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Introduction

n the past few years, gravitational wave (GW) physics has quickly risen to
I become one of the most fruitful and promising field of astrophysics, both
from an experimental and a theoretical point of view. After the groundbreak-
ing detection of the now iconic GW signal GW150914, announced by the LIGO
scientific collaboration and the Virgo collaboration on 11 February 2016 [1],
it became clear that GWs could be directly detected and used to gain fun-
damental insights into otherwise inaccessible aspects of our Universe, ranging
from signatures of its birth and evolution [2] to some of the most compelling
phenomena that populate it, such as supernovae, pulsars, and binary systems
of compact celestial objects. Actually, as of now, the history of the achieved
GW detections revolves entirely around binary systems of stellar-mass black
holes and neutron stars, which evolve by losing energy and angular momen-
tum through the emission of GWs, with their component objects that get
closer and closer until they merge in a single remnant object, typically a Kerr
black hole. The ground-based laser interferometers Advanced LIGO [3] and
Advanced Virgo [4] have so far successfully detected a total of 90 GW sig-
nals [5-7],! all produced in the coalescences of stellar-mass compact binaries.
The GWs sourced by these phenomena are in fact the loudest in the frequency
band [10 Hz, 10 kHz|, which roughly represent the one probed by our current
array of detectors. These GW observations have already pushed forward our
astrophysical knowledge with invaluable results. Just to name a few: the proof
of the existence of black holes with mass up to hundreds of solar masses [8,9];
the discovery of a population of bound systems of black holes and neutron
stars, which merged in less than the current age of the Universe; the inference
of the properties of such binaries (masses, spins, luminosity distance, sky po-
sition), together with insights on their formation mechanisms [7, 10, 11]; the
development of a new method to measure the Hubble constant [12-14]; nu-
merous confirmations of general relativity (GR), notably also in the previously
unexplored strong gravity regime [15,16]. Moreover, the first detected GW
signal from a binary neutron star merger, GW170817 [17], and the followup
observation of the gamma ray burst GRB 170817A in the electromagnetic

We refer in particular to the events that have a probability greater than 0.5 of being of
astrophysical origin; with different thresholds their number is subject to change.

3
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(EM) domain [18] have ushered in a new branch of multi-messenger astron-
omy, demonstrating the link between these two phenomena and cementing the
interplay between GW and EM searches [19-23].

If the present of GW astronomy is undoubtedly thriving, its future prospects
are no less exciting. Over the coming 20 years we will supposedly witness [24]:

e the next observing run (the fourth, O4) of Advanced LIGO and Ad-
vanced Virgo, after more than 2 years of upgrades [25,26] and with the
support of the Japanese interferometer KAGRA [27], which will join the
detector array at the start of the observing run and then step away for
commissioning to return toward the end of the run with enhanced sen-
sibility; the start of O4 is currently scheduled for March 2023 and its
planned duration is around a year;

e the enrichment of the ground-based detector network with LIGO-India [28],
which should see the light of day in this decade, and with the third gener-
ation observatories Einstein Telescope (ET) [29], in Europe, and Cosmic
Explorer (CE) [30], in the USA, both planned for the mid 2030s;

e the entry into service of the first space based interferometers, which
will search for GW signals in the frequency band [100uHz, 100mHz];
on the European and US side, the Laser Interferometer Space Antenna
(LISA) [31-33] is planned to be launched in 2034, whereas the Chinese
TianQuin [34] and Taiji [35] are still to be scheduled, even though they
are expected to come into operation not long after LISA;

e the realization in space of the Japanese DECI-hertz Interferometer Grav-
itational wave Observatory (DECIGO) [36], which will aim at detecting
primordial GWs, for cosmological purposes; the scientific pathfinder for
this project, dubbed B-DECIGO, is planned for launch in the 2030s;

e the first results from the pulsar timing array (PTAs) projects, which are
attempting the detections of ultralong GWs (1072 to 107Hz) [37] by
measuring, with radio telescopes, GW-induced deviations in the arrival
time of the pulse from an array of 20-50 millisecond pulsars; the main on-
going PTA projects at the moment are the Australian Parkes PTA [38],
the European PTA consortium [39], the US NANOGrav consortium [40]
and the Indian PTA [41], all united in the multi-institution concerted
program that goes by the name of International PTA (or IPTA) [42]; a
first successful PTA detection is expected in the next few years [43].

Regarding the interesting astrophysical data we can expect from this great
scientific effort, on the one hand we will have at our fingertips a huge number
of GW detections from coalescing binary system of compact objects (thanks
in particular to the next generation observatories), spanning a much broader
range of masses, spins, and orbital configurations, with the higher sensibility
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that will allow for a more accurate inference of their properties; on the other
hand, we will hopefully observe unprecedented GW signals from new kind
of sources, like isolated neutron stars [44], supernovae [45], or the primordial
Universe [46].

Given the pivotal role they play in the present and the expected future
of GW astronomy, compact binary coalescences (CBCs) are GW sources of
paramount interest. In fact, because of the tremendous energy which charac-
terizes this kind of cataclysmic events, the GW signals they produce are by far
the loudest we receive, and hence, in principle, the easiest to measure. More-
over, they have the crucial feature of being deterministic and predictable, as
opposed to stochastic GWs, like those produced during the early stage of the
Universe, or deterministic but unpredictable GWs, like those emitted by the
supernovae, whose underlying dynamics is way too involved for an appropriate
analytical modelization. Therefore, the possibility of an accurate description
of how CBCs evolve in time ultimately allows for the manufacture of waveform
templates for the GWs they produce. These are then cross-correlated with
the noisy output signals of our GW detectors by means of specific CBC search
pipelines based on matched filters [47,48], thus boosting their effective GW
sensitivity with respect to CBC signals. Secondly, these waveform templates
are crucial for the statistical inference techniques that, building on Bayesian
statistics [49] (see also Chapter 7 of Ref. [50]), are employed to estimate the
relevant properties of CBCs.?

Undertaking the task of modeling CBC waveform templates means facing
two intertwined problems: (i) the relativistic two-body motion of inspiralling
and coalescing binaries; (ii) the emission and propagation to future null infin-
ity of the associated gravitational radiation. On the analytical side, given the
challenge posed by the highly non-linear character of general relativity, our
only option to address these problems is to resort to approximation schemes.
In this respect, a prominent role has been (and still is) played by the post-
Newtonian (PN) theory. In this perturbation scheme, appeared shortly after
the birth of general relativity [52], the Newtonian equations of motion are
supplemented with relativistic effects in a weak-gravitational-field and slow-
velocity expansion on the dimensionless parameter v?/c* ~ GM/(rc?), where
v is the typical orbital velocity of the binary system, r its typical relative
separation, M its total mass, ¢ the speed of light, and G the gravitational
constant. The powers of 1/c are often used as a counter of the orders in
this expansion, with terms of order O(1/c") referred to as §PN corrections.
Over the years, several different approaches have been conceived and devel-
oped to come up with a PN description of the two-body motion: the surface
integral method, introduced by Einstein, Infeld & Hoffman [53] and later pur-
sued by Itoh & Futamase [54-58]; the PN iteration of Einstein’s equations

2See Appendix E of Ref. [51] for an overview of the parameter estimation techniques
used in the latest analysis of the LIGO-Virgo-KAGRA collaboration
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ushered in by Blanchet, Faye & Ponsot in Ref. [59] and further developed in
a series of works, see Refs. [60-68]; the canonical Hamiltonian formalism in
Arnowitt-Deser-Misner coordinates by Jaranowski, Schéfer & Damour [69-75];
the effective-field-theory approach originally proposed by Goldberg & Roth-
stein [76-78] and extensively used by Foffa & Sturani [79-85] and other au-
thors [86,87];® the Fokker Lagrangian approach [95] used in Ref. [96]. Focusing
on the problem of modeling the associated gravitational radiation, the PN ex-
pansion lies at the core of the main analytical frameworks devised to tackle it:
the direct integration of Einstein’s equation by Will, Wiseman & Pati [97-99]
and the PN-matched multipolar post-Minkowskian generation formalism de-
vised by Blanchet & Damour [100-113]. As the latter construction mechanism
is used to derive the PN waveform results upon which each analytical wave-
form model is built, included the one discussed in the hearth of this Thesis,
we will review it in its main aspects in Chapter 1, specifically in Sec. 1.3.

All this being said, one has to bear in mind that, regardless of the spe-
cific computational strategy adopted, PN results are naturally faithful only
in a portion of the CBC evolution, that is during the early and mid stages of
the inspiral phase, when the two compact bodies are still far apart in their
inspiral motion around each other. In the late inspiral and during the plunge,
just before merger, we enter a regime where the gravitational field is strong
and the typical velocity of the system grows up to around one half of the
speed of light. In this regime the PN series shows severe convergence issues,
which ultimately spoil the reliability of PN results before merger, both at the
level of the binary dynamics and the radiation field; see e.g. Refs. [114-116].
On the one hand, this prompted the development of complementary analyt-
ical approaches like Black hole perturbation theory, which models compact
binaries and their radiation field by expanding perturbatively the field equa-
tions in powers of the binary mass-ratio, provided this is sufficiently small.?.
On the other hand, it gave a strong motivation to pursue the path of nu-
merical relativity (NR), in its application to the two-body problem. After
a fundamental breakthrough in 2005, by Pretorius & others [133-136], these
computational approach allowed for the “exact” (modulo numerical errors)
description of the late stages of the CBC evolution, by means of supercom-
puter simulations; see Refs. [137-139] for some reviews. Although they stand

3This approach has also been instrumental to recent developments in the application
of the post-Minkowskian scheme [88,89], based on a power series expansion in G with no
requirements on the velocity of the system, to study the dynamics of compact binaries; see
e.g Refs. [90-94].

“After the seminal works of Regge, Wheeler & Zerilli [117,118] and Teukolsky [119-
122] on the GW emission of a test particle moving in the neighborhood of, respectively,
a Schwarzschild or a Kerr black hole, a lot of effort has been focused on extending this
approach to model extreme-mass-ratio binaries. Moving away from the leading-order test-
particle description, the idea is to include perturbatively the alterations that the metric
perturbations sourced by the smaller body induce on the motion of the latter around the
bigger one, describing them as the effect of a suitably defined gravitational self-force [123-132]
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at the pinnacle of the accuracy one can reach in dealing with the two-body
problem, NR simulations have an extremely high computational cost, with a
typical calculation time of the order of several weeks; in addition, they present
technical issues in several portions of the CBC parameter space, e.g. when the
individual masses of the binary differs sensibly from each other. Analytical
methods, therefore, were not rendered obsolete by NR even from a practical
point of view, all the more considering the appearance in their ranks of the
effective one-body (EOB) approach [140-143]. This analytical formalism, in-
troduced in 1998 by Buonanno & Damour [140], takes as input the known
conservative PN dynamics of a given compact binary, with component masses
m1 and mg, and maps it onto the effective non-geodesic dynamics of a single
particle of mass u = mimsg/(mj + mg), the binary reduced mass, in the ef-
fective metric of a Schwarzschild or Kerr black hole (respectively for spinless
or spinning binaries) altered by a continuous deformation which is parameter-
ized by the symmetric mass ratio v = p/M, with M = m; + mg. Thanks to
this surprisingly simple formalism, the EOB approach succeeded in improving
drastically the convergence of PN results in strong-field and therefore allowed
for a robust description of the motion and radiation of compact binaries in
all the stages of the coalescence, from the early inspiral up to the ringdown
phase, after merger. Accordingly, the EOB approach provided crucial quanti-
tative and qualitative predictions on CBC waveforms, well before the advent
of the dedicated NR simulations. Moreover, shortly after the latter appeared,
the flexibility of the EOB approach has been exploited to inform EOB models
with additional non-perturbative NR information, which improved remarkably
their accuracy [144-151]. The fast and accurate waveform models produced in
this fashion, usually dubbed EOB[NR] models, have quickly become a stepping
stone for the generation of the templates used to sustain GW observations, and
over the years have undergone a long process of refinement, with the inclusion
of more dynamical/waveform information and extra layers of sophistication
in the corresponding prescriptions. This process has ultimately led to the de-
velopment of two different EOB waveform models, SEOBNR [150, 152, 153] and
TEOBResumS [154-157], the latter being the focus of the waveform modeling
activities presented in this Thesis. As part of the ongoing history of endeavors
to improve and extend EOB-flavored waveform models, the main scope of this
Thesis is in fact to propose, discuss and test an updated version of the generic
planar orbit branch of TEOBResumS, now known as TEOBResumS-DALI, supple-
mented with additional corrections aimed at better capturing the waveform
modulations induced by the eventual noncircularity of the sourcing dynamics.

Coming to the actual structure of the Thesis, it is organized in three
Chapters, each made up of several sections and subsections. The first two
Chapters are intended as a review of the main concepts upon which the original
work presented in the third is based, so to make it as self-consistent as possible
and thus accessible also to readers with limited expertise on the subject at
hand. In the third Chapter, instead, after a recap on the current state of the



8 CONTENTS

art of TEOBResumS-DALI, we present our original contributions to its further
development, building on our associated publications [158-160].
More in details:

e Chapter 1 addresses the waveform generation problem, illustrating, first
in linearized gravity and then in the full non-linear theory, how the
gravitational radiation at infinity can be modeled on the basis of the
energy-momentum content of its source, under the necessary simplifica-
tions that come with the application of suitable approximation schemes,
PN theory in particular.

e Chapter 2 introduces the reader to the effective one-body approach to
the motion and radiation of compact binary systems, explaining its take
on the binary dynamics and presenting the associated waveform model
for the whole CBC process (inspiral-plunge and merger-ringdown). Here
we limit the discussion to the native quasi-circular version of EOB mod-
els, primarily referring to the one of TEOBResumS, which now goes by the
name of TEOBResumS-GIOTTO.

e In Chapter 3 we finally discuss our contribution to the development
of TEOBResumS-DALI, the branch of TEOBResumS realized for modeling
GWs from coalescing binaries in motion on non-circularized orbits. After
a brief review of this waveform model, we introduce and thoroughly
test our proposal for its extension, mainly revolving around new 2PN-
accurate analytical factors specifically designed to be incorporated in
the preexisting prescriptions for the pre-merger waveform and radiation-
reaction force. As we will see, the result is a new waveform model with
improved performance when dealing with noncircular dynamics.



Chapter 1

Gravitational waves from
post-Newtonian sources

he overarching theme of this opening Chapter is the theoretical description
T of the gravitational radiation produced by post-Newtonian sources (PN
sources). Here we address this topic by offering a personal review which
will also lay the groundwork for the rest of the Thesis, from a formal and
conceptual point of view. Indeed the content presented in this Chapter is not
original, but results from the elaboration of several pieces of literature on the
subject, in particular Refs. [104,108,112,161-164].
To begin with, we specify that we dub as “post-Newtonian” every GW
source that is both slowly moving and weakly stressed by its self-gravitation.
Following Ref. [112], we summarize this with the requirement

1/2
ezmax{ } < 1, (1.1)

where TH is the stress-energy tensor of the matter source and Vy its Newto-
nian gravitational potential.

Coming to the GW sources of our interest, that is CBCs, one may have
the legitimate concern that they do not comply to the above definition, as
their constituent compact objects present indeed strong gravitational fields.
Actually, as long as the two objects are sufficiently far apart, the effacement
principle of general relativity [165] ensures that a PN description is still appli-
cable for these sources. This can be shown using the surface integral method
we quoted in the Introduction, e.g. see Ref. [166] or Sec. 5.5 of Ref. [163].
Of course, as the CBC evolution proceeds and the compact bodies approach
each other, considerations of this kind no longer apply. Therefore, the CBC
waveform information that is computed using the techniques presented in this
Chapter, ultimately given in terms of truncated PN series, is truly physically
sound only in the initial inspiral phase of the coalescence, up to several or-
bital cycles before merger time. Nevertheless, within the EOB formalism,

Tii |1/2

700
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700
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2
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CHAPTER 1. GRAVITATIONAL WAVES FROM POST-NEWTONIAN
10 SOURCES

such waveform information is an essential ingredient in the development of
the complete inspiral-plunge-merger-ringdown models that are used in actual
data analysis. We defer to the next Chapter the discussion of how the EOB
approach makes use of this results, pushing their validity up to merger, and
complementing them with a GW model for the ringdown part of the signal.
Another important aspect regarding compact binaries and the effacement
principle is that the internal structure of their component bodies has a marginal
impact on their dynamics, with the first structure-dependent effects appear-
ing at the 5PN order in the equations of motion. Accordingly, even when the
compact objects in question are neutron stars, in first approximation one can
model their gravitational radiation as if they were systems of two structure-
less point particles, fully described by their mass and, eventually, their spin.
At the level of the energy-momentum tensor 7", this amounts to consider

m vy @) (x —ya(t))

T (t,x) = =5

(1.2)
A=12 \/ —gapgVv5V, [

where m 4 is the mass of the particle A, ya(t) is its trajectory, and vffl =
(c,dya/dt). Beyond the 1PN order, the Dirac distributions appearing in
Eq. (1.2) give rise to ultra-violet divergences, which need to be regularized.
This process is far from trivial and the details of the regularization schemes
adopted, the Hadamard and dimensional self-field regularizations, can be
found in Sec. 6 of Ref. [112]; for a recent work on the subject, see instead
Ref. [167]. In what follows, the GW generation problem will be addressed
while assuming a general and smooth (C*°) energy-momentum tensor with
spatial compact support, knowing that the discussion can be specialized any-
time to the compact binary case (1.2), with the additional cost of having to
include a regularization prescription for the occurring divergences.

More in details, after we lay down in Sec. 1.1 the fundamental equations
we want solve, the rest of this Chapter proposes an extensive dive into the
theoretical description of GWs, initially limited to the simplistic prescriptions
of linearized gravity, in Sec. 1.2, and then extended to the full non-linear
theory, in Sec. 1.3.

1.1 The field equations of general relativity

Let us start by stating precisely the problem we want to solve. The theory
of GR in presence of matter can be described by the action S = Sgy + Swm,
where .
c

d*z\/—gR, 1.3
167G / g (1.3)
is the renowned Einstein-Hilbert action, containing the Ricci scalar R and the
determinant of the metric g = det(g,.), and Sy = Sm|guv, M) is the action

SEH =
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term of the matter fields ¢y;. The variation of the action Sy under a change
of the metric g, — guv + 09, defines the stress-energy tensor of matter

T — 2¢ 0Sy
v =9 5.9#1/.

By extremising the action with respect to the metric field g,,, pursuant to
the principle of least action, we get Einstein’s field equations in the form

(1.4)

R, — %gwR = E;ZTGTW, (1.5)
which relate the metric, and thus the geometrical properties of spacetime,
on the left-hand side, to the energy-momentum distribution of matter, on
the right-hand side. Here R, is the Ricci tensor, defined by the contraction
R,, = R*,,, of the Riemann curvature tensor,! and the Ricci scalar R = R®,
is its trace. Since Eq. (1.5) is written in terms of symmetric tensors of rank
2, it can be actually seen as a set of ten independent equations: four of them
determine the evolution of matter, with the contracted Bianchi identities that
imply

Vo THY =0, (1.6)

the conservation of the matter stress-energy tensor; the other six constrain the
ten components of the metric, with four residual unconstrained component
that reflect the diffeomorphism invariance of GR and can be fixed by selecting
a specific coordinate system. Our variable of reference to study GWs is the
metric density

W =g — ", (1.7)

where g is the contravariant metric (909" = d,,) and n*” = diag(—1,1,1,1)
is a Minkowskian auxiliary metric, which is convenient in the prospects of
describing GWs as space-time perturbations that propagate, in first approx-
imation, on a fixed flat background. We now fix the gauge by imposing the
harmonic (or De Donder) gauge condition

Dbt = 0, (1.8)

or equivalently by adopting harmonic coordinates. In this gauge, Einstein’s
equations (1.5) can be rewritten in the Landau-Lifshitz form?

1
e 2 1670 1)

C

! Adopting Einstein notation, repeated indices are always implicitly summed over all
their possible values

2These are often called relazed Einstein’s equations, because contrary to Eqgs. (1.5) they
do not imply automatically the conservation of the matter stress-energy tensor. This is
instead implied by the harmonic condition (1.8), which in fact is required for the equivalence
of Eq. (1.9) with Egs. (1.5).
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a wave-like differential equation characterized by the flat space-time d’Alembertian
operator [ = n®8 0005. The quantity 7/ that appears in the source term is
the stress-energy pseudo tensor

04

167G
which collects the contributions of the matter fields (7#") and the gravitational
field (A*). The general expression of the latter in terms of the metric field
reads

™ = (~g)T +

AP (1.10)

A = 9P Oh"™ — WP 000" + gapg”’ O,hH* 0gh"P

1
+ 5gaggfwa,,hwac,mﬂ — 9ap(g7rd,h"P 4 g7V 0, W) D, hP™

1
+ 5(29“0‘9”5 - gwgaﬁ)@gmg/\r - ga)\gp’r)aahm—aﬂho)\' (111)

Indeed, both g"” and g,, can be expanded, through Eq. (1.7), in terms of
h*¥. Once this is done in Eq. (1.11), using n*” to raise and lower indices,
AM just depends on h*” and its spacetime derivatives up to the second. Due
to the non-linearity of g,, as a functional of h*”, this resulting expression
has no closed form, as it involves infinite powers of h*” (and its derivatives),
starting from quadratic combinations and going on indefinitely. We have thus
the formal structure

AM = NM[h, h] + M"[h, h, h] + L**[h, h, h, h] + O(h?). (1.12)

The quadratic terms, for instance, are given by
1 1
NH[h,h] = —h*P9,05h"" + 5aﬂhwayiﬂﬁ — Za#ha”h
— 0" a0 B — 8" hagO™hPH + 0o WP (0 1Y + 95h™")

1 1 1
+ 77””< - Zaahﬁﬂaahﬁp + gaahaah + 2aahﬁpaﬁhap> ) (113)

where on the right-hand side we used the notation h = nagho‘ﬁ. The full
(rather long) expressions of the cubic and quartic terms can be found in
Egs. (3.8b)-(3.8¢c) of Ref. [62].

Let us also mention that the harmonic condition (1.8) implies, through
Eq. (1.9), the conservation law 0,7 = 0 for the stress-energy pseudo tensor,
and this can be shown to be equivalent to the covariant conservation of energy
and momentum, given by Eq. (1.6).

Under the assumption that the gravitational field has been independent
of time before some reference finite instant, the so-called past-stationarity
condition®, we can write a formal exact solution to Eq. (1.9) as
— @D%TW

WY = = O, (1.14)

3This is a way to impose the no-incoming radiation condition, which states that the
source is isolated and does not receive any external radiation.
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where we used the retarded inverse d’Alembertian integral operator
1 d3x’
-1
(Oree /) (%, 1)

I mf(t— |x —x'|/e,x'), (1.15)
such that O} (Of) = f.

Indeed, considering that 7#” is a functional of h*¥ and its derivatives,
Eq. (1.14) is no more than an integro-differential way of rewriting Eq. (1.9);
in fact, it cannot be evaluated exactly for realistic astrophysical sources. In
the rest of this Chapter we will rather explore how to compute analytically
solutions to these field equations using suitable approximation schemes, in
particular those that best capture the physics of GWs when they originate
from PN sources.

1.2 Gravitational radiation in linearized gravity

We start our dive in the theoretical description of GWs by analyzing the
case of linearized gravity, a simplified setting where it is assumed that the
gravitational field of the source is weak enough that the metric tensor can be
decomposed as 3 .

G = Mv + Py, |Py| <1, (1.16)
namely as the combination of the Minkowskian metric 7, describing a flat
background, with a gravitational perturbation fLW taken to be so small that
any contribution more than linear in it can be neglected. For self-gravitating
sources, this approximation means that we are describing their dynamics as
prescribed by Newtonian gravity. Coming back to our general GW variable
h#”, if we use in its definition (1.7) the linear limit relations \/—g ~1+1/ 2h,

where h = n*”h,,,, and g"" ~n' — h*, we find
1- ~ ~ 1 -
h* ~ <1 + 2h> (" — W) =t ~ — <h‘“’ - 277‘“’h>. (1.17)

Therefore, the linear approximation of h*¥ coincides, modulo an overall sign,
to the trace-reversed perturbation h*” = b — 1 /2 n"*h, the standard field
variable used to study GWs in linearized gravity. Correspondingly, by recast-
ing the general field equations (1.9) in terms of this variable, with h*¥ ~ —hH
and expanding to linear order in h*¥, we find the linearized field equations

- 1
Ohyy = - 207G (1.18)

4
c
which are to be solved with the associated harmonic condition

O%hay = 0, (1.19)

linear limit reduction of Eq. (1.8). Before we start working out a solution to
the set of equations (1.18)-(1.19), which fully characterize the GW generation
problem in linearized gravity, we have to discuss the specific gauge symmetry
of this theory.
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1.2.1 Gauge symmetry in linearized theory

Since the linear condition (1.16) is reference-frame dependent, as soon as we
enforce the linearized approximation we break the gauge symmetry of GR
under arbitrary diffeomorphisms, i.e.

OxP 0x°
= a(z) = gu(z) = g, @) = i nga(x). (1.20)

Nevertheless, in linearized gravity some gauge freedom still remains, and ac-
cordingly we are able to select the harmonic gauge (1.19). But there is more: a
coordinate change z# — x* +£#(x) on the linear metric (1.16) yields, through
Eq. (1.20), the transformation law

By = Ty = (O + 06), (1.21)
which in terms of BW becomes
Py = s — (880 + 00y — M 0al®). (1.22)
By applying on the latter a partial derivative, one can easily show that
0" hyy — 0¥y — &, (1.23)

and thus find that the harmonic condition (1.19) does not constrain the coor-
dinate displacement vector £, if not for the condition [1§,, = 0. This manifests
the possibility of imposing four additional conditions on l_LW through a suit-
able choice for ¢*. A standard choice in this context is to fix £° so as to
enforce h = 0, and use the remaining spacial components &' to set h% = 0,
which, via the harmonic condition, also implies 8%hgy = 0. As far as GWs are
concerned, which have a non-static character by definition, this last condition
means hgy = 0, and we finally have

RO =0, h=0, &hy=0. (1.24)

This is the definition of the transverse-traceless (TT) gauge, and the corre-
sponding GW variable is denoted as hz-TjT. Having completely fixed the gauge,
hg;T only depends on two physical degrees of freedom, i.e the two GW polar-
izations in the plane transverse to the unit vector n, pointing from the source
to the observer. For instance, in a Cartesian coordinate system {t,x,y, z}
with the z axis oriented along n, we have

h+ h>< O
hih = |hx —hy 0] (1.25)
0 0 0

tj
where hy and hy are respectively the well-known plus and cross polarizations
of a GW, named after the displacement they induce on a ring of test masses
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as the GW transversely propagates through it. On more general terms, intro-
ducing two orthogonal unit vectors u and w in the plane transverse to n, we
can define the two physical polarizations of the wave as

1 T

§(uiuj — wiwj)hl-j N

1 (1.26)
i(uiwj - win)hg;T.

(u+iw) (1.27)

we can also write
hy —ihy = mimihLl. (1.28)

We conclude this discussion by mentioning that, given a GW solution in
the harmonic gauge, we can find the associated TT solution by applying the

projector
1
S P2i(0) Pua(n), (1.20)

where P(n) = 6;; — n;n;. Its relevant properties are

IL;j1(n) = Pig(n)Pj(n) —

Lk kimn = Wijmn,  nilljip = il = ... =0, I = e = 0.
(1.30)

1.2.2 Leading-order quadrupole formalism

We now make the first steps in the resolution of the linearized field equations
(1.18). Under the past-stationarity condition, the d’Alembertian operator in
Eq. (1.18) can be inverted using a retarded Green’s function, as we did in the
full non-linear theory to get Eq. (1.14). In this case, the resulting solution

reads G . )
hu (%) = = /d3x’ Ty (t _x=x |,x’>, (1.31)

|x — x/| c

where indeed T}, is the stress-energy tensor of matter. Outside the source,
the corresponding TT gauge solution is then given by the TT projector (1.29)
as

4 1 —x
hij (t,%) = fﬂijkl(n)/d3x’ Th <t _xox |,x’>, (1.32)
¢ c

|x — x|
where now n = x/|x|. Here we can omit the components Ty and Ty, since
they are related to Tj; by the conservation law 0#T),, = 0, linear-order version

of the condition (1.6). Let us denote by d the radius of a time-like world tube
enclosing the source and define r = |x|. The integral in Eq. (1.32) has the same
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compact support of Tj;, i.e. |x'| < d. Therefore, if we focus on field points far
away from the source, satisfying r > d, we can expand its integrand according
to
d2

\x—x’\:r—x'-n—&—O(T). (1.33)
By selecting the leading O(1/r) component, which is essentially the one we
can observe with our detectors, because of the large distance separating them
from the typical GW source, we find

14G x''n
hii (t,x) = T&Hijkl(n)/dSX,Tkl <tr+ . 7X/>a (1.34)

where we introduced the retarded time ¢, =t —r/c. As we already mentioned
in the Introduction, for self-gravitating sources like the ones we are interested
in, the weak-field condition underlying the linear approximation is paired with
the small-velocity condition. The latter, for a source of typical velocity v and
internal frequency ws, can be written as v ~ wsd < c¢. Let us then consider
the Fourier transform of the stress-energy tensor

x'-n d'k - —iw x’'-n)/c)+ik-x’
T“<“+c’x/> :/ (gt Tl Jem e m/aaend, - (1.35)

where k = (w/c, k). From the small-velocity condition, the compact support
of the integral (1.35), and the fact that Tj(w,k) is peaked around a range
of frequencies with maximum value w,, we infer that the frequencies w whose
contribution to the above Fourier transform is dominant satisfy
“YY-n < wsd
c c

< 1. (1.36)

We can thus exploit such condition and perform the expansion

2

1
w—x;x'-nmj + ) (1.37)

. /. R s LW
e w(tr+(x'n)/c)+ik-x P HJI-TLZ‘ -
! 2270

When this is inserted in Eq. (1.35), the result is the associated expansion

/ /
Ly

n; -
. T (tr, x)

X -1n
T (tr =+ 7X/> =T (try Xl) +

+ iinin; Th(te, x') + ..., (1.38)

22"

where, using a standard notation, each dot represents a derivative with respect
to time. In turn, once this is put inside Eq. (1.34), it yields

14G L
h;.l;.T(t’ X) = ;CTHijkl(n) [Skl(tr) + Enmsklm(tr)+



1.2. GRAVITATIONAL RADIATION IN LINEARIZED GRAVITY 17

1 .
+ TCQnmnnSklmn(tr) + . (1'39)

where we introduced the stress multipole of 7;;, defined as

Sii(t) = /d?’xTij(t,x), [stress monopole] (1.40)
Sijk(t) = /d?’xTij(t,x)ack, [stress dipole] (1.41)
Sijkl(t) = /dngij(t,x)xkxl. [stress quadrupole] (1.42)

Higher orders in Eq. (1.39) involve higher multipoles of 7;;, and their definition
follows by analogy with the lowest order multipoles listed above. Notice that
all these multipoles are separately symmetric in ij and in the set of indices
that comes after them.

Given that 07" S;jk, ..k, ~ v", we recognize in Eq. (1.39) the familiar struc-
ture in powers of v/c of a PN expansion. Truncating it at leading order gives

hi' (%) = %gﬂiﬂcl(n) |:Skl(tr) +O0@W?/c?)|. (1.43)

We want now to rewrite the stress monopole S* in order to make more explicit

its physical meaning. For this purpose we define the multipoles of p = Tpg/c?,
the Newtonian mass density, as

Qiy..i, (1) = /d?’x p(t,x)x4, ... i, [mass 2"-pole] (1.44)
and the multipoles of the momentum density P; = Tp;/c, as
Py, 5. ) = /d?’xPi(t,x)le...a:jn. [momentum 2"-pole] (1.45)
From the stress monopole definition S;; we have
S = / Bx Ty = / 3% Ti0pj = / d*x TipOj =
= —/d?’xa,gTikxj. (1.46)

The integration by parts in the last equality is performed considering an inte-
gration volume larger than the source, on whose boundaries T}, = 0. Then,
the conservation law 0,7 = 0 tells us

1
Ok Thi = _EaOT0i> (1.47)
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so that, after restoring the original symmetry in ij, we have

1 . 1/ . .
Sij = p /dSXTO(zwj) = 3 <Pij + sz‘>. (1.48)

Here we adopted the notation by which the symmetric part of a tensor with
respect of set of its indices is indicated by enclosing such set in the parentheses
(). With the same trick we find

1 1
Pij = c/dSXTOk(Ski Tj = E /dBXTOk(akxi)xj -

1 )
= — /dgx <3kT0kZE¢ZL‘j + Toﬂ»’i) = Qij — Pji, (1.49)

and thus )
Sij = 5 Qij- (1.50)

At this point, we can go back to Eq. (1.43) and plug in it the relation we
just found. Since Il;;10, = 0, we do so by trading Q;;(t) with its traceless
analogue

M@gjuad(t) = Qi(t) — %%le(t) = /dBXP(EX) (wz'xj — ;7“252‘3'), (1.51)

finally obtaining

12G S—
BT (6) = 3 2 Mo | 0) + 00|, s

the famous quadrupole formula originally found by Einstein [168], which shows
the leading quadrupolar nature of GWs, a characteristic maintained even in
the full non-linear theory. This is in agreement with the field-theoretic take
on GR, where the graviton, the carrier of the gravitational interaction, is a
massless particle with helicty £2, implying that it does not admit a state
with total angular momentum j = 0 or j = 1, as it would be required for a
monopolar or dipolar radiation.

We highlight that, in the point-particle case specified by the flat spacetime
analogue of the energy-momentum tensor (1.2), the mass quadrupole (1.51)
can be conveniently expressed as

M%uad(t) = M<y§2(t)y{2(t) — ;T%Q(t)éij> (1.53)

where y15 = y1—Yy2 is the relative coordinate of the two particles in the center-
of-mass frame, 112 = |y12| their relative separation, and pu = myma/(mi +ms)
their reduced mass.

Within this leading quadrupole formalism, we can also compute the GW
fluxes of energy and angular momentum at infinity, emitted by the source in
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all directions. Once we have specified a GW solution at infinity, in the T'T
gauge, they follow from the general formulas

r2c

=355 | © hLTRLT, (1.54)
r2c3 iTT, TT  ;TT T

where 2 is the solid angle and ¢;j; is the Levi-Civita symbol. Using our
leading quadrupole solution (1.52) and performing the integral over Q with
the identity

27
/dQ Lk (n) = ﬁ(lléikéﬂ — 45ij5kl + 5il5jk)7 (1.56)
we find
quad __ G ---quad :--quad 272
E 575 Mij Mij +O(U /C) s (157)
u 2G u ua
Syt =% [ewk NI R +O(v2/c2)]- (1.58)

1.2.3 General linear solution

In the previous section we computed explicitly the leading quadrupolar GW
solution in linearized theory and we found in passing that a simple general-
ization of this solution, with higher order corrections in v/c, can be found in
the form a multipole expansion; see Eq. (1.34). Here our intention is to write
down, in a convenient and physically meaningful fashion, the most general
solution, valid outside the source, to the linearized field equations (1.18). To
this end, we will introduce a systematic generalization of the multipole de-
composition we encountered previously, which will be also essential for the
construction of a GW solution beyond the linear approximation, the central
topic of Sec. 1.3. In order to firmly establish the logic of this formalism, we
will proceed by first exploring its application to the simpler problems

(1) A¢(x) = —4rS(x),
(2) Oo¢(t,x) = —4nS(t,x),

where ¢ is a scalar field, S its associated source, and A = 0;0; the Laplace
operator. After that, at the end of this section, we will apply such formalism
to the case of linearized gravity, so as to build, accordingly, the sought-for
general linear solution.
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Multipole decomposition of the Poisson equation

We start our analysis by discussing the static problem
Agp(x) = —4nS(x), (1.59)

for a localized source S(x) whose compact support is enclosed in a sphere of
radius d. The associated homogeneous problem, Laplace’s equation A¢(x) =
0, is an elliptic differential equation that admits an analytic solution ¢(x).
We can therefore Taylor-expand the latter around the origin 0 of our (here
three-dimensional) coordinate system as

1
p(x) = ¢(0) +2i(9i9)(0) + S iz (0:9;0)(0) + ... . (1.60)
We introduce a convenient index notation by Blanchet & Damour, according
to which any tensor F' with ¢ indices, say (i1,...,%¢), is written in short as
Fr, = F;, ,; similarly bl = gz and 9f = 0;, ... 0;,. In these terms, the
above Taylor expansion assumes the compact form

p(x)=> wFL,  FL= %(5“0)(0)7 (1.61)
1=0 :

where we notice that the tensor Fj, is indeed symmetric but also trace-free,
i.e. any possible contraction with the metric returns zero; here the metric is
d;; and, after a contraction with any index of F,, we have ko = Ap = 0.
We will say that a tensor with such properties is symmetric-trace-free (STF).
The contraction of a STF tensor with a generic non-STF tensor selects just
the STF part of the latter. Therefore, our solution about the origin becomes
actually

o0 oo
p(x) = @k = r'aLFy, (1.62)
=0 =0

where we use a hat to mark tensors that are STF with respect to all their
indices and x = rn. The formula to compute the STF part of a generic tensor
is given in Appendix A.1.

For our discussion we are actually interested in a solution regular at infinity
rather than at the origin. Following a similar rationale, it can be shown that
this solution can be generally written in the STF language as

- . .
nDr, Do nD; 1D
X)) =) —r =ty g e (1.63)
=0

where ﬁL is a numerical tensor akin to the F 7, above. We recognize the usual
profile of the multipole expansion, now rewritten in closed form thanks to the
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STF formalism. Equivalently, if we consider®

1 A
aL; = (- ) (2611 g+17 (1.64)
and define
N Vil N
CL = WDL, (165)

p(x)=> g CLoL (1.66)

Let us now come back to our Poisson equation (1.62). The Green’s function
method readily tells us that, considering

1

= —4n83(x —y), 1.67
R (x ) (1.67)
its solution is given by the integral
S(y)
3
p(x) = /d y . 1.68
() N (1.68)

Outside the source, where necessarily r = |x| > |y|, we can expand the de-
nominator as

1 = 1 o1
oy~ )l = 3 () wdn (1.69)
Y =0 =0

where, in the last equality, we used the fact that dr(1/r) is a STF tensor.
Therefore, the STF decomposition of the solution (1.68), valid outside the
source, is

= (£QL8L71~' (1.70)
£=0

which has the same structure of Eq. (1.66) but, instead of the numerical tensors
Cp, it features the STF multipole moments of the source

Or = / Py i.5(y). (1.71)

“One can easily prove that 9z (1/r) is trace-free from A(1/r) = 0.
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Multipole decomposition of the relativistic wave equation of a
scalar field

Now we shift our attention to the wave equation
Oo(t, x) = —4nS(t,x), (1.72)

where S(x) is again a source with spacial compact support enclosed in a sphere
of radius d. The exact retarded solution of this equation, computed in terms
of the retarded inverse operator of the d’Alembertian (1.15), reads

(t, %) = /d3y S(t_”;‘:;"'/C’Y), (1.73)

and it is well defined anywhere, even inside the source.

We now want to write down a multipole decomposition for ¢(t,x) valid
outside the source, akin to the one in Eq. (1.70). To do so we notice that, for
any given function f of the retarded rime ¢, =t — r/c, we have

D[f(t’")] =0, (1.74)

r

meaning that f(t,)/r is a solution to Eq. (1.72) in its homogeneous vacuum
form, to which it reduces for r > d because of the compact support of S(x).
This is still true even after we apply to f(¢,)/r an arbitrary number of partial
derivatives 0; and we use, in place of f, a multi-index STF tensor. Therefore,
the decomposition

i(w [ ’")], (1.75)

=0

written in terms of a set of generic STF tensors Fy, is ensured to describe a
solution to (1.72) in the region outside the source, since each of its terms sep-
arately solves the associated vacuum equation. Moreover, Eq. (1.75) actually
represents the most general solution of this kind. In fact, a STF tensor with
£ indices, and corresponding 2¢ + 1 independent components, is an irreducible
representation of weight ¢ and dimension 2¢+ 1 of SO(3), the group of proper
rotations. Therefore, the set of STF tensors F 1, with ¢ ranging from zero to
any positive integer value, provides a complete set of representations of SO(3).
Having recognized the generality of Eq. (1.75), we still have to relate the
STF tensors Fy, to the source S. As detailed in Appendix B of Ref. [104],
this is done by expanding in STF harmonics the integral in Eq. (1.73) and by
relating it to Eq. (1.75), in the region outside the source. The result reads

1
= / Py i / dz8,(2)S(t, + 2lyl/e,y), (1.76)
-1
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where we have a weighted time average in z, with weight function

5(2) = Wu _ 2 (1.77)

which satisfies
/dz de(z) =1, th de(z) = 0(2). (1.78)
—00

This integral in z can be physically traced back to the time delay between
different points within the extended source S(¢,x), which becomes irrelevant
for large /.

It is important to mention that the integral over z in Eq. (1.76) admits,
in the slow-velocity regime, the convenient time-derivative expansion

' (241 yl o \*
/_ldz‘sf(z)f(t’”“y‘/c’y) _kZOQkk:!(2£+2k+1)!! (cétr) Fler)

(1.79)
which essentially replaces the integral with its formal PN series.

Multipole decomposition in linearized gravity

We are now ready to apply the STF tensor formalism on the linearized field
equations, which we recall to be

- 167G
Ohy (t,x) = A

Ty (t, %), (1.80)
with the matter source T),, assumed to have a spatial compact support. Fol-
lowing the logic we outlined above, while treating each component of h,, as a
scalar field, we can write the most general solution, in the exterior region, as

_ 4G K (2 [Fo(ty

hoo(t,x) = — > (€,>aL L7€):|, (1.81)
=0 -

. 4G X (), [Gany

hoi(t, x) = — (ﬂ) o, | it )], (1.82)

C —0 . L T

- 4G > ()¢ -Hi' L (tr)

hag (t,%) = — (ﬂ) L ”<T> } (1.83)
=0 -

where we used the usual notation by which the delimiters () enclose subsets
of STF indices on tensors that are not completely STF. Among these equa-
tions, only Eq. (1.81) can be rightfully said to represent a proper multipole
decomposition, as it is given in terms of the STF tensors

1
Fity) = / Py i / A Thnlty + 2Iy1/e3). (1.84)
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irreducible representations of dimension 2¢ 4+ 1 of SO(3), in perfect analogy
with the scalar case. All the other components, instead, are written in terms
of tensors, Gy and H;j;ry, which are STF only in the indices L, and thus
actually yield reducible representations of SO(3), respectively of the type D'®
D! and D' ® D' ® Df. We can however decompose them in a direct sum of
irreducible representations, considering D' @ D = D' @ D! @ DI, More
specifically, in STF terms, we can use the formula [161]°

_at 4(0) 20— (-)
Gi<L> _GiL +£+ 16‘1i(i£G 1)a + 2£+15< GL 1)’

(1.85)

where G(+) = Gy, G’(O) = Gpe(L—1€ip)be, and G( )1 = Gur_1. A repeated
apphcatlon of this formula also yields the decompos1t10n of Hyj(ry in six irre-
ducible pieces; this is given explicitly in Egs. (5.7)-(5.8) of Ref. [162].

At the end of this operation, our solution B#,, is decomposed in a total of
10 independent sets of STF tensors. We can however relate some of them by
specifying our gauge choices: to begin with, the so-decomposed solution does
not satisfy automatically the harmonic condition (1.19), and by imposing it
we get 4 constraints; then, as described in Sec. 1.2.1, we have the extra gauge
symmetry of the linearized theory, which we can use to impose 4 additional
constraints. This leads to the possibility of parameterizing our general linear
solution in terms of just two residual sets of STF tensors, the so-called canon-
ical multipole moments of the source, My, and Sr.% respectively dubbed of
mass type and current type. For the details of this rather long computation
we refer to Ref. [162]. The final result is

00 ‘
ﬁoo(t,X)zg )y, {MLT(’S’")}, (1.86)

c? /!
=0

falt) =25 5 Gl oy [Miea)]

-3 |
c /¢ r
/=1

Spr—1(t,
E—l—lemba&L 1|: bL Tl( ):|}7 (187)

hij(t,x) = 1G5~ )E{GL 1 [MULf(tr)]

ot 0
=2

20 €ab(iSiypr—2(tr)
— | ——F——| . 1.
+ I 180,L 2[ " (1.88)

5This is a particular instance of the general rule according to which a generic tensor
Tp can be decomposed in a sum over ¢ of terms like fy}L;RL, where % are tensors made of
products of d;; and €;;x, the invariant tensors of SO(3), and ﬁL are STF tensors built by
taking the STF part of the possible contractions of 7T}, with ¢’s and €’s

5In compliance with standard notation, we write these two quantities without the hat,
even though they are STF in all their indices. Henceforth, we will do to the same for any
other STF multipole moment.
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Furthermore, thanks to this formalism, the two sets of canonical multipoles
(Mr,Sr) can be shown to admit the closed-form expressions [162]

4204 1) o

3

tr /d / dz |:(5g CQ(E—F 1)(2€+3) 5€+1(Z)yaL0a
2(20 + 1)

A+ 1)( €+2)(2€+5)&+2( )yabLUab] (tr + zlyl/c,y) (1.89)

L(tr) /d3 / dz €ap(; [56 2)JL-1)a0b

20+ 1 A .
2(0+2)(20 + 3) 5f+1(z)yL1>ac0bc] (tr + zlyl/c,y) (1.90)

where, following Ref. [104], we have introduced the source densities o =
¢ 2(Too + Taa), 0; = ¢ Tp;, and oij = Tjj. Again, if the slow-velocity condi-
tion holds, we can replace all the integrals in z with their easier to evaluate
PN expansion (1.79).

We finally stress, as it will be useful for later, that if we leave the multi-
poles (Mp,Sr) generic, not specifying their expressions in terms of the source
densities, then Eqgs. (1.86)-(1.88) also yield the most general solution to the
vacuum wave equations DEW =0 in the STF formalism.

1.2.4 Linear GWs and the asymptotic region

Let us now discuss the profile of our generalized linear solution at future null
infinity, i.e. in the asymptotic region where GWs can be detected, defined by
the limit » — oo at constant retarded time ¢,.. This will also offer the occasion
to present the general asymptotic structure of GW solutions, valid regardless
of the linear approximation considered here.

In this regard, we have to remark that in the asymptotic limit the har-
monic coordinates we used so far are notoriously plagued by the appearance
of coordinate-dependent logarithmic terms [169], which are absent when one
adopts specially designed coordinate systems, grouped under the name of ra-
diative coordinates. We specifically refer to either the Bondi-type coordinates
introduced in Refs. [170-172] or their analogue by Newman & Unti [173]. Let
us denote such coordinates by X* = (7,X), with R = |X|, retarded time
Tr = T — R/c, and unit radial vector N = X/R. It has been proved that,
once expressed in radiative coordinates, the asymptotic GW waveform ad-
mits, in full generality (notably also in the full non-linear theory), the STF
decomposition [174]

1a
2R

1

T N) = ) TN
=2

20
+ ) Ecd(a%)dL—2(TR):| . (191)

(L +1)!
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Evidently, we are looking at the leading 1/R part of the projection on the
TT gauge of a general solution h;;, namely the component of it that we can
hope to observe at future null infinity. The two sets of STF tensors UL (Tr)
and Vi (Tgr) which parameterize this asymptotic solution are called radiative
multipole moments, again of mass-type and current-type respectively.

In linearized theory, they can be computed in terms of the canonical mul-
tipole moments (M, Sr) by comparing Eq. (1.91) with the harmonic solution
given in Eqgs. (1.86)-(1.88), after this is projected in the T'T gauge and stream-
lined down to its leading 1/r component with the help of the formula

ouf(t) = “lns o), (1.92)

c

where the superscript (¢) stands for the ¢th time derivative, here with respect
to t,.. In particular, the simplifications that come with the linear approxima-
tion also determine that there is no difference between harmonic and radiative
coordinates in the linear case. Indeed this is no longer true as we go beyond
the linear order, where we anticipate that a proper coordinate transformation
is needed.

The results of this computation, which completes our discussion on the
GW generation problem in the linearized theory, simply read

UL(TR)] s = MO TR), VLT8R o = S5 (TR): (1.93)

If we plug these relations in Eq. (1.91), the first terms in the emerging series
turn out to be

linear linear

2G - 17...
{h;ﬂT(Tm N)]linear = C4RHijab<N){Mab(TR) + 3 [Mabc(TR)Nc
+ 4€cd(a‘§b)dL—2(TR)] } +o (1.94)

Considering that M;; = M?juad + O(v/c?), we recognize in the leading term
the quadrupolar solution derived in Eq. (1.52).

To wrap up, the most general GW solution in linearized gravity can be
computed according to the scheme

T/U/ — (MLaSL) — (ULa VL)linear — [hgT(TR,N):L ; (195)
mear

through which one connects the energy-momentum tensor 7), of the GW
source under consideration to the observable degrees of freedom of the GW
waveform at infinity.

1.3 Beyond the linear order: Blanchet-Damour
generation formalism

Up to this point we dealt with the GW generation problem under the approx-
imation that the background spacetime can be assumed to be flat. In this
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context we saw how to systematically relate, within an expansion in v/¢, the
GW waveform at infinity to the energy-momentum content of the source. The
additional implicit assumption we made along the way is therefore that the
typical velocity of the source and its effect on the background curvature could
be treated as they were completely independent. While this may be the case
for sources whose internal forces are of non-gravitational nature, the same
cannot be said in regard to the post-Newtonian sources we are interested in,
which are by definition self-gravitating systems. For systems of this kind, in
fact, the virial theorem implies the relation”

v>  Rg
2 (1.96)
where Rg = 2GM/c? is the Schwarzschild radius associated to the total mass
M of the system, and d is its size. The corrections in v/c are then to be consis-
tently paired with extra non-flat contributions to the background curvature,
whose magnitude is roughly measured by the ratio Rg/d. In order to properly
model GWs radiated by PN sources, in the context of a power series in v/ec,
one has therefore to go beyond the linear approximation and determine a non-
linear generalization of the GW generation scheme of Eq. (1.95). Our goal in
this section is precisely to present one of the leading-edge formalism devised to
do so. More specifically, what we are going to outline is the Blanchet-Damour
GW generation formalism, originally established in Ref. [104].

A first important obstacle we have to face as we go beyond the linear theory
is that the PN approximation, by itself, is not anymore adequate to describe
GWs far away from their sources. This problem becomes quite manifest if we
realize that, in a direct application of the PN expansion, we would attempt
to build up, order by order, a retarded gravitational field of the type

B (t = 1)) = %Fuy(t /o), (1.97)

from the corresponding expansion for small retardation (r/c < t)

1. r

“Fult) — SFu0) + g Ful0) + 007/E). (198)

Lt —r)c) = .

r c
We see that this series blows up as r — oo, in contrast to the asymptotically
flat behavior that the gravitational field should have. The PN expansion,

in this case, takes on the connotations of a singular perturbation theory, not

"In general, for a system of two particle separated by a distance d and interacting with
a conservative force of potential of energy U ~ d", the virial theorem relates the averages
over time of its kinetic energy 1" and the aforementioned U as

AT = n(U).

In this sense, Eq. (1.96) is the consequence of taking U to be the gravitational potential of
Newtonian mechanics.
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uniformly valid in 7 but limited to a finite region » < R, with the consequential
impossibility of imposing the required boundary conditions at infinity, such
as the already mentioned no-incoming radiation condition. The radius R
that defines the boundaries of this near region, where retardation effects are
negligible and the PN expansion is valid, can be determined as the larger radius
for which the condition » < A holds, where A is the reduced wavelength of the
emitted radiation.

The basic idea of the Blanchet-Damour approach is then the following.
Let d be the size of the matter source. In the exterior region r > d, the
energy-momentum tensor TH” of the compact matter source vanishes and
the gravitational field becomes a solution of the vacuum Einstein equations,
which is natural to tackle by means of a multipole expansion. Moreover, as
far as PN sources are concerned, the gravitational field in the exterior region
is sufficiently weak that it can be computed in a post-Minkowskian (PM) ex-
pansion, treating it as a non-linear metric perturbation of the flat spacetime.
Combining the two expansions, the gravitational field in the exterior region is
therefore conveniently built in terms of a multipolar-post-Minkowskian (MPM)
expansion, in which each perturbative order in the PM series entails an un-
derlying expansion in STF multipoles. This description is well defined in the
whole spatial domain d < r < oo and, when recasted in radiative coordinates,
has an asymptotic structure at future null infinity that is consistent with the
Bondi-Sachs-Penrose paradigm.® However, it is completely disconnected from
the stress-energy tensor THY, as it represents instead the most general field
solution as seen from the outside of any source. On parallel, one has the
PN expansion cited above, which determines the inner gravitational field as a
functional of T"”  thus connecting it to its specific source, but it is only valid
in the near region r < R around the source. We are at the decisive point of
this approach: if the source is post-Newtonian, we can count on the condition
R > d, which ensures the existence of an overlapping region d < r < R where
the PN and MPM expansions are both valid; an illustrative sketch of the differ-
ent spacetime regions in play is given in Fig. 1.1. Exploiting this overlap, the
two perturbative expansions can be matched together with a proper applica-
tion of the matched asymptotic expansion method. This procedure ultimately
specifies, from the starting generality of the MPM solution, the particular and
physical exterior field corresponding to the given energy-momentum content
of the source, encoded in TH¥. It is important to notice that the PN expansion
represents the most downstream approximation scheme of the whole genera-
tion formalism, and as such it is also the one with respect to which the final
waveform results are given.

Before we start illustrating the main aspects of the Blanchet-Damour ap-
proach, we wish to point out the existence of another GW generation for-

8More specifically Ref. [101] has proved that it is asymptotically simple in the sense of
Penrose [172,175,176].
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Figure 1.1:  Sketch of the spacetime regions considered in the Blanchet-
Damour waveform generation formalism. As specified in the text, d and R
respectively enclose the source and its near region. In the exterior region
beyond R, we further single out the asymptotic region containing future null
infinity, where a proper GW description requires abandoning the harmonic
coordinates (t,r) in favor of the radiative coordinates (T, R).

malism, devised by Will, Wiseman & Pati. This is similar in spirit to the
one of Blanchet & Damour but, even though the results are the same, it still
entails several technical differences; for more details on this formalism see
Refs. [97-99].

1.3.1 Multipolar post-Minkowskian expansion in the exterior
region

To start our review of the Blanchet-Damour approach, the first aspect we want
to explore is its prescription for the general solution to the vacuum Einstein
equations, which shape the gravitational field outside the source. We work in
harmonic coordinates, using as a reference field variable the metric density h*”
defined in Eq. (1.7), which we can think of as a non-linear metric perturbation
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of the flat spacetime. Correspondingly, the field equations we have to solve
are obtained from Eq. (1.9) by imposing the vacuum condition T = 0 and
the harmonic condition. They read

Oh™ = A, 9uh™ = 0. (1.99)

At a distance r from the source, a general weak-field deviation from the
Minkowski metric, such as h*”, can be expanded in powers of the dimensionless
ratio Rg/r, defining what we call its post-Minkowskian expansion. Since
Rg ~ G, it is standard to recast this expansion as a power series in G, which
on our field variable reads

W= Grh, (1.100)
n=1

where we identify the coefficient h!' :: of G™ as the nPM contribution to h*".
Having the final goal of describing the gravitational field up to a given PN
order, we can indeed consider a finite truncation of the series (1.100),” but
to push the computation to arbitrarily high orders we need to know how to
formally determine each coefficient hgl;). We will work this out in the form of
an iterative algorithm, since inserting Eq. (1.100) in the field equations (1.99)
yields the hierarchical system of equations

Oh(y =0, (1.101)
Dhttvl;) = Al(ﬁ:) [h(1ys P(2)s ooy Pn—1y]  for n > 1, (1.102)
8ah04ll =0 forn > 1. (1'103)

(n)

where the leading order equation is source-less, since A*Y = O(G?), while
all the others have a source term with non-compact support defined in terms
of the lower-order PM contributions. For instance, recalling the expression
of A" as a functional of h*”, shown in Eq. (1.12), at the lowest subleading
orders we have

Ohfy = N*[hay, b, (1.104)

Dhl(gj) == N’ul/[h(l), h(z)] + N’ul/[h@), h(l)] + M'uy[h(l), h(l)? h(l)] (1105)

The first step is to compute the leading 1PM contribution given by Eq. (1.101)
and the associated harmonic condition. This is the same set of equations we
encountered while dealing with the linear field in Sec. 1.2.3. Therein we showed
that the most general solution can be decomposed in two sets (Mp, Sg) of
STF multipoles, see Eqs. (1.86)-(1.88). We recall however that, in the path

9The virial theorem relation (1.96) implies that to completely determine the nPN order
we need PM contributions up to the (n — 1)th.
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leading to that solution, we had to take advantage of the gauge symmetry
(1.22), specific of the linearized theory, and use it to impose four additional
constraints. This is no longer possible in the full non-linear theory, for which
Eq. (1.22) is not a gauge symmetry, implying that the most general solu-
tion to Eq. (1.101), in harmonic coordinates, should be given in terms of six,
rather than two, sets of STF multipoles. Moreover, such multipoles should be
unspecified functions of the harmonic retarded time ¢, =t — r/¢, with no a
priori connection to the stress-energy tensor of the source, as opposed to the
multipoles M, and S, in the linearized theory, for which we wrote down the
closed-form expressions (1.89) and (1.90). We therefore write our multipolar
1PM solution in the form

h;‘f) = ké‘f) + OHEY + VEN — P D, E°. (1.106)
Here kY] is given by
k) = —;i(_!)gaL[ILf’”)], (1.107)
/=0
= 5 32 G o B
+ HgleiabaaL—l [JbL_Tl(tr)] }, (1.108)
k= -4 5 G o [12)
=2
1
+ ﬁflaaL2 [W} }a (1.109)

and mirrors the structure of the linear solution (1.86)-(1.88),'Y but replaces
the source-rooted multipoles (M, Sy) with (1, Jr), a different set of mass-
type and current-type STF multipoles. As we mentioned, at this stage the
latter are arbitrary functions of ¢,, with the exception of I, I;, and J; which
must be constant in time because of the conservation laws for the total mass
of the source M = I, its total linear momentum P; = Ii(l), and its total
angular momentum .J;. The other three terms in Eq. (1.106) reintroduce,
via Eq. (1.22), the four STF multipoles that had been gauged away from the
linear solution. In fact, the vector £# can be decomposed in four general STF

multipoles, denoted as (W, Xr,Yr, Zr) and usually called gauge moments,

There are actually two small differences: (i) a factor G is missing in kﬁ") because it is
collected in front of hg‘ll') in its defining relation, Eq. (1.100); (ii) the overall sign is changed
due to [R*]iinear = —h"”, as we showed in Eq. (1.17).
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according to

o2 i &'y, [Wi(t’")}, (1.110)

3=
- C‘li;io (;')éaLI:XL(tr)} B ;g(—')e{a ) [EL?}(tr)]
+ HeleiabaaL—l [ZI’LTM} } (1.111)

This completely determines the 1PM solution of the exterior field in terms
of an expansion in six sets of STF multipole moments, (Ir,Jr, Wr, X1, Y,
, Z1). Given that the multipole decomposition has entered the first step of the
PM iterative algorithm, we are actually justified in calling the overall proce-
dure a multipolar-post-Minkowskian expansion. The multipoles (I, Jp, Wi,
X1,Yr, Z1) are usually referred to as the multipole moments of the source, in
anticipation of the fact that they can be related to the source by means of the
matching with the PN solution in the overlap region. Despite this remarkable
property, using a solution parameterized by six set of multipoles in the itera-
tive algorithm would be quite inconvenient. Besides, we know that GWs have
two physical degree of freedom, their two polarization states. Hence, there
must exist a reduced set of just two multipoles that is physical equivalent to
the one we used above, i.e. that generates the same MPM solution if used
to parametrize the leading coefficient hé’j) at the basis of the MPM iterative
algorithm. Indeed the naif choice (Ir,J1,0,0,0,0) is no good, as it is related
to (In,Jp,Wr,Xr,Yr,Z1) by a linear gauge transformation rather than a
non-linear diffeomorphism. What we are after must be instead an isometric
reduced set (Mp,Sr,0,0,0,0) where the STF multipoles M, and Sy, usu-
ally called canonical multipole moments, are non-linear functionals of the six
source multipoles, with the identifications My = Iy, and St = Jr, being valid
exclusively at a linear level. Of course, decomposing h’é’j) in canonical moments
returns a much simpler expression than its source moment counterpart, with
only the ké‘ll; part of hi‘ll') remaining in Eq. (1.106), and therefore it is more
easily implemented in the iterative MPM algorithm. However, there is no
way of directly connecting these canonical moments to the source even within
the matching with the PN expansion. The idea is then to use the canonical
moments for the MPM algorithm and later recast the so-constructed solution
in terms of the source moments. Evidently, to this end we need the explicit
functional relations between canonical and source moments, up to the target
PN accuracy of the final waveform results. The procedure to obtain these
relations is presented in the recent work [177], where it is formally outlined at
every order in the PM expansion and then practically implemented to com-
pute the relations between the mass quadrupoles M;; and I;; up to 4PN. For
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instance we have [111,164]

4
Mij = Lij + cf [IUW Swhl Lo/ (1.112)
S = g s 2C Y@ 4 1Oy _ Oy ) 4 37,0
ij 0T s €ab(i Y, jyb-a gpra (i)
2Ji(j2)W(1)] +0(1/&). (1.113)

Similar relations hold for higher multipoles, with the first correction being
always of order O(G/c?).

We now investigate by induction how to formally implement the MPM
iteration algorithm at every order. The problem at hand is how to compute
the nPM coefficient h/' n" after the previous n—1 have been already determined,
starting with the multipolar 1IPM solution we just discussed. We have to solve
the wave equation (1.102), with the source term A’(ZI) known by induction
hypothesis. A straightforward application of the retarded integral (1.15) is not
possible here, because Eq. (1.102) is physically meaningful only outside the
source. On the same note, the multipole expansion nested in the source term
AZ;/) makes the latter manifestly divergent for  — 0, with the divergence order
that increases indefinitely as the multipole expansion proceeds towards higher
values of £. It is however crucial to remember that the multipole expansion
naturally comes with an associated expansion in 1/c¢, meaning that if we want
to compute the waveform at a given PN order we can neglect any multipole
moment beyond a corresponding finite £ = f,,x. After this truncation, the

divergence order of A’(‘ V) becomes actually finite and we have the chance of

regularizing the integral Dre%AéL V)

Following Ref. [161], the first step in this direction is to introduce the
regularized quantity

"(B) = O [ A‘(‘”)} (1.114)

a function of the complex number B that is defined when R(B) is large enough
to make P A’(L:) regular at the origin, where R indicates the real part. In

particular, if D,y is the maximal divergence order of A’(L:), the definition

domain of I”(B) is R(B) > Dmax — 3. The constant length scale rq is
there with the purpose of making the regularizing factor dimensionless, and
it must disappear from the expression of every physical observable. Ref. [161]
proved that I%”(B) admits a unique analytic continuation I4”(B) defined for
all B € C except for some integer values. The function I:”(B) may develop
some poles in B = 0, but around this point we can always consider the Laurent
expansion

“+o00
> Bruan, (1.115)
P=—"Pn
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where p,, is the order of these eventual poles, with p, = 0 if there are none.
We can then apply the operator [J to both sides of Eq. (1.115), remembering
the definition (1.114). This gives

BA% Z Brok, (1.116)
pP=—Pn
where, in the left hand side,
B oo
r — eBlog('r’/ro) — ZBp [log(r/ro)]p' (1117)
B p!
0 p=0 :

Equating the different powers of B yields the infinite set of equations

O, =0 for —p, <p<1, (1.118)

_ llog(r/ro))?

uv
D p P! (n)

for p>0. (1.119)
We notice that ¢/ o+ the coefficient of the term with p = 0 in the Laurent ex-
pansion of the analytlcally continued quantity (1.114), is a particular solution
of Eq. (1.102). The series of operation that allowed us to compute ¢, from
the retarded integral I},”(B) is called finite part of IL”(B). In other words,
denoting the operation of taking this finite part by the symbol FPg—g, we

just found that a particular solution u’{:) to Eq. (1.102) can be computed as'*

B
Uy = FPp= ODret[ (?A%} (1.120)

The solution we want, however, must also satisfy the harmonic condition
(1.103). Instead, from the solution above,

= Juh

() (n)

TB 5, i
i.FPB ODret 3%7 (n) 3 (1121)
where we used the conservation of the stress-energy pseudo tensor (1.10),
which in vacuum becomes 9,A** = 0, and thus d,A" = 0. We see that

(n)

in general w( # 0, as it is the case when the associated retarded integral,
stripped of the explicit factor B, develops a simple pole 1/B in its Laurent
expansion for B — 0. Nevertheless, realizing that the finite part operation
effectively identifies wé‘n) with the coefficient of this simple pole, we can infer, in

HFor a source S with compact support and no divergences, we simply have

1 r?
FPe=olet |:7"T3

0

s] —02(S),

in compliance with the fact that no regularization is needed in this case.
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analogy with Eq. (1.118), that it must solve the source-free equation Cw?’ "=
0. This means that we can decompose it in terms of four set of STF multipoies,
similarly to what we did in Egs. (1.110)-(1.111) for £#*. From the multipolar

expression of wéLn) is then possible to define another object véjf:) such that

uv
Dv(n)

The resulting Ué‘:) is not unique, but each of its determinations, once added

=0, aavgg = —w( : (1.122)

n)

to u’(*:), gives an object that is still a solution to Eq. (1.102) while also being
divergence free, as we wanted. For the explicit expression commonly used

for UZLV), given in terms of the multipoles of wé‘ , see, e.g., Egs. (47)-(48) of

n)
Ref. [112].12
Summing up, the nPM metric coefficient h’(‘;:), solution to Egs. (1.102) and
(1.103), is formally obtained as
I 27 uv
iy = Uy ¥
i
n

(”) defined in Eq. (1.120) and vf:) defined from wé‘n) in Eq. (1.121), upon
requesting the conditions (1.122). Moreover, this is the most general solution

we can find for h’(%. As proved in Ref. [161], in fact, the most general solution

(1.123)

with u

to the associated homogeneous equation, Dh’(”:) = 0, has necessarily the same

multipolar structure of the 1PM solution A/ 1” , which is also a solution to this
equation. Thus, we can always reabsorb any extra homogeneous term added
to the solution (1.123) in a redefinition of the multipole moments used to
parameterize h'].

As it is not difficult to imagine, the practical implementation of the MPM
iterative algorithm presented above becomes very challenging already at low
PM orders. To make things manageable, the usual strategy is to consider sep-
arately different multipole interactions, determined by the different multipole
products that pop up in the MPM iterations. This is done by starting the it-
erative algorithm with a linear term A’ 11/ which only presents the pieces where
some selected multipoles appear. For instance, to fix the mass monopole and
mass quadrupole structure of A*¥ up to 2.5PN corrections, it is sufficient to
consider a single iteration on the linear metric
F5 ] s = M0+ W (1124)
where, referring to Eqgs. (1.107)-(1.109), rewritten in terms of the canonical
moments (M, Sp), the multipolar components considered read'?

JAM e i
627' ’ (lvM) (17M)
2The procedure to compute vf:) from the multipolar expression of w?m is often called

the MPM harmonicity algorithm.

3In our notation, for instance, h

W ary = =0, (1.125)

nv
(1,M)
tion of ht‘lu), that just involves the mass monopole M, whereas h

represents the term, in the multipolar decomposi-

%

(1.M;) is the one associated
M

to the mass quadrupole M;;.
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2 [ Mu(t,)
00 ab\lr
M ary) = = 0 [T] (1.126)
1)
~ 2 [MD(t,)
01 _ ai r
h(l,Mi]') - 6738(1 |:7":| s (1127)
(2)
ij 2 Mi‘ (tr)

Then, by inserting the linear metric (1.124) in the right hand side of Eq. (1.104),
we find the three quadratic interactions

nty = h

uv pv
o] v, = M [+ h (1.129)

(2,M><Mij (2,M¢j XMZ']')’

which can be separately determined by direct application of the MPM algo-
rithm; for the explicit computation of these contributions see Sec. 5.3.4 of
Ref. [163] and references therein.

An important aspect of the nonlinear MPM metric coefficients that re-
sult from the procedure we just outlined is the inevitable appearance in their
expressions of time integrals, involving the canonical moments and spanning
over all the instants before the retarded time ¢,.'* Contributions of this kind
are called hereditary, in antithesis with the “standard” instantaneous terms
which just depend on a specific time t,, because they effectively impress in
the exterior field the mark of the whole history of its (yet unspecified, at this
point) source. Seen from another angle, these hereditary non-linearities are
expression of the fact that the curved background spacetime affects the gravi-
tational interaction as if the latter took place in flat spacetime and propagated
at all possible speeds, lower or equal to c.

We finally mention a very important result, originally shown in Ref. [161],
about the near-zone singular structure that each coefficient h*' ny must have to
allow the analytic continuations in B underlying the MPM algorithm. For
each N € N, in the limit » — 0, we have

hzl;) (t,x) = Zrm(log r)pﬁLFfj;nvpyn(t) + o(r™),
m,p (1.130)
{meZ]|moyn) <m<N;peN|p<n-—1},
where mg(n) is an integer that goes toward —oo as n increases, Ff;mp,n(t)
are multi-linear functionals of the source moments, and o(r"V) is the standard
Bachmann-Landau notation for a residual of order greater than % in the
considered limit.

Y This happens already at the level of the metric component h?g Mx ;)5 See Eq. (5.164)
of Ref. [163].
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1.3.2 PN expansion in the near region

We address now the problem of building a PN solution to the field equations
(1.9), formally valid at each perturbative order but limited to the near region
r < R. Using a standard notation, the formal PN expansion, complete of all
its infinite terms, of any given quantity is indicated with an overline. Focusing
in particular on our field variable h*¥, its PN expansion reads'’

+o0o

- 1

M (t,x) = g c—nhﬁ"(t,x; log ¢) (1.131)
n=2

where we made explicit that the nPN coefficient, which multiplies the factor
1/c", may also contain logarithms of ¢. Their presence is expected from the
profile of the nth MPM metric coefficient in the limit ¢ — oo, which is

WY~ 3 (o o)”, (1.132)

(n) cd

p,qEN

as implied by its near-zone structure (1.130), considering that each r therein
comes with a factor 1/c.
Accordingly, the PN-expanded stress-energy pseudo tensor (1.10) reads

+oo
1
T (t,x) = Z —74"(t,%x;log ), (1.133)
¢

n=-—2

where the starting term of order ¢? comes from the rest-mass contribution to
the energy.
By inserting these expansions in Eq. (1.9), we find the recursive set of
Poisson-like equations
AREY = 167GTH | + 071 (1.134)

n—2

where the last term comes from 00 = A + 1/c20?. We proceed again by
induction: we try to formally compute h}~ supposing the knowledge of all
the previous PN coeflicients of the metric and, with them, of 7#¥. Here the
Laplacian cannot be simply inverted via the Green’s function (1.67), because
the source term has a non-compact support, and diverges for r — +oc. This
obstacle has been overcome in Ref. [178], which showed that an appropriate
inversion of the Laplacian, for any source term 74", can be be defined in
terms of a finite-part regularization, operationally similar to the one used in

the MPM algorithm and thus denoted with the same symbol FPg—q. It reads

1 /1B #V t /
A7)t x) = _4]_—7330/(13)(/7”7' (¢,x)
T

_ 1.135
7'69 |x — x/| ( )

5This should not be confused with the linear trace-reversed perturbation hyw, which
plays no role in the non-linear formalism we hare presenting here.
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We remark that in this case the regularization is needed for divergences at
infinity, rather than at zero, therefore $(B) must be sufficiently large and
negative for the integral to be defined, before it is analytically continued ev-
erywhere in the complex B-plane except for, in this case, just B = 0.

The most general solution to Eq. (1.134) is then given by

R = 16nGA T | + R AT R )] +ZmLBLn, (1.136)
/=0

where in the last term we also added the most general solution of the homoge-
neous Laplace equation that is regular at » = 0, decomposed in STF tensorial
functions By as we did in Eq. (1.62). Indeed we can reinsert Eq. (1.136) in
its own coefficient h%”, and keep going recursively until we reach either hf”
or b, which are both zero.

Let us now introduce the operator

+oo
Opae [7] = ZTka%A R, (1.137)

1nst
k=0

where

1 T/B’X X‘zk ! " (t,x)
A—k—l =1V (¢ = _ _ /dS / ’
[7)(t: %) 47r]:,PB70 rP (2k)!

is the kth iteration of the operator (1.135). Mind that the definition (1.137)
is legitimate exclusively for PN expanded quantities such as 7#”. Once all the
metric coefficients are recursively replaced in the left hand side, neglecting for
the moment the homogeneous terms, Eq. (1.136) can be generalized at every
PN order in the compact form

(1.138)

167rGD_1

4 inst

he

part —

; 7). (1.139)

This is by construction a particular solution to Eq. (1.9), implying that

(5L ) = 7, (1.140)
and thus justifying a posteriori the notation Dlnst’ where the label “inst”
stands for instantaneous, namely not involving integrals in time as opposed
to O.t. On parallel, we have the collection of homogeneous terms that comes
from the infinite iterations required to obtain Eq. (1.139) from Eq. (1.136). It
can be proved that this homogeneous part corresponds to the general solution
of the source-free D’Alembertian equation regular at the origin, which must

be composed by the difference between retarded and advanced waves. The
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most general PN solution for the metric A*”, formally encompassing all PN
orders, can therefore be written as

4G =X (_)fé [Ag”(t —r/e) — A (t +7/c)
L

ot 0 2
=0

_ 167TG|:|_1 ] —

4 inst

iz

C

(1.141)
There is no way to further specify the quantities AZV in the standard PN the-
ory, we may just relate them to the functions B}" that appear in Eq. (1.136)
without gaining much. As we will see in the next section, the solution to this
problem lies in the matching with the MPM solution in the exterior region.

1.3.3 PN-MPM matching in the overlapping region

We now come to the crucial point of the Blanchet-Damour generation formal-
ism: enforcing the matching between the MPM and PN expansions in their
common region of validity, the overlapping region d < r < R. Similarly to
what we did on the PN side with the notation A*”, let us denote by M (h*)
the formal MPM expansion

+oo
MB) =Y G W, Jo, W, X1, Yi, Zi), (1.142)

n=1
which represents the exterior solution of Sec. 1.3.1, comprehensive of all PM
orders and expressed in terms of the multipoles of the source. Indeed this is
such that M(h*v) = h* for r > d, just like A*Y = h*¥ for r < R. We thus

have

MR = bV for d <r <R. (1.143)

This is not yet a matching equation since it does not relate two mathematical
expression of the same nature. The idea is then to take the formal PN expan-
sion of M(h*") and equate it to the formal multipolar expansion of k. In our
notation we get

M(hHv) = M(h*), (1.144)
which is by all means a matching equation, to be intended as the infinite set
of functional equations that make identical, term by term, the two double
expansions, M(h#*) and M (h*"). Moreover, thanks to the known near-zone
structure of Af”), given in Eq. (1.130), we are able to infer the general shared

structure of such double expansions, that is

M(hHv) = Zrm(log r)pﬁLFﬁl;w = M(h*),
" (1.145)
{m €Z;peN}

where, compared to Eq. (1.130), we have Ffznp = Yt G”Fffnpn. Here

the second equality can be seen as the specification of the singular structure
of the PN expansion A in the limit r — 4o00.
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The first remarkable consequence of the matching equation (1.145) is that,
given a PN source, which we know to always come with the necessary overlap-
ping region, the solution to the Einstein field equations (1.9) in the exterior
region can be proved to be'®

BM(AW)] - fio& [W} (1.146)

M(hlﬂ/) FPp= 0|:|ret|:
7'0 —0 T

where, in the first term, we find the formal MPM expansion

y n 167G y
M(A™) ZG Ay = = M), (1.147)

while, in the second term, we have a set of STF tensorial functions F4"(¢,)
that are related to 7" by

B +1
Bt = FPaco [y Y [ da@m e +elyl fey), (1149)
g |

where the weighted integral in z is the same one seen in Eq. (1.76).!7 This sec-
ond term represents the linear 1PM term of the exterior solution (1.146). As
such, it can be further decomposed in irreducible STF representations of SO(3)
which correspond precisely to the source multipole moments (I, Jr, Wr, X1,
, Y, Zr). One can thus invert the relations that substantiate this decompo-
sition and express the source moments in terms of the components fgo(tr),
FP(t,), and ]-'zj (tr), finally relating them to 7# via Eq. (1.148). The results
is a set of source-rooted closed-form expressions for the source multipoles. For
instance we have

B 41 _ 4(25—‘1-1) —(1
I r) = =i 3 ’y’ / U — Ui Z()
slte) = Py [ty [ e {0 - e

2(20+1) )
] DI r y s
AT 2)@is ) ettt 2lyl/ey)
(1.149)
3 !y! . N _
Ji(tr) = FPp=o [ dy dZﬁab(“Z 00YL—1ya>b
20+ 1 R
20 1 220+ 3) H1Ir-vacTie ] (tr + zlyl /e, y), (1.150)

16This poof is given e.g. in Sec. 4.2 of Ref. [112].

17 This is no coincidence since the second term of the solution (1.146) is the only one that
survives in the linear limit, therefore it must reproduce the linearized field studied below
Eq. (1.80), once we replace 7# by the compact-support matter tensor 7", whose regularity
also allows us to remove FPp—o and |y|” /r&.
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where we have defined ¥ = ¢ 2(7% + 79) 3, = ¢ 7% and X;; = 79,
Analogues relations are found for the gauge moments (Wp, X1,Yy, Z1); see
e.g. Eqgs. (125a)-(125d) of Ref. [112]. Notably, the above expressions for Iy,
and Jy, correspond to the linearized theory expressions (1.89)-(1.90) with the
replacement T*¥ — 7H¥ and the addition of the necessary finite-part regu-
larization. Beware that each z-integral in the source multipoles should be
intended as a formal PN expansions in the sense of Eq. (1.79).

Essentially, the first important consequence of the matching is that it se-
lects, among the general class of exterior solutions described by the MPM
algorithm of Sec. 1.3.1, which we remind are not source-specific, the phys-
ical solution associated to the energy-momentum content of a given matter
source, provided the latter is post-Newtonian. Indeed, to compute explic-
itly the source moments up to a target PN accuracy, we need to determine
the PN-expanded sources ¥, ¥;, and iij, and thus 7#”. We need therefore
the near-zone field solution of section 1.3.2, which was however not com-
pletely determined, because of the unspecified homogeneous functions 47"
in Eq. (1.141). This brings us to the second remarkable accomplishment of
the PN-MPM matching: as shown in Ref. [178], the matching equation also
implies

AL () = F17(6) + RV (1) (1.151)
where FI are the functions of Eq. (1.148) and

B “+o0
RE 0 = FPoco [ @Yo [ d (C200M) 0+ 21yl o)

" (1.152)
which we note to be given in terms of the formal MPM expansion M (7#"). The
functions F7” and R}” in Eq. (1.151) completely characterize the radiation-
reaction effects in the near field-solution, with the linear order contribution
Fi¥ and the extra non-linear correction RY” first entering, respectively, at
2.5PN order and 4PN order.

Remarkably, it is possible to rewrite Eq. (1.141) in the convenient form
[179]

—w  16nG
P = — O[] -

ret

4G R () 5 [RE( —rfe) — Ry (t+r/c)
ct — ook 2r
(1.153)

Here the first term is given by

D_l[f‘uy](t X) _ _i +oo (_)n i n}"pB_o/d3y ‘X _ y‘nfl %yy(t y)
ret ’ A e= nl \cOt B T

(1.154)
and corresponds to the formal PN expansion of the retardations in the integral
(1.15), thus representing the most intuitive way of tackling (1.14) within PN
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theory; recalling Eq. (1.137), one can furthermore prove that

OLi[7] — Oz L7 =

ret inst

46 X (=) 5, [FE(t=1/0) = Fi"(t +7/c)
St ! L[ 2r
=0

(1.155)
The second term of Eq. (1.153), with its dependence on R/”, conveys the
inadequacy of the intuitive PN solution h** ~ C_l[7#] as one goes at the
4PN order and beyond, where it is no longer possible to completely expand
the solution in instantaneous contributions but it is rather necessary to also
factor in nonlinear radiation-reaction effects, complete of hereditary pieces, as
prescribed by the MPM expansion entering R}” through M(7#¥). In fact, if
restricted to its leading order, this term with R}” of Eq. (1.153) reduces to
the 4PN hereditary-type radiation-reaction originally found in Ref. [102].

In conclusion, Eq. (1.153) is what is generally considered to explicitly
determine order by order A*", and from it 7#¥, as it is needed for the evaluation
of Egs. (1.149), (1.150), and their gauge moment analogues. See for instance
Refs. [109,110] for the application of this formalism up to the 3PN order, and
Sec. 5.3 and Sec. 5.4 of Ref. [112] for its 3.5PN and, in part, 4PN extension.

1.3.4 Non-linear waveform at infinity

We conclude the Chapter by discussing the implication of the Blanchet-Damour
formalism on the asymptotic waveform at future null infinity. We remind that
this is the observationally relevant component of the GW, projected on the TT
gauge and restricted to its leading 1/R component, R being the radial distance
from the source in radiative coordinates. We also recall that the asymptotic
waveform admits the general STF decomposition given in Eq. (1.91), in terms
of the two sets of radiative multipoles UL (Tg) and Vi (Tg).

Similarly to what we did in our linearized theory analysis, in Sec. 1.2.4,
the strategy to compute (Ur, V7)) is to take the field solution valid outside the
source we built in the previous sections, select its 1/R component, and finally
read off, by comparison with Eq. (1.91), the structure of each radiative multi-
pole (Ur, V1) up to the available PN order (see the ¢ factors in Eq. (1.91)). In
practice, within the non-linear formalism we are exploring now, the exterior
solution we have to consider for this procedure is the one computed via the
MPM algorithm. The radiative multipoles are thus computed in the form of
non-linear functionals of the canonical multipole moments (Mp, Sz ), which
are then rewritten in terms of the source moments (I, Jr, Wr, X1, Y1, Z1)
as discussed below Eq. (1.111). Using the source-rooted expressions one has,
thanks to the PN-MPM matching, for the source multipoles, we can ulti-
mately relate the observable radiative multipoles (Up, Vy) of the asymptotic
waveform to the matter content of its source. In this derivation we have how-
ever to be careful about the difference between the radiative coordinates used
in Eq. (1.91) and the harmonic coordinates adopted so far in each part of
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the Blanchet-Damour formalism. In fact, if we ignore the problem and pre-
tend that Eq. (1.91) is written in harmonic coordinates (t,x), the resulting
radiative moments are found to develop an explicit dependence on logr (and
powers of it). For instance, stopping at the first non-linear correction, one
computes

2GM [+
Up(ty,logr) = MO(t,) + —(53 / dr M (t, — 1) [log <;> + ne]
0

+0(1/¢%),

(1.156)
Vi (ty,logr) = S(LZ) (t,) + 26;5\4 o dr S(LZH) (t, — 1) [log (;) + M]
+0(1/c), 0 (1.157)
with
2024+ 50+4 =21
5= T DL ZE (1.158)
"= ﬁ—l +£ 1;, (1.159)
k=1

Beside the presence of logr, we see that the first non-linear effects in
the radiative multipole expressions (1.156)-(1.157) are of hereditary type. In
particular, these hereditary contributions are known as tail integrals, since the
log 7 they contain tends to suppress them as 7 goes toward the remote past
before .. Coming back to the issue with the logarithms of r, it can be proved
that they can all be removed with the linear gauge transformation

Hiy) = hig) +9"X(1y +9"x(y) = 1" axyy,
1.160
= % 0# log r , ( )
(1) 2 70
which results in the retarded-time shift
2GM
Th =t — =5 10g<r> +O(G?), (1.161)

where rg is the same constant length scale that appears in the finite part
regularizations. The transformation (1.161) is actually enough to remove any
radial logarithm in Uy (¢,,logr) and Vi(¢,,logr). For instance, by employing
it in (1.156), we simply find

2GM [T
UL(Tr) = MY (Tg) + 5 / dr M (T — 1) [log (20: > + @]
0 0
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+0(1/c).
(1.162)

The same happens even if we consider non-linearities at higher PN order.
By way of illustration, we provide below the 3PN-accurate expression for the
radiative mass quadrupole:

iy @ QGM/“‘” @) er\ 11
UlJ(TR)_Mz’j + 3 ; dTMij (TR 7') log T +42

Gl ) S @) 2,(3), (2 1 (4)
t5 |:7Ma<i Mo — =My Myyy — =My My, + SeanaMyy g Se
2 +o0 3 3
-2 /0 dr MU M) (T — 7)}
GM\* [+ 5) o cT\ 57 er\ 124627
+0(1/c") (1.163)

Here, the term in the third row is the lowest order memory integral [105], a
designation given to all the non-linear contribution where the remote past is
not suppressed as in the tail integrals, because there are no logarithms of 7.
The term in the last row is instead the tail-of-tail of the mass quadrupole,
the first of the “second layer” hereditary effects that arise from more than
quadratic multipolar interactions; more specifically, this is obtained from the
cubic interaction M x M x M;; [180]. Mind that, with harmonic coordinates,
the tail-of-tail logarithms would have r instead of g in their argument, but
the transformation (1.161) is enough to completely remove any logr here as
well.

Concerning this aspect, we have also to mention that the presence of ra-
dial logarithms in harmonic coordinates may become an obstacle to the very
application of the MPM algorithm: in highly non-linear terms like the tail-of-
memory, a cubic-interaction effect whose leading 4PN contribution is currently
under investigation, the standard MPM paradigm in harmonic coordinates
leads to polylogarithmic terms which is quite hard to handle. The way out of
this issue has been recently found in the adoption of a modified version of the
MPM algorithm, which directly builds the exterior field solution in radiative
coordinates; see the recent work [181] for more details.

In conclusion, the computational scheme that emerges from the Blanchet-
Damour GW generation formalism is essentially

T — 7 — (I, Jp, Wi, X1, Y1, Z1) — (M, St)
— (UL, Vi) = ;" (Tr,N), (1.164)

and constitutes the beyond-linear generalization of Eq. (1.95).
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Before we end this Chapter, let us mention for later convenience that there
is an alternative way of writing the general asymptotic waveform (1.91). In
fact, introducing the pure-spin tensor harmonics Efz’em and T2 2’€m, we can
also write [174,182]

G 1 -
Wi (TrN) = 55> > [&Uzm(TR)ﬁ?z’é
wm(TmT-’Wﬂ , (1.165)

where the two sets of spherical multipole moments (Upy,, Vo), again referred
to, respectively, as mass-type and current-type radiative multipole moments,
are related to their STF counterparts (Ur, V7) by

4 [+ +2)

= ST AR T A ytm 1.1
Uem =\ "2 =1y 20 Ur (1.166)
8 0 +2 "
Vem = —— ¥y§ Vi, (1.167)

o\ 2+ )(e—1)

where * denotes complex conjugation and y{m are the STF spherical harmon-
ics that connects the basis of the scalar spherical harmonics Y to the set of
STF tensors Nr. They can be computed in terms of the integral

yim — / 40 N1 (©, 8)[Y™(,d))", (1.168)
considering the angular parametrization N(©,®) = (sin O cos ®, sin © sin P,

cos ©). Furthermore, the STF harmonics are related to the spin-weighted
spherical harmonics 19Yy,, by

1 * *
E?Z,Em — 7(—2nmmimj + ZYEmmi m])’ (1169)
V2
i * *
TB%m — (_QYemmz‘mj — 2Yimm; mj)v (1.170)

] \/5

where we used the vector m of Eq. (1.27). We recall that the general definition
of the spin-weighted spherical harmonics is

. 2041 .
~sYem = (=)*\| = d,,(©)e™?, (1.171)

where the Wigner d-function are defined as

dt (©) = /(U +m) (L —m)! (L +5)!(£ —5)!
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2k+s—m 20+m—s—2k

" Z [sin(©/2)] [cos(©/2)] (1172)

k:' l+m—k)l(l—s—Fk)l(s—m+k)!

with k; = max(0,m — s) and ky = min(¢ + m, ¢ — s). Plugging Eqgs. (1.169)-
(1.170) in Eq. (1.165), and remembering Eq. (1.28), yields

hy —ihy = Z Z [Ugm Tr) — Vem<TR>] ~2Yim(, @)
fRC2 =2 m—fﬁ
=> Z him—2Yim(©, @), (1.173)
=2 m=—/

in which we defined the spherical harmonic components

b — G

also known as spherical modes of the waveform. The latter encode all the
relevant information of the waveform at infinity and are particularly conve-
nient when one wants to compare analytical and numerical results for the GW
waveform. As such, they are also at the basis of the formalism adopted by
the EOB waveform models we will discuss in the next Chapter, since these
models hybridize analytical results with non-perturbative information coming
from NR simulations.

Relevantly, when one deals with GWs produced by non-precessing compact
binaries (i.e. spin-less or with spins aligned/antialigned to the binary angular
momentum), such as the ones we will mainly target in this Thesis, Eq. (1.174)
further simplifies according to the mode separation

Vin(Ti) = Vi ()| (1.174)

B, = _\/§}C%;!c”2Uem when ¢+ m is even, (1.175)
h’@m = 7,\/2;;0[_’_3‘/(771 when ¢ +m is Odd7 (1176)

as proved, e.g., in section II1IB of Ref. [164].

We finally highlight that, within this formalism, the fluxes of energy and
angular momentum at infinity can be directly computed from the spherical
modes hg,,. In fact, from Eqs. (1.54)-(1.55), one finds

Zmax Z
1
E=o=D > lhml (1.177)
=2 m=—/
emax Z

J= ~Tor S mS(humhi) (1.178)



Chapter 2

The effective one-body
approach to coalescing
compact binaries

he waveform modeling techniques we discussed so far are inherently lim-
T ited in their application to post-Newtonian sources. As such, they have
no means of adequately reproducing GW signals whenever these are radiated
by astrophysical phenomena that elude the PN approximation, encompass-
ing strong-gravity effects and high internal velocities. We think in particular
about the last stages of the CBC evolution, starting from the late inspiral,
when the two component objects become close to each other and their orbital
velocity rises up to relativistic values. In order to build complete waveform
templates for CBC signals, as it is required by GW data analysis, one has
therefore to go beyond plain PN results, whether they are relative to the
waveform or to the underlying compact binary dynamics. The effective one-
body approach (EOB) we will review in this Chapter, which is at the root of
the waveform modeling activity presented in the next one, has been devised
precisely with this purpose: finding a proper analytical formalism to exploit
the available information regarding the two-body problem, coming particu-
larly but not exclusively from PN theory, and provide a description to the
motion and radiation of coalescing compact binaries valid over their entire
evolution, comprehensive of late inspiral, plunge, merger, and ringdown. As
we will see, the key factors to achieve this goal are essentially two: (i) the
systematic use of several resummation methods, which basically consist in re-
placing PN results, in their standard polynomial form, in powers of 1/¢, with
suitable non-polynomial functions that incorporate expected non-perturbative
features of their exact counterparts,’ and that give back, once PN-expanded,

'In identifying these non-perturbative structures, a crucial role is played by the con-
nection that the EOB approach establishes between the compact binary dynamics and the
much simpler case of a test particle in motion around a Schwarzschild (or Kerr) black hole;

47
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the original polynomial results; (ii) the calibration of several free parameters,
either naturally present but analytically unknown or specifically added in the
EOB description,” on the non-perturbative waveform information provided
by numerical relativity (NR) simulations, which is exact modulo the small
numerical error.

In general, we can single out three main building blocks in the EOB for-
malism [183, 184]:

e a prescription for the conservative dynamics of the compact binary, en-
coded in an Hamiltonian;

e a prescription for the radiation-reaction force that drives the dissipative
effects in the dynamics, i.e. the loss of energy and angular momentum
through the emission of GWs;

e a prescription for the corresponding GW waveform at infinity.

In this Chapter we will review each one of these fundamental aspects, referring
specifically to the recipes that characterize the waveform model TEOBResumS,
which will be the protagonist of the noncircular extensions at the core of
the next Chapter. In doing so, we will mainly focus on the case of non-
spinning binary black holes, although we specify that TEOBResumS can account
for more general dynamics where spin and tidal deformations are present. We
briefly review in Appendix B the measures taken in the model to make it
viable also for spin-aligned (or antialigned) binary black holes, that is with
individual spins parallel (or anti-parallel) to the angular momentum direction;
for the application of TEOBResumS to binaries with generically oriented spins
and associated precessing orbital planes, see the waveform twisting technique
described in Refs. [185,186]; for the inclusion in the model of tidal effects,
relevant for binaries with neutron stars, see instead Refs. [187,188].

Better specifying the structure of this Chapter, we will proceed as follows.
In Sec. 2.1 we will present the EOB conservative dynamics, detailing its histor-
ical establishment at 2PN accuracy [140,141] and its extensions at 3PN [142]
and 4PN [189], with some mentions to the strategy recently devised to push it
at even higher orders [190-193]. Then, in Sec. 2.2 we will discuss the prescrip-
tions for the radiation reaction force and the waveform model before merger,
specifically referring to the native quasi-circular version of TEOBResumS. Fi-
nally, in Sec. 2.3, we target how the EOB approach succeeds in completing
the waveform model with the inclusion of a description for the merger and
ringdown phases of the coalescence.

the nature of this link will be clarified in Sec. 2.1.
2The possibility of adding free tunable parameters in the EOB description is often re-
ferred to as the EOB flexibility.
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2.1 Conservative dynamics in the EOB approach

It is widely known that, within Newtonian gravity, the two-body relative mo-
tion, in the center of mass frame, for a system of objects with masses m and
ma, can be described in terms of a “test particle” of mass u = myma/(mi+ms)
orbiting in the gravitational potential generated by an external mass M =
m1+me equal to the total mass of the system. The founding idea of the EOB
approach, from which it takes its name, is a generalization of this logic to
the general relativity case: describing the conservative dynamics of a compact
binary of masses m; and mg in terms of the motion of a particle of mass p
in an effective external metric gz,ff(:vg‘ﬁ, M), which is a priori undetermined.
Indeed, this effective description should be equivalent, once PN-expanded, to
the corresponding “real” two-body dynamics obtained in PN theory. More-
over it should make contact to other approximation schemes in their regime of
validity, such as the gravitational self force or the post Minkowskian formal-
ism. Enforcing this requirements, we have thus to properly define the effective
metric ngg(acé‘ff, M) and establish a dictionary between the EOB and the basic
two-body dynamical descriptions. In what follows we will describe in details
this procedure, initially limiting our discussion to the 2PN order, for historical
and expositional reasons.

2.1.1 EOB conservative dynamics at 2PN

The motion of a gravitationally interacting systems of two compact objects of
masses m; and mg is generally encoded in the action

Stot 24, 2, 9] = SEH[G] — Z mAc/ \/—gw(xﬁl)dx’j‘dxﬁ, (2.1)
A=12

where the first term is the Einstein-Hilbert action (1.3) and the second one is
relative to the two component objects, seen as point particles with coordinates
zi and z4. In 1981, Damour & Deruelle computed the associated equations
of motion at 2PN accuracy [194], using harmonic coordinates. Therein, they
showed that those same equations equivalently follow from a generalized La-
grangian, 2PN-extension of the 1PN Lagrangian of Einstein, Infeld & Hoff-
man [53], that must depend also on the accelerations of the two particles.
Afterwards, in Ref. [195], Damour & Schéfer proved that this acceleration
dependence could be removed by rewriting the harmonic Lagrangian in ADM
coordinates, which had been introduced in Ref. [196].% The so-obtained ordi-
nary Lagrangian was then translated, via a Legendre transform, into a 2PN-
accurate two-body ADM Hamiltonian. This PN-expanded Hamiltonian is of
great importance to our discussion, as it represented the technical starting

3The contact transformation between harmonic and ADM coordinates is given at 2PN
order in Eq. (35) of Ref. [197] and at 3PN order in Ref. [64].
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point for the establishment of the EOB formalism in the seminal work [140],
by Buonanno & Damour.

Let us denote the ADM coordinates of the two particles as Q; and Qs,
with conjugate momenta Py and Py, where P4 = 05/0Q4 for A =1,2. In
the center-of-mass frame, the relative motion is described by the coordinates
Q=Q; — Q2 and P = P; = —Py, such that P = 95/0Q. Introducing the
rescalings

Q P T
= —— =—, t=— 2.2
=g PEL i (2:2)
the p-rescaled 2PN Hamiltonian of Ref. [195] is written as
: H™(q,p
Hnr(qv p) = Z Qn nPN qv )7 (23)
p 1
HY == —- 24
N(@p) =5~ (2.4)
1-3v 1
Hipn(a.p) = ——5—p" = 2 [B+v)p’ +v(m-p) + 55, (29)
1 —5v+ 502 6 1 o 4
H. —_— —|(5—20r -3
2PN (9 P) = 16 P+ 84 [( v —3v°)p
1
— 2V2p2(11 . p)2 _ 31/2(11 . p)4] + 27(12 [(5 + 8V)p2 + 31/(11 . p)2]
1+3v
- - 2.6
4¢3 (2.6)

where H™ = H — M¢? is the “non-relativistic” Hamiltonian obtained by sub-
tracting to the total one its rest-mass contribution, v = u/M = mims/(m1 +
ms)? is the symmetric mass ratio of the system, ¢ =|q|, and n = q/q. The
invariance of this Hamiltonian under time translations and spatial rotations
ensures the conservation of the quantities

e J

g =2 Xp=j=——,
. axp=j=_oy

(2.7)

respectively the reduced energy and angular momentum of the system in the
center-of-mass frame.

We now move to rewriting the dynamical information above in a coordinate-
invariant fashion, that will be helpful in establishing the connection with
the effective problem. In the non-spinning (or spin-aligned) setting the mo-
tion is planar, and thus we can set ¢, = 0. Using polar coordinates q =

(7 cos ¢, 7sin ¢, 0) we can therefore write the reduced action as?
S= S eyt 8 ™) (2.8)
,LLGM r\ ) :

4We work here, in particular, with the Fokker-type action that is obtained by eliminating
the gravitational degrees of freedom in the total action (2.1)
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where we used the conservation of the quantities (2.7) to separate the coordi-
nates t and ¢, with j =|j|. Here the radial action is defined as

ST(Tvgnr)j) E/drpr(ruénrvj)u (29)

where the radial-momentum function p, can be computed by solving pertur-
batively Eq. (2.3) for (n-p)? = p?, with H = & and p? = p2 + j2/r2.
The resulting expression is a fifth-order polynomial in 1/r and is written in
Eq. (3.4) of Ref. [195]. The associated radial action variable is determined by
solving the integral

. rénr 1 Tmax snr
@) =2 [ drpdnEm ), (2:10)

Tmin
where rpin and rpax are the two turning points of the radial motion, real
roots of p,(r, énr,j) = 0; see Appendix B of Ref. [195] for more details on this
computation.
Coming back to unscaled variables, with R = GMr, a« = uGM, and
Igr(E™,T) = ai(E™/p, J /), the explicit 2PN result for the radial action
variable is [195]

15 Enr 35 15
e,y = o[ [ (2 2) 55 (2

“ognr 4 4)u2 327 16"
3 L)\ /&2 a2 15 gor
*m”)(w”‘“jcz T )
a* (35 5

This expression can be inverted perturbatively, order by order in the PN
expansion, to derive £™ as a function of the action variables Ir and J°.
Doing so by trading Ir for the Delaunay action variable N = Ir + J yields
the 2PN Delaunay Hamiltonian

- 1 pa? 2/ 6  15—v ot (5(7 —2v)
w9 = 14 S (7~ o)+ (s

N 27 3(35 — 4v) N 145 — 150 + 2
N27T2 N3T 8N4 '
that we equip with the subscript “real” for future convenience, so as to high-

light that it refers to the real two body dynamics we want to describe in EOB
terms.

(2.12)

5Indeed J corresponds to the action variable

1
J_%fw&.
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For our purpose, the great utility of this objects resides in its coordinate in-
variance. In fact, if we see it through the lens of the semi-classical quantization
of Bohr & Sommerfeld, EX% (N, J) describes the discrete energy spectrum of
the conservative two-body dynamics in terms of the integers values assumed
by N'/h, the principal quantum number, and J/h, the angular-momentum
quantum number.

Let us now move to the effective problem and compute the analogue of
Eq. (2.12) in the effective dynamics. In this case the action is simply given by

= —,uc/\/—glw g)dahgdaty. (2.13)

Focusing on non-spinning dynamics, we can use a static and spherically sym-
metric ansatz for the metric, namely®

gomdatipdaty = — A(Reg)c®dT + B(Reg)d R
+ R2 (d0%g + sin® Oerdiperr) (2.14)

where the unknown metric functions A(Reg) and B(Reg) are conveniently
organized in the generic expansions

Reft _1+Z“"<R 02>n, (2.15)
Refr) —1+Zb < eﬁ@)n, (2.16)

which are parameterized by two sets of unknown mass-dependent parameters
ap, and b,,. Notice that truncating A(Reg) and B(Reg) at the kPN order means
to stop the respective series at ny.x = k + 1 for the former and ny.x = k for
the latter.

To keep things as simple as possible, we assume that the motion of the
effective test particle of mass 1 can be constrained along the geodesics of the
spacetime described by gfg. We therefore have at our disposal the Hamilton-
Jacobi equation

OSofr OSof
0= p’c® + gl P ot = 1?c® + gl = , (2.17)
.  Oxly Oxly

which we can solve by a separation of variable akin to the one of Eq. (2.8),
that is

Seft = —Eeilog + TofCet + SReff (Reff’ Eeffs jeff)’ (2'18)

5We use here Schwarzschild-like coordinates, which avoid the appearance of an extra
radial potential multiplying the angular part of the metric.
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where & is the energy in the effective problem, comprehensive of its rest-
mass part, and Jog its angular momentum. Inserting Egs. (2.14) and (2.18)
in Eq. (2.17) yields

1 &2 1 dSgp. . \? J2
O - Lﬂ‘ eff eff 2 2 219
ABe) @+ B(Rar) < dR. ) TR T (2.19)
from which
SR (Reft, Eeft, Teff) = /dReff PR (Reft, Eett Toff ), (2.20)
with

B(Regt) €4 J2
PReff (Reff,geff7 %H) = \/AER gg Czﬁ — B(Reff) <u202 + fi2H> . (221)
e eff

We can now compute the effective radial action Ir_, at 2PN order, by adopting
the same method used to get Eq. (2.11). The result, in terms of £ = Ex —
uc?, reads

nr 5 ff Enflg 2

a? [ & ot
+——|Cy+ C eﬂ} —5—Ce, 2.22
T | * > T (222)
where
aj 7 by 19
CL=——= Co=0b — = C e
1 9’ 2 1 8a1’ 3 = 4 6404,
2 b
Cy= %—%—%, Cs = aj — ay — arby + b, (2.23)
3 3 a?2  ajas  a3by  ajasbhy  a?b?  a?by
O — 24— 242 az o 191 1
e i 2 2 8 4

With the same perturbative inversion we used to get £ from Eq. (2.11),

real

Eq. (2.22) results in the 2PN effective Delaunay Hamiltonian

el (0 G a2
2N NeaTet N New T3
30?2 405Cy + C5 503 4 2C;
PN T T NRTwe AN )]

nr(-/veffv jeﬁ")

(2.24)

where Nog = 1 Reg T Jeff- Again, this is a coordinate-invariant object that
represents, in a semi-classical sense, the possible energy levels in the effective
dynamics, with quantum numbers Nog/h and Jeg /b
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It is now time to establish the connection between £, and £J; and use it
to build the bridge between the real and the effective dynamics. In light of the
coordinate invariance of these objects and their semi-classical interpretation,

we start by imposing the natural identifications
N = Neg, T = Jett- (2.25)

From here, the most straightforward path would be to directly identify the
two Delaunay Hamiltonians. Accordingly, this was the first tentative energy
map considered in Ref. [140]. There, however, it was proved that such an
identification is incompatible with two basic requirements: that mass of the
effective test particle is simply equal to p and that the effective metric does
not acquire any extra dependence on £J;. The solution proposed therein is to
consider instead a generalized energy map of the type

n

gné nr1 +oo E r1 n
off _ Zreal [1 +) an (feg ) ] (2.26)
n=1

pct - pc? pe

given in terms of another set of mass-dependent unknown parameters, «,.

Stopping Eq. (2.26) at the 2PN order and plugging it in Egs. (2.12) and
(2.24), with the identification (2.25), returns an underdetermined system of
five equations in the seven parameters (a1, ag, as; by, ba; a1, ), which together
completely specify the effective metric and the above energy-map at 2PN
accuracy. The standard way of proceeding in their computation is to require
a1 = —by = —2, i.e. that the effective metric coincides with the Schwarzschild
metric at linear order in G.” The other parameters are thus uniquely fixed by
the energy map equations and read

a =0, a3=2v, by =2(2-3v), aj= as = 0. (2.27)

v
2 )
At the level of the metric functions (2.15)-(2.16), typically referred to as EOB
potentials, this means

Acopn(u) =1 —2u+ 2w,

2.28
Boopn(u) =1+ 2u +2(2 — 3v)u?, (2.28)

where we introduced the PN-counting radial variable u = GM/(Regc?). To
better understand the properties of the effective metric, it is often advanta-
geous to replace the potential B(u) with

+oo
D(u) = A(w)B(u) = 1+ Y _ dyu”, (2.29)
n=1

D§2PN(U) =1- 61/71,2, (230)

"To be precise, the condition a; = —2 actually follows already from the Newtonian limit.
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where, at 2PN, dy = a1 + b1 =0 and dy = as + a1by + by = —6v.
On the other hand, for the 2PN energy map one finds the simple result

nr gnr v gnr
eff real real
= = (]4 = 2.31
pc? u62<+2u02>’ (231)

or equivalently, in terms of the total energies,

2 2.4 2.4
Eer  Ely —MiCT —miC

= . 2.32
2 2mimact ( )

This is, remarkably, the simplest symmetric function of the Mandelstam in-

variant s = Efeal. Inverting Eq. (2.32) in terms of &), and introducing the

Hamiltonians Hyeal = Ereal and Heg = Eeir, we find

Heff(Qev Pe)

HEOB(Q€> Pe) = Hreal(Qm Pe) = MCQ\/l + 2V< /1,62

- 1) . (2.33)

where Q. and P, are the effective analogue of the ADM center-of-mass canon-
ical coordinate Q and P; their expressions in terms of the effective polar
coordinates we used up too now are

Qe = (Reff COS Peff, Reff sin Peff, 0)7
(2.34)

P, . , P,
P, = (PR, COS Peff — % Sin Yefr, PR g SIN Qe + # COS Peff, 0).

eff eff

The effective Hamiltonian Heg, which encodes the dynamics of the test mass
w in the effective metric, can be computed from (2.19) with

b _0S _ dSm, oS
fler = 8JReff B dReﬁ ' Pelt 890eff

= Jefts (2.35)

and at 2PN accuracy it reads

P2 A(v) [ P}
— 2 Pe Re
Heg(Regr, Prog, Ppog) = 1c \/ A(u) {1 - 202 ngﬁ +5 @) (/ﬂcg >] (2.36)

Some comments are in order. For starters, we stress that the EOB Hamiltonian
(2.33), with Heg given by Eq. (2.36), describes the two-body conservative
motion in a form canonically equivalent to the 2PN ADM Hamiltonian (2.3).
It is however remarkably simpler, since the many terms in Eq. (2.3) have been
condensed in the Hamiltonian map (2.33) and in the two non-zero coefficients
az and dy in the 2PN potentials A<opn(u) and D<gpn(u). Moreover, it is
not given in the form of a PN expansion but rather it incorporates the PN-
expanded information of the ADM Hamiltonian in resummed form. In fact,
considering Egs. (2.33) and (2.36), the PN-expanded quantities from which
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Hgop depends, i.e. the EOB potentials A and D, are manifestly nested in a
double square root structure.

Let us now examine the distinctive features of the effective dynamics en-
coded in the Hamiltonian (2.36). A crucial aspect to notice is the closeness
between the effective metric determined by the EOB potentials A<opn(u) and
D<opn(u) and the Schwarzschild metric relative to a black hole with mass M,
which in the language of Eq. (2.14) would be given by Agenw(u) = 1 — 2u and
Dgenw(u) = 1. At the 1PN level, the two metrics do actually coincide, with
the first differences appearing at 2PN, where the effective metric turns out to
be given by a very simple smooth deformation of the Schwarzschild metric,
with deformation parameter v, the symmetric mass ratio of the system. We
recall in this respect that v € [0,1/4], where the maximum value v = 1/4
corresponds to the equal-mass case, mj; = mgy, while the minimum v = 0 is
the test-mass limit, approached when m; < ms.%

The overall deviation of the 2PN effective metric from the Schwarzschild
one is in general quite small, even in the extreme scenario where v = 1/4 and
Regg = 2GM/c? (or u = 1/2), that is at the Schwarzschild event horizon. This
implies that the effective dynamics is qualitatively equivalent to the motion
of a particle around a Schwarzschild black hole, and thus presents the same
non-perturbative features, including in particular:

(i) the existence of an innermost stable circular orbit (ISCO), below which
the particle plunges, defined by the effective radius Rigco(v) such that

8WJISCO
aReﬂ”

2
0 WJISCO

R =0=
(Risco) T2,

(RISCO)7 (2.37)

namely the inflection point developed by the radial potential
WJeff (Reff) = Heff(Reffa PReﬁ' =0, PLPEH‘ = jeff) (238)

at the ISCO value Jisco(v) of the angular momentum; see Fig. 1 of
Ref. [140] for an illustration of this fact;

(ii) the existence of a last unstable circular orbit, or light ring, defined as
the radius Rpgr(v) at which the angular momentum J(Reg), obtained
from the circular-orbit condition Ogr_; W7 (Res) = 0, becomes singular,
i.e. j(RLR)_l =0;

(iii) the existence of a regular Killing horizon Ry (v), defined by the real
solution of A(Rg) = 0.

8The case ma < mi would be equivalent, although we always adopt the convention
mi1 < ma.
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These quantities have been evaluated at 2PN accuracy In Refs. [140, 141],
where they were shown to assume slightly lower values than in the Schwarzschild
case; e.g., for v = 1/4, the values found are

RiEEG(1/4) = 0.953RISES,  RER (1/4) ~ 0.948Rpq™,

RZFN(1/4) ~ 0.928 REY, (2.39)
where we recall RISEY = 6GM/c?, RPM™ = 3GM/c?, and Ri™ = 2GM/c?.

Lastly, we deal with the link between the effective canonical coordinates
(Qe, P¢) and their ADM counterparts (Q, P). As originally proved in Ref. [140],
they are related by a canonical transformation; below we revisit its 2PN deriva-
tion, in view of its importance for the extension of the EOB approach at higher
PN orders. Henceforth, both the effective and the ADM coordinates will be
considered in their rescaled form, as per Egs. (2.2), with the same lowercase
letter notation to signal the rescaling.

The general procedure consists in looking for a generating function G(q, pe)
such that

G(a,pe) = (@-pe) + G(q,pe),  G(q,pe) = Z S GnPN(a,Pe),  (240)

8@((], pe) 7 7 o 8G(q7 pE) ]

L=qg' 4 el = : 2.41
4= ol Pe=1p oF (2.41)

For its determination at 2PN, we come back to Eq. (2.31) and insert therein
Slfgal/u = H™(q,p), in its 2PN form given by Eqgs. (2.4)-(2.6), and EX/p =

Heff(qe7 pe) - 627 where

Hegr(qe, Pe) = 02\/A< ) [1 + & + (g% — 1) (- pe)Q] (2.42)

c2

is the p-rescaled version of Eq. (2.36), here written in rescaled effective Carte-
sian coordinates, with ¢¢ = |Q¢|, Nne = Qqe¢/qe, and u = 1/(c?q.). In this
Hamiltonian we use the generating function relations (2.41) in iterated form,
namely

9G(q,p) 9G(q,p) 9*0G(q,p)

=g — — . 1/¢”),
G =4 o 9 ooy (1/c”) o1
Pe =P g’ 0q® Oprdq’ ’

considering that with each G' comes at least a factor 1/c2. At this point, both
sides of our energy map are expressed in rescaled ADM coordinates. Its Taylor
expansion in 1/c yields a series of differential equations for the PN coefficients
of G; more specifically, from the leading order differential equation we can
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compute Gipn(q,p) and, once it determined, we can plug it in the next one
and solve for Gopn(q, p). This procedure is greatly simplified by the fact that,
given the structure of such differential equations, we can write in advance

C
Gipn(a, Pe) = (4 Pe) [Cnpz + ;2]7 (2.44)

1 c
G2prn(d, Pe) = (q pe){02lpi + 5[022133 + co3(n - pe)?] + ;24}, (2.45)

and recast them in a set of algebraic relations to solve for the mass dependent
coefficients ¢;,,,. The result is

v v
‘=g cr2 =1+ 5 (2.46)
for GlPN and
v n 312 U 5u? n 302
Col = — + — Cyp = — — — Cco3 =V + —
21 S S B 22 S ] ) 23 R ) (247)
1 7v n V2
Coy = — — — + —
24 4 4 4 )

for Gopn. Once inserted in Eq. (2.43), the 2PN generating function we just
found completely determines the 2PN canonical transformation we were after;
for the explicit result see Eqgs. (6.22) and (6.23) of Ref. [140].7

Remarkably, it is possible to carry out the computation of the generat-
ing function (2.40) also before the parameters describing the effective metric
and the energy map (2.31) have been determined. In this case the proce-
dure detailed above fixes them to the same values found by matching the two
Delaunay Hamiltonians, and therefore it constitutes a full-fledged alternative
implementation of the EOB method. As we will see in the next sections, this
route has been instrumental to define the EOB Hamiltonian at higher PN
orders.

2.1.2 EOB Hamiltonian at 3PN

The 3PN extension of the reduced ADM Hamiltonian (2.3) has been com-
puted by Damour, Jaranowski & Schéfer in Ref. [72], with some associated
regularization ambiguities that have been finally fixed by the same authors in
Ref. [73], via dimensional regularization. With the notation of Eq. (2.3), the
resulting 1/¢% Hamiltonian coefficient reads

5—350 47002 — 3503 ¢ 1 5
- — —[(7—42v + 53
128 P 16q I v oy

+50°)p° — (2 = 3v)r*(n- p)*p* — 3(1 — v)r’(n-p)*p? + 5v°(n - p)°]

I;IéllgN (q7 p) =

9Here the authors denote the rescaled EOB coordinates as (q, p’) instead of (qe, pe).
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1
— [(27 — 136v — 1091/2)p2 — (174 30v)v(n - p)2p2

1642
4 A 1 72 335 5] 5
85 32 1 218  21x?
— 4+ — 4+ 14 -p)? — 1 —_— = . 2.4
+(2+8+ V)u(n p)}+8q4[+<3 4)1/] (2.48)

The corresponding EOB Hamiltonian has been derived in Ref. [142] by means
of the generating function method we explored at the end of the previous
section. There is however an important difference with respect to the 2PN
order. In general, the number of equations we have to solve to establish
a proper mapping between the real and the effective dynamics, at a given
PN order, is determined by the number of combinations of the scalars p?, (n -
p)?,1/q (and their powers) in the starting ADM Hamiltonian at that PN order.
In the present 3PN case, the Hamiltonian (2.48) has eleven combinations of
this kind, so that a direct 3PN generalization of what we did at 2PN would
yield eleven new equations to satisfy. However the additional free parameters
we have at 3PN are:

(i) a4 and ds, in the 3PN order expansions of the potentials (2.15) and
(2.29), respectively;

(ii) ag, in the 3PN energy map (2.26);

(iii) the seven parameters (c31, ..., c37) in the 3PN term Gspn(q, pe) of Eq. (2.40),
whose structure can be specified in advance, just like at the previous or-
ders, in the form

1
G3pN(9, Pe) = (9 Pe){031pg + 6[032P3 + c33p2(n - pe)?
1
+csa(n-pe)t] + e [c35P2 + c36(n - pe)?]

+ C;’;} (2.49)

Consequently, we would have a system of eleven equations but just ten free
parameters to solve them, a clear indication of the fact that the effective
dynamics is being constrained too much.

One possible solution would be to relax the 1PN constraint b = 2, or
equivalently d; = 0, as explored in Appendix A of Ref. [142], but it would
result in an unpleasant mixing of perturbative orders (the 1PN parameter
d; would have to be determined together with the 3PN parameters) with no
follow-up generalization to higher PN orders. The main proposal of Ref. [142]
is, instead, to stop assuming that the motion of the u-particle in the effective
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metric is geodesic. Without this assumption, in fact, the Hamilton-Jacobi
equation (2.17) we use to derive the effective Hamiltonian becomes

0 = ¢ + gl (w2 )pi vyt + QY™ () w03 pET + O(%),  (2.50)
namely it acquires additional non-geodesic terms, at least quartic in the mo-
menta. The leading quartic deviation from the geodesic case, the only one
we can have at the 3PN level, is generally described by a tensor Q}"” G(xg\ﬁ)
which remains essentially undetermined. Nevertheless, considering that 0 =
e+ ggflfj (:Ué‘ﬁ«)pzﬁpﬁﬁ holds in first approximation, we can restrict all the non-

geodesic terms in Eq. (2.50) to be purely spatial, relevantly with no pgﬂ = Eoft-

Therefore, we can rewrite the Hamilton-Jacobi equation as!’
0=p*¢ + gy () P + 1°Qlac, pe), (2551)

where Q(qe, pe) is a function of the rescaled effective coordinates, with the
dimensions of a velocity squared, which formally collects all the possible non-
geodesic deviations. Indeed the presence of the latter yields a modification in
the effective Hamiltonian, which, now computed from Eq. (2.51), becomes

ﬁeﬁ(qeape) = 02\/14(’&) |:1 + IC)E + <A(u) _ 1) (Ile ) p€)2 + Q(q€7 pe) ‘

D(u)
(2.52)
Here, the non-geodesic corrections Q(qe, pe) are given, in their leading 3PN
component, by

2
u
Q3PN (de, Pe) = =2 [21P; + 22P2(ne - pe)? + 23(ne - Pe)?] (2.53)

which is the most general scalar involving quartic combinations of the mo-
mentum p,, equipped with a factor u?/c? for dimensional reasons. The three
parameters z, appearing in Eq. (2.53) are again free dimensionless functions of
the binary masses, and indeed take part, through Eq. (2.52), in the matching
with the ADM Hamiltonian: now this involves eleven equations and thirteen
free parameters. To uniquely solve this system we have to make two addi-
tional assumptions. Following Ref. [142], we require z; = 22 = 0, so that the
two-body circular motion can still be mapped to a geodesic effective dynam-
ics; in fact, the residual term in Qspy is then proportional to (n. - pe) = pcf,
which vanishes when the motion is circular. The unique solution that follows
is characterized by the parameters'!

3 32
z3 =2(4 — 3v)v,

1076 avoid confusion, we specify that the four-vectors xy and pzﬂ are never to be intended
in rescaled form. Explicitly this means z'; = (¢ Teg, Qe), psz = (Eest/c, Pe).

" The values of the parameters (ca1,...,car) can be found in Eqgs. (4.32) and (4.35) of
Ref. [142]. Mind moreover that we have set the regularization ambiguity parameter wstatic t0
zero, in compliance with what was later found in Ref. [73], using dimensional regularization.

93 4172
ag=|—— v, ds = 2(3v — 26)v, as =0,
= ( Jrdi=2m o 250
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where we notice in particular that the energy map does not receive any
modification at 3PN, a result that follows regardless of the choices made in
Q3pN(Qe, Pe), whose final form is

u2
QBPN(qea pe) = 67 [2(4 - 3V)V(ne : pe)4] . (2'55)

Before we explore how to push the EOB description at higher PN orders, let
us address a considerable issue in the 3PN EOB description we just outlined.
The 3PN result for the potential A(u) is

93  4lx?
Acspn(u) =1 —2u + 2vu® + [ = — T vut, (2.56)
- 3 32
where in the 3PN coefficient we find the rather large number
93  41x?
— — —— | >~ 18. . 2.
< 3 3 ) 8.6879 (2.57)

This implies that, for comparable-mass binaries where v ~ 1/4, as Reg gets
smaller and u grows, A<spn(u) strays away from the exact function A(u)
of which it is a truncated PN series. Such a problem is also confirmed by
the fact that A<spn(w) no longer has a simple zero when v is too large, as
depicted in Fig. 2.1 for v = 1/4. We lose therefore the possibility of defining an
effective horizon and with it the expected continuity between the effective and
the Schwarzschild motion: the resummation inherent to the EOB approach
is not enough to cure the bad convergence properties of the PN series. The
solution originally proposed in Ref. [73] is then to further resum the potential
A<spn(u) in Eq. (2.56) by replacing it with the Padé approzimant
8 —2v — (16 — 8v — aq)u
8— 20+ (dv+ag)u+2(4v+as))u? +4 (V2 +aq) ud
(2.58)
a rational function that gives back A<spn(u) when PN-expanded up to or-
der u*; more details on Padé approximants can be found in Appendix A.2.
As shown in Fig. 2.1, this resummation heavily modifies the behavior in u
of the potential A<spn(u), recovering the monotonically decreasing trend of
A<opn(u) and the existence of a simple zero, which defines the effective hori-
zon.
A similar fate awaits the potential D(u), with

Py [A<spn](u) =

Despn(u) = 1 — 6vu® + 2(3v — 26)vu® (2.59)
that needs to be resummed to prevent it from going towards large and negative
values, as u grows. In this case, the Padé of reference is [183]

1
1+ 6vu2 —2(3v — 26)vud’

PJ[D<spn](u) (2.60)

whose effect is illustrated in Fig. 2.2.
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—‘A§‘2PN(U) h
— A<spn(u)
P3[A<spx](u) 1

15

0.5

-0.5

Figure 2.1:  Profiles of the three approximations we considered so far for
the EOB potential A(u), for v = 1/4, adapted from Fig. 2 of Ref. [183].
The vertical dashed lines mark the positions of the ISCO and the light
ring in Schwarzschild. The behavior of A<gpn(u) is dramatically different
than A<opn(u), in particular it has no zero as u grows. The approximant
P}[A<spn](u), instead, decreases monotonically and reaches a simple zero,
ensuring the continuity with the Schwarzschild case in the limit v — 0.

2.1.3 EOB Hamiltonian at 4PN

Starting from the 4PN order, working out the two-body dynamics becomes
significantly more challenging than at the previous orders. The main reason is
that, as we already commented in Sec. 1.3.3 of Chapter 1, it becomes necessary
to supplement the PN description of the near-zone metric with the correlations
over arbitrarily large time differences induced by the tail-transported part of
the radiation-reaction [102]. As a consequence, every 4PN dynamical de-
scription develops contributions that are non-local in time. The first complete
derivation of the 4PN dynamics came only in 2014, when Damour, Jaranowski
& Schifer derived the full 4PN Hamiltonian in ADM coordinates [75]. Under
the usual p-rescaling and non-relativistic reduction, the corresponding 4PN
coefficient of Eq. (2.3) reads

1 rloc.1 A
Hifn(a,p) = Hpy (a,p) + Hipy ™ (a,p) + Hipx(a, p).- (2.61)

where:
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— D<spn(u)
— D<3pn(u)

Figure 2.2:  Analogue of Fig. 2.2 for the EOB potential D(u), again with
v = 1/4. The approximant P?? [A<spn(u)] cures the tendency of D<spn of
going towards large negative values as u grows, remaining always positive.

. ﬁﬁﬁ\f (q,p) is a local in time component whose profile is in continuity

with the previous PN orders. See Eq. (5.13) of Ref. [75] for its (quite
long) explicit expression.'?

ﬁﬁfﬁ}og (q,p) is another local in time term characterized by its propor-

tionality to a factor logg. In particular it is given by

3 2 q 3,red 2
Hy®(a,p) = 5G2Mlogg (IN)EJ- “Dig,p)|”, (2.62)

where s is a scale with the same dimensions of ¢ (1/velocity?) that has to
be introduced in the regularization of logarithmic infra-red divergences,
while (1 N)g”red) is the order-reduced third time derivative of the Newto-
nian mass quadrupole of the binary system, whose original form can be
found in Eq. (1.53). The result of this order-reduction procedure, which
amounts to the replacement of each time derivative with the correspond-
ing equation of motion, in this case truncated at Newtonian accuracy,
reads

re GM)? 3
(IN)Ef d)(q7 p) = —2M(q3) 49<in) - g(n : p)Q(in) . (2.63)

12Here, the variables r and r correspond to q and ¢ in our notation.
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° ﬁjflle(q, p) is the non-local in time part of the 4PN Hamiltonian and
consists in a time-integral functional of the variables q and p. Explicitly
we have

A G? oo dr 3,red 3,red

Hipx(a,p) = —Plr, / H(IN)Z%’“ () In) 3V (¢t + 1), (2.64)
—o0

where the integral is regularized by taking its Hadamard partie finie [61]

Pfr,, with time scale Ts = 2GMs/c.

In view of the objective of translating this PN information in the EOB
formalism, we have first to understand how to properly deal with the non-
localities in time of Eq. (2.64). Ref. [189] has purposely introduced a method
to recast the non-local Hamiltonian (2.64) in an ordinary local expression. The
basic idea is to take advantage of the fact that IEIXIIDN(q, p) is by itself a 4PN
correction, so that, if we work at 4PN accuracy, we can rewrite it according
to the Keplerian parametrization of the Newtonian orbital motion [198]. In
particular, it is convenient to find the associated Delaunay expression in the
action-angle variables (£, /; G, g), where £ and G are defined in terms of the
semimajor axis a (GM-rescaled) and the eccentricity e of the orbit by

L=+a, g =+a(l —e?), (2.65)

while their conjugate angle variable are the mean anomaly ¢ and the argument
of periastron g. The Newtonian motion is then described by

0x(L£,0;G, g) = Gz COSg — gy, Sin g,

. (2.66)
@y(L,4;G,9) = quosing — gy, cO8 g,
with
Qo = L2 cosu, — E\/m, Qyo = G? sin u,. (2.67)

The eccentric anomaly u. is related to £ and e = /1 — G2/L? by Kepler’s
equation,
Ue — esinue = £, (2.68)

which admits the Bessel-Fourier expanded solution

+oo
2
Ue =+ Z ﬁJn(ne) sin(nf), (2.69)

n=1

in terms of the Bessel function of the first kind, J,. This is in essence an
expansion in e, where, for instance, up to order e*, we have

e3\ . e | 3e? . et | 5
ue =0+ (e— T sin ¢+ 5 sin(2¢) + S sin(3¢) + 3 sin(44) + O(e’). (2.70)

Using this parametrization, the non-local Hamiltonian (2.64) becomes a
functional of the type H jfllDN(ﬁ,g,E), with no ¢ dependence because of the
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rotational invariance of (Iy);j, and an underlying expansion in powers of e,
considered as a function of £ and G. Of course, it still involves the regularized
integral in 7 of the original expression (2.64). The crucial point proved in
Ref. [189] is that this e-expanded Hamiltonian is canonically equivalent to
(and thus can be replaced with) its ¢-averaged value

1

4PN ([’ g) 271'

2m
/ 40 (£, G, 1), (2.71)
which indeed is still organized in a power series in e. Since £ and G are con-
served quantities of the Newtonian motion, and so is e, the integral functional
H ipn Tesults in a series of simple integrals in 7 over the coefficients of the un-
derlying expansion in e. All these integrals can be readily evaluated, yielding
a local, ordinary Delaunay Hamiltonian, expanded in even powers of e. For
instance, up to order e, one finds [189]

v 64 e’Fs 296
L (L,6) = Ewg{ [2log2+log(6£3>]+5[ log

256 B g 29966
2910 71 2 log
+ 7291og 3 + 3 < £3>}e —i—[ 5

13851 s\ 4 .

where the scale s enters through the partie finie operation regularizing the
integrals in 7 and the Euler—Mascheroni constant g appears in their evalu-
ation. We will refer to the series of operation detailed above, which reduces
the non-local Hamiltonian (2.64) to the equivalent local expression (2.72), as
Delaunay time averaging.

Let us now come to the corresponding 4PN generalization of the effec-
tive Hamiltonian. Even though we can still refer to the generic expression
(2.52), we have to modify the structure of the building blocks A(u), D(u),
and Q(qe, Pe), S0 as to take into account the presence of logarithms and time
non-localities in the ADM Hamiltonian. It turns out that it is enough to
consider the local versus non-local split

Alu) = A% (u) + A™(u),  D(u) = D'**(u) + D" (u),

loc nl (273)
Q(Qea pe) = Q (q€7 pe) + Q (q€7 pe)a
where the 4PN-accurate local components are parameterized by
ALpn(u) = A<apn(u) + (a% + aif,g logu)u®, (2.74)
Dfpx(u) = Degpn(u) + (dfe + dif logu)u?, (2.75)

3To avoid confusion, in this equation Euler’s number is denoted with the symbol e rather
than e as in the rest of the text, which instead has here the meaning of eccentricity.
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loc

1
QgZPN(qm pe) = Q3PN(qea pe) + — 2 |:(Zilﬁfc + 234 log log U) ug(ne : pe)4

1
+>5 2 (Zé%cc + ZQﬁclog log u)u®(n, - pe)6] ) (2.76)
and similarly, on the non-local side,
A4PN( ) = (ag,lc + alf)l,llog log U) u57 (277)
Dijpy(u) = (di,‘c + dillog log u)u’, (2.78)

1
QZ%?N(qea Pe) = 2 (Zgzll,c + Zgzll,log log u) u3(ne : pe)4

1
+ = C (2260+22610g10gu) ( e‘p6)6 . (279)

Correspondingly, the PN expansion of the effective Hamiltonian can be itself
split in two parts: (i) a local piece H loc " which only depends on the local
components of A, D, and Q; (ii) a non- local 4PN piece, simply given by

Hj = [A4PN( ) — (e - pe)? Dipy (1) + Qibx (e, Pe)]- (2.80)

Notice that we had to revise the profile of the PN series (2.15) and (2.29),
by incorporating in their 4PN parameters, a5 and ds, the local /non-local split
and a dependence on logu . For example, the as appearing in (2.15) is now

as = a},?g + a5 ot (a%ofog + ag}log) log u. (2.81)
As for Q(qe, pe), in continuity with the choice made for its leading term, it is
written as a power series in the radial momentum (n. - p.), including all the
dimensionally admitted combinations at least quartic in it.

Lastly, we point out that all the non-local components introduced above
are, despite their name, actually local in time. Although the nomenclature
may sound strange, the point is that we can match the effective Hamiltonian
component H it» after this is rewritten in the action-angle variables (£, ¢, G),
l-averaged as in Eq. (2.71) and finally expanded in powers of e, with the
Delaunay time averaged Hamiltonian (2.72). This uniquely fixes the value
of the 4PN “nl” coefficients. On parallel, all the 4PN local coefficients can
be separately obtained by matching H é‘gfc(qe,pe) with the local part of the
ADM Hamiltonian, given at 4PN by the sum f[ﬁfl\f (q,p) + H}g’l\%og (q,p) seen
in Eq. (2.61). This can be done, again, by means of the generating function
method, with the energy map (2.26) stopped at the oy term and the 4PN
component of the generating function expressed in the parametric form'*

1
Gapn(a, pe) = (a- pe>{cz,1p§ + [P0 + Pl p? 4]

1We do not show explicitly every term of G4pn, with the understanding that one has to
include inside the braces all the dimensionally allowed combinations of (1/q, p2, (n - pe)?)
and their powers, each with an associated coefficient c4,p.
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i q ! Lo 1
bt S (aepoton () {eltor + L fekgpt + bt po 4]

I
04(?%1

where we also need a logarithm-dependent part. The result is again unique
and remarkably one finds ay = 0, meaning that the simple energy map (2.31)
is still unmodified at this order.

The final 4PN result for the EOB functions, found by assembling the local
and non-local part of their separately determined coefficients, reads

227572 4237 128 256
A4PN(U) = [( — + —YE + ? log 2>I/

512 60 5
4172 221 64
—I—( 372T - 6)1/2+5ylogu} u®, (2.83)
2376172 533 1184 6496
D [ e R log 2
1pN(u) [( 1536 45 15 P15 8
291 12372
_ 95610g3>1/—( fg —260)1/2
592 4
TS Vlogu]u ) (2.84)
1 5308 496256 33048
D=4 - (22— log2 — log 3
Q4PN (de; Pe) CQH < T 5 o8 5 log )V
1 [/827
_ 83 2 10 3 3 e . e 4 o _
v+ 10v }u (ne - pe) 2 3
2358912 13994 2
| 23589 log 2 — 399437 log 3 — 3906 5log 5>V
25
2
+ gl/Q - 61/3] u?(n, - pe)G}. (2.85)

We see that the regularization scale s has disappeared from the final results,
even tough, as shown in Ref. [189], it is present in the individual local and
non-local pieces of a5 and d4: this amounts to a non-trivial consistency check.
Moreover, we notice that the function Q4pn(qe, pe) does not develop any logu
dependence, which a priori could not be excluded.

2.1.4 EOB conservative dynamics beyond the 4PN order

The PN knowledge of the two-body conservative dynamics does not go beyond
the 4PN order, with only partial results obtained at the 5PN level [85,199]. In
this case, the EOB formalism has been used in a series of works [190-193] as a
receptacle for collecting and organizing complementary dynamical information
derived within different perturbative schemes beside the PN one: MPM results
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for the non local contributions, O(v) information from gravitational self-force,
and post-Minkowskian (PM) results for the scattering angle. Without entering
too much into the quite intricate details of this machinery, we present here
below the main steps of its implementation, which has ultimately pushed the
EOB dynamical description up to the 6PN order, modulo some undetermined
coefficients in the effective Hamiltonian.

(i) Using the results for the hereditary pieces of the radiation-reaction, com-
ing from the PN-matched MPM formalism of Sec. 1.3, the non-local
Hamiltonian is completely determined up to the 6PN order.

(ii) With a 2PN generalization of the Delaunay averaging procedure, out-
lined at Newtonian accuracy in the previous section, the information
encoded in the 6PN non-local Hamiltonian is translated into the knowl-
edge of the 6PN non-local component of the effective Hamiltonian. The
latter is singled out from the total effective Hamiltonian through the
same local/non-local split used at the 4PN level.

(iii) In the context of gravitational self force, it is possible to compute the
O(v) correction to the orbital averaged redshift invariant (z1) [200], re-
definition of the one introduce by Barack & Sago in Ref. [201]. Once
such a correction, usually denoted as (dz1), is expanded in powers of the
eccentricity, it turns out to contain all the information needed to fix the
total (local4+non-local) O(v) component of, in principle, each coefficient
in the PN series of the EOB potentials, () included.

(iv) Subtracting the result of point (i) from the one of point (iii), the local
O(v) component of the EOB potential coefficients is determined. Be-
yond the 4PN order, the local components more than linear in v remain
still unknown at this point.

(v) In Ref. [202] it has been found that the coefficients in the PM expan-
sion of the scattering angle x(Eeft, jefr) in the effective dynamics have a
specific dependence on v; see e.g. Sec. IX of Ref. [191]. By exploiting
the latter it is ultimately possible to compute the vast majority of the
missing components, O(v?) and beyond, of the coefficients in the EOB
potentials.

At 5PN accuracy, the resulting values for the EOB potential parameters
are separately listed in their non-local and local parts respectively in Table IV
and Table VII of Ref. [191]. For instance, at the level of the A(u) potential,
with local and non-local parts combined, we have

Aspn(u) = (ag,e + ag 1og log u)u’, (2.86)
with
1066621 24636772 14008 31736 243
e =V| = gt 301 105 VF T 105 R2T 7 3
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<5 — ?")’E—F gh’l2— 7ln3—|—a67c> V+4]j2:|7 (287)
7004 144 ,
a6710g = *17057/ — ?l/ . (288)

Here agi is a missing numerical parameter in the O(v?) component of ag.,
specifically coming from its local part. This and another similar parame-
ter d‘g’zc in the local part of Dspn(u) are the only two 5PN components of
the EOB Hamiltonian that are left undetermined by the procedure sketched
above. Correspondingly, at the 6PN order, we just have four missing numer-
ical parameters: a?fc and a??c in Agpn(u), dgi in Dgpn(u), and zgi in the
local part of Qepn(Qe, Pe) proportional to u’(n. - pe)*. All the other 6PN
parameters are uniquely determined and can be found in Tables VI and X of
Ref. [192].

If this represents the state-of-the-art knowledge of the EOB conservative
dynamics (and of the two body motion in general), only part of this informa-
tion is effectively implemented in EOB waveform models. Examining the case
of TEOBResumS, and more in particular of its non-spinning sector, the EOB
effective Hamiltonian it employs has the EOB potentials D(u) and Q(qe, Pe)
stopped at the 3PN order, with Q(qe,pe) containing only its leading con-
tribution (2.55), and D(u) included in the resummed Padé form (2.60). As
for the potential A(u), the model incorporates it at 5PN accuracy, specif-
ically through the Padé approximant Pi[A<spn](u),'® direct generalization
of the 3PN approximant (2.58) discussed in Sec. 2.1.2. However, the 5PN
contribution (2.86) is included considering the parameter ag. therein as a
free v-dependent tunable parameter, which is then fixed by minimizing the
dephasing at merger between waveform model and numerical relativity simu-
lations [203]. The reason for this is in part chronological, since the logarithmic
contribution ag 1og Was made available already in Ref. [189], in Sec. IXA, while
the analytical result for ag. only came with Ref. [191]. On the other hand,
the recent work [157] assessed the impact of including in TEOBResumS the ex-
tra analytical information of Eq. (2.87), along with higher order terms in the
other EOB potentials, and showed that the numerically fitted expression for
ag,c has better performances than its analytical counterpart.

2.2 Radiation reaction and inspiral-plunge
waveform in the EOB approach
In the previous section we have been concerned with the EOB prescription for

the conservative dynamics of non-spinning compact binaries. Summing up,
we saw that this part of the dynamics can be fully encoded in a p-rescaled

15When computing log-dependent Padé approximant like this one, the logu are treated
as numerical constants.
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EOB Hamiltonian given by

X 2 H,
Hpop = Cy\/1 + 21/( c‘;ﬁ - ) (2.89)

2
A p " U, *
Hop = c2\/ "+ AW [1 +plude? + Q<c2p7") : (2.90)

which we have conveniently rewritten here in rescaled phase-space variables,
associated to the polar coordinates in the plane O = /2. In particular
we consider r = Reg/GM = */u, ¢ = ¢eft, pr = Ppyy/p., and p, =
P,.s/(WGM). Moreover, the radial momentum p, has been replaced with
pr, = A/ DY2p,. the momentum conjugate to the tortoise radial coordinate
r. = [dr(D'?/A), as it is often done in analytical and numerical work to
bypass the diverging behavior of p,(r) for r — 0.

Adopting this notation, we now want to discuss how to complete the EOB
dynamics with dissipative effects, as they are induced by the emission of grav-
itational radiation at infinity during the pre-merger part of the CBC evolu-
tion. To do so, we will see that we also need to specify the contextual EOB
waveform model for the inspiral and plunge phases. More precisely, in this
section we will address such topics in the specific context of circularized bi-
naries, whose inspiral and, for the most part, plunge are modeled after a
sequence of circular orbits, shrinking adiabatically up to the last part of the
plunge. This quasi-circular assumption is motivated by the long-known fact
that inspiralling binaries are very efficient in circulating through the emission
of GWs [204], so much that, when isolated, they are expected to have be-
come practically circular, irrespective of their initial eccentricity, by the time
their orbital frequency has increased enough to allow the detection of the as-
sociated GW signal. In Chapter 3 we will have the chance to comment on
the limits of this assumption and explore the strategies that can be used to
extend TEOBResumS beyond its borders, finally coming to the main original
contribution of this Thesis.

Considering the Hamiltonian nature of the EOB approach, the EOB dy-
namics is indeed determined by solving Hamilton’s equations, relative to
ﬁEOB, for the variables (7, ¢, p;,,p,) we selected to describe the motion. The
basic strategy to include dissipative effects in the dynamics is then to equip
such Hamilton’s equations with a radiation-reaction force F of components
Fr and F,, specifically added in the evolution equations of the momenta p,,
and p,, respectively. More explicitly, the general EOB equations of motion
are

dr _ A 9Hpos
dt D Or. ’
dy _ 0Hgos
dt Oy

(2.91)

=, (2.92)
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dp, A (.  9Hgos
S , 2.93
dt D ( or ( )
dp, .
— 2.94
T = %, (2.99)
where ﬁ%r = For/v andAt = Teff/A(GM). In the quasi-circular case, we actu-

ally need to include just F,, with F, either set to 0, as in TEOBResumS-GIOTTO
[154, 156], the native quasi-circular branch of TEOBResumS, or expressed in
terms of ]:"QD as in the quasi-circular model SEOBNRv4HM [150,152].16

The computation of PN-expanded results for the radiation-reaction force
F has been the subject of several works using different approaches, see Ref. [205]
and references therein. Since the initial development of the EOB formalism,
it was understood that these results could not be included in the equations
of motion in their original Taylor-expanded form, but they needed some suit-
able resummation. Ref. [116] in particular, shortly before the birth of the
EOB approach, proposed a resummation technique for ]:}, that was based on
a parameter-dependent Padé approximant, building upon the test-mass limit
case v — 0; this technique was then extensively used to model the radiation-
reaction force in early-stage EOB models [141,206-210]. Nevertheless, the
resummation method adopted in modern EOB models, TEOBResumS included,
builds upon a different, parameter-free procedure, proposed in Refs. [211,212]
and refined in Ref. [213]. In this more sophisticated paradigm, the radiation-
reaction force ]—A"@ is modeled after the resummed (quasi-circular) prescription
for the spherical modes hyy, of the inspiral-plunge (hereafter insplunge) wave-
form, which was laid down in those same works. Let us first specify the link
between the radiation-reaction force and the spherical modes of the waveform,
which we recall have been defined in Eq. (1.173). The radiation-reaction force
components (F,, F,) are related, via Egs. (2.91)-(2.94), to the system loss of
energy (Es) and angular momentum (.Js); we have in particular

Eg = o =it QF,, (2.95)
. dp ~

Jg= £ = 2.96
S dt fcpa ( )

here in rescaled form. These, in turn, are connected to the energy and angular
momentum fluxes at infinity, £ and J, by two balance equations, which read
[205]

7."]}1" + Qj:go + ESchott =+ E = 07 (297)

16Tn particular SEOBNRv4HM prescribes

~ p’l‘ ~
Fr=—F,.
Py ’
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Fo+J=0, (2.98)

where Egepott is the Schott contribution to the energy loss of the system FEs,
which cannot be directly identified with E due to the interactions with the
local field. In general there is an additional Schott contribution Jschott also
in Eq. (2.98), but in Sec. II of Ref. [205] it has been shown that such a term
can be always set to zero. Focusing on the quasi-circular case, thanks to the
expression (1.178) of J in terms of the spherical modes hyy,, we can write the
p-component of the radiation-reaction force as

l y4
. . 1 & . .
Fo=—J =1 ;; mzzzm%(hgmhgm), (2.99)

with fnax determined by the desired PN accuracy, considering the powers of
¢ in Egs. (1.175)-(1.176).

Let us now clarify the resummation prescription used in TEOBResumS-
GIOTTO for the multipolar insplunge waveform. Under the quasi-circular ap-
proximation, the PN Taylor-expanded results for the modes hy,,, which stem
from the PN-matched MPM formalism we explored in the previous Chapter,
can be written in the form of polynomials (modulo some logarithmic terms) of
the PN-counting frequency parameter z = (Q/¢%)%/? [182].!7 This is the only
dynamical variable required, besides ¢, to model the waveform in the quasi-
circular case,'® where it has the advantage of being gauge invariant (just like
©), so that there is no need to worry about the difference between harmonic
and EOB coordinates. As we go towards the merger and x increases in mag-
nitude, however, the modes hy,, in their original polynomial form exhibit an
unsatisfactory converging behavior. Therefore, instead of incorporating these
results as they are, modern EOB models use them as input in the construction
of corresponding resummed avatars, one for each spherical mode, given by the
product of several factors:

hom = BVORE = piNOGl) T, eidem g, FNQC (2.100)

tm e m

YOur definition of 2 has a missing GM factor with respect to the one of Ref. [182], since
we are using t = T/(GM) and thus Q(t) = GMQT).

8\More specifically, with respect of our canonical variables, in the quasi-circular limit we
have p,, =0, p, = p,(u), obtained by solving for p,

) 8H
0=pr, = ;OB (pr. =0,pp,u),

and u = u(z), obtained by inverting perturbatively

2/3

1 . 1 [0Hron
2/3 _ © (pr* =0,py (u),u) ’

2 2| Op,

€Tr =

which indeed also implies p, = p, ().
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We outline below the definition and the rationale behind each one of these
factors.

e The Newtonian factor hé%’e) represents the leading order term in the

PN expansion (in x) of hyy,. By factoring out this term, one can define
a residual PN factor A that is stripped off the overall constants and

Im
p-dependence of hy,,, thus resulting, at this level, in a simple polynomial

in  (modulo logx terms) of the type 1 + O(x). The explicit form of

héﬁ’ﬁ) reads

N,e GMV € fte e
hém ) = Dy, ngn)q,CZJre(V)m( . )/2}/Zfe,fm <27 S0>7 (2101)

where Dy, is the luminosity distance (the physical value of the radial
separation R between source and observer), e depends on the parity of
the spherical mode and is either 0, when £+ m is even, or 1, when £+ m
is odd, while for the rest

8 (£ +1)(0+2)
er+ni\l -1

167 (204 1)(€ +2)(£2 — m?)
20+ D)\ (20-1)(C+1)e(£—-1) "’

Cope(v) =270 [(\/1 —w+ )T (VT —dw - 1)‘*6‘1} . (2.103)

né?i = (im)g
(2.102)

1)

m

né = —i(im)"

We finally mention that it is standard to improve the behavior during the
plunge of héivf) by replacing the variable x therein with vi, the square of
the azimuthal velocity v, = r,{) defined in terms of the modified EOB

radius 7, = r¢/3, where [147,214]

=9 <Zf) - [1 + 2u<\//m— 1)] (2.104)

These quantities are such that they generalize to the comparable-mass
case the Keplerian law Q%13 = vf,rw = 1. In the last avatar of TEOBResumS
-GIOTTO, however, for some subdominant spherical multipoles the re-
placement x — U?p is not performed on all the powers of x in Eq. (2.101);
the specific choices made in this regard are listed, e.g., in Sec. IIIC of

Ref. [203].

. S(E;_f) is the so-called effective source and is given by

~(0) _ p
éﬁf) = Heﬁv
eff — )
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which can be expressed in z through the relations mentioned in foot-
note 18. These quantities are the EOB generalizations for arbitrary v
of factors appearing in the source of the Regge-Wheeler-Zerilli equa-
tions [117,118], from which one computes the spherical modes hg,, in
the test-mass limit ¥ — 0. By factoring out each of the two, we are ac-
tually removing a square root singularity o 1/4/1 — 3z of the test-mass
limit, with the singular value z = 1/3 reached at the light-ring; such a
singularity would otherwise cause the numerical coefficient of ™ in %QL
to grow as 3" for large n.'

e Ty, is a factor that resums an infinite series of tail-rooted logarith-
mic terms that enters the MPM expression of (Ur,Vy) in terms of the
canonical moments (My,Sy), and thus the spherical modes hy, via
Egs. (1.166)-(1.167). Such terms are in particular those proportional
to .

o
(GM)" / dr C\ (T — 1) log™ <CT> (2.106)
0 27‘0
with C, equal to either My, or S, depending on the spherical multipole.
In Eq. (1.163), for instance, one can easily find the pertaining terms
for n = 1,2 in the case of the mass quadrupole U;;, which shapes the
dominant mode hos. The explicit definition of Ty, is

_— D(C+1 = 2ik) . sikiog (2kr0) (2.107)
m r(+1) ’ |

where k = GHgropmf2, k = mf), and rg, the length scale introduced in
the Blanchet-Damour waveform generation formalism, is fixed here to
the value ro = 2GM/+/e, so as to match test-mass limit results. Again,
the original proposal of the factor (2.107), advanced in Ref. [212], is
the outcome of the EOB generalization of a related test-mass waveform
factor, first singled out in Ref. [211]. Concerning the utility of factoring
out Ty, it is done to absorb powers of mm that would otherwise end
up in the coefficients of the PN-expanded quantity ﬁgz, making them
bigger and thus spoiling its convergence properties towards merger.

e The factor e®em collects all the subleading phase corrections not cap-
tured by Ty, with dg,, defined as the argument of the PN-expanded

9More in general, if f(z) = >, cnz™ has a radius of convergence s, corresponding to
the closest singularity to = 0 of f(x), then

Cn+1
Cn

lim
n—o0




2.2. RADIATION REACTION AND INSPIRAL-PLUNGE WAVEFORM

IN THE EOB APPROACH 75
complex ratio
ple)
Ten | = (Efm , (2.108)
Seff Tfm

where we introduced the operator Tpn, which applies the required PN
expansion, in this case a Taylor-series in x; mind however that the quan-
tity 0gm is usually rewritten in terms of the variable y = (Hgop$/c®)?/?
[211]. As for the PN orders considered, TEOBResumS-GIOTTO employs
a 3.5PN-accurate expression for dz,,, with the addition of higher order
test-mass contributions, up to the 4.5PN order. For the majority of the
spherical modes 9y, is further resummed through Padé approximants,
selected individually, spherical mode by spherical mode, to improve the
EOB/NR frequency agreement before merger [154].

e The factor fs,, on the other hand, collects all the residual amplitude
corrections and is defined as

7©

Im

S 1T

Jom =TbN (2.109)

where, recalling Eq. (2.107) and using the properties of the I" function,
we have A
2 ‘
1 Ak 2

Tom|* = g ———— || [n? + (2k)?]. 2.110

‘ €m| (€|)2 1 _6_47”% H [ ( ) ] ( )
Among the various terms appearing in the resulting expression of fs,,
which is again a power series of the type 1+ O(x) with some logarithms
of x, there are contributions oc £z that become problematically large as
¢ grows. Therefore, already in Ref. [213], it was proposed to consider
the replacement

n=1

fem = (pem)"s pem = TpN [f;,{f] ) (2.111)

devised so that the quantity py,, does not present anymore the aforemen-
tioned ¢-growing terms of fy,,. This is what is used also in TEOBResumS-
GIOTTO where, similarly to what is done for dy,,, the generic-in-v results
for pgm, included up to the 3PN order, are hybridized with test-mass
information up to 5PN or 6PN accuracy, depending on the given spher-
ical mode, and later Padé resummed [154]; see also Ref. [215] for an
extension of this hybridization and resummation process at higher PN
orders.

e The last factor, BKNW?C, is called Next-to-Quasi-Circular (NQC) factor
and, as the name may suggest, it is specifically included in the waveform
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to incorporate the modulating effects induced by the deviations from cir-
cularity that necessarily appear, also for quasi-circular binaries, during
the last part of the plunge, right before merger. In TEOBResumS-GIOTTO
it is given by the phenomenological expression [148]

thn?c (1+ almptm 4 azmnzm) i(b{mn§m+bémnim), (2.112)

where (a{™, af™ b{™ bi™) are free parameters and (n{™,n§™ n{™ nfm)

is a basis of functions of the radial momentum and acceleration. More
specifically, they read [203]

2
nim = <£Q> Vem (2.113)
. . 2
9 _ Pr. OF 21 _  Pr, >3m 22
ny =59 oo ny = ETOTVER Ny = n5", (2.114)
ném = iQ Vem | (2.115)
nF = (Qp,., n =nfZm = L (2.116)

rQl/3’

where their specific definitions are chosen to control as much as pos-
sible the behavior of the corresponding factor hz NQC e parameters
(a{m, as ,bem b[m) are fixed by imposing a C? contact condition, at a
specific v-dependent extraction time, between the EOB and NR spher-
ical modes, precisely at the level of their amplitude and frequency. We
underline in this respect that, being hg, a complex quantity, it can be
decomposed in amplitude and phase as hyy, = Aype 9m  with associ-
ated frequency we, = gbgm The C? contact condition mentioned above
can thus be written as

AEOB(tEOB) AN (tNR) AEOB(tEOB) AN (tNR) (2117)

extr extr extr extr

WEOB({EOB) _ (NR(NRy © JEOB(EOBy _ - NR(;NR (2.118)

extr extr extr extr

where the choices for the extraction times are [203]

EOB k NR _ k k
ool = 0 — 1+ AtpR, AtpH t;‘fﬁ"R — tinn; (2.119)
k
textr tiﬁ\?R + 27 (2120)
in general we denote as tg’fak the instant at which every given quantity

X reaches its maximum. For more details on these choices we refer the
reader to Sec. ITID of Ref. [203] and references therein.

Coming back to the associated factorization of the radiation-reaction force
F,, TEOBResumS-GIOTTO does not use directly Eq. (2.99), but rather
A 32

Fp= L 100 f, (2.121)
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where f is the Newton-normalized flux

8 L
F=Y2 (FS)  Fum, (2.122)

(=2 m=1
explicitly given by
_ Lo ane 2
32
FN = €x5, (2.124)

Fg being the leading Newtonian part of the dominant mode Fss. We notice
that to obtain this form of ﬁp from Eq. (2.99), in addition to the required
factorizations, one has to use the parity condition hy_,, = (—)‘h},, and the
circular-limit relations hgm = —imQhy,, and hyy = 0. Evidently, it is actu-
ally in Eq. (2.123) that the factorized and resummed insplunge waveform of
Eq. (2.100) enters the radiation-reaction force, defining a resummation for its
spherical modes Fj,,.%"

2.3 EOB description of merger and ringdown

To complete the discussion on the EOB approach, we have now to outline
its prescription for merger and ringdown. Once again, the guiding principle
is the closeness between the EOB dynamics and the test-mass motion in the
Schwarzschild metric, which is recovered from it for v — 0. The pioneering
works of Davis, Ruffini, Press, Price & Tiomno [216-218] showed that, in the
simple case of a test-particle plunging radially on a Schwarzschild black hole,
the associated GW signal at infinity is composed by an initial quadrupolar-
like part suddenly followed by exponentially dumped oscillations. The latter
were interpreted in Ref. [217] as the vibrational modes, or quasi-normal-modes
(QNMs), of the black hole perturbed by the plunging particle, which relaxes to
stability with the emission of GWs. Building upon these works and the “close
limit” analysis of Ref. [219], the proposal of the EOB waveform formalism
is to use, up to merger, the insplunge model we discussed in the previous
section, and then prescribes a sharp transition to a different waveform model,
specific of the ringdown phase. This was originally implemented in the form
of a linear superposition of the QNMs of the final Kerr black hole, born out of

20Tn this process, we point out that the NQC factor of the waveform is only used for
the dominant quadrupolar mode Fb2, while it is neglected in the factorization of any other
spherical mode of .7:}. Moreover, the parameters (a32,a3?), which end up in Fae, have
through the latter an impact on the EOB dynamics that is used to compute them. They
must therefore be determined using an iterative process, which stops when an acceptable

degree of convergence is reached.
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the coalescence, whose mass (Mpn) and spin (Jpu) can be either determined
from the insplunge EOB dynamics or, more accurately, via NR fits [220].

Going into more details, let us first specify that the merger time tpg,
at which the waveform description is prescribed to sharply change, is chosen
as the time where the amplitude of the quadrupolar mode hos reaches its
maximum. Accordingly, for each spherical mode of the waveform, we can
write a complete EFOB model, covering the whole CBC evolution, as

R (L) = O(t — Laneg) hp =P ™0 (8) + O(Emrg — £)HGREV (1), (2.125)

where 6(t) is Heaviside’s step function, hifr;fbplunge(t) is the insplunge model
given by Eq. (2.100), and h;ﬁgdown(t) is the corresponding ringdown model,
that we will now proceed to illustrate.

The linear superposition of QNMs after which the ringdown signal was
originally modeled reads

BN =Y (G + i) (2129

n

Here the index n is the overtone number and labels the different QNMs in the
decomposition, starting from the fundamental one with n = 1. Each QNM is
given in terms of two complex coefficients le';m and two complex frequencies
crj[n = ay, T iwy,, made of a real frequency wy, and an inverse dumping
time ay,. The dimensionless time parameter appearing on the exponentials

of Eq. (2.126) is defined as

3
k
T= Mo (T — ng% ), (2.127)
and counts the time passed from the instant T};ﬁf}i{, at which the amplitude
m

A%}j‘ of the numerical waveform reaches its peak, in unit of the final black hole
mass Mpg.

Actually, with the test-mass analysis of Ref. [211] on the physical exci-
tation of QNMs, it was understood that the above superposition could be
simplified by setting C, = 0 and retaining just the components with pos-
itive frequencies (O‘Zn). The procedure consisted then in determining these
QNM complex frequencies from (Mpp, Jpy) [221] and the coefficients Cf

Imn
from specific matching conditions between h?nlj M and the insplunge waveform,

for instance by imposing that the two waveforms do coincide at a specific set
of instants, selected by discretizing into equally spaced points a time interval
around tmg [211]. However, Ref. [149] proved that, in order for Eq. (2.126) to
be a faithful representation of the ringdown signal, the coefficients appearing
therein should be promoted to 7-dependent functions, as a consequence of
the fact that in general the QNM excitation is not yet completed at merger.
This additional layer of complexity led to the proposal, in that same paper,
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of an alternative approach, which is now the basis of the ringdown modeling
strategy of TEOBResumS.
The idea is to consider a factorized ringdown waveform of the type

h;inrigdown — oI Z(bpeakfwm(q-)’ (2128)

where gzﬁpeak is the value of the waveform phase at 7 = 0. Then, instead of
deriving hg,,(7) from Eq. (2.126), this is replaced with a suitable parametric
template. Omitting the indices (¢, m) for readability, this reads®!

h(r) = A (7)), (2.129)
Cf A é
AE(T) = m + Cy s (2130)
¢ —cdr @, —2c¢
1+ cie 2" +cje =2
o (1) = =% In i : (2.131)
1+c3+cy

given in terms of two sets of parameters, cf and c?. However, not all of these
are free: there are five constraints that ensure the correct behavior of h(7) for
7 = 0 and late times, namely

A

2
of = %(Apeak)cge_ch <1 + 66?) ) (2.132)
2
! = (e - (2.133)
i = _ ’ ‘
4 peak 1+ ec{?
A A ocd
= 2, (2.134)
Apeakagl @21 ] + €3
@ [0
14+c¢; +c
of = ﬁ(wl — MpHWpeak), (2.135)
cy (3 + 2¢y)
§ = oz, (2.136)

where a,, and w,, are the real and imaginary components of the QNM complex
frequency o, (n being the overtone number), as; = ag — a1, and finally
(Apeak; Wpeak) are the numerically-determined amplitude and frequency of the
given waveform mode at 7 = 0, with Apeak second time-derivative computed at
that instant. Consequently, the free parameters that remain to be determined

by fits on the numerical data are actually just (CQ , Ch ,cg, cff)

21'We report here the updated prescription of Ref. [215], which improves the one in
Ref. [203] by replacing with Eq. (2.130) the old amplitude template

Ap (1) = ¢ tanh (CQAT + crf) + i
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We conclude by noticing that the NR waveform information, incorporated
(i) in AYSPMPEC through Ay 2 and (ii) in hy 8" through Ay, (here written
with explicit indices ¢ and m), is enough to guarantee that the complete
waveform modes (2.125) are smooth at t = t,,, where there is the sudden
shift between the insplunge and the ringdown model.



Chapter 3

Eccentricity effects in EOB
waveform models

n this Chapter we finally discuss the main theme of the Thesis: how to
best extend EOB models to the case of eccentric binaries. We refer with
this term to binary systems that have escaped, at least partially, the circu-
larization process typical of isolated binaries [204,222], and thus still present
non-negligible orbital eccentricity in their late inspiral, when the GWs they
emit enter the frequency band sensitivity of our detectors. The motivation
behind this line of work is essentially twofold. On the one hand, measuring
eccentricity with GWs can shed light on the unknown mechanisms behind
the generation of binary black holes, with valuable indications on the actual
plausibility and weight of the different formation channels that have been so
far proposed for their origin. If in fact isolated binary black holes, result of
the evolution of isolated binary stars, are expected to efficiently circularize
via GW emissions, in recent years population synthesis studies [223-230] have
shown that dynamical captures in dense stellar environments, primarily glob-
ular clusters and galactic nuclei, and the Lidov-Kozai mechanism in compact
triples, isolated or in dense environments like those cited above, should lead
to a substantial fraction of CBCs with measurable eccentricity during their
pre-merger evolution, notably with different eccentricity distributions depend-
ing on the given astrophysical scenario considered. See, e.g., the illustrative
scheme in Fig. 3.1, taken from Ref. [229], that puts together the expected dis-
tributions of eccentric binaries, relative to three relevant formation scenarios,
with the minimum distinguishable eccentricity for several GW detectors.

On the other hand, even if we are not interested in the astrophysical im-
plications of eccentricity signatures in the GWs we detect, dedicated analy-
sis [233,234] have shown that neglecting eccentricity in GW models is likely
to cause systematic errors in the inference of the other binary parameters, es-
pecially the component masses of the system. This is due to the fact that, in
the presence of eccentricity, the parameter that determines the leading order

81
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©3)

(©3)

Fraction of binary black holes

Figure 3.1: Expected fractional distributions of eccentric binary black holes
for three relevant astrophysical scenarios, credits to Ref. [229]. Considering
as a reference the eccentricity at an orbital frequency of 10Hz, we find in dif-
ferent colors (i) the globular cluster distribution of Refs. [227,228] (green),
(ii) the galactic nuclei one of Ref. [231] (orange), and (iii) the one relative to
field triples (i.e. isolated three-body systems), taken from Ref. [232] (purple).
The vertical lines represent the minimum detectable eccentricity, estimated
in Ref. [229], for the ground-based detectors Advanced LIGO and Advanced
Virgo, Einstein Telescope, and Cosmic Explorer. On these lines, different col-
ors mark different estimation techniques: the Bayesian (blue) and the wave-
form overlap method (red); see Sec. III of Ref. [229] for more details on these
techniques.

evolution of the GW phase, and thus is measured with the highest precision,
is no longer the chirp mass

(m1m2)3/5

My, = ,
b (mq +m + 2)/5

(3.1)

but an “eccentric chirp mass”, combination of M.}, and the eccentricity e, that
around a reference frequency of 10Hz can be approximately defined as [234]
157
b = Men (1 + 406(2)>7 (3.2)

eg being the eccentricity at that frequency. We have therefore a degener-
acy between M., and eg, similar to the well-known circular case degeneracy
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between m; and mg, in which the primary parameter that drives the GW
phasing is simply M,. This has been also proved to be impactful for the va-
lidity of GR tests performed on GW data, with arising systematic biases that
become comparable with the statistical errors even when small eccentricities
are neglected; see for instance the analysis of Refs. [235,236].

Prompted by all this, and with the additional prospect of many future
detections of eccentric stellar-mass binaries, thanks to the forthcoming space-
based interferometer such as LISA [237,238], the GW community has em-
barked on developing new waveform models that go beyond the quasi-circular
approximation, both on the numerical [239-242] and the analytical side [243—
251].Regarding EOB-based waveform models, the first eccentricity modula-
tions have been incorporated in the circular model SEOBNRv1 [145] in a series
of works [252,253], which ultimately led to the proposal of a new model,
dubbed SEOBNRE. This was later improved, building upon the next generation
circular model SEOBNRv4HM [152], with the inclusion of analytical noncircu-
lar waveform information up to the 2PN order [251], thus yielding the recent
eccentric model SEOBNRv4EHM [153]. On the TEOBResumS side, noncircular cor-
rections to the insplunge waveform have been first introduced in Ref. [254],
generalizing to non-circularized orbits the quasi-circular Newtonian prefactor
(2.101). This laid the foundation for the development, in several follow-up
works [155,157,215,255] of a new highly accurate EOB model for generic pla-
nar orbits, now referred to as TEOBResumS-DALI, which has also been used
to analyze the GW source GW190521 [256,257] under the hypothesis of a
hyperbolic capture [258].

In this Chapter, after a brief review, in Sec. 3.1, of the crucial noncircular
generalizations that define TEOBResumS-DALI, we will present, discuss and test
some strategies to incorporate in this model, while preserving its factorization
and resummation prescriptions, currently known analytical waveform results
for generic planar orbits, at 2PN accuracy. More specifically, the rest of the
Chapter is organized as follows. In Sec. 3.2 we review the 2PN waveform re-
sults we used as an input and explain how their information can be recasted
into new 2PN noncircular waveform factors, presenting the dedicated factor-
ization procedure. Their performance in the waveform model is probed in
Sec. 3.3, by comparing the predictions of the latter against several numerical
waveforms, relative to a test particle inspiralling and plunging on a Kerr black
hole along eccentric orbits. This gives rise to the need of implementing ad-
ditional resummation strategies, necessary to obtain noncircular corrections
that are reliable also for large eccentricities, e ~ 0.9. In the same section
we also perform similar test-mass analyses for a few of illustrative hyperbolic
encounter dynamics. The testing process continues in Sec. 3.4, where we focus
on comparable-mass binaries and provide direct phasing comparisons between
numerical relativity (NR) simulations and our EOB eccentric model, complete
of the new 2PN-accurate resummed factors. An analogues factorization strat-
egy is used in Sec. 3.5 for the proposal of associated noncircular correcting
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factors to include in the radiation-reaction force component ]A-},; their impact
is then numerically investigated in the test-mass limit. In Sec. 3.6, focusing
again on the test-mass limit case, we provide waveform comparisons with the
factorization scheme proposed in Ref. [251] (and used in Ref. [259]). Moti-
vated by the results of these comparisons, in Sec. 3.7 we finally devise and
test an alternative prescription for some of the noncircular waveform factors
introduced in Sec. 3.2, focusing on the dominant mode £ = m = 2.

We mention in closing that a big portion of the content presented in this
Chapter has been originally released to the public in our series of papers
[158-160].

3.1 The eccentric insplunge of TEOBResumS-DALI

We dedicate this section to a concise review of the noncircular generalizations
that distinguish the eccentric model TEOBResumS-DALI from the native quasi-
circular model TEOBResumS-GIOTTO, outlined in its non-spinning sector in the
previous Chapter. We will focus in particular on the noncircular analytical
prescription for the insplunge waveform factorization and, correspondingly,
for the radiation-reaction force, although we mention that TEOBResumS-DALI
also entails a new determination of the NR-informed flexibility parameters
in the EOB dynamics, like the ag. mentioned at the end of Sec. 2.1.4," and
new suitable choices for the initial conditions, such that the modulations due
to eccentricity of the EOB waveform are consistent with their homologues in
eccentric NR simulations; for more details on these aspects see Ref. [155].

The noncircular insplunge waveform model proposed by Ref. [254] is sim-
ply obtained by performing, in the factorized quasi-circular waveform (2.100),
a general redefinition of its Newtonian factor h@%’e), i.e. of Eq. (2.101). Con-
sidering the chain of relations (1.175)-(1.176) and (1.166)-(1.167), which con-
nects the spherical modes hyy, to the STF radiative multipoles (Ur, V7), and
remembering that at Newtonian order we have

dt dt
(UL)Newt = W(IL)Newt’ (VL)Newt = W(JL)Newtu (33)
where (I, Jr) are the STF multipoles of the source, the most general defini-
tion of the Newtonian factor of each hy,, is”

BNV0) _ 22G  [(+1)(L+2) df

m T T DpR(y\ T 2ee 1) di? [y 2" (IL)Newt} (3:4)

'The other one is the mass-dependent parameter c3 appearing in the spin-orbit part of
the effective Hamiltonian for spinning binaries; see Sec. B.1 of Appendix B.

2The tensors Y¥™ can be freely brought inside the time derivatives, since they are purely
numerical.
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Y U] 69

BN _ 4/2G (e+2  dt
tm T Dpet3(N [ 200 + 1) (0 — 1) dtt

We notice that in general

{yfm (IL)Newt:| o Myrle ™, (3.6)
[yf’" (JL)Newt:| o MyrfttQe=m?, (3.7)
(Nse)

implying that the general Newtonian prefactor h, ™’ defined above involves
time derivatives of 7 and Q, up to r® and Q®). All these time derivatives
vanish for circular orbits; moreover, the usual approach used in their regards
when computing PN noncircular results for the modes hy,, is to order-reduce
them by means of the PN-expanded equations of motion, truncated at the
target PN accuracy. Here they are instead kept explicit and evaluated us-
ing the resummed EOB equations of motion, which become exactly known in
the test-mass limit ¥ — 0.3 In this sense, we can regard these explicit time
derivatives as a resummation of the noncircular contributions that would ap-
pear in the PN-expanded noncircular expression of hy, by performing the

usual order-reduction procedure. Moreover, each Newtonian factor hﬁﬁ’e) is
written as
(Nye) 3 (N,€)cq (N,€)ne
hfm - h‘fm h‘[m (38)

i.e. as the product of its circular limit part héﬁ’e)c, which gives back Eq. (2.101)

when expressed in terms of x, and a Newtonian noncircular factor,

Newe _ hio
p{Nme = i (3.9)
/m

which collects all the noncircular contributions and reduces to 1 for circular
orbits; for instance, focusing on the dominant quadrupolar mode hos, we have

(N0 B8GM T 5 o o
hso =D, grQe v

.2 . . =
PN _ L7 LA DY I 1 11
hz2 > (ﬂm * m?) i (m o0z | (8.11)

Let us now outline the corresponding noncircular modifications on the
radiation-reaction force. To begin with, the radial component F, can no longer
be set to zero: the noncircular prescription for it, introduced in Ref. [254], is

(3.10)

3In practice, the evaluation of all these time derivatives follows from a generalization of
the iterative analytical approach outlined in Appendix A of Ref. [147].
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to use the 2PN instantaneous result of Ref. [205] in Padé resummed form.
Explicitly we have

r v p'f‘* R n R
Fo= S0 SRS, .12

where, from Egs. (3.70) and (D9)-(D11) of Ref. [205],

1 -
F1PN 2PN
f fr 2 r + 674 r ) (313)
8  56p7
- 14
=g+, (3.14)
1228 5560\ 1] 1984 16w 124
1PN 2 I - 2 2 e
Ir ( 105 105 ) +r[ 105 "ot +p7‘*p¢< 105
4360\ PL/ 1696 1268v 1252 25880
- LY 3.15
105 >] * r2< 35 105 >+ (105 105 ) (3:15)
ppx _ o (323 1061y 12737\ 11, (20666 17590y 21807
o TPl315 7 315 T 315 315 189 189
W o 461 983y 1312 1 [59554 9854y 354812
+p'r‘ pcp + 72 + -
Lo\ T35 315 163 2835 ' 105 315

21 315 315 315 + 63

175202 5 628  1052v 4v Py 35209
T +p”p‘f’(m 05 7 )]+7«4< 315
| 1606y 252171/2> S ( 3229  Ti8v 3277u2>

15 315 315 63 105

o of 1774 102920 880412 20438 9568V
+pips| — + E
19

(3.16)

rd

Regarding the other component ]:Zp, the noncircular generalization of Eq. (2.121)
used in TEOBResumS-DALI consists in dressing the dominant multipole Fo in

f with the noncircular factor fggg, compute from h(N One  More explicitly,
we have

7 32 405 i

‘F‘P = _ﬁyr Q fnCQQ’ (317)
where

8 ¢
Fress = Foafly + For + ) D Fom, (3.18)
>3 m=1

. 1 [: . . 34 3730 372
fg,%cz = &T%[h%\/ﬁ)nc (thQV,O)nc) ] =1+ 4rdQ4 + 49r3Q)5 + 4r2Q4
3 @ #2042 7 2 r0Q
8205 2r204 + 8r2Q)5 + r2()? + 8r(b  rQ2  8r()
Q302 Q
oAV ToTRTor R

(3.19)
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Here the noncircular factor (3.19) is obtained from Eq. (2.99) after the parity
condition hy_,, = (—)’h}, is used in it.

We finally mention that a particularly useful way of testing different radiation-
reaction force prescriptions is to compare the corresponding fluxes at infinity
with their numerical analogues. In this respect, we remind that the energy
flux at infinity is obtained via the balance equation (2.97), where in addition
to F, and .7-" also the Schott contribution Egchott appears. To compute the
latter, follovvlng Ref. [254], it is useful to reorganize the 2PN result for Egepott,
given in Eqs. (C1)-(C4) of Ref. [205], in the factorized and resummed form

16 pr*

5 P2 [Egchott]PQO [Egghott]? (320)

ESchott

where Eg, .. is the circular component of the Schott energy, which can be
read off Eq. (3.56) of Ref. [205], while EgS .. is the corresponding noncircular
factor obtained by computing Eschott/ESupott-

3.2 Factorized 2PN noncircular corrections in the
insplunge waveform

The spherical modes of the 2PN waveform for generic planar orbits have been
recently obtained in EOB coordinates by Khalil et al. [251]. Here, the expres-
sion for the instantaneous contributions have been computed by translating in
EOB coordinates the waveform results of Ref. [246], which obtained them in
harmonic coordinates trough an application, for noncircularized orbits, of the
non-linear waveform generation formalism we outlined in Sec. 1.3 of Chapter
1. Within the same framework, the tail contributions have been derived start-
ing from the results of Ref. [253], and then subsequently extended to include
higher-order corrections in the eccentricity, notably also for higher spherical
modes than the dominant one, the £ = m = 2 mode. In this section we
want ot exploit this 2PN waveform information (neglecting noncircular spin
contributions) to define alternative noncircular corrections that fit properly
in the waveform factorization scheme of TEOBResumS-DALI. The procedure we
followed to define these corrections, in the form of extra noncircular factors, is
presented in Sec. 3.2.2, focusing initially on the case of the dominant spherical
mode £ = m = 2 and then moving to all the subdominant modes that enter
the 2PN accurate waveform. Before that, we find useful to recall, in Sec. 3.2.1,
the last steps in the derivation of the 2PN waveform results cited above, so
as to fix the notation and keep the discussion as self-contained as possible.
Separately, in Sec. 3.2.3, we discuss the main issues of the modes with m =0
and propose a specific 2PN-accurate model to circumvent them.
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3.2.1 2PN noncircular waveform in EOB coordinates

To start with, let us specify that we consider here the waveform mode struc-

ture [246]
_ 4GMv
" = —zmgoH ™ 21
hem = ~ip, \/ge ¢ (3:21)

where each Hy,,, mode is decomposed in the sum of instantaneous and hered-
itary (or tail) terms

Hyp = Hpt + HE! (3.22)

m >

which enter at different PN orders and thus will be discussed separately.

Instantaneous contributions

The instantaneous contributions to the modes for non-spinning binaries have
been derived in Ref. [97,260] up to 2PN order and in Ref. [246] up to 3PN
order, where they can be found in terms of harmonic coordinates. By way
of illustration, the 2PN-accurate £ = m = 2 mode in harmonic coordinates
explicitly reads

1 1 1 /v T8y 11
Hmst L 2.9 Vit & 2 ~d - (Z_5 -
( ) - + rhe5 + 2irrRen — T+ 2 T}% 5 +7rp goh o1 + 2
L 9 (2Tv 9 16v 15 (450 25
— i Pn (T + Th$h) — 7] E e + 11 + iR Pn - + 21

n (7.“4 _ 4 .4) 27v 9 + 7912 n 181v n E
h= TR\ T T g 126 36 ' 63

1313312 52251/ 11891 21412 83y 557

('Oh 1512 1512 21 168
irnon (285202 37671/ 773 46702 n 2789y 619
Th 189 189 189 2 126 252 252

2 4. . . . 11111/ 589y 83
+ et = 78+ it - i) )

( 168 168 ' 168
R 17030*  103v 433\ ... (21107 N 731y 863
Wi\ g 12 84 9 63 126

5.4( 299502 19v 835 530 11112 589y 83
TThPh\ T Tors T om0 T ory | TR RPR - + 15

252 252 252 42 42 42

58,2 L l6ov 11y ’ . :) 11112 589w
- T 7’ AV 7" 7" T —
e 21 T 14 28 WEREn + TR 84 84

1)) ola)

(3.23)
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where ¢, is the harmonic orbital phase and rp is the GM-reduced radial
harmonic coordinate, r, = Rj,/GM. For completeness, we explicitly report
below the transformation from the harmonic set (ry, 7, @p, ¢r) to the EOB
canonical set (u, @, pr,p,), as we derived, independently of Ref. [251], from
the coordinate relations given in Appendix E of Ref. [205]. We highlight that,
in order to make clearer the PN structure, we henceforth redefine the variable
u by stripping it of the usual ¢2 factor; therefore, if not otherwise specified,
we consider u = 1/r. We find

111 /3p2 v B
Th:u+(32|:21/(ur+pwu—1>—1:|—864u|:(5—37/)pr

+ 2p,%u<28 —3(v— 1)p3;u> + u? <2(1/ —19) + (v + pju®
+piu(l — 31/))] + 0(016) (3.24)

1
in =+ gz | 20— D+ o (@0~ Dp2u—6 - a0

) 814 {(3 su)p? — 2p%u [ (8v—5) + (21/2 + 120 — 3)piu]

+ pru? [ — 1002 + 780 + 12 + <81/2 — 16v + 3>péu2

+2 <1/2 — 55v + 6)p§u] } +0 <CG> (3.25)

1 1
Y =¢+ VPPl = VPP [(41/ + 2)p? + u( —3v+15
1
2
+ 2p<pu>] + (’)(CG), (3.26)
. 1
Ph = p@u2 + @pqu [u((u — 1)pi,u - 2> - (Bv+ 1)pg:|
1
- 8C4p¥,u2{ — <l5u2 + 11lv + 3)p§ + 2p$u [2 <I/2 —24v — 3)
+ 3(31/2 -V — 1)piu] + u? [2<y2 -9 + 2) + <V2 + 5 — 3)piu2
—2( 32 —1Tv 42 |piul } + O 1) (3.27)
© 6

Then, replacing the relations (3.24)-(3.27) into Eq. (3.23) yields

. . 1
H;g“ =u— p% + 2iprpou + p?a —2 ( >prp<pu

4v 185 v 9 v 5 4 4 4
~prppu [(7 + 21>_ <7_7>p<ﬂ }+<14_ 14>(p%’“ —pr)
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64\ , 31y 157\ ,
e _4 oz U0
—|—<14+14>pru+u |:(I/ )+<14 42>p<pu

1 17V2 13V 5 6 4 2 2 6 6 . 171/2 13]/

5 (o + phud) — pPu? 1312 N 151y N 1055 N 1702
- u u — u
12 ) PrPetPr T Pt ) = Pr 63 18 ' 252 504

PRI 5>p4u2 . (313,/2 LS 101>p2u]

504 72)°¢ 252 252 252 )0¢

8502 By 425\ , .5 o[(6202 1lv 695
_(168 +168+168>”“HW¢U K 63 +126+126>

1702 LBy 5 , 5[ (52312 | 25w 193
12 a2 )Pt TP I\ T8 T 180 27
N v 29v 67\ , L 20502 49v L 190
S A P P A it
o1 14 28)P¢ 126 18 ' 63
67102 13750 481\ 4 o 12702 27100 5519\ ,
- (7 - - DU
¥ 27 189  1512)°%

504 * 504 72

N O(;) (3.28)

This result coincides with Eq. (83) of Ref. [251], as long as we replace p5u® =
p? —p2. The canonical transformations above have also been applied to higher
multipoles, up to £ = m = 6, and their EOB coordinate expressions have
been checked to precisely coincide with the corresponding ones provided in
the supplementary material of Ref. [251]. Moreover, for an additional, inde-
pendent, validation of these transformations, we have verified that the 2PN
instantaneous angular momentum flux given in Eq. (3.70) of Ref. [205] could
be obtained, by means of Eq. (2.99), from the 2PN noncircular instantaneous
component of hy,y,, once rewritten in EOB coordinates.*

Hereditary contributions

For the hereditary components flgfil we adopt the results of Ref. [251]. These
contributions comes from the evaluation of the leading tail integrals that ap-
pear in the relations between radiative and source multipole moments; see
Egs. (1.156)-(1.157). In particular their evaluation is performed using the Ke-
plerian parametrization and considering an expansion for small eccentricity,
according to the method outlined in Ref. [253]. The resulting tail contributions
are initially expressed in terms of the frequency parameter z = (2/ c3)2/ 3. the
eccentricity e and the phase variable x, which, together with the semilatus

A4M0re specifically, we found that the spherical modes that bring a nonzero contribution
to Fy, are: (2,1), (2,2), (3,1), (3,2), (3,3), (4,2), and (4,4).
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rectum p, parametrize the motion according to

p

= — 3.29
" 1+ecosy ( )

To be precise, the dynamical parameters p and e used in Refs. [251,253] and
by us are defined, in analogy with Newtonian mechanics, as’

Ty —7r_ 2ror_
+ +

) p
T++’I”_

e

_ 3.30
T+ r_ ( )
where ry and r_ are the turning point of the radial motion, respectively
apastron and periastron, which can be determined from the EOB Hamiltonian
Hgop. We also specify that, for stable orbits, p must satisfy the condition
p > ps(e, a) where pg(e, a) is the separatriz, real root of [262,263]

p2(ps — 6 —2¢)® +a*(e — 3)%(e + 1)? — 2a%(1 + e)ps [14 + 2¢
+ps(3—e)] =0. (3.31)

Here a is the dimensionless spin parameter of the Kerr black hole that lies
at the core of the EOB dynamics when spinning binaries are concerned; see
appendix B. In the non spinning case @ = 0, we have simply ps = 3(2 + e).

From Ref. [251], the £ = m = 2 dominant tail component at 2PN accuracy,
and up to O(ef), reads

L 2 ad/? 1le™™  13e¥X 5 o0 T o
(HEEII)KP: ik |:1—|—€( © + © >~I—e2<e_2”<+8e2zx

c 8 8 8
N 4> Lo (121ei>< N 143e'X N 3e3ix N e3i><> Lot (25e2i>< N 203e%X
32 32 32 12 16 96
_ 5elx N 65 > 5 (55ei>< N 6233e'X N 15673 N 281e%X N 53e5X)
96 8 8 768 64 1536 7680
L <175e2i>< N 1869¢*X  449¢x N 31ebix N 30247)]. (3.32)
64 512 3840 23040 = 2304

Analogously to Ref. [251], we want to recast all the tail components like
Eq. (3.32) in terms of EOB phase-space variables. However, as opposed to
Ref. [251], we want to adopt just the variables (u,p,,p,), avoiding the use
of p,, in order to simplify the numerical implementation of the consequential
model. Since we are working at 2PN accuracy, we can resort to the following
Newtonian relations:®
2
r=1mC (3.33)
p

5We warn the reader that the eccentricity e defined here is different from the time
eccentricity e; that appears in the context of the quasi-Keplerian parametrization [195,261].

5The first corrections to the leading Newtonian order would enter at 2.5PN order in the
waveform.
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1
= m, (3.34)
p
Py = /D (3.35)
esiny
Py = ) 3.36
= (3.36)

Then, since Eq. (3.32) is given in an expansion for small eccentricity e, it
is important to identify the combinations of the variable (u,p,,p,) that are
of the same order of e. These are easily found in p, and p,, with the latter
related to p, and v through the Newtonian equation of motion

Dr = u2(pz,u —1). (3.37)

In fact, using Eqs. (3.33)-(3.36), we find p, ~ e and (p2u—1) ~ e. Therefore,
the expansion in e of Eq. (3.32) translates into a simultaneous expansion in
pr and p,. This reads’
2w (B i Py py | Tipep;

3 2u?  4\/u 8ut 96us  3209/2

Frtail _
H22 -

_ Tpipe  Tip} LF S U . S
3203 96u3/2 384u8  12u13/2  64ud  96uT/2  48u?
(1350 apepr | T3pipy | 49iplpy  35prpy  89ip)
1920010 768ul7/2  T68uT  384w!l/2  384ut  3840u5/2
10950 ipep} | 137Tprpy | 13Tipipd  65p)p;
46080u'2  64u21/2  1536u®  1152ul5/2  768ub
23ipipr | PP
_ , 3.38
640u9/2 + 96u3 ( )

where we also find half-integer powers of u. These can be eliminated by means
of Eq. (3.37), which, after an expansion in p,, gives

RS U N . S S
Po= "0 T 2u52 T 8w T 16ul32 T 1283172 | 256u2L/2
21p) 7
~ {004 T O(p,), (3.39)

and thus
1 pr | 3p;  5p) | 35p; 63p; n 231p0 + oG
Ju P 2u?  8ut  16uS  128ud  256ul0 " 1024u!2 i

(3.40)

Once this is inserted into Eq. (3.38), one precisely obtains Eq. (102) of Ref. [251],
which we rewrite here in our notation:

1. T03p Tipep? T .
_ =% 3 - 2 Ty e b2
Hy =3 [pgou + Jipru <96u3 59,2 33PrPrPe

"Here the parentheses () collect terms at the same order in eccentricity

rrtail 27
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T 3bpp | DDy DrPrPe Dy 1 4
96" “) * ( 3200 T 120t | 8w 96u | aglrPet
PPy A9y 3lpnbipe 89@'1)?)

102007 76846 | 102t | 384w’ 384u 3840

N (9715?1?@ ipepy | PEDID, | 13Tipdpd  ATpiplp,  23iplpy

B (173p§p¢ ipypi

115209  64ud 16ub 1152u° 384u3 640u?

+ pg?)] . (3.41)

Note that this expression, if interpreted within the EOB framework, may
be ambiguous, since here p, actually only refers to the time derivative of the
Newtonian radial momentum, obtained from the Newtonian reduction of its
PN-expanded equation of motion. Although there are no strong arguments
that may prevent one from promoting it to the derivative of the relativistic
radial momentum as defined within the resummed EOB dynamics, we prefer
here to simplify the logic and have an expression that avoids p,, only us-
ing (u,pr,p,) as in the instantaneous components H st We therefore insert
Eq. (3.37) in Eq. (3.41), obtaining

el 2T [p Iy <1931 _ 595pZu  3TTpgu®  174Tplu’
©

273 1440 384 128 576
8,4 10,5 12, 6 2 4,2
347pgu B 381p, u 97pu il 9 29pzu 39p,u
192 640 1152 256 48 128
5pgu3 B 61p§0u4 p}oou‘r’ 2l i3 B 13p?0u B 17péu2
64 768 64 TP\ 192 64 64
49pfj,u3 B ]oiiu4 iy ﬂ B 77piu i’)lpéu2 B 137p2,u3
192 16 Pr 288 128 64 1152
35 125p2u  47ptu? 227 23p2u
~plppu( o or? i D (o — ot
192 384 384 3840 640
6
prplp
. 3.42
e (3.42)

Indeed, the same is repeated for all the subdominant spherical multipoles
relevant at 2PN, that is up to £ = m = 6.

We finally point out that the absence of logarithmic terms in Eq. (3.42)
is due to a dedicated phase redefinition, performed already at the level of
Eq. (3.32), which completely reabsorbs them at this PN order; see Sec. IT1IC
of Ref. [253] for further details on this.
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3.2.2 New noncircular waveform factors at 2PN accuracy
(m # 0)
We now want to incorporate the 2PN waveform results of the previous section
in the factorization prescription for the insplunge waveform used in TEOBResumS
-DALI, which we remember is given by substituting the general Newtonian
prefactor of Eqs. (3.4)-(3.5) and (3.8) in the quasi-circular factorized wave-
form (2.100).
We do so according to the generalized factorization scheme
_ 3 (N,€)c 7 (No€)ne &(€) 7 () 7

hﬁm - h@me h@me e;f hf:n ?7(7:1’ (343)

where: the first two factors are the circular and noncircular part of the general

Newtonian factor (3.8); S'Q(f;f) is the effective source, here considered in its
(€)

generic orbit form (2.105); L9 is the PN residual circular correction, i.e. lAzém

Im
of Eq. (2.100) (without S’élff) ), equipped here with a “c” to make manifest its
circular nature; ﬁ?ﬁn is the PN residual noncircular correction, which collects
the novel information we propose to integrate in the model. Essentially, our
aim here is to explicitly determine the noncircular correcting factors ﬁ?ﬁn at
2PN accuracy, for each mode relevant at this PN order, by factorizing the
PN-expanded generic-orbit results for hy,, of the previous section, following
the trail of Eq. (3.43). The procedure is rather straightforward, although it
needs the 2PN-expanded EOB equations of motion to be correctly executed.
It consists in three steps: (i) starting from the 2PN noncircular results for
hem, we factor out the generic Newtonian prefactor and the effective source;
(ii) in the denominator, we order-reduce the associated derivatives with the
2PN-expanded equations of motion and we expand the residual at 2PN; (iii)
we factor out the circular part of the residual in order to single out the 2PN
noncircular factor A?ﬁl. Indeed, for this prescription to work properly, one
has to be sure that no spurious poles are introduced by the factorization.
Even though this is not the case for the majority of the spherical modes, all
the modes with m = 0 happen to show this kind of problematic behavior,
since their Newtonian factor is entirely noncircular and thus goes to zero in
the circular limit. We defer to the next section the discussion of a possible
alternative prescription for these modes and focus here on the m # 0 case.

In formulas, we can write the total PN residual factor as

2(e) __ hem
h,’” =T 3.44
Im 2PN (h(N75)ciL(N7E)nc) S‘(E) ; ( )
m m EOMs eff

where Thpn applies to its argument a Taylor-expansion in 1/c up to O(1/c?)
and the subscript “EOMs” indicates that inside the parenthesis where it ap-
pears we order-reduce all the time derivatives with the corresponding PN-
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expanded equations of motion.® This is needed to avoid considering two times
the noncircular terms already resummed, in the form of time derivatives, by
the general Newtonian prefactor that precedes the PN residual we are com-
puting here. The resulting expression (3.44) is a rational function of (u, p,, p,)
of the type 1 + O(1/c?).
Now that the PN factor is singled out, we can also factor out from it its
circular component
B = tim R

pr—0 tm?

(3.45)

so as to obtain the total noncircular PN factor we are interested in, that is

i)
i

hiS = Typy , (3.46)

which amounts to a collection of all the relativistic noncircular contributions
not yet included in TEOBResumS-DALI. Moreover, we can split E?ﬁn into a tail
factor and an instantaneous factor,” considering
By = ™ i (347)

Then, we trade the radial momentum p, for p,., = (A/v/D)p,, with A/\/D
truncated at the 2PN order. Finally, to simplify the structure of the analytical
expressions we are using, we expand each of the new factors in p,, up to
O(p;,)."

Focusing now on the dominant £ = m = 2 mode, the tail factor that follows
from the procedure detailed above reads

iLnCtail =1+ i T —1 Wr. U 12 QLEQ
22 A (Pu+1)? 64 P+ T 456 (pRu+1)% P

5729 P}, pou 722 133 Pr.Pg 722
1440 (p2u+1) 7% 80 (pZu+ 1)3 Pn |’

(3.48)

where (t%f*,f;g*,fi;*,fﬁ ) are the following polynomials in y = piu (with

Tk

alternate signs):

2 _ 24290 5 1606 ;13979
Pry 405 3 9 81

8The PN-expanded equations of motion for the first time derivatives can be computed
directly from the EOB Hamiltonian, by Taylor-expanding Eqgs. (2.91)-(2.94); see Appendix
B of Ref. [205] for their explicit expressions at 2PN order. Then, the computation of the PN-
expanded equations of motion for the higher order derivatives follows from a straightforward
iteration.

9This splitting can be performed with ease since tail and instantaneous contributions
are consistently well separated by the PN ordering.

10We have verified that this choice gives an excellent approximation to the full expressions
for all cases considered.
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The resulting instantaneous factor is conveniently separated in amplitude
and phase, ‘
hg;inst — f;QCinst 61522m5t , (353)

which are given by

2 2
. P2 1 3w p? 5 Su
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Similarly to the tail factor, all the functions (f22, 22
their explicit expressions are
CT(1+3v) (51— 17TTv) 5, 3(3+5v) 4

fifon =1 1-31» 7" 3293y ¢ 131, 7 (3.56)

) are polynomials in y;
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41890 — 692841 + 53612
We anticipate here that in Sec. 3.3.2 these polynomials in y, especially
the various t}%% (y) of the tail factor, will be found to require a suitable re-
summation process, necessary to make robust the corresponding noncircular
corrections in the strong field regime. The same will follow for the subdomi-
nant spherical modes of the waveform, in Sec. 3.3.4.

3.2.3 2PN noncircular corrections for the m = 0 modes

As mentioned in the previous section, the factorization scheme presented
therein cannot be applied successfully to the spherical modes with m = 0,
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because of the vanishing of their Newtonian factor in the circular limit. Nev-
ertheless, we can still devise a model for them that is well behaved and incor-
porates the 2PN noncircular waveform information outlined in Sec. 3.2.1. In
particular, the alternative to Eq. (3.43) we propose in this case is

hgo = S’eﬁf <héév’€) + iLzo) , (3.64)
where the PN correction, which indeed is fully noncircular, is given by

heo — (hgg™*
S’eff

hawo = TapN Jeous . (3.65)

Similarly to the other prescription, this quantity comes out naturally split into
an instantaneous and a tail part,

heo = i + R, (3.66)

Here however it is convenient to express the PN corrections using (u, p, , pr.,)
instead of (u,pr,,py). The reason is that, in this case, writing the corrections
in p, leads to issues in their numerical evaluation along the EOB dynamics,
since they present noncircular combinations of p, and u that do not vanish
automatically in the circular limit, but need p, to be replaced with its corre-
sponding quasi-circular PN expansion in u. Therefore, we remove p,, in favor
of (u,pr,,pr.) by inverting the 2PN-accurate EOB equation of motion of p,,,
Eq. (2.93).
We report here the corresponding PN corrections for the mode (2,0):

2, T o, + u? ) . .
hi =  960ul0c3 m [%OP rot? + 9607, w4240 (_3p a0

+p2 P, u9) + 80u? <7p;1* +2pt u6> _5 (95;5?* u? + 26p2 p3 P

+11pt pr, us) n (417;52* +110p2 pt ud — 45pt p2 ub + 2p§*u9) ] (3.67)
2 1 ) )

= L (10 40) 43 (3 ) (34 5)

+ pr*zimu(i% +5v) + 3pff* u?(3 + 51/)}

1
+ -

504v/6u3ct
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[pr* u (1052 — 2803y — 531/2) + p2 P (—743 + 7009y
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+6pt ul (79 41330 + 185v2) — Opi (151 217w + 125y2>

—3pl.u® <187 43130 + 1851/2) } . (3.68)

3.3 Waveform validation: test-mass limit

Let us now proceed to assess the performance of our new factorized waveform
model, starting from the test-mass case, v — 0. As we mentioned multiple
times in our presentation of the EOB approach, in Chapter 2, this extreme
case has always been of great importance in the development of essentially
every aspect of EOB models: on the one hand, because it is closely related,
via the EOB approach, to the general case of binary systems with arbitrary
mass-ratio v; on the other hand, because it is much easier to handle from
an analytical and numerical point of view. Focusing in particular on the nu-
merical side, in the test-mass limit we have the great advantage of being able
to rapidly generate exact waveforms (modulo numerical errors) for essentially
any dynamics we want, without the need of computationally expensive simu-
lations as in the comparable-mass case. This offers a convenient and flexible
methodology to thoroughly test our waveform model and individuate possi-
ble paths of improvement. Accordingly, in Sec. 3.3.1 we explore the case of
test-mass eccentric insplunges, focusing on the dominant { = m = 2 mode,
and we show the emergent need of adopting specific resummation techniques
on our noncircular factors. These are discussed and tested in Sec. 3.3.2 and
Sec. 3.3.3, and later extended to higher (¢, m) modes in Sec. 3.3.4. In Sec. 3.3.5
we test the 2PN noncircular corrections for the m = 0 modes, presented in
Sec. 3.2.3, focusing in particular on the mode hgg. Finally, in Sec. 3.3.6 we
use the flexibility of the test-mass limit to validate our model in the case of
dynamical capture dynamics.

3.3.1 Eccentric insplunge in the test-mass limit

Let us start our waveform checks in the test-mass limit with the case of ellip-
tic inspirals . We proceed by following Ref. [215], which extensively explored
this limit to validate the waveform prescription of TEOBResumS-DALI, indeed
now considering also the 2PN noncircular factors at the center of our study.
Focusing on the motion of a test particle around a Kerr black hole, such val-
idation procedure relies on comparisons between the analytic EOB waveform
and the numerical solution of the Teukolsky equation, obtained using the 2+1
time-domain code Teukode [264]. In particular Ref. [215] considered both (i)
the geodesic motion along elliptic orbits and (ii) the full transition from the
eccentric inspiral up to merger and ringdown. The outcome of that study
was that, even without the 2PN corrections, the analytic waveform delivers
a rather accurate approximation of the exact waveform up to mild values of
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the initial eccentricity, both for its amplitude and phase (see, e.g., Fig. 13 of
Ref. [215]).

On our side, we use precisely the expressions for (ﬁgg“ai‘, hys'™') given in
Egs. (3.48) and (3.53) and repeat the comparisons of Ref. [215]. The ec-
centric numerical waveforms we compare with are listed in Table 3.1. We

Table 3.1: Numerical eccentric simulations considered in our comparisons.
We use v = 1072 to drive the transition from inspiral to merger. For each
eccentric simulation, we report the spin parameter a, the initial/final values of
eccentricity and semilatus rectum, and the merger time ¢,;¢. The final values
of eccentricity and semilatus rectum are evaluated at ts since they are not
defined for later times, where ¢4 is the time when the semilatus rectum equals
the separatrix and the radial turning points cease to exist. The definitions of e
and p written in terms of the radial turning points can be found in Eq. (3.30),
while the separatrix is defined by Eq. (3.31).

a €0 Po €s Ds ts tmrg
0.0 | 0.1 | 6.700 | 0.107 | 6.213 | 1459 | 1890
0.0 | 0.3 | 7.000 | 0.305 | 6.611 | 1382 | 1731
0.0 | 0.7 | 7.700 | 0.694 | 7.388 | 1916 | 2049
0.0 | 0.9 | 8.050 | 0.891 | 7.783 | 4570 | 4663

—0.4 | 0.5 | 8.800 | 0.501 | 8.426 | 2182 | 2387
0.4 | 0.5 | 5.900 | 0.490 | 5.415 | 2092 | 2192

also recall that the quasi-circular part of the waveform we adopt is precisely
the same of Ref. [215]. In Fig. 3.2, we report different configurations aim-
ing at comprehensively covering the parameter space. The first four panels
from left to right refer to non-spinning binaries with increasing eccentricity
eo = (0.1,0.3,0.7,0.9), while the last two panels refer to two spinning binaries
with @ = +0.4 and initial eccentricity eg = 0.5. For low eccentricity, up to
e ~ 0.3, the 2PN corrections improve the phase agreement during the inspiral,
but for higher eccentricity, the phase of the wave with only Newtonian cor-
rections is more accurate. Moreover, in all the cases, the analytical/numerical
agreement visibly deteriorates as one gets closer to plunge and merger, both
at the level of the waveform phase and amplitude. Careful analysis of the
geodesic case highlights that the reliable behavior of the waveform during the
eccentric inspiral is related to cancellations between the tail and instantaneous
factors. By contrast, the inaccurate behavior of the analytical waveform dur-
ing the plunge is related to the fact that the quantity y = piu, which appears
everywhere in Eq. (3.48), becomes rather large during the late plunge, as
shown in Fig. 3.3. The growth of pfpu makes the eccentric noncircular tail
factors too large with respect to the instantaneous ones, and the cancellations
mentioned above are no longer possible, leading to the observed loss in accu-
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Figure 3.2: Comparisons with nonresummed noncircular tail factor: compar-
ing analytical and numerical / = m = 2 waveforms for the transition from
inspiral to plunge of a test particle on a Kerr black hole with spin parameter
a. We consider different orbital configurations, determined by the values of
initial eccentricity ey and initial semilatus rectum pg, with v = 1073. Each
panel displays the numerical waveform (black line, indistinguishable) and two
EOB waveforms: (i) the solid-red one, with noncircular information only in
the Newtonian prefactor and (ii) the dashed-blue one, with also the noncircu-
lar 2PN factor, here without any resummation. The bottom panel shows both
the phase differences and the relative amplitude differences with respect to
the numerical waveform. We use dashed lines for the differences correspond-
ing to the wave with 2PN corrections. The vertical line marks the merger
time, corresponding to the peak of the numerical amplitude.
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Figure 3.3: Last part of the time evolution of pfou for different combinations
of (a,ep,po). Notice that, during the plunge, piu can grow up to ~ 10. This
growth is mostly responsible for the unacceptably large analytical /numerical
phase disagreement during the plunge exhibited by the waveform model with
2PN noncircular corrections, see Fig. 3.2.

racy. This issue is also responsible for the large phase disagreement near the
periastra of configurations with high eccentricity.

To cure this behavior, we need to implement specific resummation strate-
gies, which will discuss in the following.

3.3.2 Resummation of the noncircular tail factor

Let us start this section by going back to the structure of the tail factor for
¢ =m = 2. In its native form, it is a 1.5PN order term that is expanded in
eccentricity up to e5. We have seen above that this expansion in eccentricity,
after the factorization of the Newtonian contribution, can be recast in a ratio-
nal function of (u,py,py), see e.g. Eq. (3.48). In particular, the expansion in
the eccentricity e can be rewritten as an expansion in the radial momentum
p, and p,, which can be subsequently recast in a form where one can single
out several polynomials in y = pfpu that are all, formally, at Newtonian order.
Figure 3.3 shows the behavior of y versus time for different eccentric config-
urations: y is not a small quantity.!! For the non-spinning configurations

HNote that y = piu = 1 at Newtonian order and for circular orbits, since pg’dm =1//u.
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considered in Fig. 3.3, it oscillates between 0 and 4 during the eccentric inspi-
ral and may reach values ~ 7 approaching merger. We thus wonder whether
an argument that can be so large may eventually generate some nonphysical
behavior for the functions (522 ,f;g ,f;g 7512?2 ), especially given the fact that
they stem from an expansion in eccentricity within a PN expansion.

As an example, Fig. 3.4 shows various truncations of f%f*. One sees that

V)
.

Figure 3.4: Behavior of various truncations and several Padé resummation
for the polynomial t}%f*, appearing in Eq. (3.49). Tn represents a truncation
at y™. The various truncations of f22* oscillate and become very large for
values of p u of the order of those reached during the plunge; see Fig. 3.3. A
stralghtforward diagonal Padé approximant (P3 or P3) tapers the behavior
of the polynomial in strong field and eventually improves the performance of
the noncircular factor where it appears.

(i) the various polynomial truncations become very large for values of y of
the order of those of the late inspiral and (ii) the sign alternation gives an
oscillatory behavior that visually resembles the one that is typically observed
for the truncated PN expansions of the energy flux of a test particle orbiting
a Schwarzschild black hole on circular orbits; see e.g. Ref. [116]. On the ba-
sis of this analogy, and with the understanding that t?of* is the product of an
expansion in the eccentricity (or in p,, and p, ), we interpret the polynomial ex-
pression of t22 as the truncated expansion of an unknown function of y around
y=0. As such this function can be resummed, and we do it straightforwardly

by applying Padé approximants. In Fig. 3.4 we also exhibit several (diagonal
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or nearly diagonal) Padé approximant that resum different truncations of this
polynomial. The Padé stabilizes the truncated series (e.g. the results obtained
resumming the truncation up to y% is close to the Padé of the full polynomial
up to 37) and considerably lowers the value it reaches after y ~ 3, in particular
with respect to the full nonresummed polynomial (T7 in Fig. 3.4). Although
we do not have a formal proof, the consistency between the P23, Pg, and P§1
approximants seems to suggest that the residual polynomial fgf* is indeed the
Taylor expansion of some unknown function and its resummation does make
sense. A completely analogous behavior is found for the other three polynomial
functions (f2§ ,t“;% 7@2}2 ), which are thus similarly resummed. More specifi-
cally, the Pa(ie approximants we consider to replace the Taylor-expanded poly-

nomials of the tail factor are (P§ [tzf] P} [t22 ), P [f22 ), P} [t22 ). The quality

of this resummation is probed in Fig. 3.5, “which is the analog of Fig. 3.2
in which the polynomials in the noncircular tail factor have been Padé re-
summed as clarified above. The analytical/numerical phase agreement not
only improves (and largely) during the plunge and merger phase, but also im-
proves during the eccentric inspiral. Moreover, the overall improvement with
respect to the simple Newtonian prefactor is evident, and there is no longer
any hint of pathological behaviors towards merger.

3.3.3 Resummation of the noncircular instantaneous factor

A priori, the same resummation strategy should be implemented for the resid-
ual instantaneous 2PN corrections, which present as well expressions where
one can single out polynomials in y with alternate signs. We explored this
both at the level of the amplitude and phase corrections, foy™™* and d55™".
For the amplitude, we found that any choice of Padé approximant for the
various residual polynomials in y of Eq. (3.54) develops spurious poles in the
equal-mass case (i.e. for v = 1/4), implying that our resummation strategy
cannot be pursued here.'? This is not of great concern, since the generic
Newtonian prefactor alone already gives an excellent approximation to the
numerical waveform amplitude. This can be clearly seen in Fig. 3.5, where
the amplitudes, with and without 2PN noncircular corrections, are seen to
produce analytical/numerical relative differences that are comparable.

By contrast, for the instantaneous residual noncircular phase given in
Eq. (3.55) the procedure is robust. More precisely, we resum the polyno-
mials in y appearing in Eq. (3.55) with the Padé approximants Py [521PN}

P} [521PN] Py [5u2pN] and P} [522PN] Note that the polynomial 5p2pN, written
exphc1t1y in Eq. (3.63), is of degree four in y, but we only use O(y?) terms

since the P? approximant produces unphysical behaviors for large y and the
other higher-order Padé approximants have spurious poles in the equal-mass

12This is the current situation with the 2PN-accurate noncircular waveform. The proce-
dure will have to be investigated again in the future using results at 3PN order.
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Figure 3.5: Comparisons with resummed noncircular tail factor: comparing
analytical and numerical ¢ = m = 2 waveforms for the transition from inspiral
to plunge of a test particle on a Kerr black hole with spin parameter a. We
consider different orbital configurations with v = 1073, Each of the top pan-
els displays the numerical waveform (black line, indistinguishable) and two
EOB waveforms: (i) the solid-red one, with noncircular information only in
the Newtonian prefactor and (ii) the dashed-blue one, with noncircular 2PN
corrections that include the tail factor As™! of Eq. (3.48) in the resummed
form introduced in Sec. 3.3.2. The bottom panel shows both the phase dif-
ferences and the relative amplitude differences with respect to the numerical
waveform. We use dashed lines for the differences corresponding to the wave
with 2PN corrections. The vertical line marks the merger time, corresponding
to the peak of the numerical amplitude. The resummation strongly improves
the analytical /numerical agreement with respect to Fig. 3.2.



CHAPTER 3. ECCENTRICITY EFFECTS IN EOB WAVEFORM
106 MODELS

Figure 3.6: Same configurations of Fig. 3.5, but here we focus on the phase,
and we show also the analytical/numerical agreement obtained considering
the resummed noncircular tail and the resummed instantaneous noncircular
correction (dashed light green line). The color scheme of the other differences
is the same of Fig. 3.5: solid light blue line for the wave with only the generic
Newtonian prefactor and dashed blue line for the wave with 2PN corrections
with resummed tail and Taylor-expanded instantaneous corrections.
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case. The improvements introduced by this resummation are shown in Fig. 3.6,
where we compare the analytical /numerical phase differences of the waveforms
with and without the resummations of the polynomials in d55™*, while always
adopting the resummed version of the noncircular tail factor. While a slight
improvement in the phase accuracy can be seen in the reported cases,® the re-
summation of the instantaneous phase corrections appears to be less relevant
than the resummation of the eccentric tail.

As noted in previous works [215,254], the general Newtonian prefactor is
quite effective in capturing the eccentric modulation of the waveform, both in
amplitude and phase. As a consequence, the missing analytical information we
are adding here is bound to bring rather tiny corrections, so that special resum-
mation procedures become essential to make the 2PN noncircular correcting
factors really useful. By separately analyzing the cumulative action of the in-
stantaneous and hereditary contributions to the waveform, one finds that the
good performance of our resummed waveform is due to compensations between
the two. This eventually yields only a tiny correction to the Newtonian non-
circular prefactor. More importantly, one notices that the instantaneous con-
tributions alone tend to overestimate the analytical phase, eventually yielding
phase differences, with respect to the numerical waveform, that are larger than
those obtained with the simple Newtonian prefactor. This is very clear when
inspecting Fig. 3.7, which illustrates this effect for four different geodesic con-
figurations (i.e. with 7, = F, = 0): (e,p) = (0.3,9), (0.5,9), (0.9,9), (0.9, 13).
Indeed, at high eccentricity and relatively small semilatus rectum, the resum-
mation of the tail factor is a crucial aspect in order to have a compensation
between instantaneous and hereditary terms. The benefits of the resummation
can be seen even at milder eccentricities or larger semilatera recta, even if it
is less pronounced. In Fig. 3.8, we also show the effect of resumming the poly-
nomials in the instantaneous factors for the same configurations considered
in Fig. 3.7. While the effect of the resummation is clearly visible, it is also
evident that the resummation of the instantaneous factors is less significant
than that of the tail factor.

3.3.4 Resummed noncircular corrections for the
subdominant modes

The resummation procedure we just outlined can be similarly applied to the
2PN noncircular corrections of the other waveform modes, whose expressions
are collected in Appendix C.1, notably in the form that we get before any
resummation is applied. Here we specifically discuss resummations and an-
alytical/numerical comparisons for the (¢,m) modes (2,1), (3,3), (3,2) and
(4,4). We choose this illustrative set by observing that, at 2PN order, while
for the modes (2,1) and (3, 3) the noncircular tail contribution is present, for

13The only exception is the & = —0.4 case, but bear in mind that we are not including
spin terms in the noncircular corrections.
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Figure 3.7: Instantaneous and hereditary noncircular 2PN corrections
to the quadrupolar phase for four non-spinning geodesic cases (e,p) =
(0.3,9),(0.5,9),(0.9,9),(0.9,13). The instantaneous phase corrections are
shown with dot-dashed blue lines, while the orange lines are for the phase
contributions of the resummed eccentric tail (dashed for the expanded results
and solid for the resummed ones). The corresponding sums between instan-
taneous and tail terms are shown in green with the same line style scheme
for the expanded and resummed version. The vertical dashed line marks the
periastron passage. For e = 0.9, we do not show the whole radial period in
order to highlight the neighborhood of the periastron.

the modes (3,2) and (4,4) it is absent, since it would appear as a 2.5PN term
in the complete waveform. This has implications on the performance of the
respective noncircular corrections, as we will see below. To make the discus-
sion clearer, it is convenient to rewrite here explicitly the tail factors at 2PN
order for the modes (2,1) and (3, 3):

N 1 (3029 . 619 . . 635 p?
Py =1+ 03”[_ "‘<1920“p” fir. & g0 > 768 2;“ &
* 90 Tx
61 pi o
_ x § 7 3.69
256 pyu PR ( )
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Figure 3.8: Analogous to Fig. 3.7, but here we focus on the relevance of the
resummation for the instantaneous part. The orange solid line is the phase
contribution of the resummed eccentric tail, while the blue lines correspond
to the instantaneous phase contributions, solid when they are resummed and
dot-dashed when they are not. The corresponding sums between tail and in-
stantaneous contributions are shown in green with the same line style scheme.
The vertical dashed line marks the periastron passage. For e = 0.9, we do not
show the whole radial period in order to highlight the neighborhood of the
periastron.
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Each of these polynomials in y is resummed using Padé approximants: the
choices we made are summarized in Table 3.2. The results of this procedure for

Table 3.2: Padé used for the resummation of the tail 2PN noncircular cor-
rections for the modes (2,2), (2,1), and (3,3). Note that fg? has terms up to

Tx

y®, but we use the Padé P;.

Selected Padé
(Cm) | dn [t [ 8 [ 4
(2,2) | Py | Py | P | P}
(2,1) | P§ | Py | P) | F§
(3,3) | Py | PP | P§ | PP

the modes (2,1) and (3, 3) are collected in Fig. 3.9, which compares analytical
and numerical waveforms for an illustrative, but significative, set of configu-
rations. The same is done in Fig. 3.10 for the modes (3,2) and (4,4). When
analyzing the phasing during the inspiral, a few comments are in order. First,
the phase and amplitude agreement for the modes (2,1) and (3, 3) is in this
case comparable to the (2,2) mode, and the 2PN corrections are found to yield
a notable reduction of the analytical/numerical phase difference with respect
to the simple Newtonian prefactor prescription. This is true for any value of
the eccentricity considered. When moving to the modes (3,2) and (4,4), one
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Figure 3.9: Same type of plots (and same color scheme) of Fig. 3.5, but
here we collect in different columns our test-mass results for the subdomi-
nant modes (2,1) and (3,3), for the illustrative configurations (eg,a,po) =
(0.1,0,6.7), (0.5,0,7.35), (0.9, 0,8.05), (0.5,0.4,5.9).
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Figure 3.10: Same plots of Fig. 3.9 for the subdominant modes (3,2) and
(4,4).
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observes instead the rather surprising evidence that the waveforms with 2PN
noncircular corrections perform worse than the ones without. In light of our
above analysis regarding the compensation between tail and instantaneous fac-
tors, we understand this result as a consequence of the fact that these modes
do not have a tail factor at 2PN order, in contrast to what happens for the
modes (2,2), (3,3), and (2,1), where the aforementioned compensation can
take place. A confirmation of this interpretation can be found in Fig. 3.11,
where we analyze an exemplifying orbital configuration with ey = 0.7.

Figure 3.11: Comparisons of the waveform modes (2,2), (2,1), and (3,3) for
the non-spinning configuration (eg, a,pg) = (0.7,0,7.7). Top panels: numer-
ical waveforms (solid black line), analytical waveforms with only Newtonian
noncircular corrections (solid red line), and analytical waveforms with com-
plete 2PN noncircular corrections, with the resummed eccentric tail factor
(dashed blue line). Bottom panels: analytical /numerical phase differences (in
radians) for different prescriptions: (i) Newtonian noncircular corrections only
(solid light blue line); (ii) with the addition of the 2PN instantaneous non-
circular corrections without noncircular tail factor (dashed purple line); (iii)
waveform with the complete 2PN noncircular corrections, with instantaneous
and tail terms in expanded form (solid aqua-green line); and (iv) waveform
with the complete 2PN noncircular corrections, with tail terms in resummed
form (dashed blue line). Notice the huge impact of the resummed tail factor
in the PN noncircular corrections.

Qualitatively, including noncircular waveform result up to at least the
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2.5PN order, the same behavior should be found also for the modes (3,2) and
(4,4). Future work, which aims at incorporating noncircular corrections at
higher PN orders in our factorized and resummed waveform, will hopefully
clarify these issues.

3.3.5 Testing the noncircular corrections for the m = 0 modes

In Sec. 3.2.3, we have already pointed out that we have to use an alternative
factorization for the modes with m = 0. In Fig. 3.12, we test the factor-
ization proposed in Eq. (3.43) for different geodesic configurations around a
Schwarzschild black hole, in the case of the mode (2,0). As one can see, the

Figure 3.12: Comparisons for the mode (2,0) on non-spinning geodesic or-
bits with e = (0.5,0.9) and p = (9,13). We show the numerical waveform
(solid black line), the EOB waveform with noncircular corrections only at the
Newtonian level (solid red line), and the one with corrections at 2PN order as
discussed in Sec. 3.2.3 (dashed blue line).

agreement between numerical and analytical results is still qualitatively good,
even if the accuracy reached by the m # 0 modes discussed above is evidently
higher. Here, in addition to the different factorization scheme, a source of dis-
agreement is that the asymmetry of the m = 0 numerical modes with respect
to the apastron is not negligible, even for geodesic dynamics. In any case,
for the m = 0 modes, the 2PN corrections do not seem to bring a definite
improvement over the analytical waveform with only the generic Newtonian
prefactor.
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3.3.6 Dynamical captures in the test-mass limit

We now turn our attention to the case of dynamical, or hyperbolic, captures.
In particular, we consider the same dynamical configurations that appear in
Fig. 14 of Ref. [215], whose parameters are also listed in Table 3.3 below.
The analytical/numerical comparisons for the new prescriptions, compared

Table 3.3: Reference hyperbolic capture configurations in the large-mass-ratio
limit. The symmetric mass ratio used to drive the dynamics is v = 10~2. For
each configuration, we report the Kerr dimensionless spin parameter a, the
initial energy Ejp, the initial angular momentum p, o, the initial separation
0, the number of peaks of the orbital frequency Ngeaks, and the merger time

trarg-

EO Dy,0 o Ng};eaks tmrg
1.000711 | 4.01 | 120 2 2133
1.000712 | 4.01 | 120 1 819
1.001240 | 4.01 | 120 1 731

o O O

with the original Newtonian case, are shown in Fig. 3.13. We report both
the waveforms with expanded and resummed instantaneous noncircular phase
at 2PN order. We also recall that, in the hyperbolic case, the parameters of
the ringdown model, the NQC corrections, and the merger time are extracted
directly from the numerical waveform. This is due to the fact that a fit over
the parameter space of these quantities is not currently available; see Sec. VC
of Ref. [215] for further details. For this reason, the last part of the wave-
form is artificially more accurate than what we would have obtained with the
same fitting procedure adopted for eccentric orbits. Nonetheless, this aspect
is not very relevant for our discussion since, in order to test the reliability of
the 2PN corrections, one should focus on the inspiral and plunge parts of the
waveform. The phase differences of Fig. 3.13 show that, in this hyperbolic
scenario, the 2PN noncircular corrections do not provide a remarkable im-
provement in the analytical/numerical agreement with respect to the original
waveform of TEOBResumS-DALI. Moreover, the resummation of the instanta-
neous noncircular phase factor seems here to worsen the analytical /numerical
agreement of the wave with respect to the one where such factor is left in
expanded form. This may be an indication that the resummation of the in-
stantaneous phase is not uniformly reliable in every corner of the parameter
space and hence, considering the small effect it has in the elliptic inspiral case,
that it may be preferable to just avoid it. We hope that adding noncircular
analytical information beyond the 2PN order may conclusively clarify whether
this particular resummation is convenient or not.
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Figure 3.13: Dynamical captures of a particle on a Schwarzschild black hole
with v = 1072, initial angular momentum Pp0 = 4.01, and three different
initial energies, Fy = (1.000711,1.000712,1.00124). Left column: relative tra-
jectories, all starting from ro = 120, although the plot only focuses on the
last part before the capture. Right column: In the upper panels we compare
the real part of the numerical waveform (black line, barely distinguishable)
with two analytical waveforms: the one with only the Newtonian noncircular
factor (red line) and the one with the 2PN corrections where the tail factor
is resummed while the instantaneous factor is not (dashed blue line). The
corresponding phase differences are reported in the bottom panels (solid clear
blue and dashed blue lines, respectively). The same panels also show the ana-
lytical /numerical phase difference obtained with the resummation applied to
both the tail and the instantaneous 2PN noncircular phase d55™" (dashed green
line). The parameters of the ringdown and of the next-to-quasi-circular correc-
tions, as well the merger time (marked by the vertical line), are extracted from
numerical data, as in Ref. [215]. The closest analytical/numerical agreement
is observed when only the noncircular tail factor is resummed.
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3.4 Waveform validation: the comparable-mass
case

Let us now shift our focus on comparable-mass binaries. In this case, we in-
corporate our 2PN-improved noncircular waveform within the EOB eccentric
model of Ref. [157], which is currently the latest avatar of TEOBResumS-DALI.
In doing so, we keep the same dynamics, informed by NR quasi-circular simu-
lations, of Ref. [157]. The 2PN noncircular corrections to the waveform have
an essentially negligible impact on quasi-circular configurations and it is not
worth to provide a new, optimized, determination of (a§,c3) using the 2PN
resummed waveform. Under these conditions, we explore here the perfor-
mance of our new waveform model with both time-domain (phase-alignment)
and frequency-domain (unfaithfulness) comparisons, reported respectively in
Sec. 3.4.1 and Sec. 3.4.2.

3.4.1 Phase comparisons in the time domain

Let us consider first the time-domain phasing comparisons with the 28 public
eccentric datasets of the SXS catalog [239]. We have 20 non-spinning datasets,
with initial nominal eccentricities up to 0.3, and 8 spin-aligned datasets.
Ref. [155] presented specific analyses of these data, aimed at complementing
the information available in previous work [239], in particular (i) computing a
gauge-invariant estimate of the eccentricity during the evolution and (ii) giving
two different estimates on the NR uncertainty from the two highest resolutions
available. For completeness, the datasets we consider are listed in Table 3.4.
The table reports the time-domain phase uncertainty at merger 5(]5&1% as well
as the analogous quantities for the unfaithfulness FI{I“P?’/‘NR on Advanced LIGO

noise, as detailed in Ref. [155], according to the definitions that we will recall
below in Sec. 3.4.2. Table 3.4 also reports, for each configuration, the pa-
rameters (e£98, wFOB) used to initialize each EOB evolution at apastron (see
Refs. [155,254]). These values are updated with respect to previous works, as
they are determined by inspecting the EOB/NR phase difference in the time
domain and are tuned manually so to reduce as much as possible the differ-
ence between EOB and NR instantaneous GW frequencies [155]. Let us note
that our procedure for setting up initial data can be optimized. On the one
hand, the manual procedure for determining (e£9B, wFOB) could have been
automatized. On the other hand, the initial conditions we use are the anal-
ogous of the adiabatic initial conditions for circular orbits. As such, they do
not reduce to the (iterated) postadiabatic ones [147,265] in the quasi-circular
limit, and some spurious eccentricity would be present in that case. These
improvements are discussed in Ref. [259] and will be taken into consideration
for future developments. It is anyway understood that their eventual effect
is to improve systematically the EOB/NR agreement, and thus they do not
interfere with the model validation analysis we want to perform here.
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Table 3.4: SXS simulations with non-zero eccentricity analyzed in this sec-
tion. From left to right: the identification string of the simulation (ID); the
mass ratio ¢ = mj/mg > 1 and the individual dimensionless spins (x1, x2);
the time-domain NR phasing uncertainty at merger (5(152%; the estimated NR
eccentricity at first apastron, egf; the NR frequency of first apastron w)F;
the initial EOB eccentricity eE?B and apastron frequency w9B used to start
the EOB evolution; the maximal NR unfaithfulness uncertainty Fﬁlﬁ’/‘NR; the
initial frequency used in the EOB/NR unfaithfulness computation M fuiy; the

maximal EOB/NR unfaithfulness 2%

EOB/NR"
# ‘ ID ‘ (g, x1,x2) ‘ 6(151\:11{%@3(1) 655{ WZ:IR ‘ EESB WEOB ‘ FI{FI%XNR (%) ‘ M finin FSgE/NR(%)
1 | SXS:BBH:1355 (1,0,0) +0.92 0.0620 0.03278728 | 0.0888  0.02805750 0.012 0.0055 0.13
2 | SXS:BBH:1356 (1,0,0) +0.95 0.1000 0.02482006 | 0.15038  0.019077 0.0077 0.0044 0.24
3 | SXS:BBH:1358 (1,0,0) +0.25 0.1023 0.03108936 | 0.18082  0.021238 0.016 0.0061 0.22
4 | SXS:BBH:1359 (1,0,0) +0.25 0.1125 0.03708305 | 0.18240  0.021387 0.0024 0.0065 0.17
5 | SXS:BBH:1357 (1,0,0) —0.44 0.1096  0.03990101 | 0.19201 0.01960 0.028 0.0061 0.15
6 | SXS:BBH:1361 (1,0,0) +0.39 0.1634 0.03269520 | 0.23557  0.020991 0.057 0.0065 0.35
7 | SXS:BBH:1360 (1,0,0) —0.22 0.1604 0.03138220 | 0.2440 0.019508 0.0094 0.0065 0.31
8 | SXS:BBH:1362 (1,0,0) —0.09 0.1999 0.05624375 | 0.3019 0.01914 0.0098 0.0065 0.15
9 | SXS:BBH:1363 (1,0,0) +0.58 0.2048 0.05778104 | 0.30479 0.01908 0.07 0.006 0.25
10 | SXS:BBH:1364 (2,0,0) —-0.91 0.0518 0.03265995 | 0.0844 0.025231 0.049 0.062 0.15
11 | SXS:BBH:1365 (2,0,0) —0.90 0.0650 0.03305974 | 0.110 0.023987 0.027 0.062 0.12
12 | SXS:BBH:1366 (2,0,0) —6x107% 0.1109 0.03089493 | 0.14989 0.02577 0.017 0.0052 0.20
13 | SXS:BBH:1367 (2,0,0) +0.60 0.1102  0.02975257 | 0.15095 0.0260 0.0076 0.0055 0.15
14 | SXS:BBH:1368 (2,0,0) —0.71 0.1043  0.02930360 | 0.14951 0.02512 0.026 0.0065 0.13
15 | SXS:BBH:1369 (2,0,0) —0.06 0.2053 0.04263738 | 0.3134  0.0173386 0.011 0.0041 0.25
16 | SXS:BBH:1370 (2,0,0) +0.12 0.1854 0.02422231 | 0.31708  0.016779 0.07 0.006 0.37
17 | SXS:BBH:1371 (3,0,0) +0.92 0.0628 0.03263026 | 0.0912 0.029058 0.12 0.006 0.19
18 | SXS:BBH:1372 (3,0,0) +0.01 0.1035 0.03273944 | 0.14915  0.026070 0.06 0.006 0.09
19 | SXS:BBH:1373 (3,0,0) —0.41 0.1028 0.03666911 | 0.15035 0.02529 0.0034 0.0061 0.13
20 | SXS:BBH:1374 (3,0,0) +0.98 0.1956 0.02702594 | 0.314 0.016938 0.067 0.0059 0.1
21 | SXS:BBH:89 (1,-0.50,0) .. 0.0469 0.02516870 | 0.07194 0.01779 . 0.0025 0.18
22 | SXS:BBH:1136 (1,-0.75,—0.75) —1.90 0.0777 0.04288969 | 0.1209 0.02728 0.074 0.0058 0.12
23 | SXS:BBH:321 | (1.22,40.33,—0.44) +1.47 0.0527 0.03239001 | 0.07621 0.02694 0.015 0.0045 0.27
24 | SXS:BBH:322 | (1.22,40.33,—0.44) —2.02 0.0658 0.03396319 | 0.0984 0.026895 0.016 0.0061 0.26
25 | SXS:BBH:323 | (1.22,40.33,—0.44) —1.41 0.1033  0.03498377 | 0.1438 0.02584 0.019 0.0058 0.17
26 | SXS:BBH:324 | (1.22,+0.33,—0.44) —0.04 0.2018 0.02464165 | 0.29425 0.01894 0.098 0.0058 0.19
27 | SXS:BBH:1149 (3,40.70, +0.60) +3.00 0.0371  0.03535964 | 0.06237 0.02664 0.025 0.005 1.07
28 | SXS:BBH:1169 (3,-0.70, —0.60) +3.01 0.0364 0.02759632 | 0.04895  0.024285 0.033 0.004 0.10

To convey all available information, we find it useful to explicitly show the
time-domain phasing comparisons in Fig. 3.14 (for the non-spinning datasets)
and in Fig. 3.15 (for the spinning dataset). One appreciates that, for several
cases, the careful choice of (eESB,wEOB) allows one to obtain a rather flat
EOB/NR phase difference and residual oscillations of the order of 0.01 rad,
with accumulated phase difference at merger compatible with the nominal
NR uncertainty listed in Table 3.4. However, for some datasets, notably those
with larger initial eccentricities, the choice of the initial parameters looks
suboptimal, and the phase difference still shows a linear drift. Typically, this
effect is more prominent for dataset with larger initial eccentricity; it might
be related to either missing physics in the dynamics'* or to the need of further

14VWe remind the reader that the azimuthal radiation-reaction force we are using here
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Figure 3.14: EOB/NR time-domain phasing for all the non-spinning datasets
considered. The dashed vertical lines indicate the alignment window. For each
configuration, in the top panel we show the real part of the NR waveform
(black line, barely distinguishable) and the EOB one supplemented by our
2PN noncircular corrections (red line); in the bottom panel we report the
associated phase difference (light blue line) and relative amplitude difference
(orange line).
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Figure 3.15: EOB/NR time-domain phasing, analogous to those of Fig. 3.14,
for all the spinning datasets considered.

improving the initial data choice. Note, however, that this happens for NR
simulations that are especially noisy in the frequency at early times, so this
might prevent us from an optimal determination of the initial data that is
based on the time-alignment procedure, which is in turn affected by the noise
in the frequency. In any case, our choice of (eESB,wEOB) can be considered
conservative for all the datasets considered and actually suggests that the
analytical model can match the NR waveforms even better than what shown
in Figs. 3.14 and 3.15. The understanding that this might be the case is
motivated by the observation that there are datasets with high eccentricity,
e.g., SXS:BBH:1362 or SXS:BBH:1363, whose EOB/NR phase agreement is
practically equivalent to that of less eccentric dataset (e.g., SXS:BBH:1358).

3.4.2 EOB/NR unfaithfulness

As an additional figure of merit, we evaluate the quality of our EOB waveform
by computing the EOB/NR unfaithfulness weighted by the Advanced LIGO
noise over all the available configurations. Here we update the analogous
calculation done in Ref. [157] that was only relying on the simple Newton-
factorized waveform without the 2PN-accurate eccentric corrections. Consid-
ering two waveforms (hi, ha), let us recall that the unfaithfulness is a function
of the total mass M of the binary and is defined as

B (h1, ha)
(M) to.go |||l hall

is the one of Sec. 3.1, which only incorporates the noncircular Newtonian prefactor in its
¢ = m = 2 mode. See section 3.5 for the proposal and testing of an updated prescription
which also incorporates the 2PN noncircular corrections we are adding here to the insplunge
waveform.

(3.79)
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where (o, ¢o) are the initial time and phase. We used ||h|| = /(h, h), and
the inner product between two waveforms is defined as
* h()h5(f)
hi,he) = 4R ———f, 3.80
< ' 2> fmin Sn(f) ( )

where h(f) denotes the Fourier transform of h(t), S, (f) is the zero-detuned,
high-power noise spectral density of Advanced LIGO [266] and fuyin is the
initial frequency, approximately corresponding to the frequency of the first
apastron on each NR simulation, after the initial junk radiation has been
cleared. In practice, the integral is done up to a maximal frequency fong
that corresponds to |A(fend)| ~ 1072, Both EOB and NR waveforms are ta-
pered'® in the time domain so as to reduce high-frequency oscillations in the
corresponding Fourier transforms. In addition, as originally pointed out in
Ref. [239], the accurate calculation of the Fourier transform of eccentric wave-
forms is a delicate matter, and it may affect the calculation of the EOB/NR
unfaithfulness, Fyop /NR, if not optimally chosen. These issues have been dis-
cussed to some extent in Sec. IV of Ref. [157]; see in particular Figs. 15 and 16
therein. Here, we only recall that the original waveform is padded with zeros
in order to increase the frequency resolution and capture all the details of the
Fourier transform. Similarly, we were careful to tune the tapering parameters
so that the EOB and NR Fourier transforms for each dataset visually agree,
likewise to the case shown in Fig. 16 of Ref. [157]. The final outcome of the
EOB/NR unfaithfulness computation versus M is shown in Fig. 3.16. The
maximum values F™#EOB/NR are also listed in the last column of Table 3.4,
together with the value of the initial frequency M finin used in the integral.
Figure 3.16, complemented by Table 3.4, shows a small improvement with re-
spect to Fig. 14 of Ref. [157], especially for low masses. Since we are using here
a new choice of the parameters (eEaOB, wFOB) "and consequently new tapering
parameters, it is not really possible, within the context of equal-mass binaries,
to precisely state to which extent the small improvements found depend on
these new choices or on the additional PN corrections in the waveforms. Glob-
ally, in view of the similarities between Fig. 14 of Ref. [157] and our current
Fig. 3.16, we are prone to conservatively state that, even when in factorized
and resummed form, the 2PN noncircular waveform corrections do not im-
prove noticeably the TEOBResumS-DALI model on this specific corner of the
parameter space.

3.5 2PN noncircular corrections in F,

In the previous sections we proposed and tested an extension of the TEOBResumS
-DALT insplunge waveform that additionally incorporates 2PN-accurate non-

15We use a hyperbolic tangent function function, with two tunable parameters (a,7), of
the form w(t) = [1 + tanh(at — 7)] /2; this multiplies both the NR and EOB waveforms.
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Figure 3.16: EOB/NR unfaithfulness for the £ = m = 2 mode computed
over the 28 eccentric SXS simulations we are considering, see Table 3.4. The
horizontal lines mark the 0.03 and 0.01 values. The value of F’If]ngﬁ /NR does
not exceed the 0.7%, except for the single outlier given by SXS:BBH:1149,
corresponding to (3, +0.70,40.60) with el® = 0.037, which is around the 1%.
This is consistent with the slight degradation of the TEOBResumS performance
for large positive spins already found in the quasi-circular limit, and pointed
out in Ref. [157].

circular correcting factors. After suitable resummations, in particular those
introduced in Sec. 3.3.2, this yielded an improved analytical /numerical wave-
form agreement with respect to the simple use of the generic Newtonian prefac-
tor, especially at the level of the phase. The aim of this section is to explore the
performance of an analogous procedure applied to the radiation-reaction com-
ponent ]:"p. For simplicity, and since in any case the ]:"(p used in TEOBResumS
-DALI is noncircularly flexed only in the £ = m = 2 mode (see Eq. (3.18)), we
focus our radiation-reaction analysis on its quadrupolar component. Regard-
ing the organization of the contents of this section, in Sec. 3.5.1 we present
the 2PN noncircular expression for the £ = m = 2 mode of .7}@, which is then
used in Sec. 3.5.2 to build a properly resummed correcting factor. Finally, the
new radiation-reaction prescription is tested in Sec. 3.5.3.
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3.5.1 2PN-accurate noncircular quadrupolar flux

In analogy with the case of the waveform, the starting point for our extended
noncircular prescription for .7:"<p is to compute the generic planar orbit expres-
sion for its spherical multipoles, in PN-expanded form. We did so at 2PN
accuracy, considering Fp,,, = m %(hgmh;m) with hy,, given by the noncircular
2PN result of Sec. 3.2.1.

For our current purposes, we show here explicitly just the £ = m = 2 flux
multipole, up to 2PN order,' including both the instantaneous and tail parts:

1 689 33v 109
2PN 2 3 3 5 4 5
F™ = prpgu® = 2pju” = 2pgu w{pw [42—7+ (7
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where, for simplicity and to be consistent with we what we did on the non-
circular waveform factors, we performed an expansion around 0 of p,, up to

16We refer here to PN orders counted from the leading order of ]-AZP, which we remember
being, at leading order, a 2.5PN quantity in the EOB equations of motion.
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order O(p ); notice moreover that we are omitting an overall factor ¢=5. We
actually performed the same computation for all the subdominant (¢, m) mul-
tipoles of ]:"(p that are relevant at 2PN accuracy; their explicit expressions can
be found in Appendix C.2.

3.5.2 Factorization and resummation

Our aim here is to add 2PN-accurate noncircular corrections to the azimuthal
radiation-reaction force F,. This is achieved by dressing the first term of
Eq. (3.18) with an additional correcting factor F‘zgg"c derived from the full

noncircular 2PN flux F55'N written in Eq. (3.81). Following the same method-
ology we adopted for the insplunge waveform in the previous sections, our
factorization scheme is the following;:

(i) starting from the Taylor expanded flux FA'N, we factorize the full New-

tonian contribution, given by Fiy fw 59, while using in the latter the
2PN-accurate EOB equations of motion, so to remove from our correc-
tions the contribution already accounted for by the time derivatives in

fg{gg, and finally we expand the residual up to O(1/c*);

(ii) we single out the circular part FQQQP Ne of the Newton-factorized flux by
simply taking on it the limit p,, — 0;

(iii) we factorize the circular part computed in the previous step and compute
the desired noncircular correction F222P Nuc

In formulas we have

R ) F2PN
EZNe = lim  Thpx —22 , (3.82)
—0 N ¢N

Prs <F22f 52) |

’ EOMs

2PN i
F2PNoe =1 Fa 3.83

220022 ) p oy Fo2

where we use the same notation of Sec. 3.2.2. Again, the resulting noncircular
factor (3.83) comes out naturally split in an instantaneous and a tail com-
ponent, which appear at different PN orders. For this reason we can readily
factorize it further in an instantaneous and a tail factor,

F22213NIIC — F;;Nnc,instFQQ;Nnc,tail’ (384)
which explicitly read!”
R . 1 2 281 31v)\ ,
F222PNnC,mst 14 2[ pr; i (128 n 328V> ;2PN
¢ L(1+pju) ‘

"For consistency we have again to expand in p,, up to order O(p;,).
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— ol g )7 (3.85)
u(1 +piu)3(16 8 ) p

L[ phu (159697 2081y 203457 jopx
(14 p2u)® \ 42336 10584 10584 7%

Py, <225067 L 18119y 68931/2> f%FN]
4 Pr, ’
po(1+p2u)® \ 84672 © 10581 © 21168

2

) A 887 .

F222PNnc,ta11 14 E |: B Pr, 5 1536 11).%5PN

¢ Py (1 T pau) *
4
2215,
. - t;fPN} (350
peu(l+pju)” 9216 7

The quantities ;N and f;'ﬁr’PN are polynomials in the Newtonian-order variable
T T

y = piu. For the instantaneous part, the coefficients of the polynomials
contain also the symmetric-mass ratio v and read

. 2571 — 54v) 1061 — 390v
for, =1+ 2(81 T 186u)y 281 + 1861 v
) 2(395 — 3661) 295 — 234
I =1 (21(5 ~6v) by + 7(5 — 6v) v
PN _ 2 (503861 — 236326 — 429921%)
Te, = 159697 — 83241 + 8138002 7
6 (144635 — 1008620 — 5926002)
159697 — 83241 + 8138002 7
6 (119807 — 50090v + 2825612)
T 159697 — 8324p + 8138002 Y
21 (26487 — 195920 + 4281%)
T 159697 — 83240 + 8138002
N _ 2 (1028891 + 66902v — 136161/%)
Pt 925067 + 1449520 + 2757212
6 (670405 + 13630v + 894812)
225067 + 1449520 + 2757202 7
6 (548563 4 5454 + 4291212)
295067 + 1449520 + 2757202 7
3 (478421 — 54244y + 404440%)
9225067 + 1449520 + 2757202

(3.87)

(3.88)

(3.89)

)

(3.90)
while in the tail factor there are no v-contributions and the two polynomials
simply read

) 10094 127753 , 22016 . 2569 , 79250
FLSPN _ 2 3 4 5
P2, T o661 Y 13305 Y T sst ¥ 26617 2661 Y
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joen _q_ 4222 IS, TA90 15491 . 91994 5
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L TTOT g 169412 o 7372
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2215 Y T 11075 Y T 22157 (3:92)

Note that the analytical structure of the 2PN correction FQZQP Nue g similar to
the one of the 2PN correcting factors of the waveform multipoles, discussed
in Sec. 3.2.2. As already argued there, the polynomials in y need to be re-
summed in order to provide reliable results in the strong field regime. More
specifically, we find convenient to use diagonal Padé approximants for the
polynomials in Eq. (3.86) and in the 2PN part of Eq. (3.85), while leaving the
other polynomials in Taylor-expanded form.

3.5.3 Testing the 2PN noncircular correction of .7::0

We test the reliability of the resummed factor £33N in the test-mass limit, fo-
cusing on the associated quadrupolar contributions to the angular momentum
and energy fluxes, which we denote respectively by Jas and Eas. Since we are
interested in comparing different prescriptions for .7:10, the analytical fluxes
are not computed through Egs. (1.178)-(1.177) but via the balance equations
(2.97)-(2.97), with the Schott energy in the resummed form (3.20). Indeed this
is not the case for the numerical results we use as a reference, which instead are
computed using in Egs. (1.178)-(1.177) the numerical test-mass quadrupolar
waveform associated to the given dynamics selected for each comparison.

We start by considering two non-spinning geodesic dynamics with eccen-
tricities e = 0.1,0.9, in Fig. 3.17. In the rightmost panels, we show the 2PN
noncircular correction F222P Noe with different resummation procedures: in Tay-

. . . ~2PNpc tai
lor expanded form, with resummations only on the tail factor Fo, " ' and

with resummation on both F222P Nneinst and F;QP Nnetall  The Jatter is used to
compute the fluxes that we label as NCNQPN In the case with e = 0.1, the
three prescriptions considered are similar, while in the other configuration
with e = 0.9 the effects of the resummations is more evident. Moreover, it is
possible to see that, again, the resummation is more relevant for the tail factor
than for the instantaneous one. This is also a consequence of the fact that
the polynomials t}, 2PN are of order eight in y, while f2PN are fourth-order
polynomials. Nevertheless as shown in the middle panels of Fig. 3.17, the
improvement brought by the resummed 2PN corrections to the angular flux

ng is rather small, even for e = 0.9.

Deeper insight on its impact on the angular radiation-reaction force is
obtained considering the averages of the quadrupolar fluxes over an entire
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Figure 3.17: Trajectories, quadrupolar angular momentum fluxes, and 2PN
factor F222P Nue of Eq. (3.84) for two geodesic configurations. In the middle we
show the numerical flux (black line, dubbed numerical), the standard flux from
TEOBResumS-DALI (red line, dubbed NCN), and the result of our 2PN noncir-
cular corrections in resummed form (yellow line, dubbed NCN2PN); below we
plot the corresponding analytical/numerical relative differences. These plots
refer to the radial periods that are highlighted in blue in the orbital trajectory
plot, on the left column. More precisely, for the configuration with e = 0.9,
the fluxes and the 2PN corrections are shown over just a portion of the ra-
dial period, in order to highlight the burst of radiation at periastron (vertical
dashed line in the flux plots); in the corresponding trajectory plot this is high-
lighted in aqua-green. On the rightmost panels we show the 2PN corrections
to the flux in Taylor expanded form (Taylor), with resummations in the tail
factor (tail resum), and with resummations either in the instantaneous and
tail terms (total resum).
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orbital period T, that is
. 1 Torp .
(Jo2) = T / Jozdt, (3.93)
orb JO
. 1 Torb .
<E22> = T / Eggdt. (394)
orb JO

In particular, Table 3.5 and Fig. 3.18 show the relative analytical/numerical
differences for these quantities, further averaged over several geodesic dynam-
ics with the same eccentricity, and denoted as (AJag/Jos)e and (AFEs/Fa)e.
The prescriptions we test are again the standard TEOBResumS-DALI prescrip-

Table 3.5: Absolute analytical/numerical relative differences for orbit aver-
aged quadrupolar fluxes, further averaged over several dynamical configura-
tions at fixed eccentricity. We consider in particular a = (0, 0.2, £0.6, £0.9)
and p = (9ps(e,a)/ps(e,0),13ps(e,a)/ps(e,0)), where ps(e,a) is the sepa-
ratrix given by Eq. (3.31). Moreover, we adopt the shorthand notation
(0F2)e = (|AFa|/Fy)., with F = J, E. The radiation-reaction prescrip-
tions we compare are the NCN, NCN2PN(Taylor) and NCN2PN defined in
the main text. Mind that each value in the table is reported as a percentage.

NCN N(%aNyii)N NCN2PN
(0J22)e  (0E2)e | (6J22)e (0E22)e | (0J22)e (0E22)e
e=0.1 0.31 0.39 0.26 0.34 0.24 0.32
e=20.3 2.03 2.52 1.70 2.23 1.47 1.98
e=20.5 4.70 5.41 4.24 5.17 3.40 4.26
e=0.7 7.41 8.10 8.75 10.05 5.45 6.49
e=20.9 9.66 10.36 24.36 26.91 7.37 8.44

tion (NCN), the one upgraded with }3’22213 Nac in Taylor-expanded form (NCN2PN
(Taylor)), and the one where FQQQP Nne'is Padé resummed. As can be seen, the
2PN noncircular correction improves the radiation-reaction NCN, but the re-
summation is needed in order to obtain accurate results also for e 2 0.6.
Indeed, for high eccentricity the periastron gets closer to the central black
hole, making the y-polynomials of F222P Nac grow too much in their original
form. The resummation prevents this issue and leads also to better results for
lower eccentricities.

3.6 Comparisons with others eccentric EOB
models
Ref. [251], besides providing the analytical expressions of the generic-orbit tail

terms we adopted for our model, also proposed a different waveform factor-
ization where only the quasi-circular Newtonian prefactor (2.101) is used and
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Figure 3.18: Illustrative plot for the absolute analytical/numerical relative
differences of the averaged fluxes, as they are given by Table 3.5, for the
three prescription NCN, NCN2PN(Taylor), and NCN2PN, specified in the
main text. Each point is an average over 14 configurations, with (0J22)¢ =
(0E22)0 = 0.07% in the circular case e = 0. The NCN2PN prescription for
the radiation-reaction force, which incorporates resummed 2PN noncircular
corrections, is the one that has consistently the best performance.

all the 2PN noncircular contributions are included in additive form on top of
the respective quasi-circular factors.

The scope of this section is to thoroughly test this analytical waveform
proposal and compare it with ours, outlined in Sec. 3.2.2, using as a benchmark
the numerical test-mass waveforms we already used throughout Sec. 3.3. To
this end, we carefully follow Sec. ITIB of Ref. [251] and recap here the results
that are relevant to our analysis. For modes with m # 0, Ref. [251] advocates
the waveform prescription

BNae N8 o (T + TEC) 0m (fn + FE°) (3.95)

where the eccentric terms f;°¢ and T;<° are written as functions of (r, p,, pr).

The quasi-circular terms h( e)c, Tom, Sem, and fon, are here identified with

their TEOBResumS counterparts detailed in Sec. 2.2. Focusing just on the (2, 2)
mode, we use the expressions of T55¢ and f55¢ provided in the supplemental
material of Ref. [251]. The full expression of the former reads

32pr o — pr (20, + ip,r®/?)

T3¢ =n'r| — i + g (— oip} — 15plper™
+ 9ip,pPr® p? 9/2) + 5 f (— 10p} + 15ip2p,r/2 + 8p2p2r® — ip,pir®/?
+ 2pr°%) + ﬁ(589zpr + 1150p2p,r3/% — 1060ip>p2r® — 505p2pcr/?

3/2
+ 55ip,pir® — 116p2r15/%) 4 ——— r (1974p8 — 4995ip>p,r3/? — T4T0pAp2 >

11520
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+ 7240ip3p3r®/? + 3855p2pirS — 669ip,pir'®/? + 560p2r9)] ,

(3.96)
while f55¢, specified to the test-mass limit case, results
2 2 4 4 4
ecc Pr Yo 1 1 Pr 29pr
pu— —_— — 1 —_—
2 =gttt Tt Tt (47«31)3 8402
ipy 37 p? 1oy, 3lpF 37 44
4207 84 L v A L v PV
ipr5 _ 209iprvg 1 8_ 2 Pyl0 13 . 5973 N 4303 N
673vg 84 6rov5 21 12r2vg 84 21
1/ ap? _ diap, a  Savo N 4avd 1 a’p?
c3 3rdvy  3r2vd  3riu] 3r 3 ct 6T4U0
B ia’p3 a’p? B 5a2p?  ia’prvo a? _ &21}3 B P8
6r3vy  6r5v§  6r2v3 r 2r3v3 2 46yt
Co31pd277pd 5ipd  3ipd | 5Tlipirue  py
112305 1008v¢  32r°uit  14r20] 2016 12r7vg4
_ 179p; 85 85 42, 1963p;  5ip} 349ip3riv]
144r08 252" 0 1008r02 2476yt 1008
B 953ip> 803 ot 2p? 79p? 71p2 4o 10 43p?
1008730 504 9r8udt  168rSv§ 1008 42r3v3
_ 3lp; 31 ER A3pjvg  Sipr 127ip,rov§?
168720 1127770 126 72rTol! 2016
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43 53r3u° 13 43r208 430 11vd
+ 7t + o — 0 —0_ 9 (3.97)
63r+v; 168 504r°vg 126 126r 18
where " 1/6
L
vy = M (3.98)

\/F
is the Newtonian orbital velocity.

These are then recasted in terms of (p,,, pr,) considering (see also Ap-
pendix E of Ref. [251])

VD
br = Tpha (3.99)
OH OH\ VD d A
= — —_— + pr, — . 3.100
P |:<87" >pT* P <6pr*)r A d’l"\/ﬁj| ( )

Figure 3.19 shows a comparison between (i) the numerical waveform, (ii)
the analytical waveform of TEOBResumS-DALI, here without 2PN noncircular
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corrections, and (iii) the 2PN-corrected waveform of Eq. (3.95). We observe
that the amplitude differences during the inspiral become more relevant as we
go towards large eccentricities and near the apastra. Moreover, even at small
eccentricity, the waveform of TEOBResumS-DALI seems to perform globally
better than the one of Eq. (3.95).

Figure 3.19: Comparisons between the ¢/ = m = 2 numerical and ana-
lytical waveforms emitted by the eccentric inspiral of a test particle on a
Schwarzschild black hole. The initial eccentricities and semilatera recta are
(e0,po) =(0.1,6.7), (0.3,7), (0.7,7.7). The top panels display the numerical
waveform (black line, indistinguishable), TEOBResumS-DALI waveform (dot-
dashed red line, labeled N) and the waveform of Eq. (3.95) (dot-dashed green
line, labeled 2PNg). The corresponding phase differences and relative am-
plitude differences are shown in the bottom panels. The vertical black line
marks the merger time, corresponding to the peak of the numerical waveform
amplitude. Since we are interested on the inspiral, for simplicity the 2PN
waveform is not completed by NQC corrections and ringdown part. The an-
alytical/numerical phase agreement is comparable for the two choices (blue
lines); by contrast, the amplitude disagreement (orange lines) is always larger
for the 2PN prescription, for which worsens up to 30% when the eccentricity
increases.

Figure 3.19 also highlights an aspect that is a priori unexpected: the
largest amplitude differences occur at apastron and not at periastron. This
might look puzzling because PN expansions are more accurate in weak field
than in strong field, while the plot seems to indicate the opposite.

The reason for this behavior can be understood by inspecting Figs. 3.20
and 3.21. In the first one we compare (i) the quasi-circular EOB waveform,
(ii) the waveform with the general Newtonian prefactor, (iii) the waveform of
Eq. (3.43), and (iv) the waveform of Eq. (3.95). Moreover, we plot all the
respective analytical/numerical relative amplitude differences. On parallel,
the second figure focuses on the noncircular instantaneous corrections to the
amplitude and to the phase for each analytical prescription, illustrating their
evolution along the dynamics. As shown in the middle panel of Fig. 3.21,
all the noncircular instantaneous factors provide a relevant correction to the
phase. The effect of these corrections is evident in the top panel of Fig. 3.20,
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Figure 3.20: Comparing wave-
forms generated by a test parti-
cle inspiralling and plunging into
a Schwarzschild black hole, with
(eo,po) = (0.7,7.7). Top panel:
the numerical waveforms (black
line, indistinguishable), the quasi-
circular EOB waveform (gray line,
dubbed qc), the waveform of
TEOBResumS-DALI with just the
Newtonian noncircular corrections
(red line, dubbed N), the waveform
of Eq. (3.43) with the 2PN correct-
ing factor (blue line, dubbed 2PN),
and the waveform of Eq. (3.95)
(green line, dubbed 2PN, without
NQC terms and ringdown). Bot-
tom panel: relative amplitude dif-
ferences with the numerical wave-
forms. Apastra are marked by dot-
ted red vertical lines, while peri-
astra are marked with dot-dashed
blue lines.

Figure 3.21:  Contrasting differ-
ent noncircular corrections for the
same configuration of Fig. 3.20.
Top and middle panels: the non-
circular contributions to ampli-
tude and phase. We consider:
the noncircular Newtonian factor
ﬁgg’o)nc of Eq. (3.11) (red); the non-
circular factors Bg’o)“fzggm“ ap-
pearing in our prescription (blue);
the 2PN mnoncircular corrections
of Eq. (3.95), written as 1 +
155¢/ foo  for formal consistency
with the other noncircular correc-
tions (green). The bottom panel
shows the values assumed by #, Q2,
and Q along the dynamics. The
correction proportional to #/(r{2?)
in ﬁg’o)“ yields larger values at
apastron than 14 f$5¢/ fos, since Q2
approaches 0 there.
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where the quasi-circular waveform (gray line) is visibly dephased with respect
to the other curves. This indicates that the noncircular waveform informa-
tion has consistently the effect of improving the numerical/analytical phase
agreement with respect to the quasi-circular EOB waveform. By contrast, the
noncircular correction given in Eq. (3.95), at 2PN accuracy, does not provide
a reliable amplitude description around the apastra, with differences that are
rather close to those obtained using the standard circular waveform.

To understand this aspect, let us focus for a moment on the Newtonian
noncircular prefactor, whose time evolution is shown, for the case considered,
in Fig. 3.21. The figure shows that the contribution of the Newtonian pref-
actor is larger at apastron than at periastron. This is due to the fact that in
ﬁg’o)“ the orbital frequency €2 appears squared and at the denominator of the
noncircular correction, as a consequence of having factorized the circular New-
tonian contribution. This eventually amplifies the contribution of the whole
function in correspondence of the lowest values of €2, i.e. in the neighborhood
of the apastra. Note, however, that the only nonvanishing contribution of
flg’o)“c at apastron is the one proportional to #, whose presence is thus the
main reason behind the behavior seen in Fig. 3.21. The hierarchy between 7
and 2 is clarified by the bottom panel of Fig. 3.21. By contrast, when con-
sidering Eq. (3.95), without the crucial factorization of the general Newtonian
prefactor, the amplitude correction remains substantially constant, and small,
for the whole radial evolution. This leads to the large analytical/numerical
discrepancies for the amplitude, as shown in Figs. 3.19 and Fig. 3.20. In
fact, the prescription of Eq. (3.95) incorporates the PN expansion of ﬁg’o)“
through the replacement of 2 and 7 via the 2PN equation of motion, so that

the crucial amplification related to the exact #/Q? contribution is lost.

This trend is even more evident if we inspect dynamical capture dynam-
ics. Figure 3.22 provides an example of this, by referring to the uppermost
configuration of Fig. 3.13. The waveform of Ref. [251], Eq. (3.95), yields frac-
tional amplitude differences ~ 60% at the apastron of the quasi-elliptic orbit
following the first encounter.

We conclude by noting that the analysis we just carried out also indi-
cates that, given the recipes we are following to build our 2PN noncircu-
lar corrections, it is structurally impossible for them to improve the analyt-
ical/numerical agreement at periastron and apastron, since the two radial
turning points are characterized by p,, = 0, for which F ZQTEN"C and ﬁ?ﬁn reduce
to unity. Considering that in the vicinity of the periastra we have the biggest
contribution to the fluxes, we see this as a first indication that using the PN-
expanded EOB equations of motion to define the 2PN noncircular corrections,
and thus getting rid of terms like # that do not vanish at the radial turning
points (see the bottom panel of Fig. 3.21), may not be the best way to pro-
ceed. We follow up on this note in the next section, where we reassess our
noncircular insplunge waveform recipe in light of what we highlighted here.
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Figure 3.22: Same type of comparison of Fig. 3.19 but considering the dy-
namical capture configuration in the upper panels of Fig. 3.13. Top panel:
real part of the quadrupolar waveform. Middle panel: quadrupolar frequency.
Bottom panel: phase and fractional amplitude differences. The waveform of
Ref. [251], Eq. (3.95), accumulates rather large amplitude differences up to
the apastron of the quasi-elliptic orbit following the first encounter.

3.7 Alternative prescription for the quadrupolar
noncircular instantaneous factor

The noncircular corrections we discussed and tested in the previous sections
are all fundamentally based on PN expanded spherical multipoles of the wave-
form that, once recasted in EOB coordinates, are functions of the variables
(u, @, Pr.,Dy). In our prescription, this leads to noncircular factors organized
in powers of p,, that reduce to 1 when p,, — 0. As a consequence, all of
them tend to disappear whenever the radial momentum dynamically evolves
to small values, notably near the apastra and periastra of the orbital motion.

Let us make a step back and dwell for a moment on the origin of the
2PN noncircular expression of hg,,, and thus of (U, Vi), which we are us-
ing as an input to devise our waveform corrections. Setting aside the tail
contributions, the remaining 2PN-accurate instantaneous terms in (Upp,, Vi)
are completely determined by the fth time derivatives of the source multi-
poles (Ir, Jr.), specified to their 2PN expressions for generic planar dynamics.
Then, in the standard procedure, also followed by Ref. [246] for the deriva-
tion of the waveform results we used in Sec. 3.2.2 to define our noncircular
instantaneous factors, these time derivatives are systematically order reduced
by means of the PN-expanded equations of motion. Stated differently, at the
2PN order we are considering here, the instantaneous part of hy,, is simply
given by a straightforward generalization of Eqs. (3.4)-(3.5) where the Newto-



3.7. ALTERNATIVE PRESCRIPTION FOR THE QUADRUPOLAR
NONCIRCULAR INSTANTANEOUS FACTOR 135

nian multipoles (I1)Newt and (J1)Newt are replaced with their 2PN-accurate
counterparts. However, contrary to the rationale behind the definition of the
general Newtonian prefactor, the natural occurring time derivatives of the dy-
namical variables appearing therein are all order reduced with the equations
of motion.

In what follows we compute an alternative version of the 2PN instan-
taneous noncircular factor of Sec. 3.2.2 where we crucially skip this order-
reduction procedure, in what can be regarded as the 2PN generalization of
what is done in TEOBResumS-DALI for the Newtonian factor. The result is
a noncircular instantaneous correction that also depends on the time deriva-
tives of the EOB variables (u, ¢, pr,,p,), remarkably including terms, such
as 7, that despite being purely noncircular do not vanish in proximity of the
radial turning points of the orbital motion (see Fig. 3.21), and thus should
capture extra noncircular waveform modulations with respect to the previous
prescription. Focusing again on the dominant spherical mode ¢ = m = 2, we
outline the new noncircular factor in Sec. 3.7.1, and then we test its perfor-
mance in the waveform model in Sec. 3.7.2.

3.7.1 Time-derivative dependent noncircular instantaneous
factor

In the case of the quadrupolar mode of the waveform, the 2PN generalization
of (3.4) giving the 2PN instantaneous piece of hgy reads

ins \/6 d2
hist — R (y%2 Iij) (3.101)

where, from Eq. (1.168),

2
Vi = %(51@ — i) (51 — 10)2)- (3.102)

To obtain our new noncircular instantaneous factor, we proceed as follows: (i)
we recover the 2PN accurate expressions for I;;, valid for noncircular bina-
ries, from Sec. IIIB of Ref. [246]; (ii) we trade the harmonic coordinates used
therein for the EOB phase space variables (u, ¢, p,,, p,), using the transforma-
tion laws given in Egs. (3.24)-(3.27); (iii) we compute hi5' from Eq. (3.101),
crucially keeping as they are the occurring time derivatives of the EOB vari-
ables, without replacing them with the PN-expanded equations of motion; (iv)

we factorize the Newtonian part, which is precisely h%\ao) of Eq. (3.10), and

the generic-orbit source term Sé?f) = Heg; (v) we finally factorize the quasi-
circular part of the residual, obtained by setting to zero p,, and all the time
derivatives of the EOB variables except for Q2 = ¢.

To be more precise, the expression we find for hi5*, before the factorization
process, has the structure

hist = nSy O (u, 7,7, 9, Q)
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where h;];/,o) corresponds to Eq. (3.10) and (hglsz’O), h%PN’O)) formally address

the contributions obtained by taking the time derivatives (in this case second
order derivatives) of the corresponding PN terms of the source multipoles,
while keeping all the derivatives explicit. We thus compute

. hinst

hist = 22 : (3.104)

T: —__as
22 2PN 2 (N,0) &(0
h "8

The quasi-circular part of this quantity reads

2 2
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with p, left explicit, instead of being rewritten in terms of its quasi-circular
orbit expansion in u. The sought for 2PN noncircular instantaneous factor is
then obtained as

iLiHSt

7 NCinst __
h22 = TopN }tLCinst
22

, (3.106)

and results in a rather long function of the variables (u,f',f,Q,Q, Dr.s Pr. s
Dr.> Do, Py D), Which we report explicitly in Appendix C.3. Because of its
involved analytical structure, we find here convenient not to split this factor
in amplitude and phase.

Thanks to the fact that tail and instantaneous terms appear at different
PN orders and that the factorization procedure leading to Eq. (C.22) is anal-
ogous to the one considered in Sec. (3.2.2), we can directly employ the new
instantaneous noncircular factor (C.22) in the waveform model of Sec. (3.2.2)
in place of its previous counterpart with order-reduced derivatives; relevantly,
this means that we do not have the need of recomputing the noncircular tail
factor, which remains in the resummed form outlined in Sec. 3.3.2. We test
the so obtained alternative version of our 2PN-corrected waveform model in
the next section.

3.7.2 Assessment of the new waveform factor

The new prescription for the 2PN noncircular correcting factor is tested by ex-
amining the performance of the respective waveform in the test-mass limit, for
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several dynamical configurations, and in the comparable-mass case. To set the
stage, we consider a particle inspiralling and plunging around a Schwarzschild
black hole in Fig. 3.23, which refers to a configuration with initial eccentric-
ity eg = 0.5 and semilatus rectum py = 7.35. At the level of the phase, the

Figure 3.23: Quadrupolar waveform generated by a test-mass plunging into
a Schwarzschild black hole along an orbit with initial eccentricity ey = 0.5 and
semilatus rectum py = 7.35. In the top panel the numerical waveform (black
line) is shown alongside the EOB waveform of TEOBResumS-DALI (dashed
red line, below dubbed U35[N]), the one with the prescription of Sec. (3.2.2)
(dashed green line, below dubbed “Placidi et al.” after the paper where we in-
troduced it), and to the one proposed in the present section (dash-dotted blue
line, dubbed UJ5[2PN]). The middle and bottom panels show the phase and
relative amplitude differences for the three analytical waveform considered.

performance of the new noncircular factor and the one of Sec. (3.2.2) are sub-
stantially equivalent; see the dashed and solid blue lines in the middle panel of
Fig. 3.23. For the amplitude, instead, the new approach yields a reduced max-
imum analytical/numerical difference during the evolution, as well as a slight
improvement as the orbital motion approaches the periastra; see bottom panel
of Fig. 3.23. In view of our previous considerations, we attribute the cause
of this difference to the nonvanishing of the new noncircular correction at the
radial turning points. This is further highlighted in Fig. 3.24, which compares
the amplitude and phase of the noncircular instantaneous factor used in the
different prescriptions of Fig. 3.23. The bottom panel shows that the 2PN fac-
tor we are considering here does not vanish at the radial turning points and
is especially relevant at periastron. Note that the noncircular instantaneous
phase corrections at 2PN differ sensibly from the Newtonian one; however,
part of this difference is compensated by the hereditary phase correction, as
already highlighted in Fig. 3.7.

To better evaluate the impact of the difference at periastron between the
two 2PN noncircular factors, it is convenient to compare how the respective

) 1 ) i
quadrupolar waveforms reproduce the fluxes Joo = —4—% (h22h§2) and Foyy =
T
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Figure 3.24: Comparing the instantaneous noncircular correction to the
amplitude (top panel) and phase (middle panel) of the quadrupolar wave-
form, considering the same dynamical configuration and analytical prescrip-
tions of Fig. 3.23. Bottom panel: amplitude relative difference of the two
2PN-corrected prescriptions with respect to the Newtonian contribution. The
noncircular factor introduced here is nonzero at the apastron (red dotted ver-
tical lines) and periastron (blue dash-dotted vertical lines). The black vertical
line marks merger time.

1 .
—|haa|?. More specifically, we consider the set of 14 geodesic eccentric orbits

0f7rTable 3.5, already employed for Fig. 3.18 in Sec. 3.5.3. For instance, in
Fig. 3.25 we compare the fluxes for one of these configurations, with e = 0.5.
From the analytical/numerical relative differences, one finds that the 2PN
noncircular corrections with explicit derivatives perform better at periastron
than the one of Sec. 3.2.2. The upper panels show instead a slightly stronger
emission at periastron than before, implying that, once the new waveform
prescription is recasted in an angular radiation-reaction force correction, as
we did in Sec. 3.5, and the latter is incorporated within the EOB dynamics,
we would eventually have an additional acceleration of the eccentric inspiral.
The development and testing of this radiation-reaction corrections is deferred
to future work.

To draw a more global picture, it is useful to compare the orbital-averaged
analytical fluxes with the corresponding, averaged, numerical ones, mirroring
what we did in Fig. 3.18. This is done in Fig. 3.26. As showed therein, the
new 2PN noncircular correction with explicit time derivatives yields (on aver-
age) the best analytical/numerical agreement: even when such a correction is
truncated at 1PN, the respective waveform reproduces more accurate fluxes
than the one of Sec. (3.2.2). Note however that the average over all spinning
configurations can hide some information. In particular, for highly eccentric
configurations (e = 0.9), the Newtonian prescription yields a better analyti-
cal/numerical agreement when averaged only on negative spins. However, in
the Schwarzschild case, the hierarchy of the different prescriptions is the same
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Figure 3.25: Quadrupolar fluxes at infinity of angular momentum and en-
ergy, generated by a test-particle in Schwarzschild spacetime along a geodesic
with e = 0.5 and p = 9. To mark the different prescription we use the same
notation of Fig. 3.23, with the addition of U35[1PN], that represent the pre-
scription with the time-derivative dependent noncircular factor truncated at
1PN. The vertical dashed line in the middle marks the periastron. The rela-
tive differences in the bottom panels shows that the prescription Ujs[2PN] is
the one with the best analytical /numerical agreement at periastron.

Figure 3.26: Analytical/numerical fractional differences between the averaged
quadrupolar fluxes versus eccentricity. Each point is obtained from the mean
of the orbital averaged fluxes of all the configurations at a given eccentricity
e, taken from the set we previously considered for Fig. 3.18. We see that the
analytical/numerical agreement of the fluxes is consistently improved with
respect to the previous prescription, more evidently as we go towards high
eccentricities.
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as that of Fig. 3.26.

The new noncircular correcting factor with explicit time derivatives seems
quantitatively superior to all the other prescriptions. This is further corrob-
orated by the following: the instantaneous amplitude correction presented in
Eq. (3.54) contains a 1PN term o« —p2_/u = —p?2 r that can become extremely
large when considering hyperbolic or eccentric orbits with large initial radius.
While this issue is not relevant for any of the configurations considered in
Sec. 3.2.2, such an amplitude correction can become even negative, and thus
unphysical, for large separations, e.g. those occurring in hyperbolic encoun-
ters. By contrast, the new noncircular correction is well-behaved also for a
hyperbolic encounter or a scattering configuration starting from any, arbitrar-
ily large, initial separation.

The same behavior carries over to the comparable-mass case, with the test-
mass dynamics replaced by the resummed EOB dynamics in the evaluation of
the explicit time derivatives. Figure 3.27 exhibits the time evolution of the dif-
ferent noncircular waveform corrections along the EOB dynamics of a binary
corresponding to the illustrative NR configuration SXS:BBH:321 of the SXS
catalog [267], row #23 in Table 3.4. In this case, the mass ratio is ¢ = 1.22
while the dimensionless spins (x1,x2), aligned with the orbital angular mo-
mentum, are y; = +0.33 and x2 = —0.44. The initial EOB eccentricity at the
apastron is small, eE?B = 0.07621, but large enough to probe whether the new
waveform model brings an improvement with respect to the one of Sec. 3.2.2
or not. Fig. 3.27 indicates that, in the comparable-mass case, the amplitude

Figure 3.27: Same scheme as in Fig. 3.24, but relative to an eccentric inspiral
binary with ey = 0.07621 and ¢ = 1.22, corresponding to the illustrative NR
configuration SXS:BBH:321 of the SXS catalog [267], row #23 in Table 3.4.

correction at the radial turning points is more relevant than in the test-mass
case (compare with Fig. 3.24), although the extra correction with respect to
the Newtonian one is still quite small. It is also informative to look at the
EOB/NR phasing comparison for SXS:BBH:321, that we report in Fig. 3.28.
The top panels compare the EOB and NR real parts of the waveform, while the
bottom panels show the EOB/NR phase difference A¢pEPBNR = ¢pFOB - gNR
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Figure 3.28: Illustrative EOB/NR phasing comparison with the NR dataset
SXS:BBH:321 of the SXS catalog [267]; see row #23 in Table 3.4 for the
relevant data. The EOB waveform is aligned to the NR one by minimizing
the phase difference in the frequency interval corresponding to the two vertical
lines in the left panels of the figure. Here, the EOB/NR phase difference is
reduced during the plunge with respect to the corresponding plot in the upper
right corner of Fig.3.15, in Sec. 3.4.1. The associated noncircular waveform
correction is shown in Fig. 3.27.

and relative amplitude difference, with AAFPBNR = AFOB _ ANR " The pic-
ture illustrates that Agf)gQOBNR is reduced, during the late-inspiral and plunge,
with respect to the corresponding plot with the model of Sec. 3.2.2, in the
upper right corner of Fig. 3.15, which uses the same waveform alignment in-
terval. A similar behavior is also found with higher eccentricities. However,
it must be noted that, since the waveform is different, the choice of the initial
parameters, which we are currently not changing, might be optimized further.
Investigations on this aspect, together with the extension of this prescription
to higher modes, is postponed to future work.






Conclusions

n this Thesis we addressed the problem of building accurate analytical
I models for GW signals that had their origin in the coalescence of non-
circularized compact binary systems, i.e. binaries of compact objects whose
orbital eccentricity remains non-negligible during their whole inspiral motion.
We started out with an in-depth exploration of the general theory of GWs pro-
duced by PN sources, in Chapter 1, where we laid down the basic theoretical
concepts and methodologies that are at the heart of any analytical waveform
model. Then, in Chapter 2, we specialized our discussion to the case of EOB
models, probing in details how the EOB approach describes the evolution of
compact binaries and the associated emission of gravitational radiation. Here,
we paid particular attention to the prescriptions of TEOBResumS, the faithful
and physically complete EOB model upon which we based our waveform mod-
eling activity, which represents the core content of Chapter 3, and, more in
general, of our original contributions to the field. In particular, after hav-
ing reviewed TEOBResumS-DALI, the state of the art eccentric branch of the
aforementioned model, we dedicated the rest of Chapter 3 to propose and
thoroughly test several extensions of it, which revolve around the inclusion of
2PN noncircular waveform information, with the goal of better capturing GW
modulations induced by the eventual noncircularity in the underlying binary
dynamics.

More specifically, in what follows we recap our proposals and set out the
conclusions we can draw from their performance assessment:

(i) We have exploited 2PN waveform results for generic planar orbits to
come up with the definition of associated correcting factors that can be
directly used to improve the waveform of TEOBResumS-DALI, within the
paradigm of the factorization of the generic Newtonian prefactor. In
particular we split these corrections in instantaneous and tail factors, on
the basis of the character of the waveform information they respectively
incorporate.

(ii) We tested the performance of these analytical correcting factors by per-
forming comparisons with numerical waveforms from eccentric inspirals

(also through plunge and merger) in the test-mass limit. We showed
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(iii)

CHAPTER 3. ECCENTRICITY EFFECTS IN EOB WAVEFORM
MODELS

that the analytical/numerical agreement through the plunge phase, es-
pecially for large eccentricity, can be largely improved by implementing
a straightforward resummation scheme, via Padé approximants, of the
residual polynomials in pau entering the noncircular factors; this was
found to be particularly important for the tail factors. With this proce-
dure, we obtained an analytical/numerical phase disagreements of +0.04
rad for e = 0.9 and disagreements at most within 0.02 rad for smaller
eccentricities; see Figs. 3.5 and 3.6. Similar improvements are also found
for the test-mass limit hyperbolic captures analyzed in Sec. 3.3.6.

Moving to the comparable-mass case, we provided a new comparison for
our upgraded version of TEOBResumS-DALI with 28 public NR simula-
tions of eccentric inspirals, from the SXS catalog. For most of the con-
figurations, the phase difference during the inspiral is mostly within the
+0.05 bandwidth. The related EOB/NR, unfaithfulness computations
(using aLIGO noise for 20Mg < M < 200M) are below the 1% thresh-
old, grazing at most the 0.7%, except for a single outlier, SXS:BBH:1149,
which reaches this limit because of limitations inherited by the underly-
ing quasi-circular model, as explained in Ref. [157]. It should be noted
that the new 2PN factor discussed here are found to be small corrections
to the TEOBResumS-DALI avatar of Ref. [157]. As such, the use of well
controlled test-mass limit numerical data is crucial for determining the
actual importance of this additional analytical information.

Adopting factorization and resummation strategies analogues to those
used for the waveform, we have also built 2PN noncircular correcting
factors with which to dress the quadrupolar component of the angular
radiation-reaction force of TEOBResumS-DALI. Our flux tests indicate
that employing this new radiation-reaction force prescription yields a
small but visible improvement in the analytical/numerical agreement
for each value of the eccentricity; see Fig. 3.18.

The availability of test-mass waveform data has also allowed us to thor-
oughly compare our waveform prescription with the one proposed in
Ref. [251], whose main difference from ours is that the the Newtonian
prefactor is left in its original quasi-circular form. We found that the
factorization of the general Newtonian-factor, even before the inclusion
of our 2PN noncircular factors, yields more accurate and robust predic-
tions all over the parameter space. This is particularly relevant at the
level of the waveform amplitude, with differences that can reach up to
60%, versus the 6% at most of our model; see Figs. 3.19 and 3.20.

The origin of the reliable behavior found for the amplitude of the wave-

form with the general Newtonian factor héﬁi’e), somehow not precisely
understood in past works, has been traced back to the crucial presence
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in the latter of contributions like #*/7Q? that do not vanish at the radial
turning point of the binary motion. This prompted the proposal of an
alternative version of our 2PN noncircular instantaneous factors where,
similarly to h§%’€), the time derivatives of the EOB variables are left
explicit. We comprehensively tested this prescription, focusing on the
mode ¢ = m = 2, against a large set of numerical data, with waveforms
and fluxes emitted by a test-mass orbiting a Kerr black hole and with
comparable-mass simulations. The corresponding waveform model has
been observed to increase consistently the analytical/numerical agree-
ment with respect its previous 2PN-corrected iteration; this is particu-
larly evident at the level of the fluxes, which are reported in Fig. 3.26.

To wrap up, our results indicate that the incorporation of high-PN noncir-
cular waveform information within EOB models is more effective if, on the one
hand, suitable factorizations and resummation procedures are implemented,
and if, on the other hand, the time derivatives of the EOB variables, natu-
rally occurring in the formal expression of the analytical waveform, are not
replaced, whenever possible, with the PN-expanded equations of motion, but
rather evaluated using their resummed EOB counterparts. This also explains
why the use of the general Newtonian prefactor, as originally proposed in
Ref. [254], seems to be an essential element for constructing highly accurate
analytical waveforms for noncircular dynamics.
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Appendix A

Useful mathematical tools

A.1 Symmetric-trace-free projection of a generic
tensor

Given a Cartesian tensor Tp = Tj, . ;,, its explicit STF part reads

[p/2]
TP = Z aié(i1i26i55i4 e 5i2k_1i2]€ Si2k+1...ip)a1a1.uakak ’ (A]‘)
k=0

where the parenthesis () denote a symmetrization over the indices they enclose,

Sp=1ip), (A.2)
p__ P (2p — 2k — 1)!!
“= - i) -2k (43)

and [p/2] is the integer part of p/2.
For example we have

- 1
i = Tij) — 5% Taa; (A.4)

1
Tijk = T(z]k:) - g(dijT(kaa) + 5jkT(iaa) + 5ikT(jaa))' (A5)

A.2 Padé approximants

Given the truncated Taylor series of an arbitrary function, we define its Padé
approximants as the rational polynomials that, written in terms of the same
number of coefficients of the original truncated series, reduce to the latter
when it is correspondingly Taylor-expanded and truncated.

Let us consider, by way of illustration, a function f of the variable v and
the associated Taylor series in u truncated at order n,

Sn(u) = To[f(w)] = fo + fiu+ fou® + ... + fuu, (A.6)
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where, as in the main text, T}, is the operator that applies on its argument
a Taylor series truncated at order m, here on the variable w. Introducing two
integers (k,m) such that m + k = n, the n + 1 possible Padé approximants
associated to the truncated series (A.6) are the rational functions P¥ [Sn(u)]
such that

Ph[Suw)] = 5E, (A7)
T [P [Sn(w)]] = T [f ()] (A8)

where Ni(u) and D,,(u) are polynomials in w, respectively of order k and m,
with Dy, (0) = 1; their coefficients are uniquely determined by Eq. (A.8) in
terms of those of the original series (A.6), i.e. (fo, f1,..., fn). For instance,
given S3(u) = fo + fiu+ fou? + f3u?, we have

P2[S3(u)] = S3(u), (A.9)
+ aju + agu®
PR[Ss(u)] = = (A.10)
1 . bo + b1u
P2 [Sg(u)] N 1+ bgu + b3u2’ (A.ll)
0 _ co
P3 [Sg(u)] N 14+ cu+ 62u2 + C3u3’ (A.12)
where ag = bg = ¢g = fo and
_ fifa—fofs B fifs I,
a] = 7]02 , ags = 7]02 s as = f27 (A13)
f2=2fofofi+ f3fs Jofs — fif2 13— f1ifs
by = by = —%5~— "= p3=‘2 """ A.
: ohh TRk BT W
a=—fi, co=ft—fo c=—f+2ff—fs (A.15)

Notice that Padé approximants are really useful only when (k,m) # (n,0),
otherwise we simply recover the starting truncated series.

Concerning the relevant properties of Padé approximants, in general they
satisfy

PET [F(w)]] = (P [T[f )]]) 7 (A-16)

P:://z2 [Sn(u)] = fo+ fiu P§/§‘1 [S'n_1(u)] if n is even, (A.17)

P((:jll))//s [Sn(u)] = fo+ fiu P((:__ll))//s (S (u)] if n is odd, (A.18)
where

Sp_1(u) = Sn(u) = fo (A.19)



Appendix B

TEOBResumS for spin-aligned
coalescing binaries

Even though spinning compact binaries do not represent the main source of
reference for the waveform modeling activity discussed in this Thesis, specifi-
cally in Chapter 3, the basic version of the TEOBResumS model upon which the
latter is based is actually capable of reproducing GW waveforms emitted by
spinning binaries whose component objects have spins aligned or anti-aligned
to the direction of their total angular momentum. This is made possible by
a series of dedicated generalizations with respect to the non-spinning sector
of the model we reviewed in Chapter 2, both at the level of the dynamical
description and the pre-merger waveform model. In the following we will go
through these generalizations, specifically targeting the spin-related modifica-
tions to the EOB Hamiltonian, in Sec. B.1, and to the insplunge waveform
and radiation reaction force, in Sec. B.2.

B.1 Spin effects in the EOB Hamiltonian

Let us start by recalling the structure of the Hamiltonian of a spinning test
p-mass, with spin vector S, in equatorial (§ = m/2) motion around a Kerr
black hole with mass M and spin vector S. If we use, as usual, rescaled polar
coordinates, with & =S| /(cGM?) and a. =|S.| /(cGM?), the corresponding
p-rescaled Hamiltonian can be written according to the structure

] 3 - p N A
HKerr = Hlo(rel;‘r(r7p7‘7p<p7 a’) + ?QO (gga + QLIS'(*Q*)- (B].)

The first therm is the “orbital” component of the Hamiltonian and collects all
the terms that are even in the spins. In the equatorial case we can conveniently
write it as

Frorb 2 p; &
orb __ ~ r ©
Kerr — € AK (Ta a) <1 + C2BK (7”, d) + 627’%> (BQ)
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where we introduced the centrifugal radius
=r+a + -, (B.3)

So to recast Hﬁrelir in a form that structurally mirrors the one of the test-
particle Hamiltonian in the Schwarzschild case. The functions Ag and Bk

appearing in Eq. (B.2) are explicitly given by

2r

o rtd+ A 2
Ak (r,a) = 2 Bk(r,a) = — o (B.4)
¢ 72 + a? + 672
and are such that
~ ~ T2
Dx(r,r.) = Ax(r,a)Bg(r,a) = ol (B.5)

c

Focusing on Ak(r,a), we notice that the use of 7. allows us to rewrite it in
the form [148]
Ak (r,a) = Agehw (re) AT, 7¢), (B.6)
where we singled out
2

ASChW(rC) =1- CzTc

: (B.7)

the usual radial potential A in Schwarzschild, here with the replacement r —
re, and a residual correcting factor

2
1
~ + C2T’C
A(r,re) = —5 (B.8)
I+ 5
c°r

The last two terms of Eq. (B.1) are instead expression of the spin-orbit
couplings between the spins (S,S,) and the reduced angular momentum of
the particle. They are determined by the two gyrogravitomagnetic functions
(95,95 ) [268,269], where for instance

2G3 M3

2
rre

95 = (B.9)

Mirroring what is done in the non-spinning case, the EOB Hamiltonian for
spin-aligned (or anti-aligned) binaries featured by the TEOBResumS model is
engineered as a generalization to arbitrary v of the test-mass limit case given
by Eq. (B.1), which must be recovered for v — 0. First of all, we specify that,
given the two individual spin vectors of a spinning compact binary, (Si,S2),
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the spin vectors (S, S,), here respectively relative to the effective metric and
the EOB test particle, can be defined as

S=8S8;+8S,, S, = m—Sl + —So. (B.lO)

Moreover, it is assumed [143] that the presence of spin does not alter the
energy map (2.89), found in the non-spinning case, which thus still remains
as the defining relation between the EOB Hamiltonian and the effective one.
As the latter encodes the actual dynamical description (in its conservative
part) of the effective problem, where now there are also spins, one has indeed
to include in it some extra spin-induced term. This is done by maintaining
the structure of the Kerr Hamiltonian given in Eq. (B.1), namely defining the
spinning effective Hamiltonian according to

~ A~ p “ R

Heg = H" + =2 (g§"a + g§la), (B.11)
where the functions H gf}b, ggﬁ, and ggf*f are given by specific v-deformations
of their counterparts in Eq. (B.1). In shaping all of them, a crucial step is
to extend the definition of r. to the comparable-mass case. Ref. [143] proved

that the leading spin-spin effects can be incorporated by simply replacing the
spin parameter a in Eq. (B.3) with its effective analogue

g = a1 + G = a + ax, (B12)
where a1 9 = ‘Sl,g} /(em12GM) and in the last equality we used

S, S, S+8,
—_— 4 —= = B.13
e T (B.13)

as implied by Eq. (B.10). Furthermore, in order to also include next-to-leading
order spin-spin effects, as it is currently done in TEOBResumS, we have to extend
the redefinition of 7. to

r§;r2+a0+22ﬁ+5d2, (B.14)
c°r
6a® = 1[5\/1 —4v(ay — ag)ag — <5+ V>a2+ <1+21/>& a ] (B.15)
Ar |4 bR 4 2)70 2 12

We are now ready to specify the expressions of the three Hamiltonian
functions appearing in Eq. (B.11). As regards ngb, given its test-particle
reduction (B.2) and its form (2.90) in the non-spinning case, we write

R 2
orb — 02\/1?7"* + A(u, uc) <1 + puc? + Q(uc,pr*)> (B.16)

c? c?
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where, in analogy with u = 1/(c?r), we also used u. = 1/(c?r.). Here, gener-
alizing the test-particle result of Eq. (B.6), we consider

A(u, ue) = PH[A<spn]A(u, ue), (B.17)

where P2[A<spn] is the 5PN resummed prescription used for the potential A
in the non-spinning case, with the replacement u — u., whereas A(u, uc) is the
correcting factor (B.8), simply rewritten in terms of u and u.. By the same
logic, considering Eq. (B.5), the potential D that defines the radial momentum
pr. = A/D'Y?p, is given by

2

D(Ua uc) = %Dorb(uc)a (Blg)
with
Do () = PY[D<gpn] (1) = : (B.19)
orb U’C 3 <3PN uC 1 + 6I/u2 _ 2(3]/ _ 26) ug? .
as in Eq. (2.60). Lastly we have
U(Q: 4
Q(ucvpm) = ?[2(4_31/)1/])7"*]? (B20)

again using u. in place of u in the corresponding non-spinning expression.
On the spin-orbit side of the effective Hamiltonian, the two gyrogravito-
magnetic functions (ggﬁ, ggff) are incorporated in the factorized form

1,0 ~ 1,0 ~
gt = ggM0gef, geff = g0, (B.21)

where the Newtonian contributions

ggﬁo = 206uuz, ggf*m gcﬁug’, (B.22)
are factored out in front of the PN residuals &' = 1+ O(1/c?) and & =
14+0O(1/c?). These are explicitly obtained by resumnnng their 2PN expansmns
[270,271], written in terms of just u. and p,,, using Padé of the type PV.
Moreover: (i) the function §&' is hybridized with v = 0 terms up to 4PN,
specifically taken from the simplified case of a spinning test-particle in circular
motion around a Schwarzschild black hole; (ii) both g and g Aeff are flexed with
the 3PN term vudcs, where c3 is a v-dependent tunable parameter that is fixed
by fits to NR data, similarly to what is done for the parameter ag . in A<spn,
which we already mentioned at the end of Sec. 2.1.4. For the resulting explicit
expression of g2 and g used in TEOBResumS, see Eqs. (42)-(56) of Ref. [148].
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B.2 Spin effects in insplunge waveform and
radiation reaction force

In this section we collect and discuss the modifications, with respect to the
insplunge quasi-circular waveform and the corresponding radiation reaction
force, that allow TEOBResumS to faithfully capture spin-induced modulations
in the GW signals.

At the level of the insplunge waveform, the first obvious difference with
respect to its non-spinning counterpart of Sec. 2.2 is that the staring PN results
for the spherical mode hy,,, used as input in the factorization procedure, are
now to be taken in their full spin-dependent form, computed by enforcing that
their source is a spinning compact binary. Correspondingly, each hy,, is found
to be separable in the sum

hom = RS> + 13 (B.23)

Im

between an orbital, spin-independent part h;’;lf’ and the collection of all the
spin-dependent terms hgm. Coming to the factorization procedure, the differ-
ences with respect to Sec. 2.2 are the following.

(i) In the Newtonian prefactor (2.101) and in effective source (2.105), the
radius r,,, which also enters the azimuthal velocity v, is generalized to

(B.24)

_ R N —2/3
N G 2+ (gffa + gffan) /c
we — =
Hgop

p’l‘* :0

with the spin-flexed version 1), of the function ¢ in Eq. (2.104) that is

given by
2 [, gda+gdla. |Afu)
. = — * Aue)u? ), B.25
1/} A(uc)/ (uc + CGUCA(UC) CQP(’QD + (U )uc ( )

where the prime denotes derivatives with respect to r.

(ii) By way of the separation (B.23), the residual PN amplitude fs,, of
Eq. (2.109) is itself decomposed in an orbital and a spinning part,

fom = fop + fim: (B.26)
orb

where f77° is exactly the residual PN amplitude factor considered in
the non-spinning sector of the model. When m is even, the prescription
laid down in Refs. [272,273] and adopted in TEOBResumS provides for a
factorization of pgy, = (fum)'/* that is given by

S
. 5 _ p
pom = P Poms o = Ton |1+~ | (B.27)
tm
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Then, while p%lf is treated precisely as reported below Eq. (2.111), the
factor ﬁ?m is resummed according to the “iResum” paradigm [272], i.e. by
replacing it with its inverse Taylor representation

= (Tox [UR]) (B.28)

When m is odd, the direct application of this procedure leads to formal
singularities in the equal mass case, consequence of the proportionality
of the odd-m Newtonian factor to dm = (m;—ma)/M = /1 — 4v, which
indeed vanishes for v — 1/4. The solution proposed in Ref. [148,272]
is therefore to defactorize the quantity dm from the Newtonian factor,
multiply it to fs,, and consider the replacement

or £ £ 5mem
5mf£m s (pz'n?)efﬁsm’ fésm =TpN |Om + (porkf)Z] . (B29)
m

In the resulting factor fgsm we can always single out two distinct parts,
one that is proportional to dm and one that is not, the latter correspond-
ing to the set of terms that would diverge for v — 4 without the factor
dm in front. The prescription of Ref. [272] consists in separately resum-
ming these two components with the same inverse Taylor representation
(B.28) used for p .

For a more detailed account of the various spin factors included in
TEOBResum$S, up to ¢ = 4, see Sec. IVB of Ref. [273]. We finally men-
tion that the PN waveform information for arbitrary v that is ultimately
collected in the spin factors discussed above is hybridized, similarly to
the non-spinning case, with high-PN v = 0 results relative to a spinning
test-mass around a Kerr black hole; see Sec. VB of [273] for more details
on this.

Lastly, the radiation reaction force incorporates spin effects via the fac-
torized spinning insplunge waveform we just discussed, following the same
factorization prescription (2.121)-(2.124) adopted in the non-spinning sector
of the model, modulo the simple difference that r, in Eq. (2.121) is replaced
by its spin-dependent generalization r,,, given in Eq. (B.24).



Appendix C

Long analytical expressions

We list here the explicit expressions of different useful quantities that would
be cumbersome to insert in the main text.

C.1 2PN noncircular factors for the subdominant
modes (m # 0)

In this Appendix we list the 2PN noncircular relativistic factors, that result
from the factorization prescription of Sec. 3.2.2, for all the subdominant m # 0
modes up to £ = m = 4, before any resummation is performed. Note that
the contributions that are not explicitly written are equal to 1 (or to 0, in the
case of §ipstne),

Tail noncircular factors

higikne — 1 M;TW [Gipr*u <3029 + 6035p7,u — 10870pu” + 8350pSu®

15p2.

—3215pu’ + 511p};’u5) —
Dy
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— 13p§u4> + 20ip? <619 — 981pou + 573ppu® — 115p§,u3)

15p;,
P

2 4 2
+ <183 — 82pgu — 17p,u >] .

(C.1)

s
1920¢3p2 (7 — 6p2u)”

IFor £ > 4, at 2PN accuracy, all the modes present at most just their leading Newtonian
contribution, which implies h¢,, = 1, i.e. no PN correcting factors.

7 tail-nc __

[z‘pm <88130 — 107366p2u
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C.2 2PN-accurate subdominant multipoles of .7:10
(m # 0)

In Eq. (3.81) of the main text we showed the expression for the Taylor-
expanded multipole FZ ™ of the angular radiation-reaction force, which enters
the factorization procedure described in Sec. 3.5.2. Here we list for complete-
ness all the other multipoles, anlzN, that are relevant at 2PN accuracy. Mind
that, similarly to Eq. (3.81), we write each F2EN without the overall ¢~ factor.
Our results read
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Notice that, at the 2PN accuracy we are considering here, all the sublead-
ing ]::p multipoles listed above are present just the instantaneous part. This
is simply related to the fact that their hereditary effect contributions appear
at higher orders than the 2PN.

C.3 2PN noncircular instantaneous factor with
time derivatives (¢ = m = 2)

Here we provide the full expression of the noncircular instantaneous factor
introduced and tested in Sec. 3.7. This results from Eq. (3.106) and reads
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