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Abstract
This thesis is on the effect of electron-electron interactions on the transport prop-
erties in two cases: (A) Finite length clean quantum wires and (B) point-like
constrictions. In both situations, the system is connected adiabatically to non-
interacting leads. The main difference between the two cases is that the finite
length quantum wire has approximately translational symmetry and the point-
like constriction does not. Therefore the electron-electron interaction have to
conserve momentum in the case of finite quantum wires (A), but not for point-like
constrictions (B). In both cases, the change in conductance G and thermopower S
due to interactions are considered. Common for both cases is that without inter-
actions the conductance is 2e2

h
times the number of modes and the thermopower

is exponentially suppressed at low temperatures T , i.e. ∝ e−TF/T (TF being the
Fermi temperature). This thesis present three main effects of interactions:

• (A) In a single mode quantum wire two-particle interactions cannot change
the distribution of electrons due to momentum and energy conservation.
Therefore multi-mode wires are considered and we find that the interaction

induced resonances in the conductance and thermopower at particular val-
ues of the Fermi level (i.e. gate voltage). The magnetic field splitting of the
resonances provide a unique signature of the effect.

• (A) Three-particle collisions in a single-mode finite wire can change the elec-
tron distribution, but the contribution to the conductance and thermopower
turns out to be exponentially suppressed in temperature to lowest order in
the interaction. However, several interesting properties of the tree-particle
scattering rate are found.

• (B) For a point-like constriction, two-particle scattering can change the cur-
rent even for a single-mode. Therefore a weak interaction V0 changes the
current as I(T, V )/V ≃ 2e2

h
− α|V0|2T 2 − γ|V0|2V 2 and the thermopower as

S ∝ |V0|2T 3 for low temperature T and/or small bias V (α and γ being con-
stants). Furthermore, the noise is reduced compared to the single-particle
case. In a large magnetic field, the interaction among electrons of equal

spin suppress the low-temperature corrections to the transport properties
by two extra powers of temperature. The conductance versus temperature
(for B = 0) beyond the perturbative regime was found in a self-consistent
2nd order approach. Based on numerical results, we conjecture that the
conductance approach ∼ e2/h for higher temperatures, however, still lower
than TF. These results are all in qualitative agreement with experimental
studies on the 0.7 anomaly in quantum point contacts.

On the technical side, the Boltzmann equation approach is used for the finite
quantum wires whereas the Green’s function approach is used for the point-like
constriction. In both cases, the regime of weak interactions are studied using
perturbation theory to second order in the interaction.
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Chapter 1

Introduction

1.1 Mesoscopic transport

From our everyday life, we all know examples of conductors such as the copper
wires that provide power to our lamps, computers, etc. However, many do not
imagine the fascinating range of phenomenon that occurs, when a conductor
becomes smaller. This is studied within the field of mesoscopic transport, where
the word mesoscopic refers to the size of the active component in the circuit,
which is between the dimensions of the everyday macroscopic world and the
microscopic world of atoms. One of the challenges of mesoscopic systems is that
they are so small that we often cannot use the thermodynamic limit1 used for
macroscopic systems, and yet, so large that it is not feasible to describe them
taking every atom into account. However, to perform a transport measurement
on a mesoscopic system it has to be connected to the macroscopic world by
contacts having well-defined thermodynamical properties such as temperature
and chemical potential.

One of the interesting phenomenon that takes place on a mesoscopic scale
is for a small, mesoscopic ring. Here the wave nature of the electrons shows
up by making an interference pattern in the magnetoresistance. More precisely,
the conductance is periodic in the magnetic field with a period of h/e. This ex-
periment is very similar to the famous double-slip experiment and is called the
Aharonov-Bohm effect [2, 3]. Another fascinating effect also due to the inter-
ference of the electrons in a mesoscopic conductor is the universal conductance
fluctuations [4, 5, 6]. Here the shape and impurities in a mesoscopic conductor
creates some random scattering and interference pattern in the sample, which in
terms make a random variation of the conductance (e.g. as a function of magnetic
field or cool down). The characteristic size of these conductance variations are
e2/h and does not dependent on the specific device.

1This limit is that the number of particles and volume go to infinity while the density is
constant [1].
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1.2. QUANTUM POINT CONTACTS 2

Yet another fundamental effect originating in the wave nature of the electrons
is the conductance quantization in units of 2e2/h. This quantization appears
in various experimental systems like a string of gold atoms [7], cleaved edge
overgrowth quantum wires [8]2 or in quantum point contacts in a two-dimensional
(2D) electron gas [9, 10]. The general features of the conductance quantization
can be understood within the framework of non-interacting electrons as we shall
see below [11]. The question under investigation in this thesis is:

How does the transport properties change due to electron-electron interaction in

quantum point contacts?.

We view a quantum point contact in two ways: As a short quantum wire and
as a point-like region. In both cases, the system is perfectly connected to non-
interacting leads. The main difference between the two viewpoints is that the
electron-electron scattering can occur without momentum conservation for point-
like regions in contrast to quantum wires.

In this thesis, only open systems are considered, i.e. systems that are very well
contacted to the macroscopic reservoirs and thereby neglect the regime of poor
contacts, where other interesting phenomenon occur such as Coulomb blockade
and Kondo physics [12, 13, 14].

It is interesting to note that in all the examples mentioned above, fundamental
constants appear as an essential part of the description. Of course, the details
might dependent slightly on other parameters as well, but it illuminates that
mesoscopic transport is a fundamental and interesting part of science and not
just the next natural step in the search for better and faster electronics!

For a general introduction to mesoscopic physics, see Imry [15], for quantum
transport, see Beenakker [3] or Bruus and Flensberg [14, chap. 7 and 10], or for
an overview including references, see Glazman [16].

1.2 Quantum point contacts

One of the most studied and fundamental systems in mesoscopic physics is the
quantum point contact (QPC). Generally, a QPC is a small connection between
two reservoirs, where the width of the connection is comparable to the Fermi
wavelength of the electrons (see [18] for a non-technical introduction). A QPC
can, for instance, be made by an electrostatic gate on top of a 2D electron gas
made in a semiconductor heterostructure, see figure 1.1(a). The gate depletes the
underlaying electron gas and thereby changes the width of the region, where the
current has to pass through. It is the number of transverse modes (i.e. transverse
quantum states3) that are energetically available for a given width of the QPC

2Note that for cleaved edge overgrowth wires the conductance is not quantized perfectly in
steps of 2e2/h. However, it is still in steps, see ref. [8].

3Often other words like channel, level or 1D band are used instead of transverse mode.
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Figure 1.1: (a) A scanning electron microscope picture of a quantum point contact. The two
parabola shaped objects are gates that deplete the underlaying two-dimensional electron gas
and thereby form the point contact. The picture is taken from A. Kristensen et al. [17], where
further experimental details can be found. (b) One of the first experimental evidence by van
Wees et al. [9] of the conductance quantization as a function of gate voltage. The temperature
is T = 0.6K. The insert shows a schematic picture of their experimental setup (also taken from
[9]). Despite the geometric difference between the inset and figure (a) both experiments ([9]
and [17]) show the conductance steps.

that determines the conductance G, i.e.:

G =
2e2

h
× Number of transverse modes. (1.1)

The number of transverse modes is equal to the number of half Fermi wavelengths
one can fit into the width of the QPC. One of the two first experimental examples
of conductance quantization in a QPC by van Wees et al. [9] is seen on figure
1.1(b), where steps of size 2e2/h are seen as a function of the gate voltage (i.e. the
width of the QPC). The factor of 2 in the conductance quantum 2e2/h is a
manifestation of spin degeneracy and vanish for a high magnetic field4 [19].

The quantized conductance value eq.(1.1) is actually the maximal conduc-
tance for any mesoscopic conductor for a given number of channels. To have an
integer number of fully occupied transverse modes it is essential that the temper-
ature is low, so there is no partly thermal occupation of higher transverse modes.
Apart from the thermal smearing of the conductance quantization, it can also
suffer from all sorts of other imperfections like poor contacts, scattering on the
internal barrier created by the gates and so on. For a QPC to have perfectly
smooth quantized conductance, the shape of the contacts to the leads need to
be sufficiently smooth5. Sufficient smooth shape means that the curvature of the

4The field should be high enough to spin split the bands more than the temperature to see
plateaus of size e2/h.

5Otherwise reflection at the contacts and mode mixing can change conductance, e.g. an
abrupt contact to the QPC will induce winkles at the beginning of each conductance step [20].



1.3. THERMOPOWER 4

boundary of the potential created by the gates should be larger than the width
of the constriction [11]. If this is fulfilled, the contacts are connected to the
point contact adiabatic, meaning that a propagating state from the contact can
propagate through the QPC without being mix with other propagating modes.

The geometry of the QPC can differ as seen e.g. by comparing figure 1.1(a)
and the inset of figure 1.1(b). However, as long as the smoothness criterion
of the contacts is fulfilled the conductance quantization will appear. Despite the
name, "point" contact, QPC’s can have a finite length6 of order ∼ 100 nm to 1 µm
depending on the sample geometry. Therefore it could also be called a short clean
quantum wire. Of course, the length should be compared to the Fermi wavelength,
which in GaAs systems are roughly of order 40 nm [3]. Experimentally, there has
been some reports on longer QPC’s or short clean quantum wires up to ∼ 10 µm
also fabricated by depleting some of a 2D electron gas by gates [21, 22, 23, 24].
They all show conductance quantization, but also some conductance decrease as
a function of temperature. In this thesis, QPC’s are modelled both as a finite
length clean quantum wires and as point-like constrictions having in common
that they are both adiabatically connected to the leads.

1.3 Thermopower

For a macroscopic conductor, a temperature gradient as well as a chemical poten-
tial gradient (i.e. a voltage drop) can drive an electric current. For a mesoscopic
conductor, the situation is similar, except that often the conductor is too small
to have a well-defined temperature gradient inside. This is indeed the case for
a QPC. Therefore the electric current Ie is driven by a temperature difference
∆T and/or a chemical potential difference ∆µ = eV between the contacts of the
conductor. The current in the linear transport regime is

Ie = GV + GT ∆T, (1.2)

where G is the conductance and GT is the thermoelectric coefficient. The current
is taken positive, if the electric charge is transported from left to right.

To get information about the thermoelectric coefficient GT in an actual exper-
iment, one considers the amount of voltage it takes to chancel a current produced
by a temperature difference. This leads to the introduction of the thermopower
S as

Ie = GV + GT ∆T = 0 ⇒ S ≡ − lim
∆T→0

V

∆T

∣∣∣∣
Ie=0

=
GT

G
, (1.3)

6However, it might look like QPC’s are really point-like on the scanning electron microscopy
picture, e.g. figure 1.1(a). However, one should be careful to measure the length from the SEM
picture, because the electrostatic shape of the QPC in the 2D electron gas due to the gates
might be different than the one seen.



1.4. THE LANDAUER FORMULA 5

which is the experimental relevant quantity to model. The thermopower is some-
times referred to as the Seebeck coefficient. Note that, as for macroscopic con-
ductors, a related subject is to study the heat current, however, this is not the
subject of the present thesis7.

For a QPC, the thermopower turns out to have a peak every time the conduc-
tance changes from one plateau to the next and at the conductance plateau the
thermopower goes to zero, see figure 1.3. The first thermopower measurements
on QPC’s were make by L. W. Molenkamp et al. [30, 28, 26]. Experimentally,
the different temperatures of each side of the QPC are obtained e.g. by a current
through only one of the contacts to heat it up. An application of the thermopower
of a QPC is as a thermometer for a 2D electron gas [31].

1.4 The Landauer formula

A general way to describe transport phenomenon in coherent mesoscopic con-
ductors for non-interacting electrons is by the famous Landauer formula. In the
case of conductance, it states that the zero-temperature conductance is simply
given by the quantum mechanical transmission probability to pass through the
mesoscopic conductor. For an electric current at non-zero temperature in a two
lead setup the Landauer formula is (e > 0)

Ie =
2(−e)

h

∫
dET (E)[f 0

L
(E) − f 0

R
(E)], (1.4)

where the integral is integrated over all available energies E, T (E) is the trans-
mission and f 0

i (E) is the Fermi function for the right (i =R) or left (i =L) lead,
i.e.

f 0
i (E) =

1

1 + exp
[
(E − µi)/kb

Ti

] . (1.5)

Here Ti and µi are the temperature and chemical potential of the left/right lead,
respectively. The Landauer formula is very general and is a part of a general
scattering approach to quantum transport in mesoscopic systems often referred
to as the Landauer-Büttiker formalism. It was pioneered by R. Landauer [32],
M. Büttiker [33] and Y. Imry [34, 15, 35]. In the Landauer formula, the current is
fully coherent and the transmission T (E) can be given in terms of the quantum
mechanical transmission amplitude matrix t(E) as

T (E) = Tr[t†(E)t(E)]. (1.6)

7A heat current IQ can also be driven by a voltage and/or a temperature difference, i.e.
IQ = MV +K∆T , where time-reversal symmetry leads to M ∝ GT . The heat current can be
carried both by phonons and electrons in macroscopic solids as well as in the mesoscopic regime.
For further discussion see e.g. [1, 25, 26, 27, 28, 29], where [26, 28] focuses on non-interacting
electrons in QPC’s including measurements on the thermal conductance K and [29] has more
refined measurements of K in QPC’s.
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A generalization of eq.(1.4) to more than two leads is very intuitive [33]. See
e.g. the book [14, chap.7] for a detailed introduction to the Landauer-Büttiker
formalism.

In the linear response regime the Landauer formula eq.(1.4) gives the con-
ductance G, thermoelectric coefficient GT and thermopower S in terms of the
transmission. Due to the linear response the Fermi functions f 0

R/L(E) are ex-
panded around the equilibrium chemical potential µ and temperature T as

f 0
i (E) ≃ f 0(E) − ∂Ef 0(E)(µi − µ) − ∂Ef 0(E)(E − µ)

Ti − T

T
(1.7)

valid for a small bias V = (µL − µR)/(−e) and temperature difference8 ∆T =
TR − TL, i.e. |eV | ≪ µ and |∆T | ≪ T . Here f 0(E) is the equilibrium Fermi
function with chemical potential µ and temperature T . Inserting this into the
Landauer formula the linear transport coefficients become [36]

G(µ, T ) =
2e2

h

∫
dET (E)[−∂Ef 0(E)], (1.8)

GT (µ, T ) =
2ek

b

h

∫
dET (E)

(
E − µ

k
b
T

)
[−∂Ef 0(E)], (1.9)

S(µ, T ) =
k
b

e

∫
dET (E)

(
E−µ
k
b
T

)
[−∂Ef 0(E)]

∫
dET (E)[−∂Ef 0(E)]

. (1.10)

Note that the natural unit becomes e2/h for conductance and k
b
/e for ther-

mopower. It immediately follows that for zero temperature we have

S(µ, T = 0) = 0 and G(µ, T = 0) =
2e2

h
T (µ), (1.11)

i.e. conductance is the transmission, and the thermopower is zero.

1.4.1 Dissipation for a clean 1D system perfectly connected

to the leads?

Historically, it was a dilemma how a 1D wire with perfect transmission (i.e. inte-
ger) and no impurities could have a finite conductance (see also subsection 1.4.2,
p. 7) [34, 18].

An important point of the Landauer formula is that for a fully open QPC
(integer transmission) the dissipation does not happen in the QPC, but in the
reservoirs. The dissipation can be thought to happen in the following way: Con-
sider an electron passing from the left to the right reservoir. It will leave the QPC

8Note that V and ∆T is defined such that V > 0 and/or ∆T > 0 leads to Ie > 0 for
non-interacting electrons.
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being in thermal equilibrium with the left reservoir, however, now belonging to
the right reservoir. Therefore it will now equilibrate with the right reservoir and
thereby the dissipation happens here. This is how the contacts leads to a finite
conductance for a perfectly open QPC with no impurities.

Physically, the equilibration in the leads is due to different relaxation processes
and mainly electron-electron interactions at low temperatures, since the leads are
two or three dimensional.

But what if such relaxation processes like interactions are also present in the
one-dimensional constriction? This is investigated further in chapter 3.

1.4.2 A historic note on the Landauer formula

The original Landauer formula [32] for conductance is Gb = 2e2

h
T (µ)

1−T (µ)
, which

only describes the conductance of the barrier, which the electrons are transported
through (for a single channel, 0 ≤ T (µ) ≤ 1). The modern version, G = 2e2

h
T (µ)

cited here, is the conductance of the barrier and the perfect leads. This can be
understood as an addition of resistors in series G−1 = G−1

b + G−1
c , where the

resistance of the two perfect leads are G−1
c = h

2e2 [34]. This interpretation have
been confirmed by measurements on cleave edge overgrowth wires, where the
resistance of the inner barrier G−1

b was found to be zero for unity transmission in
a four terminal measurement [37, 38]. For a historical review including reference
and a linear response calculation of the Landauer formula see Stone and Szafer
[39] or Beenakker [3, sec. III.A.2] for a shorter version.

1.5 Non-interacting current through a quantum

point contact

Next, we take a closer look at how to understand a QPC within the theory of non-
interacting electrons and use this to calculate the current through the QPC using
the Landauer formula. This is only meant to illuminate some of the important
points in the analysis and not to be a detailed review (for details see either [11]
or one of the books [14, sec. 7.3] or [40, sec. 2.4]).

The single-particle Schrödinger equation for an electron in the 2D electron
gas confined by the electrostatic potential from the gate Vgate(x, y) is

[
− ℏ2

2m
(∂2

x + ∂2
y) + Vgate(x, y)

]
ψ(x, y) = Eψ(x, y), (1.12)

where ψ(x, y) is the 2D eigenstate, E is the energy and m is the effective mass.
Here x is along the QPC and y is perpendicular to it, see figure 1.2. For each value
of x, it is possible to expand the wave function on a complete set of eigenfunctions
{ϕnx(y)} in transverse y-direction, i.e. ψ(x, y) =

∑
n ϕnx(y)φn(x), where φn(x)
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are the expansion coefficients. If the curvature of the shape of the potential is
small compared to the width of the constriction [11], then the two-dimensional
Schrödinger equation reduces to a one-dimensional equation of the form:

[
− ℏ2

2m
∂2

x + εn(x)

]
φn(x) ≃ Eφn(x), (1.13)

where εn(x) is the transverse quantization energy and depends on the specific
model of the confining potential9. For any model, this is a 1D Schrödinger equa-
tion describing scattering of a potential barrier of the form εn(x) (since it goes to
zero for x → ±∞). Therefore the transmission and reflection of the barrier can
be calculated (e.g. in the WKB approximation) and then related to fully coherent
current through the barrier by the Landauer formula.

In eq.(1.13) the index n can be interpreted as the mode number. The nar-
rowest point of the QPC is x = 0, so εn(0) is the maximum of εn(x). For a given
energy E (and neglecting tunnelling), we have perfect transmission through all the
modes with εn(0) < E and no transmission through the modes with εn(0) > E.
Therefore at zero temperature, we have an integer number of conducting modes.
By changing the gate voltage the width (and depth) of the QPC changes and
thereby εn(0) and in terms the number of fully transmitting modes. This leads
to the conductance quantization as a function of gate voltage. However, it is
not obvious that each mode contributes 2e2/h to the conductance and this fact
originates in the one dimensionality of the channel (as we shall see in section 1.6).

1.5.1 The saddle-point model of a quantum point contact

To understand the QPC better, we consider a specific model of the gate potential.
It is the so-called saddle-point model [41], where Vgate(x, y) is expanded around
the middle of the constriction x = y = 0 assumed to be a saddle-point (see figure
1.2(b)), i.e.

Vgate(x, y) =
1

2
mω2

yy
2 − 1

2
mω2

xx
2 + V0 (1.14)

where V0 is the height of the saddle-point and ωy, ωx parameters describing the
form of the QPC. In the transverse direction y, this is a harmonic oscillator so
the transverse quantization energy is εn(x) = ℏωy

(
n + 1

2

)
− 1

2
mω2

xx
2, where the

value of ωy depends on the width of the QPC. For the saddle-point model, it is
possible to show that there is no mode mixing and that the transmission through
the nth mode is [42, 43]:

Tn(E) =
1

1 + exp
[
−2π(E − ℏωy

(
n + 1

2

)
− V0)/ℏωx

] . (1.15)

9In general, it should satisfy the equation:
[
− ℏ

2

2m∂
2
y + Vgate(x, y)

]
ϕnx(y) = εn(x)ϕnx(y). If

a hard wall potential is chosen, then εn(x) = π2n2/(2md(x)2), where d(x) is the width of the
constriction (varying slowly compared to its minimum value [11]).
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Right lead
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Vgate(x, y)

y x
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Figure 1.2: (a) A sematic top view of a QPC. The left and right reservoirs are in equilibrium
with there own temperature TR/L and chemical potential µR/L. The shape of the QPC is seen
to be smooth compared to the width of the QPC. (b) An illustration of the possible form of
the electrostatic potential the gate induced in the two-dimensional electron gas. The formation
of a quantum point contact is clearly seen. The saddle-point in the middle of the QPC is the
bottleneck of electronic transport through the QPC. The saddle-point model [41] eq.(1.14) only
uses the quadratic terms of the potential in an expansion around the middle of the QPC.

To get the full transmission T (E) one simply has to sum over all modes, i.e.

T (E) =
∑

n

Tn(E). (1.16)

The next step is to insert this into the conductance eq.(1.8) and thermopower
eq.(1.10). The integrals can easily be done numerically and the result is seen on
figure 1.3(left).

The experimental results are G and S as a function of gate voltage Vg whereas
the theoretical results are G and S as a function of the chemical potential µ.
Varying the gate voltage the potential landscape Vgate(x, y) varies and therefore
in principle also the parameters ωx and ωy of the model. However, roughly
speaking one can ague that the gate voltage and chemical potential are linear
dependent, µ ∝ Vg +constant, for an open contact. However, to make qualitative
statements the electrostatic problem has to invested in detail [44, 45].

The smearing of the conductance steps are due to temperature k
b
T and the

curvature across the barrier ℏωx. Note that the smaller the curvature of the
barrier in the x-direction, ℏωx, the longer the QPC, so in the saddle-point model
longer QPC’s should have sharper conductance steps. For the thermopower, the
peaks are broadened by k

b
T and ℏωx, respectively. The parameter ℏωy is the

confinement in the transverse direction and gives the length of the conductance
steps (and the thermopower valleys).

Taboryski et al. fit their experimental data to the saddle-point model for
two different AlGaAs/GaAs samples. They find the parameters ℏωy = 0.90meV
and ℏωx = 0.35meV (i.e. ωy/ωx ≃ 2.6) and ℏωy = 0.9meV and ℏωx = 0.35meV
(i.e. ωy/ωx ≃ 3.0), respectively10 [47]. The ratio ωy/ωx of about 3 is widely

10Remembering that 1K=0.086meV.
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Figure 1.3: (a) Experimental measurement of the thermopower and conductance of a QPC
at T =4.2K measured by Proskuryakov et al. [46]. The thermopower has a peaks between
the conductance plateaus and is zero on the plateaus. To be precise, it is the thermovoltage
which is measured and shown (in arbitrary units), since the method of heating the reservoir by
a current does not allow for an easy measurement of the temperature difference. The definition
of the thermovoltage Vth is: the voltage required to stop a current produced by an (unknown)
temperature difference ∆T , i.e. Vth = (GT /G)∆T from eq.(1.3). (b) The conductance (dashed)
and thermopower in the saddle point model as a function of the chemical potential µ (in units
of ℏωy). The parameters are: V0 = −1/2, k

b
T = 0.05 and ℏωx/(2π) = 0.05 both in units of

ℏωy. The resemblance to the experimental results is striking. In experiments, the ratio ωy/ωx

is about 3 [47].

spread in the literature as being realistic (including the original saddle-point
model article [41] by Büttiker).

1.5.2 Analytic results for an ideal quantum point contact

If the barrier of the QPC in the x-direction is absent the point contact is ideally
connected to the leads. This means that ωx = 0 and (for a quadratic transverse
confinement potential) the transmission eq.(1.15) becomes a step-function11

T (E) =
∞∑

n=1

θ(E − nℏωy), (1.17)

which allows us to get analytic results for the conductance and thermopower
[36, 26] as we shall see now.

11For simplicity we choose V0 = −ℏωy/2.
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The conductance becomes12

G(µ, T ) =
2e2

h

∫ ∞

0

dE
∞∑

n=1

θ(E − nℏωy)[−∂Ef 0(E)]

=
2e2

h

∞∑

n=1

∫ ∞

nℏωy

dE[−∂Ef 0(E)] =
2e2

h

∞∑

n=1

1

1 + exp
(

nℏωy−µ
k
b
T

) , (1.18)

where it is clear that temperature smears the conductance steps. Note that in
the high temperature limit, k

b
T → ∞, we have exp[(nℏωy −µ)/k

b
T ] → 1, so e.g.

the conductance for a single channel goes to e2/h. However, for k
b
T ∼ ℏωy the

conductance steps are smeared to a straight line.
The thermoelectric coefficient eq.(1.9) (defined in eq.(1.2)) is

GT (µ, T ) =
2e2

h

k
b

e

∫ ∞

0

dET (E)

(
E − µ

k
b
T

)
[−∂Ef 0(E)]

=
2e2

h

k
b

e

∑

n=1

∫ ∞

nℏωy

dE

(
E − µ

k
b
T

)
1/k

b
T

4 cosh2
(

E−µ
2k

b
T

)

=
2e2

h

k
b

e

∑

n=1

[
ln(1 + e∆n) − ∆n

1 + e−∆n

]
, (1.19)

where ∆n = (nℏωy − µ)/k
b
T . The function in the square bracket is even in ∆n

and maximal for ∆n = 0. Therefore GT has a peak (of width ∼ k
b
T ) every time

µ = nℏω as expected. Note that

ln(1 + e∆n) − ∆n

1 + e−∆n
=

{
ln 2 for |nℏωy−µ|

k
b
T

= 0
|nℏωy−µ|

k
b
T

exp
[
− |nℏωy−µ|

k
b
T

]
for |nℏωy−µ|

k
b
T

≫ 1
,(1.20)

so away from the peak the thermopower S = GT /G is exponentially suppressed
in temperature and the peak height of the thermoelectric coefficient is Gmax

T =
2ek

b

h
ln 2. Therefore at µ = nℏωy the thermopower is S = k

b

e
ln 2
n− 1

2

, where n is the

number of the mode that came into the energy window13 (G = 2e2

h
(n − 1/2)).

The exponential suppression in temperature of the thermopower at the con-
ductance plateau is not specific for this model. If the temperature is much lower
than the variation of the transmission at ε = µ, then the exponential suppres-
sion14 follows from eq.(1.10).

12The integration over energy is from 0 to ∞, since the model is a free-electron model in the
x-direction and therefore has a quadratic dispersion.

13Note that the peaks of S are slightly shifted compared to those of GT due to the 1/G
factor. For n = 1 the S has no peak (since G→ 0), but GT does.

14To be precise, we should also assume that the Fermi level is not symmetrically placed
between the band edges, because in this special case we would get exactly zero for a symmetric
transmission.
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1.6 The secret behind the Landauer formula

One of the secrets behind the Landauer formula is that the density of states and
the velocity cancel each other in one dimension. This is the reason why every
conducting mode contributes equally to the current in the Landauer formula.

To illustrate this cancellation, we consider the case of a QPC with a single
fully open channel (i.e. T (E) = 1). The electric current Ie is determent by the

distribution function f
(0)
k by (e > 0)

Ie =
(−e)
L

∑

kσ

vkf
(0)
k , (1.21)

where k is the 1D wave vector, L the normalization length15 and vk the velocity
given by [1, Appendix E]

vk =
1

ℏ

dεk

dk
, (1.22)

where εk is the 1D dispersion relation along the QPC. The distribution function
in the QPC f

(0)
k is simply given by the lead from which the electrons originate:

f
(0)
k =

{
f 0

L
(εk) for k > 0,

f 0
R
(εk) for k < 0,

(1.23)

i.e. the right movers (k > 0) originates from the left lead and therefore is in
equilibrium with this electronic reservoir, so if the reservoir is non-interacting
the distribution function is the Fermi function f 0

L
(εk), eq.(1.5). (Note that f

(0)
k

changes if interactions, phonons, etc. are present, noted with the superscript
(0)). Therefore the current is16:

Ie = (−e)
∑

σ

∫ ∞

−∞

dk

2π
vkf

(0)
k = 2(−e)

∫ ∞

0

dk

2π
vk

[
f 0

L
(εk) − f 0

R
(εk)

]
(1.24)

=
2(−e)

2π

∫ Du

Dl

dε
vk

dεk

dk︸︷︷︸
(⋆)

[
f 0

L
(εk) − f 0

R
(εk)

]
=

2(−e)
h

∫ Du

Dl

dε
[
f 0

L
(ε) − f 0

R
(ε)
]
,

where the cancellation of the velocity and density of states (⋆) happened re-
gardless of the dispersion relation εk. This is unique for 1D systems and is the
foundation of why the Landauer formula works.

In this thesis, we will see that this cancellation also happens in the case of
the interaction correction to the current. This leads to the conclusion that the
electron-electron interactions only change the particle current if they change the
number of left and right movers. This unique conclusion is really mesoscopic in
the sense that it is not true for infinite 1D wires or bulk systems, where a velocity
change due to the interaction can be enough to change the current.

15One can imagine the QPC in a long box in the x-direction of length L.
16The long wire limit (L → ∞) is used, so

∑
k(· · · ) = L

2π

∫
dk(· · · )



1.7. THERMOPOWER AND ELECTRON-HOLE ASYMMETRY 13

1.7 Thermopower and electron-hole asymmetry

Often it is claimed that the thermopower of some system is a measure of the
electron-hole asymmetry. The mathematical origin can often be traced back to a
thermopower of the form

S ∝
∫

dE d(E) (E − µ)[−∂Ef
0(E)]︸ ︷︷ ︸

odd function around µ

F(E), (1.25)

where d(E) is the density of states and F(E) is some function. The factor
(E − µ) is the essential ingredient (normally not present for conductance), since
(E − µ)[−∂Ef

0(E)] is an odd function of E around µ. Therefore the integral is
zero (or exponentially small in temperature), if the density of states d(E) or the
function F(E) do not to vary around µ on the scale of the temperature k

b
T . The

density of states contains information about the electron-hole asymmetry of the
dispersion relation and therefore the connection between electron-hole symmetry
and thermopower. However, in general one need to careful before making claims
from the thermopower [1, p.258].

However, in the case of a QPC the density of state leaves the problem as
we saw in eq.(1.24) and so does the dependence on dispersion relation. (For
non-interacting electrons only the maximum Du and minimum energy Dl of the
dispersion can affect the current via the limits of the integral in the Landauer
formula eq.(1.4)). Therefore in a QPC the (non-interacting) thermopower is not

a measure of the electron-hole asymmetry of the dispersion. Rather for non-
interacting electrons, it is a measure of the asymmetry of the transmission, since
the factor (E − µ) is still present as seen in eq.(1.10).

1.8 A first look at electronic interactions in

quantum point contacts

There is in general no a priori reason to believe that the electron-electron inter-
action should be absent nor weak inside a QPC, since the constricted region of
a QPC is essentially one-dimensional. Despite this fact, we saw that the main
features of the experimental observations can be explained by non-interacting
Landauer-Büttiker theory. An important point of the description of a QPC is
that the contacts play an essential role in the physics. Therefore a QPC should
not be though of as an (infinitely long clean) one-dimensional electron gas. This
is still true, when the interactions are considered.

Let us first consider the phase space in 1D for pair electron-electron inter-
actions in a single mode. Assume that the interaction conserves energy εk and
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momentum,

εk1 + εk2 = εk1′
+ εk2′

, (1.26)

k1 + k2 = k1′ + k2′, (1.27)

where ki [ki′ ] denote the (quasi-)momentum before [after] the scattering event.
These constrictions only leave two possible solutions: (k1, k2) = (k1′ , k2′) or the
exchange solution (k1, k2) = (k2′, k1′). In either case the electron-electron in-
teraction cannot redistribute the electrons in the system. The solution is easily
found in the case of a quadratic dispersion, εk ∝ k2, but is generally true for any
dispersion with positive17 curvature.

The situation changes in the case of more than a single mode, if inter-mode
scattering is considered. Such inter-mode scattering processes do have sufficient
phase space and some of them turn out to change the current as we will see in
chapter 4.

Infinitely long 1D electron gases

For an infinitely long one-dimensional electron gas the Fermi liquid theory breaks
down in the sense that the lifetime of the quasi-particles does not become small
compared to the excitation energy itself [14, p.352]. Therefore the elementary
excitations of a 1D electron gas are not quasi-particle-like excitations and there-
fore, strictly speaking, the concept of quasi-particles does not make sense in this
situation. Instead one introduces the concept of a Luttinger liquid [48]18, where
the low-energy elementary excitations are collective oscillations of the density19

called plasmons.
The Luttinger model [49, 50] is a model for the Luttinger liquid describing

the low-energy physics of an infinite clean 1D fermion gas. By using a linear dis-
persion, εk,s=±1 = sℏv

F
k, the Luttinger model can be manipulated to a quadratic

form and thereby the eigenenergies can be found20. To do this, one cannot in-
clude all the possible kinds of scattering processes, but the ones that cannot be
included, can be shown to be unimportant at low energies by Renormalization-
group methods [14]. The assumption of linear bands in the Luttinger model is
essential to solve the model exactly and makes it particle-hole symmetric. Fur-
thermore, without linearized bands the model can no longer be solved exactly

17Note that in the special case of a linear dispersion, εk,s=±1 = sℏv
F
k, this is no longer true.

However, the pair interaction still cannot redistribute the electron among left and right movers.
18Note that the original paper by Haldane Ref.[48] is an excellent and readable paper on the

subject, even for a beginner.
19Note that one of the special features of a Luttinger Liquid is that the spin density waves and

charge density waves propagate independently, a phenomenon without counterparts in higher
dimensions known as spin-charge separation.

20This manipulation requires a special analytical form of the interaction. Often this form is
taken to be different constants for different scattering processes.
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and it turns out that the physics might change substantially, see e.g. [51]. An-
other limitation of the Luttinger liquid is that low temperature (compared to the
interaction) is needed.

A central parameter in the Luttinger model is the g parameter, which is
one (g = 1) for non-interacting electrons, less than one (g < 1) for repulsive
interactions and greater than one (g > 1) for attractive interactions. The specific
form of g depends on the included interaction processes21. The change density
wave excitations have the velocity renormalized by g to be ṽ = v

F
/g and their

energy is ωq = qṽ. Furthermore, it is found that for an infinite Luttinger model
the interactions also renormalize the conductance for a single mode to be [52]:

G = g
2e2

h
, (L = ∞). (1.28)

To show this, more of the formalism for the Luttinger model is needed. For
more information in this fascinating subject, see e.g. one of the books [53] or [14,
chap.19] or the review on transport in (spinless) Luttinger liquids [52].

Finite Luttinger liquids

The next question that naturally arises in the context of QPC’s is: What hap-
pens for a finite Luttinger liquid, i.e. including the effect of the leads? For the
conductance, the answer is the striking reappears of the conductance quantum
[54, 55, 56, 57]:

G =
2e2

h
, (L < ∞). (1.29)

To show this, Maslov and stone used a x-dependent g, setting it equal to the
non-interacting value one in the leads. Kane and Fisher noted it via the ac
conductances crossover22 from g 2e2

h
to 2e2

h
at the frequencies lower than ωc = v

F
/L.

The result is for a Luttinger liquid without any impurities or non-momentum
conserving backscattering terms in the interaction (such as e.g. Umklap terms).

Next we make a rough estimate of the length, where Luttinger liquid physics
is no longer relevant for QPC’s. The length of the QPC, where Luttinger liquid
theory is not important is given by comparing the smallest possible plasmon

21For a spinless Luttinger model, including inter and intra band processes the g parameter
is[14, p.362]: g = [1 + (Vq=0 − Vq=2k

F
)/πv

F
]−1/2, where Vq is the 1D Fourier transformed

Coulomb interaction cut off e.g. by the width of the wire.
22The dc conductance is the ω → 0 part of the frequency dependent ac conductance. There-

fore this statement might seem contradictory to eq.(1.28), where the limit ω → 0 was taken.
However, in calculating the conductance it is important, if one takes the q → 0 limit or
ω → 0 limit first, since it gives different results and applies to different physical situations,
see e.g. [55][14, p.286].
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Thomas et al. 1996 Kristensen et al. 2000 Cronenwett et al. 2002

(a) (b) (c)

Figure 1.4: The experimental data of the linear conductance as a function of gate voltage for
three different experiments (a) Thomas et al [58], (b) Kristensen et al [17] and (c) Cronenwett
et al. [59]. All the experiments show a reduced conductance when the temperature is increased
in the beginning of the first quantized conductance plateau. In the beginning of the first
conductance step the electron density is low in the QPC.

energy (ℏv
F
/g)2π

L
to the available thermal energy k

b
T :

k
b
T <

ℏv
F

g

2π

L
, ⇒ L <

hv
F

gk
b
T

, (Luttinger physics not relevant) (1.30)

so for short QPC’s or low temperatures the Luttinger liquid state is not reached.
However, a better estimate of the length could consider, when the Luttinger
liquid ground state of the system is really gone and it might be bigger, since the
contacts destroy the Luttinger liquid state.

1.9 The 0.7 anomaly in quantum point contacts

All the main experimental features of QPC’s can be explained within the non-
interacting Landauer-Büttiker theory. However, in the beginning of the first
conductance plateau there is a shoulder-like feature, which cannot be explained
within this framework, see figure 1.4. It is often refereed to as the 0.7 anomaly

or the 0.7 structure in lack of a better name, since it is a reduction of the con-
ductance to something like 0.7×2e2/h, however, the magnitude varies depending
on the sample. Below we outline several important experimental features of the
0.7 anomaly and some of the available explanations. An explanation should be
able to explain all the experimental features consistently. It seems like there is no
generally accepted explanation of the 0.7 anomaly, even thought the first experi-
ments were done more than a decade ago [58, 60]23. However, there is an overall
consensus that it is somehow related to the spin degree of freedom.

23Note that the first systematic study including temperature and magnetic field dependencies
was properly by Thomas et al. [58], but the effect is also clearly seen in the data by van Wees
et al. [60] (see figure 6 in the paper).
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Kristensen et al. Cronenwett et al.

(a) (b)

Figure 1.5: Experimental data
of the conductance reduction as a
function of temperature at the 0.7
anomaly. The data by (a) Kris-
tensen et al. [17] and (b) Cronen-
wett et al. [59] show essentially the
same feature: The conductance is
reduced from 2e2/h at low temper-
atures to ∼ e2/h at higher temper-
atures (see the text for details).

1.9.1 Experimental features of the 0.7 anomaly

There have been numerous experimental studies of the 0.7 anomaly. Here we list
some of the important features without calming to review the effect.

The conductance versus gate voltage and temperature

In figure 1.4, we see three different experimental studies [58, 17, 59] all showing
the same feature: In the beginning of the first quantized plateau there is a con-
ductance reduction at elevated temperatures. At the lowest possible temperature,
there is no anomaly and the data looks like the Landauer result (see figure 1.3),
but at higher temperatures the conductance reduces from 2e2/h to something
like 0.7×2e2/h depending on gate voltage. In some experiments like Cronenwett
et al. [59] 1.4(c), the anomaly looks like a 0.7 plateau, but in many others it is
more a shoulder-like feature e.g. Kristensen et al. [17] in figure 1.4(b).

The gate voltage is a measure of the density of electrons in the QPC, i.e. near
pinch off the contact the density is low. Therefore the density is low near the 0.7
anomaly. If the electron density becomes smaller the anomaly have been reported
to become more pronounced [61].

A detailed study of the temperature dependence of the conductance anomaly
has also done by Cronenwett et al. [59] and Kristensen et al. [17] and it is seen
in figure 1.5. They essentially find the same feature: The conductance in the
beginning of the first plateau goes from 2e2/h at low temperature to about e2/h
at higher temperatures. However, the two papers use different models to fit the
data. In Kristensen et al. a activated temperature behavior is used of the form

G(T ) = 1 − C exp(−TA/T ), (1.31)

where C and TA are fitted to the data for different gate voltages Vg (and they
find that TA ∼ V 2

G). The solid lines in figure 1.5(a) are the fit to this form and we
note that at 1/T = 0 the fit approach ln[1−G/(2e2/h)] ≃ 0.5 so the conductance
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Figure 1.6: Experimental data of the 0.7
anomaly for an in-plane magnetic field increased
from 0T to 13T. As the field is increased the
0.7 anomaly gradually becomes a plateau at
e2/h. Therefore the anomaly disappears in a
high magnetic field, since the quantized plateau
e2/h is in agreement with the Landauer for-
mula. The curves are slightly off set for clarity.
The data is from Thomas et al. [58] and other
experiments obtain similar results.

approaches G ∼ 0.4(2e2/h) at high temperature24. In Cronenwett et al. they can
also fit their data to the above form (see their ref. [25]), but they chose to fit it
to another form inspired by Kondo-physics (see below). Therefore they have a
single fit parameter TK (the Kondo temperature) and each gate voltage has it’s
own TK . In the end, they scale all their data onto a single curve by making a
plot of G versus T/TK , which is seen in figure 1.5(b). Note that their T/TK axis
is logarithmic. Further studies of the temperature dependence include [62, 63].

Note that in Kristensen et al. [17] the geometric and lithographic details of
the QPC’s in the GaAs/AlGaAs heterostructures were also investigated in detail.
It is found that these details do not change the 0.7 feature substantially.

The magnetic field dependence

The magnetic field dependence of the anomaly has also been investigate [58, 59,
64, 63]. In figure 1.6, the experimental data of Thomas et al. [58] is seen. It shows
that the 0.7 feature gradually goes to the plateau at e2/h, when turning up the
magnetic field. The effect of a magnetic field in the plane25 of a 2D electron gas is
to spin split the transversal modes and therefore the Landauer formula predicts
conductance quantization in steps of e2/h in a high magnetic field. Therefore the
experimental data approaches the expected result from the Landauer formula,
when the field is turned up, so in that sense the anomaly disappears in a high
magnetic field.

The non-linear conductance

The current through a QPC have also been investigated in the non-linear regime,
i.e. as a function of the source-drain bias V . When turning up the bias, the

24Amazingly, we find the same value in fits to our numerical calculation, see table 6.1 (p. 132)
in chapter 6.

25If the field is not in the plane, quantum Hall physics would play a role.
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conductance steps as a function of gate voltage split up as 2e2

h
(n − 1/2) (for

n = 1, 2, . . . ), which can be explained by the Landauer formula [65, 66].
In connection to the 0.7 anomaly, the non-linear regime has also been inves-

tigated [17, 59, 63, 67]. Roughly, the effect of increasing the bias is the same
as increasing the temperature: The conductance is reduced compared to the
non-interacting result from the Landauer formula. In [17] it is shown that the
scale associated with nonzero bias is the same as the one associated with nonzero
temperatures.

The thermopower near the anomaly

Appleyard et al. [68] have experimentally demonstrated that the thermopower is
enhanced compared to the Landauer formula prediction at gate voltages, where
the 0.7 anomaly appears. Furthermore, they report that the thermopower en-
hancement breaks the so-called Mott formula. The Mott formula is an approxima-
tion for the thermopower in terms of the conductance: S ≃ SM ∝ (1/G)dG/dε

F

(more about the Mott formula in chapter 2). This is a good approximation for
non-interacting electrons, so Appleyard et al. conclude that the 0.7 anomaly is
related to some kind of many-body effect. However, it should be noted that in
comparing the measured conductance via the Mott formula to the thermopower,
the Fermi level ε

F
is replaced by the gate voltage Vg, i.e. SM ∝ (1/G)dG/dε

F
→

SM ∝ (1/G)dG/dVg, which is valid if Vg ∝ ε
F
. However, that is not an obvious

statement, especially close to pinch off of the QPC.
Appleyard et al. [68] also observes that for large magnetic fields, the Mott

formula again becomes a good approximation for the thermopower. This is con-
sistent with the conductance measurements in the sense that the 0.7 anomaly
disappears in a large magnetic field26.

The shot noise for the 0.7 anomaly

The noise is a measure of the amount of fluctuations in the current (for a review
see [69]). Formally, the (zero frequency) noise is given by S =

∫
dt〈δIe(t)δIe(0)〉,

where δIe(t) is the current fluctuation in time, δIe(t) = Ie(t)−〈Ie〉, and 〈Ie〉 is the
average current. Therefore S can be understood as the average amount of current
fluctuations in time, i.e. the noise. The noise is a function of temperature T and
bias V and often one distinguish between the thermal noise (where V → 0 and
T 6= 0) and the shot-noise (where V 6= 0 and T low). The noise in the thermal-
noise limit (eV/k

b
T → 0) is given in terms of the conductance by S = 4k

b
TG

(using the fluctuation-dissipation theorem), so to get new information about a
system, the shot-noise is investigated.

26The thermopower is a difficult measurement to perform and to the best of our knowledge,

there has been no further published results in relation to the 0.7 anomaly.
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For a QPC the Landauer-Büttiker theory gives a shot-noise of the form [70]

Ss = 2(2e2/h)eV T (1 − T ) coth(eV/2k
b
T ) (1.32)

for a single mode and a energy independent transmission27 T , i.e. the QPC is
shot-noiseless on the conductance plateau. Note that a QPC always has thermal
noise and this contribution is 2(2e2/h)2k

b
TT 2, so adding the thermal and shot-

noise and taking the limit eV/2k
b
T → 0 the result S = 4k

b
T (2e2/h)T = 4k

b
TG

is obtained in agreement with the dissipation-fluctuation theorem. The shot-noise
relation for QPC’s has been experimentally verified [72, 73].

Recently, the noise has also been measured in relation to the 0.7 anomaly
[71, 74, 75, 76]. The result is that the noise is reduced compared to the value one
would expected from the Büttiker formula eq.(1.32). This should be understood
in the following way: The current at the anomaly is reduced corresponding to
some transmission through the QPC. If this transmission is used to calculate the
shot-noise from eq.(1.32), then a larger value than the measured value is obtained.

Furthermore, in Dicarlo et al. [76] (figure 6 in their paper) they also mea-
sure the noise at the higher conductance plateaus and find that here the non-
interacting Büttiker formula works well (including the energy dependence of the
transmission). This seems to indicate that the 0.7 anomaly does not have any
multi-mode counterpart and only occurs in the beginning of the first plateau28.
However, the opposite view point have also been reported [77], in any case the
anomaly seems smaller on the higher conductance plateaus.

The length dependence of the 0.7 anomaly

If the length of the QPC becomes longer [78], then the anomaly becomes more
pronounced. Reilly et al. [78] report that the long wires L ∼ 2µm even has
a dip in the conductance as a function of gate voltage in the beginning of the
first plateau. Other experimental studies [22] note that longer wires have an
anomalous conductance reduction to ∼ e2/h.

The 0.7 anomaly in other 1D systems?

All the studies of the 0.7 feature that we have described so far have been done in
QPC’s made in 2D electron gases in semiconductor heterostructures. Recently,
the anomaly has also been found for a QPC made in a 2D hole gas [79].

Features similar to the 0.7 structure have been seen in similar systems to
QPC’s, like the so-called cleaved edge overgrowth quantum wires [80] and even

27Note that for more than one channel this result is generalized to include a sum over the
transmission channels T (1−T ) →∑

n Tn(1−Tn). If the transmission is not energy independent,
then an integration over energy is needed including Fermi functions of the leads, see e.g. [71].

28The same conclusion is also found from the thermopower data [68].
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Figure 1.7: In the low density regime of a 1D wire the
electrons (green dots) can form a Wigner-crystal, which is
a crystalline structure similar to the lattice of a solid. The
figure is taken from a poster by Matveev.

carbon nanotubes [81] (however, the nanotube data is rather weak). These ob-
servations seem to suggest that the 0.7 phenomenon has a more general nature
and does not depend on the details of the QPC’s. However, so far only really
convincing experiments have only been conducted in semiconductor heterostruc-
tures29.

1.9.2 Available explanations of the 0.7 conductance anomaly

Below we go through a few of the available explanations of the 0.7 anomaly.
Again, we do not pretend to review the field, just to give a taste of the various
models.

The Wigner-crystal model

A interesting proposal was given by Konstantin A. Matveev in 2004 [82, 83]. He
proposed that the electrons in a low density quantum wire connected to leads
can have a short-range crystalline order, i.e. form a so-called Wigner-crystal30,
see figure 1.7. Generally, a Wigner-crystal is formed, when the interaction energy
becomes more important than the kinetic energy. In 1D this happens at low
densities n, because the kinetic energy is Ekin ∝ k2

F
∝ n2 whereas the Coulomb

energy is Eint ∝ 1/r ∝ n. In this crystalline state, the spins of the electrons
form a 1D Heisenberg chain with exchange coupling J , which is described by the
Hamiltonian H =

∑
n JSn · Sn+1 with J > 0 (antiferromagnetic). The coupling

J is much smaller than the Fermi energy and exponentially suppressed in density
(i.e. J ∝ ε

F
exp(−π/

√
naB), where aB is the Bohr radius). In this model, the

conductance becomes 2e2/h at low temperatures k
b
T ≪ J ≪ ε

F
and e2/h and

higher temperatures J ≪ k
b
T ≪ ε

F
. This reduction of the conductance can be

understood as a high temperature suppression of the spin excitations through the
wire. Note that the spin-charge separation phenomenon does not take place in
this setup, because the density is inhomogeneous.

Numerous further studies have been conducted along these lines by Matveev
and co-workers [85, 86, 87]. Similar studies include a Hubbard chain connected
to leads, which have been investigated using a Monte Carlo method and finds

29To the best of our knowledge.
30Note that Spivak and Zhou [84] also consider Wigner-crystal formation in the QPC, but

claims to have a ferromagnetic order in the QPC in contrast to Matveev.
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that the conductance reduces for increasing length [88]. A related subject are the
so-called spin-incoherent Luttinger liquids, see e.g. [89, 90, 91]

The Kondo-like model

A heavily debated proposal is the so-called Kondo-like explanation of the 0.7
anomaly by Meir et al. [92]. It states that the conduction anomaly is due to the
Kondo effect in the QPC close to pinch off.

The Kondo effect is know from metals with magnetic impurities and quantum
dots [14, 93, 12]. A quantum dot with tunnelling contacts to the leads has
Coulomb blockade peaks in the linear conductance as a function of gate voltage
(or equivalently the Fermi level of the dot), because the current can only pass
through the dot if an energy level of the dot is aligned with the Fermi level of the
leads. The Kondo effect is a dramatic (i.e. several orders of magnitude) increase
of the conduction between the peaks for an odd number of electrons on the
dot, when the temperature is decreased below the so-called Kondo temperature
TK, which depends on the system. The conductance of a quantum dot in the
Kondo regime is 2e2/h for low temperatures T ≪ TK and goes to zero at higher
temperatures T ≫ TK. The functional form is well approximated by [94]

GKondo(T ) =
2e2

h

(
1

1 + (21/s − 1)(T/TK)2

)s

, (with s = 0.22) (1.33)

which only depends on T through T/TK, a general feature of Kondo physics.
Therefore Meir et al. [92] explains the 0.7 anomaly by assuming that the elec-

tron forms a localized spin in the QPC, which can exhibit a Kondo effect in analog
to a quantum dot. With this assumption they can show many of the experimental
features, e.g. the shot-noise [95]. However, as seen above the Kondo effect does

not lead to the same temperature dependence as observed for the 0.7 anomaly,
since the Kondo effect goes from 2e2/h to zero for increasing temperature whereas
the observed dependence is from 2e2/h to ∼ e2/h for increased temperature. To
cure this, it is simply postulated that the conductance follows

GQPC(T ) =
1

2
GKondo(T ) +

e2

h
, (1.34)

which is the form used to fit the temperature dependence in Cronenwett et al. [59]
shown in figure 1.5(b).

To justify the assumption of the localized electron in the QPC, Rejec and
Meir [96] performed spin density functional theory calculations and indeed found
bound states in the QPC geometry. According to this, electrons can localize in
these bound states and perform Kondo physics leading the anomaly. However,
other spin density functional theory calculations [97, 98] did not find bound states
and Hartree-Fock calculations [99] could not confirm the Kondo scenario either.
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The phenomenological spin-split model

Already in the early papers (e.g. [58]) the idea of a spontaneous spin polariza-
tion in zero magnetic field was discussed. Bruus et al. [100, 101] constructed a
phenomenological model, where the spin up and spin down subbands are split
by an amount that depends on the density of the electrons. A variety of this
model31 was also considered by Reilly [102]. These models are able to explain all
the experimental features, but lack a microscopic origin.

Some other explanations

There have been numerous attempts to explain the 0.7 anomaly. One of these
models describe backscattering of the electrons by acoustic phonons [103, 104],
which can explain the temperature and the bias dependence of the anomaly.
However, the model also predicts an anomaly in the case of a large magnetic
field, i.e. on the e2/h plateau, which is not observed in the experiments.

Another model showing activated temperature dependence is that a localized
plasmon exist inside the QPC, which can backscatter the electrons [105]. This
model have also been investigated in relations to experiments [62].

Recently, more simple models have been investigated considering the electron-
electron interaction in the QPC as the essential ingredient [106, 107, 108]. In
chapter 6, we give another proposal using a model of non-momentum conserv-
ing electron-electron interaction in the QPC. Using perturbation theory, this
model can explain all the observed features qualitatively and even in the non-
perturbative regime we calculate the temperature dependence of the conductance
showing similar features to the experiments.

1.10 Outline of the thesis

In this thesis, we consider electron-electron interaction effects in two regimes of
the length of a QPC (or finite length quantum wire): (i) Long enough to have
momentum conserving electron-electron interactions, i.e. k

F
L ≫ 1. (ii) So short

that the translational invariance is broken leading to non-momentum conserving
electron-electron interactions, i.e. k

F
L ∼ 1.

For the finite length quantum wires, we consider the multi-mode case and find
interesting resonances in the conductance and thermopower at certain values of
the Fermi energy (i.e. the gate voltage). Furthermore, we study the possibility
of three-particle interactions in a single mode. However, this only leads to expo-
nentially suppressed corrections of the transport properties at low temperatures

31On of the subtle difference between the models are that in Bruus et al. the Fermi level of
the leads are pinned to the one of the spin bands in the beginning of the plateau, which is not
the case in [102].
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(∝ e−TF/T ) in the perturbative limit of weak interactions. In this regime of length,
we are able to use the Boltzmann equation approach.

In the case of a short QPC, we find interaction corrections to the transport
properties even in the single-mode case. Here we use a Green’s function ap-
proach and develop a non-perturbative current formula, which is used to find the
conductance beyond the perturbative limit in the interaction.

However, before we begin to understand the interaction effects, we consider
the so-called Mott formula for thermopower of non-interacting electrons in order
to better understand the experimental results of QPC’s.



Chapter 2

The Mott formula for

non-interacting electrons

In this chapter, the so-called Mott formula for thermopower is introduced and
discussed in the context of non-interacting electrons. This is important to un-
derstand possible deviations from the Mott formula due to electronic interactions
and other effects. The main parts of this discussion was published in Journal of

Physics: Condensed Matter, see paper I (p. 145).

2.1 The Mott formula

The Mott formula1 is an approximation relating the thermopower to the deriva-
tive of the conductance (conductivity) with respect to the chemical potential,
originally developed for bulk systems [109, 110]. For a quantum point contact
the Mott formula is

SM(µ, T ) =
π2

3

k
b

e
kBT

1

G(µ, T )

dG(µ, T )

dµ
, (2.1)

where G(µ, T ) is the temperature-dependent conductance.

2.2 Why study the Mott formula?

Experimentally, the Mott formula is a valuable tool, because it allows for a com-
parison between the measured conductance and thermopower. The comparison
is done using the gate voltage Vg instead of the chemical potential in the Mott

1Sometimes also called the Cutler-Mott formula after the paper in Ref. [109].
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formula2, i.e.

SM ∝ k
b
T

d lnG(Vg, T )

dVg

, (2.2)

where G(Vg, T ) is the measured conductance. Since the Mott formula is expected
to be valid for non-interacting electron, it has been argued that deviations from
the Mott formula could be a sign of some extra information in the thermopower
compared to the conductance. This extra information could for instance be many-
body effects as reported in an experiment by Appleyard et al. [68]. However, it
is not certain that interaction effects will break the Mott formula and we shall
see an example of this in chapter 4 (paper II, p. 153).

The purpose of this chapter is to determine the validity of the Mott formula
as an approximation to the thermopower for non-interacting electrons. This will
help us to distinguish deviation from the Mott formula due to single-particle
behavior and due to more complicated behavior in the experiments [31, 68, 111].

2.3 The lowest order approximation in k
b
T

As found in chapter 1, eq.(1.10), the Landauer formula leads to the following
formula for the non-interacting thermopower3 [36]

S(µ, T ) =
2ek

b

h

1

G(µ, T )

∫ ∞

0

dεT (ε)

(
ε− µ

k
b
T

)
[−∂εf

0(ε)], (2.3)

where

G(µ, T ) =
2e2

h

∫ ∞

0

dεT (ε)[−∂εf
0(ε)]. (2.4)

An approximation to the non-interacting thermopower is now derived, valid
when the temperature is the smallest energy scale in the problem. If the tem-
perature k

b
T is much smaller than scale of variation of the transmission T (ε)

around the chemical potential µ, then we can expand the transmission to lowest

2Note that since one measures the thermovoltage, Vth = (GT /G)∆T , instead of the ther-
mopower, it is not the absolute magnitude that can be compared, but rather the functional
shape (see e.g. the caption of figure 1.3).

3Here we chosen the additive constant in the energy such that the lower limit of the integrals
are zero. Furthermore, since we are not interested in exponentially small corrections, the upper
limit is chosen to be infinity.
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order (i.e. a Sommerfeld expansion) in the integrands in eq.(2.3) and (2.4), i.e.

S(1)(µ, T ) =
k
b

e

∫∞
0

dε
{
T (µ) + ∂µT (µ)(ε− µ)

}(
ε−µ
k
b
T

)
[−∂εf

0(ε)]
∫∞
0

dεT (ε)[−∂εf 0(ε)]

≃ π2

3

kB

e
kBT

∂µT (µ)

T (µ)

=
π2

3

k
b

e
kBT

1

G(µ, T = 0)

∂G(µ, T = 0)

∂µ
, (2.5)

where we used the integral

∫ ∞

0

dε

(
ε− µ

k
b
T

)2

[−∂εf
0(ε)] =

∫ ∞

− µ
k
b

T

dx
x2

4 cosh2(x/2)

≃
∫ ∞

−∞
dx

x2

4 cosh2(x/2)
=
π2

3
for k

b
T ≪ µ. (2.6)

Note that integrals leading to exponentially small contributions in temperature,
i.e. ∝ exp(−µ/k

b
T ), are neglected for k

b
T ≪ µ.

Therefore the Sommerfeld expansion lead us to a well-defined approximation
for the thermopower, S ≃ S(1), valid for temperatures lower than µ and the
scale of variation of T (ε) around µ. This formula is similar to the Mott formula
eq.(2.1), but it uses the zero-temperature conductance G(µ, T = 0) instead of
G(µ, T ). Therefore the Mott formula is good approximation, when k

b
T is the

smallest scale in the problem. In the experiments, the temperature dependent
conductance is used to analyze the results and the modern4 version of the Mott
formula is therefore the one stated in eq.(2.1).

2.4 Validity of the Mott formula

It is harder to argue rigorously for the Mott formula eq.(2.1) including the
temperature-dependent conductance than the lowest order expansion S(1) eq.(2.5).
Here a numerical investigation is performed followed by some analytical consid-
erations in order to identify the regime of validity of the Mott formula.

2.4.1 Numerical investigation

Here we numerically compare the thermopower S eq.(2.3), the Mott formula
SM eq.(2.1) and the lowest order approximation S(1) eq.(2.5) for a QPC. To
make a numerical integration (of eq.(2.3), (2.1) and (2.4)) a specific form of the

4Originally, S(1) was called the Mott formula [109, 110, 1].
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Figure 2.1: The results of a numerical evaluation of the thermopower S eq.(2.3) (black full
line), the Mott formula SS eq.(2.1) (red dashed line) and the lowest order approximation S(1)

(green full line) as a function of the chemical potential µ = ε
F

for the saddle-point transmission
model eq.(2.7). The smearing of the transmission is kept constant at εs = 0.05 and from
(a) to (f) the temperature k

b
T is varied from k

b
T = 0.01 < εs to k

b
T = 0.17 > εs. All

energies are in units of ε0 and the unit of the vertical axis is k
b
/e. The point is that the Mott

formula is a fairly good approximation to the thermopower for non-interacting electrons even
for temperatures larger than the smearing of the transmission. The conductance (in arbitrary
units) is seen for a comparison.
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transmission T (ε) is needed. The saddle-point model [41] (see section 1.5.1, p. 8)
has a Fermi function like transmission,

T (ε) =
nmax∑

n=1

1

exp(nε0−ε
εs

) + 1
, (2.7)

which is used to obtain the results of figure 2.1. The transmission has two different
energy scales: (i) The smearing of the conductance steps εs and (ii) the length of
the conductance steps ε0. In terms of the saddle-point potential eq.(1.14), these
parameters are given be εs = ℏωx/(2π) and ε0 = ℏωy (see eq.(1.15)), respectively.

The parameter regimes under investigation are:

k
b
T < εs [fig. 2.1(a)], k

b
T ∼ εs [fig. 2.1(b-d)] and k

b
T > εs [fig. 2.1(e-f)].

In all three regimes the temperature is still low in the sense that k
b
T ≪ µ,

where µ is of order the step length ε0. Note that all three parameter regimes are
experimentally relevant, since they all have a staircase like conductance.

From the figures 2.1 we can draw the following conclusions

• For k
b
T < εs (figure 2.1(a)) both the Mott formula and the lowest order

approximation work very well, as expected from the derivation of S(1) in
section 2.3.

• When k
b
T ∼ εs (figure 2.1(b-d)) the Mott formula is still a good approxi-

mation, but not the lowest order approximation S(1).

• Even for k
b
T > εs the Mott formula remains a good approximation, (figure

2.1(e-f)).

Therefore the Mott formula seem to be good approximation for non-interacting
electrons in QPC’s. Note that as k

b
T increases SM and S(1) has a tendency to

overestimate the thermopower at the peaks and underestimate it in the valleys.

2.4.2 A power series expansion of the transmission

To understand better why the Mott formula works for temperature comparable
to and even larger than the smearing of the transmission εs, we insert

T (ε) =
∞∑

n=0

1

n!

∂nT (µ)

∂εn
(ε − µ)n, (2.8)

in the Mott formula eq.(2.1) and the thermopower eq.(2.3), i.e. we include all
orders instead of only keeping the lowest order as in S(1) eq.(2.5). Inserting the
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transmission eq.(2.8) in the thermopower eq.(2.3) and Mott formula eq.(2.1), we
get5

S(µ, T ) ≃ k
b

e

1

G(µ, T )

2e2

h

∞∑

n=0

[
I2n+2

(2n + 1)!

∂2n+1T (µ)

∂ε2n+1
(k

b
T )2n+1

]
, (2.9)

SM(µ, T ) ≃ k
b

e

1

G(µ, T )

2e2

h

∞∑

n=0

[
I2I2n

(2n)!

∂2n+1T (µ)

∂ε2n+1
(k

b
T )2n+1

]
, (2.10)

assuming that k
b
T ≪ µ to make the even powers of temperature vanish by using

∫ ∞

− µ
k
b

T

dy
yn

4 cosh2(y/2)

for k
b
T≪µ︷︸︸︷−→

∫ ∞

−∞
dy

yn

4 cosh2(y/2)
≡ In, (2.11)

which is zero for odd integers n. The integrals In can be calculated and the first
few values are:

I0 = 1, I2 =
π2

3
, I4 =

7π4

15
, I6 =

31π6

21
, I8 =

127π8

15
, I10 =

2555π10

33
, . . . (2.12)

We observe that only the first order in k
b
T is the same in the power series of S

and SM, but they both only have odd powers of k
b
T at low temperature k

b
T ≪ µ

and share the factor ∂2n+1
ε T (µ). However, the numerical prefactors behave rather

differently as a function of n:

I2n+2

(2n + 1)!
∼ 4.00 × n +

π2

3
and

I2I2n

(2n)!
→ 6.58 for n & 10, (2.13)

as seen on figure 1 in paper I (p.145). Therefore the similarity really depends on
the nth derivative of the transmission.

2.4.3 An analytically solvable case: The ideal point contact

In this section, the extreme limit of zero smearing of the conductance steps due
to the barrier, εs = 0, is considered, i.e. the limit k

b
T ≫ εs. This case has a step

function transmission and is analytically solvable, see section 1.5.2.
Using eq.(1.18) for the conductance the Mott formula eq.(2.1) gives

SM(µ, T ) =
k
b

e

2e2

h

1

G(µ, T )

∑

n=1

[
π2

3

1

4 cosh2(∆n/2)

]
, (2.14)

which should be compared to the thermopower S = GT /G using eq.(1.19)

S(µ, T ) =
k
b

e

2e2

h

1

G(µ, T )

∑

n=1

[
ln(1 + e∆n) − ∆n

1 + e−∆n

]
, (2.15)

5See paper I (p. 145) section 3.2 for more details of this calculation.
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Figure 2.2: A comparison between the
Mott formula and the exact thermopower
for a step-function transmission (i.e. εs =
0). The solid back curve is the function
in the square brackets in eq.(2.15) (i.e. the
exact result) and the red dashed curve
is the Mott approximation to this result
(i.e. the function in the square brackets in
eq.(2.14)). The Mott formula is remark-
ably good considering that we are in the
regime k

b
T ≫ εs.

where ∆n = (nε0 − µ)/k
b
T . We see that the functions in the square brackets

are not analytically alike, however, their functional form are not too different
as seen on figure 2.2. The tendency that the Mott formula overestimates the
thermopower at the peaks is the same at in the numerics, see figure 2.1. The
Mott formula also shows exponential suppression on the plateaus,

π2

3

1

4 cosh2(∆n/2)
≃ π2

3
exp(−|∆n|) for k

b
T ≪ |nε0 − µ|, (2.16)

but the prefactor misses a factor ∝ |∆n| compared to the thermopower S, see
eq.(1.20).

Therefore this simple step model for the transmission confirms the surprising
result from the numerical investigation: The Mott formula works fairly well even
for k

b
T ≫ εs.

2.5 Beyond non-interacting electrons?

The Mott formula has been investigated in many kinds of systems. For instance
in metals it was found to be a good approximation even in the presence of a static
lattice and electron-phonon scattering [112, 113]. However, one should be careful
extending these results and methods to the mesoscopic regime and especially
to QPC’s, since they relay on thermodynamical consideration of the system6.
None the less, the thermopower often -but not always- comes in the from seen in
eq.(1.25), i.e.

S =
k
b

e

2e2

h

1

G

∫
dε d(ε)

(
ε− µ

k
b
T

)
[−∂εf

0(ε)] F(ε), (2.17)

6Especially, considering the heat current one often uses dQ = TdS = dU − µdN in bulk
systems (see e.g.[1, p.253]). For interacting systems one should also consider, which energy is
being transported when constructing the heat current [114].
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Figure 2.3: A comparison between im-
portant parts of the integrands in the ther-
mopower eq.(2.17) and the Mott formula
eq.(2.18). The integrals of S and SM are
the same except for the shown functions.

where d(ε) is the density of states and F(ε) is some function. The conductance is
given by the same integral without the factor (ε− µ)/k

b
T . In this case, the only

dependence of µ is in the derivative of the Fermi function and therefore using
the Mott formula is the same as approximating (ε − µ)/k

b
T in the integral by

(π2/3) tanh[(ε− µ)/(2k
b
T )], i.e.

SM =
k
b

e

2e2

h

1

G

∫
dε d(ε)

π2

3
tanh

(
ε− µ

2k
b
T

)
[−∂εf

0(ε)] F(ε). (2.18)

Due to the presence of [−∂εf
0(ε)] these two integrands are not to different as

seen on figure 2.3. Of course, how well the Mott formula approximates the ther-
mopower really depends on d(ε)F(ε). Furthermore, if F(ε) depends on µ or
the thermopower does not have the specific form eq.(2.17) assumed here, then
the above consideration is useless. In chapter 4, we shall see an example, where
interacting electrons in QPC’s follow the Mott formula fairly well.

2.6 Concluding remarks

We have considered how well the Mott formula approximates the non-interacting
thermopower derived from the Landauer formula for a QPC. The result is that for
low temperature k

b
T ≪ µ, it is a reasonably good approximation and it becomes

better the smaller the temperature. In particular, k
b
T should be compared to

the scale of the smearing of the transmission steps εs ≪ µ (due to the barrier
along the QPC). If k

b
T ≪ εs the Mott formula can be shown to be a very good

approximation by a Sommerfeld expansion of the thermopower. Surprisingly, it is
still a fairly good approximation for k

b
T & εs as found in numerical calculations

and confirmed by an analytic model of a step-function transmission in the regime
k
b
T ≫ εs = 0.



Chapter 3

Transport in finite quantum wires:

A Boltzmann equation approach

In this chapter, we introduce the Boltzmann equation and the way it can be used
to model the current through finite quantum wires perfectly connected to exter-
nal leads. We begin by commenting on the problem of relaxation in 1D wires
connected to reservoirs. Thereafter we find the current due to the electronic scat-
tering to first order in the scattering rate, which is an extension of the Landauer
formula including e.g. interactions effects. In the end, we show that a relaxation
mechanism have to change the number of left and right movers to change the
current through these kinds of systems.

3.1 Relaxation in a one-dimensional system with

perfect leads

Here we briefly discuss the possibility of electronic relaxation in finite clean (i.e. no
impurities) 1D quantum wires perfectly connected to higher dimensional leads
(QPC’s).

Our starting point is a semi-classical description, where the central object is
the electronic distribution function fkn(x) depending on space x, quasi-momentum
k and subband index n of the transverse quantization. We only consider the situ-
ation, where a number of transverse modes (subbands) are fully open, so we have
reflectionless contacts. Therefore the right movers (k > 0) on the left side of the
system are distributed with the distribution function of the left lead f 0

L(εk) and
vice versa. Therefore the distribution function at the ends of the system is:

fkn(x = 0) = f 0
L(εkn) for k > 0, (3.1a)

fkn(x = L) = f 0
R(εkn) for k < 0, (3.1b)

where L is the length of the system and f 0
L/R(εkn) are the Fermi functions of the

leads eq.(1.5), see figure 3.1(b).

33
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Figure 3.1: Relaxation of the electron distribution function for a ballistic point contact (a)
and for a 1D wire with length L (b). In both cases, the distribution function for right moving
electrons on the left side of the system is distributed with the distribution function of the left
reservoir f0

L(εk) and vice versa. In the short system (a) without relaxation the distribution
functions does not change. This is in contrast to the longer 1D wire (b) where relaxation in
the wire has time to change the incoming distribution functions. The degree of relaxation in
the wire of course depends on other quantities than the length and in chapter 6 we consider
relaxation in an point-like constriction due to non-momentum conserving interactions.

One limit is the ballistic one, where there is no relaxation inside the wire
as seen in figure 3.1(a). Therefore the distribution function is simply given by
eq.(3.1) for all x and the current follows the Landauer formula with integer trans-
mission as obtained in eq.(1.24).

On the other hand, if there is some kind of relaxation processes inside the
system, then the distribution function can change. One mechanism of relaxation
is electronic interactions. However, for a single mode, momentum and energy
conserving two-particle interactions cannot change the distribution function as
noted in section 1.8. Therefore we have to consider more than one subband
(chapter 4) or higher order processes like three-particle processes (chapter 5). To
obtain information about the change of the distribution function the conductance
and especially the thermopower are valuable quantities.

If we consider a infinitely long clean 1D wire without leads, then it is transla-
tional invariant. This means that the interactions will be momentum conserving
and therefore they cannot change the total momentum of the electronic system,
which in terms means that the current does not change [14, exercise 8.5]. However,
introducing leads changes the picture completely. In this case, one can speculate
that a very long wire has two different kinds of regions. In the region near the
contacts, electrons with a Fermi distributions is injected from the contact. These
will try to equilibrate with the electrons coming from the inner wire and this will
create a zone of equilibration near the contacts. The length of this zone will be
determent by some kind of characteristic equilibration length ℓeq, so a very long
wire means a wire much longer than this zone L ≫ ℓeq. In the inner wire, one
might expect that the left and right movers have equilibrated completely from



3.2. THE BOLTZMANN EQUATION APPROACH 35

the effects of the contacts. Therefore they might have reached an equilibrium
in a reference frame moving with some drift velocity characterizing the current
through the wire (e.g. a shifted Fermi function). The length of this inner peace
should not change the current due to its translational invariance. Therefore we
have argued that the contacts may change the picture of a 1D wire dramatically.
To the best of our knowledge, a more precise and quantitative description of the
long wire limit including the leads is currently not available and therefore remains
an interesting open question.

It is interesting to note, that in the case of momentum-independent velocities
of the left and right movers (i.e. linear dispersion) such as a Luttinger liquid we
have the following situation: A shifted Fermi function is identical to a distribution
where the left and right movers have different Fermi functions (like eq.(3.1)).
Therefore the curvature of the dispersion and electron-hole asymmetry might play
an essential role and hence thermopower is an interesting quantity to investigate.

In this thesis, we consider the problem perturbably to lowest order in the in-
teraction and therefore find corrections to the ballistic result for a weak relaxation
in the wire.

3.2 The Boltzmann equation approach

To calculate the particle current the Boltzmann equation is used. Generally, it
is:

∂fk(r, t)

∂t
+

dr

dt

∂fk(r, t)

∂r
+

dk

dt

∂fk(r, t)

∂k
= Ik,r,t[f ], (3.2)

where fk(r, t) is the distribution function in general depending on time t, space
r and (quasi-)momentum k. The right hand side is the collision integral Ik,r,t[f ],
which is a functional of f describing the collisions in the system. In the case
of an electronic system the collision integral can e.g. describe electron-electron
interactions, interactions with static impurities or electron-phonon interactions.

The Boltzmann equation is a continuity equation in (r,k)-space and semi-
classical in origin, since knowing the exact position and momentum of a particle
is not allowed in quantum mechanics due to the Heisenberg principle. The micro-
scopic origin of the Boltzmann equation is Fermi liquid theory, where the particles
are the free-electron like excitations of the system (the so-called quasi-particles).

Generally, it is a difficult task to solve the Boltzmann equation, since the
collision integral depends on f making it a partial integro-differential equation.
Therefore approximation and simplification capturing the essential physics are
necessary. The Boltzmann equation have been used to successfully describe a
wealth of phenomena in all areas of physics. For a complete introduction to the
Boltzmann equation consult the book by Smith and Jensen [115].
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3.2.1 The Boltzmann equation for a wire with leads

We now describe the Boltzmann equation for a finite length quantum wire per-
fectly connected to the leads, which have different chemical potentials and/or
temperatures, see figure 3.1. Only steady state is considered so ∂f

∂t
= 0, and the

problem is one dimensional, i.e. f = fkn(x), where n is the band index and the
spin index σ is implicit.

Steady state bulk systems like metals and semiconductors are often modelled
as perfectly homogeneous, so the spatial derivative is zero. The driving fields are
included in the Boltzmann equation by using the equation of motion (Newton’s
second law) for k to write ℏ

dk
dt

= F, where F is the force acting on the particles
(e.g. the electric field, temperature gradient and/or Lorentz force).

In contrast, here we model the wire as being an inhomogeneous system (i.e. x
dependent) and include the driving fields in the boundary condition of the distri-
bution function. If we apply a bias across the wire, then by solving the Poisson
equation one finds that in the linear response regime the potential drop happens
at the contacts (i.e. at the ends of the wire) [116, and ref. therein]1. Therefore
the electrostatic potential is flat inside the wire, so we have dk

dt
= 0. Therefore

the Boltzmann equation for the quantum wire is

vkn∂xfkn(x) = Iknx[f ] (3.3)

including the boundary conditions for reflectionless contacts eq.(3.1):

fkn(x = 0) = f 0
L(εkn) for k > 0, (3.4a)

fkn(x = L) = f 0
R(εkn) for k < 0. (3.4b)

Here dx
dt

= vkn is the velocity given in by dispersion relation εkn as

vkn =
1

ℏ

dεkn

dk
. (3.5)

Note that a temperature difference between the contacts in the linear response
regime can also be included and treated in the same fashion.

The Boltzmann equation eq.(3.3) including the boundary conditions eq.(3.4)
is the starting point of our calculations of the conductance and thermopower and
what differs is the collision integral.

The particle current I has to be conserved, which leads to a restriction of
form of the collision integral. This is found by integrating over k and summing
over n and σ on the right and left hand side of the Boltzmann equation (3.3):

∫ ∞

−∞

dk

2π

∑

nσ

Iknx[f ] =

∫ ∞

−∞

dk

2π

∑

nσ

vkn∂xfkn(x) = ∂xI = 0, (3.6)

1See also the beautiful experiment by Picciotto et al. [37, 38].
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where the last equality (∂xI = 0) is imposed by current conservation (i.e. I is
x-independent). Therefore for the current to be conserved the collision integral
have to fulfill eq.(3.6).

In the present model, the collision integral is not present outside the wire
(x < 0 and x > L) and it is abruptly turned on at the boundaries x = 0
and x = L. This is of course an approximation, but we expect it to capture the
essential physics of a wire being connected to higher dimensional (non-interacting)
reservoirs. However, it could be interesting to study a more realistic, gradual turn
on of the strength of the collision integral.

The Boltzmann equation have previously been used to describe mesoscopic
transport in quantum wires a number of times. Some examples include quantum
hall effect in quantum wires [117], Coulomb drag between ballistic quantum wires
[118], magnetoconductivity of quantum wires [119], electron-phonon interactions
in finite quantum wires [120], surface roughness in QPC’s [121], Phonon drag
in ballistic quantum wires [122], spin transport [123] and also more numerically
oriented studies [124, 125].

3.2.2 Collision integrals for electronic interactions

It is also worth to note that in the present description we have not yet constricted
ourself to a specific collision integral, i.e. a specific scattering (relaxation) mech-
anism. Some examples of scattering events are: Scattering of static impurities,
electron-electron scattering and electron-phonon scattering. Now we briefly de-
scribe the collision integrals used in this thesis.

For the two-body (multi-subband) electron-electron interaction the collision
integral is:

Ik1n1x[f ] = −
∑

σ2
σ1′σ2′

∑

n2
n1′n2′

∑

k2
k1′k2′

{
W1′2′;12fk1n1(x)fk2n2(x)[1 − fk1′n1′

(x)][1 − fk2′n2′
(x)]︸ ︷︷ ︸

scattering out of the state |k1n1〉|k2n2〉

−W12;1′2′fk1′n1′
(x)fk2′n2′

(x)[1 − fk1n1(x)][1 − fk2n2(x)]︸ ︷︷ ︸
scattering into the state |k1n1〉|k2n2〉

}
. (3.7)

This collision integral is understood in the following way: An electron in the
state |k1n1〉 interacts with en electron in |k2n2〉 and they scatter into |k1′n1′〉 and
|k2′n2′〉, see figure 3.2. This happens with a transition rate2 W1′2′;12, where i is
short for kini. The scattering rates are proportional to the occupation, i.e. the
distribution function f , and to the availability of the state after the scattering
event 1 − f (for fermions). The collision integral contains both a term for scat-
tering into the states |k1n1〉 and |k2n2〉 and one for scattering out of |k1n1〉 and
|k2n2〉. This leads to a collision integral of the form3 seen in eq.(3.7).

2Note that we use the convention form quantum mechanics for the indices: Wf ;i, where i
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|k1n1σ1〉 |k1′n1′σ1′〉

|k2n2σ2〉 |k2′n2′σ2′〉

Figure 3.2: The basic two-
particle scattering process, where
1 and 2 scatters into 1′ and 2′.
This is the basis of the collision
integral eq.(3.7).

We should make sure that the restriction on the collision integral in eq.(3.6)
from the current conservation is obeyed. Introducing the short hand notation
fi = fkini

(x), we test this by inserting eq.(3.7) in eq.(3.6):
∑

k1n1σ1

Ik1n1x[f ] = (3.8)

−
∑

σ1σ2
σ1′σ2′

∑

n1n2
n1′n2′

∑

k1k2
k1′k2′

{
W1′2′;12f1f2[1 − f1′ ][1 − f2′ ] −W12;1′2′f1′f2′ [1 − f1][1 − f2]︸ ︷︷ ︸

interchange 1↔1′ and 2↔2′

}
= 0,

i.e. the two-body collision integral conserves current as it should.
In eq.(3.7) we assume the collision integral to be local in space, so all the

distribution functions are taken at x. A generalization can be done by using
fi = fkini

(xi) and integrating over x2, x1′ and x2′ .
Furthermore, the transition rate is often4 symmetric W12;1′2′ = W1′2′;12 and

can in the simplest case be found by Fermis Golden rule:

W12;1′2′ =
2π

ℏ
|〈k1′n1′k2′n2′ |V|k1n1k2n2〉|2δ(εk1n1 + εk2n2 − εk1′n1′

− εk2′n2′
), (3.9)

where V is the electron-electron interaction operator and the matrix element
contains both an direct and exchange term. The transition rate given by the
Fermi Golden rule is symmetric.

Note that for any symmetric and energy conserving transition rate the collision
integral is zero, if Fermi functions are inserted, since

f 0(ε1)f
0(ε2)[1 − f 0(ε1′)][1 − f 0(ε2′)] =

f 0(ε1′)f
0(ε2′)[1 − f 0(ε1)][1 − f 0(ε2)] (3.10)

valid for ε1 + ε2 = ε1′ + ε2′ , where εi = εkini
. Therefore in equilibrium (µL = µR,

TL = TR) the Fermi function solves the interacting problem.

and f are the initial and final state, respectively.
3Note that the collision integral is not exact, since it could contain higher order distribution

functions, for a discussion see [115, p.7].
4A symmetric rate means that the probability of 12 → 1′2′ is the same as 1′2′ → 12 (called

the detailed balance principle). If we do not have time-reversal symmetric, then this might not
be true [115, 126].
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Figure 3.3: The basic three-particle scattering

process, where three particles exchange momen-

tum and energy. It consist of two 2-body scat-

terings, connected by a virtual-like state, so the

individual 2-body scatterings do not have to con-

serve momentum and energy.

If we only have a single mode (subband), then two-body interactions cannot
change the distribution function for a momentum and energy conserving scat-
tering as note in section 1.8. In this case, the three-body interactions become
relevant and they have the following collision integral:

Ik1x[f ] = −
∑

σ2σ3
σ1′σ2′σ3′

∑

k2k3
k1′k2′k3′

{
W1′2′3′;123f1f2f3(1 − f1′)(1 − f2′)(1 − f3′)

−W123;1′2′3′f1′f2′f3′(1 − f1)(1 − f2)(1 − f3)
}
, (3.11)

where fi = fki
(x) and W123;1′2′3′ is the three-particle transition rate (often sym-

metric). The form and understanding of the collision integral is in the same as
for the two-body case eq.(3.7), see figure 3.3. Again, we have assumed a local
collision integral, but it can as before easily be expanded to a non-local one.
Further, the three-body collision integral also conserves the current seen in an
equivalent fashion to eq.(3.8).

Collision integrals describing scattering of electrons on static impurities or
electron-phonon scattering have the same idea of scattering in and out build into
them. For details consult [115] or [126].

3.2.3 The current to lowest order in the scattering rate

The Boltzmann equation (3.3) for a wire perfectly connected to leads is now solved
perturbably to lowest order in the scattering rate5. This leads to the current
through the wire to lowest order in the scattering rate. It is a general derivation,
in the sense that the precise form of the collision integral is not specified.

If there is no scattering, then the collision integral is zero, I[f ] = 0, and the
solution is simply given by the boundary conditions eq.(3.4) for all x, i.e.

f
(0)
kn (x) =

{
f 0

L(εkn), for k > 0
f 0

R(εkn), for k < 0
. (3.12)

If the wire is short or the scattering is weak, then the scattering only change the
distribution function away from the initial distribution f (0) by a small amount.

5For the collision integrals stated above, the solution is to first order inW12;1′2′ or W123;1′2′3′ .
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Therefore we expand the distribution function in orders of the scattering rate as:

f = f (0) + f (1) + · · · . (3.13)

Inserting this into the Boltzmann equation (3.3), we get:

vkn∂x

[
f

(0)
kn (x) + f

(1)
kn (x)

]
+ O

(
W 2
)

= Iknx[f
(0)] + O

(
W 2
)
, (3.14)

where terms of higher order in the transition rate W have been neglected. The
collision integral contains a factor of W and therefore Iknx[f

(0)] is to first order
in W . If the scattering W does not depend on x (for 0 < x < L), then Iknx[f

(0)]
is x independent, since f (0) is x independent, i.e. Iknx[f

(0)] = Ikn[f
(0)]. This fact

makes it easy to find f (1) from eq.(3.14) as6:

f
(1)
kn (x) =

x

vkn
Ikn[f

(0)] for k > 0, (3.15a)

f
(1)
kn (x) =

x− L

vkn
Ikn[f

(0)] for k < 0. (3.15b)

This gives an partial answer to how and how much the distribution function
change as a function of length L for a short wire or weak scattering: For k >
0 the left lead injects the equilibrium distribution f 0

L(εkn) at x = 0 and then
the distribution function relaxes to f 0

L(εkn) + L
vkn

Ikn[f (0)] at x = L, which is

then ejected into the right contact (see figure 3.1 and sec. 3.1). Similar for
k < 0 the right contact injects f 0

R(εkn) at x = L, after which the wire ejects
f 0

R(εkn) − L
vkn

Ikn[f
(0)] at x = 0 into the left contact.

Next the electric current Ie is found (e > 0):

Ie =
(−e)
L

∑

σnk

vknfkn(x) (3.16)

where L is a normalization length. Model-wise, one can imagine the wire to
be imbedded in a longer box of length L, so the unperturbed eigenstates along
the wire are normalized to L (e.g. 1√

Le
ikx) and also the conversion of k-sums to

integrals are with respect to this length. Of course, the final result does not
depend on L. However, the length of the wire and L are not necessarily equal7.

6We can also find the higher order terms of the distribution function in the above described

way, since we can solve the Boltzmann equation order by order. If we e.g. wanted f (2), we

should insert f (1) into the collision integral and solve the equation. This iteration can -in

principle- be continued to any order. However, we can see that already for f (2) one has to put

the collision integral into the collision integral, since f (1) depends on Ikn[f (0)]. This makes the

problem more and more involved to solve the higher the iteration step.
7Note that in paper II and III we do not make this distinction. However, to be precise it

should in included.



3.3. A REQUIREMENT ON THE SCATTERING TO CHANGE I 41

The electric current to first order in the scattering is found by inserting f =
f (0) + f (1) from eq.(3.12) and (3.15) into eq.(3.16):

Ie ≃
(−e)
L

∑

σnk

vkn[f
(0)
kn (x) + f

(1)
kn (x)]

=
−e
L

[
∑

σnk>0

vkn

(
f 0

L(εkn) +
x

vkn
Ikn[f

(0)]

)
+
∑

σnk<0

vkn

(
f 0

R(εkn) +
x− L

vkn
Ikn[f

(0)]

)]

=
(−e)
L

∑

σnk>0

vkn

[
f 0

L(εkn) − f 0
R(εkn)

]
+ x

(−e)
L

=0︷ ︸︸ ︷∑

σnk

Ikn[f (0)]−L(−e)
L

∑

σnk<0

Ikn[f (0)]

≡ I(0)
e + I(1)

e , (3.17)

where I
(0)
e is the non-interacting Landauer result for integer transmission (e.g. com-

pare to eq.(1.4) [p. 5] or eq.(1.24) [p. 12]) and I
(1)
e is the correction to the current

to first order in the scattering rate W , so I
(1)
e is the scattering correction we set

out to find. There are a few comments that should be noted about the above
expression (3.17).

First of all, the term
∑

σnk Ikn[f (0)] is zero due to current conservation (to
first order) eq.(3.6) and can also be seen explicitly (as in eq.(3.8)).

Secondly, the velocity in the current definition and in the first order distribu-
tion function cancel each other. This has the consequence that when inserting
the collision integral in I

(1)
e , then all the wave vectors enter on equal footing,

i.e. there is nothing special about the index from the Boltzmann equation knσ.
As a consequence, only scattering events that change the number of left and right
moving particles can change the particle current. We take a closer look at this
important statement in the next section 3.3 and show that it is true to all orders
in perturbation theory.

Finally, we note that the first order current expression I
(1)
e is proportional

to the length of the wire L, i.e. I
(1)
e ∝ L, regardless of the precise form of the

collision integral, since it is L independent. However, the normalization length L
appearing in I

(1)
e cancels out with factors from the collision integral, then taking

the long wire limit and making the k-sums to integrals.
In the next chapters, we will consider the correction I

(1)
e for two specific ex-

amples: Multi mode two-body scattering and single mode three-body scattering.

3.3 A requirement on the scattering to change the

current

In this section, we show the following statement:
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Scattering ; current change Scattering ⇒ current change

(a) (b)

Figure 3.4: An illustration of the principle that the current changes due to the scattering if

and only if the scattering changes the number of left and right moving particles. The full/dashed
arrows represent particles before/after the scattering and the red star is (an artists impression
of) the scattering event. In (a) the scattering does not change the number of left and right
moving particles and hence not the current. The opposite situation is seen in (b). Intuitively,
the statement means that it is the number of particles that pass the wire, which decides the
current.

The particle current changes due to scattering if and only if the scattering

changes the number of left and right moving particles.

For this statement to be true, the scattering rate needs to be symmetric under
particle exchanges of (i) the incoming particles and (ii) the outgoing particles.
The microscopic origin of the scattering is a priori not specified and can be two-
body interactions, three-body interactions, electron-phonon interactions or any
other kind that has the required symmetries of the scattering rate. An illustration
for two-body scattering is given in figure 3.4.

Intuitively, the statement means that the number of particles passing through
the wire decides the current and not the velocity of the particles. Therefore if
the scattering in the wire does not change the number of transmitted particles,
then it does not change the current. In contrast to this is e.g. an infinite 1D wire
or a bulk metal8, where a velocity change is sufficient to change the current.

Here the above statement is shown using the Boltzmann equation (3.3) in-
cluding the boundary conditions eq.(3.4)9. One could think that changing the
velocity of a particle should change the current, since the velocity time the distri-
bution function enters in the current definition eq.(3.16), but -surprisingly- this
turns out not to be the case. Actually the origin of the statement is that the

velocity of the current definition and the distribution function cancel out in the
current due to scattering to all orders in perturbation theory (i.e. so this cancel-
lation in eq.(3.17) was simply the first order special case). This cancellation of

8Of course, higher dimensional materials (D > 1) have more degrees of freedom the just left
and right movers (with respect to some direction), so not only forward or backward scattering
is possible.

9However, we speculate it to be independent of the Boltzmann equation approach and
therefore of a more general nature.
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the velocities is very similar to the cancellation leading to the Landauer formula
(see eq.(1.24)) and also in this case it is a special feature of one dimension.

Next we give the explicit arguments for the above statement. We begin by for-
mally rewriting the Boltzmann equation (3.3) including the boundary conditions
as:

fkn(x) = f 0
L
(εkn) +

∫ x

0

dx′
Iknx′[f ]

vkn
for k > 0, (3.18a)

fkn(x) = f 0
R
(εkn) +

∫ x

L

dx′
Iknx′[f ]

vkn

for k < 0. (3.18b)

This is not a closed solution to the Boltzmann equation, since the distribution
function appears in Iknx′[f ] on the right hand side10. The (exact) current is found
by inserting eq.(3.18) into the current definition eq.(3.16):

Ie =
(−e)
L

∑

σnk>0

vkn

[
f 0

L
(εkn) − f 0

R
(εkn)

]

+
(−e)
L

∑

σnk>0

∫ x

0

dx′Iknx′[f ] +
(−e)
L

∫ x

L

dx′
∑

σnk<0

Iknx′[f ] (3.19)

=I(0)
e − (−e)

L

∫ L

0

dx
∑

σnk<0

Iknx[f ] +
(−e)
L

∫ x

0

dx′

=0︷ ︸︸ ︷∑

σnk

Iknx′[f ] ≡ I(0)
e + I(int)

e ,

where the integrals were manipulated as
∫ x

L
=
∫ 0

L
+
∫ x

0
and the restriction on

Iknx′[f ] due to current conservation eq.(3.6) make the x-depend term vanish. Here

we have found the current change due to scattering I
(int)
e and seen that in this term

the velocity from the current definition and distribution function cancels. Note
the connection to the first order calculation eq.(3.17): I

(int)
e = I

(1)
e +O(W 2). Note

also that the above derivation does not distinguish between local and non-local
collision integrals. It is important to stress that this does not solve the problem,
since the unknown distribution function still enters the current, however, we can
get information out from this form as we shall see now.

To show that the scattering events that conserve the number of left and
right movers do not change the current I

(int)
e , we focus on a specific example:

Three-particle scattering in a single band. The other cases like two-body scat-
tering or electron-phonon scattering are done easily after seeing this example.
The current contribution due to three-body interactions are found by inserting

10This rewriting might enlighten the iterative scheme, which could be follow to find the

distribution function numerically or otherwise.
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the three-particle collision integral eq.(3.11) into I
(int)
e eq.(3.19)11:

I(int)
e =

(−e)
L

∫ L

0

dx
∑

σ1σ2σ3
σ1′σ2′σ3′

∑

k1<0,k2,k3
k1′k2′k3′

{
W1′2′3′;123f1f2f3(1 − f1′)(1 − f2′)(1 − f3′)

−W123;1′2′3′f1′f2′f3′(1 − f1)(1 − f2)(1 − f3)
}
. (3.20)

Next we can divide the summation over the k quantum numbers into positive (k >
0) and negative (k < 0) intervals and to this end, we introduce the convenient
notation:

∑

k1<0,k2>0,k3<0
k1′>0,k2′>0,k3′<0

(·) ≡
∑

−+−
++−

(·),
∑

σ1σ2σ3
σ1′σ2′σ3′

(·) ≡
∑

spin

(·), (3.21)

where the order of the k1, k2 etc. matters.
If the scattering conserves the number of left and right movers, then the num-

ber of positive (and negative) k quantum numbers before and after the scattering

remains the same. Therefore we want to show that terms in I
(int)
e that have the

same number of positive and negative k numbers before and after the scattering
are zero. We take an illustrative example of this, where one can also see the
importance of the symmetry of particle interchange in W123;1′2′3′ :

∑

spin

∑

−+−
+−−

[
W1′2′3′;123f1f2f3(1 − f1′)(1 − f2′)(1 − f3′)

−W123;1′2′3′f1′f2′f3′(1 − f1)(1 − f2)(1 − f3)
]

=

1′↔2′︷ ︸︸ ︷∑

spin

∑

−+−
−+−

[
W2′1′3′;123f1f2f3(1 − f1′)(1 − f2′)(1 − f3′)

−W123;2′1′3′f1′f2′f3′(1 − f1)(1 − f2)(1 − f3)
]

=
∑

spin

∑

−+−
−+−

W1′2′3′;123f1f2f3(1 − f1′)(1 − f2′)(1 − f3′)

−
∑

spin

∑

−+−
−+−

W123;1′2′3′f1′f2′f3′(1 − f1)(1 − f2)(1 − f3)︸ ︷︷ ︸
interchange (123)⇆(1′2′3′)

= 0, (3.22)

where 1′ and 2′ were interchanged at the first equality and in the second equality
we used that the scattering rate is assumed to be symmetric under particle ex-
change among the initial and final states respectively, e.g. W123;1′2′3′ = W123;2′1′3′ .

11Here we drop the subband index n for simplicity. However, the statement is still true

including it.
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All order terms having the same number of positive (negative) k quantum num-
bers cancel in the same way. Therefore we have now showed that the scattering
have to change the number of left and right movers to change the current. Note
that the statement is not limited to three-particle interactions and the same proof
can be given e.g. in the case of multi-mode two-particle scattering or electron-
phonon scattering (as long as the scattering rate has the required symmetries).

However, the distribution function can be changed by processes that conserve
the number of left and right moving particles. This change of the distribution
function can make processes that change the number of left and right movers
more probable and -in this indirect way- change the current. This is a higher
order effect in the scattering rate and could therefore become important in the
non-perturbative regime. However, note that if there do not exist any processes
that changes the number of left and right movers, then the current never changes
- no matter the order.

3.4 Outlook

In this chapter, we have found the current due to electronic scattering in the
Boltzmann equation approach for a wire perfectly connected to external leads.
To first order in the scattering rate this contribution is:

I(1)
e = −L(−e)

L
∑

σnk<0

Ikn[f (0)], (3.23)

where f (0) is the initial distribution function of the leads. This term stems from
the scattering such as electron-electron interaction or electron-phonon interaction
and is an extension of the famous Landauer formula (for integer transmission).
We also discussed the statement that the scattering has to change the number
of left and right movers to change the current of the wire. In the next chapters,
we are going to consider I

(1)
e in the case of multi-mode two-body scattering and

single-mode three-body scattering.





Chapter 4

Interaction-induced resonances in

multi-mode wires

In this chapter, we consider two-body multi-mode electronic interactions pertur-
batively in a wire perfectly connected to external leads. The Boltzmann equation
approach of chapter 3 is used. We find interaction induced resonances in the con-
ductance and thermopower as a function of the Fermi level (i.e. gate voltage).
Surprisingly, the Mott formula is found to be a good approximation. Further-
more, the splitting of the resonances in a magnetic field is studied. These results
are published in paper II (p. 153).

4.1 The physical picture of the interaction-induced

resonances

Before we give a detailed account of the calculations, we try to give a physical
picture of the interaction induced resonances as a function of the Fermi level. We
focus on how it come about and how it affects the conductance and thermopower
with and without a magnetic field.

4.1.1 Interaction-induced resonances at certain Fermi

energies

Here we consider wires long enough for the electron-electron interaction to be
momentum and energy conserving. Furthermore, as we found in section 3.3,
the particle current changes if and only if the number of left and right movers
change in the interaction process. The interaction process also have to happen
near the Fermi level, otherwise the processes will be exponentially suppressed in
temperature by the filled Fermi sea. Here we consider perturbative effects only, so
a redistribution of the Fermi sea due to higher order processes in the interaction
is not taken into account. In section 1.8, we saw that in 1D the momentum and

47
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Figure 4.1: An energy and momen-

tum conserving electron-electron interac-

tion process that also changes the num-

ber of left and right movers. For this to

happen near ε
F
, we have to require that

kFa = 3kFb. If the Fermi level is increased

or decreased, then the process no longer

conserves momentum at the Fermi level,

i.e. we have identified a resonance ε
F

= ε
R

.

energy conservation forbids the electrons to redistribute due to two-body intra-
band interaction processes. Therefore we have to consider inter-band processes.
To summarize, the relevant interaction processes have to

• conserve energy,

• conserve momentum,

• change the number of left and right movers,

• have final and initial states near the Fermi level and

• be inter-band interaction processes.

This is only possible for certain values of the Fermi level1 ε
F
, or equivalently, the

gate voltage. Therefore as the Fermi level is varied the special points will appear
at certain values of ε

F
.

In the case of two modes, labelled as n = a (the lowest one) and n = b, the
situation is seen on figure 4.1. At the special resonance point ε

F
= ε

R
all the above

requirements for the interaction process are fulfilled. At the resonance point,
momentum conservation at the Fermi level leads to the following requirement for
the Fermi wave vectors of the two modes:

kFb − kFa = −2kFb ⇒ kFa = 3kFb, (4.1)

i.e. they need to have a ratio of 3 to 1. We use quadratic bands εkn,

εka =
ℏ

2k2

2m
, εkb =

ℏ
2k2

2m
+ ε0, (4.2)

where m is the effective mass and ε0 the spacing between the two first subbands
(ε0 = εk=0b − εk=0a). For simplicity the effective mass is taken to be equal for the
two bands, ma = mb ≡ m. Therefore at the resonance, kFa = 3kFb, the energy is:

ε
R

=
9

8
ε0 (quadratic bands) (4.3)

1Note that at low temperature, the chemical potential and the Fermi level are equal; Keeping

in mind that the Fermi level is defined as the zero temperature chemical potential.
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Figure 4.2: The non-interacting conductance G(0) (dashed line) and non-interacting ther-
mopower S(0) (full line) versus the Fermi energy ε

F
. We point out the special resonance point

ε
F

= ε
R

, where a dip in the conductance and a wave in the thermopower is predicted to appear
as will be explained in section 4.1.2 and 4.1.3.

abc
εF =εR⋆

k

εkn Figure 4.3: An example of a resonance in
the case of three modes. Again, the scat-
tering conserves momentum and energy and
changes the number of left and right movers.
The requirement here is kFa = 2kFc + kFb to
have a resonance. In the figure, the subband
spacing is ε1 = ε0/4, see eq.(4.6)

using the definition

ε
F

=
ℏ

2k2
Fa

2m
=

ℏ
2k2

Fb

2m
+ ε0. (4.4)

The fraction 9/8 changes for a non-quadratic dispersion relation or if ma 6= mb,
but kFa = 3kFb stemming from momentum conservation remains true. This is
the only resonance for two modes. The position of the resonance is just after the
second mode appears as a function of the Fermi energy as seen in figure 4.2. The
effect of the resonance on the conductance and thermopower will be explained
shortly.

If we have three or more modes, then more resonances will appear. An exam-
ple of a resonance for three modes is seen on figure 4.3 and momentum conser-
vation requires

kFa = 2kFc + kFb (4.5)

at the resonance. For quadratic bands

εka =
ℏ2k2

2m
, εkb =

ℏ2k2

2m
+ ε0, εkc =

ℏ2k2

2m
+ ε0 + ε1, (4.6)
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Figure 4.4: An illustration of how the scattering at the resonance ε
F

= ε
R

leads to a con-
ductance dip. Without the interaction (and V > 0), the left movers have a higher chemical
potential than the right movers and the particle current is from the right to the left contact

(so I
(0)
e = 4e2

h V > 0). At the resonance point, ε
F

= ε
R

, the interaction will effectively produce
more right movers (since µR > µL), which in terms reduces the particle current. By mov-
ing away from the resonance point, ε

F
≶ ε

R
, the scattering is suppressed by the Fermi sea.

Therefore we obtain a dip in conductance at the resonance point.

this leads to a resonance energy of the form

εR⋆ = ε0 + ε1 +
ε2
0

8(ε0 + 2ε1)
(quadratic bands), (4.7)

which moves closer to the conductance step at ε
F

= ε0 + ε1 for increasing ε1/ε0

(and for ε1 = ε0 the resonance is at εR⋆ = 49ε0/24). Another resonance for three
modes is the one similar to the two band situation (figure 4.1) kFa = 3kFc or in
energy for quadratic bands 9

8
(ε0 + ε1).

Therefore by tuning the gate voltage, i.e. the Fermi level ε
F
, the resonances

will appear at different special values, see figure 4.2. The next question is what
kind of signal one should expect at these resonance points. In the following, we
focus exclusively on the two mode case seen in figure 4.1.

4.1.2 Conductance dip at the resonance

For two fully open modes the non-interacting conductance is G(0) = 4e2/h. The
effect of the interaction-induced resonance is a dip (i.e. a negative peak) at ε

F
=

ε
R

as will be argued in the following. Remember that a left mover comes from
the right lead and vice versa.

In the scattering process seen on figure 4.1, a right mover is backscattered
to a left mover. The opposite is of course also possible at ε

F
= ε

R
. Therefore

if there is no difference between the left and right movers, then the scattering
processes does not redistribute left and right movers.

However, if we apply a bias, then the left and right movers will have different
chemical potentials as seen on figure 4.4(left). In this situation, there will be a
tendency to scatter particles from the higher to the lower chemical potential at the
resonance, i.e. for µR > µL this will create more right movers. The non-interacting
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Figure 4.5: The dimensionless
scaling functions F0(x) and F1(x)
entering the conductance correction
eq.(4.8) and the interaction-induced
thermopower eq.(4.11), respectively.

particle current for µR > µL will have an excess of left movers2 (see figure 4.4),
so the resonance reduces the conductance at ε

F
= ε

R
compared to 4e2/h. Due to

momentum conservation, the resonant scattering have to happen near ε
F

= ε
R
,

so by tuning ε
F

away from ε
R

the scattering process will be suppressed by the
Fermi sea. This leads to a dip in the conductance at the resonance.

Qualitative prediction of the conductance dip

The interaction induced correction to the conductance G(0) = 4e2/h is:

G(1) =
4e2

h

L

ℓee

T

TF

F0

(
ε
F
− ε

R

k
b
T

)
, (4.8)

which is to lowest order in temperature and perturbative in the interaction. Here
F0(x) is a dimensionless function seen in figure 4.5 and ℓee is the effective scatter-
ing length for the described scattering at the resonance (seen in figure 4.1) given
by

ℓee =
2

27

2π

kFa

(
~vFa

|V babb
2kFb

|

)2

, (4.9)

where vFa = ℏkFa/m and V babb
2kFb

is the inter band electron-electron interaction for
the process seen in figure 4.1 with a momentum change of 2kFb. Therefore the
correction is proportional to the interaction squared, the length of the wire L and
temperature: G(1) ∝ L|V babb

2kFb
|2T . The dimensionless function F0(x) is a negative

peak, so the width of the conductance dip is of order a few k
b
T . The explicit

form of F0(x) will be derived in section 4.3.
The expression for G(1) is valid for

L≪ (TF/T )ℓee, (4.10)

which amount to short lengths, low temperatures, weak scattering or a combina-
tion them. Note that this is the range, where the Luttinger liquid physics is not
relevant for a finite 1D system connected to the leads, see eq.(1.30). For longer
wires, the resonance still exists, but it is not described by the form above.

2Of course, this assumes that V > 0 in figure 4.4(right), so that I
(0)
e = 4e2

h V > 0
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εF<εR εF =εR εF>εR

(a) (b) (c)

εR
εF

εF
εR

Figure 4.6: A physical picture of the how the interaction induces a sign change of the ther-
mopower at the resonance. The right movers (blue) have a lower temperature than the left
movers (red) and therefore the left movers have a larger smearing of the Fermi level illustrated
by the thin red lines. (Of course, the degree of smearing is largely exaggerated for illustrative
purposes.) The dashed black lines are unpopulated energy bands. Due to momentum conserva-
tion the scattering have to happen at the resonance ε

R
. Therefore (and due to the temperature

difference) the interaction for ε
F
< ε

R
leads to more right movers in contrast to ε

F
> ε

R
,

which leads to more left movers and hence a sign-change of the current due to a temperature
difference TR − TL > 0 is found.

4.1.3 Sign change of the thermopower at the resonance

The non-interacting thermopower is exponentially suppressed in temperature on
the conductance plateaus, see section 1.5.2. Here we argue that the interaction
induces a sign change in the thermopower S at the resonance ε

F
= ε

R
from

S(ε
F
< ε

R
) < 0 to S(ε

F
> ε

R
) > 0. Furthermore, if |ε

F
− ε

R
| & 5k

b
T , then

S is exponentially suppressed in temperature. Therefore we predict a wave-like
structure centered at ε

F
= ε

R
.

To understand the thermopower S = GT/G, it is enough to understand GT .
Therefore consider a wire only with a temperature difference across: µR = µL

and TR = T + ∆T > TL = T . In this case, the non-interacting particle current is
from the right to the left lead: I

(0)
e ∝ e−TFb/T ∆T > 0, where TFb ≡ (ε

F
− ε0)/kb

.
Figure 4.6 shows the three situations: ε

F
< ε

R
, ε

F
= ε

R
and ε

F
> ε

R
, which we

will now consider one by one.
Exactly at the resonance, ε

F
= ε

R
, the difference in temperature between

the left and right movers does not lead to any preference for scattering, which
produces an excess of left or right movers, i.e. the purple and green scattering
processes on figure 4.6(b) are equally3 likely. In other words, the difference in
smearing of the Fermi level of the right and left movers, does not give a differ-
ent in the scattering at ε

F
= ε

R
. Therefore the interaction does not produce

thermopower at ε
F

= ε
R
.

Next consider the Fermi level below the resonance, ε
F
< ε

R
, but still within

a few k
b
T from ε

R
. Due to momentum conservation, the interaction process

3As we shall see later, the curvature of the band induces a slight difference between left
and right movers leading to a small thermopower. However, this effect is to higher order in
temperature and only shifts the zero of the sign-change of the thermopower.
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still has to happen near the resonance energy. The left movers have a higher
temperature and therefore their Fermi level is more smeared out. This gives
more left movers (than right movers) with an energy near ε

R
, which can scatter

into a right moving state4, see figure 4.6(a). Therefore more right movers are
created and hence a negative electric current, i.e. negative GT and thermopower.

In the opposite case, ε
F
> ε

R
, seen on figure 4.6(c), the right moving states

near ε
R

have a larger tendency to be filled than the left moving ones5 (since
TR > TL). Therefore the scattering is mainly out of the right moving states and
hence producing more left movers and in terms a positive electric current, i.e. a
positive thermopower.

Therefore we have seen that S(ε
F
< ε

R
) < 0 and S(ε

F
> ε

R
) > 0 and hence

the thermopower S must change sign. Furthermore, if the Fermi level is tuned
far away form the resonance (more than a few k

b
T ), then for ε

F
≪ ε

R
there are

simply no electrons with an energy near ε
R

and for ε
F
≫ ε

R
all the states near ε

R

are completely filled, i.e. we have a exponential suppression for |ε
F
− ε

R
| ≫ k

b
T

due to Fermi factors. In conclusion, the interaction at the resonance induces a
thermopower with a wave-like structure centered at the resonance.

Qualitative prediction of the interaction-induced thermopower

Since the non-interaction thermopower S(0) is exponentially suppressed in tem-
perature, the interaction-induced thermopower S(1) completely dominate the
thermopower: S = S(0) + S(1) + · · · ≃ S(1). Therefore to lowest order in temper-
ature and perturbative in the interaction the thermopower is

S =
k
b

e

L

ℓee

T

TF

F1

(
ε
F
− ε

R

k
b
T

)
, (4.11)

where the length ℓee is given in eq.(4.9) and F1(x) is a dimensionless function seen
in figure 4.5. We see the wave-like structure of S ∝ F1[(εF

− ε
R
)/k

b
T ], which we

have argued for above. As in the case of the conductance correction, we see that
S ∝ L|V babb

2kFb
|2T .

4.1.4 The conductance and thermopower have scaling forms

An interesting observation is that the conductance correctionG(1) eq.(4.8) and the
interaction-induced thermopower eq.(4.11) have a scaling form as a function of
the Fermi level at low temperatures in the sense that the dimensionless functions
only depend on (ε

F
− ε

R
)/k

b
T . This means that measurements performed at

different (low) temperatures are predicted to collapse to a single curve, when the

4In the extreme case of zero temperature of the right moving electrons, there are simply no

right moving electrons near ε
R

and therefore no production of left moving electrons.
5Again in the extreme case of zero temperature right movers, it is impossible to scatter into

the filled right moving Fermi sea and hence only left moving electrons are produced.
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data is properly scaled. These curves are the dimensionless functions F0(x) and
F1(x) seen in figure 4.5 for the conductance and thermopower, respectively.

4.2 Is the resonant scattering observable?

An order of magnitude estimate

Before we dwell into the calculation of G and S near the resonance, we discuss
the possibility of actually observing it.

To the best of our knowledge, nobody has observed it yet (or tried to) in
the traditional QPC’s made in semiconductor heterostructures even though they
have been around for a couple of decades now6. However, the effect might also
be found in other 1D systems, such as the cleaved-edge overgrowth 1D wires by
Jacobi et al. [80]. Furthermore, measuring thermopower in experiments is more
difficult than measuring the conductance.

One of the reasons, it might be hard to find the resonance is the position at
ε
F

= 9ε0/8. This is either in the beginning of the second conductance plateau
or in the worst case on the step between the first and second plateau depending
on the smearing of the steps (determent by temperature and the QPC poten-
tial). In the case that εR is on the step, or equivalently, in the non-interacting
thermopower peak, then the resonance might be difficult to distinguish on top of
the non-interacting signal. At least in principle, it is a matter of engineering and
low temperature to make sure that the resonance is on the second plateau and
in this case it might be possible to observe the resonance in G and S. Also as
we shall see, the magnetic field dependence is a good candidate for experimental
verification.

Let us now turn to the magnitude of the resonant signal in G and S. Here we
simply give a very rough order of magnitude estimate. From Appleyard et al. [31]
we extract that ε0 ∼ 10 meV from the subband spacing in their QPC’s. Therefore
near the resonance TFa ∼ 110 K, TFb ∼ 10 K and k−1

Fa ∼ 7 nm using the effective
mass m∗ = 0.067me for GaAs. The interaction is difficult to estimate, because it
depends on many effects like screening, but roughly it is |V babb

2kFb
| ∼ e2/4πǫ∗0, where

ǫ∗0 ≃ 13ǫ0 (ǫ0 being the vacuum permittivity). This leads to

ℏvFa

V babb
2kFb

∼ kFaa
∗
0 = kFaa0

13

0.067
∼ 1.4, (4.12)

6In an unpublished paper from 2004 by Proskuryakov, Nicholls, Hadji-Ristic, Kristensen

and Sørensen, some shoulder-like feature on the second single-particle thermopower peak is

observed, which could be the discussed effect. However, it violates the Mott formula in contrast

to the interaction-induced thermopower effect. In the same paper, a negative thermopower is

observed near the 0.7 structure. It would require more experimental work to make any definite

conclusions, however, the present author might - of course - be easily convinced!
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where a0 = ℏ2

mee2/4πǫ0
is the Bohr radius and a∗

0 is the effective Bohr radius. This
gives ℓee ∼ 7 nm, which is much smaller than a typical length L ∼ 100 nm.
Therefore TFaℓee/L ∼ 110K 7nm

100nm
∼ 8 K and the prefactor for say T ∼ 1 K is

about 0.1, so using F0(0) ∼ 0.4 the conductance dip is of order a few ∼ 4%
percent of 4e2/h and like-wise for the interaction-induced thermopower wave7.

However, this might be a overestimation, since the interaction is an inter -
band interaction and therefore suppressed compared to an intra-band interaction
by the orthogonality of the transverse eigenstates. This statement will be more
clear later, see p. 61. Instead of estimating the interaction, it will be possible
to extract it from the experiment and in this way, measuring the thermopower
signal would be a direct way to measure the inter-band interaction. A quantity
which is hard to get by other methods.

4.3 The current to lowest order in the interaction

In this section, we will give a detailed calculation of the conductance correction
G(1) in eq.(4.8) and the interaction-induced thermopower in eq.(4.11). The reason
for the many details is that paper II (p. 153) was only a four page paper not
leaving room for details.

The calculation is an application of the Boltzmann equation approach dis-
cussed in chapter 3. Here the electric current Ie is expanded in orders of the
scattering rate W12;1′2′ (proportional to the interaction strength squared) as

Ie = I(0)
e + I(1)

e + · · · , (4.13)

where I
(0)
e is the non-interacting result, see section 3.2.3. Therefore the starting

point is to find the electric current to first order in the scattering rate given by
eq.(3.17) as

I(1)
e = −L

(−e)

L
∑

σ1n1k1<0

Ik1n1 [f
(0)], (4.14)

where the relevant collision integral Ik1n1 [f ] is the two-body collision integral
eq.(3.7):

Ik1n1x[f ] = −
∑

σ2
σ1′σ2′

∑

n2
n1′n2′

∑

k2
k1′k2′

W12;1′2′
[
f1f2(1 − f1′)(1 − f2′) − f1′f2′(1 − f1)(1 − f2)

]
,

(4.15)

where we use the short hand notation f1 = fk1n1(x) and suppress the spin index
completely in the notation. The labelling is such that the states before (after)

7Interestingly, this estimate shows that the non-perturbative regime (L/ℓee)(T/TF) & 1
might not be out of reach experimentally.
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the scattering are unprimed (primed), see figure 3.2. The scattering rate is here
symmetric and found by using Fermis Golden rule:

W12;1′2′ =
2π

ℏ
|〈k1′n1′k2′n2′ |V|k1n1k2n2〉|2 δ(ε1 + ε2 − ε1′ − ε2′), (4.16)

where εi = εkini
, V is the electron-electron interaction operator and the matrix

element contains both an direct and exchange term. The non-interacting distri-
bution function f (0) that we need to insert in eq.(4.14) is given by the reservoirs:

f
(0)
kn = f 0

L
(εkn)θ(k) + f 0

R
(εkn)θ(−k). (4.17)

Linear response in ∆T and V and the non-interacting current

Now we calculate the current I
(0)
e and I

(1)
e to linear order in the apply bias V and

temperature difference ∆T , i.e. in the linear response limit. The temperatures
and chemical potentials of the two reservoirs are taken to be:

TL = T, TR = T + ∆T, µL = ε
F

+ eV, µR = ε
F
. (4.18)

With this convention for V and ∆T we have

Ie = −GV +GT ∆T. (4.19)

Note that in linear response it does not matter that we apply ∆T and V asym-
metrically, but we do it for calculational simplicity. With the above convention
for V and ∆T the non-interacting current I

(0)
e eq.(3.17) for the two bands in

eq.(4.2) in linear response becomes:

I(0)
e =

(−e)
L

∑

n=a,b

∑

σk>0

vkn

(
f 0

L
(εkn) − f 0

R
(εkn)

)
(4.20)

= − 2e2

h
V

[
h

(
TF

T

)
+ h

(
TFb

T

)]
+

2e

h
k
b
∆T

[
D

(
TF

T

)
+D

(
TFb

T

)]
,

where

TF = ε
F
/k

b
, TFb ≡ (ε

F
− ε0)/kb

, (4.21)

D(x) = x
1+ex + ln(1 + e−x) and h(x) = 1

1+e−x . To lowest non-vanishing order in
temperature T ≪ TFb ≪ TF this is

I(0)
e = −4e2

h
V +

2e

h

TFb

T
e−TFb/Tk

b
∆T, (4.22)

which only has exponential corrections on the conductance plateau.
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As a general tool, we introduce the deviation ψkn(x) from the equilibrium
distribution function by the relation [115]

fkn(x) = f 0(εkn) + f 0(εkn)[1 − f 0(εkn)]ψkn(x). (4.23)

This definition is a cleaver one, if the distribution function changes mostly around
the Fermi level. To first order in ψ, the term in the square bracket of the collision
integral eq.(4.15) becomes:

f1f2(1 − f1′)(1 − f2′) − f1′f2′(1 − f1)(1 − f2) =

f 0
1 f

0
2 (1 − f 0

1′)(1 − f 0
2′) [ψ1 + ψ2 − ψ1′ − ψ2′ ] + O(ψ2) (4.24)

using the H-theorem f 0
1 f

0
2 (1 − f 0

1′)(1 − f 0
2′) = f 0

1′f
0
2′(1 − f 0

1 )(1 − f 0
2 ) valid for

energy conserving scattering and the short hand notation ψi = ψkini
(x) and

f 0
i = f 0(εkini

).
In our case, we only use this general expression to get the linear response limit

of I
(1)
e . To this end, we expand the Fermi functions for the left and right lead as:

f 0
L
(εkn) = f 0(εkn) +

[
−∂εf

0(εkn)
]
eV + O(V 2), (4.25a)

f 0
R
(εkn) = f 0(εkn) +

[
−∂εf

0(εkn)
]
(εkn − ε

F
)
∆T

T
+ O(∆T 2), (4.25b)

where f 0(εkn) is the Fermi function with the equilibrium temperature T and
Fermi energy ε

F
inserted. By noting the identity

f 0(ε)(1 − f 0(ε)) = k
b
T [−∂εf

0(ε)] (4.26)

and using eq.(4.25), the zeroth order deviation ψ
(0)
kn from the equilibrium distri-

bution function is identified to be

ψ
(0)
i =

{
eV
k
b
T
, for ki > 0

εkini
−ε

F

k
b
T

∆T
T
, for ki < 0

. (4.27)

Therefore to find I
(1)
e eq.(4.14) to linear order in V and ∆T , we insert ψ(0)

eq.(4.27) into eq.(4.24) and then into the collision integral Ik1n1 [f
(0)] eq.(4.15),

i.e.

I(1)
e = L

(−e)
L

∑

σ1σ2
σ1′σ2′

∑

n1n2
n1′n2′

∑

k1<0,k2
k1′k2′

∆12;1′2′

[
ψ

(0)
1 + ψ

(0)
2 − ψ

(0)
1′ − ψ

(0)
2′

]
+ O(V 2,∆T 2),

(4.28)

where

∆12;1′2′ ≡W12;1′2′f
0
1 f

0
2 (1 − f 0

1′)(1 − f 0
2′), (4.29)

which is the linear response expression for I
(1)
e .
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The interaction needs to change the number of left and right movers

To proceed, the ψ
(0)
i is inserted into the current correction I

(1)
e eq.(4.28). Since

ψ
(0)
i is different for positive and negative ki, we need to separate each summation

over k into two terms. This creates 23 = 8 terms (since k1 < 0). It is at this stage
of the calculation, where all the processes that do not change the number of left
and right movers in the interaction cancel out. This is a special case of the more
general statement made in section 3.3: A scattering process changes the current,
if and only if, it changes the number of left and right movers. As an example of
the cancellation consider the term representing the simultaneous backscattering
of a left and a right mover to a right and a left mover, i.e.

∑

σ1σ2
σ1′σ2′

∑

n1n2
n1′n2′

∑

−+
+−

∆12;1′2′
[
ψ

(0)−
1 + ψ

(0)+
2 −ψ(0)+

1′ − ψ
(0)−
2′︸ ︷︷ ︸

1′↔2 and 2′↔1

]
= 0, (4.30)

using that ∆12;1′2′ = ∆2′1′;21, the short-hand notation ψ
(0)
i = θ(ki)ψ

(0)+
i +θ(−ki)ψ

(0)−
i

and the convention
∑

k1<0,k2>0
k1′>0,k2′<0

(· · · ) ≡
∑

−+
+−

(· · · ). (4.31)

The invariance of ∆12;1′2′ under exchange of the indices follows from eq.(4.29) and
eq.(4.16)8. Furthermore, one term is backscattering of two left movers to two right
movers (−− → ++), which is not allowed due to momentum conservation present
in W12;1′2′ . Doing variable changes in the last four terms and using the symmetry
under variable change in ∆12;1′2′ (e.g. ∆12;1′2′ = ∆21:1′2′ and ∆12;1′2′ = ∆1′2′;12 )
and energy conservation, we get:

I(1)
e =L

(−e)
L

∑

σ1σ2
σ1′σ2′

∑

n1n2
n1′n2′

∑

−+
++

∆12;1′2′

[
∆T

k
b
T 2

(ε1 − ε
F
) − eV

k
b
T

]

+L
(−e)
L

∑

σ1σ2
σ1′σ2′

∑

n1n2
n1′n2′

∑

+−
−−

∆12;1′2′

[
∆T

k
b
T 2

(ε1 − ε
F
) − eV

k
b
T

]
. (4.32)

If we also use that ∆12;1′2′ is invariant under all ki → −ki (i = 1, 2, 1′, 2′) simul-

taneously due to time invariance symmetry, then I
(1)
e becomes

I(1)
e = 2L

(−e)
L

∑

σ1σ2
σ1′σ2′

∑

n1n2
n1′n2′

∑

−+
++

∆12;1′2′

[
∆T

k
b
T 2

(ε1 − ε
F
) − eV

k
b
T

]
. (4.33)

8As an example consider: ∆12;1′2′ = ∆1′2′;21, which can be argued in the following way: The
final and initial states can be interchange due to the H-theorem for the Fermi functions eq.(3.10)
and in W12;1′2′ , since this is a matrix element times an even function of ε1 + ε2 − ε1′ − ε2′ .
Within the final/initial states the indices can also be exchanges since |12〉 = −|21〉 and the sign
vanish, when taking the square to get W12;1′2′ .
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Next we constrict ourself to the situation of two bands and do the summation
over the band indices consisting of 16 terms. In the k-summation, we have one
left mover (k1 < 0) and three right movers. By using this fact combined with
momentum and energy conservation, there is only one possible combination of
band indices: n1 = b, n2 = a and n1′ = n2′ = b. This correspond exactly to
the resonant scattering process described in section 4.1.1 (p. 47) and seen on
figure9 4.1. Therefore we have now seen how this resonant scattering process
appears formally. Momentum conservation restricts the scattering process, so
it is only possible near kFa = 3kFb, (see section 4.1.1). Therefore I

(1)
e only has

non-exponential terms, if the Fermi level is close to the resonance energy, i.e.

I(1)
e = 2L

(−e)
L
∑

σ1σ2
σ1′σ2′

∑

−+
++

∆12;1′2′

[
∆T

k
b
T 2

(ε1 − ε
F
) − eV

k
b
T

] ∣∣∣∣∣n2=a, n1=b
n1′=n2′=b

+ O
(
e−

T
Fb
T

)
.

(4.34)

The task is now to evaluate this to lowest order in the temperature.

4.3.1 The electron-electron interaction matrix element

To calculate I
(1)
e eq.(4.34), the matrix element of the electron-electron interaction

entering the scattering rate W12;1′2′ eq.(4.16) is now considered10.
First of all, in the perturbative approach it is the non-perturbed states, which

are used to calculate the matrix element. Here this is the single-particle (non-
interacting) states

ψknσ(x, y) =
1√
L
eikxϕn(y)χσ, (4.35)

where ϕn(y) is the eigenstate of the transverse mode11 (n = a, b) and χσ is the spin
eigenstate. In general, any two-body interaction operator in second quantization
is [14, chap. 1]

V =
1

2

∑

121′2′

V1′2′;12 c
†
1′c

†
2′c2c1, (4.36)

where c†i (ci) is the creation (annihilation) operator and

V1′2′;12 =

∫
dr1

∫
dr2 ψ

∗
1′(r1)ψ

∗
2′(r2)V (r1, r2)ψ1(r1)ψ2(r2) (4.37)

9Note that on figure 4.1, we have actually shown the process where a left mover is produced
instead of a right mover as in the present calculation. Note that we could just as well have
manipulated the result eq.(4.33) into the

∑
+−
−−

form, which would match the process on figure

4.1.
10Note that this calculation of course can be done without using second quantization.
11For simplicity, we take the transverse mode to be one dimensional. We could, however,

equally well have described it as being two dimensional.
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in terms of the first quantization operator V (r1, r2). In the case of electron-
electron interactions in a 1D wire inserting the single-particle states of eq.(4.35)
gives

V =
1

2L
∑

σ1σ2

∑

n1n2
n1′n2′

∑

k1k2q

V n1n2n1′n2′
q c

†
k1+qn1′σ1

c
†
k2−qn2′σ2

ck2n2σ2
ck1n1σ1

, (4.38)

where the electron-electron interaction is only Fourier transformed along the wire
keeping the transverse modes in real space i.e.

V n1n2n′
1n′

2
q =

∫ L
2

−L
2

dx e−iqx

∫ d
2

− d
2

dy1

∫ d
2

− d
2

dy2 ϕ∗
n1′

(y1)ϕ
∗
n2′

(y2)V (x, y1 − y2)ϕn1
(y1)ϕn2

(y2),

(4.39)

where d is the width of the cannel and V (x, y) is the interaction, e.g. a screened
Coulomb interaction. Here we have incorporated the momentum conservation12

k1 + k2 = k1′ + k2′ and spin conservation σi = σi′ into the operator in eq.(4.38).
To calculate the matrix element 〈1′2′|V|12〉 the symmetrized two-particle states,

|12〉 = |k1n1σ1k2n2σ2〉 = c
†
k1n1σ1

c
†
k2n2σ2

|0〉, (4.40)

|1′2′〉 = |k1′n1′σ1′k2′n2′σ2′〉 = c
†
k
1′

n
1′

σ
1′
c
†
k
2′

n
2′

σ
2′
|0〉, (4.41)

and the electron-electron operator eq.(4.38) is used to obtain:

〈1′2′|V|12〉 =
1

2Lδk1+k2,k
1′

+k
2′

[
(V

n1n2n1′n2′

k
1′
−k1

+ V
n2n1n2′n1′

k1−k
1′

)δσ1 ,σ1′
δσ2 ,σ2′

− (V
n1n2n2′n1′

k2′−k1
+ V

n2n1n1′n2′

k1−k2′
)δσ1 ,σ2′

δσ2 ,σ1′

]
. (4.42)

If we use that the interaction is only a function of the distance between the
electrons, then it is even in both coordinates, e.g. V (x,−y) = V (

√
x2 + y2) =

V (x, y). This leads to the relations

V n1n2n1′n2′
q = V n2n1n2′n1′

q and V
n1n2n1′n2′

−q = V n1n2n1′n2′
q (4.43)

using eq.(4.39). Therefore the matrix element simplifies to

〈1′2′|V|12〉 =
1

Lδk1+k2,k
1′

+k
2′

[
V

n1n2n1′n2′

k
1′
−k1

δσ1 ,σ1′
δσ2 ,σ2′︸ ︷︷ ︸

The direct term

−V
n1n2n2′n1′

k2′−k1
δσ1 ,σ2′

δσ2 ,σ1′︸ ︷︷ ︸
The exchange term

]
,

(4.44)

12Note that in order to have exact momentum conservation coming out of the V1′2′,12, we

need L = L. Therefore the momentum conservation is here an ansatz working well for L≫ k−1
F

.
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which is the matrix element needed for I
(1)
e . The first term is often called the

direct interaction and the second term is called the exchange interaction, since
the last term can be obtained from the first term by exchanging the final states
(k1′, n1′ , σ1′) ↔ (k2′ , n2′, σ2′). The exchange term is a manifestation of the fact
that quantum particles are indistinguishable.

Inserting n2 = a and n1 = n1′ = n2′ = b for the particular process in mind
and doing the summation over spin as it is required in the current eq.(4.34), we
obtain

∑

σ1σ2
σ1′σ2′

|〈k1′bσ1′k2′bσ2′ |V|k1bσ1k2aσ2〉|2 =

4

L2
δk1+k2,k

1′
+k

2′

{
|V babb

k
1′
−k1

|2 + |V babb
k
2′
−k1

|2 − Re
[
V babb

k
1′
−k1

(V babb
k
2′
−k1

)∗
]}

. (4.45)

This is the result for zero magnetic field. Later we shall see that it is at this point
of the calculation that a finite magnetic field changes the situation, since the 1D
subbands spin split and so does the resonance.

Magnitude of the inter-subband interaction

The magnitude of the inter-band interaction |V babb|2 decides the magnitude of
the interaction-induced resonances in G and S and is therefore an important
quantity.

In eq.(4.39) for V
n1n2n1′n2′
q the transverse eigenstates ϕn(y) appears. Since the

transverse modes of the subbands are orthogonal,
∫

dyϕ∗
n(y)ϕn′(y) = δn,n′, the

inter -subband interactions such as V babb are suppressed compared to the intra-
subband interactions such as V bbbb. If we were to use a model of the interaction
where V (x, y) ∝ δ(y), then the inter-subband interaction would be exactly zero.
However, for a general dependence of y in V (x, y), the inter-subband interaction
is nonzero. How much the inter-subband interaction is suppressed compared to
the intra-subband interaction depends heavily on the model for the transverse
states and the interaction. However, note that no intra-subband processes can
induce a resonance due to the criteria presented in section 4.1.1.

4.3.2 The current to lowest order in the temperature

Next we calculated the current correction I
(1)
e in eq.(4.34) in the low temperature

limit:

T ≪ TFb = (ε
F
− ε0)/kb

≪ TF. (4.46)

The strategy of finding the low temperature limit is to introduce new dimen-
sionless integration variables in the k-integrals and then expand the integrand
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in orders of T/TFb. This is a rigorous procedure and can be used in various
situations apart from the present one.

We begin by inserting the matrix element including the spin sums from
eq.(4.45) into eq.(4.34) and transforming the sums over the wave vectors into
integrals,

∑
k → L

2π

∫
dk, i.e.:

I(1)
e =

2(−e)L

π2ℏ

∫ 0

−∞
dk1

∫ ∞

0

dk2

∫ ∞

0

dk1′

∫ ∞

0

dk2′ f 0
1 f 0

2 (1 − f 0
1′)(1 − f 0

2′) (4.47)

×
{
|V babb

k
1′
−k1

|2 + |V babb
k
2′
−k1

|2 − Re
[
V babb

k
1′
−k1

(V babb
k
2′
−k1

)∗
]}

× δ(k1 + k2 − k1′ − k2′)δ(ε1 + ε2 − ε1′ − ε2′)

[
∆T

k
b
T 2

(ε1 − ε
F
) − eV

k
b
T

]

where the normalization length L cancels out13 and the band indices from now
on are n2 = a and n1 = n1′ = n2′ = b. In order to expand in temperature new
dimensionless integration variables are introduced as

zj =
εj − ε

F

k
b
T

for j = 1, 2, 1′, 2′. (4.48)

Next we express all quantities in eq.(4.47) in the new variables and expand them
to lowest order non-vanishing order in temperature. First of all the integral
change as (remembering that k1 < 0)

∫ 0

−∞
dk1(· · · ) =

∫ ε0

∞
dε1

(
−
√

m

2ℏ2(ε1 − ε0)

)
(· · · )

∣∣∣∣
k1=−

√
2m(ε1−ε0)

ℏ2

=
kFb

2

T

TFb

∫ ∞

−TFb/T

dz1
(· · · )√

1 + z1
T

TFb

∣∣∣∣
k1=−kFb

√
1+z1

T
T
Fb

, (4.49)

∫ ∞

0

dk2(· · · ) =

∫ ∞

0

dε2

√
m

2ℏ2ε2

(· · · )
∣∣∣∣
k2=

√
2mε2

ℏ2

=
kFa

2

T

TFa

∫ ∞

−TFa/T

dz2
(· · · )√

1 + z2
T

TFa

∣∣∣∣
k2=kFa

√
1+z2

T
T
Fa

, (4.50)

∫ ∞

0

dk1′(· · · ) =

∫ ∞

ε0

dε1′

√
m

2ℏ2(ε1′ − ε0)
(· · · )

∣∣∣∣
k1′=

√
2m(ε

1′
−ε0)

ℏ2

=
kFb

2

T

TFb

∫ ∞

−TFb/T

dz1′
(· · · )√

1 + z1′
T

TFb

∣∣∣∣
k1′=kFb

√
1+z1′

T
T
Fb

, (4.51)

13The Kronecker-delta function for momentum conservation are made into a Dirac delta

function as
∑

k δk,q(· · · ) =
∫

dkδ(k− q)(· · · ), i.e. without the factor of L
2π , so the normalization

length L does indeed cancel out in I
(1)
e as it should.
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where k2′ is as k1′ and TFa ≡ TF was introduced for notational consistency14. The
wave vectors k as a function of z was indicated. To lowest order in temperature
the above density of states are simply constant, i.e.

1√
1 + zi

T
TFb

= 1 + O
(
T

TFb

)
. (4.52)

This approximation is equivalent to using linear bands and including higher order
terms in T is the same as including curvature effects of the dispersion. The wave
vectors k as a function of z to lowest order in T is also the same as using a linear
dispersion:

k1 = −kFb

√(
1 + z1

T

TFb

)
≃ −kFb

(
1 +

1

2
z1

T

TFb

)
, (4.53)

and

k2 ≃ kFa

(
1 +

1

2
z2

T

TFa

)
, ki′ ≃ kFb

(
1 +

1

2
zi′

T

TFb

)
, (i = 1, 2). (4.54)

Therefore the momentum conservation term in eq.(4.47) becomes

δ(k1 + k2 − k1′ − k2′) ≃
2

kFb

TFb

T
δ

(
−z1 +

kFb

kFa
z2 − z1′ − z2′ −

8

3

∆ε
F

k
b
T

)
, (4.55)

where we have introduced the parameter

∆ε
F

k
b
T

≡ 3

8

ℏvFb(3kFb − kFa)

k
b
T

(4.56)

measuring the detuning away from the resonance at kFa = 3kFb. At the resonance
we have ∆ε

F
= 0 and ∆ε

F
is positive (negative) for ε

F
> ε

R
(ε

F
< ε

R
). An

expansion of ∆ε
F

in ε
F

around ε
R

= 9ε0/8 gives:

∆ε
F

k
b
T

≃ (ε
F
− ε

R
)

k
b
T

, (4.57)

which is seen on figure 4.7 to be a rather good approximation in the low tem-
perature regime of interest (i.e. for ε

F
within a few k

b
T of ε

R
). Here we take

∆ε
F
/k

b
T as a parameter of order ∼ 1 and in the end of the calculation it turns

out to be the argument of the functions F0 and F1 in G(1) eq.(4.8) and S eq.(4.11),
respectively. Returning to the momentum conservation eq.(4.55), we note that

14Each band has its own temperature scale: TFa = ε
F
/k

b
for band a and TFb = ℏ2k2

Fb/(2m) =
(ε

F
− ε0)/kb for band b.
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Figure 4.7: The parameter ∆ε
F

as a function of ε
F

(full line) from eq.(4.56) and the approximation ∆ε
F
≃

(ε
F
− ε

R
) (red dashed line) in units of ε0. For low

temperatures T ≪ (ε
F
− ε0)/kb the approximation is

good in the regime of interest, where ε
F

is up to a
few kbT from ε

R
= 9ε0/8. Note that the band edge

ε
F

= ε0 is not of interest in the present calculation.

kFa

kFb

= 3 − 8

6

T

TFb

∆ε
F

k
b
T

≃ 3 (4.58)

to lowest order in temperature, which is inserted into the momentum conservation
eq.(4.55), i.e.

δ(k1 + k2 − k1′ − k2′) ≃
2

kFb

TFb

T
δ

(
−z1 +

1

3
z2 − z1′ − z2′ −

8

3

∆ε
F

k
b
T

)
. (4.59)

The energy conservation is easily rewritten as

δ(ε1 + ε2 − ε1′ − ε2′) =
1

k
b
T

δ(z1 + z2 − z1′ − z2′) (4.60)

and so are the Fermi function

f 0
1 f 0

2 (1 − f 0
1′)(1 − f 0

2′) = g(z1)g(z2)g(−z1′)g(−z2′) (4.61)

defining

g(z) ≡ 1

1 + ez
. (4.62)

Now we only need the interaction factor to lowest order in T to have all the
ingredients for I

(1)
1 in eq.(4.47). The direct interaction V babb

k1′−k1
and the exchange

interaction V babb
k2′−k1

are functions of the differences k1′−k1 and k2′−k1, respectively.
To lowest order in temperature both these differences are equal to 2kFb, so
{
|V babb

k
1′
−k1

|2 + |V babb
k
2′
−k1

|2 − Re
[
V babb

k
1′
−k1

(V babb
k
2′
−k1

)∗
]}

= |V babb
2kFb

|2 + O
(

T

TFb

)
, (4.63)

and the higher orders in temperature will include derivatives of the interaction
∂qV

babb
2kFb

with respect to the momentum transfer q = ki′ − k1. Therefore I
(1)
e

eq.(4.47) to lowest order in temperature is:

I(1)
e =

2(−e)L

π2ℏ

(kFb)
2kFa

8(ε
F
− ε0)

∣∣V babb
2kFb

∣∣2 T

TFb
(4.64)

×
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dz1′

∫ ∞

−∞
dz2′ g(z1)g(z2)g(−z1′)g(−z2′)

× δ(z1 + z2 − z1′ − z2′)δ

(
−z1 +

1

3
z2 − z1′ − z2′ −

8

3

∆ε
F

k
b
T

)[
∆T

TFa
z1 −

eV

ε
F

]
,
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where all the lower limits of the integrals are extended to infinity, −T/TFb/a →
−∞, since this only amount to include the extra exponentially small tales of the
integrand and therefore only includes an exponentially small (i.e. ∝ e−TFb/a/T )
number. Furthermore, the prefactor can be rewritten using kFa ≃ 3kFb eq.(4.58)
as

2(−e)L

π2ℏ

(kFb)
2kFa

8(ε
F
− ε0)

∣∣V babb
2kFb

∣∣2 T

TFb
=

Unit of current︷ ︸︸ ︷
9(−e)ε

F

π2ℏ
LkFa

(∣∣V babb
2kFb

∣∣
ℏvFa

)2
T

TF

+ O
[(

T

TF

)2
]

.

The lowest order expansion in temperature in eq.(4.64) is equivalent to using the
(momentum independent) value of the interaction at the Fermi level and linear
bands from the beginning from the calculation, however, here we have presented
the rigorous justification of this (often used approximation).

Next we show how to manipulate I
(1)
e in eq.(4.64) into the form of the functions

F1 and F0 in G(1) eq.(4.8) and S eq.(4.11), respectively.
First of all, we note that for ∆ε

F
= 0 the term proportional to ∆T is zero,

since the z1 integrand is odd. This can be seen explicitly by making a variable
transformation (z2 , z1′ , z2′) → (−z2 ,−z1′ ,−z2′) and using

g(−z1)g(−z2)g(z1′)g(z2′)δ(−z1 − z2 + z1′ + z2′) =

g(z1)g(z2)g(−z1′)g(−z2′)δ(z1 + z2 − z1′ − z2′). (4.65)

However for ∆ε
F
6= 0 this is not true and for the eV term the z1 integrand is

even. Therefore it is now evaluated.
To do some of the integrals in eq.(4.64) analytically, new variables are intro-

duced as

zs = z1′ + z2′ and zd = z1′ − z2′ , (4.66)

and the determinant for the variable change is 1/2. The integral over zd can be
done separately, since zd does not enter in the delta functions. It is

∫ ∞

−∞
dzd g(−z1′)g(−z2′) =

∫ ∞

−∞
dzd g

[
− 1

2
(zs + zd)

]
g
[
− 1

2
(zs − zd)

]
= −2zsnB(−zs) (4.67)

where

nB(x) =
1

ex − 1
. (4.68)

Using the energy conservation to do the zs-integral (i.e. zs = z1 + z2) and af-
terwards using the momentum conservation delta function to do the z2-integral
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(i.e. z2 = −3z1 − 4∆ε
F
/k

b
T ), we arrive at

I(1)
e = −3

2

9(−e)ε
F

π2ℏ
LkFa

(∣∣V babb
2kFb

∣∣
ℏvFa

)2
T

TF

∫ ∞

−∞
dz1 g(z1)g

(
−3z1 − 4

∆ε
F

k
b
T

)

×
{
−2z1 − 4

∆ε
F

k
b
T

}
nB

(
2z1 + 4

∆ε
F

k
b
T

)[
∆T

TF

z1 −
eV

ε
F

]
. (4.69)

This is rewritten into a more appealing form by introducing

h(z, x) ≡ g(z)g (−3z − 4x) (−2z − 4x)nB(2z + 4x)

=
−(z + 2x)

4 sinh(2x + z) cosh(z/2) cosh(2x + 3z/2)
(4.70)

and the length scale ℓee in eq.(4.9) and we get

I(1)
e =

4e

h

L

ℓee

T

TF

∫ ∞

−∞
dz h

(
z,

∆ε
F

k
b
T

)
[k

b
∆Tz − eV ] = G

(1)
T ∆T − G(1)V, (4.71)

using eq.(4.19). The thermopower S = GT /G to lowest order in temperature is

S ≃ G
(1)
T /G(0) (since G

(0)
T ∝ e−TFb/T ), so we can read off the conductance and

thermopower to lowest order in the interaction and lowest order in temperature
to be:

G =
4e2

h
+

4e2

h

L

ℓee

T

TF

F0

(
ε
F
− ε

R

k
b
T

)
, (4.72a)

S =
k
b

e

L

ℓee

T

TF

F1

(
ε
F
− ε

R

k
b
T

)
, (4.72b)

using that ∆ε
F
/k

b
T ∼ (ε

F
− ε

R
)/k

b
T eq.(4.57), where Fn(x) is

Fn(x) =

∫ ∞

−∞
dz znh(z, x), (4.73)

seen in figure 4.5 for n = 0, 1. This is the result we set out to find.

4.3.3 Higher orders in temperature

We have also calculated the next order in temperature of the current of first order
in the interaction I

(1)
e in eq.(4.47). This is done by extending the calculation pre-

sented above. This amounts to going beyond linear bands and thereby including
curvature effects of the dispersion. Furthermore, the derivative of the interaction
∂qV

babb
2kFb

begins to play a role.
One of the results of the higher order calculation is that the thermopower at

the resonance kFa = 3kFb is nonzero, i.e.

G
(2)
T (∆ε

F
= 0) = −4ek

b

ℏ
0.86

3

π

L

ℓee

(
T

TF

)2

, (4.74)
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Figure 4.8: A comparison of F1(x)

(full line) and π2

3
dF0(x)

dx (dashed line) ap-
pearing in the interaction-induced ther-
mopower eq.(4.72b) and the Mott formula
result eq.(4.76), respectively. It is observed
that the Mott formula is a good approxi-
mation here, even though the thermopower
is only due to interactions.

where the prefactor 0.86 is the result of a numerical evaluation of an integral.
This result is purely due to the curvature of the dispersion, since the second
order term in T proportional to ∂qV

babb
2kFb

is zero at the resonance. This result
shows that the curvature of the dispersion shifts the resonance point slightly to
a higher value of the Fermi level. However, the sign change of the thermopower
as a function of ε

F
still appears.

To lowest order in temperature S and G eq.(4.72) are symmetric in ε
F

around
ε
R

(apart from the prefactor), see figure 4.5. Another result of the next order in
temperature calculation is that the form becomes asymmetric. This asymmetry
is only due to the derivative of the dispersion ∂qV

babb
2kFb

and the term from the
curvature of the dispersion still gives a symmetric contribution. However, to say
more about these issues, one could e.g. make a numerical evaluation of I

(1)
e in

eq.(4.47).

4.4 The Mott formula

The Mott formula gives the thermopower in terms of the conductance as

SM =
π2

3

k
b

e
kBT

1

G

dG

dε
F

, (4.75)

and it is often argued to be a low temperature approximation valid for non-

interacting electrons (e.g. in Ref. [68]). Here we simply try to use the Mott
formula and find that it is a surprisingly good approximation, even though we
are dealing with a thermopower solely due to interaction effects.

Inserting the conductance G ≃ G(0) + G(1) eq.(4.72a) into the Mott formula
gives

SM ≃ k
b

e

L

ℓee

T

TF

π2

3

dF0(x)

dx

∣∣∣∣
x=
(

ε
F
−ε

R

kbT

) (4.76)

to lowest order in temperature for ε
F

within a few k
b
T of ε

R
. In figure 4.8, we

observe that F1(x) is well approximated by π2

3
dF0(x)

dx
and hence the Mott formula
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result eq.(4.76) is a good approximation to the interaction-induced low temper-
ature thermopower S in eq.(4.72b). Therefore the resonance due to interactions
cannot be detected by a violation of the Mott formula.

4.5 Magnetic field splitting of the resonance

In this section, the effect of a magnetic field on the interaction-induced resonance
is discussed. First we describe how a magnetic field spin split the 1D modes in
the quantum wire and in terms splits the resonance at ε

F
= ε

R
into four reso-

nances ε
F

= εσσ′

R
. Next we argue that two of the resonances describing scattering

between equal spins are significantly suppressed compared to the scattering be-
tween opposite spins due to the Pauli principle. In the end, we make an explicit
calculation of the effect.

4.5.1 The magnetic field splits the subbands

The finite quantum wire connected to leads is imbedded into a 2D electron
gas. Here we imagine a uniform and constant magnetic field B being applied
in the plane of the 2D electron gas and thereby we are not in the quantum
hall regime15.(Note that for a small magnetic field component perpendicular to
the plane the following is still qualitatively true.) Therefore it is only the elec-
trons magnetic moment µ̄ due to its spin σ that couples to the magnetic field as
HB = −µ̄ · B. This leads to a spin-splitting of the energy bands as:

εka↓ =
ℏ2k2

2m
− 1

2
gµBB, εka↑ =

ℏ2k2

2m
+

1

2
gµBB, (4.77a)

εkb↓ =
ℏ2k2

2m
+ ε0 −

1

2
gµBB and εkb↑ =

ℏ2k2

2m
+ ε0 +

1

2
gµBB, (4.77b)

where µB = eℏ

2m
is the Bohr magneton, g is the so-called g-factor16 and B = |B|

is the magnitude of the magnetic field. A natural definition of the Fermi wave
vectors kFaσ and kFbσ for the spin-split bands is

ε
F

=
ℏ

2k2
Faσ

2m
+ σ

1

2
gµBB, ε

F
=

ℏ
2k2

Fbσ

2m
+ ε0 + σ

1

2
gµBB (4.78)

where σ =↑= +1 and σ =↓= −1. This also defines the spin-split Fermi temper-
atures as k

b
TFnσ = ℏ

2k2
Fnσ/(2m).

15In general, the effect of a magnetic field on the motion of a spinless particle with change q
is to change the Hamiltonian to H = 1

2m (p − qA)2, where B = ∇ × A and p = −iℏ∇. This
gives rise to Landau levels and if we apply the field along the wire, then the wave function in
the plane of the 2D gas presented in eq.(4.35.) is not changed, see e.g. [127].

16In vacuum it is about two, but in solids the effective g-factor can vary in size and sign due
to a number of effects, e.g. spin-orbit coupling.
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ε↑↑R
ε↓↓R

(a)

ε↑↓R
ε↓↑R

(b)

Figure 4.9: For a nonzero magnetic field the resonance at ε
F

= ε
R

for B = 0 splits up into
four resonances: (a) Two for scattering between electrons with the same spin and (b) two for

scattering between electrons with opposite spin. The four resonance energies ε↑↑
R

(red), ε↓↓
R

(purple), ε↑↓
R

(green) and ε↓↑
R

(blue) are seen for gµBB = 0.15ε0, but we have only show the

scattering process for ε↑↑
R

and ε↑↓
R

to keep the illustration simple. In the case of scattering
between equal spins in (a), the final states are the same, which is forbidden by the Pauli
principle and hence the scattering is heavily suppressed compare to the scattering between
different spins (see the text for further explanation).

If the spin-splitting gµBB is larger than k
b
T and the smearing of the trans-

mission due to geometry17, then additional conductance steps of size e2/h appears
and also the thermopower peaks splits up as seen on figure 4.10. Experimentally
this is also a well-known fact, see e.g. [19].

4.5.2 The interaction-induced resonances in a magnetic field

The principle leading to a interaction-induced resonance is the same with and
without a magnetic field. Therefore a resonant scattering process still has to
obey the requirements stated in section 4.1.1, i.e. change the number of left
and right movers, conserve momentum and energy, and happen near the Fermi
energy. Furthermore, the scattering conserves the spin in the sense that the final
and initial state of an electron has the same spin, since the interaction cannot
produce spin-flipping. Therefore there is no resonances at e.g. kFa↓ = 3kFa↑.

However, the resonance for kFa = 3kFb with B = 0 is split into four resonances:
Two resonant scattering processes between electrons with equal spins seen in
figure 4.9(a) and two scattering processes between electrons with opposite spins,
see figure 4.9(b). Momentum conservation k1 + k2 = k1′ + k2′ gives the resonant
conditions and using the quadratic dispersion eq.(4.77) the resonant energies εσσ′

R

17In the saddle-point model, this is ℏωx (see section 1.5.1).
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εF

G(0) S(0)

e2

h

gµBB = 0.15ε0

Figure 4.10: The non-interaction conductance steps and thermopower peaks spin spilt due
to the magnetic field. So does the interaction-induced resonance and here we illustrate the
position of the resonances for gµBB = 0.15ε0. Each color indicates a specific resonance, see
eq.(4.79). The resonances in G and S might be masked by the non-interaction signal depending

on the value of gµBB. In this case, ε↓↓
R

and ε↓↑
R

might be hidden in the non-interacting signal.

are also found, i.e.:

↑↑: kFa↑ = 3kFb↑, ε↑↑
R

=
9

8
ε0 +

1

2
gµBB, (Red) (4.79a)

↓↓: kFa↓ = 3kFb↓, ε↓↓
R

=
9

8
ε0 −

1

2
gµBB, (Purple) (4.79b)

↑↓: kFa↓ = 2kFb↑ + kFb↓, ε↑↓
R

= ε0

9 + 20gµBB
ε0

+ 8
(

gµBB
ε0

)2

8
(
1 + 2 gµBB

ε0

) , (Green) (4.79c)

↓↑: kFa↑ = 2kFa↓ + kFb↑, ε↓↑
R

= ε0

9 − 20 gµBB
ε0

+ 8
(

gµBB
ε0

)2

8
(
1 − 2 gµBB

ε0

) , (Blue) (4.79d)

where the color indicates the color used for that resonance in figures 4.9, 4.10 and
4.11. Note that the scattering at ε↓↑

R
can only conserve momentum and energy

for gµBB < ε0/4 and for a larger splitting it no longer exist. Likewise ε↑↓
R

is only
present for gµBB > −ε0/4. Furthermore, for small subband splitting gµBB ≪ ε0

the resonances energies are εσσ̄
R

≃ 9
8
ε0 + σ 1

4
gµBB for σ = +1(−1) =↑ (↓) and

σ̄ = −σ. On figure 4.10 the resonances are seen together with the non-interaction
conductance and thermopower for gµBB = 0.15ε0. A word of warning is that the
resonances might be hard to observe, if they fall on top of the non-interaction
thermopower peaks (i.e. on the conductance steps). The resonant energies as a
function of the magnetic field splitting is seen on figure 4.11.

The conductance and thermopower response at the resonances have the same
physics as in the B = 0 case and in the following we shall focus on what effects
the spins have on the scattering.
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Single-particle
peak positions of S

Figure 4.11: The resonance en-
ergies in eq.(4.79) as a function of
the magnetic field splitting gµBB
in units of the subband splitting
ε0. The dashed lines illustrate
the bottoms of the spin-split n =

b band, or equivalently, the sin-
gle particle peaks of the ther-
mopower. Note that ε↓↑

R
does not

exist for gµBB > ε0/4.

4.5.3 Suppression of resonant scattering between equal spins

Violation of the Pauli principle leads to suppression of the scattering

In figure 4.9(a) the scattering at ε↑↑
R

between two spin up electrons is seen. Exactly

at the Fermi level ε
F

= ε↑↑
R

the scattering is

(k1, k2) = (−kFb↑, kFa↑) → (k1′ , k2′) = (kFb↑, kFb↑), (4.80)

so since the electrons have the same spin, the final states |ki′ni′σi′〉 (i = 1, 2) are
the same. This is forbidden by the Pauli principle and therefore exactly at the
Fermi level this scattering process cannot happen! Therefore the electrons have
to scattering into states slightly different from the Fermi level, but still within
k
b
T of ε↑↑

R
. Analyzing any other scattering at ε↑↑

R
than the one shown in figure

4.9(a) would lead to the same result, e.g. (k1, k2) = (kFb↑, kFb↑) → (k1′ , k2′) =
(kFa↑,−kFb↑) has two electrons in the same initial state. The same arguments

hold for ε↓↓
R

. This effect will suppress the resonant scattering between equal spins
at ε↑↑

R
and ε↓↓

R
.

Tendency of the direct and exchange terms of the interaction to cancel

Next we argue for the suppression of the resonant scattering between equal spins
in a slightly more formal way by considering the electron-electron interaction
matrix element. This has the advantage of leading to a quantitatively way of
calculating the suppression.

The matrix element eq.(4.44) for the electron-electron interaction has a direct
and exchange term. For the scattering exactly at the Fermi level the direct and
exchange terms cancel each other, since k1′ − k1 = k2′ − k1 = 2kFb↑ (inserting
eq.(4.80)), i.e.

〈1′2′|V|12〉 =
1

L

[
V babb

k1′−k1=2k
Fb↑

− V babb
k2′−k1=2k

Fb↑

]
= 0 exactly at ε

F
= ε↑↑

R
. (4.81)

Again, the same result is obtained in the case of scattering with two spin ↓
electrons.
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Furthermore, it is clear from eq.(4.44) that for any momentum independent
interaction in Fourier space (i.e. local interaction in real space18) equal spins
cannot interact, since the direct and exchange terms cancel. This rather general
statement can be understood physical as the facts that the Pauli principle forbids
electrons in the same spin state to touch. However, if the interaction is non-local

in space, i.e. the interaction has a momentum dependence in Fourier space, then
electrons with equal spins can interaction, but there is still a tendency for the
interaction to be weaker due to the Pauli principle, or equivalently, due to an
almost19 cancellation of the direct and exchange terms.

Therefore to calculate the effect of the scattering between equal spins, we need
to include the momentum dependence q in the interaction V babb

q . To do this to
lowest order in temperature20, V babb

q is expanded in q around 2kFbσ, which is the
momentum transfer at the Fermi level ε

F
= εσσ

R
for both the direct and exchange

term, i.e.

V babb
q ≃ V babb

2kFbσ
+ ∂qV

babb
2kFbσ

(q − 2kFbσ) + · · · . (4.82)

Inserting this expansion in the matrix element eq.(4.44) for the scattering between
equal spins seen in figure 4.9(a), we have

〈k1′bσk2′bσ|V|k1aσk2bσ〉 =
1

Lδk1+k2,k
1′

+k
2′
∂qV

babb
2kFbσ

(k1′ − k2′) + · · · . (4.83)

We will now use this to calculate the interaction-induced conductance and ther-
mopower response near the resonant scattering of equal spins.

The current to lowest order in the interaction and temperature

For a small magnetic field splitting gµBB . k
b
T , it is possible to have several of

the different scattering processes seen in figure 4.9 active for the same value of ε
F
.

To be able to separate the signal of one resonance form the other, we investigate
the regime of large splitting compared to temperature:

k
b
T ≪ gµBB. (4.84)

In this regime, we can calculate the current to lowest order in the interaction and
temperature close to ε↑↑

R
or ε↓↓

R
separately using the same approach as in section

4.3, but now having two spin-polarized subbands (e.g. εka↑ and εkb↑) instead of two
spin-degenerate subbands (εka and εkb). The only difference from the calculation
in section 4.3 is the matrix element and the spin summation.

18In a local interaction the particle have to touch to interact, which is modelled by a delta

function interaction, V (r, r′) ∝ δ(r − r
′).

19By almost we mean that the cancellation is not exact, but only suppresses the interaction.
20That this is to lowest order in temperature can be seen by using the same rational as in

section 4.3 and will be clear shortly.
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Following section 4.3, the current contribution I
(1)
e for ε

F
near εσσ

R
is (see

e.g. eq.(4.34) and eq.(4.47))

I(1)
e = 2L

(−e)

L
∑

−+
++

f 0
1 f 0

2 (1 − f 0
1′)(1 − f 0

2′) δ(ε1 + ε2 − ε1′ − ε2′) (4.85)

× 2π

ℏ

{ ∑

σ1σ2
σ1′σ2′

|〈k1′n1′k2′n2′ |V|k1n1k2n2〉|2
}[

∆T

k
b
T 2

(ε1 − ε
F
) − eV

k
b
T

] ∣∣∣∣∣n2=a, n1=b
n1′=n2′=b

.

Introducing the new variables zi =
εi−ε

F

k
b
T

and expanding in temperature the cal-
culation follows the one in section 4.3.2, replacing kFn → kFnσ and TFn → TFnσ,
except for the spin summation and the matrix element. Using eq.(4.83) this is:

∑

σ1σ2
σ1′σ2′

|〈k1′bk2′b|V|k1bk2a〉|2 =
1

L2
δk1+k2,k

1′
+k

2′
|∂qV

babb
2kFbσ

|2(k1′ − k2′)
2

=
1

L2
δk1+k2,k

1′
+k

2′
|∂qV

babb
2kFbσ

|2k2
Fbσ

4

(
T

TFbσ

)2

(z1′ − z2′)
2, (4.86)

where all the spin are the same: σ1 = σ2 = σ1′ = σ2′ = σ. This equation
replaces eq.(4.45) in the calculation in subsection 4.3.2. Here k1′ and k2′ are
inserted in terms of z1′ and z2′ , respectively, to lowest order in T/TFbσ. We see
that the matrix element eq.(4.86) is to lowest order in T/TFbσ, since including
higher orders in the expansion of V baab

q in eq.(4.83) would only lead to higher
order terms in T/TFbσ. Inserting eq.(4.86) and using z variables to lowest order
the current is

I(1)
e =

2(−e)L

π2ℏ

(kFbσ)4kFaσ

128k
b
TFbσ

∣∣∂qV
babb
2kFbσ

∣∣2
(

T

TFbσ

)3

(4.87)

×
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dz1′

∫ ∞

−∞
dz2′ (z1′ − z2′)

2g(z1)g(z2)g(−z1′)g(−z2′)

× δ(z1 + z2 − z1′ − z2′)δ

(
−z1 +

1

3
z2 − z1′ − z2′ −

8

3

∆εσσ
F

k
b
T

)[
∆T

TFaσ

z1 −
eV

k
b
TFaσ

]
,

where the important difference compared to eq.(4.64) is the extra T 2 factor and
the factor (z1′ − z2′)

2 in the integrand. Here we have introduced

∆εσσ
F

k
b
T

≡ 3

8

ℏvFbσ(3kFbσ − kFaσ)

k
b
T

≃ (ε
F
− εσσ

R
)

k
b
T

, (4.88)
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so kFaσ/kFbσ ≃ 3 to lowest order in temperature and the prefactor becomes

2(−e)L

π2ℏ

(kFbσ)4kFaσ

128k
b
TFbσ

∣∣∂qV
babb
2kFbσ

∣∣2
(

T

TFbσ

)3

=
81(−e)k

b
TFaσ

16π2ℏ
LkFa

(
kFaσ

∣∣∂qV
babb
2kFbσ

∣∣
ℏvFaσ

)2(
T

TFaσ

)3

+ O
[(

T

TFaσ

)4
]

.

Again we introduce the new variables zd and zs eq.(4.66) and calculate the zd

integral by using that

∫ ∞

−∞
dzd (z1′ − z2′)

2g(−z1′)g(−z2′) = (4.89)

∫ ∞

−∞
dzd z2

d g
[
− 1

2
(zs + zd)

]
g
[
− 1

2
(zs − zd)

]
= −2zsnB(−zs)

(
4π2

3
+

1

3
z2

s

)
.

and remember the factor of 1/2 from the determinant of the variable change.
Doing the zs and z2 integrals using the delta functions, we find

I(1)
e =

4e

h

9L

ℓσσ
ee

(
T

TFaσ

)3
1

16

∫ ∞

−∞
dz h

(
z,

∆εσσ
F

k
b
T

)[
4π2

3
+

1

3

(
2z + 4

∆εσσ
F

k
b
T

)2
]

× (k
b
∆Tz − eV ) = G

(1)σσ
T ∆T − G(1)σσV, (4.90)

in terms of the h(z, x) function defined in eq.(4.70) and introducing the length

ℓσσ
ee

=
2

27

2π

kFaσ

(
ℏvFaσ

kFaσ|∂qV
babb
2kFbσ

|

)2

. (4.91)

Therefore the conductance and thermopower response at the resonances for scat-
tering between equal spins near εσσ

R
(σ =↑, ↓) are:

G(1)σσ =
4e2

h

9L

ℓσσ
ee

(
T

TFaσ

)3

F̃0

(
ε
F
− εσσ

R

k
b
T

)
, (4.92a)

Sσσ =
k
b

e

9L

ℓσσ
ee

(
T

TFaσ

)3

F̃1

(
ε
F
− εσσ

R

k
b
T

)
, (4.92b)

where F̃n(x) is defined by

F̃n(x) =
1

16

∫ ∞

−∞
dz znh(z, x)

[
4π2

3
+

1

3
(2z + 4x)2

]
, (4.93)

and for n = 0, 1 seen on figure 4.12 to be of order Fn(x) eq.(4.73) by comparing
figure 4.5 and 4.12. It is evident from eq.(4.92) that G(1)σσ and Sσσ are suppressed
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F̃0(x)

F̃1(x) Figure 4.12: The dimensionless scaling

functions F̃0(x) and F̃1(x) entering the
conductance correction G(1)σσ and the
interaction-induced thermopower Sσσ

eq.(4.92) due to the scattering between
equal spins. Note the similarity to the
functions F0(x) and F1(x) seen in figure
4.5 entering the B = 0 result.

compared to the B = 0 result in eq.(4.72) by two powers of temperature and
by the fact that kFaσ|∂qV

babb
2kFbσ

| enters ℓσσ
ee

whereas |V babb
2kFb

| enters ℓee. We have
hidden some of the magnetic field splitting in the parameters21, e.g. TFaσ =
(ε

F
−σgµBB/2)/k

b
. In the thermopower Sσσ given above, we have assumed that

G(0) = 4e2/h, which is always true for ε↑↑
R

, but for ε↓↓
R

it is only true for gµBB .
0.11ε0 (see figure 4.11) and for gµBB & 0.13ε0 one should use G(0) = 3e2/h to get
S↓↓. As in the B = 0 case, the Mott formula is found to be a good approximation

to lowest order in temperature, i.e. F̃1(x) ≃ π2

3
dF̃0(x)

dx
.

4.5.4 Resonant scattering between opposite spins

Next the resonant scattering for electrons of opposite spin seen in figure 4.9(b) is
discussed in the regime k

b
T ≪ gµBB, so it is possible to consider the scattering

at ε↑↓
R

and ε↓↑
R

separately. In this case, there is no suppression of the effect due
to the Pauli principle. On the contrary, due to the opposite spins the exchange
term will be zero in the matrix element eq.(4.44), because for the scattering near
ε
F

= ε↑↓
R

or ε
F

= ε↓↑
R

the spins are σ1 = σ1′ ≡ σ and σ2 = σ2′ = σ̄ = −σ, so

〈k1′bσk2′bσ̄|V|k1bσk2aσ̄〉 =
1

Lδk1+k2,k
1′

+k
2′

[
V babb

k
1′
−k1

δσ,σδσ̄,σ̄ − V babb
k
2′
−k1

δσ,σ̄δσ̄,σ

]
,

=
1

Lδk1+k2,k
1′

+k
2′
V babb

k
1′
−k1

. (4.94)

To lowest order in the temperature, we can use V babb
k
1′
−k1

= V babb
2kFbσ

(for εσσ̄
R

), so

including the spin summation for one of the resonances εσσ̄
R

we get

∑

σ1σ2
σ1′σ2′

|〈k1′bσk2′bσ̄|V|k1bσk2aσ̄〉|2 =
1

L2
δk1+k2,k

1′
+k

2′
|V babb

2kFbσ
|2. (4.95)

At this point, it is instructive to compare to the case without a magnetic
field given in eq.(4.45). For B = 0, the lowest order result comes from scattering

21If we expand in the magnetic field splitting gµBB/(εF − ε0), then the lowest order term is
to replace (TFaσ, vFaσ, kFbσ, kFaσ) → (TFa, vFa, kFb, kFa) everywhere except in εσσ

R
. This is the

result stated in paper II.
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between opposite spins (see e.g. the above discussion in section 4.5.3). However,
for B = 0 the summation over spin gives 4 1

L2 δk1+k2,k
1′

+k
2′
|V babb

2kFb
|2, whereas scat-

tering at each of the two resonances εσσ̄
R

only contributes 1
L2 δk1+k2,k

1′
+k

2′
|V babb

2kFbσ
|2

in the separable regime k
b
T ≪ gµBB. Therefore the B = 0 resonance in the

conductance or thermopower is 2 times larger than just adding the two separate
resonances at ε↑↓

R
and ε↓↑

R
, respectively. This is because the exchange term in the

interaction gives a contribution in the B = 0 case and no contribution in the
spin-split case, where exchange of the final states 1′ ⇆ 2′ is not possible. To
make this statement clearer, the summation over spin in the B = 0 case eq.(4.45)
is performed again (in the low temperature limit: V babb

k
1′
−k1

→ V babb
2kFb

):

∑

σ1σ2
σ1′σ2′

|〈k1′bσ1′k2′bσ2′ |V|k1bσ1k2aσ2〉|2 (4.96)

=
1

L2
δk1+k2,k

1′
+k

2′
|V babb

2kFb
|2
∑

σ1σ2
σ1′σ2′

(
δσ1,σ1′

δσ2,σ2′
− δσ1,σ2′

δσ2,σ1′

)2

=
1

L2
δk1+k2,k

1′
+k

2′
|V babb

2kFb
|2
{

(δ↑,↑δ↓,↓ − δ↑,↓δ↓,↑)
2

︸ ︷︷ ︸
direct like ε↑↓

R

+ (δ↑,↓δ↓,↑ − δ↑,↑δ↓,↓)
2

︸ ︷︷ ︸
exchange of ε↑↓

R
: σ1′⇆σ2′

+ (δ↓,↓δ↑,↑ − δ↓,↑δ↑,↓)
2

︸ ︷︷ ︸
direct like ε↓↑

R

+ (δ↓,↑δ↑,↓ − δ↓,↓δ↑,↑)
2

︸ ︷︷ ︸
exchange of ε↓↑

R
: σ1′⇆σ2′

}
=

4

L2
δk1+k2,k

1′
+k

2′
|V babb

2kFb
|2.

Here we observe that the exchange terms gives a contribution at B = 0, which
is not present in the spin-split case, where the exchange processes are simply not
possible. Therefore the mentioned factor of two is a consequence of the exchange
terms.

The calculation of the conductance and thermopower response at the reso-
nances εσσ̄

R
is a bit different that the previous calculations since kFaσ̄ = 2kFbσ+kFbσ̄

at the resonance. This will e.g. enter in the momentum conservation, when using
the new variables zi. However, here we restrict ourself to the limit

k
b
T ≪ gµBB ≪ εF − ε0, (4.97)

so we can both separate the resonances and expand in the magnetic field splitting
gµBB/(εF − ε0). To lowest order in gµBB/(εF − ε0) we get:

G(1)σσ̄ =
4e2

h

1

4

L

ℓee

T

TF

F0

(
εF − εσσ̄

R

k
b
T

)
, (4.98a)

Sσσ̄ =
k
b

e

1

4

L

ℓee

T

TF

F1

(
εF − εσσ̄

R

k
b
T

)
, (4.98b)

where the factor of 1/4 comes from the above discussion regarding the exchange
term in the interaction.
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4.6 Summary

In this chapter, we have described how the electron-electron interaction can in-
duce resonances at particular Fermi energies in the conductance and thermopower
of a multi-mode 1D wire well connected to external reservoirs. At these resonant
points, the conductance gets a small dip (negative peak) on top of the non-
interacting conductance steps. For the thermopower the non-interacting signal
is exponentially suppressed in temperature and therefore the interaction-induced
thermopower is the leading order in temperature around the resonance points.
At these points the thermopower has a wave-like structure as a function of the
Fermi level ε

F
: Negative below the resonance point ε

R
, positive above ε

R
and ex-

ponentially suppressed far away from ε
R
. For an interaction-induced resonance to

occur the interaction has to conserve momentum and energy, change the number
of left and right moving electrons and happen at the Fermi level. This restricts
the possible resonant points substantially, nevertheless, they do exist.

In particular, the case of two transverse modes were discussed here with and
without a magnetic field. Without magnetic field there is only one resonance
point at ε

F
= 9ε0/8, where ε0 is the subband spacing. We found that a magnetic

field in the plane of the wire, spin-splits the resonances into four resonances: Two
for scattering between electrons with equal spin and two for scattering between
opposite spin electrons. Due to the Pauli principle, the scattering between equal
spins are suppressed compared to scattering between opposite spins.

The thermopower and conductance correction calculation was an application
of the Boltzmann equation approach discussed in chapter 3. It is perturbative22

in the interaction and to lowest order in the temperature.
An experimental verification of the effect is yet to come and here we have

presented a number of features to look for, e.g. the magnetic field dependence
and the fact that the thermopower (conductance correction) for different low
temperatures can be scaled onto a single function.

22Note that the same perturbative result can be obtained by a Green’s functions approach.





Chapter 5

Three-particle scattering in finite

quantum wires

In this chapter, the effect of three-body interaction on the conductance and ther-
mopower of a single-mode finite quantum wire is explained. The chapter only
contains a brief description of the subject, because paper III (p.159) is rather
long and hence contain most details needed to understand the subject.

5.1 The three-particle interactions within the wire

A finite length single-mode quantum wire with reflectionless contacts is considered
using the Boltzmann equation approach of chapter 3, see figure 5.1. The leads are
non-interacting and their distribution functions are given by the Fermi functions
f 0

L/R(εk) each with their own chemical potential µL/R and temperature TL/R. The
wire is considered to be clean, i.e. no impurity or roughness scattering, so only
the electron-electron interaction can redistribute the electrons in the wire and
hence change the conductance and thermopower.

Why three-particle interactions?

The electron-electron interaction processes in the wire conserve the momentum
and energy. As a consequence, two-particle interactions cannot redistribute the
electrons in the single-mode wire, i.e. for an interaction between two electrons in

f 0
R(εk)

TR = T + ∆T
µR = εF

x

f 0
L(εk)

TL = T
µL = εF + eV

L

Figure 5.1: A sematic picture of a clean

1D wire of length L perfectly connected to

non-interacting leads having different chem-

ical potentials µL/R and temperatures TR/L.
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k1 and k2 the only possible outcome is (k1′ , k2′) = (k1, k2) or (k1′ , k2′) = (k2, k1)
and in neither case, have the electrons been redistributed. This is easily seen
explicitly for a quadratic dispersion εk ∝ k2, see p.14. However, it is generally
true for any dispersion with positive curvature. To show this, one can assume that
other solutions than the trivial ones are possible and then show that this leads
to a contradiction. Let us consider an example: 0 < k1, k1′ < k2, k2′ (e.g. two
small q processes on the positive branch of the dispersion). Since the distance
k1′ − k1 is the same as −(k2′ − k2), then using the positive curvature we must
have |ε1′ −ε1| < |ε2′ −ε2|, however, this is in contradiction to energy conservation
ε1′ − ε1 = −(ε2′ − ε2), so the scattering is simply one of the trivial ones and a
situation with k1, k1′ < k2, k2′ is not possible. The others cases are similar.

Therefore we consider three-particle scattering, where the momentum and
energy is conserved among three particles in the interaction process, see figure
3.3, so the conservation laws are

εk1 + εk2 + εk3 = εk1′
+ εk2′

+ εk3′
, (5.1a)

k1 + k2 + k3 = k1′ + k2′ + k3′ , (5.1b)

which leave more phase space for the scattering. Here we consider, what kind of
effects this type of interaction can have on the conductance and thermopower.

5.2 The perturbative approach

To calculate the conductance and thermopower change due to the three-particle
interactions, the Boltzmann approach is used in the limit of weak interactions
and/or short lengths L, so the (linear response) current is expanded in the scat-

tering rate as Ie = I
(0)
e + I

(1)
e + · · · . Here I

(0)
e is the non-interacting current for a

perfectly conducting wire

I(0)
e ≃ −2e2

h
V
(
1 − e−TF/T

)
+

2e

h
k
b
∆T

TF

T
e−TF/T (5.2)

for low temperatures (i.e. to first order in e−TF/T ) and I
(1)
e is the result due to

weak three-particle scatterings (see section (3.2.3))

I(1)
e = −L(−e)

L
∑

σk<0

Ik[f
(0)], (5.3)

where Ik[f
(0)] is the three-particle collision integral eq.(3.11). Note that we have

applied the bias V and temperature difference ∆T as in figure 5.1, so Ie =
−GV + GT ∆T . The task is now to find I

(1)
e to lowest order in temperature

T/TF ≪ 1, and we refer to the paper III for details.
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εk

k

k3′

k3

k1

k1′

k2k2′

εF

Figure 5.2: The dominant current chang-
ing three-particle scattering process at low
temperatures. The process requires the
state k2′ at the bottom of the Fermi sea to
be unoccupied, and therefore it only leads
to an exponentially suppressed correction
∝ e−TF/T to the thermopower and conduc-
tance. (The opposite process creating right
movers of course also exists.)

5.2.1 The dominant three-particle scattering process

From section 3.3, we know that the scattering needs to change the number of
left and right movers to change the current. However, even though the three-
particle interactions have more phase space than the two-particle interactions,
they still cannot conserve momentum and energy at the Fermi level, if the inter-
action process also should change the number of left and right movers. Therefore
the current changing three-particle interactions require empty states deep in the
Fermi sea (or occupation of states far above from ε

F
). Therefore the correction to

the current at low temperatures is exponentially suppressed, ∝ e−TF/T . As a con-
sequence, it is unlikely, to detect the correction from three-particle interactions
at low-temperatures for short clean wires, where the interaction is weak.

We have identified the most important low-temperature scattering process to
be the one seen on figure 5.2. Here all the exchanged momentum differences
(ki′ − ki) are small and in the bottom of the band, a right mover is changed
to a left mover. Therefore the process is changing two right movers and one
left mover into two left movers and a right mover. The exponential suppression
e−TF/T comes from the requirement that the state k2′ deep in the Fermi sea needs
to be empty.

5.2.2 The conductance and thermopower corrections

The result of the low-temperature T/TF ≪ 1 calculation of the current correc-

tion I
(1)
e to first order in the three-particle scattering rate leads to the following

conductance and thermopower:

S =
k
b

e

TF

T
e−TF/T

[
1 +

L

ℓeee

]
, (5.4)

G =
2e2

h
− 2e2

h
e−TF/T

[
1 +

L

ℓeee

]
, (5.5)

where the effective length ℓeee is introduced as

ℓ−1
eee

=
8505

2048π3

(V0kF
)4

ε4
F

(
k

F

q0

)4(
T

TF

)7

k
F
. (5.6)
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0.5

1

f
(0)
k = f 0

R(εkn)
TR = T + ∆T

f
(0)
k = f 0

L(εkn)
TL = T

k

kF−kF

◦ •

◦•

◦ •

Figure 5.3: The non-interacting initial distribution function, which is changed slightly by
the three-particle scattering process seen in figure 5.2. In the initial distribution function the
left movers (k < 0) are warmer than the right movers (k > 0) (see figure 5.1). Since the left
movers have a higher temperature than the right movers, it is easier to scattering into states
with k < 0 at the bottom of the Fermi sea. Therefore this process dominates over the opposite
process and more left movers than right movers are created and in terms a positive thermopower
contribution is produced.

The symmetrized interaction in k-space Ṽq ≡ Vq + V−q enters the calculation,
where Vq is the Fourier transform of the interaction. It is expanded in q as

Ṽq ≡ Vq + V−q = V0

[
1 −

(
q

q0

)2

+ O(q4)

]
, (5.7)

since only small q are relevant for the scattering process seen in figure 5.2. Here
q0 ≪ k

F
describes the screening of the interaction due to the nearby metallic

gates and V0 is (twice) the q = 0 Fourier component of the interaction (cut off
by screening). Furthermore, we have used a quadratic dispersion and only used
the direct three-particle interaction term in the matrix element, since this is the
most important one for small qi = ki′ − ki for i = 1, 2, 3. This approximation
will be clear in eq.(5.13). Note that for a contact interaction Vq = constant
(i.e. q0 → ∞), we do not have any effect of the three-particle interactions.

The important point of the interaction correction (apart from being exponen-
tially suppressed) is that it is proportional to the length L, the interaction cubed
V 4

0 and some power of temperature (T/TF)n (n = 7 for conductance and n = 6
for thermopower).

5.2.3 A simple picture for the sign of the thermopower

The sign of the thermopower contribution due to the interactions is positive,
which means that the interactions increase the particle current due to a temper-
ature difference. This is in contrast to the current due to a bias voltage V , which
is decreased by the interactions.

Here the positive sign of S is explained by considering the dominant scattering
process in figure 5.2. For ∆T > 0 the non-interacting particle current is going
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from right to left (opposite to the electric current) leading to S(0) > 0. Figure
5.3 shows the initial distribution function with warmer left movers (k < 0) than
right movers (k > 0). (Here µR = µL, since it is enough to consider GT .) The
dominant scattering process can a priori create both left and right movers (i.e. the
opposite process of the one shown in figure 5.2 is of course also allowed). However,
if the left movers have a higher temperature, then it is easier to scatter into
states with k < 0 than k > 0. (E.g. for zero temperature right movers, it is
impossible to insert an extra electron in the bottom of the Fermi sea of the right
movers.) Therefore the scattering process will create more left movers, which in
terms produce more particle current to the left and a higher thermopower. This
explains the sign of the thermopower correction.

5.2.4 A simple picture of the conductance correction

The conductance correction can be explained in a similar manner as the ther-
mopower one above. In this case, the non-interacting particle current is from left
to right (opposite to the electric current), i.e. I

(0)
e = −G(0)V , see figure 5.1. The

initial distribution function have different chemical potential (and the same tem-
perature) for the right and left movers. Since the chemical potential of the right
movers is higher than for the left movers, scattering at the bottom of the band
(figure 5.2) flavors scattering into the left movers and hence reduce the particle
current, and in terms gives a negative conductance correction.

5.2.5 The three-particle scattering rate

One of the most interesting issues in connection with the three-particle scattering
is the three-particle scattering rate found as

W123;1′2′3′ =
2π

ℏ
|〈1′2′3′|V G0V |123〉c|2δ(ε1 + ε2 + ε3 − ε1′ − ε2′ − ε3′). (5.8)

This is a generalization of Fermis Golden rule using the T -matrix, T = V +
V G0T , iterated to second order to obtain the three-particle scatterings, see
e.g. [14, p. 87-88]. It turns out that the three-particle interaction matrix element
〈1′2′3′|V G0V |123〉c have interesting properties. Here the index c means that it
should be a real 3-body interaction and not just an effective two-body scatter-
ing, where one of the incoming particles does not participate in the scattering.
Furthermore,

G0 =
1

ε1 + ε2 + ε3 − H0 + iη
, (η → 0+) (5.9a)

V =
1

2L

∑

k1k2q

∑

σ1σ2

Vqc
†
k1+qσ1

c†k2−qσ2
ck2σ2

ck1σ1
, (5.9b)
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where H0 is the unperturbed Hamiltonian (i.e. kinetic energy with some disper-
sion). After some operator algebra (using |123〉 = c†k1σ1

c†k2σ2
c†k3σ3

|0〉) the matrix
element becomes

〈1′2′3′|V G0V |123〉c =
1

(2L)2

∑

(abc)∈P (123)

∑

(a′b′c′)∈P (1′2′3′)

sgn(abc) sgn(a′b′c′) (5.10)

× Ṽa′−aṼc′−c δa+b+c,a′+b′+c′

εb + εc − εc′ − εb+c−c′ + iη
δσa′ ,σa

δσb′ ,σb
δσc′ ,σc

,

where Ṽq = Vq+V−q is the symmetrized interaction and the set of all permutations
is

P (123) = {(123)+, (231)+, (312)+, (132)−, (321)−, (213)−}, (5.11)

where the sign of the permutation sgn(abc) was given as a superscript. The matrix
element contains 36 terms and therefore the scattering rate contains 362 = 1296
terms1. This expression does not relay on a quadratic band or on the assumption
of energy conservation. A visualization of the matrix element is seen on figure 3
in paper III.

Next the matrix element is rewritten in a more appealing manner. This
is inspired by the two-particle matrix element, which contains a direct and an
exchange term, i.e.

〈1′2′|V |12〉 =
δk1+k2,k

1′
+k

2′

L
[ direct term︷ ︸︸ ︷
Vk

1′
−k1

δσ1 ,σ1′
δσ2 ,σ2′

−
exchange term 1′↔2′︷ ︸︸ ︷

Vk2′−k1
δσ1 ,σ2′

δσ2 ,σ1′

]
. (5.12)

The concept of direct and exchange terms originate in the quantum mechanical
principle of indistinguishable particles. Therefore it can be used for the three-
particle the matrix element as well. By rewriting eq.(5.10), we obtain

〈1′2′3′|V G0V |123〉c =δk1+k2+k3,k1′+k2′+k3′

[
V(11′, 22′, 33′) + V(12′, 23′, 31′) (5.13)

+ V(13′, 21′, 32′) − V(11′, 23′, 32′) − V(13′, 22′, 31′) − V(12′, 21′, 33′)
]
,

where

V(11′, 22′, 33′) =
δσ1′ ,σ1

δσ2′ ,σ2
δσ3′ ,σ3

4L2
(5.14)

×
[

Ṽ1′−1Ṽ3′−3

ε3 + ε2 − ε3′ − ε2+3−3′
+

Ṽ2′−2Ṽ1′−1

ε1 + ε3 − ε1′ − ε3+1−1′
+

Ṽ3′−3Ṽ2′−2

ε2 + ε1 − ε2′ − ε1+2−2′

+
Ṽ1′−1Ṽ2′−2

ε2 + ε3 − ε2′ − ε3+2−2′
+

Ṽ3′−3Ṽ1′−1

ε1 + ε2 − ε1′ − ε2+1−1′
+

Ṽ2′−2Ṽ3′−3

ε3 + ε1 − ε3′ − ε1+3−3′

]
.

1By neglecting (the important) Fermi statistics of electrons the same scattering rate was
found in [128] (i.e. setting all sgn(· · · ) = +1).
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In eq.(5.13) V(11′, 22′, 33′) play the role of the direct term. The final states 1′, 2′

and 3′ can be exchanged (i.e. permuted) in five other ways that (1′2′3′) leading
to five exchange terms also seen in eq.(5.13). The signs in front of each term
is determined by the sign of the permutation. The arguments in the function
V(11′, 22′, 33′) are ordered in three pairs such that the differences between the
elements in each pair are the only arguments of the interaction potential Ṽq,

e.g. only Ṽ2′−1, Ṽ1′−2 and Ṽ3′−3 enter the expression for V(12′, 21′, 33′).
The expression of the three-particle matrix element in terms of direct and

exchange terms is very useful, when constructing approximations having a specific
scattering process in mind. This is valuable beyond our use here. To perform the
correction calculation for the scattering process on figure 5.2 only V(11′, 22′, 33′)
is included in the matrix element, because only small q processes are important
(see paper III for details).

Finally, we mention a few observations of the three-particle interaction, which
are surprising compared to the case of two-particle interactions.

• If we use a constant interaction, Vq = constant, and a quadratic dispersion,
then V(1a′, 2b′, 3c′)δ(ε1 + ε2 + ε3 − εa′ − εb′ − εc′) = 0, and hence the matrix
element and the current correction. Here spinless electrons are not assumed.

• If we use an interaction like Ṽq = V0(1−q2/q2
0), then 〈1′2′3′|V G0V |123〉c = 0

for spinless electrons. However, each V(1a′, 2b′, 3c′) is non-zero. This is
expected by a mapping to a bosonic model with a contact interaction.

See paper III for further explanations and the connection of these result to exactly
solvable models.

5.3 The long wire limit: An open question

The perturbative approach in the three-particle interaction gave a thermopower
and conductance correction proportional to the length of the wire, i.e. S ∝ L.
This approach is valid for short wires or weak interactions. However, what hap-
pens for longer wires? A possible guess is that the thermopower and conduc-
tance correction saturates, when L exceeds some relaxation length (and thereby
becomes length independent in the long wire limit). If we think in terms of dis-
tribution functions, then this is the case, where the relaxation in the middle of
the wire is complete. It is interesting to note that there exist three-particle in-
teractions at the Fermi level, which change the distribution function, but not the
number of left and right movers. In perturbation theory these processes simply
cancel out, but in the non-perturbative long wire limit they could play a role. The
long wire limit is an interesting theoretical question for further studies, because
it would give some information about how the distribution functions injected at
the left and right contacts relax towards a common distribution function due
interactions, see also section 3.1 (p. 33).





Chapter 6

Non-momentum conserving

interactions in point contacts

In this chapter, we investigate quantum point contacts, which are so short that
translational symmetry is broken and hence the electron-electron interaction pro-
cesses can break momentum conservation, see figure 6.1. This effect can change
the current even in the single mode case. Using perturbation theory in the
electron-electron interaction within a Green’s function approach, we find a low-
temperature T ≪ TF and/or low bias voltage eV ≪ ε

F
conductance G ≡ I/V

reduction for increasing T and/or V as G = 2e2/h − αT 2 − γV 2, where α and γ
are constants (proportional to the interaction). The thermopower is enhanced as
S ∝ T 3. In a large magnetic field, the subbands are spin-split and the interaction
between electrons with equal spin become important. Due to the Pauli principle,
the conductance and thermopower corrections due to interactions are suppressed
by two extra powers of temperature in this case.

Non-momentum conserving interactions in quantum point contacts

(a) (b)

Figure 6.1: An illustration of the non-momentum conserving interaction processes in short
quantum point contacts. The thick green lines are the edges of the QPC and the black full
(red dashed) arrows are the incoming (outgoing) electrons before (after) the interaction. In the
scattering process, the number of left and right movers can either be changed by one (a) or
two (b), respectively, and they have different interaction amplitudes. We have indicated that
interactions between electrons with opposite spin are most important.
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Furthermore, we develop a current formula for a local interaction model
V (x, x′) = V0δ(x

′ − x)δ(x) and use it to study the conductance in the non-
perturbative regime making the second-order perturbative approach self-consistent.
This gives a (linear) conductance numerically approaching ∼ e2/h for higher tem-
peratures T than are available by perturbative theory, but still smaller T than
the Fermi temperature TF. In the end, we discuss the noise in this model, which
is suppressed compared to the non-interacting value1. These results agrees qual-
itatively with the experimental data on the 0.7 anomaly in QPC’s. The main
results of this chapter are submitted in the form of paper IV.

6.1 The physics of non-momentum conserving

interactions in quantum point contacts

In the following, we try to justify how electron-electron interaction processes
can happen without conserving the momentum in quantum point contacts and
motivate the simplistic interaction model used to mimic this behavior.

Breaking of momentum conservation in short wires

In general, the translational invariance of a system leads to momentum conser-
vation, so for an infinitely long 1D wire the electron-electron interactions will
conserve momentum. However, for a 1D wire connected to leads the transla-
tional invariance is broken in the contact region, but if the middle segment of the
wire is still long compared to the Fermi wave length, then the momentum is still
(approximately) conserved in the wire. This was the situation investigated in the
previous chapters. In the present chapter, we consider a wire so short that the
momentum does not have to be conserved in the scattering processes. Physically,
the momentum of the complete system including boundaries etc. is conserved and
the missing momentum in the non-momentum conserving interactions is given to
other degrees of freedom of the system e.g. in the form of phonons or otherwise.

Let us consider the situation in more detail. Formally, the momentum con-
servation stems from the electron-electron interaction matrix element (see sec-
tion 4.3.1, p. 59). For illustrative purposes, consider a very crude model of
the interaction in a quantum wire connected to leads: Two electrons at x1

and x2 interact if they are at the same point x1 = x2 and both of them are
in the wire −L/2 < xi < L/2 (i = 1, 2 and L is the length of the wire),
i.e. V (x1, x2) = V0δ(x1 − x2)θ(L/2 − |x1|)θ(L/2 − |x2|). For plane waves as
the single particle states, ψk(x) = 1√

L eikx, the interaction V1′2′;12 becomes (see

1It should be emphasized that the noise calculation is the work of Alessandro De Martino and

the numerics for the high temperature limit was done by Reinhold Egger. Both are collaborators

and co-authors on paper IV.
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e.g. eq.(4.36) and eq.(4.37), p. 59)

V1′2′;12 =

∫ L
2

−L
2

dx1

∫ L
2

−L
2

dx2
1

L2
e−ik1′x1 e−ik2′x2 V (x1, x2) e

+ik1x1e+ik2x2

=
V0

L2

∫ L
2

−L
2

dx ei∆kx =
V0

L2
L

2 sin(L∆k/2)

L∆k
, (6.1)

where ∆k = k1 + k2 − k1′ − k2′ is the amount of broken momentum conserva-
tion and L is the normalization length. If L → ∞, then this is a Dirac-delta
function (and if L = L then it is a Kronecker-delta function), so for long wires
the momentum is conserved. The essential point is that for a short finite length
L, it is possible to break the momentum conservation, ∆k 6= 0, and the inter-
action decreases, the more the momentum conservation is broken2. But how
short does the wire have to be, before this is feasible? For a scattering pro-
cess to change the current, the scattering have to change the number of left and
right movers. For such a process to happen at the Fermi level, we have either
∆k = ±2k

F
or ∆k = ±4k

F
corresponding to changing the direction of one or two

electrons, respectively. Therefore a crude estimate of the length L at which the
non-momentum conserving processes become very important is,

L ∼ k−1
F

(6.2)

or smaller.
To obtain a better estimate of the interaction strength and it’s precise depen-

dence of ∆kL one could calculate the interaction V1′2′;12 using the wave function
from the WKB approximation [127, p.253].

Estimation of k
F
L for a saddle-point quantum point contact

Next let us consider, if it is possible to have a fully open QPC and at the same
time have a length short enough to have non-momentum conserving processes,
i.e. k

F
L of order one.

Above L was the length at which the interactions were present. Therefore
L can roughly be seen as the length, where there is only a single transverse
mode energetically available, because as soon as there is more than one mode
the screening begins to be more efficient, i.e. the leads begin. We now estimate
this length using the saddle-point model (see section 1.5.1, p. 8). In figure 6.2,

2Note that the function in eq.(6.1) is an oscillation with decreasing amplitude as a function
of ∆k. This behavior is due to the sharp cut-off of the interaction at x = ∓L/2 and if a more
smooth cut-off is used, then the oscillating behavior is absent,

e.g. V (x1, x2) ∝ δ(x1 − x2) exp[−(x1 + x2)
2/4L2] leads to V1′2′;12 ∝ exp[−(L∆k)2/4].
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εF

x

ε0(x)

ε1(x)

L

Figure 6.2: The energy barriers along a

QPC in the saddle-point model. The trans-

verse quantization energy εn(x) = ℏωy(n +
1
2 ) − 1

2mω
2
xx

2 and the length, where there

is only a single subband, are indicated.

Note that ε
F

denote the local Fermi energy,

i.e. measured from the top of the barrier 1
2ℏωy.

the energy landscape along a QPC is seen in the saddle-point model. The Fermi
energy ε

F
is the local Fermi energy in the QPC and therefore measured from the

top of the first barrier at ℏωy/2. Therefore the length L is given by (two times)
the point, where the second subband becomes occupied, i.e.

ε
F

= ℏωy −
1

2
mω2

x

(
L

2

)2

, (6.3)

so using ε
F

= ℏ2k2
F
/2m, the length compared to k

F
becomes

k
F
L = 4

ωy

ωx

√
ε
F

ℏωy

(
1 − ε

F

ℏωy

)
, (6.4)

remembering that ℏωy is a measure of the length of the plateau. In most experi-
ments the ratio ωy/ωx is about 3 (e.g. [47], see also p. 10), so the maximum value
is k

F
L ∼ 6 in the middle of the first plateau (ε

F
= ℏωy/2), which is of order one.

The sum of the single-particle transmissions for the two first subbands (at the
Fermi level) in the saddle-point model eq.(1.15) is

∑

n=1,2

Tn(ε
F
) =

1

1 + exp [−2πε
F
/ℏωx]

+
1

1 + exp [−2π(ε
F
− ℏωy)/ℏωx]

, (6.5)

so it is indeed possible to have a fully open QPC and non-momentum processes
present (k

F
L of order one) at the same time.

The above estimate for k
F
L eq.(6.4) becomes smaller in the beginning and in

the end of the conductance plateau. As seen on figure 6.2, this is because as ε
F

is
moved up, k

F
becomes larger and L smaller. However, it should be noted that the

effective interaction strength is larger for low electron density (see e.g. [82]), i.e. in
the beginning of the plateau. Therefore the combined effect of low density and
small k

F
L gives the largest effect of non-momentum interactions in the beginning

of the plateau.
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6.1.1 The point-like interaction model

To treat the non-momentum conserving interaction processes in the simplest pos-
sible way, we use the interaction

V (x, x′) = V0δ(x − x′)δ(x), (6.6)

i.e. a contact interaction in the single point x = 0 only. This leads to

V1′2′;12 =
V0

L2
, (6.7)

where the momentum conservation is completely absent. In a sense this inter-
action model describes the limit L → 0 of the problem of a wire connected to
leads.

As we will see, this model is extremely useful for making a general non-
perturbative current formula (section 6.4). Furthermore, in the perturbative low-
temperature case, only the value of the interaction at the Fermi level is necessary
as we saw in e.g. the multi-mode case studied in chapter 4. Therefore the present
model will capture the relevant low-temperature perturbative physics, however, it
cannot capture that different scattering processes might have different scattering
amplitudes. This is studied closer in section 6.6 (using a perturbative current
formula for a general interaction derived in Appendix A).

A rough estimate for the interaction strength

Next we give a very rough order of magnitude estimate for the interaction pa-
rameter V0 in the interaction model eq.(6.6).

For low electron density the screening (e.g. due to the nearby gates) is less
effective, so we use the bare Coulomb interaction V (x, x′) = e2

4πǫ0|x−x′| and replace

|x−x′| by the average length 〈x−x′〉 between electrons given in terms of the den-

sity n = k
F
/π, i.e. V (x, x′) ∼ e2

4πǫ0

k
F

π
. To relate this to the point-like interaction,

we write it without units in the delta functions as V (x, x′) = V0k
2
Fδ(k

F
x)δ(k

F
x′).

Therefore the rough estimate is

V0k
2
F ∼ e2

4πǫ0

k
F

π
. (6.8)

The typical length of a conductance plateau ℏωy of order 1-10 meV (see e.g. [47,
31, 17]) and the effective mass of GaAs is m = 0.07me (me being the bare electron
mass). We are interested in the beginning of the plateau, ε

F
∼ 0.2ℏωy, so using

ℏωy ∼ 5 meV leads to V0k
2
F ∼ 20 meV ∼ 230 K and TF ∼ 12 K.

However, it should be emphasized that this is only a very rough estimate. To
get a realistic value one should make a realistic model of the interaction including
the geometry and screening form the gates etc. This is one of the most important
tasks for future theoretical work on this issue.
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6.2 The problem of the Boltzmann equation

The Boltzmann equation approach to find the current cannot be used for the
point-like interaction model eq.(6.6) and here we briefly discuss this issue.

If we naively try to apply the Boltzmann equation (3.3), vk∂xfk(x) = Ikx[f ],
by inserting the point-like interaction eq.(6.7) into the two-body collision integral
eq.(3.7), we see that

Ikx[f ] = −
∑

σ2
σ1′σ2′

( L
2π

)3∫ ∞

−∞
dk2

∫ ∞

−∞
dk1′

∫ ∞

−∞
dk2′

2π

ℏ

|V0|2
L4

δ(ε1 + ε2 − ε1′ − ε2′)

× [f1f2(1 − f1′)(1 − f2′) − f1′f2′(1 − f1)(1 − f2)] ∝
1

L , (6.9)

whereas the right-hand side of the Boltzmann equation, vk∂xfk(x), does not have
an explicit dependence of the normalization length L, so the normalization length
L does not disappear as it should in the Boltzmann equation3. This leads to
nonphysical dependencies of the normalization length. For example the current
becomes proportional to L/L.

Conceptually, the Boltzmann equation fails because the distribution function
cannot be defined properly on the length scale of the point-like interaction.

6.3 The Green’s function approach

Due to the failure of the Boltzmann equation approach, we adopt a Green’s
function approach to calculate the current through a QPC having a point-like
interaction eq.(6.6) in the middle of the contact and different chemical potentials
and/or temperatures in the two leads.

Below several formal tools are presented in order to apply the Green’s function
technique using the famous Keldysh time contour [129]. This is not intended to
be a review of the technique, but merely a minimum of basic definitions and
useful relations to be used later on.

Thermopower and the Kubo formulas

By using the applied bias as a perturbation to the Hamiltonian, the linear conduc-
tance can be found as a current-current correlation function calculated e.g. by the
help of equilibrium Green’s functions. This approach is referred to as the Kubo

3Note that for a momentum conserving interaction, the scattering rate is W12;1′2′ ∝
1
L2 δk1+k2,k

1′
+k

2′
, so the Kronecker delta function removes a summation over k and making

the two last k sums into integrals, we observe that the normalization length L cancels out from

the Boltzmann equation and the current.
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formula for conductance, see [14, chap.6]. If the current is driven by a tempera-
ture difference, then the situation is conceptually different, because the temper-
ature does not enter in the Hamiltonian and therefore the driving field (i.e. the
temperature difference) cannot be treated as a perturbation to the Hamiltonian.
There is a way to circumvent this in bulk systems, by using the thermodynamical
equality dQ = TdS = dU − µdN leading to JQ = JU − µJ , where JQ, JU and
J are the heat, energy and particle currents, respectively. This can now be used
in a Kubo like formula, where both the heat current and particle current enter
in the correlation functions for the thermopower [112, 113, 130]. However, for
QPC’s it is not obvious if one is allowed to straightforwardly use the thermo-
dynamical equality and furthermore, for interacting systems one should consider
carefully which energy is being transported by the energy current [114]. Due to
these considerations, we do not use this approach to the problem of a point-like
interaction in a QPC.

6.3.1 Average values in the quantum point contact setup

The approach used here, is to calculate the average value of the current through
the QPC (using contour ordered Green’s functions). The way the average is
performed is inspired by our physical situation, where the left/right reservoir
inject electrons distributed by a Fermi function f 0

L/R(εk) with the temperature
TL/R and chemical potential µL/R into the QPC. Therefore we have a model,
where right-movers and left movers are in different thermal equilibria and the
interaction tries to equilibrate them in the QPC only. This inspires the following
way to average an operator A:

〈AH(t)〉 = Tr[ρ(H0)AH(t)], (6.10)

where AH(t) is in the Heisenberg picture involving the non-interaction Hamilto-
nian H0 and the interaction Hint, so H = H0 +Hint and4

AH(t) ≡ eiH(t−t0)Ae−iH(t−t0), (6.11)

where A is in the Schrödinger picture and t0 is the reference (or initial) time5

(see e.g. [14, chapt.5]). Note that the chemical potentials are not included in H
in AH(t). The density matrix ρ(H0) used in the average is

ρ(H0) =
e−βL(H0,L−µ

L
NL)−βR(H0,R−µ

R
NR)

Tr
[
e−βL(H0,L−µ

L
NL)−βR(H0,R−µ

R
NR)
] , (6.12)

4Here we use the traditional convention in Green’s function theory and set ℏ = 1.
5Note that when using the Heisenberg picture the states do not evolve in time and it is the

Schrödinger states at t = t0, which should be used in the trace.
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time
t
|

t0
|

C2

C1 Figure 6.3: The Keldysh contour C = C1 ∪ C2

used in time ordering. This contour is a convenient
mathematical tool proposed by Keldysh [129].

where βL/R = 1/k
b
TL/R and the number operators and the non-interacting Hamil-

tonians are:

H0 = H0,L + H0,R, H0,L =
∑

σ,k>0

εkc
†
kσckσ, H0,R =

∑

σ,k<0

εkc
†
kσckσ, (6.13)

N0 = NL + NR, NL =
∑

σ,k>0

c†kσckσ, NR =
∑

σ,k<0

c†kσckσ. (6.14)

The point of this way of averaging is that the bias voltage µR − µL and temper-
ature difference TR − TL are in the density matrix ρ(H0) and not turned on as a
perturbation to the Hamiltonian as it is often done, see e.g. [131, 132, 133, 134].
Furthermore, the interaction is not included in the density matrix, but in the
Heisenberg picture of the operator, which is reasonable for the QPC setup with
non-interacting leads.

In other works [131, 132, 133, 134]6, the average is done with respect to a
density matrix including H0 + Hint (without the chemical potentials) and then
the operator A is taken in a picture for the full Hamiltonian, H = H0 + Hint +
H ′(t), where H ′(t) is a time dependent part of H describing e.g. the applied
bias voltage. Therefore here one has the bias (or another H ′(t)) in the time
evolution of A instead of in the density matrix. In this case, both the interaction
Hint and bias H ′(t) are rewritten in perturbation theory (to infinite order) and
one obtains two time-evolution operators ordered on the Keldysh contour, one
for each perturbation. This leads to the perturbative, diagrammatic expansion
of the average value using the Wicks theory as in equilibrium Green’s function
theory [14, 130].

The advantage of the present approach in eq.(6.10) is that we are able to
treat two reservoirs having different temperatures. Therefore the average of the
current operator can be calculated for a temperature difference, which in terms
leads to the thermopower without using any thermodynamical equalities (like in
the Kubo formula approach7).

Next we outline how the operator average 〈AH(t)〉 can be written on the
convenient Keldysh contour. See e.g. [132, chap.2] or [134] for a more detailed
and complete explanation. First of all, the operator AH(t) can be written by

using the interaction picture Â(t) ≡ eiH0(t−t0)Ae−iH0(t−t0) as

AH(t) = v†(t, t0)Â(t)v(t, t0) with v(t, t0) ≡ e+iH0(t−t0)e−iH(t−t0). (6.15)

6See also [135] for an introduction using functional integrals.
7Calculation-wise, this route also seems to be less cumbersome.
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Since the operator v(t, t0) follows the time-dependent Schrödinger-like equation

i∂tv(t, t0) = Ĥint(t)v(t, t0) (with v(t0, t0) = 1), we can write it as

v(t, t0) =
∞∑

n=0

(−i)n

n!

∫

C1

dt1 · · ·
∫

C1

dtnTC1

[
Ĥint(t1) · · · Ĥint(tn)

]

≡TC1

[
e
−i
∫
C1

dt′Ĥint(t
′)
]
, (6.16)

where C1 is the upper part of the Keldysh contour seen on figure 6.3, i.e. TC1 is
the normal time-ordering operator (placing operators with later times to the left)
and

∫
C1

=
∫ t

t0
. The hermitian conjugate v†(t, t0) is obtained by changing C1 → C2,

so the integrals run from t to t0 and the time operator TC2 orders backward in
time (see figure 6.3). Inserting v(t, t0) and v†(t, t0) in eq.(6.15) one can show that
(see e.g. [134, 131]):

AH(t) = TC

[
e−i

∫
C dt′Ĥint(t

′)Â(t)
]

=
∞∑

n=0

(−i)n

n!

∫

C
dt1 · · ·

∫

C
dtnTC

[
Ĥint(t1) · · · Ĥint(tn)Â(t)

]
, (6.17)

where C = C1 ∪ C2 is the Keldysh contour seen in figure 6.3. The time-ordering
TC orders a product of operators along the contour C as:

TC[B(t1)C(t2)] =

{
+B(t1)C(t2), for t1 >C t2
−C(t2)B(t1), for t2 >C t1

, (6.18)

where the minus should only be included, if it involves a odd number of permu-
tations of fermion operators to permute B and C. Here t >C t′ means that t′ is
before t on the contour following the arrows in figure 6.3. The integrals are also
on the contour C. By taking the average value of this operator using eq.(6.10),
we can use Wicks theorem as in e.g. zero temperature or the equilibrium Mat-
subara formalism [14, 130] and formally we have the same kind of diagrammatic
expansion. Note that when using Wicks theorem, one should include a slightly
larger time on the creation operators in the interaction, i.e.

Ĥint(t) =
1

2

∑

σ1σ2

∑

k1k2
k1′k2′

V1′2′,12 ĉ
†
k1′σ1

(t+)ĉ†k2′σ2
(t+)ĉk2σ2

(t)ĉk1σ1
(t), (6.19)

where t+ is infinitesimally larger than t in the contour sense (i.e. t+ >C t). We
can use the cancellation of the disconnected diagrams in the numerator and de-
nominator8 (proved in [14, p.239-241]) and obtain

〈AH(t)〉 =

∞∑

n=0

(−2i)n

∫

C
dt1 · · ·

∫

C
dtn

〈
TC

[
Ĥint(t1) · · · Ĥint(tn)Â(t)

]〉CT

, (6.20)

8In the case of a Keldysh contour this cancellation is particularly simple, because the sum

of the disconnected diagrams is one.



6.3. THE GREEN’S FUNCTION APPROACH 96

where CT indicates that we should only include the connected and topologically
different diagrams9. It is at this point that the concept of the Green’s functions
ordered on the Keldysh contour becomes an important ingredient.

To perform actually calculations, the integrals
∫
C have to be analytically con-

tinued. This can be done in basically two ways. One way is to use 2×2 matrices
in Keldysh space, i.e. one entry for each possibility of having the two times in
the Green’s function on the upper and lower part of the Keldysh contour, see
e.g. [134, 133]. Another way, which we use here, is to analytically continue the
integrals using the Langreth rules [136], see e.g. [131, 132]. Below we will list
some of theses rules.

6.3.2 The Green’s functions and the Langreth rules

In this section, we briefly go through some of the definition of the various Green’s
functions and state a minimum number of facts, in particular the Langreth rules
and the non-interacting Green’s functions, see e.g. [131, 132, 133, 134] for more
details.

Definition of the various Green’s functions and a few facts

The contour ordered Green’s function for fermions is:

G(1, 1′) ≡ −i〈TC [ΨH(1)Ψ†
H(1′)]〉, (6.21)

where ΨH(1) [Ψ†
H(1′)] is the annihilation [creation] operator for some state and

time 1 [1′], e.g. in real space 1 = (x1, σ1, t1), but of course other quantum numbers
are equally good (like 1 = (k1, σ1, t1)). Furthermore, it is convenient to introduce

G<(1, 1′) ≡ +i〈Ψ†
H(1′)ΨH(1)〉, (t1 <C t1′) (6.22a)

G>(1, 1′) ≡ −i〈ΨH(1)Ψ†
H(1′)〉, (t1 >C t1′) (6.22b)

Ga(1, 1′) ≡ +iθ(t1′ − t1)〈{ΨH(1), Ψ†
H(1′)}〉 (6.22c)

Gr(1, 1′) ≡ −iθ(t1 − t1′)〈{ΨH(1), Ψ†
H(1′)}〉 (6.22d)

which are called the lesser G<, greater G>, advanced Ga and retarded Gr Green’s
function, respectively. Here {a, b} ≡ ab + ba is the anti-commutator. Note that
the name lesser [greater] G<(1, 1′) [G>(1, 1′)] is because that t1 is before [after] t1′
on the contour. Furthermore, it is helpful to have the spectral function:

A(1, 1′) ≡ i[Gr(1, 1′) − Ga(1, 1′)]. (6.23)

9It is worth to notice that here we do not have to deal with a part of the contour from t0
to t0 − iβ due to the way the average is performed. Normally [131, 132, 134, 133], this part of
the contour is excluded when taking the t0 → −∞ limit.
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From the definitions above, we observe the relations

Ga(1, 1′) = θ(t1′ − t1)[G<(1, 1′) − G>(1, 1′)], (6.24a)

Gr(1, 1′) = θ(t1 − t1′)[G>(1, 1′) − G<(1, 1′)], (6.24b)

which leads to

Gr(1, 1′) − Ga(1, 1′) = G>(1, 1′) − G<(1, 1′). (6.25)

so the four Green’s functions are not independent, but there are three independent
functions. This is in contrast to equilibrium theory (e.g. the Matsubara formal-
ism), where the fluctuation-dissipation theorem connects the spectral function to
all the other Green’s functions, see e.g. [14, p.129].

Transforming the Green’s functions between k-space and real space the Fourier
formed operators are useful,

Ψ†(x) =
1√
L
∑

k

e−ikxc†k, Ψ(x) =
1√
L
∑

k

e+ikxck, (6.26)

c†k =
1√
L

∫ L
2

−L
2

dx e+ikxΨ†(x), ck =
1√
L

∫ L
2

−L
2

dx e−ikxΨ(x), (6.27)

since they lead to (inserting in the definition eq.(6.21))

G(xt, x′t′) =
1

L
∑

kk′

G(kt, k′t′) e−ik′x′+ikx, (6.28)

G(kt, k′t′) =
1

L

∫ L
2

−L
2

dx

∫ L
2

−L
2

dx′ G(xt, x′t′)e+ik′x′−ikx (6.29)

suppressing the spin indices. These relations do not assume translational invari-
ance.

Furthermore, here we will only deal with steady state situations, so having
performed the analytical continuation the Green’s functions only depend on the
time difference t = t1 − t1′ . Therefore it is convenient to Fourier transform to
frequency space as:

Gi(11′, ω) =

∫ ∞

−∞
dt eiωt Gi(11′, t ≡ t1 − t1′), (6.30)

where i =≶, a, r and we have used the same symbols 1 and 1′ in Gi(11′, ω) as in
Gi(1, 1′), but in Gi(11′, ω) they do no contain any time variables, of course.

Later the following relations will turn out to be useful:

[G<(1, 1′)]
∗

= −G<(1′, 1) ⇒ [G<(11′, ω)]
∗

= −G<(1′1, ω), (6.31)

and similar for G> and the retarded and advanced functions obey

[Gr(1, 1′)]
∗

= Ga(1′, 1) ⇒ [Gr(11′, ω)]
∗

= Ga(1′1, ω). (6.32)
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The Langreth rules

To write the average of a physical observable in terms of integrals on the Keldysh
contour C eq.(6.20) and then expressing it in terms of contour ordered Green’s
functions is a useful theoretical tool. However, to take the last step and actually
get a number in the end, we need to evaluate the integrals on the contour over
the contour ordered Green’s functions. To this end, the Langreth rules [136] are
considered here, see also [131, 132].

Consider the following contour integral over two contour ordered functions A

and B:

C(t, t′) =

∫

C
dt1A(t, t1)B(t1, t

′), (6.33)

where we have omitted all other indices that time10. Now we outline how to find,
say, the lesser component of C(t, t′) (see [131, p.65-68]). In this case t <C t′, so
the contour C can be deformed into two contours leading to two integrals, one
over each new contour.(The new contours are similar to C, but with t and t′ in
the crossing point in the place of t in figure 6.3). Each of these new contours
are constructed such that either A(t, t1) or B(t1, t

′) can be replaced by its lesser
component. Along these lines the lesser component finally becomes

C<(t, t′) =

∫ ∞

−∞
dt1[A

r(t, t1)B
<(t1, t

′) + A<(t, t1)B
a(t1, t

′)], (6.34)

and C>(t, t′) by replacing all < with >. The retarded and advanced component
is found using eq.(6.24) to be

Cr/a(t, t′) =

∫ ∞

−∞
dt1A

r/a(t, t1)B
r/a(t1, t

′). (6.35)

These relations are easily generalized to more than two functions in the integrand,
however, the time arguments have to be in a special orderly fashion, i.e.

D(t, t′) =

∫

C
dt1

∫

C
dt2A(t, t1)B(t1, t2)C(t2, t

′), (6.36)

which becomes

D≷(t, t′) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2[A

r(t, t1)B
r(t1, t2)C

≷(t2, t
′)

+ Ar(t, t1)B
≷(t1, t2)C

a(t2, t
′) + A≷(t, t1)B

a(t1, t2)C
a(t2, t

′)], (6.37)

Dr/a(t, t′) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 Ar/a(t, t1)B

r/a(t1, t2)C
r/a(t2, t

′) (6.38)

10Note that some authors use Greek letters τ on the contour and roman t on the real axes.
We do not use this convention. Instead functions without a superscript (like >) are on the
contour and functions with a superscript are on the real time axis.
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using eq.(6.34) and (6.35). The structure is now clear for this particular or-
der of the time arguments, i.e. if we had four functions in the integrand E =∫ ∫ ∫

ABCD then one would get

E< =

∫ ∫ ∫
ArBrCrD< + ArBrC<Da + ArB<CaDa + A<BaCaDa (6.39)

and Er =
∫ ∫ ∫

ArBrCrDr (suppressing the time arguments).
However, sometimes the evaluation of a product of time-ordered functions

without an integral is needed, i.e.

C⇇(t, t′) = A(t, t′)B(t, t′), (6.40a)

C⇆(t, t′) = A(t, t′)B(t′, t). (6.40b)

The lesser components are easily seen to be

C<
⇇(t, t′) = A<(t, t′)B<(t, t′), (6.41a)

C<
⇆(t, t′) = A<(t, t′)B>(t′, t), (6.41b)

and the greater components follow by >↔<. Using the definitions of the ad-
vanced and retarded Green’s functions and the relations eq.(6.24), it can be seen
that

Cr
⇇(t, t′) = Ar(t, t′)B<(t, t′) + A<(t, t′)Br(t, t′) + Ar(t, t′)Br(t, t′), (6.42a)

Ca
⇇(t, t′) = Aa(t, t′)B<(t, t′) + A<(t, t′)Ba(t, t′) − Aa(t, t′)Ba(t, t′), (6.42b)

C
r/a
⇆ (t, t′) = Ar/a(t, t′)B<(t′, t) + A<(t, t′)Ba/r(t′, t). (6.42c)

Note the sign difference between Cr
⇇(t, t′) and Ca

⇇(t, t′) in the last term. These
relations are constructed such that the greater component does not enter by
the help of eq.(6.25), since we have three independent Green’s functions. See
e.g. Jauho and Haug [131] for further details and derivations (or [132]).

The non-interacting Green’s functions

The non-interacting Green’s functions Gi
0(1, 1

′) (i = a, r, ≷) of the problem are
needed below and therefore given here. Due to the particular way the average
is performed in eq.(6.10), we get a different result that normally (see e.g. [132,

Appendix A]), since G≷
0 depend on the direction of k.

Using the definitions of the various Green’s functions eq.(6.22) with 1 =
(k1σ1t1) and the average eq.(6.10), the non-interacting Green’s functions become:

Gr
0(1, 1

′) = −iθ(t1 − t1′)e
−iεk1

(t1−t1′ )e−η(t1−t1′ )δk1,k1′
δσ1,σ1′

, (6.43a)

Ga
0 (1, 1′) = +iθ(t1′ − t1)e

−iεk1
(t1−t1′ )e+η(t1−t1′ )δk1,k1′

δσ1,σ1′
, (6.43b)

G<
0 (1, 1′) = +ie−iεk1

(t1−t1′ )f 0
R/L(εk1)δk1,k1′

δσ1,σ1′
, (6.43c)

G>
0 (1, 1′) = −ie−iεk1

(t1−t1′ )[1 − f 0
R/L(εk1)]δk1,k1′

δσ1,σ1′
, (6.43d)
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where f 0
R/L(εk) are the Fermi functions for the right(R)/left(L) reservoirs, i.e. if

k1 > 0 then f 0
L(εk1) is used and vice versa. The non-interacting Green’s functions

are diagonal in k and σ and a positive infinitesimal η = 0+ is introduced (see
e.g. [14]). Note that the chemical potentials do not appear in the exponents with
the energy εk, but in the Fermi functions. By Fourier transforming to frequency
space using the convention in eq.(6.30), the non-interacting Green’s functions
become

Gr
0(k, ω) =

1

ω − εk + iη
, (6.44a)

Ga
0 (k, ω) =

1

ω − εk − iη
, (6.44b)

G<
0 (k, ω) = +2πiδ(ω − εk)f

0
R/L(εk), (6.44c)

G>
0 (k, ω) = −2πiδ(ω − εk)[1 − f 0

R/L(εk)], (6.44d)

where it was used in the notation that Gi
0 is diagonal in k and σ, and σ was

suppressed in the notation.

6.3.3 The Dyson equation

The Dyson equation known from equilibrium Green’s function theory [14, 130]
is still valid (due to the formal similarity) for the present approach by using the
contour C in the time integrals. The Dyson equation for the contour order Green’s
function in real space is

G(xx′, tt′) =G0(xx
′, tt′) (6.45)

+

∫ L/2

−L/2

∫ L/2

−L/2

dx1dx2

∫

C

∫

C
dt1dt2 G0(xx1, tt1)Σ(x1x2, t1t2)G(x2x

′, t2t
′),

where we write the space and time arguments explicitly11 and suppress the spin
index. The Dyson equation is simply a rewriting of the Green’s function G us-
ing the diagrammatic expansion of the average value eq.(6.10). To this end, the
irreducible self-energy Σ(x1x2, t1t2) is introduced, which contains all diagrams
that cannot be cut into two pieces by cutting a single Green’s function line. It
is important to note that Σ depends on the Green’s function G, which make it
a difficult task to solve the Dyson equation (see e.g. [14]). Note that an exter-
nal single-particle potential can easily be included in the Dyson equation, see
e.g. [131, 132]. To find the lesser, greater, retarded and advanced Green’s func-
tions in terms of the self-energy components the Langreth rules eq.(6.37) and
eq.(6.38) can be applied leading to three coupled (difficult) integral equations.

11The order of the arguments have also been changed as (1, 1′) = (x1t1, x1′t1′) →
(x1x1′ , t1t1′), but hopefully this does not course any confusion.
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The Dyson equation for the point-like interaction

To make a general current formula for the point-like interaction eq.(6.6), the
Dyson equation is studied in this case here.

Due to the particular form of the point-like interaction, V0δ(x)δ(x′), the self-
energy can only be non-zero at x1 = x2 = 0, i.e.

Σ(x1x2, t1t2) = δ(x1)δ(x2)Σ(00, t1t2), (6.46)

so the Dyson equation reduces to:

G(xx′, tt′) = G0(xx′, tt′) +

∫

C

∫

C
dt1dt2 G0(x0, tt1)Σ(00, t1t2)G(0x′, t2t

′). (6.47)

Using the Langreth rule eq.(6.38) the retarded Green’s functions becomes:

Gr(xx′, tt′) = Gr
0(xx′, tt′) +

∫ ∞

−∞

∫ ∞

−∞
dt1dt2 Gr

0(x0, tt1)Σ
r(00, t1t2)Gr(0x′, t2t

′),

(6.48)

and the same for Ga by replacing r → a. Using the Langreth rule eq.(6.37) the
lesser Green’s function is

G<(xx′, tt′) = G<
0 (xx′, tt′) +

∫ ∞

−∞

∫ ∞

−∞
dt1dt2

[
Gr

0(x0, tt1)Σ
r(00, t1t2)G<(0x′, t2t

′)

+ Gr
0(x0, tt1)Σ

<(00, t1t2)Ga(0x′, t2t
′) + G<

0 (x0, tt1)Σ
a(00, t1t2)Ga(0x′, t2t

′)
]
,

and G> is obtained by replacing < by > in all Green’s functions. These equations
involve a convolution in time, so Fourier transforming to frequency space using
the definition (6.30) leads to a product of functions in frequency space, i.e.

Gr(a)(xx′, ω) =Gr(a)
0 (xx′, ω) + Gr(a)

0 (x0, ω)Σr(a)(00, ω)Gr(a)(0x′, ω), (6.49)

G<(xx′, ω) =G<
0 (xx′, ω) + Gr

0(x0, ω)Σr(00, ω)G<(0x′, ω) (6.50)

+ Gr
0(x0, ω)Σ<(00, ω)Ga(0x′, ω) + G<

0 (x0, ω)Σa(00, ω)Ga(0x′, ω).

Note that there is no hidden integrals (as it is often the case in the Green’s
function literature). To evaluate the current average, the following rewriting of
the Dyson equation becomes handy:

G<(xx′, ω) =G<
0 (xx′, ω) + Gr(x0, ω)Σr(00, ω)G<

0 (0x′, ω) (6.51)

+ Gr(x0, ω)Σ<(00, ω)Ga
0(0x

′, ω) + G<(x0, ω)Σa(00, ω)Ga
0(0x

′, ω),

where the order of the G and G0 are opposite than in eq.(6.50). This rewriting is
easily proven e.g. by iteration of eq.(6.50).
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6.4 A non-perturbative current formula for the

point-like interaction

In this section, a general current formula for the point-like interaction eq.(6.6) is
derived, which only depends on the spectral function A(00, ω) in x = x′ = 0. Of
course, to find A(00, ω) = −2ImGr(00, ω) a self-energy Σ(00, ω) is needed to solve
the (in general) three coupled Dyson equations (6.49) and (6.50). The fact that
x = x′ = 0 in all the Green’s functions in these coupled Dyson equations makes
the involved functions depend on only one variable ω instead of three (x, x′, ω);
A notable simplification.

Before the derivation is given, let us recapitulate the model: A clean 1D
single mode electron gas with electron-electron interactions only present in a
single point x = 0 (corresponding to the midpoint of a QPC). The right and left
movers coming into x = 0 have different temperatures and/or chemical potentials
(i.e. distributed by the Fermi functions of the leads). Furthermore, for simplicity
a quadratic band

εk =
ℏ2k2

2m
(6.52)

is used, where m is the effective mass.
Now the derivation of the current formula is given. The particle12 current

operator in the Heisenberg picture for a quadratic band is [14]

IH(t) =
ℏ

2mi

∑

σ

[
Ψ†

H(xt)
(
∂xΨH(xt)

)
−
(
∂xΨ

†
H(xt)

)
ΨH(xt)

]
. (6.53)

Note that if we do not have a quadratic band, then the current operator can be
different13. This is why, we restrict ourself to a quadratic band. The average of
the current operator is:

〈IH(t)〉 =
ℏ

2mi

∑

σ

[
〈Ψ†

H(xt)
(
∂xΨH(xt)

)
〉 − 〈

(
∂xΨ

†
H(xt)

)
ΨH(xt)〉

]

=
ℏ

2mi

∑

σ

lim
x′→x

∂x〈Ψ†
H(x′t)ΨH(xt)〉 − lim

x′→x
∂x′〈Ψ†

H(x′t)ΨH(xt)〉

=
ℏ

2mi

∑

σ

(−i) lim
x′→x

[∂xG<(xx′, tt) − ∂x′G<(xx′, tt)]

=
ℏ

2m

∑

σ

∫ ∞

−∞

dω

2π
lim
x′→x

[∂x′ − ∂x]G<(xx′, ω) (6.54)

12The electric current operator is found by multiplying with (−e) < 0.
13In the derivation of the current operator in [14, p.21-23] only the kinetic part in the Hamil-

tonian H0 =
∑

kσ εkc
†
kσckσ enters. However, including a lattice potential in H of course does

not change the kinetic term H0, but absorbing the (non-quadratic) band structure into the
kinetic term H0 does change it and in terms possibly the current operator.
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using the definition G<(xx′, tt′) = +i〈Ψ†
H(x′t′)ΨH(xt)〉. In this current formula,

we can choose any point x = x′ to evaluate the current due to current conser-
vation14. However, if we chose x = x′ = 0 to evaluate the current the formula
becomes particulary simple. To find ∂xG<(xx′, ω) and ∂x′G<(xx′, ω), we use the
Dyson equations (6.50) and (6.51), respectively, so we only have to differentiate
non-interaction Green’s functions, i.e.

∂xG<(xx′, ω) = ∂xG<
0 (xx′, ω) +

[
∂xGr

0(x0, ω)
]
Σr(00, ω)G<(0x′, ω) (6.55a)

+
[
∂xGr

0(x0, ω)
]
Σ<(00, ω)Ga(0x′, ω) +

[
∂xG<

0 (x0, ω)
]
Σa(00, ω)Ga(0x′, ω),

and

∂x′G<(xx′, ω) = ∂x′G<
0 (xx′, ω) + Gr(x0, ω)Σr(00, ω)

[
∂x′G<

0 (0x′, ω)
]

(6.55b)

+ Gr(x0, ω)Σ<(00, ω)
[
∂x′Ga

0 (0x′, ω)
]
+ G<(x0, ω)Σa(00, ω)

[
∂x′Ga

0 (0x′, ω)
]
.

A major simplification occurs by using eq.(6.28) and that Gi
0(kt, k′t′) ∝ δk,k′, i.e.15

lim
x→x′

∂xGr
0(xx′, ω) = lim

x→x′
∂x

∫ ∞

−∞

dk

2π
Gr

0(k, ω)eik(x−x′)

=

∫ ∞

−∞

dk

2π
Gr

0(k, ω) ik =

∫ ∞

−∞

dk

2π

1

ω − εk + iη
ik

=

∫ ∞

−∞

dk

2π

[
P 1

ω − εk
− iπδ(ω − εk)

]
ik = 0, (6.56)

where both the principle value P(·) term and the delta function term are odd in k
(εk is even) and therefore zero. The same is true for the advanced non-interacting
Green’s function, limx→x′ ∂xGa

0 (xx′, ω) = 0, and for the differentiate with respect
to x′, since

∂xGi
0(xx′, ω) =

∫ ∞

−∞

dk

2π
Gi

0(k, ω) ∂xe
ik(x−x′) = −∂x′Gi

0(xx′, ω) (6.57)

for i =<, >, r, a. Therefore in x = x′ = 0 we have:

∂xG<(00, ω) = ∂xG<
0 (00, ω) +

[
∂xG<

0 (00, ω)
]
Σa(00, ω)Ga(00, ω), (6.58)

∂x′G<(00, ω) = ∂x′G<
0 (00, ω) + Gr(00, ω)Σr(00, ω)

[
∂x′G<

0 (00, ω)
]
. (6.59)

Note that by e.g. ∂xG<
0 (00, ω) is meant that first the differentiation is done and

afterwards x = 0. Inserting this into eq.(6.54) and using eq.(6.57) the particle

14We have checked this explicitly in the perturbative case, but we do not give the derivation

here.
15Here the long wire limit L → ∞ is used, so 1

L

∑
k(· · · ) →

∫
dk
2π (· · · ).
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current becomes:

〈IH〉 =
ℏ

2m

∑

σ

∫ ∞

−∞

dω

2π
lim
x′→x

[∂x′G<(xx′, ω) − ∂xG<(xx′, ω)]

=
ℏ

2m

∑

σ

∫ ∞

−∞

dω

2π

{
− 2∂xG<

0 (00, ω)

− ∂xG<
0 (00, ω)

[
Gr(00, ω)Σr(00, ω) + Σa(00, ω)Ga(00, ω)

]}

=
ℏ

2m

∑

σ

∫ ∞

−∞

dω

2π

{
−2∂xG<

0 (00, ω)︸ ︷︷ ︸
non-interacting term

− ∂xG<
0 (00, ω)2Re

[
Gr(00, ω)Σr(00, ω)

]

︸ ︷︷ ︸
current due to interaction

}

≡ I(0) + I int, (6.60)

where we used Gr(xx′, ω) = [Ga(x′x, ω)]∗ and Σr(xx′, ω) = [Σa(x′x, ω)]∗ eq.(6.32).
At this point, we can observe that to calculate the current it is enough to know
the local Green’s functions at x = x′ = 0. Furthermore, from this expression it
is clear that the current has two terms: A non-interacting contribution I(0) (still
present for Σr(00, ω) = 0) and a term due to the interaction I int. The same is
true in the Boltzmann approach, see e.g. eq.(3.19). To proceed, we need

∂xG<
0 (00, ω) =

∫ ∞

−∞

dk

2π
G<

0 (k, ω) ik =

∫ ∞

−∞

dk

2π
2πiδ(ω − εk)f

0
R/L(εk) ik

= θ(ω)
m

ℏ2

[
f 0

R(ω) − f 0
L(ω)

]
, (6.61)

so the current becomes

〈IH〉 = −1

ℏ

∑

σ

∫ ∞

0

dω

2π

[
f 0

R(ω) − f 0
L(ω)

]{
1 + Re

[
Gr(00, ω)Σr(00, ω)

]

︸ ︷︷ ︸
term due to interactions

}
. (6.62)

The local retarded non-interacting Green’s function is

Gr
0(00, ω) =

∫ ∞

−∞

dk

2π

1

ω − εk + iη
= −iπ

∫ ∞

−∞

dk

2π
δ(ω − εk) ≡ −iπd(ω), (6.63)

where the principal value part is zero, P
∫∞
−∞

dk
2π

1
ω−εk

= 0, for a quadratic disper-

sion (and ω 6= 0). In eq.(6.63) the density of states d(ω) (not including the spin)
is introduced. The non-interacting local spectral function for a quadratic band
is therefore

A0(00, ω) = 2πd(ω) =

√
2m

ωℏ2
θ(ω). (6.64)

Note that Gr
0(00, ω) = 0 for ω < 0, so the Dyson equation (6.49) gives that

Gr(00, ω) = 0 for ω < 0 and the same for Ga,≷(00, ω) using the local version of
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eq.(6.50). Next we manipulate the term in the curly brackets in eq.(6.62) using
the Dyson equation (6.49):

Re
[
1 + Gr(00, ω)Σr(00, ω)

]
= Re

[Gr(00, ω)

Gr
0(00, ω)

]
= Re

[Gr(00, ω)

−iπd(ω)

]

=
A(00, ω)

2πd(ω)
=

A(00, ω)

A0(00, ω)
, (6.65)

so the electric current Ie = (−e)I ≡ (−e)〈IH〉 becomes

Ie =
e

h

∑

σ

∫ ∞

0

dω
[
f 0

R
(ω) − f 0

L
(ω)
] A(00, ω)

A0(00, ω)
. (6.66)

This is the result for the general current formula and in the next sections it is
applied. In the non-interacting case, A(00, ω) = A0(00, ω), it reduces to the
Landauer formula eq.(1.4) for a single fully open channel (unity transmission).
The above current formula assumes: (i) the point-like interaction model eq.(6.6),
(ii) a quadratic dispersion and (iii) that we used the operator average presented
in section 6.3.1. However, it is general in the sense that the self-energy Σ(00, ω)
can be used in any sort of approximation desired. Furthermore, it can handle non-
equilibrium situations as well as equilibrium ones and including a temperature
difference does not propose a conceptual problem (at most a calculational one).
As already mentioned, it only requires knowledge of the local Green’s function
(at x = x′ = 0) to know the current, which simplifies the problem. A particularly
convenient feature is that in linear response to the temperature difference ∆T

or the bias voltage V these quantities are included in [f 0
R
(ω) − f 0

L
(ω)], so the

local spectral function A(00, ω) can be calculated in equilibrium. This makes the
problem easier, since using the fluctuation-dissipation theorem there is only one
independent Green’s function. In section 6.7, this is used and the fluctuation-
dissipation theorem will be given explicitly.

The conductance and thermopower for a point-like interaction

Next we find the conductance and thermopower for the point-like interaction
using the current formula eq.(6.66).

In linear response to the bias eV = µR − µL and temperature difference
∆T = TR − TL the difference between the Fermi functions of the leads is (using
eq.(1.7)):

f 0
R
(ω) − f 0

L
(ω) = [−∂ωf 0(ω)]

{
eV + (ω − ε

F
)
∆T

T

}
, (6.67)

so inserting this into the current formula eq.(6.66), we get the conductance G
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and the thermoelectric coefficient GT as

G =
2e2

h

∫ ∞

0

dω[−∂ωf
0(ω)]

Aeq(00, ω)

A0(00, ω)
, (6.68)

GT =
2ek

b

h

∫ ∞

0

dω[−∂ωf
0(ω)]

(
ω − εF

k
b
T

)
Aeq(00, ω)

A0(00, ω)
, (6.69)

and the thermopower is simply S = GT/G. Here Aeq(00, ω) is the equilibrium
spectral function, because f 0

R(ω) − f 0
L(ω) is already proportional to V and ∆T ,

so V = 0 and ∆T = 0 should be used in A(00, ω) in linear response.

Including a local potential scattering term

A local potential scattering term of the form U(x) = U0δ(x) can easily be included
by adding a term to the Dyson equation. Afterwards, the same derivation as
above can be done and the resulting current formula eq.(6.66) does not change,
but here the A(00, ω) includes V0 and the potential U0, however, A0(00, ω) is the
result for V0 = 0 and U0 = 0. It is not obvious how to relate the U0 to gate voltage
Vg, so we have left the detailed description of the interplay of potential scattering
and interaction effects for future studies. (Furthermore, the local potential might
not mimic the rather large metallic gates inducing a smooth potential particularly
well.)

6.4.1 Connection to the Meir-Wingreen formula for an

Anderson model

The current formula eq.(6.66) derived above is a continuum version of the famous
Meir-Wingreen formula [137] for a single level Anderson model connected to two
leads. Here we try to explain the connection.

The Meir-Wingreen formula is rather general and here we only need it in
a special situation. Consider a tight-binding chain with spin degenerate sites
i and a constant nearest neighbor hopping amplitude t. The electron-electron
interaction of strength U is only included on the single site i = 0. This case is
described by the Anderson model Hamiltonian embedded into the tight-binding
chain, i.e.

H = ε̃
∑

i,σ

c†iσciσ − t
∑

i,σ

(c†iσci+1σ + c†i+1σciσ) +
∑

σ

ε0ni=0σ + Uni=0↑ni=0↓, (6.70)

where ni=0σ = c†i=0σci=0σ and ε̃ and ε0 are the on-site energies for i 6= 0 and i = 0,
respectively. Note that the hopping onto the site i = 0 is the same as in the rest
of the chain (which is not the usual situation in e.g. describing quantum dots).
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The on-site energy ε̃ is often chosen as the zero of the energy for convenience. In
this situation, the Meir-Wingreen formula is (see e.g. [131, 14, 137]):

Ie =
2e

h

∫ ∞

−∞
dω π|t|2dt(ω)A(i = i′ = 0, ω)

[
f 0

R
(ω) − f 0

L
(ω)
]
, (6.71)

where dt(ω) is the density of states of the semi-infinite tight-binding chain (i.e. for
either i > 0 or i < 0) and A(i = i′ = 0, ω) is the local spectral function on the
single site i = 0.

Physically, the tight-binding model with an interaction on a single site i = 0 is
clearly a discrete version of the model used here, which is a 1D electron gas (with-
out a lattice) including interactions at a single point x = 0. The discretization
should only be visible probing short wavelength properties (or large k) compared
to the distance a between the sites.

The connection between the Meir-Wingreen formula for a tight-binding chain
eq.(6.71) and the current formula eq.(6.66) is evident: Both contain the local
spectral function at the point, where interactions are possible, and the deference
between the Fermi functions. However, the density of states are in different
positions in the two formulas, but they are also different formulas. The dispersion
relations are different and for a tight-binding chain it is εk = −2t cos(ka), where
a is the distance between the sites. Therefore to obtain a formal connection16 the
Fermi level of the tight-binding chain needs to be below half filling, so a quadratic
dispersion is a good approximation to the dispersion.

6.5 Perturbative results for the current using the

point-like interaction

As a first approach to the problem of interactions in a short point-like QPC, we
perform perturbative calculations in the electron-electron interaction. We have
calculated this by direct use of a perturbative (diagrammatic) expansion of the
average value of the current operator eq.(6.20). This direct calculation shows that
the current in the point-like model eq.(6.6) is indeed independent of the position
x. However, the direct perturbative calculation in the interaction for a general
x is somewhat tedious and therefore it is not show here. Instead we simply used
the current formula eq.(6.66) including the nth order diagrams in the self-energy
to get the interaction contribution to the current to nth order.

16Note that d(ω) ∝ 1/
√
ω and using the density of states for a semi-infinite tight-binding

chain it goes as dt(ω) ∝ √
ω for low frequencies, so the formulas correspond (see e.g. [132,

Appendix C] for dt(ω)).
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6.5.1 The current to first order in the interaction

The first order interaction correction is often referred to as the Hartree-Fock
contribution. In the case of the point-like interaction model eq.(6.6), it is possible
to show by direct calculation that the first order interaction contribution to the
current is actually zero. However, in general this is not the case.

In general, the Hartree-Fock contribution correspond to that each electron
interacts with the mean field of all the other electrons, so the Hartree-Fock term
contributes to the single-particle (mean) field, see e.g. [14, chap.4]. Therefore it is
possible to include the Hartree-Fock contribution to the interactions in the single-
particle potential. In doing so, the single-particle potential becomes dependent
on the electronic density. The first order contribution can also be make self-
consistent, which means that the non-interacting Green’s functions are replaced
by the full Green’s functions in the Hartree and Fock diagrams, see e.g. [138]. This
self-consistent Hartree-Fock contribution still acts like a single-particle potential
depending on the density, however, in this case the potential has to be treated
self-consistently.

Therefore to describe the interaction corrections in a QPC, the self-consistent
Hartree-Fock contribution to the current can be included into the single-particle
electrostatic potential of the gates and their sum formes the single-particle po-
tential of the QPC. The self-consistent Hartree-Fock potential can give rise to
backscattering of electrons even at zero temperature and hence a current reduc-
tion. However, experimentally, it is possible to adjust the gates to have integer
transmission (i.e. no backscattering) at the lowest possible temperatures (T → 0),
so this effect is compensated by tuning the electrostatic potential of the gates and
this is the case of interest here. The electrostatic potential from the gates does not
dependent on temperature, but the self-consistent Hartree-Fock potential could
have some non-trivial temperature dependence. Lassl et al. [138] have consid-
ered this problem for a QPC in a realistic geometry for a contact interaction,
V (r − r

′) = constant × δ(r − r
′). In this approach the self-consistent Hartree-

Fock contribution is strongest for zero temperature and decreases rapidly for
higher temperatures, in complete contrast to the experimental evidence of the
0.7 anomaly. Furthermore, to see any effect of the self-consistent Hartree-Fock
calculation an asymmetry between up and down spins have to be assumed cor-
responding to including a small magnetic field in the calculation. Note that
other spin symmetry-broken mean field approaches cannot reproduce the right
temperature dependence either [139].

In the present work, we do not assume any spin asymmetry and we neglect
any temperature dependence of the self-consistent Hartree-Fock single-particle
potential.
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ΣB = ΣZ =

tt′ σ

σ′ tt′ tt′ σ

σ

σ tt′

Figure 6.4: The Feynman diagrams of the
self-energy to second order in the electron-
electron interaction eq.(6.73) and eq.(6.74).
These lead to the second order interaction
term in the current I(2). Lines with arrows are
G0 connecting the interactions (wiggled lines)
at space time points (x = 0, t(′)) (blue dots).

6.5.2 The current to second order in the interaction

Next we calculate the current to second order in the interaction for the point-like
interaction eq.(6.6) using the general current formulation from section 6.4.

The particle current to second order consist of a non-interacting part I(0) and
a second order interaction term I(2), i.e. I = I(0) + I(2) + · · · . Using eq.(6.60) the
latter is17

I(2) =
ℏ

2m

∑

σ

∫ ∞

−∞

dω

2π

{
− ∂xG<

0 (00, ω)2Re
[
Gr

0(00, ω)Σr
(2)(00, ω)

]}
(6.72)

where Σr
(2)(00, ω) is the second order self-energy. Here the full Green’s function

Gr(00, ω) in eq.(6.60) is replaced by Gr
0 to second order, because having a first

order contribution in Gr and a first order in Σr is part of the self-consistent
Hartree-Fock potential included in the single-particle potential.

To find I(2), the topologically different second order diagrams in the self-
energy are identified and shown in figure 6.4. Here the lines with arrows represent
G0(00, tt′) going from t′ to t and the wiggled lines represent the interactions
connecting only x = x′ = 0 (blue dots). There are two different contributions to
the self-energy Σ(2): The bobble diagram ΣB and the zigzag diagram ΣZ . The
contour ordered self-energies can explicitly be identified using the expansion of
the average value eq.(6.20) of the Green’s function to second order (see e.g. [14]).
They are given in terms of the non-interacting contour ordered Green’s functions
by

ΣZ(00, tt′) = i2|V0|2G0(00, tt′, σ)G0(00, t′t, σ)G0(00, tt′, σ) (6.73)

and

ΣB(00, tt′) = (−1)i2|V0|2G0(00, tt′, σ)
∑

σ′

G0(00, t′t, σ′)G0(00, tt′, σ′) (6.74)

where it was used that the interaction only acts at x = 0, so all the Green’s
function have to be at x = x′ = 0. The (−1) in ΣB is due to the Fermion-loop

17For convenience, we use eq.(6.60) instead of finding A(00, ω) to second order in the inter-
action and then use eq.(6.66). The two ways are of course equivalent.
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(the bobble) and the i2 is due to the second order. The Green’s functions are
independent of the spin, however, the spin index is temporarily included explicitly
in G0 to emphasize that the spin in the loop in ΣB can be different from the spin
of the baseline in contrast to the zigzag diagram. The second order self-energy
Σ(2) = ΣB + ΣZ becomes

Σ(2)(00, tt′) = |V0|2G0(00, t′t)G0(00, tt′)G0(00, tt′). (6.75)

Note that if the electrons are spinless (e.g. in a large magnetic field), then the two
self-energy contributions cancel each other. This is similar to the cancellation of
direct and exchange terms in a electron-electron interaction matrix element for
spinless electrons and a momentum independent interaction, see section 4.5.3.

To find the second order current I(2) eq.(6.72) the retarded self-energy is
needed. Using eq.(6.24) and the Langreth rule for a product eq.(6.41) it is

Σr
(2)(00, tt′) = θ(t− t′)

[
Σ>

(2)(00, tt′) − Σ<
(2)(00, tt′)

]
(6.76)

=θ(t− t′)|V0|2
[
G<

0 (00, t′t)G>
0 (00, tt′)G>

0 (00, tt′) − G>
0 (00, t′t)G<

0 (00, tt′)G<
0 (00, tt′)

]
,

and Fourier transforming to frequency gives (making the convenient variable
change t− t′ → t):

Σr
(2)(00, ω) =

|V0|2
∫ ∞

−∞
dteiωtθ(t)

[
G<

0 (00,−t)G>
0 (00, t)G>

0 (00, t) − G>
0 (00,−t)G<

0 (00, t)G<
0 (00, t)

]

= |V0|2
∫ ∞

−∞

dω1dω2dω3

(2π)3

∫ ∞

−∞
dtθ(t)ei(ω+ω1−ω2−ω3)te−ηt

×
[
G<

0 (00, ω1)G>
0 (00, ω2)G>

0 (00, ω3) − G>
0 (00, ω1)G<

0 (00, ω2)G<
0 (00, ω3)

]

= |V0|2
∫ ∞

−∞

dω1dω2dω3

(2π)3

i

(ω + ω1 − ω2 − ω3) + iη
(6.77)

×
[
G<

0 (00, ω1)G>
0 (00, ω2)G>

0 (00, ω3) − G>
0 (00, ω1)G<

0 (00, ω2)G<
0 (00, ω3)

]
,

where e−ηt was introduced to insure convergence (η = 0+). This has a form
similar to a collision integral (see e.g. eq.(3.7)), i.e. scattering in and out of
states, because G< ∼ 〈Ψ†Ψ〉 is like a distribution function and G> ∼ 〈1 − Ψ†Ψ〉
is like one minus the distribution function. However, a factor is missing in each
product of Green’s functions. This connection will be more clear later on, see
section 6.7.2.

To find Σr and in terms I(2) the non-interacting Green’s functions Gi
0(k, ω)

(diagonal in k) eq.(6.44) are rewritten using the transformation to real space
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eq.(6.28) as

Gr
0(00, ω) =

∫ ∞

−∞

dk

2π

1

ω − εk + iη
= −iπ

∫ ∞

−∞

dk

2π
δ(ω − εk), (6.78)

G<
0 (00, ω) = +2πi

∫ ∞

−∞

dk

2π
δ(ω − εk)f

0
R/L(εk), (6.79)

G>
0 (00, ω) = −2πi

∫ ∞

−∞

dk

2π
δ(ω − εk)

[
1 − f 0

R/L(εk)
]
, (6.80)

where the principal part of the retarded Green’s function Gr
0(00, ω) is zero for

εk ∝ k2 and here it turns out to be convenient to keep the delta functions for
the time being. Note that the limit L → ∞ has already been taken at this
point, making the sums over k into integrals. Inserting these into the factor
Re[Gr

0(00, ω)Σr
(2)(00, ω)] in I(2) eq.(6.72), we have

Re
[
Gr

0(00, ω)Σr
(2)(00, ω)

]
= −ImGr

0(00, ω)ImΣr
(2)(00, ω) (6.81)

= −π2

{∫ ∞

−∞

dk̃

2π
δ(ω − εk̃)

}
|V0|2

∫ ∞

−∞

dω1dω2dω3

(2π)3
i4(2π)3δ(ω + ω1 − ω2 − ω3)

×
∫ ∞

−∞

dk1dk2dk3

(2π)3
δ(ω1 − εk1)δ(ω2 − εk2)δ(ω3 − εk3)

×
[
f

(0)
1 (1 − f

(0)
2 )(1 − f

(0)
3 ) + (1 − f

(0)
1 )f

(0)
2 f

(0)
3

]
,

where the short-hand notation f
(0)
i = f 0

R/L(εki
) was used. To get I(2), we rewrite

∂xG<
0 (00, ω) as (see also eq.(6.61))

∂xG<
0 (00, ω) = −2π

∫ ∞

−∞

dk

2π
k δ(ω − εk)f

0
R/L(εk), (6.82)

and insert it together with eq.(6.81) into I(2) eq.(6.72), i.e.

I(2) =
ℏ

2m

∑

σ

∫ ∞

−∞

dω

2π

[
2π

∫ ∞

−∞

dk

2π
kδ(ω − εk)f

0
R/L(εk)

]
2Re

[
Gr

0(00, ω)Σr
0(00, ω)

]

= |V0|2
ℏ

2m

∑

σ

∫ ∞

−∞

dk

2π
kn0

k2(−π2)

{∫ ∞

−∞

dk̃

2π
δ(εk − εk̃)

}
(6.83)

×
∫ ∞

−∞

dk1dk2dk3

(2π)3
δ(εk + εk1 − εk2 − εk3)

[
f

(0)
1 (1 − f

(0)
2 )(1 − f

(0)
3 ) + (1 − f

(0)
1 )f

(0)
2 f

(0)
3

]
,

where delta function δ(ωi − εki
) in eq.(6.81) were performed. The factor in the

curly brackets give 2m
2πℏ|k| for a quadratic dispersion and therefore I(2) simplifies
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to

I(2) = −π|V0|2
ℏ

∑

σ

∫ ∞

−∞

dkdk1dk2dk3

(2π)4

k

|k| δ(εk + εk1 − εk2 − εk3)

× f
(0)
k

[
f

(0)
1 (1 − f

(0)
2 )(1 − f

(0)
3 ) + (1 − f

(0)
1 )f

(0)
2 f

(0)
3

]

= −π|V0|2
ℏ

∑

σ

∫ ∞

−∞

dkdk1dk2dk3

(2π)4

k

|k| δ(εk + εk1 − εk2 − εk3)

×
[
f

(0)
k f

(0)
1 (1 − f

(0)
2 )(1 − f

(0)
3 ) − ( 1︸︷︷︸

(⋆)

−f (0)
k )(1 − f

(0)
1 )f

(0)
2 f

(0)
3

]
,

where the term (⋆) is zero, since the integral over k is odd. Renaming the variables
as (k, k1, k2, k3) → (k1, k2, k1′, k2′) the result of the electric current to second order

in the interaction I
(2)
e = (−e)I(2) becomes

I(2)
e =

2πe|V0|2
ℏ

∫ ∞

−∞

dk1dk2dk1′dk2′

(2π)4

k1

|k1|
δ(ε1 + ε2 − ε1′ − ε2′) (6.84)

×
[
f

(0)
1 f

(0)
2 (1 − f

(0)
1′ )(1 − f

(0)
2′ ) − (1 − f

(0)
1 )(1 − f

(0)
2 )f

(0)
1′ f

(0)
2′

]
,

where f
(0)
i ≡ f 0

R/L(εki
) is the Fermi function of the left contact f 0

L(εki
) for

ki > 0 and vice versa. This expression has the familiar structure known from
the Boltzmann equation doing an expansion in the interaction (see e.g. eq.(3.17)
or eq.’s(4.14) and (4.15)). However, it is free of the non-sense prefactors appear-
ing in the Boltzmann equation approach like L/L, see section 6.2. Therefore
this expression means that the physics of the interaction processes can still be
understood in terms of scattering in and out of the states (k1, k2) and (k1′ , k2′).

Furthermore, we observe that the derived electric current Ie = I
(0)
e + I

(2)
e + · · · to

second order in the interaction is not restricted to the linear response regime.
In the following, the second order interaction contribution to the current I

(2)
e

eq.(6.84) is used to find: (i) The analytic expressions for the conductance G(2)

and thermopower S(2) to lowest order in the temperature T/TF ≪ 1, (ii) the non-
linear conductance G = I/V at zero temperature to lowest order in the bias, and
(iii) the full temperature behavior of the second order interaction contribution
of the conductance G(2) and thermopower S(2) by numerical integration.

The low-temperature conductance and thermopower to 2nd order in

the interaction

The (linear) conductance G and thermopower S to second order in the interaction
is now found analytically from eq.(6.84) to lowest order in the temperature, i.e. in
the regime T/TF ≪ 1. The procedure is completely analogous to the one used in
section 4.3.2 (p. 61) for the multi-mode wire and therefore only briefly outlined
here.
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First of all, the linear response limit is taken by including the temperature
difference ∆T = TR − TL and the bias eV = µR − µL difference in the left/right
Fermi functions of the leads as µL = ε

F
, µR = ε

F
+eV , TL = T and TR = T +∆T .

In this case, the linear electric current is Ie = GV +GT ∆T . Expanding the Fermi
functions gives

f 0
R
(ε) ≃ f 0(ε) − ∂εf

0(ε)eV − ∂εf
0(ε)(ε − ε

F
)
∆T

T
and f 0

L
(ε) = f 0(ε), (6.85)

and after some simplifications the linear response electric current to second order
in the interaction becomes

I(2)
e = −8

2πe|V0|2
ℏ

∫ ∞

0

dk1dk2dk1′dk2′

(2π)4
δ(ε1 + ε2 − ε1′ − ε2′) (6.86)

× f 0
1 f 0

2 (1 − f 0
1′)(1 − f 0

2′)

[
eV

k
b
T

+
∆T

k
b
T 2

(ε1 − ε
F
)

]
,

where f 0
i ≡ f 0(εi) = {1+ exp[(εi − ε

F
)/k

b
T ]}−1. In the simplifications leading to

the above result, we observe that only scattering processes changing the number
of left and right movers in the scattering contribute to the current. This is
completely analogous to the Boltzmann approach, see section 3.3. To expand
I

(2)
e in the temperature T/TF, new dimensionless integration variables zj = (εj −

ε
F
)/k

b
T are introduced and the linear response expression for I

(2)
e is exactly

rewritten to

I(2)
e = − 8

2πe|V0|2
ℏ

1

(2π)4

(
k

F

2

)4(
T

TF

)2
1

ε
F

∫ ∞

−TF

T

dz1
1√

1 + z1
T
TF

×
∫ ∞

−T
F

T

dz2
1√

1 + z2
T
TF

∫ ∞

−T
F

T

dz1′
1√

1 + z1′
T
TF

∫ ∞

−T
F

T

dz2′
1√

1 + z2′
T
TF

× δ(z1 + z2 − z1′ − z2′)g(z1)g(z2)g(−z1′)g(−z2′)

[
eV

ε
F

+ z1
∆T

TF

]
, (6.87)

where g(z) = (1+ez)−1. Note that k2
F|V0| has units of energy, so the expression has

units of current eε
F
/ℏ. As in section 4.3.2, the density of states are expanded in

T/TF and the integral can be calculated analytically order by order in temperature
by using the variables z± = z1′ ± z2′ and the useful integrals in eq.(4.67) and
eq.(4.89). The result for the conductance G, thermoelectric coefficient GT and
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thermopower S is

G =
2e2

h

[
1 − 1

24

( |V0|k2
F

εF

)2(
T

TF

)2

− π2

24

( |V0|k2
F

εF

)2(
T

TF

)4

− · · ·
]
, (6.88)

GT =
2e

h
k
b

π2

60

( |V0|k2
F

εF

)2(
T

TF

)3

+ O
[(

T

TF

)5
]
, (6.89)

S =
k
b

e

π2

60

( |V0|k2
F

εF

)2(
T

TF

)3

+ O
[(

T

TF

)5
]
. (6.90)

It is interesting to observe that at least qualitatively, there is an agreement with
experiments on the 0.7 anomaly: The conductance decreases for increasing tem-
perature (e.g. [17]) and the thermopower increases at the anomaly [68] (for a
description of the experiments see section 1.9).

The thermopower has one power of temperature more than the conductance
correction. This is because the thermopower requires some curvature of the dis-
persion to avoid perfect particle-hole symmetry. This comes out naturally, when
doing the expansion in temperatures of eq.(6.87).

As in the case of the multi-mode wire, the interaction contribution to the
thermopower eq.(6.90) is the leading order at low temperatures compared to
the exponentially suppressed non-interacting contribution, S(0) ∝ exp(−TF/T ).
Furthermore, the thermopower S is positive, so a current due to a temperature
difference is increased by the interactions, in contrast to the current due to a bias,
which is decreased. In other words, at low temperature a positive current due
to a temperature difference (for a fully open contact) is created by the electron-
electron interactions.

In contrast to the multi-mode case, there is no interesting explicit dependence
on ε

F
in the above conductance and thermopower, i.e. no resonances. This is

because that the corrections are simply caused by backscattering of one or two
electrons, which can happen at any Fermi level, if the non-momentum conserving
interactions are allowed (k

F
L ∼ 1). A dependence on the Fermi level is implicitly

embedded in V0, since the non-momentum conserving processes are strongest for
low k

F
L and interactions in general are stronger for low electron density (due to

lack of screening).
We can still test the Mott formula for the thermopower eq.(2.1) and it gives

the right temperature dependence, but it is off by a factor of SM/S = 5/3 to
lowest order in temperature. However, this factor is without taking the implicit
(unknown) dependence of V0 on ε

F
into account, so we cannot make a direct

comparison to the experimental data.
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The full temperature dependence the conductance to 2nd order in the

interaction

Above we founded that in the low temperature regime T ≪ TF the conductance
and thermopower to second order in the point-like interaction are proportional to
T 2 and T 3, respectively. However, what happens to the second order interaction
term in G and S for higher temperatures? This question is answered below
numerically and as expected the power laws are good for the lowest temperatures.

The conductance G is considered using the linear response current to second
order in the interaction I

(2)
e eq.(6.86). This is exactly rewritten to a form more

accessible by numerical integration know e.g. from the Coulomb drag literature
[140, 141]. The Fermi functions are rewritten using

f 0(ε1)[1 − f 0(ε1′)] =
[
f 0(ε1′) − f 0(ε1)

]
nB(ε1 − ε1′) (6.91)

where nB(ε) ≡ [eε/k
b
T −1]−1 is the zero chemical potential Bose function and the

energy conserving delta function is rewritten as

δ(ε1 + ε2 − ε1′ − ε2′) =

∫ ∞

−∞
dωδ(ε1 − ε1′ − ω)δ(ε2 − ε2′ + ω). (6.92)

Inserting these relations into the eV term of eq.(6.86) and using that nB(ω)nB(−ω) =
−[2 sinh(ω/2k

b
T )]−2 one obtains after a few manipulations

G(2) = −8
2πe2|V0|2

ℏ

1

k
b
T

2

∫ ∞

0

dω
[F (ω, T/TF)]2

4 sinh2(ω/2k
b
T )

, (6.93)

where G(2) = I
(2)
e /V and

F (ω, T/TF) ≡
∫ ∞

0

dk1

2π

∫ ∞

0

dk1′

2π
δ(ε1 − ε1′ − ω)

[
f 0(ε1′) − f 0(ε1)

]

=
1

4π2

m

2ℏ2

∫ ∞

0

dε
f 0(ε) − f 0(ε + ω)√

ε(ε + ω)
, (6.94)

where the quadratic dispersion was used in the last equality and above it was
used that F is odd, i.e. F (−ω) = −F (ω). To perform the numerical integration
new dimensionless variables are introduced as Ω = ω/k

b
T and E = ε/k

b
T , so

G(2) = −2e2

h

1

32π2

( |V0|k2
F

ε
F

)2 ∫ ∞

0

dΩ
[F̃ (Ω, T/TF)]2

sinh2(Ω/2)
, (6.95)

where

F̃ (Ω, T/TF)] =

∫ ∞

0

dE
g(E − TF/T ) − g(E + Ω − TF/T )√

E(E + Ω)
, (6.96)



6.5. THE PERTURBATIVE RESULTS FOR THE CURRENT 116

0.1 0.2 0.3 0.4
0.000

-0.004

-0.008

0.2 0.4 0.6 0.8 1 1.2
0.000

-0.005

-0.010

The conductance G(2) to second order in the interaction

(a) (b)G = G(0) +G(2) + O(|V0|3)

T/TF T/TFG(2)G(2)

0 0.05 0.1 0.14

0

-0.0002

-0.0006

-0.001

Zoom
∝ T 2

Figure 6.5: The second order interaction correctionG(2) to the conductance G = G(0)+G(2)+

· · · in units of 2e2

h (|V0|k2
F
/ε

F
)2 versus temperature T/TF. The interaction correction G(2) (red

dots) is found by numerical integration of eq.(6.95) and compared to the low temperature result
G(2) ∝ T 2 (full black line) eq.(6.88) in (a). The insert in (a) shows that the power law T 2 is
excellent below T/TF ∼ 0.1. In (b) G(2) is given for (unrealistically and uninterestingly) large
temperatures, however, it shows that G(2) saturates at high enough temperatures.

and g(x) = [1 + exp(x)]−1. This form of G(2) is numerically useful, because the
F functions can be done separately and then used in the ω-integral.

The result of the numerical evaluation of G(2) eq.(6.95) is seen in figure 6.5. We
observe that the low-temperature power law, G(2) ∝ T 2 eq.(6.89), is found as ex-
pected in figure 6.5(a). In figure 6.5(b), G(2) is seen to saturate to a constant high

temperature value G
(2)
T-high ≈ −0.0122e2

h
(|V0|k2

F/εF)2 depending on the interaction,

so the conductance G saturates to a constant value GT-high = G
(0)
T-high + G

(2)
T-high

at high temperatures18. However, this cannot explain the high temperature satu-
ration for the experimental data on the 0.7 anomaly (see e.g. figure 1.5, section
1.9.1), because the saturation temperature is too high, i.e. of order TF. This is
why, we try to go beyond perturbation theory in section 6.7 to explain this19.
Note that the non-interacting conductance also has a weak temperature depen-
dence

G(0) =
2e2

h

∫ ∞

0

dε[−∂εf
0(ε)] =

2e2

h

1

1 + e−TF/T
, (6.97)

so it saturates to e2/h for high temperature (e.g. G(0) ≈ 1.05e2/h for T/TF = 10
and G(0) ≈ 1.76e2/h for T/TF = 0.5), but at low temperatures it is only an

18To do the high temperature limit analytically, we insert f0(ε) ≃ exp[−(ε − ε
F
)/k

b
T ] in

F (ω, T/TF) and obtain: G(2,T≫TF) = − 2e2

h
1
16 (V0k

2
F
/ε

F
)2e2TF/T , where e2TF/T ≃ 1. However, it

turns out that this approximation overestimates the numerical result by about a factor of ∼ 8.
This is due to the fact that even for high temperatures the states below the Fermi level are not
well approximated by only including the exponential tail.

19It is interesting to note that normally it is not the high temperature limit, which is the
usual problem in mesoscopic physics.
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exponential correction, G(0) ≃ 2e2

h
(1 − e−TF/T ).

A similar analysis can be done for the thermoelectric coefficient and in terms
the thermopower. However, no new interesting features appear on a scale smaller
than the Fermi temperature20.

The non-linear current to 2nd order in the interaction for eV ≪ ε
F

Next the non-linear current due to an applied bias V is investigated in the regime
k
b
T ≪ eV ≪ ε

F
(for TR = TL). Again, the current to second order in the

interaction eq.(6.84) is used, since it is also valid beyond the linear response
regime. To this end, we linearize the bands, εk ≃ ε

F
∓ ℏv

F
(k ± k

F
), and use

zero temperature T = 0, so the Fermi functions become step functions. To do
the calculation the ki-integrals of eq.(6.84) are split into positive and negative
intervals (as in the low T/TF calculation) and after some tedious calculations one
obtains:

I
(2)
e (V, T = 0)

V
= −2e2

h

5

192π2

( |V0|k2
F

εF

)2(
eV

ε
F

)2

for eV ≪ ε
F
. (6.98)

The non-interacting contribution to the non-linear current for a fully open QPC
at zero temperature is still linear in V ,

I(0)
e (V, T = 0) =

2e2

h
V, (6.99)

as along as V is small enough not to involve other conducting subbands, see
e.g. [65, 66].

Again, we observe that the non-linear current eq.(6.98) is in (at least) quali-
tative agreement with the experiments on the 0.7 structure: Increasing the bias
will decrease the non-linear conductance (see e.g. [17] or section 1.9).

6.6 The low-temperature perturbative transport

coefficients beyond the point-like interaction

In this section, we show that the low-temperature power-laws in the transport
coefficients,

G− 2e2

h
∝ T 2, S ∝ T 3 and

Ie(V, T = 0)

V
− 2e2

h
∝ V 2 (6.100)

20However, at T/TF ≃ 0.8 the second order interaction contribution G
(2)
T changes sign, which

can also be found by using Boltzmann factors for the Fermi functions. However, since T/TF ≃
0.8 is not small compared to one, the non-interacting contribution G

(0)
T (see eq.(4.20)) can

dominate GT depending on the size of the interaction V0.
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are not specific for the point-like interaction, but general for any interaction in
the low-temperature (or voltage) regime T ≪ TF (or eV ≪ ε

F
).

The current to second order in the interaction for a general interaction is
derived in Appendix A (p. 139) and given in eq.(A.29) as:

I(2)
e = −eπ

∑

k1k2k1′k2′

k1

|k1|
[
(1 − f

(0)
1 )(1 − f

(0)
2 )f

(0)
1′ f

(0)
2′ − (1 − f

(0)
1′ )(1 − f

(0)
2′ )f

(0)
1 f

(0)
2

]

× δ(ε1 + ε2 − ε1′ − ε2′) Re
∑

σ1σ2σ1′σ2′

V1′2′,12 {V12,1′2′ − V21,1′2′} , (6.101)

where V1′2′,12 is the direct part of the electron-electron interaction matrix element
using the single-particle (non-interacting) wave function ψkσ(r) = 1√

L e
ikxϕ(r⊥)χσ,

where ϕ(r⊥) is a single transverse mode (r⊥ = (y, z)) and χσ is the spin part, see
e.g. eq.(A.3). Therefore the interaction V1′2′,12 can be expressed as

V1′2′,12 =δσ1,σ1′
δσ2,σ2′

1

L2

∫ L
2

−L
2

∫ L
2

−L
2

dxadxb

∫∫
dr⊥adr⊥b|ϕ(r⊥a)|2|ϕ(r⊥b)|2 (6.102)

× V (ra, rb) e
i(k1−k1′ )xa+i(k2−k2′ )xb ,

and if the center of mass coordinate X ≡ (xa + xb)/2 and the distance between
the electrons ∆x ≡ (xa − xb) are introduced then the interaction becomes

V1′2′,12 =
δσ1,σ1′

δσ2,σ2′

L2

∫∫
d∆xdX

∫∫
dr⊥adr⊥b|ϕ(r⊥a)|2|ϕ(r⊥b)|2V (ra, rb) e

i∆kX+iq∆x,

≡ 1

L2
W (∆k, q)δσ1,σ1′

δσ2,σ2′
, (6.103)

where V (ra, rb) = V (r⊥b, r⊥a, X,∆x),

∆k ≡ k1 + k2 − k1′ − k2′, and q ≡ (k1 − k1′) + (k2′ − k2)

2
. (6.104)

Here ∆k is the total momentum change, i.e. the amount of momentum break-
ing, and q can be understood as the momentum exchange in the interaction,
i.e. it is the average of the momentum exchange of each electron (since for a
momentum conserving interaction, ∆k = 0, it is q = k1 − k1′ = k2′ − k2.) It
is important to note that W is a function of both ∆k and q and not only q
as in the momentum conserving case, since we do not have translational in-
variance V (ra, rb) 6= V (ra − rb). However, since V (ra, rb) = V (rb, ra) leads to
V (r⊥b, r⊥a, X,∆x) = V (r⊥a, r⊥b, X,−∆x), we have that21

W (∆k,−q) = W (∆k, q). (6.105)

21Furthermore, if the QPC is symmetric around the mid-point x = 0, then V (X,∆x) =
V (−X,∆x) so W (∆k, q) = W (−∆k, q), however, here we consider a general non-symmetric

QPC.
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A W1 process A W2 process

W1 = |W (2kF, kf)| W2 = |W (4kF, 0)|

εF

(a) (b)

Figure 6.6: Examples of scat-
tering processes changing the
number of left and right movers
by one (a) or two (b) with ampli-
tudes W1 and W2, respectively.
Compare to figure 6.1.

Next we consider the linear response current to second order in a general
interaction eq.(6.101) to lowest order in the temperature T/TF ≪ 1. The only
difference to the low-temperature calculation for the point-like interaction above
is that the interaction is no longer constant, so when dividing the k-integrals
into positive and negative intervals, the interaction has to be taken into account.
However, to lowest order in temperature, the interaction is expanded and it’s
(momentum independent) value at the Fermi level can be used. A careful analysis
of the 16 terms from dividing the four k-integrals in eq.(6.101) shows that only
two kinds of the interaction processes contribute: The processes changing the
number of left (right) movers by one or two shown in figure 6.6. We name these
amplitudes W1 and W2, respectively, and they are:

W2 ≡ |W (4k
F
, 0)|, and W1 ≡ |W (2k

F
, k

F
)|, (6.106)

using that W (∆k, q) is even in q eq.(6.105) and that [W (−∆k,−q)]∗ = W (∆k, q)
for a real interaction V (ra, rb). The details of the low-temperature calculation are
like for the multi-mode wire, see e.g. section 4.3.2 (p. 61). The low-temperature
linear transport coefficients are:

G =
2e2

h

{
1 − 1

48

[(
W1k

2
F

εF

)2

+

(
W2k

2
F

εF

)2
](

T

TF

)2

− · · ·
}
, (6.107)

S =
k
b

e

π2

120

[(
W1k

2
F

εF

)2

+

(
W2k

2
F

εF

)2
](

T

TF

)3

+ · · · , (6.108)

Furthermore, the non-linear current due to a bias V in the regime T = 0 and
eV ≪ ε

F
is also found as above to be

Ie(V, T = 0)

V
=

2e2

h
− 2e2

h

1

48π2

[
1

4

(
W1k

2
F

εF

)2

+

(
W2k

2
F

εF

)2
](

eV

ε
F

)2

(6.109)

to lowest order in eV/ε
F
. Note the difference in prefactors between the correc-

tions due to W1 and W2 in the non-linear conductance and the linear transport
coefficients. Furthermore, W2 will be smaller than W1, since it involves a larger
degree of momentum breaking.
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These relations simplify to the point-like model results eq.(6.88), eq.(6.90)
and eq.(6.98) taking W1 = W2 = V0. Therefore we see that the amplitude V0

of the point-like interaction V (x, x′) = V0δ(x)δ(x
′) does not distinguish between

different scattering processes at the Fermi level, however, it leads to the correct
low-temperature (or voltage) power-laws for the interaction-induced terms in the
transport coefficients.

6.6.1 The perturbative large magnetic field results

Next we study the situation of a large applied magnetic field gµBB ≫ k
b
T , such

that the conductance quantization is in well defined steps of e2/h. Therefore the
subbands are spin split and the interaction effects between electrons of the same
spin (say σ =↓) within a single subband become important. We find the conduc-
tance change perturbatively to lowest order in the (non-momentum conserving)
interaction on the e2/h plateau.

First of all, for a contact interaction in real space V (x, x′) ∝ δ(x−x′) the Pauli
principle does not allow the electrons of equal spin to interaction and therefore
the corrections to the current are zero (see e.g. section 4.5.3). In particular, there
is no effect of the point-like interaction in eq.(6.6).

Therefore the perturbative current correction formula eq.(6.101) for a general
interaction is extremely useful in the case interactions among equal spin electrons.
Here we use this current formula eq.(6.101) in linear response to calculate the
conductance correction to lowest order in temperature T/TF. The calculation is
very similar to the one in section 4.5.3, so only a few calculational details are
discussed below. The linear response current for a single spin mode (σ1 = σ2 =
σ1′ = σ2′) and for a general interaction W (∆k, q) is found using eq.(6.101) to be22

I(2)
e = −eπRe

∫ ∞

−∞

dk1dk2dk1′dk2′

(2π)4

k1′

|k1′ |
f 0

1 f
0
2 (1 − f 0

1′)(1 − f 0
2′) [ψ1 + ψ2 − ψ1′ − ψ2′ ]

× δ(ε1 + ε2 − ε1′ − ε2′)W
∗(∆k, q)[W (∆k, q) −W (∆k, q + k1′ − k2′)], (6.110)

where ψi = (eV/k
b
T )θ(−ki) using23 µR = ε

F
+ eV , µL = ε

F
and TR = TL. It is

seen from eq.(6.110) that a q dependence of W (∆k, q) is needed to have an effect,
or equivalently, the interaction should not be a contact interaction. Otherwise,
the direct term W (∆k, q) and exchange term W (∆k, q + k1′ − k2′) cancel out.
The calculational strategy is the same as previous low-temperature calculations:
Introduce new dimensionless variables zi = (εi − ε

F
)/k

b
T and expand in T/TF.

To this end, we separate all the k-integrals in positive and negative parts and in

22Here the primed and unprimed indices were interchanged compared to eq.(6.101) for con-
venience.

23To find the thermopower also, we simply have to include
εi−ε

F

k
b
T

∆T
T θ(−ki) in ψi for TR =

T + ∆T and TL = T .
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each term the interaction is expanded as

W (∆k, q) ≃W (∆kε
F
, qε

F
) (6.111)

+ ∂qW (∆kε
F
, qε

F
)[q − qε

F
] + ∂∆kW (∆kε

F
, qε

F
)[∆k − ∆kε

F
],

where ∆kε
F
, qε

F
are the values of ∆k and q at the Fermi level for the particular

interaction process. For example, if k1, k2 > 0 and k1′, k2′ < 0, then ∆kε
F

= 4kFσ

and qε
F

= 0, where kFσ is the Fermi wave vector of the spin split band, ε
F

=
ℏ2k2

Fσ/2m. Note that expanding the interaction to higher order simply produces
higher order terms in temperature and these terms are not relevant here. We use
that W (∆k, q) is even in q such that ∂qW (∆kε

F
, qε

F
) = −∂qW (∆kε

F
,−qε

F
) and

also that W ∗(∆k, q) = W (−∆k,−q). As in the B = 0 case, we find that there
are two scattering processes at play: Interactions changing the number of left and
right movers by one or two, respectively. These are illustrated in the figures 6.1
and 6.6 in real and momentum space, respectively. After some manipulations,
we arrive at (reintroducing ℏ)

I(2)
e ≃(−e)2π

ℏ

[
|∂qW (4kFσ, 0)|2 + |∂qW (2kFσ, kFσ)|2

]eV
ε
F

(6.112)

×
∫ ∞

0

dk1dk2dk1′dk2′

(2π)4
f 0

1 f
0
2 (1 − f 0

1′)(1 − f 0
2′)δ(ε1 + ε2 − ε1′ − ε2′)(k1′ − k2′)

2,

where all the different terms were collected. The factor (k1′ − k2′)
2 stems from

the expansion of the interaction. Using the dimensionless variables the lowest
order expansion in T/TF gives

G ≃ e2

h
− e2

h

π2

240

(
k6

Fσ(W ′
1)

2 + k6
Fσ(W

′
2)

2

ε2
F

)(
T

TF

)4

(6.113)

where the integrals in eq.(4.67) and eq.(4.89) were used24 and we introduced the
derivatives of the scattering amplitudes for the two processes in figure 6.6

W ′
1 ≡ |∂qW (2kFσ, kFσ)|, and W ′

2 ≡ |∂qW (4kFσ, 0)|. (6.114)

This result shows that the interaction effect due to non-momentum conserving
scattering is heavily suppressed on the e2/h plateau (i.e. large gµBB) by two
powers of temperature compared to the 2e2/h plateau (B = 0). It also involves
the derivative of the interaction amplitude at the Fermi level instead of the inter-
action amplitude itself. This suppression is in (qualitative) agreement with the
experiments, where no anomaly is seen on the e2/h plateau.

The thermopower for a single spin subband can be found in the same way and
goes as

S ∝
[
(W ′

1)
2 + (W ′

2)
2
]( T

TF

)5

, (6.115)

24
We also used that

∫∞

−∞
dx x2

4 sinh2(x/2)
= 2π2/3 and

∫∞

−∞
dx x4

4 sinh2(x/2)
= 8π4/15.
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which again is suppressed by two powers of temperature compared to the B = 0
case.

6.7 The conductance in the self-consistent second

order approach

In this section, we try to do better than perturbation theory. The motivation
is to describe the temperature dependence of the conductance beyond the low-
temperature perturbative regime, where G − 2e2

h
∝ −|V0|2T 2 was found. The

perturbative result is correct for T/TF → 0, and fails miserably when the pertur-
bative correction is of order the non-interacting result, i.e. G(2) ∼ 2e2/h. This
gives rise to a new temperature scale T ∗ of the problem25 (see e.g. eq.(6.88)):

G(2)(T ∗) ∼ 2e2

h
⇒ T ∗ ∼

√
24

ε
F

|V0|k2
F

TF, (6.116)

i.e. perturbation theory is valid for T ≪ T ∗. This is - of course - a rough estimate
for the failure of perturbation theory. Therefore the non-perturbative regime of
interest here is

T ∗ . T ≪ TF, (6.117)

i.e. for temperature around T ∗. We also require that T ≪ TF, because we are not
interested in effects due to a large thermal smearing. Note that if the interaction
is small enough (|V0|k2

F ≪ ε
F
), then the situation T ∗ & TF can appear, in which

case the non-perturbative regime is not reached for T < TF. The parameters used
in the very rough estimate on page 91 gives T ∗ of order 3 K or so (for TF ∼ 12
K).

To approach the non-perturbative regime, we return to the point-like inter-
action, V (x, x′) = V0δ(x)δ(x′), where the convenient current formula eq.(6.66)
was derived, relating Ie to the local spectral function A(00, ω). To get A(00, ω),
we approximate the self-energy by the self-consistent version of the second-order
diagrams, see figure 6.7. This makes a numerical solution of the Dyson equation
possible and we find the conductance and thermopower in the non-perturbative
regime. Below we give the details of this calculation and try to motivate the
approximation of the self-energy in terms of a quantum Boltzmann equation,
since it is not merely a simple expansion in a small parameter or the like. It
is noteworthy that the fluctuation-dissipation theorem for equilibrium Green’s
function comes in handy, since only the linear response regime is considered. The
found temperature dependence of the conductance26 seems to agree (at least)
qualitatively with the experimental data on the 0.7 anomaly.

25This definition is the same in spirit as in paper IV, but differs by a numerical prefactor.
26To the best of our knowledge, no detailed experimental temperature study have been made

for the thermopower near the anomaly.
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ΣB = ΣZ =

tt′ σ

σ′ tt′ tt′ σ

σ

σ tt′

Figure 6.7: The self-consistent second-
order Feynman diagrams of the self-energy
eq.(6.118), which is the essential approxima-
tion make to approach the non-perturbative
regime. Double lines with arrows are the full
Green’s functions G connecting the interactions
(wiggled lines) at space time points (x = 0, t(′))
(blue dots).

6.7.1 The self-consistent second-order approximation

The self-consistent second-order approximation for the self-energy is simply to
take the two second-order diagrams (seen on figure 6.4) and make the non-
interacting Green’s functions G0 into the full Green’s functions G, see figure 6.7.
This will include a subclass of all possible higher order diagrams, but far from all.
Therefore the approximation for the self-energy is the sum of the self-consistent
bobble and zigzag diagrams (in figure 6.7), i.e.

Σsc(00, tt′) = |V0|2G(00, t′t)G(00, tt′)G(00, tt′). (6.118)

This is the essential approximation make to approach the non-perturbative regime.
This approximation is current conserving, since the self-energy is a functional in-
volving only full Green’s functions, see e.g. [142, 143].

Below we describe how to use this approximation to solve the local Dyson
equation (at x = x′ = 0) for the local spectral function A(00, ω) by a numerical
iterative scheme, which in terms leads to the conductance and thermopower.

The GW -approximation

Another (somewhat similar) approximation is the so-called GW -approximation
often considered in the literature, see e.g. [144]. Here the self-energy is given by
Σ(1, 1′) = G(1, 1′)W (1, 1′), where W (1, 1′) is the RPA series for the interaction
(see e.g. [14, chap.14]). The GW -approximation and the self-consistent second
order approach have diagrams in common, however, they are different approx-
imations. E.g. the GW -approximation includes the Fock diagram, which the
self-consistent 2nd order does not.

6.7.2 The idea of the 2nd order self-consistent approach

There is no easy way to justify the self-consistent 2nd order approximation for
the self-energy used here. It is not merely an expansion in a small parameter and
it only includes a subset of all possible higher order diagrams in the self-energy.
However, here we try to motivate the idea of the approximation by making a
connection to the quantum Boltzmann equation (derivation).
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First we take the usual route of deriving a quantum Boltzmann equation
from the Dyson equation, see e.g. [142] or [131, 133, 143, 134]. However, the
point-like interaction gives a sharp variation in space and therefore the derivation
cannot be completed, so we actually cannot use a Boltzmann equation here (as
noted in section 6.2). However, we will see how the self-consistent second-order
approximation is like using a full collision integral instead of using f 0

R/L(εk) for
the distribution functions in the collision integral as in the perturbative limit.

The derivation goes as follows: We begin by writing the contour ordered (1D)
Dyson equation eq.(6.45) in differential form for any self-energy Σ(xx′, tt′) (see
[142])27:

(
i∂t +

ℏ2

2m

d2

dx2

)
G(xx′, tt′) =

δ(x− x′)δ(t− t′)+

∫

C
dt′′
∫

dx′′Σ(xx′′, tt′′)G(x′′x′, t′′t′) (6.119a)

and for G = G0 + GΣG0 (neglecting indices and integrals) it is

(
−i∂t′ +

ℏ2

2m

d2

dx′2

)
G(xx′, tt′) =

δ(x− x′)δ(t− t′)+

∫

C
dt′′
∫

dx′′G(xx′′, tt′′)Σ(x′′x′, t′′t′). (6.119b)

By subtracting eq.(6.119b) from eq.(6.119a) and taking the lesser component
using the Langreth rules eq.(6.34), we get

(
i∂t + i∂t′ +

ℏ
2

2m

d2

dx2
− ℏ

2

2m

d2

dx′2

)
G<(xx′, tt′) = (6.120)

∫ ∞

−∞
dt′′
∫

dx′′
[
Σr(xx′′, tt′′)G<(x′′x′, t′′t′) + Σ<(xx′′, tt′′)Ga(x′′x′, t′′t′)

−Gr(xx′′, tt′′)Σ<(x′′x′, t′′t′) − G<(xx′′, tt′′)Σa(x′′x′, t′′t′)
]
.

Next we Fourier transform into frequency space using the translational invariance
in time, so all functions only depend on the time differences, i.e.
(

ℏ
2

2m

d2

dx2
− ℏ

2

2m

d2

dx′2

)
G<(xx′, ω) =

∫
dx′′
[
Σr(xx′′, ω)G<(x′′x′, ω) (6.121)

+ Σ<(xx′′, ω)Ga(x′′x′, ω) − Gr(xx′′, ω)Σ<(x′′x′, ω) − G<(xx′′, ω)Σa(x′′x′, ω)
]
.

Note that the term i∂t + i∂t′ cancels out due to the time translational invari-
ance. So far the manipulations have been completely general, but now we use

27Again we neglect a possible single-particle potential, which would just give an extra term

to the kinetic energy on the left hand side of the equations.
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that the self-energy is local due to the point-like interaction, i.e. Σ(xx′, ω) =
Σ(00, ω)δ(x)δ(x′), so eq.(6.121) becomes
(

ℏ2

2m

d2

dx2
− ℏ2

2m

d2

dx′2

)
G<(xx′, ω) =

[
δ(x)Σr(00, ω)G<(0x′, ω) (6.122)

+ δ(x)Σ<(00, ω)Ga(0x′, ω) − δ(x′)Gr(x0, ω)Σ<(00, ω)− δ(x′)G<(x0, ω)Σa(00, ω)
]
.

The connection to the Boltzmann equation appears, because G< is like a distri-
bution function28, since it is ∼ 〈Ψ†Ψ〉. We take the limit x = x′, so
(

ℏ
2

2m

d2

dx2
− ℏ

2

2m

d2

dx′2

)
G<(xx′, ω)

∣∣∣∣
x=x′

= δ(x) (6.123)

×
[
Σr(00, ω)G<(00, ω)+Σ<(00, ω)Ga(00, ω)−Gr(00, ω)Σ<(00, ω)−G<(00, ω)Σa(00, ω)

]

= δ(x)
[{

Σr(00, ω) − Σa(00, ω)
}
G<(00, ω) + Σ<(00, ω)

{
Ga(00, ω)− Gr(00, ω)

}]
,

using the relation eq.(6.25) Gr − Ga = G> − G< (and similar for Σ) we finally
arrive at

ℏ2

2m

(
d2

dx2
− d2

dx′2

)
G<(xx′, ω)

∣∣∣∣
x=x′

= δ(x)
[
Σ>(00, ω)G<(00, ω)− Σ<(00, ω)G>(00, ω)

]
,

(6.124)

which only involves the local lesser Green’s function and it’s derivatives.
Normally, to derive a (quantum) Boltzmann equation one would introduce

sum and difference variables29 x± = x ± x′ and then Fourier transform in x − x′

to obtain a momentum dependence. In this case, the right-hand side of eq.(6.124)
would be the collision integral. The next step would be to assume slow variation
of x + x′ to make the so-called gradient-approximation, after which the left-hand
of eq.(6.122) would be the driving terms in the Boltzmann equation (i.e. the
left-hand side of it, see e.g. chapter 3). See e.g. [142, 131, 133, 134] for details.
However, due to the point-like interaction in the short point-like QPC, slow vari-
ation cannot be assumed and the derivation of the Boltzmann equation cannot
go any further.

Even though eq.(6.124) cannot be made into a Boltzmann equation, we want
to use it to motivate the self-consistent second order approximation using the
right-hand side as a collision integral, i.e.

I[G] ≡ δ(x)
[
Σ>(00, ω)G<(00, ω) − Σ<(00, ω)G>(00, ω)

]
. (6.125)

28Formally, one can for example introduce F (xx′, ω) inspired by the fluctuation-dissipation
theorem as G<(xx′, ω) = iA(xx′, ω)F (xx′, ω) and G<(xx′, ω) = −iA(xx′, ω)[1 − F (xx′, ω)],
which is nothing but expressing one unknown function by another using G<−G> = iA. However,
in equilibrium and x = x′ = 0 this is the Fermi function and a generalization of the concept of a
distribution function is present [131, chap.6]. Furthermore, the distribution function depends on
both space and momentum, so a Fourier transform from x−x′ to k is needed, see e.g. [142, 131].

29Also in time, if time invariance was not assumed.
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The lesser components of the self-consistent 2nd order self-energy eq.(6.118) are
found using the Langreth rule eq.(6.41) to be

Σ<
sc

(00, ω) = |V0|2
∫ ∞

−∞
d(t − t′) eiω(t−t′)G>(00, t′ − t)G<(00, t − t′)G<(00, t − t′)

= |V0|2
∫ ∞

−∞

dω1dω2dω3

(2π)2
δ(ω + ω1 − ω2 − ω3)G>(00, ω1)G<(00, ω2)G<(00, ω3),

and similar for Σ>
sc

(00, ω) by interchanging > and <. Inserting these into the colli-
sion integral I[G] (and making the variable change (ω, ω1, ω2, ω3) → (ω1, ω2, ω1′, ω2′)),
we get

Isc[G] = δ(x)|V0|2
∫ ∞

−∞

dω2dω1′dω2′

(2π)2

[
G<(00, ω1)G<(00, ω2)G>(00, ω1′)G>(00, ω2′)

− G>(00, ω1)G>(00, ω2)G<(00, ω1′)G<(00, ω3′)
]
δ(ω1 + ω2 − ω1′ − ω2′). (6.126)

This is like a two-body collision integral in the Boltzmann approach with a Fermi
Golden rule scattering rate (compare to eq.(3.7) with eq.(3.9) inserted), since
the G< is like the distribution function ∼ 〈Ψ†Ψ〉 and G> is like one minus the
distribution function, ∼ 〈1 − Ψ†Ψ〉. The second order perturbative approach (of
section 6.5.2) amounts to inserting the non-interacting Green’s functions above
and therefore f 0

L/R as the distribution function (leading to a current correction
in the form of a Boltzmann current correction to lowest order in the interaction,
compare e.g. eq.(3.17) to eq.(6.84)). The self-consistent 2nd order approximation,
on the other hand, uses full Green’s functions, which in the Boltzmann picture
is like using the full distribution function. Using this analogue, the following
qualitative statement can be made: The self-consistent 2nd order approximation
amounts to a simple (i.e. Boltzmann-like) way of letting the Fermi functions of
the right and left leads equilibrate towards a common distribution in the QPC.
This is the basic idea of the self-consistent 2nd order approximation used here.

6.7.3 The non-perturbative conductance and thermopower

Above we argued why the self-consistent second order approximation to the self-
energy in a sense is like using the full Boltzmann equation. Next we show how
to use it to find the conductance and thermopower by an iterative procedure.

The self-consistent equation for the local equilibrium spectral function

To find the current eq.(6.66) in the point-like interaction model with a single
quadratic band, only the local spectral function A(00, ω) (i.e. x = x′ = 0) is
needed and hence it is the central object to find. The local retarded Green’s
function is

Gr(00, ω) ≡ 1

2

[
B(00, ω) − iA(00, ω)

]
(6.127)
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written in terms of it’s real and imaginary part (A, B are both real functions).
The real part of the non-interacting local retarded Green’s function is zero for a
quadratic band, i.e. B0(00, ω) = 0, see eq.(6.63). Therefore the real and imaginary
part of the local Dyson equation (6.49) for the retarded Green’s function is

A(00, ω) = A0(00, ω) +
A0(00, ω)

2

[
ReΣr(00, ω)B(00, ω) + ImΣr(00, ω)A(00, ω)

]
,

(6.128a)

B(00, ω) =
A0(00, ω)

2

[
ImΣr(00, ω)B(00, ω)− ReΣr(00, ω)A(00, ω)

]
. (6.128b)

Since we are only interested in A(00, ω), the second equation is used to eliminate
B(00, ω) in the first one. From eq.(6.128b) B(00, ω) is

B(00, ω) = − A0(00, ω)ReΣr(00, ω)

2 − A0(00, ω)ImΣr(00, ω)
A(00, ω), (6.129)

and inserting this into eq.(6.128a), we find the following self-consistent equation
for the local spectral function

A(00, ω) = (6.130)

× 2πd(ω)
1 − πd(ω)ImΣr(00, ω)

1 − 2πd(ω)ImΣr(00, ω) + [πd(ω)ReΣr(00, ω)]2 + [πd(ω)ImΣr(00, ω)]2
,

using that A0(00, ω) is related to the density of states d(ω) as A0(00, ω) = 2πd(ω),
see eq.(6.64).

In the general non-equilibrium case, the self-energy Σr(00, ω) will depend on
the spectral function A(00, ω) as well as the other Green’s functions and one needs
the Dyson equation for the lesser and greater component as well, to find A(00, ω)
from the coupled set of Dyson equations. However, to calculate the conductance
and thermopower only the equilibrium spectral function Aeq(00, ω) is needed,
as noted in eq.(6.68) and eq.(6.69). In equilibrium all the four components of
the Green’s function are dependent and related to the spectral function via the
fluctuation-dissipation theorem as

G<
eq(00, ω) = iAeq(00, ω)f 0(ω), (6.131a)

G>
eq(00, ω) = −iAeq(00, ω)[1− f 0(ω)], (6.131b)

Gr
eq(00, ω) =

∫ ∞

−∞

dω′

2π

Aeq(00, ω′)

ω − ω′ + iη
, (6.131c)

Ga
eq(00, ω) =

∫ ∞

−∞

dω′

2π

Aeq(00, ω′)

ω − ω′ − iη
, (6.131d)

where η = 0+ and f 0(ω) = [1 + e(ω−ε
F
)/k

b
T ]−1 is the Fermi function. These very

useful relations are only valid in equilibrium and can be shown e.g. by using
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the Lehmann representation [14, p.128-130]. Therefore to find the equilibrium
spectral function only a single self-consistent equation is needed:

Aeq(00, ω) = (6.132)

×2πd(ω)
1 − πd(ω)ImΣr

eq(00, ω)

1− 2πd(ω)ImΣr
eq(00, ω) + [πd(ω)ReΣr

eq(00, ω)]2 + [πd(ω)ImΣr
eq(00, ω)]2

,

where the self-energy Σr
eq(00, ω) is a functional of Aeq(00, ω) only using eq.(6.131).

For the self-consistent 2nd order approximation the self-energy in eq.(6.118) is
used, i.e.

Σr
sc,eq(00, ω) =|V0|2

∫ ∞

−∞

dω1dω2dω3

(2π)3

Aeq(00, ω1)Aeq(00, ω2)Aeq(00, ω3)

(ω + ω1 − ω2 − ω3) + iη
(6.133)

×
[
f 0(ω1)(1 − f 0(ω2))(1 − f 0(ω3)) + (1 − f 0(ω1))f

0(ω2)f
0(ω3)

]
,

where eq.(6.77) was used replacing G0 by G and then the fluctuation dissipation
theorem eq.(6.131) is used. Now it is seen explicitly that eq.(6.132) involves only
one unknown function Aeq(00, ω), which we use a numerical iteration scheme to
get out.

The numerical iteration procedure

The iterative procedure is as follows: Make an initial guess for the spectral
function Aeq(00, ω) and calculate Σr

sc,eq(00, ω) and in terms the left-hand side
of eq.(6.132). This gives a new guess for the spectral function (the right-hand
side of eq.(6.132)), which is then used to calculate Σr

sc,eq(00, ω) and the left-hand
side of eq.(6.132), leading to yet another guess of the spectral function. This
procedure is then iterated until the same spectral function is being put in as the
one coming out, since this means that it solves eq.(6.132) and hence it is the
correct spectral function.

There is no guarantee that this procedure converges, but using the non-
interacting spectral function A0(00, ω) = 2πd(ω) as the initial guess, we found
that it does converge for the parameters used. Furthermore, in practices, one
needs a way to decide, when the iteration procedure has converged. To this end,
the conductance eq.(6.68) or thermopower eq.(6.69) is calculated in each itera-
tion step and compared to the previous one, and if the difference is small enough
(e.g. 0.01 × 2e2/h for G), then the iteration has converged.

Another practical information is that the full Green’s functions Gi(00, ω) for
i = r, a, ≷ are zero for ω < 0, since Gr

0(00, ω) ∝ A(00, ω) = 2πd(ω) ∝ θ(ω).
Furthermore, numerically it is rather heavy to calculate a three dimensional

integral as in eq.(6.133). Therefore Σr
sc,eq(00, ω) is not calculated numerically di-

rectly by using eq.(6.133), but instead by using G<
eq(00, ω) = iAeq(00, ω)f 0(ω) and

G>
eq(00, ω) = −iAeq(00, ω)[1− f 0(ω)] and then by Fourier transforming G≷

eq(00, ω)
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Figure 6.8: The ratio of the spectral function Aeq(00, ω) over the non-interacting oneA0(00, ω)
for the self-consistent 2nd order approach for two values of the interaction strength λ and
temperature T/TF.

to the time domain one has

Σr
sc,eq(00, ω) = (6.134)

|V0|2
∫ ∞

0

dteiωt
[
G<

eq(00,−t)G>
eq(00, t)G>

eq(00, t) − G>
eq(00,−t)G<

eq(00, t)G<
eq(00, t)

]
,

which all are operations only involving a single integration - numerically a much
simpler task.

It should be emphasized that our collaborator on paper IV Reinhold Egger did

the actually implementation of the iterative scheme.

Analysis of the conductance and thermopower results

The iterative scheme was used numerically to find Aeq(00, ω) and from this the
conductance and thermopower by using eq.(6.68) and (6.69), respectively as de-
scribed above.

In the calculation, there are two parameters present: The temperature T and
the interaction V0, which are both measured in units of the Fermi energy εF. We
introduce the dimensionless interaction strength λ as

λ ≡ m|V0|
2π3/2ℏ2

=
1

4π3/2

|V0|k2
F

εF

. (6.135)

For the parameters used in the rough estimate on page 91 the interaction strength
λ is ∼ 0.9, i.e. λ is of order 1 or so. In the numerical calculation, we use λ = 0.3
(orange), 0.6 (olive), 0.8 (green), 1.0 (blue) and 2.0 (red). The numerical re-
sults for the conductance using the self-consistent 2nd order approximation for
the self-energy are seen on figure 6.9, where each dot requires a self-consistent
calculation. Each self-consistent calculation gives a local spectral function and
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Figure 6.9: The conductance G (in units of 2e2/h) versus temperature T/TF using the self-
consistent 2nd order approximation for the self-energy eq.(6.118). The dots are the results
of the numerical calculation for various values of the dimensionless interaction strength λ =

mV0

2π3/2ℏ2
. The full lines are the low-temperature perturbative conductance to second order in

the interaction, i.e. G = 2e2

h

(
1 − 2π3

3 λ2(T/TF)2
)
.

two examples are seen in figure 6.8. In figure 6.9, the low-temperature perturba-
tive result G = 2e2

h

[
1 − 2π3

3
λ2(T/TF)2

]
is also shown as full lines for comparison.

The agreement between the two is good for low temperatures as expected. Note
that for λ = 0.3 almost all the low temperature regime is well described by the
perturbative approach, whereas for λ = 2.0 this is certainly not the case. The
general trend in figure 6.9 (for various values of λ) is that the perturbative re-

sult overestimates the interaction conductance correction for temperatures outside

the perturbative regime, i.e. the corrections tends to flatten out. Moreover, the
conductance curves suggest that G saturates at temperatures beyond the per-
turbative regime to something like ∼ e2/h, however, it is hard to tell if the
conductance really saturates or not30.

The numerical iteration procedure is harder to make converge for higher values
of λ and therefore calculation for λ > 2 has not been performed. The iterative
calculation for λ = 2 is also very difficult to make converge and that is why not
more values between λ = 1 and λ = 2 have been calculated.

In order to connect with experiments, the numerical calculations are fitted to

30Note that the calculation is made in the regime 0 ≤ T/TF < 0.4, and the non-

interacting conductance is G(0)(T ) = 2e2

h [1 + e−TF/T ]−1, so a small non-interacting smear-

ing of the conductance is present in this regime, e.g. G(0)(T/TF = 0.3) = 0.97 × 2e2

h and

G(0)(T/TF = 0.4) = 0.92 × 2e2

h . The non-interacting conductance saturates at e2/h, but at a
scale of order (a few) TF.
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Figure 6.10: The conductance G (in units of 2e2/h) versus temperature T/TF for the self-
consistent 2nd order approximation (dots) and fitted (full lines) to an activation law eq.(6.136a)
in (b) and to eq.(6.136b) in (a). The colors correspond to different values of the interaction
strength λ = 0.3 (orange), 0.6 (olive), 0.8 (green), 1.0 (blue) and 2.0 (red). The fit parameters
in eq.(6.136) are found in table 6.1. (Note that using two fit-parameters it is an easy task to
fit these soft curves.)

the following three different forms:

Ga(T ) =
2e2

h

[
1 − (1 − a)e−T a

λ /T
]
, (see fig.6.10(b)) (6.136a)

Gb(T ) =
2e2

h

[
b +

1 − b

1 + (T/T b
λ)2

]
, (see fig.6.10(a)) (6.136b)

Gc(T ) =
2e2

h

[
c + (1 − c)GKondo(T )

]
, (see fig.6.11), (6.136c)

where the GKondo(T ) is the phenomenologically Kondo conductance formula (for
e.g. quantum dots) given by (see e.g. p. 22 for a description)

GKondo(T ) =

(
1

1 + (21/s − 1)(T/T c
K)2

)s

, (with s = 0.22). (6.137)

All the fit forms are 2e2/h for T = 0 and goes to a, b and c, respectively, for
T → ∞. Furthermore each fit form contains a temperature scale T a

λ , T b
λ and

T c
K , respectively. The fits are seen in figure 6.10 and 6.11 and the parameters

are found in table 6.1. The three fitting forms all contain two fit-parameters
and therefore not surprisingly, they all fit very well to the numerical calculations.
However, the saturation values are somewhat different: a ∼ 0.4, b ∼ 0.5 and
c ∼ 0.0, and the largest fluctuations are seen in c. The temperature scales T a

λ

and T b
λ are similar, whereas T c

K differs and fluctuates more rapidly.
For comparison, we have also shown the temperature scale

T ∗ =
1

λ

√
3

2π3
TF (6.138)
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Figure 6.11: The conductance G
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ture T/TF for the self-consistent 2nd
order approximation (dots) and the
fit to the Kondo-like form Gc(T ) =
2e2
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(full line)

for various values of the interaction λ.

λ T ∗/TF T b
λ/TF b T a

λ/TF a T c
K/TF c

0.3 0.7 0.51 0.43 0.40 0.43 1.77 -0.40
0.6 0.4 0.26 0.54 0.24 0.41 0.80 0.034
0.8 0.3 0.22 0.51 0.20 0.38 0.62 0.027
1.0 0.2 0.19 0.48 0.17 0.35 0.50 0.030
2.0 0.1 0.07 0.50 0.06 0.42 0.15 0.23

Table 6.1: Temperature scales T a
λ , T b

λ, T c
K and corresponding saturation values a, b and c,

respectively, entering the best fits of the forms in eq.(6.136) to the numerical calculation. The
temperature scale at which the problem becomes (very) non-perturbative T ∗ eq.(6.138) is also
given for each λ.

at which the problem really becomes non-perturbative, i.e. defined as the tem-
perature at which the perturbative low-temperature conductance becomes zero,
see eq.(6.116). The temperature scales of the fit-functions eq.(6.136) are of the
same order as T ∗, but does not seem to be ∝ 1/λ.

Next we try to motivate, why we used these fitting functions. The fit form
Ga(T ) eq.(6.136a) is used, because it is use to fit the experimental data in Kris-
tensen et al. [17]. This form is often called the activated temperature law due
to the exponential dependence on temperature. Amazingly (or luckily?), we also
find a ∼ 0.4 as in the experiments [17, fig.8].

The form Gb(T ) eq.(6.136b) is used for the following reason: It can be found
(with b = 1/2) by using an ansatz solution to the Boltzmann equation, where
the distribution function at x = 0 is also a Fermi function. However, this ansatz
solution to the Boltzmann equation also has the normalization factor problem (see
section 6.2), since it gives (T b

λ)2 ∝ L/L, which does not make sense. However, it
did inspire eq.(6.136b) and in the fits we found b ∼ 0.5 as in the (wrong) ansatz
solution.

The Kondo-like form Gc(T ) eq.(6.136c) has also been fitted in experiments
[59], but there c is always set to 1/2, because a conductance saturation for high
temperature at e2/h is preferred. If the parameter c is set to 1/2, then it is still
possible to fit the numerical calculation fairly well using the single parameter T c

K .
If we also use a logarithmic scale as in [59], then the fit looks as good as the one
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show in Cronenwett et al., see e.g. figure 1.5 p. 17.
To calculate the thermopower is a much harder numerical task than the con-

ductance, because it requires numerically more precise knowledge of the spectral
function. This can be understood by comparing eq.(6.68) for G and eq.(6.69) for
S: The thermopower integral has an the odd function around the Fermi energy
(ω − εF)[−∂ωf

0(ω)], whereas the integrand in G only has a peak [−∂ωf
0(ω)].

However, this also makes the thermopower contain interesting information about
the asymmetry of Aeq(00, ω) around εF, i.e. the electron-hole asymmetry. In fig-
ure 6.12, the thermopower is found numerically in the self-consistent 2nd order
approximation. The low-temperature perturbative result S ∝ T 3 is seen to fit
well at low temperature, whereas the thermopower becomes more linear at higher
temperature. The thermopower has not been fitted to any fit-functions, because
so far, there are no experimental temperature dependence available.

Therefore in the non-perturbative regime T ∼ T ∗, we have found the conduc-
tance in the point-like interaction model to level off compared to the perturbative
solution (using the self-consistent 2nd order approximation for the self-energy).
Furthermore, the numerical calculation of the conductance shows a tendency to
saturate at ∼ e2/h. However, more work on e.g. an analytical solution is needed
to be certain of the high temperature saturation value.

6.7.4 Connection to the Anderson model: A new parame-

ter regime

Next we turn back to the mapping between the model of a continues 1D electron
gas with interactions present in a single point x = 0, on one hand, and the
Anderson model connected to semi-infinite tight-binding chains, on the other
hand, see section 6.4.1. Here we interested in establishing the non-perturbative
regime discussed in section 6.7 in terms of the Anderson model parameters as
often used to describe e.g. quantum dots [14, chap.10].

First of all, in terms of the Anderson model the coupling to the site i = 0 is not
different from the inter-site hopping in the rest of the tight-binding chain, where
it is given by t, see eq.(6.70). The so-called hybridization of the i = 0 site to the
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leads, Γ = 2π|t|dt(ω), is of order U , (U ∼ Γ), because there is no localization
at i = 0 in the model (i.e. no formation of a local moment). Furthermore, in
order to have perfect conductance 2e2/h at T = 0 the single-particle on-site
(i = 0) energy ε0 must be cancelled out such that31 ε0 = ε

F
− Re[Σr(00, ω)] at

T = 0. This corresponds to having the (self-consistent) Hartree-Fock interactions
included in the single-particle potential forming the QPC. Another energy scale
in an Anderson model is the bandwidth D (which is 2|t| for a tight-binding
chain). To translate between the two models, ε

F
correspond to D and U to

V0k
2
F. Therefore the temperature scale k

b
T ∗ correspond to D2/U , so the non-

perturbative regime of interest is (compare to eq.(6.117))

D2

U
. k

b
T ≪ D. (6.139)

For this to be possible we need U ≫ D, which is an interesting new parameter
regime of the well-known Anderson model, which (to our knowledge) have not
been studied before. It is our claim from the previous section, that the conduc-
tance is ∼ e2/h in this regime.

Therefore, in the end, the described model of a QPC can also be understood
as an Anderson model as in the papers on the Kondo effect in QPC’s [92, 95] (see
also p. 22). However, the model presented here is in a very different parameter
regime, than the Kondo model, where U ≫ Γ, U,Γ ≪ D and an on-site energy
ε0 near −U/2 .

6.8 The noise due to non-momentum conserving

interactions

The noise in the current also gives a valuable piece of information about the
QPC. See p. 19 for a brief description of noise in QPC’s. In this section, we briefly
outline the perturbative results of the noise due to the non-momentum conserving
interactions. It is emphasized that our collaborator on paper IV Alessandro De

Martino performed the actual noise calculation using a bosonization approach.
To calculate the noise S one needs to consider the zero-frequency component of

the current-current correlation function, i.e. S =
∫

dt〈δIe(t)δIe(0)〉, where δIe(t)
is the current fluctuation in time, δIe(t) = Ie(t) − 〈Ie〉, and 〈Ie〉 is the average
current. The following results are obtained using perturbation theory in the
general interaction and linearized bands, so the different processes at the Fermi
level has different amplitudes W1 and W2 as seen on figure 6.6. All calculations
are to lowest order in the temperature and bias voltage, however, including the
V 3 term in the current, since the shot-noise is a non-equilibrium phenomenon.

31This can be seen from the low-temperature limit of the Meir-Wingreen formula using that
Gr(00, ω) = [ω − ε0 − Σr(00, ω) + iη]−1 and using that ImΣr(00, ω) = 0 for T = 0 [145].
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The non-equilibrium noise power of the transmitted current through the QPC
is found to be

ST = SB + 4G0kb
T − 8k

b
T∂V Ibs, (6.140)

where SB is the noise in the backscattered current Ibs. The backscattering current
Ibs is the lowest order interaction correction to the current through the QPC given
in eq.(6.107) and (6.109) as

I =
2e2

h
V − Ibs (6.141)

with Ibs = Ibs1 + Ibs2 and

Ibs1 =
1

48

2e2

h
V

(
W1k

2
F

εF

)2
[(

T

TF

)2

+
1

4π2

(
eV

ε
F

)2
]
, (6.142a)

Ibs2 =
1

48

2e2

h
V

(
W2k

2
F

εF

)2
[(

T

TF

)2

+
1

π2

(
eV

ε
F

)2
]
, (6.142b)

where Ibs1 (Ibs2) is the current reduction due to interaction processes, where one
(two) electrons change direction in the scattering process. Note that Ibs is defined
positive for positive V . The noise in the backscattered current is found to be

SB(V, T ) = 2e

[
2Ibs2(V, T ) coth

(
eV

k
b
T

)
+ Ibs1(V, T ) coth

(
eV

2k
b
T

)]
. (6.143)

This expression is the Schottky shot noise relation, if one takes into account that
the charge of the backscattered current Ibs2 is the double, see e.g. [106]32.

The experimental data for the noise near the 0.7 anomaly e.g. [74] shows a
noise reduction compared to the single-particle value ∼ T (1−T ) (for transmission
T see eq.(1.32)). Here we want to know, if this is also the case in the present
model for the perturbative noise calculated here. To perform this comparison
in the experiment the thermal noise is subtracted from the noise leading to the
so-called excess noise [74], i.e.

SI = ST − 4G(V, T )k
b
T, (6.144)

where G(V, T ) ≡ I(V, T )/V is the non-linear conductance. This part of the
non-interacting single-particle noise is (see eq.(1.32) and [74, 76])

SSP
I = 2

2e2

h
R
[
eV coth

(
eV

2k
b
T

)
− 2k

b
T

]
+ O[R2], (6.145)

32For a model with an impurity and only the W2 interaction process Median and Oreg [106]
found the same relation, but in this case, the impurity made the noise, which is due to Ibs1
here.
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where R is the reflection coefficient and we used that R(1 − R) = (1 − T )T
and expanded to first order in R, since it is small near the conductance anomaly.
Now, the reflection R used in the comparison between the single-particle noise
and the noise due to interaction eq.(6.140) and (6.143) should be R = Ibs/(

2e2

h
V ),

because it is the reflected current no matter if it is due to single-particle effects
or not. Subtracting the excess noise due to interactions and the single-particle
excess noise, we obtain by straightforward calculations

SI − SSP
I

2(2e2/h)eV (T/TF )2
= −2

[
W 2

1 k
4
F

48π2ε2
F

]
eV

k
b
T

+

[
W 2

2 k
4
F

48π2ε2
F

]
h

(
eV

k
b
T

)
, (6.146)

where
h(x) = −8x+ (π2 + x2) tanh(x/2). (6.147)

The left-hand side of this expression is negative for eV < 6.507× k
b
T regardless

of the values of W1 and W2 and hence we find a noise reduction compared to
the non-interacting value as in the experiment. Note that in the experiment by
Dicarlo et al. [74] eV . 5k

b
T is used.

Therefore (at least) qualitatively the perturbative noise calculation for non-
momentum conserving interaction processes can explain the experimental noise
reduction near the conductance anomaly.

6.9 Discussion and summary

In this chapter, we have studied the effect of electron-electron interactions on
the transport properties of very short quantum wires (i.e. quantum point con-
tacts) perfectly connected to the leads. The wires are so short, L ∼ k−1

F , that
the translational symmetry is broken and hence the electron-electron interaction
can happen without momentum conservation. Therefore two-particle interactions
within a single mode can affect the current. Here we have restricted ourself to the
situation of perfect transmission at zero temperature and magnetic field. Fur-
thermore, the leads are considered to be non-interaction with each their own
temperature and chemical potential.

By using perturbation theory to second order in the interaction in the Green’s
function approach, we found that the current is reduced compared to the non-
interacting value by increasing the temperature T and/or voltage V , i.e.

Ie(V, T )

V
≃ 2e2

h

{
1− 1

48

[(
W1k

2
F

εF
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+
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W2k
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2
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2
F

εF
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](

eV
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− · · ·
}

(6.148)
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in the low temperature and/or voltage regime, i.e. T/TF ≪ 1 and eV/ε
F
≪ 1.

Here W1 and W2 are the scattering amplitudes to change the number of left and
right movers by one or two, respectively. The thermopower to second order in
the interaction and to lowest order in the temperature is found to be

S =
k
b

e

π2

120

[(
W1k

2
F

εF

)2

+

(
W2k

2
F

εF

)2
](

T

TF

)3

, for T/TF ≪ 1. (6.149)

At low temperatures the interaction induced thermopower dominates the non-
interacting value, since this is exponentially suppressed, S(0) ∝ e−TF/T . We also
found the noise including the non-momentum conserving interactions and it is
reduced compared to the non-interacting value.

In the case of a large applied magnetic field, gµBB ≫ k
b
T , the interactions be-

tween electrons of equal spin become important. Here we found that the interac-
tion contribution to the conductance and thermopower is suppressed by two extra
powers of temperature compared to the B = 0 case, i.e. G(B = ∞) − e2/h ∝ T 4

and S(B = ∞) ∝ T 5. Again second order perturbation theory was used to lowest
order in temperature.

To describe the conductance versus temperature beyond the perturbative
regime, (Wik

2
F/εF)2(T/TF)2 ≪ 2e2/h, we derived a useful current formula for

the point-like interaction model V (x, x′) = V0δ(x)δ(x′). The point-like interac-
tion is the simplest way to mimic the non-momentum conserving interactions
(i.e. the L → 0 limit). This non-perturbative current formula only depend on
the local spectral function A(00, ω) (i.e. at x = x′ = 0) and therefore the local
self-energy (by the Dyson equation). To model the self-energy, the second order
diagrams are made self-consistent (i.e. replasing non-interacting Green’s function
by interacting ones). We argued that this is like using the full distribution func-
tion in the collision integral of a Boltzmann equation and therefore a simple way
to describe the relaxation of the right and left movers due to the interaction in the
QPC beyond perturbation theory33. Numerically, we found that the conductance
versus temperature beyond the T 2 dependence flattens out to ∼ e2/h by using
the self-consistent 2nd order approach.

All the quantities found in this chapter are in qualitative agreement with the
experimental observations on the 0.7 anomaly in quantum point contacts (see
section 1.9). To recapitulate, we found: Conductance G = Ie/V reduction for
increasing temperature or bias from zero, thermopower enhancement for increas-
ing temperature, suppression of the effect on the e2/h plateau (B = ∞), noise
reduction, and finally the conductance flattens out to ∼ e2/h at higher temper-
ature (but still below TF). Furthermore, the interactions will be strongest in
the beginning of the plateau due to the lack of screening for low density of the
electrons.

33However, one should note that due to the short interacting region a Boltzmann equation

approach does not make sense here.
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To make a quantitative agreement further studies are needed. A simple es-
timation of the interaction showed that it seems to be big enough to give the
anomaly. However, to verify (or falsify) the explanation a better calculation of
the interaction is a very important step forward. This should determine the mag-
nitude of the non-momentum conserving interactions including e.g. a realistic
geometry and screening. Another interesting direction is to try to find the non-
perturbative saturation value of the conductance by analytical considerations or
by other means. Yet another interesting direction is to include a single-particle
potential barrier and study the interplay with the non-momentum conserving
interactions to mimic the gate-voltage dependence better.



Appendix A:

A general current formula including

interactions

In this appendix, we present a general current formula including interactions. It
describes the situation of a general mesoscopic system connected to leads using
scattering states and furthermore. The interaction is described in terms of the
full (i.e. not the irreducible) self-energy and can be electron-electron interactions
or interaction with phonons or impurities. In the end, we consider this formula
in our perturbative setup for a fully open QPC.

This section is not included in the thesis, since it is work in progress, where
the loose ends still need to be considered [146].

A.1 The Hamiltonian

We study a mesoscopic system connected to reservoirs with different chemical
potentials and/or temperatures. We can e.g. use the scattering states as our
basis set and the unperturbed Hamiltonian is given by

H0 =
∑

nη

∫
dE ν E c†nEηcnEη ≡

∑

1

E1 c
†
1c1, (A.1)

where the operator c†nEη creates an electron in the scattering state in direction
η, incoming from channel n, and with energy E. Here ν is the density of states.
We use the notation 1 = nEη and 1′ = n′E ′η′ (spin is included in the n quantum
number). (We can also see the states as k states, as in the previous calculations.
However, both are included in the present derivation.) We include electron-
electron interaction in the form

Hint =
1

2

∑

11′22′

V1′2′,12c
†
1′c

†
2′c2c1, (A.2)

where

V1′2′,12 =

∫
dra

∫
drb ψ

∗
1′(ra)ψ

∗
2′(rb)V (ra, rb)ψ1(ra)ψ2(rb). (A.3)
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Here ψi(r) is the wavefunction including the spin part. Further, we note that
[V1′2′,12]

∗ = V12,1′2′ and V1′2′,12 = V2′1′,21, since V (ra, rb) = V (rb, ra).

A.2 The current

We use the non-equilibrium Green’s function formalism regarding the interaction
terms as the perturbation. The current is given by (e > 0)

Ie = −e
∑

nn′ηη′

∫
dEdE′ ν2〈n′E ′η′|Îx|nEη〉〈c†n′E′η′cnEη〉

= −e
∑

11′

〈1′|Îx|1〉〈c†1′c1〉, (A.4)

where Îx is the current operator. This translates into a lesser Green’s function as

Ie = ei
∑

11′

〈1′|Îx|1〉G<(11′, tt) = −e Im
∑

11′

〈1′|Îx|1〉G<(11′, tt). (A.5)

The calculation thus starts with the time-ordered electron Green’s function (given
by G(11′, ττ ′) = −i〈Tc(c1(τ)c

†
1′(τ

′))〉), where the time ordering is along the con-
tour C seen in figure 6.3. The time-ordered Green’s function is written as (ne-
glecting time and space integrations)

G = G0 + G0ΣG0 = G0 + δG , (A.6)

where Σ is the full self-energy including all diagrams and not just the irreducible
ones as in the Dyson equations G = G0 + G0Σ

irrG (see section 6.3.3). The second
term thus gives the correction to the non-interacting current. For the lesser part
we have in detail (in the diagonal basis for H0)

δG(11′, ττ ′) =

∫

C
dτ1dτ2 G0(1, ττ1)Σ(11′, τ1τ2)G0(1

′, τ2τ
′). (A.7)

Using the Langreth rules eq.(6.37) and Fourier transforming, this becomes

δG<(11′, ω) =Gr
0(1, ω)Σr(11′, ω)G<

0 (1′, ω) + Gr
0(1, ω)Σ<(11′, ω)Ga

0 (1′, ω)

+ G<
0 (1, ω)Σa(11′, ω)Ga

0 (1′, ω). (A.8)

The correction to the current is then

δIe = −e Im
∑

11′

∫
dω

2π
〈1′|Îx|1〉δG<(11′, ω). (A.9)
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Before proceeding, some useful relations for G0

Gr
0(1, ω) =

1

ω − E1 + iη
, (A.10a)

Ga
0(1, ω) =

1

ω − E1 − iη
, (A.10b)

G<
0 (1, ω) = 2πiδ(ω − E1)n1, (A.10c)

where n1 is the occupation of the quantum number 1. Note that n1 depends
on the direction of i.e. on η, when the two reservoirs have different chemical
potentials and/or temperatures. Some general relations for a lesser function are

[A<(11′, t, t′)]
∗

= −A<(1′1, t′, t) ⇒ [A<(11′, ω)]
∗

= −A<(1′1, ω), (A.11)

and for retarded functions

[Ar(11′, t, t′)]
∗

= Aa(1′1, t′, t) ⇒ [Ar(11′, ω)]
∗

= Aa(1′1, ω). (A.12)

These are used extensively in the following.

A.3 A general formula for the current

The current is now rewritten into an elastic and an inelastic part. Using the
expression (A.10) the current is rewritten:

δIe = −e Im
∑

11′

∫
dω

2π
〈1′|Îx|1〉

1

E1 − E1′ − iη
(A.13)

× [−Σr(11′, ω)G<
0 (1′, ω) + G<

0 (1, ω)Σa(11′, ω) + (Gr
0(1, ω) − Ga

0 (1′, ω))Σ<(11′, ω)] .

There are now two contributions corresponding the real and imaginary parts of
[E1−E1′−iη]−1. The real part does not conserved current, since 〈1′|Îx|1〉 depends
on x when E1 6= E1′ and hence it should vanish for a conserving approximation
of Σ. This has to be checked for every approximation used. The non-zero part is

δIe = −eπRe
∑

11′

∫
dω

2π
〈1′|Îx|1〉δ(E1 −E1′) (A.14)

× [−Σr(11′, ω)G<
0 (1′, ω) + G<

0 (1, ω)Σa(11′, ω) + (Gr
0(1, ω) − Ga

0 (1′, ω))Σ<(11′, ω)]

= 2eπ2 Im
∑

11′

∫
dω

2π
〈1′|Îx|1〉δ(E1 −E1′)δ(ω −E1)

× [−Σr(11′, ω)n1′ + n1Σ
a(11′, ω)−Σ<(11′, ω)]

= 2eπ2 Im
∑

11′

∫
dω

2π
〈1′|Îx|1〉δ(E1 −E1′)δ(ω −E1) [−2Σr(11′, ω)n1′−Σ<(11′, ω)] .



A.4. E-E INTERACTIONS FOR GENERAL BASIS AND INTERACTION142

Using Σr(tt′) = θ(t − t′) (Σ>(tt′) − Σ<(tt′)), we rewrite

Σr(ω) = i

∫
dω′

2π

Σ>(ω′) − Σ<(ω′)

ω − ω′ + iη
=

1

2
[Σ>(ω) − Σ<(ω)]+

i

2
Hω(Σ> − Σ<),

(A.15)
where H is the Hilbert transform defined as

Hx(f) = P

∫
dy

π

f(y)

x − y
. (A.16)

We then find

δIe = eπ Im
∑

11′

〈1′|Îx|1〉 δ(E1 − E1′) (A.17)

×
[
− Σ<(11′, E1)(1 − n1′) − Σ>(11′, E1)n1′ +

i

2
HE1

[Σ>(11′) − Σ<(11′)](n1 − n1′)
]
.

The last part can be interpreted as an elastic term (i.e. correction to the first
order Hartree-Fock term), whereas the first part is inelastic, which we concentrate
on here:

δIinelas = −eπ Im
∑

11′

〈1′|Îx|1〉δ(E1 − E1′) [Σ<(11′, E1)(1 − n1′) + Σ>(11′, E1)n1′ ] .

(A.18)
Note that this expression has a form of a scattering in and out of some states, like
a impurity collision integral, where the self-energy takes the role of a distribution-
like function.

A.4 Electron-electron interactions for a general

basis and interaction

In this section, we find the inelastic current eq.(A.18) to second order in the
interaction for a general electron-electron interaction V1′2′,12 and for a general
basis of quantum states.

The full second order self-energy is the same as the irreducible second order
self-energy, even though this is not generally the case. Note that we do not
include diagrams that contribute to the self-consistent Hartree-Fock potential.
The bubble diagram self-energy seen on figure A.1 is

ΣB(11′, ττ ′) = i2
∑

2

G0(2, ττ ′)B(11′2, ττ ′), (A.19)

where B is the bubble (or loop) in figure A.1(left):

B(11′2, ττ ′) = −
∑

34

V24,1′3V13,24G0(3, τ
′τ)G0(4, ττ ′). (A.20)
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21′ 1

4

3

τ ′ τ

V13,24V24,1′3

21′

14

3

τ ′ τ

V31,24V24,1′3

Figure A.1: The bubble diagram (left) and the zigzag diagram (right) for the self
energy. Note that the external legs (i.e. G0(1),G0(1

′)) also are included.

Thus using the Langreth rules of a product of functions and Fourier transforming
the lesser component becomes

Σ<
B(11′, ω) = −

∑

2

∫
dω′

2π
G<

0 (2, ω − ω′)B<(11′2, ω′), (A.21a)

= −i
∑

2

n2B
<(11′2, ω − E2),

= i
∑

2

n2

∫
dω′

2π

∑

34

V24,1′3V13,24G>
0 (3, ω′)G<

0 (4, ω − E2 + ω′),

= 2πi
∑

2

n2

∑

34

V24,1′3V13,24(1 − n3)n4δ(ω − E2 + E3 − E4),

and the greater component is found to be

Σ>
B(11′, ω) = −2πi

∑

234

(1 − n2)(1 − n4)n3V24,1′3V13,24δ(ω − E2 + E3 − E4).

(A.21b)

Similarly, the zigzag diagram figure A.1(right) yields

ΣZ(11′, ττ ′) = −
∑

2

G0(2, ττ ′)Z(11′2, ττ ′), (A.22)

where Z is
Z(11′2, ττ ′) =

∑

34

V24,1′3V31,24G0(3, τ
′τ)G0(4, ττ ′), (A.23)

and Σ≷
Z can be generated as in eq.(A.21) by interchanging the arguments of the

second V (and multiplying by −1). When inserting these results into (A.18), we
find (note that 1 and 1′ are interchanged)

δI
(2)
inelas = −2eπ2 Re

∑

11′

∑

234

〈1|Îx|1′〉δ(E1 − E1′)V24,13 {V1′3,24 − V31′,24} (A.24)

× [(1 − n1)n2(1 − n3)n4 − n1(1 − n2)n3(1 − n4)] δ(E1 − E2 + E3 − E4).

Again the familiar form of a collision integral is observed as in the Boltzmann
case.
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A.4.1 The free-electron plane wave basis

Next we simplify the above formula to the case of k states as we used for the
fully open QPC, but still keeping the interaction general.

Using plane wave quantum numbers correspond to

∑

1

(· · · ) =
∑

k1σ1

(· · · ). (A.25)

The current matrix element is

〈1′|Îx|1〉 =
1

L
~

2m
(k1′ + k1)e

i(k1−k1′)xδσ1σ1′
(A.26)

Note that we have included the factor of 1/L in the matrix element to get the
current and not the current density. For a quadratic band, we get

δ(E1 −E1′) =
2m

~2

[
δ(k1 − k1′)

|2k1|
+

δ(k1 + k1′)

|2k1|︸ ︷︷ ︸
does not contribute

]
, (A.27)

where the last delta function leads to zero current matrix element and therefore
it does not contribute. The current change from eq.(A.24) is therefore:

δI
(2)
inelas = −eπRe

∑

k2k4k1k3

k1

|k1|
[(1 − n1)n2(1 − n3)n4 − n1(1 − n2)n3(1 − n4)]

× δ(E1 − E2 + E3 − E4)
∑

σ1σ2σ3σ4

V24,13 {V13,24 − V31,24} , (A.28)

where ni = f 0
R/L(εki

) is the left (right) Fermi function of the lead for ki > 0

(ki < 0). By the variable change (1324) → (121′2′) a more familiar form appears

δI
(2)
inelas = −eπRe

∑

k1k2k1′k2′

k1

|k1|
[(1 − n1)(1 − n2)n1′n2′ − (1 − n1′)(1 − n2′)n1n2]

× δ(E1 + E2 −E1′ − E2′)
∑

σ1σ2σ1′σ2′

V1′2′,12 {V12,1′2′ − V21,1′2′} . (A.29)

Note that the zigzag diagram corresponds to an exchange term in the interaction.
This relation is useful in our situation, since it allows for a perturbative calculation
for a general interaction.

Note that in the simple case of a contact interaction V (x, x′) = V0δ(x)δ(x
′),

so V1′2′,12 = V0

L2 δσ1σ
1′
δσ2σ

2′
, then we obtain the result in eq.(6.84) as expected.
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Errata:

1. The overall sign of eq.(3) should be changed.

2. The signs in front of the second and third terms in Eq.(4) are wrong, it should
read:

f 0
i (ε) ≃ f 0(ε)−∂εf

0(ε)(µi−µ)− (ε−µ)∂εf
0(ε)

Ti − T

T
. (4)

3. Just above eq.(4) the definition of ∆T should be ∆T = TR − TL.

4. In eq.(9) a factor of 2e2/h is missing.

None of these misprints change the conclusions nor other equations.
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Abstract
We calculate the linear response thermopower S of a quantum point contact
using the Landauer formula and therefore assume non-interacting electrons.
The purpose of the paper is to compare analytically and numerically the
linear thermopower S of non-interacting electrons to the low-temperature
approximation, S(1) = (π2/3e)k2

BT ∂µ[ln G(µ, T = 0)], and the so-called
Mott expression, SM = (π2/3e)k2

BT ∂µ[ln G(µ, T )], where G(µ, T ) is the
(temperature-dependent) conductance. This comparison is important, since the
Mott formula is often used to detect deviations from single-particle behaviour
in the thermopower of a point contact.

1. Introduction

A narrow constriction in for example a two-dimensional electron gas makes a small channel
between two electron reservoirs. This constriction is called a quantum point contact [1].
The width of the channel can be controlled by a gate voltage, and by applying a small bias
the phenomenon of quantized conductance as a function of the width (i.e. gate voltage) is
observed at low temperatures [2]. This quantization is due to the wave nature of the electronic
transport through the short ballistic point contact. Experimentally [3–7], it is also possible
to heat up one of the sides of the point contact, thereby producing a temperature difference
�T across the contact, which in turn gives an electric current (and a heat current) though the
point contact. By applying a bias V in the opposite direction to the temperature difference
�T , the two contributions to the electric current I can be made to cancel, which defines the
thermopower S as

S = − lim
�T→0

V

�T

∣
∣
∣
∣

I=0

. (1)

For a quantum point contact, the thermopower as a function of gate voltage has a peak every
time the conductance plateau changes from one subband of the transverse quantization to the
next [5, 8].
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In order to compare experiment and theory for the thermopower of a point contact, the
so-called Mott formula,

SM ∝ ∂Vg [ln G(Vg, T )], (2)

is often a valuable tool, because by differentiating the experimentally found conductance
G(Vg, T ) with respect to the gate voltage Vg one can see if there is more information in
the thermopower that in the conductance. This additional information could for example
be many-body effects [7], since SM is an approximation to the single-particle thermopower.
Note that this approximation is independent of the specific form of the transmission T (ε)

through the point contact. It is the purpose of this paper to determine the validity of the Mott
approximation SM, and thereby decide if it is really deviations from single-particle behaviour
the experiments [6, 7, 9] reveal or rather artefacts of this approximation.

2. Thermopower from the Landauer formula

For the sake of completeness, we begin by deriving the single-particle thermopower formula
in linear response to the applied bias V and temperature difference �T . The current though a
ballistic point contact is found from the Landauer formula [10, p 111, equation (7.30)]:

I = 2e

h

∫ ∞

0
dε T (ε)[ f 0

L (ε) − f 0
R(ε)], (3)

where T (ε) is the transmission and f 0
i (ε) is the Fermi function for the right/left (i = R, L)

lead. The Landauer formula assumes non-interacting electrons and therefore so will the
derived thermopower formula. When a small bias V = (µL − µR)/(−e) and temperature
difference �T = TL − TR are applied, we can expand the distribution functions around µ, T
as (|�T |/T � 1 and |eV | � µ):

f 0
i (ε) � f 0(ε) − ∂ε f 0(ε)(µ − µi ) − (ε − µ)∂ε f 0(ε)

T − Ti

T
, (4)

where f 0(ε) is the Fermi function with the equilibrium chemical potential µ and temperature
T and i = L, R. To obtain the thermopower equation (1) we insert the distribution functions
in equation (3), set it equal to zero and obtain

S(µ, T ) = 1

eT

∫ ∞
0 dε T (ε)(ε − µ)[−∂ε f 0(ε)]

∫ ∞
0 dε T (ε)[−∂ε f 0(ε)]

, (5)

which is our exact single-particle formula.

3. Approximations to the thermopower and their validity

3.1. The low-temperature (first-order) approximation

For T = 0 we have −∂ε f 0(ε) = δ(ε − µ), so the numerator in equation (5) is zero,
i.e. S(µ, T = 0) = 0. For temperatures kBT much lower than the scale of variation of T (ε)

and kBT � µ, we can expand T (ε) around µ to first order (i.e. a Sommerfeld expansion) to
obtain

S(1)(µ, T ) = π2

3

kB

e
kBT

1

T (µ)

∂T (µ)

∂ε
= π2

3

kB

e
kBT

1

G(µ, T = 0)

∂G(µ, T = 0)

∂µ
, (6)

where G(µ, T = 0) is the conductance for zero temperature, i.e. G(µ, T = 0) = 2e2

h T (µ).
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3.2. The Mott approximation and analytical considerations of its validity

The Mott approximation1 [6, 7] is

SM(µ, T ) = π2

3

kB

e
kBT

1

G(µ, T )

∂G(µ, T )

∂µ
, (7)

where G(µ, T ) is the temperature-dependent conductance

G(µ, T ) = 2e2

h

∫ ∞

0
dε T (ε)[−∂ε f 0(ε)]. (8)

The form of SM stated in equation (2) assumes that the chemical potential and gate voltage
are linear dependent. The Mott approximation to the single-particle thermopower equation (5)
and its range of validity are not so obvious compared to the approximation of the first-order
Sommerfeld expansion equation (6).

One way of comparing S from equation (5) and SM is to differentiate equation (8) to obtain
(assuming that T (ε) is independent of µ):

SM(µ, T ) = π2

3

kB

e

1

G(µ, T )

∫ ∞

0
dε T (ε) tanh

(
ε − µ

2kBT

)

[−∂ε f 0(ε)], (9)

i.e. by using the Mott formula we approximate (ε − µ)/kBT in the integral by
(π2/3) tanh[(ε − µ)/(2kBT )].

To compare S and SM in another way, we observe that for low temperatures kBT � µ the
Mott approximation SM simplifies to the S(1) equation (6), because G(µ, T ) → 2e2

h T (µ) for
T → 0, i.e. S(µ, T ) = S(1)(µ, T ) = SM(µ, T ) for kBT/µ → 0. Therefore, we compare S
and SM by expanding both quantities in orders of kBT and comparing order by order. Using

T (ε) =
∞∑

n=0

1

n!

∂nT (µ)

∂εn
(ε − µ)n, (10)

we can exactly rewrite equation (8):

G = 2e2

h

∞∑

n=0

1

n!

∂nT (µ)

∂εn

∫ ∞

0
dε (ε − µ)n[−∂ε f 0(ε)]

= 2e2

h

∞∑

n=0

1

n!

∂nT (µ)

∂εn
(kBT )nBn

(
µ

kBT

)

, (11)

where (y = (ε − µ)/kBT )

Bn

(
µ

kBT

)

≡
∫ ∞

− µ

kB T

dy
yn

4 cosh2(y/2)
→ In ≡

∫ ∞

−∞
dy

yn

4 cosh2(y/2)
for kBT � µ,

(12)

where we note that I2n+1 = 0 for all integer n. Numerically, it turns out that
Bn(µ/kBT )/Bn(0) � 0 for µ � (10 + n)kBT as seen in figure 1. The integral In can
be calculated, and the first values are

I0 = 1, I2 = π2

3
, I4 = 7π4

15
, I6 = 31π6

21
, I8 = 127π8

15
, . . . . (13)

Using the approximation equation (12) we get

G(µ, T ) � 2e2

h

∞∑

n=0

1

(2n)!

∂2nT (µ)

∂ε2n
I2n(kBT )2n . (14)

1 In the early works by Mott and co-workers [11, 12] it was actually the first-order approximation equation (6) which
was referred to as the Mott formula.
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Figure 1. Left: the approximation in equation (12) is pictured for odd integer values of n from 1
(left) to 19 (right) in Bn(µ/kBT ). We note that Bn(µ/kBT )/Bn(0) � 0 for µ � (10 + n)kBT .
Right: the numerical values of the factors in the series expansions of the Mott approximation
equation (15) (lower) and the exact linear single-particle series expansion equation (16) (upper).

This leads to a Mott approximation to the thermopower for low temperatures as

SM(µ, T ) � kB

e

1

G(µ, T )

2e2

h

[ ∞∑

n=0

I2 I2n

(2n)!

∂2n+1T (µ)

∂ε2n+1
(kBT )2n+1

]

. (15)

Writing the exact single-particle thermopower S equation (5) by using equation (10) and the
approximation of low temperatures equation (12), we get

S(µ, T ) � kB

e

1

G(µ, T )

2e2

h

[ ∞∑

n=0

I2n+2

(2n + 1)!

∂2n+1T (µ)

∂ε2n+1
(kBT )2n+1

]

. (16)

We see that both formulae only have odd terms in kBT , and the first-order term is the same
(which is S(1)). However, none of the higher-order terms are the same, and in figure 1(right)
the different numerical factors of the two series expansions are seen to behave very differently
as the power of kBT grows:

I2n+2

(2n + 1)!
∼ 4.00 × n +

π2

3
and

I2 I2n

(2n)!
→ 6.58 for n � 10. (17)

So the Mott approximation is better the smaller the temperature compared to µ, but it
is not a bad approximation for moderate temperatures (i.e. kBT comparable to other energy
scales), as we shall see numerically. Note that if the approximation equation (12) is not valid,
then we have all powers of kBT .

4. Comparison of the approximations to the exact single-particle thermopower from
numerical integration

We need a specific model for the transmission to do a numerical comparison of S from
equation (5) to SM and S(1). Using a harmonic potential in the point contact, i.e. a saddle
point potential, a transmission in the form of a Fermi function can be derived [13]:

T (ε) =
nmax∑

n=1

1

exp( nε0−ε

εs
) + 1

, (18)
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Figure 2. Thermopower S from numerical integration of equation (5) (black solid line), the Mott
formula SM equation (7) (red dashed line) and the first-order approximation S(1) equation (6) (green
dotted line). From (a) to (f) the temperature is changed from the low-temperature regime kBT < εs

to kBT > εs in small steps. The smearing of the transmission εs is kept constant, and note that
εs , kBT � ε0 and εs , kBT � εF in all the graphs. The thermopowers are all in units of kB/e, but
note the different magnitudes of the thermopower from (a) to (f). The conductance G is shown (in
arbitrary units) for comparison.

(This figure is in colour only in the electronic version)

where εs is the smearing of the transmission between the steps and ε0 is the length of the
steps (often called the subband spacing). In terms of the harmonic potential V (x, y) =
const − mω2

x x2/2 + mω2
y y2/2, where x is along the channel, we have ε0 = h̄ωy and

εs = h̄ωx/(2π). Other functional forms of T have also been tested, but provided they have
the same graphical structure (such as for example a tanh dependence) the same conclusions
are obtained.

Three regimes of temperatures relevant to experiments are investigated numerically:

kBT < εs (figure 2(a)), kBT ∼ εs (figures 2(b)–(d))

and kBT > εs (figures 2(e), (f)). (19)
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The thermopower S for the transmission model equation (18) is found from numerical
integration of equation (5) and compared to the Mott approximation SM equation (7) and
the first-order approximation S(1) equation (6). In all three regimes, we have a staircase
conductance, so kBT � ε0, and G(µ, T ) is also shown in the figures (in arbitrary units) for
comparison. Furthermore, µ = εF is of order ε0, so the approximation kBT � εF used for
example in equation (12) is indeed very good. Note that all energies in the figures are given in
units of the step length ε0.

The information obtained from the numerical calculations is the following.
Figures 2(a), (b) show that for kBT being the lowest energy scale both approximations work
very well, as expected from the analytical considerations. When the temperature becomes
comparable to the smearing of the steps, kBT ∼ εs , the Culter–Mott formula works well and is
better than the first-order approximation, as seen in figures 2(b)–(d). For kBT bigger than εs ,
the Mott approximation still works quite well, whereas S(1) is no longer a good approximation.
The reason that the Mott approximation works well is found in the similar terms in the analytic
temperature expansions equations (15) and (16). Note that as kBT increases both S(1) and SM

show a tendency to overestimate S at the peaks and underestimate it at the valleys.
In summary,we have found that the Mott approximation to the single-particle thermopower

is a fairly good approximation provided the temperature is smaller than the Fermi level, but
kBT can be both compatible and larger than the smearing of the transmission εs . However, to
rule out any doubt one could use an experimental determination of T (ε) from the (very low-
temperature) conductance to find the single-particle thermopower from equation (5), which
could perhaps give an interesting comparison to the experimental result. Thereby one would
obtain an even more convincing statement of deviations from single-particle behaviour in the
thermopower.
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We study the effect of electron-electron interaction on the transport properties of short clean quantum
wires adiabatically connected to reservoirs. Interactions lead to resonances in a multichannel wire at
particular values of the Fermi energy. We investigate in detail the resonance in a two-channel wire. The
(negative) conductance correction peaks at the resonance, and decays exponentially as the Fermi energy is
tuned away, the resonance width being given by the temperature. Likewise, the thermopower shows a
characteristic structure, which is surprisingly well approximated by the so-called Mott formula. Finally,
fourfold splitting of the resonance in a magnetic field provides a unique signature of the effect.
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It is well established by now that ballistic motion of
electrons in quantum wires results in the conductance
quantization [1,2]. With the increase of wire width, the
conductance increases by one quantum, 2e2=h, each time a
new channel becomes available for the electron propaga-
tion. The experimental observation of the low-temperature
conductance quantization was explained successfully
within the model of noninteracting electrons [3]. In this
model, corrections to the quantized conductance values
come from the electron diffraction at the edges of the
wire and from thermal broadening. At the conductance
plateaus the latter corrections are exponentially small at
low temperatures.

There is little reason to believe that the electron-electron
interactions are weak in the studied quantum wires.
Nevertheless, apart maybe from the so-called ‘‘0.7 anom-
aly’’, they apparently do not show up in the experimental
observations of quantized steps in the dependence of con-
ductance on the wire width. The lack of the effect of
interaction on the low-temperature conductance at the first
plateau can be easily understood within the Luttinger
liquid picture [4] and from the fact that the density-density
interaction does not redistribute electrons between the left-
moving and right-moving species.

Within the model of noninteracting electrons, the ther-
mopower is related to the derivative of the electron trans-
mission coefficient with respect to energy in the vicinity of
the Fermi level [giving rise to the so-called Mott’s formula,
see Eq. (3) below]. Therefore such a model predicts zero
thermopower at the conductance plateaus in good agree-
ment with experiments [5–7]. Again, interactions, if ac-
counted for within the Luttinger liquid approximation, do
not alter this result due to the particle-hole symmetry built
into the approximation.

In this Letter, we find interaction-induced features in the
electron transport of a multichannel wire. The features
have the form of resonances in the dependence of con-
ductance and thermopower on the Fermi energy (or, equiv-
alently, on the gate voltage). The origin of the features is in
the possibility of interaction-induced electron scattering

between the channels at some specific relations of the
Fermi wave vectors of electrons in different channels.
These relations are determined by energy and momentum
conservation. The interchannel scattering events do not
necessarily preserve the number of right and left movers.
For example, in Fig. 1 a right and a left mover become two
left movers. Since the number of right (left) movers is not
conserved in this scattering event, it changes the particle
current. We evaluate in detail the corrections to the con-
ductance G and the thermopower S for a two-channel wire
due to such processes.

We show that near the resonance point displayed in
Fig. 1, the interaction-induced correction to the quantized
value of conductance, 4e2=h, has the form

 �G �
4e2

h
L
lee

kBT
"F

F0

�
"F � "R
kBT

�
; (1)

where "R � �9=8�"0, with "0 being the difference of the
quantized energies of the transverse motion corresponding
to the two channels, 1 and 2, see Fig. 1; L is the wire length,
and lee is the electron mean free path corresponding to the
described type of scattering. We assume weak scattering,
so the wire is sufficiently short, L� �"F=kBT�lee, see
Eq. (12) below. The dimensionless function F0�x� [given
in Fig. 2 and Eq. (11)] is of the order of unity when jxj & 1
and falls off exponentially at large jxj. The wire width and
thus the difference "F � "R can be controlled electrostati-
cally [1,2] by a gate voltage. The shape of the conductance
dip can be easily understood from the process in Fig. 1. For
an excess of right movers created by the bias voltage, it

 

12
εF = εR

k

εkn

FIG. 1. An example of interchannel scattering event discussed
in this Letter. This scattering event becomes possible at the
Fermi level only if the ratio of the Fermi momenta of the two
channels equals 3:1.
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allows for a relaxation of the right movers into the left-
moving species.

When the conductance is quantized at the value 4e2=h,
the thermopower vanishes in absence of interactions.
Accounting for the interactions, we find the leading con-
tribution to the thermopower coefficient S for two open
channels

 S �
kB
e
L
lee

kBT
"F

F1

�
"F � "R
kBT

�
: (2)

The thermopower S is proportional to T at the maximum.
Here S is conventionally defined by the relation �V �
S�T, with �T and �V being, respectively, the temperature
difference at the ends of the wire and the voltage caused by
it. Again, the function F1�x� falls off exponentially at
jxj � 1, see Fig. 2, and its analytical form is given by
Eq. (11). Since S is the leading contribution, it is a direct
measure of the interchannel interaction. Furthermore, since
S and �G are functions of �"F � "R�=kBT, measurements
performed at different temperatures are predicted to col-
lapse to the two curves of Fig. 2, when properly scaled. The
shape of the curve F1�x� and, in particular, the sign change
can be understood in terms of allowed interchannel relaxa-
tion processes, as explained and illustrated in Fig. 3.

A remarkably good estimate, F1�x� � ��2=3�dF0=dx,
can be obtained from the Mott’s formula [8],

 SM �
�2

3

kB
e
kBT

1

G
dG
d"F

; (3)

which is expected to be a good approximation at low
temperatures for noninteraction electrons [9]. There is no
a priori reason for Mott’s formula to work here, as we
consider effects of inelastic scattering. We therefore stress
that interaction effects can be seen in an experiment even
without a manifesting violation of the Mott formula. (We
note though, that violation of the Mott formula has been
detected in experiments [7].)

The magnetic field introduces Zeeman splitting of the
electron states. This, in turn, splits the single resonance for
both conductance and thermopower into four resonances,
see Fig. 4. Two of the resonances correspond to the tran-
sitions involving electrons with the same spins. With the
increase of the magnetic field B, splitting in this doublet, in

terms of "F, equals g�BB and coincides with the Zeeman
splitting of the quantized steps in the conductance (here g
and �B are the electron g factor in a quantum wire and
Bohr magneton, respectively). The amplitude of the reso-
nances involving electrons with the same spin is smaller
than the one given by Eqs. (1) and (2) by a parameter /
�kBT="F�

2. This suppression is a manifestation of the Pauli
principle: at T � 0 the scattering process we consider
would involve two electrons in the same orbital and spin
state, see Fig. 1. The full form of the conductance correc-
tion and the thermopower in this doublet is given below in
Eq. (16). The two remaining resonances form another
doublet with splitting g�BB=2 at small fields, see
Eq. (14) and Fig. 4 for details. These resonances corre-
spond to the transitions involving electrons with opposite
spins and are therefore not suppressed by the Pauli princi-
ple; Eqs. (1) and (2) can be used for an estimate of the
amplitude of these two resonances. However, as seen on
Fig. 4, the position of the lower of these resonances ap-
proach the bottom of the spin-split band, "0 � g�BB=2,
which tends to mask the interaction-induced structure.

We thus find that the interaction-induced features in
transport properties scale with the temperature as T or
T3. They are associated with electron scattering at energies
close to the Fermi level. This should be compared to the

 

ε εF < R ε εF > R

εF

εR εR

εF

FIG. 3 (color online). Illustration of the dominant scattering
events on either side of the resonance, "F � "R, for a finite-
temperature difference across the wire. Here the right movers are
cold (blue) and left movers are warmer (red); for simplicity we
consider �L � �R and T � 0 for right movers. Because of
momentum and energy conservation the scattering has to take
place close to "R (the dotted line). In the left panel, only
scattering of electrons from warm to cold is possible and,
consequently, an excess of right movers is created. In contrast,
in the right panel this process is blocked by a filled Fermi sea and
instead a scattering, where a right mover is transformed to a left
mover prevails. This explains the sign change of thermopower
seen in Fig. 2.
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FIG. 4. Splitting of the resonance features in conductance and
thermopower into four features as a function of magnetic field B.
Dashed lines represent the evolution of the positions of single-
particle peaks in the thermopower.
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FIG. 2. The dimensionless scaling functions F0�x� and F1�x�
entering the conductance correction Eq. (1) and the interaction-
induced thermopower Eq. (2), respectively.
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situation without interactions where finite-temperature cor-
rections to the quantized conductance and to the zero value
of S are of the order of exp��"0=8kBT�, which stems from
the exponentially small probability of having holes at the
bottom of band 2. Thus, at sufficiently low temperatures,
the features we consider are dominant.

Next, we outline the derivation of the electron-electron
interaction effects on the current. We start from the
Boltzmann equation,

 vkn@xfkn�x� � Iknx	f
; (4)

where fkn�x� is the distribution function, n the channel
index, vkn �

1
@
@k"kn the velocity, and Iknx	f
 is the

electron-electron collision integral. The reflectionless con-
tacts of the quantum wire [3] and the shift in chemical
potential and temperatures [10] are introduced by the
boundary conditions
 

fkn�x � 0� � f0
L;kn for k > 0; (5a)

fkn�x � L� � f0
R;kn for k < 0; (5b)

where f0
L=R;kn is the Fermi distribution for the left and right

lead, respectively, including their temperatures TL=R and
chemical potentials �L=R. In Eq. (5) we have assumed that
the collision term is turned on abruptly at x � 0 and x � L,
which, of course, is not the case. However, as long as the
length of the wire is much larger than its width the results
are not sensitive to the details of the openings. In the
absence of interactions (Iknx	f
 � 0), the solution to the
Boltzmann equation is simply given by

 f�0�kn � f0
L;kn��k� � f

0
R;kn���k�: (6)

The interaction between electrons yields the collision in-
tegral
 

Ik1n1x	f
 � �
X
�2

�
10
�

20

X
n2

n
10
n

20

X
k2

k
10
k
20

W12;1020 	f1f2�1� f10 ��1� f20 �

� f10f20 �1� f1��1� f2�
; (7)

where fi � fkini�x�, and primes denote electron states after
the collision. The scattering rate W12;1020 is found using the
Fermi golden rule. To find the distribution, we expand it
powers of W12;1020 as f � f�0� � f�1� � � � � . To the leading
order, we can therefore insert f�0�kn from Eq. (6) into the
collision integral in the right-hand side of Eq. (4) to get

 f�1�kn �x� �
�
x
vkn

��k� �
x� L
vkn

���k�
�
Ikn	f

�0�
: (8)

The electric current now follows as (with e > 0)

 I � I�0� � I�1�; I�0� �
��e�
L

X
�nk

vknf
�0�
kn ;

I�1� � e
X

�nk<0

Ikn	f
�0�
;

(9)

where I�0� corresponds to the Landauer formula for fully

open channels, and the term I�1� is the correction to the
current due to interactions. To calculate I�1�, we linearize
Ikn	f�0�
 in eV � �L ��R and �T � TR � TL and di-
vide the summation over quasiwave vectors into positive
and negative values using W12;1020 � W21;1020 � W1020;12,
etc. [11]. We obtain
 

I�1� � 2��e�
X
�1�2
�

10
�

20

X
n1n2
n

10
n

20

X
k1<0;k2>0
k
10
>0;k

20
>0

W12;1020f
0
1f

0
2�1� f

0
10 ��1� f

0
20 �

�

�
�T

kBT2 �"1����
eV
kBT

�
; (10)

where f0
i � 1=	exp��"kini ���=kBT�� � 1
 is the Fermi

function. For two channels, we find that the only com-
bination of channel indices, which gives a contribution
nonexponential in temperature, is n2 � 1 and n1 � n01 �
n02 � 2. Moreover, this combination is nonexponential
only if the Fermi energy is within a range of kBT from
"R. An important point of the result (10) is that the number
of left- and right-moving electrons has to change in order
for the current to change. In essence, this is due to the
cancellation of the velocity in the distribution function,
Eq. (8), and in the current definition, Eq. (9). In fact, the
cancellation can be shown to be valid to all orders in the
interaction [11]. A similar situation occurs for the
Coulomb drag response [12,13] of mesoscopic structures.

At low temperatures, T � �"F � "0�=kB, we can now
find the thermopower and conductance for both zero and
nonzero magnetic field. From Eq. (10), we obtain the linear
response current as I��G�0�T �G

�1�
T ��T��G

�0� �G�1��V,
where G is the conductance and GT is the thermoelectric
coefficient. Furthermore, since G�0�T / e

��"F�"0�=kBT at the
plateaus [5] and G�1�T / T or T3 one obtains at low tem-
peratures the thermopower S ’ G�1�T =G

�0�. Moreover, the
contribution to lowest order in temperature is found by
linearizing the quadratic dispersion and using a constant
interaction in Fourier space in Eq. (10). For "F near "R, we
finally obtain, after some algebra, the zero-magnetic-field
conductance correction, �G � G�1�, and thermopower
given in Eqs. (1) and (2) (plotted in Fig. 2). The dimen-
sionless scaling functions F0 and F1 are determined by
 

Fn�x� �
Z 1
�1

dzznh�z; x�; (11a)

h�z; x� �
��2x� z�

4 sinh�2x� z� cosh�z2� cosh�2x� 3z
2 �
: (11b)

Further, in Eqs. (1) and (2) we have defined the effective
interchannel electron-electron scattering length as

 lee �
2

27

2�
kF1

�
@vF1

jV2122
2kF2
j

�
2
; (12)

where V2122
2kF2

is the electron-electron interaction at twice the
Fermi vector for the second channel (i.e., upper subband)
2kF2. Both the curvature of the electron dispersion relation
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and the momentum dependence of the interaction give rise
to small corrections, e.g., S�"F � "R� / T

2. These correc-
tions to higher order in temperature shift the point where
the thermopower coefficient changes sign, but the overall
behavior is still the same.

Magnetic field splits the resonance at "F � "R into four
points corresponding to scattering between electrons with
identical or different spins. For scattering between elec-
trons with identical spins, momentum and energy conser-
vation lead to resonances occurring at (� � 1 �"#)

 "��R �
9

8
"0 � �

1

2
g�BB: (13)

However, the features which originate from scattering

between different spins split up in a different way
( �� � ��),

 "� ��
R � "0

9� 20�g�BB="0 � 8�g�BB="0�
2

8�1� 2�g�BB="0�
: (14)

For g�BB > "0=4 only three resonances remain, since the
scattering at "F � "#"R can no longer conserve both mo-
mentum and energy (similarly when g�BB <�"0=4 the
"F � ""#R resonance is absent).

In the regime kBT � g�BB� "F � "0, the thermo-
power and conductance change around each of the points
"F � "��

0

R can be found separately. The matrix element of
the interaction potential

 hk102�10k202�20 jVjk12�1k21�2i �
�k1�k2;k10�k20

L
	V2122

k10�k1
��1;�10

��2;�20
� V2122

k20�k1
��1;�20

��2;�10

; (15)

consist of a direct (first) and exchange (second) term lead-
ing to the remarkable difference between the resonance
amplitude at "� ��

R and "��R . The direct and exchange con-
tributions to the scattering amplitude cancel each other for
a pointlike interaction and equal spins (Pauli principle).
Finite contributions to the transport characteristics appear
due to the momentum dependence of the interaction matrix
elements (15) and are of higher power in temperature:
 

S�� �
kB
e

6L
l0ee

�
kBT
"F

�
3

~F1

�
"F � "

��
R

kBT

�
; (16a)

�G�� �
4e2

h
6L
l0ee

�
kBT
"F

�
3

~F0

�
"F � "��R
kBT

�
; (16b)

where

 l0ee �
2

27

2�
kF1

�
@v�F1

k�F1j@qV
2122
2k�F2
j

�
2
: (17)

The new dimensionless functions ~F0 and ~F1 are defined as

 

~F n�x� �
1

16

Z 1
�1

dzznh�z;x�
�

4�2

3
�

1

3
�4x� 2z�2

�
; (18)

being well approximated by F0 and F1 in Fig. 2. The
predicted evolution of the resonance structure with the
increase of magnetic field should be a good candidate for
experimental verification of the interaction effects.

In summary, we found interaction-induced resonance
points in the Fermi energy in the conductance and thermo-
power S of a short clean multichannel quantum wire adia-
batically connected to leads. The resonances in
thermopower offer a way to observe the effect of inter-
channel electron-electron interaction and to measure its
strength. We found S to be dominated entirely by inter-
actions for j"F � "Rj=kBT & 5 at low temperatures and to
have the scaling form presented in Eq. (2). Furthermore,

the thermopower coefficient and the conductance develop
distinct features in a finite magnetic field.
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Paper III

Anders Mathias Lunde, Karsten Flensberg
and Leonid I. Glazman:

Three-particle collisions in quantum wires:

Corrections to thermopower and

conductance

Physical Review B 75, 245418 (2007).

Notes:

1. To be precise one should have introduced a normalization length and a length
of the wire separately as in the thesis (section 3.2.3, p. 39). However, the nor-
malization length cancels out, so the qualitative and quantitative results are not
changed.

2. The statement discussed in Appendix A is actually more general then presented
here: It does not require a symmetric scattering rate W123;1′2′3′ = W1′2′3′;123.
However, it still require that W123;1′2′3′ is symmetric under interchange among
the final and initial states, respectively, e.g. W1′2′3′;213 = W1′2′3′;123, as stated in
the article. For the general case see section 3.3, p. 41.
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Three-particle collisions in quantum wires: Corrections to thermopower and conductance
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We consider the effect of electron-electron interaction on the electron transport through a finite length
single-mode quantum wire with reflectionless contacts. The two-particle scattering events cannot alter the
electric current and therefore we study the effect of three-particle collisions. Within the Boltzmann equation
framework, we calculate corrections to the thermopower and conductance to the leading order in the interaction
and in the length of wire L. We check explicitly that the three-particle collision rate is identically zero in the
case of several integrable interaction potentials. In the general �nonintegrable� case, we find a positive contri-
bution to the thermopower to leading order in L. The processes giving rise to the correction involve electron
states deep in the Fermi sea. Therefore, the correction follows an activation law with the characteristic energy
of the order of the Fermi energy for the electrons in the wire.

DOI: 10.1103/PhysRevB.75.245418 PACS number�s�: 73.21.Hb, 72.10.�d, 73.63.Nm

I. INTRODUCTION

Short clean one-dimensional �1D� mesoscopic wires, of-
ten referred to as quantum point contacts, show conductance
quantization1,2 as a function of the channel width. The quan-
tization is well described by the theory of adiabatic propaga-
tion of free electrons.3 For noninteracting particles, conduc-
tance quantization should occur in longer channels too, as
long as there is no backscattering off inhomogeneities within
the channel.

A lot is known about the role of electron-electron interac-
tion of 1D channels. Electron-electron repulsion in a wire
enhances dramatically the reflection coefficient, making it
energy dependent.4 However, interaction between electrons
does not alter the quantization �in units of 2e2 /h� of an ideal
channel conductance in the limit of zero temperature.5,6 What
is still an open question is whether there are other manifes-
tations of interactions due to inelastic processes, which influ-
ence the transport properties.

In the absence of interactions, left- and right-moving par-
ticles in a wire are at equilibrium with the reservoirs they
originate from. If a bias is applied between the reservoirs,
then these equilibria differ from each other, giving rise to a
particular form of the nonequilibrium distribution inside the
channel. On the other hand, in a long ideal channel and in the
presence of interactions, one may expect equilibration to oc-
cur between the left and right movers into a single distribu-
tion characterized by an equilibrium with respect to a refer-
ence frame moving with some drift velocity. Interestingly, in
a model with momentum-independent electron velocity for
left and right movers �as it is the case in the Tomonaga-
Luttinger model�, there is no difference between the two dis-
tributions. Effects originating from the particle-hole asym-
metry, however, may discriminate between the two.
Thermopower and Coulomb drag7–9 are examples of such
effects.

At present, little is known about equilibration in a 1D
electron system. In higher dimensions, the electron-electron
interaction provides the most effective relaxation mechanism
at low temperatures and therefore we include this relaxation

mechanism as the first approach. However, in 1D pair colli-
sions cannot change the distribution function for quadratic
dispersion, since the momentum and energy conservation10

laws result in either zero-momentum exchange or an inter-
change of the two momenta.11 In either case, the distribution
function remains the same. Thus, the leading equilibration
mechanism is due to three-particle collisions, which we
study in this paper.12

We investigate here the effects of three-particle collisions
in reasonably short wires �see Fig. 1�, where electron-
electron scattering can be considered perturbatively. As mea-
surable quantities, we evaluate the temperature dependence
of the thermopower and conductance. Note that for more
than one mode, pair collisions become important for certain
fillings.13

The paper is organized as follows. First we review the
noninteracting limit of thermopower and give a qualitative
explanation of the effects due to three-particle collisions.
Then, we describe how to include the electron interactions
using the Boltzmann equation. Next, we calculate the main
ingredient for our perturbation theory, namely, the three-
particle matrix element and scattering rate using a T-matrix
expansion. We note several interesting properties of this scat-
tering rate. Finally, we derive the conductance and ther-
mopower corrections and discuss the deviation from the so-
called Mott formula. Furthermore, some technical details are

FIG. 1. A schematic picture of two metallic gates depleting the
underlying two-dimensional electron gas and thereby forming a
short 1D quantum wire of length L. This fabrication method has the
advantage of producing reflectionless contacts to the leads �Ref. 3�,
so that the boundary conditions of the distribution function are
given by the Fermi function of the reservoirs. We define the ther-
mopower as S=V / ��T�I=0, i.e., the voltage V required to counteract
a current due to the temperature difference �T.
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put in two appendices, and in Appendix A we show that the
number of left and right movers have to change in a scatter-
ing event for the current to change.

A. Thermopower in the noninteracting limit

For a wire without interactions, the distribution function
f �0� is determined solely by the electron reservoirs,

fk
�0� = � f0��k − �L,TL� � fL

0��k� for k � 0,

f0��k − �R,TR� � fR
0��k� for k � 0,

� �1�

where �k is the dispersion relation for momentum k and spin
� �suppressed in the notation�, and f0��−� ,T�= �1+exp���
−�� /kBT��−1 is the Fermi function with �L/R and TL/R denot-
ing the chemical potential and temperature of the left/right
contact, respectively �see Fig. 1�. The electric current for low
temperature T�TF and in linear response to the applied bias
V and temperature difference �T�T then follows as �e
�0� �Ref. 14�

I�0� =
�− e�

L
	

�k�0
vk�fL

0��k� − fR
0��k�� , �2�


−
2e2

h
V�1 − e−TF/T� +

2e

h
kB�T

TF

T
e−TF/T. �3�

From this, the well-known leading-order results for con-
ductance,

G�0� =
2e2

h
�1 − e−TF/T� , �4�

and for thermopower,

S�0� =
kB

e

TF

T
e−TF/T, �5�

for a fully open channel are obtained. Here TF��F /kB is the
Fermi temperature.

B. Main results and a simple picture of the effect of the
three-particle scattering

One of the main results of this paper is that the three-
particle collisions give a positive contribution to the ther-
mopower, i.e., the current due to a temperature difference is
increased by the three-particle scattering. This can be ex-
plained in simple terms. Firstly, to change the current the
number of left- and right-moving electrons need to change,
since it is the number of electrons going through a mesos-
copic structure that determines the current and not their ve-
locity �see Appendix A�. Secondly, we find the dominant
scattering process at low temperature to only involve a single
electron changing direction. This occurs near the bottom of
the band, as pictured on Fig. 2�a�. For the initial electronic
distribution, the left-moving electrons have a higher tem-
perature than the right-moving ones, which favors scattering
into the warmer distribution, as seen on Fig. 2�b�. This thus
creates more left-moving electrons and thereby increases the

particle current toward the colder reservoir, i.e., increasing
the thermopower.

Another important point is that the thermopower and con-
ductance corrections are exponential in temperature, i.e., pro-
portional to exp�−TF /T�. This is a direct consequence of the
dominant three-particle scattering process requiring an
empty state near the bottom of the band. We find the form of
the thermopower correction at low temperatures due to the
three-particle scattering to be given by

Sint 	 L�V�4� T

TF
�6

exp�− TF/T� � 0, �6�

where V is the electron-electron interaction strength and TF
the Fermi temperature. This is found perturbatively in the
short-wire limit. The long-wire limit remains an open ques-
tion, and we expect that the length dependence of ther-
mopower saturates once L exceeds some relaxation length
�which increases for decreasing temperature�.

In contrast, the conductance correction is negative. To un-
derstand this, note that the chemical potential of the initial
distribution is higher for the right-moving electrons than the
left-moving ones. This favors scattering into the left-moving
branch �still with the process shown in Fig. 2�a�� for nonzero
temperature and thereby decreasing the current. The form of
the conductance correction is similar to the thermopower
correction,

Gint 	 − L�V�4� T

TF
�7

exp�− TF/T� � 0. �7�

FIG. 2. �a� The dominant three-particle scattering process at low
temperature in a single energy band. �b� The three-particle scatter-
ing process perturbing the initial distributions shown with warm
left-moving electrons �k�0� and cold right-moving electrons �k
�0�. Due to the temperature difference of the initial distributions,
the scattering process creating left movers dominates compared to
the opposite scattering and therefore it gives a positive correction to
the thermopower.
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II. CURRENT CALCULATION IN THE BOLTZMANN
EQUATION FORMALISM

A. Effect of interactions on the current

To model the current through a short 1D quantum wire
including perturbatively the three particle interactions, we
use the Boltzmann equation

vk�xfk�x� = Ikx�f� , �8�

where fk�x� is the distribution function at a space point x
between zero and L �see Fig. 1�, vk= 1


�k�k is the velocity,
and Ikx�f� is the three-body electronic collision integral, i.e.,
no impurity or interface roughness effects are included here.
We include the voltage and temperature difference in the
boundary conditions of the reflectionless contacts,3 i.e.,

fk�x = 0� = fL
0��k� for k � 0, �9a�

fk�x = L� = fR
0��k� for k � 0, �9b�

and therefore omit the term k̇�kfk�x� in the Boltzmann equa-
tion allowed in the linear-response regime.15 A similar
method has been used to investigate electron-phonon inter-
actions in short quantum wires,16 quantum Hall effect in
quantum wires,17 and ballistic Coulomb drag.18

The three-particle collision integral is assumed to be local
in space and is given by

Ik1x�f� = − 	
�2�3

�1��2��3�

	
k2k3

k1�k2�k3�

W123;1�2�3��f1f2f3�1 − f1���1 − f2��

��1 − f3�� − f1�f2�f3��1 − f1��1 − f2��1 − f3�� , �10�

where the quantum numbers are primed �unprimed� after �be-
fore� the scattering event, f i� fki

�x�, and the scattering rate
W123;1�2�3� is found in the next section. Without interactions
�W123;1�2�3�=0�, the solution of the Boltzmann equation is
simply given by f �0� in Eq. �1�. When interactions are in-
cluded, it becomes a very difficult task to solve the Boltz-
mann equation to all orders in the interaction. However, for a
short wire the interactions only have a short time to change
the distribution function away from the initial distribution
f �0� and therefore we expand the distribution function in or-
ders of W123;1�2�3� as

f = f �0� + f �1� + ¯ . �11�

To find f �1� to the first order in W, we insert the expansion of
f in the Boltzmann equation and realize that only f �0� is nec-
essary in the collision integral. Since Ikx�f �0��=Ik�f �0�� is in-
dependent of x, we find that

fk
�1��x� =

x

vk
Ik�f �0�� for k � 0, �12a�

fk
�1��x� =

x − L

vk
Ik�f �0�� for k � 0, �12b�

using the boundary conditions �Eq. �9��. Therefore, the cur-
rent to the first order in W is

I = I�0� + e 	
�k�0

Ik�f �0�� � I�0� + Iint, �13�

where I�0� is the noninteracting �Landauer� part of the current
from Eq. �2� and Iint is the part due to interactions.

B. The linear-response limit

The form of the interacting part of the current is now
known and the next step is therefore to evaluate it to linear
response to V and �T to obtain the thermopower and con-
ductance corrections. To this end, we define �k

�0� via

fk
�0� � f0��k� + f0��k��1 − f0��k���k

�0�, �14�

where f0��k� is the Fermi function with temperature T and
Fermi level �F. It turns out that �k

�0� is proportional to either
V or �T. This is seen by using the identity

− kBT��f0��k� = f0��k��1 − f0��k�� , �15�

so we can identify �k
�0� by expanding the noninteracting dis-

tribution function fk
�0� �see Eq. �1� and Fig. 1�,

fL
0��k� 
 f0��k� + �− ��f0��k��eV , �16a�

fR
0��k� 
 f0��k� + �− ��f0��k���� − �F�

�T

T
, �16b�

i.e.,

�k
�0� = 

eV

kBT
for k � 0

�k − �F

kBT

�T

T
for k � 0.� �17�

Therefore, to get Iint in linear response to V and �T, we
linearized the collision integral Ik�f �0�� �Eq. �10�� with re-
spect to �k

�0� and insert it into Iint �Eq. �13�� to obtain

Iint = �− e� 	
�1�2�3

�1��2��3�

	
k1�0,k2k3

k1�k2�k3�

�123;1�2�3�

���1
�0� + �2

�0� + �3
�0� − �1�

�0� − �2�
�0� − �3�

�0�� , �18�

where we defined

�123;1�2�3� = W123;1�2�3�f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 � ,

�19�

using the shorthand notation �i
�0���ki

�0� and f i
0� f0��ki

�. To
linearize the collision integral and thereby the correction to
the current due to interactions Iint, we have used the relation

f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 �

= f1�
0 f2�

0 f3�
0 �1 − f1

0��1 − f2
0��1 − f3

0� , �20�

valid at �1+�2+�3=�1�+�2�+�3�.
Since �i

�0� is different for positive and negative ki, we
need to divide the summation in Iint �Eq. �18�� into positive
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and negative k sums, which gives 25=32 terms. For this
purpose, we introduce the notation

	
k1�0,k2�0,k3�0

k1��0,k2��0,k3��0

�·� � 	
−+−

++−

�·�, 	
�1�2�3

�1��2��3�

�·� � 	
spin

�·� ,

�21�

and similarly for other combinations of the summation inter-
vals. The 32 terms can be simplified to only three terms
using energy conservation and symmetry properties of

�123;1�2�3� in Eq. �19� under interchange of indices. There are
pairwise exchanges of indices �123;1�2�3�=�213;1�2�3�
=�123;1�3�2�, etc., and interchanges between primed and
unprimed indices, �123;1�2�3�=�1�2�3�;123, using Eq. �20� and
the fact that W123;1�2�3� contains a matrix element squared.
This leads to six terms. Furthermore, �123;1�2�3� is invariant
under ki→−ki for all i=1,2 ,3 ,1� ,2� ,3� simultaneously due
to time-reversal symmetry, also seen explicitly from the form
of W123;1�2�3� �derived below�. An example of how the sim-
plifications occurs can be seen in Eq. �A6�. Thus, we obtain
the result

Iint = 2�− e�	
spin

	
−++

+++

�123;1�2�3�� �T

kBT2 ��1 − �F� −
eV

kBT
�

+ 4�− e�	
spin

	
−−+

+++

�123;1�2�3�� �T

kBT2 ���1 − �F� + ��2 − �F�� −
2eV

kBT
�

+ 3�− e�	
spin

	
++−

+−−

�123;1�2�3�� �T

kBT2 �− ��3 − �F� + ��2� − �F� + ��3� − �F�� −
eV

kBT
� , �22�

where the definition of �i
�0� in Eq. �17� was inserted. An

important point is that the number of positive and/or negative
wave-vector intervals is not the same before and after the
scattering. Therefore, we note that only scattering events that
change the number of left- and right-moving electrons con-
tribute to the interaction correction to the current. The origin
of this is the cancellation of the velocity in the definition of
the current and in the distribution functions �Eq. �12��.

This cancellation thus leads to an expression for the inter-
action correction to the current in Eq. �22� where all the
in-going and out-going momenta enter on equal footing. In
Appendix A, we show that this is valid to all orders in per-
turbation theory. Due to this property and momentum con-
servation, there are no processes that alter the current pos-
sible near the Fermi level. Consequently, states far away
from the Fermi level have to be involved in the scattering,
which, as we will see, leads to a suppression of Iint by a
factor exp�−TF /T�. The distribution function, on the other
hand, can be changed by scattering processes near the Fermi
level.

To identify the important processes, we find in the next
section the scattering rate W123;1�2�3�.

III. THREE-PARTICLE SCATTERING RATE

The three-particle scattering rate W123;1�2�3� is calculated
using the generalized Fermi golden rule inserting the T ma-
trix, T�V+VG0T, iterated to second order in the interaction
V to get the three-particle interaction amplitude, i.e.,

W123;1�2�3� =
2



��1�2�3��VG0V�123�c�2��Ei − Ef� , �23�

where Ei=�1+�2+�3 is the initial energy, Ef =�1�+�2�+�3�
the final energy, G0 is the resolvent operator �or free Green’s
function�, j is shorthand for kj, and the subscript “c” means
connected in the sense that the scattering process cannot be
effectively a two-particle process, where one of the incoming
particles does not participate in the scattering. Explicitly G0
and V are given by

G0 =
1

Ei − H0 + i�
, �� → 0+� , �24�

V =
1

2L
	

k1k2q
	

�1�2

Vqck1+q�1

† ck2−q�2

† ck2�2
ck1�1

. �25�

Here, H0 is the unperturbed Hamiltonian �i.e., kinetic energy
with some dispersion�, Vq the Fourier-transformed interac-
tion potential, and ck� �ck�

† � is the annihilation �creation� op-
erator. To calculate the matrix element �1�2�3� �VG0V�123�c,
we write the initial and final states as

�123� = ck1�1

† ck2�2

† ck3�3

† �0� , �26�

�1�2�3�� = ck1��1�

† ck2��2�

† ck3��3�

† �0� , �27�

where �0� is the empty state. Using the anticommutator alge-
bra �ci ,cj

†�=�i,j, we obtain
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G0V�123� =
1

2L
	

q

Vq 	
�abc��P�123�

sgn�abc�
�ba�q�

�cka+q�a

† ckb−q�b

† ckc�c

† �0� , �28�

where we introduced

�ba�q� = �b + �a − �b−q − �a+q + i� =

2

m
q�kb − ka − q� + i�

�29�

�the last equality is only valid for a quadratic dispersion�, and
where the set of permutations is given by P�123�
= ��123�+ , �231�+ , �312�+ , �132�− , �321�− , �213�−�. Here, the
signs of the permutation, sgn�abc�, are shown as super-
scripts.

In order to exclude the effectively two-particle processes
when multiplying Eq. �28� by �1�2�3� �V from the left, kc

�c=1,2 ,3� needs to be different from kj� �j=1,2 ,3�. The
result is

�1�2�3��VG0V�123�c

=
1

�2L�2 	
�abc��P�123�

	
�a�b�c���P�1�2�3��

sgn�abc�sgn�a�b�c��

�
Ṽa�−aṼc�−c�a+b+c,a�+b�+c�

�b + �c − �c� − �b+c−c� + i�
��a�,�a

��b�,�b
��c�,�c

, �30�

where Ṽq=Vq+V−q is the symmetrized interaction. The ma-
trix element consists of 36 terms and the scattering rate thus
has 362=1296 terms. To obtain this result, we did not use
energy conservation. For a quadratic dispersion, the denomi-
nator is only zero if we have an effective pair collision or if
the momentum transfer is zero, as seen from the expression
�ba�q�= 
2

m q�kb−ka−q�+ i�. A picture of the matrix element is
found in Fig. 3�b�, where the exchange processes �including
the sign� are visualized as different ways to connect two
interaction lines and an intermediate propagation �G0� seen
on Fig. 3�a�. The inclusion of the Fermi statistics makes a
substantial difference for the properties of the scattering rate
as compared to the case described in Ref. 19, which is ob-
tained by setting all sgn�¯�= +1.

We can rewrite the matrix element �Eq. �30�� in a more
transparent way in terms of quantum-mechanical exchange
symmetry. First, we introduce the following combination of
three-particle scattering amplitudes:

V�11�,22�,33�� =
��1�,�1

��2�,�2
��3�,�3

4L2 � Ṽ1�−1Ṽ3�−3

�3 + �2 − �3� − �2+3−3�
+

Ṽ2�−2Ṽ1�−1

�1 + �3 − �1� − �3+1−1�
+

Ṽ3�−3Ṽ2�−2

�2 + �1 − �2� − �1+2−2�

+
Ṽ1�−1Ṽ2�−2

�2 + �3 − �2� − �3+2−2�
+

Ṽ3�−3Ṽ1�−1

�1 + �2 − �1� − �2+1−1�
+

Ṽ2�−2Ṽ3�−3

�3 + �1 − �3� − �1+3−3�
� , �31�

FIG. 3. A visualization of the connected three-particle scattering matrix element �Eq. �30��, where three particles interchange their
momenta and energy. This matrix element enters the scattering rate via the generalized Fermi golden rule �Eq. �23��. �a� The basic
three-particle interaction consisting of two interaction lines and a free propagation �see Eq. �30��. �b� Picture of the exchange processes times
the basic interaction needed to form the matrix element �Eq. �30��.
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and after some rewriting, we then obtain

�1�2�3��VG0V�123�c = �k1+k2+k3,k1�+k2�+k3�
�V�11�,22�,33��

+ V�12�,23�,31�� + V�13�,21�,32��

− V�11�,23�,32�� − V�13�,22�,31��

− V�12�,21�,33��� . �32�

We interpret this result in a way similar to a two-particle
matrix element,

�1�2��V�12� =
�k1+k2,k1�+k2�

L
�Vk1�−k1

��1,�1�
��2,�2�

− Vk2�−k1
��1,�2�

��2,�1�
� , �33�

which contains a direct �first term� and an exchange term
�where 1�↔2��.

In the three-particle case, V�11� ,22� ,33�� is the direct
term and one can make five exchange processes �instead of
one� by exchanging the three final states 1�, 2�, and 3�. This
gives Eq. �32�. The sign in front of each V�¯� is determined
by the number of exchanges made, e.g., in V�11� ,23� ,32�� a
single exchange, 2�↔3�, gives a minus �−1�1 whereas for
V�12� ,23� ,31�� two exchanges �1�↔3� followed by
3�↔2�� give a positive sign �−1�2. Furthermore, the argu-
ments in V�11� ,22� ,33�� are ordered in three pairs such that
the differences between the elements in each pair are the
only arguments of the interaction potential �see Eq. �31��.
This is useful when constructing approximations having a
specific scattering process in mind.

How the matrix element was rewritten into the form of
Eq. �32� can also be described in terms of the drawings of

Fig. 3. The direct term V�11� ,22� ,33�� is the sum of the six
terms having mirror-symmetric exchanges before and after
the scattering. The other terms in Eq. �32� then can be ob-
tained by suitable changes of out-going lines.

A. Zero three-particle scattering rate for integrable models

The expressions we obtain for the three-particle scattering
rates �Eq. �23�� are quite cumbersome. Nevertheless, the ob-
tained results allow for some consistency checks. Remark-
ably, for some two-body potentials, scattering of the particles
of an N-body system is exactly equivalent to a sequence of
two-body collisions. Such “special” potentials were studied
in the context of integrable quantum many-body problems.11

We recall now that for a quadratic band, a pair collision does
not change the momenta of the incoming particles or simply
permutes the two momenta. Therefore, three-particle scatter-
ing for the integrable potentials may result only in permuta-
tions within the group of three momenta of the colliding
particles; all other three-particle scattering amplitudes must
be zero for such potentials. In the context of this work, it
means that even three-particle �or higher-order� collisions
would not bring electron equilibration for such types of
electron-electron interaction.

In this section, we check that the three-particle scattering
amplitudes are indeed zero for two special potentials.

1. Pointlike interaction

In the case of contact interaction, Ṽq=const� Ṽ0, and for
any kind of electron dispersion relation �i.e., not necessarily
quadratic�, we find by using the energy conservation law that

	
spin

��1�2�3��VG0V�123�c�2 =
2Ṽ0

4

�2L�4�k1+k2+k3,k1�+k2�+k3�
��A121� − A122� − A131� + A132��

2 + �A121� − A123� − A131� + A133��
2

+ �A122� − A123� − A132� + A133��
2 + �A121� − A122� − A231� + A232��

2 + �A131� − A132� − A231� + A232��
2

+ �A121� − A123� − A231� + A233��
2 + �A131� − A133� − A231� + A233��

2 + �A122� − A123� − A232� + A233��
2

+ �A132� − A133� − A232� + A233��
2� , �34�

where Aabc= ��a+�b−�c−�a+b−c+ i��−1. This is a major sim-
plification from 362=1296 to 9�42=144 terms by perform-
ing the spin summation. If, furthermore, the dispersion is
quadratic, �k	k2, then we find the �at first sight� surprising
cancellation

	
spin

��1�2�3��VG0V�123�c�2���1 + �2 + �3 − �1� − �2� − �3�� = 0.

�35�

This can be seen directly from Eq. �34� or by noting that

V�1a�,2b�,3c�����1 + �2 + �3 − �a� − �b� − �c�� = 0,

�36�

for a quadratic dispersion and constant interaction for
�a�b�c��� P�1�2�3��, i.e., each term of Eq. �32� is zero.
V�11� ,22� ,33�� cancels in such a way that the three first
terms of Eq. �31� cancel each other �the even permutations of
�123� combined with the same primed permutation� and the
three last terms cancel each other �the odd permutations of
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�123� combined with the same primed permutation�.
In fact, the cancellation described above is in agreement

with the general factorization results for the S matrix of one-
dimensional N-body problem with �-function interaction in
real space.20 In this context, it is crucial that the particles
have a quadratic dispersion relation; if we use, e.g., �k	k4,
then the cancellation does not occur. Notice also that the
cancellation we demonstrate is not a trivial zero. Indeed, the
underlying two-particle amplitudes �Eq. �33�� are finite for a
q-independent potential if one includes spins. �For spinless
fermions and contact interaction, the matrix element would
be zero because the direct and the exchange terms cancel in
accordance with the Pauli principle.�

2. Ṽq=V0„1−q2 /q0
2
… interaction

We also observed that the energy conserving part of the
matrix element �1�2�3� �VG0V�123�c in the case of spinless
fermions, quadratic dispersion, and the Fourier transformed
interaction potential of the form

Ṽq = V0�1 −
q2

q0
2� �37�

becomes equal to zero. This is also possible to expect be-
cause of the relation of the potential �Eq. �37�� to the inte-
grable 1D bosonic Lieb-Liniger model.21 Indeed, the bosonic
model with contact interaction potential 	gB��x1−x2� may
be exactly mapped22 onto the spinless fermionic model with
interaction VF�x1−x2�	−�1/gB����x1−x2�. The integrability
of the bosonic model guarantees the integrability of the cor-
responding fermionic one. Adding a contact interaction to VF
does no harm, as we are considering spinless fermions. Fi-
nally, Fourier transformation takes us to Eq. �37�.

We observed that including the spin degree of freedom
spoils the remarkable cancellation for a three-particle ampli-
tude.

In the following sections, we assume a general case inter-
action potential for which the three-particle scattering ampli-
tudes lead to a nontrivial redistribution of the momenta be-
tween the particles.

IV. THERMOPOWER AND CONDUCTANCE
CORRECTIONS DUE TO THREE-PARTICLE

INTERACTION

In this section, we go through the main ideas and approxi-
mations in evaluating the current correction due to interac-
tions Iint �Eq. �22�� to lowest order in the temperature, T
�TF. We give a more detailed calculation in Appendix B.

As noted previously, all three terms in Iint �Eq. �22�� are
exponentially suppressed, since momentum conservation

k1 + k2 + k3 = k1� + k2� + k3�

forbids scattering processes near the Fermi level for the
given combinations of positive and negative k intervals. To
be more specific, it is the phase-space restrictions of the
Fermi functions that give the exponential suppression, i.e.,

f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 � 	 e−TF/T. �38�

We begin by identifying the most important three-particle
scattering process. The three terms in Iint �Eq. �22�� are the
following: �i� two right movers backscattering a left mover
while remaining right movers, �ii� one right mover keeping
its direction while backscattering two left movers, and �iii� a
left and a right mover keeping their directions while back-
scattering the third particle. From now on, we will concen-

trate on the case of Coulomb interaction Ṽq, which is the
largest for small q; therefore we want to identify processes
where the initial and final states are close in momentum
space.23 Further, the process�es� should not require more than
one electron in states suppressed exponentially by the Fermi
functions. One can see that due to the constraints stemming
from momentum and energy conservation, in fact, only pro-
cess �iii� allows both initial and final states to be close to
each other in momentum space and at the same time having
only a single exponentially suppressed factor. The corre-
sponding scattering process is of the type shown in Fig. 2�a�.
Therefore, to the first order in exp�−TF /T�, we include only
the third one in Eq. �22�. This leads to

Iint 
 3�− e�	
spin

	
++−

+−−

�123;1�2�3�

�� �T

kBT2 �− �3 + �2� + �3� − �F� −
eV

kBT
� . �39�

Here, �123;1�2�3� expresses the available phase space in form
of the Fermi functions and the three-particle scattering rate
�see Eq. �19��.

One essential approximation is that for the scattering pro-
cess depicted in Fig. 2�a�, we may replace the full Fermi
distribution functions by the exponential tales or the low-
temperature limit expressions, i.e.,

f1
0 
 ��kF − k1���k1�, 1 − f1�

0 
 ��k1� − kF� , �40a�

f2
0 
 ��kF − k2���k2�, 1 − f2�

0 
 e��2�−�F�/kBT, �40b�

f3
0 
 e−��3−�F�/kBT, 1 − f3�

0 
 e��3�−�F�/kBT. �40c�

Note that k1, k1�, and k2 are all positive. We see that the
product of the Fermi functions is indeed exponentially sup-
pressed, i.e., 	exp�−TF /T�.

The second essential approximation is that for the scatter-
ing process seen in Fig. 2�a�, the initial and final states differ
by a small momentum. Therefore, the matrix element in the
transition rate W123;1�2�3� is dominated by the direct term
V�11� ,22� ,33�� in Eq. �32�, since the five exchange terms

are suppressed by the Coulomb interaction �Ṽ�q��kF
�

� �Ṽ�q��kF
�, i.e.,

�1�2�3��VG0V�123�c 
 �k1+k2+k3,k1�+k2�+k3�
V�11�,22�,33�� .

�41�
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The direct term �Eq. �41�� would be zero for Ṽq=const. In

the case of quadratic dispersion relation and general Ṽq, it
vanishes in the limit �ki�−ki�→0 and �kj�−kj�→0 for i , j
� �1,2 ,3� due to the Pauli principle. For a quadratic disper-

sion and for a general symmetrized interaction Ṽq=Vq+V−q,
the direct term V�11� ,22� ,33�� simplifies to the following
expression:

V�11�,22�,33��

=
��1�,�1

��2�,�2
��3�,�3

4L2
2/m
�q1 + q3�

�
�− �q1 + q3�Ṽq1

Ṽq3
+ Ṽq1+q3

�q3Ṽq1
+ q1Ṽq3

��

�k1 − k3 + q1�q1q3�k1 − k3 − q3�
, �42�

where we used energy conservation and introduced q1=k1�
−k1 and q3=k3�−k3.

Next, we give a qualitative explanation for the power law
in T for the interacting current correction �Eq. �39�� using the
quadratic dispersion. First, we consider the phase-space con-
straint. To do the sum over all k in Eq. �39�, we use the
momentum and energy conservation and introduce new vari-
ables q1=k1�−k1 and q3=k3�−k3, i.e., change the summation
variables,

k1,k2,k3,k1�,k2�,k3� → k1,k3,q1,q3. �43�

The energy conservation for a quadratic dispersion gives a
factor of 1 / �q1+q3� �see, e.g., Eq. �B6��. For the process at
hand, k1 and k3 are close to the Fermi level and each of their
sums contributes with a factor of q1 and q3, respectively. The
Fermi functions give the exponential suppression and a con-
tribution to the phase space in form of an exponential tail,
i.e.,

f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 � 	 e−TF/Te��2�−�3+�3��/kBT

�44�

�see Eqs. �40a�–�40c��. To get the low-temperature result for
Iint �Eq. �39��, we use the method of steepest decent to cal-
culate the integral. To this end, we note that the exponent
�2�−�3+�3� is a function of q1 and q3 and in the limit
T /TF→0 the most important part is around the origin q1

=q3=0. Here, �2�−�3+�3� vanishes as − 1
2
vF�q1+q2� �see

Appendix B for details�. Therefore, collecting the phase-
space factors, the current correction due to three-particle in-
teractions �Eq. �39�� becomes

Iint 	 �−TF/T� dq1� dq3
q1q3

�q1 + q3�
e−�TF/T��q1+q3�/kF

��V�11�,22�,33���2��T

T

TF

T
�−

q1 + q3

kF
− 1� −

eV

kBT
� ,

�45�

in the limit T�TF. Furthermore, it turns out that the con-
straints k2�0 and k2��0 in the sum �Eq. �39�� only leaves
phase space close to q1=q3 for T /TF→0, so we can set q3
=q1 in the integrand and do the integral over q3, which is

	q1
2 due to the phase-space limits. To lowest order in tem-

perature, this yields

Iint 	 �−TF/T�
0

�

dqq3e−�TF/T�2q/kF�V�11�,22�,33���2

���T

T

TF

T
+

eV

kBT
� . �46�

From this, we conclude that phase space alone �i.e., assum-
ing �V�11� ,22� ,33���2 to be a constant� gives a temperature
dependence of the form

Iint 	 �−TF/TT4��T

T

TF

T
+

eV

kBT
� �phase space only� .

�47�

However, as we have seen the three-particle interaction rate
has a delicate momentum dependence that needs to be taken
into account. Therefore, to calculate the direct interaction
term V�11� ,22� ,33��, we expand the symmetrized potential

Ṽq for small q as

Ṽq = V0�1 − � q

q0
�2

+ O�q4�� , �48�

where the parameter q0�kF describes the screening due to
the metallic gates near the quantum wire and V0 is �twice�
the q=0 Fourier transform of the Coulomb potential cut off
by the screening. Setting q3=q1�q into the three-particle
scattering rate �Eq. �42��, we obtain

V�11�,22�,33�� 	 V0
2� kF

q0
�2

q2 �49�

to lowest order in q. Inserting this into Eq. �46�, the final
result for the current correction, including both phase-space
factors and the momentum dependent scattering rate, be-
comes

Iint 	 e−TF/TT8V0
4� kF

q0
�4��T

T

TF

T
+

eV

kBT
� . �50�

�Here we noticed that the nonconstant three-particle scatter-
ing rate gave rise to four extra powers in temperature.� The
detailed calculation given in Appendix B yields a prefactor,
and the end result is

Iint =
8505

20484e−TF/T e




�V0kF�4

�F
3 �LkF�� kF

q0
�4� T

TF
�7��T

T
+

eV

�F
�

+ O�� T

TF
�8� . �51�

Combining this result with the zero order in the interaction
terms see �Eqs. �4� and �5��, we find for the thermopower and
conductance in the low-temperature limit,

S =
kB

e

TF

T
e−TF/T�1 +

L

�eee
� , �52�
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G =
2e2

h
−

2e2

h
e−TF/T�1 +

L

�eee
� . �53�

Here, we introduced the effective length �eee by the relation24

�eee
−1 =

8505

20483

�V0kF�4

�F
4 � kF

q0
�4� T

TF
�7

kF, �54�

which may be viewed as a mean free path with respect to
backscattering for a hole near the bottom of the band.

To recapitulate, the temperature dependence T	T7 in Eq.
�54� can be understood in the following way: the three-
particle scattering of a single particle leaves five free mo-
menta, and since two are taken by energy and momentum
conservation this gives T3. In addition, the interaction, Vq, is
proportional to q2, and when squared it gives rise to four
more powers, which results in the T7 dependence.

In the limit of a pointlike interaction, q0→�, the correc-
tions are zero in agreement with the result of Sec. III A.

It is known from the Luttinger liquid theory that in the
limit of linear spectrum, which corresponds to TF→�, the
conductance remains finite even if the wire is infinitely long
�L→��. Therefore, it is tempting to speculate that the two
terms in the square brackets of Eq. �53� are the first terms of
an expansion in �=L /�eee of some function FG��� which
saturates at a constant value in the limit �→�. One may also
have a similar speculation generalizing Eq. �52� for the ther-
mopower, �¯�→FS�L /�eee�.

As a final remark, we note that the so-called Mott
formula25 relating the thermopower to the low-temperature
conductance,

S =
2

3

kB

e
kBT

1

G

dG

d�F
, �55�

is clearly violated by Eqs. �53� and �52�. This violation could
be expected because the conventional derivation of the Mott
formula �for the noninteracting case� assumes that the main
contribution to the conductance and thermopower comes
from the states around the Fermi level in an energy interval
of the order of temperature.26 However, in the considered
case the main contribution to S comes from the “deep” states,
even in the zeroth order with respect to the interaction po-
tential. Correspondingly, there is no surprise that Eqs. �52�
and �53� being substituted, respectively, in the left- and right-
hand sides of Eq. �55� produce a parametrically large mis-
match �TF /T.

V. SUMMARY AND DISCUSSION

We have calculated the leading interaction correction to
the transport properties of a clean mesoscopic wire adiabati-
cally connected to the leads, using perturbation theory in the
length of the wire.

For a single-mode wire, the leading interaction correc-
tions turns out to be given by three-particle scattering pro-
cesses. This is because two-particle processes cannot change
the current due to momentum and energy conservation. To
calculate the effect of the three-body processes, we have uti-
lized the Boltzmann equation formalism, with three-particle

scattering events defining the collision integral. We have
identified the leading-order scattering processes and found
that they involve at least one state near the bottom of the
band, i.e., far from the Fermi level. The involvement of such
“deep” states results in an exponentially small, 	e−TF/T,
interaction-induced correction to thermopower and conduc-
tance at low temperatures.

The account for interaction in this paper is performed for
relatively short wires, where perturbation theory in the inter-
action or equivalently in the wire length is valid. For longer
wires, one needs to find the distribution function by treating
the collision integral in the Boltzmann equation nonperturba-
tively. It is not clear whether the relaxation of the distribution
function would instead yield nonexponential corrections to
the transport coefficients for longer wires. However, since
the scattering processes that contribute to the current must
involve a particle that changes direction �which is proven in
Appendix A�, one might speculate that the exponential sup-
pression is valid for all lengths, as long as electron-electron
scattering is the only active relaxation mechanism.

The question of what the relaxed distribution function
looks like for a mesoscopic wire is an interesting and un-
solved problem. Here, we have only given a partial answer
for the leading contributions for a short wire, i.e., to lowest
order in the interaction. Further studies should involve a self-
consistent determination of the distribution function.

Since thermopower is sensitive to the electron distribution
function, it might be a good experimental tool for answering
the fundamental questions regarding the effect of electron-
electron collisions. Indeed, refined measurements of ther-
mopower of short 1D quantum wires have been performed,
yielding reasonably good agreement with the free-electron
theory.27–29 It remains an open question whether the accuracy
of thermopower measurements is high enough to see the in-
teraction effects in longer wires.
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APPENDIX A: SCATTERING PROCESSES
CONTRIBUTING TO THE CURRENT

In this appendix, we show that the particle current
changes due to electronic scattering if and only if the scat-
tering changes the number of left- and right-moving elec-
trons. In the main text �see Eq. �22��, this was shown to first
order in the transition rate, but here we show it to all orders
in the interaction.

We show it explicitly in the Boltzmann equation frame-
work; however, we suspect it to be a general feature of me-
soscopic systems. Intuitively, the statement means that it is
the number of particles that passes through the mesoscopic
system that matters and not their velocity. In contrast to this
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is, e.g., a long 1D wire or a bulk metal, where a velocity
change of the particles is enough to change the current.

To show the above statement explicitly, we formally re-
write the Boltzmann equation �Eq. �8�� including the bound-
ary conditions �Eq. �9�� as

fk�x� = fL
0��k� + �

0

x

dx�
Ikx��f�

vk
for k � 0, �A1�

fk�x� = fR
0��k� + �

L

x

dx�
Ikx��f�

vk
for k � 0. �A2�

Note that this is not a closed solution of the Boltzmann equa-
tion, since the distribution function is still contained inside
the collision integral. However, this rewriting enables us to
find the current without finding the distribution function first,
i.e., by inserting Eqs. �A1� and �A2� into the current defini-
tion

I =
�− e�

L
	
�k

vkfk�x� �A3�

and obtain �after a few manipulations�

�A4�

where the x-dependent part can be seen to be zero by chang-
ing variables. We note the cancellation of the velocity in the
distribution function �Eqs. �A1� and �A2�� and the current
definition �Eq. �A3��, which is the origin of the statement we
are showing �as in the first order calculation�. A similar can-
cellation occurs in the Landauer formula, thus relating the
transmission to the conductance. By using the explicit form
of the collision integral Eq. ��10��, the current from the in-
teractions is

I�int� =
�− e�

L
�

0

L

dx 	
�1�2�3

�1��2��3�

	
k1�0,k2,k3

k1�k2�k3�

W123;1�2�3��f1f2f3�1 − f1��

��1 − f2���1 − f3�� − f1�f2�f3��1 − f1��1 − f2��1 − f3�� .

�A5�

We can divide the summation over k quantum number into
positive and negative intervals as in the main text �see Sec.
II B�. The essential point is now that all terms that have the
same number of positive �and negative� intervals for the
primed and unprimed wave numbers k are zero. In other
words, if the number of left- and right-moving electrons does
not change, then the contribution is zero by symmetry of the
transition rate. We show this cancellation in practice by an
example �using the notation of Eq. �21��,

�A6�

interchanging 1� and 2� at the first equality using
W123;1�2�3�=W123;2�1�3� and interchanging �123�↔ �1�2�3��
in the second term as indicated. Thereby, we have shown to
all orders that to change the current by electronic interac-
tions, the number of left and right movers have to change.

The statement is not limited to only three-particle

scattering and can be shown equivalently for pair interaction
including several bands, electron-phonon coupling, or any
other interaction with the same kind of symmetry under par-
ticle interchange. Furthermore, the statement is still true if
the collision is nonlocal in space, since that only introduce
some spatial integrals in the collision integral that can be
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handled similarly. Note, however, that the distribution func-
tion can be changed by processes that do not change the
number of left and right movers.

APPENDIX B: DETAILED CALCULATION OF THE
THERMOPOWER AND CONDUCTANCE CORRECTION

DUE TO THE THREE-PARTICLE SCATTERING

The purpose of this appendix is to calculate Iint in Eq.
�39�,

Iint 
 3�− e�	
spin

	
++−

+−−

�123;1�2�3�

�� �T

kBT2 �− �3 + �2� + �3� − �F� −
eV

kBT
� , �B1�

in the low-temperature limit, T�TF, step by step to find the
prefactor given in Eq. �51�. As already mentioned, we per-
form the calculation with the scattering process seen in Fig.
2�a� in mind. Therefore, we use the Fermi functions as given
in Eq. �40� and the matrix element entering in the scattering
rate from Eqs. �41� and �42�, i.e. using a quadratic disper-
sion.

We perform the summation over all the k in Eq. �B1� in
the following way. First of all, we note that due to the mo-
mentum and energy conservation in the interaction process
described, the scattering of k3 to k3� has to be from above to
below the Fermi level, i.e.,

k3 � − kF � k3� ⇒ ��− kF − k3���kF + k3�� . �B2�

This is due to the signs of k2 and k2� and can be understood
as a sign of the difference between the curvature of the dis-
persion near the bottom of the band and near the Fermi level.
Next, we introduce the momentum transfer around the Fermi
level qi�ki�−ki for i=1,3 and using the momentum conser-
vation to do the k2� summation, we obtain

	
++−

+−−

�¯� → 	
k1�0,k2�0,k3�0

	
q1,q3

�¯� , �B3�

remembering the constraint k1�=k1+q1�0, k2�=k2+q1+q3

�0, and k3�=k3+q3�0. The Fermi factors f1
0�1− f1�

0 � and
f3

0�1− f3�
0 � restrict the momentum transfer q1 and q3 to be

much smaller then kF and the k1 and k3 to be near the Fermi
level for the process in mind. Therefore, we can use the
Fermi functions f1

0�1− f1�
0 � to do the summation over k1. As-

suming slow variation of the scattering rate over a range of
q1�kF at the Fermi level, the k1 summation becomes

	
k1�0

��kF − k1���k1 + q1 − kF� =
L

2
q1��q1� . �B4�

Similarly, the k3 summation is done using the phase-space
constraint in Eq. �B2�,

	
k3�0

��− kF − k3���kF + k3�� =
L

2
q3��q3� . �B5�

We see that since k1 and k3 are restricted to the Fermi level,
we can insert k1
kF and k3
−kF in the rest of the inte-
grand. To do the k2�0 summation, we use the energy con-
servation contained in the scattering rate. It is rewritten as
�inserting k1=kF and k3=−kF�

���1� + �2� + �3� − �1 − �2 − �3� 

m


2

1

�q1 + q3�

���k2 − kF
q1 − q3

q1 + q3
−

1

2
�q1 + q3� −

1

2

q1
2 + q3

2

q1 + q3
� .

�B6�

We have now done the summation over k1, k2, and k3 and
are left with the summation over q1 and q3 of the scattering
rate, some Fermi functions, and the phase factors described
above. To this end, we introduce u�q1 ,q3� by inserting k1

=kF and k3=−kF in Eq. �42�,

V�11�,22�,33�� =
��1�,�1

��2�,�2
��3�,�3

4L2
2/m
u�q1,q3� �B7�

for a general symmetrized interaction Ṽq=Vq+V−q.

FIG. 4. �Color online� �a� The integration region A for the in-
tegral �Eq. �B13�� to calculate the current due to interactions. The
two boundaries for the integration area close to the origin stemming
from the signs of k2 and k2� are indicated. �b� The ��Q1 ,Q3�
=��kFQ1 ,kFQ3� /�F function, a dimensionless version of ��q1 ,q3�
�Eq. �B9��, important in the calculation using the method of steepest
decent.
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Furthermore, we collect the exponential tales of the Fermi
functions �Eqs. �40b� and �40c��,

�1 − f2�
0 �f3

0�1 − f3�
0 � = e��2�−�3+�3�−�F�/kBT, �B8�

defining

��q1,q3� � �2� − �3 + �3� = �F�q1 − q3

q3 + q1
�2

−
1

2

vF�q1 + q3�

+
1

2

vF

�q1 − q3��q1
2 + q3

2�
�q3 + q1�2

+

2

2m

q3
2�2q1

2 + 2q1q3 + q3
2�

�q1 + q3�2 , �B9�

inserting k2�=k2−q1−q3, k2 from the energy conservation
Eq. �B6� and k1=kF and k3=−kF. Therefore, we finally get
the interacting contribution to the current in Eq. �B1� as

Iint =
3�− e�Lm3

324
7 �
0

�

dq1�
0

�

dq3
q1q3

q1 + q3
�u�q1,q3��2

���kF − k2���k2���− k2 + q1 + q3�

���kF − q3�e���q1,q3�−�F�/kBT

�� �T

kBT2 ���q1,q3� − �F� −
eV

kBT
� . �B10�

Here, only the step functions that restricts the integral are
included. Next, we introduce the dimensionless integration
variables Qi=qi /kF for i=1,3 and the dimensionless func-
tions

U�Q1,Q3� = kF
2u�kFQ1,kFQ3� , �B11�

��Q1,Q3� =
��kFQ1,kFQ3�

�F
�B12�

in the integral

Iint =
3�− e�Lm3

324
7kF
e−TF/T�

A
dQ1dQ3

Q1Q3

Q1 + Q3
�U�Q1,Q3��2

�e��Q1,Q3�TF/T�TF�T

T2 ���Q1,Q3� − 1� −
eV

kBT
� ,

�B13�

where A is the integration area shown in Fig. 4�a�. Note that

this expression is valid for a general interaction Ṽq and that it

is not possible to extract a power law in temperature times
some integral by defining new integration variables.

To proceed, we consider the low-temperature limit T /TF
�1 by using the method of steepest decent. Due to the ex-
ponential function e��Q1,Q3�TF/T, the maximum of ��Q1 ,Q3�
will dominate the integral for T /TF→0, since ��Q1 ,Q3�
�0. The maxima are ��0,0�=0 and ��0,1�=0, and
��Q1 ,Q3� is shown in Fig. 4�b�. For a decreasing interac-
tion, the area of Q1�1 and Q3�1 dominates even though
the integrand is zero for Q1=Q3→0. Therefore, we expand
around the maximum �Q1 ,Q3�= �0,0� to get the lowest-order
result in T /TF. In view of the integration region �Fig. 4�a��,
we use Q3=Q1�Q in the integral �Eq. �B13�� and thereby
do the Q3 integral using the approximate limits seen in Fig.
4�a�, i.e.,

�
Q1−Q1

2

Q1+3Q1
2

1dQ3 = 4Q1
2. �B14�

To model the symmetrized potential Ṽq for small q, we in-
clude the deviation from a constant, as described in Eq. �48�.
This gives

� Q1Q3

Q1 + Q3
�U�Q1,Q3��2�

Q3=Q1�Q

→ V0
4� kF

q0
�49

2
Q5

�B15�

to lowest order in Q. In the exponential, we keep � to lowest
order in Q, i.e.,

e��Q1,Q3�TF/T → e−2QTF/T. �B16�

So using the lowest order in Q in the integrand �leading to
lowest order in T�, the interacting contribution to the current
is

Iint =
3�− e�Lm3

324
7kF
e−TF/T�

0

�

dQV0
4� kF

q0
�49

2
Q54Q2e−2QTF/T

��TF�T

T2 �0 − 1� −
eV

kBT
� �B17�



8505

20484e−TF/T e




�V0kF�4

�F
3 �LkF�� kF

q0
�4� T

TF
�7��T

T
+

eV

�F
�

�B18�

to lowest order in temperature. This is the result stated in the
text in Eq. �51�.
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quantum point contacts
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Notes:

1. The definition of T ∗ in the thesis and in the paper differs by a numerical
prefactor, however, the idea is the same.

2. In reference [24], we should have stated that ε0 = εF − Re[Σr(00, ω)].

173



ar
X

iv
:0

70
7.

19
89

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

3 
Ju

l 2
00

7
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We consider interaction effects in quantum point contacts on the first quantization plateau, tak-
ing into account all non momentum-conserving processes. We compute low-temperature linear and
non-linear conductance, shot noise, and thermopower by perturbation theory, and show that they
are consistent with experimental observations on the so-called ”0.7 anomaly”. The full temperature-
dependent conductance is obtained from self-consistent second-order perturbation theory and ap-
proaches ≈ e2/h at higher temperatures, but still smaller than the Fermi temperature.

PACS numbers: 72.10.-d, 73.23.-b, 72.10.Fk

Conductance quantization in a quantum point contact
(QPC), first observed in 1988 [1], constitutes a classic
textbook effect of mesoscopic physics. On top of the inte-
ger conductance plateaus G = nG0 (where G0 = 2e2/h)
observed as a function of gate voltage Vg, many exper-
iments have pointed to the existence of a so-called ”0.7
anomaly” in the conductance and other transport quan-
tities [2, 3, 4, 5, 6]. Most prominently, the 0.7 anomaly
implies a shoulder-like feature in the conductance G(Vg)
around G ≈ 0.7 G0 seen at elevated temperature T (or fi-
nite voltage V ) near the first quantized plateau [2, 3, 4],
accompanied by a shot noise reduction [6]. Given the
conceptual simplicity of a QPC and the fact that the
0.7 anomaly has been observed in a variety of material
systems by different groups over more than a decade,
it is quite amazing that still no generally accepted mi-
croscopic theory exists, apart from an overall consensus
that one is dealing with some spin-related many-body
effect. Such a theory should be able to explain all the
experimental data in a unified and physically consistent
manner.

While phenomenological models [7], assuming the exis-
tence of a density-dependent spin gap, can provide rather
good fits to experimental data, the presumed static spin
polarization due to interactions within the local QPC re-
gion is not expected in the presence of unpolarized bulk

reservoirs. Recently it was also pointed out that spin
symmetry-broken mean-field theory is unable to recover
the correct T dependence of the conductance [8]. Other
proposals assume the existence of a quasi-bound state in
the QPC region, leading to a Kondo-type scenario as en-
countered in transport through interacting quantum dots
[9, 10]. Such a quasi-bound state was indeed found in
spin density functional theory (SDFT) calculations [9],
but other SDFT works did not reach such conclusions
[11]. Further proposals involve phonon effects [12]. Sev-
eral publications have suggested that taking into account
only electron-electron (e-e) interactions may result in a
reduced conductance at elevated temperatures, without
the need for additional assumptions of spin polarization
or a localized state [13, 14, 15, 16, 17]. However, a physi-
cally consistent picture explaining the temperature, volt-
age, and magnetic field dependence of the conductance,

b(1) b(2)

FIG. 1: (Color online) Illustration of the two-electron non
momentum-conserving scattering processes that give rise to a
correction to the transport properties at the beginning of the
first plateau. The full (black) lines represent incoming elec-
trons, while the dashed (red) lines are the outgoing electrons.
The thick (blue) lines define the edge of the QPC. Only scat-
tering between different spins is present to leading order in
T/TF due to the Pauli principle.

as well as thermopower and noise experiments, is still
lacking. In this paper, we show that a careful consider-
ation of non momentum-conserving e-e interaction pro-
cesses in QPCs may allow for a consistent theory of the
0.7 anomaly.

The lack of momentum conservation in e-e scattering
processes is due to an emerging lack of translational in-
variance relevant for the low density regime kF L ∼ 1,
where kF is the local Fermi momentum and L a typical
interaction length-scale of the QPC (see below). There-
fore this effect is dominant at the onset of the plateau
and gradually disappears for larger electron density in
the QPC. We will focus on the first conductance plateau,
where the QPC has only one open channel (1D mode)
[18, 19]. Now e-e interactions give the contribution

HI =
1

2

∑

σσ′

∫

dxdx′ W (x, x′) Ψ†
σ(x)Ψ†

σ′ (x
′)Ψσ′(x′)Ψσ(x)

(1)
to the Hamiltonian, where Ψσ(x) is the 1D electron field
operator for spin σ =↑, ↓. The pair potential W (x, x′)
takes into account screening processes due to closed chan-
nels and nearby gates, as well as semiclassical slowing
down [17], and therefore depends not only on the rel-
ative coordinate x − x′ but also on the center of mass
X = (x + x′)/2. In fact, the range of the interaction
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W (X) is determined by the above length-scale L. The
e-e interaction now enters the 1D description in two dif-
ferent ways. There are (i) one-particle effects described
through a self-consistent potential, given by the real part
of the self energy (in the simplest case, this is the Hartree-
Fock potential). At T = 0, the imaginary part of the self
energy for our Fermi liquid starting point is zero [20],
and the plateau then occurs where the open channel suf-
fers no backscattering. This part is thus already con-
tained in the potential forming the QPC. In addition, at
finite T , we have (ii) inelastic e-e scattering processes,
which are the focus of our work and give rise to a re-
duced conductance by changing the number of left- and
right-movers, and hence the current. This is illustrated
in Fig. 1, where two important types of non momentum-
conserving scattering events are illustrated. Process b(2)
describes the simultaneous backscattering of two elec-
trons with opposite spins and has been discussed on a
perturbative level in Ref. [14]. The process b(1), where a
single electron is backscattered, has not been studied be-
fore. On top of these two, there are e-e forward scattering
and backscattering processes (momentum-conserving in
a long 1D wire). While high-T transport properties are
affected by all interactions, we show now that the leading
low-T behavior is fully determined by the two processes
in Fig. 1.

Let us calculate the non-linear conductance, the ther-
mopower, and the shot noise to leading order in the in-
teraction. Perturbation theory gives the interaction cor-

rection to the current (here, ~ = 1 and e > 0)

I(V, T )

G0V
= 1 −

(

Ab(1) + Ab(2)

)

(πT/TF )2 (2)

−
(

Ab(1)/4 + Ab(2)

)

(eV/εF )2 + O(W 3),

with coefficients Ab(1,2) = W 2
b(1,2)k

4
F /(48π2ε2

F ) cor-

responding to the b(1) and b(2) processes, where
εF = kBTF is the Fermi energy and Wb(1,2) =
∫

dxdx′ W (x, x′)eikF (x+x′)eikF (x∓x′) . Already at this
point, we observe a correspondence to experimental ob-
servations, namely the reduced conductance I/V with
increasing T and/or V . Furthermore, to leading order in
T/TF , where all scattering happens at the Fermi level,
only opposite spins interact due to the Pauli principle:
for equal spins, the exchange term tends to cancel the
direct term. As a consequence, we can also understand
the behavior at large magnetic fields, where the T = 0
plateau occurs at e2/h. In that case, to order (T/TF )2

no interaction renormalization of the conductance arises
[21]. This is consistent with experiments, where no sup-
pression is observed at the half-plateaus.

Another experimental observable probing the en-
hanced phase space for e-e scattering at higher T is the
thermopower S(T ) [22], for which perturbation theory
predicts

S(T ) =
kB

e

2π4

5

(

Ab(1) + Ab(2)

)

(T/TF )3. (3)

Since the non-interacting thermopower is exponentially
small [∝ exp(−TF /T )] at the conductance plateau, the
interaction correction completely determines the low-
temperature thermopower [23]. The enhanced ther-
mopower (as compared to the non-interacting one) is in
qualitative agreement with experiments at the anomalous
plateau [5].

Next we calculate consequences for another observable,
namely non-equilibrium noise. The zero-frequency shot

noise follows from the (symmetrized) two-point correla-
tion function of the current operator. Perturbation the-
ory yields for the backscattering noise power

SB(V, T ) = 2e
[

2Ibs(2)(V, T ) coth(eV/kBT ) (4)

+ Ibs(1)(V, T ) coth(eV/2kBT )
]

,

where Ibs(1,2) are the current corrections due to Wb(1,2)

quoted in Eq. (2) (defined positive for V > 0). This
is nothing but the famous Schottky shot noise relation,
encoding the charge of the backscattered particles. Equa-
tion (4) predicts an additional factor of two for the
b(2) contribution, because two electrons are backscat-
tered in that event [14]. Direct calculation then yields
the full noise power of the transmitted current as ST =
SB + 4G0kBT − 8kBT∂V Ibs, where Ibs = Ibs(1) + Ibs(2).
Recent noise measurements on the first quantized plateau
were compared to the corresponding single-particle pic-
ture [6], and a reduced noise power was observed on the
conductance anomaly. For that comparison, one sub-
tracts the thermal noise and defines the excess noise as
SI = ST − 4G(V, T )kBT . For a non-interacting system,
SSP

I = 2G0R{eV coth(eV/2kBT ) − 2kBT } to lowest or-
der in the reflection coefficient R = Ibs/G0V , see Ref. [6].
Thus the difference between the true excess noise and its
single-particle value is

SI − SSP
I

2G0eV (T/TF )2
= −2Ab(1)

eV

kBT
+Ab(2) h(eV/kBT ), (5)

where h(x) = −8x+(π2+x2) tanh(x/2). This expression
shows that for eV < 6.507 kBT , regardless of Ab(1,2),
the measured noise is always smaller than predicted by
a single-particle analysis. This situation corresponds to
the experimental work of Ref. [6], where eV . 5kBT .

It is clear from all these perturbative results that for
low energies, V, T → 0, all interaction effects disappear.
The perturbation theory results presented above, how-
ever, obviously break down at higher temperatures or
voltages. From Eq. (2), we find the temperature scale for
this crossover to a strong-interaction regime,

kBT ∗ ≈ εF√
Ab

∝ ε2
F

Wbk2
F

, (6)

where Ab = Ab(1) + Ab(2) and W 2 = W 2
b(1) + W 2

b(2). Con-

trary to the usual situation encountered in mesoscopic
physics, the nontrivial question to be answered thus con-
cerns the high-temperature limit (but still T ≪ TF ). To
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make progress in the relevant temperature regime

T ∗ . T ≪ TF , (7)

let us consider a simplified model pair potential entering
Eq. (1), see Ref. [17],

W (x, x′) = V0δ(x)δ(x′), (8)

which implies Wb(1) = Wb(2). We express the interaction

strength in the dimensionless parameter λ = mV0/2π3/2.
Estimates for λ in GaAs heterostructures gives λ ≈ 1, see
Refs. [8, 17], which then yields kBT ∗/TF ≈ 0.1 allowing
for a study of the temperature range (7).

In order to treat the local interaction (8), we start from
the Dyson equation for the full Keldysh single-particle
Green’s function (GF) G(x, x′; ω),

G(x, x′; ω) = G0(x, x′; ω) + G0(x, 0; ω)Σ(ω)G(0, x′; ω),
(9)

which is a 2×2 matrix in Keldysh space. The self energy
due to Eq. (8) acts only at x = x′ = 0. Note that G↑ =
G↓, i.e., we can suppress the spin index. For simplic-
ity, we now assume a parabolic dispersion, εk = k2/2m,
for the open channel. The charge current operator is
I = ie

2m

∑

σ

[

Ψ†
σ(x)∂xΨσ(x) − (∂xΨ†

σ(x))Ψσ(x)
]

, and we
evaluate 〈I〉 at x = 0, where it can be expressed in terms
of the local GF G(ω) ≡ G(0, 0; ω) and the self energy
Σ(ω). In fact, some algebra shows that only the local
spectral function A(ω) = −2 ImGr(ω) enters the current
formula for the contact interaction (8),

I =
2e

h

∫ ∞

0

dω
[

f0
R(ω) − f0

L(ω)
] A(ω)

A0(ω)
, (10)

where f0
R/L are Fermi functions in the right/left lead,

and A0(ω) = 2πd(ω) is the non-interacting spectral func-
tion. Here, d(ω) is the density of states 2πd(ω) =
(2m/ω)1/2θ(ω). Remarkably, the nonequilibrium current
through the interacting QPC is thereby fully expressed
in terms of the local retarded GF only. So far, the given
relations are exact, but to make progress, one needs to
approximate the self energy. We take the full second-

order self energy,

Σr(ω) = V 2
0

∫ ∞

0

dt eiωt
[

G<(−t)G>(t)G>(t)

−G>(−t)G<(t)G<(t))
]

, (11)

and make it self-consistent by using the interacting
(lesser/greater) GFs. The corresponding diagrams are
shown in the inset to Fig. 2. The approximation (11) is
the simplest way to describe equilibration between left-
and right-moving electrons in an interacting QPC. In
what follows, we confine ourselves to the linear conduc-
tance regime, where the spectral function in Eq. (10)
can be calculated in equilibrium by solving Eq. (11),
and where we can replace f0

R − f0
L → eV [−∂ωf(ω)],

where f(ω) is the Fermi function. In linear response, the

lesser/greater GFs can be written in terms of the local
spectral function A(ω),

G</>(t) = ±i

∫ ∞

0

dω

2π
e−iωtA(ω)f(±ω). (12)

This suggests a natural iterative way to self-consistently
solve for the conductance: Starting with the initial guess
A(ω) = A0(ω), one computes Σr(ω) from Eq. (11), which
in turn defines a new retarded GF and a new guess for
A(ω). This procedure is iterated until convergence has
been reached. For the parameters below, this numeri-
cal scheme is convergent and can be implemented in an
efficient manner.

The numerical results, for λ = 0.8 shown in Fig. 2,
accurately reproduce the above perturbative results at
low T , but also allow to cover the interesting high-
temperature limit. Our data for different λ fall to high
accuracy on the simple function

G(T )

G0
= b +

1 − b

1 + (T/T b
λ)2

, (13)

where b sets the high-temperature saturation value.
While this functional dependence is somewhat similar
to the phenomenological Kondo-type function used in
Ref. [4], our numerical data fit better to Eq. (13). It is
also possible to obtain equally good fits to the activated
T dependence reported in Ref. [3], see also Ref. [7],

G(T )

G0
= 1 − (1 − a)e−T a

λ
/T , (14)

where a again denotes the high-T limit. The values for
T b

λ and T a
λ extracted from best fits to our numerical data

are summarized in the inset in Fig. 2. Remarkably, both
temperature scales are of the same order. Moreover, they
are lowered by increasing the interaction strength λ. For
high T , the conductance appears to approach the satu-
ration value G ≈ e2/h. Similar saturation value has also
been reported for long wires [13], with the same T = 0
conductance G0. The new feature for QPCs comes from
the non-momentum conserving interactions, resulting in
a distinct low-to-intermediate temperature dependence
G(T ). The perturbative T 2 correction is not present in
the long wire results [13], but is seen experimentally [4].

As a final remark on the numerical solution of the self-
consistent approach, we mention that thermopower (data
not shown) exhibits a crossover from the S ∝ T 3 law at
low T , see Eq. (3), to a linear-in-T behavior at elevated
temperatures.

It is also instructive to discuss our model in terms of
an Anderson model. For the model pair potential (8),
by spatial discretization our Hamiltonian maps to a 1D
tight-binding chain with hopping matrix elements t and
on-site interaction U acting at one site (x = 0) only [24].
We thus arrive at an Anderson-type impurity model, sim-
ilar to the one used in Ref. [9] to describe interactions in a
QPC in the Kondo regime. However, we consider a rather
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λ T b

λ
/TF b T a

λ
/TF a

0.3 0.51 0.43 0.40 0.43

0.6 0.26 0.54 0.24 0.41

0.8 0.22 0.51 0.20 0.38

1.0 0.19 0.48 0.17 0.35

2.0 0.07 0.50 0.06 0.42

0 0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1

Σ = +
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T/TF

G
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0

FIG. 2: (Color online) Temperature dependence of the lin-
ear conductance G for λ = 0.8. Dots denote self-consistent
numerical results, the solid curve gives the perturbative esti-
mate (2), and the dotted curve is a fit to Eq. (13). Inset: Fit
parameters entering best fits of Eqs. (13) and (14) to numer-
ical data for T/TF < 0.4. Note that a and b are somewhat
different. The lower inset shows the two second order self-
consistent energy diagrams in Eq. (11).

different parameter regime, where U is of the same order
as the hybridization Γ and can be parametrically larger
than the bandwidth D ∼ |t|. Employing Eq. (6), with
εF ≈ D, the interesting temperature range (7) translates
to D2/U ≪ kBT ≪ D, where our claim is that G ap-
proaches ≈ e2/h. While the Kondo model requires the
formation of a local moment, this is not the case for the

present approach. Instead, our high-temperature limit
may be described as an incoherent Fermi liquid, with full

relaxation between left- and right-movers. In fact, one
can establish that a simple Boltzmann-type approach has
a high-temperature solution where the out-going distri-
bution function is a mixture of the incoming left- and
right-mover’s distributions. Such an Ansatz leads to the
conductance formula (13) with b = 1/2, which is the rea-
son for using that as a fitting formula. Unfortunately,
a Boltzmann approach is conceptually difficult to justify
due to an inherent normalization problem[17], i.e. one
cannot define a proper local distribution function in k-
space for this model.

In conclusion, we have considered interaction effects
in short QPCs and shown that taking into account non
momentum-conserving processes, we can qualitatively
account for the experimentally observed behavior of the
linear and non-linear conductance, thermopower (includ-
ing their magnetic field dependencies) and shot noise
at the so-called 0.7 anomaly. The gate voltage depen-
dence can also be explained within the present scheme,
because the backscattering is suppressed for larger values
of kF L. In the high-temperature (but still T ≪ TF ) non-
perturbative regime, our second-order self-consistent ap-
proach predicts that the conductance approaches ≈ e2/h.
It is an open and interesting problem to verify this result
by other non-perturbative methods.
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van Ruitenbeek, “Formation and manipulation of a metallic wire of single
gold atoms,” Nature, vol. 395, p. 783, 1998.

[8] A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Bald-
win, and K. W. West, “Nonuniversal conductance quantization in quantum
wires,” Phys. Rev. Lett., vol. 77, p. 4612, 1996.

[9] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson,
L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, “Quantized con-
ductance of point contacts in a two-dimensional electron gas,” Phys. Rev.

Lett., vol. 60, p. 848, 1988.

[10] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F.
Frost, D. G. Hasko, D. A. R. D. C. Peacock, and G. A. C. Jones, “One-
dimensional transport and the quantisation of the ballistic resistance,” J.

Phys. C, vol. 21, p. L209, 1988.

179



BIBLIOGRAPHY 180

[11] L. I. Glazman, G. B. Lesovik, D. E. Khmelnitskii, and R. I. Shekhter, “Re-
flectionless quantum transport and fundamental ballistic-resistance steps in
microscopic constrictions,” JETP Lett., vol. 48, p. 238, 1988.

[12] L. Kouwenhoven and L. Glazman, “Revival of the kondo effect,” Physics

World, vol. January, p. 33, 2001.

[13] I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, “Quantum effects in
coulomb blockade,” Phys. Rep., vol. 358, p. 309, 2002.

[14] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed

Matter Physics. Oxford Graduate Texts, New York: Oxford University
press, 1st ed., 2004.

[15] Y. Imry, Introduction to Mesoscopic Physics. USA: Oxford University
Press, 2nd ed., 2002.

[16] L. I. Glazman, “Resource letter: Mesp-1: Mesoscopic physics,” American

Journal of Physics, vol. 70, p. 376, 2002.

[17] A. Kristensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Lindelof,
C. J. Marckmann, J. N. rd, C. B. S. rensen, F. Beuscher, A. Forchel,
and M. Michel, “Bias and temperature dependence of the 0.7 conductance
anomaly in quantum point contacts,” Phys. Rev. B, vol. 62, p. 10950, 2000.

[18] H. van Houten and C. W. J. Beenakker, “Quantum point contacts,” Phys.

Today, vol. july, p. 22, 1996. (condmat/0512609).

[19] B. J. van Wees, L. P. Kouwenhoven, H. van Houten, C. W. J. Beenakker,
J. E. Mooij, C. T. Foxon, and J. J. Harris, “Quantized conductance of
magnetoelectric subbands in ballistic point contacts,” Phys. Rev. B, vol. 38,
p. 3625, 1988.

[20] A. Szafer and A. D. Stone, “Theory of quantum conduction through a con-
striction,” Phys. Rev. Lett., vol. 62, p. 300, 1989.

[21] S. Tarucha, T. Honda, and T. Saku, “Reduction of quantized conductance
at low temperatures observed in 2 to 10 µm-long quantum wires,” Solid

State Commun., vol. 94, p. 413, 1995.

[22] B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark,
L. N. Pfeiffer, and K. W. West, “Quantized conductance in quantum wires
with gate-controlled width and electron density,” Appl. Phys. Lett., vol. 72,
p. 3506, 1998.



BIBLIOGRAPHY 181

[23] C.-T. Liang, M. Y. Simmons, C. G. Smith, D. A. Ritchie, and M. Pepper,
“Fabrication and transport properties of clean long one-dimensional quan-
tum wires formed in modulation-doped GaAs/AlGaAs heterostructures,”
Appl. Phys. Lett., vol. 75, p. 2975, 1999.

[24] T. Morimoto, M. Henmi, R. Naito, K. Tsubaki, N. Aoki, J. P. Bird, and
Y. Ochiai, “Resonantly enhanced nonlinear conductance in long quantum
point contacts near pinch-off,” Phys. Rev. Lett., vol. 97, p. 096801, 2006.

[25] U. Sivan and Y. Imry, “Multichannel landauer formula for thermoelectric
transport with application to thermopower near the mobility edge,” Phys.

Rev. B, vol. 33, p. 551, 1986.

[26] H. van Houten, L. W. Molenkamp, C. W. J. Beenakker, and C. T. Foxon,
“Thermo-electric properties of quantum point contacts,” Semicond. Sci.

Technol., vol. 7, p. B215, 1992.

[27] D. E. Angelescu, M. C. Cross, and M. L. Roukes, “Heat transport in meso-
scopic systems,” Superlattices and Microstructures, vol. 23, p. 673, 1998.

[28] L. W. Molenkamp, T. Gravier, H. van Houten, O. J. A. Buijk, M. A. A.
Mabesoone, and C. T. Foxon, “Peltier coefficient and thermal conductance
of a quantum point contact,” Phys. Rev. Lett., vol. 68, p. 3765, 1992.

[29] O. Chiatti, J. T. Nicholls, Y. Y. Proskuryakov, N. Lumpkin, I. Farrer,
and D. A. Ritchie, “Quantum thermal conductance of electrons in a one-
dimensional wire,” Phys. Rev. Lett., vol. 97, p. 056601, 2006.

[30] L. W. Molenkamp, H. van Houten, C. W. J. Beenakker, R. Eppenga, and
C. T. Foxon, “Quantum oscillations in the transverse voltage of a channel
in the nonlinear transport regime,” Phys. Rev. Lett., vol. 65, p. 1052, 1990.

[31] N. J. Appleyard, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, and M. Pep-
per, “Thermometer for the 2d electron gas using 1d thermopower,” Phys.

Rev. Lett., vol. 81, p. 3491, 1998.

[32] R. Landauer, “Spatial variation of currents and fields due to localized scat-
terers in metallic conduction,” IBM J. Res. Dev., vol. 1, p. 223, 1957.
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