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Abstract

Hybrid nanoelectronic devices offer a promising platform for developing quantum technolo-
gies by combining the macroscopic phase coherence of superconductors with the charge
density control of semiconductor devices. This thesis focuses on modeling hybrid nanoelec-
tronic devices and their applications in investigating topological phases of matter and quantum
information processing.

The first part of the thesis introduces a novel orbital-free method for electrostatic modeling.
This method significantly improves the precision of the density profile near interfaces while
minimizing computational costs. Next, we use a symmetry-based approach to nonlocal con-
ductance spectroscopy to investigate transport measurements in multiterminal devices. This
approach can identify the direction of spin-orbit coupling and detect non-ideal effects.

The thesis then explores ferromagnetic hybrid heterostructures, which enable local con-
trol of effective magnetic fields by incorporating magnetic insulator insets. We examine the
interplay of superconducting and ferromagnetic proximity effects and present a planar design
for demonstrating topological superconductivity. We also show how this platform can be
used to implement configurable 0-π Josephson junctions and how it can potentially realize
nonsinusoidal current-phase relations.

Finally, the thesis investigates the application of junctions dominated by higher harmonics
in superconducting qubits. We propose and study a coupling scheme for entangling to entangle
parity-protected qubits with flux-tunable transmons in a heterogeneous quantum architecture.

Resumé

Nanoelektroniske hybridenheder tilbyder en lovende platform for udvikling af kvantetekno-
logier ved at kombinere den makroskopiske fasekohærens af superledere med kontrollen
af halvlederenheders ladningstæthed. Denne afhandling fokuserer på modellering af nano-
elektroniske hybridenheder og deres anvendelser til at undersøge topologiske faser af stof og
kvanteinformationsbehandling.

Den første del af afhandlingen introducerer en ny orbital-fri metode til elektrostatisk mo-
dellering. Denne metode forbedrer markant præcisionen af tæthedsprofilen nær grænseflader
og minimerer samtidig beregningsomkostningerne. Dernæst bruger vi en symmetribaseret
tilgang til ikke-lokal konduktansspektroskopi til at undersøge transportmålinger i multitermi-
nale enheder. Denne tilgang kan identificere retningen af spin-banekoblingen og detektere
ikke-ideelle effekter.

Afhandlingen udforsker derefter ferromagnetiske hybride heterostrukturer, der muliggør
lokal kontrol af effektive magnetfelter ved at inkorporere magnetiske isolatorindsatser. Vi un-
dersøger samspillet mellem superledende og ferromagnetiske nærhedseffekter og præsenterer
et plant design til demonstration af topologisk superledning. Vi viser også, hvordan denne plat-
form kan bruges til at implementere konfigurerbare 0-π Josephson forbindelser, og hvordan
den potentielt kan realisere ikke-sinusformede strøm-fase-relationer.

Til sidst undersøger afhandlingen anvendelsen af forbindelser domineret af harmoniske
svingninger af højere orden i superledende qubits. Vi foreslår og studerer et koblingsskema til
sammenfiltring for at sammenfiltre paritetsbeskyttede qubits med flux-justerbare transmons i
en heterogen kvantearkitektur.
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Leijnse, Saulius Vaitiekėnas, and Morten Kjaergaard were also pivotal in helping me learn and
grow as a researcher, and I am grateful for the opportunity to work with them.

Finally, I could not have made it this far without the support of my family and the constant
presence of my long-time friends. The greatest thank of all goes to my girlfriend, Elena, for
always being there for me during challenging times and for celebrating successes together. Her
unwavering love and patience mean the world to me. In addition, her help in choosing the best
colors for my plots has been invaluable.

Thank you to all who have contributed to my Ph.D. in big and small ways. I am grateful for
your support, encouragement, and friendship.

ii



List of abbreviations

2DEG Two-Dimensional Electron Gas
ABS Andreev Bound State
BCS Bardeen–Cooper–Schrieffer
BdG Bogoliubov-de Gennes
CBM Conduction Band Maximum
CLA Constant Landscape Approximation
CPR Current-Phase relation
ETF Extended Thomas-Fermi
MZM Majorana Zero Mode
PHS Particle-hole symmetry
PPQ Parity-Protected superconducting Qubit
SAG Selective-Area Growth
SOC Spin-Orbit Coupling
SP Schrödinger-Poisson
SPT Symmetry-Protected Topological order
SQUID Superconducting Quantum Interferometer Device
TF Thomas-Fermi
TRS Time-reversal symmetry
PDE Partial Differential Equation
PPQ Parity-Protected superconducting Qubit
VBM Valence Band Minimum
VLS Vapor-Liquid-Solid
vW von Weizsäcker
ZBP Zero-Bias conductance Peak

iii



Contents

Contents iv

Preface vii

1 Superconductivity in heterostructures 1
1.1 Microscopic models for superconductivity . . . . . . . . . . . . . . . . . . . . . . 2
1.2 s-wave superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 p-wave superconductors and topological superconductivity . . . . . . . . . . . . 13
1.4 From Andreev reflection to the proximity effect . . . . . . . . . . . . . . . . . . . 19
1.5 Andreev bound states and Josephson effect . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Topological superconductivity in hybrid heterostructures . . . . . . . . . . . . . 23

2 Electrostatic landscape and spin-orbit coupling 29
2.1 Simulation of the electrostatic landscape . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Transport in hybrid structures 43
3.1 Scattering transport theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Conductance symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Additional antiunitary symmetry in a hybrid nanowire . . . . . . . . . . . . . . . 56
3.4 Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Ferromagnetic hybrid heterostructures 69
4.1 Magnetic insulator and magnetic proximity effects . . . . . . . . . . . . . . . . . 70
4.2 The InAs-Al-EuS platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Mechanisms for topological superconductivity . . . . . . . . . . . . . . . . . . . . 73
4.4 Tunneling design for topological superconductivity . . . . . . . . . . . . . . . . . 81
4.5 Ferromagnetic hybrid junctions: experimental investigation . . . . . . . . . . . . 93
4.6 Ferromagnetic hybrid junctions: theoretical modeling . . . . . . . . . . . . . . . 97
4.7 Summary of the research activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Parity-protected superconducting qubits 111

iv



Contents

5.1 Introduction to superconducting qubits . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 Transmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Parity-protected qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 k-transmon and harmonic approximation . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Heterogeneous quantum architecture . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusion and outlook 133

A SQUIDs 137

B Semiconductor-metal boundary condition in the ETF method 139

C Additional material on superconducting qubits 143
C.1 Time-independent effective Hamiltonians . . . . . . . . . . . . . . . . . . . . . . 143
C.2 Effective Hamiltonians for the time evolution . . . . . . . . . . . . . . . . . . . . . 144
C.3 More details on the possible errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.4 Numerical Schrieffer-Wolff transformation . . . . . . . . . . . . . . . . . . . . . . 149
C.5 Additional results on the energy levels . . . . . . . . . . . . . . . . . . . . . . . . . 151

D Hystersis curves with kinetic random field Ising model 153

E Semiclassical analysis of a long junction 157

Bibliography 161

v





Preface

Superconductivity is a fascinating phase of matter found in low-temperature electron systems.
A small attractive interaction between electrons in a metal is enough to cause a phase transition
that pairs all the electrons in the system, dramatically changing the physical properties of these
materials. The most well-known features of this phase are the perfect electrical conductance
and the expulsion of magnetic fields, known as the Meissner effect. These properties are
fundamental for traditional applications of superconductors as powerful electromagnets.
Another class of applications, like voltage standards, magnetometers, and qubits, are based
on a different property of superconductors: their ability to maintain macroscopic phase
coherence.

Over the decades, the number of materials that display a superconductive phase has
increased significantly. Once considered an exotic phenomenon found in only a few materials,
it is now observable in a wide range of substances, from basic elements that cover most of the
periodic table to complex compounds. These unconventional superconductors opened the
door for the discovery of more unconventional pairing, allowing for even more exotic physical
phenomena.

One of the most fascinating phenomena in these exotic materials is the appearance of topo-
logical phases, where the material electronic structure changes in a way that is not detectable
by local measurements. The clearest manifestation of such phases is the appearance of edge
states that lives at the boundary with trivial regions or at the core of magnetic vortices. When
these states appear at zero energy, they are known as Majorana zero modes, and they can be
interpreted, to some extent, as a fraction of an electron. These peculiar excitations are associ-
ated with non-abelian anyons and ground-state degeneracies, meaning that exchanging the
position of these excitations changes the state of the entire system. Such materials, therefore,
have potential applications in quantum computing.

Scalable quantum information processors, capable of solving complex problems beyond
the reach of classical computers, have been associated with huge promises of applications in
fields such as chemistry, medicine, and finance, among others. However, the feasibility of these
applications is not yet clear, leading some to advocate for focusing on quantum computer
development first and worrying about applications later. Nevertheless, the quest for realizing a
quantum computer has its own dignity independently of any applications, actual or potential.
This is because, just as classical computers transformed our comprehension of the world
at the macroscopic level, the journey of developing a quantum computer can broaden our
understanding and provide a clearer and more comprehensive view of the universe’s underlying

vii



PREFACE

logic at the microscopic scale.
The biggest obstacle to this objective is the fragility of quantum information: any interaction

with the noise in the environment irremediably destroys the delicate state of quantum bits.
For this reason, in the last decades, intense research has been dedicated to developing new
ideas about platforms and devices that protect quantum information in new ways. One
possible approach is encoding quantum information using the aforementioned properties of
topological superconductors. As a result, the so-called topological qubits are expected to be
inherently resistant to environmental noise and other forms of decoherence.

Unfortunately, materials that exhibit stable and controllable intrinsic topological supercon-
ductivity have yet to be discovered. Nature really wants to keep the exciting physics outside
of the hands of curious researchers. For this reason, the idea of creating synthetic topological
superconductivity by combining different materials has become a promising study area in the
last decade. This approach involves creating hybrid heterostructures that can induce topolog-
ical superconductivity in what looks like a “Hamiltonian alchemy” that mixes the different
properties of the individual materials, like the macroscopic coherence of superconductors, the
electronic controllability of semiconductors and sometimes even magnetic materials.

Despite tremendous effort, topological superconductivity in these devices is still disputed
by some. The reason can be found in the difficulties in fabricating reproducible and control-
lable devices and the high standard the community has set for what is considered conclusive
evidence. However, the platform itself improved significantly over the years and is now ex-
plored for other uses, ranging from new questions in basic science to applications to different
quantum computing architectures, like protected superconducting qubits.

This dissertation represents the culmination of my years of research and studies at the
Center for Quantum Devices from November 2019 to February 2023. It serves as a compre-
hensive overview of my research in the fascinating field of hybrid quantum devices. Within its
pages, I explore a range of topics, synthesizing the most significant findings while providing
additional background material to contextualize my work. Undertaking this research has been
an incredibly exciting and rewarding experience, allowing me to delve into a diverse array of
materials, physical models, and methods. Given the breadth of subjects covered, I have chosen
to present my findings in a unified format reflecting my learning pathway while at the Niels
Bohr Institute. I hope that my work will contribute to the ongoing efforts in the exciting field
of hybrid nanoelectronic devices. I am incredibly satisfied to have worked at the forefront
between fundamental physics and technical development, a distinction that is often blurred
and that I consider not particularly meaningful. After all, to keep discovering new stars, a better
telescope is always necessary.
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Outline

This Ph.D. thesis deals with several distinct aspects of hybrid quantum nanoelectronics. The
thesis works as an introduction to the field of hybrid devices by integrating a summary of the
major finding of my research activity with some additional background material.

• Chapter 1 introduces the theory of superconductivity, with a narrow focus on the aspects
most useful for analyzing heterostructures. It discusses the main features of s-wave
pairing, in particular with respect to the response to exchange fields. Then the focus
moves to p-wave pairing and topological superconductivity. The second part of the
chapter discussed superconductivity in heterostructures.

• Chapter 2 discusses electrostatic simulations of hybrid devices, presenting the work
in [P3] concerning orbital-free approaches to the problem, and introducing the topic of
spin-orbit coupling in semiconductors.

• Chapter 3 is an adaptation of Ref. [P4]. It presents the formalism for describing transport
phenomena in hybrid heterostructures and presents the paper. The focus is on leveraging
microscopic symmetries to find clever ways to combine the results of nonlocal tunneling
conductance spectroscopy results and characterize spin-orbit coupling and non-ideal
effects in hybrid devices.

• Chapter 4 deals with the extension of the hybrid heterostructure platform with ferromag-
netic insets. After a brief introduction to the topic, the first part of the chapter discusses
topological superconductivity and presents the major findings of papers [P1] and [P2].
In the second half of the chapter, Josephson junctions realized with this platform will be
introduced, presenting the results of papers [P6] and [P7].

• Chapter 5 discusses an example application of such structures to superconducting qubits.
After an introduction of generalized transmons, a coupling scheme able to entangle a
conventional transmon and a parity-protected qubit is proposed. This chapter adapts
Ref. [P5].

• Finally, the conclusion in Chapter 6 provides a comprehensive summary and an outlook
of possible future developments in the field.

Publications and the thesis author’s contributions

This thesis includes the results of the following articles, reformulated in a coherent and com-
prehensive manner. When they provide the most effective explanation of the concept, some
passages have been quoted verbatim or minimally modified from the original sources.

1. Topological superconductivity in semiconductor–superconductor–magnetic-insulator het-
erostructures
Andrea Maiani, Rubén S. Souto, Martin Leijnse, Karsten Flensberg
Physical Review B, Vol. 103, No. 10 (March 2021) p. 104508, Ref. [P1].
I was the primary contributor to scientific investigation, image preparation, and paper
writing.
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2. Semiconductor-ferromagnet-superconductor planar heterostructures for 1D topological
superconductivity
Samuel D. Escribano, Andrea Maiani, Martin Leijnse, Karsten Flensberg, Yuval Oreg,
Alfredo L. Yeyati, Elsa Prada, Rubén S. Souto
npj Quantum Materials, Vol. 7, No. 81 (August 2022), Ref. [P2].
I contributed to the design of the project, interpretation of the results, and paper writing.

3. Orbital-free approach for large-scale electrostatic simulations of quantum nanoelectronics
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Semiconductor Science and Technology, Vol. 38, No. 4, p. 045004, Ref. [P3]
I designed the project and provided support to the scientific investigation. I led the paper
writing process.

4. Conductance matrix symmetries of multiterminal semiconductor-superconductor devices
Andrea Maiani, Max Geier, Karsten Flensberg
Physical Review B, Vol. 106, No. 10 (September 2022), p. 104516, Ref. [P4].
I wrote the code, performed numerical simulations, and prepared the pictures. I am the
main contributor to paper writing.

5. Entangling Transmons with Low-Frequency Protected Superconducting Qubits
Andrea Maiani, Morten Kjaergaard, Constantin Schrade
PRX Quantum, Vol. 3, No. 3 (August 2022) p. 030329, Ref. [P5].
I have provided a major contribution to the scientific investigation, prepared the pictures,
and contributed to the paper writing.

6. Supercurrent reversal in ferromagnetic hybrid nanowire Josephson junctions
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Superconductivity in heterostructures: an overture

Quantum mechanics is an example of truth
that seems stranger than fiction,

but when you understand the math behind it,
it becomes a little more believable.

– Someone in an internet forum

1



1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

This chapter serves as an introduction to the microscopic theory of superconductivity.
The subject is extremely vast, and it is possible to find several theories at different levels of
approximation. For this reason, we will provide a succinct exposition that covers only the
essential concepts necessary for understanding the research activity presented in this thesis.
The chapter focuses more on the physical concept and will not cover the theoretical methods,
in particular Green functions methods, as they are extensively covered in textbooks like Ref. [1,
2].

This thesis focuses on hybrid heterostructures, and one of the most suitable languages to
discuss the physics in these systems is the Bogoliubov-de Gennes (BdG) method [3, 4] because
it does not require any particular assumption about the length-scales of the phenomena de-
scribed and can deal with both clean and disordered systems. The BdG method is introduced
in Sec. 1.1, where we will make the relevant connection to its Green function counterpart by
Gor’kov [5]. After having established the formalism, we will discuss two types of supercon-
ductors, the s-wave paired superconductor (Sec. 1.2) and the p-wave class (Sec. 1.3). For the
former, the focus will be on the effect of exchange fields in the system, while the latter will be
on the topological properties. After this introduction, Sec. 1.4 will present the proximity effect
and will introduce some simple models to account for it. Sec. 1.5 will consider structures with
multiple superconducting regions, the formation of Andreev bound states, and the Josephson
effect. Finally, topological superconductivity in heterostructures is the subject of Sec. 1.6, and
will conclude with an overview of experimental implementations of the idea.

1.1 Microscopic models for superconductivity

In this section, we will derive the mean-field approach to solve a generic attractive two-body
potential between electrons in a single-band metal and show how this leads, under the nec-
essary conditions, to the appearance of a superconducting phase. A formal derivation of the
procedure can be found in many sources using a variety of methods, like by application of Wick
theorem, a variational argument, or a Hubbard-Stratonovich transformation. Here we outline
the main key steps inspired by Refs. [4, 6–9]. Next, we will introduce the main ideas behind the
BdG method and its connection to the Gor’kov method. we will conclude the section with a
brief introduction to the symmetry of the order parameter.

Mean-field approximation

Let us consider a generic Hamiltonian H0(r) for a free-electron in a single band in which we
introduce an attractive two-particle interaction Vσσ′ (r,r′) such that the complete Hamiltonian
reads as

H =∑
σσ′

∫
drψ†

σ(r)H0,σσ′ψσ′ (r)

+1

2

∑
σσ′

∫
drdr′Vσσ′ (r,r′)ψ†

σ(r)ψ†
σ′ (r′)ψσ′ (r′)ψσ(r)

(1.1)

where the sum runs over the spin degree of freedom σ of the electron field ψσ(r). This Hamil-
tonian supports a superconducting phase that is characterized by a non-zero anomalous
single-particle correlator

ρa
σσ′ (r,r′) ≡ 〈ψσ(r)ψσ′ (r′)〉 , (1.2)

2



1.1. Microscopic models for superconductivity

that is an indicator of the presence of pairing in the system.
It can be shown that we can decouple the interaction term in the Cooper channel by using

the anomalous correlator as a mean field. Neglecting fluctuations, we can find the mean-field
approximation using the following substitution

ψσ(r)ψ†
σ′ (r′)ψσ′ (r′)ψσ(r) →

[
〈ψ†

σ(r)ψ†
σ′ (r′)〉ψσ′ (r′)ψσ(r)

+ψ†
σ(r)ψ†

σ′ (r′)〈ψσ′ (r′)ψσ(r)〉−〈ψ†
σ(r)ψ†

σ′ (r′)〉〈ψσ′ (r′)ψσ(r)〉
]

.
(1.3)

In principle, six other terms appear, three for the Hartree and three for the Fock channels. We
neglect these as they are not essential for the superconducting phenomenology and, in general,
can be reabsorbed in the chemical potential of the system.

The mean-field Hamiltonian then reads as

HMF =∑
σσ′

∫
drψ†(r)H0,σσ′ψ(r)

+1

2

∑
σσ′

∫
drdr′

(
∆∗
σσ′ (r,r′)ψσ′ (r′)ψσ(r)+ψ†

σ(r)ψ†
σ′ (r′)∆σσ′ (r′,r)

)
−1

2

∑
σσ′

∫
drdr′

∣∣∆σσ′ (r,r′)
∣∣2

Vσσ′ (r′,r)

(1.4)

where we defined the pairing potential

∆σσ′ (r,r′) =Vσσ′ (r,r′)ρa
σσ′ (r,r′) . (1.5)

The second line in the mean-field Hamiltonian represents the process in which two elec-
trons can be bound together and be absorbed by the condensate or vice versa. The last line is a
constant term that is only relevant to describe the thermodynamic properties of the system
and can be ignored when considering small excitations.

The mean-field Hamiltonian in Eq. 1.4 does not commute anymore with the number
operator. This means that the ground state will mix states with a different number of electrons.
This can lead to problems when considering isolated systems, but it is not of particular concern
when considering open systems.

Bogoliubov transformation and particle-hole symmetry

The Hamiltonian of the system is now quadratic in the field operator, but it contains anomalous
terms, i.e., with a product of two creation or annihilation operators. These operators complicate
diagonalizing the Hamiltonian and are the ones responsible for the breakdown of particle
number conservation.

To eliminate the anomalous terms, we can use a Bogoliubov transformation, a linear
transformation in which we define new fermionic operators {γn} that are a linear combination
of creation and annihilation operators

γn =∑
σ

∫
drun

σ(r)ψσ(r)+ vn
σ(r)ψ†

σ(r) (1.6)

3



1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

where the coefficients u and v are called coherence factor. The above relation can be syntheti-
cally written by collecting all the degrees of freedom in a vector and the coherence factor in
linear operators u and v [

γ
]= [

u v
][
ψ

ψ†

]
(1.7)

where the matrix product is intended in a generalized sense as a sum over spin indices and an
integral for the continuous space coordinates.

These operators are the creation and annihilation operators of the microscopic excitations
of the condensate and are called Bogoliubov quasiparticles. By imposing preservation of the
anticommutation relations for the newly defined operators, we obtain a linear transformation
that reads as [

γ

γ†

]
=

[
u v

−v† u†

][
ψ

ψ†

]
,

[
ψ

ψ†

]
=

[
u† −v
v† u

][
γ

γ†

]
. (1.8)

We determine the value coherence factors by requiring that this transformation diagonalize
the Hamiltonian, i.e.

HMF = Eg +
∑
n

Enγ
†
nγn , (1.9)

where Eg is the ground state energy while En are the excitation energies. We can do that
by rewriting the mean-field Hamiltonian as a quadratic form for the Nambu spinor Ψ(r) =(
ψ↑(r),ψ↓(r),ψ†

↑(r),ψ†
↓(r)

)

HMF = 1

2

∫
drdr′Ψ(r)†HBdG(r,r′)Ψ(r)+ 1

2
trH0 − 1

2

∑
σσ′

Ï
drdr′

∣∣∆σσ′ (r,r′)
∣∣2

Vσσ′ (r′,r)
(1.10)

where we defined the BdG Hamiltonian as

HBdG(r,r′) =
(H0(r)δ(r− r′) ∆(r,r′)

−∆†(r′,r) −H∗
0 (r)δ(r− r′)

)
. (1.11)

The excitation energies can be thus obtained by solving the Bogoliubov-De Gennes equa-
tion, that is, the eigenvalue equation for the BdG Hamiltonian∫

dr′ HBdG(r,r′)ψn(r′) = Enψ
n(r) . (1.12)

The eigenvectors ψn = (un
↑ ,un

↓ , vn
↑ , vn

↓ ) can be interpreted as the wavefunction of Bogoliubov
quasiparticles.

By applying the Bogoliubov transformation, we are doubling the dimension of the Hilbert
space. This will result in a special symmetry featured by the BdG Hamiltonian called particle-
hole symmetry. In general, a particle-hole symmetry P is antiunitary and anticommutes with
the Hamiltonian

PHBdGP−1 =−HBdG . (1.13)

In the basis adopted P = τxK, where we introduced the Pauli matrix for the particle-hole space
{τi }, and K being the complex conjugation operator.

This fundamental property of superconductors has numerous consequences, and some
will be evident when analyzing transport phenomena in Ch. 3. The most obvious consequence
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1.1. Microscopic models for superconductivity

is that the quasiparticle spectrum is symmetric around zero, and for each pair of eigenstates
and eigenvalue (En ,ψn), there is a symmetric pair (−En ,Pψn). We will label by positive n all
the positive eigenvalues.

The ground state energy in Eq. (1.9) can be written as

Eg =− ∑
n>0

En + 1

2
trH0 − 1

2

∑
σσ′

Ï
drdr′

∣∣∆σσ′ (r,r′)
∣∣2

Vσσ′ (r′,r)
(1.14)

where the sum in the first term now runs on only half of the spectrum.
By solving the BdG equation, we have precise information about the system’s excitation;

however, we do not know much about the ground state. To express the new ground state, we
start by the definition of the operators γn : since they are the excitations, the ground state |GS〉
can be defined by the condition

γn |GS〉 = 0 ∀n > 0 (1.15)

Starting from this definition, it can be shown that the ground state can be expressed as

|GS〉 = 1

det1/4(1+S†S)
exp

[
1

2

Ï
drdr′ψ†(r)S(r,r′)ψ†(r′)

]
|0〉 (1.16)

with the fermionic vacuum being |0〉, and S = u−1v, that can be interpreted as the condensate
wavefunction [8, 10]. With this definition, it is clear that |GS〉 is a superposition of different
states, each of them composed of a defined number of pairs.

With this picture of the ground state, it is now possible to better understand what kind of
excitation is represented by Bogoliubov quasiparticles: a many-body state with a quasiparticle
is a state with a single extra particle that cannot be absorbed in the condensate because it is
lacking a partner. The symmetry around the Fermi level can be understood as the fact that one
could read this state by both adding or removing an electron from the system.

When considering systems at finite temperatures and under the action of an external
magnetic field, it is convenient to consider the free energy of the system. The general form of
the free energy of a BdG system can be written as

F = 〈HMF〉−T S +
∫

dr
|∇∇∇×××A(r)−Be|2

2µ0
(1.17)

where T is the temperature, S is the entropy, A is the magnetic vector field, Be is the external
magnetic field and µ0 is the vacuum permittivity. Leveraging particle-hole symmetry, the free
energy can be conveniently written as a function of the quasiparticle excitation energies as

F =−kBT
∑
n

lncosh

(
En

2kBT

)
+ 1

2
trH0 −

Ï
drdr′

∣∣∆(r,r′)
∣∣2V−1(r′,r)∫

dr
|∇∇∇×××A(r)−Be|2

2µ0

(1.18)

By minimization of F , one can obtain the BdG equations and the Maxwell equation for
the current [8]. While by minimizing the free energy with respect to the pairing amplitude
∆, instead, one obtains the gap equation that links the quasiparticle spectrum to the pairing
potential. The gap equation reads as

∆(r,r′) =V(r,r′)
∑
n

un(r)v†
n(r′) tanh

(
En

2kBT

)
. (1.19)
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

Connection with Gor’kov equations and its descendants

A different approach for solving problems involving superconductivity is the Green function
formalism introduced by Gor’kov [5]. This has a simple connection with the Hamiltonian BdG
approach. To visualize it, let us define a (retarded) Green function

GR (r,r′, t , t ′) = θ(t − t ′)〈Ψ(r, t )Ψ†(r′, t ′)〉 . (1.20)

for the Nambu electron operators

Ψ(r, t ) =
(
ψ↑(r, t ),ψ↓(r, t ),ψ†

↑(r, t ),ψ†
↓(r, t )

)
. (1.21)

Other types of Green’s function can be defined similarly.
This Green function has a nice block structure

G =
(

G F
F † Ḡ

)
(1.22)

where GR
σσ′ (r,r′, t , t ′) = 〈ψσ(r, t)ψ†

σ′ (r′, t ′)〉 is the normal Green’s function of the system while
Fσσ′ (r,r′, t , t ′) = 〈ψσ(r, t )ψσ′ (r′, t ′)〉 is the anomalous component.

The connection with the BdG formalism is clear since the equation of motion for this
function takes the form ∫

dr′
[
ω−HBdG(r,r′)

]G(r′,r′′,ω) = δ(r− r′′) (1.23)

Note that the anomalous correlator, and consequently the pairing potential, can be written in
terms of the anomalous Green function as

∆σσ′ (r,r′) =Vσσ′ (r,r′)ρa
σσ′ (r,r′) =Vσσ′ (r,r′)

[
kBT

∑
n

Fσσ′ (r,r′, iωn)

]
(1.24)

where ωn = (2n+1)πkBT
ℏ are the Matsubara frequencies. All the other observables of the system

can be obtained with standard expressions. For example, the density of states and the spin
polarization can be written as

ρi (ω) = tr{σi G(r,r)} (1.25)

with i ∈ {0, x, y, z}.
The power of Gor’kov equations is not in its alternative solution strategy with respect to

BdG equations (they are partial differential equations instead of a diagonalization problem)
but rather in their nature as a first stepping stone of a hierarchy of approximation schemes.
That can be used to address different situations on one side and to the possibility to describe
more in detail the nature of the attractive interaction on the other.

The most common approximation scheme used for metallic superconductors that feature a
high density of states is the Eilenberger equation [11]. These equations are the Green function
counterpart of the Andreev approximation scheme of BdG equations, in which the equations
are linearized in the neighbors of the Fermi surface. A second level of approximation can
be applied by considering diffusive superconductors where diluted impurities scramble the
motion of electrons. In this case, the behavior of the system is described by the Usadel
equations [12].
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1.1. Microscopic models for superconductivity

The fundamental idea is that the band structure of the superconductor is not the most
interesting characteristic of the system, and we want to simplify the description by getting rid
of it. The first step is rewriting the Green function using a mixed Fourier transform

G̃(r,k) =
∫
G

(
r+ s

2
,r+ s

2

)
e−i ks , (1.26)

where we used the center of mass coordinate, r, and the relative distance, s, and then integrating
over the normal state quasiparticle energy ξk to define the quasiclassical propagator

g (r,ek) = 1

π

∫
dξk G̃(r,k)δ

(
1− k

|k| ·ek

)
. (1.27)

The equation of motion for this function is the Eilenberger equation. By further averaging over
the direction of motion, the Usadel equation is obtained, that reads as

D∇· (g∇g )− [ωnτ3σ0 + i h ·στ3 + (∆τ++∆†τ−)+Σ, g ] = 0. (1.28)

where D is the diffusion constant, ωn = 2π(2n +1)/T with temperature T are the Matsubara
frequencies, h is the exchange field, ∆ is the order parameter and Σ are additional self-energies.
The equation needs to be complemented with the normalization constraint g 2 = 1. We recall
that the diffusion constant is defined as D = vF ℓ

3 , where vF is the Fermi velocity and ℓ is the
elastic mean free path.

We swept several mathematical complications under the rug in this extremely synthetic
account. A discussion of these can be found in the literature [13]. In this thesis, Usadel
equations are just used to derive the phase diagrams shown in this chapter. Therefore we will
not discuss them further.

Symmetries of the order parameter

We now consider more in detail the pairing amplitude matrix. It is reasonable to assume that
the attractive interaction depends only on the relative distance between the two electrons.
However, since we deal with a structure that can feature an inhomogeneous pairing, e.g., a
superconductor-semiconductor hybrid, we keep dependence on the center of mass coordinate
r, and we express the two-body interaction as

Ṽσσ′ (r,s) =Vσσ′ (r+s/2,r−s/2) (1.29)

where we defined the relative distance s.
We then consider the pairing potential in the same coordinate system, but we perform a

Fourier transform in the s coordinate

∆σσ′ (r,k) =
∫

ds∆σσ′ (r+s,r−s)e i k·s

=
∫

ds Ṽσσ′ (r+s,r−s)ρa
σσ′ (r+s,r−s)e i k·s

= 1

Ω2

Ñ
dsdk′ dk′′ Ṽσσ′ (r,k′)ρa

σσ′ (r,k′′)e i(k−k′−k′′)·s

= 1

Ω

∫
dk′ Ṽσσ′ (r,k′)ρa

σσ′ (r,k−k′)

(1.30)
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

A good approximation is to assume a separation of length scales such that the pairing
amplitude can be written as a product of two independent functions:

∆(r,k) ≃ { f (r), g (k)}

2
(1.31)

where f (r) describes the strength and phase of the order parameter and depends only on the
center of mass coordinate, while g (k) determines the type of pairing and depends only on
the relative momentum. The curly braces denote an anticommutator, which is necessary to
maintain the Hermiticity of the Hamiltonian.

Before going forward, we introduce a different basis for the Bogoliubov-De Gennes Hamil-
tonian to make the spin-rotation symmetry more evident. To do so, we apply a time-reversal
symmetry operator T =UT K, with UT =−iσy to the holes such that the particle-hole symme-

try is P = iτyT =σyτyK. In the new basis the spinor is Ψ(r) = (
ψ, T ψ†

) = (
ψ↑,ψ↓, −ψ†

↓,ψ†
↑
)

and the Bogoliubov-De Gennes Hamiltonian reads

HBdG =
( H ∆′

∆′† −T HT −1

)
, (1.32)

with ∆′ = ∆U †
T . Since this is the only basis we will use in the future, we drop the prime and

simply refer to ∆. In this basis, obtaining the Hamiltonian of holes is straightforward: we begin
with the Hamiltonian for electrons and invert the signs of all terms that preserve time-reversal
symmetry while leaving unaffected those that violate it.

The pairing matrix ∆ determines what kind of pairs compose the condensate. Let us
consider a homogeneous system for simplicity, such that∆k is constant in space. It is insightful
to decompose the pairing potential in its singlet (d0), and triplet (d) components

∆k = d0(k)σ0 +d(k) ·σ . (1.33)

The pairing potential is proportional to the anomalous correlator ρa , which is the expecta-
tion value of two fermion operators. For this reason, a symmetry constraint prescribes that the
singlet component has to be even in k, while the triplet component has to be odd in k.

If we assume a spin-trivial electron Hamiltonian with a dispersion relation ξk, the spectrum
of the superconductor is given by

Ek, j =±
√
ξ2

k +δ2
k,± , (1.34)

where and δ2
k,± are the eigenvalues of ∆k∆

†
k. Using the (d0,d) vector introduced above, the

modulus of the paring potential can be written as

∆k∆
†
k = (

d 2
0 (k)+|d(k)|2)σ0 +q(k) ·σ , (1.35)

with q = i (d×d∗), while the eigenvalues of such matrix are

δ2
k,± = (

d 2
0 (k)+|d(k)|2)± ∣∣q(k)

∣∣2 . (1.36)

Systems with vanishing q are said unitary. They do not break time-reversal symmetry and do
not show spin polarization. On the contrary, non-unitary states have a finite spin-polarization
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1.2. s-wave superconductors

aligned to the axis identified by q. For this reason, they are not favored in the absence of a
magnetic field.

We can further classify the pairing amplitude by the order of the momentum operator.
Most known superconductors are either s-wave or d-wave (order 0 or 2 in k). In contrast, the
p-wave type pairing (order 1) is extremely rare. We will briefly discuss some properties of these
pairings in the next sections.

1.2 s-wave superconductors

This section will briefly summarize the characteristics of the most common type of low-
temperature superconductor, the s-wave superconductor. In this type of superconductor,
Cooper pairs are formed by states of opposite momentum and spin. The type of two-body
interaction potential takes the form

Ṽσσ′ (r,s) =V (iσy )δ(s) →V(iσy )(k,k′) = V

Ω
(iσy )δ(k+k′) , (1.37)

and, consequently, the pairing potential is such ∆k =∆0σ0 .
Since the pairing potential is constant for all values of the relative momentum k, s-wave

superconductors show an isotropic energy gap that is equal to the pairing potential. This is
shown in Fig. 1.1 and can easily be seen in the dispersion relation obtained using Eq. 1.34,
resulting in

Ek =
√
ξ2

k +∆2
0 , (1.38)

while the coherence factors are

uk =
√

1

2

(
1+ ξk

Ek

)
, vk =

√
1

2

(
1− ξk

Ek

)
. (1.39)

Using Eq. (1.39) in the gap equation in Eq. (1.19), we can rewrite it as

∆0 =
∫

dkV ∆0

2Ek
tanh

(
En

2kBT

)
. (1.40)

By solving it with standard renormalization trick [14], and comparing the result for zero and the
critical temperature Tc of the superconductor-metal transition, it is possible to derive the uni-
versal relation between the critical temperature and the pairing potential at zero temperature
that read as

kBTc ≃ 1.764∆0(T = 0) . (1.41)

Moreover, thanks to Anderson theorem [15], non-magnetic weak disorder has negligible
effects. The idea behind the theorem is that even when the impurities are included, and the
momentum does not commute anymore with the Hamiltonian, there are still pairs of states at
the same energy due to Kramers’s degeneracy that can bond together and form Cooper pairs.

Another parameter able to drive a transition to the metallic phase is the magnetic field.
For superconductors, like in many other materials, it is useful to distinguish between the
orbital effects of a magnetic field B, that are due to the coupling between the momentum and
the magnetic vector potential A, and spin effects of due to the coupling of the spin degree of
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

Fig. 1.1: Dispersion relation and density of states of an s-wave superconductor. (a) The
s-wave pairing opens a gap in the spectrum at the Fermi surface. This is explained by the
hybridization of the electron (orange curve) and hole (green curve) branches. (b) During the
superconducting phase transition, the energy states that were previously situated within the
gapped region in the normal phase are redistributed to the energy spectrum above the gap,
resulting in the emergence of coherence peaks in the density of states.

freedom with the magnetic field. This distinction is crucial in understanding ferromagnet-
superconductor heterostructures in Ch. 4.

To introduce the effect of an external field, let us consider a simple parabolic band for
which the electron Hamiltonian reads as

H0 =
(
p−eA

)2

2m
− gµB

S

ℏ
·B , (1.42)

where the term in the brackets determines the orbital effects in the superconductor, with e
being the electron charge and m the effective mass. The second term is the coupling with
the spin degree of freedom S with the coupling strength given by the Landé g-factor and
the Bohr magneton µB . In order to include different types of spin-splitting fields, like the
ones coming from a proximity-coupled ferromagnetic material, we rewrite the second part as
generic Zeeman Hamiltonian

HZ =−h ·σ (1.43)

where we call h an exchange field. For an external magnetic field h = gµB B/ℏ.
Usually, the orbital effects are dominant, causing an immense variety of effects, including

vortex physics in type-II superconductors. In the case of a type-I superconductor, the main
effect is the Meissner effect which consists of the expulsion of the magnetic field from the
bulk of the superconductor for fields that are below the so-called thermodynamic critical
field. Above this value, the dissipationless supercurrent cannot keep up with the magnetic
field, and superconductivity is suppressed. We can derive the thermodynamic critical field by
considering the free energy density of a small region in the bulk in the presence of an external
field Be . In the superconductor phase, there are two relevant contributions to the free energy in
Eq. (1.17): the condensation energy that lowers the free energy and the magnetic field energy
due to the difference between the external field Be and the total magnetic field B that is null
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1.2. s-wave superconductors

due to the Meissner screening. In the normal state, both terms are zero, as shown in Fig. 1.2(a).
The resulting free energy density difference between the two phases is given by

fSN =−N0
|∆|2

2
+ B 2

2µ
, (1.44)

where N0 is the density of states. The critical field at which the first-order superconductor-
normal transition takes place is then obtained by the condition fSN = 0 and results in the
following expression

Bc =
√
µN0|∆| . (1.45)

Fig. 1.2: Critical fields in bulk superconductors. (a) Calculation of the thermodynamic critical
field. Since superconductors exhibit perfect diamagnetism, the magnetic field in the bulk is
vanishing, giving a positive contribution to the energy equal to |Be|2/(2µ) plus the conden-
sation energy −N0|∆0|2/2. Both terms are null in the normal phase. (b) Calculation of the
paramagnetic critical field. The same idea can be applied to the evaluation of the paramagnetic
limit. The condensation energy is negative and appears only in the superconductive phase,
which is also characterized by a vanishing spin susceptibility, χS = 0. In the normal phase, the
spin susceptibility is proportional to the density of states, causing a negative contribution to
the free energy equal to −N0h2.

In the research presented in this thesis, the orbital effects are usually considered negligible,
and we instead focus on the spin degree of freedom. This situation can be obtained when
considering small superconductor samples with a very high thermodynamic critical field Bc or
when the superconductor is placed in contact with a ferromagnet that induces an exchange
field in the material. Magnetism and s-wave superconductivity are competing phenomena.
The competition between magnetism and s-wave superconductivity can be explained by their
different microscopic origins: magnetism arises from the alignment of the spin of electrons in
a material, while superconductivity results from the formation of Cooper pairs of electrons in a
singlet state.

When we introduce a weak exchange field h <∆0, this is unable to change the ground state
of the system because of the energy gap. As a result, the static spin susceptibility of an s-wave
superconductor is null at zero temperature [16]. The only effect of the exchange field is lifting
the degeneracy of the excitation spectrum of the system since now, for each quasiparticle state,
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

one spin component has lower energy than the other. This causes the splitting of the coherence
peaks shown in Fig. 1.3(a).

At the model level, the spectral properties of a spin-split s-wave superconductor can be
deduced system can be calculated starting from Green’s function in the wide-band limit

g R
σσ′ (ω) =− (ω+ iη+σh)τ0 +∆τx√

∆2 − (ω+ iη+σh)2
δσσ′ , (1.46)

where h is the exchange field, and η is known as the Dynes parameter and can be used to
include pair-breaking scattering.

Fig. 1.3: Properties of an exchange-split s-wave superconductor. (a) Spin-resolved density of
states of an s-wave superconductor with an exchange field h = 0.5∆0. The coherence peaks
appear split because quasiparticles with a spin aligned to the exchange field are favored with
respect to the ones antialigned. Nevertheless, the ground state is unchanged for h < hc0. (b)
Phase diagram of a homogeneous s-wave superconductor calculated through self-consistent
Usadel equations. At low-temperature, the pairing potential is almost unchanged until h = hc0,
where a first order first transition makes the superconducting phase metastable (red region).
At T = T ∗, the transition becomes of second order.

For the argument above, one could think that superconductivity persists as the ground
state up to the closing of the gap for h = ∆0. However, this is not the case, and the critical
line is actually located at a lower exchange field, as initially shown by Chandrasekhar [17] and
Clogston [18]. In this case, what causes the transition to the normal state is Pauli paramag-
netism. The reasoning is very simple and similar to the one used to derive the thermodynamic
critical field. Let us consider a system without the Meissner effect. Considering the null spin-
susceptibility, the difference between the free energy in the superconducting and normal state
can be written as [19]

fSN

N0
≃−|∆|2

2
+h2 + π2T 2

3
. (1.47)

The critical line is then calculated as

hc0 = |∆|p
2

, (1.48)

which is known as the Chandrasekhar-Clogston limit or paramagnetic limit and does not
depend on the density of states. At low temperatures, this first-order transition abruptly
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1.3. p-wave superconductors and topological superconductivity

brings the system to the normal metallic state. However, when the temperature overcomes
T ∗ = 0.556Tc , the transition becomes of second order [20, 21]. The phase diagram of a spin-split
superconductor is shown in Fig. 1.3(b).

In thin superconducting films, quantum confinement causes an increase in the supercon-
ducting pairing amplitude leading to a superconducting phase that survives under stronger
exchange fields in absolute value. However, the Chandrasekhar-Clogston limit still holds in
terms of Eq. 1.48 [22]. In making this consideration, we have assumed that ∆ would remain
homogeneous in space. Phases with inhomogeneous ∆, so-called FFLO phases, have been
predicted to appear at low temperatures for high-fields [23, 24]. However, these phases are very
susceptible to disorder and negligible in most situations.

1.3 p-wave superconductors and topological superconductivity

We now move to a more exotic type of superconductor, namely one featuring p-wave pair-
ing. In these superconductors, the pairs forming the condensate are in a triplet state, caus-
ing significantly different thermodynamic properties and excitation spectrum. For instance,
equal-spin pairing superconducting phases (that are nonunitary) are not limited by Pauli
paramagnetism. Therefore we could expect very high critical fields, provided the effect of the
orbital diamagnetism can be reduced. Two important types of p-wave pairing are the chiral
px + i py superconductor, with d ∝ ez (kx + i ky ), and the helical px +py superconductor, with
d ∝ kx ex +ky ey . Both of them belong to the class of topological superconductors.

A crash course in topological phases of matter

One of the most exciting features of p-wave superconductors is that they can support topologi-
cal phases. Following Ref. [25], a topological phase of matter can be defined as a phase where
the many-body ground-state wavefunction cannot be adiabatically connected to the atomic
limit. This definition is not satisfactory in preciseness and completeness, but it will work
fine to introduce the concept here. Topological superconducting phases are known for their
symmetry-protected topological order (SPT order) [25–28]. This order occurs in systems with a
quadratic Hamiltonian and is defined by a symmetry group G . The SPT phase is gapped, has
short-range entanglement, and features topologically distinct phases that cannot be smoothly
transformed into a trivial product state without breaking the symmetry group G or closing
the energy gap. Practically speaking, when transitioning between the trivial and topological
regions of these systems, edge states are protected. These states are protected because no local
perturbation that breaks translational symmetry can destroy them.

Based on this definition, it is evident that the symmetries that compose the group G must be
somewhat unconventional: we have to consider highly generic symmetries, like time-reversal
symmetry or the particle-hole symmetry introduced for superconductors. These symmetries
are special because they are represented by anti-unitary operators when acting on the single-
particle Hilbert space. In a generalized setting, the relevant symmetries for SPT order are
operators that belong to these three general classes:

• A time-reversal symmetry T is an anti-unitary operator that commutes with H.

• A particle-hole symmetry P is an anti-unitary operator that anti-commutes with H.
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

• A chiral symmetry S is a unitary operator which anti-commutes with H.

When both time-reversal symmetry and particle-hole symmetry are present, a chiral sym-
metry can be defined as S =PT . It is important to note that although P and S anti-commute
with the single-particle Hamiltonian, the two symmetries commute with the second-quantized
Hamiltonian, as expected for a symmetry operator.

SPT phases can be classified by the symmetry group G according to the Altland–Zirnbauer
periodic table of topological invariants shown in Tab. 1.1. The table represents the absence
of symmetries with 0. The presence of these symmetries is indicated by either +1 or −1,
depending on whether the operator representing the symmetry is involutory or anti-involutory,
indicating whether it squares to +1 or −1, respectively. The last three columns display the
topological invariant that can classify the topologically distinct ground states as a function of
symmetry class and spatial dimension d [27, 29–31]. By virtue of the bulk-edge correspondence,
by studying the bulk system Hamiltonian, which is a homogenous system with no boundaries,
we can infer the existence and properties of topologically protected edge states, which occur
at the boundaries of the material in a finite-size sample. The table is called periodic because
it repeats with period 8 in d for the real symmetry classes and period 2 for the complex ones
(Bott periodicity).

T 2 P2 S2 d = 0 d = 1 d = 2 d = 3

A (unitary) 0 0 0 Z - Z -
AIII (chiral unitary) 0 0 1 - Z - Z
AI (orthogonal) +1 0 0 Z - - -
BDI (chiral orthogonal) +1 +1 1 Z2 Z - -
D 0 +1 0 Z2 Z2 Z -
DIII −1 +1 1 - Z2 Z2 Z
AII (symplectic) −1 0 0 2Z - Z2 Z2

CII (chiral symplectic) −1 −1 1 - 2Z - Z2

C 0 −1 0 - - 2Z -
CI +1 −1 1 - - - 2Z

Table 1.1: Periodic table of topological invariants The Altland-Zirnbauer classification of
quadratic Hamiltonians divides the Hamiltonians into ten different classes depending on the
presence of a time-reversal symmetry T , a particle-hole symmetry P , and a chiral symmetry S ,
and whether these symmetries are involutory or anti-involutory [27, 29–31]. In the columns on
the right, the topological invariant is provided for each class and dimension d .

Spinless p-wave superconductor

To explore the emergence of topological phases in p-wave superconductors, we examine a
simplified model of a "spinless" superconductor in which one spin branch is inactive. We
follow [32] and consider a system modeled by the BdG Hamiltonian

H=
(ℏk2

2m −µ ∆p k

∆p k −
(
ℏ2k2

2m −µ
)) , (1.49)
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that can be diagonalized using Eq. 1.34, resulting in

E =±
√
ξ2

k +∆2
p k2 . (1.50)

The dispersion relation is shown in Figure 1.4(a) for various values of the chemical potential,
µ. Unlike the s-wave case, the spectral gap depends on the position of the Fermi surface. The
gap is equal to

√
2mµ∆p for positive µ and has a linear behavior of Eg =−µ for negative µ. The

gap closes at µ= 0, indicating a quantum critical point between the weak-pairing (µ> 0) and
strong-pairing (µ< 0) phases [33]. In the weak-pairing phase, the system, in the absence of
pairing, is metallic, and the resulting superconducting phase is similar to the conventional
s-wave paired system. In the strong-pairing phase, the system is more akin to a Bose-Einstein
condensate and does not exhibit a Fermi surface.

Fig. 1.4: p-wave superconductors. (a) Dispersion relation of a 1D spinless p-wave supercon-
ductor for µ= 0, 2, 4, 8. It is possible to note how the size of the spectral gap depends on the
Fermi momentum. The color scheme is the same as Fig. 1.1. (b) Spectrum of a finite length
L = 300 wire spinless p-wave superconductor for varying µ. At µ= 0 the gap closes and reopens
in the topological phase, marked by the appearance of MZMs. (c) Wavefunction of MZMs in
the same system for µ=−0.6. Parameters: m = 0.1, ∆= 1

The BdG Hamiltonian considered here implicitly breaks time-reversal symmetry, as it only
considers one spin component. As a result, the system belongs to class D of the topological
classification and is characterized by a topological invariant Z2. This suggests that the two
phases are topologically distinct. To confirm this, we will examine the presence of edge states,
which will reveal which of the two phases is topologically nontrivial.

To begin, we note that when m approaches infinity, the structure of the matrix HBdG =
∆p kτx −µτz becomes equivalent to a one-dimensional Dirac Hamiltonian with the chemical
potential playing the role of “mass". For this reason, we can expect to see a zero energy
Jackiw-Rebbi bound-state on mass kinks. We can prove its existence by considering a chemical
potential profile µ(x) with a soliton kink such that µ(−∞) < 0 and µ(+∞) > 0. We search for
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

zero-energy solutions using the ansatz

ψM(x) = exp

(
− 1

∆

∫ +∞

−∞
µ(x ′)dx ′

)(
u
v

)
= γ(x)

(
u
v

)
(1.51)

where u and v are complex coefficients and γ is real valued. The resulting eigenvector equation
is

HψM =
(−µ(x) iµ(x)

iµ(x) µ(x)

)(
u
v

)
= 0, (1.52)

which has solution v = i u. By taking u = (1+ i )/2 we can write the quasiparticle state as

ψM = γ(x)
[ψ(x)+ψ†(x)]+ i [ψ(x)+ψ†(x)]

2
. (1.53)

The localized fermionic excitationψM is its own antiparticle, that is the definition of a Majorana
zero mode (MZM). It is a localized bound state, and it does not propagate. Therefore the two
phases separated by the mass kinks are topologically distinct. Let us now consider the system
with a finite electron mass m and adiabatically increase ∆p from 0: when µ < 0, ∆p > 0,
the system remains gapped; thus, the trivial insulator phase at ∆ = 0 and the strong-paired
superconductive phase are adiabatically connected and belong to the same topological sector.
The weak-paired superconducting phase, instead, cannot be connected to this sector for ∆ ̸= 0
without closing the spectral gap.

Similar conclusions can also be drawn by numerically diagonalizing a finite-length 1D
p-wave superconductor Hamiltonian, as shown in Fig 1.4(b). As the chemical potential is
increased, the gap closes linearly with respect to µ and reopens in the topological phase.
A pair of zero-energy modes can be observed in the topological phase, and their localized
wavefunction is illustrated in Fig 1.4(c).

An alternative model for understanding the appearance of MZMs at the boundary between
the topological and trivial region of a spinless p-wave superconductor is the discretized model
introduced by Kitaev [34]. The Kitaev model has been used as an introductory toy model in
many subsequent reviews like Refs. [35–40]

The model can be represented by the following Hamiltonian:

H =−µ
N∑

i=1
c†

i ci −
N−1∑
i=1

tc†
i ci+1 +∆ci ci+1 +h.c. (1.54)

where µ is the chemical potential, t is the hopping amplitude and ∆ is the pairing potential.
The pairing potential acts on different sites that is the discrete equivalent to p-wave pairing.
Indeed, by setting t = ℏ2/(2ma2) and ∆ = ∆p /(2a) the Kitaev model is just the discretized
version of the Hamiltonian in Eq.(1.49) on a grid with spacing a.

To reveal the Majorana physics, we will rewrite the Hamiltonian in terms of new operators,
γm,i where m ∈ {1,2}, defined as follows:

ci = 1

2
(γ1,i + iγ2,i ) , c†

i = 1

2
(γ1,i − iγ2,i ) . (1.55)

We show schematically this transformation in Fig. 1.5(a).
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1.3. p-wave superconductors and topological superconductivity

These operators are Majorana fermions because they satisfy the following defining proper-
ties

{γmi ,γn j } = 2δi jδnm , γ†
mi = γmi . (1.56)

This transformation makes it clear why Majorana fermions are often described as the real
and imaginary parts of the composite complex operator that is a conventional fermion. One
implication of the self-adjointness of the Majorana operators is that these excitations carry
both zero energy and spin.

Rewritten in terms of the Majorana operators, the Kitaev Hamiltonian takes the form

H =−µ
2

N∑
i=1

(iγ1,iγ2,i +1)+ i

2

N−1∑
i=1

[
(∆+ t )γ2,iγ1,i+1 + (∆− t )γ1,iγ2,i+1

]
. (1.57)

Fig. 1.5: Kitaev chain (a) Pictorial representation of the Kitaev chain in the topologically trivial
and nontrivial phases. (b) Topological phase diagram of the Kitaev chain.

We will focus on limiting cases to understand the physical meaning of all the terms. The
insulator limit is given by ∆= t = 0 with µ< 0. In this case, the chain consists of uncoupled
sites:

H =−µ
N∑

i=1
c†

i ci =−µ
2

N∑
i=1

(iγ1,iγ2,i +1) . (1.58)

The two Majorana operators corresponding to a physical electron are paired in the same site.
The system is fully gapped, and adding an electron cost a finite energy −µ. This phase is
topologically trivial and does not host any MZMs. This situation is depicted in the top panel of
Fig. 1.5(a).

The next case we consider is ∆= t and µ= 0. In this case, the Hamiltonian reduces to

H = i t
N−1∑
i=1

γ2,iγ1,i+1 , (1.59)

The Majorana operators belonging to neighboring sites are paired in a Dirac fermion, as
depicted in the bottom panel of Fig. 1.5(b). Therefore, it is insightful to rewrite the Hamiltonian
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

given in terms of new nonlocal fermionic operators

di = 1

2
(γ2,i + iγ1,i+1) , d †

i = 1

2
(γ2,i − iγ1,i+1) . (1.60)

The result is

H = 2t
N−1∑
i=1

(
d †

i di − 1

2

)
. (1.61)

As such, we see that the bulk of the system is still gapped, i.e., adding a fermion of type
d costs finite energy 2t . However, the two Majorana operators γ1,1 at the left end of the
chain and γ2,N at the right end of the chain do not enter the Hamiltonian at all. This implies
[H ,γ1,1] = [H ,γ2,N ] = 0, i.e., the two outermost sites of the chain now host two isolated zero-
energy modes satisfying the Majorana property γ1,1 = γ†

1,1, γ2,N = γ†
2,N as shown in Fig. 1.5(a).

The two MZMs can be combined to form a single nonlocal fermionic zero mode:

d0 = 1

2
(γ1,1 + iγ2,N ), d †

0 = 1

2
(γ1,1 − iγ2,N ) . (1.62)

Since the constituent MZMs are localized at opposite ends of the chain, this fermionic zero
mode is delocalized. Furthermore, this non-local fermionic state can be occupied or un-
occupied without any energy cost, resulting in two degenerate ground states that differ in
their fermion number. This is a distinct feature of the topological phase in comparison to
conventional superconductors, where the ground state is non-degenerate and made up of a
combination of states with even numbers of particles. Additionally, because of the non-local
nature of the MZMs, it is impossible for any local perturbation to change the ground state.

While the above discussion focused on two limiting cases corresponding to the fully dimer-
ized situations shown in Fig. 1.5, the qualitative properties of the trivial and nontrivial phase
also persist if one deviates from these fine-tuned points, resulting in the phase diagram in
Fig. 1.5(b). Indeed, the number of MZMs at a given end of the chain is directly related to a topo-
logical invariant, meaning that it is robust under continuous changes of the system parameters
as long as the bulk spectral gap remains open and none of the protecting symmetries is broken.

Non-abelian anyons and topological quantum computing

The presence of a two-fold ground state degeneracy and, in particular, the nonlocal nature
of the zero-energy mode in this simple one-dimensional system provides the first element to
explain the attractiveness of topological superconductors to encode quantum information.
The core idea is that the protection against local perturbations makes it possible to envision
qubits with extremely long coherence time.

To understand the possibility of manipulating the information in a protected way, it is
necessary to introduce the non-Abelian exchange statistics of MZMs. Exchanging two anyons
(MZMs) is represented by a non-trivial unitary acting on the degenerate ground-state subspace.
These unitaries form a non-commutative group, hence the adjective non-abelian.

Non-abelian exchange statistics are more clearly explained for a different topological
superconductor: the previously mentioned px ± i py paired state. In the two-dimensional
case, this topological superconductor is characterized by a Z topological invariant. Indeed,
an arbitrary number of MZMs can appear at the center of half-quantum vortices [41] since

18



1.4. From Andreev reflection to the proximity effect

the pairing amplitude is suppressed at the center of the vortex, which acts as a trivial region
embodied in a topological superconducting one. In the presence of N MZMs, the ground-state
is 2N -fold degenerate. By bringing two vortices close to each other, the two MZMs can interact
and form a fermionic degree of freedom with a definite occupation. Note, however, there is no
prescribed way to pair (fuse) the MZMs [42].

A MZM-carrying vortex behaves as a non-abelian anyon as its exchange statics differs
from the usual bosonic and fermionic ones. It is possible to change the state of a system by
exchanging the position of vortices in a precise order, also called braiding. The dependence
of the outcome on the path can be explained considering the 2+1D nature of the system:
exchanging the position of the non-abelian anyons creates knots in the worldlines of the
vortices that cannot be disentangled.

For practical application, it is necessary to translate the idea from vortices to two-dimensional
systems comprised of several one-dimensional ones. The strategy to define a qubit is using
four MZMs and fixing the total parity of the system in what is called a Majorana box qubit. This
type of qubit has some limitations: only Clifford gates are realizable by braiding operations,
and entangling two-qubit gates have to be realized in a non-protected way. Majorana-based
qubits are advantageous because they keep quantum information encoded in delocalized
fermionic states and are expected to be robust against most sources of decoherence. However,
processes that change the total parity of the system, known as quasiparticle poisoning, involve
a single MZM and cannot be suppressed by keeping them physically separated [35]

1.4 From Andreev reflection to the proximity effect

In the previous section, we discussed the unique properties of a p-wave superconductor, but
few materials naturally exhibit a p-wave order parameter. Therefore, researchers have turned
to an alternative approach: creating synthetic materials that exhibit the desired properties
through the use of the proximity effect.

The proximity effect occurs when a superconducting material transfers some of its proper-
ties to adjacent non-superconducting material, leading to the formation of a proximity-induced
superconducting gap. The phenomenon results from the coherent tunneling of Cooper pairs
between the two materials. It can be explained by the penetration of the superconducting order
parameter into the non-superconducting material, which decays exponentially with distance
from the interface [43]. An alternative explanation involves Andreev reflection, a scattering
event in which an electron coming from a normal metal is back-reflected as a hole [44, 45]. The
scattering picture of Andreev reflection is anticipated in Fig. 1.6 and will be expanded in detail
in Ch. 3.

A tunneling model for treating the proximity effect was introduced by McMillan [46]. In the
following, we sketch a simplified version of the proof neglecting higher-order effects, like the
back-action of the normal metal on the superconductor and the self-consistency of the pairing
potential. Let us consider a simple system described by the Hamiltonian

H = HN +HSc +HT (1.63)

that is the sum of a metal, HN, superconductor, HSc, and tunneling HT terms.
We consider a simple s-wave superconductor described by

HSc =
∑

k
ξkc†

kck +∆†ck(iσy )c−k +H.c. , (1.64)
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

Fig. 1.6: Sketch of Andreev reflection. The diagram illustrates the process of Andreev reflection
in momentum space. A right-moving electron in the metal (shown in orange), with an energy
below the superconducting gap, collides with the superconductor-metal interface and is
reflected as a left-moving hole (shown in green). This process generates an additional Cooper
pair in the superconductor, which is absorbed by the condensate.

where ck (c†
k) are the electron annihilation (creation) operator in the superconductor, while the

tunneling term is
HT =−∑

tψ†(r)ck +H.c. . (1.65)

with ψk being the electron annihilation operator in the proximitized material.
In writing the tunneling Hamiltonian, we have neglected any possible complication in the

tunneling amplitudes that are assumed constant. This can be justified in the limit of dirty
interfaces, where momentum conservation is absent.

The proximity effect is derived by considering the renormalization of the normal metal
Greens function

G−1
N (ω) =ωτ0 −HNτ1 −Σ(ω) , (1.66)

where Σ is a complex self-energy due to the tunneling of electrons in the superconductor. The
self-energy reads as

Σ(ω) = t 2
∫

dkGSc(k,ω) =−t 2
∫

dk
ωτ0 −ξk −∆τx

ω2 −ξ2
k −∆2

(1.67)

Performing the integral over the momentum in the wide-bandwidth approximation results in
the following self-energy

Σ(ω) = γωτ0 +∆τxp
∆2 −ω2

, (1.68)

where we defined the coupling constant γ=πt 2N0 with N0 being the normal state density of
states at the Fermi level in the superconductor.

The final result is

G−1
N =ωZ (ω)+HN + γ∆τxp

∆2 −ω2
, (1.69)

where the quasiparticle weight is defined as

Z (ω) = 1− γp
∆2 +ω2

. (1.70)

For the sake of simplicity, we ignore the effect of Z (ω), as it mainly describes the hybridiza-
tion of the quasiparticles in the semiconductor with states of the superconductors and it
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1.5. Andreev bound states and Josephson effect

renormalizes the energy scale. We focus, instead, on the last term that defines an effective
pairing potential

∆̃(ω) = γ∆p
∆2 −ω2

. (1.71)

that appears in the proximitized metal due only to the proximity to the superconductor. It
introduces an energy gap in the spectrum and makes the system superconducting as well.
Interestingly, at low energy (ω≪∆), the induced pairing potential is only proportional to the
coupling, H ≃ γ, while, for ω≫ ∆ the self-energy turns purely imaginary, and it represents
the escape of highly-energetic quasiparticles in the superconductor. For simplicity, the en-
ergy dependence in the effective Hamiltonian is neglected in many analyses, and a constant
induced pairing potential is considered when analyzing superconducting heterostructures,
albeit different from the bulk value. This approximation is usually called the weak-coupling
limit, while the moderate-coupling limit consists of including the complete self-energy in
the effective Hamiltonian. The strong-coupling limit, instead, requires taking into account
explicitly the superconductor in a complete BdG model and is usually needed for a realistic
treatment of the disorder.

For what concerns the superconductor, the main effect on the density of states is the soft-
ening of the gap due to the difference between the induced gap and the parent superconductor
gap values. More precise analysis of the proximity-coupled systems brings to renormalization
of all the quantities involved in the low-energy effective model of a semiconductor [47].

1.5 Andreev bound states and Josephson effect

Another consequence of Andreev reflection is the formation of subgap states, called Andreev
Bound States (ABS), in junctions where a non-superconducting layer is sandwiched between
two gapped superconductors. The intuitive scattering picture that explains this effect is dis-
played in Fig. 1.7(a). The combination of two consecutive reflections at two different supercon-
ducting interfaces can create a closed loop that brings an electron-like quasiparticle back at
the beginning of the coherent process, forming a bounded quasiparticle with an energy lower
than the superconducting gap of the leads.

A widespread model to describe ABSs in metallic junctions is Beenakker’s model [48]. Under
the assumption that the scattering matrix of the normal region is weakly dependent on the
quasiparticle energy for ω<∆. The junction shows an ABS spectrum

εn =∆
√

1−Tn sin2
(
φ

2

)
, (1.72)

where Tn are the transparencies of the transmission modes of the metallic central region while
φ is the phase difference between the two superconducting leads. An extension of this model
to junctions with exchange fields is presented in Appendix E.

In the process, the two Andreev reflections induce a Cooper pair transfer between the two
superconducting leads, causing a dissipationless supercurrent to flow in the structure: the
Josephson current. We conclude this section by deriving a general expression that links the
quasiparticles spectrum to the supercurrent that flows in a junction. We consider a very generic
system

H = HC +HSc +HT (1.73)
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Fig. 1.7: ABS and Josephson effect in superconductor-normal metal-superconductor junc-
tions. (a) Sketch of the formation of an ABS in a superconductor-normal metal-superconductor
junction as an effect of consecutive Andreev reflections at two superconductor interfaces. (b)
The three lowest ABSs in a simple superconductor-normal metal-superconductor junction
with t = 1, ∆0 = 2×10−4, µ= 0 at a phase difference equal to π. (c) ABS energy in Beenakker’s
model for various transparencies.

where HC is the Hamiltonian of the central region of a superconducting device, HSc is the
Hamiltonian of the superconducting terminals, and HT =∑

HT,i is the tunneling Hamiltonian
connecting the central region to the superconducting terminals labeled by i . This reads as

HT,i =
∑
n,p

(
ti ,np d †

nτz cp,i + t∗i ,np c†
p,iτz dn

)
, (1.74)

where we use electron Nambu operator dn = (dn↑,d †
−n↓) for the central region, and ci p =

(ci p↑,d †
i−p↓) for the all the leads. Here −n means the time-reversed orbital of n, τ j are the Pauli

matrices in electron-hole space.
The tunneling matrix elements between the different regions are denoted by t . Note that

we include the phase differences in the hopping amplitudes by a gauge transformation that
moves the phase difference to the tunneling

ci p → ci p e i
φi
2 , ti p → ti p e i

φi
2 . (1.75)

The charge operator reads q =−eτz , therefore we can write the current through lead i as

Ii = q̇i = i e
∑
kn

(
ti ,np c†

i pτz di ,n − t∗i ,np d †
i ,nτ3ci p

)
, (1.76)

and we can rewrite the current in terms of the tunneling Hamiltonian as

Ii = 2e
∂HT

∂φi
. (1.77)

22



1.6. Topological superconductivity in hybrid heterostructures

The expected value is then

〈Ii 〉 = 2e

〈
∂HT

∂φi

〉
=2e

1

Z
tr

[
e−βH ∂HT

∂φi

]
=

2e
−1

βZ
tr

[
∂e−βH

∂φi

]
= 2e

−1

β

∂ ln Z

∂φs
= 2e

∂F

∂φi
,

(1.78)

where F ({φi }) is the free energy of the system. The phase derivation can not simply be pulled
out of the expectation value because the wave function depends on the phase difference. The
function F (φ) is also called Josephson potential or phase dispersion relation, and it determines
the currents and the energy of the system depending on the phases applied to the terminals.

Applying this formula to Beenakker’s results gives the famous expression of the supercurrent

I (φ) = e∆2

2ℏ
sin

(
φ

)∑
n

Tn

ϵn
tanh

(
ϵn

2kBT

)
. (1.79)

The function I (φ) is called current-phase relation (CPR) and is the characteristic used for
the lumped-element description of Josephson junctions. The maximum current that can flow
in a Josephson junction in the two directions is called critical current,

Ic,+ = max I (φ) , Ic,− = min I (φ) . (1.80)

When a current bias is applied above the critical current, the junction turns to the normal,
resistive state.

In real-world Josephson junctions, parasitic effects such as resistive and capacitive el-
ements, as well as noise, can lead to hysteresis around the critical current (Ic). This can
manifest as a superconducting-resistive transition at the switching current (Isw), and a resistive-
superconducting transition at the retrapping current (Irt). It is worth noting that these currents
may differ from the critical current (Ic).

1.6 Topological superconductivity in hybrid heterostructures

The proximity effect provides an alternative way to create synthetic topological superconductiv-
ity by combining proximity-induced conventional superconductivity, with a material that has
lifted spin-degeneracy due to spin-orbit coupling and an additional mechanism that breaks
Kramer degeneracy. One of the earliest works in this direction was by Gor’kov and Rashba,
who demonstrated that a 2DEG with Rashba spin-orbit coupling could produce a mixture of
singlet and triplet pairing [49]. This idea was further developed by Fu and Kane, who proposed
using topological insulators to create synthetic topological superconductivity [50]. A major
breakthrough was the realization that simpler semiconductors with a strong Rashba effect and
a magnetic field could also be used to achieve 1D topological superconductivity [51, 52], 2D
px + i py superconductors [53] or MZM in artificial vortex cores [54].

To illustrate the idea, here we will focus on the BdG Hamiltonian

H=
[(

ℏ2(k2
x +k2

y )

2m∗ −µ
)
σ0 +αz (kxσy −kyσx )

]
τz +∆σ0τx +hσz , (1.81)
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usually referred to as the Lutchyn-Oreg model. This Hamiltonian describes a 2DEG with effec-
tive mass m∗, a Rashba spin-orbit coupling1 αz , and a Zeeman splitting hz . The semiconductor
is proximitized by a s-wave superconductor with pairing potential ∆, here described in the
weak coupling limit.

We start by discussing the property of the normal state Hamiltonian obtained by setting
∆= 0. The Hamiltonian is diagonalized by the unitary

Uhx = exp

(
− iθ

2
τz n ·σ

)
= cos

(
θ

2

)
− iτz sin

(
θ

2

)
n ·σ , n = ez ×××k

k
, (1.82)

that can be seen as a rotation of the spin degree of freedom locally in momentum space. The
rotation angle is defined by

sinθ = kα√
α2k2 +h2

z

, cosθ = h√
α2k2 +h2

z

(1.83)

In this basis, the Hamiltonian is diagonal and reads as

UhxHU †
hx =UhxHLOU †

hx =
(ℏ2k2

2m∗ −µ
)
σ0τz −

√
α2k2 +h2

zτ0σz , (1.84)

and the eigenvectors form the so-called helical basis
∣∣e+,k

〉∣∣e−,k
〉∣∣h−,−k
〉∣∣h+,−k
〉
=Uhx(k)


+ ∣∣e↑,k

〉
+ ∣∣e↓,k

〉
− ∣∣h↓,−k

〉
+ ∣∣h↑,−k

〉
 . (1.85)

We first focus on the ∆ = 0 case and select the electron sector, τ = +1. The dispersion
relation is shown in Fig. 1.8 for various cases. Fig. 1.8(a) shows a 2DEG with strong Rashba
spin-orbit coupling. The system features two bands with spin-momentum locking. Meaning
that for each point in the Brillouin zone, there is a preferred spin direction that commutes with
the Hamiltonian. Time-reversal symmetry is preserved, and therefore, Kramers’s degeneracy
holds. The introduction of a magnetic field in an in-plane direction opens the gap at k = 0.
However, the two bands still intersect as there exists a direction for which the Zeeman term
commutes with Rashba one, as shown in Fig. 1.8(b). Finally, in case the magnetic field is
oriented out-of-plane, a gap opens between the two bands for any point in the Brillouin zone.
Notably, for h >µ the upper band is gapped out, and the low-energy physics is dictated entirely
by the low-energy band. This phase is called helical liquid.

We now introduce the superconducting pairing in the picture by setting∆ ̸= 0. In the helical
basis defined above, the Hamiltonian reads as

UhxHLOU †
hx =

(ℏ2k2

2m∗ −µ
)
σ0τz −

√
α2k2 +h2

zτ0σz+
kxαz∆√
h2

z +k2
xα

2
z

τyσy + hz∆√
h2

z +k2
xα

2
z

τxσ0 .
(1.86)

1We use a Rashba-type spin-orbit coupling because it is the most common type of spin-orbit coupling in these
devices, and has some nice properties we will discuss later. Note, however, how any type of linear spin-orbit coupling
would work as well.
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Fig. 1.8: Dispersion relation of a Rashba semiconductor in presence of a spin-splitting field.
(a) Dispersion relation for h = 0. The action of the Rashba field is lifting the spin degeneracy
displacing the two parabolic bands, and introducing spin-momentum locking. The two bands
have opposite helicity. (b) Dispersion relation for h ̸= 0 oriented in plane. If the magnetic field
lies in-plane, there is a direction in momentum space for which the spin-orbit coupling term
commutes with the magnetic field. (c) Dispersion relation for h ̸= 0 oriented out-of-plane. In
this case, the two bands split for all points in momentum space. And for h >µ the system can
be tuned to the helical phase.

Notably, the singlet pairing in the spin basis has now split into two terms. The first term in the
second line of Eq. (1.86) represents a triplet component, while the second term in the same
line is the remaining singlet pairing.

For a high enough h, the + band is gapped out, and we can project on the reduced basis
{|e−k〉 , |h−k〉} to obtain

H̃=
(ℏ2k2

2m∗ −µ+
√
α2k2 +h2

z

)
τz + kxαz∆√

h2
z +k2

xα
2
z

τy . (1.87)

This Hamiltonian looks very similar to what we desire. Indeed, it represents a single spin with
a triplet pairing, that, for low enough momenta, is of p-wave type. With the knowledge about
the presence of a p-wave type pairing, we now consider the full Hamiltonian, which has a
spectrum given by

E 2 = ξ2
k +h2 +∆2 + (αz kx )2 ±2

√
∆2h2 +h2ξ2

k +ξ2
k (αz kx )2 (1.88)

with ξk = ℏ2k2
x

2m∗ −µ. The system is always gapped at finite momentum as long as αz ̸= 0. The
special point k = 0 instead, undergoes a gap closing and reopening for h2 =∆2 +µ2, as shown
in Fig. 1.9 where h2 is varied from 0 to values bigger than ∆2 +µ2.
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1. SUPERCONDUCTIVITY IN HETEROSTRUCTURES

Fig. 1.9: Dispersion relation of the Lutchyn-Oreg model. The plot shows the dispersion
relation for the Lutchyn-Oreg model for µ= 0 and ∆= 1. The Zeeman term h is varied from 0
to values bigger than ∆. In the second plot, the splitting of the bands can be observed, together
with the gap closing at k = 0. At higher h, the gap reopens in the topological phase.

We finally need to prove that this point is a topological quantum phase transition separating
a trivial and a topological state. To do so, we will resort to a topological invariant, and we will
consider a 1D or quasi-1D wire. Because of the presence of the particle-hole symmetry P , we
can define a transformation UM to the Majorana basis. This is defined as the basis where the
particle-hole symmetry is just the complex conjugation operator

UMPU †
M =K . (1.89)

For the basis of time-reversed holes, the transformation read as

UM =


1 0 0 −1
i 0 0 i
0 1 1 0
0 i −i 0

 . (1.90)

In this basis, the Hamiltonian can be written as follow

H= i

2
M , (1.91)

where M is real and skew-symmetric. This allows for calculating the Pfaffian invariant defined
as

Q= sgn

[
PfM(kz = 0)

PfM(kz →+∞)

]
, (1.92)

The sign of this Pfaffian divides the set of all gapped quadratic forms of Majorana fermions
into two inequivalent classes [34].

An ideal 1D wire belongs to the BDI class because other than the particle-hole symmetry,
it features an additional time reversal symmetry A=σ0τ0K, that is involutory A2 =+1, and
also a chiral symmetry S =PA=σ2τ2. One-dimensional BDI systems are characterized by a
topological invariant WZ that counts the number of MZM.

Since all BDI systems also belong also to the D class, we can use the topological invariant
for the D class that, for dimension d = 1, is the WZ2 [55]. The two invariants are related by

WZ2 = (−1)WZ (1.93)
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1.6. Topological superconductivity in hybrid heterostructures

Luckily, WZ2 =Q defined above [34].
Applying the topological invariant just defined to the Hamiltonian in Eq. (1.81), considering

that the kinetic energy dominates for large kz , the Hamiltonian approaches the one for quasi-
free electrons, which have Pfaffian PfM(kz →∞) = 1, i.e., is in the trivial state. We finally proved
that the topological phase is defined by the paraboloid

h2 >∆2 +µ2 . (1.94)

A quasi-1D system still belongs to the BDI class as long as the transversal spin-orbit coupling
is absent. In case of transversal spin-orbit coupling, both the time-reversal symmetry A and
the chiral symmetry S are broken, and the system is brought in the D class. Physically means
that transversal spin-orbit coupling couples the MZMs at the end of the wires, which becomes
gapped, leaving at maximum one zero energy state [55].

As an external magnetic field increases, the system undergoes a topological quantum phase
transition characterized by the closing and reopening of the superconducting gap. In the
topological regime, sufficiently long wires feature zero-energy Majorana bound states at the
ends.

Experimental realizations

We have shown how a low-density superconductor with strong spin-orbit coupling and an
exchange field can have topologically distinct phases. However, a material with such character-
istics has not yet been found in nature. A different approach is leveraging proximity effects to
combine together the different elements and generate synthetic topological superconductivity.
Hybrid superconductor-semiconductor heterostructures have emerged as a potential platform
for this purpose [56, 57].

The semiconductor act as a host material with a controllable, low-density of electrons
and a potentially high g factor. A superconducting pairing potential can be introduced in the
structure by coupling it with a conventional superconductor. Following this idea, different
hybrid semiconductor-superconductor platforms have been proposed to exhibit topological
superconductivity. The first experiments concerned nanowire structures with evaporated
superconductors [58–62].

The positive results of the first generation of these experiments triggered a considerable
effort to improve the fabrication technology, which resulted in the development of epitax-
ial, highly transparent interfaces for compatible materials. Moreover, improvement in the
fabrication of semiconductor structures has consistently reduced the disorder in the devices,
which can now reach high mobility. In the second generation of experiments, several variations
of nanowire structure have been tested, starting from vapor–liquid–solid (VLS) [63–65], to
selective-area-grown (SAG) wires [66], and two-dimensional electron gas (2DEG) systems [67–
72]. A variation of this idea that involves using a ferromagnetic insulator as the source of
spin-splitting has emerged in recent years [73]. These systems will be the subject of Ch. 4.
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Electrostatic landscape and spin-orbit coupling
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2. ELECTROSTATIC LANDSCAPE AND SPIN-ORBIT COUPLING

The reason for the advent of hybrid superconductor-semiconductor devices lies in two
fundamental properties of semiconductors: the low charge carrier density and the strong
spin-orbit coupling present in many compounds. Both the density and the spin-orbit cou-
pling strength are tunable through electrostatic control, which is, therefore, a fundamental
aspect in the design of hybrid devices. This chapter delves into these two properties of hybrid
superconductor-semiconductor devices. In Sec. 2.1, we will introduce the most common
methods of electrostatic modeling in hybrid devices: the Schrödinger-Poisson (SP) and the
Thomas-Fermi (TF) approach to the problem. The TF approach will be presented as an exam-
ple of an orbital-free theory of the electron gas, allowing for the introduction of more precise
extensions that are the focus of paper [P3]. While in Sec. 2.2, we will introduce spin-orbit
coupling in semiconductor heterostructures and explore how it can be manipulated through
geometry and electric fields in nanostructures.

2.1 Simulation of the electrostatic landscape

The possibility of using electric fields to manipulate the properties of hybrid devices is a
key feature of these systems. The low-density regime of semiconductor regions makes the
electron gas highly responsive to changes in the electrostatic landscape, allowing for easy
and reliable control through capacitively coupled gates. However, understanding the precise
relationship between the potential applied to the metallic gates and the electrochemical
potential is a complex task, with several factors contributing to the challenge. Some of the
major complications in modeling the electrostatic behavior are the following:

1. Band alignment. A fundamental parameter of electrostatic simulations of heterostruc-
tures is the energy offset of the band structures of each material in the structure. These
parameters are difficult to evaluate from experiments and even to define theoretically,
yet, the results of the simulations depend heavily on them.

2. Interface physics. The interface between two different materials can host dangling
bonds, dislocations, midgap states, and other defects that can significantly impact
surface physics. These properties depend not only on the materials at the two sides of
the interface, but also on the fabrication details of the structure.

3. Fixed charge. Precise simulations require modeling fixed charges that may be present
in the structure, such as doping or fixed surface charge. This charge can depend on
the fabrication process and can also cause hysteretic behavior if it escapes traps in rare
events.

Even without considering the model-level complications, electrostatic simulations are
complex and potentially nonlinear problems that involve simulating an interacting electron
liquid in complicated geometries and boundary conditions. The electrostatic problem can be
expressed in two ways. The first method starts with the non-interacting electrons problem
and introduces the calculation of the electrostatic field, resulting in a Shrödinger-Poisson
(SP) formulation. The second method begins from a perspective similar to density-functional
theories, where an energy functional for the interacting electron fluid is sought. This section
introduces both methods by considering the simplest case of direct bandgap semiconductors
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2.1. Simulation of the electrostatic landscape

with electron accumulation. For low densities, we can assume that the electrons in the semi-
conductor are close to the Γ point and can be reliably described by a parabolic band. We only
model the electron fluid and neglect the hole accumulation process. However, extending the
method by including a hole fluid is straightforward.

Before proceeding, it is essential to define what is the objective of solving the electrostatic
problem for a nanostructure. We are mainly interested in the electrostatic potential ϕ. This
enters the low-energy continuum model both as a component of the electrochemical landscape
and as a tuning parameter of the spin-orbit coupling. A secondary result is the local one-particle
density n(r). This can be used for other purposes, for example, as a parameter to generate a
low-dimensional effective Hamiltonian. For example, one can be interested in projecting a
3D Hamiltonian on a 2D subspace to model a 2DEG device. This could be done by taking the
weighted average of the parameters that enter the Hamiltonian. In any case, it is important
to note that the precise calculation of the excitations spectrum or transport properties is not
typically part of the electrostatic problem itself but is commonly resolved in later stages of the
simulation pipeline [74].

Schrödinger-Poisson formulation

In the SP formulation, the electron fluid in the heterostructure can be described by an electron
field ψ(r) that is the ground state of the Hamiltonian

H =
∫

drψ†(r)Hψ(r) (2.1)

where the quadratic Hamiltonian for a semiconductor with a simple band structure reads as

H=
[ℏ2

2
∇∇∇···m−1∇∇∇+ECBM −eϕ

]
(2.2)

where m(r) is the effective mass, ECBM(r) is the conduction band minimum of the material, e is
electron charge, and ϕ is the electrostatic potential. Here we have omitted spin-orbit fields for
simplicity, as they are expected to play a minor role, but they can be straightforwardly included.

The electrostatic field that enters the single-particle Hamiltonian is a solution of the Poisson
equation {

−∇∇∇···ε∇∇∇ϕ= ρfx +ρm

ϕ(∂Ωi ) =Vi i ∈G
(2.3)

where ε(r) is the materials permittivity, ρfx(r) is the fixed charge, and ρm(r) is the mobile charge.
Finally, the mobile charge is given by

ρm(r) =−e〈ψ†(r)ψ(r)〉 =∑
n
|ψn(r)|2 f (ωn/kB T ) (2.4)

where f is the Fermi-Dirac distribution, kB the Boltzmann constant, T is the temperature, and
(ψn ,ωn) are the single-particle eigenstates and eigenvalues of the quadratic Hamiltonian:

Hψn =ωnψn . (2.5)

In this way, the Schrödinger problem in Eq. (2.5) and the Poisson problem in Eq. (2.3) are
coupled together and must be solved self-consistently. Note that, in this case, the gauge
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2. ELECTROSTATIC LANDSCAPE AND SPIN-ORBIT COUPLING

invariance of the Schrödinger equation plays a complicated role as ECBM has an arbitrary offset
that has to be chosen consistently with the applied voltage to the gates, {Vi }.

The choice of boundary conditions is peculiar for metallic parts in contact with semicon-
ductors. These regions are part of the Schrödinger problem, the hybrid wavefunctions have
finite support in both the semiconductors and the metallic domains, but they are excluded
from the electrostatic problem as a Dirichlet boundary condition fixes the surface potential [74–
76].

For what concerns Poisson’s equation, we assume all metallic regions are described by
ideal metals, and therefore the potential is constant in these domains. When a voltage bias
Vi is applied to region ΩMi , a Dirichlet boundary condition can be used that takes the form
ϕ(∂ΩMi ) = δµi +Vi where δµi is a material-specific constant that models the Fermi energy
difference between the metal in the region ΩMi and the reference one. When ΩMi is a floating
island, the Neumann condition ∇∇∇⊥ϕ(∂ΩMi ) = 0 fixes the electric field to be normal to the
surface. Precise calibration of the band-offsets δi requires a careful comparison of numerical
simulations and experimental results [77].

The SP approach can be a computationally demanding task due to several numerical chal-
lenges. One of the main challenges is the diagonalization of a large matrix, which is required
for the Schrödinger part of the problem when the system is discretized using many degrees of
freedom. To address this, sparse methods, such as Arnoldi iteration, can be employed. These
methods have a time complexity of O(kN 2) for k eigenvalues of an N ×N matrix, compared
to O(N 3) for dense diagonalization. However, it is not always possible to accurately estimate
the number of eigenvectors required in the first iterations, and even with this optimization,
diagonalization remains a bottleneck for convergence. The second issue is in the nature of the
segregated approach used in SP problems.

A self-consistent problem in which two different fields, described by distinct partial differ-
ential equations, are interconnected can be solved using a monolithic approach, also known
as a fully-coupled method. This approach involves solving the partial differential equations
as a single system of equations rather than breaking them into separate subproblems. In
contrast, segregated (or partitioned) methods involve breaking the partial differential equations
into separate subproblems that are solved independently, with the solutions of one equation
being used as input for the other equation. The solution is found by iteratively solving one
problem while keeping the other field frozen until a convergence criterion is met. In general,
segregated/partitioned methods are simpler to implement but can be less accurate and may
experience severe convergence issues. On the other hand, fully-coupled methods can be more
accurate but also more computationally intensive.

Because of the nature of the Schrodinger problem, a straightforward monolithic approach
is not easily implementable. Instead, the solution can typically be found only through iter-
ative partitioned methods. The systems often operate in a low-density regime, making the
electron gas highly sensitive to changes in the electrostatic landscape. This results in a strongly
nonlinear problem that can cause severe convergence issues [78]. Additionally, the treatment
of metallic regions in contact with semiconductors can also present a challenge, as hybrid
wavefunctions have finite support in both regions but are excluded from the electrostatic
problem, potentially leading to inconsistencies in the solution. Despite these challenges, the
SP approach is a powerful method, but it requires significant computational resources and
careful implementation to achieve accurate and reliable results.
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Orbital-free methods

An alternative approach is one that follows more closely density functional theory. The key
result of density functional theory is the Hohenberg-Kohn theorem states that the energy, and
all other possible observable of a many-electron system, can be expressed as a functional of
the density alone [79]. This means that the ground-state density itself can be found as the
minimizer of the energy functional. In our case, we extend the energy functional to depend
explicitly also on the electrostatic potential ϕ. This is due to the fact that the electric field in
a device is not a solution of the free-space Poisson equation but is, instead, the solution of a
complicated problem defined in a composite domain with non-trivial boundary conditions.
It is worth noting that a functional theory that takes this form is not, strictly speaking, a
density functional theory, as the electric potential is explicitly included and cannot be easily
transformed into a functional of the electron density only. This is caused by metallic parts
like gates or floating metallic islands. These modify the boundary condition of the electric
potential equation such that the Poisson equation Green’s function becomes a complicated
object generally not expressible in an analytic form. Including explicitly the electric potential
circumvents this problem.

When treating a closed system like an atom or a molecule, the minimization problem is
characterized by the constraint on the number of electrons in the system. We do not have
such a constraint in our case. The total number of electrons is not fixed, but actually one of
the results we want to determine. Moreover, it can also take fractional values without causing
particular concern in most cases.

The energy functional we consider looks as follows

E [n,ϕ] = K [n]+V [n]+U [ϕ]+
∫
Ω

drρϕ , (2.6)

where K [n] is the kinetic energy functional of the electrons, V [n] is the potential energy of
the electron liquid, U [ϕ] is the electrostatic field energy, and the last term is the coupling
between the electrostatic field and the charge ρ = ρfx +ρm, which comprises the free electrons
charge ρm =−en and the fixed charge of the system ρfx. The computational domain Ω can be
split into three different types of regions: metals, insulators, and semiconductors such that
Ω=ΩM ∪ΩSm ∪ΩI.

The electrostatic field energy takes the standard form

U [ϕ] =
∫
Ω

drε

∥∥∇∇∇ϕ∥∥2

2
, (2.7)

where ε(r) is the permittivity, while the potential is

V [n] =
∫
ΩSm

dr [ECBMn +Vex(n)] , (2.8)

where ECBM(r) is the conduction band minimum of the semiconductor that acts as local chem-
ical potential. The exchange energy can be included within the local density approximation
through the Vex[n(r)] term, which we neglect as it gives minor contributions.

Finding precise kinetic energy functionals is the focus of much modern research [80–84].
There are two main approaches: the Köhn-Sham and the orbital-free methods.
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2. ELECTROSTATIC LANDSCAPE AND SPIN-ORBIT COUPLING

In the Köhn-Sham approach, a fictitious system of non-interacting particles is introduced
to evaluate the kinetic energy on the states of an auxiliary quadratic Hamiltonian [85]. This
method is similar to the SP approach described before and thus requires the diagonalization of
the Hamiltonian.

An alternative approach is represented by orbital-free methods that try to attack the prob-
lem by considering analytic expressions for the kinetic-energy functional that do not require
the diagonalization of a Hamiltonian. These methods can be substantially less computationally
demanding due to the fact that the solution algorithm is a simpler optimization problem.

Thomas-Fermi method

The simplest orbital-free method is the TF approximation. In this approximation, we assume
the system has a high density of states such that the local density is well approximated by the
expression for a free electron gas. The kinetic energy functional read as

K [n] =
∫
ΩSm

drCTF(r)n5/3(r) , (2.9)

where we defined the TF constant CTF(r) = (3π2)
2
3 ℏ2

2m(r)
3
5 .

In this case, solving the electrostatic problem is equivalent to solving a nonlinear Poisson
equation

−∇∇∇···ε∇∇∇ϕ= ρfx −
e

3π2

[
2m(ECBM −eϕ)

ℏ2

] 2
3

, . (2.10)

This functional is completely local, is exact for uniform systems, and holds as an approxi-
mation as long as the electron density is slowly varying in space. The validity of this assumption
for a specific system can be checked through the TF error:

RTF ≡ ∥∇∇∇n(r)∥
n(r)kF(r)

, (2.11)

where kF(r) = [3π2n(r)]1/3 is the Fermi wavelength. The TF approximation is valid in the limit
RTF ≪ 1 [79]. This condition is never satisfied at interfaces with vacuum or insulators where
the density goes abruptly to zero. Moreover, it has been demonstrated how the electron density
near the interface with a metallic gate is also poorly estimated [75]. Nevertheless, the TF
method is widely used in the community as the derived electrostatic potential is considered
precise enough for the modeling needs, with a computational cost that is a fraction of the SP
ones.

To understand the limitation of this method, we consider two simple but relevant geome-
tries for 2DEG devices: a nanowire and a circular dot. For the 2DEG, we choose a semiconduc-
tor stack similar to the ones used in many modern experiments, for instance, Refs. [86, 87].
Fig. 2.1(a) display the schematic of a cross-section of a 2DEG nanowire. Two Au gates serve
the purpose of depleting the areas next to the Al wire. The two Au gates and the Al wire are
separated by HfO2 dielectric. Fig. 2.1(b) shows the electron density in the system, simulated
using a top gate voltage of −3 V with respect to the grounded Al wire while in Fig. 2.1(c) we plot
the TF error as defined in Eq. (2.11). From this simulation, it is clear that the TF error does not
satisfy RTF ≪ 1, and thus the electron density is varying too quickly in space to justify the use
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of the TF approximation. This behavior is consistent when trying different top gate voltages.
In Figs. 2.1(d)-(f), we simulate a quantum dot on the same semiconductor stack. We apply a
voltage of −0.25 V to the outer gate and 0 V to the inner gate. In Fig. 2.1(e) and (f), we show,
respectively, the electron density in a plane located in the middle of the InAs layer and the TF
error that approaches 1 at the boundary to the depleted region.

Fig. 2.1: Electrostatic simulations of two example devices with the TF method. The first
row shows the sketches of a cross-section of a common 2DEG device (a) and a simple circular
quantum dot (d). In both cases, the devices are built on top of a semiconductor stack (schematic
given in Fig. 2.2) that provides the vertical confinement of electrons. The lateral confinement is
controlled by Au gates (yellow), HfO2 oxide (gray), and an Al wire (dark gray). (b) and (e) show
the electron density from a TF simulation. (e) is plotted in the middle of the InAs well. (c) and
(f) show RTF.

Extended TF method

A step beyond the TF approximation is represented by gradient expansions of the kinetic
energy functional in what is called extended Thomas-Fermi (ETF) method. By introducing
gradient terms in the kinetic energy functional, the ETF method incorporates corrections to the
electronic density due to quantum confinement while it preserves the scalability of a theory
that can be expressed as a functional minimization problem. A systematic way to obtain such
gradient expansion is through a semiclassical expansion of the free energy [88].

For testing purposes, we opted for the simplest model that goes beyond the homogeneous
electron gas case of the TF method by incorporating the so-called von Weizsäcker (vW) correc-
tion [84, 88–90]. This term captures the energy cost of rapid variation of the density in space.
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The kinetic energy functional reads as

K [n] =
∫
ΩSm

drCTF(r)n5/3(r)+λvW
ℏ2

8m

∥∇∇∇n(r)∥2

n(r)
, (2.12)

where λvW is called vW parameter and m is the effective mass.
To move from an optimization problem to a boundary value problem, we will use functional

minimization. It is convenient to define the matter field ψ = p
n before proceeding. Note

that ψ is a real field defined as the square root of the density. It cannot be interpreted as a
wavefunction as it does not carry information about the phases of the electrons. Therefore this
theory cannot describe long-range interference effects, but it just includes a local correction to
the electronic density due to quantum confinement effects. The functional derivative δE

δϕ = 0

returns the Poisson equation while δE
δψ = 0 returns a partial differential equation that has the

form of a nonlinear Schrödinger equation. The system of coupled partial differential equations
is then {−∇∇∇···ε∇∇∇ϕ= ρfx −eψ2 ,

−ℏ2

2 ∇∇∇···
(
λvW
m∗ ∇∇∇ψ

)
+ 5

3CTFψ
7/3 + [−eϕ+ECBM

]
ψ= 0.

(2.13)

In the literature, there has been much discussion on the value of the vW coefficient, λvW,
which works as a weight of the gradient-dependent vW term. In the limit λvW → 0, the TF
method is recovered. In Ref. [91], the response function of a uniform system of independent
fermions is investigated, and it is shown that λvW = 1 is valid in the limit of short-wavelength
perturbations, whereas λvW = 1/9 is valid in the limit of long-wavelength perturbations. Other
analysis pointed to the value of λvW = 1/5 as the most adequate [92]. In the following, we will
treat λvW as a parameter of the model and empirically select a value in the [0,1] interval that
agrees with SP simulations in simple geometries.

We start with the problem of determining the optimal value of λvW for the use case of na-
noelectronic devices. We considered a 2D translational invariant metal-oxide-semiconductor
device composed of a semiconductor heterostructure quantum well, an insulator layer, and
a metallic top-gate as shown in Fig. 2.2(a). We study the electrostatic problem with the TF
and ETF method with various λvW and compare the results with a simulation done with the
self-consistent SP method. The density per unit area is shown in Fig. 2.2(b).

To assess quantitatively the optimal value for the vW parameter, we introduce two metrics:
the absolute difference of the density per unit area

δN ≡ |NvW −NSP|
NSP

, (2.14)

where N = ∫
n dx is the total number of electrons per unit area, and the quantity

(δn)2 ≡
∫

(nSP −nvW)2 dx , (2.15)

that takes into account the difference in the shape of the density profile. The results are shown
in Fig. 2.2 (c). In general, we find that low values of λvW in the interval [0.05,0.2] provide the
best agreement with SP results. We then decided to elect λvW = 1/9 as the standard parameter
because of the theoretical works also backing this choice [91].
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Fig. 2.2: Calibration of the λvW parameter. (a) shows a schematic of the simulated semicon-
ductor stack inspired by the one used in [93] (not to scale). An Au gate (yellow) is separated
from the four semiconducting layers by a layer of oxide (gray). (b) shows the results of TF, ETF
(with various λvW), and SP simulations. (c) shows a comparison of different values of λvW,
using the two metrics defined in Eqs. (2.14) and (2.15). For all simulations the built-in bias at
the interface is 0.1 V.

Next, we simulated a quantum dot shown in Fig. 2.3 to test the ETF method for a compli-
cated realistic 3D device. As a benchmark, we use the TF and the Schrödinger-Thomas-Fermi
(STF) methods. By STF, we indicate the method for which the electrostatic field is calculated
with the TF method, but then it is used as an input for a single Schrödinger step to calculate
the single-particle state. STF is the most common approach in the field of hybrid devices.
Here we fix the outer gate to −0.35 V and consider the number of electrons in the dot as a
function of the inner gate voltage. The results can be seen in Fig. 2.3(c). Note that the device
under consideration does not show a dot-like behavior as the charge increases almost linearly
with the gate voltage, as expected for a 2D system. This suggests that the lateral confinement
induced by the gate system is not able to strongly confine the electrons in this case.

We see that all the methods predict depletion in the semiconducting stack at ∼ −0.35V
(the STF method predicts depletion until ∼−0.2V), and as the inner gate voltage is increased,
electrons start to accumulate in the stack. Of the three methods, the TF method generally
predicts the largest number of electrons, while the STF method predicts the lowest. The ETF
results are intermediate between the two. Even though the ETF and STF methods do not
overlap for all voltages, the two methods seem to have great compliance in the moderate filling
regime.

One important difference between the TF and ETF methods is that the TF method predicts
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a steep jump in the differential capacitance C (V ) = ∂Q/∂V as the voltage increases. This
happens as electrons at particular voltages, corresponding to the conduction band minimum
of the layers, start accumulating in a previously classically forbidden region. The ETF method,
by allowing exponentially suppressed tails in the classically forbidden layers, prevents this
from happening and is thus less prone than the TF method to show unphysical behavior. In
the setup considered here, we can thus conclude that the ETF method is superior to the TF
method for simulating the number of electrons and calculating elements of the capacitance
matrix.

Fig. 2.3: Electrostatic simulation of a quantum dot. (a) shows the semiconducting stack (not
to scale), (b) shows the simulated geometry, and (c) shows how electrons accumulate in the
semiconducting stack as the inner gate voltage is increased.

The material properties used in this research work, including the band offset between semi-
conductors used to evaluate the conduction band minimum ECBM, are shown in Tab. 2.1. In
the results presented in this section, we have not considered the case of metal-semiconductor
interfaces. The treatment of these interfaces in the context of the ETF method is not easy
because of the huge difference in the density of electrons in the two classes of materials. An
attempt to analyze the issue of such boundary conditions can be found in Appendix B.

ε/ε0 meff/me ECBM [eV]

In0.75Ga0.25As 14.76 0.035 0.00 (ref)
InAs 15.15 0.026 -0.205

In0.85Al0.15As 14.39 0.038 0.079
In0.82Al0.18As 14.23 0.041 0.136
In0.81Al0.19As 14.18 0.042 0.155

HfO2 25.00 1.000 4.793

Table 2.1: Material parameters used in the simulations. For simulations using In0.75Ga0.25As
as the upper barrier we have δµi = 0eV, while for simulations using In0.85Al0.15As we have
δµi =−0.1113eV. The numerical values are taken from Refs. [74, 94–96].

To summarize, we investigated orbital-free methods for the solution of the electrostatic
problem for nanoelectronic devices. We checked that the widespread Thomas-Fermi method,
regarded as the simplest orbital-free method, is often applied outside its range of validity. The
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most notable case of the approximation breakdown occurs at the interfaces with classically
forbidden regions, like insulators, where the density of electrons has abrupt jumps.

To achieve a more accurate description of the density profile in these cases, we considered
the extended Thomas-Fermi (ETF) method that includes the von Weizsäcker correction of the
kinetic energy functional. This correction can significantly increase the precision of the density
profile near interfaces.

We addressed the question of the optimal value of the λvW parameter by studying a simple
2DEG system and found that the theoretically motivated value of λvW = 1/9 provides a good
agreement also in the practical example cases considered. By applying the method to the
simulation of realistic device geometries, we found that the ETF method provides density
profiles closer to the ones calculated with the Schrödinger-Poisson method than the density
profile provided by the TF method.

SP methods can be computationally expensive as they require explicit diagonalization of
the Hamiltonian, whereas the predictive power of the TF method is poor due to the perfect local
behavior of the energy functional. Therefore, the ETF method represents a good compromise
in terms of computational speed and predictive power. orbital-free methods are an often
neglected alternative for electrostatic simulations of nanoelectronic devices, which are useful
to handle large systems since the problem can be nicely expressed in variational form and
implemented on any finite element solver. The effect of finite-temperature and spin-orbit
coupling can be straightforwardly included in the method [97, 98].

2.2 Spin-orbit coupling

A proper description of the spin-orbit interaction is crucial to predict the properties of a semi-
conductor heterostructure when proximitized by a superconductor, in particular in relation to
the robustness of the topological phase. This section will give a brief account of the simplified
models of spin-orbit coupling used in the field.

In general, spin-orbit coupling arises in the presence of a broken spatial inversion asymme-
try. The cause of such symmetry breaking can be the lack of inversion symmetry in the crystal
lattice; in this case, we refer to a bulk inversion asymmetry (BIA), In this case of structural
inversion asymmetry (SIA), the absence is due to the geometry of the device.

The zincblende and wurtzite crystal systems are the most common for the III-V semi-
conductor compounds used in hybrid heterostructures as they are easy to grow and possess
the smaller lattice mismatch with the commonly used superconductors [99]. For InAs, the
zinc-blende corresponds to the (111) growth direction, while the wurtzite is found with the
(0001) growth direction.

A proper description of the spin-orbit coupling in semiconductor devices requires the
use of extended Kane models with up to 14 bands for zincblende crystals and eight bands for
wurtzite ones [100]. Nevertheless, a simplified description involving only the conduction band
is enough for many analyses.

This thesis considers III-V semiconductors that feature a direct bandgap around the Γ
point in the Brillouin zone. Under the assumptions of low temperature and density, we can
take a parabolic approximation and write an effective Hamiltonian that reads as

H= ℏ2k2

2m
+B(k) ·σ , (2.16)
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2. ELECTROSTATIC LANDSCAPE AND SPIN-ORBIT COUPLING

Fig. 2.4: Band structure of a III-V semiconductor. Sketch of the bandstructure and spin-orbit
coupling parameters for a zincblende (a) and wurtzite (b) crystal of III-V semiconductors.

where m is the effective mass, k is the crystal momentum, and the second term is the spin-orbit
coupling. This is represented by the effective magnetic field B(k), which is an odd function in
k to satisfy time-reversal symmetry.

Using a third-order perturbation theory, it is possible to write the Rashba spin-orbit cou-
pling as

B(k) = αR(r)×××k−k×××αR(r)

2
, (2.17)

where we defined the Rashba field

αR(r) = r 6c6c
41 ∇∇∇ϕ(r) (2.18)

that is proportional to the electric field ∇∇∇ϕ, and the symmetrized product is used to guarantee
the Herminicity of the Hamiltonian. The proportionality constant is given by

r 6c6c
41 = eP 2

3

[
1

E 2
0

− 1

(E0 +∆0)2

]
+ eP ′2

3

[
1

(E0 −E ′
0)2 − 1

(E0 −E ′
0 +∆0)2

]
, (2.19)

where E0 is the valence to the conduction band gap,∆0 is the split-off gap in the semiconductor,
P and P ′ are the coupling element (conduction to valence band coupling) corrected to take
into account the material and crystal properties of the electron gas [100]. These coupling
elements are sketched in Fig. 2.4.

A conduction-band model for the BIA-induced spin-orbit coupling in zincblende structures
has been proposed by Dresselhaus [101] and takes the form

B(k) = γZB

kx (k2
y −k2

z )
ky (k2

z −k2
x )

kz (k2
x −k2

y )

 , (2.20)

where γZB is the spin-orbit coupling parameter.
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2.2. Spin-orbit coupling

III-V wurtzite crystals, instead, have an anisotropic band structure near the Γ point, so
there is a need for two parameters for the effective mass tensor. The low-energy effective
Hamiltonian can be written as

H= ℏ2

2m0

[
1

m⊥

(
k2

x +k2
y

)
+ 1

m∥
k2

z

]
+B ·σ . (2.21)

The functional form of the spin-orbit field of the conduction electrons in bulk wurtzite III-V
semiconductor is [102]

B(k) =
[
αWZ +γWZ

(
bk2

z −k2
x −k2

y

)](
ky ,−kx ,0

)
. (2.22)

The Dresselhaus term is cubic and mixes different directions. For this reason, it gives
considerable contributions to the Hamiltonian in quantum-confined nanostructures. In
zincblende InAs, the Dresselhaus effect is usually negligible, while it can play an important
role for the wurtzite crystal.

Spin-orbit coupling in quantum confined system

Before concluding this brief introduction of the spin-orbit coupling terms, we outline the main
effects in quantum-confined structures. In this work, we only consider the linear terms in k in
the Hamiltonian of Eq. (2.16), as they are the dominant ones at low densities.

To discuss the effects in 2DEGs, we now briefly introduce a minimal model, and later
we discuss the possible origin of such spin-orbit coupling terms. Under the assumptions of
low temperature and density, we can use a parabolic approximation and write an effective
Hamiltonian that reads as

H= ℏ2k2

2m
+B(k) ·σ (2.23)

where m is the effective mass, k = (kx ,ky ) and the second term is the spin-orbit coupling.
If we consider only linear terms in the momentum, we can express the spin-orbit coupling

as

B(k) ·σ=
(
βw +βd αd −αR

αd +αR βw −βd

)(
kx

ky

)
(2.24)

where we defined αR is a Rashba-type spin-orbit coupling, αd and βd are Dresselhaus-like
spin-orbit couplings, and finallyβw is a Weyl-type spin-orbit coupling [103]. The spin texture in
momentum space for a 2DEG with a spin-orbit coupling term of the various types is displayed
in Fig. 2.5. In most common materials, αd and βw are usually negligible.

The Rashba term has the same form as presented in the previous section since it is a SIA
effect commonly found at 2D interfaces. At these interfaces, a surface dipole generates a strong
electric field directed out of the surface. To obtain the linearized form of the Dresselhaous
term, first-order perturbation theory can be applied to Eq. (2.20). For an electron gas confined
in the z direction, the result is

B(k) = γZB

kx [k2
y −〈k2

z 〉]
ky [〈k2

z 〉−k2
x ]

0

=β(−kxσx +kyσy
)+o(k3) (2.25)
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2. ELECTROSTATIC LANDSCAPE AND SPIN-ORBIT COUPLING

Fig. 2.5: Spin textures in 2DEG with different types of spin-orbit coupling. The picture
sketches the spin texture of a 2DEG in momentum space caused by the presence of a Rashba
spin-orbit coupling term (a), a Weyl term (b), a Dresselhaus (c), and a Dresselhaus’ (d). This
nomenclature is taken by Ref. [103]

with β= γZB〈k2
z 〉.

By applying the same procedure to a quasi-1D structure, confined also in the y direction,
we obtain the linear Dresselhaus term

B(k) =βkxσx , β= γZB
[
〈k2

y 〉−〈k2
z 〉

]
. (2.26)

The first-order approximation scheme we introduced treats spin-orbit coupling as a per-
turbation on top of the mode quantization induced by the geometry of the device. These can
substantially modify the picture, in particular for the outer zone of the Brillouin zone. More-
over, we only mentioned the conduction band arbitrarily, ignoring some inter and intra-band
coupling. These can quantitatively change the picture [104, 105].
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Transport in hybrid structures

This chapter is an adaptation of A. Maiani, M. Geier, and K. Flensberg. “Conductance matrix symmetries

of multiterminal semiconductor-superconductor devices”. In: Physical Review B 106.10 (Sept. 2022),

p. 104516. DOI: 10.1103/physrevb.106.104516.
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3. TRANSPORT IN HYBRID STRUCTURES

In the previous chapters, we outlined the theoretical description of hybrid heterostructures
physics. Now, we will establish the connection with the simplest type of experiments that
can be conducted with these devices, namely transport measurements and, more specifically,
tunneling spectroscopy.

Tunneling spectroscopy is a powerful tool for studying superconductor-semiconductor
hybrid devices as it provides a clear signature for Andreev bound states (ABS). Nonlocal con-
ductance spectroscopy is the natural extension of local two-probe spectroscopy and overcomes
some of its limitations. Initially used in the context of the search for signatures of Cooper-pair
splitting [106–110], this type of measurement has been recently considered in the context of
topological superconductivity (TS) [111–113] leading to its use in experiments [114, 115], its
inclusion in identification protocols for Majorana bound states (MBSs) in nanowires [116] and
unconventional superconductors vortex cores [117], as well as for the characterization of chiral
Majorana edge states in two-dimensional (2D) TS [118] and the helical gap in two-dimensional
electron gases (2DEGs) [119]. Moreover, the same concept appears in experiments involving
quantum dots to probe the non-equilibrium dynamics of quasiparticles [109, 110].

When an electron current flows across the device, aside from the electric charge current,
energy and heat currents flow too. For this reason, the spectral features of the device, including
peaks connected to the onset of the topological phase, can also be identified when analyz-
ing the thermal conductance [120, 121]. Nevertheless, measurements of thermal transport
require a very complex and delicate experimental setup. Easier experiments are the ones
that study thermoelectric transport, where the system is driven out of equilibrium by using
leads thermalized at different temperatures while the measured output is still a charge current.
Thermoelectric measurements have been proposed as an additional tool to investigate subgap
features and identify MBSs [122].

Motivated by recent experimental success in measuring multiterminal electric differential
conductance [86, 87, 93, 107, 110, 114, 115, 123–125] and the need to characterize hybrid
superconductor-semiconductor devices, we here extend the theory of multiterminal tunneling
spectroscopy to extract additional information on the electronic and Andreev transmission pro-
cesses from linear combinations of local and nonlocal differential conductance measurements
at different bias voltage or magnetic fields. These linear combinations are derived using condi-
tions that follow from quasiparticle-number conservation, microreversibility, and particle-hole
conjugation in the presence of superconductivity. Further relations can be derived in the
presence of geometrical symmetries, such as mirror symmetry, or less general Hamiltonian
symmetries, like additional antiunitary symmetries.

For the specific case of a semiconductor nanowire proximity coupled to an s-wave super-
conductor, we show that the resulting symmetry relations of the conductance matrix can be
used to identify the relative strength of Rashba versus Dresselhaus spin-orbit coupling (SOC).
We furthermore show that these symmetry relations can be employed to identify signatures
of deviations from the assumed symmetries, in particular, voltage bias-dependent electric
potential landscapes and quasiparticle dissipation into environmental baths.

To achieve this objective, we discuss an extended version of the Landauer-Büttiker theory
that accounts for bias-voltage-dependent electric potentials. These results are compared to
the linear Landauer-Büttiker theory, where it is assumed that the potential landscape, in which
the scattering occurs, does not depend on the bias voltages. We refer to this assumption as the
constant landscape approximation (CLA).

Extensions of the CLA theory for both nonlinear electric conductance [126, 127] and ther-
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3.1. Scattering transport theory

moelectric conductance [128–130] have been considered before. Several previous works fo-
cused on the quadratic correction (in voltage bias) to differential conductance obtained by
the method of characteristic potential, e.g. [127, 129, 131–134], that in practical applications
relies on Thomas-Fermi approximation [134, 135]. This method is more suited for mesoscopic
metallic devices with a high density of states, in which the finite-size effects can be neglected.

In the case of superconductor-semiconductor nanoelectronic devices, instead, the electro-
static potential can be a complicated function of the gate voltage that in general requires the
solution of the complete Schrödinger-Poisson problem [P3, 75, 78, 136–139]. An initial charac-
terization of finite-bias effects in the fully nonlinear regime was obtained by a combination of
approximate analytic and numerical methods in Ref. [140].

In Sec. 3.1, we describe the general theory of nonlinear charge transport in multiterminal
hybrid devices and the difference with CLA results. In Sec. 3.2, we show how fundamental
symmetries such as microreversibility and particle-hole conjugation in the S matrix generate
conductance symmetries valid in CLA and how to use these to extract additional information
on the transmission processes from the differential conductance matrix. As an example
application, in Sec. 3.3 we demonstrate how these symmetries can be exploited to identify the
spin-orbit direction in a semiconductor nanowire proximitized by a superconductor. Finally, in
Sec. 3.4, with simple numerical simulations we show the effect of finite-bias deformation of the
electrostatic potential and dissipation and discuss how violation of conductance symmetry can
be used to distinguish between the two. We also illustrate an example of spin-orbit coupling
characterization, and discuss how thermoelectric differential conductance can be used as a
probe to avoid the finite-bias effect.

Fig. 3.1: Examples of multiterminal hybrid devices (a) double-dot Josephson junction, and
(b) a spin-orbit coupled semiconductor nanowire (blue) proximitized by an s-wave supercon-
ductor (gray). The metallic contacts are depicted in yellow. All the superconductive leads are
grounded.

3.1 Scattering transport theory

The Landauer-Büttiker formalism is a simple yet powerful technique to model transport
phenomena. While usually employed in CLA, the nonlinear version can be constructed easily
while paying attention to preserving the gauge invariance of the theory [127].
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3. TRANSPORT IN HYBRID STRUCTURES

When the motion of quasiparticles is a coherent process and the interactions between
quasiparticles beyond mean-field theory can be neglected, quasiparticle transport phenomena
in a device are completely described by the single-particle scattering matrix S that relates
the probability amplitude of the incoming and outgoing quasiparticles in the leads. More
specifically, the relation between the average currents and biases of a multiterminal device
depends only on the transmission probability defined as

T γδ

αβ
(ε;P ) ≡ tr

∣∣∣Sγδ
αβ

(ε;P )
∣∣∣2

, (3.1)

where Sγδ
αβ

is the subblock of the scattering matrix that connects the channel of the incoming

particles of type δ from lead β to the channel of outgoing particles of type γ in leadα for scatter-
ing events at energy ε. Since the device we are describing is a superconductor-semiconductor
hybrid, the transmission matrix features a Nambu structure with particle and hole sectors,
δ,γ ∈ {e,h}. The transmission probabilities depend on the set of electric potentials applied to
all the electrodes in the system {Vη} and other external parameters like the applied magnetic
field B and the pairing amplitude of superconductive leads {∆ν}. We denote the set of external
parameters by P = {

Vη
}∪ {∆ν}∪ {B}. In principle also the temperature of the leads can enter

as a parameter of the system. For example, temperature could affect the size of the super-
conductive gap or induce charge accumulation in the semiconductor. We will neglect these
effects as we are assuming that the temperature differences involved are much smaller than
the critical temperature of the superconductor and are too small to induce a relevant change in
the electrostatic potential landscape. Indeed, while voltage bias enters directly into the Poisson
equation as boundary conditions, the temperature can enter the electrostatic problem only
through charge accumulation.

A generic multiterminal system comprises a number of normal and superconductive
terminals, suggesting a division of the S matrix into subblocks as follows:

S =
(
SN N SN S

SSN SSS

)
. (3.2)

In this paper, we will consider the simplest case in which all the superconductive terminals are
grounded together and we denote the voltage of the common superconductive lead as VS .

If the system conserves the quasiparticle number, the S matrix is unitary and it follows that

Ree
α +Rhe

α + ∑
β ̸=α

(
T ee
βα+T he

βα

)
= N e

α(ε) , (3.3)

Ree
α +Reh

α + ∑
β ̸=α

(
T ee
αβ+T eh

αβ

)
= N e

α(ε) , (3.4)

where we defined for clarity the reflection matrix Rγδ
α ≡ T γδ

αα while N e
α(ε) is the number of

eigenmodes for electrons in lead α. Note that, unless the density in the lead is so low to break
particle-hole symmetry, Nα(ε) ≡ N e

α(ε) = N h
α (ε). Equation (3.3) represents the conservation of

incoming quasiparticles from leadαwhile Eq. (3.4) is the same for outgoing quasiparticles. The
conservation law breaks down when dissipation effects are included as they do not preserve
the particle number. When restricted to energies below the smallest parent superconductor
gap ε< min{|∆ν|}, the matrices SSS (ε), SSN (ε), SN S (ε) are null and therefore a stronger relation
holds where the sum over β is restricted to the non-superconductive leads.
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3.1. Scattering transport theory

As mentioned above, in the superconductive version of the Landauer-Büttiker theory quasi-
particle conservation takes the place of electron conservation for conventional devices. This
implies that the electric charge is not explicitly conserved. Indeed, we can distinguish between
the charge-conserving normal processes T ee

αβ
, and T hh

αβ
, and the non-charge-conserving An-

dreev processes T eh
αβ

, and T he
αβ

. The last two imply, respectively, the creation and the destruction

of one Cooper pair in the superconductive leads.
A correct theory of nonlinear conductance of a multiterminal device needs to be gauge

invariant. This means that the transmission probabilities are not changed by the addition of a
constant offset to all the voltages and particle energy:

T γδ

αβ
(ε+∆E ; {Vη+∆E }) = T γδ

αβ
(ε; {Vη}) (3.5)

The easiest way to guarantee gauge invariance is to define a reference voltage. We define
the superconductor lead to be our reference voltage and set VS = 0. The first argument of
the transmission function is then the energy of the scattering particle with respect to the
superconductive lead chemical potential ε= Ep + eVS . The parameters VαS and VβS are the
bias of the leads with respect to VS . These biases, together with the voltage biases applied to
the capacitively coupled gates, determine the electrostatic potential landscape in which the
scattering events take place. Therefore, they enter here as parameters of the S matrix as well as
the transmission probability matrix.

Currents

The nonlinear Landauer-Büttiker approach consists in first solving the electrostatic problem
for the potential landscape given the applied biases. With the calculated potential landscape,
the S matrix for the scattering processes can be evaluated. Finally, once the static scattering
problem has been solved, from the S matrix all the transport properties of the system can be
derived. In particular, we can use the transmission functions to determine the average currents
in the nonequilibrium steady state. In this last step, the terminal biases VαS appear again also
as parameters of the distribution functions of the leads. The application of this approach for
superconductive systems has been derived on several occasions [141–145], and in the most
general formulation the average electric current through a lead α is then

I q
α(P ) =+ e

h

∫ +∞

−∞
dε

[
f (ε−eVαS ,θα)− f (ε,θS )

]
×

[
Nα−Ree

α (ε;P )+Rhe
α (ε;P )

]
− ∑
β ̸=α

e

h

∫ +∞

−∞
dε

[
f (ε−eVβS ,θβ)− f (ε,θS )

]
×

[
T ee
αβ(ε;P )−T he

αβ(ε;P )
]

,

(3.6)

where f (ε,θ) = (
1+eε/kBθ

)−1
is the Fermi-Dirac distribution, and the parameters {θη} are the

temperatures of the leads. We assumed for simplicity that the temperature of all the supercon-
ductive leads is equal to θS . A similar expression can be written for the energy current I εα while
the heat current I h

α = I εα+eVαS I q
α follows easily from the first law of thermodynamics [130].
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We can write, for the I q and I h vectors of currents, the following differential relation with
the voltages V and temperatures θ vectors [129, 132, 146]:(

dI q
α

dI h
α

)
=

(
Gαβ Lαβ
Mαβ Nαβ

)(
dVβ
dθβ

)
(3.7)

where G is the differential electric conductance, N is the differential thermal conductance,
while L is the thermoelectric and M is the electrothermal differential conductance.

An important observation about the charge current is that it does not satisfy Kirchhoff’s
current law. This is because the expression derived describes only the quasiparticle current
while the supercurrent is not captured in this formalism. By imposing charge conservation, the
net supercurrent flowing into the device is I s =−∑

α I q
α . The net supercurrent can be evaluated

as

I s =−2e

h

∑
αβ

∫ +∞

−∞
dε

[
f (ε−eVβS ,θβ)− f (ε,θS )

]
×

[
Rhe
β (ε;P )+T he

αβ(ε;P )
]

.

(3.8)

In the case of a single superconductive lead, this is equal to the supercurrent flowing into
the device. In the case of multiple superconductive leads, instead, the supercurrent divides
between the different superconductive leads.

Constant landscape approximation

In the CLA, the change in the potential landscape when a voltage bias is applied is neglected.
We denote this by writing that P = P0 where P0 is the set of parameters at equilibrium. In this
case, the CLA result for electrical conductance is

Gαα =G0

∫ +∞

−∞
dε

[−∂ε f (ε−eVαS ,θα)
]

×
[

Nα−Ree
α (ε;P = P0)+Rhe

α (ε;P = P0)
]

,
(3.9)

for local differential conductance, while for the nonlocal differential conductance we have

Gαβ =−G0

∫ +∞

−∞
dε

[−∂ε f (ε−eVβS ,θβ)
]

×
[

T ee
αβ(ε;P = P0)−T he

αβ(ε;P = P0)
]

,
(3.10)

where G0 = e2

h is the conductance quantum and ∂ε f (ε,θ) =− 1
2kBθ

1
1+cosh(ε/kBθ) .

A similar expression can be obtained for thermoelectric conductance. The local and
nonlocal thermoelectric conductance reads as

Lαα =+L0

∫ +∞

−∞
dε k−1

B ∂θ f (ε−eVαS ,θα)

×
[

Nα−Ree
α (ε;P = P0)+Rhe

α (ε;P = P0)
] (3.11)
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and

Lαβ =−L0

∫ +∞

−∞
dε k−1

B ∂θ f (ε−eVβS ,θβ)

×
[

T ee
αβ(ε;P = P0)−T he

αβ(ε;P = P0)
]

,
(3.12)

where L0 = ekB
h is the thermoelectric conductance quantum and we used the derivative of the

distribution function with respect to temperature, that is k−1
B ∂θ f (ε,θ) =− ε

kBθ
∂ε f (ε,θ). Note

that since ∂ε f is an odd function of the energy, thermoelectric conductance is sensitive only to
the antisymmetric component of the transmission spectrum of the device.

Differential conductance in the nonlinear theory

In principle, the average current given by Eq. (3.6) is exact for a non-interacting system if the
potential landscape is calculated self-consistently from the set of parameters P . We do not
attempt such a calculation here, since the devices treated often have a complicated three-
dimensional geometry that cannot easily be reduced to a simple one-dimensional model when
taking the electrostatic environment into account. Instead, in this section, we focus on general
considerations, while in Sec. 3.4 we parametrize a potential landscape in a physically motivated
way and look at differences with CLA results.

Evaluating the full derivatives of the charge current I q with respect to a terminal voltage
bias we find that the electric differential conductance can be split into two parts

Gαβ(
{
Vη

}
) = dI q

α

dVβS
=G (m)

αβ
+G (def)

αβ
(3.13)

where the first term is the marginal contribution that reads as, i.e. for the local conductance,

G (m)
αα =+G0

∫ +∞

−∞
dε

[−∂ε f (ε−eVαS ,θα)
][

Nα−Ree
α (ε;P )+Rhe

α (ε;P )
]

. (3.14)

This term can be interpreted as the fact that when evaluating the additional current carried by
higher-energy states, the S matrix has to be calculated using the potential landscape that takes
into account the modified voltage bias. The second term accounts for the deformation of the S
matrix for the already filled channels due to the effect of the biasing itself. The deformation
contribution reads as

G (def)
αβ

=G0

∫ +∞

−∞
dε

[
f (ε−eVαS ,θα)− f (ε,θS )

][−∂Ree
α (ε;P )

∂VβS
+ ∂Rhe

α (ε;P )

∂VβS

]

+G0

∫ +∞

−∞
dε

[
f (ε−eVβS ,θβ)− f (ε,θS )

][−∂T ee
αβ

(ε;P )

∂VβS
+
∂T he

αβ
(ε;P )

∂VβS

]
.

(3.15)

This correction is often neglected in previous works, e.g. Ref. [127]. The reason is that in the
case of symmetric biasing Vα = Vβ = V and fixed temperature θα = θβ = θS , we can rewrite
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G (def)
αβ

as

G (def)
αβ

(V ) =−G0

∫ +∞

−∞
dε

[
f (ε−eV ,θS )− f (ε,θS )

] ∂

∂Vβ

×
[

Nα(ε)−Reh
α (ε;P )−Rhe

α (ε;P )−∑
β′

(T eh
αβ′ (ε;P )+T he

αβ′ (ε;P ))

]
.

(3.16)

Since Nα does not depend on the bias (it is a property of the leads) and all the other terms
in the brackets are probabilities of Andreev’s processes, it is clear that this quantity vanishes
for non-superconductive devices. However, this contribution shows an interesting interplay
between electrostatic behavior and superconductivity.

For example, let us consider a simple N-S junction. The differential conductance can be
written as

Gαα =+2G0

∫ +∞

−∞
dε

[−∂ε f (ε−eVαS ,θα)
]
Rhe
α (ε;P )

+2G0

∫ +∞

−∞
dε

[
f (ε−eVαS ,θα)− f (ε,θS )

]∂Rhe
α (ε;P )

∂VαS
.

(3.17)

It is evident that in case
∂Rhe

α (ε;P )
∂VαS

> 0 the second term in the sum can overcome the first one,
which is always positive, resulting in negative local differential conductance. A simple case of
this can be when the coupling of the scattering region with the superconductor decreases with
the bias [140, 147].

3.2 Conductance symmetries

In this section, we consider how the symmetries of the system manifest themselves first as
symmetries of the S matrix and, consequently, in the differential conductance matrix. We
consider the ideal CLA case and, for this reason, we drop the biases as arguments in the S
matrix.

We choose the Nambu basis of time-reversed holes,

ΨT = (ψ,T ψ)T =
(
ψ↑ ψ↓ −ψ†

↓ ψ†
↑
)T

(3.18)

where we have chosen for the time-reversal symmetry T =−iσyK, where K is the complex-
conjugation operator, and therefore for the particle-hole symmetry P = iτyT .

In the following analysis, we consider symmetric and antisymmetric linear combinations
of the conductance matrix elements at opposite voltage bias and magnetic field. We have
investigated all linear combinations. However, in the following, we only present the interesting
cases in which the linear combination leads to a reduction in the number of terms.

Particle-hole symmetry

If the system features particle-hole symmetry (PHS), the energy-resolved scattering matrix
satisfies the following relation

S(ε) =PS(−ε)P† =σyτy S∗(−ε)σyτy . (3.19)
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3.2. Conductance symmetries

This poses an additional constraint on Andreev transmission probabilities that read as

T γδ

αβ
(+ε) = T γ̄δ̄

αβ
(−ε) , (3.20)

where the overbar indicates that the index should be flipped e ↔ h.
This property of the transmission probabilities has a number of consequences on differen-

tial conductance. For example, in a system with a single normal terminal (e.g., an NS junction),
or for a terminal that is completely isolated from others such that there are no propagating
channels (normal or Andreev) connecting it to other leads, the reflection coefficients have to
be energy symmetric below the gap. As a consequence, the conductance has to be a symmetric
function of the voltage for ideal devices. For the same reason, in these cases the thermoelectric
conductance is always exponentially suppressed for temperatures much smaller than the
superconducting gap.

Dissipation, inelastic scattering, and coupling to other leads are known effects that break
this symmetry of the transmission matrix [148–150] while finite-bias effects can lead to the
break-down of the symmetry at conductance-matrix level [140, 151].

A generalization of this conductance-matrix symmetry for the multiterminal case can be
obtained by considering the quantity

Gsum
α (V ) ≡Gαα(V )+ ∑

β ̸=α
Gαβ(V ) , (3.21)

that is the sum of the local conductance at terminalα and the nonlocal conductances obtained
measuring the current atαwhile applying a voltage bias to all the other normal leads. It follows
that, as a consequence of Eq. (3.20),

Gsum
α (V ) =G0

∫ +∞

−∞
dε

[−∂ε f (ε−eV )
]
Hα(ε) , (3.22)

where we defined the quantity

Hα(ε) = Rhe
α (+ε)+Rhe

α (−ε)+ ∑
β ̸=α

[
T he
αβ(+ε)+T he

αβ(−ε)
]

+∑
ν

[
T ee
αν(+ε)+T eh

αν (+ε)
]

.
(3.23)

The first two terms in Hα(ε) are explicitly symmetric in ε, while the last sum is null for
ε< min |∆ν|. Therefore, as a consequence,

Gsa
α (V ) ≡Gsum

α (V )−Gsum
α (−V ) = 0. (3.24)

This relation is a generalization of the three-terminal case derived in Ref. [113]. This result has
been derived for non-interacting systems in CLA, therefore, any deviation from zero in Gsa can
be used as a tool to inspect deviations from the CLA and the contributions of quasiparticle
dissipation or Coulomb repulsion between quasiparticles. We will discuss these effects in
Sec. 3.4.
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3. TRANSPORT IN HYBRID STRUCTURES

We can split the local and nonlocal differential conductance into symmetric and antisym-
metric components

Gsym
αβ

(V ) ≡ Gαβ(V )+Gαβ(−V )

2
, (3.25)

Ganti
αβ (V ) ≡ Gαβ(V )−Gαβ(−V )

2
. (3.26)

It has been shown that one can extract the BCS charge, i.e. 〈τz〉, of each ABS from the antisym-
metric combination Ganti

αβ
(V ), given the ABSs are sufficiently separated in the spectrum [113].

A similar relation can be derived for thermoelectric differential conductance. Indeed, under
the same conditions, we can define

Lsum
α (θ) ≡ Lαα+

∑
β ̸=α

Lαβ = L0

∫ +∞

−∞
dεk−1

B ∂θ f (ε,θ)Hα(ε) . (3.27)

Since Hα(ε) is an even function of ε while ∂θ f (ε) is an odd function, we have that Lsum ≃ 0
for kBθ≪ min∆ν. This holds, again, for non-interacting systems but only for temperatures
low enough to exclude excitations of states above the parent gap. Since the thermoelectric
conductance is connected to the antisymmetric part of the transmission spectrum, its sign at
low temperature can be linked to the BCS charge 〈τz〉 of ABSs, following a similar argument as
for Ganti as presented in Ref. [113].

In the presence of dissipation, the previous transport symmetries do not hold. Here by
dissipation, we mean the presence of a reservoir at the Fermi level that induces quasiparticle
leakage. This can be due to various reasons, such as the presence of subgap states in the
superconductor causing a softening of the gap or some other leakage mechanism that connects
the scattering region to the common ground. A simple way to model quasiparticle leakage is by
considering a fictitious lead β′ that is excluded when taking the calculation of Gsum

α . Focusing
on energies below the gap, one finds that the antisymmetric part does not vanish but equals to

Gsa
α (V ) =G0

∫ +∞

−∞
dε

[−∂ε f (ε)
][

T eh
αβ′ (ε−eV )+T ee

αβ′ (ε−eV )

−T eh
αβ′ (ε+eV )−T ee

αβ′ (ε+eV )
]

.
(3.28)

A similar relation can be obtained for thermoelectric conductance. To assess in a more quanti-
tative way the effect of dissipation later we will switch to numerical simulations (see Sec. 3.4).

Microreversibility

The microreversibility of the scattering process is a consequence of global time-reversal sym-
metry and implies that, upon inversion of the time-reversal breaking fields and spin direction,
the motion can be reversed1. As a consequence, the scattering matrix is equal to its transpose

S(B,∆ν) = T S(−B,∆∗
ν)T † =σy ST (−B,∆∗

ν)σy , (3.29)

1Note that we are considering systems that do not break time-reversal symmetry internally.
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which, expanding in particle and lead labels, becomes

Sγδ
αβ

(B,∆∗
ν) =σy

[
Sδγ
βα

(−B,∆∗
ν)

]T
σy . (3.30)

If we consider only non-spin-polarized leads, we can take the trace over the internal spin
indices and get the following symmetry relation:

T γδ

αβ
(ε,B) = T δγ

βα
(ε,−B,∆∗

ν) . (3.31)

Combining this relation with the one derived from particle-hole symmetry [Eq. (3.20)], we find
that, for Andreev reflections and transmission coefficients,

T eh
αβ(ε,B) = T eh

βα(−ε,−B,∆∗
ν) . (3.32)

This has implications both in the electric and thermoelectric nonlocal conductance.
The connection between microreversibility and thermoelectric quantities has been ex-

plored on general grounds both in theory [152, 153] and experiments [154]. In particular,
microreversibility is the microscopic explanation of the Onsager-Casimir relations that lead to
other transport symmetries in the charge, heat, and spin channels valid in linear response [155,
156].

Microreversibilty can be exploited to study separately normal and Andreev processes. To
do so, we introduce two new quantities, Gra and Gre, both in the local and nonlocal versions,
that we call reciprocal conductances and that can be extracted from the electric differential
conductance matrix:

Gra
αβ(V ,B) ≡Gαβ(V ,B)−Gβα(+V ,−B) (3.33)

Gre
αβ(V ,B) ≡Gαβ(V ,B)−Gβα(−V ,−B) (3.34)

By using microreversibility and particle-hole symmetry it is possible to show that

Gra
αβ(V ,B) =G0

∫ +∞

−∞
dε

[−∂ε f (ε)
][

T he
αβ(ε−eV ,B)−T he

αβ(ε+eV ,B)
]

, (3.35)

Gre
αβ(V ,B) =G0

∫ +∞

−∞
dε

[−∂ε f (ε)
][

T ee
αβ(ε−eV ,B)−T ee

αβ(ε+eV ,B)
]

, (3.36)

where Gra(V ) is proportional to the antisymmetric part of the Andreev transmission prob-
ability while Gre(V ) is proportional to the antisymmetric part of the normal electron trans-
mission probability. For this reason, these two quantities can be used to analyze separately
the two types of transport processes. Moreover, it can be verified from their definitions that
these two quantities are the decomposition of the antisymmetric part of the local differential
conductance:

Ganti
αβ =Gra

βα+Gre
βα. (3.37)

The local versions, Gre
αα and Gra

αα are proportional only to the antisymmetric part of the
reflection probabilities. As mentioned before, if a lead is sufficiently isolated from the others
such that there are no propagating channels connecting it to other leads, the reflection proba-
bilities are bound to be energy-symmetric making the defined quantities null in absence of
inelastic scattering.
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3. TRANSPORT IN HYBRID STRUCTURES

The quantities (3.33), and (3.34) are the only symmetric or antisymmetric combinations
of conductance matrix elements Gαβ(V ,B) that simplify to a difference of two transmission
or reflection probabilities under the constraints imposed by unitarity [Eqs. (3.3) and (3.4)],
particle-hole symmetry [Eq. (3.20)], and time-reversal symmetry [Eq. (3.31)]. Contrarily to
PHS-derived conductance symmetries, the results in Eqs. (3.33) and (3.34) are not affected by
dissipation since the derivation does not make use of the unitarity of the S matrix.

Note that limV →0 Gra(V ) = 0 in agreement with Onsager-Casimir relation. The vanishing of
Gra for normal (non-superconductive) devices can be explained as an extension of Onsager-
Casimir relations beyond the linear-response regime.

Additional antiunitary symmetry

Several widely used models in the context of proximitized devices, e.g., the Lutchyn-Oreg Hamil-
tonian describing a topological phase transition in a proximitized semiconductor nanowire [51,
52] satisfy an additional antiunitary symmetry A =UAK aside from microreversibility that
persists even in the presence of a Zeeman field. This symmetry implies additional constraints
on the conductance matrix. In case the antiunitary symmetry is inherited from the normal
state (i.e., it holds separately for electron and hole parts of the wavefunction), then the matrix
UA does not mix the particle-hole and lead indices. In this case, the symmetry condition for
the scattering matrix can be written as

S(B,∆ν) =U T
AS(B,∆ν)T U∗

A . (3.38)

As a consequence, the transmission probabilities satisfy the symmetry relations

T γδ

αβ
(B,∆ν) = T δγ

βα
(B,∆ν) , (3.39)

The validity of this symmetry on the transmission probabilities is due to the block-diagonal

structure of the unitary UA combined with the definition of T γδ

αβ
(B,∆ν) in Eq. (3.1) that contains

a trace over all single-lead indices that are present in the normal state.
In combination with PHS [Eq. (3.20)], we find

T γδ

αβ
(+ε,+B,∆ν) = T δ̄γ̄

βα
(−ε,+B,∆ν) . (3.40)

and, in particular for the Andreev transmission,

T eh
αβ(+ε,+B,∆ν) = T eh

βα(−ε,+B,∆ν) . (3.41)

The combination with microreversibility in Eq. (3.31) instead gives

T γδ

αβ
(+ε,+B,∆ν) = T γδ

αβ
(+ε,−B,∆∗

ν) . (3.42)

As a result, the conductance magnetic asymmetry, that we define as

Gm
αβ(V ,B,∆ν) ≡Gαβ(V ,B,∆ν)−Gαβ(V ,−B,∆∗

ν) . (3.43)

vanishes.2 Violations of this symmetry relation can be attributed to perturbations that break the
antiunitary symmetry A. This can be the result o, e.g., orbital effects or phase inhomogeneities.

2Note that for local quantities Gm
αα =Gra

αα.
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Similar considerations can be drawn for thermoelectric conductance. In the same fashion,
we can define the thermoelectric conductance magnetic asymmetry

Lm
αβ(V ,B,∆ν) ≡ Lαβ(V ,B,∆ν)−Lαβ(V ,−B,∆∗

ν) , (3.44)

this quantity vanishes under the same assumptions.
Note that, in simpler systems like two-terminal metallic wires, the conductance is expected

to be a symmetric function of the magnetic field. Therefore, the presence of a conductance mag-
netic asymmetry can be used as a probe of electron-electron interactions in the system [134].
In multiterminal superconductive devices instead, the symmetry is not expected even in the
non-interacting system where the presence of the additional antiunitary symmetry is necessary
to have a vanishing Gm.

Geometrical symmetries

Geometrical symmetries of the device can also be exploited to build quantities that select only
specific components of the transmission matrix. These can be useful in case the geometry of
the system can be controlled to some degree of accuracy such that it may feature approximate
geometrical symmetries.

For introducing a concrete example, let us consider a 2DEG wire like the one in Figs. 3.1(a)
and 3.2(a). The wire is aligned along the x direction, with two symmetric leads L and R.
Suppose the system is symmetric upon mirroring along the x and y directions, Mx , and My ,
and it features a rotation symmetry Rz (π). By using only T , P and Mx symmetries we have

T eh
RL (ε,Bx ,By ,Bz )

T PMx−−−−−→ T eh
RL (−ε,−Bx ,By ,Bz ) (3.45)

T ee
RL(ε,Bx ,By ,Bz )

T Mx−−−−→ T ee
RL(ε,−Bx ,By ,Bz ) (3.46)

and we can use this result to define new quantities similar to the reciprocal differential con-
ductances, but with the advantage that is evaluated at only one lead and reversing only one
component of the magnetic field

Gxa
LR (V ,B) ≡GLR (V ,Bx )−GLR (V ,−Bx ) , (3.47)

Gxe
LR (V ,B) ≡GLR (V ,Bx )−GLR (−V ,−Bx ) . (3.48)

By using Eqs. (3.45) and (3.46) it is possible to show that

Gxa
LR (V ,B) =G0

∫ +∞

−∞
dε

[−∂ε f (ε)
][

T he
LR (ε−eV ,B)−T he

LR (ε+eV ,B)
]

(3.49)

Gxe
LR (V ,B) =G0

∫ +∞

−∞
dε

[−∂ε f (ε)
][

T ee
LR (ε+eV ,B)−T ee

LR (ε−eV ,B)
]
, (3.50)

Similarly, for the thermoelectric conductance, we have

Lx
LR (θ,Bx ) ≡ LLR (θ,Bx )−LLR (θ,−Bx ) ≃ 0. (3.51)

Again, this quantity is exactly zero if we neglect the energies above the parent gap, and thus
deviations at low temperatures can be directly linked to dissipation effects.
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If a system featuring mirror symmetry satisfies an additional antiunitary symmetry as
discussed in Sec. 3.2, then it follows that Gra

αβ
= 0. In the absence of the additional antiunitary

symmetry, the conductance symmetry Gra
αβ

= 0 is present if the magnetic field lies in the plane

orthogonal to the mirror symmetry axis. These properties can be used as an indication of
whether the system satisfies mirror symmetry.

3.3 Additional antiunitary symmetry in a hybrid nanowire

Fig. 3.2: Sketch of a proximitized semiconductor nanowire with spin-orbit coupling. In
(a), using as a reference a simple 2DEG geometry, we introduce a Rashba field α transverse
to the nanowire direction ex due to the interface electric field. The Rashba SOC manifests
in a momentum-dependent spin splitting in the ex ×α direction. A native Dresselhaus spin-
orbit coupling can also be present; this acts as momentum-dependent ex spin splitting. The
combination of the two effects can be described by a generalized spin-orbit direction κ that
defines an orthogonal plane shown in green in (b). When the magnetic field B lays in the
orthogonal plane, the system features an additional antiunitary symmetry. In (c), we introduce
a coordinate system to discuss the dependence of transport on the direction of the external
magnetic field B.

To introduce a concrete example application of the additional antiunitary symmetry dis-
cussed in Sec. 3.2, we now consider a quasi-1D semiconductor nanowire proximitized by a
superconductor. An important question for these devices is the characterization of spin-orbit
coupling. This can be achieved by leveraging the symmetry relations previously introduced.

We consider a system represented by the following low-energy effective Hamiltonian

H=
[ℏ2k2

2m∗ +V (r)+HSOC

]
τz +b ·στ0 + ∆̃τx , (3.52)

where k = −i∇∇∇ is the wavevector, m∗ is the effective mass, V (x) = −µ(x) is the potential
landscape (which can include disorder), ∆̃ is the proximity-induced pairing potential in the
weak coupling limit, and b is the Zeeman spin splitting in the semiconductor. Finally, the
spin-orbit coupling HSOC =HR +HD is the sum of the Rashba and the Dresselhaus term.

The Rashba interaction reads HR = k×××α ·σ where the Rashba field α is proportional to
the electric field in the device. The Dresselhaus spin-orbit coupling arises from the lack of
inversion symmetry of the material and can be written as HD = γD l ·σ. In zinc-blende crystals,
the l vector components are la = ka(k2

b − k2
c ) where (a,b,c) are cyclic permutations of the

coordinates (x, y, z) [104].
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Here we consider a quasi-1D system in the ex direction as shown in Fig. 3.2. For sufficiently
thin wires with sufficiently energy-separated eigenmodes with different radial momenta, we
can replace the radial momentum operators by their expectation values evaluated on the
transverse eigenmode wave function k ≃ (kx ,

〈
ky

〉
,〈kz〉). Under this assumption, we can

rewrite the Dresselhaus Hamiltonian as HD = γDσx kx

[
−〈k2

z 〉+〈k2
y 〉

]
= βkxσx , while for the

Rashba SOC, HR = (αyσz −αzσy )kx , where a term 〈k⊥〉×××α∥ ·σ vanishes due to 〈k⊥〉 = 0 for
confined eigenmodes.

First, consider the case of pure Rashba spin-orbit coupling, i.e., γD = 0. The Hamiltonian
satisfies an antiunitary symmetry when the magnetic field points within the plane spanned
by the Rashba fieldα and the direction of the wire. Forα=αez , the antiunitary symmetry is
complex conjugation, and the real-space Hamiltonian in Eq. (3.52) is real.

If the system features both Rashba and Dresselhaus spin-orbit coupling, the plane spanned
by the magnetic fields that preserve an antiunitary symmetry is tilted. Without loss of generality,
we choose a Rashba field perpendicular to the wire pointing along z, i.e.,α⊥ =α⊥êz . We intro-
duce a coordinate system for the magnetic field defined as b = b

(
cosθcosφ,cosθ sinφ, sinθ

)
where θ is the elevation and φ the azimuth with respect to the wire direction. In this case,
the spin-orbit coupling term reads kx (α⊥σy +βσx ). A rotation e iφκσz /2 in spin space by the

angle tanφκ = β
α⊥ transforms e−iφκσz /2kx (α⊥σy +βσx )e iφκσz /2 = kx

√
α2
⊥+β2σy . In this basis,

spin-orbit coupling is real and the Hamiltonian satisfies A=K.
This antiunitary symmetry is preserved by a Zeeman field b = b⊥σz+b∥(cosφκσx−sinφκσy ),

such that e−iφκσz /2
[
b⊥σz +b∥(cosφκσx − sinφκσy )

]
e iφκσz /2 = b⊥σz +b∥σx is real. Here, b⊥

is the component of the magnetic field parallel to α⊥ and b∥ is the component pointing in
the direction orthogonal to α⊥ and βx̂ +α⊥ ŷ . In other words, the combined Rashba and
Dresselhaus spin-orbit coupling terms can be written as κ ·σkx where κ= ex ×α⊥+βex is the
generalized spin-orbit direction. The antiunitary symmetry is preserved by a Zeeman field
b ·κ= 0. The plane spanned by the b vectors that satisfy the orthogonality condition can be
identified by an angle φ0 =φκ+π/2.

3.4 Numerical models

In this section, we introduce two numerical models to show examples of how microscopic
symmetries of the systems manifest themselves in the transport properties. In both cases, we
model the grounded leads in the system with the method of self-energies. This can be useful
when the lead is a metal with high density compared to the scattering region as the self-energy
takes the simple form of a local complex-valued potential. This is added to the Hamiltonian to
generate an effective non-Hermitian energy-dependent Hamiltonian that can be studied with
the scattering approach.

We consider the most general case of a grounded soft-gap superconductor that can be
described by the Dynes superconductor model [157–159]. In the case of a superconductive lead
with a high density of states, the intermediate coupling regime can be adequately described by
the following local self-energy

Σν(ε,r) = γν(r)
−(ε+ iΓν)τ0σ0 +

(
∆ντ++∆†

ντ−
)
σ0√

|∆ν|2τ0σ0 − [(ε+ iΓν)τ0σ0]2
, (3.53)
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where∆ν = |∆ν|e iφν is the pairing amplitude with phaseφν (that we assume constant in space),
Γν is the Dynes parameter that models pair-breaking scattering processes, the local coupling
strength is γν =πDνt 2

ν with Dν being the density of states in the lead ν, and tν is the interface
hopping amplitude between the scattering region and the superconductive lead ν. For a
normal lead, this reduces to

Σn(ε,r) =−iγn(r)σ0τ0 , (3.54)

that is an imaginary potential that causes the decay of the quasiparticle wave function.

Double-dot Josephson junction

To study the effect of the additional antiunitary symmetry discussed in Sec. 3.2, we first consider
a double-dot Josephson junction illustrated in Fig. 3.1. The effective Hamiltonian of the system
is

H=
(−µ1 −t
−t −µ2

)
τz

+
(
1 0
0 0

)
Σ1(ε)+

(
0 0
0 1

)
Σ2(ε)

(3.55)

where µi are the local chemical potentials in the dots, t is the hopping amplitude between
the dots, and Σi are the local self-energies induced by the superconductive leads i = 1,2. The
scattering matrix can be obtained by using the Weidenmüller formula (see, e.g., [160])

S(ε) = I−2πiW † 1

ε−H+ iπW W †
W , (3.56)

where Wi (E) ≡√
ρi (ε)tiΠi (ε) with ti the tunneling amplitude from the device to lead i , ρi (ε)

the density of states in lead i , and Πi (ε) the projector onto the eigenstates of lead i at energy ε.
In our model, we approximate the tunnel coupling between lead L and dot 1 (lead R and dot 2)
by two energy-independent parameters, such that W = (

wL wR
)
τz .

When the phase difference between the two superconductive terminals φ12 = φ1 −φ2

is zero or π, the system features the antiunitary symmetry A = K. As a consequence, the
Andreev process probabilities are symmetric in the energy axis, i.e., T eh(ε) = T eh(−ε), and
Reh(ε) = Reh(−ε). This can be verified by the zero in the conductance magnetic asymmetry
Gm, as shown in the second column of Fig. 3.3.

The reciprocal conductance can also be used to verify the presence of a mirror symmetry
of the device. A mirror symmetry Mx exchanges the two dots and reverses the sign of the
phase difference φi → −φi . The latter can be seen by noticing that the phase difference
can be created by a magnetic field Bz piercing a superconducting loop within the x-y-plane
connecting to the two dots. This mirror symmetry implies a zero in the non-local reciprocal
conductances Gra

LR , Gra
RL . Indeed, by calculating Gra

LR as a function of the dots’ levels asymmetry
δµ= (µ1 −µ2)/(µ1 +µ2) (see the rightmost column of Fig. 3.3), we verify the presence of a zero
in Gra for δµ= 0, that is when the system feature a mirror symmetry.

As a function of phase difference φ12, the symmetric configuration µ1 =µ2 exhibits a zero
in the reciprocal conductances Gra

LL , Gra
LR at φ12 = 0 due to the mirror symmetry (c.f. the fourth

column of Fig. 3.3). The zero in Gra
LL , Gra

LR signals energy-symmetric Andreev reflection and
transmission amplitudes [c.f. Eq. 3.33]. This mirror symmetry is broken at finite |φ12| > 0,
including φ12 =π, due to the different superconducting phase at the two dots.
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Fig. 3.3: Conductance in double-dot Josephson junction. The plots show the local con-
ductance GLL and combinations Gm

LL , Gre
LL , Gra

LL (top row, from left to right) and non-local
conductance GLR and combinations Gm

LR , Gre
LR , Gra

LR (bottom row, from left to right) in a
double-dot Josephson junction as a function of the phase difference φ12 = φ1 −φ2 for a
symmetric configuration µ1 = µ2 (columns one to four). The rightmost column displays
the reciprocal conductance Gr a

LL for φLR = π/4 as a function of the chemical potential asym-
metry δµ = (µ1 −µ2)/(µ1 +µ2). The parameters used are t = 0.2meV, w2

L = w2
R = 0.01meV,

µ1 =µ(1+δµ), µ2 =µ(1−δµ), µ= 0.10meV, γ1 = γ2 = 0.3meV, |∆1| = |∆2| = 1meV.

Proximitized semiconductor nanowire

As an example of a three-terminal device, we consider the case of a semiconductor nanowire
proximitized by an s-wave superconductor as shown in Fig. 3.4. We demonstrate how an antiu-
nitary symmetry persisting at a finite magnetic field for specific directions can be employed
to extract the ratio between Dresselhaus and Rashba spin-orbit coupling, as introduced in
Sec. 3.3. We further study the effects of dissipation and voltage-bias-dependent potentials on
the symmetry relations derived under CLA.

The Hamiltonian is similar to the one in Eq. (3.52), but here we treat the superconductive
lead using the self-energy model

H(ε) =
[ℏ2k2

x

2m∗ +V (x)

]
τz

+ [
(αyσz −αzσy )kx +βkxσx

]
τz

+b ·στ0 +Σ(ε) ,

(3.57)

where we take m∗ = 0.026me , consistent with an InAs nanowire, and Σ(ε) is the superconduc-
tive lead self-energy as given in Eq. (3.53).

To include the effect of a finite bias, we model the deformation of the potential landscape
in a simplified effective manner. Following an approach proposed by Ref. [140], we assume that
the density of states in the superconductor shell is high enough to guarantee perfect screening
of the electric field. This means that the potential drop falls entirely in the (depleted) barrier
region. The case of imperfect screening is analyzed in Ref. [116].

To provide a gauge-invariant description of the potential landscape we select the voltage
applied to the superconductor as the reference voltage VS = 0 such that ε= Ep −µS = Ep +eVS
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is the energy of the scattering particle. We define the left and right biases as VLS and VRS . The
other parameters that enter in the effective potential landscape are the chemical potential in
the lead and the wire, that we define as µl =−e(Vl−VS) and µw =−e(Vw−VS), and the zero-bias
barrier height ∆Vb = e(Vb −VS). We assume the absence of built-in biases in the junction by
considering a flat potential barrier at zero bias. The effect of the zero-bias barrier ∆Vb can be
connected to a reduction of the coupling with the leads that causes a reduction of the height
of the peaks and increased sharpness in the differential conductance. All these parameters
are shown in the sketch of the landscape shown in Fig. 3.4. We modeled the effect of the finite
bias as a linear voltage drop (i.e., a constant electric field) within the barrier, and we smoothed
the potential using a sigmoid function instead of Heaviside steps to avoid sharp transitions
between the different parts of the system.

We used a nanowire length of Lw = 500nm with barriers of length Lb = 50nm. The local
chemical potential in the nanowire is set to µw = 0.5meV while the zero-bias barrier height
is set to ∆Vb = 0.3meV. The lead have µl = 25meV. For the superconductive lead, we set
∆ = 0.35meV and γSc = 0.2meV. To simplify the evaluation of reciprocal conductance, we
restrict the elevation angle θ ∈ [−π/2,π/2] while allowing the magnitude b to take negative
values. We discretized the Hamiltonian using the finite-differences method with step lengths
ax = 1nm, then evaluated the scattering matrix S[ε,H(ε;P )] using the Kwant package for
quantum transport [161]. After evaluation of the S matrix, the conductance is calculated for
the CLA case following Eqs. (3.9)-(3.12), while in the nonlinear case, the electric charge current

Fig. 3.4: Sketch of one contact of a three-terminals device. The monomodal wire (blue,
green) is coated with a superconductive shell (gray), which induces a superconducting pairing
potential in the central region and fixes the chemical potential due to the high density. Two
barriers (quantum point contacts) are introduced on the side (green), while barrier gates can
partially control the shape of the potential drop here. Two bias voltages are applied on the left
and right leads (yellow) with respect to the grounded superconductor. In the lower panel, we
sketch the potential landscape of the system V (x) in the unbiased regime (dashed blue line)
and biased one (solid blue line), showing all the quantities used to parametrize the potential
landscape.
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is calculated by numerical integration of Eq. (3.6).

Identification of the spin-orbit coupling direction

We first focus on the newly introduced quantities, reciprocal differential conductances and
conductance magnetic asymmetry, and their use for the determination of the spin-orbit cou-
pling direction. To emphasize the effect and maximize Gra, we consider a strongly asymmetric
case in which the left barrier is set to ∆Vb,L = 0.3meV while the right barrier is in the open
regime ∆Vb,R = 0. We also choose to align the Rashba field in the out-of-plane direction
αR = (0,0,−10)meVnm while we set the Dresselhaus energy to β= 5meVnm.

A sweep in Zeeman energy b is shown in Fig. 3.5. We find that Gre is much larger than Gra.
By Eqs. (3.33) and (3.34), this indicates that the antisymmetric part of the electron-electron
transmission probability dominates over the antisymmetric part of the crossed Andreev reflec-
tion probability. Note that in the presence of both mirror symmetry Mx (inverting the wire
direction) and an antiunitary symmetry, the Andreev transmission probabilities are symmetric
in energy such that Gra

LR vanishes. For our device, in the presence of only Rashba SOC and a
magnetic field oriented in the wire direction, a mirror-symmetric device satisfies an antiunitary
symmetry A=K and a mirror symmetry Mx =σxτ0. Therefore, a signal in Gra

LR is correlated
to the mirror symmetry breaking terms in the device geometry, such as the asymmetric bar-
rier configuration used here, and Dresselhaus spin-orbit coupling ∝ kxσx , breaking both the
antiunitary symmetry and the mirror symmetry.
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Fig. 3.5: Reciprocal conductance and conductance magnetic asymmetry in a super-semi
nanowire. We show the typical signature of the reciprocal conductance and conductance
magnetic asymmetry [Eqs. (3.33), (3.34), and (3.43)] for a proximitized semiconductor nanowire
with Rashba spin-orbit coupling as a function of the Zeeman energy b. We set the direction of
the magnetic field as θ = π

4 and φ= 0.
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3. TRANSPORT IN HYBRID STRUCTURES

The reciprocal conductances Gra and Gre can be used to characterize the spin-orbit cou-
pling of the nanowire. Indeed both are symmetric under reversal of magnetic field only if the
system satisfies an antiunitary symmetry that persists at a finite magnetic field. An alternative
and easier measurement is the conductance magnetic asymmetry Gm, Eq. (3.43), since it
requires the combination of only two differential conductances at the same terminal. This
quantity vanishes if there is an antiunitary symmetry persisting at a finite magnetic field. Mea-
suring this quantity while rotating the azimuth of the magnetic field allows for the identification
of the direction of the generalized spin-orbit coupling vector eκ, as shown in Fig. 3.6.

The zero of the quantity Gm(φ=φ0) = 0 is achieved only when the orthogonality condition
b ·κ = 0 is satisfied. Therefore, with the measured set of directions for which Gm = 0 it is
possible to determine eκ and its relative angle with the wire direction φκ =φ0 −π/2. With this
information, it is possible to determine both the direction of the Rashba field and the ratio of
the orthogonal Rashba and Dresselhaus SOC. The orthogonal Rashba fieldα⊥ is oriented in the
direction eκ×××ex while the ratio of the two fields is connected to the angle by β/α⊥ = tan

(
φκ

)
.

Note that Gm(φ) shows a linear behavior in φ near φ0 (marked by a change of sign in the
neighborhood). In the simulations we noticed an additional zero in the direction (φκ,θκ) that
isκ×××b = 0. In this case, Gm(φ,θ) has a quadratic behavior in bothφ and θ in the neighborhood
of (φκ,θκ). Note that θκ = 0 in the chosen coordinate system.

Finite-bias effect and dissipation

Transport symmetries can be also exploited to assess the presence of non-ideal effects and
possibly distinguish between them. To illustrate the idea in this example system, we consider
the dissipation and finite-bias effect. Indeed, in an ideal system the antisymmetric components
of the local and nonlocal electrical differential conductance as a function of bias voltage are
opposite to each other, such that Gsa

α (V ) ≡ Ganti
LL (V )+Ganti

LR (V ) = 0 [c.f. Eq. (3.24)]. This is
illustrated in Fig. 3.7.

This symmetry relation is broken by finite-bias effects, dissipation, and Coulomb scattering
between quasiparticles. We verify the possibility of distinguishing between finite-bias and
dissipation effects by calculating the quantity Gsa

L in presence of these effects. We consider the
same system as before in Sec. 3.4 with the only difference of considering symmetric barrier of
∆Vb = 30µeV and we set the Dresselhaus SOC β= 0.

First, we introduce the finite-bias effect by manually introducing the voltage drop in the
barrier regions as shown in Fig. 3.4. The nonlinear differential conductance is then obtained
by numerical differentiation of the total current calculated with Eq. (3.6). The comparison of
the full-nonlinear theory and the CLA can be seen in Fig. 3.8. It is possible to distinguish two
corrections, one general background correction in the local conductance that can be attributed
to an increase in the average barrier height as the potential is raised. On top of this, we can
identify a shift in the position of the peaks. The effect of a finite bias gets stronger and more
evident as the barrier length is increased since the effect of the voltage drop is distributed in a
greater area of the device.

To introduce dissipation, we compare two cases: in the first case we consider an additional
normal lead acting as a quasiparticle reservoir described by a self-energy ΣSm of the form
Eq. (3.54) with parameter γn describing the coupling strength between system and reservoir,
while in the second case we introduce a soft gap in the superconductor through the parameter
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3.4. Numerical models

Γν =ΓSc in the Dynes model for the self-energy ΣSc of proximity induced superconductivity,
Eq. (3.53). Note that the first case has been already assessed in Ref. [150] for local conductance.

We consider two leads such that Σ = ΣSc +ΣSm. In the quasiparticle reservoir case we
assume ΓSc = 0 and γSm = 5µeV while in the soft gap case ΓSc = 5µeV while γSm = 0.

The left and right plots in the top row of Fig. 3.9 shows, within CLA, the effect of a dissi-
pation term in the wire Hamiltonian (setting γSm = 5µeV, ΓSc = 0) and of inelastic scattering
processes in the superconductor modeled with the Dynes model (setting γSm = 0, ΓSc = 5µeV),
respectively. The effects of the two dissipation terms are very similar and consistent with the
result in Eq. (3.28). Therefore, it is not possible to distinguish between the two effects with this
measurement. In the lower plots, nonlinear theory within perfect metallic screening approxi-
mation is considered. The effect of finite bias on the symmetry relation appears qualitatively
different from dissipation also in this case. It can be described by a background contribution
that depends on the sign of the applied voltage together with a localized correction in the
position of the peaks. More strikingly, after the topological transition, there is no evident

Fig. 3.6: Identification of the spin-orbit orientation. We show how local (Gm
LL) and nonlocal

(Gm
LR ) conductance magnetic asymmetry, Eq. (3.43), can be used to identify the spin-orbit

coupling orientation by measuring these quantities while rotating the magnetic field, i.e. the
angles

(
θ,φ

)
in the reference frame introduced in Fig. 3.2. Both these quantities vanish linearly

when the condition b⊥×××κ= 0 is met. In the case shown, the Rashba spin-orbit coupling αR

is oriented in the z-direction and the relative strength of Dresselhaus over Rashba spin-orbit
coupling is β/α⊥ = 1/2 = tan

(
φκ

)
. Therefore Gm vanishes only for the plane identified by the

angle φ0 =φκ+π/2 and is thus observed both in the case of θ = 0 shown in the left panels and
the case θ =π/4 shown in the right ones.
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3. TRANSPORT IN HYBRID STRUCTURES

Fig. 3.7: Symmetric and antisymmetric parts of electric differential conductance. The
antisymmetric parts of local and nonlocal electric conductance are opposite. This corresponds
to the symmetry relation Gsa(V ) ≡ Ganti

LL (V )+Ganti
LR (V ) = 0 in ideal systems. Deviations from

this symmetry relation can be used to identify non-ideal effects like dissipation or finite-bias
effect.

oscillation in the sign connected to the local BCS charge like in the dissipation case. Therefore
measurements of electrical conductance offer the possibility of distinguishing between the
effect of finite bias and dissipation. These results are consistent with previous analyses [140,
150].

Thermoelectric conductance

The clear advantage of thermoelectric conductance is that temperature-induced charge accu-
mulation, which leads to potential change modification, can be safely ignored in the regime of
interest. Therefore it represents an alternative measurement free of problems related to the
finite-bias effect. We stress here that by thermoelectric measurements we mean the measure-
ment of the current as a change in the temperature of the leads. We note that for negligible
inelastic scattering we expect no local thermalization, such that the device parameters should
remain unchanged by the temperatures in the leads.

As in the case of electric differential conductance, we can define local and nonlocal ther-
moelectric conductance. These satisfy the symmetry relation

Lsum
L (θ) = LLL(θL = θ)+LLR (θR = θ) ≃ 0 (3.58)

if we restrict the integral over the energy to values below the parent gap region. The latter just
introduces a non-exactly balanced background contribution. As can be seen in Fig. 3.10, the
interesting features are the lobes with an oscillating sign at low temperatures. These features
can be linked to the BCS charge 〈τz〉 of the Andreev bound states at the end of the wire by a
straightforward extension of the derivation using non-local electric conductance presented in
Ref. [113].

Finite-bias effects can also affect the procedure for the determination of the spin-orbit
coupling outlined in Section 3.4. The same information can be obtained by thermoelectric
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Fig. 3.8: Electric differential conductance in the symmetric setup calculated with nonlinear
theory and correction to differential conductance in CLA. It is possible to distinguish two
contributions. One general background correction in the local conductance that can be
attributed to an increase in the average barrier height as the potential is raised. On top of this,
we can identify a correction that moves and changes the position of the peaks. The finite-bias
effect gets stronger and more evident as the barrier length is increased. In this simulation,
Vb,L = 30µeV, Vb,R = 30µeV, β= 0, while we set the Zeeman field to b = (1,0,0)40µeV.

measurements by evaluating the thermoelectric conductance magnetic asymmetry Lm while
rotating the magnetic field as shown in Fig. 3.11. As expected, when the magnetic field lies in
the plane orthogonal to the generalized spin-orbit coupling vector κ, identified by the angle
φ0, we observe a zero in Lm. In contrast to the electric conductance combination, Gm

αβ
, the

thermoelectric conductance combination Lm
LR displays a quadratic behavior in φ around φ0

at the magnetic field angle θ = π/4. Also for Lm we observe an additional quadratic zero at
(φκ,θκ), i.e. when κ×××b = 0.

3.5 Summary

We have explored the limits of local and nonlocal tunneling spectroscopy of hybrid devices
within the extended Landauer-Büttiker formalism. We have derived symmetry constraints on
the multiterminal conductance matrix that follow from the fundamental microreversibility
and particle-hole conjugation in the presence of superconductivity. Our first result shows that
the reciprocal conductances Gra and Gre, defined in Eqs. (3.33) and (3.34), can be employed to
extract the antisymmetric-in-voltage parts of the individual electron and Andreev transmission
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3. TRANSPORT IN HYBRID STRUCTURES

and reflection probabilities.
In the presence of an additional antiunitary symmetry that persists at a finite Zeeman field,

a further relation can be derived for the conductance magnetic asymmetry Gm in Eq. (3.43).
This relation is particularly useful in the study of spin-orbit coupled semiconductor nanowires
proximitized by an s-wave superconductor since it allows extracting the ratio between the
Rashba and Dresselhaus spin-orbit coupling strength. We have demonstrated this result in an
explicit numerical model. This result may be useful for material and device characterization
because the characterization of the spin-orbit coupling in proximitized semiconductor devices
is an open research question. Future work can study these quantities in a more realistic
scenario, modeling the cross-section of the superconductor-semiconductor heterostructure to
include multiple transverse modes and the orbital coupling of the magnetic field.

Fig. 3.9: Gsa
L when different symmetry-breaking mechanisms are introduced. In the upper

plots, two distinct dissipation terms are considered within CLA, in the left γSm = 5µeV while
in the right one ΓSc = 5µeV. The lower plots shows the same quantity calculated using the
nonlinear theory on the left γSm = 0 while on the right ΓSc = 5µeV.

Fig. 3.10: Local and nonlocal thermoelectric conductance in a proximitized semiconductor
nanowire. The low-temperature lobes with alternating signs can be associated with the BCS
charge 〈τz〉 similarly to the interpretation of Ganti.
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3.5. Summary

Furthermore, we have studied the effects of dissipation and the dependence of the electric
potential on the bias voltage on the symmetry relations at an explicit model of a proxim-
itized semiconductor nanowire. Generally, these symmetry relations are broken by these
non-idealities. However, the two effects yield distinct signatures in the conductance matrix
elements and their linear combinations.

Fig. 3.11: Identification of the spin-orbit orientation by thermoelectric measurements. We
show how local (Lm

LL) and nonlocal (Lm
LR ) thermoelectric conductance magnetic asymmetry

can be used to identify the spin-orbit coupling orientation by measuring these quantities
while rotating the magnetic field, i.e. the angles

(
θ,φ

)
in the reference frame introduced in

Fig. 3.2. Both these quantities vanish when the condition b⊥×××κ= 0 is met. In the case shown,
the Rashba spin-orbit coupling αR is oriented in the z-direction while β/α⊥ = tan

(
φκ

)= 1/2.
Therefore Lm vanishes only for the plane identified by the angle φ0 = φκ+π/2 and is thus
observed both in the case of θ = 0 shown in the left panels and the case θ =π/4 shown in the
right ones. The parameters are the same as Fig. 3.6.
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4

Ferromagnetic hybrid heterostructures

This chapter is an adaptation of the scientific articles A. Maiani et al. “Topological superconductivity

in semiconductor–superconductor–magnetic insulator heterostructures”. In: Physical Review B 103.10

(Mar. 2021), p. 104508. DOI: 10.1103/physrevb.103.104508, S. D. Escribano et al. “Semiconductor-

ferromagnet-superconductor planar heterostructures for 1D topological superconductivity”. In: npj

Quantum Materials 7.81 (Aug. 2022). DOI: 10.1038/s41535- 022- 00489- 9, D. Razmadze et al.

“Supercurrent reversal in ferromagnetic hybrid nanowire Josephson junctions”. In: Physical Review B

107.8 (Feb. 2023), p. l081301. DOI: 10.1103/physrevb.107.l081301, A. Maiani et al. “Nonsinusoidal

current-phase relations in semiconductor-superconductor-ferromagnetic insulator devices”. Feb. 2023.

arXiv: 2302.04267. It presents the key results of the research projects in a unified view, with an expanded

introduction to the subject.
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4. FERROMAGNETIC HYBRID HETEROSTRUCTURES

At the end of Ch. 1, we outlined the general idea behind the Lutchyn-Oreg proposal of
synthetic topological superconductivity in hybrid heterostructures. One limitation of this ap-
proach is the requirement of external magnetic fields to induce the topological phase transition.
External magnetic fields have several drawbacks. Primarily, it is complicated to separate their
effect in spin-space, the Zeeman interaction, from their orbital effects, like the suppression of
the superconducting pairing, among others. Secondarily, the topological phase is very sensi-
tive to the relative orientation between the magnetic and the spin-orbit fields. This problem
becomes even more evident when considering more complicated geometries featuring several
nanowires that cannot be aligned in the same direction. This set strict constraints on the design
of experiments, like the ones proposed to demonstrate non-Abelian statistics [42, 162–164],
and, ultimately, for topological quantum devices.

Several alternatives to the use of an external magnetic field have been proposed in recent
years, like devices based on magnetic flux through full-shell nanowires [165–167], and the
phase difference in superconducting junctions [93, 168, 169]. However, these alternatives face
challenges with device scaling, including sensitivity to magnetic field direction in the former
and difficulty in controlling phase differences among multiple superconductors in the latter.

Magnetic insulators offer an alternative approach to solve the above problems by induc-
ing a local exchange field on the semiconductor through the ferromagnetic proximity effect,
eliminating the need for external magnetic fields. This idea has gained momentum from
recent developments in the fabrication technology that have enabled the integration of thin
layers of the ferromagnetic insulators EuS in the hybrid InAs-Al heterostructures with excel-
lent interface quality [170–172]. This material has also been tested in combination with gold,
showing signatures consistent with the presence of Majorana bound states [173]. In addition,
experiments in hexagonal nanowires partially covered by overlapping superconductors and
ferromagnetic insulator shells showed the appearance of zero-bias conductance peaks [73],
and spin-polarized subgap states [174].

The same platform has also been considered for the fabrication of Josephson junctions. Ini-
tial experiments have observed a configurable supercurrent reversal in ferromagnetic nanowire-
based Josephson junctions [P6]. The subsequent theoretical analysis focused on the possibility
of further controlling the current-phase relation in these structures and achieving nonsinu-
soidal Josephson potentials [P7].

This chapter is devoted to introducing the physics of such ferromagnetic hybrid heterostruc-
tures. We will briefly introduce ferromagnetic insulators and the ferromagnetic proximity effect
in Sec. 4.1, while the main experimental features of the platform are outlined in Sec. 4.2. The
applications to topological superconductivity are discussed in Sec. 4.3 and Sec. 4.4. The physics
of ferromagnetic hybrid Josephson junctions is investigated first in experiments, Sec. 4.5 and
then in an abstract theoretical setting in Sec. 4.6. The chapter is concluded with a summary of
the research activity on the topic, Sec. 4.7

4.1 Magnetic insulator and magnetic proximity effects

Magnetic insulators are a class of dielectric materials that display a magnetic order. Many
transition metal oxides belong to this category, and, in the majority of cases, these materials
show an antiferromagnetic order. These materials can be described by spin models that are
a generalization of the Heisenberg model. In the case of ferromagnetic insulators, where the
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4.1. Magnetic insulator and magnetic proximity effects

spins tend to align, it is possible to define classical field theories, known as micromagnetic
theories, that describe the configuration of the system in terms of a local magnetization vector
M(r) = Ms m(r) where Ms is the saturation magnetization, which is homogenous in the material
and depends only on the temperature, while m(r) is the micromagnetic configuration of the
system [175–179].

In the following, we will avoid introducing an additional layer of complexity in the descrip-
tion of these systems, and we will simply consider effective models that focus on the effect of
the ferromagnetic insulator on the rest of the device. We will seldom refer to the micromagnetic
configuration of the ferromagnet, albeit it is important to be aware of this aspect of the system.

Practically, when explicitly included in the model, the ferromagnetic insulator will be
treated as a semiconductor with an intrinsic exchange field h(r) that describes the spin-split
conduction band. In other cases, we want to remove the ferromagnetic insulator entirely from
the model domain. In this case, we will resort to an effective exchange field that arises from the
ferromagnetic proximity effect. The definition of such effective fields is not obvious and will be
a recurring theme in this chapter.

In the limit of a strongly insulating material, we can imagine that the main interaction
is due to the scattering between the electrons of the proximitized material and the localized
magnetic moments in the ferromagnet. We can describe the effect of the interface through a
Heisenberg-like term

HFIprox =−J p
∑

i

∫
d3r Si ·s(ri )δ(r−Ri ) (4.1)

which describes the coupling between the spin density of the free electron in a material, s,
and the localized spins in the insulator, Si , considered as fixed classical magnetic moments.
The coupling strength J p is related to the exchange integral between the localized orbitals and
the free electron. This coupling strength is different for the conduction band electrons of the
ferromagnetic insulator (that is depleted in this case) and the electrons in the proximitized
material [180]. In this case, the ferromagnetic insulator does not appear explicitly in the model,
but its effect is included in the form of an effective surface exchange field heff that couples to the
spin degree of freedom of the electrons. Such an exchange field can be thought proportional to
the local micromagnetic configuration of the ferromagnetic insulator and is defined only at
the interface of the ferromagnetic insulator with another material.

With this picture in mind, let us move to the case of proximity-coupled ferromagnetic
insulator-superconductor heterostructures. After the first experiments [181, 182], a general
theory of ferromagnetic proximity effects has been proposed by Millis and Tokuyasu [183,
184]. In particular, Tokuyasu’s theory predicts that the effect of the magnetic insulator can
be described to some extent by an induced exchange field in the superconductor heff. This
field decays away from the interface in a length scale comparable to the coherence length
of the superconductor. This simple description in terms of an induced exchange field is
valid in most cases addressed, and the effects are equivalent to the spin-split superconductor
described in Sec. 1.2. Many subsequent experimental works have verified a strong effect of
ferromagnetic insulators on thin superconductors that resembles the one of a Zeeman-split
superconductor by a strong magnetic field and can thus be adequately described by an effective
exchange field [185–187]. Other features of the density of states can be described by additional
spin-flip terms that arise from inhomogeneous magnetization pattern, magnetic disorder at
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the interfaces [188–190], and also spin-orbit scattering, which, although small, is not always
negligible even for low atomic number materials such as Al [191].

4.2 The InAs-Al-EuS platform

One of the most successful experimental platforms for the investigation of ferromagnetic
proximity effects in superconductors are heterostructures made of aluminum (Al) and eu-
ropium (Eu) compounds like EuO and EuS. Europium sulfide (EuS) was extensively studied
along with other members of the group of magnetic semiconductors known as the europium
chalcogenides during the 1960s after europium oxide (EuO) was found to be a ferromagnetic
insulator [192, 193]. These early studies revealed that the magnetic properties in these com-
pounds arise from the interaction between the well-localized half-filled 4 f orbitals of the
Eu2+ ions and their interactions with the conduction electrons. The electrons in these shells
behave as localized spins with a magnetic moment of around 7 µB , making EuS one of the
few materials that are well described by the Heisenberg model. The low Curie temperature
of TC = 16.6K [194, 195] makes it unattractive for potential application in room-temperature
electronics, but this is not concerning for scientific exploration in low-temperature physics.

Optical absorption and photoemission measurements determined that the energy gap, Eg ,
between the occupied valence band and the unoccupied conduction band in EuS is 3.1 eV.
Photoemission spectroscopy, however, measures 1.7 eV emission line, which is interpreted as
the photo-excitation of 4 f states to the conduction band [196]. In EuS-Al hybrids, a polarization
of around 50% of the bare Al gap has been found in experiments [185–187, 197, 198].

Fig. 4.1: Band structure of EuS-InAs hybrids. On the left, a sketch of the band structure of EuS
shows the relative position of the conduction and valence bend with respect to the localized
4 f 6 states responsible for the compound’s magnetic properties. On the right, a sketch of the
band structure of InAs shows the difference in the band gap of the two materials explaining the
insulating behavior of EuS at low temperatures.

EuS crystallizes in the face-centered cubic lattice, with a lattice parameter of around 5.97 Å,
which has only 1% lattice mismatch with InAs, making it a perfect candidate for epitaxial
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growth. Early efforts to integrate EuS with III-V semiconductors were made for spintronics
applications, yielding positive results for both GaAs [199–201] and also InAs [171, 193, 202].
A tricsystalline EuS-InAs-Al heterostructure, both in the VLS and SAG nanowires, has been
demonstrated two years later [170, 172]. These features a complex epitaxial matching of
wurtzite and zinc-blende InAs/rock-salt EuS interfaces as well as rock-salt EuS/face-centered
cubic Al interface. The stray field of both VLS and SAG nanowires was studied with SQUID
measurements of the stray field. The study reported a strong dominant shape anisotropy, with
a stray field pointing along the wire and taking the maximum value at the edge of the wire.

Analysis of the interfacial InAs-EuS band alignment revealed that the Fermi level lays close
to the InAs conduction band while being in the band gap of EuS and far from the localized 4 f
states. This causes the EuS to behave as an insulator at the low temperatures considered [170].

The induction of an exchange field in a semiconductor is not an obvious effect because
of the low density of carriers. Indeed, suppression of ferromagnetic order in the Eu layers
closer to the interface has been detected in InAs-EuS hybrids by both neutron and X-ray
reflectivity measurements [170]. This behavior is consistent with microscopic simulations of
EuS-InAs interface [203] that predict a low level of induced exchange field. This can be a great
obstacle that poses some constraints to the geometry of devices designed to leverage the direct
ferromagnetic proximity effect in the semiconductor. However, the spin-polarizing effect in
out-of-equilibrium situations in which a current flows through the EuS has been reported in
experiments [193].

4.3 Mechanisms for topological superconductivity

In experiments with ferromagnetic hybrid nanowires, spectroscopic measurements have
shown the onset of a zero-bias conductance peak, which has been interpreted as a signature
of localized Majorana zero modes at their ends [73]. This signature has been detected only
when the Al and the EuS layers overlap, Fig. 4.2(a). Samples with non-overlapping facets,
Fig. 4.2(b), have shown no signatures of zero-energy modes. This behavior is in contrast with
expectations that the main effect of EuS is to induce an exchange field in the semiconductor.
The discrepancy has sparked an intense theoretical discussion of the possible mechanism
for topological superconductivity in these structures. In this next section, we will provide an
argument against the hypothesis of a superconductor-mediated ferromagnetic proximity effect,
subject of Ref. [P1], and we will compare this result with other analyses from other groups.

Because of the lack of evidence of spin-polarization in samples with non-overlapping
facets, a direct proximity effect from the EuS to the InAs has to be excluded, or at least, it is
not sufficient to induce a topological transition. Another consequence of such a strikingly
different behavior is that we can exclude a strong influence of the stray field in the physics of
the device. Indeed, we can expect the magnetic fields in the two settings, overlapping and non,
to be comparable. For this reason, in the initial interpretation of the results, it was proposed
that the proximity mechanism is indirect, meaning that the EuS proximitizes the Al, inducing
an exchange field, as this effect has been extensively demonstrated in the past as discussed in
the previous section. In turn, the Al induces both superconductivity and an exchange field in
the semiconductor InAs, causing the topological transition.

In the following, we compare the two different situations. In the first case, the only ferro-
magnetic proximity effect in the device is mediated by the superconductor, which is spin-split
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Fig. 4.2: Cross sections of possible designs for ferromagnetic hybrid hexagonal nanowires.
The picture shows four different possible arrangements of the superconductor (Sc) and fer-
romagnetic insulator (FI) on top of a VLS semiconductor nanowire (Sm). The designs with
partially overlapping facets in (a) and non-overlapping facets in (b) have been reported in
experiments [P6, 73, 170, 172, 174]. The hypothetical setup (c) is shown to display an example
situation where the only ferromagnetic proximity effect in the semiconductor is mediated by
the superconductor, while the setup with completely overlapping facets in (d) has only been
proposed in Ref. [P1]

by the ferromagnetic proximity effect and, in turn, induces both a pairing potential and an
effective exchange field in the semiconductor. This case corresponds to the hypothetical
situation displayed in Fig. 4.2(c). It has also been considered as the main mechanism in the
situation of Fig. 4.2(a), in the case a thick ferromagnetic insulator layer is placed in between
the two materials such that the tunneling through the insulator is strongly suppressed.

In the second case, we consider an alternative explanation: a tunneling mechanism that
is spin-polarized. This is valid in the case of completely overlapping facets in Fig. 4.2(d) or in
partially overlapping, Fig. 4.2(a) when the ferromagnetic insulator is thin.

To assess the validity of these two hypotheses, we now introduce a minimal model for the
system. We consider a translation-invariant wire consisting of a single-channel semiconductor
coupled to a superconductor shell. The Hamiltonian of the system reads as

H = HSm +HSc +Ht . (4.2)

The semiconductor wire is described by

HSm =∑
pz

(
p2

z

2mSm
−µSm

)
c†

pz
σ0cpz +αx pz c†

pz
σy cpz , (4.3)

where we use the spinors cpz = (cpz↑, cpz↓) and cpzσ is the electron annihilation operator in the
semiconductor, while αx is the spin-orbit coupling strength.

The bare Hamiltonian for the superconductor shell is given by

HSc =
∑
npz

ξnpz a†
npz

σ0anpz +a†
npz

h ·σanpz +
(
a†

npz
∆npz iσy a†

n−pz
+H.c.

)
, (4.4)

where anpz is the electron annihilation operator for the mode n in the superconductor and

ξnpz = p2
z

2mSc
+εn −µSc. We neglect the possible superconductive interband coupling, and we

assume singlet pairing in the parent superconductor gap matrix∆npz =∆0,npzσ0. We model the
effect of the ferromagnetic insulator by a homogeneous exchange field h, which we consider to
be aligned to the wire.
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In our model, we consider a relatively clean superconductor shell with a well-defined distri-
bution of the transverse modes, εn , which strongly depends on the device geometry. Depending
on the cross-section of the shell, the separation between transverse modes can range from a
value larger than the superconducting gap to zero for a bulk superconductor, where the modes
above the gap form a continuum. The two regions are coupled by a momentum-conserving
tunneling Hamiltonian

Ht =
∑
npz

(
−c†

pz
Tnpz anpz +H.c.

)
, (4.5)

where the hopping matrix Tnpz = t0,npzσ0+tz,npzσz describes the electron tunneling processes
taking place at the interfaces between the two materials.

To analyze the effect of the spin-split superconductor, we analyze the shell self-energy
Σ(ω,n, pz ) =∑

n Tnpz GR
Sc(ω,n, pz )T †

npz
where the bare superconducting shell retarded Green’s

function in the basis of time-reversed pairs reads:

GR
Sc(ω,n, pz ) =

[
(ω+ i 0+)τ0σ0 −ξnpzτzσ0 −∆npzτxσ0 −hzτ0σz

]−1
, (4.6)

As a simplifying assumption, we ignore any back action of the semiconductor on the supercon-
ductor as the electron density in the semiconductor is orders of magnitude smaller than the
one in the superconductor.

Since we focus on the quantum phase transition characterized by the gap closing, we work
with the effective Hamiltonian Heff = HSm+H̃0 where the induced Hamiltonian is H̃0 =Σ(ω= 0).
We can split the effective Hamiltonian into three different contributions:

H̃0 =
∑
pz

c†
pz
µ̃(pz )σ0cpz + c†

pz
h̃z (pz )σz cpz +

(
c†

pz
∆̃0(pz )iσy c†

−pz
+H.c.

)
, (4.7)

These three terms describe the shift in the chemical potential, which can be neglected, the
induced exchange field, and the induced superconducting gap matrix in the semiconductor.
The explicit forms of these contributions are

h̃(1)
z (pz ) =∑

n

hz (t 2
0,npz

+ t 2
z,npz

)

ξ2
npz

+∆2
0,npz

−h2
z

, (4.8)

h̃(2)
z (pz ) =∑

n

−2ξnpz tz,npz t0,npz

ξ2
npz

+∆2
0,npz

−h2
z

, (4.9)

∆̃0(pz ) =∑
n

∆0,npz (t 2
0,npz

− t 2
z,npz

)

ξ2
npz

+∆2
0,npz

−h2
z

, (4.10)

where we have divided the induced exchange field into two contributions h̃z = h̃(1)
z + h̃(2)

z . The
first one is proportional to the splitting in the parent superconductor (4.8), while the second
one is linked to the spin-asymmetric tunneling amplitude of the barrier tz (4.9). We assume
that the parent superconductor pairing potential is constant along pz and is also approximately
constant for each band, even if different from the bulk value, ∆0,npz =∆0.
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Topological superconductivity through indirect exchange coupling

Under the superconductor-mediated ferromagnetic proximity effect hypothesis, the ferromag-
netic insulator induces a spin splitting in the superconductor. The superconductor, in turn,
induces superconductivity and an exchange field in the semiconductor. To check the presence
of topological phases, we calculate the ratio between the induced exchange field, h̃z , and the
gap, ∆̃0. The topological phases appear when the condition in Eq. (1.94) is met, which leads
to a closing of the superconducting gap at pz = 0. For this reason, we focus on this point in
momentum space in the following. A necessary condition to satisfy the inequality is having∣∣h̃/∆̃0

∣∣> 1.
Taking the ratio of Eqs. (4.8) and (4.10) for tz = 0, we see that∣∣∣∣ h̃z

∆̃0

∣∣∣∣= ∣∣∣∣ hz

∆0

∣∣∣∣< 1p
2

, (4.11)

so the induced
∣∣h̃/∆̃0

∣∣ ratio in the semiconductor is the same as in the superconductor and
thus needs to fulfill the Chandraskear-Clogston limit, Eq. (1.48), otherwise, superconductivity
is suppressed in the whole device. This result is independent of the mode distribution in
the superconductor within the constant ∆0 and tz approximation. If we allow the pairing
potential to be different in each mode, the induced

∣∣h̃/∆̃0
∣∣ ratio could take any value in the

range of
[
min(hz /∆0,n),max(hz /∆0,n)

]
depending on the coupling terms Tn . For a gapped

superconductor, all the modes close to the Fermi level fulfill ∆0,n > hz . With this constraint,
it is still not possible to get topological superconductivity in a semiconductor coupled to a
spin-split superconductor through a spin-symmetric tunnel barrier.

We have demonstrated that a spin-split superconductor cannot induce topological su-
perconductivity in a spin-orbit coupled semiconductor by the combined superconducting
and magnetic proximity effect. This is in contradiction with the superconductor-mediated
ferromagnetic proximity effect hypothesis.

Spin-dependent tunneling

We consider now the case of spin-asymmetric tunneling between the superconductor and
the semiconductor, taken as momentum independent for simplicity and described by T =
t0σ0 + tzσz . As Eqs. (4.8)–(4.10) show the induced terms in the effective Hamiltonian are
dependent on the distribution of the transverse modes in the superconductor with respect
to the chemical potential. In particular, they decay with the energy difference between the
bottom of the superconductor mode and the chemical potential. This means that the modes
closer to the semiconductor Fermi energy give the dominant contribution to the induced
superconducting pairing and exchange fields at pz = 0.

We first analyze the contribution of an isolated superconductor mode to the effective
Hamiltonian, as the ones from the different modes add up. The behavior of the induced term
in the effective Hamiltonian is illustrated in Fig. 4.3(a). The two terms of the induced exchange
field h(1)

z and h(2)
z sum constructively for occupied modes. Both h̃z and ∆̃0 decay for

∣∣ξn,0
∣∣→∞,

leading to the existence of an optimal regime where both the induced exchange field and
superconducting pairing are maximal and

∣∣h̃z /∆̃0
∣∣> 1. This is the ideal region for searching for

topological superconductivity.
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Fig. 4.3: Induced fields in the effective Hamiltonian. Induced gap ∆̃0 (blue line), exchange
field contributions h̃(1)

z and h̃(2)
z (dashed lines), and total spin splitting h̃z = h̃(1)

z + h̃(2)
z (red

line) at pz = 0 induced in the semiconductor. (a) Results for a single transverse mode of
a spin-split superconductor as a function of the chemical potential in the superconductor,
µSc −ε0. (b) Results for the case of a multimode superconductor as a function of the chemical
potential from mid-band δµSc. The effect of the resonance peaks in h̃(2)

z cause an oscillation
between topologically trivial and nontrivial phases while varying the chemical potential in
the superconductor. The area with gray background is topologically trivial, while the one
with white background satisfies the condition

∣∣h̃z
∣∣> ∆̃0. Parameters: ∆0 = 1, t0 = 1, −tz = 0.4,

−hz = 0.5 for (a) and (b), and δε= 10 for (b).

In general, a spin-dependent component ti in the tunneling matrix enhances the collinear
component in the exchange field h̃i , suppressing the non-collinear components in h̃ and the
superconducting gap in the semiconductor. From Eqs. (4.8)–(4.10) we see that ∆̃ and h̃(1)

z share
the same dependence on the superconductor band structure (they decay as ∼ ξ−2) while having
a different prefactor which depends on the tunneling matrix. Therefore, the spin splitting in
the superconductor leads to an enhancement of

∣∣h̃z
∣∣ and provides a first mechanism to induce

topological superconductivity in the semiconductor.

In contrast to h̃(1)
z , the second contribution h̃(2)

z to the induced exchange field in the semi-
conductor is totally independent of the spin polarization in the parent superconductor. This
term depends solely on the spin-asymmetric component of the tunneling Hamiltonian. More-
over, h̃(2)

z has an energy dependence ∼ ξ−1, with a sign that depends on the relative position of
the mode to the superconductor Fermi energy. Since ∆̃0 and h̃(1)

z decay as ∼ ξ−2, h̃(2)
z dominates

as the energy difference between the semiconductor and superconductor modes increases.
This contribution exhibits a sign change, which leads to a cancellation of h̃(2)

z in the limit of
small energy separation between modes. However, the transverse modes can exhibit a large
energy separation in thin superconductors because of quantum confinement effects.

If the separation between transverse modes in the superconductor is large enough, the
contribution of the mode closest to the chemical potential dominates over the other ones.
We can visualize this system as two coupled one-dimensional wires, where one features both
exchange field and superconductivity while the other features only spin-orbit coupling. This
case is discussed in detail in Ref. [P1].

In a more realistic scenario, the superconductor features many transverse modes. In
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this case, Eqs. (4.8)–(4.10) explain how the induced terms in the semiconductor effective
Hamiltonian are determined by the sum of the contributions of each mode. The relative energy
of the transverse modes in the superconductor strongly affects the gap polarization in the
semiconductor, becoming a critical factor for the appearance of the topological phase. For the
systems of interest, the dimensions of the superconductor section vary from a few to hundreds
of nanometers. For small lengthscales, the effect of quantum confinement separates the
superconductor modes such that it is not possible to treat the density of states like a continuum.

Both ∆̃0 and h̃(1)
z have a Lorentzian shape with a full width at half maximum Γ=

√
∆2

0 −h2
z . We

can use Γ as a reference to distinguish between discrete modes, δε≫ Γ, and a continuum
distribution of modes, δε≪ Γ, where δε is the average separation of modes. Indeed, if the
average energy separation between the transverse modes is δε≳Γ, the resonance peaks do
not overlap entirely, and h(2)

z do not completely cancel out. In this case, the net exchange field
experienced in the semiconductor will be due to the sum of the contribution of each transverse
mode.

To provide a clearer picture, we consider the case where the band structure of the su-
perconductor can be described by perfectly equidistant transverse modes. In this case, δε
is the relative separation between the superconductor modes. This approximation recovers
the continuum limit for a two-dimensional system, where we expect a constant density of
transverse modes gm = (δε)−1. We also define δµSc as the relative position of the Fermi energy
in the superconductor from the middle of the band.

We consider that, in the relevant energy scale, the band structure of the superconductor
can be described by Nm modes distributed in an energy range EB . For simplicity, we will
take equidistant modes with energy difference δε = EB /Nm . This is also consistent with
the continuum limit since, for a 2D system, we can expect a constant density of transverse
modes gm = (δε)−1. We also define δµSc as the relative position of the Fermi energy in the
superconductor from the middle of the band. We proceed by summing over the modes’
contributions following Eqs. (4.8)–(4.10) to derive the value of the induced terms in the
effective Hamiltonian. In the limit Nm = EB /δε≫ 1 we get to

h̃(1)
z (pz ) ≃πgm

hz

Γ
(t 2

0 + t 2
z )G

[
πgmΓ,πgm

(
δµ− p2

z

2m∗
Sc

)]
, (4.12)

h̃(2)
z (pz ) ≃ 2πgm t0tz F

[
πgmΓ,πgm

(
δµ− p2

z

2m∗
Sc

)]
, (4.13)

∆̃0(pz ) ≃−πgm
∆0

Γ
(t 2

0 − t 2
z )G

[
πgmΓ,πgm

(
δµ− p2

z

2m∗
Sc

)]
, (4.14)

where we define the auxiliary functions

F (x, y) = cot
(
i x + y

)−cot
(
i x − y

)
2

= sin
(
2y

)
cosh(2x)−cos

(
2y

) ,

G(x, y) = i
cot

(
i x + y

)+cot
(
i x − y

)
2

= sinh(2x)

cosh
(
2y

)−cos(2x)
.

(4.15)

These expressions can be used to derive the induced fields in the effective Hamiltonian. The
behavior of the induced terms for pz = 0 is illustrated in Fig. 4.3(b). By varying the chemical
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potential in the superconductor, we see an alternation of trivial regions (gray background) and
regions where topological superconductivity can appear by tuning µSm (white background) as
the modes cross the Fermi level. Additionally, with a simple linear search for the minimum
eigenvalue, find the effective gap shown in Fig. 4.3(b).

Fig. 4.4: Phase diagram for the case of a multimode superconductor. The effective gap in
the semiconductor is |∆eff| = minn,pz En,pz , where En,pz are the Hamiltonian eigenvalues and
sign given by the topological invariant WZ2 . We observe an oscillation between the topological
(red) and trivial (blue) phases as we vary the chemical potential measured from the middle
of the band δµSc. As the density of transverse modes gm increases, the peaks get closer and
overlap until they merge in the continuous limit gm ≫ (∆0)−1. In the continuum limit, the
system is in a globally trivial or topological phase, depending on the condition in Eq. (4.17).
We assume that the chemical potential in the semiconductor is tuned such that µSm = −µ̃.
Parameters used: m∗

Sc = 1, m∗
Sm = 0.2, αx /∆0 = 20, Vz /∆0 = 0.5, t0/∆0 = 1. For the left panel, we

use tz /∆0 = 0.4, while for the right panel, we use tz /∆0 = 0.7.

The limit gm ≪ 1/∆0 corresponds to a large superconductor where the effect of quantum
confinement becomes completely negligible. This behavior can be realized if the average
separation of the transverse modes is such that δε≪Γ. In this limit, the contributions from
each mode overlap, leading to a globally trivial or topological phase, depending on the polar-
ization of the spin-filter barrier tz /t0. A quantitative criterion can be obtained by integrating
Eqs. (4.8)–(4.10) over a constant density of transverse modes. In this limit, the term in Eq. (4.9)
vanishes, and we get ∣∣∣∣ h̃z

∆̃0

∣∣∣∣= ∣∣∣∣ hz

∆0

∣∣∣∣
∣∣∣∣∣ t 2

0 + t 2
z

t 2
0 − t 2

z

∣∣∣∣∣ . (4.16)

We note that the spin-dependent tunneling leads to an enhancement of the induced
exchange field while reducing the induced superconducting gap. This effect can be used to
bring the hz /∆0 ratio above one, closing the gap at pz = 0 and inducing a quantum phase
transition to the topological phase. Therefore, the spin-asymmetric tunneling provides a way
to overcome the limitation of Eq. (4.11) and to induce a phase transition to the topological
phase, Fig. 4.2(a). The topological phase appears for a barrier polarization

tz

t0
>

√
1−|hz /∆0|
1+|hz /∆0|

. (4.17)
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As discussed in the previous section, the behavior of the system is strongly dependent
on the band structure of the superconductor, which is controlled by the dimension of the
superconducting region. If a wide shell is used, the transverse modes of the nanowire will
be densely distributed in the energy spectrum. In this case, h̃(2)

z vanishes, and topological
superconductivity can only be induced using the spin-asymmetric tunneling to enhance h̃(1)

z
and suppress ∆̃0, Eq. (4.16).

Finally, we note that both nanowires superconductor shell and superconductor layers in
2DEG systems are around 5 nm thick, so we can already expect a measurable effect of quantum
confinement in this direction. For this reason, we expect that the resonance effect discussed
previously can be measured by scaling down the width of the devices.

To check if the ferromagnetic hybrid nanowire is in this regime, we can estimate the average

mode separation by a simple particle in a box model δε ≃ ℏ2

2m∗
Sc

π2

L2
Sc

, where LSc refers to the

largest dimension of the cross-section of the superconductor shell. Assuming that Γ∼ 100µeV,
which is in line with the experimental measurements of Al-EuS heterostructures [73, 187],
we estimate that, in order to observe well-separated modes, the maximum dimension of the
shell should be in the order of 60 nm. In experiments, the facet length is around 60 nm [73].
For this reason, we expect the contributions of the modes in the superconductor to overlap
significantly. Previous measurements performed on EuS-Al heterostructures have shown a
polarization of around 50% of the gap. In this case, applying (4.17), we can estimate that a
spin-dependent barrier with a 58% polarization is enough to cause a topological transition.

Connection with other works

Several other groups independently analyzed the same problem in the same period, finding
complementary results. These works, all together, allow us to understand the physics of the
device in a convincing way and build a comprehensive picture.

The importance of the electrostatic environment has been independently pointed out by
three works [204–206]. The conclusions are similar: in general, in the nanowire geometry with
non-overlapping facets, the wavefunction is localized near the superconductive shell. This
is due to the electrostatic environment that favors the creation of a quantum well near the
superconductor, which also acts as a metallic gate. In general, fine-tuning from back and side
gates is necessary to push the electron wavefunction close to both the superconductor and
ferromagnetic facets to maximize magnetic and superconducting correlations simultaneously.
This condition is extremely hard to achieve in the non-overlapping facets, as the ferromagnetic
layer is insulating, and thus the wavefunction weight in the region near the interface is small.

The result concerning the impossibility of topological phases by superconductor-mediated
exchange field has been extended to generic systems in terms of a more general requirement
about the minimal Zeeman field for a topological phase transition [207]. In particular, a
necessary condition for the appearance of a topological phase in a nanowire is the presence of
a region in the cross-section where the exchange field overcomes the pairing amplitude. This is
clearly not the case for a spin-split superconductor symmetrically coupled to a semiconductor.
The spin-dependent tunneling barrier, instead, can be seen as a region where this condition
applies.

The ferromagnetic hybrid nanowire physics has been explored using a self-consistent
treatment of a diffusive superconductor in Ref. [208] with similar results, while in the opposite
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limit of clean systems with, it has been proved that an extremely thin superconductor layer
could be used to obtain topological phases even in the ferromagnetic insulator-superconductor-
semiconductor stack [209], Fig. 4.2(c).

4.4 Tunneling design for topological superconductivity

In the previous section, we proved that a hybrid system composed of a spin-split supercon-
ductor coupled to a semiconductor nanowire could not be tuned to the topological phase. As
an alternative mechanism, we discussed how spin-asymmetric tunneling could be used to
overcome this limitation. The spin-dependent tunneling suppresses the induced supercon-
ducting pairing potential while enhancing the spin splitting, thus providing a way to reach the
topological phase. While this mechanism is unlikely to explain the appearance of a topological
phase in nanowires with partially overlapping facets observed in Ref. [73], because of the
relatively thick EuS layer used, the concept of spin-dependent coupling can be exploited in the
next generation of topological superconducting devices without magnetic field by promoting
spin-asymmetric tunneling as the main mechanism. This idea is represented in Fig. 4.2(d),
where a thin ferromagnetic insulator layer is used as a spin-filter tunnel barrier. The proposed
mechanism is compatible with the currently used hybrid superconductor-semiconductor
platforms. Estimating the optimal magnetic barrier length to achieve this polarization is a
complicated task. As the barrier gets thicker, we expect a stronger polarization, but at the same
time, the coupling between the two systems gets strongly suppressed. Therefore, the optimal
barrier length would be determined by the trade-off between a strongly polarizing thick barrier,
which suffers low transparency, and a thin transparent barrier with low polarization.

To assess more precisely the design requirements for this idea, we explored further the idea
with detailed microscopic simulations in a subsequent paper [P2] where we study ferromag-
netic hybrid heterostructures comparing the 2DEG, Fig. 4.5(a), and VLS designs, Fig. 4.5(c). The
core idea is that, due to the band alignment properties between materials, shown in Fig. 4.5(b),
a quantum well hosting an accumulation layer appears at the semiconductor-ferromagnetic
insulator interface. The role of the ferromagnetic insulator layer is two-fold: to induce an
exchange field in the quantum well and the superconductor and to act as a spin-polarized
barrier for electrons.

Model

Both two structures can be described by the BdG Hamiltonian

H=
[

k · ℏ2

2m(r)
k+ECBM(r)−eϕ(r)+ 1

2
{(αR ×××σ) ,k}

]
τz+

hx (r)σxτ0 +∆(r)σ0τx .

(4.18)

We consider a translation invariant system in the x-direction such that k = (kx ,−i∂y ,−i∂z )
with kx being a good quantum number. The model parameters are the effective mass m, the
conduction-band bottom ECBM, the exchange field hx (non-zero only in the ferromagnet), and
the superconducting pairing potential ∆ (non-zero only in the superconductor domain, taken
real). These parameters have a constant value inside each material.
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Fig. 4.5: Geometry and band alignment of ferromagnetic hybrid heterostructures for topo-
logical superconductivity.
(a) semiconductor-ferromagnetic insulator-superconductor 2D heterostructure stacked in the
z-direction and infinite in the x-direction. The substrate is insulating and typically composed
of several stacked semiconducting layers. The top gate can be used to confine the wavefunction
below the grounded superconductor. The thickness of the ferromagnetic insulator layer dFI is
varied to optimize the topological properties. (b) Schematics of the conduction-band bottom
along the heterostructure stacking direction for a specific choice of materials (InAs/EuS/Al)
and representative geometrical parameters (dSm = 10 nm, dFI = 2 nm, dSc = 8 nm and LSc = 100
nm). Red and blue colors represent different spin directions, and the gray dashed line depicts
the Fermi level. (c) Sketch of the hexagonal nanowire geometry simulated for comparison. The
nanowire is partially covered by a ferromagnetic insulator layer. On top of the ferromagnetic
insulator, a grounded superconductor layer is included. The nanowire is gated from below
using a back-gate isolated from the wire by a 200 nm thick SiO2 dielectric.

For the planar heterostructure, we use a 10 nm thick layer of InAs as the host of the 2DEG.
Usually, the InAs layer is grown on top of an elaborate multilayer semiconductor substrate,
used to relax lattice stress and defects. We introduce the substrate in the model by taking a
400 nm-thick layer of In0.25Ga0.75As. The superconductor is a stripe 100 nm wide and 8 nm
thick of Al. A 8 nm dielectric layer of HfO2 isolates the top gate from the rest of the system. We
include in the model an amorphous oxide layer that naturally covers the exposed Al surface
to vacuum, which has been shown to be beneficial for the superconducting proximity effect
since it significantly enhances the size of the induced gap [74]. The intuitive explanation of
this effect is that disorder breaks the conservation of momentum, allowing for a more regular
proximity effect. We restrict the disorder to a layer of 2 nm thickness at the outer surface of
the superconductor, where we introduce a random on-site potential sampled from a Gaussian
distribution with a variance of 1 eV. The remaining parameters are presented in Table 4.2,
including typical values for the effective electron mass m, Rashba spin-orbit coupling field
αR, conduction band minimum ECBM, exchange field hx , dielectric constant ϵ, and pairing
potential ∆ for each material.

For the VLS nanowire geometry, a hexagonal InAs nanowire of 80 nm width is covered over
two facets by a thin EuS layer. The outer facets of the EuS layer are covered in turn by an 8 nm

82



4.4. Tunneling design for topological superconductivity

thick Al layer. The wire is deposited on top of a 200 nm thick SiO2 dielectric and gated from
below through a back gate.

We describe the ferromagnetic insulator as a wide-bandgap semiconductor with a spin-
split conduction band laying above the Fermi level, as depicted schematically Fig. 4.5(b). This
work assumes that the ferromagnet exhibits a homogeneous in-plane magnetization along the
x-direction and negligible stray fields, consistent with the measured easy-axis in thin EuS [170].

Numerical methods

We compute the electrostatic potential with the Thomas-Fermi approximation described in
Ch. 2 for the conduction band electron only. We take into account the band bending produced
at the InAs-EuS interface [172, 206] using a one-site-thick layer of positive fixed charge located
at the semiconductor-ferromagnetic insulator interface. Dirichlet boundary conditions are
applied to the grounded superconductor stripe, i.e., VSc = 0, and to the top-gate Vtg. As a
result of the electrostatic simulation, the scalar potential ϕ is used to tune the electrochemical
potential and to calculate the Rashba spin-orbit field.

After the calculation of the electrostatic interactions, we discretize the continuum Hamilto-
nian in Eq. (4.18) following a finite differences scheme with a grid of 0.1 nm. We diagonalize
the resulting sparse Hamiltonian for different top-gate voltages Vtg, and longitudinal momenta
kx .

We compute the topological invariant using the method introduced in Ref. [205]. We start
by defining the winding number as

C = 1

2πi

∫
BZ

dk 〈Φk |∂k |Φk〉 . (4.19)

Material Parameter Value

InAs m 0.023m0

ECBM 0
ϵInAs 15.5ϵ0

ρsurf 2 ·10−3 e nm−3

Al m m0

ECBM -8 eV
∆ 0.23 meV
α 0

EuS m 0.3m0

ECBM 0.7 eV
hx 0.1 eV

Dielectrics ϵEuS 10ϵ0

ϵInGaAs 13.9ϵ0

ϵHfO2 25ϵ0

ϵSiO2 3.9ϵ0

Table 4.1: Parameters used for the simulations of the planar heterostructure.
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Material Parameter Value

InAs thickness 10 nm
width 200 nm

Al thickness 8 nm
oxidation thickness 2 nm

width 100 nm
In0.25Ga0.75As thickness 400 nm
HfO2 thickness 8 nm

Table 4.2: Geometrical dimensions used in the planar heterostructures.

where Φk is the many-body wavefunction (a Slater determinant). This can be expressed as

C = 1

2π
Arg{det(W)} = 1

2π

∑
l

Arg{λl } , (4.20)

where W is the so-called Wilson matrix and {λl } are its eigenvalues. The Wilson matrix can be
evaluated as W =∏

kl
Wkl ,kl+i

where

W i , j
kl ,kl+1

=
〈
Ψ(i )(kl )

∣∣∣Ψ( j )(kl+1)
〉

. (4.21)

In practice, it is enough to include only the high-symmetry k-points in the product inside
the Wilson matrix. In our case, these points are kz = {−π,0,π}, which gives as a result the Wilson
matrix W =W−π,0W0,πWπ,−π. Additionally, since only the non-trivial topological eigenstates
provide a non-zero contribution to the winding number, and these states can only emerge
close to the Fermi level in the studied system, it is enough to include the closest states to the
Fermi level in the Wilson matrix.

While the calculation of the topological invariant precisely characterizes the topological
phase diagram, it does not provide an intuitive picture of the behavior of the device. To gain
some insight, we map the behavior of each mode of the system to an effective 1D Oreg-Lutchyn
model, using effective parameters that characterize each mode.

The approximation assumes the separability of the eigenfunctions into a product of a
purely spatial profile ψn(r), and a position-independent Nambu spinor νn for the spin and
particle-hole subspaces, i.e., Ψn(r) ≃ψn(r)νn . This approximation is valid for any subgap state
when the heterostructure thickness is small compared to the length where the spin and Nambu
components change significantly.

The effective Hamiltonian for each transverse mode n is

Heff,n =
( ℏ2k2

x

2meff,n
−µeff,n +heff,nσx

)
τz +αeff,nkxσyτz +∆eff,nσyτy , (4.22)
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Fig. 4.6: Topological invariant vs 1D topological criterion. Topological criterion comparing
results from computing the topological invariant (white/gray background for the topologi-
cal/trivial phases) and the effective 1D model (green line). We show results as a function of
the top-gate voltage Vtg and for two different ferromagnetic insulator thicknesses (a,b). The
remaining parameters are the same as in Fig. 4.9.

where the effective parameters are given by

heff,n ≡ 〈hx (r)σ0τ0〉n = h0WFI,n , (4.23)

∆eff,n ≡ 〈∆(r)σ0τ0〉n =∆0WSc,n , (4.24)

µeff,n ≡
〈(
∂x

ℏ2

2m(r)
∂x +∂y

ℏ2

2m(r)
∂y +ECBM(r)−eϕ(r)

)
σ0τ0

〉
n

, (4.25)

αeff,n ≡ 〈αz (r)σ0τ0〉n , (4.26)

m−1
eff,n ≡

〈 1

m(r)
σ0τ0

〉
n

, (4.27)

being Wβ,n = ∫
r∈β |Ψn(r)|2 dr the weight of the wavefunction in the material β. Here, h0 and

∆0 are the parent exchange field in the ferromagnetic insulator and parent superconducting
gap in the superconductor, correspondingly. For heff,n , we neglect additional contributions
arising from the spin-orbit interaction for simplicity. In Fig. 4.6, we compare the value of the
topological invariant obtained with the Wilson loop and the one obtained using the effective
parameters defined above. In general, there is strong agreement between the two methods,
validating the definition of the effective parameters.

Comparison of electrostatic landscapes in the two geometries

A good understanding of the electrostatic environment is crucially needed for a fragile ob-
jective like topological superconductivity, and it reveals fundamental to understanding the
different performances of the VLS and 2DEG devices. The cornerstone of the electrostatics
in these devices is the strong band-bending at the interface between the semiconductor and
the ferromagnetic insulator, able to induce a natural 2DEG in the accumulation layer at the
interface. This enhances the topological properties of the device by confining electrons close
to the proximitized region.
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Confinement in the transversal direction is obtained in different ways: in the VLS nanowire
is due to the geometry of the device, while in the 2DEG, a quasi-1D system can be defined by
means of electrostatic lateral confinement. This is achieved by applying a negative potential to
the top gate that depletes the 2DEG everywhere except underneath the grounded superconduc-
tor stripe, which screens the electric field coming from the top gate. This allows controlling the
lateral extension of the semiconductor 1D channels. Moreover, the top gate allows for partial
control of the local chemical potential in the effective wire.

To illustrate this, we show in Fig. 4.7(a) an example of the electrostatic potential profile
across the device’s section in a highly-depleted regime (i.e., for a large negative Vtg potential).
Electrons are attracted to positive potential regions, meaning that their wavefunction is local-
ized mainly in these regions. As one can appreciate in Fig. 4.7(a), when the top gate depletes
the system, the electrostatic potential is only positive inside the semiconductor in the region
below the superconductor, due to the screening created by the superconductor stripe. This
effect leads to the confinement effect mentioned previously. On the other hand, for positive
voltages, the electrostatic potential is positive all across the semiconductor section, and thus,
electrons are not only localized beneath the superconductor but spread in the whole structure,
like in Fig. 4.7(b). This, in turn, suppresses the semiconductor-superconductor coupling and,
consequently, this situation is unfavorable to developing a topological superconducting regime
inside the semiconductor.

The electrostatic potential profile across the hexagonal nanowire is shown in Fig. 4.7(c) and
(d), together with the planar device’s profiles (a,b) for comparison. Fig. 4.7(c) shows the case
where the back gate strongly depletes the wire. The electrostatic potential is larger close to
the ferromagnetic insulator-superconductor interface due to the band-bending present there.
However, the electrostatic potential is positive in the entire upper half of the wire, i.e., up to
∼30 nm away from the semiconductor-ferromagnetic insulator interface. Hence, the electron
wavefunction will spread all across that region [positive φ(r)], and therefore its localization
close to the superconductor will be smaller compared to the planar device. This necessarily
leads to a worse hybridization with both the ferromagnetic insulator and the superconductor.
For completeness, we show in Fig. 4.7(d) the case where the back gate fills the wire (i.e., positive
Vbg). In this case, the electrostatic potential is nearly homogeneous across the wire’s section,
and thus, the hybridization between the semiconductor and the ferromagnetic insulator and
superconductor will be almost completely suppressed.

The consequence of the rectangular well that characterizes the planar structure is the
regularity in the eigenmode wavefunctions. We show two examples of the wavefunction profile
in Fig. 4.8 for the two geometries considered. The four cases correspond to the lowest-energy
states in a topological regime. In the 2DEG geometry (a,b), the wavefunction is well localized
below the superconductor stripe with a regular nodes distribution, top panels in Fig. 4.8. This is
a consequence of the strong vertical confinement imposed by the thin semiconductor layer. In
contrast, the wavefunction in the hexagonal nanowire, bottom panels in Fig. 4.8, spreads across
the whole cross-section of the wire in some cases [Fig. 4.8(d)], having a significant weight at
positions several nanometers away from the semiconductor-ferromagnetic insulator interface.
The reduced localization at the interface and the irregular distribution affect the value of
the effective superconducting pairing and exchange potential. This results in the reduced
topological region, spectral gap, and irregular distribution of the trivial and topological phases
in parameter space.

Finally, another consequence of the regular electrostatic potential of the planar design is
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Fig. 4.7: Electrostatic potential profiles. (a, b) Electrostatic potential across the planar device’s
section for two different top gate potentials: (a) Vtg =−0.8 V and (b) Vtg = 0 V. In (c, d), we show
the same profiles but for the hexagonal wire device, for (c) Vbg =−4 V and (d) Vbg = 0 V. Black
lines represent the interfaces between different materials.

that the spin-orbit field (∼ k×××αR) is mainly oriented in the y-direction (∼ αR,z kxσy ), with
small components in the x and z-directions. Contributing to the predictability of the device
behavior.

Topological superconductivity in the planar heterostructure

The low-energy wavefunctions decay exponentially in the ferromagnetic insulator layer on

a length scale approximately given by ξFI =
√

2ECBM,FImFI/ℏ2, where ECBM,FI is the conduc-
tion band minimum in the ferromagnetic insulator with respect to the Fermi level. For our
materials choice ξFI ≈ 2.3nm. As a consequence, the thickness of the ferromagnetic insulator
layer determines the tunneling amplitude between the 2DEG and the superconductor: thicker
ferromagnetic insulator layers decouple the 2DEG from the superconductor resulting in a
reduction of the superconducting proximity effect, while thinner ones exhibit a reduced in-
duced magnetization in the 2DEG. Hence, an optimal barrier thickness allows for a sufficiently
large induced exchange field and pairing potential in the 2DEG to drive the system into the
topological regime.

The topological phase transition of the system occurs at a gap closing and reopening when
the lowest energy subband crosses zero energy at the kx = 0 high symmetry point. For this
reason, in Fig. 4.9 we show the energy spectrum of the system at kx = 0 as a function of the top-
gate voltage for three different values of the ferromagnetic insulator thickness (dFI). The white
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Fig. 4.8: Wavefunction profiles comparison between the two geometries. Wavefunction
profile of the lowest-energy state in the 2DEG device (a) in a non-trivial topological phase close
to pinch-off, Vtg =−850 mV, and (b) in a trivial phase after several subbands are populated in
the wire, and the wavefunction is not localized anymore, Vtg = 300 mV. We take dFI = 1.5 nm,
and the rest of the parameters are the same as in Fig. 4.5. In (c,d), we show the same profile
but for the hexagonal nanowire device, also (c) in a non-trivial topological regime close to
pinch-off, Vbg =−4 V, and (d) in a different non-trivial phase but after several subbands are
occupied in the wire, Vbg =−1V.

(gray) background denotes the topological (trivial) phase, determined by the corresponding
topological invariant.

The left panels in Fig. 4.9 show the regime where the ferromagnetic insulator is too thin
to induce a topological phase transition. The energy spectrum shows low-energy bands
localized mainly in the superconductor, represented by the black color in Fig. 4.9(a). In this
case, superconductivity dominates the properties of the low-energy modes while in Fig. 4.9(b)
we show the effective superconducting pairing amplitude and exchange coupling.. For this
thickness, we observe that heff is mostly below ∆eff, consistent with the system being in the

trivial regime as the topological condition |heff|≳
√
∆2

eff +µ2
eff cannot be fulfilled.

The situation becomes more favorable for ferromagnetic insulator layers of intermediate
thickness, middle panels in Fig. 4.9. As a function of Vtg, the system shows several topolog-
ical transitions when consecutive subbands cross zero energy. The topological regions are
characterized by a non-trivial topological invariant and are marked by a white background in
Figs. 4.9(b) and (e). In these regions, the lowest-energy wavefunction has a significant weight
in both the superconductor and the semiconductor, as illustrated by the purple line color. The
topological transition is associated with an increase of heff, overcoming the value of ∆eff, see
Fig. 4.9(e). The small deviations found are due to the approximated character of the effective
parameters. We note that, for the optimal range of dFI, every subband can be tuned to the
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topological regime as Vtg is varied, in contrast to the hexagonal wire case where some subbands
do not show a topological crossing, see for instance Ref. [205]. This is due to the effective
hard-wall confinement of the wavefunction in the thin semiconductor layer in the z-direction
[see Fig. 4.5(a)], which keeps the wavefunction close to the ferromagnetic insulator- super-
conductor layers for every subband. As a consequence, the device shows a regular alternation
of trivial and topological regions against Vtg with comparable spectral gaps. The topological
regions thus occupy a larger area in parameters space compared to the hexagonal wire case,
where the appearance of the topological regions is more erratic since the wavefunction can
spread throughout the wide hexagonal section, sometimes avoiding a good proximity effect
with the superconductor-ferromagnetic insulator layers.

The situation of a too-thick ferromagnetic insulator barrier is illustrated in the right panels
of Fig. 4.9. A thick barrier hinders tunneling through the ferromagnetic insulator, preventing
the hybridization of superconductor and 2DEG states. The reduced hybridization between the
two materials can be seen from the shape of the spectrum in Fig. 4.9(c), where the system shows
an almost horizontal black line at the superconductor gap (E ∼ 0.23meV) and a series of almost
vertical lines (orange dots) crossing the gap. This is also manifested in the abrupt transitions of
effective parameters in Fig. 4.9(f). When ∆eff > heff the ground-state wavefunction is localized
mostly in the superconductor and it is essentially independent of the gate voltage, whereas
when ∆eff < heff it is localized mostly in the semiconductor. We note that the regions with a
large effective exchange field also exhibit a suppressed superconducting pairing, consistent
with normal gapless states in the semiconductor.
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Fig. 4.9: Topological phase diagrams for different ferromagnetic insulator thicknesses. Top
row: energy spectrum at kx = 0 as a function of the top-gate voltage Vtg for a ferromagnetic
insulator thickness of (a) dFI = 1 nm, (b) dFI = 1.5 nm and (c) dFI = 4 nm. Colors represent
the weight WSc of each state in the superconducting Al layer. Shaded Vtg regions are those
characterized by a trivial phase, i.e., Q=+1; while white regions correspond to a topological
phase, i.e., Q = −1. Bottom row (d,e,f): effective exchange coupling heff (solid lines) and
superconducting pairing amplitude ∆eff (dotted lines) for the lowest-energy state in (a), (b), (c).

The properties of a topological superconductor are highly dependent on the value and
quality of the topological spectral gap, which we examine now. In Fig. 4.10, we consider a
device with dFI = 1.5 nm as we sweep Vtg. We show the energy subbands versus momentum kx

and the spin-resolved density of states (DOS) in three representative situations: before (left
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column), at (middle column), and after (right column) the topological transition. Before the
transition, Fig. 4.10(a), the heterostructure features a trivial gap and the above-gap states are
mostly localized in the superconductor (black color curves). The DOS displays a hard gap
around zero energy and the characteristic spin-split superconducting coherence peaks, see
red and blue curves in Fig. 4.10(d). From this plot we infer that the induced exchange field in
the superconductor is around 100µeV (∼ 50% of the Al gap), consistent with the value found
in experiments [187, 197, 198]. A similar peak splitting is found in Figs. 4.10(e,f), i.e., it is
independent of the value of the gate potential.

At the topological transition, one subband crosses zero energy at kx = 0, Fig. 4.10(b). It
results in a finite DOS inside the superconducting gap, see Fig. 4.10(e). As we increase Vtg,
the superconducting gap reopens in the topological phase, Fig. 4.10(c), accompanied by the
onset of Majorana bound states at the ends of a finite-length quasi-1D wire defined by the
superconductor stripe (not shown). The hard gap found in Fig. 4.10(f), Emin, has a typical value
of tens to a hundred µeV. We associate the large topological gaps found in these devices with
the electrostatic confinement in the vertical direction. The thin semiconductor layer, together
with the top gate tuned to negative values, makes it possible to concentrate the weight of
the wavefunction in the region where superconductivity, magnetism, and spin-orbit coupling
coexist. This is signaled by the purple color of the lowest-energy subband in Fig. 4.10(c).
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Fig. 4.10: Topological phase transition and DOS. Dispersion relation for a device with EuS
layer thickness dFI = 1.5 nm, and for (a) Vtg = −925 mV (before the topological transition),
(b) Vtg = −900 mV (at the topological transition), and (c) Vtg = −850 V (in the middle of the
topological phase). In (d-f) we show the spin-resolved integrated DOS of the corresponding
plot on the top. Only the (c,f) case is topological, with Emi n being the topological spectral gap,
i.e., the lowest-state energy at kx = kF.

Finally, we vary the ferromagnetic insulator thickness to extract the optimal range for
topological superconductivity, Fig. 4.11. The effective exchange coupling is shown in Fig. 4.11(a)
and the effective superconducting pairing in Fig. 4.11(b). The transverse modes considered
(depicted with different colors) are the first four lowest-energy subbands that get populated
starting from a depleted semiconductor as we increase Vtg. For each calculated point, we tune
Vtg to the value where the subband is closer to the Fermi level (E = 0), where heff is maximum,
see Fig. 4.9(e,f). Therefore, each point corresponds to a different Vtg value. We observe that in
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general heff increases with dFI because of the growing weight of the wavefunction inside the
ferromagnetic insulator. In contrast, the effective superconducting pairing decreases with the
ferromagnetic insulator thickness as the weight of the wavefunction in the superconductor
diminishes.

The topological spectral gap is shown in Fig. 4.11(c). It is calculated for the value of Vtg that
maximizes Emin for each subband, i.e., well within the topological region. Depending on the
transverse mode, its value ranges from tens to a hundred µeV. Note that we have used the bulk
superconductor gap for the Al layer, ∆0 = 230µeV.

Interestingly, for the small semiconductor thickness considered here (10 nm), Emi n is
essentially constant with dFI for every transverse mode. This is again a consequence of the
vertical confinement that tends to produce regular topological patterns.

The topological phase can appear when the ferromagnetic insulator magnetization is
not aligned with the spin-orbit field, which is oriented fundamentally in the y-direction the
planar heterostructure, and it is maximized when the magnetization and the spin-orbit field
are perpendicular. We note that the planar setup could tolerate in principle an arbitrary
misalignment of the exchange field in the z-direction since this would still be perpendicular to
the spin-orbit term. This is an advantage with respect to schemes relying on magnetic fields,
where relatively small perpendicular magnetic fields to the superconductor layer suppress
superconductivity due to orbital effects.

Topological superconductivity in the hexagonal nanowire geometry

The hexagonal nanowire can also be tuned to the topological regime using an electrostatic
gate. However, the topological phase appears for reduced and irregular gate-voltage ranges
compared to the planar structure in Fig. 4.5. In addition, the topological gap in hexagonal
nanowires is typically soft, exhibiting low-energy trivial states. These states are prone to creat-
ing quasiparticle excitations poisoning, undermining coherence in the device and being an
obstacle to topological superconductivity. We associate the improved topological properties of
the presented 2D stacking with the vertical confinement of the 2DEG wavefunction, see Fig. 4.8.
In contrast, since the quantum well in hexagonal wires is less confined, the wavefunction can
spread several nanometers away from the superconductor-ferromagnetic insulator interface,
giving rise to weaker proximity effects. Moreover, due to the smaller wavefunction localization,
the effective parameters are highly dependent on the wavefunction profile (or subband) and,
consequently, the phase diagram appears to be more irregular than in the planar device. This
is evident in Fig. 4.12(a), that shows the energy spectrum at kx = 0 vs the back gate potential
while the background color highlights the the topological phase as with a white background
and the trivial with a gray one. The topological phases are narrower and appear in a less regular
way than the case in the main text. This is related to the fact that some bands cannot be tuned
to the topological regime as they cannot be confined to the interesting spatial region where
superconductivity and exchange field coexists. Therefore, the nanowire exhibits a reduced
parameter space where topology exists compared to the planar structure.

This is also illustrated by the effective parameters, shown in the right panels of Fig. 4.12(b).
We note that the exchange field exceeds the superconducting gap for various Vtg values. Some
of these crossings are correlated to a dip in ∆eff, indicating that the wavefunction is not proxim-
itized by the superconductor and the system remains in the trivial regime.
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Fig. 4.11: Effective parameters as a function of ferromagnetic insulator thickness. (a) Effec-
tive ferromagnetic exchange coupling heff, (b) effective superconducting pairing amplitude
∆eff, and (c) topological spectral gap Emi n = |E(kx = kF )| for the first four occupied transverse
subbands (in different colors) versus the EuS thickness dFI. We extract these effective pa-
rameters when the subband is close to the Fermi level (E = 0), and therefore different points
necessarily correspond to different Vtg values. Shaded regions and dashed lines represent that
the system is characterized by a topologically trivial phase (and therefore there is no spectral
gap). The suitable ferromagnetic insulator thickness dFI for topological superconductivity in
the 2D stacking device proposed in this work ranges from ∼1.5 to ∼3 nm.

Fig. 4.12(c) displays the dispersion relation, while panel (d) the density of states for an
instance of the topological region. Notably, the superconducting gap of the wire is significantly
reduced with many subgap states close to the Fermi level that make a soft gap. These states
are an obstacle for applications and the demonstration of Majorana non-abelian properties.
In general, softening of the gap can be attributed to two main effects: the presence of poorly
proximitized subgap states in the semiconductor and the back-action of the semiconductor-
ferromagnetic insulator on the superconductor that suppresses the pairing. Notice, however,
that while both effects can be identified in the nanowire case, the softening of the gap, in this
case, can be mainly attributed to states localized in the parent superconductor. This suggests a
stronger back-action of the ferromagnetic insulator and semiconductor on the superconductor.
This effect appears negligible in the 2DEG case.

Further discussion of the dependence of the effective parameters and topological phase
diagram of the planar heterostructure on the geometrical and material parameters can be
found in Ref. [P2].
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Fig. 4.12: Results for the hexagonal nanowire. (a) Energy spectrum at kx = 0 versus the back
gate voltage Vbg for the hexagonal wire device. Colors represent the weight of each state on
the superconducting Al layer WSc. Shaded Vtg regions are those characterized by a trivial
topological phase, i.e., Q = +1; while the lighter ones correspond to non-trivial ones, i.e.,
Q=−1. (b) Effective exchange field heff and superconducting gap ∆eff for the lowest energy
state on the left. (d) Spin-resolved DOS of the corresponding plot on the left.

4.5 Ferromagnetic hybrid junctions: experimental investigation

Another application of ferromagnetic hybrid heterostructures is as a platform to fabricate
Josephson junctions. In Josephson junctions with insulating weak links, the flow of a dissipa-
tionless supercurrent arises from individual Cooper-pair tunneling events, which is typically
characterized by a sinusoidal current-phase relation (CPR) [210]. For junctions with high
transparency, additional contributions to the supercurrent appear thanks to the simultaneous
coherent tunneling of multiple Cooper pairs [48, 211–218]. These tunneling events give rise to
higher harmonics in the CPR, leading to deviations from the standard sinusoidal form.

In a simple weak link, the Josephson energy is minimized when the superconducting phases
on both sides of the junction are equal. However, when time-reversal symmetry is broken, a
phase transition can occur, resulting in an equilibrium state with a relative phase difference
of π. This shift in the macroscopic degree of freedom leads to a phase transition between the
so-called 0 and π phases [219–222].

Josephson junctions with broken time-reversal symmetry can be tuned to a regime where
both the 0 and the π phases are metastable with the Josephson potential showing two local
minima [223, 224]. In this case, the junction is said to be 0′ or π′ regime if the global minimum
is at 0 or π phase difference. The fundamental harmonic changes sign when moving from 0′ to
π′ and vanishes at the crossover between the two. At this point, the current is dominated by
higher harmonics, causing a nonsinusoidal CPR [225].
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The study of such nonsinusoidal CPRs has recently gained significant interest due to
potential applications in developing protected superconducting qubits [P5, 226–229] and
supercurrent diodes [230–237]. These novel applications of Josephson junctions require not
only a static nonsinusoidal CPR but also the ability to control its harmonic content.

In this view, ferromagnetic hybrid junctions can offer a solution to engineer nonsinusoidal
current-phase relations. The gate-tunability of charge carriers density in the semiconductor,
together with the adjustable magnetization of the ferromagnetic insulator, may provide control
over the content of the supercurrent harmonics. We investigate this idea in two research works.
The first one, documented in Ref. [P6], is an experimental study of a multi-interferometer
device made of ferromagnetic hybrid heterostructures and is the subject of this section. A
second study, an exhaustive theoretical investigation of the possibility offered by this platform,
is found in Ref. [P7] and summarized in Sec. 4.6.

Experimental results

To demonstrate the emergence of π-junctions in ferromagnetic hybrid nanowires, we studied a
multi-interferometer device consisting of ferromagnetic (target) and non-magnetic (reference)
wires. The two wires, denoted A and B, were placed next to each other on a Si substrate with
200 nm SiOx capping. The middle and the ends of both wires were connected by ex situ Al
contacts, forming multiple loops [Fig. 4.13(a)]. The main wire A was comprised of a hexagonal
InAs core with epitaxial two-facet EuS and three-facet in situ Al shells, with the Al fully covering
both EuS facets and one InAs facet. The reference wire B with InAs core and three-facet Al
shell did not include EuS. Four junctions, denoted j F

1 , j F
2 on the ferromagnetic wire A, and j3,

j4 on the reference wire B, were formed by selectively removing ∼ 100 nm of in situ Al in the
segments between the ohmic contacts. Top gates were fabricated over all four junctions after
the deposition of a thin HfOx dielectric layer, allowing independent electrostatic control of
each junction.

The phase across a particular junction relative to a reference junction was measured by
depleting the other two junctions, thus forming a single superconducting interferometer. This
is further explained in Appendix A. Three triple-hybrid junctions from two different devices
were investigated and showed similar results.

We begin by exploring the magnetotransport properties of a single ferromagnetic junction,
j F

2 , while keeping the other junctions depleted. Four-terminal differential resistance, R =
dV /dI , of the junction was measured as a function of current bias, I , and external magnetic
field, H∥, applied parallel to wire A, see Figs. 4.13(b) and 4.13(c). Sweeping from negative
to positive field, R(I ) remains finite and featureless throughout the measured range, except
between µ0H∥ = 15 and 25 mT, where R(I ) decreases abruptly for |I |≲ 5 nA, see Fig. 4.13(b).
Reversing the sweep direction of H∥ shifts the low-resistance window to around −20 mT,
Fig. 4.13(c). A similar hysteretic dip in resistance has been reported in uninterrupted EuS/Al
bilayer films [238].

We interpret the observed behavior as the recovery of the superconductivity near the
coercive field, HC, where the induced magnetization, 〈M〉ξ, averaged over the superconducting
coherence length, ξ, decreases below a critical value MC. To verify this picture, we calculate
disorder-averaged 〈M〉ξ using the kinetic random-field Ising model. This quick dive in the
extremely interesting physics of magnetic hysteresis is included in Appendix. D. The resulting
magnetization curves, see Fig. 4.13(d) are asymmetric around the coercive field. In this regime,
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Fig. 4.13: (a) Color-enhanced micrograph of a representative multi-interferometer device
comprised of ferromagnetic (target) and non-magnetic (reference) nanowires. The insets
show schematic device layout and wire cross-sections. (b) and (c) Differential resistance,
R, as a function of current bias, I , and parallel external magnetic field, H∥, measured for
the j F

2 junction sweeping H∥ from (b) negative to positive and (c) positive to negative. R is
suppressed in a narrow, sweep-direction dependent window away from H∥ = 0. (d) Disorder-
averaged induced magnetization, 〈M〉ξ, calculated using random-field Ising model. h∥ is a
model parameter representing external magnetic field. The junction superconducts only in
a narrow hysteretic window (gray) around the coercive field ±hC and is otherwise normal.
For the (f), (e), and (g) group, the left panels show schematics of the multi-interferometer
device in various open and closed junction configurations with highlighted effective loop areas.
while, in the right panels, the corresponding current-phase relations are shown, represented
by differential resistance, R, measured as a function of current bias, I , and flux-threading
perpendicular magnetic field, H⊥, for (f) two ferromagnetic, (e) one ferromagnetic and one
non-magnetic, and (g) two non-magnetic junctions. All junction configurations show effective-
area dependent, periodic switching current modulations in H⊥.

the EuS domain size is shorter than ξ, which leads to a reduced 〈M〉ξ compared to the saturation
value, MS. Realistic hysteresis curves are typically not as smooth as depicted in Fig. 4.13(d);
instead, they display irreversible jumps between discrete magnetization values.

We note that the magnetic junctions in the superconducting state display residual re-
sistance at I = 0, which we tentatively attribute to the supercurrent suppression due to the
uncertainty in the phase difference across a junction with low Josephson energy [239]. Such
phase diffusion can be stabilized by integrating the junction into a superconducting loop [240].

Having established the magnetic-field response of an individual magnetic junction, we
next examine the current-phase relations (CPRs) of various junction pairs. To ensure that
wire A was superconducting, µ0H∥ was first ramped to −100 mT and then tuned to 21 mT, close
to HC, where R(I ∼ 0) is suppressed. Three example measurements of distinct superconduct-
ing interferometers, formed by opening either two ferromagnetic, mixed, or non-magnetic
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Fig. 4.14: (a) Differential resistance, R, of j F
2 as a function of current bias, I , and parallel

external magnetic field, H∥, showing the superconducting window of the junction centered
around −21 mT. The data were taken with j F

1 , j3, and j4 depleted. (b) Switching current,
ISW, as a function of flux-threading perpendicular magnetic field, H⊥, measured for j F

2 - j3

interferometer at decreasing H∥ values. The magnetic junction switches abruptly from π- to 0-
phase around −18 mT as H∥ is lowered. (c) Current-phase relation measured at µ0H∥ =−17 mT
exhibits ISW minimum at H⊥ = 0, suggesting π-junction. (d) similar to (c) but in the 0-junction
regime at µ0H∥ =−19 mT. All the data were taken after polarizing the wire at µ0H∥ = 100 mT. (e)
Differential resistance, R , as a function of current bias, I , and flux-threading magnetic field, H⊥,
measured for j F

2 - j3 interferometer at zero parallel external field (H∥ = 0) showing a π-shifted
current-phase relation. The data were taken after polarizing the wire at µ0HS = 100 mT and
demagnetizing it at µ0H D

∥ =−23 mT. (f) Similar to (e) but taken after demagnetizing the wire

at µ0H D
∥ =−25 mT, showing 0-junction behavior. (g) Calculated disorder-averaged induced

magnetization, 〈M〉ξ, illustrating the experimental demagnetization scheme. After saturating
〈M〉ξ, the parameter representing the external magnetic field, h∥, is swept to the variable
demagnetization value, hD

∥ , and then back to 0. Depending on hD
∥ , the junction can either relax

to the π or 0 phase.

junctions, are displayed in Fig. 4.13(e), (f) and (g). In all three configurations, the device shows
periodic switching current, ISW, modulations as a function of the flux-threading perpendicular
magnetic field, H⊥. The oscillation period changes for different junction combinations due
to the different effective loop areas, corresponding to the superconducting flux quantum,
Φ0 = h/2e. The zero-flux offset of the magnet was calibrated using the CPR of the loop with
two non-magnetic junctions ( j3 and j4).

At µ0H∥ = 21 mT, ISW is maximal at zero flux (H⊥ = 0) for all configurations, indicating a
homogeneous superconducting phase across the device. However, we find that the loops with
magnetic junctions show characteristic π-shifted CPRs at the onset of the superconducting
window, before HC is reached (Fig. 4.14). We study the transition between the two regimes in
j F

2 by measuring CPRs (using j3 as a reference, while keeping j F
1 and j4 depleted) over a range

of H∥ spanning the superconducting window [Fig. 4.14(a)]. The deduced evolution of ISW with
H⊥ and H∥ is shown in Fig. 4.14(b). Outside the superconducting window, ISW is independent
of H⊥, indicating that j F

2 is not superconducting. Moving to more negative H∥, j F
2 displays a

π-shifted CPR in the range between −16 and −18 mT, Fig. 4.14(c), but then switches abruptly
to a state without a phase shift, Fig. 4.14(d). The average ISW is ∼ 10 nA in both cases, but its
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4.6. Ferromagnetic hybrid junctions: theoretical modeling

modulation amplitude increases from around 3 to 6 nA as the CPR phase switches from π to 0,
see Figs. 4.14(c) and 4.14(d). The superconducting phase remains unchanged throughout the
rest of the superconducting window, whereas the amplitude of ISW oscillations shrinks abruptly
at −25 mT and once again at −26 mT as the supercurrent through j F

2 gets suppressed. This
is likely because of the sweep-direction dependent, discrete jumps of 〈M〉ξ through MC. The
transition features were qualitatively the same around positive HC, after reversing H∥ direction,
and did not depend on the gate voltages V2 and V3. The transition-field value shifted by a
fraction of a millitesla between different runs, presumably due to the magnetic noise from the
stochastic domain switching [241]. Furthermore, the superconducting phase shift of π within
the superconducting window was observed also for the other two measured ferromagnetic
junctions, with j F

1 showing hints of a second 0 –π transition at the end of its superconducting
window.

These experimental observations suggest that the 0 –π transition is driven by a discrete
flipping of the EuS domains affecting 〈M〉ξ and changing the effective spin splitting of the ABSs
in the junction. In Sec. 4.6, a theoretical model to describe in detail how the change in the
magnetization drives the 0-π transition will be described more in detail.

Finally, we demonstrate experimentally that the π phase can be realized at zero external
magnetic field by demagnetizing EuS with the following procedure, see Fig. 4.14, right panels.
First, a saturating magnetic field, µ0HS =+100 mT, was applied to fully polarize the EuS. The
field was then gradually swept through zero to a demagnetizing (negative) value, H D

∥ , before

returning to zero. Carrying out the demagnetization loop for different H D
∥ values, we find that

j F
2 transitions from π to 0 phase as µ0H D

∥ is changed from −23 to −25 mT. This is similar to
the behavior observed at the finite external field (Fig. 4.14, left panels), but now measured at
H∥ = 0. Qualitatively the same phenomenology was observed for j F

1 . We ascribe this behavior
to the H∥-controlled EuS domain relaxation into a configuration with the remanent 〈M〉ξ < MC

as H∥ is ramped back and forth. The calculated demagnetization loops for two different
demagnetization values support this picture, Fig. 4.14(g).

In summary, we have studied the current-phase relation of triple-hybrid Josephson junc-
tions comprised of semiconducting (InAs) nanowires with epitaxial ferromagnetic insulator
(EuS) and superconductor (Al) shells. The magnetic junctions showed a 0 –π phase transition
within a hysteretic superconducting window in the parallel magnetic field. We interpret the
results in the context of magnetic domains and provide a simple theoretical model demonstrat-
ing that an induced average magnetization can account for the transition. By demagnetizing
the EuS layer, the π-phase can be realized at zero magnetic field, making the triple-hybrid
junctions an attractive component for quantum and classical applications in superconducting
circuitry.

4.6 Ferromagnetic hybrid junctions: theoretical modeling

In this section we introduce two models aimed at describing ferromagnetic hybrid junctions.
The first one is a simple model valid in the limit of a short junction with a single dominant level
that was developed to explain the 0–π transition in the experiment described in Sec. 4.5. In
the subsequent work, Ref. [P7], we broaden the analysis by introducing a continuum model
and study other aspect of such system. We sill show that these hybrid materials offer a new
way to control the harmonic content of the CPR by combining the gate-tunable charge carriers
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density of the semiconductor and the adjustable magnetization of ferromagnetic insulator
insets. Additionally, in these devices, both the superconducting pairing and the exchange field
are induced through proximity effects in the semiconductor. This allows for unique regimes
where the exchange field in the superconductor is below the Chandrasekhar-Clogston limit [17,
18], while in the semiconductor it can exceed the induced pairing potential. As a result, this
platform is suited for studying superconductivity under extreme exchange fields that can
surpass the induced pairing potential.

Fig. 4.15: Josephson junction in a semiconductor-ferromagnet-superconductor device.
Sketch of a ferromagnetic hybrid junction (a) and the continuum model considered in this
paper (b). The nanowire divides into three regions: the lateral left (L) and right (R) regions fea-
ture proximity-induced superconductivity from the superconductor shells, while in the central
(C) region the superconductor is etched. All the regions are subjected to the ferromagnetic
proximity effect. The density in the central region and the barriers between the central and the
lateral ones can be controlled by gates.

The system we are considering can be conceptually split into three regions: two lateral
(L and R), and a central region (C), see Fig. 4.15(a). The superconductor primarily induces a
superconducting pairing potential ∆(x) in the semiconductor through the proximity effect.
It also contributes to the electrostatic potential landscape V (x) =−µ(x). The ferromagnetic
insulator induces an exchange field h(x) in both the superconductor and the semiconductor.
Given that both the exchange field and the pairing potential are induced in a semiconductor
with controllable charge carrier density, there is not a fixed hierarchy of energy scales, and,
in principle, all regimes can be realized in the system. We consider that the exchange field is
sufficiently weak in the superconductor such that superconductivity persists. This condition is
relaxed in the semiconductor, where the induced exchange field can overcome the induced
pairing potential. Therefore, ferromagnetic hybrid junctions allow exploring the parameter
space beyond the conventional regime (µ≫∆> |h|). Note that we do not refer to a particular
arrangement of the layers in the lateral region, as different combinations of interfaces, for in-
stance, tripartite arrangement [205, 206] and tunneling arrangement [P1, P2], allows induction
of both superconducting pairing and exchange field in the semiconductor.
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4.6. Ferromagnetic hybrid junctions: theoretical modeling

Single-level model

Before proceeding to the numerical results, we introduce a minimal model in which two high
carrier density superconducting lateral regions are coupled by a single level in the junction. To
describe the transport through the system, we use the Green function formalism, summarized
in Ref. [242]. The retarded/advanced (R/A) Green function of the central region is given by

ĜR/A
0 (ω) = [

ĝ−1
0 (ω)− Σ̂R/A

L (ω)− Σ̂R/A
R (ω)

]−1
, (4.28)

where ĝ−1
0 (ω) = (ω+σhC)τ̂0 +ετ̂z describes the isolated normal region as a function of the

electron energy ω, and Σ̂R/A
ν is the self-energy describing the coupling to the lateral regions ν.

In the wide bandwidth limit, the self-energy of these regions is given by

Σ̂R/A
ν (ω) =∑

ν
Γν

[
gR/A
ν (ω)τ̂0 + fR/A

ν (ω)τx e τ̂yφν
]

. (4.29)

Here

gR/A
ν (ω) =− ω+σhν± iη√

∆2 − (ω+σhν± iη)2
, fR/A

ν (ω) = ∆√
∆2 − (ω+σhν± iη)2

, (4.30)

and η is the Dynes parameter, controlling the width of the superconducting coherent peaks at
ω=±∆, which we take infinitesimal in this case.

In the short junction case, the single electronic level has energy ε and exchange splitting
hC. To determine the ABS spectrum, we search for the poles of the retarded Green’s function by
solving det

[
(GR )−1

]= 0. This results in the complicated expression(
ω+σhC +∑

γν
ω+σhν√

∆2 − (ω+σhν)2

)2

= ε2 +
∣∣∣∣∣∑ν ∆γνe iφν√

∆2 − (ω+σhν)2

∣∣∣∣∣
2

(4.31)

The expression becomes more compact if we consider hR = hL = hlat. In this case, the
expression simplifies to(

ω+σhC +∑
ν
γν

ω+σhlat√
∆2 − (ω+σhlat)2

)2

= ε2 + ∆2

∆2 − (ω+σhlat)2 b2(φ) (4.32)

where we defined the phase potential

b(φ) =
∣∣∣∣∑
ν
γνe iφν

∣∣∣∣ . (4.33)

Note that with this minimal simplification, the dependence on the phase is entirely condensed
in the function b(φ).

By defining the total coupling γ= γL+γR and the transmission as T = 4γLγR/(γL+γR)2, we
get a simplified expression that reads as

ω+σhC

γ
+ ω+σhlat√

∆2 − (ω+σhlat)2
=±

√
ε2

γ2 + ∆2

∆2 − (ω+σhlat)2 [1−T sin2(φ/2)] . (4.34)
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The quantum point contact limit, in which the intermediate state in the junction is strongly
hybridized with the states in the leads, can be obtained from the above expressions for γ→∞.
This results in a generalization of Beenakker’s formula [48] for spin-split leads

ω=±∆
√

1−T sin2(φ/2)−σhlat . (4.35)

We consider the condition where an ABS crosses the Fermi level to get an expression for
the critical lines separating the different phases. When a spin-split ABS crosses the Fermi
level, its occupation changes and stops contributing to the current. At the same time, the
newly occupied ABS provides a current contribution that exactly cancels the one of the same
spin ABS. Therefore, the residual current is entirely due to the continuum of states and has a
characteristic π contribution [P6].

In the case of equal exchange fields in the leads, hL = hR = hlat, the Fermi level crossing
condition for ABS with spin σ=±1 is given by the expression

σhC

γ
+ σhlat√

∆2 −h2
lat

=±
√√√√ ε2

γ2 + ∆2

∆2 −h2
lat

[1−T sin2(φ/2)] , (4.36)

where γ= γL +γR is the tunnel rate to the leads and T = 4γLγR/(γL +γR)2 is the transparency
of the junction. When a spin-split ABS crosses the Fermi level at φ=π, a metastable π phase
appears, marking the transition from 0 to 0′. When such a crossing happens for φ= 0, the 0
phase becomes completely unstable, marking the π′ to π transition. Finally, the 0′ to π′ critical
line can be approximated by φ=π/2.

Continuum model

As an alternative model for the system, we consider a continuum model represented by an
Hamiltonian is H = 1

2

∫
ψ†Hψ, where the Bogoliubov-de Gennes (BdG) Hamiltonian H in the

Nambu spinor basis ψ† =
(
ψ†

↑ ψ†
↓ −ψ↓ ψ↑

)
is

H=
[ℏ2kx

2m∗ −µ
]
τz +h ·σ+∆τ++∆†τ−+HSOC . (4.37)

Here, kx =−i∂x is the momentum operator (we consider a single mode in the junction), m∗ is
the effective mass, and σ j and τ j are the Pauli matrices in the spin and particle-hole space,
respectively. The spin-orbit coupling Hamiltonian HSOC is given in Eq. (4.43) and discussed in
Sec. 4.6.

The proximity-induced exchange field h is due to the coupling to the ferromagnetic insula-
tor and, in principle, can be spatially inhomogeneous due to the micromagnetic configuration.
The magnitude of the h field can also vary due to a nonuniform coupling strength. Moreover,
recent theoretical investigations of ferromagnetic InAs-Al-EuS nanowires showed that the elec-
trostatic environment is crucial in modulating the effect of the EuS on the InAs [P2, 205, 206],
suggesting that, in principle, it is possible to tune the induced exchange field electrostatically.

In this work, we consider that the exchange field h takes a constant value h j in each of the
three regions i ∈ {L,C,R}. We will call collectively L and R lateral regions, with an exchange field
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hL = hR = hlat. In the following, we will use hall when considering a homogeneous value for the
exchange field. We use the same notation for the chemical potential µ of the three regions. In
addition, we introduce potential barriers with height VB at the interfaces between the central
and the lateral regions, tuning the system from the open (VB = 0) to the quantum dot regimes
(VB ≫−µlat). The induced pairing potential is ∆ j =∆0, j e iφ j with the modulus ∆0, j taking finite
value only in the L and R regions while the superconducting phase difference between the two
leads is φ=φR −φL.

In all the simulations we use realistic parameters for InAs-Al-EuS heterostructures, taking
∆0 = 0.250meV and effective mass m∗ = 0.026me . We consider a nanowire of total length
including both the lateral and central regions of ℓW = 3 µm. To obtain numerical results,
we discretize the Hamiltonian using a finite-differences scheme with a lattice spacing of
a = 2nm implemented using the KWANT package [161]. We focus on the short junction limit,
and we consider a central region of length ℓC = 180nm, such that the quantization energy is
comparable to the other energy scales. We fix the chemical potential in the lateral regions to
be µL =µR = 16 ∆= 4meV. Directly solving for the quasiparticle spectrum of the continuum
model allows treating on equal footing the current carried by Andreev bound states (ABSs) and
the quasi-continuum of states above the gap. Usually, the continuum current is subdominant,
except for strong exchange fields, where its contribution is comparable to or even larger than
the ABS one [P6, 243–246].

As shown in Ch. 1, the supercurrent in a Josephson junction is an equilibrium phenomenon
that can be described by a function EJ(φ), called Josephson potential or phase dispersion rela-
tion. This can be evaluated from the quasiparticle spectrum, assuming that the quasiparticles
are in thermal equilibrium and calculating the free energy at a fixed phase

EJ
(
φ

)=−kBTp lntre
− H

kBTp =−kBTp
∑
n

ln

[
2cosh

(
ωn

(
φ

)
2kBTp

)]
, (4.38)

where ωn is the quasiparticle spectrum, kB is the Boltzmann constant and Tp is the quasiparti-
cle temperature [6]. From EJ, the CPR is calculated through the thermodynamic relation

〈I 〉 = 2e

ℏ
∂EJ(φ)

∂φ
. (4.39)

The maximum current that can flow in the junction in equilibrium is called critical current,
Ic, while we define the critical phase, φc, as the phase where this is reached

Ic = |I (φc)|, φc ≡ argmaxφ∈[0,π]

∣∣I
(
φ

)∣∣ , (4.40)

where we restricted the maximum to [0,π] in the reciprocal case. We define the quantity
I0 ≡ 2e∆/ℏ as the relevant current scale that has the numerical value I0 = 122nA for Al. The
sign of I (φc) defines the direction of the supercurrent at the critical phase.

It is useful to decompose the phase dispersion in its harmonic components

EJ(φ) = F0 +
∞∑

k=1

[
Ck cos

(
kφ

)+Sk sin
(
kφ

)]
, (4.41)

since each EJ harmonic corresponds to the tunneling of multiplets of Cooper pairs between the
two superconducting regions. To see this, it is necessary to understand the phase in Eq. (4.41)
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as an operator and rewrite the expression in the charge basis by interpreting exp
(
i kφ

)
as a

translation operator. Neglecting the constant term, the result is

HJ =
∑
n

∑
k

Ck + i Sk

2
|n +k〉〈n|+H.c. (4.42)

where |n〉 is the state with a difference of n Cooper pairs in the two leads. In this way, it is easy
to see how the terms cos

(
kφ

)
mediate the tunneling of k Cooper pairs.

If time-reversal and inversion symmetries are not simultaneously broken, the Josephson
junction is reciprocal and EJ(φ) = EJ(−φ). It subsequently results in the absence of the Sk

components, for this reason, called anomalous. These components are necessary for φ0

junctions and the diode effects. Assuming all the components {Ck } with k > 2 are negligible, if
|C1| ≥ 4C2 the only minima of the Josephson potential are located atφ= 0 andπ. For |C1| < 4C2,

minima can be found at φ=±arctan
(
C1/

√
16C 2

2 −C 2
1

)
. This case, dubbed ±φ0-junction, does

not require an inversion-symmetry breaking mechanism [247].

Fig. 4.16: Phase diagram in the quantum dot regime. (a) Phase diagram, and (b) critical
current for a system in the dot regime as a function of the chemical potential in the central
region, µC, and the exchange field, hall, considered homogeneous in the heterostructure. The
dashed lines are an overlay of the analytical model in Eq.(4.36) where we selected ε = 16 ∆
and γ= 0.2 ∆. (c) and (d) show the Josephson potential and the CPR for some selected points
in the parameter space [crosses in (a) and (b)]. Parameters for the continuum BdG model:
µlat = 4meV, Vb = 3meV.

Results

Quantum dot regime

The quantum dot regime is reached when large barriers at the edge of the central region are
introduced, see Fig. 4.15. In this regime, electrons are confined in the central region. This work
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does not consider the electrostatic repulsion in the central region (Coulomb blockade). We
expect the mean-field picture to be valid for large exchange fields, and the Coulomb repulsion
will enhance the exchange field in the central region. The quantum dot regime is optimal
for the electrostatic controllability of the 0 –π transition. When the quantum dot levels align
with the chemical potential in the leads, the π phase appears at low exchange fields, and the
critical line takes the form hC ∝ ε, see Fig. 4.16(c). In this regime, Ic is maximal when the dot
levels align with the chemical potential of the leads, as shown in Fig. 4.16(b). The critical lines
converge to the spectral gap closing point, h =∆, in the off-resonance condition. The phase
diagram can be understood using the single-level model, which predicts the hyperbolic critical
lines [see the dashed lines in Fig. 4.16(a)]. The Josephson potential and CPRs on resonance are
shown in Figs. 4.16(c) and (d). The fundamental harmonic dominates the junction properties in
both the 0 and the π phases (top and bottom panels). In contrast, high-harmonic contributions
become important in the 0′ and π′ phases because of the double minima Josephson potential.

To better understand the harmonic composition of the Josephson energy, we present the
lowest harmonic components of the CPR in Fig. 4.17. For a small value of the exchange field,
in the 0 and 0′ phases, the harmonic component coefficients show a peak corresponding to
an energy level in the quantum dot aligning with the Fermi level of the lateral regions. These
peaks have widths that decrease for higher-order components, allowing the relative strength of
the first two harmonics, δC21 = |C2|− |C1|, to be tuned by slightly changing the energy of the
quantum dot levels electrostatically. In contrast, the sensitivity of EJ to the chemical is almost
negligible in the π phase and the suppression of C2 is significant, resulting in a sinusoidal CPR,
as shown in Fig. 4.16(d). When the system is tuned to the vicinity of the 0′–π′ transition, the
fundamental harmonic is suppressed, leading to a regime dominated by the second harmonic
and a double-well Josephson potential.

Open regime

In contrast to the quantum dot regime, the open regime shows a weak dependence on chemical
potential, except close to the edge of the band (µ= 0), Fig. 4.18 (a). The open regime shows a
π phase for hall >∆, as predicted by the analytic expression in Eq. (4.36). The system shows
extended metastable 0′ and π′ regions compared to the quantum dot regime. In the open
regime, the transition happens for hall = ∆/

p
1−T /2. This critical line coincides with the

zero-temperature paramagnetic limit for superconductors for T = 1. It means that this regime
cannot be achieved in materials with intrinsic superconductivity. Instead, semiconductor-
superconductor devices are ideal for reaching theπ′ andπ regimes. At the 0′–π′ transition point,
the CPR is dominated by the sin

(
2φ

)
term, leading to a Josephson potential with two equivalent

minima within the φ ∈ [0,π] range. We note that the robustness against local fluctuations in µC

is a unique feature of the open regime. The other two transitions lines, for 0–0′ and π–π′, are
also almost independent of the chemical potential once µC ≳ 10, taking place at hall = 0 and
hall =∆

p
1−T . Since the higher harmonic components are dictated mainly by the lowest ABS,

the main effect of increasing temperatures is a reduction of the metastable 0′ and π′ regions.
The open and dot regimes have different advantages and disadvantages for practical appli-

cations of ferromagnetic hybrid junctions as a cos
(
2φ

)
Josephson element. The open regime is

insensitive to noise in the gate voltage but requires a relatively high exchange field hall ≃∆/
p

2
for the second harmonic to dominate. Increasing the barriers, and so moving toward the dot
regime, lowers the required exchange field toward to the theoretical limit hall ≃ 0 at the price of

103



4. FERROMAGNETIC HYBRID HETEROSTRUCTURES

Fig. 4.17: Harmonic components in the dot regime. Fundamental (a) and second (b) harmonic
for a ferromagnetic junction in the dot regime. The transition from 0 to π appears close to
the gap closing (h/∆= 1) for a detuned dot, while near resonance the π phase can appear at
lower magnetic fields. In the regions of the metastable phases, a strong C2 component can
be observed while the C1 component vanishes. In panels (c) and (d), we show two cuts of the
harmonic components [blue and red ticks in (a) and (b)]. For constant hall the Ck components
show a peak when a dot level crosses the Fermi level of the leads, but the width is increasingly
smaller for higher harmonics. For constant µC, the CPR show a sinusoidal behavior until the
system reaches the 0–π transition, where the second harmonic dominates. The parameters are
equal to those in Fig. 4.16.

a higher sensitivity to gate noise. It also allows electrostatic control of the harmonic content.
Indeed, when the C2 component approaches its maximum location, C1 vanishes linearly. This
opens up the possibility of introducing a gate-controllable cos

(
φ

)
component. Additionally, the

ability to change from a dot to an open regime is controlled by the electrostatic environment,
allowing to tune the system between the two regimes.

Inhomogeneous exchange field

The exchange field in the lateral and central regions affects CPR differently. To reveal this
difference, we now analyze the case where the exchange field in the central (hC) and lateral
regions (hR = hL = hlat) have different values while being still aligned in the same direction,
Fig. 4.19. In the case of small magnetization in the lateral regions (hlat ∼ 0), we find that a
strong polarization in the central one hC ≫∆ is needed to induce the transition to the π state
in the open regime.

The exchange field strength necessary to induce a 0 –π transition crucially depends on
other parameters of the system. In particular, longer junctions and low density in the central
region are associated with transitions at lower fields. The length dependence can be understood
using a semiclassical model, where hC adds an extra phase accumulated by quasiparticles in
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Fig. 4.18: Open regime. (a) Phase diagram and (b) difference between the second and first CPR
harmonic component for a ferromagnetic hybrid junction in the open regime. The overlaid
dashed lines are the prediction of the analytic model in the γ → ∞ limit and T = 1. The
sensitivity of the phase boundaries to µC is strongly suppressed in this limit, while the phase
space occupied by 0′ and π′ phases is increased. Parameters: µlat = 4meV, ℓB = 0nm.

a round-trip between the leads. This phase is proportional to hCℓC product, explaining why
longer junctions exhibit switches from the 0 to the π phase at lower exchange field values. In
addition, it leads to a periodic pattern of 0 and π phases along the hC axis. A similar effect can
be obtained by reducing µC, which reduces the Fermi velocity.

A sharp transition from 0 to π can also be obtained near gap closing (|hlat| =∆). In this case,
the transition is associated with a strong reduction in the magnitude of Ic. This behavior can be
understood using the simplified one-level model in Eq. (4.36), which provides an approximate
expression for the critical lines of the BdG model. The fact that the 0 –π transition is associated
with a decrease of critical current only in the case of gap closing can be potentially used to infer
the dominant mechanism in experiments.

Spin-orbit coupling in the semiconductor

So far, we have neglected the effect of spin-obit coupling. Here, we consider a simple model for
linear spin-orbit coupling that, for a quasi-1D system, takes the form

HSOC = kx
[
αzσy +βσx

]
τz = kx [κ ·σ]τz , (4.43)

where we defined a spin-orbit coupling vector κ= (βx ,αz ,0). In the simplest setup, αz arises
from the Rashba field and β from the Dresselhaus term. We note that the distinction between
the two terms is artificial in a one-dimensional model, as the two terms can be mapped onto
each other by a unitary transformation

U = exp(−iθ/2σzτ0) , (4.44)
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Fig. 4.19: Effect of inhomogeneous exchange field and spin-orbit coupling. Phase diagram (a)
and critical current (b) for a ferromagnetic hybrid junction with an inhomogeneous exchange
field. The overlaid dashed lines are the prediction of the single-level model, Eq. (4.36). The
system shows the alternation of 0 and π phases as a function of hC with sharp transitions. A
transition from 0 to π can also be obtained by gap closing (h/∆= 1). Phase diagrams (c) and
critical current (d) of the ferromagnetic hybrid junction in the presence of spin-orbit coupling
such that κ ·h = 0. Spin-orbit coupling leads to general suppression of the π phase and the
expansion of the metastable phases. Parameters: µC = 1meV, µlat = 4meV, ℓB = 0nm.

that is a rotation in spin space around the z axis by an angle θ, potentially inhomogeneous
in space. Using θ = arctan

(
β/αz

)
, we can always remove the term proportional to σx and

align the spin-orbit vector in the y direction. This transformation, however, also rotates the
exchange field. This result illustrates the equivalence between inhomogeneous spin-orbit
fields and exchange fields.

We first focus on the homogeneous spin-orbit situation, displayed in Fig. 4.19 (c) and (d).
Although spin-orbit coupling splits the Fermi surface, Cooper pairs do not acquire a finite
momentum unless time-reversal symmetry is broken. Thus, the oscillation between triplet
and singlet components is absent, and it is impossible to obtain a π phase. At a finite magnetic
field, the Rashba term couples the two spin-split ABSs reopening the gap, unless the field aligns
with the spin-orbit vector κ. The effect on the CPR of a transverse Rashba field is a substantial
reduction of the π regions and an enlargement of the metastable phases. When the exchange
field h is instead aligned with κ, the spin-rotation symmetry is unbroken. This allows for π
phases, but simultaneously, the system remains gapless for h >∆.

Anomalous Josephson effects can occur when a spin-orbit coupling vector is aligned with a
magnetic field [248]. However, it is not observed in the homogeneous case as the combination
of various spin-rotation symmetry-breaking effects is necessary for its manifestation [249].
This can occur, for instance, due to finite spin-splitting with a non-zero component in both the
junction direction and the transverse one [250], or multiple modes that can hybridize [251].
The presence of anomalous currents in similar systems has been considered in Refs. [252, 253].
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Fig. 4.20: Non-reciprocal behavior. We introduce a spin-orbit couplingκ= 2nmeV, misaligned
with an angle θC between the central and the lateral regions. Panel (a) shows the current at
the critical phase, while the diode efficiency is shown in (b). (c) The Josephson potential
and (e) CPR for a specific point of the parameter space [black cross in (a)] are displayed
for increasing temperature. Non-reciprocal behavior shows a non-monotonic temperature
dependence, evident in panel (f). This can be explained by the ABS spectrum [panel (d)]
that comprises a reciprocal lowest state. Therefore, increasing the temperature suppresses
the reciprocal contribution increasing the efficiency. Parameters: µC = 1meV, µlat = 4meV,
ℓB = 0nm, hlat = 0.8∆, κ= 2meVnm.

The spin-orbit field depends on the local electrostatic environment. For this reason, the
spin-orbit direction can have different magnitudes and directions in different regions of the
ferromagnetic hybrid junction. We consider this situation in Fig. 4.20. The spin-orbit direction
is misaligned in the central region by an angle θC with respect to the lateral ones, while
we consider a homogeneous exchange field. Since the Rashba field is proportional to the
electric field, this scenario might appear in Josephson junctions due to a varying electrostatic
environment. This is equivalent to a homogeneous spin-orbit coupling field and a misaligned
exchange field in the three regions. In this case, the CPR shows a non-reciprocal behavior,
I (φ) ̸= I (−φ), due to the presence of anomalous sin

(
kφ

)
terms in the Josephson potential. The

non-reciprocal supercurrent has been recently reported in superconductor-semiconductor
nanowires [237]. We now define the critical phase as φc ≡ argmax[0,2π) |I |. To measure the
non-reciprocal behavior, we also define the diode efficiency as η≡ [max(I )+min(I )]/[max(I )−
min(I )]. For the parameters considered, the efficiency can be as high as 30% in the region close
to the 0 –π transition. For this point, the CPR shows a characteristic form I (φ) ∼ sin

(
φ−φ0

)+
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cos
(
2φ

)
.

The rectification effect exhibits a non-monotonic temperature dependence η(Tp ) that
shows a maximum at finite temperature. This can be explained by the ABS spectrum, see
Fig. 4.20 (d): the lowest state is dominated by the cos

(
nφ

)
contribution, with a weak non-

reciprocal behavior. The first excited state has a predominant sin
(
φ

)
contribution. Therefore,

increasing the temperature increases the non-reciprocal supercurrent contribution through
an interference process of the different CPR harmonics [236]. At higher temperatures, more
states become populated, washing out the contribution from the harmonics and leading to a
sinusoidal CPR, Fig. 4.20(e).

Interpretation of the experiment

The results of the analysis suggest that the ferromagnetic hybrid junction explored in the
experiment reported are in an intermediate regime between the dot and the open regime. No
substantial sensitivity to gate voltage has been reported, signaling that the levels in the central
region are strongly hybridized with the lateral region states. Since the open regime requires
higher exchange fields to reach the π phase, this also suggests a strong ferromagnetic proximity
effect from the magnetic insulator. Moreover, the presence of the π phase put some limits on
the strength of the spin-orbit coupling in the structure.

4.7 Summary of the research activity

Ferromagnetic hybrid heterostructures offer new avenues for supercurrent spintronics, su-
perconducting circuitry, and quantum information processing. In this chapter, we presented
some advancements in this field. The research activity started by reviewing the theory of
ferromagnetic proximity effects in superconductors and semiconductors and studying how
this applies to the systems of interest.

We started the activity by analyzing the results on topological superconductivity presented
in Ref. [73]. We proposed an argument against the idea that the indirect proximity effect of
a spin-split superconductor can be the dominant mechanism in this structure, Sec. 4.3 and
Ref. [P1]. We then proposed an alternative mechanism based on spin-polarized tunneling.
The thin ferromagnetic insulator acts as a spin-filter barrier for electrons tunneling through,
inducing a sufficiently large exchange field that gives rise to a topological transition in the
tripartite heterostructure.

We detailed this idea with accurate numerical simulations in Sec. 4.4 and Ref. [P2]. We have
proposed a planar heterostructure for topological superconductivity using a thin ferromagnetic
insulator between a 2DEG and a superconductor. In this geometry, superconducting stripes
define quasi-1D wires that can be gated from the top, avoiding bottom gates that might be
ineffective due to the rather thick substrates needed to create high-quality semiconducting
heterostructures. We compared this geometry with the hexagonal nanowire one finding sig-
nificant improvements with respect to previous hexagonal nanowire geometries, where these
gaps were only possible by fine-tuning side gates to push the wavefunction sufficiently close
to the ferromagnetic insulator-superconductor layers. We associate this behavior with the
vertical confinement of the wavefunction for thin semiconductor layers. Most importantly,
this vertical confinement also helps to create a rather regular phase diagram, with topological
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and trivial phases appearing at controlled values of the top-gate potential. Experimentally,
this is an advantageous property since it permits searching for the topological phase in a
predictable manner rather than randomly scanning parameters, as is typically the case with
hexagonal nanowires. The proposed stacking allows to define and control of complex networks
of topological superconductor wires. The presented planar structure requires no magnetic
field to reach the topological phase, allowing for different orientations of the effective wires.
This opens the door to experimentally access a new set of problems, including multi-terminal
junctions for braiding experiments and unconventional Josephson junctions.

In the second part of this chapter, we focused on ferromagnetic hybrid junctions. We first
analyzed the results of experiments, subject of Ref. [P6]. We show that junctions can experience
a magnetization-induced 0–π transition, identified by supercurrent reversal. The junction
is configurable through the application of external fields that change the micromagnetic
configuration of the ferromagnet. We presented a simple model able to explain the 0–π
transition in such systems. The induced exchange field in the semiconductor can overcome
the induced pairing potential without causing a transition to the normal state. This results in
spin-polarized Andreev bound states with opposite spin crossing the Fermi level, leading to
the 0 –π phase transition and supercurrent reversal.

We then broaden the scope of the theoretical investigation to first analyze the controllability
of the transition by means of an electrostatic gate and the possibility of higher harmonics in the
current-phase relation becoming dominant close to the 0 –π transition, where the supercurrent
changes sign. In the dot regime (weak coupling to the leads), the π depends on the relative
position of the dot levels with respect to the leads’ chemical potential. In case the junction
is tuned into the open regime (large coupling to the leads), the onset of the π phase is less
sensitive to changes in chemical potential. We find that the spin-orbit coupling increases the
coexisting region between 0 and π phases with considerable amplitudes of higher-harmonic
components. Finally, we find that non-collinear spin-orbit coupling in the junction, due to a
varying electrostatic environment, results in a supercurrent rectification effect whose efficiency
peaks around 0 –π transition.

The tunability of the harmonic content of CPRs is relevant for a number of applications,
including superconducting diodes [230–237], ferromagnetic transmon qubits [254], and parity-
protected qubits [P5, 226–229]. In this context, ferromagnetic junctions in the open regime are
a promising option thanks to their robustness to fluctuations in the charge environment.
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Parity-protected superconducting qubits

Never trust a computer you can’t throw out a window.

– Steve Wozniak (apocryphal)

This chapter is an adaptation of A. Maiani, M. Kjaergaard, and C. Schrade. “Entangling Transmons with

Low-Frequency Protected Superconducting Qubits”. In: PRX Quantum 3.3 (Aug. 2022), p. 030329. DOI:

10.1103/prxquantum.3.030329 with additional background material.
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5. PARITY-PROTECTED SUPERCONDUCTING QUBITS

This chapter explores an alternative platform for quantum information processing, su-
perconducting qubits. Superconducting qubits have emerged as one of the leading platforms
for building quantum computers due to their scalability, long coherence times, and compat-
ibility with existing fabrication technologies. In superconducting qubits, electromagnetic
modes of superconducting circuits store the quantum information. The most widespread
type of superconducting qubit is the transmon [255], a highly promising platform for noisy
intermediate-scale quantum (NISQ) devices [256] and error-corrected quantum comput-
ers [257–260]. Among the most attractive features of the transmon circuit are its reproducibility,
insensitivity to charge noise-induced dephasing, and coherence times that have seen steady
improvements over the past decade [261].

The subject of this chapter are Parity-Protected superconducting Qubits (PPQ) [226, 227,
229, 262–264]. PPQs rely on special Josephson elements that only permit the tunneling of
pairs of Cooper-pairs. Such circuit elements can be realized utilizing ferromagnetic hybrid
junctions, introduced in the last part of Ch. 4, where the phase dispersion can be tuned to a
pure cos

(
2φ

)
component. Alternatively, similar behavior can be obtained with SQUID-based

devices featuring superinductors [226] or nonsinusoidal Josephson junction, as discussed in
Appendix A.

Similar to the transmon qubit, the two nearly-degenerate ground states of the PPQ have a
nearly flat charge dispersion, which makes them insensitive to charge-noise-induced dephas-
ing. Differently from the transmon, PPQs exhibit intrinsic protection to errors. The two-qubit
states also have disjoint support since they carry opposite Cooper-pair parity. This disjoint
support prevents relaxation errors between the computational states if the qubit-environment
coupling conserves the Cooper-pair parity.

As is often the case, intrinsic protection comes with the drawback of more complicated
quantum state control. Considerable efforts have been devoted to developing a gate set for
protected superconducting qubits [265–267]. While there is ample room for improvement, we
can envision a different mode to utilize PPQ and, in general, protected superconducting qubits.
Protected qubits can be a component of an heterogeneous quantum architecture. With this
word, we mean integrating protected qubits as memory elements in a conventional transmon-
based quantum computing architecture. In such heterogeneous architecture, the qubit state is
stored on the protected qubit during idle times and transferred to the transmon qubits for fast,
high-fidelity operations using the full machinery of well-established high-fidelity transmon
operation.

After introducing superconducting qubits in Sec. 5.1, this chapter presents transmons
(Sec 5.2), and PPQs (Sec. 5.3), as a special case of generalized k-transmons (Sec. 5.4). Finally,
Sec. 5.5 discusses the coupling of the two PPQs with flux-tunable transmons, including possible
errors affecting the scheme.

5.1 Introduction to superconducting qubits

Consider a device formed by a Josephson junction that connects two superconducting islands
placed very close to each other. While the Josephson junction allows for a dissipationless
current to flow, the current causes the building of a charge dipole between the two islands. This
dipole will tend to restore the original charge configuration, leading to oscillatory behavior.
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The effect of the charge dipole can be described by introducing a capacitance C that is the
sum of the junction’s intrinsic capacitance and any shunting capacitance added to the circuit.
The Hamiltonian term for the dipole contribution reads as

HC = 4EC (n −ng )2 , (5.1)

where n is the difference in the number of Cooper pairs in the two islands, EC = e2/2C is the
charging energy, while ng is the static charge. This is induced by a biasing gate, that is control-
lable, as well as uncontrollable background charges and unpaired electrons that fluctuate on
some large time scale. The contribution originating from unpaired electrons is discrete and
changes by ±1/2 upon a quasiparticle tunneling across the junction; the background charge
instead may vary continuously [268]. The charge operator in Eq. 5.1 is connected to the phase
difference operator by the canonical commutation relation

[
φ,n

]= i . Consequently, it can be
expressed as a differential operator, n = i∂/∂φ.

We can write the Hamiltonian as the sum of the Josephson energy and the charging energy
resulting in

H = 4EC
(
n −ng

)2 −∑
k

E Jk cos
(
kφ

)
. (5.2)

As discussed in the previous chapter, each harmonic in the decomposition of the Josephson
potential corresponds to the tunneling of multiplets of Cooper pairs. A way to visualize this
decomposition is by rewriting the expression in the charge basis and interpreting exp

(
i kφ

)
as

a translation operator. The result is

HJ =
∑
k

E J ,Ck cos
(
kφ

)+E J ,Sk sin
(
kφ

)
=∑

n

∑
k

E J ,Ck + i E J ,Sk

2
|n +k〉〈n|+h.c.

(5.3)

where |n〉 is the state with a difference of n Cooper pairs in the two leads. In this way, it is easy
to see how, e.g., a term cos

(
2φ

)
mediates the tunneling of pairs of Cooper pairs. In the next

section, we will consider the case where there is a single dominant harmonic in the Josephson
potential while the other harmonics, if present, act as perturbations. We will call this kind of
system generalized transmon. The transmon is the case for a dominant fundamental harmonic,
a cos

(
φ

)
potential, the PPQ has a dominant cos

(
2φ

)
term, while a generalized k-transmon has

a dominant kth component.

5.2 Transmons

The transmon, proposed in 2007 as an improved version of the Cooper pair box qubit [255],
is currently the most common type of superconducting qubits [269]. Its circuit model can be
seen as an LC resonator where the linear inductance has been substituted with a nonlinear
Josephson junction. This nonlinearity makes it possible to control specific states since each
transition will have a different frequency. At a practical level, it is realized by shunting the
Josephson junction with a large capacitor to reduce the charging energy.

The transmon Hamiltonian reads as

H = 4EC
(
nt −ng

)2 −E J cos
(
φt

)
. (5.4)
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The fundamental quantity that describes the behavior of the system is the ratio E J /EC . As
shown in Fig. 5.1(a), the sensitivity to the offset charge decreases as E J /EC increases. This is
the fundamental characteristic that determines the excellent performance of this quantum
device since charge noise is the least controllable noise source.

Fig. 5.1: Transmon qubit. (a) Charge dispersion for a transmon qubit for increasing value of
E J . For E J = 0, there is one parabola for each integer value of ng . The introduction of a finite
E J opens gaps at the crossing point of the parabola. A large E J /EC ratio flattens the charge
dispersion relation, determining the insensitivity to charge noise. (EC = 1 GHz) (b) Circuit
diagram of a tunable transmon circuit. The use of a SQUID in place of the Josephson junction
makes it possible to control the effective Josephson energy of the transmon b varying the
external flux Φext

t . (c) Levels energy difference for a transmon as a function of E J . (d) The four
lower eigenstates of a transmon in phase space on top of the Josephson potential (black line).

Using the approximation scheme we will introduce in Sec. 5.4, it is possible to prove that
the energy difference between level |1t 〉 and |0t 〉, and between |2t 〉 and |1t 〉 are

ω10 ≃ω+α
ω21 ≃ω+2α

(5.5)

where we define the frequency ω=√
8E J /EC and the anharmonicity α=−EC

The transmon has a negative anharmonicity, causing the inter-level separation to decrease
climbing the energy ladder. The anharmonicity makes it possible to manipulate a single pair of
levels without the risk of causing undesired transitions. To provide a reference, ω10 is usually
in the range 3-6 GHz, while α is around 100-300 MHz [269].

Transmons come in two versions: fixed-frequency and tunable-frequency. Fixed-frequency
transmons have a resonant frequency determined during their fabrication process and cannot
be changed. In contrast, tunable-frequency transmons use a SQUID instead of a Josephson
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junction, which allows for control of the resonant frequency. As discussed in Appendix. A, in
the case of junctions with sinusoidal CPR, the effective phase dispersion of the SQUID is

E J = E J ,Σ

√
cos2(φe )+d 2 sin2(φe ) (5.6)

where E J ,Σ = E J1 +E J2 and d = (γ−1)(γ+1) with γ= E J2/E J1. In this case, the E J parameter of
the circuit is tuned by the flux that pierces the mesh between the two junctions.

In flux-tunable transmons, two-qubit gates can be achieved using a direct capacitive
coupling between the qubits without the need for a resonator. In this small introduction,
we have not discussed the implementation of single and two-qubit gates in flux-tunable
transmons. They are not necessary to understand the coupling scheme in Sec. 5.5 and are
extensively discussed in the literature, like Ref. [269].

5.3 Parity-protected qubits

In PPQs, the standard Josephson junction in the transmon is substituted with a special cos
(
2φ

)
junction that is dominated by the second harmonic, as shown in the circuit in Fig. 5.2(b). This
special Josephson element only permits the tunneling of pairs of Cooper pairs. As a conse-
quence, the Cooper-pair parity is a conserved quantity, and the eigenstates of the Hamiltonian
are composed of only even or only odd states. In phase space, the eigenstates wavefunctions
are symmetric and anti-symmetric combinations of states that are localized in the 0- and
π-valleys of the Josephson potential, see Fig. 5.2(d).

The charge dispersion of this quantum device is shown in Fig. 5.2(a): as in the case of
the transmon, the Josephson junction opens gaps in the spectrum, but this time it preserves
the crossings between the parabolas of different Cooper pair parity sectors. The remaining
spectrum shows a periodicity of 2n. For odd values of ng , the two states in each pair swap,
while for half-integer values, they are degenerate.

Due to this disjoint support of the charge space wavefunctions,
〈

0p |O|1p
〉 = 0 for any

operator O that preserves the Cooper-pair parity, which is the condition for protection against
parity-preserving relaxation errors [263]. As E J increases, the energy separation between the
states in the pair decreases exponentially, see Fig. 5.2(c).

Single-qubit gates

For implementing single-qubits gates, we consider the generalized circuit for a PPQ depicted
in Fig. 5.3(a). The circuit comprises not only a cos

(
2φp

)
element for the tunneling of pairs of

Cooper pairs but also a cos
(
φp

)
and sin

(
φp

)
element that describes the tunneling of single

Cooper-pairs. The Hamiltonians for these additional circuit elements are given by,

H x =−εx cos
(
φp

)
,

H y =−εy sin
(
φp

)
,

(5.7)

While both additional circuit elements permit single Cooper-pair tunnelings and temporarily
lift the qubit protection, they are typically tuned by different control parameters, depending on
the experimental implementation of the PPQ [226, 227]. For example, if the PPQ is realized in a
nanowire Josephson interferometer, as the one discussed in Appendix. A, then the sinusoidal
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Fig. 5.2: Parity-protected qubit. (a) Charge dispersion relation of a PPQ. Note how the eigen-
states are 2ng -periodic. (b) Circuit description of a PPQ. (c) Levels energy difference for a
PPQ as a function of E J . Note that, in this case, ω10 decreases with the Josephson energy and
becomes degenerate in the high E J /EC limit. The same happens for level

∣∣2p
〉

and
∣∣3p

〉
. (d) The

four lower eigenstates of a PPQ in phase space on top of the Josephson potential (black line). In
the high E J /EC limit, these states can be seen as the bonding and anti-bonding superposition
of the levels of two harmonic wells.

term arises if the interferometer junctions are tuned out of balance by local gate electrodes. In
contrast, the cosinusoidal term arises when the interferometer magnetic flux is biased away
from half flux quantum [227, 229]. In the case of the ferromagnetic hybrid junction, described
in Sec. 4.5 and 4.6, both of them can be controlled through electrostatic gating.

We now project the Hamiltonians Hp +H x and Hp +H y onto the computational subspace
of the PPQ. The resulting qubit Hamiltonians read,

H x
eff = δωp cos

(
πng ,p

)
σz

p /2+δhx σx
p ,

H y
eff = δωp cos

(
πng ,p

)
σz

p /2+δhy sin
(
πng ,p

)
σ

y
p . (5.8)

From this result, we see that the cos
(
φp

)
and sin

(
φp

)
elements induce rotations around the x-

and y-axis of the Bloch sphere. The respective matrix elements are given by δhx = 〈
0p |H x |1p

〉
and δhy sin

(
πng ,p

) = 〈
0p |H y |1p

〉
. The dependence of these matrix elements on the offset

charge ng ,p is shown in Fig. 5.3(b). Since we can reach any point on the Bloch sphere through a
combined rotation around the x- and y-axis, we conclude that the free time evolution of the
Hamiltonians in Eq. (5.8) can implement a complete set of single-qubit gates. However, we
also emphasize that these single-qubit gates break the Cooper-pair parity conservation so that
the PPQ is prone to relaxation errors during the operation time of the single-qubit gates.

5.4 k-transmon and harmonic approximation

The transmon and the parity-protected qubit can be seen as a special case of a more generalized
transmon, or k-transmon. We define the k-transmon as a Cooper pair box where the Josephson
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Fig. 5.3: Single-qubit gates. (a) A generalized PPQ circuit with three circuits elements; a
cos

(
2φp

)
element (blue), a cos

(
φp

)
element (red), and a sin

(
φp

)
element (green). No magnetic

flux is threading the gray areas of the circuit. (b) Dependence of the matrix element hx

(resulting from the cos
(
φp

)
element) and hy (resulting from the sin

(
φp

)
element) as a function

of ng ,p . The system parameters are (E J ,p ,EC ,p ) = 2π(2.7,0.18)GHz and (εx /E J ,p ,εy /E J ,p ) =
(0.04,0.2). (c) The cos

(
φp

)
element induces rotations around the x-axis of the Bloch sphere

(red arrow). The sin
(
φp

)
element induces rotations around the y-axis of the Bloch sphere. The

wavefunctions of the PPQ in the z-basis (|0p〉,|1p〉) and in the x-basis (|+p〉,|−p〉) are shown
schematically.

potential is dominated by only the k-th harmonic component with a Hamiltonian that reads as

H (k) = 4EC

(
i
∂

∂φ
−ng

)2

−E J ,Ck cos
(
kφ

)
. (5.9)

Such a hypothetical device is not suitable to work as a qubit, as the ground state is k-fold
degenerate. But it could be used as an element of a circuit for quantum simulations.

This Hamiltonian is amenable to an approximate analytical treatment. First of all, the
offset charge can always be removed by the unitary transformation U = e i ngφ resulting in the
Hamiltonian

H =−4EC
∂2

∂φ2 −E J ,Ck cos
(
kφ

)
. (5.10)

and in a modified boundary condition

ψ(φ+2π) = e i 2ngπψ(φ) . (5.11)

In the ideal transmon limit E J /EC → ∞, the ground state is k-degenerate, and the low
energy states are localized in the minimum of the Josephson potential E J that are located at
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points φk
j = 2π j /k. We can expand the potential around these minima

VJ /E Jk = cos
(
kφ

)≃ 1−k2

(
φ−φ

)2

2
+k4

(
φ−φ

)4

24
+o(φ6) (5.12)

and, for small fluctuations near the minimum, we can use the quadratic approximation and
rewrite the Hamiltonian as an anharmonic oscillator

H j
k =+4EC n2 +E Jk

k2

2
(φ−φ j

k )2 +Hnl . (5.13)

where Hnl contains the higher order terms. We then rescale the Hamiltonian by introducing the
parameter ξ and the rescaled coordinates ñ = n/ξ and φ̃= ξφ. In this way, the commutation

relation [φ̃, ñ] = i is preserved. Using ξ(k) = 4
√

8EC /k2E J ,Ck the Hamiltonian becomes

H j
k =ω(k)

(
ñ2

2
+ φ̃2

2

)
+Hnl (5.14)

with the frequency ω(k) =
√

8k2E J ,Ck /EC .

The eigenfunctions of these harmonic oscillators read as

ψ(k)
j n (φ) = 1p

2n n!

[
(ξ(k))2

π

]1/4

e−
[ξ(k)(φ−φ j )]2

2 Hn

[
ξ(k)(φ−φ j )

]
. (5.15)

and can be used as a basis to project the full Hamiltonian.
We start by considering the quartic term in Hnl: by defining a = (φ̃+ i ñ)/

p
2 we can write

the Hamiltonian for the well as

H =ω(k)a†a − EC

12

(
a +a†

)4
(5.16)

that is the Hamiltonian of a Duffing oscillator. A first-order perturbation study provides the
anharmonic correction to the eigenstates energies

ω j =ω(1)n − EC

12
(6n2 +6n +3) . (5.17)

We now proceed by modeling the system as a collection of coupled Duffing oscillators. By
defining the annihilation operator a j for an excitation in the valley j , we can write the effective
Hamiltonian as

H̃ (k) =
k∑

j=1

[
ω(k)a†

j a j + α(k)

2
a†

j a†
j a j a j + t (k)(a†

j a j+1 +H.c.)

]
+ t (k)

(
e i ng 2πa†

k a1 +H.c.
)

. (5.18)

where we can approximate the internal nearest neighbor hopping amplitude as

t (k)
nn′ =

〈
j n

∣∣H (k) ∣∣( j +1)n′〉 . (5.19)
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By translation invariance, this integral does not depend on j as long the hopping is in the
unit cell. However, there is an additional phase when the hopping term involves states in two
adjacent charge sectors. For example, in the case of a 4-transmon, the hopping energy would
read as

H̃ (4) = t (4)


0 1 0 e i ng 2π

1 0 1 0
0 1 0 1

e−i ng 2π 0 1 0

 (5.20)

Then the dispersion relation for the low-energy subspace of a k-transmon in the harmonic
approximation reads

ε j (ng ) = 2t (k) cos

[
2π

k

(
j +ng

)]
. (5.21)

For the conventional transmon, the |0〉 and |1〉 states have different energy given by the two
lowest energy states with a gap ω(1)

H (1) =+ω(1)σz

2
−σx t (1)

01 cos
(
2πng

)
(5.22)

while for the parity-protected qubit

H (2) = t (2)
00

[
cos

(
ng 2π

)
σx + sin

(
ng 2π

)
σy

]
(5.23)

The spectrum of a 4-transmon is displayed in Fig. 5.4(a). The spectrum resemble the one of
the PPQ, but this time the gap is opened only between the parabola corresponding to states
that belong to a charge congruent modulo 4. As a result, there are subspaces formed by 4 states
that oscillate with periodicity 4n.

Fig. 5.4: Energy levels of a 4-transmon. (a) Charge dispersion relation of a 4-transmon. (b)
Wavefunctions of a 4-transmon.

5.5 Heterogeneous quantum architecture

As depicted in Fig. 5.5(a), we consider a direct capacitively coupling between a frequency-
tunable transmon qubit and a PPQ, realized by a capacitively-shunted cos

(
2φ

)
Josephson

element for the tunneling of pairs of Cooper-pairs. The individual Hamiltonians of the trans-
mon, Ht , and of the PPQ, Hp , are given by,

Ht = 4EC ,t (nt −ng ,t )2 −E J ,t cos(φt ) ,

Hp = 4EC ,p (np −ng ,p )2 −E J ,p cos(2φp ) .
(5.24)
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Fig. 5.5: Heterogeneous qubit setup. (a) A frequency-tunable transmon (red) coupled to a
PPQ (blue) realized by a capacitively-shunted tunneling element for pairs of Cooper-pairs
(Josephson junction symbol with double lines). The two qubits are coupled via a coupling
capacitance Cc . (b) Zoom-in on the charge dispersion relation for the transmon (left panel)
and the PPQ (right panel). In the gray area, the ground (first excited) state carries odd (even)
Cooper-pair parity. In the white area, the order is inverted. (c) Wavefunctions of the decoupled
system (Cc = 0). The system parameters are (E J ,t ,E J ,p ,EC ,t ,EC ,p ) = 2π(10,3,0.25,0.25)GHz.

Here, (nt ,φt ) and (np ,φp ) denote Cooper-pair charge and phase degrees of freedom of the
transmon and PPQ. Moreover, E J ,t is the transmon Josephson energy and E J ,p is the two-
Cooper-pair tunneling amplitude of the PPQ. The charging energies of the two qubit circuits
are EC ,t = e2/2Ct and EC ,p = e2/2Cp with the shunt capacitances Ct and Cp .

Both Hamiltonians in Eq. (5.24) can be diagonalized exactly by rewriting the eigenvalue
problems as Mathieu equations. For the transmon [255], the energy splitting between the
ground and first-excited state, which form the qubit basis |0t 〉 and |1t 〉, isωt =

√
8E J ,t EC ,t +δωt

with δωt ∝ exp(−√
8E J ,t /EC ,t )cos

(
2πng ,t

)
for E J ,t ≫ EC ,t , see the left panel of Fig. 5.5(b). For

the PPQ [226], the qubit basis is given by the two lowest-energy states with even and odd
Cooper-pair parity,

∣∣0p
〉

and
∣∣1p

〉
. These states have an exponentially suppressed energy split-

ting, ωp ∝ exp(−√
2E J ,p /EC ,p )|cos

(
πng ,p

)| for E J ,p ≫ EC ,p , see the right panel of Fig. 5.5(b).
Unlike the transmon, the PPQ is thus a low-frequency qubit with the computational states ex-
hibiting an exact degeneracy if cos(πng ,p ) = 0 and a near-degeneracy otherwise. However, like
the transmon, the energy splitting of the PPQ is insensitive to variations in ng ,p if E J ,p ≫ EC ,p ,
which ensures insensitivity to charge noise dephasing.

Having introduced the two decoupled qubit circuits with the associated computational
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Fig. 5.6: Low-energy spectrum of the hybrid qubit setup and CZφ gate. The left panel shows
the low-energy spectrum of the hybrid qubit setup for ng ,p = 0 and (E J ,t ,E J ,p ,EC ,t ,EC ,p ,EC ,c ) =
2π(12,2.7,0.2,0.15,0.025)GHz as a function of the external flux Φext of the tunable transmon.
The CZφ gate is realized by a rapid excursion from Φext = 0 to the vicinity of the

∣∣1t ,0p
〉 ↔∣∣0t ,3p

〉
anti-crossing at Φext =Φ∗

ext. The bottom panel shows the coupling strengths, g y z and
g zz , upon approaching the anti-crossing. The right panel shows the same but for ng ,p = 0.5.
Each shown energy level is now exactly two-fold degenerate.

subspace P0 = {
∣∣1t ,1p

〉
,
∣∣1t ,0p

〉
,
∣∣0t ,1p

〉
,
∣∣0t ,0p

〉
}, we proceed by coupling the qubits via a

standard capacitive coupling (see also Fig. 5.5a) corresponding to a coupling Hamiltonian
given by

Hc = 4EC ,c (np −ng ,p )(nt −ng ,t ). (5.25)

Here, EC ,c = e2Cc /(CpCt ) with the coupling capacitance Cc . In summary, the full Hamiltonian
of our setup is H = Hp+Ht+Hc . In the next section, we will derive the effective qubit interaction
due to this direct capacitive coupling.

To motivate the derivation of the effective qubit interaction, we first recall the case of
two capacitively coupled transmon qubits, t1 and t2, which are both ‘high-frequency’ qubits.
In this example, the capacitive coupling mediates a σy

t1σ
y
t2 interaction when projected onto

the computational subspace and a σz
t1σ

z
t2 interaction due to the mixing of computational

and non-computational states [269]. In our setup, which involves the coupling of a ‘high-
frequency’ transmon qubit and a ‘low-frequency’ PPQ, we will show that the couplings to
non-computational states will play an even more essential role. To anticipate this result, we
note that the coupling Hamiltonian of Eq. (5.25) at ng ,p = 0 vanishes exactly when projected
onto the computational subspace, 〈st , s′p |Hc |s′′t , s′′′p 〉 = 0 for any two states |st , s′p〉, |s′′t , s′′′p 〉 in P0

since 〈0t |nt |0t 〉 = 〈1t |nt |1t 〉 = 0 and 〈0p |np |1p〉 = 0. A direct coupling within the computational
subspace is thus fully absent at ng ,p = 0 and any qubit interaction, if present, is necessarily
mediated by virtual transitions through non-computational states.

Special case: ng ,p = 0

To identify the origin of such virtual transitions, we initially compare two special cases with
the offset charge on the PPQ set to either ng ,p = 0 or ng ,p = 0.5. Starting with the ng ,p = 0 case,
we show the low-energy spectrum as a function of external magnetic flux Φext

t of the tunable
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transmon in Fig. 5.6(a). The spectrum comprises not only the four qubit levels of P0 but also
two additional levels corresponding to the

∣∣0t ,2p
〉

and
∣∣0t ,3p

〉
state of the uncoupled system.

Interestingly, the non-computational states exhibit two anti-crossings with the computational
states,

∣∣1t ,1p
〉↔ ∣∣0t ,2p

〉
and

∣∣1t ,0p
〉↔ ∣∣0t ,3p

〉
, at certain values of external flux. These anti-

crossings arise because the respective couplings preserve the Cooper-pair parity on the PPQ.
On the other hand, anti-crossing between

∣∣1t ,0p
〉↔ ∣∣0t ,2p

〉
and

∣∣1t ,1p
〉↔ ∣∣0t ,3p

〉
are absent

from the spectum in Fig. 5.6(a), as such couplings violate the Cooper-pair parity conservation
on the PPQ. We will now show that in the vicinity of the two anti-crossings, virtual transitions
in-and-out of the computational subspace are enhanced and, consequently, can induce a
sizable effective qubit interaction between the transmon and the PPQ.

For computing the effective qubit interaction at ng ,p = 0, we initially project our setup
Hamiltonian H onto the four qubit states of P0 and on the additional

∣∣0t ,2p
〉

and
∣∣0t ,3p

〉
states.

This yields the following low-energy Hamiltonian,

H
(ng ,p=0)
low =



ω11 0 0 0 λ′ 0
0 ω10 0 0 0 −λ′′
0 0 ω01 0 0 0
0 0 0 ω00 0 0
λ′ 0 0 0 ω02 0
0 −λ′′ 0 0 0 ω03

 . (5.26)

Here, the frequency of the the
∣∣∣st , s′p

〉
state in the uncoupled system is denoted by ωss′ =

ωt ,s (Φext
t )+ωp,s′ . Moreover, the coupling matrix elements are given by λ′ = 〈

1t ,1p |Hc |0t ,2p
〉

and λ′′ = 〈
1t ,0p |Hc |0t ,3p

〉
, where we picked a wavefunction gauge for which (λ′,λ′′) are real-

valued. We point out that the low-energy Hamiltonian of Eq. (5.26) is different from the one
of capacitively-coupled transmons [269], because the conservation of Cooper-pair parity
prohibits a coupling of the

∣∣0t ,1p
〉

to the
∣∣1t ,0p

〉
state. Also, for two coupled transmons only

the highest energy computational state exhibits crossing with non-computational states. In our
case, the two computational states,

∣∣1t ,0p
〉

and
∣∣1t ,1p

〉
, both cross with non-computational

states, albeit at different values of external flux.
Next, we integrate out the non-computational states to second order in λ′ and λ′′ by a

Schrieffer-Wolff transformation. Provided that λ′2 ≪|ω02 −ω11| and λ′′2 ≪|ω03 −ω10|, we find
that the effective qubit Hamiltonian reads,

H
(ng ,p=0)
eff =

(
ωt +

g zz+
2

)
σz

t

2
+

(
ωp + g zz−

2

)
σz

p

2
+ g zz

−
σz

t

2

σz
p

2
,

g zz
± = λ′2

ω11 −ω02
± λ′′2

ω10 −ω03
, (5.27)

where ωp/t =ωp/t ,1 −ωp/t ,0 denote the bare qubit frequencies. The key insight from Eq. (5.27)
is that the interaction between the two qubits is of σz

pσ
z
t type. As anticipated, this interaction

arises from a two-step perturbative sequence involving virtual transitions in-and-out of the∣∣0t ,2p
〉

and
∣∣0t ,3p

〉
state. For example, in a perturbative sequence close to the

∣∣1t ,1p
〉 ↔∣∣0t ,2p

〉
anti-crossing, the system exhibits a first virtual transition from the computational state∣∣1t ,1p

〉
to the non-computational state

∣∣0t ,2p
〉

and, subsequently, a second virtual transition
back to

∣∣1t ,1p
〉

. Such a sequence preserves the state of the transmon, which explains why the
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interaction is ∝ σz
t . The dependence of the interaction on σz

p arises because the coupling
Hamiltonian of Eq. (5.25) preserves the Cooper-pair parity.

Special case: ng ,p = 0.5

Having derived the qubit interaction at ng ,p = 0, we want to compare the results of Eq. (5.27)
with the ng ,p = 0.5 case. We therefore plot the low-energy spectrum at ng ,p = 0.5 in Fig. 5.6(b).
Unlike in the previous case, we find that each depicted energy level exhibits an exact two-fold
degeneracy, corresponding to opposite Cooper-pair parity sectors. This finding is consistent
with our results of Fig. 5.5(b), where we pointed out that the levels on the uncoupled PPQ
are exactly degenerate at ng ,p = 0.5. In particular, the anti-crossings

∣∣1t ,1p
〉 ↔ ∣∣0t ,2p

〉
and∣∣1t ,0p

〉↔ ∣∣0t ,3p
〉

occur now at the same value of external flux and overlap exactly. Couplings
between

∣∣1t ,0p
〉↔ ∣∣0t ,2p

〉
and

∣∣1t ,1p
〉↔ ∣∣0t ,3p

〉
remain absent (they are forbidden since the

states belong to a different parity sector). We will now show that this new scenario at ng ,p = 0.5
will lead to a different effective qubit Hamiltonian compared to Eq. (5.27).

We begin again by projecting the setup Hamiltonian H onto the qubit subspace P0 and
onto the states

∣∣0t ,2p
〉

and
∣∣0t ,3p

〉
. The resulting low-energy Hamiltonian reads,

H
(ng ,p=0.5)
low =



ω11 0 −iη 0 λ 0
0 ω10 0 iη 0 −λ

iη 0 ω01 0 0 0
0 −iη 0 ω00 0 0
λ 0 0 0 ω02 0
0 −λ 0 0 0 ω03

 . (5.28)

Here, we have λ= 〈
1t ,1p |Hc |0t ,2p

〉=−〈
1t ,0p |Hc |0t ,3p

〉
and

η= i
〈

1t ,1p |Hc |0t ,1p
〉=−i

〈
1t ,0p |Hc |0t ,0p

〉
in a wavefunction gauge for which (λ,η) are real-valued. By inserting the coupling Hamilto-
nian in the expressions for the matrix elements, we note that η∝ 〈

sp |np |sp
〉−ng ,p . In the

previous case when ng ,p = 0, we had
〈

sp |np |sp
〉 = 0 and, consequently, η vanished. In the

present case when ng ,p = 0.5 and E J ,p ≳ EC ,p , we have
〈

sp |np |sp
〉 ̸= ng ,p so that η is finite

yet gets successively smaller upon increasing E J ,p . In particular, when E J ,p ≫ EC ,p , we have〈
sp |np |sp

〉 → ng ,p so that the contribution of η to the low-energy Hamiltonian is negligible.
Lastly, we note that due to the degeneracy of the PPQ levels,ωp,0 =ωp,1 andωp,2 =ωp,3. Hence,
the frequencies of the hybrid setup satisfy ω11 =ω10, ω01 =ω00, and ω02 =ω03.

We now proceed by integrating out the effects of the non-computational states,
∣∣0t ,2p

〉
and

∣∣0t ,3p
〉

, with a Schrieffer-Wolff transformation. The resulting effective Hamiltonian is of
the form,

H
(ng ,p=0.5)
eff =

(
ωt +

g zz+
2

)
σz

t

2
+ g y z σ

y
t σ

z
p ,

g y z = η,

(5.29)

Contrasting this result with Eq. (5.27), we note that both terms∝σz
p and∝σz

t σ
z
p have vanished

because ωp = 0 and g zz− = 0. As a result, the effective qubit interaction is not of σz
t σ

z
p but rather
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of σy
t σ

z
p type. The physical origin of the interaction at ng ,p = 0.5 is different from the ng ,p = 0

case, since it arises directly from the finite matrix elements of the charge operators of the
parity-protected qubit and the transmon qubits. The non-computational states induce only a
renormalization of the transmon frequency through the g zz+ contribution in the coefficient of
σz

t .

General case

So far, we have seen that the capacitive coupling between the transmon and the parity-
protected qubit induces a qubit interaction that is substantially different for ng ,p = 0 and
ng ,p = 0.5. In a last step, we want to interpolate between those two representative cases. This
interpolation is achieved by studying the dependence on the offset charge ng ,p of the various
matrix elements. Since the procedure for obtaining the effective interaction is otherwise iden-
tical to the special cases, we only note that for generic values of ng ,p the effective Hamiltonian
acquires both a σz

t σ
z
p and a σy

t σ
z
p interaction term,

H
(ng ,p )
eff =

(
ωt +

g zz+
2

)
σz

t

2
+

(
ωp + g zz−

2

)
σz

p

2
+ g yσ

y
t

+ g zz
−
σz

t

2

σz
p

2
+ g y z σ

y
t σ

z
p . (5.30)

While g zz
± are defined as in Eq. (5.27), the definition of g y z is now slightly generalized to

g y z = (η′ +η′′)/2 with η′ = i
〈

1t ,1p |Hc |0t ,1p
〉

and η′′ = −i
〈

1t ,0p |Hc |0t ,0p
〉

. The transition
from a pure σz

t σ
z
p at ng ,p = 0 to a pure σy

t σ
z
p at ng ,p = 0.5 is gradual. As for the the dependence

on the transmon offset charge, we remark that in the deep-transmon regime, E J ,t ≫ EC ,t , the
qubit interaction is almost independent of ng ,t .

So far, we have derived the effective qubit interaction and have demonstrated that it
depends on the anti-crossings with the non-computational states,

∣∣0t ,2p
〉

and
∣∣0t ,3p

〉
. To

realize the respective anti-crossings, we note that it is essential that,

ω02 <ω10. (5.31)

The transmon energy levels are approximated byωt ,n ≈√
8E J ,t EC ,t (n+1/2)−E J ,t while the PPQ

energy levels by
ωp,2+ωp,3

2 ≈ 2
√

8E J ,p EC ,p −4E J ,p . Neglecting the anharmonicity corrections
on both qubits, we find that the necessary condition in Eq. (5.31) simplifies to 2

√
E J ,p EC ,p <√

E J ,t EC ,t . This condition is satisfied for the parameters chosen in Fig. 5.6.

CZ gate

We will now use the effective Hamiltonian for the hybrid PPQ/transmon setup to implement
a controlled-phase gate (CZφ), which will preserve the Cooper-pair parity irrespective of the
detailed pulse sequence. In addition, we will also discuss a complete set of single-qubit gates
realized by controllably driving the system in-and-out of protection. In combination with the
CZφ gate, these single-qubit gates will permit the coherent state transfer, a SWAP operation,
between the transmon and PPQ.

For deriving the CZφ gate protocol, we initially move to the frame that rotates with the bare

qubit frequencies, H̃
(ng ,p )
eff =U †(t )H

(ng ,p )
eff U (t )− iU †(t )U̇ (t ) with U (t ) = e i (ωtσ

z
t +ωpσ

z
p )t/2. Within
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this rotating frame, the effective Hamiltonian reads,

H̃
(ng ,p )
eff = g zz+

2

σz
t

2
+ g zz−

2

σz
p

2
+ g zz

−
σz

t

2

σz
p

2

+ [−i e iωt t (g y z σ+
t σ

z
p + g y σ+

t )+H.c.],

(5.32)

where we introducedσ± = (σx±iσy )/2. We note that the terms∝ g y zσ±
t σ

z
p and∝ g yσ±

t vanish
if ng ,p = 0. In this situation, the free evolution of the effective Hamiltonian can implement a
CZ10

φ gate. For executing this CZ10
φ gate, we carry out a rapid excursion from Φext

t ≈ 0 to a flux

Φext
t ≈Φext∗ close to the anti-crossing

∣∣1t ,0p
〉↔ ∣∣0t ,3p

〉
. We then let the system evolve freely for

a time t∗ = φ. This free evolution gives rise to a rotation in the space of
∣∣1t ,0p

〉
and

∣∣0t ,3p
〉

.
After the time t∗, the

∣∣1t ,0p
〉

state will have acquired a finite phase factor and we rapidly return
to the idle configuration at Φext

t ≈ 0. Because g zz− ≈−g zz+ near the anti-crossing, the result of
this rapid excursion is a CZ10

φ gate of the form,

CZ10
φ = |0t 〉〈0t |⊗ Ip +|1t 〉〈1t |⊗Pp

Pp = e−iφ|0p〉〈0p |+ |1p〉〈1p |
(5.33)

Unlike for the case of two capacitively coupled transmons t1 and t2, we remark that the phase
factor is not acquired by the |1t1,1t2〉 state but by the

∣∣1t ,0p
〉

state. Also, as announced at the
beginning of this section, we highlight that the Cooper-pair parity is preserved for the full
duration of the CZ10

φ gate.

In the protocol for the CZ10
φ gate, we have assumed that the offset charge on the PPQ is

gate-tuned to ng ,p = 0. Such a tuning is beneficial as it maximizes the coefficient of the σz
t σ

z
p

terms, thereby allowing for improved gate speed. Furthermore, the tuning should always be
achievable because higher levels of the PPQ are strongly offset charge sensitive and can be used
for adjusting ng ,p . However, the fine-tuning to ng ,p = 0 is not essential for the gate protocol. To
see this, we note that the terms ∝ g y zσ±

t σ
z
p and ∝ g yσ±

t in Eq. (5.32), which appear when ng ,p

is detuned from zero, share a fast-oscillating prefactor ∝ e iωt t . This fast-oscillating prefactor
suggests that such terms are average to zero when invoking a ‘rotating-wave approximation’.
For making this argument more precise, we have integrated out the fast-oscillating terms to
second order in g y and g y z with a time-dependent Schrieffer-Wolff transformation [270, 271].
The resulting modified effective Hamiltonian reads

H̃
(ng ,p )
eff (t ) ≈

(
g zz+

2
+ 4[g̃ y (t )2 + g̃ y z (t )2]

ωt

)
σz

t

2
+ g zz−

2

σz
p

2

+
(

g zz
− + 16g̃ y (t )g̃ y z (t )

ωt

)
σz

t

2

σz
p

2
, (5.34)

with g̃ (t ) = g sin(ωt t/2). Provided that g y ≪ωt and g y z ≪ωt , we see that the correction terms
to the effective Hamiltonian are indeed negligibly small. For the realistic parameters chosen in
Fig. 5.6, we have g y /(2π) = 345kHz and g y z /(2π) = 3.88MHz if ng ,p = 0.1.
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CNOT and SWAP gate

We now combine the proposed method for single-qubit gates with the CZ10
φ (withφ=π) gate to

realize a CNOTt p gate with the transmon as control and the PPQ as target by the gate sequence,

CNOTt p = = CZ10

Y π
2

Y− π
2

(5.35)

A CNOTpt gate that uses the PPQ as control and the transmon as target is similarly given
by CNOTpt = Ht ·Hp ·CNOTt p ·Ht ·Hp with the Hadamards, Ht/p = (σx

t/p +σz
t/p )/

p
2. Most

notably, the CNOTt p and CNOTpt gate can now be combined to realize a SWAP=CNOTt p ·
CNOTpt ·CNOTt p operation. The SWAP operation enables the coherent transfer of quantum
information between the transmon and the PPQ. Interestingly, this coherent state transfer also
gives a novel read-out method for the PPQ by swapping the quantum information onto the
transmon and performing the read-out on the latter.

Possible errors

In the previous sections, we have focused on deriving a scheme for a CZφ gate within our
hybrid qubit setup. For our scheme, we have assumed that the Cooper-pair parity on the PPQ
is conserved during the gate operation time. An interesting question is if the gate protocol
modifies if errors due to unintentional single Cooper-pair tunneling terms, as given by Eq. (5.7),
are present on the PPQ?

To address this question, we consider the PPQ at its ng ,p = 0 operation point for optimal
gate-speed. We initially consider an error term, H y =−εy sin

(
φp

)
, with an amplitude εy that is

small compared to the remaining energy scales of the setup. This sin
(
φp

)
error arises in a PPQ

realized by a nanowire Josephson interferometer if the two interferometers junctions are not
in balance [229]. Due to the error term, we find that the low-energy Hamiltonian of Eq. (5.26)
changes to,

H
(ng ,p=0)
low →



ω11 0 0 0 λ′ 0
0 ω10 0 0 0 −λ′′
0 0 ω01 0 0 κ

0 0 0 ω00 κ 0
λ′ 0 0 κ ω02 0
0 −λ′′ κ 0 0 ω03

 . (5.36)

Here, we introduced the real-valued matrix element κ= 〈
0t ,1p |H y |0t ,3p

〉= 〈
0t ,0p |H y |0t ,2p

〉
.

Moreover, in accordance with Eq. (5.8), couplings of states with opposite Cooper-pair parity
within the qubit subspace P0 are found to be absent at ng ,p = 0, .

Next, we integrate out the non-computational states,
∣∣0t ,2p

〉
and

∣∣0t ,3p
〉

, with a Schrieffer-
Wolff transformation and move to the rotating frame of the bare qubit frequencies. The effective
rotating frame Hamiltonian of Eq. (5.32) then modifies to,

H̃
(ng ,p=0)
eff → g zz+

2

σz
t

2
+ g zz−

2

σz
p

2
+ g zz

−
σz

t

2

σz
p

2
(5.37a)

+ (e i (ωp+ωt )t g++σ+
t σ

+
p +e i (ωt−ωp )t g+−σ+

t σ
−
p +H.c.),
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with the coefficients,

g++ = κλ′

2(ω11 −ω02)
, g+− = κλ′′

2(ω03 −ω10)
. (5.37b)

It is now instructive to compare this result to the case of two capactively coupled transmons,
t1 and t2, near the operation point of the iSWAP gate [269]. In the latter case, the effective
Hamiltonian comprises similar terms, ∝σ+

t1σ
−
t2 and ∝σ+

t1σ
+
t2, that are ‘rotating’ with a factor

e i (ωt1−ωt2)t and ‘counter-rotating’ with a factor e i (ωt1+ωt2)t , respectively. For ωt1 ≈ ωt2, the
‘counter-rotating’ terms, which are fast-oscillating, average to zero within a ‘rotating-wave
approximation’. Only the ‘rotating’ terms, which oscillate slowly, are thus retained in the
effective qubit Hamiltonian. In our case, the situation is very different. Because ωt ≫ωp , both
factors, e i (ωt+ωp )t and e i (ωt−ωp )t , are fast-oscillating. Within a ‘rotating-wave approximation’,
we thus expect that both error terms average to zero.

To formalize this ‘rotating-wave approximation’ argument, we integrate out the fast-oscillating
terms with a time-dependent Schrieffer-Wolff transformation. To second order in g++ and
g+−, we find that

H̃
(ng ,p )
eff ≈

(
g zz+

2
+ 2[g̃ xx (t )− g̃ y y (t )]2

ωt

)
σz

t

2

+
(

g zz−
2

+ 2[g̃ xx (t )− g̃ y y (t )]2

ωt

)
σz

p

2

+
(

g zz
− − 4[g̃ xx (t )+ g̃ y y (t )]2

ωt

)
σz

t

2

σz
p

2
,

(5.38)

with g̃ (t ) = g sin(ωt t/2). From this expression for the effective rotating-frame Hamiltonian, we
conclude that the mitigation of the effects of sin

(
φp

)
errors requires us to operate the setup in

the regime when g xx ≪ωt and g y y ≪ωt .
It is now interesting to compare our results for sin

(
φp

)
errors with cos

(
φp

)
errors that are

described by an error term H x =−εx cos
(
φp

)
in the Hamiltonian. Such an error term can arise

in an implementation of the PPQ with a nanowire Josephson interferometer if the external
flux that threading the interferometer loop is detuned from half flux quantum [229]. In this
situation, the low-energy Hamiltonian of Eq. (5.26) modifies to,

H
(ng ,p=0)
low →



ω11 δhx 0 0 λ′ 0
δhx ω10 0 0 0 −λ′′

0 0 ω01 δhx 0 0
0 0 δhx ω00 0 0
λ′ 0 0 0 ω02 χ

0 −λ′′ 0 0 χ ω03

 , (5.39)

with the matrix element χ= 〈
0t ,2p |H y |0t ,3p

〉
. Importantly, we see that the cos

(
φp

)
errors do

not lead to off-diagonal terms that couple the matrix blocks representing the qubit subspace
P0 and the non-computational subspace {|0t ,2p〉, |0t ,3p〉}. Consequently, we note that the
cos

(
φp

)
errors primarily induce the mixing of opposite-parity states on the PPQ as described

by H x
eff in Eq. (5.8).
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Fig. 5.7: Effect of a cosine error in the PPQ. Low-energy spectrum of the hybrid qubit setup
for ng ,p = 0 and (E J ,t ,E J ,p ,EC ,t ,EC ,p ,EC ,c ) = 2π(12,2.7,0.2,0.15,0.025)GHz as a function of the
external fluxΦext of the tunable transmon in the presence of an error term H x = εx cos

(
φp

)
with

εx = 0.05E J ,p . The error term introduces additional anticrossings between states belonging to
the same pair.

In summary, we have found that the nature of sin
(
φp

)
errors and cos

(
φp

)
errors is different

in our hybrid qubit. While the sin
(
φp

)
errors lead primarily to additional two-qubit interactions

that become less relevant in the limit when g xx ≪ωt and g y y ≪ωt , the cos
(
φp

)
errors lead

primarily to additional single-qubit terms. Finding strategies of mitigating such flux errors, for
example by concatenating multiple imperfect PPQs [229, 272], is an important open challenge
of the field.

Errors on the transmon qubit

Besides the possible errors on the PPQ, it is essential to note that the performance of the CZ10
φ

gate in our hybrid setup can also be affected by errors on the transmon qubit. One source of
such errors is 1/ f flux noise [273, 274], which can give rise to fluctuations in the transmon
qubit frequency,ωt (Φext

t ), and thus induce qubit dephasing. In its idle configuration atΦext
t = 0,

the flux-tunable transmon is always first-order protected against flux noise, ∂ωt /∂Φext
t = 0 at

Φext
t = 0. However, when tuning transmon away from Φext

t to realize the CZ10
φ gate it becomes

susceptible to flux noise, because (in general) ∂ωt /∂Φext
t ̸= 0 when Φext

t ̸= 0. In this section, we
would like to understand how our proposed CZ10

φ gate performs in the presence of realistic 1/ f
flux noise amplitudes, which are of the order of a few µΦ0 at 1Hz [275].

As a starting point of our analysis, we assume that the PPQ is in its protected regime, as
described by Hp in Eq. (5.24), and tuned to ng ,p = 0 for optimal gate speed. Following our
previously outlined protocol, the CZ10

φ gate is then realized via a rapid excursion from the idle

configuration at Φext
t = 0 to a flux Φext

t =Φext∗ close to the anti-crossing
∣∣1t ,0p

〉↔ ∣∣0t ,3p
〉

and
back. We parametrize this excursion within the time interval [0, t∗+ tr ] through the following
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Fig. 5.8: Performance of the CZ10
ffi gate. (a) A typical flux pulse, Φext

t (t), for the CZ10
φ gate as

described by Eq. (5.40). The wait time near the anti-crossing
∣∣1t ,0p

〉↔ ∣∣0t ,3p
〉

is t∗. The ramp
up/down time of the flux pulse is tr /2. (b) Optimized gate error, 1−F , in the absence of 1/ f
flux noise and qubit relaxation errors obtained from Eq. (5.41) versus the coupling capacitance,
EC ,c . The system parameters are (E J ,t ,E J ,p ,EC ,t ,EC ,p ) = 2π(12,2.7,0.2,0.15)GHz and ng ,p = 0.
(c) Optimized gate time, t∗+ tr , versus the coupling capacitance, EC ,c . The system parameters
are the same as in (b). (d) Optimized gate error, 1−F , in the presence of 1/ f flux noise and
qubit relaxation errors obtained from Eq. (5.45), as a function of the coupling capacitance, EC ,c .
The system parameters are the same as in (b). The noise parameters are Γ(even)

1 =Γ(odd)
1 = 1/T1

with T1 = 20µs [273]. Moreover, A1/ f ,Φ = 5µΦ0 [275] and λ1/ f = 4, [276].

pulse shape [277],

Φext
t (t ) =Φext

∗


C (e− f (t ) −1), t > tr

2 + t∗
C (e− f (t−t∗) −1), t < tr

2

1, else.

(5.40)

Here, tr /2 denotes the rise/decay time of the pulse and t∗ is the wait time near the anti-
crossing. Moreover, we have introduced the constant C = 1/(e−A/4 − 1) and the function
f (t ) = At (t − tr )/t 2

r with the parameter A that sets the curvature of the rising/decaying pulse.
An example of the pulse shape is shown in Fig. 5.8(a).

With the help of Eq. (5.40), it is instructive to first look into errors of the unitary time
evolution. To assess the importance of such unitary errors, we numerically solve i∂tU (t) =
H̃

(ng ,p=0)
low (Φext

t (t))U (t), where H̃
(ng ,p=0)
low is represented in the rotating frame of the bare fre-

quencies at Φext
t = 0, and project the resulting time-evolution operator, U (tr + t∗), onto the

computational subspace. The projected operator is (in general) non-unitary due to leakage
to the non-computational states and of the form Uc = diag[a11e iφ11 , a10e iφ10 ,1,1]. For com-
paring Uc to the CZ10

φ gate, we apply a single-qubit Z operation, yielding U ′
c = UZUc with
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UZ = diag[e−iφ11 ,e−iφ11 ,1,1]. We then use U ′
c to compute the gate fidelity [278, 279],

F = [Tr(U ′†
c U ′

c )+|Tr(U †
CZ10

φ

U ′
c )|2]/20, (5.41)

where UCZ10
φ
= diag[1,e−iφ,1,1]. In our simulations, we have focused on φ=π and optimized

over the pulse parameters (Φext∗ , A, tr , t∗). The resulting gate errors, 1−F , and gate times are
shown in Fig. 5.8(b) and (c) versus the coupling charging energy, EC ,c . While the gate time is
reduced for stronger couplings, we find that the gate errors increases upon increasing EC ,c . We
attribute this increase in 1−F to an increase in both the phase error, e i (φ10−φ11) ̸= −1, and the
error due to leakage to non-computational states, a11 ̸= 1 or a10 ̸= 1.

Having discussed the effect of errors in the unitary time evolution, we now proceed by
analyzing the performance of the CZ10

φ gate in the presence of incoherent errors, including 1/ f
flux noise. To determine the time-evolution of the density matrix in the presence of 1/ f flux
noise, we follow the approach of [280] and consider a phenomenological master equation of
the form,

∂tρ = [H̃
(ng ,p=0)
low ,ρ]+D[L1,t ]ρ+D[L1,p ]ρ

+D[L(10)
ϕ (t )]ρ+D[L(11)

ϕ (t )]ρ,
(5.42)

where D[L]ρ = LρL† − (L†Lρ+ρL†L)/2.
For the time-dependent collapse operators accounting for 1/ f flux noise, we use,

L(10)
ϕ (t ) = 2

p
tΓ(10)

ϕ (t ) |1t ,0p〉〈1t ,0p |,
L(11)
ϕ (t ) = 2

p
tΓ(11)

ϕ (t ) |1t ,1p〉〈1t ,1p |,
(5.43)

with the 1/ f flux noise dephasing rates,

Γ(ss′)
ϕ (t ) =λ1/ f

∣∣∣∣ ∂ωss′

∂Φext
t

(t )

∣∣∣∣ A1/ f ,Φ. (5.44)

Here, λ1/ f is a dimensionless numerical prefactor and A1/ f ,Φ denotes the amplitude of the 1/ f
flux noise power spectral density, S(ω) = 2πA2

1/ f ,Φ/|ω|. We have assumed, again for simplicity,

that the dephasing arises primarily from the flux-dependence of the |1t ,0p〉 and |1t ,1p〉 levels.
To estimate the gate error, 1−F , in the presence of 1/ f flux noise and the decay channels,

we follow closely the procedure in [279]: For a given initial state, |ψ0〉, we first compute the time
evolution of the density matrix, ρ, from Eq. (5.42) using the QuTip package [281]. Subsequently,
we compute the state-dependent gate fidelity,

Fρ = Tr[ρρideal]. (5.45)

Here, ρideal = |ψideal〉〈ψideal| with |ψideal〉 =U †
ZUCZ10

φ
|ψ0〉 and UZ is obtained from the calcula-

tion of the unitary error. We repeat this procedure for 36 initial two-qubit states obtained by
combining the single-qubit states {|0t/p〉, |1t/p〉, (|0t/p〉± |1t/p〉)/

p
2,(|0t/p〉± i |1t/p〉)/

p
2}. By

averaging the resulting values for 1−Fρ , we arrive at an estimate for 1−F .
Our results from the aforementioned procedure are shown in Fig. 5.8(d) for a typical set of

system and noise parameters. We find that the gate error depends strongly on the magnitude
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of the coupling charging energy, EC ,c . For smaller capacitive couplings, EC ,c /2π = 5MHz,
corresponding to longer gate times, 152ns, we find a rather substantial reduction of the fidelity
to F ≈ 98.6%. In contrast, for stronger couplings, EC ,c /2π = 20MHz, the shorter gate times,
51ns, reduce the exposure to low-frequency flux noise and the decay channels. As a result, the
theoretical gate fidelity can reach F ≈ 99.7%, which is comparable to entangling gates between
transmons [261]. However, we acknowledge that additional factors may further degrade the
theoretical gate fidelity values in experiments. For example, it is to be expected that the
effects of 1/ f flux noise become more acute when many qubits are operated on the same
chip. In this scenario, realizing accurate qubit calibration and high-fidelity gate operations will
become more difficult. An interesting challenge for future works will be to further optimize
gate protocols for hybrid PPQ-transmon devices, for example, by using dynamical decoupling
techniques [282] or optimal control [283].
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6. CONCLUSION AND OUTLOOK

The research work presented in this thesis has focused on modeling hybrid nanoelectronic
devices for quantum information processing. Chapter 1 provided an introduction to the
theory of superconductivity, focusing on the aspects that are relevant for analyzing hybrid
heterostructures.

In Chapter 2, we have introduced modeling tools for the electrostatic landscape. After
presenting the Schrödinger-Poisson formulation, we moved to orbital-free approaches. The
widespread Thomas-Fermi method is often applied outside its range of validity, in particular,
closer to interfaces. To achieve a more accurate description of the density profile in these
cases, we introduced the extended Thomas-Fermi method that includes a gradient correction
of the kinetic energy functional, significantly increasing the precision of the density profile
near interfaces while keeping a minimal increase in the computational cost. We closed the
chapter with an outline of the physics of spin-orbit coupling in semiconductor nanostructures.

Chapter 3 is a detailed introduction to the scattering formalism for describing transport
phenomena in hybrid superconducting devices. The original results concerned the possibility
of leveraging microscopic and geometrical symmetries to extract additional information from
the differential conductance matrix. By considering new quantities defined as the differences of
elements of the differential conductance matrix, we have shown how to distinguish dissipation
from non-linear electrostatic effect, and we explored the interplay of spin-orbit coupling and
Zeeman splitting, revealing a strategy to identify the spin-orbit coupling direction.

Chapter 4 discussed some research related to extending the hybrid heterostructure plat-
form with ferromagnetic insets. We started by introducing the basic phenomenology of the
ferromagnetic proximity effect and the material platform used in experiments. In the second
part of the chapter, we discussed the applications of this platform to topological superconduct-
ing devices, first discussing the interplay of proximity effects in the system and then presenting
a new planar heterostructure for topological nanowires. The last part of the chapter discussed
Josephson junctions made with ferromagnetic hybrid heterostructures. After having presented
the result of an experiment and proposed an interpretative model, we expanded the model to
thoroughly investigate the variety of regimes that can be available for these devices, including
0–π transitions, higher-harmonic current-phase relations, and superconducting diode effects.

Chapter 5 of this thesis explored a potential application of the unconventional Josephson
junction to superconducting quantum computing. Specifically, it introduced parity-protected
qubits and demonstrated a possible way to create heterogeneous quantum architectures by
combining them with tunable transmons. By tuning the external flux on the transmon, it
is shown that non-computational states can mediate an entangling gate that preserves the
Cooper-pair parity, regardless of the specific pulse sequence used. In addition to enabling
coherent state transfer, the proposed entangling gate exhibits similarities with a controlled-
phase gate in conventional capacitively coupled transmon qubits. These findings suggest that
standard high-precision two-qubit calibration protocols may be repurposed for the operation
of hybrid qubit devices.

The findings of this thesis investigate the potential of hybrid nanoelectronic devices as the
next technological node in the field of quantum information processing. Hybrid heterostruc-
tures not only hold promise as a platform for studying non-abelian anyons in topological
phases of matter for fundamental research and topological quantum computation. It also
has the potential for applications beyond these fields. A future aim is to further explore the
versatility of these devices, with a focus on creating new electronic elements in conventional
superconducting circuits, like supercurrent rectifiers, in order to showcase their potential for
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future technological innovations and as a research tool to investigate exotic phases of matter.
The major challenge facing future developments of this platform is the need for greater

control and reproducibility in experimental results. To overcome this challenge, new theoretical
investigations that focus on the microscopic modeling of interfaces are probably the necessary
ingredient needed to provide a deeper physical understanding and predictive capabilities for
experimental efforts. In addition, large-scale simulations are required to address the interplay
between different devices and to integrate the technology into more complex experiments.
This thesis presents work aimed at advancing in these directions, including the development
of a formalism for transport measurement and the orbital-free electrostatic approach.

The addition of ferromagnetic insets is an interesting extension of the platform, but it is
associated with a great increase in the overall complexity. It is not yet clear how big is the
challenge of making these devices controllable. However, they will allow the implementation
of many new ideas concerning the investigation of the interplay of superconductivity and
ferromagnetism,

The application of hybrid heterostructures in superconducting quantum computing show-
cases their versatility and potential for future technological advancements. Whether this
variation of the platform will reach similar popularity is yet to be seen.

Looking ahead, there is much room for further research in this field. One possible avenue
is to explore the impact of different materials. Additionally, the potential for these devices
in other areas of quantum information processing, such as quantum communication and
quantum sensing, can be explored.
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A

SQUIDs

A superconducting quantum interference device (SQUID) is a circuit made of two Josephson
junctions in parallel. By piercing the loop with a magnetic field, it is possible to control the
supercurrent flowing in the SQUID by virtue of quantum interference effects. SQUIDs made
of sinusoidal Josephson junction are usually employed as magnetometers with very high
sensitivity.

In this Appendix, we consider a generic SQUID made of nonsinusoidal Josephson junctions
that can be realized using hybrid heterostructures. Let us consider a SQUID made of two
junctions with generic Josephson potential EJL(φL) and EJR(φR), Fig A.1(a). The total energy of
the interferometer can be written as

E J (φL,φR) = EJL(φL)+EJR(φR) = EJL(φ+φe)+EJR(φ−φe) (A.1)

where we have defined the average phase φ= (φL +φR )/2 , while following Aharonov-Bohm
quantization we get φL −φR =φe = 2πΦext/Φ0.

Fig. A.1: SQUID made with nonsinusoidal Josephson junctions. (a) SQUID made with non-
sinusoidal Josephson junctions. (b) Circuit model with ideal Josephson elements (up to the
second order). The gray area means that the total flux in the mesh is fixed to zero. (c) Circuit
model of the effective Josephson potential at the two ends of the SQUID.

The total current flowing in the SQUID is given by I (φ) = ∂EJ/∂φ = ∂EJL/∂φ+ ∂EJR/∂φ.
Suppose that one of the two junctions, for example, the left junction, has a significantly higher
critical current than the other. The total critical current of the SQUID is then reached for
a φc that satisfies ∂IL/∂φ = −∂IR/∂φ ≃ 0. This means that the critical phase at which the
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transition takes place is always close to the critical phase of the dominant junction, φc ≈φcL.
Consequently, the critical current as a function of the external field is

Ic(φe ) ≈ IcL + I (φcL −2φe) . (A.2)

This explains how studying the critical current of a SQUID with one dominant junction can be
used to inspect the CPR of the other junction.

Now, as is often the case, let us assume that only the first two harmonics provide non-
negligible contributions to the Josephson potential.

EJL(φL) = ∑
k=1,2

EJLk cos
(
kφL

)
, EJR(φR) = ∑

k=1,2
EJRk cos

(
kφR

)
(A.3)

The total energy can be written as

E J =E JΣ1

√
cos2(φe/2)+d 2

1 sin2(φe/2)cos
(
φ−φo1

)
+E JΣ2

√
cos2(φext

p )+d 2
2 sin2(φe)cos

(
2φ−2φo2

) (A.4)

where E JΣk = E JLk +E JRk while dk = (E JLk −E JRk )/(E JLk +E JRk ). Finally, the phase offsets are

φo1 = arctan[(d1 tan
(
φe/2

)
] (A.5)

φo2 = arctan[d2 tan
(
φe)] . (A.6)

To obtain a cos
(
2φ

)
element, one should set the external phase φe =π while tuning the trans-

parencies to cancel the Josephson energy asymmetry in the first Harmonic d1 = 0.
For what concerns the use of the interferometer in a PPQ, the sin

(
φ

)
and cos

(
φ

)
perturba-

tion can be implemented by introducing some asymmetry d1 ̸= 0. This reintroduces the first
harmonic in the phase dispersion relation. To determine what kind of perturbation we are
introducing, we first apply a gauge transformation to get rid of the phase offset in the second
harmonic term and then expand the cosine term. The result read as

E J p =E JΣ1

√
cos2(φe/2)+d 2

1 sin2(φe/2)
[
cos

(
φ

)
cos

(
φo2 −φo1

)+ sin
(
φ

)
sin

(
φo2 −φo1

)]
+E JΣ2

√
cos2(φext

p )+d 2
2 sin2(φe)cos

(
2φ

)
.

(A.7)

This demonstrate how, by tuning the external phase, one can control the rotation axis on
the Bloch sphere in the case the SQUID is used as an element of a PPQ.
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B

Semiconductor-metal boundary condition in the ETF
method

As is briefly described in the method presentation, the treatment of the interfaces between
metals and semiconductors is an open problem [284]. Moreover, the electron density shows a
strong dependence on the thickness of thin metallic films that afflicts heterostructures when
placed in contact with clean metallic films [75]. Usually, the electrostatic problem of the charge
distribution in the metal is not taken into account, and metallic parts are assumed neutral by
assigning a Dirichlet boundary condition at the surface [74, 75]. We will consider the problem
starting with a complete treatment of the semiconductor-metal interface and discuss the
issues of this solution. Next, we will search for an approximate solution able to reproduce the
important physical behavior of the electrostatics in the semiconductor.

Complete treatment

A complete treatment of the semiconductor-metal interface can be formulated by assuming
that ψ2 represents the conduction band electron density in both the semiconductor and the

metal. We denote by EF,M the bulk Fermi energy of the metal defined as EF,M = ℏ2k2
F

2m . We
define EW as the difference between the Fermi energy of the metal and the conduction band
minimum of the semiconductor such that the local CBM takes the form

ECBM(r) =−Ew1Sm(r)−EF,M1M(r) , (B.1)

where 1Ωi is the indicator function of region Ωi .
In addition, since in the metal the Fermi energy lies in the conduction band, the equilibrium

bulk electron density needs to be compensated by a positive background that we assumed
homogeneous and equal to

ρfx = ρM1M (r), ρM = e

3π2

(
2mEF,M

ℏ2

)3/2

, (B.2)

such that a homogeneous metallic system is neutral at equilibrium with an electron density
equal to the one predicted by the Thomas-Fermi model. However, there are issues with this
model when it is applied to a semiconductor-metal system. Since ψ2 is the electron density in
both materials, there will be a huge jump in its value at the interface, violating the assumption
of slowly varying electron density.
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Effective boundary treatment

Since a complete model of the semiconductor-metal interface is not available and the boundary
conditions for the ETF method are unknown, we explored the possibility of finding an effective
way to treat the semiconductor-metal boundary.

A first approach consists in excluding the metal from the NLSE. In this way, ψ2 models the
electron density only in the semiconductor, and the problem reduces to finding an effective
boundary condition by trial and error. We tested three options. If the interface is not trans-
parent, setting the density at the interface to zero ψ(∂ΩM ) = 0 can be an acceptable boundary
condition even in the metallic case. Alternatively, if we assume that the metal is not perturbed
at all, we can impose that the density should continuously go to the unperturbed metal density
at the interface ψ(∂ΩM ) =p

nM . Finally, we tried a Neumann boundary condition by fixing the
change in electron density to zero at the semiconductor-metal interface ∂ψ(∂ΩM ) = 0.

These approaches cannot be applied if the metal has to be included, for example because
it is a floating part. In this case, we found that a mixed TF and ETF approach can be used,
where we solve for the electron density in both the semiconductor and the metal, but we allow
λvW to vary in space. The idea of promoting λvW to an inhomogeneous field has already been
considered in more traditional application fields of OFDFT [285, 286].

Since metals have an extremely large electron density compared to that of the semiconduc-
tor, there will be an extremely large electron density gradient at the very interface. Since the
vW-correction of the energy functional is proportional to the absolute value of this gradient
squared, the vW-term will be extremely large here and, thus, essentially penalize the energy
functional, trying to remove the abrupt change in electron density. However, this abrupt
change in electron density at the semiconductor-metal interface is what we would expect of
the system and should thus not be removed. A solution to this could be to change λvW through
the stack to diminish the correction where we expect large gradients. We dubbed this method
λvW-sweep. In the metal, we expect an extremely large electron density (when compared to
the semiconductor) that is only weakly perturbed by being in contact with a semiconductor.
Changes are thus slow in space on the length scale of the Fermi wavelength, and the electron
density in the metal can be effectively described by the TF method, i.e., assigning λvW ≃ 0
in the metal while using a finite λvW in the semiconductor. This circumvents the problem
of assigning a boundary condition to the interface. In the bulk of the semiconductor we use
λvW = 1/9, and, in the aluminum, we set λvW to zero (for convergence reasons we use a small
but non-zero λvW of 2 ·10−8).
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Fig. B.1: Comparison of different ways to treat the semiconductor-metal interface. We
simulate the semiconductor stack in Fig. 2.2 (a), with a 5 nm layer of aluminum on top. The
upper plot shows the electron density in the semiconducting stack, while the lower one shows
the electron density in the metal. Six different ways of treating the semiconductor-metal
interface are simulated: Three ETF simulations with different boundary conditions at the
interface (ψ= 0, ψ=p

nAl, and ∂ψ= 0), one TF simulation, one SP simulation that is solved
only in the semiconductor, and one ETF simulation where the value of λvW is swept such that
it is 1/9 in the semiconductor and 0 in the metal.
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C

Additional material on superconducting qubits

C.1 Time-independent effective Hamiltonians

In this section of the Appendix, we give details on the derivation of the time-independent
effective Hamiltonians for the coupled qubit setup as presented in Sec. 5.5. As a starting point,
we project the setup Hamiltonian H onto

{
∣∣0t ,0p

〉
,
∣∣1t ,0p

〉
,
∣∣0t ,1p

〉
,
∣∣1t ,1p

〉
,
∣∣0t ,2p

〉
,
∣∣0t ,3p

〉
} ,

which corresponds to the relevant low-energy states of the uncoupled Hamiltonian H0. The

resulting projected Hamiltonian is given by H
(ng ,p )
low = H (0)

low +H (1)
low +H (2)

low with,

H (0)
low =



ω11 0 0 0 0 0
0 ω10 0 0 0 0
0 0 ω01 0 0 0
0 0 0 ω00 0 0
0 0 0 0 ω02 0
0 0 0 0 0 ω03

 , (C.1)

H (1)
low =



0 0 −iη′ 0 0 0
0 0 0 iη′′ 0 0

iη′ 0 0 0 0 0
0 −iη′′ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (C.2)

H (2)
low =



0 0 0 0 λ′ 0
0 0 0 0 0 −λ′′
0 0 0 0 0 0
0 0 0 0 0 0
λ′ 0 0 0 0 0
0 −λ′′ 0 0 0 0

 . (C.3)

Here we have chosen a gauge of the wavefunctions in the uncoupled system such that
〈2p |np |1p〉, 〈3p |np |0p〉, and 〈0t |nt |1t 〉 are purely imaginary-valued. As a result of this gauge
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choice, the following quantities are real-valued,

λ′ = 〈
1t ,1p |Hc |0t ,2p

〉
,

−λ′′ = 〈
1t ,0p |Hc |0t ,3p

〉
,

−iη′ = 〈
1t ,1p |Hc |0t ,1p

〉
,

iη′′ = 〈
1t ,0p |Hc |0t ,0p

〉
.

(C.4)

Next, we integrate out the effects of the non-computational states {
∣∣0t ,2p

〉
,
∣∣0t ,3p

〉
} by

means of a Schrieffer-Wolff transformation [287, 288]. As the generator of the Schrieffer-Wolff
transformation, we use

S =



0 0 0 0 −Ω′/λ′ 0
0 0 0 0 0 Ω′′/λ′′
0 0 0 0 0 0
0 0 0 0 0 0

Ω′/λ′ 0 0 0 0 0
0 −Ω′′/λ′′ 0 0 0 0

 (C.5)

with

Ω′ = λ′2

ω11 −ω02
and Ω′′ = λ′′2

ω10 −ω03
. (C.6)

We note that the generator satisfies [H (0)
low,S] = −H (2)

low. To second order in λ′ and λ′′, the

Schrieffer-Wolff generator produces an effective Hamiltonian H
(ng ,p )
eff = H (0)

low+H (1)
low+[H (2)

low,S]/2.
Evaluating this expression yields,

H
(ng ,p )
eff =

(
ωt +

g zz+
2

)
σz

t

2
+

(
ωp + g zz−

2

)
σz

p

2
+ g zz

−
σz

t

2

σz
p

2
+ g y

t σ
y
t + g y z σ

y
t σ

z
p (C.7)

with

g zz
± =Ω′±Ω′′,

g y z = (η′+η′′)/2,

g y
t = (η′−η′′)/2.

(C.8)

C.2 Effective Hamiltonians for the time evolution

In this section of the Appendix, we give details on the derivation of the effective Hamiltonian
in Sec. 5.5 that approximates the time evolution of our heterogeneous qubit system.

Time-dependent Schrieffer-Wolff transformation

As a starting point, we briefly review the time-dependent version of the Schrieffer-Wolff trans-
formation. Given some time-dependent effective Hamiltonian H(t), the time-dependent
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Schrieffer-Wolff transformation generates an effective Hamiltonian Heff(t ) via a unitary trans-
formation with a time-dependent generator S(t) with S(t) = −S(t)†. By using the Baker-
Campbell-Haussdorf formula, we can formulate the action of the time-dependent Schrieffer-
Wolff unitary transformation on the Hamiltonian H(t ) as,

Heff(t )− i∂t ≡ e−S(t )(H(t )− i∂t )eS(t )

= (H(t )− i∂t )+ [H(t )− i∂t ,S(t )]+ 1

2
[[H(t )− i∂t ,S(t )] ,S(t )]+ . . .

= H(t )− i∂t + [H(t ),S(t )]− i Ṡ(t )+ 1

2
[[H(t ),S(t )] ,S(t )]− i

2

[
Ṡ(t ),S(t )

]+ . . .

(C.9)

Next, we choose the time-dependent Hamiltonian to be of the specific form,

H(t ) = H (0) +ξH (2)(t ). (C.10)

Here, H (0) is a time-independent unperturbed Hamiltonian and H (2)(t ) is a time-dependent
perturbation. The parameter ξ is an aid to count the order in perturbation theory and can be
set to ξ= 1 at the end of the derivation. Besides specifying the form of the time-dependent
Hamiltonian, we also require that the generator of the time-dependent Schrieffer-Wolff trans-
formation satisfies the following differential equation,

ξH (2)(t )+ [
H (0),S(t )

]− i Ṡ(t ) = 0. (C.11)

Using these two conditions on the time-independent Hamiltonian and the generator S(t ), we
find that the expression for the effective Hamiltonian Heff(t ) can be simplified to,

Heff(t )− i∂t = H(t )− i∂t + [H(t ),S(t )]− i Ṡ(t )+ 1

2
[[H(t ),S(t )] ,S(t )]− i

2

[
Ṡ(t ),S(t )

]+ . . .

= H (0) − i∂t + 1

2

[
ξH (2)(t ),S(t )

]+ 1

2

[[
ξH (2)(t ),S(t )

]
,S(t )

]+ . . .

(C.12)

We now proceed by assuming that the generator S(t ) can be expanded in a perturbative series,

S(t ) = ξS1(t )+ξ2S2(t )+·· · (C.13)

Inserting this series into the expression for the effective Hamiltonian Heff and only retaining
terms up to order ξ2, we find that,

Heff(t )− i∂t = H (0) − i∂t + ξ2

2

[
H (2)(t ),S1(t )

]+O(ξ3) (C.14)

Finally, we set ξ= 1 and arrive at the following form of the effective Hamiltonian,

Heff(t )− i∂t ≡ H (0) − i∂t + 1

2

[
H (2)(t ),S1(t )

]
(C.15)
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Rotating frame for the heterogeneous qubit setup

We now want to apply the time-dependent Schrieffer-Wolff transformation to our heteroge-
neous qubit setup. For that purpose, it is helpful to initially move to a rotating reference frame,

which is achieved by separating the full qubit entangling Hamiltonian into H
(ngp )

eff = H (0) +H (2)

with

H (0) =
(
ωt +

g zz+
2

)
σz

t

2
+

(
ωp + g zz−

2

)
σz

p

2
++g zz

−
σz

t

2

σz
p

2
,

H (2) = g y
t σ

y
t + g y z

t p σ
y
t σ

z
p ,

(C.16)

and applying the following time-dependent unitary transformation,

U (t ) = e i (ωtσ
z
t +ωpσ

z
p )t/2. (C.17)

This transformation yields the qubit entangling Hamiltonian in the frame that rotates at the
bare qubit frequencies with components,

H̃ (0) =U †(t )H (0)U (t )− iU †(t )U̇ (t ) = g zz+
2

σz
t

2
+ g zz−

2

σz
p

2
+ g zz

−
σz

t

2

σz
p

2
,

H̃ (2)(t ) =U †(t )H (2)U (t )− iU †(t )U̇ (t ) =
g y sin(ωt t )σx

t + g y cos(ωt t )σ
y
t + g y z sin(ωt t )σx

t σ
z
p + g y z cos(ωt t )σ

y
t σ

z
p .

(C.18)

Time-dependent Schrieffer-Wolff transformation for heterogeneous qubit setup

We now want to perform a time-dependent Schrieffer-Wolff transformation that eliminates
the fast-oscillating terms, ∝ e±iωt t , in H̃ (2)(t) to second order in g y and g y z . We, therefore,
introduce the following Schrieffer-Wolff generator,

S1(t ) =


0 0 f1(t ) 0
0 0 0 f2(t )

− f1(t )∗ 0 0 0
0 − f2(t )∗ 0 0

 (C.19)

with the functions,

f1(t ) = −2i (g y + g y z )(e−i (g zz− +g zz+ )t/2 −e iωt t )

g zz− + g zz+ +2ωt
,

f2(t ) = 2i (g y − g y z )(e i (g zz− −g zz+ )t/2 −e iωt t )

g zz− − g zz+ −2ωt

(C.20)

This generator satisfies,

S1(t ) =−S1(t )†, H̃ (2)(t )+ [
H̃ (0),S1(t )

]− i Ṡ1(t ) = 0, and S1(0) = 0. (C.21)

Moreover, the generator allows us to compute the effective correction term to H̃ (0)(t ) to second
order in g y and g y z ,

1

2

[
H̃ (2)(t ),S1(t )

]=


h1(t ) 0 0 0
0 h2(t ) 0 0
0 0 −h1(t ) 0
0 0 0 −h2(t )

 , (C.22)

146



C.3. More details on the possible errors

with the functions

h1(t ) = 4(g y + g y z )2 sin
(
[g zz− + g zz+ +2ωt ]t/4

)2

g zz− + g zz+ +2ωt
,

h2(t ) =−4(g y − g y z )2 sin
(
[g zz− − g zz+ −2ωt ]t/4

)2

g zz− − g zz+ −2ωt
.

(C.23)

Provided that ωt ≫ g zz
± , we neglect the terms in the denominators and sine functions that

are ∝ g zz
± . When then add the correction term to H̃ (0)(t), which yields the full effective

Hamiltonian,

H̃
(ng ,p )
eff (t ) ≈

(
g zz+

2
+ 4[(g y )2 + (g y z )2]sin(ωt t/2)2

ωt

)
σz

t

2

+ g zz−
2

σz
p

2
+

(
g zz
− + 16g y g y z sin(ωt t/2)2

ωt

)
σz

t

2

σz
p

2
.

(C.24)

This concludes our derivation of the effective Hamiltonian for the time evolution of our hetero-
geneous qubit setup.

C.3 More details on the possible errors

In this section of the Appendix, we provide details on the derivation of the effective Hamiltoni-
ans that account for the presence of sin

(
φp

)
error terms in our heterogeneous qubit setup.

First, we note that the derivations for the effective Hamiltonians with the sin
(
φp

)
error

terms are very similar to the derivations for the effective Hamiltonians without sin
(
φp

)
the

error terms. Since the latter derivations have been discussed in great detail in the previous
sections of the Appendix, we will focus only on the main modifications.

Time-independent effective Hamiltonian

For deriving the time-independent effective Hamiltonian of Eq. (15), we note that the low-

energy Hamiltonian at ng ,p = 0 is given by H
(ng ,p=0)
low = H (0)

low +H (2)
low with,

H (0)
low =



ω11 0 0 0 0 0
0 ω10 0 0 0 0
0 0 ω01 0 0 0
0 0 0 ω00 0 0
0 0 0 0 ω02 0
0 0 0 0 0 ω03

 , H (2)
low =



0 0 0 0 λ′ 0
0 0 0 0 0 −λ′′
0 0 0 0 0 κ

0 0 0 0 κ 0
λ′ 0 0 κ 0 0
0 −λ′′ κ 0 0 0

 . (C.25)

Here, the matrix element κ= 〈
0t ,1p |H y |0t ,3p

〉= 〈
0t ,0p |H y |0t ,2p

〉
is real-valued (in the same

gauge as the one used in the first section of the Appendix) and accounts for the presence of the
sin

(
φp

)
error terms.
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Next, we write down the generator of the Schrieffer-Wolff transformation,

S =



0 0 0 0 −Ω′/λ′ 0
0 0 0 0 0 Ω′′/λ′′
0 0 0 0 0 Γ′
0 0 0 0 Γ′′ 0

Ω′/λ′ 0 0 −Γ′′ 0 0
0 −Ω′′/λ′′ −Γ′ 0 0 0

 (C.26)

with
Γ′ = κ

ω03 −ω01
and Γ′′ = κ

ω02 −ω00
, (C.27)

The generator satisfies [H (0)
low,S] = −H (2)

low and yields the effective Hamiltonian, H
(ng ,p=0)
eff =

H (0)
low + [H (2)

low,S]/2. Projected onto the qubit subspace P0, the effective Hamiltonian evaluates
to,

H
(ng ,p=0)
eff ≈

(
ωt +

g zz+
2

)
σz

t

2
+

(
ωp + g zz−

2

)
σz

p

2
+ g zz

−
σz

t

2

σz
p

2
+ g xx σx

t σ
x
p + g y y σ

y
t σ

y
p (C.28)

with the coefficients,

g xx = κ

4

(
λ′

ω11 −ω02
+ λ′′

ω03 −ω10

)
, g y y = κ

4

(
λ′

ω02 −ω11
+ λ′′

ω03 −ω10

)
. (C.29)

Here, we have dropped terms ∝ 1/(ω01 −ω03) and ∝ 1/(ω00 −ω02) due to the large separation
of the respective energy levels.

Time-dependent effective Hamiltonian

For deriving the time-dependent effective Hamiltonian of Eq. (16), we transform the effective

Hamiltonian, H
(ng ,p=0)
eff , to the frame that rotates with the bare qubit frequencies. The rotating-

frame Hamiltonian is of the form H̃ (0) + H̃ (2)(t ) with the two contributions,

H̃ (0) = 1

4


g zz+ +2g zz− 0 0 0

0 g zz+ −2g zz− 0 0
0 0 −g zz+ 0
0 0 0 −g zz+

 , (C.30)

H̃ (2)(t ) =


0 0 0 h1

0 0 h2 0
0 h3 0 0

h4 0 0 0

 ,

h1 = (g xx − g y y )e i (ωt+ωp )t ,

h2 = (g xx + g y y )e i (ωt−ωp )t ,

h3 = (g xx + g y y )e−i (ωt−ωp )t ,

h4 = (g xx − g y y )e−i (ωt+ωp )t ,

(C.31)

We now introduce the generator of the time-dependent Schrieffer-Wolff transformation,

S1(t ) =


0 0 0 f1(t )
0 0 f2(t ) 0
0 − f2(t )∗ 0 0

− f1(t )∗ 0 0 0

 , (C.32)
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with the functions,

f1(t ) =2(g xx − g y y )(e−i (g zz− +g zz+ )t/2 −e i (ωt+ωp )t )

g zz− + g zz+ +2(ωp +ωt )
,

f2(t ) =− 2(g xx + g y y )(e i (g zz− −g zz+ )t/2 −e i (ωt−ωp )t )

g zz− − g zz+ +2(ωp −ωt )
.

(C.33)

This generator satisfies,

S1(t ) =−S1(t )†, H̃ (2)(t )+ [
H̃ (0),S1(t )

]− i Ṡ1(t ) = 0, and S1(0) = 0. (C.34)

The generator yields the effective Hamiltonian, H̃
(ng ,p=0)
eff (t) = H̃ (0) + [H̃ (2)(t),S1(t)]/2, which

evaluates to,

H̃
(ng ,p=0)
eff (t ) ≈

(
g zz+

2
+ 2(g xx − g y y )2 sin(ωt t/2)2

ωt

)
σz

t

2
+(

g zz−
2

+ 2(g xx − g y y )2 sin(ωt t/2)2

ωt

)
σz

p

2

+
(

g zz
− − 4(g xx + g y y )2 sin(ωt t/2)2

ωt

)
σz

t

2

σz
p

2
.

(C.35)

This concludes our derivation of the effective Hamiltonians presented in Sec. 5.5.

C.4 Numerical Schrieffer-Wolff transformation

In this section of the Appendix, we provide more details on the theory and application of the
Schrieffer-Wolff transformation for the coupled qubits problem. The numerical Schrieffer-
Wolff method is used in the text to derive the 6-levels effective Hamiltonians integrating out
the effect of high-energy levels.

Let us consider the Hamiltonian of the coupled system H = H0+Hc with H0 = Ht ⊗I+I⊗Hp

being the decoupled system Hamiltonian and Hc the capacitive coupling Hamiltonian. The
Hilbert space of the system can be decomposed as H = P0 ⊕Q0 = P ⊕Q where P0 and P
are the low energy Hilbert spaces of the decoupled and coupled system. The computational
space of the system is identified by P0. For this reason, we are interested in finding a unitary
U ∈ End(H) that maps the low-energy subspace of the interacting Hamiltonian P to the one
of the uncoupled one P0. In other words, defining P and P0 the orthogonal projectors on the
low-energy subspaces

P =
d∑
i

∣∣ψi
〉〈
ψi

∣∣ (C.36)

P0 =
d∑
i

∣∣ψ0
i

〉〈
ψ0

i

∣∣ (C.37)

where
∣∣ψi

〉
and

∣∣ψ0
i

〉
are, respectively, the coupled and decoupled system eigenstates and d = 4,

we are seeking a unitary U that satisfies

U PU † = P0 ⇒ U P = P0U . (C.38)
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This is achieved by the Schrieffer-Wolff transformation [287].
One way to see this is as a direct rotation that can be written as the square root of the

product of the two reflections

U =
√
MP0MP =

√
(P0 −Q0)(P −Q) =

√
(2P0 − I)(2P − I) (C.39)

where Q and Q0 are the orthogonal projectors to the high-energy subspaces and M j are the
reflections upon the lower energy subspaces.

The low energy Hamiltonian is then:

Heff = P0U HU †P0 =U PHPU † (C.40)

An efficient way to tackle the problem numerically is the procedure developed in [289,
290] that we will now discuss. Since the final objective is the effect of the Schrieffer-Wolff
transformation only in the low-energy sector, we can focus on the following operator product

P0U =U P =∑
i j

Ai j
∣∣ψ0

i

〉〈
ψ j

∣∣= A (C.41)

where A ∈ Hom(P0,P) is a rank d operator. For later use, we introduce also the rank d operator
B ∈ Hom(P0,P) defined as B = P0P . Since both the operators belongs to Hom(P0,P), P0 acts
as a left identity and P is a right identity. Moreover, A and B are related, indeed

(U P )2 = (P0 AP )2 = P0 APP0 AP = P0 AB † AP = AB † A (C.42)

at the same time
(U P )2 = P0U 2P = P0(P0 −Q0)(P −Q)P = P0P = B (C.43)

and therefore AB † A = B . Using singular values decomposition, we can decompose B =WΣV †

where W and V are unitaries andΣ is a diagonal matrix. The equation AB † A = B is then solved
by A =W V †.

In a practical implementation, by starting with the Hamiltonian H0 and H in whatever
basis, we can calculate the incomplete low-energy d-dimensional orthogonal eigenbasis V0

and V (n ×d matrices) with eigenvalue matrices W0 and W (d ×d diagonal matrices) by using
the Lanczos algorithm. With these, we can calculate B = V †

0 V , that is a dimension d matrix
and perform SVD to calculate the unitary A. The effective low-energy Hamiltonian in the
computational basis is then Heff = AW A†. The drawback of this method is that we lose the
information on the dressed states that is encoded in the matrix U .

Smooth gauge for parametric sweeps

The purpose of the Schrieffer-Wolff transformation is to derive an effective Hamiltonian Heff

written in the basis of the unperturbed system H0. Since Heff is not an observable of the
system, the effective Hamiltonian derived is not unique, but it depends on the choice of the
gauge for the unperturbed eigenstates

{∣∣ψ0
i

〉}
. This means that it is crucial to fix a smooth

gauge when sweeping over a parameter that appear also in the unperturbed Hamiltonian H0.
Notice that when numerical diagonalization is employed, control over the global phase of the
eigenvectors is not guaranteed. Therefore a smooth gauging algorithm needs to be applied
after the diagonalization.
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C.5. Additional results on the energy levels

In the case addressed in this paper, we are free to fix the gauge of the two qubits indepen-
dently since they are decoupled in H0. In the case, the charge offsets ng ,t and ng ,p are both
zero, it is possible to fix the gauge consistently by imposing that the wavefunction is real at a
reference point. A convenient choice is represented by picking φ= 0 for

∣∣0p
〉

,
∣∣1p

〉
and |0t 〉 and

φ=π/4 for |1t 〉.
We use a smooth gauge fixing procedure to keep a smooth gauge fixing during the sweep of

the offset charge. We first discretize the ng ,i axes in a set of N points in the interval [0,k] where
k is 1 for the transmon and 2 for the parity qubit. We will assume a homogeneous discretization
with inter-site distance ∆n = k/(N −1) for simplicity. First, an arbitrary gauge fixing, like the
one described in the previous paragraph, is applied for the wavefunction at point i = 0. Next,
for each wavefunction, we impose that the overlap integral with the previous point is real. In
other words, we calculate the fixing phase βi as

βn,i =
i−1∑
j=0

Imln
〈
ψ0

n, j

∣∣∣ψ0
n, j+1

〉
(C.44)

and then the wavefunctions are updated as
∣∣∣ψ̃0

n,i

〉
= e−iβn,i

∣∣∣ψ̃0
n,i

〉
. This is possible because we

have assumed that the index n identifies corresponding eigenstates at different indexes i . In
other words, if the index n orders the states by the energy, we are assuming that there are no
level crossings in the charge-Brillouin zone. This is not true for the parity qubit, but in this case,
we have labeled by n = 0,1 the even and odd lowest states that can be identified, for example,
by comparing the amplitude at φ= 0.

A more general method is available for the case when it is not possible to easily identify
corresponding eigenstates at different values of the parameters. In that case, the application of
an additional unitary point-by-point is necessary.

C.5 Additional results on the energy levels

In this section of the Appendix, we provide additional details on the energy spectrum of the
two-qubit system and the design principles of a heterogeneous qubit.

We recall that, for the transmon, it is possible to approximate the distribution of the eigen-
values by expanding the transmon Hamiltonian to the fourth order. In this way, the Hamilto-
nian is mapped to a quantum Duffing oscillator [255]. This gives the following approximate
spectrum for the transmon:

Et ,m =−E J ,t +
√

8EC ,t E J ,t (m +1/2)− EC ,t

12

(
6m2 +6m +3

)
. (C.45)

A similar approach can be used to model the parity-protected qubit in the transmon regime
by treating it as a double Duffing oscillator. We can expand the potential in the two wells as

V (φ) = E J ,p cos
(
2φ−π/4

)=−E J ,p +4E j ,p
(φ−φl )2

2
−16E j ,p

(φ−φl )4

24
+o(φ5) (C.46)

with φL =±π/4. Next, we introduce a hopping amplitude between the two wells. For simplicity,
we consider allowed only hoppings between the same energy levels in the left and right well,

151



C. ADDITIONAL MATERIAL ON SUPERCONDUCTING QUBITS

i.e., tmm′ = tmδmm′ . Therefore, the approximate Hamiltonian is

H = ∑
l=L,R

[
ωp a†

l al −E j ,p − EC ,p

3
(al +a†

l )4
]
+∑

m

[
tm

(
1+e i 2πng ,p

)
(a†

L)m(aR )m
]

(C.47)

where ωp = 2
√

8E j ,p EC ,p . The eigenvalues of the Hamiltonian can be calculated by first-order
perturbation theory using the number basis {|mLmR〉}.

The double Duffing oscillator spectrum is composed of pairs of states located around the
mean value

µn,n+1 = En +En+1

2
≃−E J ,p +2

√
8EC ,p E J ,p

(n

2
+1/2

)
−4

EC ,p

12

(
6
(n

2

)2
+6

n

2
+3

)
, (C.48)

for even n, with a splitting δn,n+1 = En+1 −En ≃ tn
2 cos

(
πng ,p

)
. Each state belongs to either the

even or odd parity sector. In the regime −0.5 < ng ,p < 0.5 the order of the states is even, odd,
odd, even, . . . , while in the regime 0.5 < ng ,p < 1.5 is odd, even, even, odd, . . . . In the PPQ, the
E J ,p /EC ,p ratio has a twofold role. On the one hand, higher ratios reduce the splitting between
pair of states (i.e, ωp,1 and δωp,23 = ωp,2 −ωp,3) on the other hand increase the separation
between the pairs of states (i.e. µp,23).

At the optimal point ng ,p = 0, states |0t ,2p〉 belongs to the odd sector while |0t ,3p〉 belongs
to the even sector. This pair of states show a splitting ∝ ∣∣cos

(
πng ,p

)∣∣ and the mean is located
approximately at energy µp,23 = (

ωp,2 +ωp,3
)
/2 ≃ 2

√
8EC ,p E J ,p − 4EC ,p . Depending on the

parameters of the system, the pair of states can be placed above the |1t ,0p〉 |1t ,1p〉 pair (when
µp,23 ≳ωt ,1) or below (when µp,23 ≲ωt ,1). In the presence of a sizable splitting of the pair, the
situation in which one of the two states lies below and one above is also possible. To obtain
a controllable coupling, it is necessary that at least one of the two excited states lies below
the pair of computational states. For this reason, the choice of parameters is crucial. For this
reason, the approximate condition√

8EC ,t E J ,t −EC ,t > 2
√

8EC ,p E J ,p −4EC ,p (C.49)

has to be satisfied.
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D

Hystersis curves with kinetic random field Ising model

In the reported measurements, for each ramp, we observe a transition from the normal phase
(N) to the π phase, then to the 0 phase, and then to the normal phase. However, by comparing
the textbook example of hysteresis curves, one would expect a sequence of transition like
N-π-0-π-N. We attribute the missing second π transition to the asymmetric hysteresis curves
that is characteristic of granular ferromagnetic samples. The hysteresis curves in these cases
show a strong Barkhausen noise [291], also known as crackling noise [292]. Indeed, since the
relevant magnetization for the switching, 〈M〉ξ, is an average over a small number of magnetic
grains, the crackling noise is likely to play a role.

To qualitatively explain the mechanism, we employ a kinetic random field Ising model [293–
295]. We represent a magnetic insulator region of size ξ2 such that the average magnetization
is representative of 〈M〉ξ. We estimated that the magnetic insulator’s grain size is around one
order of magnitude smaller than the coherence length. For this reason, we consider a 10×10
grid with periodic boundary conditions. As simplified assumptions, we assume each grain
contains approximately the same number of spins and that the only directions allowed are
collinear with the wire direction, such that the configuration can be represented by an Ising
spins {Si }.

The Hamiltonian of such a system read as

H =−1

2

∑
i j

Ji j Si S j −
∑

i
fi Si −

∑
i

h∥Si , (D.1)

where we further assume that the exchange coupling Ji j = 1 for nearest neighbors and zero
otherwise. The random field fi ∼N (µ= 0,σ2 = 1.2) is introduced to model grain anisotropy
and b is the external field.

We equip the model with a Glauber dynamic, this dissipative dynamic mimics the contact
with a bath at temperature T [296]. At each step, select a spin at random, we calculate the
energy difference with the flipped spin ∆E , accept the change with probability

p = 1

2

[
1− tanh

(
∆E

2T

)]
. (D.2)

To simplify the picture, we set T = 0 and look at the athermal dynamics. This dynamic guaran-
tees that, for each h∥, the system moves to one of the closest metastable minima, mimicking
the dynamic of the magnetic material that hinders major reconfigurations.
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Fig. D.1: Model of magnetization dynamics using a kinetic random field Ising model. (a)
Average magnetization, 〈M〉ξ, as a function of the external magnetic field, h∥, calculated using
kinetic random-field Ising model [see Eq. (D.1)] for 20 disorder realizations of a grid of 10×10
magnetic grains. MS is magnetization saturation value. MC and Mπ

C are arbitrarily-chosen
critical-magnetization values. (b) Four magnetic-domain configurations of the grid taken from
a selected down-sweep realization highlighted in (a) at equidistantly spaced h∥ values. (c)
Disorder-averaged 〈M〉ξ as a function of h∥, deduced from the 20 realizations shown in (a). (d)
Histogram of the 20 down-sweep traces in (a) representing the probability, p, for the grid to
have a particular 〈M〉ξ value.

We initialize the grid in a fully spin-polarized configuration (Si =−1) and sweep h∥ from -3
to 3 and back, allowing the system to evolve for 4000 iterations at each step. The results of 20
different fi realizations are shown in Fig. D.1(a). In a typical scenario, a few domains flip after
h∥ passes through 0, causing small changes in 〈M〉ξ, which is followed by an abrupt domain-flip
avalanche resulting in a fully polarized grid, see Fig. D.1(b). The disorder-average hysteresis
curve shown in Fig. D.1(c) further illustrates how 〈M〉ξ first decreases smoothly as h∥ is changed,
but then jumps through 0 and inverts abruptly around the coercive field. This asymmetry can
be further illustrated by considering the probability, p, for the grid to have a certain 〈M〉ξ value.
Figure D.1(c) shows a histogram of 〈M〉ξ take from the 20 down-sweeps in Fig. D.1(a). To put
these results into the context of our experiment, we introduce two critical magnetization values:
|MC| = 0.9〈M〉ξ, below which the system is superconducting, and

∣∣Mπ
C

∣∣ = 0.7〈M〉ξ, above
which the system is in the π phase. Based on these findings, it is apparent that the probability
of the π-phase formation is higher at the onset compared to the end of the superconducting
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window. The asymmetry of the hysteresis curve around the coercive field is presumably the
reason for the observed π phase at the onset of the superconducting window but not at the
end. Note that the above argument does not depend on the specific value of Mπ

C and MC but
rather on the general asymmetry of the hysteresis curve.
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E

Semiclassical analysis of a long junction

The more conventional regime is described by the energy scale hierarchy µ≳ ∆≳ h in the
lateral regions and µ ≳ h in the central one. In this case, the device behaves substantially
as a superconductor-ferromagnetic metal-superconductor junction. For long junctions with
a sufficiently high density and small polarization, a semiclassical model can approximately
describe the behavior. This assumption is not met in the system studied by the numerical
model. Nevertheless, this approach provides a clearer qualitative picture of the physics of this
system. We follow the steps of Refs. [48, 211] including a spin splitting oriented in the wire
direction with magnitudes hL and hR. Later we include a spin-splitting field in the central
region captured by the magnetic phase ΦM .

The discrete spectrum is obtained by solving the equation

det[1−SC(ε)S A(ε)] = 0 (E.1)

where S A is the scattering matrix at the interfaces while SC is the scattering matrix for the
transmission through the central region. We use the basis ψin = (

ce+(0)ce−(ℓC)ch−(0)ch+(ℓC)
)

and
ψout = (

ce−(0)ce+(ℓC)ch+(0)ch−(ℓC)
)

such that SCψ
in =ψout and S Aψ

out =ψin.
For ε<∆, we can assume that no normal reflection happens at the interface between the

central and lateral regions if the interfaces are clean. In this case, the Andreev reflection matrix
takes the form

S A =
(

0 seh
A

she
A 0

)
. (E.2)

where the submatrices are

seh
A =

(
e−i arccos[(ε+σhL)/∆]e+iφ/2 0

0 e−i arccos[(ε+σhR)/∆]e−iφ/2

)
, (E.3)

she
A =

(
e−i arccos[(ε+σhL)/∆]e−iφ/2 0

0 e−i arccos[(ε+σhR)/∆]e+iφ/2

)
, (E.4)

For the central region, we assume a general scattering matrix that is block-diagonal in the
electron-hole subspaces:

SC =
(

see
N 0
0 shh

N

)
, (E.5)

where the two scattering matrices are related.
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E. SEMICLASSICAL ANALYSIS OF A LONG JUNCTION

Using the property det

(
A B
C D

)
= det

(
AD − AC A−1B

)
we eliminate the particle-hole blocks

to simplify Eq. (E.1) to

det
(
1− she

A see
N seh

A shh
N

)
= 0. (E.6)

To proceed, we need to introduce some specific assumptions on the form of SC. For a clean sys-
tem, we can assume a free propagation that, in Andreev approximation, results in a scattering
matrix with the form

see
N = exp

(
i
π

2

ε+σhC

ET

)(
0 1
1 0

)
(E.7)

where we defined the Thouless energy ET = π
2
ℏvF
LC

. This results in an equation for the bound
states

π
ε+σhC

ET
±φ− ∑

lat=L,R
arccos

(
ε+σhlat

∆

)
= 2πn . (E.8)

If we take the exchange field in the lateral regions to be equal hL = hR = hlat, this simplifies to

π

2

ε

ET
+σΦM ± φ

2
−arccos

(
ε+σhlat

∆

)
=πn , (E.9)

where we defined the magnetic phase ΦM ≡ π
2

hC
ET

= hCℓC
ℏvF

. In the case of a short central region,
we can neglect the spin-independent phase shift in the central region and get the simplified
relation

ε0,σ =±∆cos

(
±φ

2
+σΦM

)
−σhlat (E.10)

In the case of a low-density regime, the conduction-band polarization hC/µC can reach
high values and exceed one at the transition to a half-metallic regime.

Fig. E.1: Analysis of a ferromagnetic hybrid junction of various lengths. The plots show the
phase diagram, (a), the critical current, (b), and the value of the first two harmonic components
of the Josephson potential, (c) and (d), as a function of the chemical potential and length
of the central region. Parameters: hlat = 0, hC = 0.1875meV, µC = 3.125meV µlat = 1.25meV,
VB = 0.5meV.

The presence of inhomogeneities in the chemical potential or exchange field causes the
breakdown of quasiclassical Andreev solutions that manifests in the hybridization of the
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solutions of Eq. E.8 and the opening of sizable gaps in the spectrum [297, 298]. Some features
of this simple model can be connected to the results of the non-linearized BdG model displayed
in Fig. E.1. Even in the short superconductor-normal metal-superconductor junction limit
(ℓC ≪ ξ), the junction length modulates the magnetic phase acquired in the transport in the
normal region. Systems with a longer normal region show an alternation of 0 and π phases

together with 0′ and π′ regions. The phase diagram shows a series of π regions with a ℓC
µa

C
∼ b

shapes, with a and b constants. This can be understood on the basis of the semiclassical result
where the effect of the ferromagnetic insulator in the central region enters the ABSs spectrum

through the magnetic phase ΦM = π
2 hCℓC

(
2µC
m∗

)−1/2
. Therefore changing the density can have

effects similar to changing the length of the junction.
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0 and pi states in Josephson junctions”. In: Physical Review B 63.21 (May 2001), p. 214512.
DOI: 10.1103/physrevb.63.214512.

[224] H. Sellier, C. Baraduc, F. Lefloch, and R. Calemczuk. “Half-integer shapiro steps at the
0-pi crossover of a ferromagnetic josephson junction”. In: Physical Review Letters 92.25
(June 2004), p. 257005. DOI: 10.1103/physrevlett.92.257005.

178

https://doi.org/10.1103/physrevb.94.115435
https://doi.org/10.1103/physrevb.94.115435
https://doi.org/10.1021/acs.nanolett.7b00097
https://doi.org/10.1038/nphys4224
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41535-020-0209-5
https://doi.org/10.1038/s41535-020-0209-5
https://doi.org/10.1103/physrevlett.124.226801
https://doi.org/10.1103/physrevb.64.233301
https://doi.org/10.1103/physrevb.64.233301
https://doi.org/10.1038/nature05018
https://doi.org/10.1103/physrevb.93.195437
https://doi.org/10.1103/physrevb.63.214512
https://doi.org/10.1103/physrevlett.92.257005


Bibliography

[225] M. Houzet, V. Vinokur, and F. Pistolesi. “Superharmonic Josephson relation at 0-pi
junction transition”. In: Physical Review B 72.22 (Dec. 2005), p. 220506. DOI: 10.1103/
physrevb.72.220506.

[226] W. C. Smith, A. Kou, X. Xiao, U. Vool, and M. H. Devoret. “Superconducting circuit
protected by two-Cooper-pair tunneling”. In: npj Quantum Information 6.1 (Jan. 2020).
DOI: 10.1038/s41534-019-0231-2.

[227] T. Larsen, M. Gershenson, L. Casparis, A. Kringhøj, N. Pearson, R. McNeil, F. Kuem-
meth, P. Krogstrup, K. Petersson, and C. Marcus. “Parity-Protected Superconductor-
Semiconductor Qubit”. In: Physical Review Letters 125.5 (July 2020), p. 056801. DOI:
10.1103/physrevlett.125.056801.

[228] G.-L. Guo, H.-B. Leng, Y. Hu, and X. Liu. “0-pi qubit with one Josephson junction”.
In: Physical Review B 105.18 (May 2022), p. l180502. DOI: 10.1103/physrevb.105.
l180502.

[229] C. Schrade, C. M. Marcus, and A. Gyenis. “Protected Hybrid Superconducting Qubit in
an Array of Gate-Tunable Josephson Interferometers”. In: PRX Quantum 3.3 (July 2022),
p. 030303. DOI: 10.1103/prxquantum.3.030303.

[230] M. A. Silaev, A. Y. Aladyshkin, M. V. Silaeva, and A. S. Aladyshkina. “The diode effect
induced by domain-wall superconductivity”. In: Journal of Physics: Condensed Matter
26.9 (Feb. 2014), p. 095702. DOI: 10.1088/0953-8984/26/9/095702.

[231] T. Yokoyama, M. Eto, and Y. V. Nazarov. “Anomalous Josephson effect induced by spin-
orbit interaction and Zeeman effect in semiconductor nanowires”. In: Physical Review
B 89 (19 May 2014), p. 195407. DOI: 10.1103/PhysRevB.89.195407.

[232] K. Halterman, M. Alidoust, R. Smith, and S. Starr. “Supercurrent diode effect, spin
torques, and robust zero-energy peak in planar half-metallic trilayers”. In: Physical
Review B 105 (10 Mar. 2022), p. 104508. DOI: 10.1103/PhysRevB.105.104508.
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