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A B S T R A C T

This thesis explores several dynamical aspects of the classical two-body problem

using scattering amplitude methods. We first discuss the conservative two-body

dynamics in General Relativity in the post-Minkowskian regime, valid for weak

gravitational fields and unbound velocities. In doing so, we present novel rela-

tions between on-shell scattering amplitudes and classical quantities such as the

post-Minkowskian Hamiltonian and scattering angle. We then focus on modern am-

plitude methods, presenting the string inspired CHY formalism. As an application,

we derive covariant expressions for tree-level amplitudes with two massive scalars

and an arbitrary number of gravitons, providing the needed input to evaluate

classical observables from unitarity methods. We then study classical wave physics,

showing how to derive from amplitudes gravitational shock wave solutions to

Einstein field equations. We conclude by presenting a generalization of a formalism

developed by David Kosower, Ben Maybee and Donal O’Connell, which describes

black hole dynamics from on-shell data. With the addition of coherent states in

the original framework, we study observables with massless particles as incoming

states, such as the bending of light and the Thomson scattering. We also derive
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waveforms generated in binary scattering, providing an elegant relation between

the Newman-Penrose formalism and helicity amplitudes.



R E S U M É

I denne afhandling undersøges flere dynamiske aspekter af det klassiske problem

med to legemer ved hjælp af spredningsamplitude-metoder. Vi diskuterer først

den konservative dynamik for to legemer i den generelle relativitetsteori i det

post-Minkowskiske regime, som gælder for svage gravitationsfelter og ubundne

hastigheder. I den forbindelse præsenterer vi nye relationer mellem on-shell spred-

ningsamplituder og klassiske størrelser som f.eks. den post-Minkowskiske Hamil-

tonian og spredningsvinklen. Derefter fokuserer vi påmoderne amplitudeme-

toder og præsenterer den stringinspirerede CHY-formalisme. Som en anvendelse

udleder vi kovariante udtryk for amplituder påtræniveau med to massive scalarer

og et vilkårligt antal gravitoner, hvilket giver det nødvendige input til at eval-

uere klassiske observabler fra unitaritetsmetoder. Derefter fokuserer vi påklassisk

bølgefysik og viser, hvordan man ud fra amplituder kan udlede gravitationelle

chokbølgeløsninger til Einsteins feltligninger. Vi afslutter med at præsentere en

generalisering af en formalisme udviklet af David Kosower, Ben Maybee og Donal

O’Connell, som beskriver dynamikken i sorte huller ud fra data om skallen. Med

tilføjelsen af kohærente tilstande i den oprindelige ramme studerer vi observabler
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med masseløse partikler som indkommende tilstande, såsom bøjning af lys og

Thomson-spredning. Vi udleder ogsåbølgeformer, der genereres i binær spred-

ning, hvilket giver en elegant relation mellem Newman-Penrose-formalismen og

helicity-amplituder.



P R E FA C E

This thesis contains results originating from a three-year research project in general

relativity and theoretical physics. The main topics are classical gravitational physics

and scattering amplitudes, divided into three parts:

• The-two body problem in General Relativity

• Scattering amplitude methods

• Classical wave physics

The main text consists of reprints of preprints and published journal articles.
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M O T I VAT I O N

The start of the gravitational-wave observational era has spurred theorists to explore

new approaches to computing classical observables for the general relativistic two-

body problem. Remarkably, in recent years, state of the art results have been

obtained using quantum scattering amplitudes. One of the main objectives of

this thesis is to extend this new paradigm, increasing the range of observables

that we can classically describe in terms of scattering amplitudes. This would

simultaneously improve our ability to develop more accurate gravitational wave

templates and illuminate underlying structures in classical field theory.
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2

T H E S I S O U T L I N E

The main results of the thesis are presented into three parts:

• Part 2: The two-body problem in General Relativity

• Part 3: Scattering amplitude techniques

• Part 4: Classical wave physics

Part 2 contains the following chapters:

• Chapter 4 is an invitation to the classical two-body problem in General

Relativity. It explores the relations between classical and quantum scattering,

providing a summary of the main ideas addressed in the subsequent chapters.

• Chapter 5 is a reprint of A. Cristofoli, N. E. J. Bjerrum-Bohr, P. H. Damgaard

and P. Vanhove, “Post-Minkowskian Hamiltonians in general relativity”, Phys.

Rev. D 100 (2019), 084040 [1906.01579], containing modifications of the original

publication.
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• Chapter 6 is a reprint of A. Cristofoli, ”Post-Minkowskian Hamiltonians in

modified theories of gravity”, Phys. Lett. B 800 (2020) 135095 [1906.05209],

containing minor modifications of the original publication.

• Chapter 7 is a reprint of N. E. J. Bjerrum-Bohr, A. Cristofoli and P. H.

Damgaard, “Post-Minkowskian Scattering Angle in Einstein Gravity”, JHEP

08 (2020) [1910.09366], containing modifications of the original publication.

• Chapter 8 is a reprint of A. Cristofoli, P. H. Damgaard, P. Di Vecchia and C.

Heissenberg, “Second-order Post-Minkowskian scattering in arbitrary dimen-

sions”, JHEP 122 (2020) [2003.10274], containing minor modifications of the

original publication.

Part 3 contains the following chapter:

• Chapter 9 is a reprint of N. Bjerrum-Bohr, A. Cristofoli, P. H. Damgaard and

H. Gomez, “Scalar-Graviton Amplitudes”, JHEP 11 (2019) [1908.09755].

Part 4 contains the following chapters:

• Chapter 10 is a reprint of A. Cristofoli, “Gravitational shock waves and scatter-

ing amplitudes”, JHEP 11 (2020) [2006.08283]. It contains minor modifications

of the original publication.

• Chapter 11 is a reprint of A. Cristofoli, R. Gonzo, D. Kosower and D. O’Connell,

”Waveforms from amplitudes”, [arXiv:2107.10193].
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The thesis ends with the conclusions in Chapter 12 and an outlook on future

work in Chapter 13.



3

I N T R O D U C T I O N

“While the science is advancing thus in one

direction by the improvement of physical

views, it may advance in another direction

also by the invention of mathematical

methods.”

W.R. Hamilton, 1834

Few problems in theoretical physics have seen more study and reformulations as

the two-body problem. From its first description by Newton [1], till the geodesic

reinterpretation in General Relativity [2], up to the two-body scattering in quantum

mechanics [3]: its development, from classical to quantum physics, constantly has

shed light on new mathematical tools, from Lagrangian to Hamiltonian mechanics,

as well as providing insights to new mathematical and physical theories [4, 5].

Nowadays, among its different formulations, the classical gravitational two-body
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problem has gained a renewed interest due to the fingerprints left in gravitational

waves. These signals, detected for the first time by the LIGO/Virgo collaboration in

2015 [6], describes the gravitational radiation emitted by the inspiral, merger and

subsequent ringdown of a binary system. Unfortunately, despite its Newtonian ana-

logue, the general relativistic two-body problem admits no exact solution available

with analytical tools. To overcome this obstacle, theorists have combined different

types of analytical approximations, and numerical simulations [7, 8], with the aim

of generating accurate gravitational wave templates of the radiation emitted by

coalescing black holes. Among the analytical schemes used, the post-Minkowskian

approximation to General Relativity [9], valid during the inspiral for relativistic

systems and weak gravitational fields, is the one that has seen the most radical

revolution in recent years. This paradigm change was marked by a remarkable state

of the art computation [10] using scattering amplitudes, the primary tool to describe

interactions of quantum particles in quantum field theory. The achievement has

been outstanding: following earlier works [11,12], a state of the art result for macro-

scopic black holes has been derived from the classical limit of the most microscopic

structures in quantum field theory, scattering amplitudes [13]. This milestone has

marked the beginning of a new field at the crossroads between classical gravita-

tional physics and quantum field theory, with potential implications for improving

gravitational wave templates and our understanding of classical physics [14]. In

this thesis, we will apply and extend this new paradigm. In the first part, we will
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provide novel relations between classical observables for spinless binary black holes

and on-shell scattering amplitudes computed in quantum field theory [15–18]. We

will see how the conservative regime of the two-body problem in General Relativity

can be efficiently described in terms of amplitudes, using the Lippmann-Schwinger

equation beyond its well known non-relativistic approximation. In the second

part of the thesis, we will explore modern scattering amplitudes techniques such

as the string inspired CHY formalism, which provides the needed inputs for the

computation of post-Minkowskian observables from unitarity techniques [19]. In

the third part, we will focus on classical wave physics. We will first show how

to derive gravitational shock waves solutions to Einstein field equations using

scattering amplitudes [20]. We will then present a generalization of a formalism

developed by David Kosower, Ben Maybee and Donal O’Connell, which describes

black hole dynamics from on-shell data [21]. With the addition of coherent states

in the original framework, we will study observables with massless particles as

incoming states, such as the bending of light and the Thomson scattering. We will

also derive waveforms generated in binary scattering, providing an elegant relation

between the Newman-Penrose formalism and helicity amplitudes [22]. We will

then end the thesis with a general outlook on the results in the thesis and the next

challenges ahead.



Part II

T H E T W O - B O D Y P R O B L E M I N G E N E R A L

R E L AT I V I T Y



4

T H E S - M AT R I X A P P R O A C H T O G E N E R A L R E L AT I V I T Y

With the publication of the Principia in 1687 [1], Newton provided for the first

time a physical theory that accounted for the dynamics of gravitational binary

systems. Arguing from this theory, he showed that the orbit of any binary acted

upon by a gravitational force is always a conic section. Despite the knowledge of

the exact orbits, this problem has been revisited and generalized several times over

the past centuries, leading to the development of new mathematical methods such

as Lagrangian and Hamiltonian mechanics, the Hamilton–Jacobi equations [4], the

notion of integrability, and the discovery of the angle-action variables [5]. As we

will see, scattering amplitudes and quantum field theory are nowadays providing a

new understanding of the two body problem in General Relativity, similar to what

Lagrangian mechanics did for Newtonian gravity. To see how this is possible, we

first need to understand the intricacy of the general relativistic two body problem

which is a far more intricate problem than its Newtonian counterpart. We start

10
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following [23,24], and by modeling a general relativistic binary system, with masses

ma=1,2, using two worldlines xµ
a (σa), parametrized by σa =

τa
ma

, being τa their proper

time. The geodesic equation for each worldline will then follow from Hamilton’s

equations with a Hamiltonian given by

H(xa, pa) = ∑
a=1,2

1
2

gαβ(xa)pa,α pa,β . (1)

These are

dxµ
a

dσa
(σa) = gµν (xa(σa)) paν(σa) ,

dpa,µ

dσa
(σa) = −

1
2

∂µgαβ (xa(σa)) pa,α(σa)pa,β(σa) .

(2)

The gravitational field gµν(x) generated by their motion satisfies Einstein equations

Rµν(x)− 1
2

gµν(x)R(x) = 8πGNTµν(x), (3)

where the energy momentum tensor of the binary system is given by

Tµν(x) = ∑
a=1,2

∫ +∞

−∞
dσa pµ

a (σa)pν
a(σa)

δ4 (x− xa (σa))√
−det[gαβ(xa(σa))]

. (4)

For well defined initial data, we say that [x1(σ1), x2(σ2), gµν(x)] is a solution to the

two problem in General Relativity if (2) and (3) are satisfied simultaneously. To get

a glimpse of the intricacy of a similar endeavor, we can consider a scattering-like

encounter by solving perturbatively the dynamics in the gravitational coupling GN

order by order. We focus on the impulse experienced during the scattering

∆pa,µ = −1
2

∫ +∞

−∞
dσa∂µgαβ(xa(σa))pa,α(σa)pa,β(σa) . (5)
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Assuming the knowledge of both worldlines, we start by solving Einstein equations

in the controvariant metric gµν(x) = ηµν − hµν(x) at leading order in GN. In de

Donder gauge

�hµν(x) = −16πGN ∑
a=1,2

∫ +∞

−∞
dσa Pµν;αβ pa,α(σa)pa,β(σa)δ

4 (x− xa (σa)) , (6)

where we have introduced the projector Pµν;αβ =
(

ηµαηνβ − 1
2 ηµνηαβ

)
. Since

radiative effects start to appears only at G3
N order [25, 26], we can restrict the

problem to the conservative sector by choosing a time-symmetric Green function.

We obtain

hµν(x) = 4GN

∫
d4y Pµν;αβ(x− y)Tαβ(y) + O

(
G2

N

)
, (7)

where we have introduced

Pµν;αβ(x− y) = 4π

(
ηµαηνβ − 1

2
ηµνηαβ

) ∫ d4k
(2π)4

eik·(x−y)

k2 . (8)

We can now substitute (7) in (5). At leading order in GN, the impulse on the a = 1

component of the binary is given by two contributions,

∆p1µ = ∆ptree
1µ + ∆psel f

1µ + O
(

G2
N

)
, (9)

where we have defined

∆ptree
1,µ ≡ 2GN

∫
dσ1dσ2p1,α(σ1)p1,β(σ1) ∂µPαβ;α′β′ (x1 (σ1)− x2 (σ2)) p2,α′(σ2)p2,β′(σ2) ,

(10)
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∆psel f
1,µ ≡ 2GN

∫
dσ1dσ′1p1,α(σ1)p1,β(σ1)∂µPαβ;α′β′ (x1 (σ1)− x1

(
σ′1
))

p1,α′(σ1′)p1,β′(σ1′) .

(11)

Interestingly, we can rewrite both contributions as Feynman-like diagrams [23, 24] .

The first term corresponds to a tree-level topology where we have added a cross to

denote a derivative in the Green function. The second one corresponds instead to a

self-interaction for one of the constituents of the binary:1

The analogy can be extend also to higher order contributions to the impulse,

where more convoluted topologies will appear containing also self-interactions

of the gravitational field. However, explicit calculations are viable only once

the momenta pa,µ(σa) are known, which for the moment we haven’t specified

yet. Considering we are interested in a scattering problem, we parametrize both

worldlines in a perturbative expansion around a free motion

xµ
a (σa) = yµ

0,a + σa pµ
0,a + GNxµ

a (σa) + ... ,

pa,µ (σa) = 0pa,µ (σa) + GN pa,µ (σa) + ... ,

(12)

1 Reproduced from [24].
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where yµ
0,a is a constant four-vector and the momentum 0pa,µ is given by the on-shell

quantity in flat space satisfying 0pµ
a 0pν

aηµν = −m2
a. For ease of notation, in what

follows we remove the subscript 0 in the incoming momentum. Using (12), we can

now compute both contributions to the impulse. The first term is given by

∆ptree
1,µ = 8πGN p1,α p1,β Pαβ;α′β′ p2,α′ p2,β′

∫
dσ1dσ2

∫ d4k
(2π)4

ikµeik·b

k2 eik·p1σ1e−ik·p2σ2 ,

(13)

where the covariant impact parameter bµ is defined as bµ = yµ
0,1 − yµ

0,2. We obtain

∆p1,µ = −2GN
2(p1 · p2)

2 −m2
1m2

2√
(p1 · p2)2 −m2

1m2
2

bµ

b2 , (14)

where we have introduced b =
√
−bµbµ. As for the remaining contribution to the

impulse, this is vanishing since proportional to a scaleless integral. Thus, (14) is

the value for the impulse at leading order in GN. From it, we can extract other

observables of physical interests, such as the scattering angle in the centre of mass

frame. From geometrical considerations, it is simple to show that the scattering

angle is given by

sin(θ) =
∆pµbµ

pcm b
, (15)

where pcm is the modulus of the relative momentum in the center of mass frame.

Truncating at leading order in GN, we obtain the following result

θ1PM =
2GN

L
2 (p1 · p2)

2 −m2
1m2

2√
(p1 · p2)

2 − p2
1p2

2

, (16)
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where we have introduced the total angular momentum L = pcmb. This result is

fully relativistic and we say it describes a first post-Minkowskian order calculation

(i.e. at linear order in GN and to all orders in the velocities). We can easily under-

stand that to get a complete knowledge of this observable, all post-Minkowksian

contributions need to be calculated. This would require a systematic expansion to

higher orders, followed by a delicate interplay of conservative and radiative effects,

which for the moment we have ignored. As such, it should not be surprising that

the state of the art result was given only by the next to leading order calculation

since a few years ago. The calculation at second post-Minkowskian order, published

by Westpfhal in 1985 [27], shows many complicated contributions related to the

nonlinearity of the field equations and the iteration of the equations of motion.

However, the final result is very simple

θ2PM =
G2

N
L2

3π(m1 + m2)(5(p1 · p2)
2 −m2

1m2
2)

4E
, (17)

where we have introduced E as the total energy of the system. This is quite remi-

niscent of complicated Feynman diagram calculations boiling down to shockingly

simple results in quantum field theory [28]. As we will see in the next section, this

observation, together with the aforementioned diagrammatic expansion, is not a

coincidence but the hint that a deeper reformulation of the two-body problem in

General Relativity is possible.
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the quantum two-body problem in general relativity

This section aims to highlight the close analogy between the theory of scattering in

the classical and quantum theory. We have already seen that a scattering encounter

in General Relativity is a highly complicated problem, so the reader might wonder

what can be gained by looking at its even more intricate quantum counterpart.

Moreover, we don’t even have a consistent theory of quantum gravity, so how

could we even describe a quantum analogue for this two-body problem? Some

clarifications are in order. Throughout the years, it has been proven that the

quantization of gravity around a flat background makes a well defined effective

field theory for energy scales well below the Planck scale [29]. Within this approach,

it is possible to compute classical phenomena such as the perihelion-motion of

Mercury [30], as well as to compute quantum corrections to the Newton potential. It

is precisely in this sense that quantum field theory reveals an unexpected simplicity

than the classical theory itself, especially when we are dealing with the weak field

limit of General Relativity. To see how this remarkable change of paradigm occurs,

we first start by introducing few crucial notions in quantum scattering theory that

will allow us to relate the quantization of gravity in the weak-field limit with the

calculation of classical observables. Let us start by considering the scattering of two

point particles adopting a first quantization scheme. In the center of mass frame,

the problem is equivalent to the scattering of a single particle off a given potential.
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Thus, in analogy with the classical scattering, the worldlines xµ
a (σa) are replaced by

a state |Ψ(t)〉 ∈ L2(R3) satisfying the evolution equation

ih̄
∂ |Ψ(t)〉

∂t
= Ĥ |Ψ(t)〉 ∀t ∈ R , (18)

for a proper self-adjoint Hamiltonian operator Ĥ. In the center of mass frame, the

Hamiltonian for a conservative and fully relativistic system is given by

Ĥ = Ĥ0 + V̂ , Ĥ0 =
√

p̂2 + m2
1 +

√
p̂2 + m2

2 , (19)

where V̂ denotes a generic potential operator. Since (19) is time independent, we

can provide the most general solution to (18) as

|Ψ(t)〉 = e
i
h̄ (t−t0)Ĥ |Ψ〉 . (20)

The initial state is then given by

|Ψ〉 =
∫ d3p

(2π)3 ϕ(p) eip·r |p〉 , (21)

which for a gaussian wavepacket ϕ(p) it describes a classical system of two point-

particles separated by a distance r. This allows us to introduce the so called S-matrix

S = lim
ti→−∞
t f→∞

eit f Ĥ0e−i(t f−ti)Ĥe−iti Ĥ0 , (22)

an operator of fundamental importance in scattering theory, relating asymptotic

states in the infinite past and future by means of a unitary operator. Having intro-

duced the S-matrix, we proceed by introducing two other operators of importance
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in our goal to relate quantum field theory to classical physics: the free Green

operator Ĝ0(z) and the interacting one Ĝ(z) defined as

Ĝ0(z) ≡ (z− Ĥ0)
−1 , Ĝ(z) ≡ (z− Ĥ)−1 z ∈ C . (23)

Both are complex analytic functions with a simple pole for the eigenvalues of the

Hamiltonian, as it can be easily seen assuming the knowledge of the eigenstates.

Considering for simplicity only a discrete spectrum, we can label a complete set of

states as |n〉. Thus

Ĝ(z) = ∑
n

|n〉 〈n|
z− En

, ∀z ∈ C \ {En} . (24)

Using the relation A−1 = B−1 + B−1(B− A)A−1, we can relate both Green operators

by

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂Ĝ(z) . (25)

It is useful to express the same relation in terms of the so called off-shell scattering

operator M̂(z)

M̂(z) ≡ V̂ + V̂Ĝ(z)V̂ . (26)

Using this definition, we can rewrite (25) by means of algebraic manipulations

obtaining the so called Lippmann-Schwinger equation for the scattering operator

M̂(z) = V̂ + V̂Ĝ0(z)M̂(z) . (27)
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This equation is of fundamental importance in our approach. As we are going

to see, it allows us to compute a classical Hamiltonian once the matrix elements

of M̂(z) are known. To show this relation, we evaluate the mean value of the

Lippmann-Schwinger equation (27) on the initial state (21), describing a binary

system of two point particles

〈Ψ| M̂(z) |Ψ〉 = 〈Ψ| V̂ |Ψ〉+ 〈Ψ| V̂Ĝ0(z)M̂(z) |Ψ〉 . (28)

Considering the classical limit as in [21], and by using a completeness relation we

obtain

〈p′| M̂(z) |p〉 = Ṽ(q, p) +
∫ d3k

(2πh̄)3
〈p′| M̂(z) |k〉 Ṽ(k, p)

Ep − Ek + iε
, (29)

where we have defined the classical potential in momentum space as Ṽ(q, p) where

q stands for ~q = ~p − ~p ′. What is missing now is the knowledge of the matrix

elements of M̂. To see how it is related to the S matrix, it is enough to compute the

matrix element of (22) between two single particle states |p〉 and |p′〉

〈p′| S |p〉 = lim
ti→−∞
t f→∞

〈p′| eit f Ĥ0e−i(t f−ti)Ĥe−iti Ĥ0 |p〉 . (30)

Since the order we perform both limits is irrelevant, we can set t f = −ti to obtain

〈p′| S |p〉 = lim
t→∞
〈p′| eitĤ0e−i2tĤeitĤ0 |p〉 . (31)

Using the properties of uniformly convergent integrals, we rewrite (31) as

〈p′| S |p〉 = 〈p′|p〉+ 〈p′| lim
ε→0+

∫ +∞

0
dt e−εt d

dt

[
eitĤ0e−i2tĤeitĤ0

]
|p〉 . (32)
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= 〈p′|p〉 − i 〈p′| lim
ε→0+

∫ +∞

0
dt
[

V̂eit(Ep′+Ep+iε−2Ĥ) + eit(Ep′+Ep+iε−2Ĥ)V̂
]
|p〉 , (33)

where Ep =
√

p2 + m2
1 +

√
p2 + m2

2 stands for the eigenvalue of the free Hamilto-

nian on a state |p〉. The remaining integration can be easily performed by showing

that the elements of the S-matrix depends on a specific value of the Green operator

Ĝ(z), precisely

〈p′| S |p〉 = 〈p′|p〉+ 1
2
〈p′| lim

ε→0+

[
V̂Ĝ
(Ep + Ep′

2
+ iε

)
+ Ĝ

(Ep + Ep′

2
+ iε

)
V̂
]
|p〉 .

(34)

At this point, we can rewrite the product of operators in the square bracket using

(25) and

Ĝ(z)V̂ = M̂(z)Ĝ0(z) , M̂(z)Ĝ0(z) = Ĝ(z)V̂ . (35)

Thanks to this representation, we have the following crucial relation between matrix

elements of the S-matrix and M̂

〈p′| S |p〉 = 〈p′|p〉+ lim
ε→0+

(
1

Ep′ − Ep + iε
+

1
Ep − Ep′ + iε

)
〈p′| M̂

(Ep′ + Ep

2
+ iε

)
|p〉 ,

(36)

= 〈p′|p〉 − 2πiδ(Ep′ − Ep) lim
ε→0+

〈p′| M̂(Ep + iε) |p〉 . (37)
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We call scattering amplitude the matrix element 〈p′| M̂(z) |p〉 at z = Ep + i0+.

Given its importance we define it as

lim
ε→0+

〈p′| M̂(Ep + iε) |p〉 ≡ M̃(p, p′) . (38)

where the tilde denotes that these quantities are computed in quantum mechanics

with fixed degrees of freedom and not in quantum field theory. Their relation in

the center of mass frame is trivial and mainly given by a different normalization

factor for the external states2

M̃(p, p′) =
M(p, p′)

4E1(p)E2(p)
. (39)

At this point, we have all the ingredients to compute the classical Hamiltonian of a

relativistic binary system from the knowledge of a scattering amplitude. We can

compute these quantities from the Einstein-Hilbert action minimally coupled to

two massive scalar fields ϕa=1,2

S(gµν, ϕa=1,2) =
∫

d4x
√
−det(gµν)

[
R

16πGN
− 1

2 ∑
a=1,2

(
gµνh̄2∂µ ϕa ∂ν ϕa + m2

a ϕ2
a

)]
.

(40)

We then expand the metric around a Minkowski background gµν(x) = ηµν + hµν(x)

and quantize the fluctuations assuming a weak field expansion for the gravitational

field. In doing so, it is possible to define an effective field theory for a massless spin

2 For further details, see the discussion around (383).
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2 particle - called graviton - interacting with massive scalars with masses ma=1,2.

Choosing the center-of-mass frame, we can describe a two-body scattering using

the following momenta

pµ
1 = (E1(p),~p ) ,

pµ
2 = (E2(p),−~p ) ,

pµ
3 = (E1(p),~p ′) ,

pµ
4 = (E2(p),−~p ′) .

(41)

where p1 and p2 are incoming momenta and p3 and p4 outgoing. For the rest of

the Chapter, we will continue to use the mostly positive signature convention and

define

p ≡ |~p | = |~p ′| , (42)

E1(p) ≡
√

p2 + m2
1 , E2(p) ≡

√
p2 + m2

2 , (43)

Ep ≡ E1(p) + E2(p) , ξ(p) ≡ E1(p)E2(p)
E2

p
. (44)

As for the exchanged momentum in the center of mass frame, this is given by

qµ ≡ pµ
1 − pµ

3 , ~q ≡ ~p− ~p ′ , qµqµ = q2 = |~q |2 (45)

Following these conventions, the tree level on-shell scattering amplitude reads

Mtree(p, p′) = 16πGN
[m2

1m2
2 − 2(p1 · p2)

2 − h̄2q̄2(p1 · p2)]

q̄2 , (46)
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with p1 · p2 = −E1(p)E2(p)− p2. To highlight the h̄ scaling we have expressed the

momenta in terms of their wavenumbers using q = h̄q̄. Once this amplitude is

known, the matrix element of the previously defined scattering operator are given

by a simple rescaling due to the normalization of the external states

M̃tree(p, p′) =
4πGN

E1(p)E2(p)
[m2

1m2
2 − 2(p1 · p2)

2 − h̄2q̄2(p1 · p2)]

q̄2 , (47)

If we now truncate (29) at linear order in the gravitational coupling, we obtain a

linear relation between the Fourier transform of the amplitude and what we define

as a first post-Minkowskian potential

V1PM(r, p) ≡
∫

d̂3q̄ M̃tree(q̄, p)eir·q̄ . (48)

Using (47) and keeping only long range contributions to the potential, we obtain

V1PM(r, p) =
GNc1(p2)

E2
p ξ(p) r

, (49)

where

c1(p2) ≡ m2
1m2

2 − 2(p1 · p2)
2 , ξ(p) ≡ E1(p)E2(p)

E2
p

. (50)

This result provides an Hamiltonian describing a system of two classical point-

particles at linear order in the coupling GN and to all orders in the ratio v/c, being

v a characteristic velocity of the system

H1PM(r, p) =
√

p2 + m2
1 +

√
p2 + m2

2 +
GNc1(p2)

E2
p ξ(p) r

. (51)
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The non relativistic limit agrees with the Hamiltonian for a binary system in

Newtonian gravity and in the center of mass frame. As we are going to see, using

(51) we can easily re-derive observables such as the scattering angle at first post-

Minkowskian order, as well as non trivial informations about a bound system.

Let us focus on the former. Since the motion is planar, the conjugate variables

describing the phase space are (r, ϕ, pr, pϕ). These are related to the square of the

momentum in the center of mass frame by

p 2 = p2
r +

L2

r2 , (52)

being L the conserved angular momentum of the binary system. At this point, the

dynamics of the system is fully encoded in the Hamilton-Jacobi equation of (51)

∑
a=1,2

√(
∂S
∂r

)2

+
L2

r2 + m2
a + V1PM

(
r,

∂S
∂r

, L
)
+

∂S
∂t

= 0 , (53)

where S is the principal Hamilton function. We will see in Chapter 7 a remarkable

relation which allows us to rewrite (53) as a quadratic differential equation in the

derivatives of S, uniquely in terms of the scattering amplitudes. For the moment, we

settle by solving this equation perturbatively in GN for the ansatz S = −Et + Sr(r),

where Sr(r) is known as radial action and E the conserved energy of the system.

Defining its derivative as

pr(r) ≡
∂Sr(r)

∂r
, (54)
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we obtain

p2
r (r) = p 2

0 −
L2

r2 +
GN f1

r
+ · · · , (55)

where, introducing the Mandelstam variable s = −(p1 + p2)
2, we have

p2
0 =

(p1 · p2)
2 −m2

1m2
2

s
, f1 = −

2c1(p2
0)√

s
. (56)

Using (55), it is now straightforward to derive the change in the angular variable ϕ

during a scattering encounter (see for instance [23, 52])

∆ϕ = π + θ, (57)

where the scattering angle is given by

θ = −2
∫ +∞

rmin

dr
∂pr(r)

∂L
− π . (58)

Here rmin is the positive root for the condition of turning point at pr(r) = 0 with

pr(r) =

√
p2

0 − p2
0

b2

r2 +
GN f1

r
. (59)

where we have introduced the impact parameter b ≡ L/p0 . We note now that pr(r)

can be rewritten as

pr(r) =
p0

r

√
r2 + r

GN f1

p2
0
− b2 =

p0

r

√
r− r+

√
r− r− , (60)

r± = −GN f1

2p2
0
±

√
G2

N f 2
1

4p4
0

+ b2 . (61)
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Since rmin = r+, the scattering angle becomes

θ = 2
∫ +∞

r+

dr
r

b√
(r− r+)(r− r−)

− π . (62)

This integral can be performed analytically and we get

θ =
4b√
−r+r−

arccos

√
r+

r+ − r−
− π . (63)

Truncating the result at linear order in GN we obtain

θ1PM =
2GN

L
2(p1 · p2)

2 −m2
1m2

2√
(p1 · p2)2 −m2

1m2
2

, (64)

in complete agreement with the first post-Minkowskian calculation of the scattering

angle from the classical equations of motion (16). As we are going to see in the next

Chapter, the power of our formalism is that it can be easily used to derive also the

next-to-leading order contribution computed by Westpfahl (17), as well as higher

order corrections, directly from scattering amplitudes.
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P O S T- M I N K O W S K I A N H A M I LT O N I A N S I N G E N E R A L

R E L AT I V I T Y

We describe the computation of post-Minkowskian Hamiltonians in Gen-

eral Relativity from scattering amplitudes. Using a relativistic Lippmann-

Schwinger equation, we relate perturbative amplitudes of massive scalars

coupled to gravity to the post-Minkowskian Hamiltonians of classical

General Relativity to any order in Newton’s constant. We illustrate this

by deriving a Hamiltonian for binary black holes without spin up to 2nd

order in the post-Minkowskian expansion and demonstrate explicitly the

equivalence with the recently proposed method based on an effective field

theory matching.

27
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introduction

The detection of gravitational waves by the LIGO/Virgo collaboration has opened

up the exciting possibility of testing Einstein’s theory of general relativity at a new

and unprecedented level, including the regime of strong gravity as probed by black

holes just prior to merging. A combination of Numerical Relativity and analytical

methods is needed in order to push theory to the level where it can provide best-fit

templates from which physical parameters can be extracted. This has spurred

interest in new and innovative ideas that can facilitate computations of the required

two-body interaction Hamiltonians to high accuracy.

Conventionally, the calculations of effective interaction Hamiltonians have been

carried out in the systematic post-Newtonian expansion of General Relativity.

The problem can, however, be attacked from an entirely different angle, that of

relativistic scattering amplitudes as computed by standard quantum field theory

methods in a quantum field theory of gravity coupled to matter [31]. Modern

methods of amplitude computations greatly facilitate this program [10–12,32,35–38].

Incoming and outgoing particles in the scattering process are taken to past and

future infinity where the metric by definition is flat Minkowskian, and the full

metric is treated perturbatively around that Minkowskian background. The classical

piece of the scattering amplitude solves the scattering problem of two black holes

to the given order in Newton’s constant GN. When expanding to the appropriate
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post-Newtonian order and defining the interaction potential with the inclusion of

the required lower-order Born subtractions as explained in detail in the next section,

the amplitude also contains all the information of the bound state problem of two

massive objects to the given order in the expansion in Newton’s constant. For the

bound-state regime one has, on account of the virial theorem, a double expansion

in both Newton’s constant and momentum. However, a more daring angle of

attack is to treat the bound state problem as not expanded in momentum while still

expanding to fixed order in Newton’s constant. Such an approach has recently been

proposed by Cheung, Rothstein and Solon [12], and it has already been pushed

one order higher in the expansion in Newton’s constant [10] (and compared to the

post-Newtonian expansions in [14]). Here the method of effective field theory is

used to extract the interaction Hamiltonian: the underlying Einstein-Hilbert action

coupled to matter produces the classical part of the scattering amplitude while an

effective theory of two massive objects define the interaction Hamiltonian. The

correct matching between the two theories is performed by insisting that the two

theories produce the same scattering amplitude to the given order in Newton’s

constant.

The post-Newtonian expansion (see, e.g., refs. [39, 40] for recent comprehensive

reviews) of General Relativity dates back to the founding days of the theory. Its

perturbation theory is ideal for the low-velocity situations of planetary orbits,

satellites, and large-distance effects of General Relativity that occur at velocities
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far below the speed of light. In contrast to this, the computation of observables

in General Relativity based on relativistic scattering amplitudes is valid for all

velocities and in particular this is the proper framework for high energy scattering

where kinetic energies can exceed potential energies by arbitrarily large amounts.

This leads naturally to what has become known in the theory of General Relativity

as the post-Minkowskian expansion [23, 24, 27, 41–43].

Extracting the interaction energy from the relativistic scattering amplitude, for

consistency with the virial theorem in the bound-state problem one would perform

a double expansion where velocity v and GN are both kept to the appropriate order.

To any given order in GN this would imply a truncation of a Taylor-expanded

amplitude in powers of momenta. There is no general argument for whether

keeping higher powers of only one of the expansion parameters in the regime

where they are of comparable magnitude will increase the accuracy. Considering

its potential impact, it is nevertheless of much interest to explore the consequences

of keeping higher-order terms of momenta even in the bound state regime where

they would not ordinarily have been included [10, 12, 14]. We will here show how

that post-Minkowskian Hamiltonian also follows directly from the full relativistic

amplitude without having to perform the amplitude matching to the effective field

theory, thereby explicitly showing equivalence between the two approaches [12, 32].
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perturbative gravity as a field theory

We start by introducing the Einstein-Hilbert action minimally coupled to massive

scalar fields1 ϕa=1,2 and by working in natural units (h̄ = c = 1)

S(gµ,ν, ϕa=1,2) =
∫

d4x
√
−g
[

R
16πGN

+
1
2 ∑

a=1,2

(
gµν∂µ ϕa ∂ν ϕa −m2

a ϕ2
a

)]
, (65)

where R defines the Ricci scalar and g ≡ det(gµν). Perturbatively, we expand the

metric around a Minkowski background: gµν(x) = ηµν + hµν(x). At large distances

we can treat the scattering of two massive objects ma and mb as that of two point-like

particles with the same masses. This has all been well elucidated in the literature

(see, e.g., refs. [44, 45]), although most focus until now seems to have been on

considering the quantum mechanical effects. The way classical terms appear from

the quantum mechanical loop expansion is subtle [31, 46]; see ref. [21] for a very

nice and clear discussion of this issue. Instead of expanding the action (65) in terms

of ordinary Feynman rules, it pays to use modern amplitude methods to extract the

needed non-analytic pieces in momentum transfer ~q through the appropriate cuts

at loop level [11, 35, 36].

1 For a simple comparison with [12], in this Chapter we will use the mostly negative signature
convention.
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The scattering m1 + m2 → m1 + m2 mediated by gravitons at an arbitrary loop

order is described by

M(p1, p2, p3, p4) = =
+∞

∑
L=0
ML−loop(p1, p2, p3, p4) . (66)

We choose the center-of-mass frame and parametrize the momenta as follows:

pµ
1 = (E1(p),~p ) , pµ

3 = (E1(p),~p ′) ,

pµ
2 = (E2(p),−~p ) , pµ

4 = (E2(p),−~p ′) ,

(67)

and |~p | = |~p ′|. We also define

qµ ≡ pµ
1 − pµ

3 = (0,~q ) , ~q ≡ ~p− ~p ′, (68)

and the total energy Ep = E1(p) + E2(p).

the lippmann-schwinger equation

It is a classical problem in perturbative scattering theory to relate the scattering

amplitudeM to an interaction potential V. This is typically phrased in terms of

non-relativistic quantum mechanics, but it is readily generalized to the relativistic

case. Crucial in this respect is the fact that we shall consider particle solutions to

the relativistic equations only. There will thus be, in the language of old-fashioned
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(time-ordered) perturbation theory, no back-tracking diagrams corresponding to

multiparticle intermediate states. This is trivially so since we neither wish to treat

the macroscopic classical objects such as heavy neutron stars as indistinguishable

particles with their corresponding antiparticles, nor do we wish to probe the

scattering process in any potential annihilation channel. The classical objects that

scatter will always be restricted to classical distance scales.

We now briefly outline a systematic procedure for connecting the scattering

amplitude in perturbative gravity with post-Minkowskian potentials in classical

General Relativity. We start by introducing a bit of notation. First, we assume the

existence of a relativistic one-particle Hamiltonian of only particle states describing

what in bound-state problems is known as the Salpeter equation,

Ĥ = Ĥ0 + V̂, Ĥ0 =
√

k̂2 + m2
1 +

√
k̂2 + m2

2 , (69)

where V̂ is a so far unspecified potential describing our post-Minkowskian system.

We also define, on a proper subset of the complex plane, the following C-valued

operators

Ĝ0(z) ≡ (z− Ĥ0)
−1, Ĝ(z) ≡ (z− Ĥ)−1, (70)

M̂(z) ≡ V̂ + V̂Ĝ(z)V̂ . (71)

Here Ĝ0(z) and Ĝ(z) are the Green’s operator for the free and interacting case,
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while M̂(z) is the scattering operator defined in (38). We can relate the two Green’s

operator by means of the following operator identity

A−1 = B−1 + B−1(B− A)A−1 ⇒ Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂Ĝ(z) . (72)

Multiplying both sides of (71) by Ĝ0(z), combined with (72), one has

Ĝ0(z)M̂(z) = Ĝ0(z)V̂ + Ĝ0(z)V̂Ĝ(z)V̂ = Ĝ(z)V̂, (73)

M̂(z) = V̂ + V̂Ĝ0(z)M̂(z) , (74)

which is the basis for a perturbative knowledge of M̂(z). We now take the inner

product on scattering states |p〉, |p′〉

〈p′|M̂(z)|p〉 = 〈p′|V̂|p〉+
∫ d3k

(2π)3
〈p′|V̂|k〉〈k|M̂(z)|p〉

z− Ek
, (75)

and use the crucial relation (38)

lim
ε→0
〈p′|M̂(Ep + iε)|p〉 = M̃(p, p′) , (76)

which provides the link to the conventionally defined scattering amplitudeM in

quantum field theory, restricted to the particle sector and up to a normalization

factor as previously discussed. Substituting (76) into (75) we have a recursive

relation between the amplitude and the post-Minkowskian potential

M̃(p, p′) = 〈p′|V̂|p〉+
∫ d3k

(2π)3
〈p′|V̂|k〉M̃(p, k)

Ep − Ek + iε
. (77)
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Solving this equation iteratively, we can invert it in order to arrive at a relativistic

equation for the potential

〈p′|V̂|p〉 = M̃(p, p′)−
∫ d3k

(2π)3
M̃(p, k)M̃(k, p′)

Ep − Ek + iε
+ · · · , (78)

or, in position space,

V(r, p) =
∫ d3q

(2π)3 eiq·rṼ(q, p), (79)

with

Ṽ(q, p) ≡ 〈p′|V̂|p〉 . (80)

At this stage there has not been any restriction to a non-relativistic limit. The anti-

particle sector has been eliminated by hand, as dictated by the physical scattering

process. We can thus regard (79) as defining a post-Minkowskian potential.

post-minkowskian hamiltonians

The post-Minkowskian potential to first order

We are now ready to use the above definition of the relativistic interaction potential

to describe the post-Minkowskian Hamiltonian to the trivial lowest order for two
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massive scalars of masses m1 and m2 interacting with gravity. With the proper

relativistic normalization of external states,

M̃tree(p1, p2, p3, p4) =
4πGN√

E1(p1)E1(p2)E2(p3)E2(p4)

A(p1, p2, p3, p4)

q2 , (81)

with

A(p1, p2, p3, p4) = (p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)− (p1 · p3)(p2 · p4)

+(p1 · p3)m2
2 + (p2 · p4)m2

1 − 2m2
1m2

2 .

(82)

In the center-of-mass frame this reduces to an amplitude which only depends on ~p

and ~p ′

M̃tree(p, p′) = − 4πGN

E1(p)E2(p)
[2(p1 · p2)

2 −m2
1m2

2 − |~q |2(p1 · p2)]

|~q |2 , (83)

with p1 · p2 = E1(p)E2(p) + |~p |2.

In order to facilitate a comparison with [12] we can write the Fourier transform as

V1PM(r, p) =
1

E2
pξ(p)

GNc1(p2)

r
+ · · · , (84)

with

c1(p2) = m2
1m2

2 − 2(p1 · p2)
2 , ξ(p) =

E1(p)E2(p)
E2

p
. (85)

The terms omitted in eq. (84) are either ultra-local or vanishing in the classical limit.

This of course agrees with the leading-order potential of ref. [12] while not very

easily derived in more traditional approaches.
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The post-Minkowskian potential to second order

In order to consider a post-Minkowksian potential at second order in G2
N, we will

need to consider a contribution coming from the iterated tree-level amplitude, as

dictated by (78)

Ṽ2PM(p, p′) = M̃1−loop(p, p′) + M̃Born(p, p′), (86)

M̃Born(p, p′) ≡ −
∫ ddk

(2π)d
M̃tree(p, k)M̃tree(k, p′)

Ep − Ek + iε
. (87)

Infrared divergences are regularized by temporarily switching to d + 1 space-

time dimensions. The classical terms of the one-loop amplitude have been given

elsewhere [12, 32, 33, 47]. They can be decomposed in terms of scalar integrals with

coefficients that are independent of the exchanged three-momentum ~q,

M̃1−loop(p, p′) =
i16π2G2

N
E1(p)E2(p)

(
c�I� + c./I./ + c.I. + c/I/ + · · ·

)
(p, p′) , (88)

where the symbol of each coefficient refers to the topology of the contributions

involved while the ellipses denote quantum mechanical contributions that we

neglect. In detail, the scalar box and crossed-box integrals are given by
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I� =
∫ dd+1`

(2π)d+1
1

((`+ p1)2 −m2
1 + iε)((`− p2)2 −m2

2 + iε)(`2 + iε)((`+ q)2 + iε)
,

(89)

I./ =
∫ dd+1`

(2π)d+1
1

((`+ p1)2 −m2
1 + iε)((`+ p4)2 −m2

2 + iε)(`2 + iε)((`+ q)2 + iε)
.

(90)

At leading order in the momentum transfer ~q the coefficients of these integrals are

finite at d = 3 and given by [35, 45]

c�(p2) = c./(p2) = 4
(
m2

1m2
2 − 2(p1 · p2)

2)2 . (91)

The scalar triangle integrals are given by

I. =
∫ dd+1`

(2π)d+1
1

((`+ q)2 + iε)(`2 + iε)((`+ p1)2 −m2
1 + iε)

, (92)

I/ =
∫ dd+1`

(2π)d+1
1

((`− q)2 + iε)(`2 + iε)((`− p2)2 −m2
2 + iε)

, (93)

with coefficients, at the leading order in |~q| and around d = 3, given by

c.(p2) = 3m2
1
(
m2

1m2
2 − 5(p1 · p2)

2) , c/(p2) = 3m2
2
(
m2

1m2
2 − 5(p1 · p2)

2) . (94)
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These scalar integrals are conveniently evaluated by performing proper contour

integrals in `0 as explained in [32]. Doing so, we see that the box, crossed-box, and

triangle contributions are given by [45, 48]

I� = − i
16π2|~q |2

(
− 1

m1m2
+

m1(m1 −m2)

3m2
1m2

2
+

iπ
|p|Ep

) (
2

3− d
− log |~q |2

)
+ · · · ,

(95)

I./ = −
i

16π2|~q |2

(
1

m1m2
− m1(m1 −m2)

3m2
1m2

2

)(
2

3− d
− log |~q |2

)
+ · · · , (96)

I. = −
i

32m1

1
|~q | + · · · , (97)

I/ = −
i

32m2

1
|~q | + · · · , (98)

at leading order in the |~q |2 expansion and around d = 3. We thus arrive at the

one-loop amplitude to leading order in |~q |2,

M̃1−loop(p, p′) =
π2G2

N
E2

pξ(p)

[
1

2|~q |

(
c.(p2)

m1
+

c/(p2)

m2

)
+

i
Ep

c�(p2)

|~p |
( 2

3−d − log |~q |2)
π|~q |2

]
.

(99)

The imaginary part of this which arises from the box and crossed-box integrals

is the infrared divergent Weinberg phase [49]. By restoring the h̄-counting, one

sees that it scales as h̄−1, a behavior dubbed super-classical in [21]. We will show

below that it cancels in the properly defined potential, a fact already noted in the
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post-Newtonian expansion [33]. We next evaluate the iterated tree-level contribution

given by

M̃Born(p, p′) = −
16π2G2

N
E1(p)E2(p)

∫ ddk
(2π)d

A(~p,~k)
|~p−~k|2

A(~k,~p ′)
|~p′ −~k|2

G(p2, k2)

E1(k)E2(k)
, (100)

where we have introduced the Green function

G(p2, k2) =
1

Ep − Ek + iε
. (101)

The function A is the numerator of the tree-level amplitude (82) with the k-legs

satisfying 3-momentum (but not energy) conservation. We notice that A(~p,~k ) and

A(~k,~p ′) can be written as

A(~p,~k ) = Ã(p2, k2) + B(~p,~k), (102)

A(~k,~p ′) = Ã(p2, k2) + B(~p ′,~k) , (103)

where Ã is ~q -independent and function of |~p| = p and |~k| = k. The classical

contribution from the iterated Born amplitude is hence

M̃Born(p, p′) = −
16π2G2

N
E1(p)E2(p)

∫ ddk
(2π)d

G(p2, k2)Q(p2, k2)

|~p−~k |2|~p ′ −~k |2
, (104)

where

Q(p2, k2) =
Ã2(p2, k2)

E1(k2)E2(k2)
. (105)
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We now expand Q around p2,

Q(p2, k2) = Qk=p + (k2 − p2)∂k2 Qk2=p2 + · · · , (106)

Qk2=p2 =
Ã2

k2=p2

E1(p2)E2(p2)
=

c2
1(p2)

E2
pξ(p)

, (107)

∂k2 Qk2=p2 = −
1

E2
pξ2(p)

(
2c1(p2)p1 · p2 +

c2
1(p2)

2E2
pξ(p)

(1− 2ξ(p))
)

. (108)

The Green function G likewise admits a Laurent expansion in k2

G(p2, k2) =
2Epξ(p)
p 2 − k2 +

3ξ(p)− 1
2Epξ(p)

+ · · · . (109)

Combining terms, the Born subtraction can hence be expressed as

M̃Born(p, p′) =
32π2G2

N
E3

pξ(p)
c2

1(p2)
∫ ddk

(2π)d
1

|~p−~k|2|~p′ −~k|2(k2 − p2)

−
16π2G2

N
E3

pξ2(p)

(
c2

1(p2)(1− ξ(p))
2E2

pξ(p)
+ 4c1(p2)p1 · p2

) ∫ ddk
(2π)d

1

|~p−~k|2|~p ′ −~k|2
+ · · · .

(110)

Evaluating the remaining three-dimensional integrals, we find

M̃Born(p, p′) =
iπG2

N
E3

pξ(p)
4c2

1(p2)

|~p|
(log |~q|2 − 2

3−d )

|~q|2 +
2π2G2

N
E3

pξ2(p)|~q|

×
(

c2
1(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4c1(p2)p1 · p2

)
.

(111)
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The second-order post-Minkowskian potential in momentum space is thus given by

Ṽ2PM(q, p) = M̃1−loop(q, p) + M̃Born(q, p) , (112)

leading to

Ṽ2PM(q, p) =
π2G2

N
E2

pξ(p)|~q |

[
1
2

(
c.(p2)

m1
+

c/(p2)

m2

)
+

2
Epξ(p)

×
(

c2
1(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4c1(p2)p1 · p2

)]
,

(113)

or, in coordinate space,

V2PM(r, p) =
G2

N
r2

1
E2

pξ(p)

[
1
4

(
c.(p2)

m1
+

c/(p2)

m2

)
+

(
c2

1(p2)(ξ(p)− 1)
2E3

pξ2(p)
− 4c1p1 · p2

Epξ(p)

)]
.

(114)

This agrees with what has been previously obtained in ref. [12] (taking into account

that c1(p2) here is E2
pξ(p) times c1(p2) in [12]). As expected on physical grounds,

the imaginary part which is composed of super-classical and infrared divergent

pieces has cancelled, leaving a finite and well-defined post-Minkowskian potential

at d = 3. That such cancellation had to occur was expected on physical ground,

since the imaginary part clearly cannot affect classical motion. Interestingly, the

evaluation of the same potential in N = 8 supergravity has shown no contributions

coming from triangle topologies [50].
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The post-Minkowskian scattering angle

In [32] a one-loop formula for the gravitational eikonal limit [51] generalized to

the scattering of two objects of different masses m1 and m2 was used to deduce

the classical scattering angle to second post-Minkowskian order directly from the

scattering amplitude. An alternative method based on the Hamiltonian [52] has

recently been revived in connection with the third post-Minkowskian scattering

amplitude calculation [10, 14] and we here briefly summarize the method at second

order in GN. Since the motion lies on a plane, we can introduce the following

coordinates on the phase space (r, ϕ, pr, pϕ) so as to express the momentum in the

center of mass frame as

p 2 = p2
r +

L2

r2 , (115)

being L the conserved angular momentum of our binary system, with constant

energy E

√
p2 + m2

1 +
√

p2 + m2
2 + V1PM(r, p) + V2PM(r, p) = E . (116)

This equation can be solved perturbatively in GN for p 2 = p 2(E, L, r)

p 2 = p 2
0 +

GN f1

r
+

G2
N f2

r2 + · · · (117)
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Using s = (p1 + p2)
2

p2
0 =

(p1 · p2)
2 −m2

1m2
2

s
, f1 = −

2c1(p2
0)√

s
, f2 = − 1

2
√

s

(
c.(p2

0)

m1
+

c/(p2
0)

m2

)
.

(118)

It is straightforward to derive the following expression for the change in the angular

variable ϕ during scattering

∆ϕ = π + θ, (119)

where the scattering angle is given by

θ = −2
∫ +∞

rmin

dr
∂pr

∂L
− π . (120)

Here rmin is the positive root for the condition of turning point at pr = 0 with

pr =

√
p2

0 −
L2

r2 +
GN f1

r
+

G2
N f2

r2 . (121)

Introducing b ≡ L/p0 we note that pr can be rewritten as

pr =
p0

r

√
r2 + r

GN f1

p2
0

+
G2

N f2

p2
0
− b2 =

p0

r

√
r− r+

√
r− r− , (122)

r± = −GN f1

2p2
0
±

√
G2

N f 2
1

4p4
0
−

G2
N f2

p2
0

+ b2 . (123)

Since rmin = r+, the scattering angle becomes

θ = 2
∫ +∞

r+

dr
r

r0√
(r− r+)(r− r−)

− π . (124)
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The integral so expressed can be performed analytically without the need of

regularization. We get

θ =
4b√
−r+r−

arccos

√
r+

r+ − r−
− π . (125)

Taylor-expanding the scattering angle to second post-Minkowskian order we arrive

at the final result

θ =
GN f1

p0L
+

G2
N f2π

2L2 + · · · (126)

where

θ2PM =
G2

N
L2

3π(m1 + m2)(5(p1 · p2)
2 −m2

1m2
2)

4E
, (127)

which agrees with the result of [27] at second post-Minkowskian order. In particular,

since f1 and f2 do not depend on box topologies (324), also the scattering angle

(126) receives no contributions from these, a known fact from the eikonal approach

in four dimensions. The details of the calculation based on the Hamiltonian is, on

the surface, quite different from the eikonal approach. It would be interesting to es-

tablish the precise link between the two, first identifying the precise exponentiation

formula for the eikonal limit beyond second post-Minkowskian order.

conclusion

Using the conventional approach to determining the interaction potential in per-

turbative gravity we have demonstrated that it can be extended to the relativistic
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setting by means of a one-particle Hamiltonian and associated Salpeter equation.

We have used the Lippmann-Schwinger equation to derive straightforwardly the

needed Born subtractions at arbitrary loop order. The resulting Fourier-transformed

post-Minkowskian Hamiltonian

H2PM(r, p) =
√

p2 + m2
1 +

√
p2 + m2

2 + V1PM(r, p) + V2PM(r, p) , (128)

agrees with the one derived in ref. [12] based on an effective field theory expansion

in operators that can contribute to the given order, supplemented with the matching

condition that the scattering amplitude as computed in the effective theory agrees

with the one computed from the full one-loop expression of the Einstein-Hilbert

action (plus scalars).

The resulting post-Minkowskian Salpeter equation is not an effective low-energy

theory (momentum is not limited), but rather a small |~q |/m approximation where

small momentum is exchanged and only particle states are summed over. It

is encouraging that preliminary results indicate that the corresponding two-loop

Hamiltonian [10] may improve the computation of two-body dynamics as compared

to the conventional post-Newtonian expansion for bound states [14]. The post-

Minkowskian Hamiltonian also appears to provide a short-cut towards computing

the scattering angle without first demonstrating exponentiation (and potential

correction terms) as in the eikonal approach. It would be interesting to demonstrate

the equivalence between those two computations in all generality.
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P O S T- M I N K O W S K I A N H A M I LT O N I A N S I N M O D I F I E D

G R AV I T Y

The aim of this note is to describe the computation of post-Minkowskian

Hamiltonians in modified theories of gravity. Exploiting a recent rela-

tion between scattering amplitudes of massive scalars and potentials for

relativistic point-particles we derive a contribution to post-Minkowskian

Hamiltonians at second order in the Newton’s constant coming from R3

modifications in General Relativity. Using this result we calculate the

associated contribution to the scattering angle for binary black holes at

second post-Minkowskian order, showing agreement in the non relativis-

tic limit with previous results for the bending angle of a massless particle

around a static massive source in R3 theories.

47
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introduction

The first detection of gravitational waves by the LIGO and Virgo collaboration,

has opened up the possibility to test Einstein’s theory of General Relativity at an

unprecedented level, heralding a new era in fundamental physics [53]. A central

framework is the Effective One Body approach [7, 8], where information from

Numerical Relativity and analytical approaches are combined in order to lead

to improved gravitational wave templates. Among these several inputs, it has

been recently suggested [23, 24] that also post-Minkowskian (PM) results, valid

for weak gravitational fields and unbound velocities, can independently lead to

improved modeling of bound binary dynamics. Given the growing results in post-

Minkowksian physics [10, 12, 14, 15], we would like to explore how contributions

to post-Minkowskian Hamiltonians can be defined in modified theories of gravity.

With no loss of generality, we here restrict ourselves onR3 modifications1 to General

Relativity [54–58]. Recently, these have been studied in the context of scattering

amplitudes [59, 60] leading to a post-Newtonian definition of the potential [31, 33].

However, scattering amplitudes contain relativistic information that is lost in the

passage to post-Newtonian point-particle potentials. We show how this can be

restored defining a post-Minkwoskian potential in cubic theories of gravity, without

restricting to the case of non relativistic point-particles. Using this result we derive

1 These arise as further contributions to the Ricci scalar in the Einstein-Hilbert action, where the only
non trivial modifications are given by Rµν

αβRαβ
ρσRρσ

µν and Rµνα
βRβγ

νσRσ
µγα.
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the associated contribution to the fully relativistic scattering angle for binary black

holes at second order in the Newton’s constant. By then taking the non relativistic

limit of one particle and the massless of the other, we are able to reproduce the

bending angle recently calculated in [59] for a massless particle around a static

massive source.

higher derivative corrections in general relativity

A non-trivial modification of the one-loop scattering of massive scalars in cubic

theories of gravity has been recently studied with amplitudes techniques in [59, 60].

In what follows we focus on the contribution given by I1 ≡ Rµν
αβRαβ

ρσRρσ
µν. As can be

seen from [61], this arises as a non trivial modification to the usual Einstein-Hilbert

action which for simplicity of discussion we will parametrize by an unknown

coefficient α with the dimension of length squared, following [59]. The associated

classical information in the scattering of two massive scalars of masses m1, m2 has

been calculated here [59, 60]. Using a mostly negative signature convention, and

working in natural units (c = h̄ = 1) we have

M̃α(p1, p2, p3, p4) = D
[
I(m1) c(m1, m2) + I(m2) c(m2, m1)

]
(p1, p2, p3, p4) + ...

(129)
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where, using s = (p1 + p2)
2 and t = (p1 − p3)

2, we have defined

D =
iπ2G2

Nα2√
E1(p1)E2(p2)E3(p3)E4(p4)

, (130)

I(mj) =
∫ d4k

(2π)4
1

(p1 − k)2(p2 − k)2(k2 −m2
j )

, (131)

c(mi, mj) =
4t2m4

i
(4m2

i − t)2

[ 3

∑
k=1

βk(mi, mj)t(k−1)
]

, (132)

β1(mi, mj) = 2m2
i

[
(m2

i + m2
j − s)2 − 4m2

i m2
j

]
, (133)

β2(mi, mj) = −3m4
i + 2m2

i m2
j + (m2

j − s)2 , (134)

β3(mi, mj) = m2
i −m2

j + s . (135)

We choose the center-of-mass frame and parametrize the momenta of the particles

as follows

pµ
1 = (E1(p),~p ) , pµ

3 = (E1(p),~p ′)

pµ
2 = (E2(p),−~p ) , pµ

4 = (E2(p),−~p ′)
(136)

~q ≡ ~p− ~p ′ , (137)
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|~p| = |~p′| ≡ p , |~q| ≡ q . (138)

We now proceed to define a post-Minkwoskian potential in the context of this

modified theory of gravity using a recent relation between post-Minkowskian

amplitudes and Hamiltonians [15]. The simplicity of this computation here lies in

the lack of the Born subtraction, as there is no tree level amplitude to iterate that

scales in the same way as (129). We can thus define a post-Minkowskian potential

to second order in GN and in the coupling α as

V I1
2PM(r, p) =

∫ d3q
(2π)3 ei~q·~rM̃α(q, p) . (139)

By performing a proper k0 integration on (131), the scalar triangle integral becomes

[32]

I(mj) = −
i

32mjq
+ ... (140)

where the ellipsis denote quantum contributions.

To leading order in q the associated post-Minkowskian potential is2

V I1
2PM(r, p) =

π2G2
Nα2

32E1(p)E2(p)

∫ d3q
(2π)3

[
c(m1, m2)

m1
+

c(m2, m1)

m2

]
ei~q·~r

q
(141)

=
π2G2

Nα2

128E1(p)E2(p)

(
β1(m1, m2)

m1
+

β1(m2, m1)

m2

) ∫ d3q
(2π)3 ei~q·~rq3 . (142)

2 The reason we only keep the leading term in q is due by h̄ counting. For a detailed analysis on how
to restore the proper classical limit from an amplitude calculation see [21].
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V I1
2PM(r, p) =

3α2

32E1(p)E2(p)
G2

N
r6

(
β1(m1, m2)

m1
+

β1(m2, m1)

m2

)
. (143)

In the non relativistic limit, our post-Minkwoskian potential reduces to

V I1
2PM(r, p) =

3α2

4
G2

N p2

r6
(m1 + m2)

3

m1m2
+ ... (144)

in agreement with the post-Newtonian calculation in [59]. For the sake of complete-

ness we also report the post-Minkowskian contribution to the potential given by the

remaining cubic term Rµνα
βRβγ

νσRσ
µγα. This has been recently calculated in [59] as

coming from the topological invariant G3 = Rµν
αβRαβ

ρσRρσ
µν − 2Rµνα

βRβγ
νσRσ

µγα. The

result has been found equal to

VG3
2PM(r, p) =

12α2G2
N

E1(p)E2(p)
m2

1m2
2(m1 + m2)

r6 . (145)

In a natural way, the same procedure for defining a post-Minkwoskian potential

can be applied for more general modified theories of gravity.

the scattering angle

At second post-Minkowskian order in GN, the Hamiltonian for a binary system of

spinless binary black holes, including contributions from cubic gravity, is given by

Hα
2PM(r, p) =

√
p2 + m2

1 +
√

p2 + m2
2 + V2PM(r, p) + Vα

2PM(r, p) , (146)
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where V2PM(r, p) has been calculated here [12, 15], being Vα
2PM(r, p) the sum of

(143) and (145). Since the motion lies on a plane, we can introduce the following

coordinates on the phase space (r, ϕ, pr, pϕ) so as to express the momentum in the

center of mass frame as

p2 = p2
r +

p2
ϕ

r2 , pϕ = L , (147)

being L the angular momentum of the system, which is a conserved quantity.

The associated Hamilton-Jacobi equation gives

√
p2 + m2

1 +
√

p2 + m2
2 + V2PM(r, p) + Vα

2PM(r, p) = E , (148)

where E is the constant energy of the system.

By solving now in p2 we can express the momentum in the center of mass frame as

p2 = p2(E, L, α, r) , p2 = p2
0 +

GN f1

r
+

G2
N f2

r2 +
G2

Nα2 fα

r6 + ... (149)

where the ellipsis denotes higher contributions in GN and

p2
0 =

(p1 · p2)
2 −m2

1m2
2

s
, f1 = −

2c1(p2
0)√

s
, f2 = − 1

2
√

s

(
c.(p2

0)

m1
+

c/(p2
0)

m2

)
,

(150)

fα = − 3
16E

(
β1(m1, m2)

m1
+

β1(m2, m1)

m2

)
−

24m2
1m2

2(m1 + m2)

E
. (151)



post-minkowskian hamiltonians in modified gravity 54

where the coefficients related to f1 and f2 has been calculated in the previous

Chapter. At this point, by considering the angular variable ϕ, it is straightforward

to derive the following expression for its total change during a scattering

∆ϕ = π + θ ,
θ

2
= −

∫ +∞

rmin

dr
∂pr

∂L
− π

2
, (152)

where rmin is the positive root for pr = 0.

In order to evaluate (152) we proceeds perturbatively by expanding both the

integrand and the extreme of integration in GN, where

rmin =
L
p0

+ ... , pr =

√
p2

0 −
L2

r2 + ... (153)

being the leading term of rmin equivalent to the impact parameter b.

This expansion give rise to divergent integrals which can be handled only by means

of the Hadamard Partie finie (Pf) of the latter as shown by Damour in [52].

Restricting to the contribution to (152) due to R3 one finds

θα
2PM
2

= −
LG2

Nα2 fα

2
Pf
∫ +∞

r0

dr
r8

(
p2

0 −
L2

r2

)− 3
2

. (154)

Changing variables to u = 1
r the integral becomes

θα
2PM
2

= −
G2

Nα2 fα

2L2 Pf
∫ u0

0
du

u6

(u2
0 − u2)

3
2

, u0 ≡
1
b

. (155)

The remaining integration is straightforward, leading to

θα
2PM
2

=
15πG2

Nα2 fα

32L2b4 , (156)
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θα
2PM
2

= −
45πG2

Nα2

512L2b4E

(
β1(m1, m2)

m1
+

β1(m2, m1)

m2
+ 128m2

1m2
2(m1 + m2)

)
. (157)

Equation (157) has to be considered as an additional contribution to the fully

relativistic scattering angle at second order in GN coming from a cubic theory of

gravity. In particular, by taking the non relativistic limit of our result with the

additional condition m1 = m and m2 = 0, we have

θα
2PM = −

45G2
Nα2πm2

32b6 + ... (158)

which agrees with the non relativistic contribution derived in [59] for the bending

angle of a massless particle around a static massive source.3. In this case, the

G3 contribution to the potential is found to be absent for the bending angle of a

massless particle, but not in the fully relativistic scattering angle of two massive

particles as it can be seen from (157).

conclusion

We have derived the post-Minkowskian contribution to relativistic point-particles

Hamiltonians in modified theories of gravity. We have restricted ourselves to the

3 The authors in [59] have used a convention for the deflection angle which differs by a minus sign
compared to ours.
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case of R3 modifications, although similar changes are expected to appear also for

R2 terms [62–64]. The derived post-Minkowskian contribution, once expanded for

small velocities, is in agreement with the recent post-Newtonian computation [59].

The simplicity of the calculation has taken advantage of a recent relation between

post-Minkowskian amplitudes and Hamiltonians for relativistic point-particles [15].

Indeed, the computation has required no effective field theory matching as well as

no need to known the operator reproducing the R3 modifications in an effective

field theory of scalar fields. We have also derived an additional contribution to the

fully relativistic scattering angle of black holes at second order in GN arising from

R3, showing agreement in the non relativistic limit with a result derived in [59] for

the bending angle of a massless particle around a static massive source. It would be

interesting to systematically explore similar results in other alternative formulations

of General Relativity.



7

P O S T- M I N K O W S K I A N S C AT T E R I N G A N G L E I N E I N S T E I N

G R AV I T Y

Using the implicit function theorem we demonstrate that solutions to

the classical part of the relativistic Lippmann-Schwinger equation are

in one-to-one correspondence with those of the energy equation of a

relativistic two-body system. A corollary is that the scattering angle can

be computed from the amplitude itself, without having to introduce a

potential. All results are universal and provide for the case of general

relativity a very simple formula for the scattering angle in terms of the

classical part of the amplitude, to any order in the post-Minkowskian

expansion.

57
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introduction

The Post-Minkowskian expansion of general relativity promises to become a new

and powerful tool with which to compute observables of two-body gravitational

interactions [10, 14, 23, 24, 32]. As a systematic expansion in Newton’s constant

GN, the Post-Minkowskian framework is perfectly suited for a standard second-

quantized field theory approach to classical gravity [12, 15]. There is now hope

that modern field theory techniques may radically change the prospect for how far

analytical calculations can be pushed in general relativity. Currently also much work

goes into seeing how Post-Minkowskian gravitational interactions of classically

spinning objects can be treated by modern quantum field theory techniques [65–72],

leading again to a complete revision of how such classical observables can be

computed in general relativity.

When the Post-Minkowskian expansion is applied to the two-body bound-state

problem it is natural to phrase it in terms of a potential V, either as provided

implicitly through the Effective One-Body Hamiltonian [14] or by the large-distance

effective Hamiltonian obtained by matching of amplitudes [12]. Up to canonical

transformations, this is equivalent to studying the relativistic Salpeter equation [15]

based on an Hamiltonian operator

Ĥ = Ĥ0 + V̂ =
2

∑
i=1

√
p̂2 + m2

i + V̂ , (159)
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and then taking the classical limit. Only the positive-energy solutions enter in this

Hamiltonian because we remove antiparticles in the scattering process by hand

when taking the macroscopic classical limit. The momentum-space potential Ṽ can

be easily computed by solving the associated Lippmann-Schwinger equation for

the full scattering amplitude1 [15],

M̃(p, p′) = Ṽ(p, p′) +
∫ d3k

(2π)3
Ṽ(k, p) M̃(k, p′)

Ep − Ek + iε
, (160)

inverting it,

Ṽ(p, p′) = M̃(p, p′)−
∫ d3k

(2π)3
M̃(p, k) M̃(k, p′)

Ep − Ek + iε
+ . . . , (161)

and taking the classical limit. This is the systematics of the Born subtractions needed

to define a potential from the scattering amplitude. The so-called super-classical

terms [21] cancel in the process, rendering the classical limit of the potential well-

defined. By performing a suitable Fourier transform, this leads to the conventionally

defined position-space potential V in the chosen coordinates.

It should be noted that the effective field theory matching employed in refs. [10, 12]

is equivalent to the method of Born subtractions [15]. In four dimensions, the

effective field theory matching, after suitable reduction of the four-dimensional

amplitude integrals to integrals living in only three dimensions, involves cancel-

1 For ease of notation, we will work in natural units with c = h̄ = 1. When needed, we can easily
restore the counting in h̄ by following [21].
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lations of identical integrals, which hence do not need to be evaluated. The same

cancellations among three-dimensions integrals can be achieved also in the Born

subtraction method (indeed, the two methods are completely equivalent), but we

prefer to evaluate all integrals for clarity.

The position-space potential V seems needed when solving the bound-state prob-

lem in general relativity. However, this quantity is not very natural in the field

theoretic framework where everything is based on the gauge invariant S-matrix

with incoming and outgoing momenta defined at Minkowskian infinity. One would

surely prefer as far as possible a formulation in which V would not be needed. This

problem is compounded when we consider a coordinate-independent observable

such as the classical scattering angle from far infinity to far infinity. Conventionally,

we will be led to solve the classical analog of the Salpeter Hamiltonian of eq. (159)

and then follow the classical analysis of the scattering problem. While that method

is correct, it seems intuitively surprising that it should be necessary to go through

the carefully Born subtracted position-space potential V as an intermediate step.

Indeed, we know from quantum field theory that all scattering information from

far infinity to far infinity is contained in the S-matrix, viz., the scattering amplitude.

This puzzle has become greatly clarified by the observation of Bern et al. [10] that

up to two loop order (3PM order in the Post-Minkowskian counting) seemingly

miraculous cancellations take place, leaving a perturbatively expanded expression

for the two-loop scattering angle expressed entirely in terms of the classical part
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of the scattering amplitude up to that two-loop order. If this phenomenon is to

persist to all orders it means that all the classical pieces of the Born subtractions

defined above provide a potential V in precisely such a manner as to compensate,

exactly and to all orders in the coupling GN, the additional terms that arise from

solving the expanded classical Salpeter equation. While the apparent conspiracy

of two such totally unrelated equations having a one-to-one relation might seem

improbable, we shall in this paper elucidate how this indeed will be true. Our tool

will be the implicit function theorem that sometimes goes under the name of Dini’s

Theorem (although a different theorem also carries Dini’s name). In the process we

will unravel new and compact relations between the classical potential, together

with its derivatives, and the classical part of the scattering amplitude.

Having this relationship established, a next burning question is: how do we then

compactly express the scattering angle directly in terms of the classical part of the

scattering amplitude? To find such an expression, we make use of an idea proposed

by Damour in ref. [24], mapping the classical and fully relativistic Salpeter Hamil-

tonian into an auxiliary Hamiltonian that is formally in the non-relativistic form of

a one-particle Hamiltonian for a particle of mass equal to 1/2 in appropriate units

and with a potential that is only position-dependent. Considering the quantized

analog of this Hamiltonian one immediately proves, in essentially one line, that

the solution for the scattering angle indeed only depends on the classical part of
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the scattering amplitude.2 But armed with the non-relativistic auxiliary problem

we can do far more than that. Indeed, the classical part of the mapped scattering

problem must now be WKB-exact and even solved by only its leading-order piece of

order h̄0 in the exponent. This is, consistently, simply the classical Hamilton-Jacobi

equation with the phase identified with the generating function S. Much literature

exists on the relationship between the scattering angle and the WKB-approximation

as well as their relation to the eikonal limit, and we hope our discussion here will

clarify some confusion. Our end result is a very simple formula for the scattering

angle in terms of the classical part of the scattering amplitude, to all orders in the

coupling.

the lippmann-schwinger equation in position space

The Lippmann-Schwinger equation is usually expressed as an integral equation

involving amplitudes and potentials in momentum space. For the case of non-

relativistic systems, its space representation states that the Fourier transform of the

classical part of the amplitude is proportional to the potential. However, for the

case of fully relativistic systems, this is no longer true [15]. We shall here extend

this observation by demonstrating that the position-space representation of the

Lippmann-Schwinger equation for fully relativistic systems can be expressed as

2 While this paper was in preparation, the same observation was made in ref. [73].
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a differential equation for the potential and the classical part of the amplitude.

To show this, we start by considering the fully relativistic Lippmann-Schwinger

equation in momentum space

M̃(p, p′) = Ṽ(p, p′) +
∫ d3k

(2π)3
Ṽ(k, p) M̃(k, p′)

Ep − Ek + iε
. (162)

Kinematics will always be that of the center of mass frame. We parametrize the

potential in momentum space as

Ṽ(ki, k j) =
∞

∑
n=1

(
GN

2

)n

(4π)
3
2

Γ(3−n
2 )

Γ(n
2 )

cn(ki, k j)

|ki − k j|3−n , cn(ki, k j) = cn

(k2
i + k2

j

2

)
.

(163)

Eq. (162) allows us to express the momentum-space amplitude as

M̃(p, p′)=
∞

∑
n=0

∫
k1,k2,...,kn

Ṽ(p, k1) Ṽ(k1, k2) · · · Ṽ(kn, p′)
(Ep−Ek1)(Ek1−Ek2) · · · (Ekn−1−Ekn)

= Ṽ(p, p′)+
∞

∑
n=1

Sn(p, p′) ,

(164)

where the n-th terms of the series has n + 1 factors of potential Ṽ in the numerator

and n energy denominators.

We are only interested in the classical pieces of this equation, which means that we

must device a precise mechanism to discard super-classical and quantum terms

from the right hand side of eq. (164) based on the h̄-counting [21]. In order to

understand this procedure, we start by considering the first non-trivial (n = 1) term
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of eq. (164) and then extend the reasoning to all n. For n = 1 we have

S1 =
∫ d3k

(2π)3
Ṽ(p, k) Ṽ(k, p′)

Ep − Ek
. (165)

Since we are only interested in classical terms, we can expand the propagator in eq.

(165) around k2
i = k2

j = k2 as

1
Eki − Ekj

=
2Ekξ(k)
k2

i − k2
j
+

3 ξ(k)− 1
2Ekξ(k)

+ . . . , (166)

Ek = E1(k) + E2(k) , ξ(k) =
E1(k)E2(k)

E2
k

. (167)

Using this expansion, the only classical contributions that could arise from (165) are

S1 = 2Epξ(p)I1 +

(
3ξ(p)− 1
2Ep ξ(p)

)
J1 + . . . , (168)

where

I1 ≡
∫ d3k

(2π)3
Ṽ(p, k) Ṽ(k, p′)

p2 − k2 , J1 ≡
∫ d3k

(2π)3 Ṽ(p, k) Ṽ(k, p′) . (169)

We start by evaluating the classical contributions from I1, using (163)

I1 = (4π)3
∞

∑
n,m=1

(
GN

2

)n+m Γ(3−n
2 ) Γ(3−m

2 )

Γ(n
2 ) Γ(m

2 )

∫ d3k
(2π)3

cn(p, k) cm(k, p′)
(p2 − k2) |k− p|3−n |k− p′|3−m .

(170)
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In order to discard super-classical and quantum terms we expand the numerator

around k2 = p2 as

cn(k, p) cm(k, p′) = c0
n c0

m +
1
2
(c0

n ∂p2 c0
m + c0

m ∂p2 c0
n)(k

2 − p2) + . . . , c0 ≡ c|k2=p2
.

(171)

The h̄-counting thus tells us that the only classical contribution ( cl.) from eq. (170)

is given by

Icl.
1 = −(4π)3

∞

∑
n,m=1

(
GN

2

)n+m Γ(3−n
2 ) Γ(3−m

2 )

Γ(n
2 ) Γ(m

2 )

(c0
n∂p2c0

m + c0
m∂p2c0

n)

2
G(2)

n,m(q) ,

(172)

where we have introduced q ≡ p− p′ and

G(2)
n,m(q) ≡

∫ d3k
(2π)3

1
|k|3−n |k + q|3−m . (173)

It is also convenient to define its Fourier transform

g(2)n,m(r) ≡
∫ d3q

(2π)3 G(2)
n,m(q)eiq·r , (174)

which is seen to factorize,

g(2)n,m(r) =
∫ d3k

(2π)3

∫ d3q
(2π)3

ei(q−k)·r

|k|3−n |q|3−m (175)

=
∫ d3q

(2π)3
eiq·r

|q|3−m ×
∫ d3k

(2π)3
e−ik·r

|k|3−n = gn(r) gm(r) (176)
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The function gn(r) is well known and given by

gn(r) =
Γ(n

2 )

Γ(3−n
2 )

(
2
r

)n 1

(4π)
3
2

. (177)

Using this, the position-space representation of eq. (172) becomes

Ĩcl.
1 = −

∞

∑
n,m=1

(
GN

r

)n+m

(c0
n ∂p2 c0

m) , Ĩcl.
1 ≡

∫ d3q
(2π)3 eiq·r Icl.

1 . (178)

This can be expressed in an even simpler form by realizing that it can be factorized,

Ĩcl.
1 = −

[ ∞

∑
n=1

(
GN

r

)n

c0
n

][ ∞

∑
m=1

(
GN

r

)m

∂p2 c0
m

]
. (179)

This nicely connects with the Fourier transform of the potential in position space,

V(r, p) =
∞

∑
n=1

(
GN

r

)n

cn(p2) , (180)

giving

Ĩcl.
1 = −V(r, p) ∂p2V(r, p) . (181)

As for the remaining integral, one has

J1 = (4π)3
∞

∑
n,m=1

(
GN

2

)n+m Γ(3−n
2 ) Γ(3−m

2 )

Γ(n
2 ) Γ(m

2 )
c0

n c0
mG(2)

n,m(q) . (182)

One readily finds that its Fourier transform J̃cl.
1 simply satisfies J̃cl.

1 = V2. Defining

the real-space representation of the classical part of the amplitude by
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M̃cl.(r, p) ≡
∫ d3q

(2π)3 M̃
cl.(q, p) eiq·r , (183)

we find that the leading first term to all orders in GN is given by

M̃cl.(r, p) = V(r, p)− 2Epξ(p)V(r, p)∂p2V(r, p) +
(

3ξ(p)− 1
2Epξ(p)

)
V2(r, p) + . . . .

(184)

As for the remaining terms in the series, they can be evaluated in exactly the same

fashion by an expansion of the energy denominators and numerators, although

the complexity of these analytical expressions grow rapidly and we do not display

them here. (Remarkably, the classical part of the series can always be expressed as

a linear combination of generalized n-loop massless sunset diagrams with external

momentum q; this is shown in the Appendix). We have thus shown that a quite

simple differential equation links the classical part of the amplitude to the potential.

At higher loop level the order of the differential equation increases, but the structure

remains. What is far more interesting is that we can understand the same series

from an alternative point of view by applying the implicit function theorem to the

relativistic energy equation. Remarkably, this will provide a physical interpretation

of the classical part of the amplitude, as here defined.
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dini’s theorem and the lippmann-schwinger equation

We start by stating the implicit function theorem (Dini’s theorem) in a form useful

for the present purpose:

Let F : R2 → R be a C∞ function. Consider a point (x0, y0) such that F(x0, y0) = 0

and ∂xF(x0, y0) 6= 0. Then there exist a closed neighbourhood of (x0, y0) and a function

y = f (x) so that F(x, y(x)) = 0 for every point in that neighbourhood. The implicit

function y = f (x) will admit a Taylor expansion in terms of the partial derivatives of

F(x, y) given by

y(x) = y(x0) + y′(x0)(x− x0) +
1
2

y′′(x0)(x− x0)
2 + . . . , (185)

y′(x0) = − ∂xF
∂yF

∣∣∣∣
x=x0 , y=y(x0)

, (186)

y′′(x0) = −
∂2

xxF + 2y′∂2
xyF + ∂2

yyFy′2

∂yF

∣∣∣∣∣
x=x0 , y=y(x0)

, (187)

where the higher order derivatives can be computed from

(
∂x +

dy
dx

∂y

)n

F(x, y(x)) = 0 , ∀n ∈N , (188)

by the binomial expansion of operators.

We now apply this theorem to the problem of inverting the relativistic energy

equation in terms of three-momenta. This is precisely what arises in the post-

Minkowskian two-to-two scattering process where we must solve the classical
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energy relation of eq. (159),

2

∑
i=1

√
p2 + m2

i + V(r, p) = E , V(r, p) =
∞

∑
n=1

(
GN

r

)n

cn(p2) , (189)

where E is the energy of the system, which according to our conventions satisfies

E = Ep∞ . In order to find a solution to eq.(189) we apply Dini’s theorem by choosing

p2 as y and GN as x respectively.3 Then,

F(p2, GN) =
2

∑
i=1

√
p2 + m2

i + V(r, p)− E , (190)

F(p2(GN), GN) = 0 , ∂GN F(p2, GN) = ∂GN V(r, p) 6= 0 . (191)

From the theorem we thus know that there exists a p2 such that

p2 = p2
∞ +

∞

∑
k=1

Gk
N

k!
dk p2

dGk
N

∣∣∣∣∣
GN=0

, p2
∞ =

(m2
1 + m2

2 − E2)2 − 4m2
1m2

2
4E2 , (192)

where the first term is nothing else than the value of p2 which solves eq.(189) in

absence of interactions. The next terms can be found using eqs. (186) and (187),

giving

3 We choose GN for sheer convenience because post-Minkowskian Hamiltonians in the center of mass
frame have the same counting in 1/r and GN . In case of higher-derivative gravity this counting is
of course broken by new coupling constants [16, 59, 60]. That more general case can be analyzed
analogously by simply identifying y with r.
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dp2

dGN

∣∣∣∣
GN=0

= −
∂GN V(r, p)

1
2Epξ(p) + ∂p2V(r, p)

∣∣∣∣∣∣
GN=0

= −2Epξ(p)
[

c1(p2)

r

]
|p=p∞

, (193)

d2p2

d2GN

∣∣∣∣
GN=0

= −2Epξ(p)
[

2c2(p2)

r2 −
4Epξ(p) c1(p2)∂p2c1(p2)

r2 +
c2

1(p2)

r2

(
3ξ(p)− 1

Epξ(p)

)]
|p=p∞

,

(194)

and so on for higher derivatives.

Apparently, the structure of the k-derivative of p2 as a function of GN seems to

show no discernible structure, involving the potential and its derivatives. However,

almost unbelievably, precisely the same relations also appear in the classical part

of the position-space representation of the Lippmann-Schwinger equation that

we have just examined above. There they relate the classical part of an n-loop

amplitude to the potential and its derivatives. Indeed, by substituting eqs. (193)

and (194) into eq. (192), we see that the derivatives of p2 satisfies a remarkable

relation to the classical part of the position-space representation of loop amplitudes:

GN
dp2

dGN

∣∣∣∣
GN=0

= −2Eξ(p∞)

[
M̃cl.

tree(r, p∞)

]
, (195)

G2
N

2
d2p2

d2GN

∣∣∣∣∣
GN=0

= −2Eξ(p∞)

[
M̃cl.

1−loop(r, p∞)

]
. (196)
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By substituting these into eq. (192), we observe that the implicit function we were

searching for is precisely the classical part of the Fourier transform of the scattering

amplitude,

p2 = p2
∞ − 2Eξ(p∞)

[
M̃cl.

tree(r, p∞) + M̃cl.
1−loop(r, p∞)

]
+ . . . . (197)

Indeed, the correspondence between solutions to the classical part of the Lippmann-

Schwinger equation and the relativistic energy relation is not a coincidence and

can be generalized to any loop order. The validity of eq. (197) is a consequence

of Dini’s theorem which maps the implicit function p2 of the relativistic energy

equation to the solution of the classical part of the Lippmann-Schwinger equation

in position space.

The same relation4 [10, 73],

p2 = p2
∞ − 2Eξ(p∞)M̃cl.(r, p∞) , (198)

can also be inferred by an intriguing alternative route suggested by Damour [24]

and recently generalized to all orders in by Kälin and Porto in [73]. We rephrase it

as follows. Consider the energy equation in a fully relativistic system subjected to a

post-Minkowskian potential. In the center of mass frame,

4 As discussed in ref. [73], the inclusion of radiative effects introduce a non-linear relation between p2

and scattering amplitudes. These enter at 4PM order for a non-spinning binary system [10]. Our
analysis is valid only in the conservative sector of the two body problem.
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E =
2

∑
i=1

√
p2 + m2

i + V(r, p) , V(r, p) =
∞

∑
n=1

Gn
Ncn(p2)

rn , (199)

p2 = p2
∞ +

∞

∑
n=1

Gn
N fn(E)

rn , (200)

where eq. (200) provides the perturbatively expanded solution to the energy

condition and the fn coefficients that can be determined order by order in the

coupling constant. A natural quantization of this [15] is the Salpeter Hamiltonian

of relativistic particle states (159),

Ĥ =
2

∑
i=1

√
p̂2 + m2

i + V̂ , (201)

from which we infer the Lippmann-Schwinger equation discussed above. Given

the nature of this Hamiltonian, it comes as no surprise that the associated Green

function will have an intricate structure involving square roots as we have dis-

cussed in the previous section. Damour [24] considers instead the second relation

(200) as a formally non-relativistic energy relation for a particle of mass 1/2 in

appropriate units. Because there is a map from eq. (199) to eq. (200) it should

be equally meaningful to quantize the Hamiltonian in p2 of eq. (200) as the orig-

inal Salpeter Hamiltonian (199). This means that we can use a much simpler

non-relativistic Hamiltonian to derive relations for the scattering amplitude. Its

potential depends only on the radial distance r as we are familiar with in ordinary
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non-relativistic quantum mechanics. We will thus have all the powerful technology

of non-relativistic quantum mechanics (and classical mechanics) at our disposal.

The scattering amplitude will not be normalized as the original one, but this is of

no immediate concern since physical observables should not depend on it as long

as we rescale units appropriately. Damour’s effective Hamiltonian operator is thus

Ĥ = p̂2 + Ve f f (r) , Ve f f (r) ≡ −
∞

∑
n=1

Gn
N fn(E)

rn , (202)

which is a simple non-relativistic system with a potential given by Newtonian-like

contributions of r-dependence only. For such a system, the classical part of the

associated Lippmann-Schwinger equation is trivial in D = 4. Indeed, all energy

denominators in the Born subtractions will be just quadratic in the momenta and

since the associated potential has no momentum-dependence, there is no expansion

that could lead to classical terms. We thus find that the effective potential Ve f f (r)

to all orders is proportional to the Fourier transform of the classical part of the

corresponding amplitude evaluated at p∞, as before.

Using this relation, we can then easily read the fn(E) coefficients from a known

scattering amplitude. As we will see, these coefficients lead directly to the post-

Minkowskian scattering angle in the center of mass frame.
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the scattering angle to all orders

The computation of the scattering angle for non-relativistic quantum mechanical

Hamiltonians has a long history. Typically, interest has been mainly on finding

approximate (semi-classical) solutions, first through the WKB-approximation, later

by considering the eikonal limit (see, e.g., refs. [77–79]). These methods are pow-

erful, but they quickly get complicated and they were, of course, developed as

approximate solutions to the full quantum mechanical problem.

Armed with the map of Hamiltonians from (199) to (200) we are in a completely

different situation since we can treat (200) as a quantum mechanical Hamiltonian

from which we only wish to extract the classical part. Not only is the problem

then WKB-exact, it is also WKB-trivial in the sense that we only wish to retain the

leading h̄0-piece of the wave function. This leading term S, as is well known, is a

solution of the classical Hamilton-Jacobi equation. At this stage we have therefore

come full circle and we are back at analyzing the classical Hamiltonian (200) with

the added knowledge that fn coefficients are simply identified with the Fourier

transformed scattering amplitude evaluated at p∞.

Using this observation, we now provide an all-order expression for the post-

Minkowskian scattering angle only in terms of the classical part of the amplitude

in position space and the impact parameter b, both gauge invariant quantities.
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As is well known that scattering angle is given from Hamilton-Jacobi theory by

θ

2
= −

∫ +∞

rm
dr

∂pr

∂L
− π

2
, (203)

where

pr =

√
p2

∞ −
L2

r2 −Ve f f (r) , Ve f f (r) = −
∞

∑
n=0

Gn
N fn(E)

rn , (204)

being L the angular momentum of the system and rm the closest root to the origin

of eq. (204) which satisfies

1− b2

r2
m
−

Ve f f (rm)

p2
∞

= 0 , b =
L

p∞
, (205)

where we have introduced the impact parameter b.

We find it convenient to rewrite the scattering angle as

θ

2
= b

∫ +∞

rm

dr
r2

(
1− b2

r2 −Ve f f (r)
)− 1

2

− π

2
= b

∫ +∞

rm

dr
r2

(
1− r2

m
r
−W(r)

)− 1
2

− π

2
,

(206)

where we have defined

W(r) ≡ 1
p2

∞

[
Ve f f (r)−

r2
m

r2 Ve f f (rm)

]
, W(rm) = 0 . (207)

We next perform a change of variables to highlight the properties of W(r) at rm,

r2 = u2 + r2
m ⇒ θ

2
= b

∫ +∞

0

du
r2

(
1− r2W(r)

u2

)− 1
2

− π

2
. (208)
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At this point we expand the square root of eq. (208) using the generalized binomial

theorem

(1 + x)−
1
2 = 1 +

∞

∑
n=0

(
−1

2
n + 1

)
xn+1 , (209)

where (
−1

2
n + 1

)
=

Γ(1
2)

Γ(n + 2)Γ(−n− 1
2)

=
(−1)n+1(2n + 1)!!

2n+1Γ(n + 2)
. (210)

Using eq. (209) the scattering angle becomes

θ

2
=

π

2

(
b

rm
− 1
)

+ b
∞

∑
n=0

(−1)n+1
(
−1

2
n + 1

) ∫ +∞

0

du
u2(n+1)

[Wn+1(r)r2n]

=
π

2

(
b

rm
− 1
)

+ b
∞

∑
n=0

(2n + 1)!!
2n+1(n + 1)!

∫ +∞

0

du
u2(n+1)

[Wn+1(r)r2n] .

(211)

We now use the following properties which holds for C∞ functions from R to R

that vanish at infinity and at the origin:

∫ +∞

0

du
u2(n+1)

f (u) =
1

(2n + 1)!!

∫ +∞

0
du
(

1
u

d
du

)n+1

f (u) . (212)

Using eq. (212) we obtain

θ

2
=

π

2

(
b

rm
− 1
)
+ b

∞

∑
n=0

1
2n+1(n + 1)!

∫ +∞

0
du
(

1
u

d
du

)n+1[
Wn+1(r)r2n]

=
π

2

(
b

rm
− 1
)
+ b

∞

∑
n=0

1
(n + 1)!

∫ +∞

0
du
(

d
du2

)n+1[
Wn+1(r)r2n] .

(213)

In order to introduce a systematic expansion we write this as

θ

2
=

π

2

(
b

rm
− 1
)

+ b
∞

∑
n=0

∆n(rm) , (214)
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∆n(rm) ≡
1

(n + 1)!

∫ +∞

0
du
(

d
du2

)n+1[
Wn+1(r)r2n] , r =

√
u2 + r2

m . (215)

Focusing on eq. (215), we now expand

∆n(rm) =
1

p2n+2
∞

1
(n + 1)!

n+1

∑
k=0

(
n + 1

k

)∫ +∞

0
du
(

d
du2

)n+1[
Vn+1−k

e f f (r)r2n][− r2
mVe f f (rm)

r2

]k

.

(216)

Rewriting in terms of b and rm, and using eq. (205), this leads to

∆n(rm) =
n+1

∑
k=0

(b2 − r2
m)

k

k!

∫ +∞

0
du
(

d
du2

)n+1 Vn−k+1
e f f (r) r2(n−k)

(n− k + 1)! p2(n−k+1)
∞

(217)

=
n+1

∑
k=0

(b2 − r2
m)

k

k!

(
d

dr2
m

)k ∫ +∞

0
du
(

d
du2

)n−k+1 Vn−k+1
e f f (r) r2(n−k)

(n− k + 1)! p2(n−k+1)
∞

,

where we have used the fact that derivatives on r2
m and u2 can be interchanged

for a function of the radial distance r =
√

u2 + r2
m, so as to put these outside the

integration. This simple trick, allows us to recognize in eq. (217) the following

function

θm(rm) ≡
1

p2m+2
∞

∫ +∞

0
du
(

d
du2

)m+1 Vm+1
e f f (r) r2m

(m + 1)!
, (218)

using which we can rewrite eq. (217) as

∆n(rm) =
n+1

∑
k=0

∆̃n,k(rm) , ∆̃n,k(rm) ≡
(b2 − r2

m)
k

k!

(
d

dr2
m

)k

θn−k(rm) . (219)

To summarize what we have obtained so far,

θ

2
=

π

2

(
b

rm
− 1
)

+ b
∞

∑
n=0

n+1

∑
k=0

∆̃n,k(rm)
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=
π

2

(
b

rm
− 1
)

+ b
∞

∑
n=0

n

∑
k=0

∆̃n,k(rm) + b
∞

∑
n=0

∆̃n,n+1(rm) . (220)

The last sum can be rewritten in a remarkably simple way

b
∞

∑
n=0

∆̃n,n+1(rm) = b
∞

∑
n=0

(b2 − r2
m)

n+1

(n + 1)!

(
d

dr2
m

)n+1

θ−1(rm) (221)

= b
∞

∑
n=0

(b2 − r2
m)

n

n!

(
d

dr2
m

)n

θ−1(rm)− bθ−1(rm) = b
[
θ−1(b)− θ−1(rm)

]
,

or simply

b
∞

∑
n=0

∆̃n,n+1(rm) =
π

2

(
1− b

rm

)
, (222)

where we have recognized the Taylor series of θ−1(rm) around b. This is equal

and opposite to the first contribution of eq. (220), a cancellation which lead to the

following expression for the scattering angle

θ

2
= b

∞

∑
n=0

n

∑
k=0

∆̃n,k(rm) = b
∞

∑
n=0

n

∑
k=0

(b2 − r2
m)

k

k!

(
d

dr2
m

)k

θn−k(rm) = b
∞

∑
k=0

θk(b) .

(223)

In the last equality we have used the fact that eq. (223) is the sum over n of

the Taylor series of θn(rm) around b. Thus, the main result of this section can be

summarized in the following way, which states that the scattering angle can always

be expressed in terms of finite integrals without any reference to rm

θ =
∞

∑
k=1

θ̃k(b) , θ̃k(b) ≡
2b
k!

∫ +∞

0
du
(

d
du2

)k Vk
e f f (r) r2(k−1)

p2k
∞

. (224)

Since Ve f f is related to the classical part of the Fourier transform of scattering

amplitudes, this concludes the derivation of the scattering angle solely in terms
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of gauge invariant quantities. The manifest independence of the intermediate

parameter rm (the distance of nearest approach) in our expression for the scattering

angle is important. Since rm in general is determined by a solvable condition

relating it to other scattering information it should disappear entirely from the

result, as we have shown explicitly. In our approach there is no subtlety involved in

the way it drops out of the relation for the scattering angle and there is no need

to regularize intermediate expressions on account of it. Independence of rm is a

particularly acute problem in general relativity where this quantity is not even

gauge invariant and such it has to disappear from the expression for the gauge

invariant scattering angle.

Let us finally explore the simplicity of our expression for the scattering angle

as opposed to previous methods. As described above, we can express the fully

relativistic scattering angle in terms of an effective position-space potential which

for the case of general relativity is given by

Ve f f (r) = −
∞

∑
n=1

Gn
N fn(E)

rn . (225)

This is related to the classical part of the scattering amplitude to any loop order

as shown. Let us first focus on the angle up to 3PM order in four dimensions. For

ease of notation, in what follows we are going to implicitly assume the dependence

on energy of the fn(E) coefficients. We thus consider
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θ3PM(b) = θ̃1(b) + θ̃2(b) + θ̃3(b) , (226)

θ̃1(b) =
2b
p2

∞

∫ +∞

0
du

d
db2 Ve f f (r) ,

θ̃2(b) =
b

p4
∞

∫ +∞

0
du
(

d
db2

)2

r2[Ve f f (r)
]2 , (227)

θ̃3(b) =
b

3p6
∞

∫ +∞

0
du
(

d
db2

)3

r4[Ve f f (r)
]3 . (228)

We start with the first contribution from eq. (226),

θ̃1(b) =
b

p2
∞

∫ +∞

0
du

∂rVe f f (
√

u2 + b2)
√

u2 + b2
. (229)

This we recognize as a classic textbook formula, usually presented for the bending

angle around static massive sources in the non-relativistic approximation (see, e.g.,

ref. [80]). Although it is surely of older origin, we will denote it Bohm’s formula.

The power of our derivation is that this formula describes the motion of fully

relativistic particles, with no restriction on masses or range of velocities on account

of the exact map. We can also provide a closed formula for this contribution given

by a generic effective potential.

θ̃1(b) =
b

p2
∞

∞

∑
n=1

nGn
N fn

∫ +∞

0
du

1
(u2 + b2)

n
2+1

. (230)

As can be seen, all terms depend on the integral

∫ +∞

0
du

1
(u2 + b2)

n
2+1

=
1

bn+1

√
π

n
Γ(n+1

2 )

Γ(n
2 )

, ∀n ∈N , (231)
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and thus

θ̃1(b) =

√
π

p2
∞

∞

∑
n=1

Gn
N fn

bn
Γ(n+1

2 )

Γ(n
2 )

. (232)

To 3PM order, the other needed contributions are given by

θ̃1(b) =

√
π

p2
∞

3

∑
n=1

Gn
N fn

bn
Γ(n+1

2 )

Γ(n
2 )

=
GN f1

Lp∞
+

G2
N f2π

2L2 +
G3

N f32p∞

L3 , (233)

which reproduces the linear terms in fn up to 3PM known in literature. However,

to the same order there are also additional contributions which can be regarded as

corrections to Bohm’s formula beyond leading order as given by eqs. (227)-(228)

θ̃2(b) =
b

p4
∞

∫ +∞

0
du
(

d
db2

)2

r2
[

2G3
N f1 f2

r3 +
G2

N f 2
1

r2

]
=

G3
N f1 f2

L3p∞
. (234)

Here is an important observation: The contribution to G2
N vanishes in four dimen-

sions. This means that Bohm’s formula in eq. (229) is valid, beyond what we

could expect, also at 2PM order, a fact which has been previously noticed and

from which now we provide a clear understanding. In fact, Bohm’s non-relativistic

formula holds at 2PM order even if one naively substitutes a static non-relativistic

potential for the bending of light, and we now understand why. Furthermore, this

formula agrees with the explicit calculations of the eikonal limit of gravity up to

2PM order with arbitrary masses [47, 74–76]. We now also understand why the

eikonal exponentiation of classical gravity works out so simply at 2PM order in

four dimensions: it is the vanishing of the f 2
1 -term for the angle (and the fact that

in the eikonal limit the scattering angle enters in terms of the odd function sin(θ)).
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This brings us to another important point. We see from this analysis that the

eikonal exponentiation is bound to work for classical gravity to all orders and in

any number of dimensions. Not only that, its precise form is already dictated by

the formula we provide. In this sense, there would superficially seem to be no

need to pursue the computation of the eikonal limit beyond 2PM order. However,

given that the actual evaluation of the coefficients fi require explicit full amplitude

calculations it could still be of interest to pursue the eikonal limit to the given order,

as an independent check.

Finally, we need to evaluate the remaining term

θ̃3(b) = −
bG3

N f 3
1

3p6
∞

∫ +∞

0
du
(

d
db2

)3

r = −
G3

N f 3
1

12L3p3
∞

. (235)

Summing these contributions, we obtain the desired scattering angle at 3PM order

θ3PM =
GN f1

Lp∞
+

G2
N f2π

2L2 +
G3

N f32p∞

L3 +
G3

N f1 f2

L3p∞
−

G3
N f 3

1
12L3p3

∞
(236)

As seen, the computation is quite straightforward, involving only elementary

integrals and derivatives. Higher PM contributions can be calculated easily to any

desired order as demonstrated in table 1. It is clear that there are interesting patterns

in these expressions and it is elementary to express several of the combinations in

simple closed form, valid to all orders.

It is perhaps more interesting to note that certain combinations are missing. We

illustrated this above by pointing out how the f 2
1 -contribution vanishes. Equipped
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with the map between effective potential and coefficient of the amplitude, we can

now understand this result in all generality.

In order to analyse the general conditions for such vanishing contribution to the

scattering angle we start by reconsidering the previous expression for the post-

Minkowskian scattering angle assuming a m post-Minkowskian potential

θ =
∞

∑
n=1

θ̃n(b) , θ̃n(b) =
2b

n! p2n
∞

∫ +∞

0
du
(

d
db2

)n

r2n−2Vn
e f f (r) , (237)

Ve f f (r) = −
m

∑
k=1

Gk
N fk

rk . (238)

We expand the n-power of the potential by using the multinomial theorem

Vn
e f f (r) = (−1)n ∑

n1+n2+...+nm=n

(
n

n1, n2, . . . , nm

)
Gβm

N f n1
1 f n2

2 · · · f nm
m

rβm
, (239)

where βm ≡ n1 + 2n2 + 3n3 + ...mnm and ( n
n1,n2,...,nm

) ≡ n!
n1!n2!...nm! . If we now evaluate

eq.(237) using this we have

θ̃n(b) =
2
√

π

n!p2n
∞

∑
n1+n2+...+nm=n

f n1
1 f n2

2 · · · f nm
m

bβm

Gβm
N

βm

(
n

n1, n2, . . . , nm

)
Γ( βm+1

2 )

Γ( βm
2 )

n−1

∏
α=0

(1−n+
βm

2
+α)

=

√
π

p2n
∞

∑
n1+n2+...+nm=n

(
GN

b

)βm( m

∏
l=1

f nl
l

nl !

)
Γ( βm+1

2 )

Γ( βm
2 +1−n)

. (240)
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Null contributions in eq.(240) appears for
2n− 2− n1 − 2n2 − ...−mnm = 0 ,

n1 + n2 + ...nm = n , ∀n ∧ nj=1,2..m ∈N ,

(241)

as well as 
2n− 2− n1 − 2n2 − ...−mnm − 1 = 0 ,

n1 + n2 + ...nm = n , ∀n ∧ nj=1,2..m ∈N ,

(242)

and so on. All these can be expressed in a compact form as follows
2n− 2− n1 − 2n2 − ...−mnm − α = 0 ,

n1 + n2 + ...nm = n , ∀n, α ∧ nj=1,2..m ∈N : 0 ≤ α ≤ n− 1 .

(243)

This system of equations describes the intersection of two affine hyperplanes in

m dimensions, the solutions to which are positive integer points on a parametric

m− 2 affine hyperplane with parameters n and α. Thus, given a m-dimensional

post-Minkowskian potential, the vanishing coefficients to the scattering angle are in

one-to-one correspondence with the positive integer zeros of the intersection of two

affine hyperplanes in m dimensions. As an example, let us evaluate the vanishing
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contributions to the scattering angle arising from a 3PM potential. The system to

be solved is
n1 + 2n2 + 3n3 = 2n− 2− α ,

n1 + n2 + n3 = n , ∀n, α ∧ nj=1,2,3 ∈N : 0 ≤ α ≤ n− 1 ,

(244)

and the solution is given by

n1 = n1

n2 = 2− 2n1 + n + α ,

n3 = n1 − 2− α , ∀n, α, n1 ∈N : 0 ≤ α ≤ n− 1 .

(245)

We remind the reader that the parameter n labels the θ̃n contribution to the scattering

angle. For n = 1 there are no positive integer solution on this hyperplane, while

for n = 2 we find that there is only one solution given by n1 = 2, n2 = n3 = 0,

which is nothing else than the vanishing of the f n1
1 = f 2

1 term. This procedure is

straightforward, it can be easily generalized to any order, and shows that there is

an infinite number of such vanishing contributions.

conclusion

We have unravelled an unexpected equivalence between classical solutions to

Lippmann-Schwinger equations and solutions to the relativistic energy relation
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of two-body dynamics. The equivalence ensures that a physical observable such

as the scattering angle can be determined directly from the classical part of the

amplitude without recourse to the relativistic potential. In detail, we have found

that the implicit function theorem applied to the relativistic energy relation is in

one-to-one correspondence with the classical part of the solutions to the Lippmann-

Schwinger equation of the quantum mechanical scattering problem. The link is a

relation between the classical part of the scattering amplitude and the potential

(and derivatives thereof). Amazingly, this relation removes all Born subtractions

from the problem leaving us with only the classical part of the amplitude when we

evaluate the scattering angle.

Using Damour’s map to a non-relativistic theory for a particle of mass equal to

1/2, we have derived an explicit formula for the Post-Minkowksian scattering angle

to any order in the coupling constants of the potential. This formula is universal

and applicable to any classical potential. A distinct advantage of our formula is

that it does not require knowledge of the classical turning point rm, nor does it

require regularization with respect to that quantity. When we apply our formula

to the problem of Post-Minkowskian general relativity we recover, effortlessly, the

perturbative expansions quoted in the literature. We have illustrated the simplicity

of our expression for the scattering angle by listing the expression of the scattering

angle up to 12PM order.

There are patterns in these expressions for the scattering angle and we have ex-
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plained why there are certain “vanishing theorems” for particular combinations of

terms. The first missing one is the f 2
1 -piece of the one-loop scattering angle, which

explains the simplicity of the eikonal limit at one-loop order. We have also found

the general condition for the vanishing of such contributions to any order.
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PM θPM/
( GN

p∞ L

)PM

1 f1

2 1
2 πp2

∞ f2

3 2 f3 p4
∞ + f1 f2 p2

∞ −
f 3
1

12
4 3

8 πp4
∞
(
2 f4 p2

∞ + f 2
2 + 2 f1 f3

)
5 8

3 f5 p8
∞ + 4

(
f2 f3 + f1 f4

)
p6

∞ + f1
(

f 2
2 + f1 f3

)
p4

∞ − 1
6 f 3

1 f2 p2
∞ +

f 5
1

80
6 5

16 πp6
∞
(
3 f6 p4

∞ + 3
(

f 2
3 + 2 f2 f4 + 2 f1 f5

)
p2

∞ + f 3
2 + 6 f1 f2 f3 + 3 f 2

1 f4
)

7 16
5 f7 p12

∞ + 8
(

f3 f4 + f2 f5 + f1 f6
)

p10
∞ + 6

(
f3 f 2

2 + 2 f1 f4 f2 + f1
(

f 2
3 + f1 f5

))
p8

∞

+ f1
(

f 3
2 + 3 f1 f3 f2 + f 2

1 f4
)

p6
∞ − 1

8 f 3
1

(
2 f 2

2 + f1 f3
)

p4
∞ + 3

80 f 5
1 f2 p2

∞ −
f 7
1

448
8 35

128 πp8
∞
(
4 f8 p6

∞ + 6
(

f 2
4 + 2

(
f3 f5 + f2 f6 + f1 f7

))
p4

∞ + 12
(

f4 f 2
2 +

(
f 2
3 + 2 f1 f5

)
f2

+ f1
(
2 f3 f4 + f1 f6

))
p2

∞ + f 4
2 + 6 f 2

1 f 2
3 + 12 f1 f 2

2 f3 + 12 f 2
1 f2 f4 + 4 f 3

1 f5
)

9 128
35 f9 p16

∞ + 64
5

(
f4 f5 + f3 f6 + f2 f7 + f1 f8

)
p14

∞ + 16
3

(
f 3
3 + 6

(
f2 f4 + f1 f5

)
f3 + 3 f 2

2 f5
+3 f1

(
f 2
4 + 2 f2 f6 + f1 f7

))
p12

∞ + 8
(

f3 f 3
2 + 3 f1 f4 f 2

2 + 3 f1
(

f 2
3 + f1 f5

)
f2

+ f 2
1

(
3 f3 f4 + f1 f6

))
p10

∞ + f1
(

f 4
2 + 6 f1 f3 f 2

2 + 4 f 2
1 f4 f2 + f 2

1

(
2 f 2

3 + f1 f5
))

p8
∞

− 1
30 f 3

1

(
10 f 3

2 + 15 f1 f3 f2 + 3 f 2
1 f4
)

p6
∞ + 1

40 f 5
1

(
3 f 2

2 + f1 f3
)

p4
∞ − 1

112 f 7
1 f2 p2

∞ +
f 9
1

2304
10 63

256 πp10
∞
(
5 f10 p8

∞ + 10
(

f 2
5 + 2

(
f4 f6 + f3 f7 + f2 f8 + f1 f9

))
p6

∞
+30

(
f6 f 2

2 +
(

f 2
4 + 2 f1 f7

)
f2 + f 2

3 f4 + 2 f3
(

f2 f5 + f1 f6
)
+ f1

(
2 f4 f5 + f1 f8

))
p4

∞
+10

(
2 f4 f 3

2 + 3
(

f 2
3 + 2 f1 f5

)
f 2
2 + 6 f1

(
2 f3 f4 + f1 f6

)
f2 + f1

(
2 f 3

3 + 6 f1 f5 f3
+ f1

(
3 f 2

4 + 2 f1 f7
)))

p2
∞ + f 5

2 + 30 f 2
1 f2 f 2

3 + 20 f1 f 3
2 f3 + 30 f 2

1 f 2
2 f4 + 20 f 3

1 f3 f4
+20 f 3

1 f2 f5 + 5 f 4
1 f6
)

11 256
63 f11 p20

∞ + 128
7

(
f5 f6 + f4 f7 + f3 f8 + f2 f9 + f1 f10

)
p18

∞
+32

(
f7 f 2

2 + 2
(

f4 f5 + f1 f8
)

f2 + f 2
3 f5 + f3

(
f 2
4 + 2 f2 f6 + 2 f1 f7

)
+ f1

(
f 2
5 + 2 f4 f6 + f1 f9

))
p16

∞ + 80
3

(
f8 f 3

1 + 3
(

f4
(

f 2
3 + f1 f5

)
+ f1 f3 f6

)
f1 + f 3

2 f5
+3 f 2

2
(

f3 f4 + f1 f6
)
+ f2

(
f 3
3 + 6 f1 f5 f3 + 3 f1

(
f 2
4 + f1 f7

)))
p14

∞ + 10
(

f3 f 4
2 + 4 f1 f4 f 3

2
+6 f1

(
f 2
3 + f1 f5

)
f 2
2 + 4 f 2

1

(
3 f3 f4 + f1 f6

)
f2 + f 2

1

(
2 f 3

3 + 2 f1
(

f 2
4 + 2 f3 f5

)
+ f 2

1 f7
))

p12
∞+

f1
(

f 5
2 + 10 f1 f3 f 3

2 + 10 f 2
1 f4 f 2

2 + 5 f 2
1

(
2 f 2

3 + f1 f5
)

f2 + f 3
1

(
5 f3 f4 + f1 f6

))
p10

∞
− 1

12 f 3
1

(
5 f 4

2 + 15 f1 f3 f 2
2 + 6 f 2

1 f4 f2 + f 2
1

(
3 f 2

3 + f1 f5
))

p8
∞

+ 1
56 f 5

1

(
7 f 3

2 + 7 f1 f3 f2 + f 2
1 f4
)

p6
∞ − 5

896 f 7
1

(
4 f 2

2 + f1 f3
)

p4
∞ +

5 f 9
1 f2 p2

∞
2304 −

f 11
1

11264
12 231

1024 πp12
∞
(
6 f12 p10

∞ + 15
(

f 2
6 + 2

(
f5 f7 + f4 f8 + f3 f9 + f2 f10 + f1 f11

))
p8

∞
+20

(
f 3
4 + 6

(
f3 f5 + f2 f6 + f1 f7

)
f4 + 3

(
f8 f 2

2 +
(

f 2
5 + 2 f3 f7 + 2 f1 f9

)
f2

+ f 2
3 f6 + f1

(
2 f5 f6 + 2 f3 f8 + f1 f10

)))
p6

∞ + 15
(

f 4
3 + 12

(
f2 f4 + f1 f5

)
f 2
3

+12
(

f5 f 2
2 + f1

(
f 2
4 + 2 f2 f6 + f1 f7

))
f3 + 2

(
2 f6 f 3

2 + 3
(

f 2
4 + 2 f1 f7

)
f 2
2

+6 f1
(
2 f4 f5 + f1 f8

)
f2 + f 2

1

(
3 f 2

5 + 6 f4 f6 + 2 f1 f9
)))

p4
∞

+30
(

f4 f 4
2 + 2

(
f 2
3 + 2 f1 f5

)
f 3
2 + 6 f1

(
2 f3 f4 + f1 f6

)
f 2
2 + 2 f1

(
2 f 3

3 + 6 f1 f5 f3
+ f1

(
3 f 2

4 + 2 f1 f7
))

f2 + f 2
1

(
6 f4 f 2

3 + 4 f1 f6 f3 + f1
(
4 f4 f5 + f1 f8

)))
p2

∞
+ f 6

2 + 20 f 3
1 f 3

3 + 90 f 2
1 f 2

2 f 2
3 + 15 f 4

1 f 2
4 + 30 f1 f 4

2 f3
+60 f 2

1 f 3
2 f4 + 120 f 3

1 f2 f3 f4 + 60 f 3
1 f 2

2 f5 + 30 f 4
1 f3 f5 + 30 f 4

1 f2 f6 + 6 f 5
1 f7
)

Table 1: PM corrections to 12th order in GN .



A P P E N D I X

classical contributions from the lippman-schwinger equation

In this Appendix we elaborate on the point made in the main text regarding the

computational topology of the classical contributions from the Lippman-Schwinger

equation. As we have seen in eq.(164), the n-th term of the Lippmann-Schwinger

equation is given by

Sn(p, p′) =
∫

k1,k2,...,kn

Ṽ(p, k1)Ṽ(k1, k2) · · · Ṽ(kn, p′)
(Ep − Ek1) · · · (Ekn−1 − Ekn)

. (246)

Using eq.(163), this can also be rewritten as

Sn(p, p′) = ∑
i1,...,in+1

αi1...in+1

∫
k1,...,kn

1
|p− k1|2i1 · · · |kn − p′ |2in+1

+ . . . , (247)

where the ellipsis denotes both quantum and super-classical contributions around

D = 4 space-time dimensions, while the αi1...in+1 are the combinations of constants

89
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that can be taken out of the integrals by properly expanding the numerators from

each of the potential terms. Let us denote the classical part of this series by Scl.
n

Scl.
n (p, p′)= ∑

i1,...,in+1

αi1...in+1 G(n+1)
ii ...in+1

(p, p′) , G(n+1)
ii ...in+1

(p, p′) ≡
∫

k1,...,kn

1
|p−k1|2i1 · · · |kn−p′ |2in+1

.

(248)

If we perform a shift in ki → ki + p , ∀ki in the right-hand side of eq.(248) we

immediately recognize the definition of a generalized sunset loop-diagram asso-

ciated with a massless particle with momentum q and arbitrary powers in the

denominators,

G(n+1)
ii ...in+1

(q) ≡
∫

k1,...,kn

1
|k1|2i1 · · · |kn + q|2in+1

. (249)

These integrals can be easily computed and they do share a nice factorization

property in position space. In fact, by taking the Fourier transform in position space

we get, using the same notation as for the one-loop case,

g(n+1)
ii ...in+1

(r) =
∫

q,k1,...,kn

eiq·r

|k1|2i1 · · · |kn + q|2in+1
= gi1(r) · · · gin+1(r) , (250)

thus generalizing to all orders what was already seen at one-loop order in the main

text.



8

S E C O N D O R D E R P O S T- M I N K O W S K I A N S C AT T E R I N G I N

A R B I T R A RY D I M E N S I O N S

We extract the long-range gravitational potential between two scalar parti-

cles with arbitrary masses from the two-to-two elastic scattering amplitude

at 2nd Post-Minkowskian order in arbitrary dimensions. In contrast to

the four-dimensional case, in higher dimensions the classical potential

receives contributions from box topologies. Moreover, the kinematical

relation between momentum and position on the classical trajectory con-

tains a new term which is quadratic in the tree-level amplitude. A precise

interplay between this new relation and the formula for the scattering

angle ensures that the latter is still linear in the classical part of the scatter-

ing amplitude, to this order, matching an earlier calculation in the eikonal

approach. We point out that both the eikonal exponentiation and the

reality of the potential to 2nd post-Minkowskian order can be seen as a

91
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consequence of unitarity. We finally present closed-form expressions for

the scattering angle given by leading-order gravitational potentials for

dimensions ranging from four to ten.

introduction

The study of gravitational collisions has recently received a lot of attention thanks to

the amazing experimental breakthroughs in the detection [6, 81–84] of gravitational-

waves coming from black-hole or neutron star mergers. Given the expected im-

provements in detector sensitivity, it will be extremely important in the future

to have high-precision theoretical predictions from General Relativity. To this

aim the use of quantum field theory amplitudes to extract the post-Minkowskian

(PM) expansion of General Relativity has recently gained considerable momen-

tum [10, 12, 14, 15, 23, 24, 32, 73, 85, 86], and progress is now also being made on

extensions to spinning objects [65–72, 87, 88]. The underlying physical motivation

for this approach lies in the observation that, during the early stages of a merger

event, when the two compact objects are still far apart, gravitational interactions

are weak and can be conveniently treated in a weak-coupling approximation. The

perturbative series that naturally organizes the calculation of scattering amplitudes

in quantum field theory then offers a convenient tool to study the dynamics of

such systems for weak gravitational fields without the need to consider the limit
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of small velocities, thanks to the Lorentz invariance of the amplitude. The price

one has to pay in order to eventually retrieve predictions for General Relativity is

the proper handling of the classical limit. Indeed, going to higher orders in the

gravitational coupling in the classical theory entails evaluating Feynman diagrams

with more and more loops in the quantum theory and one may wonder as to how

the loop expansion may yield precision corrections to classical quantities, an issue

that was first clarified in the seminal papers [31, 46] and more recently investigated

systematically in [21].

A fundamental and gauge-independent quantity that is most readily computed

from quantum field theoretic amplitudes is the scattering angle of two colliding

massive objects. Computations of classical gravitational observables using relativis-

tic amplitude techniques have so far been performed with two a priori different

approaches. One is based on the evaluation of the eikonal phase, while the other

proceeds by constructing the Hamiltonian, i.e. the effective interaction potential.

The deflection angle can then be easily obtained from either of these two quantities.

The eikonal approach began in the late eighties with the work by ’t Hooft [74] and

independent parallel work of two other groups [89–91], dealing with transplanckian

energy collisions of strings in a generic number D of macroscopic dimensions.

It was further developed in Refs. [47, 92–98] and extended to the scattering of

strings off a stack of D-branes [99, 100] (see Ref. [101] for a review) and recently to

supersymmetric theories [102–104].
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That approach has its origin in the observation that, in general, a tree diagram in

gravity diverges at high energy, implying that unitarity is violated in this regime. A

viable way to restore unitarity is to first observe that also the loop diagrams are

divergent at high energy and actually their degree of divergence increases with

the number of loops. Then, Fourier transforming a suitably normalized amplitude

from momentum space to the (D− 2)-dimensional impact parameter space, one

sees that the leading terms for large impact parameter of the various diagrams

re-sum into an exponential given by the tree contribution, whose phase is called the

leading eikonal. In this way one obtains a quantity that is consistent with unitarity.

Sub-leading eikonals can be obtained in a similar way by re-summing diagrams

that are subdominant for large impact parameter. Unlike the leading one, they also

contain an imaginary part related to inelastic processes, although we do not discuss

these new effects in this paper.

Having determined the eikonal, one can then use it to compute the classical

deflection angle taking its derivative with respect to the impact parameter. Other

physical quantities, as for instance the Shapiro time delay, can also be computed

from the eikonal. An interesting aspect of this approach is that, in order to compute

the deflection angle to a given order in the coupling, one must still compute, in

principle, an infinite number of loops to check the exponentiation.

In contrast, the Hamiltonian approach relies on the calculation of the effective

interaction potential between two massive particles from the scattering amplitude,



second order post-minkowskian scattering in arbitrary dimensions 95

which is achieved as follows. One first imposes that the two-to-two scattering

amplitude in General Relativity be equal to that of an effective theory of massive

particles interacting via a long-range potential and then reconstructs the potential

that ensures this matching condition order by order in Newton’s coupling constant

GN. To this purpose one can either employ the relativistic Lippmann–Schwinger

equation and the technique of Born subtractions for a first-quantized effective

theory [15,17], or alternatively the Effective Field Theory (EFT) matching procedure

[10, 12].

These two methods have proven to be completely equivalent in the cases that

have been studied and lead to the same effective potential. Indeed, one would

expect the first- and second-quantized effective theories to be equivalent as long

as quantum effects such as particle creation are discarded. We shall review the

demonstration of equivalence below.

Note that the scattering amplitude contains, in general, not only classical and

quantum terms, as identified by their behavior in terms of h̄, but also super-classical

terms. With our conventions, classical terms have a finite limit as h̄ → 0 and

quantum terms vanish, while super-classical contributions give rise to singular

expressions, corresponding to infinitely rapid phase oscillations in the S-matrix.

It is therefore crucial that the super-classical terms cancel out in the procedure of

extracting the classical potential from the scattering amplitude. We find that this

cancellation occurs and in fact also ensures that the potential is real.
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In this work we show that indeed both the eikonal exponentiation and the reality

of the classical potential are ultimately direct consequences of the unitarity of the

quantum theory.

This observation also lies behind the explanation of the following puzzling ques-

tion: In the Hamiltonian approach one only needs to compute the classical part

of the scattering amplitude up to the given order of the expansion in Newton’s

coupling constant GN . Classical Hamilton-Jacobi analysis then yields the scattering

angle up to that order. Why, then, does the eikonal approach require the compu-

tation of the near-forward scattering amplitude to all orders in the coupling GN

in order to derive a fixed-order result for scattering angle? One of the purposes

of this paper is to provide an answer to this question. For consistency, it must be

that the exponentiation of all higher order terms required in the eikonal limit is

automatic. We shall argue that the infinite string of identities needed for the eikonal

exponentiation of the classical parts of the near-forward scattering amplitude follow

from unitarity. This then resolves the apparent conflict and explains why the two

methods for calculating the scattering angle are equivalent.

We consider the scattering problem in a general D-dimensional setting rather

than just limiting ourselves to the four-dimensional case. As is known already

from non-relativistic quantum mechanics, four space-time dimensions represents a

borderline case for scattering in Coulomb-like potentials (such as the leading-order

scattering in general relativity) due to the slow fall-off of the potential at infinity
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and the associated logarithmic phase of the scattered wave. In relativistic quantum

field theory this is reflected in the well-known infrared divergences of the scattering

amplitude in four dimensions. Once we move beyond four dimensions, even just

infinitesimally such as in dimensional regularization, these infrared divergences

are regularized.

The need to maintain reparametrization (gauge) invariance at all stages of the

amplitude calculations while taming the infrared divergences thus leads us to

perform the amplitude calculations beyond D = 4 dimensions. Moreover, as we

shall demonstrate, it is not correct that the D-dimensional result just trivially mimics

the corresponding one in four-dimensional space-time. A new term proportional

to (D− 4) appears at one-loop order. This could potentially have repercussions at

higher loop order if cancelled against infrared sub-divergences, thus threatening to

introduce new finite pieces even after taking the D → 4 limit.

To be more specific, we use the relativistic Lippmann–Schwinger equation to

derive the long-range effective potential up to 2PM order from the elastic scattering

amplitude of two scalar particles with arbitrary masses in a generic D-dimensional

space-time.

While in Ref. [47] the box and triangle diagrams were computed for small

transferred momentum q, i.e. in the classical limit, using a saddle-point evaluation

in the space of Schwinger parameters, we here perform the same calculation

employing the so-called method of regions [105] in momentum space. This consists
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in evaluating the asymptotic expansion of the relevant Feynman integrals as q→ 0

considering loop momenta k that scale in a definite way with respect to q in this

limit.

We identify the soft region, characterized by the scaling relation k ∼ O(q), as

the one producing the non-analytic terms that eventually give rise to the long-

range potential, namely the ones considered in Ref. [47]. The integrals also receive

contributions from the hard region, k ∼ O(1), that are proportional to positive

integer powers of q2 and hence do not contribute to the long-range behavior in

position space, although they are needed for the overall consistency of the small-q

expansion. Indeed, as is often the case, the hard and soft series separately possess

spurious singularities that are just artifacts of the splitting into regions. However,

only the singularities originally present in the Feynman integrals survive in the

sum of the two series, which provides a nontrivial cross check of the asymptotic

expansion thus obtained.

Another region that is often used in order to extract the non-analytic terms in

the classical limit is the potential region. Considering a combination of classical

limit q → 0 and nonrelativistic limit1 v → 0, with v the characteristic velocity of

the asymptotic states in the center-of-mass frame, one defines the scaling of the

loop momenta k = (k0,~k) in the potential region as k0 ∼ O(qv) and ~k ∼ O(q).

The potential expansion allows one to break down the Feynman integrals into

1 We are grateful to Julio Parra-Martinez and Mikhail Solon for pointing out that the role played by
the non-relativistic limit in the definition of the potential region was not properly spelled out in an
earlier version of this paper.
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(D − 1)-dimensional integrals in a non-relativistic spirit. In its turn, this opens

the possibility to compare General Relativity amplitudes directly to the (D− 1)-

dimensional integrals arising in the effective theory, i.e. to perform the matching

mentioned above at the level of integrands, disposing with the need to actually

evaluate certain integrals. We check that, to leading order in the small-v expansion,

the result obtained from the potential region agrees with the non-relativistic limit

of the one furnished by the soft region. However, we deem more convenient to

apply the method of regions in a covariant fashion directly to the D-dimensional

integrals involved in the evaluation of the fully relativistic amplitude, as outlined

above, i.e. to base our calculation on the soft and hard regions.

An important new feature that appears in our analysis for D > 4 is that the

2PM potential receives a nonzero contribution from the sum of the box and crossed

box diagrams, which, of course, vanishes if we take D = 4. This new contribution

comes about because of a nontrivial classical term arising from the sum of box

and crossed box diagrams that is not exactly compensated by the Born subtraction

of the effective theory. Interestingly, this compensation is exact for any D, and

thus no new term appears for D > 4 if we limit ourselves to leading order in the

non-relativistic expansion, i.e. to the leading term of the potential region.

Similarly, when we solve the energy equation for the kinematical relation between

momentum and position on the classical trajectory, p2(r, GN), in dimensions D > 4,

we find that new terms that are quadratic in the scattering amplitude appear. To
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2PM order, this nonlinearity is precisely canceled by a new term for the classical

scattering angle. In this somewhat surprising way, the scattering angle still depends

linearly on the amplitude, to this order. The scattering angle we compute here

coincides perfectly with the one obtained in Ref. [47] using instead the eikonal

method.

The paper is organized as follows. In Sect. 8 we collect the classical and super-

classical terms to the one-loop two-to-two amplitude, arising from triangle and

box diagrams, which we evaluate with the method of regions. In Sect. 8 we extract

the long-range classical potential at 2PM order from the amplitude solving the

Lippmann–Schwinger equation by means of Born subtractions and describe the

equivalence between this technique and the strategy of EFT matching. Sect. 8 is

then devoted to evaluating, given the 2PM potential, the relation p2(r, GN) for

the classical trajectory, which we then use in Sect. 8 to determine the deflection

angle to 2PM order. In Sect. 8 we furnish explicit expressions for the scattering

angle given by the 1PM interaction potential for space-time dimensions ranging

from four up to ten. The paper contains two appendices. In Appendix 8 we detail

our conventions for the normalization of various scattering amplitudes appearing

throughout the paper, while in Appendix 8 we present the explicit calculation of

the relevant one-loop integrals in the limit h̄→ 0 using the method of the regions.
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scattering amplitudes in D-dimensional general relativity

In this section we derive the super-classical and classical parts of the one-loop

amplitude M1−loop in Einstein gravity minimally coupled to two massive scalar

fields,

S(gµν, ϕi=1,2) =
∫

dDx
√−g R
16πGN

− 1
2

∫
dDx

√
−g ∑

i=1,2

(
gµνh̄2∂µ ϕi∂ν ϕi + m2

i ϕ2
i

)
,

(251)

for a general space-time dimension D. Focusing on the gravitational interac-

tion of spin-less fields we can compute the large-distance classical scattering of

Schwarzschild black holes (or more generically a point-particle) in the perturbative

loop expansion. This amplitude has been recently computed in Ref. [47] using a

Schwinger parametrization of the various propagators entering the loop and the

method of steepest descent in those parameters. One of the surprising results was

that the classical piece ofM1−loop includes, for D > 4, a nonvanishing contribution

from the sum of box and crossed-box Feynman diagrams. We here employ an

alternative method that, in the QCD literature, is known as the method of the

regions [105]. It is conveniently used to determine the behavior of a loop integral

when one is interested in a kinematical limit involving the external momenta, for

instance when one of them is small. Here this method is used to determine an

expansion of the loop integrals in powers of h̄, confirming the result of Ref. [47].



second order post-minkowskian scattering in arbitrary dimensions 102

Let us consider the scattering of two point-like scalar particles, schematically

represented by the diagram in the following figure, whose amplitude is given by a

sum over all loop contributions:

We refer to Appendix 8 for more details on our conventions for the normalization

of the scattering amplitude.

In the center-of-mass frame we have

pµ
1 = (E1(p),~p ) ,

pµ
2 = (E2(p),−~p ) ,

pµ
3 = (E1(p),~p ′) ,

pµ
4 = (E2(p),−~p ′)

(252)

and we define

p ≡ |~p | = |~p ′| , (253)

E1(p) ≡
√

p2 + m2
1 , E2(p) ≡

√
p2 + m2

2 , (254)

Ep ≡ E1(p) + E2(p) , ξ(p) ≡ E1(p)E2(p)
E2

p
, (255)

qµ ≡ pµ
1 − pµ

3 , ~q ≡ ~p− ~p ′ . (256)

The previous quantities are related to the Mandelstam variables

s = −(p1 + p2)
2 , t = −(p1 − p3)

2 = −q2 (257)



second order post-minkowskian scattering in arbitrary dimensions 103

and

s = E2
p , p2 =

(E2
p − (m1 + m2)

2)(E2
p − (m1 −m2)

2)

4E2
p

. (258)

We will use a mostly positive signature metric, so that in particular

qµqµ = q2 = |~q |2 (259)

in the center-of-mass frame, and following Ref. [47] we define

κ2
D ≡ 8πGN , γ(p2) ≡ 2(p1 · p2)

2 −
2m2

1m2
2

D− 2
. (260)

We first proceed by decomposing the one-loop amplitude in terms of Feynman

integrals as follows:

M1−loop = d�(I�,s + I�,u) + (d/)µν Iµν
/ + d/ I/ + (d.)µν Iµν

. + d. I. + · · · , (261)

where the ellipsis denote quantum contributions. The integrals involved in the

above expression are the triangle integrals 2

I. =
∫ dDk

(2πh̄)D
h̄5

(k2 − iε) ((q− k)2 − iε)) (k2 − 2p1 · k− iε)
, (262)

Iµν
. =

∫ dDk
(2πh̄)D

h̄3kµkν

(k2 − iε) ((q− k)2 − iε)) (k2 − 2p1 · k− iε)
, (263)

2 The dependence on h̄ in the various integrals follows from the fact that, with our conventions, the
amplitude in (261) has dimension of E3LD−1 where E is an energy and L is a length, as detailed in
Appendix 8.
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together with I/, Iµν
/ which are given by substituting p1 ↔ p2 and p3 ↔ p4 in

Eqs. (262) and (263), the box integral

I�,s =
∫ dDk

(2πh̄)D
h̄5

(k2 − iε)((k− q)2 − iε)(k2 − 2p1 · k− iε)(k2 + 2p2 · k− iε)
(264)

and the crossed box I�,u, obtained by the replacement p1 ↔ −p3 from Eq. (264).

The associated decomposition coefficients are

d� = 4iκ4
Dγ2(p2) , dµν

. =
16iκ4

D(D− 3)m4
1

(D− 2)
h̄2pµ

2 pν
2

q2 (265)

and

d. = 4im2
1κ4

D

[
2m2

1m2
2

D2 − 4D + 2
(D− 2)2 − 2m2

1E2
p + m4

1 +
(

m2
2 − E2

p

)2
]

, (266)

while dµν
/ and d/ are obtained by replacing m1 ↔ m2 in dµν

. and d..

In Appendix 8 we employ the method of expansion by regions to evaluate the

classical limit of the one-loop integrals (262), (263) and (264) in arbitrary dimensions

D and in a generic reference frame. This limit entails letting h̄→ 0 in such a way

that in the center-of-mass frame the three-momentum transfer ~q vanishes, while the

transferred wave number 1
h̄ |~q |, the total energy Ep and the masses m1, m2 are kept

fixed (see e.g. [10,21]). It turns out that this analysis in D dimensions presents some

new features as compared with that of Ref. [12], while being in perfect agreement

for D = 4. The modified expressions for generic D ≥ 4 will be instrumental in

reproducing the correct scattering angle in D dimensions [47].
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Quoting first for completeness the tree-level contribution

Mtree(~p,~p ′) = −2γ(p2)κ2
D

h̄2

q2 , (267)

we are finally able to cast the classical and super-classical terms of the one-loop

scattering amplitude in General Relativity and in D dimensions in the following

form:

M1−loop(~p,~p ′) =M/(~p,~p ′) +M.(~p,~p ′) +M�,s(~p,~p ′) +M�,u(~p,~p ′) + · · · ,

(268)

where

M/(~p,~p ′) +M.(~p,~p ′) = −
2
√

πκ4
D(m1 + m2)

(4π)
D
2

×
(

4(p1 · p2)
2 −

4m2
1m2

2
(D− 2)2 −

(D− 3)E2
p p2

(D− 2)2

)
Γ(5−D

2 )Γ2(D−3
2 )

Γ(D− 3)

(
q2

h̄2

)D−5
2

(269)

and

M�,s(~p,~p ′) +M�,u(~p,~p ′) = − iπ

(4π)
D
2

2κ4
Dγ2(p2)

Ep p
Γ(6−D

2 )Γ2(D−4
2 )

Γ(D− 4)
1
h̄

(
q2

h̄2

)D−6
2

−
2
√

πκ4
Dγ2(p2)

(4π)
D
2

(m1 + m2)

E2
p p2

Γ(5−D
2 )Γ2(D−3

2 )

Γ(D− 4)

(
q2

h̄2

)D−5
2

.

(270)

These results are in agreement with those of Ref. [47] 3.

It should be stressed that the above result for the triangle and box contributions

(269), (270) is obtained from the expansion of the corresponding integrals in the

3 Actually the corresponding amplitudes in Ref. [47] are obtained from the ones appearing here
multiplying by a factor − 1

h̄ , since in this paper we use (367), while in Ref. [47] (388) is used instead.
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soft region, as detailed in Appendix 8. Such integrals also receive additional

contributions from the hard region that are, however, proportional to positive

integer powers of q2

h̄2 . We thus discard such terms because they would give rise

to strictly local contributions in position space, while we are interested in the

long-range behavior of the effective potential. Nevertheless, the interplay between

the soft and the hard series is important because it ensures the proper cancellation

of spurious divergences that arise for specific dimensions in the above expressions,

e.g. in D = 5, and thus provides a nontrivial consistency check of the asymptotic

expansion.

The expression (269) for the triangle topologies could be also alternatively ob-

tained from the leading-order expansion of the associated triangle integrals in the

potential region, as described in Appendix 8. The potential region also allows for a

quick evaluation of the sum of box and crossed box diagrams to leading order in

the nonrelativistic limit, p
m1

, p
m2
� 1.

The result furnished by the leading potential region coincides with the small-

velocity limit of (270), which, as we stressed, is based on the soft region. Actually, the

first term on the right-hand side of (270), namely the super-classical term, coincides

with the corresponding term arising from the leading potential approximation. The

second term, instead, agrees with the corresponding classical term in the leading

potential expansion only in the nonrelativistic limit, in which Ep ≈ m1 + m2. We

refer the reader to Appendix 8 for a detailed discussion of this comparison.
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the post-minkowskian potential in arbitrary dimensions

In this section, we address the calculation of the long-range effective interaction

potential to 2PM order in arbitrary dimension, stressing in particular the new

elements that appear when away from D = 4. Our strategy is based on the

method of Born subtractions [15, 17], which is equivalent to the technique of EFT

matching [10, 12].

As we have stressed, the two-to-two amplitude presents, to one-loop order, both

super-classical, O(h̄−1), and classical, O(h̄0), contributions, as identified by their

h̄ scaling. The super-classical term arises in particular from the sum of box and

crossed box diagrams, which are also the source of the imaginary part of the

amplitude and, in D = 4, of the infrared divergence. Inverse powers of h̄ are

conventionally labelled “IR” in four dimensions since they characterize the terms

responsible for infrared divergences there. It should be stressed, however, that the

very notion of infrared divergent integrals becomes ambiguous away from four

dimensions. Therefore, we shall keep labelling the terms entirely by their scaling

(power) with respect to h̄, which is well-defined for any D.

The calculation of the post-Minkowskian potential in the center-of-mass frame

will then reveal how the super-classical and imaginary term eventually cancel,

providing a well-defined, real and classical expression for the interaction potential,

but leave behind nontrivial contributions in generic dimensions D > 4. We will
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also see how this cancellation can be understood as a consequence of the unitarity

of the underlying quantum theory.

The Lippmann–Schwinger equation in D dimensions

In order to define a post-Minkowskian potential in momentum space and in an

arbitrary number of dimensions D = d + 1 we can use a fully relativistic Lippmann-

Schwinger equation as in [15]

M̃(~p,~p ′) = ṼD(~p,~p ′) +
∫ dd~k

(2πh̄)d
ṼD(~p,~k)M̃(~k,~p ′)

Ep − Ek + iε
. (271)

where in the left-hand side we have defined scattering amplitudes with a proper

normalization factor (see Appendix 8, in particular Eq. (383))

M̃(~p,~p ′) =
M(~p,~p ′)

4E1(p)E2(p)
, (272)

while on the right hand side we have denoted by M̃(~k,~p ′) their analogue definition

off the energy shell with |~k| 6= |~p ′|. In what follows our aim is to extract the classical

potential to 2PM order for arbitrary D ≥ 4. We will work in the center-of-mass

frame using an isotropic gauge which identifies the phase space (r, p) of a two

body Hamiltonian with the Fourier analogue of the exchanged momentum q in the

center of mass and with the modulus of the momenta p. The advantage of the latter

is the absence of p · r terms in the Hamiltonian and it has shown extremely useful



second order post-minkowskian scattering in arbitrary dimensions 109

in the computation of post-Minkwoskian Hamiltonians as shown in [12, 15].

We solve perturbatively Eq. (271) for the potential itself

ṼD(~p,~p ′) = M̃(~p,~p ′)

+
∞

∑
n=1

(−1)n
∫ dd~k1

(2πh̄)d
dd~k2

(2πh̄)d · · ·
dd~kn

(2πh̄)d
M̃(~p,~k1) · · · M̃(~kn,~p ′)

(Ep − Ek1 + iε) · · · (Ekn−1 − Ekn + iε)

(273)

and truncate the series up to order G2
N

ṼD
1PM(~p,~p ′) + ṼD

2PM(~p,~p ′) = M̃tree(~p,~p ′) +M̃1−loop(~p,~p ′) +M̃Born(~p,~p ′) , (274)

where we have denoted the first Born subtraction by

M̃Born(~p,~p ′) ≡ −
∫ dd~k

(2πh̄)d
M̃tree(~p,~k)M̃tree(~k,~p ′)

Ep − Ek + iε
. (275)

Although we do not explicitly distinguish between on-shell and off-shell scattering

amplitudes in our notation, it should be stressed that the functions M̃(p, k) entering

the integrand on the right-hand side of (275) are evaluated for states that do not

necessarily respect energy conservation and the sum over states indeed runs over

all intermediate (D− 1)-momenta~k. They are defined by T-matrix elements for

asymptotic states with energies unconstrained, i.e., |~p | 6= |~k|. This is analogous to

the EFT approach where the potential ṼD(~p,~k) likewise is defined off the energy

shell, i.e., with |~p | 6= |~k|. The off-shell extension of the T-matrix and V corresponds

to the choice of operator basis in the EFT formalism. For instance, insisting on

(D− 1)-dimensional rotational symmetry, the analog of Wilson coefficients in the
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expansion of V will not depend on the scalar product ~p ·~k but only on ~p2 and~k2.

After Fourier transforming, this corresponds to the choice of isotropic coordinates.

In the center-of-mass frame and using this isotropic parametrization

M̃tree(~k,~k ′) ≡ GN

A1

(
k2+k′2

2

)
1
h̄2 |~k−~k′|2

, A1

(
k2 + k′2

2

)
= −

4πγ( k2+k′2
2 )

E1(
k2+k′2

2 )E2(
k2+k′2

2 )
,

(276)

where |~k| is not necessarily equal to |~k′|. For a physical on-shell process in which

|~p| = |~p ′| this of course reduces to

M̃tree(~p,~p ′) = GN
A1(p2)

1
h̄2 q2

, A1(p2) = − 4πγ(p2)

E1(p)E2(p)
. (277)

At this point we need to evaluate the Born subtraction given by the integral in

Eq. (275). We focus on the contributions to (275) arising from the soft region, which

are obtained in this case expanding the integrand around k2 = p2. Indeed, to more

directly compare with the discussion of the expansion by regions presented in

Appendix 8, we could let~k = ~p +~̀ and then expand for ~̀ ∼ O(h̄), which implies

k2 = p2 +O(h̄). One can also check that performing the expansion with respect

to this shifted variable ~̀ eventually leads to the same final answer for the leading

and subleading terms. We thus begin by Taylor-expanding the denominator and

discard quantum terms. In doing so, we find

M̃Born(~p,~p ′) = −2Epξ(p)
∫ dd~k

(2πh̄)d
M̃tree(~p,~k)M̃tree(~k,~p ′)

~p 2 −~k 2 + iε

+

(
1− 3ξ(p)
2Epξ(p)

) ∫ dd~k
(2πh̄)d M̃tree(~p,~k)M̃tree(~k,~p ′) + · · · ,

(278)
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where ellipsis denotes quantum contributions which we discard. Using Eq. (276),

we find

M̃Born(~p,~p ′) = −2Epξ(p)G2
N

∫ ddk
(2πh̄)d

h̄4A2
1

(
~p 2+~k 2

2

)
(~p 2 −~k2 + iε)|~k− ~p |2|~k− ~p ′|2

+ G2
N

(
1− 3ξ(p)
2Epξ(p)

) ∫ ddk
(2πh̄)d

h̄4A2
1

(
~p 2+~k2

2

)
|~k− ~p |2|~k− ~p ′|2

+ · · · .

(279)

We now Taylor-expand also the numerator around k2 = p2. Using Eq. (276) and

reinstating κD, we find

M̃Born(~p,~p ′) = −
γ2(p2)κ4

D
2E3

pξ(p)

∫ ddk
(2πh̄)d

h̄4

(~p 2 −~k 2 + iε)|~k− ~p |2|~k− ~p ′|2

+
κ4

D
4E3

pξ2(p)

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4γ(p) p1 · p2

) ∫ ddk
(2πh̄)d

h̄4

|~k− ~p |2|~k− ~p ′|2
+ · · · ,

(280)

where we have used the following relation, ∂
∂p2 γ(p2) = −2p1·p2

ξ(p) .

The first integral in Eq. (280) is given in Eq. (444), while the second can be

evaluated with Feynman parameters. The super-classical and classical parts of the

Born subtraction to this order can then be written as follows

M̃Born(~p,~p ′) =
iπγ2(p2)κ4

D

2p ξ(p)E3
p(4π)

D
2

Γ
(6−D

2

)
Γ2(D−4

2 )

Γ(D− 4)
1
h̄

(
q2

h̄2

)D−6
2

+
κ4

Dγ2(p2)

4E3
p p2ξ(p)(4π)

D−1
2

Γ
(5−D

2

)
Γ2(D−3

2 )

Γ(D− 4)

(
q2

h̄2

)D−5
2

+
κ4

D

4E3
pξ2(p)(4π)

D−1
2

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4p1 · p2γ(p2)

)
Γ2(D−3

2 )Γ(5−D
2 )

Γ(D− 3)

(
q2

h̄2

)D−5
2

+ · · ·

(281)
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where again ellipsis denotes quantum contributions. Remarkably, not only do

the box and crossed box diagrams give nonvanishing super-classical and classical

contributions for D 6= 4, but similar contributions are also contained in the Born

subtraction. It turns out, as expected, that the two super-classical contributions

exactly cancel each other. The classical terms, however, remain and reproduce for

D = 4 the result of Ref. [15].

The cancellation of the (super-classical) imaginary part can be interpreted as a

consequence of unitarity. Indeed, applying the relation (370) to the two-to-two

scattering in the center-of-mass frame, one has

M̃(~p,~p ′)− M̃(~p ′,~p ) = −i2π
∫ dd~k

(2πh̄)d δ(Ep − Ek)M̃(~k,~p )M̃(~k,~p ′) . (282)

Recalling that the tree-level amplitude is real and that, because of time reversal

invariance, the whole invariant amplitude is symmetric under the exchange of ~p

and ~p ′, we then have, to 2PM order,

ImM̃1−loop(~p,~p ′) = −π
∫ dd~k

(2πh̄)d δ(Ep − Ek) M̃tree(~p,~k )M̃tree(~k,~p ′) . (283)

Comparing the right-hand sides of (274) and (275), this identity guarantees that the

imaginary part of M̃1−loop must cancel against that of the Born subtraction M̃Born.
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In conclusion, we get the following potential in momentum space up to 2PM:

ṼD
1PM(~p,~p ′) + ṼD

2PM(~p,~p ′) = −
γ(p2)κ2

D h̄2

2ξ(p)E2
pq2

+
κ4

D(m1 + m2)

(4π)
D−1

2 4ξ(p)E2
p

(
−4(p1 · p2)

2+
4m2

1m2
2

(D− 2)2 +
(D− 3)E2

p p2

(D− 2)2

)
Γ(5−D

2 )Γ2(D−3
2 )

Γ(D− 3)

(
q2

h̄2

)D−5
2

+
κ4

D

4E3
pξ2(p)(4π)

D−1
2

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4p1 · p2γ(p2)

)
Γ(5−D

2 )Γ2(D−3
2 )

Γ(D− 3)

(
q2

h̄2

)D−5
2

−
κ4

Dγ2(p2)(m1 + m2 − Ep)

(4π)
D−1

2 ξ(p)E4
p p2

Γ(5−D
2 )Γ2(D−3

2 )

Γ(D− 4)

(
q2

h̄2

)D−5
2

.

(284)

Fourier-transforming it to configuration space,

VD(r, p) =
∫ dd~q

(2πh̄)d ṼD(~p,~p ′)e
i
h̄ ~q·~x , (285)

and making use of the identity

∫ dd~q
(2πh̄)d

(
q2

h̄2

)ν

e
i
h̄ ~q·~x =

22ν

π
d
2

Γ(ν + d
2 )

Γ(−ν)

1
r2ν+d , (286)

we get the potential in configuration space up to order 2PM

VD(r, p) = VD
1PM(r, p) + VD

2PM(r, p) + · · · , (287)

VD
1PM(r, p) = −γ(p2)GN

E2
pξ(p)

Γ(D−3
2 )

π
D−3

2

1
rD−3 , (288)
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VD
2PM(r, p)

=
G2

N(m1 + m2)

πD−3E2
pξ(p)

(
4m2

1m2
2

(D− 2)2 +
(D− 3)[(p1 · p2)

2 −m2
1m2

2]

(D− 2)2 − 4(p1 · p2)
2
)

Γ2(D−3
2 )

r2D−6

+
G2

N
E3

pξ2(p)

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4γ(p2)p1 · p2

)
Γ2(D−3

2 )

πD−3
1

r2D−6

+
G2

Nγ2(p2)(Ep −m1 −m2)

E4
p p2 ξ(p)πD−3

Γ2(D−3
2 )

Γ(D− 4)
Γ(D− 3)

r2D−6 .

(289)

Let us stress once more that, for D > 4, the 2PM potential thus receives a nontrivial

contribution from box and crossed-box diagrams that is not exactly compensated by

the Born subtraction. The combination of the two is proportional to the difference

between the total energy and the sum of the masses as shown in the last line of

Eq. (289). As we shall see in the next section, the appearance of this term for D > 4

will give rise to a modification in the linear relation between the classical part of

the amplitude and the expression for p2(r, GN) in the classical trajectory that exists

in D = 4 dimensions [17, 73].

The Effective Field Theory Matching in D dimensions

In the previous section we have shown how the classical effective potential can

be obtained from a scattering amplitude by means of the Born subtraction, which

involves inverting (271) perturbatively. We have seen in particular how the potential
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acquires new nontrivial terms at 2PM order in higher dimensions. Let us now

briefly explain how this calculation can be performed following the method of EFT

amplitude-matching introduced in [12].

We consider two theories: a fundamental one, which we also call the underlying

theory, of two massive scalar fields minimally coupled to gravity, and an effective

theory of two massive scalars interacting through a four-point interaction potential,

which we denote by ṼD(~p,~p ′) in momentum space.

In this approach, one starts by making an ansatz for the effective potential: to

2PM order and in momentum space one has

ṼD(~p,~p ′) = GNc1

(
p2+p′2

2

)( q2

h̄2

)−1

+ G2
Nc2

(
p2+p′2

2

)( q2

h̄2

)D−5
2

+ · · · , (290)

where c1 and c2 are unknown coefficients. Since the fundamental and the effective

theory should give rise to the same dynamics for the massive scalar particles, a

valid matching condition between the two is the equality of scattering amplitudes

order by order in the coupling, or equivalently in the PM counting

M̃(n−1)−loop(~p,~p ′) =MEFT
nPM(~p,~p ′) , (291)

where the left hand side of Eq. (291) is computed in the full theory with the

normalization of Eq.(272), while the right hand side is computed in the effective

theory by a perturbative expansion in iterated bubbles as done in [12]. At 1PM
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order, comparing the coefficient of GN in (291) with the tree amplitude (267), as

dictated by the matching condition

M̃tree(~p,~p ′) =MEFT
1PM(~p,~p ′) , (292)

gives

c1(p2) = A1(p2) (293)

with A1(p2) as in (277).

At 2PM order, the EFT amplitude is made by two contributions, a contact term

proportional to the potential and a bubble: truncating at G2
N order one finds

MEFT
2PM(~p,~p ′) = G2

Nc2

(
p2
)( q2

h̄2

)D−5
2

+ G2
N

∫ dd~k
(2πh̄)d

h̄4c2
1

(
p2+k2

2

)
(Ep − Ek + iε)|~p−~k|2|~p ′ −~k|2

+ · · · ,

(294)

At this point one needs to evaluate the integral appearing in the second line of (294)

and then compare this the EFT amplitude with the box and triangle contributions

(269), (270) so as to derive c2(p2). However, thanks to the condition (293), the second

line of (294) equals −M̃Born(~p,~p ′), namely the Born subtraction (275) except for

the overall sign. Therefore the matching condition

M̃1−loop(~p,~p ′) =MEFT
2PM(~p,~p ′) (295)
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is equivalent to

M̃/(~p,~p ′)+M̃.(~p,~p ′)+M̃�,s(~p,~p ′)+M̃�,u(~p,~p ′) = ṼD
2PM(~p,~p ′)−M̃Born(~p,~p ′) .

(296)

We thus see that the EFT matching condition is in fact identical to Eq. (274), which

was at the basis of the calculation of the previous subsection, and thus leads to the

same answer for the 2PM potential (284).

Let us once again briefly stress the new features arising in this analysis in higher

dimensions. We find that the box topologies not only provide a super-classical term

that is compensated by a corresponding contribution in the effective theory, but also

possess a subleading term which is non vanishing and classical in D > 4. This term

is not removed by a similar contribution fromMBorn(~p,~p ′) and this leaves a term

in the 2PM potential which is proportional to the difference in the total energy and

masses. This term vanishes at D = 4, as can be seen from the last line of Eq. (289).

More on the EFT matching and the Lippmann-Schwinger equation

At 2PM and in arbitrary dimensions the classical post-Minkwoskian potential

describing a binary system in isotropic coordinates is equivalent if computed

using the Lippmann-Schwinger equation or the EFT matching. Restricting to the

conservative sector, we can easily show the equivalence to hold to all orders in GN
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and in arbitrary dimensions. To this extent, let’s go back to Eq. (271) and let’s find

a formal solution for a given scattering amplitudeM(~p,~p ′). Similar to Eq. (273),

the potential will be given by a formal series

M̃(~p,~p ′) = ṼD(~p,~p ′)

+
∞

∑
n=1

∫ dd~k1

(2πh̄)d
dd~k2

(2πh̄)d · · ·
dd~kn

(2πh̄)d
ṼD(~p,~k1) · · · ṼD(~kn,~p ′)

(Ep − Ek1 + iε) · · · (Ekn−1 − Ekn + iε)
.

(297)

At this point, we can recast each propagator in Eq. (297) as being an “effective two

body propagator” so as to rewrite each of them as a couple of matter propagators

1
Eki − Ekj

= i
∫ dk0

2π

1

k0 −
√

k2
j + m2

1

1

Eki − k0 −
√

k2
j + m2

2

. (298)

If we now plug back Eq. (298) into Eq. (297) we can easily recognize on the right

hand side of the latter the same scattering amplitude computed in [12], where the

nth term of the series corresponds to the nth loop in an effective field theory of only

scalar fields. Using this observation, we get

M̃(~p,~p ′) = M̃EFT(~p,~p ′) (299)

thus showing the equivalence between EFT matching and the Lippmann-Schwinger

equation. It would be interesting to understand if the equivalence persists once

introducing radiative effects in the potential, which are expected to first appear at

4PM [10].
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from the classical amplitude to kinematics

In the previous section we have used the classical limit of the scattering amplitude

to derive the classical potential at 2PM order. Including the kinetic terms this brings

us to the following Hamiltonian describing the interaction between the two objects

with mass m1 and m2:

H(r, p) = ∑
i=1,2

√
p2 + m2

i + VD
1PM(r, p) + VD

2PM(r, p) = E . (300)

Since E is a constant of motion the previous equation implicitly determines the

quantity p2 = p2(r, GN) as a function of r and GN. Knowledge of this function

is crucial in order to compute the scattering angle θ in the center-of-mass frame.

Going to polar coordinates we can write p2 as follows:

p2(r, GN) = p2
r +

L2

r2 , (301)

where pϕ ≡ L is the conserved angular momentum of the system. Then, the

deflection angle is given by the relation:

θ = −2
∫ +∞

rmin

∂pr

∂L
dr− π = 2L

∫ ∞

rmin

dr
r2pr
− π , (302)

rmin being the positive root of pr closest to zero. As noticed in Refs. [10, 17, 73] for

D = 4 one has the remarkable relation

p2(r, GN) = p2
∞ − 2Ep∞ ξ(p∞)M̃(r, p∞) , (303)
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where M̃(r, p∞) is the Fourier transform of the amplitude given by

M̃cl.(r, p) ≡
∫ dd~q

(2πh̄)dM̃
cl.(~p,~p ′)ei~qh̄ ·~x . (304)

Working as usual in the center-of-mass frame, we find it convenient here to

emphasize the difference between the momentum evaluated along the classical

trajectory, p2(r, GN), and the asymptotic momentum by the denoting the latter by

p∞, although it had been simply called p in Sect. 8. For instance, the relation (258)

between the asymptotic momentum and the energy now reads

p2
∞ =

(m2
1 + m2

2 − E2
p∞
)2 − 4m2

1m2
2

4E2
p∞

. (305)

We shall now generalize Eq. (303) to the D-dimensional case. Starting from

Eq. (300), we expand the function p2(r, GN), whose existence is ensured by the

implicit function theorem, order by order in the coupling GN. This allows us to

write

p2(r, GN) = p2
∞ + GN (p2)′GN=0(r) +

G2
N

2
(p2)′′GN=0(r) + · · · , (306)

where for brevity

(p2)′GN=0(r) =
∂

∂GN
p2(r, GN)

∣∣
GN=0 ,

1
2
(p2)′′GN=0(r) =

1
2

∂2

∂G2
N

p2(r, GN)
∣∣
GN=0

(307)

denote the first two coefficients of said expansion in powers of GN. Note that (306)
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is a D-independent expression. We then extend the analysis of Ref. [17], substituting

(306) in (300) and solving order by order in GN, to get

GN(p2)′GN=0(r) = −2Ep∞ ξ(p∞)VD
1PM(r, p)

∣∣
p2=p2

∞
(308)

and

G2
N

2
(p2)′′GN=0(r) = −2Ep∞ ξ(p∞)

[
VD

2PM(r, p)

− 2Epξ(p)VD
1PM(r, p)∂p2VD

1PM(r, p) +
(

3ξ(p)− 1
2Epξ(p)

)
(VD

1PM)2(r, p)
]

p2=p2
∞

.
(309)

Using the fact that γ(p2) in Eq. (260) can be written as follows,

γ(p2) = 2E2
p p2 + 2m2

1m2
2

D− 3
D− 2

, (310)

we can easily get

∂p2

(
γ(p2)

E1(p)E2(p)

)
= −γ(p2)(1− 2ξ(p))

2ξ3(p)E4
p

+
2

ξ(p)

(
1 +

p2

ξ(p)E2
p

)
. (311)

Inserting then in Eqs. (308) and (309) the potential in Eq. (289), we find:

GN(p2)′GN=0 = −2Ep∞ ξ(p∞)

[
− γ(p2

∞)GN

E2
p∞

ξ(p∞)

Γ(D−3
2 )

π
D−3

2

1
rD−3

]
= −2Ep∞ ξ(p∞)M̃cl.

tree(r, p∞)

(312)
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together with

G2
N

2
(p2)′′GN=0 = −2Ep∞ ξ(p∞)

[
−

G2
N

πD−3
Γ2(D−3

2 )

r2D−6
(m1 + m2)

E2
pξ(p)

(
4(p1 · p2)

2 −
4m2

1m2
2

(D− 2)2

−
(D− 3)E2

p p2

(D− 2)2

)
+

G2
Nγ2(p2)(Ep −m1 −m2)

E4
p p2ξ(p) πD−3

Γ2(D−3
2 )

Γ(D− 4)
Γ(D− 3)

r2D−6

]
p=p∞

= −2Ep∞ ξ(p∞)

(
M̃cl.

/,.(r, p∞) + (M̃cl.
tree)

2(r, p∞)
ξ(p∞)(Ep∞ −m1 −m2)

p2
∞

Γ(D− 3)
Γ(D− 4)

)
= −2Ep∞ ξ(p∞)

(
M̃cl.

1−loop(r, p∞) + (M̃cl.
tree)

2(r, p∞)
ξ(p∞)Ep∞

p2
∞

Γ(D− 3)
Γ(D− 4)

)
,

(313)

where the Fourier transform of the classical part of the scattering amplitude is

defined by Eq. (304). Inserting Eqs. (312) and (313) in Eq. (306), we get

p2(r, GN) = p2
∞ − 2Ep∞ ξ(p∞)

(
M̃cl.

tree(r, p∞) + M̃cl.
1−loop(r, p∞)

+ (M̃cl.
tree)

2(r, p∞)
ξ(p∞)Ep∞

p2
∞

Γ(D− 3)
Γ(D− 4)

)
+ · · · , (314)

which of course reduces to Eq. (303) for D = 4.

It was argued in Ref. [17] that the simpler relation in four dimensions nicely

aligned with our expectations that the effective potential describing the scattering

of particles from flat space at minus infinity to flat space at plus infinity should

depend only on the classical part of the scattering amplitude. We note that this

expectation, although slightly modified due to the new term proportional to the

square of the tree-level amplitude at 2PM order, is still borne out by this new result

for D > 4.



second order post-minkowskian scattering in arbitrary dimensions 123

An alternative derivation

An alternative derivation of the modified relation (314) for D > 4 that directly

points towards a generalization to any order in the post-Minkowskian expansion

proceeds via Damour’s effective Hamiltonian defined by the solution to the energy

equation (300) [23, 24].

To apply this strategy, let us start with the following ansatz p2(r, GN) for the

solution of Eq. (300)

p2(r, GN) = p2
∞ +

2

∑
n=1

Gn
N f D

n (p2
∞)

rn(D−3)
, (315)

where the constants f D
n are found by solving Eq. (300) iteratively. As discussed in

detail in Refs. [17, 24, 73], one can consider the energy-momentum relation (315) as

an effective nonrelativistic “Hamiltonian” for the scattering problem, in which the

term p2
∞ is regarded as the kinetic term, i.e. the unperturbed Hamiltonian, while

Veff ≡ −
2

∑
n=1

Gn
N f D

n (p2
∞)

rn(D−3)
(316)

plays the role of an effective small perturbation. Notice however that the “potential”

Veff has the dimension of an energy squared by (315). It is crucial that here the

coefficients of the potential are constants, only depending on the total conserved

energy E.
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The associated Lippmann–Schwinger equation then reads

M̃eff(~p,~p ′) = Ṽeff(~p,~p ′) +
∫ dd~k

(2πh̄)d
M̃eff(~p,~k )Ṽeff(~k,~p ′)

~p 2 −~k2 + iε
, (317)

where we have rescaled the amplitude by a normalization factor according to

M̃eff(r, p∞) = 2Ep∞ ξ(p∞)M̃(r, p∞) (318)

as in (385) and Ṽeff denotes the effective potential in momentum space. In four

dimensions the perturbative iteration of Eq. (317) produces only super-classical

terms. For example, at 2PM order, the perturbative expansion of Eq. (317)

M̃eff(~p,~p ′) = Ṽeff(~p,~p ′) +
∫ d3~k

(2πh̄)3
Ṽeff(~p,~k )Ṽeff(~k,~p ′)

~p 2 −~k2 + iε
+ · · · (319)

implies

M̃eff(~p,~p ′) = Ṽeff(~p,~p ′)+
∫ d3~k

(2πh̄)3
16π2( f1)

2G2
N h̄4

(~p 2 −~k2 + iε)(~k− ~p )2(~k− ~p ′)2
+ · · · , (320)

where f1 stands for f D
1 for D = 4 and we have used that the Fourier transform of 1

r

is equal to 4πh̄2

q2 (see Eq. (286)). From Eq. (444) one can see that the integral in the

previous equation has only super-classical and quantum contributions in D = 4, or

in other words that its classical piece vanishes in four dimensions.



second order post-minkowskian scattering in arbitrary dimensions 125

However, this argument does not apply for arbitrary dimensions D > 4. Working

again to 2PM order, the integral involved is now

M̃eff(~p,~p ′) = Ṽeff(~p,~p ′)+
1

Γ
(D−3

2

)2

∫ dd~k
(2πh̄)d

16πD−1G2
N( f D

1 )2h̄4

(~p 2 −~k2 + iε)(~k− ~p )2(~k− ~p ′)2
+ · · · ,

(321)

where we employed (286). Using Eq. (444) and restricting ourselves to just the

classical part of this equation, we get in position space,

M̃cl.
eff(r, p) = Veff(r, p)− 1

2p2
Γ(D− 3)
Γ(D− 4)

G2
N( f D

1 )2

r2(D−3)
(322)

from which

Veff(r, p) = M̃cl.
eff(r, p) +

1
2p2

Γ(D− 3)
Γ(D− 4)

(M̃cl.
eff,tree)

2(r, p) . (323)

Inserting the proportionality relation M̃eff(r, p∞) = 2Ep∞ ξ(p∞)M̃(r, p∞), we obtain

that the effective potential at 2PM order for p = p∞ is

Veff(r, p∞) ≡ 2Ep∞ ξ(p∞)(
M̃cl.

tree(r, p∞) + M̃cl.
1−loop(r, p∞) + (M̃cl.

tree)
2(r, p∞)

ξ(p∞)Ep∞

p2
∞

Γ(D− 3)
Γ(D− 4)

)
(324)

as well as the relation

p2(r, GN) = p2
∞ − 2Ep∞ ξ(p∞)

(
M̃cl.

tree(r, p∞)

+ M̃cl.
1−loop(r, p∞) + (M̃cl.

tree)
2(r, p∞)

ξ(p∞)Ep∞

p2
∞

Γ(D− 3)
Γ(D− 4)

)
,

(325)

confirming the previous derivation of Eq. (314). The advantage of this alternative
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derivation is that it is more suitable to generalization to higher orders in the PM

expansion. Further corrections of arbitrarily high order in GN will in general appear

in the relation when D > 4.

the scattering angle in arbitrary dimensions

In this section we compute the deflection angle and in particular we see how the

new terms that appear in the quantity p2(r, GN) reproduce the deflection angle

already obtained from the eikonal in dimensions greater than four [47].

For the calculation of the scattering angle using p2(r, GN), one could in principle

employ Eqs. (301) and (302), which however involves computing the root rmin of a

polynomial in GN of increasing complexity. A more convenient strategy, as seen

in [17], is to express the scattering angle only in terms of p2(r, GN) and the impact

parameter b as 4

θD =
∞

∑
k=1

θ̃k(b) , θ̃k(b) =
2b
k!

∫ ∞

0
du
(

d
db2

)k (Veff(r, p∞))kr2(k−1)

p2k
∞

, (326)

where r2 = u2 + b2, while the effective potential is given by

Veff(r, p∞) = −
∞

∑
n=1

Gn
N f D

n (p2
∞)

rn(D−3)
, (327)

which avoids the need to evaluate rmin. Since p2(r, GN) = p2
∞−Veff, one can always

4 For an alternative way to relate p2(r, GN) to the scattering angle, see Ref. [73].
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read the f D
n coefficients from Eq. (324).5

At 2PM order the D-dimensional scattering angle is thus provided by

θD
2PM = θ̃1(b) + θ̃2(b) , (328)

where

θ̃1(b) =
2b
p2

∞

∫ +∞

0
du

dVeff

db2 (r, p∞) , (329)

θ̃2(b) =
b

p4
∞

∫ +∞

0
du
(

d
db2

)2[
r2V2

eff(r, p∞)

]
. (330)

From Eq. (324) we can read off the f D
n coefficients in terms of the amplitudes,

namely

f D
1 (p∞) =

2γ(p2
∞)

Ep∞ π
D−3

2
Γ
(

D− 3
2

)
(331)

and

f D
2 (p∞) =

2(m1 + m2)Γ2 (D−3
2

)
Ep∞ πD−2

(
4(p1 · p2)

2 −
4m2

1m2
2 + (D− 3)p2E2

p

(D− 2)2

)
p=p∞

+
2γ2(p∞)(m1 + m2 − Ep∞)

E3p2
∞πD−3 Γ2

(
D− 3

2

)
Γ(D− 3)
Γ(D− 4)

.

(332)

5 In certain dimensions particular combinations of f D
n terms in the expansion of the scattering angle

may vanish [17]. This phenomenon occurs already at 2PM order in four dimensions, where the
expansion of the scattering angle exceptionally does not involve f 2

1 . This is not so in dimensions
D > 4.
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The integrals in Eqs. (329)–(330) are elementary. The first contribution to the

scattering angle gives

θ̃1(b) =
GN f D

1 (p∞)

p2
∞

√
π

bD−3
Γ(D−2

2 )

Γ(D−3
2 )

+
G2

N f D
2 (p∞)

p2
∞

√
π

b2D−6
Γ(D− 5

2)

Γ(D− 3)
. (333)

Inserting Eqs. (331)–(332), this becomes

θ̃1(b) =
2γ(p∞)GN

p2
∞ Ep∞ bD−3

Γ(D
2 )

π
D−4

2

+
2G2

NΓ(D− 5
2)Γ

2(D−3
2 )

p2
∞ Ep∞ b2D−6πD− 7

2

(m1 + m2)

Γ(D− 3)

(
4(p1 · p2)

2 −
4m2

1m2
2 + (D− 3)p2E2

p

(D− 2)2

)
p=p∞

+
2γ2(p∞)(m1 + m2 − Ep∞)

E3
p∞

p4
∞πD− 7

2
Γ2
(

D− 3
2

)
Γ(D− 5

2)

Γ(D− 4)
G2

N
b2D−6 .

(334)

The remaining contribution gives

θ̃2(b) =
bG2

N( f D
1 )2

p4
∞

∫ +∞

0
du
(

d
db2

)2

r2
(

1
r2d−4

)
=

2γ2(p∞)

E2
p∞

p4
∞

Γ(D− 5
2)

Γ(D− 4)
Γ2(D−3

2 )

πD− 7
2

G2
N

b2D−6 .

(335)

Note that this additional term vanishes in four space-time dimensions D = 4.

Adding these pieces together, we find the D-dimensional scattering angle at 2PM

order to be

θD
2PM =

2γ(p∞)GN

p2
∞ Ep∞ bD−3

Γ(D
2 )

π
D−4

2

+
2G2

NΓ(D− 5
2)Γ

2(D−3
2 )

p2
∞ Ep∞ b2D−6πD− 7

2

(m1 + m2)

Γ(D− 3)

(
4(p1 · p2)

2 −
4m2

1m2
2 + (D− 3)E2

p p2

(D− 2)2+

)
p=p∞

+
2γ2(p∞)(m1 + m2)

E3
p∞

p4
∞πD− 7

2
Γ2
(

D− 3
2

)
Γ(D− 5

2)

Γ(D− 4)
G2

N
b2D−6

(336)
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in complete agreement with the eikonal calculation [47].

It is also interesting to see how this agreement comes about. On the one hand, the

new classical pieces from the box and crossed-box diagrams in D > 4 dimensions

yield a contribution proportional to (m1 + m2− Ep∞) in the last line of Eq. (334). On

the other hand, for D > 4 there is a new term in the formula for the scattering angle

that is proportional to Ep∞ (and f 2
1 ) in Eq. (335). Adding these two contributions

one gets the last line of Eq. (336) where we see that the two terms proportional to

Ep∞ have cancelled each other leaving only the term proportional to m1 + m2.

Finally, let us consider an alternative route to the computation of the scattering

angle which also can be phrased in terms of amplitude evaluations and which

has been described in Ref. [21]. As shown there, one can express the change in

four-momentum of a particle in two-body scattering by means of

〈
∆pµ

1

〉
= 〈ψ| S†P

µ
1 S |ψ〉 − 〈ψ|Pµ

1 |ψ〉 (337)

where S denotes the S-matrix and the two particle state is given by a suitable |ψ〉.

Re-expressing the S-matrix in terms of the T-operator, one gets [21]

〈
∆pµ

1

〉
= Iµ

(1) + Iµ

(2) (338)

Iµ

(1) ≡
〈
ψ
∣∣i [Pµ

1 , T
]∣∣ψ

〉
, Iµ

(2) ≡ 〈ψ| T
† [Pµ

1 , T
]
|ψ〉 (339)
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In the center-of-mass frame, it is now straightforward to relate the scattering angle

θ to Eq.(338) by means of

sin θ =

〈
∆pµ

1

〉
bµ

p∞b
(340)

where bµ = (0,~b) denotes the impact parameter as in [21]. In the case of classical

General Relativity and to second Post-Minkwoskian order the scattering angle can

be read off from of Eq. (340) and (338),

θ2PM =
Iµ
1 bµ

p∞b
+

Iµ
2 bµ

p∞b
, (341)

since sin θ ' θ at this level of approximation.

To this order the scattering angle arises from two contributions, one linear

and one quadratic in the involved scattering amplitudes. The term quadratic in

the amplitude plays a role somewhat analogous of the Born subtraction needed

to define the potential as in Eq. (275). Indeed, the quadratic term removes a

classically singular term coming from Iµ
1 [21], thus rendering a well-defined classical

observable in the same way as the Born subtraction of Eq. (275) removes super-

classical pieces, and thus allowing the h̄ → 0 limit. It would be interesting to

understand the precise relationship between these two methods, and in particular

to see how the method of Ref. [21] leads to the same result as the two other

amplitude methods, also for D > 4.
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Eikonal exponentiation and unitarity

As we have already pointed out in the introduction, the computation of the scat-

tering angle to a certain fixed order in the expansion parameter GN requires the

calculation of an infinite series of terms of the scattering amplitude, in the eikonal

approach. This is needed in order to ensure the exponentiation of terms in impact-

parameter space. In contrast, the fixed-order calculation that uses the Hamiltonian

language needs only the amplitude computed up to the given order in GN. It is

therefore instructive to further explore the connection between unitarity, as encoded

in Eq. (370) and the eikonal exponentiation.

To analyze this issue, let us consider again the identity (283) for two-to-two

scattering in the center-of-mass frame, which we may recast as

ImM1−loop(~p,~p ′) = − π

2Ep

∫ dd~k
(2πh̄)d δ(~p 2 −~k2)Mtree(~p,~k )Mtree(~k,~p ′) , (342)

(note that we are dealing here with the invariant amplitudeM instead of M̃) or

ImM1−loop(~p,~p ′) =
1

2Ep
Im

∫ dd~k
(2πh̄)d

Mtree(~p,~k )Mtree(~k,~p ′)
~p 2 −~k2 + iε

. (343)

The integral appearing on the right-hand side is the same as that in the first line of

Eq. (278), thus immediately giving us

ImM1−loop(~p,~p ′) =
G2

Nc2
1(p2)π1−D

2

2D+1pEp

Γ
(6−D

2

)
Γ2(D−4

2 )

Γ(D− 4)

(
q2

h̄2

)D−6
2

. (344)
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Transforming to impact parameter space b by means of a Fourier transform in D− 2

dimensions yields

ImM1−loop(b) =
1
2

G2
Nc2

1(p2)

64Ep p
Γ2(D−4

2 )

(b2)D−4 π2−D , (345)

while the same Fourier transform for the tree level amplitude (277) gives

Mtree(b) =
GNc1(p2)

4
Γ(D−4

2 )

bD−4 π
2−D

2 (346)

and hence, dividing by the normalization factor 4Ep p as in [47] (see also Eq. (387)),

we find

Im
M1−loop(b)

4Ep p
=

1
2

(
Mtree(b)

4Ep p

)2

. (347)

This is the first identity needed to ensure exponentiation of the tree-level amplitude

in the eikonal limit and we see that it follows from unitarity alone.

We interpret this as further evidence that, even at higher orders, unitarity indeed

lies behind the eikonal exponentiation. A remarkable phenomenon is that in this

approach super-classical terms of increasingly high inverse of powers of h̄ are

needed to achieve the exponentiation in impact-parameter space that eventually, at

the saddle point, leads to the classical scattering angle.
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simple expressions for the deflection angle

In this section we show that, if the potential is just given by the contribution of the

tree diagram, then we can obtain a closed expression for the deflection angle in D

dimensions. Let us now assume that the effective potential in D dimensions is only

given by the tree-level contribution:

Veff(r) = −
GN f D

1
rD−3 , f D

1 (p∞) =
2γ(p2

∞)

Ep∞ π
D−3

2
Γ
(

D− 3
2

)
, (348)

where f D
1 is given in Eq. (331). The deflection angle is computed from Eq. (326)

which, for the potential in Eq. (348), implies

θD
tree =

∞

∑
k=1

2b
k!

(
−

GN f D
1

p2
∞

)k ∫ +∞

0
du ∂

(k)
b2

[
(u2 + b2)k (5−D)

2 −1
]

=
∞

∑
k=1

2b
k!

(−GN f D
1

p2
∞

)k k−1

∏
l=0

(
k
(5− D)

2
− 1− l

) ∫ +∞

0
du

1

(u2 + b2)1+ k(D−3)
2

.

(349)

The integral over the variable u can be easily computed and one gets

θD
tree =

∞

∑
k=1

2b
k!

(−GN f D
1

p2
∞

)k k−1

∏
l=0

(
k
(5− D)

2
− 1− l

) √
π

bk(D−3)+1

1
k(D− 3)

Γ( k(D−3)+1
2 )

Γ( k(D−3)
2 )

,

(350)

which we may finally recast in the form

θD
tree =

√
π

∞

∑
k=1

αk

k!
Γ( k(D−3)+1

2 )

Γ( k(D−5)
2 + 1)

(351)
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with

αD =
GN f D

1
p2

∞bD−3 . (352)

In some particular case, such as D = 4, 5, the sum of the series (351) evaluates to

simple functions. For D = 4 one gets 6

θ4 = 2 arctan
(

α4

2

)
=⇒ tan

θ4

2
=

α4

2
, (353)

while for D = 5 one finds

θ5 =
π√

1− α5
− π . (354)

The two previous deflection angles have the same form as the deflection angles in

Eq. (4.5) of Ref. [99] corresponding to the scattering of a massless scalar particle on

a maximally supersymmetric D6-brane and on a D5-brane, respectively. For D = 7

we get

θ7 =
2K
(

4
√

α7
2
√

α7+1

)
√

2
√

α7 + 1
− π , (355)

6 A closed expression for the scattering angle in D = 4 up to 2PM included has been given in [15, 73].
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where K is the complete elliptic integral of first kind. Also this expression agrees

with the one in Eq. (4.6) of Ref. [99] for the D3-brane. Finally, for D = 6, 8, 9 and

D = 10 we can write the deflection angle in terms of hypergeometric functions:

θ6 = 2α6 3F2

(
2
3

, 1,
4
3

;
3
2

,
3
2

;
27α2

6
4

)
+ π 2F1

(
1
6

,
5
6

; 1;
27α2

6
4

)
− π , (356)

θ8 = π 4F3

(
1

10
,

3
10

,
7

10
,

9
10

;
1
3

,
2
3

, 1;
3125α2

8
108

)
(357)

+
8
3

α8 5F4

(
3
5

,
4
5

, 1,
6
5

,
7
5

;
5
6

,
7
6

,
3
2

,
3
2

;
3125α2

8
108

)
− π , (358)

θ9 = π 2F1

(
1
6

,
5
6

; 1;
27α9

4

)
− π , (359)

θ10 = π 6F5

(
1

14
,

3
14

,
5

14
,

9
14

,
11
14

,
13
14

;
1
5

,
2
5

,
3
5

,
4
5

, 1;
823543α2

10
12500

)
(360)

+
16
5

α10 7F6

(
4
7

,
5
7

,
6
7

, 1,
8
7

,
9
7

,
10
7

;
7
10

,
9

10
,

11
10

,
13
10

,
3
2

,
3
2

;
823543α2

10
12500

)
− π . (361)

The power-series expansions of these results (up to order α2
D) again agree with

Eq. (4.8) of Ref. [99] with the following identification of the variables involved in

the two cases:

αD ⇐⇒
(

Rp

b

)7−p
, p + D = 10 . (362)

An alternative way to show the equivalence between our approach with only the

tree diagram potential and that of Ref. [99] is using Eq. (302). In fact in this case
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p2(r, GN) in Eq. (315) contains only the term with n = 1 and taking into account

Eq. (301) one gets the following expression for the deflection angle in Eq. (302):

θD(b) = 2
∫ ∞

rmin

dr
r2

b√
1 +

(
RD
r

)D−3
− b2

r2

− π (363)

with

b ≡ L
p∞

, RD−3
D ≡

GN f D
1

p2
∞

=
2GNγ(p2

∞)

Ep∞ p2
∞

Γ(D−3
2 )

π
D−3

2
, (364)

where in the last step we have used Eq. (348). On the other hand Eq. (4.4) of Ref. [99]

can be easily rewritten as follows,

θp(b) = 2
∫ ∞

rmin

dr
r2

b√
1 +

(
Rp
r

)7−p
− b2

r2

− π , (365)

where Rp is a quantity defined in Ref. [99]. The two equations give the same

deflection angle if we make the following identification:

R7−p
p ⇐⇒ RD−3

D , p + D = 10 . (366)

conclusions

Starting from the elastic scattering amplitude of two scalar particles with arbitrary

masses in Einstein gravity in an arbitrary number D of space-time dimensions, we

isolated the terms that contribute in the classical limit by the method of regions. We

then extracted from them the long-range classical effective potential between the
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two scalar particles for arbitrary D by means of the Lippmann–Schwinger equation

or, equivalently, by the technique of EFT matching.

We then used the Hamiltonian consisting of the sum of the relativistic kinetic

terms for the two particles and the potential to determine the conjugate momentum

p2(r, GN). It turns out that, unlike the case D = 4, for arbitrary D this relation

contains an extra term proportional to the square of the tree scattering amplitude

that, of course, vanishes for D = 4. We then used it to compute the deflection angle,

finding complete agreement with the one obtained using the eikonal approach [47].

The approach of this paper is not only different from the one of Ref. [47] because

here we use the Hamiltonian approach to derive the deflection angle, while Ref. [47]

was based on the the eikonal approach, but also because the box and crossed box

integrals are computed using two different methods. It turns out that, if we use the

method of the regions directly on the fully relativistic expression for the box and

crossed box diagrams, as explained in Appendix 8, we get the same result for the

subleading term as in Ref. [47], while, if we first go to the potential region and then

compute the subleading term, we get the same result only in the nonrelativistic

limit, where the energy of the two particles becomes equal to their mass. Since we

use the fully relativistic expression for the sum of the box and crossed box diagrams

in the underlying fundamental theory, while the nonrelativistic expression for those

diagrams emerges in the EFT, from the matching between the two theories we get

the important result that, for D > 4, these diagrams leave a nonzero contribution to
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the potential that, of course, vanishes for D = 4.



A P P E N D I X

normalization of the amplitude

In this Appendix we fix the conventions that we adopt for the normalization of

scattering amplitudes. We decompose the S-matrix according to

S = 1− i
h̄

T . (367)

The operator T has therefore the dimension of an action, EL, where E stands

for an energy scale and L for a length scale. Its matrix elements Tba = 〈b|T|a〉

between asymptotic states |b〉 and |a〉 define the standard scattering amplitudes

Mba according to

Tba = (2πh̄)Dδ(Pa − Pb)Mab , (368)

where Pb and Pa denote the total outgoing and incoming D-momenta. The unitarity

of the S-matrix SS† = 1 = S†S also implies the following identity among T-matrix

elements involving the sum over a complete set of intermediate asymptotic states

Tba − (T†)ba = −
i
h̄ ∑

c
Tbc(T†)ca , (369)

139
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or, at the level of scattering amplitudes,

Mab −Mba = −i2π ∑
c
(2πh̄)D−1δ(Pa − Pc)McaMcb (370)

for states such that Pa = Pb.

We are interested in asymptotic states containing two kinds of scalar particles

with masses m1 and m2 although we shall suppress the subscripts 1, 2 for simplicity.

The associated free Hermitian scalar fields ϕ(x) are described by the action

Sfree = −
1
2

∫
dDx

(
h̄2∂µ ϕ ∂µ ϕ + m2ϕ2

)
. (371)

The Fock expansion for ϕ(x) can be taken as

ϕ(x) =
∫ dD p

(2πh̄)D−1 δ(p2 + m2)ϕ̃(p)e
ip·x

h̄ , (372)

where ϕ̃(p) = a(~p ) and ϕ̃(−p) = a†(~p ) for p = (p0,~p ) and p0 > 0, while the

canonical commutation relations read

[a(~p), a†(~p ′)] = 2E(p)(2πh̄)D−1δ(~p− ~p ′) , (373)

with E(p) =
√
~p 2 + m2 denoting the single-particle energy. The field ϕ(x) has

dimension E−
1
2 L

1−D
2 and the creation/annihilation operators ϕ̃(p) have dimension
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E
1
2 L

D−1
2 . Single-particle states are obtained acting with the creation operator a†(~p )

on the Fock vacuum |0〉,

a(~p )|0〉 = 0 , |~p 〉 = a†(~p )|0〉 , 〈~p |~p ′〉 = 2E(p)(2πh̄)D−1δ(D−1)(~p− ~p ′) ,

(374)

so that their normalization is Lorentz invariant. The completeness relation for

asymptotic states reads

∞

∑
n=1

∫ dD−1~p1

(2πh̄)D−1
1

2E(p1)
· · · dD−1~pn

(2πh̄)D−1
1

2E(pn)
|~pn, . . . ,~p1〉〈~pn, . . . ,~p1| = 1 . (375)

The invariant amplitudeM(~p1, . . . ,~pM,~p1
′, . . . ,~pN

′) for the scattering of M incom-

ing and N outgoing massive scalars is then given by the relation

〈~pN
′, . . . ,~p1

′|T|~pM, . . . ,~p1〉 = (2πh̄)Dδ(P− P ′)M(~p1, . . . ,~pM,~p1
′, . . . ,~pN

′) (376)

with

P =
M

∑
i=1

pi , P ′ =
N

∑
i=1

pi
′ (377)

and has the physical dimension EL1−D(ELD−1)
M+N

2 . This is a direct consequence

of the fact that the creation and annihilation operators have dimension E
1
2 L

D−1
2 .

For the specific case of two-to-two scattering of particles with mass m1 and m2,

which we describe at the beginning of Section 8, one has

〈~p4,~p3|S|~p2,~p1〉 = 2E1(p1)(2πh̄)D−1δ(~p1 − ~p3)2E2(p2)(2πh̄)D−1δ(~p2 − ~p4)

− i2π(2πh̄)D−1δ(p1 + p2 − p3 − p4)M(~p1,~p2,~p3,~p4) ,

(378)
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and we adopt a simplified notation for the invariant amplitude evaluated in the

center-of-mass frame

M(~p,~p ′) =M(~p1,~p2,~p3,~p4) , (379)

which has dimension E3LD−1. We also consider a reduced S-matrix, s, which relates

to the standard S-matrix by

〈~p4,~p3|S|~p2,~p1〉 = 4E1(p1)E2(p2)(2πh̄)D−1δ(~p1 + ~p2 − ~p3 − ~p4)〈~p ′|s|~p 〉 , (380)

with

~p =
m2~p1 −m1~p2

m1 + m2
, ~p ′ =

m2~p3 −m1~p4

m1 + m2
, (381)

and reads

〈~p ′|s|~p 〉 = (2πh̄)D−1δ(~p− ~p ′)− i2πδ(Ep − Ep′)M̃(~p,~p ′) (382)

in the center-of-mass frame. Therefore the reduced amplitude in the center-of-mass

frame M̃(~p,~p ′) is related to the invariant amplitude by

M̃(~p,~p ′) =
M(~p,~p ′)

4E1(p)E2(p)
(383)

and has dimension ELD−1. Eq. (382) for the reduced S-matrix can be also written

as

〈~p ′|s|~p 〉 = (2πh̄)D−1δ(~p− ~p ′)− i2πδ(p2 − p′2)M̃eff(~p,~p ′) (384)
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with

M̃eff(~p,~p ′) = 2Epξ(p)M̃(~p,~p ′) , (385)

or as

〈~p ′|s|~p 〉 = (2πh̄)D−1δ(~p− ~p ′)− i2πδ(p− p′)M̃eik(~p,~p ′) , (386)

with

Meik(~p,~p ′) =
M(~p,~p ′)

4Ep p
. (387)

We should also mention that the T matrix is often defined in the following

alternative way:

S = 1 + i T . (388)

In this case one would get a scattering amplitude that differs from the previous

one by a factor −h̄. This alternative normalization was employed in [47] to retrace

the dependence on h̄ of the eikonal factor that one extracts from the scattering

amplitude.

one-loop integrals in the h̄→ 0 limit

In this Appendix we explicitly discuss the evaluation of triangle and box integrals in

the classical limit h̄→ 0, i.e. the limit of small transferred momentum q. We employ

a technique that can be used to extract the asymptotic expansion of Feynman

integrals in certain limits known as the method of regions [105], which consists in
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splitting the domain of integration into sectors defined by suitable scaling relations.

In the examples we shall consider, the asymptotic expansions of Feynman in-

tegrals will emerge in particular from the soft region, in which the integrated

momentum k scales as k ∼ O(q), and from the hard region, k ∼ O(1). The

non-analytic contributions in momentum space giving rise to long-range effects in

position space, on which we focus in the main body of the paper, are those obtained

from the soft region. We will then comment on the relation between the results

obtained from these regions and the potential region. This region involves both

the classical limit of small q and the nonrelativistic limit of small v, where v is the

relative velocity in the center-of-mass frame, and can be characterized by the scaling

relations k0 ∼ O(qv) and~k ∼ O(q).

Triangle integrals

Let us first consider the scalar triangle integral (262)

I. =
∫ dDk

(2πh̄)D
h̄5

(k2 − iε) ((q− k)2 − iε)) (k2 − 2p1 · k− iε)
, (389)

which we may recast as

I. =
∫ dDk

(2πh̄)D
h̄5

(k2 − iε) ((q− k)2 − iε) (k2 − (q⊥ + q) · k− iε)
(390)
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introducing, together with the momentum transfer q = p1 − p3, the additional

variable

q⊥ = p1 + p3 . (391)

Note in particular that q · q⊥ = 0.

The classical limit consists in letting h̄ → 0 in such a way that the momentum

transfer q vanishes, while the transferred wave-vector 1
h̄ q and the average momen-

tum 1
2 q⊥ of the massive particle are kept fixed. We schematically identify this

situation by writing

q ∼ O(h̄) , q⊥ ∼ O(1) , q� q⊥ . (392)

We note that this limit requires the mass m1 to be nonzero, in view of the relation

−q2
⊥ = 4m2

1 + q2 . (393)

We shall now employ the expansion by regions to obtain an asymptotic approxi-

mation of the integral (390) in the classical limit. This method consists in splitting

the integration over the loop momentum k into a soft region, characterized by the

scaling k ∼ O(h̄) and hence k ∼ q� q⊥, and a hard region, in which k ∼ O(1) and

hence k ∼ q⊥ � q, namely

I. = I(s). + I(h). , (394)
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with

I(s). =
∫

k∼q

dDk
(2πh̄)D

h̄5

(k2 − iε) ((q− k)2 − iε) (k2 − (q⊥ + q) · k− iε)
, (395)

I(h). =
∫

k∼q⊥

dDk
(2πh̄)D

h̄5

(k2 − iε) ((q− k)2 − iε) (k2 − (q⊥ + q) · k− iε)
. (396)

One then considers the Taylor expansion of the integrands according to the ap-

propriate scaling relations, thus obtaining two asymptotic series for I(s) and I(h),

I(s) = I(1s) + I(2s) + · · · ,

I(h) = I(1h) + I(2h) + · · · .

(397)

The first two contributions to the soft region thus read

I(1s)
. =

∫
k∼q

dDk
(2πh̄)D

h̄5

(k2 − iε)((q− k)2 − iε)(−q⊥ · k− iε)
, (398)

I(2s)
. =

∫
k∼q

dDk
(2πh̄)D

h̄5(−k2 + q · k)
(k2 − iε)((q− k)2 − iε)(−q⊥ · k− iε)2 , (399)

while for the hard contribution one has

I(1h)
. =

∫
k∼q⊥

dDk
(2πh̄)D

h̄5

(k2 − iε)2(k2 − q⊥ · k− iε)
, (400)

I(2h)
. =

∫
k∼q⊥

dDk
(2πh̄)D

h̄5q · k(3k2 − 2q⊥ · k)
(k2 − iε)3(k2 − q⊥ · k− iε)2 . (401)

The integration can be then extended to the whole D-dimensional space in both

regions in view of the fact that the error R. thus introduced always takes the
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form of a scaleless integral and is therefore identically vanishing in dimensional

regularization: to leading order, for instance,

R. =
∫ dDk

(2πh̄)D
h̄5

(k2 − iε)2(−q⊥ · k− iε)
= 0 . (402)

By means of the above expansion we have reduced the problem to the evaluation

of simpler Feynman integrals, which can be directly calculated introducing Feynman

parameters and exploiting the orthogonality between q and q⊥, as detailed in

Section 8 below. The leading contribution (398) to the soft region can be read from

the general integral (458) and takes the form

I(1s)
. =

i
√

π

m1(4π)
D
2

Γ
(D−3

2

)2
Γ
(5−D

2

)
2Γ(D− 3)

(
q2

h̄2

)D−5
2

, (403)

since −q2
⊥ = 4m2

1 +O(h̄
2) thanks to (393), while the leading hard contribution (400)

reads, by (450),

I(1h)
. =

iΓ
(6−D

2

)
(4− D)(5− D)(4π)

D
2 h̄

(
m2

1

h̄2

)D−6
2

. (404)

We note that the leading soft term behaves as O(1) as h̄ → 0 and is therefore

classical, while the hard term scales like h̄
5−D

2 . Furthermore, the latter is analytic (in

fact, constant) in the transferred momentum and therefore corresponds to a local

term in position space, while the former gives rise to a power-law dependence on

r via (286). Actually, the whole hard asymptotic expansion is just a power series

expansion in q2 and this leads us to focus on the terms arising from the soft region

in the discussion of the long-range potential.
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Considering now the subleading soft integral (399), we note that the first term in

the numerator gives rise to a scaleless integral, after sending k→ q− k, and thus

can be discarded. The remaining integral is then given by (459), namely

I(2s)
. = − ih̄

m2
1(4π)

D
2

Γ
(D−2

2

)2
Γ
(

4−D
2

)
2Γ(D− 3)

(
q2

h̄2

)D−4
2

, (405)

which is O(h̄) and hence quantum. Interestingly, we note that this term of the

expansion is divergent as D → 4, despite the fact that the original integral (390)

is clearly finite in four dimensions. The appearance of such spurious divergences

is a standard feature of the expansion by regions and indicates the presence of

cancellations between the soft and the hard series. In this case, the pole at ε = 0 for

D = 4− 2ε cancels in the sum of the leading hard term (404) and subleading soft

term (405), leaving behind the finite contribution

(
I(1h)
. + I(2s)

.

) ∣∣
D=4 =

ih̄
2m2

1(4π)2

(
log

q2

m2
1
− 2

)
. (406)

This can be regarded as a quantum contribution since it contains terms scaling as

O(h̄ log h̄) and O(h̄) in the classical limit.

A similar strategy also applies to tensor integrals associated to the triangle

diagram, such as

Iµ
. =

∫ dDk
(2πh̄)D

h̄4kµ

(k2 − iε) [(q− k)2 − iε] (k2 − (q⊥ + q) · k− iε)
(407)
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and the one appearing in (263),

Iµν
. =

∫ dDk
(2πh̄)D

h̄3kµkν

(k2 − iε) [(q− k)2 − iε] (k2 − (q⊥ + q) · k− iε)
. (408)

After performing a tensor decomposition in terms of qµ, qµ
⊥ and ηµν, these integrals

can be evaluated directly in the soft region by means of Feynman parameters, (see

(451), (458), (459), (460)). To leading order as h̄→ 0, one finds

I(s)µ. =
i
√

π

(4π)
D
2

Γ
(5−D

2

)
Γ
(

D−1
2

)
Γ
(D−3

2

)
2Γ(D− 2)

qµ

h̄m1

(
q2

h̄2

)D−5
2

+
i

(4π)
D
2

Γ
(

4−D
2

)
Γ
(D−2

2

)2

2Γ(D− 2)
pµ

1
m2

1

(
q2

h̄2

)D−4
2

(409)

and

I(s)µν
. =

i

4m1(4π)
D
2 Γ(D− 1)

×
[(

ηµν +
pµ

1 pν
1

m2
1
− (D− 1)

qµqν

q2

)(
q2

h̄2

)D−3
2 √

π Γ
(3−D

2

)
Γ
(

D−1
2

)2

+
2(qµ pν

1 + qν pµ
1 )

h̄m1

(
q2

h̄2

)D−4
2

Γ
(

4−D
2

)
Γ
(D−2

2

)
Γ
(D

2

)]
.

(410)

The analogous results for I/, Iµ
/ , Iµν

/ can be obtained by replacing m1 ↔ m2 in the

above expressions (403), (405), (409) and (410).
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Box integrals

Let us now turn to the scalar box integral (264), leaving the −iε prescription implicit

for the time being,

I�,s =
∫ dDk

(2πh̄)D
h̄5

k2(k− q)2(k2 − 2p1 · k)(k2 + 2p2 · k)
. (411)

Introducing the variables

q⊥ = p1 + p3 , Q = p1 + p2 (412)

allows us to recast the desired integral as follows

I(1s)
�,s =

∫ dDk
(2πh̄)D

h̄5

k2(k− q)2(k2 + (2Q− q⊥ − q) · k)(k2 − (q⊥ + q) · k) . (413)

These new variables satisfy in particular

q · q⊥ = 0 = q ·Q , q⊥ ·Q = Q2 − (m2
1 −m2

2) . (414)

We are interested in the classical limit described by the scaling

q ∼ O(h̄) , q⊥, Q ∼ O(1) , q� q⊥, Q , (415)

as h̄→ 0, which implicitly requires a nonzero mass because

−q2
⊥ = 4m2

1 + q2 . (416)
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The leading soft term then reads

I(1s)
�,s =

∫ dDk
(2πh̄)D

h̄5

k2(k− q)2((2Q− q⊥) · k)(−(q⊥ · k))
, (417)

where, following the same strategy detailed for the triangle diagram, we have

performed a Taylor expansion of the integrand of (413) to leading order for k ∼

O(h̄), namely k ∼ q � q⊥, Q. Introducing a Feynman parameter x for the two

linear factors in the denominator, we then have

I(1s)
�,s =

∫ 1

0
dx
∫ dDk

(2πh̄)D
h̄5

k2(k− q)2((2xQ− q⊥) · k)2 . (418)

Since 2xQ− q⊥ is orthogonal to q, we can apply (458), which thus yields

I(1s)
�,s =

iΓ
(

D−4
2

)2
Γ
(6−D

2

)
2(4π)

D
2 Γ(D− 4)

1
h̄

(
q2

h̄2

)D−6
2 ∫ 1

0

dx

−
(

xQ− 1
2 q⊥

)2
− iε

, (419)

where we have reinstated the −iε prescription. The roots of the polynomial

−
(

xQ− q⊥
2

)2
− iε (420)

appearing in the denominator are given up to O(h̄2) by

x± =
m2

1 − p1 · p2 ±
√
(p1 · p2)2 − (m1m2)2

m2
1 + m2

2 − 2p1 · p2
± iε (421)
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and their real parts both lie in the integration interval, namely between 0 and 1. We

thus obtain7

I(1s)
�,s =

iΓ
(

D−4
2

)2
Γ
(6−D

2

)
2h̄(4π)

D
2 Γ(D− 4)

iπ − cosh−1
(
− p1·p2

m1m2

)
√
(p1 · p2)2 −m2

1m2
2

(
q2

h̄2

)D−6
2

. (422)

The crossed box diagram is related to the one we just discussed by p1 7→ −p3,

which corresponds to exchanging p1 · p2 ↔ −p1 · p2 up to O(h̄2). The real parts of

the roots analogous to (421) then no longer fall between 0 and 1 and the resulting

integral gives

I(1s)
�,u =

iΓ
(

D−4
2

)2
Γ
(6−D

2

)
2h̄(4π)

D
2 Γ(D− 4)

cosh−1
(
− p1·p2

m1m2

)
√
(p1 · p2)2 −m2

1m2
2

(
q2

h̄2

)D−6
2

. (423)

The sum of the leading box and crossed box diagrams finally reads

I(1s)
�,s + I(1s)

�,u =
Γ
(

D−4
2

)2
Γ
(6−D

2

)
2h̄(4π)

D
2 Γ(D− 4)

−π√
(p1 · p2)2 −m2

1m2
2

(
q2

h̄2

)D−6
2

. (424)

The subleading term in the soft expansion for the box integral is instead

I(2s)
�,s = 2h̄5

∫ 1

0
dx
∫ dDk

(2πh̄)D
q · k− k2

k2(q− k)2 [(2xQ− q⊥) · k]3
, (425)

where we have considered the second term in the Taylor expansion of the integrand

of (413) for k ∼ O(h̄), namely k ∼ q� q⊥, Q. Recognizing that the second term in

7 cosh−1(x) = log(x +
√

x2 − 1).
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the numerator gives rise to a scaleless integral, this expression can be evaluated by

the help of formula (459) to

I(2s)
�,s = −

i
√

π Γ
(5−D

2

)
Γ
(D−3

2

)2

4(4π)
D
2 Γ(D− 4)

(
q2

h̄2

)D−5
2 ∫ 1

0

dx[
−
(
xQ− q⊥

2

)2 − iε
] 3

2
. (426)

Performing the integral over x then yields, to leading order in h̄,

I(2s)
�,s =

i
√

π Γ
(5−D

2

)
Γ
(D−3

2

)2

8(4π)
D
2 Γ(D− 4)

(
q2

h̄2

)D−5
2

[
s
(

1
m1

+ 1
m2

)
+ (m2

1 −m2
2)
(

1
m1
− 1

m2

)]
(p1 · p2)2 −m2

1m2
2

,

(427)

where s = −(p1 + p2)
2. Adding this expression, corresponding to the s-channel, to

the one obtained from the u-channel yields in particular

I(2s)
�,s + I(2s)

�,u =
i
√

π Γ
(5−D

2

)
Γ
(D−3

2

)2

2(4π)
D
2 Γ(D− 4)

(
q2

h̄2

)D−5
2 m1 + m2

(p1 · p2)2 −m2
1m2

2
. (428)

As mentioned for the case of triangle integrals, we have focused on the soft-

region expansion of box diagrams because it is the one containing terms with a

non-analytic dependence on q2 for generic D. The hard region, obtained expanding

the original integral (413) for k ∼ O(1), namely k ∼ q⊥, Q� q, gives rise instead

to terms with positive integer powers of q2. For instance, the leading hard term for

the box integral is given by

I(1h)
� =

∫ dDk
(2πh̄)D

h̄5

(k2)2(k2 + (2Q− q⊥) · k)(k2 − q⊥ · k)
(429)



second order post-minkowskian scattering in arbitrary dimensions 154

so that, employing again Feynman parameters to rewrite the linear factors in the

denominator in terms of a single one and using (450),

I(1h)
� =

iΓ
(8−D

2

)
Γ (D− 6)

(4π)
D
2 Γ(D− 4)

∫ 1

0

h̄5−Ddx[
−
(
xQ− q⊥

2

)2 − iε
] 8−D

2
. (430)

This contribution is thus analytic in q2 and finite in four dimensions. However, it is

infrared divergent in, say, D = 5. The box integral (413) is however finite in five

dimensions and this means that such a divergence must cancel out when adding

the soft and the hard contributions: indeed, comparing (430) with the subleading

soft term (426) we see that the two divergent contributions cancel as D → 5 leading

to a finite limit for I(1h)
� + I(2s)

� .

The potential region

Another region which can be useful for the expansion of Feynman integrals in

the classical limit is the so-called potential region, as also argued in [10, 12]. To

describe it, let us again consider the scalar triangle (389), which we write in the

center-of-mass frame as

I. =
∫ dDk

(2πh̄)D
h̄5

(−(k0)2 + |~k |2 − iε)(−(k0)2 + |~k +~q |2 − iε)

1

(−(k0)2 + |~k|2 − 2E1(p)k0 + 2~p ·~k− iε)
,

(431)

where we have sent k→ −k and adopted the same notation as in Section 8.
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As before, we are interested in the limit in which the transferred momentum ~q

is of order h̄ and is hence small with respect to the mass. We also consider the

nonrelativistic limit, i.e. the regime |~p | � m1 in which the relative velocity v is

much smaller than the speed of light. The potential region is then defined by the

following scaling relations

k0 ∼ qv , ~k ∼ q , (432)

which break Lorentz invariance as they prescribe the time-component k0 of the

loop momentum to be negligible with respect to its spatial components ~k. The

leading potential term is then obtained by simply neglecting the (k0)2 terms in the

propagators,

I(1p)
. =

∫ dD−1~k
(2πh̄)D−1

h̄4

|~k|2|~k +~q |2

∫ dk0

2π

1

(−2E1(p)k0 + |~k|2 + 2~p ·~k− iε)
. (433)

The resulting integral over dk0 is in principle ill defined, but can be evaluated by

prescribing the application of the standard formula for the passage near a simple

pole 1
x−iε = PV 1

x + iπδ(x). We thus obtain

I(1p)
. =

i
4E1(p)

∫ dD−1~k
(2πh̄)D−1

h̄4

|~k|2|~k +~q |2
. (434)

The remaining integral is elementary and can be evaluated by means of Feynman

parameters, yielding

I(1p)
. =

i
√

π

E1(p)(4π)
D
2

Γ
(D−3

2

)2
Γ
(5−D

2

)
2Γ(D− 3)

(
q2

h̄2

)D−5
2

. (435)
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Taking into account the fact that E1(p) ≈ m1 up to terms of order v2 in the

nonrelativistic limit, this is the same as the leading soft result (403).

It would be interesting to reproduce the subleading soft term (405) from the

subleading potential expansion, which is obtained from the higher-order terms

in Taylor series of the integrand in (431) for small (k0)2. However, the resulting

integral in dk0 presents further difficulties, in particular due to appearance of a

double pole.

Let us now turn to the potential-region expansion of the massive box (411). We

go to the center-of-mass frame, adopting the same conventions as in Section 8, so

that

I� =
∫ dDk

(2πh̄)D
h̄5

(−(k0)2 +~k 2 − iε)(−(k0)2 + |~k−~q |2 − iε)

1

(−(k0)2 +~k2 + 2E1k0 − 2~p ·~k− iε)(−(k0)2 +~k2 − 2E2k0 − 2~p ·~k− iε)
.

(436)

In addition to the classical limit, which consists here in sending h̄ → 0 in such a

way that

~q ∼ O(h̄) , ~q⊥ ∼ O(1) , (437)

where ~q⊥ = ~p + ~p ′, we also consider the nonrelativistic limit of small v, as we did

for the triangle. We then adopt the scaling relations

k0 ∼ qv ~k ∼ q , (438)
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which characterize the potential region for the loop momentum. We are thus

justified in neglecting the (k0)2 appearing in the denominator, to leading order,

I(1p)
� =

∫ dDk
(2πh̄)D

h̄5

~k 2|~k−~q |2(2E1k0 +~k2 − 2~p ·~k− iε)(−2E2k0 +~k2 − 2~p ·~k− iε)
.

(439)

The integral in dk0 can be performed with the help of the residue theorem, leading

to

I(1p)
� =

i
2Ep

∫ dD−1~k
(2πh̄)D−1

h̄4

~k2|~k−~q |2(~k2 − 2~p ·~k− iε)
. (440)

Letting~k→ ~p−~k, we have

I(1p)
� =

i
2Ep

∫ dD−1~k
(2πh̄)D−1

h̄4

|~k− ~p |2|~k− ~p ′|2(~k2 − |~p |2 − iε)
, (441)

so that we have reduced the problem to the evaluation of a Euclidan version of the

triangle integral with an effective “squared mass” m2 = −|~p |2 − iε. Indeed, with

an appropriate choice of routing for the loop momentum, the triangle integral (389)

can be written as follows

I. = i
∫ dDkE

(2πh̄)D
h̄5

(kE − p1E)2(kE − p3E)2
(

k2
E + m2

h̄2

) , (442)

after Wick rotation, and therefore the above integral can be obtained from this one

by the identifications

D → D− 1 , m→ −ih̄|~p | . (443)
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Consequently, thanks to (403) and (405), we find

∫ dD−1~k
(2πh̄)d

h̄4

|~k− ~p |2|~k− ~p ′|2(~k2 − ~p 2 − iε)

=
iπ

h̄ (4π)
D
2 |~p|

Γ
(6−D

2

)
Γ2(D−4

2 )

Γ(D− 4)

(
q2

h̄2

)D−6
2

+
1

2|~p |2(4π)
D−1

2

Γ
(5−D

2

)
Γ2(D−3

2 )

Γ(D− 4)

(
q2

h̄2

)D−5
2

+ · · · .

(444)

We thus have, retaining the first two nontrivial orders for the soft-region expan-

sion of (441),

I(1p)
� = − π

h̄|~p |Ep

Γ
(

D−4
2

)2
Γ
(6−D

2

)
2(4π)

D
2 Γ(D− 4)

(
q2

h̄2

)D−6
2

+
i
√

π

|~p |2Ep

Γ
(D−3

2

)2
Γ
(5−D

2

)
2(4π)

D
2 Γ(D− 4)

(
q2

h̄2

)D−5
2

+ · · · .

(445)

Note that the first line coincides with the leading order (424) for the soft expansion

of the sum of box and crossed box diagrams written in the center-of-mass frame,

where |~p |Ep =
√
(p1 · p2)2 −m2

1m2
2. Indeed, in the potential region, the crossed box

diagram gives zero to leading order since the poles in k0 both lie in the upper half

plane.

However, the subleading order does not coincide with (428). It is in fact pro-

portional to it, but instead of the total mass m1 + m2 it displays a factor Ep, the

center-of-mass energy, so that the two results do agree in the nonrelativistic limit

v � 1. This is in general to be expected, since the leading potential contribution

I(1p)
� is only reliable to first order in the nonrelativistic limit.

A more complete comparison between the results coming from the potential
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region and the ones obtained from the soft region for generic velocities, i.e. beyond

the nonrelativistic regime, should be performed after resumming the potential

series to all orders in v. However, the evaluation of subleading potential integrals

is quite complicated due to the fact that they are in principle ill defined, as we

have already seen for the triangle integral. A viable alternative to the evaluation of

such integrals could be provided by an extension of the nonrelativistic integration

techniques discussed in [10] to the case of generic dimensions.

In conclusion the potential region provides an expression for the non-analytic

terms terms in the small-q expansion of the relevant Feynman integrals that agrees

with the one furnished by the soft region at least to leading order in the nonrela-

tivistic limit. In contrast, the soft region directly provides the non-analytic terms in

the small-q expansion in a fully relativistic manner. Let us also mention once more

that the soft region gives rise to the needed cancellation of the spurious divergences

appearing in the hard region, again without involving the nonrelativistic limit, as

for instance between (426) and (430) as D → 5.

Auxiliary integrals

In this subsection we collect a number of useful standard techniques and results

that allow one to explicitly evaluate the Feynman integrals presented above. To

simplify the presentation, all quantities appearing in this section are understood to
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be dimensionless. We first recall that, in D-dimensional Euclidean space, we have

the general formula

∫ dD`E

(2π)D
(`2

E)
β

(`2
E + ∆2

E)
α
=

Γ
(

β + D
2

)
Γ
(
α− β− D

2

)
(4π)

D
2 Γ (α) Γ

(D
2

) (∆2
E)

D
2 −α+β . (446)

Let us consider

I(p2) =
∫ dD`

(`2 − iε)λ1(`2 − 2p · `− iε)λ2
, (447)

where pµ is a time–like vector, (−p2) > 0. Introducing Feynman parameters we

have

I(p2) =
Γ(λ1 + λ2)

Γ(λ1)Γ(λ2)

∫ 1

0
dx (1− x)λ1−1xλ2−1

∫ dD`

(`2 − 2xp · `− iε)λ1+λ2
. (448)

Shifting ` by xp so as to complete the square in the denominator, performing the

Wick rotation (`0,~̀ ) = (i`0
E,~̀ E) and employing equation (446), one then obtains

I(p2) = iπ
D
2

Γ(λ1 + λ2 − D
2 )

Γ(λ1)Γ(λ2)

∫ 1

0
(1− x)λ1−1xD−2λ1−λ2−1dx (−p2)

D
2 −λ1−λ2 . (449)

Finally, recognizing the Beta function appearing in the last equation, we get the

formula (cf. [105, eq. (A.13)])

∫ dD`

(`2 − iε)λ1(`2 − 2p · `− iε)λ2
= iπ

D
2

Γ(λ1 + λ2 − D
2 )Γ(D− 2λ1 − λ2)

Γ(λ2)Γ(D− λ1 − λ2)(−p2)λ1+λ2−D
2

.

(450)



second order post-minkowskian scattering in arbitrary dimensions 161

In a very similar way, one can also derive (cf. [105, eq. (A.7)])

∫ dD`

(`2 − iε)λ1 ((`− q)2 − iε)λ2
= iπ

D
2

Γ
(
λ1 + λ2 − D

2

)
Γ
(D

2 − λ1
)

Γ
(D

2 − λ2
)

Γ(λ1)Γ(λ2)Γ(D− λ1 − λ2)(q2)λ1+λ2−D
2

.

(451)

Let us now consider the following integral

I⊥(q2, r2) =
∫ dD`

(`2 − iε)λ1((q− `)2 − iε)λ2(2r · `− iε)λ3
, (452)

where rµ is time–like, (−r2) > 0, and q · r = 0, so that qµ is space–like, q2 > 0.

Proceeding as in the previous case, we obtain

I⊥(q2, r2) = iπ
D
2

Γ(λ1 + λ2 + λ3 − D
2 )

Γ(λ1)Γ(λ2)Γ(λ3)

∫ ∞

0
dx xλ1−1

∫ ∞

0
dy yλ2−1

∫ ∞

0
dz zλ3−1

× δ(1− x− y− z)
(z2(−r2) + xy q2)

D
2 −λ1−λ2−λ3

(x + y)D−λ1−λ2−λ3
,

(453)

where x, y and z are Feynman parameters. We change variables according to

x = λx1

√
(−r2)

q2 , y = λx2

√
(−r2)

q2 , z = λ , (454)

which simplifies the integral to

I⊥(r2, q2) = iπ
D
2

Γ(λ1 + λ2 + λ3 − D
2 )

Γ(λ1)Γ(λ2)Γ(λ3)

I′

(q2)λ1+λ2+
λ3−D

2 (−r2)
λ3
2

, (455)

where I′ is an integral which does not depend on q2 nor on r2,

I′ =
∫ ∞

0
dx1 xλ1−1

1

∫ ∞

0
dx2 xλ2−1

2
(1 + x1x2)

D
2 −λ1−λ2−λ3

(x1 + x2)D−λ1−λ2−λ3
. (456)
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This can be evaluated performing the substitution x1 = uv and x2 = u
v , which

factorizes it into two integrals of the type

∫ ∞

0
uα(1 + u2)βdu =

Γ(− α+2β+1
2 )Γ( α+1

2 )

2Γ(−β)
, (457)

conveniently evaluated letting x = 1
1+u2 .

In conclusion, for the two orthogonal vectors q · r = 0, we obtain (cf. [105, eq.

(A.27)])

I⊥(q2, r2) =
∫ dD`

(`2 − iε)λ1((q− `)2 − iε)λ2(2r · `− iε)λ3

= iπ
D
2

Γ(λ1 + λ2 +
λ3−D

2 )Γ(λ3
2 )

2Γ(λ1)Γ(λ2)Γ(λ3)Γ(D− λ1 − λ2 − λ3)

Γ(D−λ3
2 − λ1)Γ(

D−λ3
2 − λ2)

(q2)λ1+λ2+
λ3−D

2 (−r2)
λ3
2

.

(458)

Variants of the above integral that can be evaluated in a similar fashion, still under

the assumption q · r = 0, are

I(1)⊥ (q2, r2) =
∫

(q · `) dD`

(`2 − iε)λ1((q− `)2 − iε)λ2(2r · `− iε)λ3

= iπ
D
2

Γ(λ1 + λ2 +
λ3−D

2 )Γ(λ3
2 )

2Γ(λ1)Γ(λ2)Γ(λ3)Γ(D− λ1 − λ2 − λ3 + 1)
Γ(D−λ3

2 − λ2)Γ(
D−λ3

2 − λ1 + 1)

(q2)λ1+λ2+
λ3−D

2 −1(−r2)
λ3
2

(459)

and

I(2)⊥ (q2, r2) =
∫

(q · `)2 dD`

(`2 − iε)λ1((q− `)2 − iε)λ2(2r · `− iε)λ3

= iπ
D
2

Γ(λ1 + λ2 +
λ3−D

2 )Γ(λ3
2 )

2Γ(λ1)Γ(λ2)Γ(λ3)Γ(D− λ1 − λ2 − λ3 + 2)
Γ(D−λ3

2 − λ1 + 1)Γ(D−λ3
2 − λ2 + 1)

(q2)λ1+λ2+
λ3−D

2 −2(−r2)
λ3
2

×
(

D− 2λ1 − λ3 + 2
D− 2λ2 − λ3

− 1
D + 2− 2λ1 − 2λ2 − λ3

)
.

(460)
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S C A L A R - G R AV I T O N A M P L I T U D E S

Using the CHY-formalism and its extension to a double cover we provide

covariant expressions for tree-level amplitudes with two massive scalar

legs and an arbitrary number of gravitons in D dimensions. Using

unitarity methods, such amplitudes are needed inputs for the computation

of post-Newtonian and post-Minkowskian expansions in classical general

relativity.

introduction

Recently it has been realized that modern methods for amplitude computations

at loop level may provide a powerful new way to compute post-Newtonian and

post-Minkowskian expansions in classical general relativity [10, 12, 14, 15, 23, 24,

32, 37, 40, 47, 72, 73]. This builds on the observation that the quantum mechanical

164
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scattering matrix for matter interacting gravitationally contains classical pieces at ar-

bitrarily high order in the loop expansion [21,31,46] and the fact that the sought-for

long-distance contributions are non-analytic in the exchanged momentum [44, 45],

thus making them straightforwardly accessible through unitarity cuts. All needed

contributions being classical, one would not expect it to be necessary to regularize

the loops dimensionally. However, since infrared ’super-classical’ (see, e.g., ref. [21])

terms appear at intermediate steps it is nevertheless convenient to use dimensional

regularization.

For the scattering of two massive objects at large distances the needed tree-level

amplitudes are those of two massive scalars and, at n-loop order, (n + 1) on-

shell gravitons. Using the Kawai-Lewellen-Tye (KLT) relations [106–109] these can

conveniently be constructed from the corresponding amplitudes with the (n + 1)

gravitons replaced by gluons, amplitudes that are given in the literature on the

basis of recursion relations [110, 111] in four space-time dimensions, using the

spinor-helicity formalism. More recently, Naculich [112] has suggested an alter-

native and more direct method for the computation of such amplitudes based on

the Cachazo-He-Yuan (CHY) formalism [113, 114]. One advantage of using the

CHY-formalism is that it immediately provides the amplitudes ’covariantly’, in

terms of general polarization tensors for the gravitons, and hence not restricted to

four space-time dimensions.

From a practical point of view, it suffices to evaluate amplitudes with two scalar
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legs and (n + 1) gluons and subsequently turning them into scalar-graviton ampli-

tudes by KLT-squaring. This is our approach here. One key point of the present

calculation is the computation of a factorized expression for the amplitudes of

two massive scalars coupled to Yang-Mills theory, expressing them as sums over

lower-point amplitudes which are combinations of scalar-gluon amplitudes and

pure gluon amplitudes. Each of these has one gluon leg off-shell and an associated

polarization vector of both transverse and longitudinal components. In this way,

we can iteratively construct amplitudes of an arbitrarily high order. Crucial for

this factorized form is the insight gained from the double-cover version [115–119]

of the CHY-formalism. This double-cover description naturally splits amplitudes

into two lower-point amplitudes, each with one leg off-shell. These vector currents,

contracted with polarization vectors, are glued together by the polarization sum. A

subtlety here is the contribution from longitudinal modes that need to be dealt with

carefully. Useful relations that short-cut the evaluations of some of the color-ordered

amplitudes needed for the recursive evaluation of higher n-point amplitudes are

provided by simple identities [120–122] among these partly massive amplitudes.

The outline of this paper is as follows. In sections 2 and 3 we show how to compute

amplitudes with two scalars and n gluons using different methods. In section 4

we briefly discuss the straightforward application of Kawai-Lewellen-Tye relations

to replace the gluons with gravitons. Some technical details and a proof of an

important theorem regarding vanishing longitudinal contributions are provided in
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appendices.

prelude : two massive scalars and n gluons

We first present a simple way to obtain explicit expressions for the scattering

amplitudes of two massive scalars and n gluons. Since our method is based on

the CHY approach, we give a very brief review of this formalism. We then apply

the factorization method developed in [119] to obtain, up to six-point, analytical

expressions for the scattering of gluons where two of them, suitably defined, are

massive. Next, we turn the two massive gluons into massive scalars, thus providing

the scattering amplitudes for two massive scalars and in principle any number of

massless gluons.

Massive Yang-Mills Amplitudes

We start by presenting a simple recursive formula that computes pure Yang-Mills

amplitudes with up to three massive gluons. The method we will use was developed

by one of us in a different context [115, 119]. We shall show explicit expressions up

to six points but it is straightforward to extend the method to any higher number

of external legs. In the following, we will denote massive particles with the capital

letter “Pα” and the massless ones with the lower-case letter “ka”. Unless otherwise
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mentioned we will work under the assumption of implicit momentum conservation,

K1 + K2 + · · ·+ Kn = 0 . (461)

Let us first recall how to extend the CHY approach to the massive case following the

method of Naculich [112]. We have {P1, ..., Pi} as momenta of the massive particles

(P2
α 6= 0) and {ki+1, ..., kn} as momenta the massless gluons (k2

a = 0). A generic

momentum vector is thus KA ∈ {P1, ..., Pi, ki+1, ..., kn}. We define as well

PAB...D ≡ KA + KB + · · ·+ KD,

PA:A+j ≡ KA + KA+1 + · · ·+ KA+j . (462)

The modified CHY scattering equations are then given by

SA =
n

∑
B=1
B 6=A

2 KA · KB + 2 ∆AB

σAB
= 0 , A = 1, 2, ..., n , (463)

where the matrix ∆AB is still to be determined. In order to guarantee SL(2, C)

invariance, i.e., ∑n
A=1 σm

A SA = 0 for m = 0, 1, 2, the matrix ∆AB must be symmetric,

∆AB = ∆BA, and it must satisfy the conditions

i

∑
β=1
β 6=a

∆αβ +
n

∑
b=i+1

∆αb = P2
α , α = 1, . . . , i,

i

∑
β=1

∆aβ +
n

∑
b=i+1

b 6=a

∆ab = 0 , a = i + 1, . . . , n. (464)
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Since we are interested in at most up to three massive gluons of momenta {P1, P2, P3},

it is sufficient to consider only ∆12, ∆13, ∆23. Therefore, we therefore have the simple

conditions

∆12 + ∆13 = P2
1 ,

∆12 + ∆23 = P2
2 , (465)

∆13 + ∆23 = P2
3 ,

that have a unique solution given by

∆12 =
P2

1 + P2
2 − P4

3
2

, ∆13 =
P2

1 − P2
2 + P4

3
2

, ∆23 =
−P2

1 + P2
2 + P4

3
2

. (466)

When two masses are degenerate, e.g. , P2
1 = P2

2 6= 0 and P2
3 = 0, it is straightforward

to see from (466) that ∆12 = P2
1 and ∆13 = ∆23 = 0, which, not surprisingly, is in

agreement with the one-loop scattering equations formulated in refs. [116, 123–125].

On the other hand, when only one of the legs is massive, e.g. P2
1 6= 0 and

P2
2 = P2

3 = 0, then ∆12 = P2
1 /2, ∆13 = P2

1 /2 and ∆23 = −P2
1 /2, i.e., in order to

describe one massive particle it is necessary to use at least three ∆AB parameters.

After having described the massive scattering equations let us now remind that

the CHY prescription for color ordered amplitudes of the scattering of gluons at

tree-level is given by [112, 113, 126]

An(P1, ..., Pi, i + 1, ..., n) =
∫

dµn PT(1, 2, ..., n)× P f ′Ψn , (467)
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where dµn is the usual CHY measure

dµn = (σjkσklσl j)
n

∏
A=1

A 6=j,k,l

dσA × (σmrσrsσsm)
n

∏
B=1

B 6=m,r,s

δ(SB) , (468)

and PT(1, ..., n) and P f ′Ψn are the usual Parke-Taylor and reduced Pfaffian factors

PT(1, ..., n) ≡ 1
σ12σ23 · · · σn1

, P f ′Ψn ≡
(−1)A+B

σAB
P f [(Ψn)

AB
AB] . (469)

The 2n× 2n matrix, Ψn, is defined as

Ψn ≡

A −CT

C B

 , (470)

with,

AAB ≡


2 KA · KB + 2 ∆AB

σAB
,

0 ,

BAB ≡


εA · εA

σAB
A 6= B ,

0 A = B ,

(471)

and

CAB ≡



√
2 εA · KB

σAB
, A 6= B ,

−
n

∑
C=1
C 6=A

√
2 εA · KC

σAC
, A = B .

(472)

The matrix, (Ψn)AB
AB, denotes the reduced matrix obtained by removing the rows

and columns A, B from Ψn, where 1 ≤ A < B ≤ n.

Since we are interested in the case of at most three massive particles of momenta

{P1, P2, P3} we can avoid dealing with the ∆AB-matrix in the scattering equations

altogether by choosing the labels {j, k, l} and {m, r, s} in (468) to match with the
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massive ones, i.e., {j, k, l} = {m, r, s} = {1, 2, 3}.

It is useful to recall that the reduced Pfaffian (P f ′Ψn = (−1)A+B

σAB
P f [(Ψn)AB

AB]) is

independent of the choice of A and B, and that the SL(2, C) symmetry is guaranteed

by the transversality of the external polarization vectors, (εC ·KC) = 0. However, we

note that the terms CAA and CBB do not appears in the reduced matrix, (Ψn)AB
AB. It

follows that the transversality conditions on εA and εB are not needed to obtain an

integrand invariant under the action of SL(2, C) [127]. We can therefore consistently

define the integral with these two legs being off mass-shell and with arbitrary

polarization vectors for (εA · KA) 6= 0 and (εB · KB) 6= 0. We now use the double-

cover method ref. [119] to obtain compact recursive expressions for these massive

and/or off-shell scattering amplitudes as defined above. The results clearly reduce

to the usual expressions when all external legs are massless and on-shell.

First, let us consider the basic building block of three legs. We take all three particles

to be massive and choose the polarization vectors ε1 and ε2 as not necessarily

transverse so that we do not impose (ε1 · P1) = 0 = (ε2 · P2). We are going to denote

with a bold source in the amplitude (as in. [112, 113, 119]), e.g.

An(. . . , Pα, . . . , Pβ, . . .) , (473)

the rows/columns that are removed from its reduced Pfaffian. In the above ampli-

tude the reduced Pfaffian is given by, P f ′Ψn = (−1)α+β

σαβ
P f [(Ψn)

αβ
αβ]. Particles Pα and
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Pβ can thus be off-shell, so that (εα · Pα) 6= 0 and (εβ · Pβ) 6= 0.

Therefore, using the CHY prescription given in (467) one has

A3(P1, P2, P3) = (σ12 σ23 σ23)
2 PT(1, 2, 3)

(−1)
σ12

P f



0 − ε1·
√

2 P3
σ13

− ε2·
√

2 P3
σ23

−C33

ε1·
√

2 P3
σ13

0 ε1·ε2
σ12

ε1·ε3
σ13

ε2·
√

2 P3
σ23

ε2·ε1
σ21

0 ε2·ε3
σ23

C33
ε3·ε1
σ31

ε3·ε2
σ32

0


=
√

2 {(ε1 · ε2)(ε3 · P1)− (ε2 · ε3)(ε1 · P3) + (ε3 · ε1)(ε2 · P3)} , (474)

where we have used

C33 = −
√

2
(

ε3 · P1

σ31
+

ε3 · P2

σ32

)
=
√

2 (ε3 · P1)×
σ12

σ31 σ23
, (475)

due to the momentum conservation constraint P1 + P2 + P3 = 0 and the transver-

sality condition (ε3 · P3) = 0. Although the amplitude itself is independent of

the choice of rows/columns that are removed in the Pfaffian, the intermediate

expressions do depend on the choice and we have therefore introduced a notation

where we indicate which rows and columns are removed.

We consider next a computation with three massive gluons of momenta {P1, P2, P3}

and one massless gluon of momentum {k4}. Using the factorization method de-
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scribed in [117, 119], this four-point calculation can be expressed in terms of the

A3(Pa, Pb, Pc) building-blocks,

A4(P1, P2, P3, 4)

= ∑
M

[
A3(PεM

34 , P1, P2) A3(PεM

12 , P3, 4)
sP34

+
A3(P1, PεM

23 , 4) A3(P3, PεM

41 , P2)

s4P1

]

−2 ∑
L

[
A3(PεL

13 , P2, 4)
sP24

× A3(PεL

24 , P1, P3)

]
, (476)

where the notation PεM

i (PεL

i ) means the particle with momentum Pi has as polar-

ization vector εM
i (εL

i ). The sums over the polarizations are given by the relations

∑
M

ε
M µ
i εM ν

j = ηµν , (477)

∑
L

ε
L µ
i εL ν

j =
Pµ

i Pν
j

Pi · Pj + P2
1 − P2

3
. (478)

The unusual normalization factor of the longitudinal modes is precisely what is

needed to recover the correct four-point amplitude [118, 128]. The polarization

vectors of all massive on-shell legs of course still satisfy εi · Pi = 0. Using that

condition it is easy to see that the last term in (476) evaluates to

−2 ∑
L

[
A3(PεL

13 , P2, 4)
sP24

× A3(PεL

24 , P1, P3)

]
= (ε1 · ε3)(ε2 · ε4) . (479)

The full four-point amplitude is thus remarkably simple.
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Finally, in order to calculate higher-point amplitudes we will also need A4(P1, P2, P3, 4).

Using the BCJ-like identity [120–122],

s4P3 PT(3, 4, 1, 2) + s4P13 PT(3, 1, 4, 2) = 0 ,

it is straightforward to deduce

A4(P1, P2, P3, 4) = −
(

1 +
s4P1

s4P3

)
× A4(P1, P3, P2, 4) . (480)

The calculation of higher-point amplitudes with massive gluons now proceeds

recursively. We illustrate a few cases in the appendix.

Turning massive gluons into scalars

Now, using the prescriptions of Naculich [112] and Cachazo, He, and Yuan [114]

we can compute the amplitudes of interest which also involve massive scalar legs.

The basic idea is to consider the massive gluon theory in one extra dimension (i.e.,

in D + 1 dimensions) with “polarizations” and momenta of massive scalars chosen

to be

Pµ
1 = (~p1, 0), ε

µ
1 = (~0, 1)

Pµ
n = (~pn, 0), ε

µ
n = (~0, 1)

 Massive scalars (P2
1 = P2

n = m2) , (481)

kµ
a = (~ka, 0), ε

µ
a = (~εa, 0)

}
Massless gluons (a = 2, ..., n− 2, and k2

a = 0) .
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In this set-up all external particles satisfy Pi · εi = 0 = ka · εa and, additionally, it

is easy to see that ∆1n = ∆n1 = m2 in Naculich’s notation as a consequence of

equation (466). The CHY prescription for the scattering of two massive scalars with

n− 2 gluons can thus be written as

An(1ϕ, 2g, ..., (n− 1)g, nϕ) =
∫

dµn PT(1, 2, ..., n)× P f ′Ψn

∣∣∣
ε1,εn=(~0,1)

, (482)

where the massive scattering equations, the reduced Pfaffian and the measure as

defined above. It is useful to note that these ordered amplitudes are invariant under

cyclic permutations, i.e.,

An(1, 2, ..., Pα, ..., Pβ, ..., n) = An(n, 1, 2, ..., Pα, ..., Pβ, ..., n− 1) , (483)

and also satisfy

An(1, 2, ..., Pα, ..., Pβ, ..., n− 1, n) = (−1)n An(n, n− 1, ..., Pβ, ..., Pα, ..., 2, 1) .

As a first step we note that when P1 and P2 are associated with scalar legs the

three-point amplitude reads

A3(P1, P2, P3)
∣∣∣
ε1,ε2=(~0,1)

=
√

2 (ε3 · P1) . (484)
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We illustrate our method by evaluating the four-point function of two massive

scalars and two gluons. Using the above conditions and the cyclicity property (483)

we immediately infer this amplitude from eqs. (476):

A4(1ϕ, 2g, 3g, 4ϕ) = A4(P4, P1, 2, 3)
∣∣∣
ε1,ε4=(~0,1)

(485)

= ∑
M

[
A3(PεM

23 , Pϕ
4 , Pϕ

1 ) A3(PεM

41 , 2, 3)
s23

+
A3(P

ϕ
4 , PεM

12 , 3) A3(2, PεM

34 , Pϕ
1 )

s3P4

]
,

where the superscript (or subscript) “ϕ” refers to one of the massive scalars. We

note that the term (479) does not contribute at all, (we shall return to this point

later).

Remark: Since ε
µ
1 = ε

µ
4 = (~0, 1) the contraction relation for the second term in (485),

∑
M
(εM

P34
· ε1)(ε

M
P12
·V) = (ε1 ·V) , (486)

is non-vanishing only when Vµ has a non-zero projection on ε4. Therefore, it is

equivalent to choosing ε
M µ
P34

= ε
M µ
P12

= (~0, 1), i.e., the internal lines corresponding to

momenta P12 and P34 turn out to be propagating scalars as expected due to current

conservation. In other words,

∑
M

A3(P
ϕ
4 , PεM

12 , 3) A3(2, PεM

34 , Pϕ
1 )

s3P4

=
A3(P

ϕ
4 , Pϕ

12, 3) A3(2, Pϕ
34, Pϕ

1 )

s3P4

. (487)
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The same phenomenon occurs for higher n-point amplitudes. Let us now introduce

some convenient notation:

Fµν
A ≡ Kµ

A εν
A − Kν

A ε
µ
A ,

(V W)ab ≡ Vµ
a ηµν Wν

b , (488)

as well as

(V F . . . F W)aA1...Ajb ≡ Vµ
a ηµγ Fγν

A1
ηνσ Fσα

A2
· · · Fρδ

Aj
ηδβWβ

b , (489)

sA1 A2...Aj ≡ (KA1 + KA2 + · · ·+ KAj)
2 − (K2

A1
+ K2

A2
+ · · ·+ K2

Aj
) ,

where Vµ
a and Wν

b are two generic vectors. From (477) and (474) it is straightforward

to compute

∑
M

A3(PεM

23 , Pϕ
4 , Pϕ

1 ) A3(PεM

41 , 2, 3)
s23

=
2 (εP)21 (εk)32 − 2 (εFP)231

s23
, (490)

as well as

A3(P
ϕ
4 , Pϕ

12, 3) A3(2, Pϕ
34, Pϕ

1 )

s3P4

= −2(εP)21 (εP)34

sP12
. (491)

The four-point covariant amplitude of two massive scalars and two gluons is thus

given by the simple expression

A4(1ϕ, 2g, 3g, 4ϕ) =
2 (εP)21 (εk)32 − 2 (εFP)231

s23
− 2(εP)21 (εP)34

sP12
. (492)

Specializing to four dimensions, this is in agreement with the result found in the

literature on the basis of the spinor-helicity formalism [111].
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In an analogous way, the five-point amplitude becomes

A5(1ϕ, 2g, 3g, 4g, 5ϕ) = A5(P5, P1, 2, 3, 4)
∣∣∣
ε1,ε5=(~0,1)

= (−1)×∑
M

[
A3(PεM

4:1 , 2, 3) A4(P
ϕ
5 , Pϕ

1 , PεM

23 , 4)
s23

+
A3(PεM

2:4 , Pϕ
5 , Pϕ

1 ) A4(PεM

51 , 2, 3, 4)
s234

]

+(−1)×
A3(2, Pϕ

3:5, Pϕ
1 )× A4(P

ϕ
5 , Pϕ

12, 3, 4)
s34P5

, (493)

where eq. (513) has been used. As in the four-point case, the purely longitudinal

contributions vanish on account of the orthogonality conditions for the polarization

vectors associated with external scalar legs, (ε1 · ε3) = (ε5 · ε2) = 0. In appendix

9, we prove the vanishing of these longitudinal contributions for any number of

external gluons.
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Applying the identity (477) and using (474), (476) and (480) we finally find an

explicit covariant expression for A5(1ϕ, 2g, 3g, 4g, 5ϕ):

A5(1ϕ, 2g, 3g, 4g, 5ϕ)√
2

= (εP)21
(εε)34 s34 − 2 (εk)34 (εP)45 + 2 (εk)43 (εP)35

sP12 s34

+
s23[(εε)23 (εk)43 − (εε)34 (εP)21 − (εFε)342 ]− (εε)23 (εP)41 s34

s23 s34
+

(εε)34 (εP)21 s4P5

sP12s34

+2(εP)21(εP)45
(εP)31 + (εk)32

sP12 s4P5

+ (εP)45
2(εk)21(εP)32 − 2(εk)23(εP)31 − (εε)23s23

s23 s4P5

+
sP12(εFε)243 + (εε)23 (εk)43 sP12 − (εε)34 [(εP)21 sP14 + (εP)25 sP14 − (εP)21 s23]

s34 s234

+
(εε)23(εP)41s34

s23s234
−

(εε)23 (εP)45 sP12

s23s4P5

+
(εε)34(εP)21 − (εε)24(εP)31 + (εε)23(εP)41

s234

+
(εε)34(εk)23sP14 − (εε)24(εk)32sP14 + (εε)23[(εk)42sP14 − (εP)41sP12 − (εP)45sP12]

s23s234

+2
(εP)25(εP)31(εk)42+(εP)45[(εP)21(εk)32+(εP)25(εP)31+(εP)21(εP)31]−(1↔5)

s34 s234

+2
(εk)23(εP)35(εP)41 + (εk)32(εP)45(εP)21 − (1↔ 5)

s23s234
.

(494)

Specializing to four dimensions, this matches the spinor-helicity result provided

in [111]. We note that this five-point amplitude A5(1ϕ, 2g, 3g, 4g, 5ϕ) can also be

computed using eq. (516) so that, alternatively,

A5(1ϕ, 2g, 3g, 4g, 5ϕ) = A5(3, 4, P5, P1, 2)
∣∣∣
ε1,ε5=(~0,1)

. (495)
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It is now straightforward to move to any higher number of points, recursively.

Using the result of the appendix we find the six-point amplitude

A6(1ϕ, 2g, 3g, 4g, 5g, 6ϕ) = A6(P6, P1, 2, 3, 4, 5)
∣∣∣
ε1,ε6=(~0,1)

= (496)

A3(2, Pϕ
3:6, Pϕ

1 ) A5(P
ϕ
6 , Pϕ

12, 3, 4, 5)
s345P6

+ ∑
M

[
A3(PεM

2:5 , Pϕ
6 , Pϕ

1 ) A5(PεM

61 , 2, 3, 4, 5)
s2345

+
A3(PεM

4:1 , 2, 3) A5(P
ϕ
6 , Pϕ

1 , PεM

23 , 4, 5)
s23

−
A4(P

ϕ
6 , Pϕ

1 , PεM

2:4 , 5) A4(PεM

5:1 , 2, 3, 4)
s234

]
.

The longitudinal pieces have again cancelled, leaving a simple sum over intermedi-

ate polarizations and a very intuitive recursive structure, as shown. Although the

explicit evaluation of this expression is straightforward, the resulting expression is

lengthy and we do not reproduce it here.

kleiss-kuijf decomposition

While the method described in the previous section is straightforward and immedi-

ately generalizable to any number of gluons n, we wish to point out that an alterna-

tive track based on an expansion with analytically computed BCJ-numerators is of

comparable simplicity. The trick is to compute the scattering of two massive scalar

fields with massless gluons (eventually gravitons) by decomposing the reduced

Pffafian in terms of a Kleiss-Kuijf (KK) basis [129] by using the Bern-Carrasco-

Johansson (BCJ) numerators [130] for Yang-Mills theory. This useful technique was
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developed in [126, 131, 132].

Let us recall that our first main goal is to calculate the amplitude

An(1ϕ, 2g, 3g, . . . , (n− 1)g, nϕ) , (497)

and in order to avoid dealing with the terms

2P1 · Pn + 2∆1n

σ1n
,

2Pn · P1 + 2∆n1

σn1
,

we remove from the reduced Pfaffian the rows/columns {1, n}. Thus, we are

looking for the following KK expansion

(−1)1+n

σ1n
× P f

[
(Ψ)1n

1n

]
= ∑

ρ∈Sn−2

N(1,ρ(2,··· ,n−1),n) PT(1, ρ(2, · · · , n− 1), n) , (498)

where N(1,ρ(2,··· ,n−1),n) are the BCJ Yang-Mills numerators and Sn−2 is the group of

the (n− 2)! permutations of the set {2, 3, · · · , n− 1}. As argued in [133], since the

Pfaffian P f
[
(Ψ)1n

1n
]
, is independent of the products P1 · Pn and ∆1n = ∆n1 = P2

1 the

algorithm proposed in ref. [132] can be applied. Therefore, the scattering between

two massive scalar fields with (n-2) gluons can be written as

An(1ϕ, 2g, ..., nϕ) = ∑
ρ∈Sn−2

mn[12 · · · n|1ρ(2 · · · n− 1)n]× N(1,ρ(2,··· ,n−1),n)

∣∣∣
ε1,εn=(~0,1)

, (499)

where the BCJ numerators N(1,ρ(2,··· ,n−1),n) can be obtained by the algorithm devel-

oped in [132] and where mn[α|β] is defined by

mn[α1 · · · αn|β1 · · · βn] ≡
∫

dµn PT(α1, . . . , αn)× PT(β1, . . . , βn) , (500)
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with the massive measure dµn as given in (468).

To illustrate, let us consider the four-point amplitude A4(1ϕ, 2g, 3g, 4ϕ). From (499)

we arrive at

A4(1ϕ, 2g, 3g, 4ϕ) = N(1,2,3,4)

∣∣∣
ε1,ε4=(~0,1)

∫
dµ4 PT(1, 2, 3, 4)× PT(1, 2, 3, 4)

+ N(1,3,2,4)

∣∣∣
ε1,ε4=(~0,1)

∫
dµ4 PT(1, 2, 3, 4)× PT(1, 3, 2, 4) .(501)

Now applying the method of ref. [132], the BCJ numerators are readily found to be

given by

N(1,2,3,4)

∣∣∣
ε1,ε4=(~0,1)

= −2 (εP)21 (εP)34, N(1,3,2,4)

∣∣∣
ε1,ε4=(~0,1)

= 2 (εP)21(εP)31 + 2 (εFP)231 ,

(502)

where we have fixed the reference ordering to be (1, 2, 3, 4). The massive integrals

obtained in (501) are straightforward to do using the Λ-algorithm [115]. We find

m4[1234|1234] =
∫

dµ4 PT(1, 2, 3, 4)× PT(1, 2, 3, 4) =
1

sP12
+

1
s23

,

m4[1234|1324] =
∫

dµ4 PT(1, 2, 3, 4)× PT(1, 3, 2, 4) = − 1
s23

. (503)

For the four-point amplitude we therefore get

A4(1ϕ, 2g, 3g, 4ϕ) =
−2 (εP)21 (εP)34

sP12
+
−2 (εP)21 (εP)34 − (2 (εP)21(εP)31 + 2 (εFP)231)

s23
,

which agrees with the result we found in equation (492).
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Explicit BCJ numerators at five points

This method easily generalizes. For two massive scalar legs and three gluons we

need to evaluate

A5(1ϕ, 2g, 3g, 4g, 5ϕ) = ∑
ρ∈S3

m5[12345|1ρ(234)5]× N(1,ρ(2,3,4),5)

∣∣∣
ε1,ε5=(~0,1)

. (504)

The six BCJ-numerators N(1,ρ(2,3,4),5)

∣∣∣
ε1,ε5=(~0,1)

are given by

(
1√
2

)
N(1,2,3,4,5)

∣∣∣
ε1,ε5=(~0,1)

= −2 (εP)21 (εP)45 [(εP)31 + (εk)32] , (505)(
1√
2

)
N(1,4,2,3,5)

∣∣∣
ε1,ε5=(~0,1)

= −2 (εP)25 (εP)41 [(εP)21 + (εk)24]− (εε)34(εP)21sP14

+(εε)24(εP)35sP14 ,(
1√
2

)
N(1,3,4,2,5)

∣∣∣
ε1,ε5=(~0,1)

= 2(εP)25(εP)31 [(εk)42 + (εP)45] + (εε)23 [(εk)42 + (εP)45] sP13

−(εε)43(εk)24sP13 − (εε)24(εP)31sP134 − (εε)24 [(εk)32 + (εP)35] sP13 ,(
1√
2

)
N(1,2,4,3,5)

∣∣∣
ε1,ε5=(~0,1)

= −2(εP)21(εP)35 [(εP)41 + (εk)42]− (εε)34(εP)21(sP14 + s24) ,(
1√
2

)
N(1,3,2,4,5)

∣∣∣
ε1,ε5=(~0,1)

= −2(εP)31(εP)45 [(εP)21 + (εk)23] + (εε)23(εP)45sP13 ,(
1√
2

)
N(1,4,3,2,5)

∣∣∣
ε1,ε5=(~0,1)

= 2(εP)41(εP)25 [(εk)32 + (εP)35]− (εε)34 [(εP)21 + (εk)23] sP14

+(εε)24 [(εk)32 + (εP)35] sP14 − (εε)23 [(εk)42 + (εP)45] sP14 − (εε)23(εP)41sP134 ,

where we have fixed the reference ordering to be (1, 2, 3, 4, 5).
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Using again the Λ-algorithm [115], it is straightforward to compute, with two

massive legs,

m5[12345|12345] =
1

s234 s34
+

1
sP12 s34

+
1

s23 s4P5

+
1

s4P5 sP12
+

1
s23 s234

, (506)

m5[12345|14235] = − 1
s23 s234

,

m5[12345|13425] = − 1
s234 s34

,

m5[12345|12435] = − 1
s234 s34

− 1
sP12 s34

,

m5[12345|13245] = − 1
s23 s4P5

− 1
s23 s234

,

m5[12345|14325] =
1

s234 s34
+

1
s23 s234

.

After substituting eqs. (505) and (506) into (504) one can check that the result

matches the one given in eq. (494).

This method does have the drawback for n large that the number of BCJ numerators

grow in a factorial way. For instance, to compute the six and seven-point amplitudes

one needs to calculate 4! = 24 and 5! = 120 numerators, respectively.

two massive scalars and gravitons

In the previous sections, we have shown different methods for efficient evaluation of

scattering amplitudes of two massive scalar fields and (n− 2) gluons. Staying within
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the CHY-framework as in section 9, one could similarly express the amplitude of the

scattering among two massive scalars (ϕ) and gravitons (ha) through [126, 134, 135],

Mn(2ϕ, (n− 2)h) =
∫

dµn P f ′Ψn

∣∣∣
ε1,εn=(~0,1)

× P f ′Ψn

∣∣∣
ε1,εn=(~0,1)

, (507)

where the gravitons are identified as, hµν
a ≡ ε

µ
a εν

a and using the same massive

measure defined in (468). Similarly, one can use a KK-decomposition analogous to

what we explained above for the case of gluons in (499), and write

Mn(2ϕ, (n− 2)h) = ∑
ρ∈Sn−2
δ∈Sn−2

N(1,ρ,n)

∣∣∣
ε1,εn=(~0,1)

×mn[1 ρ n|1 δ n]× N(1,δ,n)

∣∣∣
ε1,εn=(~0,1)

. (508)

However, by using the Kawai-Lewellen-Tye (KLT) [106] relations at the amplitude

level, it seems much more straightforward to find the scattering between two

massive scalar and (n− 2) gravitons by use of the momentum kernel [108, 109], i.e,

Mn(2ϕ, (n−2)h)= (−1)n−3 ∑
α∈Sn−3
β∈Sn−3

An(1ϕ, αg, (n−1)g, nϕ)×S [α|β]k1× (509)

An(nϕ, (n−1)g, βg, 1ϕ) . (510)

Here An is an amplitude of two massive scalars and (n− 2) gluons as defined in

(482), and the momentum kernel S [α|β] is

S [i1, . . . , ik|j1, . . . , jk]k1 ≡
k

∏
t=1

(
sit1 +

k

∑
q>t

Θ(it, iq)sit,iq

)
, (511)
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where Θ is the step function. For instance, for the four-point amplitude we immedi-

ately get

M4(2ϕ, 2h) = A4(1ϕ, 3g, 2g, 4ϕ)× S [3|2]× A4(1ϕ, 2g, 3g, 4ϕ) , (512)

where S [3|2] = −s23, thus using the result found in (492), one has

M4(2ϕ, 2h) =

[
2 (εP)31(εk)23 sP13 − 2 (εFP)321 sP13 − 2 (εP)31(εP)24 s23

sP13 s23

]
× (−s23)

×
[

2 (εP)21(εk)32 sP12 − 2 (εFP)231 sP12 − 2 (εP)21(εP)34 s23

sP12 s23

]
= − [2 (εP)24(εP)31sP12 + 2 (εP)21(εP)34s2P4 + (εε)23sP12s2P4 ]

2

sP12 s23 s2P4

,

which is the correct 4-point amplitude. Higher order amplitudes follow by KLT-

squaring analogously.

conclusion

We have presented different methods to compute the tree-level scattering amplitudes

of two massive scalars and an in principle arbitrary number of gravitons in D-

dimensions. These are the tree-level amplitudes needed to obtain the classical two-

body scattering of two massive objects without spin in general relativity through

the use of unitarity. The most economical method appears to be the one based on a

new set of recursive relations that can be derived from the so-called Λ-algorithm (or

double cover) in the CHY-formalism. In this method one first defines an extension of
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scattering amplitudes where one external leg is taken off-shell (defining, effectively,

a current in the case of Yang-Mills theory) and then glues off-shell legs together

by an appropriate polarization sum. We have proven a particular simplification in

comparison to the pure Yang-Mills case when the amplitude contains two massive

scalar legs: a sum over longitudinal polarizations cancels exactly. The resulting

amplitude relations for two massive scalars and any number of on-shell gluons

thus becomes surprisingly simple.

Although a similar technique can be used to compute amplitudes of two massive

scalars with an arbitrary number of gravitons we have found it economical to

simply use KLT-squaring in order to obtain these. Again, they are then provided in

D-dimensions and with arbitrary polarization tensors.

We have checked our general recursive formula up to six points with existing

expressions in the literature for the case D = 4, always finding complete agreement.

An interesting observation is the possibility of establishing a new on-shell set of

recursion relations for these amplitudes based on BCFW-recursion combined with

the double-cover analysis of the Λ-algorithm. This will be discussed elsewhere.
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higher-point yang-mills amplitudes with massive legs

Here we present details of the main ingredients that go into the computation of

the massive five-point gluon amplitudes: A5(P1, P2, P3, 4, 5), A5(P1, 2, P3, P4, 5) and

A5(P1, P2, P3, 4, 5).

Using the method developed in [119], the factorization decomposition of A5(P1, P2, P3, 4, 5)

becomes

A5(P1, P2, P3, 4, 5) = (−1)×∑
M

{
A3(PεM

5:2 , P3, 4)× A4(P1, P2, PεM

34 , 5)
sP34

+

A3(PεM

3:5 , P1, P2)× A4(PεM

12 , P3, 4, 5)
sP345

+
A3(P3, PεM

4:1 , P2)× A4(P1, PεM

23 , 4, 5)
s45P1

}

+2 ∑
L

{
A3(PεL

513, P2, 4)
sP24

× A4(P1, P3, PεL

24 , 5) +
A4(PεL

13 , P2, 4, 5)
sP245

×

A3(PεL

245, P1, P3)
}

, (513)

where we have written A5(P1, P2, P3, 4, 5) in terms of the smaller amplitudes,

A3(Pa, Pb, Pc), A4(Pa, Pb, Pc, d) and A4(Pa, Pb, Pc, d). As in the four-point case, we

must use the identities in (477) and (478).

188
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It is straightforward to find the longitudinal contributions,

−2 ∑
L

[
A3(PεL

513, P2, 4)
sP24

× A4(P1, P3, PεL

24 , 5)

]
=

−
√

2 (ε2 · ε4)×
s5P13(ε1 · F5 · ε3) + 2(ε1 · ε3)(P1 · F5 · P3)

s5P13 sP15
, (514)

and

−2 ∑
L

[
A4(PεL

13 , P2, 4, 5)
sP245

× A3(PεL

245, P1, P3)

]
=

−
√

2 (ε1 · ε3)×
s5P24 (ε2 · F5 · ε4) + 2(ε2 · ε4)(P2 · F5 · k4)

s5P24 s45
. (515)

Similarly, the amplitude A5(P1, 2, P3, P4, 5) is factorized according to

A5(P1, 2, P3, P4, 5) = (−1)×∑
M

{
A3(PεM

5:2 , P3, P4)× A4(P1, 2, PεM

34 , 5)
sP3P4 + 2 ∆34

+

A3(PεM

3:5 , P1, 2)× A4(PεM

12 , P3, P4, 5)
sP3P45 + 2 ∆34

+
A3(P3, PεM

4:1 , 2)× A4(P1, PεM

23 , P4, 5)
sP45P1 + 2 ∆14

}

+2 ∑
L

{
A3(PεL

513, 2, P4)

s2P4 + 2 ∆14 + 2 ∆34
A4(P1, P3, PεL

24 , 5)+
A4(PεL

13 , 2, P4, 5)
s2P45 + 2 ∆14 + 2 ∆34

×

A3(PεL

245, P1, P3)
}

, (516)

where we have used (466), namely

∆13 =
P2

1 + P2
3 − P2

4
2

, ∆14 =
P2

1 − P2
3 + P2

4
2

, ∆34 =
−P2

1 + P2
3 + P2

4
2

. (517)
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We also recall that ∆14 + ∆34 = P2
4 . It is now straightforward to verify that the

longitudinal contributions in (516) are identical to the one evaluated above, i.e.,

−2 ∑
L

[
A3(PεL

513, 2, P4)

sP42 + 2 ∆14 + 2 ∆34
× A4(P1, P3, PεL

24 , 5)

]
= (514)

and

−2 ∑
L

[
A4(PεL

13 , 2, P4, 5)
sP425 + 2 ∆14 + 2 ∆34

× A3(PεL

245, P1, P3)

]
= (515).

Finally, we are able to expand the amplitude, A5(P1, P2, P3, P4, 5), in terms of the

two previous ones, A5(Pa, Pb, Pc, d, e) and A5(Pa, b, Pc, Pd, , e). Using the BCJ-like

identity [120, 121],

sP345 PT(3, 4, 5, 1, 2)+ (sP345 + sP15) PT(3, 4, 1, 5, 2)+ (sP345 + sP1P45) PT(3, 1, 4, 5, 2) = 0,

the amplitude, A5(P1, P2, P3, 4, 5), turns into

A5(P1, P2, P3, 4, 5) =

−
(

1 +
sP1P45

sP345

)
A5(P2, P3, P1, 4, 5)−

(
1 +

sP126

sP345

)
A5(P1, 5, P2, P3, 4). (518)
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Finally, let us show how to compute the six-point amplitude, A6(P1, P2, P3, 4, 5, 6).

The factorization decomposition of A6(P1, P2, P3, 4, 5, 6) is given by

A6(P1, P2, P3, 4, 5, 6) = ∑
M

{
A3(P3, PεM

4:1 , P2)× A5(P1, PεM

23 , 4, 5, 6)
s456P1

+

A3(PεM

3:6 , P1, P2)× A5(PεM

12 , P3, 4, 5, 6)
sP3456

+
A3(PεM

5:2 , P3, 4)× A5(P1, P2, PεM

34 , 5, 6)
sP34

−
A4(P1, P2, PεM

3:5 , 6)× A4(PεM

6:2 , P3, 4, 5)
sP345

}

−2 ∑
L

{
A3(PεL

3:6, P1, P2)× A5(PεL

12 , P3, 4, 5, 6)
sP3456

+
A3(PεL

5:2, P3, 4)× A5(P1, P2, PεL

34 , 5, 6)
sP34

−
A4(P1, P2, PεL

3:5, 6)× A4(PεL

6:2, P3, 4, 5)
sP345

}∣∣∣∣∣ 2↔3
(εα·PA)=−(εα·PĀ)
(εα·Pα)=0

, (519)

where 2↔ 3 means the changing of the two labels, α = 1, 3 and PĀ is the comple-

ment of PA (by the momentum conservation condition, PA + PĀ = 0). For example,

PA is given by P2456, P24 and P245 in the last three term in (519), respectively, there-

fore, PĀ is P13, P1356 and P136. Additionally, the identities in (477) and (478) must be

used in the above factorization expansion.

longitudinal contributions

As we have observed in all special cases worked out in this paper, the longitudinal

contributions to the factorized amplitudes with massive scalars always vanish

identically. In this section we prove this important fact in all generality.
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Let us consider a Yang-Mills n-point amplitude with up to three massive legs

An(Pn, P1, P2, 3, ..., n− 1). Applying the factorization method, a generic longitudinal

contribution is given by

∑
L

A(n−i)+2(Pn, P2, PεL

134...i, i + 1, ..., n− 1)× Ai(PεL

i+1...n2, P1, 3, 4, ..., i)
sP134...i

, (520)

where the the two amplitudes are sewn together by the rule

∑
L

ε
L µ
i εL ν

j =
Pµ

i Pν
j

Pi · Pj + P2
n − P2

2
. (521)

We can now show the following:

Under the condition ε1 = εn = (~0, 1), the amplitudes, A(n−i)+2(Pn, P2, PεL

134...i, i +

1, ..., n− 1) and Ai(PεL

i+1...n2, P1, 3, 4, ..., i) vanish identically.

The proof of this proposition is straightforward.

Let us consider the amplitude, Ai(PεL

i+1...n2, P1, 3, 4, ..., i). From the notation intro-

duced in the main text, it is clear that the reduced matrix
[
(Ψi)

Pi+1...n2P1
Pi+1...n2P1

]
, has a row

(column) given by the vector

(
ε1·k2
σ12

, · · · , ε1·ki
σ1i

,
ε1·εL

i+1...n2
σ1Pi+1...n2

, 0, ε1·ε2
σ12

, · · · , ε1·εi
σ1i

) ∣∣∣
ε1,εn=(~0,1)

(522)

=

(
0, · · · , 0,

ε1·εL
i+1...n2

σ1Pi+1...n2
, 0, · · · , 0

)
.

Since εL
i+1...n2 is proportional to Pi+1...n2 = ki+1 + · · ·+ kn + P2 it follows that

ε1 · εL
i+1...n2

σ1Pi+1...n2

∝
ε1 · Pi+1...n2

σ1Pi+1...n2

= 0, (523)



scalar-graviton amplitudes 193

using that (ε1 · ki) = 0. Therefore, Ai(PεL

i+1...n2, P1, 3, 4, ..., i) vanishes trivially for,

ε1 = εn = (~0, 1). The essential property that makes these contributions vanish is

the fact that the polarization vectors associated with what become massive scalars

live in a higher dimensional space with no overlap with the momenta of the D-

dimensional space.

The same argument works for A(n−i)+2(Pn, P2, PεL

134...i, i + 1, ..., n− 1).
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C L A S S I C A L WAV E P H Y S I C S
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G R AV I TAT I O N A L S H O C K WAV E S A N D S C AT T E R I N G

A M P L I T U D E S

We study gravitational shock waves using scattering amplitude techniques.

After first reviewing the derivation in General Relativity as an ultrarel-

ativistic boost of a Schwarzschild solution, we provide an alternative

derivation by exploiting a novel relation between scattering amplitudes

and solutions to Einstein field equations. We prove that gravitational

shock waves arise from the classical part of a three point function with

two massless scalars and a graviton. The region where radiation is local-

ized has a distributional profile and it is now recovered in a natural way,

thus bypassing the introduction of singular coordinate transformations

as used in General Relativity. The computation is easily generalized to

arbitrary dimensions and we show how the exactness of the classical solu-

tion follows from the absence of classical contributions at higher loops.

195
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A classical double copy between gravitational and electromagnetic shock

waves is also provided and for a spinning source, using the exponential

form of three point amplitudes, we infer a remarkable relation between

gravitational shock waves and spinning ones, also known as gyratons.

Using this property, we infer a family of exact solutions describing grav-

itational shock waves with spin. We then compute the phase shift of a

particle in a background of shock waves finding agreement with an earlier

computation by Amati, Ciafaloni and Veneziano for particles in the high

energy limit. Applied to a gyraton, it provides a result for the scattering

angle to all orders in spin.

introduction

The study of General Relativity using scattering amplitudes techniques is in a

golden era thanks to state of the art computations for interacting black holes and

the possibility to relate classical gravitational observables to scattering amplitudes

[10,12,21,24,32]. Nowadays, the literature is vast and includes different approaches

to deal with post-Newtonian and post-Minkwoskian black holes [15, 18, 19, 47,

85, 136, 137], including also classical spin effects for Kerr black holes [65–70, 72,

87, 88, 138–144] and tidal effects [145, 146]. The existence of this literature might

seem surprising, given that we are trading General Relativity for an even more
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complicated quantum gravitational system and its classical limit. However, the

introduction of concepts such as unitarity and double-copy [130,147–159] has made

possible not only the computation of observables relevant for LIGO/Virgo [14]

but also to unravel new structures in classical field theory, proving that quantum

mechanics can help us in elucidating the essence of classical physics. In fact, the

EOB approach [7], which led to accurate models of gravitational wave signals for a

binary system, was inspired by these ideas [8]. Along this line, this paper describes

perturbative solutions in General Relativity using the scattering amplitude approach

recently developed by Kosower, Maybee and O’Connell [21]. We focus on the

Aichelburg-Sexl metric describing a gravitational shock wave sourced by a massless

particle [160]. Derived almost simultaneously by Aichelburg, Sexl, Penrose [161]

and Bonnor [162], it has been central to our understanding of graviton dominance

in high energy scattering [74], and in the past years it has been studied in different

settings [75, 163–166]. As we will see, an alternative derivation is also possible

using a novel relation between perturbative solutions to Einstein’s field equations

and scattering amplitudes. Several authors have conjectured a similar connection

and in the case of a static massive source, it has led to the computation at second

order in GN of the Schwarzschild1 and Kerr-Newman solution [11, 76, 168, 169].

However, the lack of a covariant framework has made it impossible to treat more

general cases such as those described by an energy momentum tensor sourced by

1 See also [167] for a derivation up to G3
N using EFT methods.
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massless particles with spin. This work is a step toward this direction. We start

by first reviewing the original derivation by Aichelburg and Sexl of a gravitational

shock wave employing an ultrarelativistic boost of a Schwarzschild solution. We

then present a relation between classical solutions in General Relativity and the

classical part of three point functions from quantum field theory. Using a massless

particle coupled to a graviton, we derive the complete Aichelburg-Sexl metric as

an exact solution to Einstein field equations. The region where the radiation is

localized has a well known distributional profile and it is now recovered from the

amplitude itself, bypassing the introduction of singular coordinate transformations

as used in General Relativity. We also generalize the computation to arbitrary D

dimensions finding agreement in the literature [170, 171] with the ultrarelativistic

boost of the so called Tangherlini metric [172, 173]. We then extend the classical

double copy for static black holes to gravitational shock waves, showing that their

single copy is described by electromagnetic ones. For a spinning source, using the

exponential form of three point amplitudes, we infer a remarkable relation between

gravitational shock waves and spinning ones, also known as gyratons. From this,

we obtain solutions describing spinning gravitational shock waves directly from the

spinless case, avoiding the use of ultrarelativistic boosts on Kerr black holes [174].

To our knowledge, the existence of such a relation between exact solutions in

General Relativity was previously unknown. Interestingly, this relation resembles

the Newman-Janis algorithm [175] which provides a Kerr solution from a complex
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deformation of Schwarzschild, recently studied by Arkani-Hamed, Huang and

O’Connell in [69]. We then compute the phase shift of a particle in a background of

shock waves, finding agreement with earlier computations for particles in the high

energy limit [176, 177]. Applied to a gyraton, it provides a result for the scattering

angle valid to all orders in the spin.

We will work throughout in natural units and in mostly negative signature.

the aichelburg-sexl metric

Aichelburg and Sexl derived for the first time an exact solution to Einstein field

equations describing the gravitational field generated by a massless particle [160].

Their procedure employed the use of an ultrarelativistic boost of a Schwarzschild

solution, previously used by D’Eath to address the scattering of two ultrarelativistic

black holes [178]. Let us review their original derivation. We start by introducing

the Schwarzschild metric in isotropic coordinates [179]

ds2 =
(1− A)2

(1 + A)2 dt2 − (1 + A)4
(

dx2 + dy2 + dz2
)

, A =
mGN

2
√

x2 + y2 + z2
,

(524)

and we decompose it as

ds2 = dt2− dx2− dy2− dz2 +

[
(1− A)2

(1 + A)2 − 1
]

dt2−
[
(1+ A)4− 1

] (
dx2 + dy2 + dz2

)
.

(525)
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If we apply a Lorentz transformation to eq.(524) on the x -direction,

t =
t̄− vx̄√
1− v2

, x =
x̄− vt̄√
1− v2

, y = ȳ , z = z̄ , (526)

the previous line element changes to

ds2 = dt̄2 − dx̄2 − dȳ2 − dz̄2 +

[
(1− A′)2

(1 + A′)2 − 1
]
(dt̄− vdx̄)2

1− v2

−
[
(1 + A′)4 − 1

] (
(dx̄− vdt̄)2

1− v2 + dȳ2 + dz̄2
)

, (527)

A′ =
mGN

√
1− v2

2 {(x̄− vt̄)2 + (1− v2) (ȳ2 + z̄2)}1/2 . (528)

We write m = p
√

1− v2 and expand (527-528) around v = 1 for a fixed value of p

to find

ds2 = dt̄2 − dx̄2 − dȳ2 − dz̄2 − 4pGN

|t̄− x̄| (dt̄− dx̄)2 , x̄ 6= t̄ . (529)

In order to include also the missing region given by x̄ = t̄, Aichelburg and Sexl

proposed a coordinate transformation which becomes singular in the limit for v = 1

x′ − vt′ = x̄− vt̄

x′ + vt′ = x̄ + vt̄− 4pGN log[
√
(x̄− vt̄)2 + (1− v2)− (x̄− t̄)] .

(530)
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Using the following relation

lim
v→1

[
1√

(x′ − vt′)2 + (1− v2)ρ
− 1√

(x′ − vt′)2 + (1− v2)

]
= −2δ(t′ − x′) log(ρ) ,

(531)

the line element assumes the usual form of an impulsive pp-wave

ds2 = dt′2 − dx′2 − dy′2 − dz′2 + 4pGNδ(t′ − x′) log(y′2 + z′2)(dt′ − dx′)2 . (532)

The latter defines a global solution given by two copies of Minkwoski space con-

nected by a singularity along a light cone coordinate. Among the relevant properties

of this solution we can notice that in going from eq.(524) to eq.(532) we have changed

the algebraic type of the Weyl tensor from Petrov type D to the radiative type N [180],

a property first discovered by Pirani [181]. Moreover, from the computation of the

associated Einstein tensor we can infer that the energy momentum tensor is simply

that of a massless particle, thus confirming the physical interpretation of the metric.

gravitational shock waves from scattering amplitudes

The idea to perturbatively solve Einstein field equations using quantum field theory

techniques dates back to a paper by Duff [168] where the Schwarzschild solution

was derived up to G2
N order. After, several authors used known relations among

off-shell scattering amplitudes and form factors so as to include quantum effects in
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the latter, confirming the same results for the classical part [169]. Both approaches

require the knowledge of the Einstein-Hilbert action expanded around a fixed

background which becomes intractable already after few iterations in the coupling

k =
√

32πGN . In order to have a better control on the complexity of the calculation,

it would be desirable to relate scattering amplitudes directly to the metric tensor in

the same way as these have been related to classical observables in [21]. To this end

we start by considering a Riemannian manifold and a Minkwoskian background.

We then introduce an off-shell continuation of the second quantized solution to the

linearized Einstein field equations

ĥµν(x) =
k
2 ∑

λ

∫
dΦo f f (q)

[
ελ

µν(q)âλ
q e−iq·x + (ελ

µν)
†(q)(âλ

q )
†eiq·x

]
. (533)

To ensure the gauge dependence of the metric, the sum runs over longitudinal

polarizations and the measure of integration used in [21] has been replaced with

dΦon(q) =
dDq

(2π)D 2πδ(q2)θ(q0) → dΦo f f (q) =
dDq

(2π)D
1
q2 . (534)

We have added the subscripts on-off to denote that every integral carrying such

measure of integration will lead to an integrand with a momentum which is

respectively on-shell or off-shell. In our case, eq.(534) ensures the off-shellness

of the graviton and the fact we are not looking for radiative modes of the metric
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tensor. The iε prescription is implicitly assumed. We then propose the following

wave-function describing our system in absence of interactions

|Ψin〉 =
∫

dΦon(p)ϕ(p) |p〉 ⊗ |0〉 , dΦon(p) =
dD p
(2π)D δ̂(+)(p2 −m2) , (535)

where δ̂(+)(p2 −m2) = 2πδ(p2 −m2)θ(p0). The state |0〉 denotes the vacuum state

of the gravitational field while ϕ(p) is a proper wave-packet describing the source.

We now define the metric tensor satisfying the non linear Einstein field equations as

gµν(x) = ηµν + hµν(x) , hµν(x) = 〈ΨI(t)| ĥI
µν(x) |ΨI(t)〉 . (536)

The operator ĥI
µν(x) is defined as the action of Uint(+∞, t) on (533), while the state

|ΨI(t)〉 is defined as the evolution at time t of the initial state under Uint(t,−∞).

We can now express (536) as follows

hµν(x) = 〈ΨI(t)|U†
int(+∞, t)ĥµν(x)Uint(+∞, t) |ΨI(t)〉 (537)

= 〈inΨ|U†
int(t,−∞)U†

int(+∞, t)ĥµν(x)Uint(+∞, t)Uint(t,−∞) |Ψin〉 (538)

= 〈inΨ| S†ĥµν(x)S |Ψin〉 , (539)

where we have the introduced the S matrix of the system. In doing so, we have

been able to relate the solution to the complete Einstein field equations with a plane

wave operator, by encoding all non linearities in the S matrix alone. Using then
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S = 1 + iT we can expand eq.(539) neglecting for the moment terms proportional

to TT†,

hµν(x) = i 〈Ψin|
(

ĥµν(x)T − T†ĥµν(x)
)
|Ψin〉 . (540)

From which

hµν(x) =
ik
2 ∑

λ

∫
dΦo f f (q)dΦon(p)dΦon(p′)ϕ(p)ϕ†(p′)×

[〈p′qλ| T |p〉 ελ
µν(q)e

−iq·x − 〈p′| T† |pqλ〉 (ελ
µν)

†(q)eiq·x] (541)

= −k ∑
λ

∫
dΦo f f (q)dΦon(p)dΦon(p′) Im

[
ϕ(p)ϕ†(p′) 〈p′qλ| T |p〉 ελ

µν(q)e
−iq·x

]
.

(542)

Matrix elements in eq.(542) usually describe on-shell scattering amplitudes thanks

to the covariant measures which have a Dirac delta in each integrated momentum.

Having assumed instead an off-shell integration measure for gravitons, the term

in eq.(542) won’t be an on-shell scattering amplitude but an off-shell three point

function given by

〈p′qλ| T |p〉 = (2π)DδD(p− q− p′) (ελ
αβ)

†(q)Mαβ(p, p′, q) . (543)
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We now choose harmonic coordinates which amounts to requiring the following

identity to hold

∑
λ

ελ
µν(q)(ε

λ
αβ)

†(q) =
1
2
(ηµαηνβ + ηµβηνα −

2
D− 2

ηµνηαβ) ≡ Pµναβ . (544)

Using this, eq.(542) becomes

hµν(x) = −k
∫

dΦo f f (q)dΦon(p)dΦon(p′) Im
[

ϕ(p)ϕ†(p′)×

(2π)DδD(p′ + q− p) PµναβMαβ(p, p′, q)e−iq·x
]

. (545)

We now proceed by making explicit the integration measure for the source particle.

Integrating over p′ we obtain

hµν(x) = −k
∫

dΦo f f (q)
dD p
(2π)D

dD p′

(2π)D δ̂(+)(p2 −m2)δ̂(+)(p′2 −m2)×

Im
[

ϕ(p)ϕ†(p′)(2π)DδD(p− q− p′) PµναβMαβ(p, p′, q)e−iq·x
]

, (546)

hµν(x) = −k
∫

dΦo f f (q)
dD p
(2π)D δ̂(+)(p2 −m2)δ̂(+)((p− q)2 −m2)×

Im
[

ϕ(p)ϕ†(p− q) PµναβMαβ(p, p′, q)e−iq·x
]

, (547)
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where it is implicitly assumed that Mαβ(p, p′, q) is constrained with p′ = p− q.

Making also explicit the off-shell integration measure we obtain,

hµν(x) = −k
∫ dDq

(2π)D
1
q2

∫ dD p
(2π)D δ̂(+)(p2 −m2)δ̂(+)(q2 − 2q · p)×

Im
[

ϕ(p)ϕ†(p− q) PµναβMαβ(p, p′, q)e−iq·x
]

. (548)

For a wave-packet sharply peaked around a given momentum p0
2 we obtain

hµν(x) = −k
∫ dDq

(2π)D
δ̂(+)(q2 − 2q · p0)

q2 Im[PµναβMαβ(p0, p′ = p0 − q, q)e−iq·x] .

(549)

We are thus left with a remarkable relation between the classical metric tensor

satisfying Einstein field equation and three point functions with an external graviton,

valid both for massive and massless sources

hµν(x) = −k
∫ dDq

(2π)D
δ̂(+)(q2 − 2q · p0)

q2 Im[PµναβMαβ(p0, p′ = p0 − q, q)e−iq·x] .

(550)

Let us consider the massless case. Taking advantage of this covariant relation, we

can proceed to explore which space-time corresponds to a three point function with

an off-shell graviton and a massless source. Based on what has been discussed in

the previous section, this should correspond to a gravitational shock wave. We start

2 For further details, see [21], Section 4.
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at tree level from the interaction of a graviton with a massless source

Mµν(p1, p2) =
ik
2
(

pµ
1 pν

2 + pµ
2 pν

1 − ηµν p1 · p2
)

, (551)

PµναβMαβ(p, q) =
ik
2

[
2pµ pν − pµqν − pνqµ + ηµν p · q

]
, (552)

where in the last equation we have expressed the whole contributions in terms

of pµ and qµ, being the former the incoming momenta. The whole metric tensor

depends on only two functions

hµν(x) = −k2

2

[
2pµ pνΘ(x)− pµΘν(x)− pνΘµ(x) + ηµν pαΘα(x)

]
, (553)

Θ(x) =
∫ dDq

(2π)D δ̂(+)(q2 − 2q · p)cos(q · x)
q2 , (554)

Θµ(x) =
∫ dDq

(2π)D δ̂(+)(q2 − 2q · p)
qµ

q2 cos(q · x) . (555)

In the classical limit we implement the limit for small q by considering the integra-

tion domain where p � q. This amounts to disregarding the Heaviside theta in

eq.(550) as well as the q2 term in its Dirac delta

δ̂(+)(q2 − 2q · p) → 2πδ(2q · p) . (556)
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In this limit Θµ(x) is vanishing being the integrand an odd and real valued function

and we are thus left with the computation of Θ(x). Using then the integral

representation for a Dirac delta together with the Schwinger parametrization we

obtain

Θ(x) = −i
∫

R
ds
∫

R+

dt
∫ dDq

(2π)D e−iq·(x−2ps)+iq2t . (557)

The latter is a complex Gaussian integral and its computation gives

Θ(x) = −
(

i
4π

)D
2 ∫

R
ds
∫

R+

dt
e−i (x−2ps)2

4t

t
D
2

. (558)

Expanding the square in the exponential,

Θ(x) = −
(

i
4π

)D
2 ∫

R
ds
∫

R+

dt
e−i (x−2ps)2

4t

t
D
2

(559)

= −2π

(
i

4π

)D
2 ∫

R+

dt

t
D
2

e−
ix2
4t δ

(
p · x

t

)
(560)

= −2π

(
i

4π

)D
2

δ(p · x)
∫

R+

dt

t
D
2

e
−ix2

4y |t| . (561)
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Changing variables to t = 1
u , we get

Θ(x) = −2π

(
i

4π

)D
2

δ(p · x)
∫

R+

du
e
−iux2

4

u
6−D

2
. (562)

At this point, we should carefully distinguish the computation in D = 4 from other

dimensions. One can realize it by computing separately the two cases and by a

comparison afterwords. We start from the case with D = 4,

Θ(x) =
1

8π
δ(p · x)

∫
R+

du
u

e−
iux2

4 . (563)

In order to compute this integral, we consider its partie finie (Pf) to find

Θ(x) =
1

8π
δ(p · x)Pf lim

z→0

∫ +∞

z

du
u

e−
iux2

4

=
1

8π
δ(p · x)Pf lim

z→0

∫ +∞

1

du
u

e−
izux2

4

=
1

8π
δ(p · x)Pf lim

z→0
E1

(
zix2

4

)
,

(564)

where we have introduced the exponential integral E1(x). Using the Puiseux series

E1(z) = −γ− log z−
∞

∑
k=1

(−z)k

kk!
, |arg(z) < π| . (565)

The result is

Θ(x) = − 1
8π

δ(p · x) log(|x2|) , D = 4 . (566)
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As for the case D 6= 4, we evaluate it by first rescaling eq.(562),

Θ(x) = −2π

(
i

4π

)D
2

δ(p · x)
(

x2

4

) 4−D
2 ∫

R+

du e−iuu
D−6

2 . (567)

After a Wick rotation, the remaining integral defines a Gamma function, from which

Θ(x) =
π

2−D
2

4
Γ(D−2

2 )

D− 4
δ(p · x)
(x2)

D−4
2

, D > 4 . (568)

We can thus summarize our results,3

Θ(x) =



− 1
8π δ(p · x) log(|x2|) , D = 4

π
2−D

2
4

Γ(D−2
2 )

D−4
δ(p·x)

(x2)
D−4

2
, otherwise

(569)

Using eq.(553) we can read the metric tensor related to a three point function with

a massless source and an off-shell graviton. The final result is

hµν(x) =


4GN pµ pνδ(p · x) log(|x2|) , D = 4

−8π
4−D

2 GN pµ pν
Γ
(

D−2
2

)
δ(p·x)

(D−4)(x2)
D−4

2
, otherwise

(570)

3 One could also infer the D = 4 case from the following regularization Γ( D−4
2 )

xD−4 → −2 log(x). This
amounts to remove a divergent quantity from the metric tensor with a gauge transformation.
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We will shortly argue that contributions from higher loops produce only divergences

which are removed from the cut terms proportional to TT† in (539). This procedure

provides an exact solution to Einstein field equations already at linear order in GN .

In D = 4 the line element reads

ds2 = gµνdxµdxν = dt2 − dx2 − dy2 − dz2 + 4GNδ(p · x) log(|x2|)pµ pνdxµdxν .

(571)

For a massless particle moving along the x direction we recover the Aichelburg-Sexl

metric (532) for a gravitational shock wave

ds2 = dt2 − dx2 − dy2 − dz2 + 4pGNδ(t− x) log(y2 + z2)(dt− dx)2 . (572)

In D dimensions, the metric is in agreement with earlier computations describing

the ultrarelativistic boost of the Schwarzschild-Tangherlini metric in D dimensions

[171]. As for the coordinates associated with this metric, we notice that eq.(570)

satisfies the harmonic gauge condition, equivalent at linear order in GN with the

linear harmonic,

ηαβΓµ
αβ = 0 → ∂αhµα =

1
2

∂µh , (573)

which can be easily seen to be satisfied thanks to eq.(570) being traceless. In D = 4

∂αhµα = 4GN pµ pα∂αδ(p · x) log(|x2|) + 8GN pµ pαδ(p · x)
xµ

x2 = 0 , (574)
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with the same result in higher dimensions. This is consistent with the harmonic

gauge choice made in eq.(544). The advantages of this computation with respect to

the derivation from classical General Relativity are several. The exactness of the

solution already at linear in GN can now be explained in light of the absence of

classical contributions to higher loops in three point functions with two massless

scalars and a graviton. This is in contrast with the computation for a massive three

point function where the classical part from higher loop orders is non vanishing

and needed in order to reproduce the expansion of Schwarzschild in GN [169].

Remarkably, the distributional profile emerges in a natural way from the amplitude

itself, with no need to introduce singular coordinate transformations as those

in eq.(530). As we will see, this property is more general: it is valid also for

gravitational shock waves carrying a spin dependence.

a classical double copy for gravitational shock waves

In the previous section we have shown a relation between perturbative solutions to

Einstein field equations and scattering amplitudes. The latter can be introduced

also for a gauge theory as classical electromagnetism. We start by introducing the

following operator for a gauge potential

Âµ(x) = ∑
λ

∫
dΦo f f (q)

[
ελ

µ(q)âλ
q e−iq·x + (ελ

µ)
†(q)(âλ

q )
†eiq·x

]
. (575)
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Following the same steps seen before and working in Feynman gauge we can easily

derive a relation between a gauge potential Aµ(x) and three point functions in

scalar QED with an external photon,

Aµ(x) =
∫ dDq

(2π)D
δ̂(+)(q2 − 2q · p0)

q2 Im[Mµ(p0, p′ = p0 − q, q)e−iq·x] . (576)

We now consider electromagnetic shock waves [182]. We find natural to relate these

to a three point amplitude of a massless scalar particle coupled to a photon,

Mµ = −ie(2pµ − qµ) . (577)

Using this, we can express the gauge potential Aµ(x) in terms of (554, 555),

Aµ(x) = −e
[

2pµΘ(x)−Θµ(x)
]

. (578)

The final result for an electromagnetic shock wave is

Aµ(x) =



e
4π pµδ(p · x) log(|x2|) , D = 4

− e
2π pµ π

4−D
2

Γ
(

D−2
2

)
δ(p·x)

(D−4)(x2)
D−4

2
, otherwise

(579)

We may now consider the classical double copy procedure shown in [149] in
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order to construct a solution in General Relativity. This amounts to the following

replacement

e→ 16πGN , pµ → pµ pν . (580)

Interestingly, this gives the correct gravitational shock wave in arbitrary D dimen-

sions of eq.(570) showing that gravitational and electromagnetic shock waves are

related by a classical double copy, in agreement with [150].

spinning gravitational shock waves

Having studied in depth the relation between massless particles and gravitational

shock waves, we find natural to investigate the same relation for the case of a

spinning source. As we will see, this leads to a family of classical solutions also

known in the literature as gyratons [183, 184]. For ease of discussion we restrict

ourselves to the case D = 4. In order to perform the computation, we take advantage

of the exponential representation of three point functions for a spinning massive

particle emitting a graviton [67, 88]

MS
µν =Mµν ea·q , aµ =

1
2m2 ε

µ
ναβSνα pβ . (581)

beingMµν the associated spinless three point amplitude and aµ the rescaled spin



gravitational shock waves and scattering amplitudes 215

vector of the source. For ease of discussion we restrict ourselves to the case D = 4.

In the massless limit we assume aµ to be fixed. We start from the associated metric

tensor

hS
µν(x) = −k2

2

(
2pµ pνΘS(x)− pµΘS

ν(x)− pνΘS
µ(x) + ηµνΘS

α(x)pα

)
, (582)

ΘS(x) =
∫ d4q

(2π)4 δ̂(+)(q2 − 2q · p)cos(q · x)ea·q

q2 , (583)

ΘS
µ(x) =

∫ d4q
(2π)4 δ̂(+)(q2 − 2q · p)

qµ

q2 cos(q · x)ea·q . (584)

We can now prove a relation between spinless gravitational shock waves and gyra-

tons. We restrict to the classical limit by considering the integration region where

p� q, thus

ΘS(x) =
Θ(x− ia) + Θ(x + ia)

2
, ΘS

µ(x) =
Θµ(x− ia) + Θµ(x + ia)

2
. (585)

We now consider the behavior of Θ(x) under a complex shift. Introducing a =√
−aµaµ we obtain the following expression

Θ(x− ia) = − 1
8π

δ(p · x) log(|x2 + a2|) . (586)
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Eq.(586) is real valued due to the absence of linear terms in a · x. It follows from

the Dirac delta in p · x and the orthogonality of pµ with respect to the spin tensor.

Thus, 
ΘS(x) = Θ(x− ia)

ΘS
µ(x) = Θµ(x− ia)

→ hS
µν(x) = hµν(x− ia) . (587)

Remarkably, thanks to the exponential form of the three point amplitude we can

now read the metric tensor sourced by a massless spinning source directly from

the spinless case using the shift xµ → xµ − iaµ. To our knowledge, this property

between spinless shock waves and gyratons was previously unknown and it relates

to the exponential form of the energy momentum tensor for linearized Kerr black

holes [65]. The line element is

ds2 = dt2 − dx2 − dy2 − dz2 + 4GNδ(p · x) log(|(x2 + a2|)pµ pνdxµdxν . (588)

In particular, for a spinning particle moving along the x direction

ds2 = dt2 − dx2 − dy2 − dz2 + 4GN pδ(x− t) log(|y2 + z2 − a2|)(dt− dx)2 . (589)

in agreement with an earlier computation by Ferrari and Pendenza [174] describing

the ultrarelativistic boost of a Kerr black hole. The derivation by a simple shift

in aµ is remarkable, since the same in classical General Relativity is much more

complicated.

Interestingly, this procedure resembles the Newman-Janis algorithm [175] which



gravitational shock waves and scattering amplitudes 217

provides a Kerr solution from a complex deformation of Schwarzschild, this last

recently studied by Arkani-Hamed, Huang and O’Connell in [69]. As for the

singularity at y2 + z2 = a2, we interpret this as the remnant of the singularity in the

equatorial plane.

the scattering angle in the high energy limit

The computation of geodesics in a gravitational shock wave background has been

explored by several authors [186, 187]. Since the whole space-time is Minkwoskian

up to a region defined by a null light cone coordinate, geodesics are fully determined

from the net change in momentum of a particle

∆pµ
0 =

1
2

∫
R

dσ∂µhαβ(x(σ))pα
0 pβ

0 , (590)

where the subscript 0 denotes the particle, while σ the affine parameter of its

world-line. To leading order in GN we assume free motion

xµ
0 (σ) = pµ

0 σ + bµ , b · p0 = 0 , b · p = 0 , (591)
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being bµ a covariant impact parameter and pµ the momentum associated with the

shock wave. The resulting change of impulse in D = 4 reads

∆pµ
0 =

1
2

pα
0 pβ

0

∫
R

dσ8GN pα pβ

[
δ (p · x0(σ))

xµ
0 (σ)

x2
0(σ)

]
=

4GN p · p0

b · b bµ . (592)

Having computed the change of momentum experienced by the particle, we can

compute the associated phase shift using

sin(θ) =
∆pµ

0 bµ

p0 b
, (593)

where we have introduced b =
√
−bµbµ. The result is

sin(θ) =
4GN p · p0

p0 b
. (594)

Let’s now consider the massless limit,

p · p0 = p p0 − ~p · ~p0 = 2p2
0 , s = 4p2

0 . (595)

If we now apply the small angle approximation we obtain

θ =
4GN
√

s
b

, (596)

in agreement with an earlier computation by Dray and t’Hooft [163]. Interestingly,

as shown by Amati, Ciafaloni and Veneziano, the same result agrees with the

leading order scattering angle between particles in the high energy limit [176]. We
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can generalize this result including effects to all orders in spin using as a source the

metric tensor for a gyraton derived in eq.(587). This provides the following result

∆pµ =
4GN p · p0 bµ

a2 − b2 . (597)

The scattering angle in the massless limit and including effects to all order in spin

reads

θ =
2GN
√

s
b− a

+
2GN
√

s
b + a

. (598)

Interestingly, this scattering angle in the high energy limit resembles a striking

similarity with the all order in spin result by Vines [65] including the pole at b = a.

conclusion

We have derived a relation between perturbative solutions to Einstein field equations

and off-shell scattering amplitudes thanks to a covariant framework developed by

Kosower, Maybee and O’Connell [21]. We have studied to which gravitational field

corresponds a scattering amplitude with an off-shell graviton and two massless

particles finding that the latter describes a gravitational shock wave also known as

Aichelburg-Sexl metric [160]. The result has been easily generalized to arbitrary
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D dimensions finding agreement with previous computation of D dimensional

shock waves in General Relativity [171]. The advantage of this computation are

several. We have been able to avoid singular coordinate transformations which were

used in General Relativity to deal with the singular behavior of the gravitational

field along a light cone coordinate. Remarkably, the distributional profile emerges

in a natural way from the amplitude itself, while the exactness of the classical

solution at linear in GN can now be explained in light of the absence of classical

contributions at higher loops for three point functions with massless particles. We

have also shown that a classical double copy is satisfied between gravitational

and electromagnetic shock waves and for a spinning source, using the exponential

form of three point amplitudes, we have inferred a remarkable relation between

gravitational shock waves and spinning ones, also known as gyratons. Using this

property, we have been able to infer solutions describing spinning gravitational

shock waves directly from the spinless case, thus bypassing the derivation in

General Relativity involving an ultrarelativistic boost of a Kerr black hole. We have

computed the phase shift of a particle in a background of shock waves finding

agreement with earlier computations for the scattering angle of particles in the high

energy limit [176, 177]. Applied to a gyraton, it has provided a result to all orders

in the spin.
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WAV E F O R M S F R O M A M P L I T U D E S

We show how to compute classical wave observables using quantum scat-

tering amplitudes. We discuss observables both with incoming and with

outgoing waves. The required classical limits are naturally described by

coherent states of massless bosons. We recompute the classic gravitational

deflection of light, and also show how to rederive Thomson scattering.

We introduce a new class of local observables, which includes the asymp-

totic electromagnetic and gravitational Newman–Penrose scalars. As an

example, we compute a simple radiated waveform: the expectation of the

electromagnetic field in charged-particle scattering. At leading order, the

waveform is trivially related to the five-point scattering amplitude.

221
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introduction

Theoretical waveforms play an important role in the LIGO/Virgo Collaboration’s

observational program of gravitational-wave events from binary mergers [6, 81–84].

These waveforms provide templates that enable the detection of events against

otherwise overwhelming noise backgrounds. They also allow observers to extract

the masses and spins of the binaries’ constituents [188]. To date, theorists have com-

puted waveforms (or equivalently, spectral functions for decaying binaries) using

long-established effective-one-body (EOB) methods [189] and numerical-relativity

approaches [190], in addition to methods based on the ‘traditional’ Arnowitt-Deser-

Misner Hamiltonian formalism [191], direct post-Newtonian solutions in harmonic

gauge [192], and computations in the effective-field theory approach pioneered by

Goldberger and Rothstein [167, 193, 194].

The start of the gravitational-wave observational era has spurred theorists to

explore new approaches to computing classical observables for the two-body prob-

lem in gravity, in particular using quantum scattering amplitudes. The connection

between the quantum S-matrix and observables in classical General Relativity

(GR) was first explored nearly fifty years ago by Iwasaki [31]. More recently,

renewed interest has been driven by modern on-shell techniques for computing

amplitudes and the double-copy relation between Yang–Mills and gravitational

amplitudes [130, 147–154, 195–211], as well as the bounty of observations. Earlier
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investigations included applications to the two-body potential [11] and study of

quantum corrections to gravity [212].

An important step was taken by Cheung, Solon, and Rothstein [12], who showed

how to match effective field theories (EFTs) to scattering amplitudes above thresh-

old in order to extract a classical potential. The classical potential can then be

used in the EOB or other frameworks to make predictions for bound-state quan-

tities. Bern, Cheung, Roiban, Shen, Solon, and Zeng used [10] this approach

to compute the third-order corrections (G3) to the conservative potential. This

milestone computation went beyond what had been known from direct classical

GR calculations, and provided the first concrete fulfillment of the promise of the

scattering-amplitudes class of methods. It used a two-loop scattering amplitude

for massive particles, and was followed by many new calculations using amplitude

methods [15, 17, 26, 68, 69, 72, 86, 139, 144, 213–221]. New EFT-based results have also

emerged [70, 73, 222–244]. In this context, Kälin and Porto have pointed out an

interesting analytic continuation from scattering to bound-state observables [73,141].

Several groups have pursued an eikonal approach [47, 245–250], and connections

to it [251]. Another approach which has seen recent attention is the world-line

formalism [193, 252, 253]. In the context of EFT, this world-line approach is particu-

larly important since it makes immediate sense classically. Treated as an effective

quantum field theory, this means that it organizes quantum corrections particularly

simply. Finally, two of the present authors have examined light-ray operators [254]
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and shock waves [20]. Researchers working within a traditional GR framework

have also continued to produce new results [14, 25, 85, 87, 146, 255–264].

In a previous paper [21], two of the present authors and Maybee outlined an

observables-based approach to computing classical quantities. It starts with an

observable in the quantum theory, expressing it in terms of scattering amplitudes;

and then uses an efficient and controlled method for taking the classical limit.

In this approach, rather than trying to compute intermediate quantities such as

the conservative potential, we write down a formal expression for an observable

of interest — for example, the total change in the momentum of one of two

scattered particles, aka its impulse — in the quantum theory. With an appropriate

wavefunction for the initial state, we can express the chosen observable in terms of

quantum scattering amplitudes. We further restore powers of h̄ via dimensional

analysis. At this stage, the h̄ scaling is naively bad, as the observable may be

seemingly divergent in the classical, h̄→ 0 limit, and loop corrections appear to be

increasingly divergent with increasing order.

The original paper [21] focused on scattering two massive particles. Appropriate

wavefunctions were necessary to localize each incoming particle. This localization

will sharpen in the classical limit, when we are focusing on point particles. The

localization will in turn lead us to retain momenta for the scattering particles in

the expression for the observable, but to use wavenumbers for exchanged, emitted,

or virtual massless particles (photons or gravitons). The change of variables from
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momenta to wavenumbers for the latter reveals additional powers of h̄ that then

yield a finite classical limit at each perturbative order. Herrmann, Parra-Martinez,

Ruf, and Zeng [26, 215], and separately Bautista and Guevara [220] have applied

this approach in their calculations.

Ref. [21] did not discuss massless bosonic particles, in particular in the initial

state. We remedy that in this article. Furthermore, ref. [21] focused only on global

observables, which require surrounding an event with a detector of 4π coverage. We

remedy this as well with a discussion of local observables, such as electromagnetic

and gravitational waveforms. Newman–Penrose [265] scalars provide a natural

language for these quantities. We will introduce these two principal topics of our

article in the remainder of this introduction.

Let us begin with the question of initial-state massless bosons. In the classical

limit, one describes massive particles as superpositions of single-particle states. They

ultimately appear as point-like particles or extended bodies. In contrast, massless

bosons appear as waves or wave packets. It is no longer possible to describe them

as superpositions of single-particle states. Instead, we shall see that they emerge

most naturally from coherent states of the corresponding quantum fields. Such

states are inherently superpositions of multiparticle states.

The significance of coherent states was emphasized by Glauber from 1963 on. He

proved that every quantum state of radiation — that is, every density matrix — can

be described as a suitable superposition of coherent states [266, 267]. In particular,
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in the classical limit one can describe these density matrices using the so-called

Glauber–Sudarshan P-representation [267, 268]. In this representation, there is a

classical probability distribution in the space of coherent states. The application of

coherent states to the classical limit of quantum scattering amplitudes started soon

afterwards in the work of Frantz, Kibble, and Brown [269–271], but a systematic

analysis of the question was still lacking [272]. Most calculations were limited

to the solvable model of the linear interactions of a current (or a stress tensor)

with the associated field [273]: in this case the S-matrix is solvable to all orders in

perturbation theory, and its structure is exactly equivalent to a coherent state. Yaffe

later showed [274] that coherent states are very convenient for understanding the

emergence of the classical approximation from quantum physics quite generally.

Concrete applications are nonetheless rare in the literature, especially outside the

case of a single particle interacting with a fixed coherent background (see ref. [275]

and references therein)1. Coherent states have a close connection to soft limits and

infrared divergences, which provide a natural arena for their emergence in the

late-time dynamics of QED and linearized gravity [277–282].

Let us turn next to the question of local observables. In ref. [21], the authors

studied time-integrated observables, in the context of scalar electrodynamics, and

validated the amplitude-based approach through comparisons with direct calcu-

lations in classical electromagnetism. What is of more direct interest to observers,

1 Ref. [276] offers a notable exception in the context of the superradiance problem.
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however, are time-dependent observables such as radiation waveforms. These are

examples of a class of observables which are local in the sense that they describe a

measurement at one spacetime point (or in a small region of spacetime). The time-

integrated observables of [21] in principle require an apparatus which completely

surrounds a scattering event, so that (for example) the impulse of any incoming

particle can be measured. We describe this class of observables as global as a result.

In this article, we establish a direct connection between local observables, such as

waveforms, and scattering amplitudes. We validate our approach with a calculation

of a simple waveform, arising from the scattering of two charged particles in

scalar QED. We will see that waveforms are effectively amplitudes for detecting

massless particles, or waves in the classical limit. We show how to write appropriate

quantum observables, and how to take their limits. Finally, we provide a direct

connection between the celebrated Newman–Penrose formalism [265] and scattering

amplitudes.

As our work has progressed, we have become aware of a parallel line of inves-

tigation by Bautista, Guevara, Kavanagh and Vines [283]. Their work is broadly

complementary to ours, but touches on some of the same themes: the connection

between the Compton amplitude and classical wave scattering, for example, and

the close connection between the Newman-Penrose scalars and helicity amplitudes.

Our article is organized as follows. We begin in the next section with a re-

view of the formalism of ref. [21]. In Sect. 11, we review coherent states for the



waveforms from amplitudes 228

electromagnetic field, show how they correspond to classical fields, and give a

simple example of a light beam built from them. In Sect. 11, we discuss global

observables with massless waves in the initial state, concentrating on the impulse

in this context. As examples, we discuss Thomson scattering and its relation to the

Compton amplitude, and we examine the calculation of the gravitational deflection

of light within our formalism. We turn to the second major topic of our article in

Sect. 11 with a discussion of the general form of local observables far from some

event. Sect. 11 follows with an introduction to spectral aspects of local observables,

leading to the Newman–Penrose projection formalism. In Sect. 11, we pause the

general development to give example of a local observable: the scattered radiation

field in Thomson scattering. In Sect. 11, we present the general form of the emission

waveform when two massive particles scatter, and in Sect. 11 we give explicit results

for electromagnetic emission in charged-particle scattering to leading order. We

discuss the connection between the waveform and the total radiated momentum in

Sect. 11, and end with concluding remarks in Sect. 11.

review of formalism

We use relativistic units, retaining c = 1, even as we restore h̄ explicitly. This

means that we must distinguish units of energy and length, which we denote

by [M] and [L] respectively. In this article, we will use a different normalization
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than the conventions of ref. [21] (which are also the conventions of Peskin and

Schroeder [284]). Here, we normalize the annihilation and creation operators such

that,

[ap, a†
p′ ] = (2π)32Epδ(3)(p− p′) . (599)

(Bold symbols denote spatial three-vectors.) Accordingly, n-point scattering ampli-

tudes continue to have dimension [M]4−n.

We keep [M]−1 as the dimension of single-particle states |p〉,

|p〉 ≡ a†
p|0〉 , (600)

with the vacuum state being dimensionless. We define n-particle plane-wave states

as simply the tensor product of normalized single-particle states. (The normalization

of the single-particle states is the same as in ref. [21].) The state |p〉 represents a

particle of momentum p and positive energy, while 〈p| = 〈0|ap is the conjugate

state.

We find it convenient to define an n-fold Dirac δ distribution with normalization

absorbing 2πs,

δ̂(n)(p) ≡ (2π)nδ(n)(p) . (601)
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The scattering matrix S and the transition matrix T are both dimensionless.

Scattering amplitudes are matrix elements of the latter between plane-wave states,

〈p′1 · · · p′m|T|p1 · · · pn〉 = A(p1 · · · pn → p′1 · · · p′m)δ̂(4)(p1 + · · · pn − p′1− · · · − p′m) .

(602)

As our formalism encompasses both QED and gravity, as well as other theories

with massless force carriers, we denote the coupling by g. In electrodynamics, it

corresponds to e, while in gravity to κ =
√

32πG. It is not dimensionless once we

have restored the factors of h̄; rather, it is g/
√

h̄ that is the dimensionless coupling.

We start by taking the momenta of all particles as the primary variables; but as

explained in the introduction, for most massless momenta, wavenumbers are the

variables of interest. We introduce a notation for the wavenumber p̄ associated to

the momentum p,

p̄ ≡ p/h̄ . (603)

We use the notation of ref. [21] for the on-shell phase-space measure,

dΦ(pi) ≡ d̂4pi δ̂(+)(p2
i −m2

i ) . (604)

We will leave the mass implicit, along with the designation of the integration

variable as the first summand when the argument is a sum. The notation for the

measure again absorbs factors of 2π,

d̂4p ≡ d4p
(2π)4 , (605)
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and as usual,

δ(+)(p2 −m2) = Θ(pt) δ(p2 −m2) , (606)

so that,

δ̂(+)(p2 −m2) = 2πΘ(pt) δ(p2 −m2) . (607)

(pt is the energy component of the four-vector.)

Given our convention for normalizing single-particle states, their inner product

is,

〈p′|p〉 = 2Epδ̂(3)(p− p′). (608)

The expression on the right-hand side is the appropriately normalized delta function

for the on-shell measure, which is convenient to express in more compact notation,

δ̂Φ(p1 − p′1) ≡ 2Ep1 δ̂(3)(p1 − p′1) . (609)

We should understand the argument on the left-hand side as a function of four-

vectors. In this notation, eq. (608) is simply,

〈p′|p〉 = δ̂Φ(p− p′) . (610)

With this notation, we can also rewrite the normalization of creation and annihilation

operations (599) in a natural form,

[ap, a†
p′ ] = δ̂Φ(p− p′) . (611)

We will also employ the notation a(k) ≡ ak and a†(k) ≡ a†
k to allow for additional
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indices.

Ref. [21] exclusively considered the scattering of two massive point-like particles.

In this article we go beyond that discussion to consider initial states which may

involve massless radiation. However, when appropriate we will continue to use

the notation of ref. [21] for initial states involving only massive particles: we take

the initial momenta to be p1 and p2, initially separated by a transverse impact

parameter b. The latter is transverse in that p1 · b = 0 = p2 · b.

In the quantum theory, the system of massive particles is described by wave

functions, which we build out of plane waves. In the classical limit, these wave

functions must localize the two point-like particles, and must separate them clearly.

We describe the incoming particles in the far past by wave functions ϕi(pi), which

we take to have reasonably well-defined positions and momenta. We will review

the requirements on the wave packets, discussed in detail in sect. 4 of ref. [21],

below.

We express the initial state in terms of plane waves |p1 p2〉in,

|ψ〉in =
∫

d̂4p1d̂4p2 δ̂(+)(p2
1 −m2

1)δ̂
(+)(p2

2 −m2
2) ϕ1(p1)ϕ2(p2) eib·p1/h̄|p1 p2〉in

=
∫

dΦ(p1)dΦ(p2) ϕ1(p1)ϕ2(p2) eib·p1/h̄|p1 p2〉in .

(612)

We require each wave function ϕi to be normalized to unity,

∫
dΦ(p1) |ϕ1(p1)|2 = 1 , (613)
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so that our incoming state is also normalized to unity,

in〈ψ|ψ〉in =
∫

dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)e
ib·(p1−p′1)/h̄

× ϕ1(p1)ϕ∗1(p′1) ϕ2(p2)ϕ∗2(p′2) δ̂Φ(p1 − p′1) δ̂Φ(p2 − p′2)

=
∫

dΦ(p1)dΦ(p2) |ϕ1(p1)|2|ϕ2(p2)|2

= 1 .

(614)

Finally, we turn to a review of the classical limit. As discussed in ref. [21], there

are three scales we must consider in the context of massive particle scattering:

the Compton wavelengths of the particles, `(i)c ≡ h̄/mi; the intrinsic spread of the

two particles’ wavepackets, given by `w; and the scattering length, `s. Taking the

classical limit requires that we impose the ‘Goldilocks’ conditions,

`
(i)
c � `w � `s . (615)

The calculation of the scattering reveals that `s ∼
√
−b2.

In order to expand in the h̄ → 0 limit and extract the leading, classical, term

for any observable, as mentioned above we must make the powers of h̄ explicit.

These arise from two sources: powers ordinarily hidden inside electromagnetic

or gravitational couplings; and powers arising from keeping the wavenumbers of

massless particles fixed rather than their momenta. This is true both for emitted and

virtual particles, when considering quantities such as the total emitted radiation.
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classical limit for massless particles

We are now ready to address the first major topic of this article: how to include

initial-state massless classical waves in the formalism of ref. [21]. A naive exten-

sion of the considerations of ref. [21] to massless particles is clearly impossible.

A particle’s Compton wavelength diverges when its mass goes to zero, making

it impossible to satisfy the required conditions (615). It doesn’t make sense to

treat messengers (photons or gravitons) as point-like particles. Indeed, Newton

and Wigner [285] and Wightman [286] proved rigorously long ago that a strict

localization of known massless particles in position space is impossible2. A proper

treatment instead relies on coherent states. We begin such a treatment in the fol-

lowing subsection by discussing general aspects of coherent states, focusing on the

electromagnetic case. We then describe the kind of coherent states of interest to us.

Coherent States of the Electromagnetic Field

We can write the electromagnetic field operator as,

Aµ(x) =
1√
h̄

∑
η

∫
dΦ(k)

[
a(η)(k)ε

(η)∗
µ (k) e−ik·x/h̄ + a†

(η)(k)ε
(η)
µ (k) e+ik·x/h̄] , (616)

2 The proof holds for vector bosons and gravitons.
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where η = ± labels the helicity, and the polarization vectors satisfy,

[
ε
(η)
µ (k)

]∗
= ε

(−η)
µ (k) . (617)

We follow the usual amplitudes convention of representing an outgoing positive-

helicity photon of momentum k by ε
(+)
µ (k), which also corresponds to an incoming

negative-helicity photon of the opposite momentum. To understand the helicity

flip for an incoming state, note that we can analytically continue an incoming

momentum k to an outgoing momentum k′ = −k. The energy component k′t of the

outgoing momentum is now negative. Thus, in an all-outgoing convention, positive-

helicity photons of momentum k with kt > 0 are represented by the polarization

vector ε
(+)
µ (k), while positive-helicity photons of momentum k with kt < 0 are

represented by the polarization vector ε
(−)
µ (k).

More generally, a†
(η)(k) creates a single-messenger state of momentum k and

helicity η, while a(η)(k) destroys such a state. Equivalently, the latter operator

creates a conjugate state of momentum k and helicity η.

The commutation relations are

[
a(η)(k), a†

(η′)(k
′)
]
= δη,η′ δ̂Φ(k− k′) . (618)

For example, a single-particle positive-helicity state is

|k+〉 ≡ a†
(+)(k)|0〉 =

[
a(+)(k)

]†|0〉 . (619)

The conjugate state is 〈k+|.
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Using the form of the electromagnetic field in eq. (616), the electromagnetic field

strength operator is,

Fµν(x) = − 2i
h̄3/2 ∑

η

∫
dΦ(k)

[
a(η)(k) k

[µ
ε
(η)∗
ν]

(k) e−ik·x/h̄− a†
(η)(k) k

[µ
ε
(η)
ν]

(k) e+ik·x/h̄] ,

(620)

where as usual the subscripted brackets denote antisymmetrization,

A[µBν] =
1
2
(AµBν − AνBµ) . (621)

Introduce the coherent-state operator,

Cα,(η) ≡ Nα exp
[∫

dΦ(k) α(k)a†
(η)(k)

]
, (622)

where the normalization Nα will be given below. We can build coherent states of

the electromagnetic field using this operator, such as a positive-helicity one,

|α+〉 = Cα,(+)|0〉 . (623)

More generally, we could consider coherent states containing both helicities. Since

coherent-state operators for different helicities commute and every polarization

vector can be decomposed in the helicity basis, there is no loss of generality in

making a specific helicity choice for the coherent states we consider. The coherent

state operators are unitary,

(Cα,(η))
† = (Cα,(η))

−1 . (624)
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The normalization factor Nα is determined by the condition 〈α+|α+〉 = 1, that is,

Nα = exp
[
−1

2

∫
dΦ(k) |α(k)|2

]
, (625)

as can be seen by using the Baker–Campbell–Hausdorff formula.

At this stage, the function α(k) is quite general, however in specific examples, we

may take it to be real. We will see below that it is subject to certain restrictions in the

classical limit. We will also see that its functional form will determine the physical

shape of the corresponding state, so we will call it the ‘waveshape’ function.

The coherent-state creation operator acting on the vacuum can be rewritten

using the Baker-Campbell-Hausdorff identity as a displacement operator [269, 270]

yielding

Cα,(η)|0〉 = exp
[∫

dΦ(k)α(k)(a†
(η)(k)− a(η)(k))

]
|0〉 . (626)

Its action on creation and annihilation operators is given by,

C†
α,(η)a(ρ)(k)Cα,(η) = a(ρ)(k) + δηρ α(k) ,

C†
α,(η)a

†
(ρ)(k)Cα,(η) = a†

(ρ)(k) + δηρ α∗(k) .

(627)
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To interpret the state, let us compute 〈α+|Aµ(x)|α+〉. It is useful to note,

a(+)(k)|α
+〉 = α(k)|α+〉 ,

a(−)(k)|α
+〉 = 0 ,

〈α+|a†
(+)(k) = 〈α

+|α∗(k) ,

〈α+|a†
(−)(k) = 0 ,

(628)

which incidentally imply that the dimension of α(k) is the same as the dimension

of the annihilation operator: inverse mass. It is then easy to see that,

〈α+|Aµ(x)|α+〉 = 1√
h̄

∫
dΦ(k)

[
α(k)ε(+)∗

µ (k)e−ik·x/h̄ + α∗(k)ε(+)
µ (k)e+ik·x/h̄]

=
∫

dΦ(k̄)
[
ᾱ(k̄)ε(+)∗

µ (k̄)e−ik̄·x + ᾱ∗(k̄)ε(+)
µ (k̄)e+ik̄·x]

≡ Acl µ(x) ,

(629)

where we define

ᾱ(k̄) ≡ h̄3/2α(k) . (630)

Additional constraints on ᾱ will emerge below from the consideration of correlators

in the classical limit. Note that the polarization vector is invariant under the

rescaling from a momentum to a wavevector: ε(η)(k̄) = ε(η)(k) is independent of h̄.

Now, the most general solution of the classical Maxwell equation in empty space

is,

∑
η

A(η) µ
cl (x) = ∑

η

∫
dΦ(k̄)

[
Ãη(k̄)ε(η)∗µ(k̄)e−ik̄·x + Ã∗η(k̄)ε

(η)µ(k̄)e+ik̄·x] , (631)

in terms of Fourier coefficients Ãη(k̄), which we can identify as ᾱ(k̄). Evidently our
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state |α+〉 contributes only the terms of positive helicity (η = +); a more general

coherent state involving creation operators of both helicities would generate this

most general solution of the free Maxwell equations. In examples we will consider,

the simpler state |α+〉 will suffice.

To further illuminate the meaning of coherent states, we may consider scattering

amplitudes in the presence of a non-trivial background field Acl(x). The scattering

matrix in the presence of this background field depends on it. We denote this

dependence by S(Acl). Using the properties of the coherent state operator it can be

shown that,

C†
α,(η)S(A)Cα,(η) = S(A + A(η)

cl ) . (632)

Coherent states thus allow us to capture the physics of a specific background field

based on vacuum scattering amplitudes:

C†
α,(η)S(0)Cα,(η) = S(A(η)

cl ) . (633)

The formulation of the perturbation theory in a fixed background is particularly

convenient when the Feynman rules — or the scattering amplitudes — in the

background are known exactly [287].
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Classical Coherent States

The coherence of a state does not suffice for it to behave classically. We must also

require factorization of expectation values,

〈α+|Aµ(x)Aν(y)|α+〉 ' 〈α+|Aµ(x)|α+〉〈α+|Aν(y)|α+〉 . (634)

A straightforward calculation in a light-cone gauge defined by a light-like vector q

shows that,

〈α+|Aµ(x)Aν(y)|α+〉 =

〈α+|Aµ(x)|α+〉〈α+|Aν(y)|α+〉 +
1
h̄

∫
dΦ(k)

[
ηµν − kµqν + kνqµ

k · q + iδ

]
e−ik·(x−y)/h̄

= 〈α+|Aµ(x)|α+〉〈α+|Aν(y)|α+〉 + h̄
∫

dΦ(k̄)
[

ηµν − k̄µqν + k̄νqµ

k̄ · q + iδ

]
e−ik̄·(x−y) .

(635)

Similarly for the field strengths, in a gauge independent way using eq. (620), we

obtain

〈α+|Fµν(x)Fρσ(y)|α+〉 = 〈α+|Fµν(x)|α+〉〈α+|Fρσ(y)|α+〉

+ 4h̄∂[µην][σ∂ρ]
∫

dΦ(k̄) e−ik̄·(x−y) .

(636)

For classical behavior, the second term on the right-hand side of eq. (636) must

be negligible compared to the first term. Writing Fµν
cl (x) ≡ 〈α+|Fµν(x)|α+〉, the

right-hand side becomes,

Fµν
cl (x)Fρσ

cl (y) +
h̄

π2 ∂[µην][σ∂ρ] 1
(x− y)2 − (x0 − y0 − iδ)2 . (637)
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The first term has a nontrivial limit as h̄ → 0, whereas the second term goes to

zero in the limit, consistent with our expectations. For h̄ 6= 0, it is not possible

to satisfy the inequality in the full spacetime region due to the divergence on

the light-cone (x0 − y0)2 = |x− y|2 of the massless photon propagator: causally

connected measurements cannot be disentangled. We expect these contributions

to fade away in the classical limit of a physical observable [270]. The factorization

condition, which is trivial in the classical limit, has been dubbed the “complete

coherence condition” in the literature3, a term coined by Glauber [267].

As usual, we define the operator measuring the number of photons to be,

Nγ = ∑
η

∫
dΦ(k) a†

(η)(k)a(η)(k) . (638)

A short computation shows that the expectation number Nγ of photons in our

coherent state is,

Nγ = 〈α+|Nγ|α+〉

=
∫

dΦ(k)|α(k)|2

=
1
h̄

∫
dΦ(k̄)|ᾱ(k̄)|2 .

(639)

The classical limit h̄ → 0 thus corresponds to the limit of a large number of

photons, that is a limit of large occupation number [274]. The desired factorization

property eq. (634) will thus hold when,

Nγ � 1 . (640)

3 In the quantum optics literature the normal-ordered correlator of the electric field at different spatial
locations can have various degrees of coherence [288].
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We must choose the waveshape α such that the integral in the last line of eq. (639) is

not parametrically small as h̄→ 0. A simple way to do so is to chose ᾱ independent

of h̄.

Similarly, the momentum carried by the coherent state is,

Kµ
� = 〈α+|Kµ|α+〉

=
∫

dΦ(k)|α(k)|2 kµ

=
∫

dΦ(k̄)|ᾱ(k̄)|2 k̄µ .

(641)

This quantity (“K beam”) is finite in the classical limit, as expected.

We emphasize that this coherent-state construction and its connection to classical

states generalizes to any massless particle, including gravitons. Finally, it is worth

remarking on the important and familiar case of geometric optics. This is a

purely classical approximation to wave phenomena, valid in situations where the

wavelength is negligible in comparison to other physical scales. An important

example, which we discuss below, is of the gravitational bending of light.

Localized Beams of Light

In this paper, one of our foci will be on phenomena associated with scattering

light from a point-like object. For problems of this type to be well-defined, the

incoming wave must be spatially separated from the incoming particle in the far
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past. Consequently, we need to understand how to describe a localized incoming

beam of light. We can choose the beam to be moving in the z direction, localized

around the origin of the x–y plane. To see how to do this, let’s consider some

examples.

The simplest option for the waveshape is,

α(k) = α�δ̂Φ(k− h̄k̄�) , (642)

where k̄� (“k-bar beam”) is the overall wavevector of the wave, and α� (“α beam”)

is a constant which scales like
√

h̄. Defining ᾱ� = h̄−1/2α�, this choice implies that,

ᾱ(k̄) = ᾱ�δ̂Φ(k̄− k̄�) , (643)

and that the classical field takes the form,

Aµ
cl(x) = 2 Re ᾱ� ε

∗µ
� (k̄�)e−ik̄�·x . (644)

It is worth pointing out here that the expectation value of the gauge potential

between coherent states is always a real quantity: a physical field which can be

measured. We can choose

k̄µ
� = (ω, 0, 0, ω)

ε
µ
� =

1√
2
(0, 1, i, 0) ,

(645)
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to provide an explicit example. If we pick the normalization of ᾱ to be given by

ᾱ� = A�/
√

2 with A� real, the classical field for this example is,

Aµ
cl(x) = A� (0, cos ω(t− z),− sin ω(t− z), 0) , (646)

which is a plane wave of circular polarization4 moving in the z-direction with

angular frequency ω. This wave is completely delocalized, which is a disadvantage

for our purposes: we wish to have a clean separation between the incoming wave

and point-like particle states.

To localize the wave, we may “broaden” the delta function in eq. (642). Define,

δσ(k̄) ≡
1

σ
√

π
exp

[
− k̄2

σ2

]
, (647)

which is normalized so that

∫ ∞

−∞
dk̄ δσ(k̄) = 1 . (648)

The peak width is controlled by the parameter σ. As k̄ is a wavenumber, σ has

dimensions of inverse length. We may choose our incoming wave, moving along

the z-axis, to be symmetric under a rotation about that axis. Consider the choice,

α(k) =
1
h̄3 |k|(2π)3A�

√
2h̄ δσ‖(ω− kz/h̄)δσ⊥(k

x/h̄)δσ⊥(k
y/h̄) ; (649)

or equivalently,

ᾱ(k̄) =
√

2|k̄|(2π)3A� δσ‖(ω− k̄z)δσ⊥(k̄
x)δσ⊥(k̄

y) , (650)

4 The wave 〈α−|Aµ|α−〉 is circularly polarized in the opposite sense.
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with A� real. (We use the superscripts t, x, y, and z to denote the corresponding

components of k̄.) We have introduced two measures of beam spread, σ‖ and σ⊥,

along and transverse to the wave direction respectively. The corresponding classical

field is,

Aµ
cl(x) =

√
2A� Re

∫
d3k̄ ε

∗µ
� (k̄) δσ‖(ω− k̄z)

× δσ⊥(k̄
x)δσ⊥(k̄

y)e−ik̄·x
∣∣∣
k̄t=
√

(k̄x)2+(k̄y)2+(k̄z)2
.

(651)

We emphasize that other choices of wave shape are available in the classical theory:

the only constraint is that Nγ must be large.

Let us further refine our example by taking σ‖ to be very small compared to the

other two scales, σ⊥ and ω = k̄t
�. We are thus considering a monochromatic beam,

for which we can replace δσ‖ by a Dirac delta distribution. Doing so, we obtain,

Aµ
cl(x) =

√
2A� Re

∫
d2k̄⊥ ε

∗µ
� (k̄) δσ⊥(k̄

x)δσ⊥(k̄
y) e−it

√
ω2+(k̄x)2+(k̄y)2

eiωzeik̄x xeik̄y y .

(652)

We can simplify this expression with the following considerations. For the beam to

be moving in the z-direction, the photons in the beam should dominantly have their

momenta, or equivalently their wavenumbers, aligned in the z-direction. However,

the broadened distribution δσ⊥ does allow small components of momentum in the

x and y directions. These components should be subdominant. The corresponding
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x and y wavenumbers are of order σ⊥ while the wavenumber in the z direction is of

order ω. Let us define the (reduced) wavelength λ ≡ ω−1. We must thus require,

λ−1 � σ⊥ . (653)

We can also define a transverse size of the beam,

`⊥ = σ−1
⊥ , (654)

along with a ‘pulse length’,

`‖ = σ−1
‖ . (655)

We see that we must require,

λ� `⊥ . (656)

In other words, a collimated monochromatic beam must have a transverse size

which is large in units of the beam’s wavelength. The requirement (656) is in some

respects analogous to the first part of the ‘Goldilocks’ condition (615). However, we

emphasize that eq. (656) arises from our desire to localize the wave in the far past.

In particular, waves violating the requirement (656) may still be classical.

Turning back to eq. (652), we may now simplify the time-dependent exponential

factor. The broadened delta distribution δσ⊥ forces,

(k̄x)2 + (k̄y)2 . σ2
⊥ = `−2

⊥ , (657)
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so that,

√
ω2 + (k̄x)2 + (k̄y)2 .

√
ω2 + `−2

⊥ ' ω +O(`−2
⊥ ω−2) ' ω . (658)

For the wave’s field, we obtain, in this approximation,

Aµ
cl(x) =

√
2A� Re

{
e−iω(t−z)

∫
d2k̄⊥ ε

∗µ
� (k̄) δσ⊥(k̄

x)δσ⊥(k̄
y)eik̄x xeik̄y y

}
=
√

2A� Re
{

e−iω(t−z) ε
∗µ
� (k̄�)

∫
d2k̄⊥ δσ⊥(k̄

x)δσ⊥(k̄
y)eik̄x xeik̄y y

}
,

(659)

where we can replace ε
µ
�(k̄) by ε

µ
�(k̄�) because of the smallness of the transverse

components of k̄. (Recall that k̄µ
� = (ω, 0, 0, ω).) To continue, we may note that the

integral, ∫ ∞

−∞
dq̄ eiq̄xδσ(q̄) = e−x2σ2/4 , (660)

so that we finally obtain,

Aµ
cl(x) =

√
2A� Re

[
e−iω(t−z)ε

∗µ
� (k̄�) e−(x2+y2)/(4`2

⊥)
]

. (661)

This is indeed a wave of circular polarization along the z-axis, with finite size in the

x–y plane.

Our approximation that σ‖ is negligible gives us a beam of infinite spatial extent

along the direction of propagation (here, the z axis). Were we to stop short of the

σ‖ → 0 limit, we would find a finite size in this direction too. The occupation

number, which is divergent for infinite extent in the z-direction, would also become

finite for nonvanishing σ‖.

The classical field in eq. (661) describes a beam of light that does not spread in the
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transverse direction, in apparent contradiction to the non-zero transverse momenta

the integral contains. This seeming contradiction is lifted when we compute the

field of eq. (652) to the next order in 1/(ω`⊥) and t/`⊥, as described in App. 11.

The result for short enough times is,

Aµ
cl(x) =

√
2A� Re

{
exp[−iω(t− z)]

1 + i t
2ω`2

⊥

ε
∗µ
� (k̄�) exp

[
− (x2 + y2)

4`2
⊥[1 + it/(2ω`2

⊥)]

]}

+
A�√

2
Re
{

exp[−iω(t− z)]

[
i

x
`2
⊥

∂k̄x ε
∗µ
� (k̄)

∣∣∣
k̄=k̄�

+ i
y
`2
⊥

∂k̄y ε
∗µ
� (k̄)

∣∣∣
k̄=k̄�

]

× exp

[
− (x2 + y2)

4`2
⊥

]}
+ · · · .

(662)

global observables with incoming radiation

In the previous section, we examined the use of coherent states to describe waves

built up of massless messengers (photons or gravitons), and understood that the

classical limit emerges in the limit of large occupation number. In this section, we

turn to dynamics: we will consider the scattering of a messenger wave and a scalar

point particle. Real-life examples are the classical scattering of a light beam off a

charged point particle; a light beam scattering gravitationally off a point particle; or

a gravitational wave scattering off a point particle.

Our focus in this section will be on global observables, obtained by surrounding

the scattering event with a distant sphere of detectors. These detectors can register
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the total change in momentum (or impulse) of the particle, or of the wave, during

scattering. These are the same kinds of observables considered in ref. [21]. The main

novelty in this section will be the computation of global observables for scattering

with incoming classical radiation, which we will describe using the coherent states

discussed in the previous section. In the following sections we will discuss local

observables.

Two examples will allow us to explore different aspects of the dynamics: the

electromagnetic impulse on a charge in a spatially localized beam of light (Thomson

scattering); and the General-Relativistic deflection of light in the geometric-optics

limit. We begin by discussing the details of the requirements imposed by the

dynamics in the classical limit, and the nature of the initial state.

Setup

In the classical limit, the Compton wavelength `c of a point-like particle must be

unobservably small. However, there is (in general) no need for the wavelength of

massless waves to be small. On the contrary, finite-wavelength classical waves are

quotidian phenomena, and propagate along the pages of many classical-physics

textbooks.

In the scattering of two point-like particles, this requirement on `c would be

violated if the particles approach at distances smaller than (or of order of) their
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Compton wavelength, because then the underlying wave nature of the particles

becomes important. Thus we arrive at the conclusion that classical scattering of two

particles obtains only when the impact parameter b 6= 0.

In contrast, for a wave of wavelength λ interacting with a particle, we simply

require that λ be much larger than the Compton wavelength `c of the particle.

When this is the case, the messengers comprising the wave cannot resolve the

quantum structure of the particle. For the classical point-particle approximation to

be valid, we further require that λ should be large compared to the finite size `w of

the particle’s wave packet. We thus have the requirement,

`c � `w � λ , (663)

for classical interactions of a wave with a particle of Compton wavelength `c. There

is no a priori constraint on the impact parameter b.

h

γγ

φ φ

φ

φ

γ γ

φ

Figure 1: While the t-channel graviton exchange contribution exists for a photon interacting
gravitationally with a scalar, this is not true in electromagnetic case

As exemplified in Fig. 1, in the electromagnetic scattering of a photon off a
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charged particle, there is no t-channel contribution. Correspondingly we are

primarily interested in the b ' 0 case. (More precisely, we are interested in b

smaller than the transverse size of the beam.) We will explore this in more detail

below. In contrast, in the gravitational scattering of a photon off a neutral particle,

there are both s- and t-channel contributions. In this case, we are interested in

general b.

The interaction between our particle and our wave introduces another length

scale to consider, namely the scattering length `s. Let q = h̄q̄ be a characteristic

momentum exchange associated with the interaction; then the scattering length is

defined to be,

`s =
1√
|q̄2|

. (664)

The value of the scattering length depends on the details of the scattering process.

In the case where two point-like particles scatter, for instance, one finds that `s ∼ b.

In the case at hand where a particle interacts with a wave this need not be the case.

Indeed for an s channel processes it is more natural to expect `s to be determined

by the off-shellness of intermediate propagators such as s−m2. For definiteness

let us take the momentum of the incoming particle to be p1 = m1u1 while the

incoming wave has characteristic wavenumber k̄�. Then s−m2
1 = 2h̄k̄� · p1, so that

the scattering length should be,

`s ∼
1

k̄� · u1
. (665)
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This is simply of the order of the wavelength of the incoming wave.

We turn next to the construction of the incoming state. As in ref. [21] and

in eq. (612), we write the point particle as a superposition of plane-wave states

weighted by a wavefunction ϕ(p). Following the discussion in the previous section,

we write the messenger wave as a coherent state of helicity η characterized by

the waveshape α(k). We start with a basis of states constructed out of coherent

states (623) of definite helicity |αη〉 for the messenger and plane-wave states for the

massive particle,

|p1 α
η
2〉in = |p1〉|α

η
2〉 . (666)

Our initial state then takes the form,

|ψw〉in =
∫

dΦ(p1) ϕ1(p1) eib·p1/h̄|p1 α
η
2〉in . (667)

The impact parameter b now separates the particle from the center of the beam

in the far past. As in the earlier discussion, the state is normalized to unity,

in〈ψw|ψw〉in = 1. (We will leave the ‘in’ subscript implicit going forward.)

Information about the classical four-velocity of the point particle is hidden inside

ϕ(p). The explicit example studied in ref. [21] made use of a linear exponential

(which slightly counter-intuitively reduces to a Gaussian in the nonrelativistic limit).

In the same way, the information about the overall momentum K� of the messenger

wave is hidden inside α(k).

In the following, we will make use of the coherent wave shape α(k) chosen in
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eq. (649) corresponding to the choice of ᾱ(k) of eq. (650), independent of h̄ as

desired. We will elucidate inequalities between the various parameters defining the

beam below, where relevant.

General Expression for the Impulse

Before we discuss the details of specific examples, let us investigate the general

structure of the impulse, 〈∆p1〉, on a massive particle during a scattering event with

a classical wave. We can carry over the expression from ref. [21],

〈∆pµ
1 〉 = 〈ψw| i[Pµ

1 , T] |ψw〉+ 〈ψw| T†[P
µ
1 , T] |ψw〉

= Iµ

w(1) + Iµ

w(2) .

(668)

Compared to ref. [21], only the initial state is different.

Before studying the expansion of this expression, we remark that there is an

equivalent formulation in terms of the background field,

〈∆pµ
1 〉 =

∫
dΦ(p1)dΦ(p′1) ϕ1(p1)ϕ∗1(p′1)e

−ib·(p′1−p1)/h̄ 〈p′1|C†
α,(η)i[P

µ
1 , T]Cα,(η) |p1〉

+
∫

dΦ(p1)dΦ(p′1) ϕ1(p1)ϕ∗1(p′1)e
−ib·(p′1−p1)/h̄ 〈p′1|C†

α,(η)T
†[P

µ
1 , T]Cα,(η) |p1〉

=
∫

dΦ(p1)dΦ(p′1) ϕ1(p1)ϕ∗1(p′1)e
−ib·(p′1−p1)/h̄ 〈p′1| i[P

µ
1 , T(A(η)

cl )] |p1〉

+
∫

dΦ(p1)dΦ(p′1) ϕ1(p1)ϕ∗1(p′1)e
−ib·(p′1−p1)/h̄ 〈p′1| T†(A(η)

cl )[P
µ
1 , T(A(η)

cl )] |p1〉 ,

(669)

where the scattering matrix computed from the background A(η)
cl is denoted by
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T(A(η)
cl ), and we have used the relation C†

α,(η)Cα,(η) = 1. While we will focus

on the formulation (668), it is intriguing to notice the linear term of the impulse

Iµ

w(1) is closely related to the two-point function of the massive scalar field in the

coherent state background. As a consequence, we should expect a resummation of

all higher-order results.

Returning to eq. (668), we note that — just as in the scattering of two massive

particles — only the first term contributes at leading order (LO) in the generic

coupling g. This LO contribution arises at O(g2); the second term only contributes

starting at O(g4). Let us focus on the Iµ

w(1) term, and write out the details of the

wavefunction (667),

Iµ

w(1) =
∫

dΦ(p1)dΦ(p′1) e−ib·(p′1−p1)/h̄ ϕ1(p1)ϕ∗1(p′1) i(p′1 − p1)
µ〈p′1 α

η
2 |T|p1 α

η
2〉 .

(670)

The matrix elements of coherent states are not of definite order in perturbation

theory. In order to isolate the contributions at each order, one would ordinarily

introduce a complete set of states of definite particle number on each side of the T

matrix,

Iµ

w(1) = ∑
X,X′

∑
ζ,ζ ′=±

∫
dΦ(p1)dΦ(p′1)dΦ(r1)dΦ(r′1)dΦ(k2)dΦ(k′2)

× e−ib·(p′1−p1)/h̄ ϕ1(p1)ϕ∗1(p′1) i(p′1 − p1)
µ

× 〈p′1 α
η
2 |r
′
1 k′ζ

′

2 X′〉〈r′1 k′ζ
′

2 X′|T|r1 kζ
2 X〉〈r1 kζ

2 X|p1 α
η
2〉 .

(671)



waveforms from amplitudes 255

The sums over X and X′ are over different numbers of messengers, including none,

and include the phase-space integrals over their momenta. Charge conservation

implies that each intermediate state must contain one net massive-particle number;

we drop additional particle–antiparticle pairs as their effects will disappear in the

classical limit, and we denote the massive-particle momenta by r1 and r′1. Moreover,

in order to satisfy on-shell conditions of the T matrix element, each intermediate

state must contain at least one messenger, whose momenta are denoted by k2 and

k′2.

The LO contribution to Iµ

w(1) is the simplest. One may be tempted to believe

that it arises from terms with X = X′ = ∅, but this is not quite right: that would

omit disconnected parts of the S-matrix. In the situation at hand, a great many

photons are present in the initial state; the dominant contribution to the interaction

occurs when most photons pass directly from the initial to the final state. Thus

rather than taking X = X′ = ∅, we instead need to sum over additional messengers

in the coherent states. These sums over non-interacting messengers, contributing

disconnected S-matrix terms, are necessary to recover the correct normalization.

One can carry out these sums explicitly, but it is convenient instead to introduce

an alternate representation for the T matrix in terms of creation and annihilation

operators. As the incoming state |ψw〉 given in eq. (667) contains one massive

particle and an arbitrary number of photons (or messengers more generally), we

must consider terms with a pair of massive-particle annihilation and creation
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operators, and an arbitrary nonzero number of messenger annihilation and creation

operators (not necessarily paired). That representation has the form,

T = ∑
η̃,η̃′

∫
dΦ(r̃1, r̃′1, k̃2, k̃′2) 〈r̃′1k̃′η̃

′

2 |T|r̃1k̃η̃
2〉 a†

(η̃′)(k̃
′
2)a†(r̃′1) a(r̃1)a(η̃)(k̃2) + · · · , (672)

where the ellipsis indicates higher order terms in the coupling g as well as ampli-

tudes which do not contribute in the classical limit. We will summarily drop all

these terms in the following, retaining only the explicit O(g2) term. The measure

here is a shorthand,

dΦ(r̃1, r̃′1, k̃2, k̃′2) = dΦ(r̃1)dΦ(r̃′1)dΦ(k̃2)dΦ(k̃′2) . (673)

The advantage of the representation (672) is that the creation and annihilation

operators act simply on coherent states, yielding factors of α(k2) and α∗(k′2), and

taking care of the normalization for us. Each term within this representation

contains an ordinary (connected) amplitude with a definite number of external

messengers.

The required matrix element for the integrand term in eq. (672) can be computed

easily,

〈p′1 α
η
2 |T|p1 α

η
2〉 = 〈r̃

′
1k̃′η̃

′

2 |T|r̃1k̃η̃
2〉 〈p

′
1 α

η
2 |a

†
(η̃′)(k̃

′
2)a†( p̃′) a(η̃)(k̃2)a( p̃)|p1 α

η
2〉

= δ̂Φ(r̃1 − p1) δ̂Φ(r̃′1 − p′1) δη̃,ηδη̃′,ηα2(k̃2)α
∗
2(k̃
′
2) 〈r̃′1k̃′η̃

′

2 |T|r̃1k̃η̃
2〉 ,

(674)

where we neglected all the terms in the ellipsis of eq. (672). Notice that we
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encountered the matrix element 〈αη
2 |α

η
2〉 = 1: this conveniently takes care of all

the disconnected diagrams. The remaining matrix element introduces the desired

scattering amplitude,

〈r̃′1 k̃′η
′

2 |T|r̃1 k̃η̃
2〉 = A(r̃1 k̃η̃

2 → r̃′1 k′η̃
′

2 ) δ̂4(r̃1 + k̃2 − r̃′1 − k̃′2) . (675)

As usual, the superscripts on the messenger momenta denote the corresponding

physical helicity. To write it in the usual amplitudes convention, A(0→ p1, p2, . . .),

we must cross the momenta to the other side. This flips the helicity of incoming

messengers.

Using the results of eqs. (674) and (675) in eq. (670) and carrying out the sums

over η̃, η̃′, we obtain,

Iµ

w(1) =
∫

dΦ(p1)dΦ(p′1)dΦ(k2)dΦ(k′2) ϕ1(p1)ϕ∗1(p′1)α2(k2)α
∗
2(k
′
2)

× e−ib·(p′1−p1)/h̄ i(p′1 − p1)
µ

×A(p1 kη
2 → p′1 k′η2 ) δ̂4(p1 + k2 − p′1 − k′2) ,

(676)

where we have dropped the tildes on k2 and k′2.

If we make the usual change of variables to the momentum mismatches q1,2,

q1 = p′1 − p1 ,

q2 = k′2 − k2 ;

(677)
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use the delta function to integrate over q2; and drop the subscript on q1, we find,

Iµ

w(1) =
∫

dΦ(p1)dΦ(k2)d̂4q δ̂(2q · p1 + q2)δ̂(2q · k2 − q2)Θ(pt
1 + qt)Θ(kt

2 − qt)

× ϕ1(p1)ϕ∗1(p1 + q) α∗2(k2 − q)α2(k2)

× e−ib·q/h̄ iqµA(p1 kη
2 → p1 + q, (k2 − q)η) .

(678)

The analysis of the classical limit as far as the ϕ1(p1)ϕ∗1(p1 + q) factor is concerned

is the same as in ref. [21]. It requires us to take the wavenumber mismatch as our

integration variable in lieu of the momentum mismatch. At leading order, we do

not have to worry about terms singular in h̄, so the evaluation as far as the massive

particle is concerned will take,

δ̂(2q · p1 + q2)→ h̄−1δ̂(2q̄ · p1) ,

ϕ(p1 + q)→ ϕ(p1) .

(679)

Removing the coupling from inside the scattering amplitude (as in ref. [21], the

reduced amplitude is denoted by Ā), we find for the classical limit,

Iµ,cl
w(1) = g2

〈〈∫
dΦ(k̄2)d̂4q̄ δ̂(2q̄ · p1)δ̂(2q̄ · k̄2 − q̄2)Θ(k̄t

2 − q̄t) ᾱ∗2(k̄2 − q̄)ᾱ2(k̄2)

× e−ib·q̄ iq̄µ Ā(p1 h̄k̄η
2 → p1 + h̄q̄, h̄(k̄2 − q̄)η)

〉〉
.

(680)

As in ref. [21], the double-angle brackets indicate an average over the wave function

of the point-like particle. Classically, this is a function of the momentum p1 with a

very sharp peak at p1 = m1u1 where u1 is the classical (proper) velocity and m1 is

the particle’s mass.
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Figure 2: Impulse in scattering of a massive object off a coherent state background.

We can now apply this general result in a variety of specific cases. We shall

describe two examples in detail: Thomson scattering of a charge by a wave, with

b ' 0, and gravitational scattering of light by a mass in the geometric-optics limit.

Impulse in Thomson Scattering

Our first application is to Thomson scattering, of a particle of charge Qe and mass

m, by a collimated beam of light. We take the light beam to have positive helicity,

corresponding to the coherent state |α+〉. We need the four-point tree Compton

amplitude in scalar QED,

Ā(p1, kη
2 → p′1, k′η

′

2 ) = 2Q2 ε(η)∗(k2) · ε(η
′)(k′2) = 2Q2 ε(−η)(k2) · ε(η

′)(k′2) , (681)
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where we have chosen the gauge,

ε(η) · p1 = 0 , (682)

for both photons. Alternatively, in spinor variables, we have a gauge-invariant

expression for the helicity amplitude, namely

Ā(p1, k+2 → p′1, k′+2 ) = −Q2

2
〈k2|p1|k′2]2

k2 · p1 k′2 · p1
. (683)

This form of the amplitude is manifestly gauge independent, but it depends

explicitly on spinors |k′2〉 and |k2] associated with photon momenta. As usual, in the

classical limit we prefer to work with photon wavenumbers. We therefore introduce

rescaled spinors,

|k̄′2〉 ≡ h̄−1/2 |k′2〉 , |k̄2] ≡ h̄−1/2 |k2] , (684)

which are directly associated with the photon wavenumbers. The amplitude then

has the expression,

Ā(p1, k+2 → p′1, k′+2 ) = −Q2

2
〈k̄2|p1|k̄′2]2

k̄2 · p1 k̄′2 · p1
. (685)

Choosing b = 0, and for a more symmetric presentation, writing k = k2 and

k′ = k2 − q, the impulse eq. (680) takes the form,

〈∆pµ〉 = Q2e2

2

∫
dΦ(k̄)dΦ(k̄′) δ̂(2p · (k̄− k̄′)) ᾱ∗(k̄′)ᾱ(k̄) i(k̄′ − k̄)µ 〈k̄|p|k̄′]2

(k̄ · p)2 . (686)

This expression may be compared with the classical electromagnetic result, obtained

by iterating the classical Lorentz force twice. Thus we see in an explicit example
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that a vanishing impact parameter is perfectly acceptable in the classical scattering

of waves off matter, in contrast to the situation for two massive particles scattering.

It is interesting that the Compton amplitude appears at tree level in the classical

physics of wave scattering off massive particles. This amplitude is also relevant [67]

for purely massive particle scattering, though at one loop order. While the ampli-

tude is very simple for spinless particles, it is considerably more complicated [71]

for particles with large spins. Currently we do not have a clear understanding of

the appropriate Compton amplitude for the Kerr black hole, or of what principle we

could use to determine it. This is an important area for further research. Our work

suggests one angle of attack: information about the classical part of the Compton

amplitude could be extracted by a purely classical analysis of the impulse on a

massive spinning object in scattering off a messenger wave. This is one topic under

independent study in ref. [283].

Light Deflection in Gravitational Scattering

A second interesting application of the formulas derived in the previous section

is to the gravitational deflection of light by a massive object. We may access this

observable by computing the change in momentum of a narrow (small `⊥) beam of

light passing with non-zero impact parameter b past a massive point-like particle.

At leading order, there is no radiation of momentum, so the change in momentum
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of the wave is simply the negative of the change in momentum of the massive point

source: our starting point is once again eq. (680).

Before we discuss the details of the calculation, it is worth dwelling for a moment

on our setup. Eddington’s famous observations demonstrated that starlight is

deflected by the sun in accordance with General Relativity. Near the sun, light

emitted by a distant star is essentially a spherical wave, and so the incoming wave

is extremely delocalized. In contrast, we have chosen to study a collimated, narrow

beam of light. Nevertheless, the difference between our setup and Eddington’s case

is immaterial. We work in the situation where the wavelength λ of the light is very

small compared to the impact parameter: this is the domain of geometric optics,

and also applies to Eddington’s case. It is in the context of geometric optics that

the bending is well-defined; the geometric bending does not depend on the details

of the wave.

For our purposes the setup of a narrow beam in the far past is just a simpler

place to start. The reason is that we can then determine the bending of light by

computing the impulse on the beam: this impulse is directly the change in direction

of the wave. By contrast the impulse on starlight due to the sun involves integrating

over the whole incoming spherical wavefront: this is not related in a simple manner

to the bending of light.

In the geometric-optics regime, we need the wavelength of the light λ to be small.

At the same time we must suppress all quantum effects, so we choose λ to be
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large compared to the Compton wavelength `c of our point source. To keep our

beam collimated, eq. (656) requires that `⊥ � λ. The requirement that our beam is

narrow is `⊥ � b. Thus there is a series of inequalities:

`c � λ� `⊥ � `s ∼ b . (687)

Note that the scattering length `s is expected to be of order of the impact parameter

in this case, as we are considering a t channel process. For simplicity, we consider

a monochromatic beam with σ‖ → 0. The final length scale to consider is the size

`w of the point-particle’s wave packet. As usual we require `c � `w � `s. Once

these conditions are met, there will be little overlap between the beam and the wave

packet, so we do not anticipate that the values of the ratios λ/`w or `⊥/`w will be

important.

The impulse given in eq. (680) simplifies due to the constraints of eq. (687). Note

that the quantity |q̄ · k̄2| � |q̄2| in the second delta function, as k̄2 ∼ 1/λ while

q̄ ∼ 1/`s. The wavenumber q̄ is then dominantly in the plane of scattering. In this

plane, the coherent waveshape ᾱ2 is of width 1/`⊥ so that we may approximate

ᾱ∗2(k̄2 − q̄) ' ᾱ∗2(k̄2). For the same reason, the explicit theta function in the impulse
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simplifies: Θ(k̄t
2 − q̄t) = 1. Taking into account the sign demanded by momentum

balance, the impulse on the wave is,

〈∆pµ
2 〉 = −g2

〈〈∫
dΦ(k̄2)d̂4q̄ δ̂(2q̄ · p1)δ̂(2q̄ · k̄2) |ᾱ2(k̄2)|2

× e−ib·q̄ iq̄µ Ā(p1 h̄k̄η
2 → p1 + h̄q̄, h̄(k̄2 − q̄)η)

〉〉
.

(688)

The integral over k̄2 is now in a great many respects analogous to the integral over

the massive particle wave function which is hidden in our double-angle brackets. In

the geometric optics limit, ᾱ2(k̄2) is a steeply-peaked function of the wave number

peaked at k̄2 = k̄�; in view of eq. (639), its normalization is related to the number

of photons in the beam. The amplitude, meanwhile, is a smooth function in this

region. The k̄2 integral then has the structure,

∫
dΦ(k̄2) δ̂(2q̄ · k̄2) |ᾱ2(k̄2)|2 f (k̄2) ' f (k̄�)

∫
dΦ(k̄2) δ̂(2q̄ · k̄2) |ᾱ2(k̄2)|2 , (689)

where f is a slowly-varying function. We thus encounter the convolution of a

delta function and the sharply-peaked |α2(k)|2. The result of the convolution is a

broadened delta function centered at k̄2 = k̄�. Neglecting the width (of order σ⊥)

of this function we have,

∫
dΦ(k̄2) δ̂(2q̄ · k̄2) |ᾱ2(k̄2)|2 f (k̄2) ' f (k̄�) Nγh̄ δ̂(2q̄ · k̄�) . (690)

Notice the appearance of the number of photons Nγ in the beam: this normalization

constant emerges from the integral over |α2(k)|2. The classical geometric optics

approximation does not have access to this number of photons, and correspondingly
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it will cancel in our expression for the deflection angle below. Certain other physical

quantities do involve this number of photons: for example, the total momentum of

the beam is,

Kµ
� =

∫
dΦ(k̄)|ᾱ(k̄)|2 k̄µ

' Nγh̄ k̄µ
� .

(691)

Returning to the impulse on the beam, use of eq. (690) leads to the expression,

〈∆pµ
geom〉 = −Nγh̄ g2

〈〈∫
d̂4q̄ δ̂(2q̄ · p1)δ̂(2q̄ · k̄�)

× e−ib·q̄ iq̄µ Ā(p1 h̄k̄η
� → p1 + h̄q̄, h̄(k̄� − q̄)η)

〉〉
.

(692)

The subscript reminds us that the approximation is valid in the geometric-optics

limit.

At leading order, we only need the four-point tree-level amplitude. As there are

no contributions singular in h̄ at this order, we can simply retain only the terms

that survive in the classical limit:

Ā(p1 kη
2 → p′1, k′η2 ) =

p1 · k2 p1 · k′2
q2 ε(η)∗(k2) · ε(η)(k′2) + · · · ,

=
p1 · k̄2 p1 · k̄′2

q̄2 ε(η)∗(k̄2) · ε(η)(k̄′2) + · · · ,

(693)

where we have chosen the gauge p1 · ε(η)(k) = 0 for each polarization vector, and

the ellipsis indicates terms which are suppressed by powers of h̄.

This amplitude simplifies further in the geometric-optics limit. The inequalities

eq. (687) require in particular that the wave number q̄ ∼ 1/b � k̄2. We may

therefore replace the scalar product p · k̄′2 with p · k̄2 in eq. (693), up to terms which
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are neglected in the geometric-optics limit. At the same time, we may replace the

polarization vector ε(η)(k̄′2) with ε(η)(k̄2) to the same order of approximation. The

amplitude is then simply,

Ā(p1 kη
2 → p′1, k′η2 ) = −

(p1 · k̄2)
2

q̄2 + · · · (694)

We note that the geometric-optics limit of the amplitude for the scattering of a

photon off a massive scalar is helicity-independent. Up to constant factors, it reduces

to the amplitude between one massless and one massive scalar5. This is as expected

from the equivalence principle: if the classical limit weren’t universal, the impulse

and hence the scattering angle would have helicity-dependent contributions.

In order to the evaluate the impulse, we insert the geometric-optics ampli-

tude (694) into the expression (692) for the impulse in the geometric-optics limit.

We obtain,

〈∆pµ
geom〉 = iκ2 Nγh̄ (p1 · k̄�)2

∫
d̂4q̄ δ̂(2q̄ · p1)δ̂(2q̄ · k̄�) e−ib·q̄ q̄µ

q̄2

= iκ2 (p1 · K�)2
∫

d̂4q̄ δ̂(2q̄ · p1)δ̂(2q̄ · K�) e−ib·q̄ q̄µ

q̄2 .

(695)

Here, we have replaced the general coupling g by the appropriate gravitational

coupling κ, and the wavenumber k̄� by the total beam momentum K�. The second

line of this equation is strikingly similar to the impulse in a scattering process

between two massive classical objects. Indeed, the integral remaining in eq. (695) is

essentially the same as the integral appearing in the LO impulse in ref. [21]. It can

5 See the beautiful and pedagogical discussion in ref. [289] for more details.
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easily be performed by taking the light beam in the z direction, Kµ
� = (E, 0, 0, E).

The result is,

〈∆pµ
geom〉 = −κ2 p1 · K�

8π b2 bµ . (696)

The impact parameter bµ is directed from the massive particle towards the wave, so

the sign above indicates that the interaction is attractive.

The scattering angle θ is then determined geometrically in terms of the impulse,

sin θ =
|b · ∆p|
|b| E , (697)

once we have fixed a frame. We have taken the absolute value to drop the sign

of the angle, understanding that the bending is towards the scatterer. Working

in the rest frame of the massive scalar, and using κ2 = 32πGN, we reproduce the

well-known value for the gravitational bending of light,

θ =
4GNm
|b| + · · · . (698)

As a final comment, it is satisfying that the impulse we have obtained in eq. (695)

is essentially the same as the impulse on massive point particles as discussed in

ref. [21]. This occurred as the inequalities eq. (687) greatly simplified the impulse.

These inequalities themselves are very similar to the Goldilocks conditions eq. (615)

for classical point-like particles. The fact that the dynamics of massive particles is

so similar to the behavior of waves in the geometric-optics regime was a celebrated

aspect of nineteenth and early twentieth century physics, known as the Hamiltonian
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analogy. This analogy was highlighted by Schrödinger [290] and others as an

important consideration in the early days of quantum mechanics.

Higher Orders

Although in sections 11 and 11 we focused on leading-order applications, our

formalism is completely general and eq. (668) holds to all perturbative orders. As

we have seen, the leading-order contribution arises at O(g2). The second term, Iµ

w(2),

in the impulse of eq. (668) involves one-loop amplitudes, and therefore contributes

only starting at O(g4). Consequently, we can identify a further contribution, at

O(g3), which receives no contribution from Iµ

w(2) but only from Iµ

w(1). It arises from

the leading corrections to eq. (672),

δT3 ≡ ∑
η̃,η̃′,η̃′′

∫
dΦ(r̃1 ,̃r′1, k̃2, k̃′2, k̃3)

×
[
〈r̃′1k̃′η̃

′

2 |T|r̃1k̃η̃
2 k̃η̃′′

3 〉 a†
(η̃′)(k̃

′
2)a†(r̃′1) a(r̃1)a(η̃)(k̃2)a(η̃′′)(k̃3)

+ 〈r̃′1k̃′η̃
′

2 k̃η̃′′

3 |T|r̃1k̃η̃
2〉 a†

(η̃′′)(k̃3)a†
(η̃′)(k̃

′
2)a†(r̃′1) a(r̃1)a(η̃)(k̃2)

]
,

(699)

where the additional argument in the measure corresponds to a factor of dΦ(k̃3).
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Inserting the integrand of δT3 into the matrix element in eq. (670), we obtain

(analogously to eq. (674)),

〈p′1 α
η
2 |δT3|p1 α

η
2〉 =[

〈r̃′1k̃′η̃
′

2 |T|r̃1k̃η̃
2 k̃η̃′′

3 〉 〈p
′
1 α

η
2 |a

†
(η̃′)(k̃

′
2)a†(r̃′1) a(r̃1)a(η̃)(k̃2)a(η̃′′)(k̃3)|p1 α

η
2〉

+ 〈r̃′1k̃′η̃
′

2 k̃η̃′′

3 |T|r̃1k̃η̃
2〉 〈p

′
1 α

η
2 |a

†
(η̃′′)(k̃3)a†

(η̃′)(k̃
′
2)a†(r̃′1) a(r̃1)a(η̃)(k̃2)|p1 α

η
2〉
]

= δ̂Φ(r̃1 − p1) δ̂Φ(r̃′1 − p′1) δη̃,ηδη̃′,ηα2(k̃2)α
∗
2(k̃
′
2)

×
[
δη̃′′,η α2(k3)〈r̃′1k̃′η̃

′

2 |T|r̃1k̃η̃
2 k̃η̃′′

3 〉+ δη̃′′,η α∗2(k3)〈r̃′1k̃′η̃
′

2 k̃η̃′′

3 |T|r̃1k̃η̃
2〉
]

.

(700)

The scattering matrix elements in this expression introduce five-point amplitudes,

〈r̃′1 k̃′η̃
′

2 |T|r̃1 k̃η̃
2 k̃η̃′′

3 〉 = A(r̃1 k̃η̃
2 k̃η̃′′

3 → r̃′1 k̃′η̃
′

2 ) δ̂4(r̃1 + k̃2 + k̃3 − r̃′1 − k̃′2) ,

〈r̃′1 k̃′η̃
′

2 k̃η̃′′

3 |T|r̃1 k̃η̃
2〉 = A(r̃1 kη̃

2 → r̃′1 k̃′η̃
′

2 k̃η̃′′

3 ) δ̂4(r̃1 + k̃2 − r̃′1 − k̃′2 − k̃3) .

(701)

By crossing, we could choose to identify,

A(r̃1 k̃η̃
2 k̃η̃′′

3 → r̃′1 k̃′η̃
′

2 ) = A(r̃1 k̃η̃
2 → r̃′1, k̃′η̃

′

2 , (−k̃3)
−η̃′′) . (702)

Substituting these expressions into eq. (670) and dropping tildes, we obtain,

Iµ

w(1)|g3 =
∫

dΦ(p1)dΦ(p′1)dΦ(k2)dΦ(k′2)dΦ(k3) α∗2(k
′
2)α2(k2)

× e−ib·(p′1−p1)/h̄ ϕ1(p1)ϕ∗1(p′1) i(p′1 − p1)
µ

×
[
α2(k3)A(p1 kη

2 kη
3 → p′1 k′η2 ) δ̂4(p1 + k2 + k3 − p′1 − k′2)

+ α∗2(k3)A(p1 kη
2 → p′1 k′η2 kη

3) δ̂4(p1 + k2 − p′1 − k′2 − k3)
]

.

(703)
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This O(g3) term is interesting as it differs in structure from contributions to

the impulse for massive-particle scattering studied in ref. [21]. In that case, the

first corrections arise at O(g4), from one-loop amplitudes in Iµ

(1) and cut one-loop

amplitudes in Iµ

(2). We leave an investigation of the new contributions (703) to

future work.

Another difference between purely massive scattering and particle-on-wave

scattering relates to the radiation reaction. In the massive case [21], radiation

reaction first occurs at next-to-next-to-leading order, that is at O(g6). In contrast,

radiation reaction arises atO(g4) in wave–particle scattering. This radiation reaction

must contain contributions from the second term in the impulse, Iµ

w(2), which

contributes at that order.

point-like observables

In the previous section, we built on ref. [21] to analyze what we may call global

observables, requiring an array of detectors covering the celestial sphere at infinity

in order to measure the quantity. This is most manifest for the total radiated

momentum, defined by eq. (3.33) of ref. [21],

Rµ ≡ 〈kµ〉 = in〈ψ| S†KµS |ψ〉in = in〈ψ| T†KµT |ψ〉in . (704)

Even in electromagnetic scattering, achieving 4π coverage would make this a
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challenging measurement. In the gravitational context, where we would be looking

to detect emission from scattering of distant black holes, such a measurement would

be hopelessly impractical. Instead, for the remainder of this article, we turn to what

we may call local observables, which can be measured with a localized detector,

albeit still sitting somewhere on the celestial sphere, say at x. The paradigm for

such a measurement is that of the waveform W(t, n̂; x) of radiation emitted during

a scattering event in direction n̂ from an event at the coordinate origin. (That

is, we adopt the convention that −n̂ points back from the observer towards the

scattering event.) We will focus on electromagnetic radiation here, but much of the

formalism will carry over to the gravitational case. Let us keep in mind that we

will be interested in several detectors, all nearby x, though with separations that

are completely negligible compared to the distance from the origin.

Local observables have a general structure which, as we will see, is determined

by some source (the scattering event) and the propagation of messengers over

very large distances. In fact it is convenient to break up our discussion of these

observables along these lines. In the present section we will discuss this overall

structure in more detail, with a focus on the crucial aspect of propagation. In

the following sections, we will extract general expressions for local observables

from quantum field theory, and connect to the Newman-Penrose formalism. Then

we will examine global observables in cases where a classical wave scatters off a

massive particle before turning to the physically important case where two massive
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particles scatter and radiate.

It will be easier to discuss and manipulate the Fourier transform of the waveform

with respect to time. We will refer to this as the spectral waveform f (ω, n̂; x):

f (ω, n̂; x) =
∫ +∞

−∞
dt W(t, n̂; x) eiωt . (705)

Given a result for the spectral waveform, we can of course recover the time-

dependent waveform via an inverse Fourier transform. Because we are interested in

radiation produced by long-range forces, the idealized waveforms for the scattering

processes we will consider stretch infinitely far back and forward in time. The

idealization is implicit in the infinite limits for the integral in eq. (705). In an actual

measurement, however, the waveform would be below the noise floor of the detector

for all times before a ‘signal start time’ preceding the moment of closest approach,

and likewise for all times after a ‘signal end time’ following that moment. We can

then take the theoretical waveforms to be approximations to actual ones cut off at

the start and end times. Label the interval between the two by ∆ts.

Let us imagine that the point of closest approach during the scattering event is

at the coordinate origin, (t, x) = (0, 0). When a massless wave scatters off a point

particle, the wave may overlap the particle; we take a suitable event of maximum

overlap as the origin. We can treat the scattering as occurring in a box of temporal

length ∆ts, and of spatial size ∆xs. Radiation is emitted inside the box during the

scattering event, and then spreads out. We will take an (idealized) measurement
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of the radiation in some direction n̂, at a much later time and at a point very far

away in that direction. The details of the scattering — the particles’ interaction

and spins — will determine the radiation emitted inside the box. Modifying those

details could radically change the emission. Those details, however, will have no

effect on the propagation of the radiation out to the distant measuring apparatus.

Only the spin of the radiated field can have any effect. We thus expect the form of

the result to be a Green’s function convoluted with a source. More precisely, given

that we have only outgoing radiation, we expect a retarded Green’s function Gret.

We can then expand the Green’s function in the large-distance limit to obtain the

connection between the observable and the emitted radiation inside the box.

The details of the scattering inside the box around (0, 0) define a current for our

radiation. In a real-world context, we are interested in electromagnetic or gravita-

tional radiation, but we can equally well treat the case of (massless) scalar radiation

as well. The details of the scattering inside the box give rise to a wavenumber-space

field-strength current, J̃~µ(k̄), where the notation ~µ denotes a number of indices

appropriate to the radiated messenger: none for a scalar, two for a photon, and

four for a graviton,

J̃(k̄) : scalar ,

J̃µν(k̄) : electromagnetism ,

J̃µνρσ(k̄) : gravity .

(706)

In a slight abuse of language, we will refer to these quantities simply as currents.
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They will satisfy appropriate conservation conditions. We will later obtain an

expression for such a current in terms of scattering amplitudes.

Given this current, the usual position-space current can of course be obtained by

taking a Fourier transform,

J~µ(x) =
∫

d̂4k̄ J̃~µ(k̄) e−ik̄·x . (707)

Clearly we can also write J̃~µ(k̄) in terms of J~µ(x) via an inverse transform,

J̃~µ(k̄) =
∫

d4x J~µ(x) eik̄·x . (708)

Both of these forms of the current will be helpful for us below.

As we will show in detail in the next section, we obtain an x-dependent radiation

observable in the general form,

R~µ(x) = i
∫

dΦ(k̄)
[

J̃~µ(k̄) e−ik̄·x − J̃∗~µ(k̄) e+ik̄·x] , (709)

that is, as an integral of the source J̃~µ(k̄) over the on-shell massless phase space for

the radiated messenger. Examples will include expectations of hermitian operators,

such as the field-strength operator in electromagnetism, or the Riemann tensor in

gravity.

The hermiticity properties of our radiation observables is manifest in eq. (709).

But notice that the observables are defined as integrals over positive frequencies

k̄t ≥ 0. Yet in writing the innocuous-seeming Fourier transform in eq. (707), we

have assumed knowledge of the current for both positive and negative frequency.
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So we must fill a gap: what do we mean by the current for negative frequency? In

fact, the reality condition provides the necessary information. Our currents are real

in position space, and we may note that,

J~µ(x) =
∫

d̂4k̄ θ(k̄t)
[

J̃~µ(k̄) e−ik̄·x + J̃~µ(−k̄)eik̄·x
]

. (710)

The reality condition then leads to the relation,

J̃~µ(−k̄) = J̃∗~µ(k̄) . (711)

We use this relation to define the current for negative frequency.

A key simplification arises because the source event, occurring in our box, is

sourced in a comparatively localized region compared to the very large propagation

distance of the outgoing radiation. To access this simplification, we follow a well-

trodden path [291] by rewriting our radiation observables as integrals over the

spatial extent of the source. Thus, we express the observable of eq. (709) in terms of

the spatial current J~µ(x), yielding

R~µ(x) = i
∫

dΦ(k̄) d4y J~µ(y)
[
e−ik̄·(x−y) − e+ik̄·(x−y)] . (712)

Next, we interchange orders of integration. Judicious forethought reveals the

combination of phase space integrals to be a difference of retarded and advanced

Green’s functions,

R~µ(x) =
∫

d4y J~µ(y)
[
Gret(x− y)− Gadv(x− y)

]
. (713)
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In the far future, where the observer measures the wavetrain emitted from the

scattering event, Gadv will vanish. Put in an explicit form for Gret, and switch back

to the wavenumber-space current in order to make the complete dependence of the

integrand on x and y manifest. The result is,

R~µ(x) =
∫

d̂ωd̂3k̄ d4y J̃~µ(k̄) e−ik̄·y δ(x0 − y0 − |x− y|)
4π|x− y|

=
∫

d̂ωd̂3k̄ d3y J̃~µ(k̄)
e−iωx0

e+iω|x−y| e+ik̄·y

4π|x− y| .

(714)

Notice that the integral is now over all wavenumbers. We have split the four-

dimensional momentum integration into integrals over spatial and frequency com-

ponents for later convenience.

From the earlier discussion, we know that J~µ(y) is concentrated around y ' 0,

whereas x is far away (x � y). Accordingly we can expand the integrand there,

using,

|x− y| ∼
[
x2 − 2x · y

]1/2

∼ |x|
(

1− n̂ · y
|x|

)
.

(715)

We must be careful in performing this expansion: while it is sufficient to retain the

leading term in the denominator, we must retain formally subleading terms that

contribute to nontrivial phases. Even in those exponents, we can of course still drop

terms beyond the subleading, as they give rise to no nontrivial phases.

Substituting the expansion (715) into eq. (714), we obtain,

R~µ(x) =
∫

d̂ωd̂3k̄ d3y J̃~µ(k̄)
e−iωx0

e+iω|x|e−iωn̂·y e+ik̄·y

4π|x| ; (716)



waveforms from amplitudes 277

performing in turn the y and k integrals, we finally obtain,

R~µ(x) =
(2π)3

4π|x|

∫
d̂ωd̂3k̄ J̃~µ(k̄) e−iωx0

e+iω|x| δ3(k̄−ωn̂)

=
1

4π|x|

∫
d̂ω J̃~µ(ω, ωn̂) e−iω(x0−|x|) .

(717)

We can thus identify the waveform with the coefficient of the leading-power term

|x|−1,

W~µ(t, n̂; x) =
1

4π

∫
d̂ω J̃~µ(ω, ωn̂) e−iω(x0−|x|) . (718)

In this equation, t represents the observer’s clock time. We could take it to be x0, or

x0 − |x|, or some other convenient time. We must nonetheless retain the separate

dependence on x0 and |x|, because these quantities will differ between the cluster

of nearby observers in which we are interested. That is, the absolute phase of

the waveform at any given observer’s location is not measurable and is therefore

irrelevant, but the relative phases between nearby observers are measurable.

Choosing t = x0 − |x|, the corresponding spectral waveform is then simply,

f~µ(ω, n̂) =
1

4π
J̃~µ(ω, ωn̂) . (719)

More precisely, eq. (719) is the waveform for positive frequencies. For negative

frequencies, the waveform follows from eq. (711),

f~µ(ω, n̂) =
1

4π
J̃∗~µ(−ω,−ωn̂) ; (720)

notice that −ω is now positive. In both cases, once we know the current J̃~µ(k̄), we

can immediately write down the spectral waveform.
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spectral waveforms

As we have seen, the waveform is directly related to the current J̃~µ(k̄) generated

by the scattering event. We must choose a specific local radiation observable to

determine this current using its definition, eq. (709). In this section we will study

examples in both electrodynamics and gravity. Let us begin with a simple case: the

field-strength tensor (620) in electrodynamics.

We choose an observer at x, in the far future of the event, equipped to measure the

expectation value of the electric and magnetic field at the point x. The observable is

therefore

〈Fout
µν (x)〉 ≡ out〈ψ|Fµν(x)|ψ〉out . (721)

We can rewrite the outgoing state in terms of the incoming state using the time-

evolution operator or S-matrix,

〈Fout
µν (x)〉 = in〈ψ|S†Fµν(x)S|ψ〉in , (722)

where (as usual) |ψ〉in is the incoming state in the far past. This state could contain,

for example, two isolated massive point-like particles, or a single isolated massive

particle and a coherent state describing incoming radiation. A state of the former

type would be appropriate to study radiation emitted as two particles scatter, while

a state of the latter type can be used to study the scattered radiation field in a

Thomson scattering process. We will study both of these examples in detail later in
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this article.

Inserting the expression for the field-strength tensor (620) into this expectation

value, and converting to integrals over wavenumbers, we learn that,

〈Fout
µν (x)〉 = −2ih̄3/2 ∑

η

∫
dΦ(k̄)

[
〈ψ|S†a(η)(k)S|ψ〉 k̄

[µ
ε
(η)∗
ν]

(k̄) e−ik̄·x

− 〈ψ|S†a†
(η)(k)S|ψ〉 k̄

[µ
ε
(η)
ν]

(k̄) e+ik̄·x] ,

(723)

where we have again dropped the ‘in’ subscript, leaving it implicit in the rest of our

discussion. (Recall that k is just a label for the creation and annihilation operators,

and we can use k̄ interchangeably for this purpose.)

We now see the virtue of our definition of the general class of radiation observ-

ables in eq. (709). Evidently the expectation value 〈Fout
µν (x)〉 is of precisely this form,

and we can read off the current J̃~µ(k̄) as

J̃µν(k̄) = −2h̄3/2 ∑
η

〈ψ|S†a(η)(k)S|ψ〉 k̄
[µ

ε
(η)∗
ν]

(k̄) . (724)

The discussion of the previous section therefore applies, and we see from eq. (719)

that the corresponding spectral waveform is,

fµν(ω, n̂) = − 1
2π

h̄3/2 ∑
η

〈ψ|S†a(η)(k)S|ψ〉 k̄
[µ

ε
(η)∗
ν]

(k̄)
∣∣∣
k̄=(ω,ωn̂)

, (725)

for positive frequency (ω > 0). For negative frequency (ω < 0) the waveform is,

fµν(ω, n̂) = − 1
2π

h̄3/2 ∑
η

〈ψ|S†a†
(η)(k)S|ψ〉 k̄

[µ
ε
(η)
ν]

(k̄)
∣∣∣
k̄=−(ω,ωn̂)

(726)

This result holds to all orders in perturbation theory.
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It is straightforward to extend this result to gravity. We work in Einstein gravity,

and assume that the spacetime is asymptotically Minkowskian. In this case our

observer at x is very far from the source of gravitational waves, and is equipped

to measure the expectation value of the local spacetime curvature 〈Rout
µνρσ(x)〉. The

corresponding spectral waveform is nothing but the double copy of eq. (725),

fµνρσ(ω, n̂) =
iκ
2π

h̄3/2 ∑
η

〈ψ|S†a(η)(k)S|ψ〉 k̄
[µ

ε
(η)∗
ν]

(k̄) k̄
[ρ

ε
(η)∗
σ]

(k̄)
∣∣∣
k̄=(ω,ωn̂)

, (727)

for ω > 0. In this equation, the operator a(η)(k) annihilates perturbative gravita-

tional states. We have included a factor κ/2 so that the Riemann tensor has the

conventional normalization. Noting that the metric perturbation falls off as inverse

distance, it follows that non-linear terms in the Riemann tensor produce corrections

which fall off faster than inverse distance. Consequently, we have neglected them.

Notice that all possible traces of eq. (727) vanish, consistent with the fact that the

Riemann tensor in vacuum equals the Weyl tensor. The waveform for negative

frequency is,

fµνρσ(ω, n̂) = − iκ
2π

h̄3/2 ∑
η

〈ψ|S†a†
(η)(k)S|ψ〉 k̄

[µ
ε
(η)
ν]

(k̄) k̄
[ρ

ε
(η)
σ]

(k̄)
∣∣∣
k̄=−(ω,ωn̂)

. (728)

The Lorentz indices on these observables reflects the tensor structure of electrody-

namics and gravity. In both cases, however, there are only two possible polarizations

of the outgoing radiation. It is helpful to project the waveform onto one of these

polarizations. Classically, a convenient way to do so is to use the Newman–Penrose
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(NP) [265] formalism, which is intimately connected to the spinor-helicity method

of scattering amplitudes [210, 211, 283]. We can adopt the same idea in the present

context. For us, a simple route to the NP formalism is to pick a complex basis of

vectors which is aligned with our setup. We choose the vectors6

Lµ = k̄µ/ω = (1, n̂)µ, Nµ = ζµ, Mµ = ε(+)µ, M∗µ = ε(−)µ . (729)

The null vector ζ is simply a gauge choice, satisfying ζ · ε(±) = 0 and L ·N = L · ζ =

1. Furthermore note that M ·M∗ = −1. The scaling of the NP vector L ensures that

it does not depend on frequency ω, and is dimensionless. Indeed the polarization

vectors ε(±) do not depend on the scaling of k̄ so they are also independent of

frequency. These vectors therefore make sense as a spacetime basis, not merely as a

basis in Fourier space.

It is easy to check that the only non-zero components of fµν in the NP basis

are fµνM∗µNν and fµνMµNν. These are the leading radiative NP scalar, tradition-

ally [292] denoted Φ0
2, and its conjugate. We can write these NP scalars as Fourier

transforms:

Φ0
2(t, n̂) =

∫
d̂ω e−iωt Φ̃0

2(ω, n̂) . (730)

Notice that we commuted the NP basis vectors through the frequency integration

6 We use capital letters to denote the elements of our NP basis rather than the more traditional lower
case symbols in order to distinguish the vectors from loop momenta, masses, et cetera.
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sign. This is permissible as the basis vectors are independent of frequency. For

positive frequency ω, we find,

Φ̃0
2(ω, n̂) = − ω

4π
h̄3/2〈ψ|S†a(−)(k)S|ψ〉

∣∣∣
k̄=(ω,ωn̂)

, (731)

while for negative frequency, the corresponding expression reads,

Φ̃0
2(ω, n̂) = +

ω

4π
h̄3/2〈ψ|S†a†

(+)(k)S|ψ〉
∣∣∣
k̄=−(ω,ωn̂)

. (732)

Combining these results, we find that the time-domain NP scalar is,

Φ0
2(t, n̂) = − h̄3/2

4π

∫
d̂ω Θ(ω)ω

[
e−iωt〈ψ|S†a(−)(k)S|ψ〉

+ e+iωt〈ψ|S†a†
(+)(−k)S|ψ〉

]∣∣∣
k̄=(ω,ωn̂)

.
(733)

In gravity, the corresponding radiative NP scalar is defined by

Ψ4(x) = −NµM∗ν NρM∗σ〈Wµνρσ(x)〉 , (734)

where Wµνρσ(x) is the Weyl tensor, equal to the Riemann tensor in our case. Ex-

panded at large distances, the leading term in the NP scalar is Ψ0
4:

Ψ4(x) =
1
|x|Ψ

0
4 + · · · . (735)

This object is directly relevant to gravitational waveforms [190, 293]. We find that

the spectral version of the NP scalar is,

Ψ̃0
4(ω, n̂) = −i

κ ω2

8π
h̄3/2〈ψ|S†a(−−)(k)S|ψ〉

∣∣∣
k̄=(ω,ωn̂)

, (736)
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for positive ω. Let us emphasize once again that these results hold to all orders of

perturbation theory.

NP scalars are particularly well-suited for comparison with helicity amplitudes

in quantum field theory. However, they may be slightly less familiar than the more

elementary field strengths; field strengths also have the virtue of being hermitian

quantities. Therefore, in the remainder of this article, we will also study the

expectation of the radiative field-strength tensor in perturbation theory. This entails

rewriting the scattering matrix in terms of the transition matrix T, S = 1 + iT,

〈Fout
µν (x)〉 = 〈ψ|(1− iT†)Fµν(x) (1 + iT)|ψ〉

= 〈ψ|Fµν(x)|ψ〉+ 2 Re i〈ψ|Fµν(x)T|ψ〉+ 〈ψ|T†Fµν(x)T|ψ〉 .

(737)

The first term in eq. (737) is the expectation value of the field strength due to any

incoming radiation which may be present in |ψ〉in; the following term is linear in

amplitudes, and thus of O(g3) (or higher); the last term is quadratic in amplitudes

(or equivalently, linear in a cut amplitude), and contains terms of O(g5) and higher.

Using unitarity, we can rewrite eq. (737),

〈Fout
µν (x)〉(x) = 〈ψ|Fµν(x)|ψ〉+ i〈ψ|[Fµν(x), T]|ψ〉+ 〈ψ|T†[Fµν(x), T]|ψ〉 . (738)

The commutator in the second term of this expression is reminiscent of the form of

the impulse ∆p (although in case of the field strength, the first term above need not

vanish). This second form of the field strength can be both instructive and useful,

but it has a slight disadvantage that reality properties are somewhat obscured
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compared to eq. (737). When taking the classical limit, we are interested in the

leading term in the large-distance expansion as well; for such radiation observables,

we will understand the
〈〈
· · ·
〉〉

notation to impose that expansion as well.

We will use this observable to analyze emitted radiation in the scattering of two

charged particles in Sect. 11. We first continue our analysis of Thomson scattering

in the next section.

from compton scattering to thomson scattering

In Sect. 11, we considered the Thomson scattering process: electromagnetic scatter-

ing of a classical beam off of a massive point charge. In our earlier discussion we

studied the impulse suffered by the massive particle during the process. We are

now equipped to deepen our analysis by determining the scattered light generated

during Thomson scattering. We will do so by using the results of the previous

section to compute the NP scalar Φ0
2 which describes that scattered light at very

large distances.

In this situation, our initial state eq. (667) describes an isolated massive particle,

and a localized beam of incoming classical radiation described as in Sect. 11 by

a coherent state with an appropriate waveshape function. Correspondingly, the
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Figure 3: The observer measures the field strength of the outgoing wave.

incoming state generates a non-vanishing expectation value for the electromagnetic

field strength tensor. This is the incoming classical radiation 〈Fin
µν(x)〉:

〈Fin
µν(x)〉 = 〈ψw|Fµν|ψw〉 . (739)

In particular, there is a non-vanishing NP scalar Φ0
2 in the far past.

To focus attention on the scattered light, it is convenient to study the overall

change in the NP scalar during the process,

∆Φ0
2(ω, n̂) = − ω

4π
h̄3/2

[
〈ψw|S†a(−)(k)S|ψw〉 − 〈ψw|a(−)(k)|ψw〉

] ∣∣∣
k̄=(ω,ωn̂)

. (740)

This simply subtracts the contribution of the incoming beam to the radiation field

in the future. We will compute this quantity at leading order, focusing on the

positive-frequency part throughout.
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Using unitarity of the S matrix, we may write ∆Φ0
2 in terms of a commutator,

∆Φ0
2(ω, n̂) = − i

4π
ωh̄3/2〈ψw|[a(−)(k

′
2), T]|ψw〉

∣∣∣
k̄′2=(ω,ωn̂)

. (741)

We relabeled the quantity k̄ appearing in eq. (740) as k̄′2 because, as we will see

below, it has the interpretation of the wavevector associated with the outgoing wave

which was denoted k̄′2 in Sect. 11.

To compute the commutator [a(−)(k
′
2), T], we make use of eq. (672) to expand the

T matrix in terms of creation and annihilation operators. Dropping the terms in the

ellipsis of eq. (672), the commutator is easily computed to be,

[a(−)(k
′
2), T] = ∑

η̃

∫
dΦ(r̃1, r̃′1, k̃2) 〈r̃′1k′−2 |T|r̃1k̃η̃

2〉 a†(r̃′1)a(r̃1) a(η̃)(k̃2) . (742)

Inserting this result in eq. (741), and expanding the state |ψw〉 using its defini-

tion eq. (667) specialized to the case b = 0 we easily find that,

∆Φ0
2(ω, n̂) =

− i
4π

ωh̄3/2 ∑
η

∫
dΦ(p1, p′1, k2) ϕ∗(p′1)ϕ(p1) 〈p′1k′−2 |T|p1kη

2〉 〈α
+|a(η)(k2)|α+〉

= − i
4π

ωh̄3/2
∫

dΦ(p1, p′1, k2) ϕ∗(p′1)ϕ(p1) 〈p′1k′−2 |T|p1k+2 〉 α(k2) .

(743)

The matrix element of the transition operator yields the Compton amplitude, as
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well as the usual delta function enforcing overall momentum conservation. We may

perform the p′1 integral using this delta function to find that,

∆Φ0
2(ω, n̂) =

− i
4π

ωh̄3/2
∫

dΦ(p1, k2) δ̂(2p1 · (k′2 − k2)) |ϕ(p1)|2 α(k2)A(p1k+2 → p′1k′−2 ) .

(744)

We replaced the (conjugated) wavefunction ϕ∗(p′1 + k2 − k′2) by ϕ∗(p′1) because the

difference (k2 − k′2)/h̄ = k̄2 − k̄′2 is small (of order 1/λ) compared to the width of

the wavefunction (which is of order 1/`w). The integral over the wavefunction is

now precisely of the form required for the double-angle-bracket notation of ref. [21]

so that we arrive at,

∆Φ0
2(ω, n̂) = − i

4π

〈〈
ωh̄3/2

∫
dΦ(k2) δ̂(2p1 · (k′2 − k2)) α(k2)A(p1k+2 → p′1k′−2 )

〉〉
.

(745)

Finally, we insert the explicit Compton amplitude of eq. (681), and replace the

remaining integral over k2 with an integral over the associated wavenumber k̄2 to

learn that the LO NP scalar due to the scattering process is,

∆Φ0
2(ω, n̂) = i

Q2e2

16π

〈〈
ω
∫

dΦ(k̄2) δ̂(2p1 · (k̄′2 − k̄2)) ᾱ(k2)m2 〈k̄2k̄′2〉
[k̄2k̄′2] k̄2 · p1

〉〉
. (746)

The same result would also be obtained from a classical analysis of the leading

order radiation field of a point charge moving under the influence of an incoming

classical wave.
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Alternatively, it is possible to compute the expectation value of the field strength

in the very far future. Focusing again on the change in the field strength,

〈∆Fµν(x)〉 ≡ 〈Fout
µν (x)〉 − 〈Fin

µν(x)〉 , (747)

it is straightforward to use eq. (737) and find that,

〈∆Fµν(x)〉 = i〈ψw|[Fµν(x), T]|ψw〉+ · · · . (748)

We have indicated higher order terms are present in the ellipsis. It may be worth

emphasizing once again that this result is the same as one would find be direct

computation using background field methods:

〈∆Fµν(x)〉 = 〈ψw|S†Fµν(x)S|ψw〉 − 〈ψw|Fµν(x)|ψw〉

=
∫

dΦ(p1)dΦ(p1)ϕ(p1)ϕ∗(p′1)e
−ib·(p′1−p1)/h̄

×
{

i〈p′1|[Fµν(x), T(A(η)
cl )]|p1〉+ 〈p′1|T†(A(η)

cl )Fµν(x)T(A(η)
cl )|p1〉

}
,

(749)

where A(η)
cl (x) denotes the classical background field corresponding to our coherent

state, and we once again used the relation C†
α,(η)Cα,(η) = 1.

Returning to the LO computation of the scattered field strength, by inserting the

definition of the field strength operator, we now encounter two commutators:

〈∆Fµν(x)〉 = 2

h̄3/2 ∑
η′

∫
dΦ(k′)

[
〈ψw|[a(η′)(k̄

′), T]|ψw〉 k̄′[µε
(η′)∗
ν]

(k′) e−ik′·x/h̄

−〈ψw|[a†
(η′)(k̄

′), T]|ψw〉 k̄′[µε
(η′)
ν]

(k′) e+ik′·x/h̄
]

.

(750)
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The first of these was computed explicitly above; the second is very similar. After a

short computation, the field strength can be expressed as,

〈∆Fµν(x)〉 = Re
〈〈

2g2 ∑
η′

∫
dΦ(k̄2, k̄′2) δ̂(p1 · (k̄′2 − k̄2)) ᾱ(k̄2)

× Ā(p1k+2 → p′1k′η
′
) k̄′2[µε

(η′)∗
ν]

(k̄′2) e−ik̄′2·x
〉〉

.

(751)

Comparison with the NP scalar is facilitated by performing the k̄′2 integral using

the methods of Sect. 11. Indeed, the field strength change of eq. (751) is of the

general form of the radiation observable eq. (709). The corresponding current is,

J̃µν(k̄2) =

− 4i
〈〈

∑
η′

∫
dΦ(k̄′2) δ̂(2p1 · (k̄′2 − k̄2)) ᾱ(k̄2)Ā(p1k+2 → p′1k′2

η′) k̄′2[µε
(η′)∗
ν]

(k̄′2)
〉〉

.

(752)

The NP scalar can be obtained directly from this current as,

∆Φ0
2(ω, n̂) =

1
4π

J̃µν(k̄)M∗µNν . (753)

Performing the dot products, we recover our earlier result, eq. (746).

Earlier, we identified incoming classical radiation with coherent states. The reader

may wonder then about the nature of outgoing radiation. A necessary condition

for the outgoing radiation to be represented by a coherent state is that expectation

values of observables, such as the field strength, should factorize. We have proved

this explicitly earlier, see eq. (636). Perhaps surprisingly, it turns out that this is also

a sufficient condition. Indeed, one can work out the constraints on the probability
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density of the outgoing (pure) radiation: in the coherent state space (also called

the Glauber–Sudarshan representation), the classical factorization of observables

implies that the distribution has zero variance. In turn, this makes the distribution

degenerate, i.e. supported on isolated points. But as shown by Hillery [294], the

normalization condition together with the purity constraint suffices to reduce the

sum of delta functions in the coherent state space to just a single delta function.

That is, we have only a single outgoing coherent state in the classical limit. In

appendix 11, we prove that the factorization condition holds at the lowest order in

the coupling constant, which makes the outgoing radiation state of the Thomson

scattering coherent up to order g2. A more detailed discussion on this point will

appear in forthcoming work [295].

emission waveform

We turn now to photon emission in the scattering of two charged point particles. At

leading order in perturbation theory, only the second term in eq. (737) (or similarly,

in eq. (738)) contributes. It will be of order O(g3), whereas the second term will be

of O(g5).
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If we now substitute the expression (620), along with that (612) for the initial-state

wavefunction for the scattering particles into the first term of eq. (737), we obtain,

〈Fµν(x)〉1 =
4

h̄3/2 Re ∑
η

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)dΦ(k)

× e−ib·(p′1−p1)/h̄ ϕ(p1)ϕ∗(p′1)ϕ(p2)ϕ∗(p′2)

× k[µε(η)ν]∗e−ik·x/h̄〈p′1 p′2|a(η)(k) T|p1 p2〉

=
4

h̄3/2 Re ∑
η

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)dΦ(k)

× e−ib·(p′1−p1)/h̄ ϕ(p1)ϕ∗(p′1)ϕ(p2)ϕ∗(p′2)

× k[µε(η)ν]∗e−ik·x/h̄〈p′1 p′2 kη|T|p1 p2〉 .

(754)

We can identify the matrix element as a five-point amplitude,

〈p′1 p′2 kη|T|p1 p2〉 = A(p1, p2 → p′1, p′2, kη)δ̂4(p1 + p2 − p′1 − p′2 − k) . (755)

At leading order, we replace the amplitude by its LO contribution, given by a

tree-level expression. To compute the required waveform, we must identify the

expectation of Fµν(x) as the spatial current J~µ(x) in eqs. (707) and (708), and via

eq. (708), in eq. (718).

Beyond leading order, the expectation of Fµν(x) will receive higher-order contri-
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butions to the amplitudes in eq. (755), alongside contributions from the last term in

eq. (738),

〈Fµν(x)〉2 = − 2i
h̄3/2 ∑

η

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)dΦ(k)

× e−ib·(p′1−p1)/h̄ ϕ(p1)ϕ∗(p′1)ϕ(p2)ϕ∗(p′2)

×
[
k[µε(η)ν]∗e−ik·x/h̄〈p′1 p′2|T†a(η)(k) T|p1 p2〉

− k[µε(η)ν]e+ik·x/h̄〈p′1 p′2|T†a†
(η)(k)T|p1 p2〉

]
(756)

Insert a complete set of states to the right of each T†,

〈ψ|T†FT|ψ〉 = ∑
X

∫
dΦ(r1)dΦ(r2) 〈ψ|T†|r1 r2 X〉〈r1 r2 X|FT|ψ〉 , (757)

where the sum over X is over all states, including no additional particles, and

includes an implicit integral over momenta of any particles in X and a sum over any

other quantum numbers. As in ref. [21], we assume that each of the incoming mas-

sive particles carries a separately conserved global charge, so that each intermediate

state has one net particle of each type. We can ignore additional particle-antiparticle

pairs of the massive particles, as these contributions will disappear in the classical

limit. As there are no messengers in the initial state, and hence no coherent states,

there is no need to sum over arbitrary numbers of messengers. Accordingly, we do
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not need to switch to a coherent-friendly representation (672) of the T matrix. We

obtain,

〈Fµν(x)〉2 = − 2i
h̄3/2 ∑

X
∑
η

∫
dΦ(r1)dΦ(r2)dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)dΦ(k)

× e−ib·(p′1−p1)/h̄ ϕ(p1)ϕ∗(p′1)ϕ(p2)ϕ∗(p′2)

×
[
k[µε(η)ν]∗e−ik·x/h̄〈p′1, p′2|T†|r1 r2 X〉〈r1 r2 X|a(η)(k) T|p1 p2〉

− k[µε(η)ν]e+ik·x/h̄〈p′1, p′2|T†|r1 r2 X〉〈r1 r2 X|a†
(η)(k)T|p1 p2〉

]
= − 2i

h̄3/2 ∑
X

∑
η

∫
dΦ(r1)dΦ(r2)dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)dΦ(k)

× e−ib·(p′1−p1)/h̄ ϕ(p1)ϕ∗(p′1)ϕ(p2)ϕ∗(p′2)

×
[
k[µε(η)ν]∗e−ik·x/h̄〈p′1, p′2|T†|r1 r2 X〉〈r1 r2 kη X|T|p1 p2〉

− k[µε(η)ν]e+ik·x/h̄〈p′1 p′2|T†|r1 r2 kη X〉〈r1 r2 X|T|p1 p2〉
]

.

(758)

In the second term within brackets, the creation operator requires a photon in the

intermediate state, and eliminates it from the bra. We then relabeled X to exclude it.

Note as well that at next-to-next-leading order and beyond, we necessarily require

amplitudes with three incoming particles. These can just as easily be obtained by

crossing. The term (758) has the interpretation of a cut of an amplitude, just as for

the second term in the impulse in ref. [21], as seen in eqs. (3.26–3.31) therein.

This contribution first appears at next-to-leading order. At this order, we are
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interested in contributions with X = ∅, and we can identify the required matrix

elements as a combination of four- and five-point amplitudes,

〈r1 r2|T|p1 p2〉 = A(p1 p2 → r1 r2)δ̂
4(p1 + p2 − r1 − r2) ,

〈p′1, p′2|T†|r1 r2〉 = A∗(p′1, p′2 → r1, r2)δ̂
4(p′1 + p′2 − r1 − r2) ,

〈r1 r2 kη|T|p1 p2〉 = A(p1, p2 → r1, r2, kη)δ̂4(p1 + p2 − r1 − r2 − k) ,

〈p′1 p′2|T†|r1 r2 kη〉 = A∗(p′1, p′2 → r1, r2, kη)δ̂4(p′1 + p′2 − r1 − r2 − k) .

(759)

For the next-to-leading order contribution to 〈Fµν(x)〉, we use tree-level amplitudes

in eq. (759).

the detected wave at leading order

The leading-order contribution to the waveform will arise at O(g3), as described in

the previous section. We apply the approach of ref. [21] to eq. (754). Similarly to

that reference, and to Sect. 11, we define the momentum mismatches,

q1 = p′1 − p1 ,

q2 = p′2 − p2 ;

(760)
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and trade the integrals over the p′i for integrals over the qi,

〈Fµν(x)〉1 =

4

h̄3/2 Re ∑
η

∫
dΦ(p1)dΦ(p2)d̂4q1d̂4q2dΦ(k) δ̂(2p1 · q1 + q2

1)δ̂(2p2 · q2 + q2
2)

× e−ib·q1/h̄Θ(pt
1 + qt

1)Θ(pt
2 + qt

2)ϕ(p1)ϕ∗(p1 + q1)ϕ(p2)ϕ∗(p2 + q2)

× k[µε(η)ν]∗e−ik·x/h̄A(p1, p2 → p1 + q1, p2 + q2, kη)δ̂4(q1 + q2 + k) .

(761)

We can take the classical limit, and change to the required wavenumber variables

for the qi and k,

〈Fµν(x)〉1,cl =

g3
〈〈

h̄2Re ∑
η

∫
dΦ(k̄)k̄[µε(η)ν]∗e−ik̄·x

× ∏
i=1,2

∫
d̂4q̄i δ̂(pi · q̄i) e−ib·q̄1 δ̂4(q̄1 + q̄2 + k̄)

× Ā(p1, p2 → p1 + h̄q̄1, p2 + h̄q̄2, h̄k̄η)

〉〉
.

(762)

We have also extracted powers of h̄ from the coupling, and dropped the h̄-

suppressed terms inside the on-shell delta functions as well as the positive-energy

theta functions. We recognize the inner integral in the second term as the radiation

kernel defined in eq. (4.42) of ref. [21] (after changing variables there pi → pi − h̄w̄i

and w̄i → −q̄i),

R(0)(k̄η; b) ≡ h̄2 ∏
i=1,2

∫
d̂4q̄i δ̂(pi · q̄i) e−ib·q̄1 δ̂4(q̄1 + q̄2 + k̄)

× Ā(p1, p2 → p1 + h̄q̄1, p2 + h̄q̄2, h̄k̄η) .

(763)
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We have made the impact parameter an explicit argument here. At LO, we can then

write,

〈Fµν(x)〉1,cl = g3
〈〈

Re ∑
η

∫
dΦ(k̄)k̄[µε(η)ν]∗e−ik̄·xR(0)(k̄η; b)

〉〉
. (764)

The integrand has the form of the radiation observables introduced in Sect. 11. The

spectral waveform is then,

fµν(ω, n̂) = − ig3

8π ∑
η

[
Θ(ω)k̄[µε(η)ν]∗R(0)(k̄η; b)

∣∣
k̄=ω(1,n̂)

−Θ(−ω)k̄[µε(η)ν]R(0)∗(k̄η; b)
∣∣
k̄=−ω(1,n̂)

] (765)

The corresponding result for the Fourier-space NP scalar is,

Φ̃0
2(ω, n̂) = − ig3ω

16π

〈〈
Θ(ω)R(0)(ω(1, n̂)−; b) + Θ(−ω)R(0)∗(−ω(1, n̂)+; b)

〉〉
.

(766)

Equivalently, we may write,

Φ0
2(t, n̂) = − ig3

16π

〈〈∫
d̂ω Θ(ω) ω

[
e−iω·tR(0)(ω(1, n̂)−; b)

− e+iω·tR(0)∗(ω(1, n̂)+; b)
]〉〉

.

(767)

As the LO radiation kernel R(0) is given by a five-point amplitude, the waveform as

a function of frequency ω, is simply the five-point amplitude up to the additional

factor of ω.
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The explicit form of eq. (763) for electromagnetic scattering is given in eq. (5.46)

of ref. [21], and reproduced as eq. (816). We evaluate it in appendix 11, to obtain,

R(0)(k̄; b) =
Q2

1Q2

m1 u1 · k̄
[
u2 · k̄ u1 · ε− u1 · k̄ u2 · ε

]
I3

−
Q2

1Q2γ

m1 u1 · k̄(γ2 − 1)

[
u1 · k̄ (u1 − γu2) · ε− (u1 − γu2) · k̄ u1 · ε

]
I3

+
Q2

1Q2 γ eib·k̄

m1 u1 · k̄
[
u1 · k̄ b̃ · ε− b̃ · k̄ u1 · ε

]
× i

2π (γ2 − 1)
K1
(√
−b2 u1 · k̄/

√
γ2 − 1

)
+
(
1↔ 2 modulo phases

)
=

Q2
1Q2 eib·k̄

m1 u1 · k̄
[
u2 · k̄ u1 · ε− u1 · k̄ u2 · ε

]
× 1

2π
√

γ2 − 1
K0
(√
−b2 u1 · k̄/

√
γ2 − 1

)
+

Q2
1Q2γ eib·k̄

m1 u1 · k̄
[
u1 · k̄ b̃ · ε− b̃ · k̄ u1 · ε

]
× i

2π (γ2 − 1)
K1
(√
−b2 u1 · k̄/

√
γ2 − 1

)
+
(
1↔ 2 modulo phases

)
.

(768)

A side calculation shows that (with ζ a null reference momentum),

u2 · k̄ u1 · ε−u1 · k̄ u2 · ε =

1√
2
〈
ζ k̄
〉[〈k̄| u2 |k̄] 〈ζ| u1 |k̄]− 〈k̄| u1 |k̄] 〈ζ| u2 |k̄]

]
=

1√
2
[k̄| u2 u1 |k̄]

(769)
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for positive-helicity emission, and

1√
2
〈k̄| u2 u1 |k̄〉 (770)

for negative-helicity emission.

Then,

R(0)(k̄+; b) =
Q2

1Q2 eib·k̄

2
√

2πm1 u1 · k̄
√

γ2 − 1

×
{
[k̄| u2 u1 |k̄] K0

(√
−b2 u1 · k̄/

√
γ2 − 1

)
+

i [k̄| b u1 |k̄]√
γ2 − 1

√
−b2

K1
(√
−b2 u1 · k̄/

√
γ2 − 1

)}
+

Q1Q2
2

2
√

2πm2 u2 · k̄
√

γ2 − 1

×
{
[k̄| u1 u2 |k̄] K0

(√
−b2 u2 · k̄/

√
γ2 − 1

)
+

i [k̄| b u2 |k̄]√
γ2 − 1

√
−b2

K1
(√
−b2 u2 · k̄/

√
γ2 − 1

)}
.

(771)

There is a similar result for the other photon helicity.
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Using the integrals,

∫ ∞

0
dω ωe−iω(t+a0)K0(ωa1) =

1
a2

1 + (a0 + t)2
− (t + a0)

[a2
1 + (a0 + t)2]3/2

arcsinh
( 1

a1
(t + a0)

)
− iπ

2
(t + a0)

[a2
1 + (a0 + t)2]3/2

,

∫ ∞

0
dω ωe−iω(t+a0)K1(ωa1) =

πa1

2[a2
1 + (a0 + t)2]3/2

− i
(a0 + t)

a1[a2
1 + (a0 + t)2]

− i
a1

[a2
1 + (a0 + t)2]3/2

arcsinh
( 1

a1
(t + a0)

)
;

(772)

and defining,

ui,n̂ ≡ ui · k̄/ω = ui · (1, n̂) ,

ρ1(t) ≡ −b2u2
1,n̂ + (γ2 − 1)(t + b · n̂)2 ,

ρ2(t) ≡ −b2u2
2,n̂ + (γ2 − 1)t2 ,

(773)

along with,

Ξζ
ia(t, n̂; v) =

√
γ2 − 1
ρ1(t)

− ζ
(γ2 − 1)(t + v · n̂)

ρ3/2
1 (t)

arcsinh
( √

γ2 − 1√
−b2u1,n̂

(t + v · n̂)
)

− iπ
2
(γ2 − 1)(t + v · n̂)

ρ3/2
1 (t)

,

Ξib(t, n̂; v) =
πu1,n̂

ρ3/2
1 (t)

+ i

√
γ2 − 1(t + v · n̂)

b2u1,n̂ρ1(t)

− i
u1,n̂

ρ3/2
1 (t)

arcsinh
( √

γ2 − 1√
−b2u1,n̂

(t + v · n̂)
)

,

(774)
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we can write,

Φ0
2(t, n̂) =

−
ig3Q2

1Q2

(4π)3
√

2m1 u1,n̂

[
〈n̂| u2 u1 |n̂〉 Ξ+

1a(t, n̂; b)− [n̂| u2 u1 |n̂] Ξ−1a(t, n̂; b)

+ i
(
〈n̂| b u1 |n̂〉 − [n̂| b u1 |n̂]

)
Ξ1b(t, n̂; b)

]
− ig3Q1Q2

2

(4π)3
√

2m2 u2,n̂

[
〈n̂| u1 u2 |n̂〉 Ξ+

2a(t, n̂; 0)− [n̂| u1 u2 |n̂] Ξ−2a(t, n̂; 0)

+ i
(
〈n̂| b u2 |n̂〉 − [n̂| b u2 |n̂]

)
Ξ2b(t, n̂; 0)

]
.

(775)

Here, |n̂〉 and |n̂] are spinors built out of the null vector (1, n̂).

connection to radiated momentum

In Sect. 11, we presented the general form for the waveform observable. We worked

out the leading-order form in two-particle scattering in Sect. 11, and computed the

explicit form for electromagnetic scattering in the previous section. The appearance

of the radiation kernel suggests a connection to the radiated momentum previously

computed in ref. [21]. Let us elucidate that connection in this section.

In eq. (3.33) of ref. [21], we find an expression for time-averaged radiated momen-

tum,

Rµ ≡ 〈kµ〉 = in〈ψ| S†KµS |ψ〉in = in〈ψ| T†KµT |ψ〉in . (776)

This quantity is also integrated over the entire celestial sphere; we need a more

differential observable. Furthermore, this expression is related to the energy emitted,
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rather than the amplitude of the emitted wave.

We can use Mellin transforms to extract a more restricted observable, passing

through the spectral waveform to relate the emitted power to the amplitude. Write

the expectation of the observable 〈(kt)z−1〉,

R(z) ≡ 〈(kt)z−1〉 = in〈ψ| T†(Kt)z−1T |ψ〉in . (777)

The inverse Mellin transform is related to the unpolarized energy density function,

fε(E) = −iE
∫ c+i∞

c−i∞
dz E−zR(z) , (778)

where the integral is taken along a line parallel to the imaginary axis, with c ∈ (0, 1)

(or a deformation of that contour that doesn’t cross any poles or branch points)7.

The total energy is given by the integral,

Etot =
∫ ∞

0
dE fε(E) . (779)

Using the form in eq. (3.38) of ref. [21], we can write,

R(z) = ∑
X

∫
dΦ(k)dΦ(r1)dΦ(r2) (kt

X)
z−1 ∑

η

|R̂(kη, rX)|2 , (780)

for the expression in the quantum theory. In this equation, R̂ represents the

quantum radiation kernel, given by the integral over wavefunctions inside the

absolute square in eq. (3.38). The quantum radiation kernel is expressed directly in

terms of a scattering amplitude.

7 With our conventions, the expected power of (2π)−1 is in the forward rather than the inverse Mellin
transform.
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In the classical limit, the density function is more naturally a function of frequency

rather than of energy,

fε,cl(ω) = −i ω
∫ c+i∞

c−i∞
dz ω−zRcl(z) , (781)

so that Rcl(z) = h̄−z−1R(z). We can use eqs. (4.40–4.41) of ref. [21] to write,

Rcl(z) = ∑
X

h̄−z−1
〈〈∫

dΦ(k) (kt
X)

z−1 ∑
η

|R(kη, rX)|2
〉〉

. (782)

The radiation kernel here is expressed in terms of the appropriate limit of a quantum

scattering amplitude.

We next need to restrict the measured radiation from the entire celestial sphere to

a narrow cone in a given direction. We take the limit of the cone, and measure only

the radiation in a given direction from the scattering event. We implicitly assume

that the measurement distance is much larger than the impact parameter, so that

there is a unique and well-defined direction. It’s not clear exactly what a formal

expression for the operator would be, but what we want is,

Kµ δ(2)(K̂− n̂) , (783)

for radiation in the n̂ direction. This operator is to be understood as inserting,

∑
i∈messengers

kµ
i δ(2)(k̂i − n̂) , (784)

into a sum over states or equivalently the phase-space integral. Focusing on the
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energy component, this can be understood as a light ray operator [254, 296–299]

given by,

E(n̂) =
∫ +∞

−∞
du lim

r→∞
r2Tuu (u, r, n̂) (785)

where u denotes the light-cone time u = t− r and Tuu (u, r, n̂) is the (light-cone)

time-time component of the stress-energy tensor (in gravity, this will be replaced by

the Bondi news squared operator [254]). By applying the saddle point approxima-

tion for the fields in the energy momentum tensor, the plane wave expansion will

localize to the point on the sphere in the direction of propagation. Schematically

we will have (see refs. [300, 301] for further details)

eix·k/h̄ = eiωu+iωr(1−n̂·k̂) r→∞∼ 1
iωr

eiωuδ(2)
(

n̂− k̂
)

(786)

where ω = k̄t. Then one finds,

E(n̂) = ∑
η

∫
dΦ(k) kt δ(2)

(
n̂− k̂

) [
a†
(η)(k)a(η)(k)

]
(787)

where the action on on-shell particle states is equivalent to the time component of

eq. (784). The analogous Mellin kernel for (Kt)z−1 is presumably,

(Kt)z−1 δ(2)(K̂− n̂) , (788)

which is to be understood as inserting,

∑
i∈ distinct

messengers

(
∑
j‖i

j∈messengers

kt
j

) z−1
δ(2)(k̂i − n̂) , (789)
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into a sum over states or the phase-space integral. The sum over distinct messengers

is a sum over messengers which are not collinear; the sum over the collinear

messengers is taken in the inner sum. The inner sum includes i itself.

This form is motivated by a subtlety about overlapping directions: if k̂ j = k̂l with

the remaining directions distinct we want,

∑
i∈messengers

i 6=j,l

(kt
i)

z−1 δ(2)(k̂i − n̂) + (kt
j + kt

l)
z−1 δ(2)(k̂ j − n̂) , (790)

which is what eq. (789) is designed to give. At leading order this subtlety is

irrelevant.

The analog to eq. (780) is,

R(z, n̂) = ∑
i∈ distinct

messengers

∑
X

∫
dΦ(ki)dΦ(r1)dΦ(r2)

(
∑
j‖i

j∈messengers

kt
j

) z−1

× δ(2)(k̂i − n̂)∑
η

|R̂(kη
i , rX)|2 ,

(791)

and to eq. (782),

Rcl(z, n̂) = ∑
i∈ distinct

messengers

h̄−z−1
〈〈∫

dΦ(ki)
(

∑
j‖i

j∈messengers

kt
j

) z−1
δ(2)(k̂i − n̂) ∑

η

∣∣R(kη
i , rX)

∣∣2〉〉 .

(792)

At LO, eq. (792) simplifies to just,

R(0)
cl (z, n̂) = g6

〈〈∫
dΦ(k̄) (k̄t)z−1 δ(2)(k̂− n̂) ∑

η

∣∣∣R(0)(k̄η; b)
∣∣∣2〉〉 . (793)
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The corresponding result for the spectral density in the n̂ direction is,

fε,cl(ω, n̂) = g6ω

〈〈∫
dΦ(k̄)

δ̂(ln k̄t − ln ω)

k̄t δ(2)(k̂− n̂) ∑
η

∣∣∣R(0)(k̄η; b)
∣∣∣2〉〉 . (794)

Writing out,

dΦ(k̄) =
d3k̄

2(2π)3 |k̄|

=
|k̄|d|k̄| dΩk̄

2(2π)3 ,

(795)

we can perform the integrals in eq. (794) to obtain,

fε,cl(ω, n̂) =
g6ω2

8π2 ∑
η

〈〈 ∣∣∣R(0)(ω(1, n̂)η; b)
∣∣∣2〉〉 . (796)

We can now compare this with the amplitude of each component of the waveform,

expanded at the leading order order in the coupling: for | fµνM∗µNν| and | fµνMµNν|

we have, respectively

| fµν(ω(1, n̂))M∗µNν| = ω

16π
g3
∣∣∣∣〈〈R(0)(ω(1, n̂)−; b)

〉〉 ∣∣∣∣
| fµν(ω(1, n̂))MµNν| = ω

16π
g3
∣∣∣∣〈〈R(0)(ω(1, n̂)+; b)

〉〉 ∣∣∣∣
(797)

At LO, we can also write

〈〈 ∣∣∣R(0)(ω(1, n̂)η; b)
∣∣∣2〉〉 =

∣∣∣∣〈〈R(0)(ω(1, n̂)η; b)
〉〉 ∣∣∣∣2 (798)

and therefore we can express the spectral density of emission from eq. (796) in

terms of the amplitudes of the two helicity components of the waveform,

fε,cl(ω, n̂) = 32
[
| fµν(ω(1, n̂))M∗µNν|2 + | fµν(ω(1, n̂))MµNν|2

]
. (799)
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This relation is the avatar of the relation between the energy of the wave and

the squared amplitude of the wave, the only difference being that here we are

measuring the momentum emitted in a given direction at a large distance r from the

source. The emitted radiation observable provides information about the magnitude

of the observed messenger wave, but not about its phase. The direct derivation in

previous sections adds that information.

A recently proposed generalization of a standard event shape is sensitive to

amplitude phases [302]. It would be interesting to explore a possible connection to

the waveform.

conclusions

In this paper, we have developed an observables-based formalism for computing

classical waves from quantum scattering amplitudes. We have shown how to

incorporate both outgoing and incoming narrowly sampled waves, via the “local”

observables needed for the former, and scattering of waves needed for the latter.

Waveforms measured at gravitational wave observatories are “local” measure-

ments, in the sense that the passing gravitational wave train is sampled only at

the (small) spatial location of the observatory relative to the (very large) spatial

extent of the gravitational wave. In this paper, our first major focus was on devel-

oping a quantum-field theoretic formalism to describe this kind of classical, local
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measurement. This is in contrast to previous work [21, 72] on classical observables

in quantum field theory, which discussed “global” observables, such as the total

amount of energy-momentum radiated in a scattering event. Our formalism is very

general, though in our explicit discussions we focused on the case of electromag-

netic radiation, which has the pedagogical benefit of being slightly easier to work

with. We look forward to applications of our formalism in gravity.

Scattering amplitudes are remarkably simple objects which can be computed

efficiently. For this reason, it seems very promising that waveforms can be computed

so directly in terms of amplitudes. In particular, it is clear from our work that

there is no obstacle to using the double copy to compute gravitational waveforms

(sourced by a scattering event) to any order of perturbation theory. It may be

worth emphasizing that we do not need the BCJ formulation [130] of the double

copy at loop level, which remains conjectural, to perform such a computation. The

gravitational waveform at higher orders could be computed using the unitarity

method, with only tree-level gravitational amplitudes required as inputs. For

those amplitudes, the BCJ relations are proven. The insensitivity of the classical

waveform to delta-function contributions localized on the worldlines of the particles

offers another, potentially significant simplification: only a subset of all possible

quantum factorization channels needs to be computed. The possibility of computing

leading-order gravitational radiation using amplitudes and the double copy was

previously discussed by Luna et al. [154], building on a leading-order worldline
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treatment by Goldberger and Ridgway [195]. The formalism presented here makes

this computation possible to any order. Shen [196] has already computed the

next-to-leading order waveform; it will be interesting to compare the efficiency

of our methods, using the conventional double copy of amplitudes, with Shen’s

ingenious world-line implementation of the double copy.

One important theme in the calculation and exploration of scattering amplitudes

is the search for the simplest forms in which to cast them. An early realization came

through the focus on helicity amplitudes rather than covariant forms (in terms of

polarization vectors and momenta). The former contain all physical information,

and are simpler. This is especially true when they are expressed in terms of spinorial

variables. The translation comes through a spinor-helicity formalism; historically,

that of Xu, Zhang, and Chang [303] played an important role.

Remarkably, the same phenomenon occurs in classical field theory. Newman–

Penrose (NP) scalars [265] are classical analogs of helicity amplitudes; indeed, as we

have seen, the NP scalar Φ2 is an integral over a helicity amplitude. The NP scalars

can be defined by contracting tensorial quantities, such as the electromagnetic field

strength Fµν, with a basis of four null vectors. This basis is a direct analog of the

momentum of a particle, along with its two possible polarization vectors, and a

gauge choice. Alternatively, the NP scalars can be constructed directly by passing

from the tensorial field strength to its spinorial equivalent. In this formulation, a

natural basis of spinors occurs classically, in an exact analogue of the spinor-helicity
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method in scattering amplitudes. It seems likely that further study will reveal more

close connections between sophisticated approaches to classical physics and the

methods of scattering amplitudes.

As a concrete application of our formalism, we computed a simple waveform:

the electromagnetic radiation emitted as two charges scatter. We extracted the

asymptotic spectral functions, as well as the relevant asymptotic Newman-Penrose

scalar. At leading order, these quantities are closely related to five-point amplitudes.

In the Fourier domain, they are built out of modified Bessel functions. At higher

orders, the connection to five-point amplitudes will persist. We expect that an

interesting class of functions, generalizing Bessel functions, will appear. In the time

domain, the functions were simpler; we suspect that this may be an accident of low

orders.

Our second major focus in this paper has been developing a quantum field-

theoretic description of massless classical waves readily amenable to calculations

using scattering amplitudes. Coherent states are key tools in extracting classical

behavior from quantum field theory [274], so it is no surprise that we found them to

be very helpful. Indeed, they mesh very naturally with amplitudes, and especially

with the transition operator T whose matrix elements are the amplitudes. The

reason is that the T matrix can be written out in terms of amplitudes and of creation

and annihilation operators. These operators, in turn, act very simply on coherent

states.
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As an application of massless waves, we studied the scattering of a massless

electromagnetic wave off a classical charge. We showed that the resulting outgoing

wave is determined, at leading order, by the classical limit of the Compton four-

point amplitude. We expect this final state to also be coherent. In appendix 11 we

provide evidence in favor of the coherence of this radiation.

Throughout our paper, the focus has been on scattering events. These are

very naturally described using amplitudes. Scattering events in general relativity

are interesting in themselves given the possibility that the tightly-bound compact

binaries observed by the LIGO and Virgo collaborations are created after a scattering

event with a third object [188]. Of course, a major goal for the future will be to

understand how gravitational waveforms from classically bound objects can also be

computed using amplitudes. This will need a new understanding, perhaps building

on the work [73, 141] of Kälin and Porto in the context of conservative classical

dynamics. Yet even without such a direct connection, it seems clear that our work

can be used in the context of bound state physics by developing an effective action

to enable the transfer of know-how from unbound to bound cases. The reader

may also be interested in forthcoming work by Bautista, Guevara, Kavanagh and

Vines [283] on related subjects.

The future for gravitational wave physics is data-rich and high precision. We will

need every good idea we can find to calculate waveform templates at the necessary

precision. By now it is clear that amplitudes and the double copy will be a useful
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tool. The double copy, at least in its BCJ form, was a theoretical discovery which

was a by-product of the drive for precision theory for LHC physics. New theoretical

discoveries may well await us as we develop our understanding of gravitational

amplitudes in the drive for precision gravitational-wave physics.



A P P E N D I X

beam spreading

Let us obtain a more refined picture of the time dependence of the classical wave in

eq. (652). Expand the square root in the exponent in that expression, keeping the

next-to-leading term in the expansion,

√
ω2 + (k̄x)2 + (k̄y)2 = ω +

(k̄x)2 + (k̄y)2

2ω
+ · · · . (800)

Substituting this into eq. (652), we obtain,

Aµ
cl(x) =

√
2A� Re ε

µ
�(k̄�)e−iω(t−z)I(ω, `⊥) , (801)

where we have introduced the following scalar integral (recall that σ⊥ = `−1
⊥ ),

I(ω, `⊥) =
∫

d2k̄⊥ δσ⊥(k̄
x)δσ⊥(k̄

y)eik̄x xeik̄y ye−itk̄2
x/(2ω)e−itk̄2

y/(2ω) (802)

Integrating over the angular variable, we find,

I(ω, `⊥) = 2`2
⊥

∫ ∞

0
dk k J0(

√
x2 + y2 k)e−k2[`2

⊥+it/(2ω)] . (803)

312
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Performing the integral, we obtain,

I(ω, l⊥) =
e
− (x2+y2)

4l2⊥

[
1+i t

2ωl2⊥

]−1

1 + it
2ωl2
⊥

. (804)

Yet higher-order contributions may be computed by noticing that the electromag-

netic field can be expressed — without expanding the square root in eq. (800) — as,

Aµ
cl(x) =

√
2A� Re ε

µ
�(k̄�) eiωz−itĤ(ω)

[
e
− (x2+y2)

4l2⊥
]

, (805)

where we have introduced the operator Ĥ(ω) =
√

ω2 −∇2
(x,y). In this reformu-

lation, the problem is now equivalent to computing the time evolution — for a

relativistic Hamiltonian with effective mass ω — of a Gaussian wavepacket. Re-

stricting the time evolution to the nonrelativistic limit, we obtain the well-known

result for the spread of a Gaussian wavepacket in two dimensions, in agreement

with eq. (804). In a similar way, we can easily generalize the computation by adding

contributions from the expansion of the polarization vectors in the integrand as in

eq. (662).

factorization and unitarity in the classical limit

Our framework allows the computation of classical phenomena such as the elec-

tromagnetic field generated by the scattering of an incoming beam of light with a

massive particle. In this appendix, we address the question of whether the final
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state is coherent, in the context of a perturbative calculation. For coherence to hold,

we must show that the mean value of the electromagnetic field operator on the final

state factorizes. The final state is given by the evolution of the initial state,

|ψ〉out =
∫

dΦ(p) ϕ(p) eib·p/h̄ S |p α+〉in . (806)

We say that the final state is coherent if the following correlation function vanishes

in the classical limit,

∆ = out〈ψ|Fµν(x)Fαβ(y)|ψ〉out − out〈ψ|Fµν(x)|ψ〉out out〈ψ|Fαβ(y)|ψ〉out (807)

where the electromagnetic field operator is given by eq. (620). Let us prove that the

previous correlation function vanishes at the first nontrivial order in the coupling

g. The second term in eq. (807) is already known to this order as it matches the

value of the electromagnetic field in Thomson scattering times its free counterpart.

What is left is to compute is the first term. We can safely disregard contributions

quadratic in the transfer matrix, leaving us to compute the classical limit of,

out〈ψ|Fµν(x)Fαβ(y)|ψ〉out = Fµν,(0)(x)Fαβ,(0)(y) + i in〈ψ| [Fµν(x)Fαβ(y), T] |ψ〉in ,

(808)
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where F(0)
µν (x) denotes the free field. Expanding the electromagnetic field operator

in terms of annihilation and creation operators,

Fµν(x)Fαβ(y) =

− 4
h̄3 ∑

η1,η2

∫
dΦ(k1)dΦ(k2)

[
a(η1)

(k1)a(η2)
(k2)k

[µ
1 ε(η1)ν]∗ k[α2 ε(η2)β]∗e−i(k1·x+k2·y)/h̄

+ a†
(η1)

(k1)a†
(η2)

(k2)k
[µ
1 ε(η1)ν] k[α2 ε(η2)β]ei(k1·x+k2·y)/h̄

− a†
(η2)

(k2)a(η1)
(k1)k

[µ
1 ε(η1)ν]∗ k[α2 ε(η2)β]e−i(k1·x−k2·y)/h̄

− a†
(η1)

(k1)a(η2)
(k2)k

[µ
1 ε(η1)ν] k[α2 ε(η2)β]∗ei(k1·x−k2·y)/h̄

− δΦ(k1 − k2)k
[µ
1 ε(η1)ν]∗ k[α2 ε(η2)β]ei(k1·x−k2·y)/h̄

]
.

(809)

At leading order in the coupling, the T matrix reads

T = ∑
η,η′

∫
dΦ(k̃′, k̃, p̃′, p̃) 〈k̃′η′ p̃′|T|k̃η p̃〉 a†

(η′)(k̃
′)a†( p̃′) a(η)(k̃)a( p̃) + · · · , (810)

We can now evaluate the correlation function. The first two terms inside the bracket

in eq. (809) can contribute only at higher order in the coupling, and can be safely

neglected in the evaluation of the correlation function. As for the last term in

eq. (809), we can see it is similar to (636), providing a quantum contribution at
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leading order in the coupling which will disappear in the classical limit. We are left

with the following,

[a†
(η1)

(k1)a(η2)(k2), T] = ∑
η

∫
dΦ( p̃, p̃′, k̃) 〈kη2

2 p̃′| T |k̃η p̃〉 a†
(η1)

(k1)a†( p̃′) a(η)(k̃)a( p̃)

−∑
η′

∫
dΦ( p̃, p̃′, k̃′) 〈k̃′η′ p̃′| T |kη1

1 p̃〉 a†
(η′)(k̃

′)a†( p̃′) a(η2)
(k2)a( p̃)

[a†
(η2)

(k2)a(η1)
(k1), T] = ∑

η

∫
dΦ( p̃, p̃′, k̃) 〈kη1

1 p̃′| T |k̃η p̃〉 a†
(η2)

(k2)a†( p̃′) a(η)(k̃)a( p̃)

−∑
η′

∫
dΦ( p̃, p̃′, k̃′) 〈k̃′η′ p̃′| T |kη2

2 p̃〉 a†
(η′)(k̃

′)a†( p̃′) a(η1)
(k1)a( p̃) .

(811)

These results imply that,

out〈ψ|Fµν(x)Fαβ(y)|ψ〉out =

Fµν,(0)(x)Fαβ,(0)(y)

+
8
h̄3 Re ∑

η,η1,η2

∫
dΦ(k1, k2, k̃, p, p′)ϕ(p)ϕ∗(p′)

×
[
i 〈kη1

1 p′| T |k̃η p〉 〈α+| a†
(η2)

(k2)a(η)(k̃) |α
+〉 k[µ1 ε(η1)ν]∗ k[α2 ε(η2)β]e−i(k1·x−k2·y)/h̄

]
+

8
h̄3 Re ∑

η,η1,η2

∫
dΦ(k1, k2, k̃, p, p′)ϕ(p)ϕ∗(p′)

×
[
i 〈kη2

2 p′| T |k̃η p〉 〈α+| a†
(η1)

(k1)a(η)(k̃) |α
+〉 k[µ1 ε(η1)ν] k[α2 ε(η2)β]∗ei(k1·x−k2·y)/h̄

]
.

(812)
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After some simple algebra, we find

out〈ψ|Fµν(x)Fαβ(y)|ψ〉out =

Fµν,(0)(x)Fαβ,(0)(y)

+
8
h̄3 Re ∑

η1,η2

∫
dΦ(k1, k̃, p, p′)ϕ(p)ϕ∗(p′)

×
[

i 〈kη1
1 p′| T |k̃η p〉 α(k̃)k[µ1 ε(η1)ν]∗e−ik1·x/h̄

∫
dΦ(k2) α∗(k2)k

[α
2 ε(η2)β]eik2·y/h̄

]
+

8
h̄3 Re ∑

η1,η2

∫
dΦ(k1, k2, k̃, p, p′)ϕ(p)ϕ∗(p′)

×
[

i 〈kη2
2 p′| T |k̃η p〉 α(k̃) k[α2 ε(η2)β]∗e−ik2·y/h̄

∫
dΦ(k1) α∗(k1)k

[µ
1 ε(η1)ν] eik1·x/h̄

]
;

(813)

reorganizing the terms we then obtain, as expected,

out〈ψ|Fµν(x)Fαβ(y)|ψ〉out =

Fµν,(0)(x)Fαβ,(0)(y)

+ Fαβ,(0)(y)
4

h̄3/2 Re ∑
η1

∫
dΦ(k1, k̃, p, p′)ϕ(p)ϕ∗(p′)

×
[
i 〈kη1

1 p′| T |k̃η p〉 α(k̃)k[µ1 ε(η1)ν]∗e−ik1·x/h̄
]

+ Fµν,(0)(x)
4

h̄3/2 Re ∑
η2

∫
dΦ(k2, k̃, p, p′)ϕ(p)ϕ∗(p′)

×
[
i 〈kη2

2 p′| T |k̃η p〉 α(k̃)k[µ2 ε(η2)ν]∗e−ik2·y/h̄
]

.

(814)

From this result we conclude that,

∆
∣∣
g2 = 0 . (815)
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This demonstrates that the semiclassical state generated in Thomson scattering is a

coherent state to this nontrivial order in the coupling.

integrals

We require explicit expressions for the integrals appearing in the leading-order

radiation kernel, eq. (5.46) of ref. [21]. The integral is,

R(0)(k̄; b) = 4
∫

d̂4w1d̂4w2 δ̂(2p1 · w1)δ̂(2p2 · w2)δ̂
(4)(k̄− w1 − w2) eiw1·b

×
{

Q2
1Q2

w2
2

[
−p2 · ε +

(p1 · p2)(w2 · ε)
p1 · k̄

+
(p2 · k̄)(p1 · ε)

p1 · k̄

− (k̄ · w2)(p1 · p2)(p1 · ε)
(p1 · k̄)2

]
+ (1↔ 2)

}
.

(816)

We replace pµ
i by miu

µ
i , and introduce a fourth basis vector,

vµ = 4εµνλρuν
1uλ

2 bρ . (817)

Its square is given by,

v2 = −2G(u1, u2, b) , (818)

where G is the Gram determinant

G({pi}) = det(2pi · pj) . (819)
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The only nontrivial Lorentz invariants that can be built out of the uµ
i , bµ, and vµ

are,

γ = u1 · u2 , (820)

and b2, as u2
i = 1.

We note that,

v2 = 16b2(γ2 − 1) . (821)

It is convenient to introduce two rescaled four-vectors,

b̃µ = bµ/
√
−b2 ,

ṽµ = vµ/
√
−v2 = vµ/(4

√
−b2(γ2 − 1)) .

(822)

Let us also introduce as well new coordinates z[i]1,2,b,v,

wµ
i = z[i]1 uµ

1 + z[i]2 uµ
2 + z[i]b b̃µ + z[i]v ṽµ . (823)

The Jacobian from the change of variables in each wi is,

|εµνλρṽµuν
1uλ

2 b̃ρ| = − v2

4
√
−v2
√
−b2

=
√

γ2 − 1 . (824)

We also have the following expression for each square,

w2
i = (z[i]1 )2 + 2γz[i]1 z[i]2 + (z[i]2 )2 − (z[i]b )2 − (z[i]v )2 . (825)
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There are four elementary integrals we need to evaluate,

I1 =
∫

d̂4w1d̂4w2 δ̂(u1 · w1)δ̂(u2 · w2)δ̂
(4)(k̄− w1 − w2)

eiw1·b

w2
1

,

Iµ
2 =

∫
d̂4w1d̂4w2 δ̂(u1 · w1)δ̂(u2 · w2)δ̂

(4)(k̄− w1 − w2)
eiw1·bwµ

1

w2
1

,

I3 =
∫

d̂4w1d̂4w2 δ̂(u1 · w1)δ̂(u2 · w2)δ̂
(4)(k̄− w1 − w2)

eiw1·b

w2
2

,

Iµ
4 =

∫
d̂4w1d̂4w2 δ̂(u1 · w1)δ̂(u2 · w2)δ̂

(4)(k̄− w1 − w2)
eiw1·bwµ

2

w2
2

.

(826)

Start evaluating I1 by using the four-fold delta function to evaluate the w2 integral,

I1 =
∫

d̂4w1 δ̂(u1 · w1)δ̂(u2 · w1 − u2 · k̄)
eiw1·b

w2
1

, (827)

and then make the change of variables (823),√
γ2 − 1
(2π)2

∫
dz[1]1 dz[1]2 dz[1]b dz[1]v δ(z[1]1 + γz[1]2 )δ(γz[1]1 + z[1]2 − u2 · k̄)

× e−iz[1]b

√
−b2

(z[1]1 )2 + 2γz[1]1 z[1]2 + (z[1]2 )2 − (z[1]b )2 − (z[1]v )2
.

(828)

Use the delta functions to perform the z[1]1,2 integrals,

1

(2π)2
√

γ2 − 1

∫
dz[1]b dz[1]v

e−iz[1]b

√
−b2

−(u2 · k̄)2/(γ2 − 1)− (z[1]b )2 − (z[1]v )2
. (829)

Perform the z[1]v integral to obtain,

− 1

4π
√

γ2 − 1

∫
dz[1]b

e−iz[1]b

√
−b2√

(z[1]b )2 + (u2 · k̄)2/(γ2 − 1)
. (830)
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This can be evaluated as a Fourier transform,

I1 = − 1

2π
√

γ2 − 1
K0
(√
−b2 u2 · k̄/

√
γ2 − 1

)
, (831)

where K0 is a modified Bessel function of the second kind.

The first two steps are the same for Iµ
2 ,

Iµ
2 =

∫
d̂4w1 δ̂(u1 · w1)δ̂(u2 · w1 − u2 · k̄)

eiw1·bwµ
1

w2
1

=

√
γ2 − 1
(2π)2

∫
dz[1]1 dz[1]2 dz[1]b dz[1]v δ(z[1]1 + γz[1]2 )δ(γz[1]1 + z[1]2 − u2 · k̄)

×
e−iz[1]b

√
−b2

(z[1]1 uµ
1 + z[1]2 uµ

2 + z[1]b b̃µ + z[1]v ṽµ)

(z[1]1 )2 + 2γz[1]1 z[1]2 + (z[1]2 )2 − (z[1]b )2 − (z[1]v )2
.

(832)

The ṽµ term will vanish because of the antisymmetry in z[1]v ; the uµ
1,2 terms will

yield a result proportional to I1,

Iµ
2a =

u2 · k̄
γ2 − 1

(
γuµ

1 − uµ
2 )I1

= − u2 · k̄
2π (γ2 − 1)3/2

(
γuµ

1 − uµ
2 )K0

(√
−b2 u2 · k̄/

√
γ2 − 1

)
.

(833)

The remaining (b̃µ) term is,

Iµ
2b = −

b̃µ

4π
√

γ2 − 1

∫
dz[1]b

e−iz[1]b

√
−b2z[1]b√

(z[1]b )2 + (u2 · k̄)2/(γ2 − 1)
.

=
iu2 · k̄ b̃µ

2π (γ2 − 1)
K1
(√
−b2 u2 · k̄/

√
γ2 − 1

)
,

(834)

where we have dropped a delta-function contribution. The total is,

Iµ
2 = Iµ

2a + Iµ
2b . (835)
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In I3, start by using the four-fold delta function to integrate out w1,

I3 = eib·k̄
∫

d̂4w2 δ̂(u1 · w2 − u1 · k̄)δ̂(u2 · w2)
eiw2·b

w2
2

. (836)

This is proportional to I1, with the exchange u1 ↔ u2,

I3 = − eib·k̄

2π
√

γ2 − 1
K0
(√
−b2 u1 · k̄/

√
γ2 − 1

)
. (837)

Similarly for Iµ
4 ,

Iµ
4 = Iµ

4a + Iµ
4b , (838)

with,

Iµ
4a = −

u1 · k̄
γ2 − 1

(
uµ

1 − γuµ
2 )I3

=
u1 · k̄ eib·k̄

2π (γ2 − 1)3/2

(
uµ

1 − γuµ
2 )K0

(√
−b2 u1 · k̄/

√
γ2 − 1

)
,

Iµ
4b =

iu1 · k̄ eib·k̄ b̃µ

2π (γ2 − 1)
K1
(√
−b2 u1 · k̄/

√
γ2 − 1

)
.

(839)
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C O N C L U S I O N

Black holes are extraordinarily simple. According to the no-hair theorem, they

are entirely described only by three externally observable parameters: their mass,

angular momentum and electric charge. This thesis shows that their dynamics

shares an equal remarkable simplicity since we can uniquely describe it in terms of

scattering amplitudes, the most perfect microscopic structures available in quantum

field theory. To outline this incredible fact, in the first part of the thesis we have

focused on the two-body problem in General Relativity, with an attention toward

the post-Minkowskian approximation for spinless binary black holes. We have

started in Chapter 4 by presenting the complexity of the classical post-Minkowskian

approximation in General Relativity. Tracing a close analogy with a quantum

scattering, we have introduced the Lippmann-Schwinger equation as a tool to

reformulate the classical scattering in terms of amplitudes. Although usually

presented in the non-relativistic approximation, the Lippmann-Schwinger equation

324



conclusion 325

can be easily generalized to capture the two-body dynamics in the fully relativistic

sector. We have proven this in Chapter 5 by deriving the Hamiltonian of a spinless

binary system up to second order in GN and all orders in the velocities, finding

agreement with an earlier calculation for the scattering angle by Westpfahl. We have

then applied this general framework to the case of a modified theory of gravity in

Chapter 6, deriving the same observable for binary systems. We have then focused

in Chapter 7 on a remarkable linear relation between the classical momentum of

a binary system - precisely the square of the derivative of the radial action - and

on-shell amplitudes. Using this relation, first introduced by Damour, we have

provided a direct formula relating the scattering angle in the post-Minkowskian

approximation to scattering amplitudes, valid to all orders in the coupling and

in the conservative regime. Interestingly, this simple relation holds at a linear

level only in D = 4 dimensions. We have shown this in Chapter 8, where non-

trivial information coming from box diagrams in dimensions higher than 4 is

crucial to agree with earlier calculations from eikonal approaches. Chapter 9 has

introduced the CHY formalism providing the needed input for on-shell calculations

relevant to derive post-Minkowskian observables from amplitudes at higher orders.

We have presented different methods to compute tree-level amplitudes of two

massive scalars and an arbitrary number of gravitons in D-dimensions, the most

economical one being the so-called Λ-algorithm. Chapters 10 and 11 have then

considered the problem left apart in the previous chapters of describing wave
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phenomena and radiation generated by a binary. The primary tool used has been

the KMOC formalism, which provides the most rigorous map between classical

observables and quantum scattering amplitudes. In Chapter 10, we have presented

an off-shell generalization of the underlying ideas in KMOC, which has been used

to derive gravitational and electromagnetic shock waves solutions in a simple

manner, including higher-dimensional ones and spin effects. In Chapter 11, we

have extended the realm of application of the original work in KMOC by showing

how classical wave phenomena, particularly those related to the two-body problem,

are accessible once we consider coherent states in scattering processes. Equipped

with this generalized framework, we have derived the bending of light and the

Thomson scattering from on-shell amplitudes in the most rigorous way. Finally, we

have shown a deep relation between waveforms and on-shell amplitudes. The latter

has been considered in two cases: waveforms generated in the Thomson scattering

and in a binary encounter. In both cases, we have adopted the Newman-Penrose

formalism, providing an elegant expression for the final emitted waveform as an

integral over helicity amplitudes.



13

F U T U R E W O R K

There are many avenues for research based on the ideas presented in this thesis.

Self-force results for binary systems can provide an essential improvement to

waveform templates, especially considering the proposed Laser Interferometer

Space Antenna and its sensitivity to low-frequency signals. From this perspective, it

would be interesting to explore the application of scattering amplitudes to self-force

effects, especially in light of the recent success in tackling the inspiral phase of the

general relativistic two-body problem. Another interesting possibility is the study

of alternative wave and fluid solutions in General Relativity from the scattering

amplitude approach outlined in Chapter 10. Based on the work in Chapter 11,

which treats unbound states, it would be of particular interest also to understand

how gravitational waveforms from classically bound objects can be computed using

amplitudes. Hopefully, these research directions will be pursued in the upcoming

years.
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Amplitude for Classical Gravitational Scattering at Third Post-Minkowskian

Order,” arXiv:2105.05218 [hep-th].

[218] D. Kosmopoulos and A. Luna, “Quadratic-in-Spin Hamiltonian at O(G2)

from Scattering Amplitudes,” arXiv:2102.10137 [hep-th].

[219] M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, “From

amplitudes to gravitational radiation with cubic interactions and tidal ef-

fects,” Phys. Rev. D 103, no.4, 045015 (2021) doi:10.1103/PhysRevD.103.045015

[arXiv:2012.06548 [hep-th]].

[220] Y. F. Bautista and A. Guevara, “From Scattering Amplitudes to Classical

Physics: Universality, Double Copy and Soft Theorems,” arXiv:1903.12419

[hep-th].

[221] D. J. Burger, W. T. Emond and N. Moynihan, “Rotating Black



bibliography 362

Holes in Cubic Gravity,” Phys. Rev. D 101 (2020) no.8, 084009

doi:10.1103/PhysRevD.101.084009 [arXiv:1910.11618 [hep-th]].

[222] S. Foffa, R. A. Porto, I. Rothstein and R. Sturani, “Conservative dy-

namics of binary systems to fourth Post-Newtonian order in the EFT ap-

proach II: Renormalized Lagrangian,” Phys. Rev. D 100, no.2, 024048 (2019)

doi:10.1103/PhysRevD.100.024048 [arXiv:1903.05118 [gr-qc]].
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[239] J. Blümlein, A. Maier, P. Marquard and G. Schäfer, “Testing binary dynamics
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