limits coherence times [40]. An alternative direction is determinis-
tic assembly of nanowire devices using dielectrophoresis (DEP) [121, 122],
which has already shown the capability of building electrically functional
devices [123,124].

5.2 Nanowire assembly

Devices were fabricated on high resistivity silicon substrates, covered with a
∼ 100 nm thin Al film. The superconducting circuit is patterned with electron-
beam lithography (EBL) and reactive ion etching techniques (as described in
Chapter 3). The circuit includes transmission lines, individual distributed
readout resonators and qubit islands. To integrate the DEP techniques, one
end of the transmission line of each device was connected to large electrodes
(16 devices visible in Fig. 5.1), where each transmission line is shorted to all
readout resonators and qubit islands on each device. This allowed connection
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Figure 5.1: DEP wafer overview. Optical image of the DEP device wafer. 16 qubit
chips were patterned on the wafer, where one end of each of the transmission line of
the qubit devices was connected to the large electrodes (labeled on the right hand side).
Each electrode was connected to an AC voltage source (four out of eight electrodes
labeled). This allowed sending an AC voltage to each pair of qubit chips (dashed
rectangles).

to a voltage source, which provided an AC voltage difference between the
qubit islands and the ground plane [Fig. 5.2(a)], which were key in integrating
dielectrophoretic techniques with cQED resonator designs. Small openings
in a protective resist mask for nanowires were defined with EBL leaving the
rest of the substrate protected, see Fig. 5.2(b). The wafer was then covered
with a suspension of nanowires in an isopropyl alcohol (IPA)/water solution.
Due to the oscillating electric fields generated by the voltage source, nanowires
preferentially align in the resist windows [121,122]. This process did not occur
with perfect yield, both with failure modes of multiple wires getting trapped or
none at all. However, having six copies [Fig. 5.2(b)] of the nanowire windows
ensured that each island site had a sufficiently large probability of having
a nanowire aligned that all qubit islands had at least one suitably aligned
nanowire, see Fig. 5.2(c).

At this point, the fabrication process continues with the normal workflow
of gatemons (as described in Chapter 3). A small segment of a few hundred
nanometers was removed by an etchant from the Al shell of each nanowire,
forming a gateable region, which acts as the gatemon Josephson junction. In
this fabrication step, the connections between the transmission line, readout
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Figure 5.2: Device overview illustrating the fabrication process. (a) Optical image of
a device chip during the nanowire placement process. By applying an AC voltage to
the transmission, an oscillating field between the ground plane and the qubit island is
created. (b) Magnified view of two of the qubit island highlighted in (a) (red rectangle).
The transmission line is shorted to each qubit island via each readout resonator (dashed
circles). Six small resist windows are defined at the bottom of the qubit islands, with one
qubit region highlighted in the zoom-in. These windows are defined by electron-beam
lithography. At this point the nanowire solution is applied to the wafer and nanowires
align in these windows. (c) Same view as (b) but after applying the nanowire solution
and the DEP assisted alignment. At both qubit islands a few nanowires are aligned
as desired after the resist has been removed, with one qubit region highlighted in the
zoom-in.

resonators and qubit island were also etched away [Figs. 5.3(a)–(c)]. Hereafter,
the substrates are loaded into a scanning electron microscope. Automated
images were acquired at each predefined nanowire site, as defined by the
lithography design file. The images were then automatically loaded into a
Python-based design software, which automatically designed the contacts
for the desired nanowire. By removing the native oxide with argon milling
and evaporating Al, the contacts to the qubit island and ground plane were
finalized, see Fig. 5.3(d). In the same fabrication step, the breaks in the ground
plane, created when removing the shorts, were also connected, as seen from
Figs. 5.3(a)–(c).
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Figure 5.3: Device overview of the finished DEP qubit device. (a) Optical image of a
device chip after the nanowire fabrication process. Josephson junctions were formed by
etching a segment of the Al shell of each nanowire. In the etching step, the connection
shorting the transmission line and the readout resonators was removed, with one
example highlighted [red rectangle magnified in (b), dashed circle]. Similarly, the
connection between the islands and the resonators was removed, with one example
highlighted [blue rectangle magnified in (c), dashed circle]. (d) Scanning electron
micrographs of the six nanowires used to form Josephson junction. After etching the
Al shell, each side of the junction was connected to the ground plane and qubit island,
respectively, which finalized the qubit circuit. In this step, the side gates were also
defined. Q1–Q6 refers to the qubits from left to right in (a).



68 Deterministic Dielectrophoretic Assisted Assembly of Nanowire-based Gatemon Qubits

Figure 5.4: Power scans at zero junction gate VQ . Transmission amplitude S21 as a
function of resonator drive frequency fr and drive power. All six qubits Q1–Q6 show
a dispersive shift, indicating the desired gatemon qubit behavior.

5.3 Qubit measurements

Measurements were performed by probing each of the six readout resonators
by transmission measurements. We investigated the power dependence of
each resonator, as shown in Fig. 5.4. Here, we observe that each resonator
shows a dispersive shift for reducing powers, as expected for a coupled qubit-
resonator cQED system according to the theory discussed in Chapter 2. There-
fore, we can conclude that all six qubits were successfully fabricated, and
behaves like usual gatemons. To further investigate the performance of these
qubits, we performed time domain measurements. The qubits are driven by
the six individual gate lines, which are are shown in Fig. 5.3(a). These lines are
also used to tune the DC voltage, and thereby to change the qubit frequency.
We locate all the qubits in frequency space with two-tone spectroscopy, where
a drive tone is applied via the individual gate lines. Following the drive tone a
second readout tone is applied to the transmission line, probing the resonator
frequency, from which we infer the qubit state. By varying the junction gate
voltage VQ , we move all qubits to frequencies of around 5.5 GHz (not simul-
taneously as they are coupled). Here, we perform T1 lifetime measurements.
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By applying a π-pulse, followed by a variable wait time τ, we observe the
characteristic exponential population decay from the excited to the ground
state (top row of Fig. 5.5). Fits to a decaying exponent allow extraction of the
characteristic decay times T1, yielding values of 1–5 µs, which is comparable
to typical values obtained from traditional gatemon devices.

Figure 5.5: Coherence of DEP assembled qubit devices. Top row: T1 lifetime mea-
surements of Q1–Q6 performed by varying the wait time τ after applying a π-pulse.
The VH measurements (blue data points) are fitted to a decaying exponent (orange
curve) to extract the relaxation time T1. Bottom row: T∗

2 Ramsey measurements of
Q1–Q6 performed by varying the wait time τ between two π/2-pulses. The VH mea-
surements (blue data points) are fitted to a exponentially decaying sinusoid (orange
curve) to extract the decoherence time T∗

2.

We next probe the coherence times T∗
2 of the devices by performing Ram-

sey measurements. Here, a slightly detuned π/2-pulse is applied, which
brings the qubit state to the equator of the Bloch sphere. Due to the slight
detuning, the state vector processes with this detuned frequency (as dis-
cussed in Section 2.4). Due to decoherence, the state probability will os-
cillate within a decaying envelope. These measurements are shown in the
bottom row of Fig. 5.5. Fits to an exponential decaying sinusoid (VH(τ) �

A exp
(
−(τ/T∗

2)2
)
sin

(
ωτ + ϕ

)
+ B) allow extraction of T∗

2 ranging from 0.5–
2.5 µs, similar to usual gatemon experiments.
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5.4 Conclusions

In summary, we have demonstrated the successful fabrication of gatemon
multi-qubit devices by deterministic dielectrophoretic assembly. Each qubit
of our six qubit devices yield comparable characteristics and performance as
previous gatemon devices. In addition, this technique may scale to larger
multi-qubit devices without additional complexity. Future work improving
the nanowire placement yield at the individual sites and the integration of
image recognition techniques may see this process becoming fully automatic.



6
Controlled DC Monitoring of a

Superconducting Qubit

Creating a transmon qubit using semiconductor-superconductor hybrid ma-
terials not only provides electrostatic control of the qubit frequency, it also
allows parts of the circuit to be electrically connected and disconnected in situ
by operating a semiconductor region of the device as a field-effect transistor.
Here, we exploit this feature to compare in the same device characteristics of the
qubit, such as frequency and relaxation time, with related transport properties
such as critical supercurrent and normal-state resistance. Gradually opening
the field-effect transistor to the monitoring circuit allows the influence of weak-
to-strong DC monitoring of a “live” qubit to be measured. A model of this
influence yields excellent agreement with experiment, demonstrating a relax-
ation rate mediated by a gate-controlled environmental coupling.

This chapter is adapted from Ref. [98]. Additional information on the
device fabrication and the measurement setup is provided in Chapter 3.

This work was done in collaboration with T. W. Larsen, B. van Heck, D. Sabonis, O. Erlandsson,
I. Petkovic, D. I. Pikulin, P. Krogstrup, K. D. Petersson, and C. M. Marcus.
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6.1 Introduction

Josephson junctions (JJs) serve as key elements in a wide range of quan-
tum systems of interest for fundamental explorations and technological ap-
plications. JJs, which provide the nonlinearity essential for superconduct-
ing qubits [55], are typically fabricated using insulating tunnel junctions be-
tween superconducting metals [46]. Alternative realizations using atomic con-
tacts [105] or superconductor-semiconductor-superconductor (S-Sm-S) junc-
tions [38, 39, 106] are receiving growing attention. Hybrid S-Sm-S JJs host a
rich spectrum of new phenomena, including a modified current-phase rela-
tion (CPR) [56,107] different from the sinusoidal CPR of metal-insulator-metal
tunnel junctions. Other electrostatically tunable parameters include the sub-
gap density of states (DOS), shunt resistance [49], spin-orbit coupling [125],
and critical current [126].

In this Chapter, we investigate a modified S-Sm-S JJ design of a gatemon
qubit that combines DC transport and coherent cQED qubit measurements.
The device is realized in an InAs nanowire with a fully surrounding epitaxial
Al shell by removing the Al layer in a second region (besides the JJ itself)
allowing that region to function as a field-effect transistor (FET). By switching
the FET between being conducting (“on”) or depleted (“off”) using a gate volt-
age, we are able to implement a controlled transition between the transport
and cQED measurement configurations. We demonstrate that the additional
tunability does not compromise the quality of the qubit in the cQED config-
uration, where the FET is off. We further demonstrate control of the qubit
relaxation as the FET is turned on, continuously increasing the coupling of
the junction to the environment, in agreement with a simple circuit model.
Finally, we demonstrate strong correlation between cQED and transport data
by comparing the measured qubit frequency spectrum with the switching
current directly measured in situ.

Devices were fabricated on a high resistivity silicon substrate covered with
a 20 nm NbTiN film. The nanowire region, qubit-capacitor island, electro-
static gates, on-chip gate filters, readout resonator, and transmission line were
patterned by electron-beam lithography and defined by reactive-ion etching
techniques, see Fig. 6.1(a). The full-shell InAs/Al epitaxial hybrid nanowire
is placed at the bottom of the qubit island, see Fig. 6.1(b) [89]. Two gateable
regions are formed by selective wet etching of the Al in two ∼ 150 nm seg-
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Figure 6.1: Device geometry and concept. (a) Optical micrograph of the modified
gatemon qubit device showing the bottom of the readout resonator capacitively coupled
to the qubit island. The island is contacted to a nanowire placed in the highlighted
green square. (b) Scanning electron micrograph (SEM) of the nanowire in the green
rectangle in (a). Two removed segments of the Al shell form the qubit JJ (125 nm)
and the FET (175 nm), controlled by gates VQ and VFET. The bias voltage across the
nanowire is indicated VJ . (c) Device circuit with FET off for cQED (dashed red box),
and FET on allowing transport (dashed blue box). The bias voltage VB refers to the
total voltage drop across both the nanowire and line resistance Rline. (d) Differential
conductance dIB/dVB as a function of bias voltage VB shows the superconducting
gap ∆ of the qubit JJ, with VFET � +4 V and VQ � −2.9 V. (e) Rabi oscillations of the
qubit seen in resonator output VH as a function of drive time τ at VFET � −3 V and
VQ � −2.5 V, with exponentially damped sinusoid (orange).

ments defined by electron-beam lithography, aligned with two independent
bottom gates, which are separated from the nanowire by a 15-nm-thick HfO2
dielectric. The three superconducting segments—ground, qubit island with
capacitance CQ , and DC bias VJ—are then contacted with ∼ 200 nm sputtered
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NbTiN, see Fig. 6.1(b). In this circuit, when the FET is on, DC current or volt-
age measurements are available [blue box in Fig. 6.1(c)]. Depleting the FET
allows the device to operate as a qubit, where measurements of the heterodyne
demodulated transmission VH allow qubit state determination and VQ allows
tuning the qubit frequency f01 over several gigahertz [red box in Fig. 6.1(c)].

Setting the voltage on the FET gate to VFET � +4 V, which turned the FET
fully conducting, and the voltage on the qubit JJ to VQ � −2.9 V makes the
voltage drop predominantly across the qubit JJ. In this configuration, the dif-
ferential conductance dIB/dVB , probes the convolution of the DOS on each
side of the JJ, see Fig. 6.1(d). Keeping in mind a simple model of JJ spec-
troscopy [49], we interpret the distance between the two peaks in dIB/dVB as
4∆/e = 4× 190 µV, where ∆ is the induced superconducting gap. In the cQED
configuration, with VFET � −3 V and VQ � −2.5 V, coherent Rabi oscillations
are observed by varying the duration τ of the qubit drive tone at the qubit
frequency f01 � 4.6 GHz. Following the drive tone, a second tone was applied
at the readout resonator frequency, fR ∼ 5.3 GHz, to perform dispersive read-
out where VH is measured, see Fig. 6.1(e). These experiments are carried out
in a dilution refrigerator with a base temperature of ∼ 10 mK using standard
lock-in and DC techniques for the transport measurements and using hetero-
dyne readout and demodulation techniques for the cQED measurements, see
Section 6.5.

6.2 Relaxation of leaded gatemon qubits

Having demonstrated the ability to probe the qubit JJ with both transport
and cQED techniques, we next compare performance to a nominally identical
gatemon without the FET and extra DC lead. Scanning electron micrographs of
the two devices are shown in Figs. 6.2(a, b). The measured relaxation times T1
are shown for a range of qubit frequencies f01, controlled by VQ , in Fig. 6.2(c).
Relaxation times T1 were measured by applying a π-pulse, calibrated by a
Rabi experiment at f01, followed by a variable wait time τ before readout, see
Fig. 6.2(c), inset. T1(VQ) were then extracted by fitting VH(τ) to a decaying
exponential. We observe no systematic difference in T1 between the devices,
demonstrating that the addition of a transport lead does not compromise the
performance in the cQED configuration.

We next monitored dIB/dVB , f01, and T1 as VFET was varied from off
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Figure 6.2: Comparison of a leaded vs a nonleaded gatemon device. (a) Scanning
electron micrograph of a gatemon without transport lead. CQ is the capacitance of
the qubit island. (b) Same as (a) for gatemon with transport lead, with voltage bias
VJ . (c) Qubit relaxation times T1 of the gatemons as a function of qubit frequency,
f01. Both leaded (black circle) and nonleaded (red square) devices show similar T1
times between 3–8 µs, with comparable mean and standard deviation values. Inset:
Relaxation time T1 (black points) at f01 � 4.6 GHz for the leaded device as a function
of wait time τ, with exponential fit (orange curve) yielding T1 � 6 µs. Error bars are
estimated from fit uncertainties.

(cQED regime) to on (transport regime). Measurements of dIB/dVB [Fig. 6.3(a)]
illustrate how the FET was turned conducting as VFET was increased. Qubit
frequency f01 was measured by two-tone spectroscopy, where a drive tone
with varying frequency fd was applied for 2 µs, followed by a readout tone at
fR. A Lorentzian fit is used for each VFET to extract f01, see Fig. 6.3(b), insets.
We attribute the weak dependence of f01 on VFET to cross talk between the two
gates.

Following each spectroscopy measurement, a T1 measurement was imme-
diately carried out, see Fig. 6.3(c), yielding a nearly gate independent T1 ∼ 6 µs
for VFET < −2 V. At VFET ∼ −2 V, we observe a sudden drop in T1, followed
by a short revival at VFET ∼ −1.8 V. We associate the revival in T1 with the
corresponding drop in dIB/dVB observed in Fig. 6.3(a). We attribute this non-
monotonicity to the formation of quantum dots in the FET, which is commonly
observed in nanowire JJs near the pinch-off values [108]. For VFET > −1.5 V, f01
and T1 can no longer be resolved, consistent with increasing dIB/dVB . We note
that the dIB/dVB curve in Fig. 6.3(a) was shifted horizontally by a small amount
(0.1 V) to align features in dIB/dVB with corresponding features in T1. This
was done to account for gate drift, as the cQED and transport measurements
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Figure 6.3: Qubit performance as a function of VFET. (a) Differential conductance
dIB/dVB as a function of FET gate voltage VFET at high bias VB � 1.0 mV, to approximate
normal-state resistance. (b) Qubit frequency f01 as a function of VFET using two-tone
spectroscopy. Insets: Lorentzian fits (orange) to data points in the main panel as
indicated by the corresponding markers (blue circle, green square). From each VH
we subtract the background and normalize to the maximal value. (c) Similar to (b)
relaxation times T1 from exponential fits (insets). Error bars are estimated from fit
errors.

were performed sequentially over the course of several days.
We develop a circuit model of qubit relaxation in the leaded device. Within

the model, the qubit circuit is coupled through the FET to a series resistance
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Figure 6.4: Circuit model of the relaxation rate. Relaxation rate γ � 1/T1 (black circles)
as a function of FET voltage, VFET, by inverting the experimental data from Fig. 6.3(c).
Model relaxation rates γlead due only to the transport lead (blue) and γtot (orange)
including lead and nonlead contributions (see text). The circuit model is sketched in
the inset where the qubit is coupled to the environment by an effective impedance,
Zenv � iωLFET + (1/RF + iωCF)−1. The dashed rectangle indicates the environment
circuit.

RF and a parallel capacitance CF representing an on-chip filter on the lead [86].
The coupling to the environment via the (superconducting) FET junction is
modeled as a gate tunable Josephson inductance LFET, giving a total environ-
ment impedance Zenv � iωLFET + (1/RF + iωCF)−1. This impedance can be
viewed as a single dissipative element with resistance given by

Renv � 1/Re[Yenv] � L2
FET

(
R2

FC2
Fω

4
+ ω2) /RF

+RF
(
1 − 2LFETCFω

2) , (6.1)

with admittance Yenv � 1/Zenv [72]. The relaxation rate associated with the
lead is given by γlead � 1/RenvCQ , yielding a total decay rate γtot � γnonleaded +

γlead ,where γnonleaded is the decay rate associated with relaxation unrelated to
the lead.

We estimate LFET � ℏ/2eIc ,FET [51], where Ic ,FET is the critical current of
the FET, which we in turn relate to the normal-state resistance Rn ,FET via the
relation Ic ,FETRn ,FET � π∆/2e [127], yielding

LFET � ℏRn ,FET/π∆. (6.2)
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Rn ,FET can be found from dIB/dVB in Fig. 6.3(a) by subtracting the voltage
drop across the line resistance, Rline � 57 kΩ, and assuming no voltage drop
across the qubit JJ, justified by Ic ,FET < Ic , where Ic is the critical current
of the qubit JJ. From electrostatic simulations we estimate CQ � 38 fF [87].
We take ω � 2π f01, where f01 � 4.6 GHz is the average f01 in Fig. 6.3(b),
and ∆ � 190 µeV from Fig. 6.1(d). Combining Eqs. (6.1) and (6.2) with the
measured 1/T1 yields the γlead in Fig. 6.4 using RF � Rline and CF � 0.1 pF as
the best fit parameter. We note that electrostatic simulations give CF ∼ 0.5 pF,
in reasonable agreement with the best fit value. We define γnonleaded � 1/Tmean

1 ,
where Tmean

1 � 5.8 µs is the mean value of the T1 at VFET < −2 V. Using this
estimate for γnonleaded, we calculate the total relaxation time based on the
transport data (orange line in Fig. 6.4), showing excellent agreement with
the measured values. The T1 limit based on the contribution of the lead
saturates at T lead

1 � 1/γlead ∼ 1 ms, indicating that leaded gatemon devices can
accommodate large improvements in gatemon relaxation times. We mainly
attribute the current level of relaxation times to dielectric losses. This is based
on measurements of test resonators from the same substrates yielding quality
factors of Q ∼ 105, with T1 ∼ Q/(2π f01) being roughly consistent with the
observed T1. Although optimizing the qubit lifetime is beyond the scope of this
experiment, we are optimistic that these devices can reach similar coherence
times as conventional superconducting qubits based on recent experiments
of similar devices reaching T1 times of ∼ 20 µs [62] and the promising upper
limit on T1 of the model in Fig. 6.4.

6.3 Correlation of DC and cQED measurements

Combining transport and cQED measurements allows for the correlation be-
tween critical current Ic(VQ) and f01(VQ) to be observed directly [128]. The
critical current Ic is extracted from dIB/dVB and IB while sweeping VB and
VQ . We extract the voltage drop and differential resistance across the qubit
junction, VJ and dVJ/dIB , by inverting dIB/dVB and subtracting Rline. In doing
this, we assume that there is no voltage drop across the FET junction, since
Ic < Ic ,FET. The qubit resonance f01 is measured over the same VQ range using
two-tone spectroscopy, see Fig. 6.5(b). We note that the two-photon transition
to the next harmonic is also observed for some VQ , visible at a slightly lower
frequency than f01, given by the anharmonicity.
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Figure 6.5: Comparison of DC and cQED measurements. (a) Differential resistance
of the qubit JJ, dVJ/dIB , as a function of current bias IB and qubit gate voltage VQ .
Switching current Is (blue points) from the edge of the zero-resistance state for increas-
ing sweep at VFET � +4 V to turn the FET conducting. (b) Qubit frequency f01 from
two-tone spectroscopy as a function of VQ , acquired at VFET � −3 V to deplete the FET.
The area of missing data at 5.0–5.6 GHz is due to f01 crossing the resonator frequency,
fR . (c) Correlation between transport and cQED data. f01 from (b) (red) extracted as
in Fig. 6.3(b), inset. f01 from Ic (blue) extracted by applying an RCSJ model to the data
in (a) (see text).

The relation between the two measurements is shown in Fig. 6.5(c). In
order to estimate Ic(VQ), we first extract the switching current Is(VQ) from
the data, taken as the IB at which dVJ/dIB is maximal, while sweeping IB

from negative to positive values [blue dots in Fig. 6.5(a)]. Bright features at
high bias (IB > Is) are likely associated with multiple Andreev reflection [129].
To extract Ic from the measured Is , we model the qubit as an underdamped
RCSJ (resistively and capacitively shunted junction) Josephson junction with a
sinusoidal current-phase relation I � Ic sinϕ. Furthermore, we note the small
difference between the return current Ir (same definition as Is at negative IB)
is slightly smaller than Is , see Section 6.6. In this case, Is corresponds to the
current of equal stability between the resistive and nonresistive state [130].
Under this condition, and for large quality factors, Q � 1, the ratio Is/Ic
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depends on quality factor Q � R
√

2eIcCQ/ℏ as

Is/Ic � (2 + 4/π)Q−1
+ (2 + π)Q−2 , (6.3)

where R �
(
1/R J + 1/Rline

)−1 and R J is the shunt resistance [130]. In RCSJ
theory R J is proportional to the normal-state resistance of the junction RN [49]
with the proportionality depending on both the size of and DOS inside the
proximitized superconducting gap and temperature. As these parameters
are not simultaneously accessible in our setup, we take the proportionality
as a fit parameter. By doing so, we find R J to be equal to RN . We then
apply the Ambegaokar-Baratoff relation IcR J � π∆/2e [127], which allows
us to extract Ic by inverting Eq. (6.3) numerically∗. The extracted Ic , in turn,
yield values for Q in the range 10–20, consistent with our initial assumptions.
For these values of Q, the RCSJ model takes the electron temperature to be
> 50 mK to account for the weak asymmetry in Is and Ir , see Section 6.6.
Finally, we relate Ic to f01 by using the numerical solution of the standard
transmon Hamiltonian, H � 4EC(n − ng)2 − EJ cos

(
ϕ
)

[30], with EJ � ℏIc/2e
and EC/h � e2/2hCQ � 512 MHz, at the charge degeneracy point with offset
charge ng � 0.5.

A comparison of the measured and estimated f01 is shown in Fig. 6.5(c).
The model (RCSJ) curve is shifted horizontally by 0.05 V to align the features
at ∼ −2.5 V and can be attributed to cross talk between the two gates as VFET is
varied from the DC to the cQED configuration, consistent with independent
calibration measurements. A clear correlation is observed between the two
measurement techniques, especially evident from the matching of local min-
ima and maxima of both spectra and the overall agreement of the absolute
values. We attribute the residual quantitative discrepancy to the simplifying
assumptions used to determine the shunt resistance of the RCSJ model, which
likely do not capture the possible gate dependence of the subgap DOS of the
qubit JJ. In addition, the assumption of sinusoidal CPR will break down as the
qubit JJ is opened due to increasing mode transmission in the semiconductor
junction, leading to small overshoots of the model as perhaps seen around
VQ ∼ 0 V.

∗Numerical code and data accompanying the analysis of Fig. 6.5(c) is found at:
https://github.com/anderskringhoej/dc_qubit.

https://github.com/anderskringhoej/dc_qubit


Conclusions 81

6.4 Conclusions

In summary, we have demonstrated the compatibility of DC transport and
cQED measurement techniques in gatemon qubits. This method may ex-
tend to other material platforms such as two-dimensional electron gases [40]
or graphene [41, 42, 128]. Furthermore, we achieve a controllable relaxation
rate potentially relevant for a range of qubit applications such as tunable
coupling schemes [131, 132] and controlled qubit relaxation and reset proto-
cols [133, 134]. In addition, we have demonstrated clear correlation between
DC transport and cQED measurements motivating future extensions, such
as studying CPRs [107] or probing channel transmissions by studying multi-
ple Andreev reflections [113] combined with cQED experiments [69, 101, 125].
Combining well-established transport techniques in quantum dot physics with
qubit geometries may also be an interesting research direction [135]. Poten-
tially, this geometry is also a promising platform to coherently probe Majorana
zero modes in cQED measurements [44], as transport signatures have been
demonstrated, both in half-shell nanowires [43] and full-shell wires [136,137].

6.5 Experimental setup

The measurements presented in this Chapter are conducted in a cryogen-free
dilution refrigerator with a base temperature of∼ 10 mK. A detailed schematic
of the electronic setup is shown in Fig. 6.6. The sample is mounted to a Cu
circuit board located in a indium sealed CuBe box mounted inside another
Cu box, which is thermally attached to the mixing chamber plate. DC lines
(blue lines in Fig. 6.6) connect to the sample through a loom heavily filtered
at frequencies above 80 MHz via both the QDevil and the LFCN-80 low pass
filters. For transport measurements we measure a small AC current using the
SR860 lock-in amplifier while also measuring the DC current to ground with
the Keysight multimeter. Both current signals are amplified and converted to
a voltage by the Basel SP983 I-to-V converter.

Two microwave coaxial drive lines connect to the sample (red lines in
Fig. 6.6). The combined input signal is generated by two RF sources and
is heavily attenuated and filtered above 10 GHz with a K&L low pass filter.
These two signals are used for qubit drive and readout drive, respectively. The
output signal is again filtered and amplified at the 4 K stage with a cryogenic
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low noise amplifier with a bandwidth of 4–8 GHz with further amplification
at room temperature using the Miteq amplifier. The output signal is down
converted to an intermediate frequency by mixing with a local oscillator and
filtering of the high frequency component. After another amplification stage
using the SR445A amplifier, the intermediate frequency signal is digitized
and digitally down converted in order to extract the in-phase and quadrature
components of the readout signal.

The SR FS725 10 MHz clock reference is connected to the Alazar card,
signal generators and the AWG for synchronisation of the microwave signals.
Further experimental details are found in Chapter 3.
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6.6 RCSJ modelling details and additional transport data

To supplement the data and the analysis presented in Fig. 6.5, we measured
dVJ/dIB as a function of IB and VQ for a IB-range where we were able to
extract both Is and Ir for the entire VQ-range, see Fig. 6.7(a). This dataset
shows quantitatively almost the same features as the dataset in Fig. 6.5(a).
However, due to a larger amount of drift, possibly due to longer acquisition
time, we use the dataset in Fig. 6.5(a) to perform the modelling in Fig. 6.5(c).
From the measurement shown in Fig. 6.7(a) we are able to extract both Is and
Ir , see Fig. 6.7(b). Here we observe a weak asymmetry between Ir and Is for
the full VQ-range, which justifies the use of the RCSJ model applied in the
analysis of Fig. 6.5(c).

Figure 6.7: Supporting transport measurements. (a) DC transport measurement of
dVJ/dIB as a function of IB and VQ , acquired in the same way as the data presented in
Fig. 6.5(a). In this measurement, both the transition to a non-resistive state at negative
IB-values and the transition to the resistive state at positive IB-values are observed. (b)
Absolute values of the extracted return current Ir and switching current as a function
of VQ , illustrating the weak asymmetry in their values. (c) Extracted critical current Ic
(left y-axis, converted to EJ � ℏIc/2e on the right y-axis). (d) Extracted quality factor
Q from the numerical solutions to Eq. 3.

In addition, we compute the extracted critical current Ic and EJ � ℏIc/2e
used in our RCSJ analysis, as shown in Fig. 6.7(c). Based on these EJ-values we
estimate the electron temperature T to be > 50mK, such that the kBT/EJ-ratios
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account for the weak asymmetry between Ir and Is [130]. To further justify the
application of the Q � 1 limit, we numerically extract the Q-values, as shown
in Fig. 6.7(d).



7
Suppressed Charge Dispersion via

Resonant Tunneling in a
Single-Channel Transmon

We demonstrate strong suppression of charge dispersion in a semiconductor-
based transmon qubit across Josephson resonances associated with a quantum
dot in the junction. On resonance, dispersion is drastically reduced compared
to conventional transmons with corresponding Josephson and charging ener-
gies. We develop a model of qubit dispersion for a single-channel resonance,
which is in quantitative agreement with experimental data.

This chapter is adapted from Ref. [118]. The published content is sup-
plemented with an additional discussion of the applied model in Chapter 2.
Additional information on the device fabrication and the measurement setup
is provided in Chapter 3.

This work was done in collaboration with B. van Heck, T. W. Larsen, O. Erlandsson, D. Sabonis,
P. Krogstrup, L. Casparis, K. D. Petersson, and C. M. Marcus.
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7.1 Introduction

Superconducting circuits based on nonlinear Josephson junctions (JJ) form
the basis of a broad array of coherent quantum devices used in applications
ranging from radiation detectors to magnetometers to qubits [51, 138]. An
important application is the transmon qubit, a variant of the Cooper pair
box qubit [24] where the Josephson energy, EJ , of the junction exceeds the
charging energy, EC � e2/2C, of the shunting capacitor with capacitance C.
Designing qubits with ratio EJ/EC considerably greater than unity exponen-
tially suppresses its charge character, correspondingly reducing its sensitivity
to voltage noise and dramatically extending coherence [30, 58]. The trade-
off with increasing EJ/EC is reduced anharmonicity, which determines the
minimal operation time due to leakage out of computational states [59].

The JJs used in superconducting qubits are almost exclusively based on
superconductor-insulator-superconductor (SIS) tunnel junctions [46], well de-
scribed by a sinusoidal current-phase relation (CPR) [56]. More recently,
gate-voltage-tunable transmon qubits (gatemons) have been realized using
superconductor-semiconductor-superconductor (S-Sm-S) JJs, where the Sm
weak link was either a nanowire [38, 39], a two-dimensional electron gas [40]
or graphene [41,42]. Such Sm weak links are typically quasiballistic, and, with
Andreev processes [109] across the junction dominated by a small number
of highly transmitting channels [101, 107, 113]. In this regime, the CPR is no
longer sinusoidal, and anharmonicity deviates from the usual relations and
tradeoffs involving EJ and EC [101].

An expected consequence of large transmission among a few Andreev
modes in the JJ is a suppression of the quantization of island charge, which
vanishes entirely when the transmission of any mode reaches unity [139–141].
Suppression of charge quantization in non-superconducting quantum dots
has been well investigated experimentally [142, 143], including a recent de-
tailed study in a semiconductor quantum dot with vanishing level spacing
due to an internal normal-metal contact [117]. In a similar fashion, charge
quantization on a JJ-coupled superconducting island is expected to be sup-
pressed for highly transmissive modes and vanish for unity transmission of a
mode [66], irrespective of the ratio EJ/EC , though to our knowledge this has
not been previously investigated experimentally.

In this Chapter, we investigate the charge dispersion in a nanowire-based
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Figure 7.1: Device geometry and spectroscopy close to pinch-off. (a) Scanning elec-
tron micrograph (SEM) of the nanowire region of the qubit device. Two etched regions
were formed (qubit junction and FET) controlled with bottom gates VQ and VFET. (b)
SEM of the qubit region highlighted (green square) in (a). (c) Two-tone spectroscopy
measurements of the heterodyne transmission voltage VH at values of qubit gate volt-
age VQ just above complete depletion of the qubit junction and varying drive frequency
fd , yielding two resonances (Res. 1 and Res. 2) in the qubit frequency spectrum. (d)
Sketch illustrating the principle of tunneling on and off a resonant dot level inside
a Josephson junction connected to the superconducting leads by two tunnel barriers,
characterized by tunnel rates Γ1 and Γ2.

gatemon qubit which shows strong suppression compared to a conventional
metallic transmon qubit, when operated across resonances in the junction.
As discussed below, resonances in the semiconductor JJ effectively bring the
Andreev transmission of a single mode close to unity. A comparison of ex-
perimental data to a simple model describing resonant Cooper pair transport
across a single-mode junction [56, 144–146] yields striking agreement, sup-
porting both the general feature of suppressed charge quantization at large
transmission, and the additional feature that a dot resonance acts to provide
an effective near-unity transmission of a single mode in a semiconductor JJ.

Measurements were performed on a gatemon qubit based on an InAs
nanowire fully covered by 30 nm epitaxial Al [89], as described previously [98].
Two ∼ 150 nm segments of the Al shell were etched, forming gateable regions,
as shown in Fig. 7.1(a), one serving as the qubit junction, controlled by gate
voltage VQ , and the other as a field-effect transistor (FET), allowing in-situ
DC transport, controlled by VFET [98]. All cQED measurements were carried
out with the FET fully depleted (VFET � −3 V), so that the gatemon circuit
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consisted of one side of the qubit junction contacted to ground and the other
to the capacitor island [Fig. 7.1(b)]. The island capacitance was designed to
yield EC/h ∼ 500 MHz, allowing operation at intermediate EJ/EC ∼ 10–20 so
that charge dispersion was easily resolved.

Near the pinch-off voltage of the qubit junction (VQ ∼ −3 V), the first
visible features to appear in two-tone spectroscopy as VQ was tuned more
positive were two narrow peaks in the qubit frequency, as shown in Fig. 7.1(c).
We attribute these features to resonant tunneling of Cooper pairs through
an accidental quantum dot formed in the junction [Fig. 7.1(d)], a common
occurrence near full depletion [108, 147]. Corresponding resonant features
were also observed in DC transport (FET opened) at similar values of VQ , see
Section 7.7.

7.2 Resonant tunneling model

To model the junction resonance, we consider a single spin-degenerate level
at energy ϵr , weakly coupled to the two superconducting leads via tunneling
rates Γ1 and Γ2 [Fig. 7.2(a)], and a Breit-Wigner form for the transmission [148],
T � 4Γ1Γ2/(ϵ2

r +Γ
2), where Γ � Γ1 +Γ2. Transmission is maximal on resonance,

ϵr � 0, where it reaches unity for symmetric barriers, Γ1 � Γ2 [Fig. 7.2(b)]. In
the superconducting state, a pair of spin-degenerate Andreev bound states
reside in the junction at energy E, given by [56,145]

2
√
∆2 − E2 E2 Γ + (∆2 − E2)(E2 − ϵ2

r − Γ2)
+ 4∆2 Γ1Γ2 sin2(ϕ/2) � 0 (7.1)

where ∆ the superconducting gap and ϕ the phase difference across the junc-
tion, as plotted in Fig. 7.2(c), see Section 7.6.

The Andreev level spectrum consists of a spin-degenerate, phase-dependent
bound state plus a continuum of quasiparticle states above the gap. At ϕ � 0,
the bound state energy E(0) � ∆̃, varies between ϵr and ∆ as Γ increases, see
Section 7.6. The energy gap at ϕ � π is proportional to the reflection am-
plitude r �

√
1 − T and thus vanishes at perfect transmission, yielding two

decoupled 4π-periodic branches.
We model the charging-energy-induced quantum fluctuations in ϕ via the
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Figure 7.2: Resonant tunneling model. (a) Sketch of the energy density of states of a
superconductor-dot-superconductor system. The superconductors are described by a
standard BCS density of states with gap ∆. A spin-degenerate level is located inside
the JJ, detuned by ϵr from the Fermi level (dashed line). (b) Normal state transmission
through the junction, T, as a function of ϵr for three different Γ for Γ1 � Γ2. Note that
T � 1 occurs for ϵr � 0 for all Γ. (c) Numerical solutions to Eq. (7.1) describing resonant
tunneling for three different ϵr [coloured dots in (a)] and Γ/∆ � 1. The effective gap
∆̃(ϵr ) � E(0) (arrows) and continuum at±E/∆ � 1 (grey and white region) are indicated.
(d) Numerical solutions to Eq. (7.2) showing two lowest transition frequencies f01(ng)
and f02(ng) as a function of offset charge ng . The frequencies are normalized to the
0 → 1 degeneracy transition frequency f01(0.25) � f01 with dispersion amplitudes
δ01 � f01(0) − f01(0.25) and δ02 � f02(0.25) − f02(0) indicated (arrows).

Hamiltonian [65, 149, 150],

H � 4EC
(
i∂ϕ − ng

)2
+ HJ , (7.2a)

HJ � ∆̃

[
cos

(
ϕ/2

)
r sin

(
ϕ/2

)
r sin

(
ϕ/2

)
− cos

(
ϕ/2

) ] , (7.2b)
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where ng is the charge induced on the island in units of 2e. The model above
was originally derived for a superconducting quantum point contact [65], and
it is valid provided EC � ∆ and that the Andreev energies are well separated
from the continuum. The eigenvalues of HJ ,

E � ±∆̃[1 − T sin2(ϕ/2)]1/2 , (7.3)

closely approximate the solutions of Eq. (7.1), see Section 7.6. We solve Eq. (7.2)
numerically (Section 7.6) to obtain the qubit energy levels En as well as the
associated transition frequencies fnm(ng) � (Em(ng) − En(ng))/h [Fig. 7.2(d)].

A key feature of Eq. (7.2) is that it captures the Landau-Zener dynamics
across the avoided crossing at ϕ � π, which has a dramatic effect on charge
dispersion of the qubit energy levels [66]. Indeed, the charge dispersion is
determined by the 2π-tunneling amplitude of the phase below the Josephson
potential energy barrier, which is suppressed by the probability of a diabatic
passage to the excited branch of the Andreev spectrum. This probability
becomes large near perfect transmission, when r � (EC/∆̃)1/2. At r � 0, the
2π-tunneling processes become forbidden, and the charge dispersion reaches
a minimal value given by the amplitude for 4π-tunneling∗. The remarkable
flattening of the energy levels in this diabatic regime is illustrated in Fig. 7.2(d).

7.3 Charge dispersion measurements

Measurements of charge dispersion across Res. 1 in Fig. 7.1(c) were carried
out by finely sweeping VQ while performing two-tone spectroscopy using a
rastered drive tone fd followed by a readout tone at fR ∼ 5.3 GHz [Fig. 7.3(a)].
The fine sweep of VQ served two purposes; it both tuned the junction across
the resonance and incremented the charge ng on the superconducting island,
resulting in an oscillating pattern within a resonant envelope, appearing in
the demodulated transmission voltage VH [Fig. 7.3(a)]. The two counter-
oscillating branches reflect fast quasiparticle poisoning of the island, which
shifts the energy spectrum in Fig. 7.2(d) by half a period (1e) [58].

Qubit frequencies for both parity branches were extracted from the raw VH

data using double Lorentzian fits for each VQ , allowing determination of the

∗Due to the large area below the potential barrier for 4π-tunneling at perfect transmission, this
residual dispersion can be estimated to be well below the experimentally achieved linewidth.
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Figure 7.3: Charge dispersion measurements. (a) Measurement of the heterodyne
transmission voltage VH as a function of VQ and a varying qubit drive fd across one
of two resonances (Res. 1). (Inset) Sketch of the energy density of states to illustrate
the interpretation that ϵr is varied by VQ . (b, c) Zoom at the red (blue) region in (a) at
the slope (peak) of the resonance spectrum. Note the same fd scale of 0.4 GHz in both
panels. Examples of maximal upper ( f+), minimal lower ( f−), and charge degeneracy
( f01) frequencies are indicated in (b) (single arrows). An example of the maximal
charge dispersion amplitude δ01 � f+ − f01 is indicated (double arrow). Interpolated
f01 as a function of VQ is shown in (b) (grey dashed line).

maximal upper ( f+) and minimal lower ( f−) branch frequencies. At the charge
degeneracy points a single Lorentzian fit was used to find f01. The charge
dispersion amplitude, here defined δ01 � f+ − f01, was then extracted using
an interpolated f01 to determine f+ and f01 at corresponding VQ , as shown in
Fig. 7.3(b). Near the top of the resonance, the two-photon transition frequency
f02(ng)/2 was visible in the spectrum and overlaps with the lower frequency
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branch of the f01 transition [Fig. 7.3(c)]. As δ01 becomes comparable to the
linewidth here we use the observed f02(ng)/2 to identify the VQ associated
with charge degeneracy and maximal dispersion amplitude.

Measurements of charge dispersion across Res. 2 were done in a slightly
different way. Rather than using VQ to span the resonance and vary ng , for
Res. 2, ng was varied by sweeping VFET (in the depleted regime) at fixed VQ

giving roughly independent control of ϵr and ng , see Section 7.8. The observed
behavior of Res. 1 and Res. 2 was the same.

Figure 7.4: Extracted charge dispersion and model result. Extracted maximal dis-
persion amplitudes (black and orange data points) and fit results (black and orange
curves) of the 0 → 1 transition for both resonances (Res. 1 and Res. 2) as a function of
qubit frequency f01. The theory curves are fits of numerical solutions to Eq. (7.2) with
fit parameters EC/h � 539 MHz and Γ/h � 72 (60)GHz for Res. 1 (2). Numerical δ01
(grey dashed line) for the standard transmon model with EC/h � 539 MHz. Error bars
are estimated from fit errors. (Inset) Extracted f01 as a function of VQ for Res. 1 (black)
and Res. 2 (orange).

Figure 7.4 shows a parametric plot of dispersion δ01 as a function of f01 for
both resonances, with the original dependence of f01 on VQ shown in the inset.
As expected for transmons in general, δ01 decreases when f01 increases due to
an increase in EJ . In the f01 ≲ 3.5 GHz range, corresponding to the tails of the
two resonances, δ01 decays approximately exponentially as f01 is increased.
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However, for the f01 ≳ 4 GHz range, near the top of the two resonances,
we observe the onset of a sharper decrease towards vanishing δ01, strongly
deviating from the exponential suppression expected in standard transmon
qubits.

7.4 Charge dispersion analysis

To quantitatively compare the observed charge dispersion across the reso-
nances to the model, Eq. (7.2), we first fix ∆ � 190 µeV based on tunneling
spectroscopy measurements at VFET � +4 V, where the FET is open [98]. For
simplicity we take the tunnel barriers to be symmetric and only allow VQ to
tune ϵr . We then fit EC (the same for both resonances) and Γ (allowed to be dif-
ferent for each resonance). Results are shown in Fig. 7.4, with EC/h � 539 MHz
(comparable to the electrostatic model [87] value 512 MHz) and Γ/h � 72 GHz
for Res. 1, and Γ/h � 60 GHz for Res. 2.

Comparing δ01 to the prediction for a conventional transmon model based
on the Hamiltonian HT � 4EC(n − ng)2 − EJ cosϕ, for EC/h � 539 MHz, high-
lights the suppressed dispersion observed experimentally and in the resonance
model. The conventional model agrees with the experimental data and with
the resonant level model only at low values of f01, as expected for a decreas-
ing transmission coefficient, where the sinusoidal CPR is recovered and the
Landau-Zener dynamics becomes irrelevant.

When VQ is turned more positive, we no longer observed narrow, sym-
metric resonances associated with resonant tunneling. Instead, we observe
a non-monotonic spectrum much less susceptible to changes in VQ . In this
regime, we also observe a deviation in the charge dispersion compared to
the value predicted by HT , see Section 7.9. However, the suppression is not
as pronounced as observed across the two resonances. We interpret this as
crossing to a regime where the Andreev processes are no longer mediated by
a resonant level and instead is described by a few gate tunable transmission
coefficients [101,106,107, 113], not reaching values similarly close to unity.

We also examine charge dispersion for the two-photon (0 → 2) transition
frequencies of Res. 2. By increasing the power and repeating the scans used to
extract δ01 we both excite the 0 → 1 and the 0 → 2 transitions. We define the
0 → 2 charge dispersion amplitude δ02 � f02− f02,−, where f02,− and f02 are the
minimal lower branch and degeneracy frequency, respectively. This operative
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α/2h

Figure 7.5: Charge dispersion of the 0 → 2 transition. Extracted maximal dispersion
amplitudes (orange and blue data points) and fit result (orange and blue curves) of the
0 → 1 and 0 → 2 transitions of Res. 2, respectively. The theory curves correspond to
numerical solutions to Eq. (7.2) with EC/h � 539 MHz and Γ/h � 60 GHz. Numerical
δ01 (orange dashed line) and δ02/2 (blue dashed line) based on HT with EC/h �

539 MHz. The frequency differences between corresponding pairs of data points taken
at same VQ (matching shapes) are equal to α/2, with one example indicated.

definition is chosen as the upper branch of the 0 → 2 transition interferes
with the lower branch of that of 0 → 1. Results for both δ01 and δ02/2 are
shown in Fig. 7.5. Both theory curves are obtained by solving Eq. (7.2) for
the same parameters as in Fig. 7.4, again showing striking agreement between
theory and experiment. We also compare the measured δ02/2 with numerical
solutions to HT , again yielding roughly an order of magnitude deviation at
resonance†. Finally, we emphasize that the finite frequency difference between
the pairs of data points is equal to half the anharmonicity α, as f02/2 − f01 �

1/2
(

f12 − f01
)
� α/2h. This illustrates that δ0i → 0 can be achieved without

α → 0 and in principle for much larger α.
Minor deviations between experiment and model may be attributed to

†Numerical code and data accompanying the analysis of Figs. 7.4 and 7.5 are found at:
https://github.com/anderskringhoej/Dispersion.

https://github.com/anderskringhoej/Dispersion
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effects of electron-electron interactions in the quantum dot, which are not
included in the model [147, 151, 152] as well as fluctuations in the ratio Γ1/Γ2
as a function of VQ .

7.5 Conclusions

In summary, we have observed and modeled the strong suppression of the
charge dispersion in a single-channel transmon across a junction resonance,
obtaining excellent agreement between experiment and theory. Our results
suggest that charge dispersion can be suppressed without the necessity of
large EJ/EC ratios. Future implementation of controlled dot structures or QPC
junctions to controllably achieve transmissions near unity may be a path to
engineer superconducting qubits with vanishing charge dispersion and large
anharmonicity. Additionally a controllable near-unity junction would allow
for deterministic tuning of the spectrum in Andreev qubits [68, 69]. Similar
results are presented in Ref. [120], in coordination with results reported here.

7.6 Extended theory

This section gives an extended derivation of the applied theory. The theory is
developed by Bernard van Heck, who also wrote the original version of this
section.

7.6.1 Derivation of the bound state equation

The bound state equation, Eq. (7.1), has been previously derived within a
scattering matrix formalism [145]. For completeness, we present here an alter-
native derivation based on the tunneling Hamiltonian. Namely, we consider
the following model of a Josephson junction with a resonant level coupling
two s-wave superconductors,

H � H0 + Htunn , (7.4a)

H0 � ϵr

∑
σ

d†
σdσ +

∑
αnσ

EαnΓ
†
αnσΓαnσ , (7.4b)

Htunn �

∑
α

e−iϕα/2 tα
∑
nσ

[
uαn d†

σΓαnσ + σvαn d†
σΓ

†
αnσ̄

]
+ h.c. (7.4c)
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Here, H0 is the Hamiltonian in the absence of tunneling between the dot and
the leads and Htunn is the tunneling Hamiltonian; ϵr is the energy of the
resonant level; α � 1, 2 labels the two leads; n labels the orbitals in the two
leads; σ labels spin; σ̄ � −σ; ϕα is the superconducting phase in lead α; tα is
the tunneling strength between the dot and the lead α; uαn and vαn are the BCS
coherence factors for the quasiparticle states in the leads. We have assumed
for simplicity that the tunneling strength is identical for every quasiparticle
state in each lead, and that spin is a good quantum number.

The single-particle excitation energies of the Hamiltonian H are the pos-
itive energy solutions of the Bogoliubov-de Gennes equations HBdGΨ � EΨ,
derived by rewriting the Hamiltonian in Nambu (particle/hole) space. Here,
Ψ � (Φ, Φ̃) is a Nambu wave function, and both Φ and Φ̃ have components on
the resonant level (which we will denote by Φ0 , Φ̃0) as well as on the quasipar-
ticle levels (which we will denote by Φαn , Φ̃αn). The Bogoliubov-de Gennes
equations are explicitly given by∑

αn

uαn tα e−iϕα/2Φαn +

∑
αn

vαn tα e−iϕα/2 Φ̃αn � (E − ϵr)Φ0 (7.5a)

uαn tα eiϕα/2Φ0 + vαn tα e−iϕα/2 Φ̃0 � (E − ϵr)Φαn (7.5b)

−
∑
αn

uαn tα eiϕα/2 Φ̃αn +

∑
αn

vαn tα eiϕα/2Φαn � (E + ϵr) Φ̃0 (7.5c)

−uαn tα e−iϕα/2 Φ̃0 + vαn tα eiϕα/2Φ0 � (E + ϵr) Φ̃αn . (7.5d)

Note that the spin indices σ have been suppressed since they play a trivial role
because spin is conserved by H. From Eq. (7.5b) and Eq. (7.5d), we can express
the quasiparticle components in terms of Φ0 , Φ̃0,

Φαn �
uαn tα eiϕα/2

E − Eαn
Φ0 +

vαn tα e−iϕα/2

E − Eαn
Φ̃0 (7.6a)

Φ̃αn �
vαn tα eiϕα/2

E + Eαn
Φ0 −

uαn tα e−iϕα/2

E + Eαn
Φ̃0 . (7.6b)

We can now insert Eq. (7.6a) and Eq. (7.6b) into Eq. (7.5a) and Eq. (7.5c), which
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results in a 2 × 2 system of linear equations that only involves Φ0 and Φ̃0.

A(E)Φ0 + B(E) Φ̃0 � (E − ϵr)Φ0 (7.7a)
B∗(E)Φ0 + A(E) Φ̃0 � (E + ϵr) Φ̃0. (7.7b)

The coefficients are energy-dependent:

A(E) � −
∑
α

Γα
E√
∆2 − E2

(7.8a)

B(E) � −
∑
α

Γα e−iϕα ∆√
∆2 − E2

. (7.8b)

They can be derived using the expressions for uαn and vαn , namely u2
n �

1
2 (1 + ξn/ϵn) and v2

n �
1
2 (1 − ξn/ϵn) with ϵn �

√
ξ2

n + ∆2 and by performing
the sums over n in the continuum limit (the resulting integrals converge for
E < ∆). In the above equation we have introduced the tunneling rates

Γα �
πt2

α

δα
. (7.9)

The 2 × 2 system of equations (7.7) has a solution if

[A(E) − (E − ϵr)][D(E) − (E + ϵr)] − |B(E)|2 � 0. (7.10)

This amounts to the bound state equation quoted in Eq. (7.1),

2
√
∆2 − E2 E2 Γ + (∆2 − E2)(E2 − ϵ2

r − Γ2) + 4∆2Γ1Γ2 sin2(ϕ/2) � 0, (7.11)

where Γ � Γ1 + Γ2 and ϕ � ϕ2 − ϕ1. This equation is equal to the one reported
in Refs. [56,145], up to the fact that Γα are defined here without a factor of two
associated with spin degeneracy.

7.6.2 Properties of the bound state energy

Here we discuss the properties of the solutions of Eq. (7.11); see also Ref. [56].
Introducing the Breit-Wigner transmission through the resonant level at E � 0,
T � 4Γ1Γ2/(ϵ2

r +Γ
2), the bound state equation can be written in the convenient
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Figure 7.6: Properties of the bound state energy obtained from the resonant level
model. (a) Energy gap at ϕ � 0 (∆̃) for different values of the coupling Γ � Γ1 + Γ2
and the resonant level energy ϵr . (b) Parametric plot of the energy gap at ϕ � π
for increasing values of the reflection amplitude r. Both quantities were computed by
either varying ϵr for a fixed symmetric coupling Γ1 � Γ2 �

1
2∆, or by varying Γ2 at fixed

ϵr � 0, Γ1 �
1
2∆. (c) Phase dependence of the bound state energy for the couplings

used in the fit for Res. 1 in Fig. 7.4, ∆/h � 45 GHz and Γ/2h � Γ1/h � Γ2/h � 36 GHz.
We fixed ϵr/h to a representative value of 10 GHz. The exact solution is a numerical

solution of Eq. (7.11). The approximate solution is given by E � ∆̃

√
1 − T sin2(ϕ/2).

form
E2 [1 + f (E)] � ∆2 (1 − T sin2 ϕ/2) (7.12)

with

f (E) � 2Γ
√
∆2 − E2

ϵ2
r + Γ

2
+
∆2 − E2

ϵ2
r + Γ

2
, (7.13)

a dimensionless positive function, defined in the interval 0 ≤ E < ∆, which
decreases monotonously from a value f (0) � (∆2 + 2Γ∆)/(ϵ2

r + Γ
2) to f (∆) � 0.

We have defined the bound state energy at zero phase difference as ∆̃. It can
be seen easily that ∆̃only depends on the total couplingΓ and is thus insensitive
to coupling asymmetry. It is determined by the equation ∆̃2[1 + f (∆̃)] � ∆2,
which has approximate solutions ∆̃ ≈ Γ for Γ � ∆ and ∆̃ ≈ ∆ for Γ � ∆. The
complete behavior of ∆̃ as a function of Γ and ϵr , obtained from a numerical
solution of the bound state equation, is illustrated in Fig. 7.6(a).

The minimum bound state energy is always achieved at ϕ � π, when the
right hand side of Eq. (7.12) is minimized. In particular, Eq. (7.12) shows that
E(π) � 0 for T � 1 independent of the value of other parameters, and that
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E(π) ≈ ∆̃
√

1 − T for
√

1 − T � 1. The behavior of E(π) as a function of T
is shown Fig. 7.6(b), obtained by varying either the asymmetry between the
couplings (Γ1 − Γ2) or ϵr .

As Eq. (7.12) suggests, the entire phase dependence of the bound state
energy is very well approximated by E � ∆̃[1 − T sin2(ϕ/2)]. This relation
becomes exact in the two opposite limits f (0) � 1 (which happens for ϵ2

r+Γ
2 �

∆), where ∆̃ ≈ ∆, and f (0) � 1 (for ϵ2
r+Γ

2 � ∆), where ∆̃ ≈ Γ. For intermediate
values of Γ, the regime where the optimal fit to the experimental data lies, the
agreement is still very good, as shown in Fig. 7.6(c). This justifies the use
of the model of Eq. (7.2) for the calculation of the qubit levels. We note that
for Γ � ∆ the requirement of finite separation between the continuum and
Andreev states is not fulfilled at ϕ � 0. In this case, we expect the predictions
of Eq. (2) in the main text to not be quantitatively reliable as the projection
onto an effective two-level system is invalid around ϕ � 0. These corrections
will not affect the main conclusions regarding the enhanced suppression of the
charge dispersion at resonance, which is also derived in Ref. [66] in a model
where the Andreev levels touch the continuum at ϕ � 0. In any case, for the
optimal model parameters returned by our fit to the experimental data, the
Andreev spectrum is separated from the continuum by an gap much larger
than Ec at all values of ϕ.

7.6.3 Qubit energy levels: numerical solutions

The Hamiltonian Eq. (7.2) is used to the determine the qubit energy levels given
the input parameters EC , ng , ∆̃ and r �

√
1 − T. The Hamiltonian is solved

numerically by discretizing the coordinate ϕ on a finite grid with grid spacing
δ, chosen to be small enough to guarantee convergence of the eigenvalues.
Following standard procedure, the derivative operator ∂ϕ is implemented
as a hopping operator between neighboring sites of the ϕ-grid, with hopping
strength 4EC/δ2. The induced charge ng enters the Hamiltonian, via the Peierls
substitution, as a hopping phase eiδng/2. We diagonalize the Hamiltonian on
the interval ϕ ∈ [0, 4π) with anti-periodic boundary conditions. This choice
is required to guarantee the smoothness of the wave functions and the correct
offset of energy levels with respect to ng .
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7.7 Transport measurements

As the device described in the main text also has the capability of measuring
transport when the FET is opened [98], we studied the resonances in DC
transport measurements. At VFET � +4 V, when the FET was fully conducting,
we measured the current IB and dIB/dVB as a function of voltage bias VB

and VQ across the resonances. By inverting dIB/dVB and subtracting the
line resistance R � 57 kΩ we infer the differential resistance across the qubit
junction dVJ/dIB as shown in Fig. 7.7(a). Here VJ is the voltage drop across the
qubit junction. From this measurement the switching current Is is extracted. Is

is defined as the maximal value of dVJ/dIB before the junction turns from being
in the non-resistive to the resistive state. In Fig. 7.7(b) we plot the two-tone
spectroscopy measurement across the resonances, which is also presented
in Fig. 1(c) in the main text. This allows us to compare the extracted Is

with the extracted f01 across the resonances, Fig. 7.7(c). Here we observe
a resonance structure the measured Is of similar width and spacing as the
f01. This further supports the interpretation of resonant tunneling through
a single dot level [145]. In this comparison, VQ is shifted ∼ 200 mV for the
measurements of Is to align the resonances. We attribute this to gate drift

Figure 7.7: Comparison of DC transport and cQED measurements across the two
resonances. (a) Measurement of the differential resistance dVJ/dIB as a function of
current bias IB and VQ across the two resonances. The measurement is performed
at VFET � +4 V where the FET is fully conducting such that the gate voltage across
the nanowire effectively drops across the qubit junction. Two regions of supercurrent
are observed. We identify the IB where the junction change from the non-resistive
state to the resistive state as the switching current Is . (b) Two-tone spectroscopy data
across both resonances measured at VFET � −4 V completely depleting the FET. Qubit
frequencies f01 are extracted by Lorentzian fits. (c) Comparison of the extracted Is
from (a) plotted on the left y-axis and the extracted f01 from (b). Due to gate drift the
Is curve is shifted by 200 mV to align the resonance peaks.
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common to these devices and crosstalk between the two gates as the FET is
being varied from conducting to non-conducting.

7.8 Charge dispersion extraction

Dispersion data were measured by varying ng , either with VQ (Res. 1) or VFET
(Res. 2). An example of a dataset is shown in Fig. 7.8(a). Here the frequencies
of the even and odd branches are extracted by fits to a double Lorentzians for
each ∆VFET (For Res. 1 frequencies are extracted with fits for each VQ). Here
∆VFET refers to the voltage change in VFET away from the static operation point
at VFET � −3 V, where the FET is fully depleted. An example of a fit is shown
in Fig. 7.8(b). We extract f+ and f− at gate values of local maxima of their
difference. We extract the degeneracy qubit frequency f01 by fits to a single
Lorentzian at ∆VFET where the odd and even branches cross.

For Res. 2 the 0 → 2 two-photon transitions frequencies are also extracted.
An example is shown in Fig. 7.8(c) where it is evident that the lower branch of

Figure 7.8: Examples of charge dispersion extraction.(a) An example of one of the
datasets used to extract δ01 of Res. 2. By sweeping VFET in a small range we change the
offset charge ng without varying f01. ∆VFET refer to the variation in VFET from its usual
operation point VFET � −4 V. Varying VFET over such small voltages allows changing ng
while keeping the FET depleted. By fitting each line to a double Lorentzians, we extract
the two frequency branches (orange data points). Local maxima allow identifying f+.
The qubit degeneracy frequency f01 (red data points) is extracted by fits to single
Lorentzians. For Res. 2 an average of the extracted data points results in the extracted
f01 and δ01 for each VQ . For Res. 1 each extracted value correspond to one data point
as f01 is varied together with ng . (b) An example of a double Lorentzian fit used to
identify the orange points in (a). The dashed line in (a) indicates ∆VFET for the fitted
dataset. (c) An example of a high power measurement of δ02/2 used to extract the data
points in Fig. 7.5. The lower frequency branch of the 0 → 2 is extracted by fits to single
Lorentzians. The degeneracy frequency f02/2 is manually estimated (red data points).
As in (a) an average of the extracted values result in the extracted f02/2 and δ02/2.
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the 0 → 1 interferes with the upper branch of the 0 → 2 transition. However,
as both the degeneracy and minimal frequency are clearly distinguishable we
define δ02 � f02 − f02,−. f02,− is extracted by fits to a single Lorentzian and f02
is extracted manually.

7.9 Spectroscopy and charge dispersion in the open regime

In the data presented in the main text we focus on the charge dispersion of the
two dot resonances appearing near the pinch-off voltage of the qubit junction.
We also extract the dispersion as VQ is increased. The dispersion is measured
in the same way as for Res. 1, where VQ is swept finely to both vary ng and
the qubit frequency [Fig. 7.9(a)]. In Figs. 7.9(b, c) we show dependence of
f01 on VQ and a parametric plot of the extracted δ01 values as a function of
f01, plotted together with the data and curves presented in Fig. 7.4 of the
main text. Here we observe a deviation compared to the transmon dispersion.
However, the suppression is not as extreme as observed for the resonances.
We attribute this to the transmission not approaching unity as dramatically
in this regime, but rather that transport across the junction is described by a
few highly transmitting modes. We also observe a non-monotonic behavior
in both f01 and δ01 as a function of VQ . We interpret this as crossing from a
resonant tunneling regime where narrow controlled resonances are observed
to a regime where mesoscopic fluctuations in the nanowire junction results in
an uncontrolled variation of individual transmission coefficients as a function
of VQ .
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Figure 7.9: Charge dispersion for increasing VQ . (a) An example of a measurement
of δ01 in the open regime. (b) f01 as a function of VQ . The data points across Res. 1
(black) and Res. 2 (orange) are the same as presented in the inset of Fig. 4 in the main
text. As VQ is increased further we extract f01 in the open regime (blue data points).
For VQ > −1.7 V we can no longer resolve δ01, but f01 is still resolvable. (c) δ01 as a
function of f01. The data points across Res. 1 (black) and Res. 2 (orange) and theory
curves are the same as presented in Fig. 7.4 in the main text for comparison to the
measured δ01 in the open regime (blue).





8
Phase-twisted Andreev States in

Proximitized Semiconducting
Josephson Junctions

Understanding the fundamental Andreev properties of Josephson junctions
has been key in building a range of superconducting quantum devices. Here,
we demonstrate the emergence of a unique Andreev spectrum as the super-
conducting phase twists when a flux vortex is trapped in a full-shell nanowire
gatemon qubit. Depending on junction gate voltage these coherent energy
transitions appear near the qubit transition. As the semiconductor electron
density is further increased qubit coherence is lost, associated with softening of
the superconducting gap with Andreev states. The experimental observations
are in agreement with numerical simulations.

This Chapter is adapted from Ref. [153]. Additional information on the
device fabrication and the measurement setup is provided in Chapter 3.

This work was done in collaboration with G. W. Winkler, B. van Heck, T. W. Larsen, D. Sabonis,
O. Erlandsson, P. Krogstrup, K. D. Petersson, and C. M. Marcus. The numerical simulations and
theoretical modeling described in the text and Fig. 8.4 are developed by Georg W. Winkler and
Bernard van Heck.
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8.1 Introduction

The Josephson effect is a coherent macroscopic effect, emerging from under-
lying Andreev processes [64]. Each Andreev process is characterized by a
transmission channel [109], where electrons are reflected as holes at the su-
perconducting interfaces. This results in a pair of bound subgap states for
each transmission channel. Several experimental realizations have probed
these Andreev states, both spectroscopically [105,110] and coherently [68, 69].
Originally, this has been studied in the short junction limit [154], where the
coherence length ξ is much greater than the junction width L. In this limit,
the energy spectrum is described by two phase dispersing spinless states
and a phase independent spin degenerate state with a single quasiparticle
excitation [56]. More recent demonstrations have demonstrated spin-split
Andreev states due to spin-orbit coupling in proximitized semiconducting
nanowires [125, 155]. In similar nanowires, superconducting gatemon qubits
have been demonstrated [38,39]. Here the gateable plasma frequency depends
on the specific distribution of transmission channels, typically dominated by
a few highly transmitting modes [101,107,113]. These devices usually operate
at large ratios of Josephson energy EJ to charging energy EC , which results
in φ ≈ 0 [30], where φ is the superconducting phase difference across the
junction. As a consequence the transition energies of the Andreev spectrum
are much larger than the qubit frequencies and therefore not detectable in
traditional gatemon experiments. However, recent experiments, have demon-
strated the compatibility of the proximitized nanowires with the destructive
Little-Parks effect [137, 156, 157], where φ experiences the same number of
twists as the number trapped flux vortices in the core of the nanowire [49]. As
a result the Andreev states are expected to exhibit a rich dependence on φ and
the electrostatic environment.

In this Chapter, we investigate the flux dependence of Andreev states in
nanowire-based gatemon qubit devices measured in a cQED resonator archi-
tecture. We observe the emergence of unconventional, coherent energy tran-
sitions when a magnetic flux threads the full-shell nanowire. We associate
these new transitions with Andreev states, where twists in the phase of the su-
perconducting order parameter result in phase-dependent trajectories inside
the junction. As a consequence a unique and unconventional gate-dependent
energy spectrum is obtained. As the semiconductor electron density is fur-
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Figure 8.1: Field compatible device and Little-Parks effect. (a) Optical image of the
qubit island region of the gatemon qubit device. A distributed readout resonator is
capacitively coupled to the rectangular qubit island. An InAs/Al nanowire is placed in
the highlighted region (black rectangle) on top of pre-defined bottom gates separated
by a HfO2 dielectric. A large density of flux pinning holes are patterned In the vicinity
of the island and the resonator. Inset: Magnified optical image in the nanowire region.
(b) Scanning electron micrograph of the nanowire region highlighted in (a) (green
rectangle). A gateable Josephson junction (JJ) is formed by removing a∼ 400 nm region
of the Al with each side contacted to the island and the ground plane, respectively. The
JJ is tuned by the bottom gate VQ . A magnetic field B is applied parallel to the nanowire
(arrow). (c) Measurement of the demodulated transmission voltage VH of device 1 as
a function of B and drive frequency fd . An oscillatory interference behaviour in f01 is
observed, associated with the Little-Parks effect. For each column the background is
subtracted due to variations in the resonator frequency.

ther increased qubit coherence is completely lost resulting in an enhanced
decay rate of the resonator, which we attribute to an increased subgap den-
sity of states. Numerical simulations are in qualitative agreement with the
experiential observations.

8.2 Field compatible device

Nanowire-based gatemon qubit devices were fabricated on high resistivity
silicon substrates covered with a 20 nm thin NbTiN film. Superconducting
qubit islands, λ/4 distributed readout resonators with resonance frequencies
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fres ∼ 5 GHz, transmission line, electrostatic voltage gates, and on-chip gate
filters were defined with electron-beam lithography followed by a reactive
ion etch, see Fig. 8.1(a). Nanowires are placed on top of the bottom gates
separated by a 15 nm HfO2 gate dielectric. The nanowires consist of an InAs
core of 130 nm in diameter, fully coated with 30 nm epitaxial Al [89]. By a
selective wet etch a ∼ 400 nm segment of the Al shell is removed creating a
Josephson junction (JJ) [Fig. 8.1(b)]. Contacting each side of the JJ to ground
and the qubit island finalizes the gatemon circuit [38,39]. The ground plane is
patterned with a large density of flux-pinning holes, crucial for magnetic field
compatibility of the readout resonators [71, 80]. Measurements are presented
for three devices, device 1, device 2, and device 3.

We apply a magnetic field B parallel to the nanowire while monitoring the
qubit frequency f01 by two-tone spectroscopy where a drive tone with variable
frequency fd drives the qubit, followed by a dispersive readout tone [27, 28].
As B is increased, we observe an oscillatory lobe structure (zeroth lobe and
first lobe visible) in the demodulated heterodyne transmission voltage VH

[Fig. 8.1(c)]. We associate this with the destructive Little-Parks where each
region corresponds to a quantized number of fluxoids (zero and one magnetic
flux quantum Φ0 in the zeroth and first lobe) [137, 156]. We note that the
observed maximal value of the first lobe of B1 � 93 mT corresponding to the
applied flux Φ � Φ0 is in good agreement with the expected B1 ∼ Φ0/πr2 ∼
100 mT from the nanowire dimensions, where r � 80 nm is the nanowire
radius.

8.3 Phase-twisted Andreev states

At low values of junction gate voltage VQ , the low electron density regime, the
gatemon exhibit traditional qubit behaviour. However, as VQ is increased the
gatemon qubit devices operated in the first lobe are commonly observed to lose
coherence. This phenomenon is visible by measuring the resonator frequency
as a function of VQ , as shown in Figs. 8.2(a, b). This is performed by varying the
resonator drive frequency fr and measuring the transmission S21, see Chapter 3
for additional details on setup and measurements. At B � 0 [Fig. 8.2(a)],
we observe a nonmonotonic modulation of fres associated with the voltage
modulation of f01 as VQ is increased from complete depletion at VQ � −3 V.
For VQ ≳ −2 V several avoided crossings are observed, indicating that the



Phase-twisted Andreev states 109

Figure 8.2: Damping of the resonator. Transmission voltage S21 measured for device 2
as a function of junction gate voltage VQ and resonator drive frequency fr at parallel
magnetic field B � 0 and B � 100 mT in (a) and (b), respectively. At B � 100 mT, we
observe a damping of the resonator frequency as VQ is turned more positive, associated
with an increasing qubit relaxation rate much bigger than that of the resonator.

qubit is tuned in and out of resonance with the resonator. As VQ → 1 V, fres
is approaching its unshifted value as VQ → 1 V, which indicates a vanishing
dispersive shift as f01 is increasing far above fres. In the first lobe (B � 100 mT),
an almost identical pattern is observed for VQ ≲ −1 V [Fig. 8.2(b)], with the
small differences due to the slight reduction in the induced superconducting
gap ∆ in the Al shell. For VQ ≳ −1 V, however, the resonance frequency dip
is both reduced and widened, in contrast to measurements in the zeroth lobe.
We interpret this damping of the resonator to be decay through the qubit,
indicating that the relaxation rate of the qubit is much larger than that of the
resonator. By repeating these scans in intervals of B � 5 mT we fully map
the behaviour in both the zeroth and first lobe, identifying the damping of the
resonator as a distinct feature of the first lobe, see Section 8.6. We associate
this resonator damping with softening of the induced gap in the nanowire JJ.

To further investigate the anomalous behaviour in the first lobe, we map
the gate dependence of the qubit transition at B � 100 mT by to two-tone spec-
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Figure 8.3: Measurements of phase-twisted Andreev transitions. (a) Two-tone spec-
troscopy measurement of demodulated transmission VH as a function of fd and VQ
at B � 100 mT. Multiple regions of new energy transitions are observed. (b) Measure-
ment of VH as a function of B and fd at VQ � −2.88 V [dashed line in (a)]. Both the
qubit and additional transitions exhibit the expected oscillatory behaviour associated
with Little-Parks effect with no extra transitions appearing in the zeroth lobe. We note
different local maxima in B for the new states. We associate the widest transition with
the qubit frequency f01 (arrow), which persist as a function of VQ in (a). This transition
exhibits a weaker dependence of B. Measurements presented are from device 1.

troscopy, see Fig. 8.3(a). In the regime just before the damping of the qubit
starts to dominate, we observe a range of unconventional energy transitions
emerging. These states show strong gate dependence near some values of VQ ,
and several avoided crossings with the qubit transition, indicating that these
states couple to the qubit. For VQ < −3.3 V, we only observe the usual gatemon
transition frequencies, see Section 8.7. We next study the field dependence
of f01 at VQ � −2.88 V, where these new transitions are observed. Here, we
again observe an oscillatory behaviour in f01 associated with the Little-Parks
effect with the bundle of transition frequencies visible in the first lobe only,
see Fig. 8.3(b). These extra transitions exhibit local maxima at larger values
of B than the qubit transition indicating smaller effective cross sectional areas
of wavefunctions of these states. In addition, the transitions appear to have



Numerical simulations 111

distinctively different dependence on B, compared to the qubit transition [in-
dicated in Fig. 8.3(b)]. We speculate that these transitions are associated with
Andreev states whose transition frequencies scale with ∆ [109] as opposed to
f01, which scales with

√
∆ [30]. We note the change in direction of the disper-

sive shift for f01 ≲ 6.5 GHz in Figs. 8.3(a, b) associated with the straddling
regime [30]. We speculate that the Andreev transitions always have the same
sign of the dispersive shift as the qubit transition as they are only visible due
to coupling via the qubit.

8.4 Numerical simulations

To understand the origin of the lobe-dependent subgap spectrum, we perform
simulations of a full-shell nanowire Josephson junction of similar dimensions
as the measured devices. We model a hexagonal InAs wire with 130 nm di-
ameter coated by a 30 nm thick Al shell with a junction width of 150 nm. The
simulations are performed with the same method applicable to realistic three
dimensional devices as used in Ref. [158] adapted here to the Josephson junc-
tion geometry. Figures. 8.4(a, b) show a longitudinal cut of the device with
the electrostatic potential ϕ in the InAs nanowire plotted for two different
gate voltages VBG. The phase of the superconducting order parameter is in-
dicated in the Al shell. Apart from a possible phase difference ∆φ across the
junction, in the first and higher lobes (n , 0) the flux induced phase winding
causes a spatial dependence of the phase also on either side of the junction.
Therefore, Andreev bound states can experience multiple different phase dif-
ferences depending on the path they travel across the junction. In particular
as VBG is increased and the potential barrier is reduced [Figs. 8.4(a, b)], this
effect of phase dependent paths are expected to be relevant. Possible paths
travelling diagonally across the junction are indicated in Fig. 8.4(b), which
would experience a π-phase difference in the first lobe.

The phase winding in the superconducting shell has dramatic effects on
the Andreev bound state spectrum in the junction. In Figs. 8.4(c, d) we show
the density of states (DOS) in the junction in the zeroth lobe. As VBG is turned
more positive the junction becomes more open due to the decreasing poten-
tial barrier and more Andreev bound states with strong phase dependence
appear, with an energy minimum around ∆φ � π. However, the energies of
Andreev bound states remain on the order of the bulk superconducting gap
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Figure 8.4: Numerical modeling of the flux-dependent Andreev states (a, b) Longitu-
dinal cut of the simulated Josephson junction device at backgate voltage VBG � −0.2 V
and VBG � 0.2 V. The electrostatic potential is shown in InAs, covered by a full Al
shell (blue), separated from a global backgate (dark grey) by a thin HfO2 dielectric
(light gray). The band offset between InAs and Al has been chosen to be 150 meV, as
in Ref. [158]. Values of the phase of the superconducting order parameter are indi-
cated in the Al shell and possible diagonal paths of Andreev bound states (arrows) are
shown in (b). (c, d) DOS in the junction as a function of ∆φ at zero magnetic field for
VBG � −0.2 V and VBG � 0.6 V. (e, f) same as (c, d) but at B ≈ 0.12 T in the middle of
the first lobe. (g) DOS as a function of VBG at B ≈ 0.12 T for ∆φ � 0. (h) DOS as a
function of magnetic field at VBG � 0.6 V and ∆φ � 0. For (c–h) we assume a spin-orbit
coupling of α � −0.1 eV nm and InAs/Al band offset of 150 meV as in the main text of
Ref. [158]. Dashed colored lines in (g) corresponds to values of VBG in (c)–(f) and (g)
(colored frames).

at ∆φ � 0. In Figs. 8.4(e, f) we show the DOS in the first lobe, for parameters
corresponding to the topological phase. Due to the presence of vortex states
the bulk gap is reduced here [136]. The topological Majorana zero modes
show up close to zero energy and show little phase dependence for the case
of a closed junction, see Fig. 8.4(e). If the junction is opened the gap fills with
low-energy Andreev bound states, see Fig. 8.4(f). While the Andreev bound
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states still show strong dependence on ∆φ, however now there are also low
energy states around ∆φ � 0. As discussed in Ref. [82], the presence of low
energy states at ∆φ � 0 can lead to additional lines and anti-crossings in the
qubit spectrum. Furthermore, if the gap becomes densely filled with subgap
states a damping of the resonator line would be expected. In Fig. 8.4(g) we
show the dependence on VBG of the subgap states at ∆φ � 0. They show a
complicated nonmonotonic dependence on VBG which can explain the mul-
tiple transitions as a function of gate voltage observed in the experimental
qubit spectroscopy. Figure 8.4(h) presents the dependence on magnetic field
of these Andreev bound states at ∆φ � 0. They do not follow the same mag-
netic field dependence as the Al gap, often having their energy maximum at a
different flux, which is also compatible with the experimental observations in
Fig. 8.3(b). While the results shown here correspond to the topological case,
the results are qualitatively very similar in the trivial case.

8.5 Time domain measurements

To further investigate the origin of the observed supgap states, we focus on a
narrow region of VQ , where the transitions exhibit local minima [Fig. 8.5(a)].
Here, we observe a strong dependence on VQ indicating that the states reside
in the junction. Additionally the states exhibit similar local minima in VQ ,
possibly due to a local maxima in the transmission coefficients, which would
bring down Andreev transitions in frequency. For VQ ≳ −2.7 V qubit coher-
ence is lost and we can no longer probe the qubit frequency, consistent with the
findings of Fig. 8.2, see Section 8.6. We note that the measurements in Fig. 8.2
and Figs. 8.3, 8.5 are from two different devices with different threshold VQ at
which coherence is lost. The characteristic behavior is the same in all devices.

Throughout the gate scan presented in Fig. 8.5(a), the transitions can be
driven coherently. Figure. 8.5(b) shows an example of Rabi measurements
across the transitions at VQ � −2.752 V. All transitions exhibit coherent os-
cillations with T1 relaxation times of 3–5 µs measured in a subsequent mea-
surement. We observe that the transitions in closest vicinity to the uncoupled
qubit transition demonstrated the fastest oscillations [green and red panels in
Fig. 8.5(b) supporting the interpretation that the Andreev states are visible due
to the coupling via the qubit. This is in qualitative agreement with numerical
simulations presented in Ref. [82]
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Figure 8.5: Time domain measurements of Andreev transitions. (a) Narrow gate de-
pendence of the Andreev transitions at B � 93 mT. We observe that the extra transitions
are strongly gate dependent and all with local minima at similar VQ . For VQ ∼ −2.7 V
the qubit can no longer be coherently driven. (b) Rabi measurements of VH as a func-
tion of varying drive pulse width τ and fd at VQ � −2.752 V [colored squares in (a)
match frame colors in (b)].. We observe Rabi oscillations of all the transitions in the
frequency range, with fastest oscillations of the transitions nearest the uncoupled qubit
transitions (green and red frames). The experimental data (black data points) are fitted
to exponentially damped sinusoids (orange curves).

8.6 Field dependence of resonator frequency

To investigate the observed damping of the readout resonator, we systemati-
cally map fres for increasing values of B. We repeat the transmission scans
performed in Fig. 8.2 for values of B increasing by 5 mT, as shown in Fig. 8.6.
It is observed that the overall spectrum remain roughly unchanged up to
B � 45 mT, except small changes in the avoided crossings, which is attributed
to the field-induced decrease in ∆. At B � 50–55 mT, we enter the destructive
regime (Φ ∼ Φ0/2), where superconductivity is destroyed. When entering the
first lobe, superconductivity is restored. In the first lobe, the characteristic
behavior of the spectra is very similar with few variations due to the field
modulation of ∆. We observe the damping of the resonator for all values of B
for VQ ≳ −0.5 V, in contrast to the zeroth lobe.
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Figure 8.6: Full measurement of the lobe-dependent resonator damping. Transmis-
sion voltage S21 as a function of junction gate voltage VQ and drive frequency fd at
increasing parallel magnetic field B � 0–100 mT in steps of 5 mT.
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In Figs. 8.3 and 8.5 the behavior of the phase-winded Andreev transitions
are investigated. For VQ > −2.7 qubit coherence is lost. Figure 8.7 shows
a resonator scan in this region, where we similarly observe the damping of
the resonance frequency. This is consistent with the interpretation that the
Andreev states are only visible in an open junction regime, with the resonator
damping occurring due to softening of the superconducting gap.
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Figure 8.7: Corresponding resonator scan as a function of VQ measured interleaved
with the two-tone spectroscopy measurement presented in Fig. 8.5(a).

8.7 Gate dependence in zeroth and first lobe

To further support that the observed transitions are a characteristic phe-
nomenon associated with phase twists in the first lobe, we repeat the gate
scan shown in Fig. 8.3(a) at B � 35 mT, shown in Fig. 8.8(a). We observe a
traditional gatemon spectrum, where the power broadened 0 → 1 and the
two-photon 0 → 2 transitions are visible without all the additional transitions
visible at B � 100 mT [Fig. 8.8(b)]. The absence of extra transitions lines in the
zeroth lobe supports the interpretation of phase winded Andreev energy states
due to the lobe-dependent phase twists. We note the small region in Fig. 8.8(a)
near VQ ∼ −3 V, where two main transitions are visible. We speculate that
this could be due to fast occurring charge jumps resulting in a doubling of the
qubit line [62]. At all other VQ the qubit transition lines exhibit nearly identical
behavior, with small modification in the absolute values due to the reduction
in ∆ at B � 100 mT.

From the numerical modeling presented in Fig. 8.4, the observation of
phase-winded Andreev states are expected to be achievable for increasing
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Figure 8.8: Comparison of zeroth and first lobe two-tone spectroscopy. Two-tone
spectroscopy measurement as a function of fd and VQ at B � 35 and 100 mT in (a)
and (b) to compare the gate dependence in the zeroth and first lobe. Panel (b) is also
presented in Fig. 8.3(a).

values of VQ . This interpretation is supported by gate scans probing the
qubit spectrum for decreasing VQ , as shown in Fig. 8.9. Here, we map the
qubit spectrum for values of VQ below the values shown in Fig. 8.8, and no
additional states are observed with only a single qubit transition line visible.
This observation is consistent with creating a junction barrier for low values
of VQ , and the effect of the phase dependent junction paths are much less
important. As a result the gatemon spectrum behaves as the it would in the
zeroth lobe.

8.8 Charge dispersion in field

As discussed in Section 2.5, cQED gatemon architectures are potentially com-
patible with detecting Majorana zero modes (MZMs). If two MZMs at each
side of the JJ overlap, a coherent path for 1e transport is created. As a conse-
quence the two even-odd uncoupled charge dispersion branches will couple.
This coupling is expected to result in a double-well potential with two intrawell
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Figure 8.9: Qubit behavior at low VQ . Two-tone spectroscopy measurement as a
function of fd at B � 100 mT for decreasing VQ . In this regime, no additional transitions
are observed.

Figure 8.10: Mapping the qubit in the first lobe. (a) Two-spectroscopy as a function
of parallel magnetic field B measured in device 3. We observe oscillations in the qubit
frequency associated with the charge dispersion of the two parity branches. (b). Two-
spectroscopy as a function of VQ over the entire region in the first lobe of resolvable
charge dispersion.

and two interwell transmon transitions [44], where the interwell transitions
are expected to be suppressed due to av vanishing overlap of wavefunctions.
Experimentally this is expected to result in avoided crossings in the frequency
charge dispersion spectrum along with a change in periodicity and doubling
of transitions lines, depending on the energy scales [82]. Recent experimental
and theoretical work [136,137] suggest that full-shell nanowires host MZMs in
the first lobe. Motivated by this, we study the charge dispersion as a function
of magnetic field in gatemon full-shell devices.
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We measure the qubit frequency as a function of B by two-tone spec-
troscopy, as shown in Fig. 8.10(a). This is measured in a third device of same
design the device shown in Fig. 8.1, device 3. Here, the qubit frequency ex-
hibit the oscillatory lobe behavior associated with the Little-Parks effect. Due
to drift in the offset charge ng we observe the parity branches of the qubit fre-
quency oscillate on top of the oscillating Little-Parks envelope. At the center of
the first lobe, B1 � 95 mT, we map the qubit dependence of VQ , see Fig.8.10(b).
Here, we find that the charge dispersion is resolvable in the range VQ � −6.8–
−6.3 V. For VQ > −6.3 V, the qubit frequency becomes too large to resolve
the charge dispersion due to increasing ratios of EJ/EC , and for VQ < −6.8 V
the qubit frequency is rapidly decreasing as the JJ approaches full depletion.
In the entire range of resolvable charge dispersion, we measure the charge
dispersion in steps of 25 mV and every 10 mT, with one example shown in
Fig. 8.11. Here, we vary ng by the middle gate shown in Fig. 8.1(a), Vng. In
doing so we observe an oscillating behavior of the parity branches, around a
nearly constant qubit frequency. To look for differences between the zeroth
and first lobe we perform these measurements starting at B � 0 T. We observe
no signatures of anti-crossing or change in periodicity, as we transition from
the zeroth to the first lobe. This indicates that the nanowires either do not host
MZMs or that the overlapping energy EM (see Section 2.5 for further details)
is too small to resolve. The numerical simulations in Fig. 8.4(e, d) suggest that
detectable overlap between the MZMs only occurs in regimes of large supgap
DOS. This would mean that it is heavily complicated to observe signatures of
MZMs this device geometry due to the large density of Andreev states. Even if
the regime, in which the measurements of Fig. 8.3 and Fig. 8.5 are performed
do host MZMs it is not possible to clearly distinguish the transitions from
those of Andreev states. This is consistent with the simulations presented
in Ref. [82], which also argue that the picture presented in Section 2.5 based
on Ref. [44] is being modified by the presence of Andreev states and finite
junction effects.

This type of study of the charge dispersion have been performed in sev-
eral similar devices, and also in half-shell nanowire devices. In half-shell
devices the nanowire is only partly coated with Al, allowing the semicon-
ducting segments to be tuned by plungers gates. The device design shown in
Figs. 8.1(a, b) has three gates compatible with half-shell devices, where the two
plunger gates tune the segments on each side of the junction with the middle
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Figure 8.11: Mapping the charge dispersion in the first lobe. Dispersion measure-
ments at increasing parallel magnetic field B acquired at VQ � −6.6 V. Measuring VH
as a function of fd and varying offset charge gate Vng [the middle gate in Fig. 8.1(a)]
yields an oscillating in the qubit spectra. Majorana signatures are predicted as avoided
crossing and change in periodicity. No difference between dispersion measurements
in zeroth lobe (B � 0–40 mT) compared the first lobe (B � 70–130 mT) is observed.

gate tuning the nanowire JJ. Similar charge dispersion experiments were also
performed on those nanowires. For all devices, we did not observe any clear
signatures of MZMs. For more details on experiments on half-shell device I
refer to Refs. [71, 81].

8.9 Conclusions

In summary, we have observed flux-dependent, coherent energy transitions
emerging when the superconducting phase twists as magnetic flux threads
a full-shell nanowire-based gatemon qubit. We explain these transitions by
phase-winded Andreev states in agreement with numerical simulations. This
distinct new behavior of Andreev states exhibit strong variations as the junc-
tion gate is varied consistent with phase dependent paths inside the Josephson
junction. As the voltage is increased qubit coherence is lost and an enhanced
relaxation of the resonator is observed, interpreted as softening the supercon-
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ducting gap due to a large density of subgap states. This new type of Andreev
spectrum opens an exciting research direction for Andreev qubits. In addition
future experiments directly probing the Andreev spectrum may be suitable to
investigate the predicted emergence of topological regimes [44, 136].





9
Outlook

This thesis has explored the semiconducting Josephson junctions of super-
conducting qubits based on proximitized nanowires. We have performed
qubit anharmonicity measurements, yielding information about the transmis-
sion properties of these junctions. We have demonstrated suppressed charge
dispersion, which we explain by a ballistic conduction channel formed by a
resonant level in the junction. Furthermore, we have shown the integration
DC transport techniques in these devices and together with their field com-
patibility this opens a range of new operating regimes otherwise inaccessible
for conventional superconducting qubits. This all together form a founda-
tion for future fundamental explorations in these device architectures. Future
research directions may take advantage of these features in devices based
on two-dimensional electron gasses, where the lithographic freedom allows
new device designs, which may open the possibility of new types of qubits.
In addition, the ballistic conduction channel provided by resonant tunneling
along with the magnetic field resilience motivates new extensions of Andreev
qubit research. This may involve probing the phase-twisted Andreev states,
spin-split odd states, and signatures of Majorana zero modes.

Gatemon qubits also present an interesting platform for more conventional
superconducting qubit research. Improving qubit performances of devices
based on scalable top-down approaches platforms, such as two-dimensional
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electron gasses or selective area growth, may see gatemons as a scalable all-
electric alternative to conventional superconducting qubits. With the advan-
tage of in-situ tunability of qubit parameters this would allow gatemons to
participate in this exciting, and progressing research field.



A
Fabrication

This Appendix presents the fabrication recipe used for the device in Chapter 4.
This recipe is adapted from Ref. [96]

AL film

• Load high resistive Si wafer into AJA International metal evaporation
system

• Kaufmann argon milling 15 s at 300 V with 15 cm3/min Ar gas flow with
ion gas on and 1 mTorr pressure - warm up 60 s before milling

• Evaporate 100 nm of Al with rate ∼ 2 Å/s

Control lines, qubits islands, readout resonators, and transmission
line

• Spin AZ1505 photo resist at 4000 rpm for 45 s and bake the resist at 115◦C
for 1 min

• Expose design with Heidelberg µPG101 LED writer, expose each write
field 30 ms, defocus -5
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• Develop the resist with AZ developer for 40 s followed by 30 s Milli-Q
water rinse and 4 min plasma ashing (cleaning with oxygen plasma)

• Etch the pattern for 1 min in 50◦C Transcene Al etchant type D followed
by 10, 30 s Milli-Q water rinse - blow dry with N2 and 1 min plasma
ashing

LED defined marks

• Spin AZ1505 photo resist at 4000 rpm for 45 s and bake the resist at 115◦C
for 1 min

• Expose design with Heidelberg µPG101 LED writer, expose each write
field 30 ms, defocus -5

• Develop the resist with AZ developer for 40 s followed by 30 s Milli-Q
water rinse and 4 min plasma plasma ashing

• Evaporate 5 nm Ti followed by 80 nm Au with rate ∼ 1 Å/s

• Lift off in 80◦C NMP (1-methyl-2-pyrrolidone) for 1 hr. followed by 30 s
sonication. Rinsed in acetone, IPA - blow dry with N2 and 2 min plasma
ashing

Wire alignments marks

• Spin EL9/CSAR9 EBL resist at 4000 rpm for 45 s and bake 1, 3 min 185◦C

• Define pattern with electron-beam lithography (EBL) with a dose time
of 0.56 µs/point, beam current of 2 nA, 300 µm field size, 20k points

• Develop for 60 s in o-xylene, 30 s in 1:3 MIBK:IPA and 10 s in IPA - blow
dry with N2 and 2 min plasma ashing

• Evaporate 5 nm Ti followed by 80 nm Au with rate ∼ 1 Å/s

• Over night lift off in acetone, 2 min sonication in IPA, 2 min plasma
ashing
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Wire windows

• Spin EL9 EBL resist at 4000 rpm for 45 s and bake 3 min 185◦C

• Define pattern with EBL with a dose time of 0.56 µs, beam current of
5 nA, 300 µm field size, 20k points

Cleaving

• Cleave chip in 9 pairs using Loomis automatic scriber with a scribe
pressure of 1.8 psi and break pressure of 6.0 psi

Wire placement

• Develop for 75 s in 1:3 MIBK:IPA followed by 10 s IPA rinse - blow dry
with N2 and 1 min plasma ashing

• Randomly place nanowires in the defined windows with the tip of a
cleanroom wipe

• Strip resist by rinsing chip in acetone, IPA and 2 min plasma ashing

Wire junction etch

• Spin PMMA 4% EBL resist at 4000 rpm for 45 s and bake 3 min 185◦C

• Load optical images into design file for alignment of design to nanowires

• Define etch windows with EBL, 0.3 µs/point does time, 1 nA beam
current, 300 µm field size, 60k points

• Develop for 60 s in 1:3 MIBK:IPA followed by 10 s IPA rinse - blow dry
with N2 and 1 min plasma ashing

• Etch nanowire junction for 1 min in 50◦C Transcene Al etchant type D
followed by 30 s Milli-Q water, 10 s IPA rinse and nitrogen blow dry

• Strip resist by rinsing chip in acetone, IPA - blow dry with N2 and 2 min
plasma ashing

• SEM image the etched nanowires to find suitable candidates for the qubit
junction
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Contacts and sidegate

• Spin EL9, PMMA 4% EBL resist at 4000 rpm for 45 s and bake 1, 3 min
185◦C

• load SEM images to design for gates, contacts,

• Define gate and contact pattern with EBL, 0.3 µs does time, 1200 µC
cm2

area dose, 1 nA beam current, 300 µm field size, 60k points

• Develop 60 s 1:3 MIBK:IPA followed by 10 s IPA rinse - blow dry with
N2 and 1 min plasma ashing

• Load sample into AJA evaporation system, argon mill oxide layer on
nanowire for 4.5 min, evaporate 1 nm Ti and 150 nm Al

• Lift off 80◦ C NMP for 1 hr followed by 30 s sonication. Rinsed in acetone,
IPA - blow dry with N2 and 2 min plasma ashing

Wire Bonding

• Glued to PCB sample board with PMMA - dry for ∼ 30 min

• Al wire bonded control lines to PCB sample board

• Loading in indium sealed Al box and sample holder



B
Fabrication

This Appendix presents the fabrication recipe used for the device in Chap-
ters 6–8. The fabrication process and fabricated were carried out by Marina
Hesselberg, Karthik Jambunathan, Robert McNeil, Karolis Parfeniukas, Ag-
nieszka Telecka, Shivendra Upadhyay, and Sachin Yadav.

Deep etched alignment marks

• Spin CSAR13 EBL resist at 4000 rpm for 45 s and bake 1 min 185◦C on
high resistive Si wafer

• Define pattern with EBL with a base dose of 430 µC/cm2, beam current
of 10 and 100 nA, 500 µm field size, 50k points

• Develop for 30 s in o-xylene, 15 s in 1:3 MIBK:IPA and 10 s in IPA - blow
dry with N2 and 2 min plasma ashing

• Deep etch using advanced silicon etching

• Clean: 80◦C NMP, Acetone, IPA, Milli-Q water for 2 hr, 15 min, 10 min,
10 min, 30 s - blow dry with N2 and 2 min plasma ashing
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NbTiN film

• Clean in buffered oxide etch for 2 min, 3 × 15 Milli-Q water rinse - blow
dry with N2

• Load high resistive Si wafer into AJA International metal evaporation
system

• NbTiN deposition: sputter NbTi in N atmosphere - 20 nm

• Rinse in acetone, IPA for 2, 2 min- blow dry with N2

Control lines, qubits islands, flux pinning holes, readout resonators,
and transmission line

• Spin CSAR13 EBL resist at 4000 rpm for 45 s and bake 2 min 185◦C

• Define pattern with EBL with a base dose of 430 µC/cm2, beam current
of 10 and 100 nA, 500 µm field size, 50k points

• Develop for 30 s in o-xylene, 15 s in 1:3 MIBK:IPA and 10 s in IPA - blow
dry with N2 and 2 min plasma ashing

• Etch the pattern with Reactive Ion Etch, PRO ICP etcher (Inductively
Coupled Plasma Etching) with Cl2 gas

• Clean: 80◦C NMP, NMP, IPA, Acetone, Milli-Q water for 2 hr, 15 min,
10 min, 10 min, 30 s - blow dry with N2 and 2 min plasma ashing

Gate dielectric and cross over dielectric

• Spin EL13, PMMA 4% EBL resist at 4000 rpm for 45 s and bake 1, 1 min
185◦C

• Define pattern with EBL with a base dose of 1300 µC/cm2, beam current
of 10 nA, 500 µm field size, 50k points

• Develop for 60 s in 1:3 MIBK:IPA followed by 15 s IPA rinse - blow dry
with N2 and 1 min plasma ashing

• Atomic layer deposition (ALD) - 15 nm HfO2 at 110◦C

• Lift off 80◦C NMP, NMP, acetone, IPA, Milli-Q water for 2 hr, 10 min,
5 min, 5 min, 30 s - blow dry with N2 and 2 min plasma ashing
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Dicing

• Spin AZ1505 photo resist at 4000 rpm for 45 s and bake the resist at 115◦C
for 1 min

• Dice in subsets to proceed for nanowire placements

Wire placement

• Clean: acetone, IPA for 5, 5 min - blow dry with N2 and 2 min plasma
ashing

• Place single nanowires on top of gate dielectric in predefined region with
a micro manipulator

Wire junction etch

• Spin AR 300-80 adhesion promoter at 4000 rpm for 45 s slow acceleration
and bake 2 min 115◦C

• Clean: Dioxalene, acetone, IPA for 2 min, 2 min, 30 s - blow dry with N2

• Spin EL9 resist at 4000 rpm for 45 s slow acceleration and bake 3 min
185◦C

• Define etch windows with EBL with a base dose of 450 µC/cm2, beam
current of 5 nA, 500 µm field size, 200k points

• Develop 22 s 1:3 MIBK:IPA followed by 20 s IPA rinse - blow dry with
N2 and 1 min plasma ashing

• Etch nanowire junction for 52 in MF321 Al etchant followed by Milli-Q
water, Dioxalene, acetone, IPA for 30, 120, 120, 30 s - blow dry with N2
and 1 min plasma ashing

Cross linked PMMA cross overs

• Spin PMMA 4% resist at 4000 rpm for 45 s slow acceleration and bake
2 min 115◦C

• Define pattern with EBL with a base dose of 60k µC/cm2, beam current
of 100 nA, 500 µm field size, 200k points
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Contacts and cross overs

• Spin 2×PMMA 4% resist at 4000 rpm for 45 s slow acceleration and bake
2 min 115◦C

• Define pattern with EBL with a base dose of 1300 µC/cm2, beam current
of 10 nA, 500 µm field size, 50k points

• Develop 75 s 1:3 MIBK:IPA followed by 10 s IPA and 30 s Milli Q rinse -
blow dry with N2 and 2 min plasma ashing

• Load device into AJA International metal evaporation system

• Kaufmann argon milling 15 s at 300 V with 15 cm3/min Ar gas flow with
ion gas on and 1 mTorr pressure - warm up 60 s before milling

• NbTiN deposition: sputter NbTi in N atmosphere - 180 nm

• Lift off 80◦C NMP, acetone, IPA for 1 hr, 1 min, 1 min - blow dry with N2
and 2 min plasma ashing

Wire Bonding

• Glued to PCB sample board with PMMA

• Al wire bonded control lines to PCB sample board

• Loading in indium sealed CuBe box and sample holder
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[137] S. Vaitiekėnas, M.-T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-
induced majorana modes in full-shell nanowires,” arXiv:1809.05513,
2018.

[138] Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering
with josephson-junction devices,” Rev. Mod. Phys., vol. 73, pp. 357–400,
May 2001.

[139] K. Flensberg, “Capacitance and conductance of mesoscopic systems con-
nected by quantum point contacts,” Phys. Rev. B, vol. 48, pp. 11156–11166,
Oct 1993.

[140] K. A. Matveev, “Coulomb blockade at almost perfect transmission,” Phys.
Rev. B, vol. 51, pp. 1743–1751, Jan 1995.

[141] Y. V. Nazarov, “Coulomb blockade without tunnel junctions,” Phys. Rev.
Lett., vol. 82, pp. 1245–1248, Feb 1999.

[142] S. R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus,
C. I. Duruöz, J. S. Harris, K. Campman, and A. C. Gossard, “Statistics of
coulomb blockade peak spacings,” Phys. Rev. Lett., vol. 80, pp. 4522–4525,
May 1998.



REFERENCES 147

[143] D. Duncan, D. Goldhaber-Gordon, R. Westervelt, K. Maranowski, and
A. Gossard, “Coulomb-blockade spectroscopy on a small quantum dot
in a parallel magnetic field,” Appl. Phys. Lett., vol. 77, no. 14, pp. 2183–
2185, 2000.

[144] L. Glazman and K. Matveev, “Resonant josephson current through
kondo impurities in a tunnel barrier,” JETP Lett., vol. 49, no. 10, p. 659,
1989.

[145] C. W. J. Beenakker and H. van Houten, “Resonant josephson current
through a quantum dot,” in Single-Electron Tunneling and Mesoscopic
Devices (H. Koch and H. Lübbig, eds.), (Berlin, Heidelberg), pp. 175–179,
Springer Berlin Heidelberg, 1992.

[146] I. A. Devyatov and M. Y. Kupriyanov, “Resonant josephson tunneling
through s-i-s junctions of arbitrary size,” JETP, vol. 85, pp. 189–194, Jul
1997.

[147] S. Hart, Z. Cui, G. Ménard, M. Deng, A. E. Antipov, R. M. Lutchyn,
P. Krogstrup, C. M. Marcus, and K. A. Moler, “Current-phase relations
of inas nanowire josephson junctions: From interacting to multimode
regimes,” Phys. Rev. B, vol. 100, p. 064523, Aug 2019.

[148] A. Larkin and K. Matveev, “Current-voltage characteristics of meso-
scopic semiconductor contacts,” JETP, vol. 66, no. 3, p. 590, 1987.

[149] D. A. Ivanov and M. V. Feigel’man, “Coulomb effects in a ballistic one-
channel s-s-s device,” JETP, vol. 87, pp. 349–356, Aug 1998.

[150] A. Zazunov, V. S. Shumeiko, G. Wendin, and E. N. Bratus’, “Dynamics
and phonon-induced decoherence of andreev level qubit,” Phys. Rev. B,
vol. 71, p. 214505, Jun 2005.

[151] E. Vecino, A. Martín-Rodero, and A. Levy Yeyati, “Josephson current
through a correlated quantum level: Andreev states and π junction
behavior,” Phys. Rev. B, vol. 68, p. 035105, Jul 2003.

[152] A. Martín-Rodero and A. Levy Yeyati, “Josephson and andreev transport
through quantum dots,” Advances in Physics, vol. 60, no. 6, pp. 899–958,
2011.

[153] A. Kringhøj, G. W. Winkler, T. W. Larsen, D. Sabonis, O. Erlandsson,
P. Krogstrup, B. van Heck, K. D. Petersson, and C. M. Marcus, “Phase-
twisted andreev states in proximitized semiconducting josephson junc-
tions,” in preparation, 2020.



148 REFERENCES

[154] C. W. J. Beenakker and H. van Houten, “Josephson current through
a superconducting quantum point contact shorter than the coherence
length,” Phys. Rev. Lett., vol. 66, pp. 3056–3059, Jun 1991.

[155] M. Hays, V. Fatemi, K. Serniak, D. Bouman, S. Diamond, G. de Lange,
P. Krogstrup, J. Nygård, A. Geresdi, and M. Devoret, “Continuous mon-
itoring of a trapped, superconducting spin,” arXiv:1908.02800, 2019.

[156] W. A. Little and R. D. Parks, “Observation of quantum periodicity in the
transition temperature of a superconducting cylinder,” Phys. Rev. Lett.,
vol. 9, pp. 9–12, Jul 1962.

[157] D. Sabonis, O. Erlandsson, A. Kringhøj, T. W. Larsen, I. Petkovic, B. van
Heck, P. Krogstrup, K. D. Petersson, and C. M. Marcus, “Little-Parks
effect in a semiconductor-based superconducting qubit,” in preparation,
2020.
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