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Abstract

The field of quantum cavity optomechanics is fueled by the development of high-
performance micro- and nanofabricated devices. These devices aim to enhance the
interaction between optical and mechanical resonators by improving their respective
quality factors and exploring new coupling mechanisms. Thanks to recent progress
in the field, the dream to efficiently prepare and control quantum states of mechanical
motion for quantum information processing is soon to become a reality.

In this thesis, we present ultrahigh-quality-factor silicon nitride membranes with
phononic crystal structures for quantum optomechanics. The membranes are period-
ically patterned, with a defect in the center that hosts localized mechanical modes
and enables ‘soft clamping’: without a rigid silicon frame as a boundary for these
modes, the curvature in the membrane remains small during the motion, significantly
reducing intrinsic dissipation. Indeed, we measure mechanical quality factors of up
to Q = (214 ± 2) × 106 and long coherence times enabling several quantum-coherent
oscillations, even at room temperature. This extraordinary performance, alongside their
low effective masses of a few nanograms, render our membranes excellent candidates
for quantum cavity optomechanics, as well as mass and force sensing applications.

We place a patterned membrane inside a high-finesse optical cavity mounted in
a 4-K-liquid-helium cryostat and optically cool a localized defect mode via radiation
pressure induced dynamical backaction to the vicinity of the quantum ground state
of motion. Raman sideband thermometry reveals the mean phonon occupancy of the
mode to be n̄ = 0.55 ± 0.01, which is close to the backaction limit. Our setup thereby
manifests itself as a quantum-enabled system, allowing for complex protocols such as
the heralded generation of one-phonon Fock states by filtering and detecting single
scattered photons.

In a parallel line of research, we study carrier-mediated forces in semiconductor
nanomembranes. By embedding coupled quantum wells in the membranes, lifetimes
of optically generated electron-hole pairs reach up to Γ−1

I = (749.5 ± 0.4) ns, which
is comparable to the period of mechanical oscillation. As a result, the strong forces
due to the piezoelectric effect and the deformation potential resonantly drive a bending
mode of the membrane to an amplitude about three orders of magnitude larger than
expected from radiation pressure. The forces are controlled using a bias voltage across
the quantum wells that tunes the carrier lifetime. In addition to exploring potentially
much more efficient optomechanical coupling mechanisms, this work may provide a
new path towards optoelectromechanical hybrid devices.
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Sammenfatning

Forskningsfeltet kavitets-kvanteoptomekanik er drevet af udviklingen af højtydende
mikro- og nanofabrikerede systemer. Disse systemer sigter mod at forbedre vek-
selvirkningen mellem optiske og mekaniske resonatorer, ved at forbedre deres respek-
tive kvalitetsfaktorer og udforske nye koblingsmekanismer. På grund af de seneste
fremskridt i feltet kan drømmen om at forberede og manipulere mekaniske objekters
kvantetilstande til kvanteinformationsbehandling snart blive en realitet.

I denne afhandling præsenterer vi ultrahøj-kvalitetsfaktor siliciumnitrid membraner
med fononiske krystalstrukturer til brug i kvanteoptomekanik. Membranerne er pe-
riodisk mønstret med en defekt i midten, der har lokaliserede mekaniske tilstande og
muliggør ‘soft clamping’: uden en stiv siliciumramme som rand for disse tilstande,
forbliver krumningen i membranen lille under bevægelsen og det reducerer væsentligt
indre friktion. Vi måler mekaniske kvalitetsfaktorer på op til Q = (214 ± 2) × 106

og lange kohærenstider, der muliggør adskillige kvantekohærente svingninger, selv
ved stuetemperatur. Denne ekstraordinære ydeevne, sammen med deres lave effektive
masser på omtrent et par nanogram, gør vores membraner fremragende kandidater til
kvanteoptomekanik, samt anvendelser i masse- og kraftsensorer.

Vi placerer enmønstretmembran inde i en optisk kavitetmed højreflektive spejle, der
er placeret i en heliumflow-kryostat, og køler en lokaliseret mekanisk tilstand til i nærhe-
den af kvante-grundtilstanden via lysets strålingstryk. Raman-sidebåndstermometri
viser den gennemsnitlige fononokkupans til at være n̄ = 0,55 ± 0,01, hvilket er tæt på
kvantetilbagekoblingsgrænsen. Vores opstilling manifesterer sig herved som et kvan-
tesystem, der muliggør komplekse protokoller, såsom generation af en fonontilstand ved
at filtrere og detektere enkelte spredte fotoner.

I et separat studie undersøger vi ladningsbærer-medierede kræfter i halvleder-
nanomembraner. Ved koblede kvantebrønde i membranerne når levetiderne af optisk
genererede elektron-hulpar op til Γ−1

I = (749,5 ± 0,4) ns, der er sammenlignelige med
perioden af demekaniske svingninger. Et resultat heraf er, at de stærke kræfter forårsaget
af den piezoelektriske virkning og deformationspotentialet driver bøjningssvingninger
af membranen resonant til en amplitude omkring tre størrelsesordener større end for-
ventet fra strålingstrykket. Derudover styres kræfterne ved at anvende en forspænding
over kvantebrøndene, hvorved levetiden for ladningsbærerne kan justeres. Udover at
udforske potentielt meget mere effektive optomekaniske koblingsmekanismer, kan dette
studie vise vejen til nye optoelektromekaniske hybridsystemer.
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[4] A. Barg, L. Midolo, G. Kiršanskė, P. Tighineanu, T. Pregnolato, A. İmamoǧlu,
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Preface

How does light interact with matter at the most fundamental level? This question is at
the heart of quantum optics, a research field which was first motivated more than 100
years ago by the pioneering work of Planck [6] and Einstein [7] about the discovery of
quantized light particles, known as photons. Ever since, the field has grown substantially
and became part of experimental physics shortly after the advent of the first lasers in
the 1960s. Nowadays, researchers are able to control the interplay between light and
matter, as evidenced by the development of quantum technologies such as quantum
cryptography and quantum computers [8, 9].

My personal journey into the field began six years ago as a master’s student at the
Danish Center for Quantum Optics (Quantop) at the Niels Bohr Institute (NBI). At that
time I was gaining my first hands-on experience in a quantum optics laboratory and soon
became fascinated with a subdiscipline called optomechanics. After my master’s course
I continued as a research assistant to follow through with the sample characterization I
had started as part of my master’s thesis and expressed my wish to begin a Ph.D. project
in the group. In 2015 I was excited to be given this opportunity.

As a Ph.D. student I was involved in three different projects: In the first year, I
focused my efforts on carrier-mediated optomechanical forces in nanomembranes with
coupled quantum wells, which is presented in Chapter 3 of this thesis. The close col-
laboration with the Quantum photonics groups at NBI and at the Swiss Federal Institute
of Technology (ETH) in Zürich made this a fascinating experience, with which I could
broaden my horizon and learn about the rich physics of semiconductors. Combin-
ing the knowledge from different research areas proved to be challenging. Yet, our
work was concluded in the form of a manuscript that has recently been submitted for
publication [4]. During the second year, I contributed to the development of silicon ni-
tride nanomembranes with phononic crystal structures, conducted in the Schliesser Lab
(SLAB) here at NBI. Among other things, the project was based on a time-consuming,
systematic study of mechanical quality factors, as is summarized in Chapter 1. Our
efforts were rewarded with beautiful and convincing results that were later published in
a high-impact journal [3]. Finally, my third year was dedicated to cavity optomechanics,
more concretely ground-state cooling and Raman sideband thermometry, discussed in
Chapter 2. Here I had the chance to work with the previously developed silicon nitride
nanomembranes utilizing their remarkable properties. The success of this project was
fueled by the years-long experience of our group with experimental cavity optomechan-
ics, in particular with membrane-in-the-middle systems. The setup is currently being
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Preface

expanded to enable the generation of single mechanical excitations.
This Ph.D. thesis is organized around the three projects mentioned above, each

detailed in a somewhat self-contained chapter including a separate introduction and
conclusion. I will point out connections between the projects whenever applicable in
the text. The focus lies on describing the experiments, developing specific theoretical
models and comparing the two. The basic theory used throughout the three chapters
is summarized in Appendix A and may be used as a starting point for the unfamiliar
reader. The purpose of this thesis is to provide an overview of the different projects
closely following our published work.

Before proceeding, I would like to express my deepest gratitude to those who
made this work possible and undeniably enjoyable for me: first and foremost, I thank
my supervisor Eugene Polzik for giving me the opportunity to contribute to cutting-
edge science as a Ph.D. student in his group. He was always supportive, inspiring,
professional, and open-minded – an excellent scientific leader who taught me how
to become both a better researcher and person. I also appreciate the guidance from
Albert Schliesser, whose passion and innovative spirit was critical to this work. I
thank LeonardoMidolo for his patience with our lengthy project and his encouragement
which helped me immensely. Furthermore, I acknowledge Jürgen Appel, Jörg Müller
and Søren Stobbe for always being eager to help and push me into the right directions.
Over the years, I spentmost ofmy timewith the good people of the ‘Dungeon lab’, whose
friendships I sincerely value. Without their every-day efforts and support, this thesis
would not have been possible. I would like to give special thanks to Yeghishe Tsaturyan
for fostering team spirit with his enthusiasm, empathy and photoshop artworks; Ivan
Galinskiy for always sharing his knowledge and favourite chocolate (Marabou), Rodrigo
Thomas for being a real ‘bro’ with the motivational skills of Shia LaBeouf; Christoffer
Møller for his positivity, sick moves and occasional loud clapping to reset all cavity
locks; Anders Simonsen for standing up against interferometer misuse; and William
Nielsen for the groovy basslines and for teaching me how to become an articulate
gentleman. I also thoroughly enjoyed the company of all other present and former
Quantop members, who make this one of the best research groups in the world. I am
grateful for all the good time spent with the people from SLAB who quickly became
part of the family. More thanks go to my helpful office mate Emil Zeuthen; to Gabija
Kiršanskė, Petru Tighineanu, and Peter Lodahl from the photonics groups at NBI; as
well as Thomas Fink and Ataç İmamoǧlu for their warm welcome at ETH. I would
like to thank all musicians of ‘The Unresolved Sideband’ for sharing an incredibly fun
hobby. Last but not least, I thank my loving family and friends to whom I dedicate this
thesis.
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Chapter 1

Silicon nitride membranes with
ultrahigh quality factors

1.1 Introduction
During the past three decades, advances in micro- and nanofabrication have brought on
a technological revolution shaping modern-day life and research through miniaturized
electronic, mechanical, and optical components. Their broad spectrum of functionality
renders these components a vital part of integrated circuits, transducers, and sensors.
Remarkably, their size approaches the few-nanometer scale where some of the properties
are governed by quantum effects. As a result, studying the quantum behaviour of
tiny fabricated devices has become in itself a subject which has most notably lead to
considerable progress in the research areas of quantum information processing and
quantum metrology.

Among the plethora of different devices, nanomechanical resonators are used in the
thriving field of quantum cavity optomechanics [10,11] which focuses on the interaction
between electromagnetic radiation and mechanical motion. It is based on the fact that
photons reflected from a resonator carry information about the resonator’s motional
state and moreover exert a radiation pressure force altering its momentum, which can
be used to precisely read out and control the motion. As a milestone in the scientific
discipline, demonstrated for the first time in [12,13], this control was utilized to optically
cool vibrational modes of nanofabricated devices close to the quantum ground state,
i.e., the energetically lowest state allowed by the Heisenberg uncertainty principle. Ever
since, using the same technique, known as sideband cooling, this goal has been achieved
in many different optomechanical systems. Our own implementation is subject of this
thesis and presented in Chapter 2.

It is important to note that the radiation pressure force only has a measurable effect if
a very large number of photons impinge on the mechanical resonator or if the resonator
is particularly susceptible to forces. The small effective masses associated with nano-
scale resonators are a key factor in meeting the latter requirement. Another important
characteristic is their quality factor, describing the total amount of stored mechanical
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Silicon nitride membranes with ultrahigh quality factors

1 mm

Figure 1.1: Photograph of a SiNmembrane with phononic crystal structure. We periodically pattern
holes into a stressed SiN film with tens of nanometer thickness, suspended from a rigid silicon frame.
The defect in the center of the structure features ultrahigh-Q localized mechanical modes.

energy in relation to dissipated energy. In other words, a resonator with high quality
factor can absorb and store much more energy than is dissipated per cycle of oscillation,
resulting in a built-up of large mechanical motion as a result of a small force.

There has been great effort to design resonator geometries and find materials, which
allow for both low mass and high quality factor; yet the two are difficult to realize
simultaneously [14, 15]. One of the most promising platforms to date is based on thin
films of silicon nitride (SiN), a material well-known and routinely employed in the world
of micro- and nanofabrication. As an essential ingredient the material is highly-stressed
during deposition onto the silicon substrate. Once released, the SiN resonator has a
higher mechanical eigenfrequency and total stored energy than without the stress, while
the energy loss rate is unchanged. This approach is known as dissipation dilution [16]
and consistently leads to quality factors of strings [17] and membranes [18] in the
millions. At the same time, the sub-micrometer thickness of the SiN films enables small
effective masses, even if other dimension are orders of magnitude larger.

The next step towards improved performance of SiN resonators lies in cleverly
refining their geometries. Recently, an example of this has been demonstrated in the
form of trampoline-shaped SiN membranes [19, 20], in which a central pad is held by
thin tethers enduring high levels of stress. Small effective masses of a few nanogram
and ultrahigh quality factors as large as Q ∼ 108 of the fundamental mechanical mode
for several devices have been reported, as well as Q-frequency products of Q × f >
6 × 1012 Hz; a requirement for observing a single coherent oscillation within the thermal
coherence time (see Appendix A.2.3) at room temperature. A different approach is to
engineer a phononic crystal in the silicon frame surrounding the SiN membranes, which
suppresses dissipation due to radiation loss, i.e., the tunneling of phonons through
the resonator’s anchor points into the substrate [21]. This is presented in [22] and
our previous work [23], where we found low-order mechanical modes of square SiN
membranes with Q × f similar to those of trampoline resonators.

In our most recent work about nanomechanical resonators [3], conducted in SLAB,
we take our approach even further and directly pattern the phononic crystal structure into
a SiNmembrane (see Figure 1.1). Apart from suppressing phonon-tunneling losses, this

2



1.2. Methods of characterization

has another dramatic effect; the motion of localized mechanical modes around a defect
in the center of the structure evanescently decays into the phononic crystal, reducing
internal dissipation through bending motion and exhibiting Q × f ≈ 1014 Hz at room
temperature. This is more than an order of magnitude larger than we had previously
reported.

In this chapter we will discuss these recent findings, focusing primarily on the
characterization of our patterned SiN membranes, as well as a theoretical model de-
scribing the mechanical dissipation. To start with, in Section 1.2, we will present the
experimental tools used to study the membranes and move on to detail the membrane
design features in Section 1.3. Next, we will discuss measurements of quality factors
and explain their unique scaling in Section 1.4. Finally, in Section 1.5 we will envision
applications for our devices and conclude this chapter in Section 1.6. For details about
the fabrication process1 of the device the reader is referred to the methods section of [3].

1.2 Methods of characterization

1.2.1 Michelson interferometer
The first experimental setup used in our lab to characterize SiN membranes is a home-
built Michelson interferometer with raster-scan and ringdown functionality. For the
description below, we will closely follow our remarks presented in [1, 24].

1.2.1.1 Experimental setup

The optical setup, shown in Figure 1.2, includes a Nd:YAG laser2 at a wavelength of
λ = 1064 nm from which we derive two beams, i.e., the probe beam and the local
oscillator (LO), using a half-wave plate (λ/2), and a polarizing beam splitter (PBS).
The probe beam is guided through a single-mode fiber to the probe head mounted on a
3-axis translation stage with motorized linear actuators. Here the light passes through
a quarter-wave plate (λ/4), a beam splitter (BS), and a microscope objective3 tightly
focusing the light onto the membrane with a spot diameter of ∼ 2 µm. To observe at
which position the membrane is probed we image it via the objective and a tube lens
onto a CMOS camera.

The membrane is placed inside of a liquid-helium flow cryostat4, maintaining a
pressure of p < 10−5 mbar to reduce viscous gas damping of the mechanical motion
and allowing us to cool the membrane close to the temperature of the cold finger of
T = 4.2 K. As an alternative, we utilize a high vacuum chamber that provides even
lower pressures of p ∼ 10−7 mbar. In each chamber we mount a PZT that can be used
to mechanically drive membrane modes (see Section 1.2.1.4).

1The device fabrication was carried out by Y. Tsaturyan.
2Mephisto Ultra-Narrow Linewidth DPSS Laser from Coherent.
350X Mitutoyo Plan Apo NIR Infinity Corrected Objective.
4Oxford Instruments MICROHR MK2 cryostat.
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880 nm

M
< 10-6 mbar 1064 nm

CMOS

BS

λ/4
λ/4

λ/2

λ/2 BPD

PZTPBSPBS
BS

AOM

Analyzer

3-axis
stage

Figure 1.2: Illustration of the interferometer setup. We use a Michelson-interferometer at λ =
1064 nm with a probe head mounted on a 3-axis translation stage. The reflected light from a membrane
(M), placed inside of a vacuum chamber, is detected by a balanced homodyne receiver (BPD) and
analyzed. A second laser at λ = 880 nm is amplitude modulated via an AOM and used to optically excite
mechanical motion. The interferometer is stabilized by controlling a mirror on a piezoelectric transducer
(PZT) in the reference arm.

The probe beam reflected from the membrane is spatially overlapped with the LO, a
bright beam with an optical power of several mW providing a reference with a relative
phase φ = 4π∆l/λ, where∆l is the path length difference between the two interferometer
arms. ∆l can be controlled via a mirror mounted on a PZT in the LO arm. Since the
two beams are orthogonally polarized we use a second set of half-wave plate and PBS
to enforce interference at the two outputs of the PBS. The outputs are then sent to a
balanced photodetector5 with a bandwidth of 75 MHz.

1.2.1.2 Calibration and sensitivity

Following [25], the difference in photocurrents from the two photodiodes in the balanced
photodetector is given by

î− = â†LOâp + âLOâ†p, (1.1)
where the subscripts of the annihilation and creation operators refer to the LO and the
probe beam. We assume the beams to be coherent with real amplitudes αLO and αp,
while allowing for small fluctuations δâp in the probe beam, and transform

âLO → αLOeiωLOt, (1.2)
âp →

(
αp + δâp

)
ei(ωpt+φ). (1.3)

In our setup the optical frequencies of both beams are equal ωLO = ωp (homodyne
detection) and thus the expression for the photocurrent yields [26]

î− = 2αLOαp cos φ +
√

2αLO
(
δX̂p cos φ + δŶp sin φ

)
. (1.4)

5Thorlabs PDB420C-AC balanced detector.
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Figure 1.3: Interferometer calibration and sensitivity. Left: Measured signal V−(t) from the balanced
homodyne detection as a function of time while scanning φ (blue) to extract the full-fringe amplitude Vff.
With this we calibrate small excursions of the locked signal (red) into displacement. Right: Calibrated
PSD of thermal motionmeasured at the center of a squaremembrane using a probe beam power of 600 µW
(blue). The SN background and a Lorentzian fit to the peak are shown in cyan and black, respectively.
Redrawn from [1].

Here δX̂p and δŶp are the amplitude and phase quadrature fluctuations of the probe beam,
respectively, as defined in Equations (A.41) and (A.42). The first term in Equation (1.4)
describes the interference between the probe and the LO, which can be seen by sweeping
the relative phase φ. The resulting interference fringes are shown in Figure 1.3. Indeed,
the voltage signal V−(t) ∝ 〈î−〉 is a sinusoidal function with (full fringe) amplitude
Vff ∝ VαLOαp, whereV ≈ 92 % is the typical fringe visibility. We want to detect only
the phase 〈δŶ〉 ∝ q(t), where q(t) is the out-of-plane mechanical displacement of the
membrane. To this end, we actively stabilize ∆l using a proportional-integral controller
to the mid-fringe position, i.e., such that φ = ±(2n − 1)π/2, where n is an integer. In
this case, small voltage signalsV−(t) � Vff are proportional to q(t) and can be calibrated
into displacement:

q(t) ≈ V−(t)
4πVff

. (1.5)

In practice, we extract Vff once and subsequently measure the signal while applying a
calibration tone with known frequency and voltage to the PZT in the LO arm. The tone
then serves as a reference displacement, independent of power drifts affecting αLO and
αp and thus the calibration via Vff.

At the mid-fringe position the incident powers on the two photodiodes are equal and
common classical laser noise is rejected. As a result, the background in the (single-
sided) power spectral density (PSD) of the calibrated signal is limited by shot noise
(SN) and given by [24, 26]

SSN
q =

λc~
16πPp

, (1.6)

where Pp = ~ωp |αp |2 is the optical power of the probe beam absorbed by the detector.
Figure 1.3 shows such a spectrum demonstrating a sensitivity of (SSN

q )1/2 ≈ 10 fm/
√

Hz.
This corresponds to Pp ≈ 7 µW according to Equation (1.6). Although much smaller
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than the incident power on the membrane of ∼ 600 µW, this value is reasonable consid-
ering the membrane reflectance of |rm |2 ≈ 19.2 %6, as well as the estimated total losses
from optical elements, the mode matching, and the detector’s quantum efficiency that
amount to about 85 %.

The sensitivity of the interferometer is sufficient to detect thermalmotion of nanome-
chanical membranes. This is demonstrated using a square SiN membrane with a thick-
ness of h = 60 nm and side length of l = 1 mm. In Figure 1.3 we show the calibrated
PSD for the fundamental mode at Ωm/2π = 410.5 kHz and at room temperature probed
in the center, where the displacement is maximal. We calculate themembrane’s effective
mass meff ≈ 34 ng with a density of ρ = 2.7 g cm−3 using Equation (A.10), and more-
over find the root mean square (rms) displacement

√
〈q2〉 ≈ 4.2 pm via Equation (A.52).

According to Equation (A.16), this means that the peak value in the spectrum,

Sq(Ωm) = 4Q〈q2〉
Ωm

, (1.7)

amounts to S1/2
q (Ωm) ≈ 1.65 pm2 Hz−1 assuming Q = 105, which is in good agreement

with the data. The signal-to-noise ratio (SNR) is Sq(Ωm)/SSN
q ≈ 40 dB.

1.2.1.3 Raster-scan method

Our setup allows us to transversally position the probe beam on the membrane and to
raster-scan it across a given area. At each point of the scan, we extract the rms displace-
ment of several eigenmodes by numerically integrating the corresponding peaks in the
spectrum Sq(Ω) (see Appendix A.2.2). From this data we compose displacement maps
as shown in Figure 1.4 for the thermally excited modes of the square SiN membrane.
The measured displacement patterns are in excellent agreement with those calculated
using a symmetrized form of Equation (A.8), that is,

w(x, y, t) ∝ sin (nk x) sin (mky) + β sin (nky) sin (mk x). (1.8)

Here k = π/l and n,m ≥ 1 are the number of antinodes along the in-plane coordinates x
and y, respectively. |β | < 1 denotes the degree of hybridization. With ourmeasurements
we find that nearly degenerate modes such as (n,m) = (1, 2) and (2,1) hybridize with
β ≈ 0.2. The rms displacements of the modes correctly scale as

√
〈q2〉 ∝ Ω−1

m ∝
(n2 +m2)−1/2, where we used the expression for the mode frequency in Equation (A.9).

Raster-scans with our interferometer may require long measurement times, depend-
ing on the number of points in the grid and the quality factors of the modes to be
analyzed. This is because at each measurement point the spectrum Sq(Ω) must be aver-
aged for much longer than the ringdown time Γ−1

m , since the amplitude of the membrane
changes on that timescale. While in Figure 1.4 we used 22 × 22 points and the total
measurement time was only 8 min, a scan with more points and higher quality factors,
such as the one presented in Section 1.3, can take several hours. It should be noted,

6The reflectance |rm |2 is calculated via Equation (2.4) with λ = 1064 nm, n = 2.0, and h = 60 nm.

6



1.2. Methods of characterization

410 kHz 649 kHz 821 kHz
0
1
2
3
4

w
(p

m
)

(1,1) (2,1) + 0.2 · (1,2) (2,2)
0
1
2
3
4

w
(p

m
)

y

x

Figure 1.4: Interferometric raster-scan of SiN membrane modes. Top: rms displacement w of
thermal motion measured on a 22 × 22 point grid across the surface of a square SiN membrane with
side length of l = 1 mm at room temperature. The frequencies of the modes are shown below. Bottom:
Calculated mode shapes and corresponding mode indices below. Redrawn from [1].

however, that we could artificially reduce the ringdown time by increasing the pressure
in the vacuum chamber and thus increase gas damping of the membrane motion. In
Section 3.2.1 we present another way to shorten the measurement time by coherently
driving a mode during the raster-scan using the PZT mounted in the vacuum chamber.
As an additional benefit, we can thereby compose a displacement map which includes
information about the relative phase of motion at different points.

1.2.1.4 Ringdown technique

We are interested in determining the quality factorQ via mechanical ringdownmeasure-
ments, that is to say, measuring the time constant Γ−1

m which characterizes the duration
of the amplitude decay (see Equation (A.12)). To this end, we first have to excite the
membrane motion to an amplitude much larger than the thermal motion, then switch
off the excitation and subsequently record the displacement q(t) over time. In our setup
the excitation is done in one out of two ways: one option is to simply drive the PZT
mounted close to themembrane in the vacuum chamber at the frequency of amechanical
mode Ωm. The PZT can exert large forces, which is why we are not only able to drive
eigenmodes of thin SiN membranes with low effective masses but also larger structures
such as their silicon frames, as demonstrated in [23].

The other option is to optically excite membrane modes via radiation pressure. For
this we employ a diode laser at wavelength of 880 nm, amplitude-modulated using an
acousto-optic modulator (AOM) and introduced in the probe arm of the interferometer
via a dichroic BS, as shown in Figure 1.2. By periodically switching on and off the drive
of the AOM at the mechanical frequency Ωm, the excitation beam, impinging on the
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Figure 1.5: Ringdown measurements of a SiN membrane mode. We excite the membrane motion at
a frequency of Ωm/2π = 610 kHz and simultaneously detect its amplitude with a lock-in amplifier (blue
line). After switching off the drive, the exponential decay is recorded and fit (dashed lines) to extract the
quality factor. We repeat the procedure six times and get an average value of Q = 666(2) × 103.

membrane at the same spot as the probe beam, exerts the following radiation pressure
force, derived from the fact that each photon carries a momentum of 2π~/λ:

Frad(t) = 2|rm |2P0
c

(sgn (sin (Ωmt)) + 1) , (1.9)

where rm is the amplitude reflection coefficient of the membrane, c is the speed of light
in vacuum, and P0 is the modulation amplitude of the incident power. The factor of two
is included because each photon transfers twice its momentum onto the membrane upon
reflection. In the frequency domain Frad(t) has a large component at Ωm, as well as
higher-order harmonics at frequencies > 2Ωm. Since the latter may drive higher-order
mechanical modes that could disturb our signal, we filter the signal in a narrow band
around Ωm. Inserting only the Ωm-component of the force into the equation of motion,
i.e. Equation (A.11) with Fth(t) → Frad(t), and solving for the rms amplitude of the
driven motion yields

qrad =

√
2|rm |2QP0

meffΩ
2
mc

. (1.10)

For the fundamental mode of the same SiN membrane detailed above, |rm |2 ≈ 24.3 %,7
and a typical power of P0 = 1 mW, this amounts to qrad ≈ 508 pm, which is more than
two orders of magnitude larger than the thermal motion.

The signal generated from the excited mechanical motion is analyzed using a lock-
in amplifier8, filtering a single mode with a narrow bandwidth. The bandwidth is
chosen to be approximately 10–100 times larger than the expected mechanical linewidth
Γm depending on the noise found around the peak in the spectrum. We monitor the
amplitude while fine-adjusting the drive frequency and switch off the beam modulation
when the amplitude is significantly larger than the background noise. Afterwards the
exponential decay is recorded. An example of this method is shown in Figure 1.5,

7 |rm |2 is calculated via Equation (2.4) with λ = 880 nm, n = 2.0, and h = 60 nm.
8Zurich Instruments HF2LI
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Figure 1.6: Illustration of the darkfield imaging setup. Left: Using laser light at λ = 1064 nm the
membrane (M) is imaged onto a CCD camera and filtered with an opaque disk after the first lens f1. A
dark field image of the displacement is observed while the membrane is resonantly driven with a PZT.
Right: Fourier image of a driven membrane while the opaque disc blocks the zero-order diffraction light.

where the described procedure is repeated six times to extract the mean value and the
statistical uncertainty of the quality factor Q = 666(2) × 103 for a SiN membrane mode
at a frequency of Ωm/2π = 610 kHz.

1.2.2 Dark field imaging
We now discuss an experimental method known as dark field imaging which allows
us to characterize mechanical modes in a much shorter time than with the raster-scan
interferometer. Once again our description will closely follow [1].

1.2.2.1 Optical Fourier filtering

Dark field microscopy is a well-known and often employed technique to enhance the
contrast of micrographs. It is based on a sample illumination which permits only light
scattered from the sample to enter the objective. The result is a high-passed image
emphasizing sharp edges of the sample. Our setup shown in Figure 1.6 uses a similar
principle, isolating diffracted light from the membrane to directly image the squared
displacement pattern of the membrane onto a CCD camera. This interesting method,
first employed in [27] within our field, can be understood by recalling simple principles
of Fourier optics [28], which we will now elaborate.

In our setup we shine collimated laser light at a wavelength of λ = 1064 nm perpen-
dicularly onto a sample, here a SiN membrane placed inside a high vacuum chamber.
The beam diameter of 2.4 mm is significantly larger than the membrane with side length
l = 1 mm, such that we can assume the incident electric field E0eiωlt to be constant
across the membrane. At a transverse position (x, y) the membrane is displaced by
w(x, y, t) and shifts the phase of the reflected electric field Er. For w(x, y, t) � λ we
find the following:

Er ≈ |rm |E0eiωlt(1 + ikw(x, y, t)), (1.11)
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Silicon nitride membranes with ultrahigh quality factors

where rm is the reflection coefficient of the membrane, k = 2π/λ, and ωl = ck. After
reflecting from a BS the light is focused using a lens with a focal length of f1 = 75 mm.
At the focal (or Fourier) plane of the lenswe thereby perform an optical Fourier transform
F with respect to (x, y) resulting in:

F [Er] = |rm |E0eiωlt(F [1] + F [ikw(x, y, t)]). (1.12)

The second term on the right hand side of Equation (1.12) describes diffracted light
due to the membrane displacement w(x, y, t). The first term refers to tightly focused,
unscattered light, which we block by placing an opaque disc in the Fourier plane. The
diffracted light is then transformed by another lens with a focal length of f2 = 50 mm.
Imaged onto a CCD camera we capture an intensity pattern, proportional to the squared
membrane displacement and time-averaged over many oscillation cycles of the motion:

I(x′, y′) = I0 |rm |2k2 〈
w(−x,−y, t)2〉 . (1.13)

Here I0 = |E0eiωlt |2 and we used the fact that applying the Fourier transform twice
simply flips the sign of the coordinates x and y. In order to magnify the image we place
a third lens with f3 = 35 mm before the camera.

Figure 1.6 also shows an image of the Fourier plane which can be observed by
positioning the camera in the focal plane of f3. The cross-shaped diffraction pattern
around the center is due to the membrane’s sharp edges. Diagonally extending from the
center two bright spots can be seen which arise from the displacement of a hybridized
mode, mixing (1,2) and (2,1) at a frequency of 645 kHz. In the center of the image a
white dot shows the opaque disc, a thin film of aluminum deposited onto a glass wafer.
From geometric considerations we estimate that the disc blocks diffraction with angles

α . d/2 f1, (1.14)

where d = 100 µm is the disc diameter. As a result, mechanical modes are visible whose
distance between nodes is . λ/2α ≈ 800 µm.

1.2.2.2 Results and limitations

In Figure 1.7 we present dark field images of three SiNmembrane modes. These images
were recorded with an optical power of ∼ 100 µW, while sweeping a PZT mounted
inside the vacuum chamber in the frequency range 400 kHz...2 MHz with a sweep time
of ∼ 1 min and capturing an image every 10 ms. To clearly image the displacement
patterns we had to use a large PZT stroke of & 300 pm which causes nonlinear behavior
such as Duffing-type frequency shifts and strong hybridization of the membrane modes.
For example, we find β ≈ 1 for the modes (5, 3) and (3, 5) at a frequency of 1.683 MHz.
In order to use a smaller PZT drive and to avoid nonlinearities we have to improve the
sensitivity of the setup. According to Equation (1.13), we can simply intensify the light
since the signal is proportional to I0. However, in doing so we also increase the amount
of light scattered from optics which currently constitutes our measurement background.
To improve the SNR we therefore have to minimize reflections as well as stray light.
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Figure 1.7: Darkfield imaging of SiN membrane modes. Top: Dark field images of mechanical
modes of a square SiN membrane with side length of 1 mm. The membrane was driven by a PZT at the
frequencies shown below. Bottom: Calculated normalized squaredmode displacement and corresponding
mode indices below. Redrawn from [1].

It is important to note that the dark field imaging technique is not useful for mem-
branes with sharp, distinct features, such as those found in the patterned SiN membrane
presented in Section 1.3. Similarly to the edges of the membrane appearing in the
Fourier image in Figure 1.6 the pattern causes diffraction that is much more pronounced
than the displacement and therefore obscures the latter.

1.2.3 Polarimetric stress analysis
As mentioned in the introduction, high tensile stress constitutes an important charac-
teristic of SiN resonators used in optomechanics. For the patterned SiN membranes
described in Section 1.3, we are particularly interested in studying the stress distribution,
whose periodicity contributes to the emergence of a phononic bandgap that enhances
mechanical quality factors. For this reason, we implemented a measurement technique
known as a gray field polarimetry [29], which analyzes the stress anisotropy of birefrin-
gent films based on the photoelastic effect. The work presented here has been published
in [2].

1.2.3.1 Gray field polariscope

Figure 1.8 shows an illustration of our gray field polariscope based on bandpass filtered
light from a 780 nm high power LED. Before shining it onto a membrane we use
a lens to focus the light onto a diffuser plate and collect the transmitted light with
another lens in order to get a beam with a smoothend intensity distribution (Köhler
illumination). Afterwards, we place a thin film polarizer and a quarter-wave plate to
circularly polarize the light. The birefringent sample slightly changes the polarization
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Figure 1.8: Illustration of the gray field polariscope setup. Top: Light from an LED at λ = 780 nm is
bandpass filtered (BP), circularly polarized using a polarizer (POL) and a quarter-wave plate (λ/4), and
then used to illuminate the membrane (M). On the other side of the membrane we place a half-wave plate
(λ/2) and a PBS, and image the membrane onto a CCD camera. The half-wave plate is mounted on a
motorized rotation stage. Bottom: A microscope image of a SiN ribbon used in the experiment.

state which is analyzed in transmission using a half-wave plate mounted on a motorized
rotation mount, a PBS, and a CCD camera. A microscope objective and a lens in front
of the camera are used to image the sample with a magnification of 10.

To calculate the signal detected at a given pixel of the camera we use Jones calculus
(see Appendix A.5) and start by defining the input vector ®Ein to be incident at each area
element of the birefringent membrane. The latter is described by the Jones matrix of
an arbitrarily rotated phase retarder Jδ,θ , where the retardation δ is proportional to the
stress anisotropy ∆σ and the membrane thickness h [29]:

δ = khC∆σ. (1.15)

Here k = 2π/λ, h is the membrane thickness and C is a material parameter known as
the photoelastic (or Brewster) coefficient. The direction of the stress anisotropy θ is
defined with respect to the optical axis. In a similar fashion, the half-wave plate in our
setup, whose fast axis is at an angle α, corresponds to Jπ,α. Finally, the Jones vector at
a given pixel of the CCD camera reads

®Eout = PsJπ,αJδ,θ ®Ein, (1.16)

where Ps describes the polarizer transmitting only s-polarized light. Assuming perfect
circular polarization at the input the normalized intensity at each pixel Iout = | ®Eout |2
yields

Iout =
1
2
− 1

2
sin (4α − 2θ) sin (δ). (1.17)

When δ = 0 the intensity at the CCD is half of that used to illuminate the membrane.
For this reason the configuration is known as a gray-field polariscope. Figure 1.9 shows
Iout for different values of retardation δ and an angle θ = 0 determining the amplitude
and the phase of the sinusoidal function, respectively.
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Figure 1.9: Gray field polarimetry signal. Calculated normalized pixel intensity versus rotation angle
of the half-wave plate. For the retardation δ we use π/2 (blue), π/4 (red), and π/8 (cyan). For all
traces the angle of the principle stress is θ = 0. The dashed black line is the expected signal without a
birefringent membrane (δ = 0).

In the experiment we perform a full rotation of the half-waveplate while capturing
images of the membrane at ten equally spaced values of α. Then, for each image and
at each pixel, we calculate the Fourier transform normalized to the average value of the
signal in order to extract the frequency component with a period of α = π/2. Before
extracting δ and θ from the data we subtract background images which are taken without
a membrane and transformed in the same way as described above. In particular this
procedure removes contributions from imperfect input polarization.

1.2.3.2 Photoelastic coefficient

To demonstrate our gray-field polariscopewe now presentmeasurements of a SiN ribbon
with a thickness of h = 210 nm and a width of ∼ 200 µm. A microscope image of the
ribbon is shown in Figure 1.8. The ribbon is suspended from the silicon frame on two
sides such that tensile stress is expected to be present only along the x−direction. As
shown in Figure 1.10 we clearly observe over most of the surface of the ribbon this
feature, i.e., a large retardation with a constant angle θ, which we set to zero. Close
to the silicon frame we find a non-trivial distribution of stress anisotropy that is in
agreement with finite-element simulations. In particular, we reproduce a small region
with no birefringence in the center. Rounded fillets at the edges of the clamping cause
stress to be directed towards the center.

Very close to the silicon frame and at the edges of the SiN film we see lines with
large retardation (> 15 mrad). We attribute these lines to diffraction effects which are
also visible in each of the 10 images use to compose the data in Figure 1.10. Rotating
the half-wave plate the diffraction pattern slightly changes such that for our algorithm it
becomes indistinguishable from features due to photoelasticity.

Equation (1.15) reveals that careful measurements of the retardation, the membrane
thickness, and the stress asymmetry let us experimentally determine the photoelastic
coefficient C. To this end, we analyze a second ribbon, for which we measure the
initial tensile stress σ = 1190(20)MPa of the 210-nm-thick SiN film before releasing

13



Silicon nitride membranes with ultrahigh quality factors

0

5

10

15

δ
(m

ra
d)

0

1

2

∆
σ

(G
Pa

)

−90

−45

0

45

90

θ
(d

eg
)

100 µm

Figure 1.10: Stress analysis of a SiN ribbon. Top: Retardation δ (left) and angle of optical axis (right)
measured with our gray field polariscope at one end of a SiN ribbon with a film thickness of 210 nm.
Bottom: Simulated stress anisotropy ∆σ (left) and angle of principle stress θ (right) for the same device
as above. Redrawn from [2].

the ribbon. The redistribution of the stress after the release can be accounted for by
multiplying σ with the factor 1 − ν, where ν = 0.27 is Poisson’s ratio of SiN. In
Figure 1.11 we present the data for this ribbon. Here we average the retardations
across a number of pixels in the center of the ribbon, where the values are large and
approximately homogenous, which results in δ = 6.4(2)mrad.

At this point it is important to recall that our measured retardation is slightly over-
estimated due to multiple reflections in the film. We see this when we calculate the
retardation using the transfer-matrix method (TMM) (see Appendix A.4) and compare
it with Equation (1.15). Given any small birefringence ∆n = C∆σ, the value we obtain
from the TMM is larger by a factor of η = 1.26. This means that we can simply rescale
our measured result and calculate

C =
δ

ηkhσ(1 − ν) ≈ 3.4(1) × 10−6 MPa−1. (1.18)

The value compares favourably with that reported for a similar amorphous material such
as silicon dioxide with C ≈ 4 × 10−6 MPa−1 [30]. Remarkably, it differs by two orders
of magnitude from the value presented in [31], where the refractive index of SiN films
as a function of different fabrication parameters is studied. The linear relation between
n and σ used to calculateC in this previous work may not only be due to the photoelastic
effect. Our method, on the other hand, infers C directly from birefringence caused by
stress anisotropy.
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Figure 1.11: Measurement of the photoelastic coefficient in SiN. Retardation δ averaged across 1000
pixels in the center of a SiN ribbon where the values are approximately homogenous. We finally average
the central interval between the two large peaks and get δ = 6.4(2)mrad (dashed line). By comparing
this result to the measured stress anisotrophy we find C = 3.4(1) × 10−6 MPa−1. Redrawn from [2].

1.3 Device features
In this section we introduce the design of our patterned SiN membranes based on a
phononic crystal structure and a defect which hosts localized vibrational modes. A
detailed study of their mechanical properties is presented demonstrating in particular
extremely high quality factors of Q > 108 at room temperature. The results revealed in
this section have been published in [3]. As mentioned before, the fabrication process is
not discussed here but can be found in the Supplementary Information of [3].

1.3.1 Phononic crystal structure
1.3.1.1 Phononic bandgap

Phononic crystals are periodic structures that suppress phonons in a given frequency
band. This phenomenon is described by the interference of elastic waves scattered
at each unit cell of the structure. A simple example is given by an infinite chain of
alternating masses and springs, similar to a diatomic chain employed as a model for
crystalline solids [32]. The dispersion relation in such a scenario can be calculated
analytically and features a frequency interval, known as a phononic bandgap, where no
solution exists.

The first realizations of phononic crystals as part of nanomechanical resonators in
the context of optomechanics are found in silicon nanobeams [33]. Here periodically
etched holes surround a defect, which localizes tightly confinedmechanical modes in the
GHz regime. SiN membranes with ∼ MHz frequencies and phononic bandgap shields
in the silicon substrate have recently been studied in [22, 23], revealing a significant
suppression of phonon tunneling losses and consistently enabling high quality factors
of Q > 107 at liquid-helium temperatures [34, 35].

In this work, we directly pattern the stressed SiN membrane with a phononic crystal.
Figure 1.12 shows a micrograph of such a structure. The membrane has number of
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Figure 1.12: Device design. Left: Microscope image of a 66-nm-thick patterned SiN membrane. A
single unit cell is indicatedwith a red rectangle. Right: Simulated band diagram of an infinite arrangement
of unit cells showing a large quasi bandgap around 1.6 MHz (gray shaded area). Adapted from [3].

circular holes, arranged in a hexogonal honeycomb structure with a lattice constant of
a = 160 µm. By removing and displacing a few holes in the center we define a defect of
characteristic size ∼ a, which hosts localized modes, as discussed below. The simulated
band diagram of an infinite arrangement of unit cells is shown on the right hand side
of Figure 1.12. In the frequency interval from 1.41 MHz to 1.72 MHz we find a quasi
bandgap that suppresses out-of-plane modes, while in-plane-modes with a high phase
velocity (visible near the Γ points in Figure 1.12) are permitted by the structure.

1.3.1.2 Stress distribution

There is a crucial difference between phononic crystal structures in silicon and those
presented here. While both are based on alternating masses as mentioned above, the
pattern in the SiN film periodically modulates the speed of sound. This is due to
the presence of tensile stress, redistributing after we introduce the pattern, and is the
predominant feature for the emergence of the bandgap.

To understand this better, we employ our gray field polariscope (see Section 1.2.3)
and image the stress anisotropy around a thin tether of the structure. As shown in
Figure 1.13, we extract the retardation along a certain line across the tether and contrast
it with the simulated stress anisotropy in the same section. Without free parameters and
using the photoelastic coefficient determined in Section 1.2.3, the data and simulation
are in excellent agreement. We find a peak value of ∆σ = 2.6 GPa that is more than
twice as large as the initial stress of the SiNmeasured before etching ofσinit ≈ 1.27 GPa.
In the center of the unit cell, where the retardation is zero, simulations show that the
stress is ∼ σinit/2. To correctly engineer the elastic response of the phononic crystal it
is essential to know and incorporate this stress distribution.
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Figure 1.13: Polarimetric stress analysis of a patterned SiNmembrane. Left: Retardation δmeasured
with grey field polariscope around a tether of the patterned SiN membrane. The dashed line indicates the
cross section used in the plot to the right. Right: Stress anisotropy ∆σ as a function of distance across
the tether as simulated (black line) and extracted from the measured retardation (cyan dots). Adapted
from [2].

1.3.2 Defect mode properties
1.3.2.1 Mode shape

Using our raster-scan interferometer (see Section 1.2.1), we probe thermalmotion across
a small area in the center of the defect and average the calibrated spectra together. As
shown in Figure 1.14, we thereby identify a frequency band with a low mode density
agreeing to within 2 % with the expected phononic bandgap. While below and above
the bandgap an abundance of sharp peaks are found, the window between 1.4 MHz and
1.7 MHz consists of only five individual peaks.

To examine the vibrational mode shapes we zoom in to a 1.2 mm × 1.2 mm area
around the defect and measure the displacement pattern of the defect modes using our
raster-scanmethod. In Figure 1.15 we show the result for three different modes. ModeA
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Figure 1.14: Displacement spectrum measured at the defect. Probing the thermal displacement
of the central defect with the characteristic dimension a = 160 nm we find five modes (A-E) between
1.41...1.68 MHz. The gray shaded area shows the calculated bandgap and the dashed line indicates the
frequency of the calibration tone. The data was acquired with a spectrum analyzer and a resolution
bandwidth of 100 Hz. Redrawn from [1].
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Figure 1.15: Displacement patterns of localized defect modes. Displacement w of thermal motion
measured with the raster-scan interferometer at different points across the membrane for modes A, C, E
(from left to right). The corresponding mode frequencies are shown below the plots. We detect holes by
tracking the amplitude of the calibration peak and show them as white pixels. Redrawn from [1].

can be considered a fundamental mode of the defect since we find only a single antinode
at the geometric center. Mode E features a centered nodal line with two anti-nodes on
either side – a displacement pattern similar to the first harmonic of a circular membrane.
All defect modes penetrate the periodic structure up to a distance of ∼ 500 µm from the
center before the mode displacement is too small to be detected by the interferometer.
This strong localization is the result of the fact that elastic waves at these frequencies
are blocked by the phononic crystal.

1.3.2.2 Effective mass

With ameasurement of themode displacement at a known temperature ofT = 300 K and
frequencyΩm as demonstrated in Figure 1.15, we can calculate the effectivemasses using
Equation (A.52). To this end, we first extract a background of ∼ 1 pm from the edges of
the displacement map and subtract it from the data. Then, we smoothen and determine
the maximum displacement, which is found at a different position for each mode.
Uncertainties of ∼ 11 % are given by the uncertainty of the displacement calibration
established by repeating the calibration procedure ten times. Figure 1.16 shows the
result of this analysis. Notice that a square SiN membrane without phononic crystal
patterning and the same fundamental mode frequency as mode A has a comparable
effective mass of meff ≈ 4.9 ng according to Equation (A.10) and assuming a density of
ρ = 2.7 g cm−3.

1.4 Ultrahigh quality factors
In this section we discuss the dissipation in our device and present a large dataset of
quality factors measured for membranes with different thicknesses h and characteristic
defect sizes a. For the latter we simply rescale the entire membrane, while leaving h
constant. We analyze the scalings of the Q-factors with the geometric parameters a and
h, and compare the data to a material loss model. We show that the ultrahigh quality
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Figure 1.16: Effective masses of defect modes. We determine the effective masses from the maximum
of displacement maps shown in Figure 1.15. The dashed line shows the calculated effective mass of a
square membrane, whose fundamental mode has the same frequency as mode A.

factors are enabled by significantly reducing bending induced loss in our membranes
(soft clamping) and confirm the result by finite-element simulations. As in the previous
section, we closely follow our description in [3].

1.4.1 Dissipation mechanisms
In we show ringdown measurements at room temperature of mode A and E performed
with the Michelson interferometer (see Section 1.2.1). For this, we use a larger device
than before with a = 346 µm and a thickness of h = 35 nm. With values well beyond 108

the quality factors extracted from these measurements are remarkably large and result in
Q f > 1 × 1014 Hz. These Q× f products are among the highest reported so far at room
temperature, exceeding those of single crystal silicon and bulk quartz resonators [36],
mirror suspensions at the Laser Interferometer Gravitational Observatory [37], as well
as SiN trampoline resonators [20].

In order to better understand the extraordinary performance of our devices, we first
discuss the microscopic origin of dissipation in SiN membranes. We distinguish three
types of effects: gas damping, radiation loss, and material loss [15, 38]. Each of them,
respectively, contributes to the total dissipation in the following way:

Q−1 = Q−1
gas +Q−1

rad +Q−1
mat. (1.19)

The first term is due to the membrane interacting with surrounding air molecules. As
demonstrated on the right hand side in Figure 1.17, we see that this type of dissipation
is proportional to the vacuum pressure Q−1

gas ∝ p [39] and reduces our measured quality
factor by ∼ 10 % at p = 2 × 10−7 mbar.

Radiation losses are phonon-tunneling processes which are described by the overlap
between frame modes of the silicon support and resonator modes [21]. The perfor-
mance of SiN membranes without a phononic crystal structure suffers from this type of
dissipation, since the mode displacement near the membrane edge is substantial [40]. In
our device we control radiation losses by virtue of the phononic crystal structure [23].
This is supported by simulations of the residual displacements of the defect modes
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Figure 1.17: Quality factors of defect modes at room temperature. Left: Ringdown measurements
of mode A at a frequency of Ωm/2π = 690 kHz (red) and mode E at Ωm/2π = 777 kHz (blue) of two
membranes with a = 346 µm and h = 35 nm. Dashed lines are exponential fits from which we extract
Q-factors of 141(1) × 106 and 214(2) × 106, respectively. Adapted from [3]. Right: Vacuum pressure p
dependence of quality factor for mode E (purple dots). The black solid line is a fit to Q−1 = Q−1

0 +Q−1
gas,

where Q−1
gas ∝ p describes gas damping. At a perfect vacuum we would expect Q0 = 2.27 × 108 (dashed

line) from which the measurement at p = 2 × 10−7 mbar deviates by about 10 %.

near the silicon frame (see Supplementary Information of [3]) that show a > 100-fold
suppression of the motion compared to the displacement at the defect. Furthermore,
in the experiment we confirm that the measured quality factors of the defect modes are
widely unaffected by the clamping conditions.

Material loss, denotedQ−1
mat, refers to mechanical energy lost directly in the resonator

material. This includes thermoelastic damping [41] and Akhiezer damping [42], which
are due to irreversable heat flow from strain-induced temperature gradients and phonon
relaxation, respectively. For highly stressed SiN resonators in the MHz regime it has
been estimated that thermoelastic damping allows for Q > 1011 [18, 27]. Akhiezer
damping limits the qualify factor to about Q ∼ 109, which we estimate by following
[43]. Another type of material loss is due to two-level defects coupling to strain
fields [44]. Studies of the temperature dependence of Q in SiN resonators have shown
clear signatures of the defects [45], suggesting that our devices are also currently limit
by the effect. In the following section, we will build upon this assumption and use an
analytical model for material loss to predict the scaling of Q with geometric parameters,
such as the defect size and membrane thickness.

1.4.2 Geometric parameter dependence
1.4.2.1 Dissipation dilution

We now investigate the geometric parameter dependence of the measured Q-factors.
Our data, presented below, is compared to a model for material loss, which has been
developed for the case of highly stressed SiN strings [46,47] and squaremembranes [48].
In this model, known as the Zener model, a phase lag between the oscillating stress and
the strain is assumed, as described by a complex Youngs modulus E = E1 + iE2 [49].
For small displacements it can be shown that mechanical energy is mostly lost through
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bending of the thin film. On the other hand, the total energy stored in the resonator is
dominated by the large tensile stress σ counteracting the displacement. This feature is
referred to as dissipation dilution and explains the high quality factors of ∼ 106 typically
found in stressed SiN resonators.

For the fundamental mode of a square membrane the dissipation dilution model
reveals the following expression:

Q−1 = (2λ + 2π2λ2)Q−1
int, (1.20)

where Q−1
int = E2/E1 is the intrinsic dissipation influenced only by material parameters.

The geometry and tensile stress dependence is described by the dilution factor

λ ≈
√

E1
12σ

h
l
, (1.21)

where h is the thickness and l is the side length of the membrane. The first term in
Equation (1.20) is due to the bending near the membrane’s edges, where the rigid silicon
frame enforces clamped boundary conditions. The second term in Equation (1.20) is
due to the bending at the antinode of the sinusoidal mode. Typically λ ≈ 10−4 is small,
so that the second term can be neglected leaving only the first term and Q−1 ≈ 2λQ−1

int .
This means that most of the material loss occurs at the edges of the membrane.

In [50] the model has been extended to account for extra loss in a surface layer with
thickness δh and imaginary part of Youngs modulus E′2. Defining β = E1/(6δhE′2) the
following equation holds:

Q−1
int = Q−1

int,bulk +
1
βh
, (1.22)

where Q−1
int,bulk is the intrinsic damping in the bulk. Combining the above-mentioned

equations in the case where surface losses dominate (thin membrane), an overall scaling
of Q ∝ l/h0 is found and confirmed experimentally for a wide variety of stressed SiN
strings and square membranes in [50].

1.4.2.2 Soft clamping

In the previous section we learned that bending at the edges of the membrane is the
dominating contribution to material loss. Indeed, the fixed silicon frame is responsible
for a sharp exponential correction of the sinusoidal membrane mode displacement with
a decay length of ∼ λl/4 ≈ 37 nm [48], where we use E1 = 270 GPa, h = 35 nm, and
σ ≈ 1.27 GPa. In contrast, the displacement pattern of the localized defect modes in our
device are characterized by evanescent tails in the phononic crystal structure around the
defect with a much larger decay length of ∼ 100 µm and small displacements near the
frame, eliminating the ‘hard’ clamp. The large decay length is similar to the distance
between antinodes, which is why we suspect only a small contribution to the bending
loss from the evanescent tails. If we eliminate the first term due to the bending at the
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Figure 1.18: Frequency scaling of quality factors. Top: Measured Q for localized defect modes A
(red), B (blue), C (purple), D (cyan), and E (black) of 35-nm-thick membranes with different defect sizes
a = 85...346 µm as a function of mode frequency Ωm/2π. We plot the scalings Q ∝ Ω−2

m (solid line) and
Q ∝ Ω−1

m (dashed line) as guides to the eye. Bottom: Q × f -products for the same measurements. The
dashed line indicates the required value for a single coherent oscillation at room temperature. Adapted
from [3].

edges in Equation (1.20), we get a different expression than for the case of a square
membrane:

Q−1 = ζ
E1h2

σa2 Q−1
int . (1.23)

Here the factor ζ depends on the exact shape of our defect modes. Finally, if surface loss
are predominant the geometric parameter dependence of the quality factor is Q ∝ a2/h.

In order to verify that soft clamping indeed occurs in our device, we want to confront
the model with experimental data from a systematic study of more than 80 patterned
membranes and 400 defect modes, including membranes with different thicknesses h
and characteristic defect dimensions a. As mentioned before, we vary a by rescaling
the entire membrane, leaving h constant. In Figure 1.18 we show a subset of the data
for h = 35 nm and a ranging from 85 µm to 346 µm. The quality factors Q and Q× f are
plotted as a function ofmode frequencyΩm/2π ∝ a−1. We see that themajority of defect
modes have very high quality factors Q > 107, similar to those presented above. For all
five modes we clearly find a scaling Q ∝ a2 ∝ Ω−2

m as expected from the soft clamping
model in Equation (1.23). With the exception of a few data points, all Q × f -products
exceed 6 × 1012 Hz, a requirement for observing quantum-coherent evolution at a bath
temperature of T = 300 K. This is because the coherence time τ ≈ ~Q/kBT (see
Equation (A.26)) is larger than the period of mechanical oscillation 1/Ωm. For mode E
of our best device with Ωm/2π = 777 kHz and Q = 214(2) × 106 (see Figure 1.17), we
expect τΩm ≈ 27 coherent oscillations at room temperature T = 300 K. Notice that at
a cryogenic temperature of T = 4.2 K the performance should improve even further, as
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Figure 1.19: Geometric parameter scaling of quality factors for mode A. Left: Measured qual-
ity factor normalized by a2 and averaged across different devices for mode A with a frequency of
Ωm/2π ≈ 1.46 MHz as a function of membrane thickness. The behaviour follows Q/a2 ∝ h−1 (dashed
line), in particular when considering additional loss from the bulk (solid line). Right: Averaged Qh for
mode A versus lattice constant exhibiting Qh ∝ a2 scaling as indicated by the dashed line. Adapted
from [3].

here we estimate τ ≈ 0.97 ms, assuming a 2.5-fold increase of Q [23]. This coherence
time is similar to those reported in trapped ions [51].

In Figure 1.19 quality factors are normalized to the defect dimension a for mode A,
averaged and shown as a function of membrane thickness h. The data is consistent with
the scaling expected from soft clamping Q/a2 ∝ h−1. Allowing for contributions to the
material loss from both bulk and surface of the membrane we get even better agreement,
in particular for the case of thick membranes with h = 240 nm. Finally, we compare the
defect size dependence across several thicknesses by plotting the averaged Qh versus
a. Again, for mode A we have excellent agreement with our model as demonstrated
on the right hand side of Figure 1.19. The other defect modes exhibit very similar
behavior. Overall, our experimental data clearly evidences coherence enhancement via
soft clamping.

1.4.3 Soft clamping simulations
Wewill now support our experimental findings with finite-element simulations.9 To this
end, we simulate eigenmodes of the entire structure. We reproduce the five defectmodes,
whose eigenfrequencies agree with the measured ones to within 2 %. The deviations are
likely due to small differences in geometry and material parameters between the simu-
lations and the physical device. Figure 1.20 shows the simulated displacement of mode
A as a function of position along the y-direction. The displacement10 w(0, y) decays
with a characteristic length of ∼ 100 µm from the center at x = y = 0, approximately
described by the expression w(0, y) ≈ Re(eik |y |), where k = 2π(0.57 + i0.085)/a.

From the simulated displacement we directly access the quality factor using its
definition as the ratio between the total energy stored in the resonator W and the energy

9The finite-element simulations were carried out by Y. Tsaturyan.
10Without loss of generality, we discard the time dependence of the displacement w(x, y, t).
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Figure 1.20: Simulated membrane displacement and curvature. Left: Simulated displacement of the
defect and surrounding structure for mode A along the y-direction (blue dots) approximately following
a decaying sinousoidal (gray line). The red line is an exponential function as a guide to the eye. Right:
Simulated curvature evaluated along the same section and normalized to the square root of the total stored
energy in the membrane (blue). The black line shows the simulated curvature of the fundamental mode
of a square membrane with the same eigenfrequency. Adapted from [3].

dissipated per cycle ∆W [38]:
Q = 2π

W
∆W

. (1.24)

Here ∆W is found by numerically integrating the mode curvature, that is to say, the
second derivative of the displacement w(x, y) [48]:

∆W =
ż

dV
πE2z2

1 − ν2

(
∂2w

∂x2 +
∂2w

∂y2

)2

, (1.25)

where ν = 0.27 is Poisson’s ratio. The total stored energy W is equal to the maximum
kinetic energy, which can be calculated in the following way:

Wkin =
Ω2

mρ

2

ż

dVw(x, y)2. (1.26)

On the right hand side of Figure 1.20 we plot the normalized curvature as calculated via
|(∂2

u + ∂
2
v )w(x, y)|/W−1/2 of mode A and superimpose the curvature of the fundamental

mode of an unperforated square SiN membrane with a side length l = a. As expected,
the latter experiences strong bending at its edges, exhibiting curvatures almost two order
of magnitude larger than the maximum value of mode A.

When calculating the quality factors for the two cases, the comparably large inte-
gration domain of the defect mode does not outweigh its reduced curvature. In other
words, our simulations predict much higher Q-factors for the defect modes than for
those of the square membrane. In Figure 1.21 we show the simulated quality factors,
assuming Qint = 3750 [50], and the measured quality factors. Normalized as Qh/a2 the
simulations and the data compare very favourably for all five defect modes and more
than 30 samples with h = 66 nm. We only find a significant discrepancy for mode
D, which we attribute to phonon-tunneling loss. This is reasonable since our simula-
tions reveal that mode D exhibits the largest displacement near the silicon frame due to
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Figure 1.21: Comparison between data and simulation. We compile the measured quality factors for
defect modes A (red), B (blue), C (purple), D (cyan), and E (black), including different values of a and
h = {35 nm, 66 nm, 121 nm}. The averages of Qh/a2 and f a for each mode are shown as error bars and
are in good agreement with the simulated quality factors (hollow circles). Adapted from [3].

insufficient suppression of the phononic crystal in the y-direction (see Supplementary
Information of [3]). Furthermore, we experimentally find the quality factor of mode D
to be somewhat sensitive to clamping conditions.

1.5 Applications

1.5.1 Cavity optomechanics
The ultrahigh quality factors and small effective masses of our patterned SiN mem-
branes are useful for a number of interesting applications. The first is quantum cavity
optomechanics, where in particular the long thermal coherence times τ hold promising
prospects. At room temperature the membranes could be used for ground-state cooling
via dynamical backaction (see Appendix A.3.2), since quantum-coherent oscillations of
the defect mode E are maintained over ∼ 27 cycles within τ ≈ 5.4 µs, according to the
estimate for our best device in Section 1.4.2.2. In comparison, the rate at which we read
out the membrane motion in an optomechanical cavity is given by the measurement
rate [11, 52]11

Γmeas B
4ncg2

0
κ

, (1.27)

where nc is the number of photons in the cavity, κ is the cavity linewidth, and g0 is the
single-photon optomechanical coupling rate. g0 is defined in Equation (A.33), revealing
that Γmeas ∝ g2

0 ∝ m−1
eff . We see that the effective mass meff should be small in order to

get a large measurement rate. For the ng masses reported here, it is possible to achieve
Γmeas/2π = 100 kHz [34], which is greater than the decoherence rate 1/2τπ ≈ 29 kHz
by a factor of Cq = Γmeasτ ≈ 3.4, also known as the quantum cooperativity Cq (see

11For simplicity we assume perfect detection efficiency η→ 1.
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Equation (A.69)). This means that quantum-coherent interaction between the light and
the mechanical motion are enabled at room temperature. Cryogenically cooling the
membrane prolongs the coherence time and enhances the interaction even more. Our
implementation of ground-state cooling with a patterned SiN membrane at cryogenic
temperatures is presented in Chapter 2.

Since ground-state cooling via dynamical backaction causes broadening of the me-
chanical linewidth, in our case from ∼ mHz up to several kHz, the low mode density
in the bandgap prevents any overlap and thus coupling between different mechanical
modes. Indeed, this is an issue when using higher-order modes of SiNmembranes with-
out phononic crystal structures, but with comparable Q× f -products [27], for which we
expect a mode density of up to ∼ 1 kHz−1 (see Supplementary Information of [3]). Fur-
thermore, the relatively high frequencies of our membranes at around ∼ 1 MHz are well
above the typical bandwidth of technical noise, often scaling inversely with frequency.
In experiments with optical readout this mostly concerns classical laser noise, originat-
ing from laser relaxation oscillations, which in our case occurs at around 380 kHz (see
Section 2.3.2.2). Without elaborate laser noise filtering in our experiments, membranes
with frequencies . MHz such as trampoline resonators, would likely not be suitable for
ground-state cooling.

1.5.2 Optomechanical sensing
In general, nanomechanical resonators are promising platforms for sensing applications
owing to the fact that they can be functionalized and thereby coupled to various external
fields [53]. Among the many spectacular examples are the detection of capacitive forces
as low as a few 10 zN [54], mass spectrometry with single proteins [55], and detection
of radiowaves with pV-sensitivity [56]. With this in view, let us now evaluate our
ultrahigh-Q SiN membranes in terms of their force sensitivity. As described in [57] a
classical limit to the force detection is set by the force noise power spectral density due
to the fluctuation dissipation theorem, which is given in Equation (A.13). Assuming a
membrane temperature of T = 4.2 K, our best device could reach S1/2

FF ≈ 5.5 aN/
√

Hz,
far below the pN sensitivities typical for atomic force microscopes. We plan to improve
upon this result by reducing the effective mass of the defect modes, which can be done
by embedding a trampoline or a string geometry in the center. As shown in Figure 1.22
these types of devices have been fabricated and are currently being studied [58]. While
still in a preliminary stage, displacement measurements of the string-like defect show a
phononic bandgap and localized modes with up to Q × f ≈ 2 × 1014 Hz. Simulations
predict an effective mass of meff ≈ 250 pg [58,59], which is about an order of magnitude
lower than the masses reported in Section 1.3.2.2.

Finally, we note that soft clamping has recently been utilized in one-dimensional
SiN resonators [60]. Here it is used in combination with strain engineering; a nanobeam
with phononic crystal is tapered at the defect creating significantly enhanced local stress.
Remarkably, this approach leads to Q × f -products exceeding 1015 Hz, which are the
highest values so far reported at room temperature.
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Figure 1.22: Modifications to the defect to reduce effective masses. Left: Micrograph of a trampoline-
like defect geometry in a patterned SiN membrane. Right: Micrograph of a SiN membrane in which a
string with a width of 1 µm is embedded in the defect. Adapted from [3].

1.6 Conclusion
To sum up, we have developed SiN membranes with phononic crystal patterns and
localized mechanical modes around a central defect, which were characterized using a
raster-scan interferometer. We have identifed the displacement patterns of themodes and
performed ringdown measurements, revealing ultrahigh quality factors of Q > 108 at
room temperature. These exceptional values were attributed to the soft clamping of the
modes in good agreement with an analytical model and finite-element simulations. Our
membranes are excellent candidates for cavity optomechanics and sensing applications.
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Chapter 2

Radiation pressure cooling of silicon
nitride membranes

2.1 Introduction
The momentum transfer of light onto mechanical objects upon reflection, generally
referred to as radiation pressure, was first experimentally demonstrated in the beginning
of the 1900s [61, 62]. In one of the two pioneering experiments of that time, a device
known as a Nichols radiometer was used, which in essence consisted of a torsion head
with two small mirrors. Reflecting a focused light beam off the mirrors, the device
underwent a small rotation, confirming theoretical predictions about the magnitude of
radiation pressure remarkably well. More than half a century later in 1967, Braginsky
andManukin introduced the idea that radiation pressure can cause friction on a movable
mirror in a Fabry-Pérot cavity [63]. They realized that the intra-cavity light field and the
mechanical motion of the mirror can couple via radiation pressure and due to the shift
of the cavity resonance frequency from the displacement. This dispersive coupling, in
conjunctionwith a retardation of the force given by the photon lifetime in the cavity, leads
to an effect known as dynamical backaction, enabling optical control over the mirror
motion (see Appendix A.3). The effect was experimentally verified soon after [64].

Braginsky and Manukin’s work laid the foundation for an exciting new research
discipline called cavity optomechanics [10]. The field gained considerable interest after
the turn of the millennium, whenmicro- and nanofabricated mechanical devices became
widely accessible, which have small effective masses and are therefore particularly
susceptible to tiny forces such as radiation pressure. Researchers used these devices to
demonstrate significant optical cooling via dynamical backaction [65–67], and achieved
a breakthrough when the quantum ground state of motion was reached [12, 13].1 This
was different from motional ground-state cooling of trapped ions presented before [69]
since the fabricated mechanical resonators were comparably large in size and made
of many millions of atoms. Exploring the quantum behavior of macroscopic objects
constitutes a subject of fundamental research and a motivation behind optomechanics.

1Ground-state cooling of a mechanical resonator was also achieved via cryogenic refrigeration [68].
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Figure 2.1: Artistic rendering of a MiM system. A SiN membrane is placed between the two mirrors
of an optical cavity enabling a coupling between the intra-cavity light field and the mechanical motion
via radiation pressure. Reproduced from [84]. Credit: J. Sankey/Yale University.

Apart from basic research, efforts in cavity optomechanics aim to advance metrol-
ogy, most notably in regard to gravitational wave detection. This is because table-top
experiments with small mechanical resonators and large-scale gravitational wave in-
terferometers both approach a fundamental sensitivity limit of displacement detection,
known as the standard quantum limit. This limit is set by radiation pressure backac-
tion, originating from quantum fluctuations in light or, put differently, the momentum
transfer of photons randomly impinging on the mechanical resonator. Direct evidence
of this phenomenon has been found in [70,71] and in our work discussed in this chapter.
Studying the behavior of radiation pressure backaction can lead to the development
of evading techniques, enabling position measurements with unprecedented sensitiv-
ity. This has been demonstrated in the microwave and optical domain, for example,
using two-tone measurements [72, 73], collective mechanical modes [74], and a hybrid
spin-optomechanical system [35].

Among the many different platforms in cavity optomechanics, the membrane-in-
the-middle (MiM) system has gained much attention in the community ever since it was
first introduced in 2008 [75]. The idea is to place a thin (w.r.t. the wavelength) movable
membrane in between the two fixed mirrors of a Fabry-Pérot cavity (see Figure 2.1),
such that the membrane moves relative to the intensity profile of the standing wave. The
response of the dielectric membrane material to the optical field, and vice versa, gives
rise to optomechanical coupling, the strength of which can be tuned via the membrane
position in the standingwave. A popular choice ofmembranematerial is SiN, facilitating
excellentmechanical properties as well as low optical loss [18,76]. The latter enables the
use of high-finesse optical cavities to enhance the interaction. Using SiNmembranes in a
MiM system, different research groups have demonstrated ground-state cooling [77,78],
ponderomotive squeezing [34,79], quadratic coupling [80], and enhanced coupling with
multiple membranes [81, 82], as well as high-contrast gratings [83].

At Quantop, the MiM approach has been implemented since 2012 and has led to
a number of promising achievements. For example, in [34] significant squeezing of
multiple mechanical modes of a square SiN membrane was reported. The finding is
a clear quantum signature, evidencing that the radiation pressure backaction force on
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the membrane dominates the thermal force for several modes. In another experiment,
quantum backaction evasion in a hybrid spin-optomechanical system was realized [35],
in which the motion of a SiN membrane inside a cavity is measured in the negative-
mass reference frame of the collective spin of an atomic ensemble. This approach
may improve the sensitivity of gravitational wave detectors [85] and paves the way
towards entanglement of macroscopic hybrid systems [86]. It should be noted that
our optomechanical systems are designed in close collaboration with researchers from
SLAB, who have recently prepared a mode of a SiN membrane in the ground state using
feedback cooling [87]. This cooling technique is based on an electronic feedback loop
which utilizes the information from continuous displacement measurements to control
the power of a strong laser beam exerting radiation pressure onto the membrane to
counteract its motion.

This chapter deals with the implementation of an ultrahigh-Q SiN membrane in
an optical cavity to perform radiation pressure cooling via dynamical backaction to the
ground state andRaman sideband thermometry of themechanicalmotion. In Section 2.2
we present our MiM system and characterize its key optomechanical properties. Then,
we proceed by discussing our heterodyne setup used to determine the phonon occupancy
via sideband thermometry and show data of several cooling experiments in Section 2.3.
Finally, two future perspectives are considered in Section 2.4 and we conclude this
chapter in Section 2.5.

2.2 Membrane in the middle

2.2.1 Background
Before presenting our experiment, we want to discuss the idea behind theMiM approach
by providing a one-dimensional theoretical description, which captures the essential dy-
namics. Consider a membrane placed between twomirrors with amplitude transmission
coefficients t1 and t2, as illustrated on the left side of Figure 2.2. The amplitude reflection
of the membrane is denoted rm and the distances between each mirror and the mem-
brane are L1 and L2. For simplicity, we assume the symmetric configuration in which
the membrane sits near the center (L1 ≈ L2) and |t1 |2 = |t2 |2. Using the TMM (see
Appendix A.4) we calculate the spectrum of the cavity transmission T = |Et |2/|Ein |2,
where Ein and Et are the electric fields of the input light and the transmitted light, respec-
tively. As shown on the right hand side of Figure 2.2, we choose typical values for the
parameters and a 250 GHz window around the optical frequency ωl/2π = 351.9 THz,
or correspondingly the wavelength of λ = 2πc/ωl ≈ 852 nm. The calculation is done
for different values of |zm | � L1, L2, where zm = (L1 − L2)/2 is a small displacement
from the center. The result reveals a number of sharp cavity resonances periodically
shifting in frequency as a function of zm. The analytical expression for the resonance
frequencies, derived in [88, 89], is given by

ωc/FSR = 2 arg(rm) + 2 cos−1 (|rm | cos (2kzm)) . (2.1)
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Figure 2.2: Membrane-in-the-middle scheme. Left: Illustration of a movable membrane (thick
gray line) between two cavity mirrors, whose transmission coefficients are t1 and t2. rm denotes the
reflection coefficient and q is the membrane’s displacement. Right: Calculated spectrum of the cavity
transmission, where large values are shown in blue, as a function of membrane displacement from the
center zm = (L1 − L2)/2. We set |rm |2 = 40 %, |t1 |2 = |t2 |2 = 20 %, and L1 = L2 = 1.25 mm. Dashed
black lines indicate resonances of the two subcavities separated by the membrane.

Here FSR = c/2(L1 + L2) is the free spectral range of the cavity without a membrane
and k = 2π/λ. The inverse cosine in the last term is multivalued and thereby accounts
for all longitudinal modes of the cavity. Now, from Equation (2.1) the single-photon
optomechanical coupling rate g0 = qzp∂ωc/∂zm is readily derived, quantifying the
interaction strength between the light andmechanical motion. qzp denotes the zero-point
fluctuations of the membrane (see Equation (A.21)), describing the rms displacement
at the motional ground state. The absolute value of g0 is maximal at zm = (2m − 1)λ/8,
where m is an integer, and reads

max(|g0 |) = 4 FSR qzpk |rm |. (2.2)

An interesting feature of the MiM system compared to the canonical case, i.e., a
cavity with a moving end-mirror (see Appendix A.3), is that g0 is non-linear in zm.
Depending on the longitudinal mode and zm, it can vanish2 and have different signs. To
understand this better, it is instructive to view the system from the following perspective:
The membrane separates two subcavities, each denoted by the index i = 1, 2. Their
respective resonance frequencies are ωi/2π = c(mi − 1/2)/2Li, where mi is an integer
from which we subtract 1/2 to account for a π−phase shift of the light upon reflection
from the mirrors of the cavity during one round-trip. The linear functions ωi are plotted
in Figure 2.2 and are reproduced by Equation (2.1) for |rm | = 1. For |rm | < 1 we get a
coupling between the electric fields in the two subcavites E1 and E2, as manifested by
avoided crossings in the spectrum. When |g0 | is maximal we have ωc = ωi, indicating
that all the intra-cavity field is concentrated in only one of the two subcavities. The
static radiation pressure force onto the membrane is given by

FRP =
2|rm |2

c

(
|E1 |2 − |E2 |2

)
, (2.3)

2At the extrema of ωc, we get g0 = 0 and a finite quadratic coupling ∝ ∂2ωc/∂z2
m. This may be

utilized to directly read out the phonon number state [90].
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Figure 2.3: Membrane thickness dependence of the optomechanical coupling. Top: Magnitude
of membrane reflection coefficient rm. Bottom: Maximum single-photon coupling rate g0 for a MiM
system (red solid line) as functions of membrane thickness h, calculated using n = 2.0, λ = 852 nm, and
L1 + L2 = 2.5 mm. The zero-point fluctuation was assumed to be qzp = 1 fm at h = 60 nm. For the same
set of parameters the dashed line shows the coupling rate g̃0 of an optomechanical system with a moving
end mirror.

meaning that g0 ∝ FRP is negative if the powers of the two circulating fields are
|E1 |2 < |E2 |2, positive if |E1 |2 > |E2 |2, and zero if |E1 |2 = |E2 |2. It should be noted that
the sign of g0 has no impact on the effects of the optomechanical interaction considered
here and derived in Appendix A.3 since they only depend on the square of g = αg0,
where α is the coherent amplitude of the total intra-cavity field.3

Let us now assume that the membrane is a thin dielectric film with thickness h and
refractive index n. The following expression for rm is found via the TMM [91]:

rm =
(n2 − 1) sin(knh)

2in cos(knh) + (n2 + 1) sin(knh) . (2.4)

With rm expressed this way, we see that the periodic frequency shifts in Equation (2.1)
can also be understood in terms of the dielectric response of the membrane material,
as mentioned in the introduction of this chapter. The electric fields E1 and E2 polarize
the membrane material, reducing the total electric field, and thus the energy stored in
the cavity. Accordingly, minima and maxima of the frequency shifts correspond to the
cases in which the membrane position coincides with an antinode (large electric fields)
and node (small electric fields) of the standing wave, respectively.

In Figure 2.3 we plot the magnitude of rm for the case of a SiN membrane with
n = 2.0 as a function of h. We also show the maximum coupling rate max(|g0 |) ∝ |rm |
given by Equation (2.2). Notice that here the scaling of qzp ∝ 1/√meff ∝ 1/

√
h, where

meff is the membrane’s effective mass, is taken into account. Assuming a value of
qzp = 1 fm typical for a mm-size, square membrane with a thickness of h = 60 nm, we

3See, for example, the optical damping and optical spring effect in Equations (A.50) and (A.51).
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can directly compare the coupling in a MiM system to that of an empty cavity with the
same length but a moving end mirror (see Appendix A.3.1), i.e., g̃0 = qzpωc/(L1 + L2).
As can be seen, the two coupling rates are similar around the maxima of |rm | and the
coupling of the MiM system can even be slightly larger. By calculating the ratio

max (|g0 |)
g̃0

= 2|rm |, (2.5)

where Equation (2.2) was used, we see that this is the case for |rm | > 0.5.
When comparing the two systems, it is also important to bring forward an advantage

of the MiM approach in relation to the following technical challenge: in a canonical
system the end mirror is not only required to have good mechanical properties but
also a high reflectance that enables a high-finesse cavity in order to facilitate a strong
optomechanical interaction. Although remarkable progress has been made to realize
such an endmirror, for example, by attaching a high-reflectivitymirror pad to a resonator
[92, 93] and using high-contrast gratings [94], as well as photonic crystals [95, 96] in
SiN membranes, the implementation is arguably difficult and sometimes compromises
the mechanical quality factor. On the other hand, in a MiM system the two requirements
are associated with separate elements. One can simply use two commercially available
mirrors with low-loss dielectric coatings in combination with a high-Q SiN membrane
such as those presented in Section 1.3 that have only moderate reflectance. This greatly
benefits the overall performance and, among other things, explains the growing interest
in MiM systems within the field.

We have so far only analyzed the symmetric configuration of the MiM system.
However, in our experimental realization, detailed in the following section, |t1 |2 , |t2 |2
and L1 , L2. Consequently, not only the cavity frequency ωc but also the linewidth κ
and total transmission |t |2 aremodulated as a function of themembrane position because
the two subcavities have different optical properties. We will address this feature in
Section 2.2.3.4.

2.2.2 Experimental realization
2.2.2.1 Sample holder design

Over several years, our group has developed sample holders to implement MiM systems
in liquid-helium cryogenic environments, with design iterations for different types of
membranes and mirrors. In each design, particular importance is placed on passive
stability and good thermal contact of the membrane to the cryostat cold finger. For
instance, in previous work of our group [34] this is realized by pressing the two mirrors
firmly against themembrane chip and the surrounding copper pieces using small springs.
Note that this is possible without compromising the mechanical quality factor since a
phononic bandgap shield in themembrane chip is used that suppresses phonon tunneling
loss. Indeed, without such a shield the chip needs to be mounted more delicately to
avoid disturbing the performance of the membrane, for example, by using small dabs of
glue on the corners of the chip [88].
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5 mm

Figure 2.4: 3D rendering of the cavity sample holder. The silicon frame holding a 20-nm-thick SiN
membrane (red) is pressed against a flat outcoupling mirror (blue, bottom). Two silicon spacers and a
copper piece define the distance to the curved mirror (blue, top). Both mirrors are held in place by rubber
o-rings that allow all copper pieces (gray) to be clamped together tightly with screws. The copper piece
shown at the bottom is in direct contact to the cryostat cold finger at T = 4.2 K.

In this experiment we follow the approach of a tightly clamped sample holder. As
shown in Figure 2.4, our design consists of a stack of two silicon spacers and the
membrane chip placed in between two copper pieces, each accommodating a high
reflective mirror. The copper part at the bottom is clamped directly onto the cold finger.
The mirrors are held in place by o-rings which are slightly compressed when bolting
together the copper parts. The larger mirror on the top has a radius of curvature of
R1 = 25 mm while the smaller mirror at the bottom is flat with R2 = ∞. This mirror
arrangement forms a plano-concave cavity with a length of L B L1 + L2 ≈ 2.5 mm
which fulfils the stability condition [97]

0 ≤
(
1 − L

R1

) (
1 − L

R2

)
≤ 1. (2.6)

The highly-reflective surface of the flat mirror is directly pressed against the membrane
chip, defining the distance between the membrane and the flat mirror to be L2 ≈ 500 µm,
and minimizing tilt between the two.

2.2.2.2 Optical setup and cavity alignment

The sample holder is placed inside a liquid-helium flow cryostat4 with a cold finger
at a temperature of T = 4.2 K and a vacuum pressure of < 10−6mbar. The optical
setup around the cryostat is illustrated in Figure 2.5. We use light from a Ti-sapphire
laser5 at a wavelength of λ = 852 nm and send it through a fiber-based electro-optic
modulator (EOM), a 70:30 BS and a lens. Then, the light partly reflects from the cavity
and is analyzed by an avalanche photodetector (APD)6. Transmitted light is detected

4Janis ST-100 Optical Cryostat
5M Squared SolsTiS 10 W PSX-R
6Thorlabs APD430A
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Figure 2.5: Illustration of the optical setup around the MiM system. We couple laser light at a
wavelength of λ = 852 nm into the MiM cavity. The latter is placed in a cryostat at a temperature of
T = 4.2 K. Reflected light from the cavity is detected by an APD whose signal is used to stabilize the
laser frequency to the cavity using slope locking or the PDH technique. In transmission we can directly
detect the light with a photodetector (PD) or insert a mirror on a flip-mount to image the membrane onto
a CMOS camera.

by another photodetector, while a mirror on a flip-mount can be inserted to image the
mode profile and the membrane onto a CMOS camera.

We couple light into the cavity by mode matching the input beam to the fundamental
transverse cavity mode TEM00, whose beam waist w0 (radius) is set by the fact that the
optical wavefronts must match the radii of curvature of the mirrors. Using the properties
of Gaussian beams [97] the following expression is found:

w2
0 =

λL
π

√
R1
L
− 1, (2.7)

which for our parameters results in w0 ≈ 45 µm. In the experiment we obtain this waist
by focusing a collimated beam with a beam diameter of 2.4 mm using a lens with a focal
length of 200 mm onto the flat mirror. The mode matching efficiency ε is quantified
by determining the cavity transmission of different transverse modes that are identified
by means of CMOS camera. Scanning the laser frequency over these resonances while
detecting the transmitted light using a photodetector we measure the peak transmission
of the ten brightest higher-order modes and compare them to the transmission of the
TEM00 mode. In an exemplary measurement, shown on the left hand side of Figure 2.6,
the TEM00 mode accounts for ε ≈ 92 % of the total transmitted light. It should be noted
that ε is not a critical parameter in our experiment, since we can always compensate for
a low mode matching efficiency by increasing the input power.

The radius of the laser spot on the membrane is approximately equal to w0. This is
a valid assumption because the Rayleigh length zR = πw2

0/λ ≈ 7.5 mm is much larger
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Figure 2.6: Cavity mode matching and spot alignment. Left: Normalized peak cavity transmission
of higher-order transverse cavity modes normalized to the peak transmission of the fundamental mode,
from which we extract a mode matching efficiency of ε ≈ 92 %. Right: Microscope image showing the
focused laser beam aligned to the central defect. The membrane edges are traced with white lines. Black
dots are due to small dirt particles attached to the imaging lenses.

than the distance between membrane and flat mirror L2 = 500 µm. To achieve maximal
optomechanical coupling to the fundamental defect mode of the membrane, the cavity
mode should be aligned to the center of the defect, where the displacement is maximal.
For this reason, we carefully adjust the horizontal position of the curved mirror until
the cavity mode is found near the optimal position, as shown in the microscope image
on the right side of Figure 2.6. Notice that in contrast to the membranes introduced in
Section 1.3 we use a slightly modified design of the pattern around the defect with six
smaller holes added to shift the frequency of the fundamental defect mode towards to
the center of the bandgap [87].

2.2.2.3 Optical losses

As a next step, we want to characterize the optical losses of our MiM system. A
particularly important quantity in this context is the cavity finesse F that is related to
the FSR and the cavity linewidth κ in the following way [98]:

F B 2π
FSR
κ
≈ 2π

δ
. (2.8)

In the last expression, δ � 1 denotes the fraction of photons lost per round-trip in the
cavity including several different contributions:

δ = |t1 |2 + δ1 + |t2 |2 + δ2 + δm. (2.9)

Here t1 and t2 are the amplitude transmission coefficients of the two mirrors. Scattering
and absorption losses are combined into δ1, δ2, and δm for the two mirrors and the
membrane, respectively.

Let us now distinguish the different contributions and first concentrate on the losses
of the two mirrors. We assemble an empty cavity, that is, a cavity without a membrane,
and determine its linewidth κ by scanning the laser frequency over the resonance,
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detecting the transmitted light, and extracting the full width at half maximum (FWHM)
from a fit to the Lorentzian peak in the signal. Sidebands around the peak, generated
at a well-known frequency via the EOM, serve as a frequency reference in the signal.
Furthermore, the FSR = (ωc,m − ωc,m+1)/2π is measured by finding the frequencies of
adjacent longitudinal modes, denoted here by the integers m and m+1 in the subscripts.
The two measurements yield κ/2π = 2.70(3)MHz and FSR = 60 GHz, from which we
calculate that F = 2.22(2) × 104 and |t1 |2 + |t2 |2 = 277(3) × 10−6, assuming typical
values of δ1 = δ2 = 3 × 10−6 [88, 99]. This is in fair agreement with transmission
measurements of mirrors with the same coatings, where we find that |t1 |2 ≈ 20 × 10−6

for the curved mirror and |t2 |2 ≈ 230 × 10−6 for the flat mirror. Notice that with the
curved mirror serving as an incoupler, the majority of intra-cavity photons exit the
cavity in transmission, which is quantified by the outcoupling efficiency

ηc B
|t2 |2
δ
. (2.10)

For the parameters above we get ηc ≈ 93 %, meaning that in order to achieve a high
detection efficiency of the intra-cavity field, it is preferable to detect the transmitted
light instead of the reflected light from the cavity.

Coming back to the full MiM system, we proceed by estimating the last term in
Equation (2.9), namely the optical losses per round-trip δm due to the membrane. In
many optomechanical experiments with SiN membranes δm is found to be negligibly
small with reported values on the order of a few 1 × 10−6 at a similar wavelength [76,99].
This is because of the fact that SiN has a very low optical absorption. However, in our
case we also need to consider scattering losses, presumably due to diffraction at the
sharp edges of the phononic crystal structure around the defect. Recall that the cavity
mode with a spot radius of w0 = 45 µm is aligned to the center of the defect. A crude
estimate assuming a circular aperture around the center with a diameter of 103 µm, i.e.,
the distance between the edges of two opposing small holes, yields δm ≈ 10 × 10−6.
We are lead to conclude that if the cavity mode is correctly aligned to the center of the
defect, the scattering losses δm aremuch smaller than δ, rendering all the aforementioned
parameters virtually unaffected.

It should be noted that the discussion of optical losses in this section is simplified,
since it does not take into account any dependences on the membrane position zm.
Indeed, as mentioned before κ varies with zm, in our case by ∼ 20 %, which we measure
in Section 2.2.3.4. Consequently, the FSR, F and ηc are also changing. Nonetheless,
we find that the average values agree well with those calculated here.

2.2.2.4 Active stabilization

The optomechanical cavity is subject to acoustic noise and temperature variations from
the environment causing the cavity length L and thus the resonance frequency ωc to
fluctuate over time. In order to maintain a given cavity detuning ∆ B ωl−ωc we need to
actively stabilize the laser frequencyωl. There are different, well-established techniques
to realize this and in this section we will present the two used in our experiment.
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Figure 2.7: Laser frequency stabilization to the cavity resonance. Error signals for slope locking
(top) and PDH locking (bottom) when sweeping the laser frequency over the cavity resonance (colored
lines). From fits (solid black lines) we extract the FWHM of the resonance, indicated here in units of
time with vertical dashed black lines. Measured error signals from the locked cavity are shown in gray.

As mentioned before we detect the reflected light from the cavity with an APD.
The photocurrent from the APD is proportional to the absolute square of the amplitude
reflection coefficient rc(∆) of the cavity. With the previously introduced parameters we
find that

rc(∆) = Er
Ein
= 1 − ηcκ

κ
2 − i∆

, (2.11)

where we assume a perfect incoupling efficiency ε = 1. The photocurrent is used
to generate an error signal eslope ∝ c − |rc(∆)|2, where the constant c is the setpoint,
and stabilize the laser frequency near the slope of the cavity with |∆| ≈ κ/2 (reflection
locking). This is achieved by feeding the error signal to a proportional-integral controller
that controls the piezo of the laser etalon. As an alternative to this, we can lock the
laser close to the cavity resonance frequency (∆ ≈ 0) by generating a Pound-Drever-
Hall (PDH) error signal [100], where the input light is phase-modulated via the EOM
at a frequency of Ωpdh = 32.5 MHz � κ/2π. As illustrated in Figure 2.5, we then
demodulate the photocurrent from the APD at the same frequency, low-pass filter it, and
adjust the phase difference between the EOM drive and the signal to be 90°. The error
signal, derived in [100], is an odd function around ∆ = 0 and has the following form:

epdh ∝ c − Im (
rc(∆)rc(∆ +Ωpdh)∗ − rc(∆)∗rc(∆ −Ωpdh)

)
, (2.12)

Figure 2.7 shows measurements and fits of eslope and epdh when sweeping the laser
over the cavity resonance. In the case of the PDH error signal the fit is used to
determine the linewidth κ/2π = 2.91(1)MHz. We can also find the detuning ∆/2π =
42.1(291) kHz when the laser is locked to the cavity. All error signals shown here
are low-pass filtered with a bandwidth of 4.9 kHz in order to strongly suppress high-
frequency noise in the feedback loop.
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In principle, using the two locking techniques interchangeably we can stabilize the
laser frequency to the resonance with an arbitrary detuning, provided that we correctly
adjust the setpoint c and the gain of the feedback. In practice, however, we are limited to
the interval between ∆ ≈ −2κ and ∆ ≈ 0. Indeed, if the laser frequency is far away from
the resonance |∆| � κ, the derivatives of the error signals with respect to ∆ become too
small to maintain the feedback loop, even with maximum gain. Blue detuning from the
resonance (∆ > 0) is widely inaccessible in our experiment because here the membrane
motion is greatly amplified via dynamical backaction and thereby causes ωc to widely
fluctuate at the mechanical frequency. We find that this is the case even when using the
lowest possible optical powers of the input beam set by the sensitivity of the APD.

2.2.3 Characterization of optomechanical parameters
While the laser frequency is locked near the cavity resonance with ∆ < 0 we can
detect mechanical motion of the patterned SiN membrane inside the cavity using a
photodetector in transmission. The membrane used here is 20 nm thick and has its
fundamental defect mode at a frequency of Ωm/2π ≈ 1.275 MHz. In the following
we present data to characterize various optomechanical parameters such as the quality
factor Q, the coupling rate g0, and the quantum cooperativity Cq.

2.2.3.1 Quality factor

The quality factorQ of the defect mode is measured via ringdown fitting. The procedure
for this is the same as that described in Section 1.2.1.4. We resonantly drive the
membrane mode using a PZT placed next to the sample holder in the cryostat and fit an
exponential function to the decay of the amplitude after switching off the drive. When
implementing this with the membrane placed inside the MiM cavity, it is important to
consider that dynamical backaction can modify the mechanical linewidth Γm = Ωm/Q
and thereby the ringdown time, as described in Appendix A.3.2. We minimize this
effect by tuning the laser wavelength to ∼ 750 nm where both cavity mirrors have low
reflectance and the finesse is on the order of unity. This means that the cavity linewidth
κ � |∆ ± Ωm |, resulting in the optical damping Γopt ≈ 0 according to Equation (A.50).
To verify this experimentally, we compare ringdown measurements at positive and
negative detunings ∆ and find that in the two cases Q varies by less than 10 %.

With the cold finger of the cryostat cooled to a temperature of T = 4.2 K we
measure an average quality factor as large as Q = 934(4) × 106. An example ringdown
measurement is shown in Figure 2.8. Furthermore, we get Q f = 1.191(5) × 1015 Hz
which exceeds the expected value based on our previous results presented in Section 1.4
by about a factor of two, taking into account the reduced membrane thickness and
assuming a 2.5-fold increase of Q compared to the room temperature measurement. At
the moment, we are unsure what causes this discrepancy. We suspect that the modified
defect design reduces the curvature and thus the material loss even further than before.
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Figure 2.8: Quality factor of the patterned SiN membrane mounted in the cavity. We perform
ringdown measurements of the fundamental defect mode A at a cold finger temperature of T = 4.2 K
(blue line) and extract from exponential fits (black dashed line) an average value of Q = 934(4) × 106.

2.2.3.2 Optomechanically-induced transparency

As a next step, we want to characterize the optomechanical interaction strength of our
MiM system. To this end, we use the following procedure. While stabilizing the
laser frequency near the cavity resonance with a given detuning ∆ < 0, we perform a
frequency-swept phase modulation in the range Ω/2π = 500 kHz...10 MHz using the
EOM at the input of the cavity. The phase modulation results in amplitude modulation
of the intra-cavity field, coherently driving the membrane motion via radiation pressure.
Near the mechanical resonance Ω ≈ Ωm the membrane motion is driven to a large
amplitude and in turn induces phase modulation that interferes with the drive. When
probing the cavity in transmission, this interference is visible as a sharp feature in the
spectrum on top of the broadband response of the cavity. The effect is commonly
referred to as optomechanically induced transparency (OMIT) [101]. In Figure 2.9 we
present data of such a measurement, acquired using a vector network analyzer.

In order to find an expression for the signal we employ the linearized Langevin
equations presented in Appendix A.3.1. We are interested in the intra-cavity amplitude
fluctuations δX̂ , proportional to the amplitude fluctuations δX̂t at the cavity output (in
transmission):

δX̂t =
√
ηcκδX̂ . (2.13)

The light at the cavity input is subject to phase modulation denoted δŶ θ
in, while

the amplitude fluctuations δX̂θ
in are assumed to be zero. The cavity rotates δŶ θ

in by
a phase angle θ, meaning that the quadratures fluctuations of the drive in Equa-
tions (A.43) and (A.44) are δX̂in = − sin θδŶ θ

in and δŶin = cos θδŶ θ
in. We identify

that θ = arg (χc(0)−1) = tan−1(−2∆/κ), where χc(Ω) is the cavity susceptibility defined
in Equation (A.49). Using trigonometric identities we then get

δX̂in =
2∆√

κ2 + 4∆2
δŶ θ

in, (2.14)

δŶin =
κ√

κ2 + 4∆2
δŶ θ

in. (2.15)
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Figure 2.9: Optomechanically induced transparency to quantify the interaction strength. Left:
Square magnitude of the cavity response to a phase modulation sweep over a broad frequency range
as measured at T = 4.2 K (blue) and fitted (black) from which we extract κ/2π = 3.97(3)MHz and
∆/2π = −2.37(2)MHz. Right: The narrow band response around the mechanical mode is then used to
determine Ωm/2π = 1.275 MHz (dashed lines) and g/2π = 148.8(4) kHz. Data and the fit are shown in
cyan and black, respectively.

Next, we solve Equations (A.43–46) for δX̂ , insert Equations (2.14) and (2.15) and find
the following expression in agreement with [99, 102]:

δX̂ =
C(Ω)

M(Ω) + 1
δŶ θ

in. (2.16)

Here we distinguish the response functions C(Ω) and M(Ω) of the cavity and the
mechanical mode, respectively. The former is given by

C(Ω) =
√
(1 − ηc)ε κ
κ2 + 4∆2 ΩδŶ

θ
in

(
χ∗c (−Ω) − χc(Ω)

)
, (2.17)

where we included the incoupling efficiency in the driving terms of the Langevin
equations, substituting κ → (1 − ηc)ε κ in the numerator. Now |C(Ω)|2 is used to fit to
the square magnitude of the swept spectrum7 to determine κ and ∆. This is exemplified
on the left hand side of Figure 2.9. Afterwards, we perform a second sweep in a
narrow window (∼ 50 kHz) around the mechanical frequency Ωm, in which |C(Ω)|2 is
approximately constant. These data are fit to |C(Ωm)/(M(Ω) + 1)|2, where

M(Ω) = i~g2

q2
zp
χm(Ω)

(
χ∗c (−Ω) − χc(Ω)

)
. (2.18)

Here χm(Ω) is the mechanical susceptibility defined in Equation (A.15). As shown
on the right side of Figure 2.9, we extract the cavity-enhanced coupling rate g/2π =
148.8(4) kHz at ∆/2π = −2.37(2)MHz. To get g0 = g/α, where α is the real coherent
amplitude of the cavity field, we simplymeasure the power Pt ≈ 18 µWof the transmitted
light and evaluate the number of photons in the cavity nc = α2 = Pt/ηcκ~ωl ≈ 3.3 × 106.

7We compensate for the detector response, measured independently via a SN spectrum.
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This means that g0/2π ≈ 81.5 Hz in our system, assuming λ = 2πc/ωl = 852 nm and
ηc = 0.93. For now, we disregard the < 5 % modulation of ηc as a function of zm (see
Section 2.2.3.4)

We also calculate the quantum cooperativity Cq; an important figure of merit that
compares the strength of the optomechanical interaction to the thermal decoherence rate
(see Appendix A.3.3). It reads

Cq =
4g2

κΓmn̄th
, (2.19)

derived from the definitions in Equations (1.27) and (A.69). For the phonon occupancy
n̄th = kBTm/~Ωm ≈ 1.76 × 105 we use themembrane’s bath temperature ofTm ≈ 10.4 K,
determined in Section 2.3.3. With Γm = Ωm/Q ≈ 2π×1.36 mHz and the othermeasured
parameters mentioned above, we then get Cq = 92.7(8). Evidently, this satisfies the
condition Cq > 1 by a large margin, suggesting that with our MiM system we should be
able to control the membrane motion at the quantum level.

2.2.3.3 Static bistability

The expression for the cavity-enhanced coupling rate g = αg0 suggests that the strength
of the optomechanical interaction can be amplified to an arbitrary degree by increasing
α. However, in most systems α is limited by an effect known as the static bistability,
originating from the constant radiation pressure exerted onto the membrane by the
mean intra-cavity field. To see this, let us find the steady state solutions of the Langevin
equations. We first take the expectation values of Equations (A.35–37), and identify
the mean optical field amplitudes as α = 〈â〉, αin = 〈âin〉 and the mean displacement
q̄ B 〈q̂〉. Then, we set all time derivatives to zero, along with the fluctuating term
including 〈F̂th〉, which results in

α =

√
(1 − ηc)ε καin

κ/2 − i
(
∆ − g0q̄/qzp

) , (2.20)

q̄ = −2qzpg0α
2

Ωm
. (2.21)

In the numerator of Equation (2.20) we replaced κ → (1 − ηc)ε κ to consider the
incoupling efficiency in our two-sided cavity, as was done in the last section. Combining
Equations (2.20) and (2.21) we get a cubic expression for the intra-cavity photon number
nc = α2 that has more than two real solutions if ∆ ≥ −√3κ/2 and if the input power
Pin = ~ωl |αin |2 fulfills [103]

Pin ≥ ~ωlΩmκ
2

6
√

3(1 − ηc)εg2
0

. (2.22)

The regime with multiple solutions is unstable, since small perturbations can cause
α and q̄ to abruptly alternate between different solutions. In our experiment, this can
be observed once the input power exceeds ∼ 500 µW. We find that when linearly
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Figure 2.10: Static bistability due to the membrane bridge mode. Calculated derivative of the mean
cavity photon number nc with respect to the detuning ∆ normalized by the input power Pin, in which
the static displacement of the bridge mode with a frequency of Ωm/2π = 80.1 kHz and a coupling
g0/2π ≈ 95 Hz is taken into account. Dashed lines indicate the onset detuning and input power of the
static bistability, according to Equation (2.22). The gray shaded area covers the parameter space for
which the bistability occurs.

scanning the laser frequency across the cavity resonance, a sudden jump appears on the
red-detuned side of the resonance, preventing us from locking the cavity. We presume
that the fundamental bridge mode of the entire membrane structure at a frequency
of Ωm/2π = 80.1 kHz gives rise to static bistability and determine its coupling rate
g0/2π ≈ 95 Hz via OMIT. Assuming ηc = 0.93 and ε = 0.92, Equation (2.22) yields
Pin & 306 µW. This number is in fair agreement with our observation. In Figure 2.10,
we calculate the derivative of nc with respect to ∆ for different Pin. This quantity
shows that the resonance frequency linearly shifts and the slope on the red-detuned side
increases with Pin before the bistability sets in. The range of detunings ∆ for which the
bistability occurs widens when increasing Pin.

Beforemoving on, it should be noted that except in this sectionwe always redefine the
detuning so that the shift due to the static displacement q̄ is discarded, i.e.,∆−g0q̄/qzp →
∆. In other words, we always reference the laser frequency to the observed cavity
resonance frequency. Furthermore, assuming typical values of nc ∼ 106 and qzp ∼ 1 fm
Equation (2.21) reveals that the mean displacement q̄ ≈ 2 pm � λ. This means that
q̄ can be neglected when determining the membrane position zm with respect to the
standing wave, which is especially relevant in the following.

2.2.3.4 Modulation of parameters with membrane position

In Section 2.2.1 we saw that the cavity resonance frequency ωc of a MiM system is
a periodic function of the membrane position zm and has a period of λ/2. In order
to maximize the coupling rate g0 ∝ ∂ωc/∂zm, it is necessary to control zm with sub-
wavelength precision (. 100 nm). Typically, this is done by means of a PZT displacing
the membrane chip with respect to the fixed cavity mirrors [76,91,104]. In our sample
holder we do not include a PZT in such a way and use another technique to adjust g0. We
change the laser wavelength by δλm � λ and address different longitudinal modes m of
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the cavity, each exhibiting a different g0. It is clear why this is possible by inspection
of Equation (2.1), in which the argument of the cosine describing the modulation of ωc
and thus ∂ωc/∂zm is 2kzm ∝ 1/λ. Now, for each longitudinal mode at λ + δλm we map
out where the membrane is located in relation to one intensity ‘bubble’ of the standing
wave. This is done by redefining the (relative) membrane position 0 ≤ zm ≤ λ/2 using
the following modulo operation:

zm B L2 modulo (λ + δλm)/2. (2.23)

Here zm = 0 and zm = λ/2 correspond to the membrane sitting at a node of the standing
wave, while for zm = λ/4 the membrane is at an antinode. We stress that L2 is fixed
in our experiment, meaning that the membrane position with respect to the mirrors is
unchanged while we alter zm via the laser wavelength.

Figure 2.11 shows measurements of the cavity frequency shift δωc as a function of
zm. To extract δωc, we fit a linear function with sinusoidal modulation to the resonance
frequenciesωc,m = 2πc/(λ+δλm) versus their corresponding longitudinal mode number
m. Afterwards, the linear part of the fitted curve, with a slope of ∼ 2π FSR, is subtracted
from the data and the maximum of the residual sine is set to zero [99], resulting in the
plot of δωc shown in Figure 2.11. Note that the sinusoidal modulation in the fit
function is based on Equation (2.1) and constitutes an approximation justified for a low
membrane reflectivity |rm |. The latter is indeed fulfilled as |rm | ≈ 0.213 � 1 according
to Equation (2.4) with λ = 852 nm and h = 20 nm.

Apart from δωc, we record at each cavity resonance an OMIT signal (see Sec-
tion 2.2.3.2) as well as the cavity input and output power in transmission. These
measurements reveal the cavity linewidth κ, the peak transmission |t |2, and the coupling
rate g0, as shown in Figure 2.11. The sinusoidal modulations of κ and |t |2 are charac-
teristic features of an asymmetric MiM system owing to the different loss rates of the
two subcavities. Note that this also concerns the outcoupling efficiency ηc, defined in
Equation (2.10), which is maximal if |t |2 is minimal. We see this in the identity [105]

|t |2 = 4εηc(1 − ηc). (2.24)

The coupling rate g0 follows the derivative of the frequency shift as expected and reaches
up to g0/2π = 84.3(2)Hz. A comparison between the fitted curves to δωc and g0 reveals
that qzp = 2.24(8) fm corresponding to an effective mass of meff = 1.31(5) ng, where
we used Equation (A.21). Although a slightly different defect geometry is used here,
the effective mass is in fair agreement with that reported in Section 1.3.2.2 (∼ 5 ng), if
we take into account the difference in membrane thickness and accordingly rescale meff
by the thickness ratio 66 nm/20 nm = 3.3.

We now want to contrast our findings with the TMM (see Appendix A.4). For
simplicity, we neglect all optical losses in the cavity and use the mirror transmission
coefficients |t1 |2 = 20 × 10−6 and |t2 |2 = 275 × 10−6. These values reproduce the
average of the modulated linewidth κ̄ = FSR (|t1 |2 + |t2 |2) ≈ 2π × 2.82 MHz shown
in Figure 2.11, where FSR = 60 GHz. κ̄ deviates from the measured linewidth of the
empty cavity by less than 5 % (see Section 2.2.2.3). To match the average transmission
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Figure 2.11: Optomechanical cavity parameters versus membrane position. The cavity frequency
shift δωc, cavity linewidth κ, peak transmission |t |2, and single-photon coupling rate g0 are modulated
as a function of relative membrane position zm and have a periodicity of λ/2. From sinusoidal fits
(black solid lines) to the data (colored dots) we extract the average parameters κ̄/2π = 2.82(6)MHz and
|t̄ |2 = 12.6(3)%, as well as qzp = 2.24(8) fm. The gray dashed lines are calculations based on the TMM.
Relative errors of κ and g0 from the OMIT fits are < 1.5 % and are not shown.

of |t̄ |2 = 12.6(3)% at the average output coupling efficiency of η̄c ≈ 0.93, we assume
ε = 0.5. Now, we numerically calculate the cavity transmission spectrum around
λ = 852 nm and track the frequency, the peak transmission as well as the linewidth of a
single resonance for different values of themembrane position in the range zm = 0...λ/2.
The coupling |g0 | is found via the derivative of the resonance frequency with respect
to zm, multiplied by qzp = 2.24 fm. As shown in Figure 2.11, the data and the TMM
exhibit the same overall behavior. We see that the modulations are not exactly sinusoidal
as assumed for the fits. This is particularly evident in the case of |g0 |, where the two
peaks in the TMM curve are not of equal height.

In order to match the measured values for δωc with the TMM we have to set
the membrane thickness to ∼ 13.6 nm, which is significantly lower than the actual
h ≈ 20 nm. For the latter we expect max(|δωc |)/2π = 2 FSR |rm |/π ≈ 8.14 GHz
according to Equations (2.1) and (2.4), assuming FSR = 60 GHz. This discrepancy can
be explained by a small membrane tilt α with respect to the flat mirror. Consider a
Gaussian beam with a radius of w0 = 45 µm. At each point across its intensity profile
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Figure 2.12: Reduced frequency shift due to membrane tilt. Calculated maximal cavity frequency
shift as a function ofmembrane tilt angle α (blue) for amembrane thickness of h = 20 nm, FSR = 60 GHz,
and a beam waist of w0 = 45 µm. Dashed lines indicate the maximal frequency shift extracted from fits
in Figure 2.11, corresponding to α ≈ 2.52 mrad.

along the tilt axis x, where x = 0 is the center of theGaussian, we have a slightly different
position zm+x tanαwith respect to the standingwave, resulting in an x-dependent phase
offset of the sinousoidal frequency modulation. Assuming h = 20 nm, we numerically
calculate the total frequency modulation averaged over all points x, where each point
is weighted by the Gaussian function. This is repeated for different values of α and
shown in Figure 2.12, where we see that the maximum frequency shift is expected to
decrease with α. The value max(|δωc |)/2π ≈ 5.74 GHz extracted from the fit to the data
in Figure 2.11 is obtained at α = 2.52 mrad. Such a small tilt corresponds to a height
difference of αl ≈ 37.5 µm between two points at opposite ends of the l ∼ 15 mm-wide
membrane chip, which proves difficult to avoid when assembling our sample holder.
We suspect that this is because of small dirt particles or surface irregularities at the
edges of the flat mirror that is pressed against the chip.

2.3 Sideband cooling and thermometry
We will now turn our attention towards sideband cooling of the membrane’s funda-
mental defect mode via dynamical backaction. The basic theory for this is outlined in
Appendix A.3.2. In this section, we will first present our optical heterodyne detection
setup, in which we reference the light transmitted through the cavity to a LOwith a fixed
frequency offset, allowing us to distinguish the sidebands induced by the optomechani-
cal interaction and perform Raman sideband thermometry. Afterwards, we demonstrate
the cooling and explore the cooling limit set by radiation pressure backaction.

2.3.1 Heterodyne detection
2.3.1.1 Experimental setup

Consider the illustration in Figure 2.13 showing our heterodyne detection setup. Com-
pared to the setup presented in the previous section, we add a number of components; in
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Figure 2.13: Illustration of the heterodyne detection setup. We expand our setup shown in Figure 2.5
to derive three beamswith different frequencies from the same laser using three AOMs. After transmitting
through the MiM cavity, the probe beam (red) is spatially overlapped with the LO (cyan). The cooling
beam (orange) is used to optically cool the membrane mode and is blocked at the cavity output by a
polarizer (POL). A balanced photoreceiver (BAC3) generates the heterodyne signal, which is bandpass
filtered and analyzed.

essence three AOMs, from which we derive two optical tones, and a balanced receiver.
The light from the Ti:sapphire laser at a wavelength of around λ = 852 nm is split by
means of a half-waveplate (λ/2) and PBS1, and the reflected vertically polarized light
is sent to the optomechanical cavity as described before. This beam, with an optical
frequency ωp = 2πc/λ, will be referred to as the probe beam in the following. The
horizontally polarized light at PBS1 is guided through AOM1, shifting its frequency
upwards by 62.5 MHz. After that, we place a half-waveplate and PBS2 to again separate
two beams. The reflected part is coupled into a fiber and guided to AOM2, where the
frequency is shifted downwards by 62.5 MHz − ∆cl/2π, with ∆cl/2π ∼ −2.6 MHz. The
light is then sent via a fiber to the cavity and serves as a red-detuned cooling beam with
a frequency of ωcl B ωl+∆cl and orthogonal polarization compared to the probe beam.
At the transmission port of PBS2, the light passes through AOM3 and is shifted down
in frequency by 62.5 MHz + ∆LO/2π, resulting in a tone at ωLO B ωl − ∆LO, where
∆LO/2π ≈ 10.742 MHz. The light is guided through a fiber and is spatially overlapped
with the probe beam at the cavity output to serve as a LO. We use a high-bandwidth
home-built balanced photoreceiver (BAC3) to detect the light. The transmitted light
from the cooling beam is blocked by means of a thin film polarizer (POL) at the cavity
output.

Figure 2.14 shows an illustration of the spectrum with the three optical tones used
in our setup as well as the cavity resonance at a frequency of ωc. We reference ωc to
the probe beam via the detuning ∆p B ωp − ωc.
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Figure 2.14: Heterodyne detection signal. Top: Sketch of the optical spectrum with the tones used
in our setup, i.e., the cooling beam (orange), probe beam (red) and LO (cyan). The probe beam carries
mechanical sidebands (gray-filled peaks), which are weighted by the square magnitude of the cavity
susceptibility (solid gray line). Bottom: Measured heterodyne signal (blue) of the membrane motion
with sideband frequencies from the mode of interest at Ωm/2π = 1.275 MHz indicated as black dashed
lines. SN and electronic noise backgrounds are shown in cyan and gray, respectively.

2.3.1.2 Heterodyne signal of the membrane motion

The difference photocurrent î− from BAC3 is characterized by a large beating at the
frequency of ∆LO. This can be seen in the first term of the following expression, where
we substitute the time-dependent phase φ→ ∆LOt in Equation (1.4):

î− = 2αLOαp cos(∆LOt) +
√

2αLO
(
δX̂p cos(∆LOt) + δŶp sin(∆LOt)

)
. (2.25)

Here the coherent amplitudes of the probe beam transmitted through the cavity and the
LO are αp and αLO, respectively. In the second term of Equation (2.25) we find the
fluctuations of the probe beam described by the amplitude quadrature δX̂p and phase
quadrature δŶp. In contrast to homodyne detection, the quadratures cannot be addressed
individually by adjusting the phase of the LO. Heterodyning simultaneously measures
both quadratures, which is also reflected in the normalized PSD of the photocurrent,
i.e., (in the rotating wave approximation) [11]8

Sii(Ω) =1
4

(
Sout

X X(−Ω − ∆LO) + Sout
YY (−Ω − ∆LO)

+ Sout
X X(Ω − ∆LO) + Sout

YY (Ω − ∆LO)
)
,

(2.26)

8Notice that in [11] ∆LO is defined with the opposite sign.
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where Sout
X X and Sout

YY denote the PSDs of the amplitude and phase quadratures of the
probe beam at the cavity output, respectively. They are found by solving the lin-
earized Langevin equations (A.43) and (A.44) in the frequency domain and using the
input-output relations (see Equation (A.63)), as well as the definition of the PSD in
Equation (A.3). We assume that the input quadrature fluctuations δX̂in and δŶin corre-
spond to SN so that the noise correlation relations in Equations (A.57) and (A.58) apply.
Then, the photocurrent PSD is found to be

Sii(Ω) = 1
2
+
g2ηκ

2q2
zp

(
Sqq(−Ω − ∆LO) |χc(−Ω − ∆LO)|2

+Sqq(Ω − ∆LO) |χc(Ω − ∆LO)|2
)
.

(2.27)

Here the first term represents the white SN background and the second term contains
the membrane’s displacement PSD Sqq, centered around ±∆LO, and multiplied by the
absolute square of the cavity susceptibility χc. As one might expect, the displacement
sensitivity depends on the square of the cavity-enhanced coupling rate g2, proportional
to the intra-cavity photon number. In Equation (2.27) we introduce the overall detection
efficiency η, which in our setup is estimated to be η = ηcηoptV2ηdet ≈ 0.6, where
ηc ≈ 0.93 is the cavity output coupling, 1 − ηopt ≈ 0.12 is the loss due to optical
elements, V = 0.92 is the fringe visibility, and ηdet = 0.87 is the nominal quantum
efficiency of BAC3.

A typical heterodyne spectrum is shown in Figure 2.14, where the optical power
of the LO at the detector is PLO ≈ 430 µW and the power of the probe at the cavity
input is Pin

p = 53 µW. We maximize |g0 | and ηc by adjusting the membrane position
zm in the standing wave (see Section 2.2.3.4) and stabilize the laser frequency to the
cavity resonance with ∆p/2π ≈ −1 MHz. In the spectrum, we see the beat note at
∆LO/2π ≈ 10.742 MHz visible as a sharp peak and surrounded by a large number of
sidebands. Each pair of sidebands represents a different membranemode. The 250 kHz-
wide gaps around (∆LO −Ωm)/2π ∼ 9.5 MHz and (∆LO +Ωm)/2π ∼ 12 MHz show the
phononic bandgap, which contains our mode of interest; the fundamental defect mode
A at Ω/2π = 1.275 MHz. The background in the bandgap is dominated by SN. Notice
that we use a bandpass filter centered near ∆LO, rejecting unwanted noise at frequencies
Ω/2π . 8.5 MHz and Ω/2π & 13 MHz.9

2.3.1.3 Sideband ratio and thermometry

Heterodyne detection gives us access to a straightforward method to determine the
membrane mode temperature, or equivalently the mean phonon occupancy n̄. The
method is known as sideband thermometry [77, 106, 107] and is based on the fact that
every mechanical resonator oscillating near the quantum ground state of motion has a
measurably asymmetric displacement PSD (see Appendix A.2.3).

9This prevents aliasing during digital detection (with a sample rate of 30 MHz) and suppresses DC
noise so that we can use the entire analog-to-digital converter’s range.
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To describe themethod, let us first transform the frequency axis in Equation (2.27) by
substitutingΩ→ Ω+∆LO so that the beating at+∆LO is shifted to zero frequency. Then,
we define the ratio Rsa between the Stokes sideband at Ω = −Ωm and the anti-Stokes
sideband at Ω = Ωm as

Rsa B
Sii(−Ωm)
Sii(Ωm) . (2.28)

Next, we solve the displacement PSD in Equation (A.31) for n̄, assuming that the
membranemode is optically cooled and out-of-equilibriumwith its thermal environment
(n̄th → n̄). This yields

n̄ =
(

Sqq(−Ωm)
Sqq(Ωm) − 1

)−1
, (2.29)

≈
(
Rsa

���� χc(Ωm)
χc(−Ωm)

����2 − 1

)−1

. (2.30)

In the last line, we use Equations (2.27) and (2.28), neglect the SN background and we
arrive at the expression that will be used repeatedly through the remainder of this chapter.
It directly relates the measured sideband ratio Rsa to the phonon occupancy n̄. In the
ground state (n̄ = 0) we expect the anti-Stokes sideband to vanish, i.e., Sqq(Ωm) = 0 so
that Rsa = ∞. On the other hand, if n̄ � 1 we expect Sqq(−Ωm) ≈ Sqq(Ωm) and Rsa = 1
assuming ∆p = 0.

Sideband thermometry is a particularly convenient and robust method to determine
n̄. This is because we analyze the relative size of peaks in the photocurrent PSD and
do not rely on a thorough calibration of the signal into units of m2 Hz−1, for which
knowledge of the optomechanical parameters g, κ, qzp, and the detection efficiency η
in Equation (2.27) is required. Yet there are a number of characteristics that we have
to consider to correctly determine the phonon occupancy via sideband thermometry, as
will be detailed in the following section.

2.3.2 Response and noise characterization
In this section, we characterize the detector response, the cavity response, and classical
noise from different sources in our setup. All of the above can cause systematic errors
to the measurement of the sideband ratio, if not properly accounted for.

2.3.2.1 Detector and cavity response

The responses of the detector and the electronic components in the signal chain are
determined by blocking the probe beam and only sending the LO to both photodiodes
of the detector. In the frequency window of interest (8...14 MHz) the noise in the signal
is dominated by SN that is frequency-independent (white noise) and thus conveniently
serves as a reference. In Figure 2.15 we show the measured PSD, resembling predomi-
nantly the response of the electronic band-pass filter. The averaged spectrum at a total
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Figure 2.15: Response of the balanced heterodyne detector. Left: Averaged PSD from a SN
measurement (black line) at an optical power of PLO = 2.05 mW balanced between the two photodiodes
of BAC3. The gray line shows the electronic noise of the detector and the colored dashed lines indicate
the frequency bins at which we extract the SN level for the plot on the right. Right: SN level in the PSD
versus PLO for the three frequency bins indicated on the left. Dots are data points, whose color-code refer
to the dashed lines, and black solid lines are linear fits.

optical power of PLO = 2.05 mW is about ten times larger than the electronic noise of the
detector. For three different frequency bins across the region of interest, we verify that
the noise is indeed limited by SN, demonstrating a linear scaling with PLO as shown on
the right side of Figure 2.15. We subtract the electronic noise from the PSD to get only
the SN at PLO = 2.05 mW, smoothen10 the trace and use it to normalize all subsequent
heterodyne spectra acquired using the same electronics and ∆LO/2π ≈ 10.742 MHz.

With the detection response accounted for, we nowmeasure how the cavity response
alters the sideband ratio Rsa. This is done by acquiring heterodyne spectra for different
values of ∆p < 0 and selecting a number of mechanical modes of the membrane that are
outside the bandgap in the frequency rangeΩm/2π = 80 kHz...2 MHz. Using low input
powers of the probe Pin

p = 3 µW and the cooling beam Pin
cl = 10 µW at which cooling

due to dynamical backaction is small, we ensure that the modes have high thermal
occupancies and their displacement PSD is essentially symmetric. Now, for each pair
of sidebands induced by the membrane modes we numerically integrate the heterodyne
spectrum in small windows (∼ 1 kHz) around the peaks and calculate the ratio of the
integrals, analogous to Equation (2.28). The left hand side of Figure 2.16 shows data
acquired in such a way. As one might expect, the cavity causes a frequency-dependent
asymmetry between the sidebands. At lower mechanical frequencies the ratio is near
unity, while for larger mechanical frequencies it changes significantly with the detuning.

The behavior is readily described by the fact that each sideband is weighted by the
absolute square of the cavity susceptibility χc(Ω) as expressed in Equation (2.27). We
fit the function |χc(−Ω)/χc(Ω)|2 and from that obtain an average linewidth κ/2π =
3.133(9)MHz, as well as the detunings ∆p of each dataset. On the right side of
Figure 2.16, the latter are shown to be in agreement with the detunings measured via
the PDH signal (see Section 2.2.2.4). When calculating the sideband ratio Rsa of the
mechanical mode of interest, we compensate for the extracted cavity response, dividing

10We smoothen using a Hanning window with a width of 300 kHz.

51



Radiation pressure cooling of silicon nitride membranes

0 0.5 1 1.5 2

0.6

0.8

1

Ω/2π (MHz)

Si
de

ba
nd

ra
tio

−0.4 −0.2 0

−0.4

−0.2

0

∆p/2π from PDH (MHz)

∆
p/

2π
fro

m
SB

s(
M

H
z)

Figure 2.16: Cavity response extracted from the asymmetry of mechanical peaks. Left: Ra-
tios of integrated sidebands of mechanical modes outside the bandgap for different detunings ∆p ≈
{−0.51,−0.38,−0.26, 0.16,−0.06}MHz (red to blue dots). Solid black lines are fits. Right: Detunings
extracted from the fit to each dataset compared to those extracted from the PDH signal (color-coded dots).
The dashed black line is a linear function with unity slope and zero intercept. Statistical errors of the
detunings are ∼ 10 kHz and are not shown.

Rsa by the fit function evaluated at the respective frequency Ωm/2π = 1.275 MHz. We
confirm that this results in Rsa |χc(Ω)/χc(−Ω)|2 ≈ 1 to within ∼ 1 % for the low cooling
powers used and large values of n̄ expected here.

2.3.2.2 Laser and mirror noise

Next, we characterize the technical noise in our setup and focus on laser amplitude
and phase noise of the probe beam and the cooling beam. In regard to ground-state
cooling of the membrane mode this type of noise is unwanted, since it increases the
background level, compromising displacement sensitivity, and contributes a driving
force via radiation pressure that increases the minimum achievable occupancy. The
latter will be discussed further in Section 2.3.3.2.

In order tomeasure the amplitude noise, the probe beam and the cooling beambypass
the optomechanical cavity and impinge on a single photodiode of the detector. Both
beams are adjusted to have the same optical power of 190 µW and the LO is blocked.
Now, for each beam separately we record the photocurrent PSD in the frequency range
Ω = 0...2 MHz as shown on the left hand side of Figure 2.17. Here we first subtract and
then divide the spectra by a SN trace, acquired by detecting light from an incandescent
flashlight11 using the same detector and the same average photocurrent. The broad peak
around 380 kHz represents the laser relaxation oscillations. At the frequency of interest
Ωm/2π = 1.275 MHz the noise levels are significantly lower than the SN. Averaged
over a window of 50 kHz around Ωm the classical noise of the probe beam and the
cooling beam in comparison to SN are Cxx ≈ 7 % and Cxx ≈ 14 %, respectively. This
means that the two AOMs, with which we control the detuning ∆cl (see Section 2.3.1.1),
introduce extra noise in the cooling beam.

11The flashlight constitutes a thermal light source with very short coherence time, so that intensity
fluctuations up to several MHz are dominated by SN.
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Figure 2.17: Laser amplitude noise of the probe and the cooling beam. Left: Amplitude noise
PSD from which we subtract SN and normalized by SN, comparing the probe beam (blue) and the
cooling beam (cyan) at an optical power of 190 µW. The dashed line indicates the mechanical frequency
Ωm/2π = 1.275 MHz. Right: Noise levels of the PSDs in a 50 kHz window around Ωm/2π measured as
a function of optical power and fit to quadratic functions (black solid lines). While for SN (gray dots) we
find a negligible quadratic component, the probe beam (blue) and cooling beam (cyan) show quadratic
scalings.

We want to verify that part of the amplitude noise is indeed classical and determine
the noise level around Ωm for different optical powers. The result is shown on the right
hand side of Figure 2.17, where we fit second-order polynomials to the data. The noise
in the cooling beam has a larger quadratic component than that of the probe beam.
In comparison, SN shows virtually no quadratic scaling. These findings evidence the
presence of small amounts of classical amplitude noise in our setup. It should be noted
that the optical powers shown here are relevant for our system as we require a cavity
input power on the order of 100 µW to cool the defect mode to the backaction limit (see
Section 2.3.3.2).

We characterize the phase noise of the probe beam and the cooling beam by means
of an empty cavity with similar high-reflective mirrors and dimensions as used in our
MiM system. The empty cavity is placed in a vacuum chamber with a pressure of
< 1 × 10−5 mbar and a temperature of T = 300 K. We couple each of the two beams
into the cavity and stabilize its frequency to the slope of the resonance (half-fringe) so
as to transduce part of the phase noise into amplitude noise of the intra-cavity field. The
optical powers are adjusted to the same value at the cavity output in transmission, i.e.,
Pout
p = Pout

cl = 64 µW. We record spectra separately for each beam via direct detection
in transmission. The results are shown in Figure 2.18. Here a small phase-modulation
of the probe beam induced by the EOM with a well-known frequency and amplitude
is used to calibrate both PSDs, as well as the SN background, in terms of frequency
fluctuations (in units of Hz2 Hz−1). As before, the SN background is measured with a
flashlight and the same photodetector. Around the frequency of interest Ωm the spectra
corresponding to the probe beam and the cooling beam are nearly identical. We see
a number of broad peaks that are several orders of magnitude larger than the SN. The
peaks are likely due to mirror substrate modes which have been studied previously in
a similar MiM system [99]. If this is true, we cannot reliably extract the phase noise
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Figure 2.18: Laser frequency noise and cavity mirror noise. Frequency noise spectral density
measured using an empty Fabry-Pérot cavity at room temperature for the probe beam (red) and the
cooling beam (blue). The spectra were recorded at the same optical power and calibrated using a well-
known phase modulation at 1.1 MHz. The dashed line indicates the frequency Ωm/2π = 1.275 MHz at
which the membrane mode of interest is found in our MiM system. The gray line corresponds to the SN
at the same detected optical power.

of the two beams from this measurement. A way to proceed would be to cryogenically
cool the empty cavity to T = 4.2 K, so that the mirror modes decrease by a factor of
∼ 70, and repeat the measurements for both beams. This has not been realized yet.

2.3.3 Single beam operation
Having considered different sources of errors, we now put our setup and the sideband
thermometry method to the test. For all measurements presented in this section and
Section 2.3.4, we maximize |g0 | and ηc by adjusting the relative membrane position
zm with respect to the standing wave, and cool the defect mode of our membrane via
dynamical backaction. To start with, we utilize a single laser beam to drive the cavity,
that is to say, we block the cooling beam and send only the probe beam to the cavity.
The temperature of the cold finger is T = 4.2 K.

2.3.3.1 Detuning series

We measure heterodyne spectra at a fixed input power of the probe beam Pin
p = 20 µW

and for different detunings12 ∆p < 0. After normalizing each spectrum to SN, we select
10 kHz-wide windows around the sidebands induced by the defect mode of interest. To
these data we fit the sum of two Lorentzian functions, in accordance with the square
magnitude of the mechanical susceptibility in Equation (A.15). For the two Lorentzians
we assume equal FWHMs Γeff and background levels (offsets), as well as the same
peak frequency but with opposite signs ±Ωeff. Examples of the fits are shown in
Figure 2.19, where Stokes and anti-Stokes sidebands are superimposed by transforming
the frequency axis as Ω→ |Ω|.

12Here ∆p is determined via mechanical sideband asymmetries as detailed in Section 2.3.2.1.
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Figure 2.19: Zoom-ins to heterodyne spectra for the single beam detuning series. Stokes (red) and
anti-Stokes (blue) sideband peaks for different cavity detunings ∆p/2π = −3 MHz (left) and ∆p/2π =
−1.33 MHz (right). Black lines are Lorentzian fits from which we extract the linewidth Γeff, resonance
frequency Ωeff and peak areas.

The data show significant broadening of the linewidth which depends on the detun-
ing, as expected from optical damping via dynamical backaction (see Appendix A.3.2).
In Figure 2.20 we plot Γeff and the frequency shift δΩm versus ∆p with several data
points in the detuning range −3.5 MHz...−0.5 MHz. The behavior of the damping
rate is well-reproduced by a fit to Equation (A.50), where we take into account how
g2 ∝ nc ∝ |χc(0)|2 depends on ∆p for a fixed Pin

p . Note that we use an overall scaling
as the only free parameter for the fit. The mode frequency Ωm is described by Equa-
tion (A.51) where we include the aforementioned detuning dependence of g2. From
a fit we extract the mechanical frequency Ωm/2π = 1.276 07(1)MHz at ∆p = 0 and
calculate the frequency shift δΩm B Ωeff −Ωm for each data point. As can be seen, the
latter is negative and on the order of −100 Hz. This compares favourably with estimates
of Γeff/2π ≈ 503 Hz and δΩm/2π ≈ −183 Hz for ∆p = −Ωm, assuming g0/2π ≈ 84 Hz,
nc ≈ 105, κ/2π ≈ 3.7 MHz, and Γm/2π ≈ 1.36 mHz. Employing Equation (A.53) then
yields a cooling factor of T/Teff = Γeff/Γm ≈ 3.7 × 105.

In Figure 2.19 we see sideband asymmetries in both heterodyne spectra; the anti-
Stokes sidebands are larger so that Rsa < 1. This is the case for all measurements pre-
sented here and is due to the cavity response as previously discussed in Section 2.3.2.1.
From the Lorentzian fits we extract the peaks’ spectral areas and use them to calculate
Rsa as well as the mean phonon occupancy n̄ via Equation (2.30). The results are shown
in Figure 2.21, where the lowest value is n̄ = 0.80(2). We fit the data to

n̄ ≈ Γm
Γeff

n̄th + n̄min, (2.31)

which follows from Equation (A.62) assuming Γopt ≈ Γeff. Here n̄min is the minimum
achievable occupancy, defined in Equation (A.61). It amounts to n̄min = 0.381(5) for
our measured cavity parameters above and the optimal detuning for the cooling

∆min = −
√
Ω2

m + κ
2/4, (2.32)
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yielding∆min/2π = −2.25(2)MHz. The peak areas fromwhichwe calculate Rsa are also
shown Figure 2.21. Their detuning dependence is proportional to the Bose enhanced
scattering rates (n̄ + 1)Γ+ (Stokes sideband) and n̄Γ− (anti-Stokes sideband), where Γ−
and Γ+ are defined in Equations (A.54) and (A.55), respectively.

2.3.3.2 Power series

Let us now see how much further we can lower the phonon occupancy n̄ via optical
cooling with the probe beam. Fixing the cavity detuning to ∆p = ∆min, we perform
measurements at different input powers in the range Pin

p = 3.2...320 µW. For each
value of Pin

p three heterodyne spectra are recorded from which we determine Γeff, the
peak area of each sideband, n̄ and n̄min as described above. The results are shown in
Figure 2.22 and plotted versus Γeff/2π ∝ Pin

p . As expected from Equation (2.31), we see
that n̄ decreases with Γeff and levels off for larger powers. We average the data points
for n̄ obtained from the three spectra at Pin

p = 100 µW and Γeff/2π ∼ 3 kHz, and find the
lowest occupancy in our data of n̄ = 0.55(1). To put this number into perspective, the
probability of finding the membrane mode in a state with n phonons reads [11]

p(n) = n̄n

1 + n̄n+1 , (2.33)

and yields p(0) = 76(1)%. This means that the membrane spends the majority of its
time in the ground state of motion (n = 0). The data also shows that we cool the mode
close to the backaction limit, where n̄ ≈ n̄min = 0.442(5). Here we again average three
data points extracted from the measurements at Pin

p = 100 µW.
Equation (2.31) provides an approach to determine the thermal occupancy n̄th and the

membrane’s bath temperature Tm = ~Ωmn̄th/kb, which follows from Equation (A.23).
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Figure 2.20: Optical damping and spring effect versus detuning. Effective mechanical linewidth (top)
and frequency shift (bottom) as a function of cavity detuning ∆p < 0 for a fixed input power Pin

p = 20 µW
and κ/2π = 3.70(3)MHz. The data points (colored dots) are obtained from Lorentzian fits to heterodyne
spectra. Black solid lines are model fits.
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Figure 2.21: Sideband thermometry detuning series. Top: Measured peak spectral areas of Stokes
sidebands (red dots) and anti-Stokes sidebands (blue dots) as a function of detuning ∆p for a fixed input
power Pin

p = 20 µW and κ/2π = 3.70(3)MHz.. Bottom: Mean phonon occupancy n̄ (purple dots) versus
∆p. Solid black lines are fits and the dashed line shows the calculated minimum phonon occupancy n̄min.

Wefit the expression for n̄ to our data in the regimewhere Γeff/2π . 3 kHz and reveal that
Tm = 10.4(6)K. Comparable membrane temperatures were reported in previous work
of Quantop and SLABwhere similar MiM systems were used [34,35,87]. Furthermore,
the fit to n̄ also yields n̄min = 0.462(8), in fair agreementminimumoccupancymentioned
above.

In Figure 2.22 the data for n̄ corresponding to Γeff/2π & 5 kHz deviate systematically
from the fitted curve. As it seems, the values increase with Γeff, which is not expected
from the model. A possible explanation for this inconsistency is the fact that the
relatively large optical powers of Pin

p > 170 µW used here, alongside with the LO
power of PLO = 400 µW, give rise to a large heterodyne beat note that saturates the
transimpedance amplifier in our detector. We test the effect of this saturation by
acquiring spectra Sbg

ii (Ω) normalized to SN, while the probe beam bypasses the cavity
and is directly sent to the detector. Without any mechanical peaks in the signal we
compare the ‘background’ noise at ±Ωm and calculate the ratio Rbg = Sbg

ii (−Ω)/S
bg
ii (+Ω)

similar to Equation (2.28). In Figure 2.23 we plot Rbg as a function of the rms amplitude
of the beat note at the detector output, proportional to the square root of the incident
probe beam power (see Equation (2.25)). Initially at Rbg = 1 the ratio decreases once the
rms amplitude exceeds ∼ 1.3 V. Provided that the sideband ratio Rsa used to calculate
the phonon occupancy n̄ follows the same behavior as Rbg, we might be overestimating
n̄ in Figure 2.22 because of the saturation. It should be noted that while we have reduced
the power of the LO to prevent the detector from saturating we did not account for the
rather subtle deviation of Rbg from unity near the saturation point. To fully overcome
the saturation problem in the future, the gain of the transimpedance amplifier in the
heterodyne detector needs to be reduced.

The detector saturation may not be the only source of systematic error in our data.
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Figure 2.22: Sideband thermometry near the backaction limit. Top: Measured peak spectral areas of
the Stokes sidebands (red dots) and anti-Stokes sidebands (blue dot) versus effective damping Γeff. The
solid black lines are linear fits. Center: Phonon occupancy n̄ as measured (purple dots) and described by a
fit (solid line) from which we extract the membrane’s bath temperature Tm = 10.4(6)K and nmin = 0.462
(dashed line). Bottom: The minimum occupancy (cyan dots) calculated via measured values of κ and
∆p. The dashed line again indicates n̄min = 0.462(8) obtained from the fit in the center plot. Gray data
points are discarded from the fits.

We need to examine whether at larger optical powers the membrane motion is driven by
classical laser noise, as theoretically described in [108]. This requires a proper estimate
of the phase noise, which can be done using an empty cavity at cryogenic temperature
(see Section 2.3.2.2 and [87]) or via a delay-line interferometer [78]. For amplitude
noise alone, we can express the contribution to the phonon occupancy by substituting
n̄→ n̄ + n̄err, where the correction term is given by [78]

n̄err =
g2κ

4Γeff
(1 − ηc)Cxx

��χ∗c (−Ωm) + χc(Ωm)
��2 . (2.34)

Here Cxx denotes the amplitude noise coefficient in relation to SN. For the parameters
used here, as well as Γeff/2π & 5 kHz and Cxx ∼ 7 %, we get n̄err . 6 × 10−3. This is
less than 2 % of the lowest measured n̄ and hence does not account for the discrepancy
shown in Figure 2.22. Finally, mirror noise could also cause a systematic error for large
cooling powers. Indeed, the mirror mode with relatively large thermal displacement
near the membrane mode of interest, visible in Figure 2.18, may contribute to the noise
floor, offsetting the sidebands used to determine the occupancy. Further investigations
on this matter are needed.
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Figure 2.23: Saturation of the heterodyne photodetector. We measure the background noise around
the sidebands at ±Ωm while the probe beam bypasses the cavity. As a result of detector saturation, the
background ratio Rbg decreases if the rms amplitude of the heterodyne beat note in the voltage signal
exceeds ∼ 1.3 V.

2.3.4 Dual beam operation
There are a few reasons why wewant to drive our cavity simultaneously with two beams,
instead of only a single beam. For starters, it is convenient to stabilize the probe beam to
the cavity resonance with ∆p = 0 using the PDH technique, since this is robust against
power drifts [100]. The second (cooling) beam, whose detuning ∆cl is well-defined
by the AOM drive frequencies, can be controlled independently to optically cool or
amplify the membrane motion. The cooling beammay also be rapidly switched in order
to facilitate optical pulsing and fast changes in ∆cl, while we maintain the locking using
the probe beam. Among other things, pulse protocols are used for the generation of
mechanical Fock states, envisioned in Section 2.4.

2.3.4.1 Beam rejection

When we introduce the cooling beam and record heterodyne spectra using the probe
beam, we immediately face the following technical issue: the cooling beam cannot
be fully rejected by the polarizer at the cavity output and thus creates a second beat
note together with the LO that appears at Ω = −∆cl (see Figure 2.24). Since the
cooling beam couples to the membrane’s motion, this beat note carries mechanical
sidebands, constituting a dense distribution of noise peaks near Ω = ±Ωm, where
Ωm/2π ≈ 1.275 MHz corresponds to the defect mode of interest. With increasing
cooling beam power the added beat note and the noise peaks become larger. This is
demonstrated on the right hand side of Figure 2.24, where we plot the ratio between the
two beat notes Sii(0)/Sii(−∆cl), as a function of the power ratio Pout

cl /Pout
p measured at

the cavity output. We see that the beat note ratio is inversely proportional to Pout
cl /Pout

p .
In many cases, we want the cooling beam to be 100-fold stronger, resulting in a rather
small beat note ratio of ∼ 83 and the sidebands of interest being largely contaminated
by the noise peaks.

We reduce the number of noise peaks near the Stokes sideband (−Ωm) by choosing
∆cl/2π ≈ −2.63 MHz, as is the case for the spectrum in Figure 2.24. Here the bandgaps
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Figure 2.24: Rejection of the probe and the probe beams. Left: Photocurrent PSD Sii(Ω) normalized
to SN (gray) with ∆p = 0, where the beat note from the probe beam is indicated in red. The cooling beam
with ∆cl/2π = −2.63 MHz creates another beat note marked in blue, which we minimize by adjusting the
polarizer at the cavity output. Dashed lines indicate ±Ωm/2π. Right: Ratio between the two beat notes
Sii(0)/Sii(±∆cl)when rejecting the cooling beam (purple dots) and the probe beam (cyan dots) versus the
power ratio Pout

cl /Pout
p . Solid black lines are linear fits to the data.

in the peak distributions around the two beat notes overlap for Ω < 0. However, this is
not the case for Ω > 0, meaning that we find many (yet smaller) unwanted peaks near
the anti-Stokes sideband (+Ωm). Notice that our choice of ∆cl is similar to the optimal
detuning ∆min/2π ≈ −2.25 MHz and therefore does not compromise significantly on
the optical cooling of the defect mode.

The easiest way in our setup to effectively tackle this noise issue is to rotate the polar-
izer at the cavity output so that the probe beam is blocked and the cooling beam is used
to generate the heterodyne signal.13 The beat note ratio, now given by Sii(0)/Sii(+∆cl)
assuming that Ω = 0 corresponds to the beating between the cooling beam and the
LO, is then linearly increasing with Pout

cl /Pout
p . Using a strong cooling beam and

Pout
cl /Pout

p = 100, we expect a beat note ratio of ∼ 4 × 105 and a much cleaner spectrum
than in the previous configuration.

2.3.4.2 Backaction due to the probe beam

Whether the resonant probe beam (∆p ≈ 0) is used for detection or only for locking to
the cavity resonance, it impacts the behavior of the membrane via additional radiation
pressure backaction. In Appendix A.3.3 we derive the measured displacement PSD of a
resonant beam at the cavity output. The PSD reaches a minimum, known as the standard
quantum limit, if the membrane is in the ground state and the imprecision noise equals
the backaction noise. With our setup we are in a position to study this behaviour and
the effect on the phonon occupancy n̄.

Figure 2.25 shows a measurement of n̄, in which we generate the heterodyne signal
using the cooling beam and the LO, while the probe beam is locking to the resonance
with ∆p ≈ 0. The input power of the cooling beam is Pin

cl = 53 µW and the detuning

13For this, the halfwave-plate at the input port of PBS4 is rotated by 45°.
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Figure 2.25: Backaction due to the resonant probe beam. Mean phonon occupancy n̄ as a function
of probe beam power Pout

p measured at the cavity output. Blue dots are data obtained from sideband
thermometry using the cooling beam and the solid black line is a linear fit. From the slope a of the fit
we extract the output power Psql

p = 1/4a ≈ 0.272(6) µW corresponding to the standard quantum limit, as
indicated by the dashed line.

is ∆cl ≈ −2.63 MHz. We gradually increase the probe beam power and find that n̄
increases linearly with the probe power. To see why this is the case, let us write an
expression similar to Equation (A.62) but including a second optical bath:

n̄ =
Γmn̄th + Γcloptn̄

cl
min + Γ

p
optn̄

p
min

Γm + Γ
cl
opt + Γ

p
opt

, (2.35)

≈ Γmn̄th
Γeff

+ n̄clmin +
4g2

0npc
κΓeff

(
1 +

4Ω2
m

κ2

)−1

. (2.36)

Here the superscripts ‘cl’ and ‘p’ refer to the cooling beam and the probe beam,
respectively. In the last line we assume that Γeff = Γm + Γclopt + Γ

p
opt ≈ Γclopt meaning

that the effective linewidth is dominated by the optical damping from the cooling beam.
Furthermore, Equation (A.50) and Equation (A.61) are used with ∆p = 0 to find the last
term in Equation (2.36). Since the intra-cavity photon number npc = Pout

p /~ωlηcκ, the
model confirms the measured linear relation between n̄ and Pout

p .
We identify the optical power at which the backaction due to the probe beam adds an

energy of ~Ωm/4 to the membrane, corresponding to the standard quantum limit [10].
Setting the last term in Equation (2.36) equal to 1/4 and solving for the photon number,
we see that the power at the output reads

Psql
p = ~ωl

Γeffηcκ
2

16g2
0

(
1 +

4Ω2
m

κ2

)
. (2.37)

Notice that this expression also directly follows from the condition 4Γmeas/Γeff = 1 for
the standard quantum limit used in Appendix A.3.3. Inserting our typical experimental
parameters and Γeff/2π = 0.85(3) kHz measured here into Equation (2.37), we get
Psql
p = 0.25(9) µW. From the linear fit in Figure 2.25 we extract a comparable value

Psql
p = 1/4a = 0.272(6) µW, where a is the slope of the fitted curve.
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Figure 2.26: Sideband thermometry via the probe beam and the cooling beam. Left: Comparison
between phonon occupancies n̄ measured using the probe beam and the cooling beam. The dashed line
is a linear function with unity slope and zero intercept. The uncertainties are extracted from Lorentzian
fits to the sidebands. Right: SNR of the anti-Stokes sideband as a function of output probe power Pout

p for
measurements via the probe beam (cyan dots) and the cooling beam (purple dots). Linear and quadratic
fits are shown as black solid lines. Errors on n̄ and SNR from the cooling beam measurements are < 5 %
and are not shown.

2.3.4.3 Cooling beam and probe beam detection

The standard quantum limit refers to a balance between backaction and imprecision
noise when using a resonant beam to detect the membranemotion (see Appendix A.3.3).
The measurements in Figure 2.25 show only the effect of the backaction noise, since
we utilize the cooling beam instead of the probe beam for detection and maintain the
imprecision noise, inversely-proportional to the cooling beam power, throughout the
power series. As a next step, we perform measurements of n̄ under the same conditions
as before but with the polarizer at the cavity output rotated by 90° to reject the cooling
beam and generate the heterodyne signal via the probe beam. A comparision between
the two configurations is shown in Figure 2.26. The two datasets reveal similar values for
n̄ but we see much larger uncertainties when using the probe beam. These uncertainties
represent the measurement imprecision and naturally decrease with probe beam power.

We may also contrast the SNR achieved in the two configurations as shown on the
right hand side of Figure 2.26. To determine the SNR for each measurement we extract
the peak value of the anti-Stokes sideband from the Lorentzian fit and divide by the SN-
limited background level. For the spectra acquired via the cooling beam the SNR scales
linearly with Pout

p , in accordance with the Bose enhanced scattering rate Γcl- n̄ ∝ Pout
p .

On the other hand, we see a quadratic behavior for the measurements performed with
the probe beam, reflecting the fact that in this case the imprecision decreases and the
backaction increases with Pout

p . Once again, we write down the scattering rate and see
that Γp- n̄ ∝ (Pout

p )2, since Γps ∝ npc ∝ Pout
p (see Equation (A.54)).
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2.4 Outlook
Our work presented above demonstrates a high degree of control over the defect mode
motion in the MiM system, facilitating a mean phonon occupancy as low as n̄ = 0.55(1)
and interesting quantum effects such as radiation pressure backaction. There are many
different directions intowhich thiswork can be continued and extended. In the following,
we provide two particularly intriguing perspectives.

2.4.1 Optomechanics with a birefringent cavity
In a recent paper, researchers proposed a new method to independently measure the
Stokes and anti-Stokes sidebands for sideband thermometry [109], which could be
implemented in ourMiM system. Themethod is based on a birefringent optomechanical
cavity, in which polarization splitting of the fundamental cavity mode is observed, as
illustrated on the left hand side of Figure 2.27. Linearly polarized input light, whose
electric field vector is rotated by 45° with respect to the fast and the slow axes of the
cavity, is placed in the middle of the two polarization modes. In the resolved sideband
regime, if the splitting is on the order of two times the mechanical frequency (2Ωm),
Stokes and anti-Stokes sidebands are generated with perpendicular polarizations. At the
cavity output a half-wave plate and a PBS are placed, adjusted such that each sideband
creates a beat note with the unscattered light at either output port of the PBS. Using two
separate photodetectors we can compare the amplitudes of the beat notes and infer the
phonon occupancy n̄. In contrast to our heterodyne setup, this configuration takes full
advantage of the polarization degree of freedom and is technically simpler, as deriving
and spatially overlapping a LO with the transmitted beam is superfluous.

In our MiM system, the polarization splitting is realized by replacing the soft-
clamped SiN membrane with a 210-nm-thick birefringent SiN ribbon, such as the one
studied in Section 1.2.3, and aligning the cavity mode to the center of the ribbon.
Moreover, we remove the two silicon spacers so that the cavity length is reduced to
L ≈ 1.76 mm. We scan the laser wavelength λ ≈ 811 nm over the resonance and
analyze the light transmitted through the cavity with a photodetector. The splitting
is extracted by measuring the difference in frequency of the two peaks in the signal.
We find values on the order of 100 MHz, varying sinusoidally with the position of the
membrane zm in the standing wave, as shown on the right hand side of Figure 2.27.
Here zm is controlled by means of the laser wavelength as described in Section 2.2.3.4.
The behavior is reproduced by the TMM (see Appendix A.4), in which we calculate
the cavity frequencies of a given longitudinal mode as a function of zm for two different
refractive indices n = 2.0 and n+∆n of the membrane, and subtract the two results. The
birefringence ∆n = C∆σ is determined assuming a stress anisotropy of ∆σ = 1.2 GPa
and the photoelastic coefficient C = 3.4 × 10−6 MPa−1 calculated in Equation (1.18).
We attribute the discrepancy between data and the TMM to a small tilt between the
membrane and the flat mirror, reducing the amplitude of the sinusoidal modulation (see
Section 2.2.3.4).
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Figure 2.27: Optomechanics with a birefringent cavity. Left: Sketch of the polarization splitting,
where light waves polarized along the fast and the slow axes see different resonances, as shown in blue
and red, respectively. The black line shows the sum of the two. If a laser drive (black arrow), 45°
linearly polarized, is placed between the two peaks and the splitting is 2Ωm, the Stokes and anti-Stokes
sidebands (grey shaded peaks) have nearly orthogonal polarizations. Right: Polarization splitting due to
a birefringent SiN ribbon in our MiM system as a function of membrane position zm at λ ≈ 811 nm. The
purple dots are data and the dashed line is calculated via the TMM.

The measured splittings are far larger than the typical mechanical frequencies of our
membranes. For example, the ribbon used here has an estimated fundamental mode
frequency of Ωm/2π =

√
σ/4ρl2 ≈ 278 kHz [38], where σ ≈ 1.2 GPa, ρ = 2.7 g cm−3,

and l = 1.2 mm. This means that in the current configuration we cannot implement
the new method because the two sidebands nearly have the same polarization at the
cavity output. However, as verified by the TMM, decreasing the splitting to ∼ 1 MHz is
possible by increasing the cavity length tenfold and reducing the membrane thickness
to about 30 nm. On top of that, we can reduce the size of the ribbon to increase its
fundamental mechanical mode toΩm/2π ∼ 500 kHz and thus match the mode splitting.
This is in line with our idea of embedding the ribbon into the defect of a patterned SiN
membrane, similar to the string resonator presented in Section 1.5, which will increase
the quality factor of the ribbon through soft-clamping.

It should be mentioned that we have also observed MHz splittings of the cavity mode
by mechanically compressing the curved cavity mirror from two sides with screws, i.e.,
by applying a force along an axis parallel to the mirror surface. In this case, the splitting
is due to stress-induced birefringence in the mirror coating. If the compression can be
properly controlled, for example, via a PZT clamped on the side of the mirror, we could
implement sideband thermometry using the polarization degree of freedom without
replacing our current SiN membrane.

2.4.2 Mechanical Fock-state generation
Another interesting route for our experiment is to take the control over the membrane
motion via light even further and prepare other non-classical mechanical states than
the ground state. Specifically, we want to generate and read out eigenstates of the
Hamiltonian describing the mechanical resonator, i.e., phonon number (Fock) states and
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superpositions thereof. By doing so, we could temporarily store quantum information
in the form of individual phonons occupying the ultrahigh-Q membrane mode with
long thermal coherence times. We estimate via Equation (A.27) the coherence time τ1
of a single excitation (n = 1) using the parameters measured for our membrane, i.e.,
Ωm/2π = 1.275 MHz, Tm ≈ 10.4 K, and Q ≈ 934 × 106, and get τ1 ≈ 229 µs. This
would allow us to study the behavior of single excitations in a macroscopic quantum
system and constitute a long-lived quantum memory interesting for various applications
in quantum information processing

In order to create a Fock state of motion via the optomechanical interaction in the
weak-coupling regime (g � κ), a nonlinearity must be introduced that enables the
conversion from Gaussian to non-Gaussian states [10]. Proposals for this are based
on nonlinearities due to the mechanical resonator [110] or photon subtraction [111].
In [112] it was suggested to utilize the nonlinearity provided by the detection of a single
photon scattered by the optomechanical interaction. Briefly, the scheme is as follows: in
the resolved-sideband regime and with the mechanical resonator initiated in the ground
state, a ‘write’ laser pulse, blue-detuned by themechanical frequency (∆ = +Ωm), is sent
to the cavity. The optomechanical interaction is that of parametric down-conversion).
The state of the mechanical resonator is projected onto a single-phonon Fock state
upon detection of a single scattered photon (heralded preparation). For retrieval, a
second ‘read’ laser pulse, red-detuned by the mechanical frequency (∆ = −Ωm), is
sent to the cavity and converts the phonon into an anti-Stokes scattered photon (state
swap). Intensity interferometry [113] of the latter confirms the successful heralded
generation of the single mechanical excitation, if the second-order correlation function
vanishes g(2)(0) → 0. Recently, the scheme was realized utilizing a silicon nanobeam
optomechanical crystal [114] and it was demonstrated that g(2)(0) ≈ 0.65 < 1, clearly
evidencing sub-Poissonian statistics of the anti-Stokes scattered light. The deviation
from a perfect single-photon state wasmainly attributed to local heating from absorption
of the laser pulses.

Before we can implement the scheme in our MiM system, we have to cool our
membrane closer to the ground state than we have done so far. This is suggested by the
relation g(2)(0) ≈ 4n̄, derived in [112]. If g(2)(0) < 1 is to be demonstrated, the mean
phonon occupancy before sending the first pulse must be n̄ . 0.25. The easiest way
to realize this is to increase the cavity length L, thereby reducing the linewidth κ and
the minimum occupancy n̄min, which is proportional to κ2 assuming ∆ = −Ωm � κ
(see Equation (A.61)). Concretely, using our current cavity mirrors we can extend L
up to ∼ 25 mm based on the cavity stability condition in Equation (2.6). In this case,
we expect n̄min ∼ 5 × 10−3. It remains to be tested whether such a low occupancy can
actually be achieved in practice given the non-negligible classical laser noise and mirror
noise currently present in our experiment (see Section 2.3.2.2).

The next challenge after improving the ground-state cooling is to spectrally filter
out the unscattered light pulses at the cavity output. This can be achieved with narrow
linewidth (κf � Ωm) Fabry-Pérot filter cavities [115,116], whose resonance frequencies
are stabilized to the mechanical sidebands, so that the scattered light transmits through
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and the write and read pulses are reflected from the filter cavity. This filtering is
necessary in order to avoid the detection of unscattered photons coming directly from
these pulses, which would obscure the photon counting signal. In this context, an
important figure of merit is the ratio R+ between the Bose enhanced Stokes scattering
rate (n̄ + 1)Γ+ and the photon flux corresponding to the blue-detuned pulse ncκ at the
cavity output, where we set the outcoupling efficiency ηc = 1, without loss of generality.
Using Equation (A.54), ∆ = −Ωm and assuming n̄ + 1 ≈ 1, we get

R+ ≈
4g2

0
κ2 . (2.38)

With the estimated parameters of the aforementioned 25-mm-long cavity g0/2π ≈
8.4 Hz and κ/2π ≈ 370 kHz, Equation (2.38) yields R+ ≈ 2 × 10−9. This means that the
filter cavities have to suppress the write pulse by more than nine orders of magnitude
while enabling low-loss transmission of the scattered light. We are currently imple-
menting and testing different filter cavities to solve this rather challenging problem.14

In the long run, implementing the scheme to generate mechanical Fock states using
our MiM system may open up more possibilities, such as phonon counting [117] and
phonon control to create superposition states [118], as well as the generation of phonon-
added coherent states [119]. We could also perform quantum-state tomography on
the mechanical Fock state [120, 121] using backaction evasion measurements with two
optical tones [73] or short pulses [122,123]. Finally, we envision quantum entanglement
between two mechanical resonators via the DLCZ protocol [124], as demonstrated
in [125, 126]. The DLCZ protocol may also be used to entangle our SiN membrane
with an atomic spin ensemble such as that in [127].

2.5 Conclusion
In conclusion, we have demonstrated ground-state cooling using an ultrahigh-Q SiN
membrane in a MiM system. The phonon occupancy, determined via sideband ther-
mometry, approaches the cooling limit set by radiation pressure backaction. Moreover,
we have studied the behavior of the system when driving the cavity with two beam,
one of which is resonant with the optical cavity and introduces additional backaction
noise. In the future, our MiM system can be used to exploit the polarization degree
of freedom of a birefringent cavity for sideband thermometry, and to realize long-lived
single-phonon Fock states via a pulsed scheme.

14The setup for spectral filtering is designed and constructed by I. Galinskiy.
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Chapter 3

Carrier-mediated forces in coupled
quantum wells

3.1 Introduction
Optomechanical systems most commonly utilize radiation pressure to couple light and
mechanical motion. They rely on amplifying the weak momentum transfer of each
photon through high-finesse optical cavities, compensating for the fact that the single-
photon coupling rate g0 is small compared to the mechanical frequency and cavity
linewidth. To enhance the optomechanical interaction researchers mainly address the
properties of the optical andmechanical resonators. An example of the latter is presented
in Chapter 1 of this thesis, which deals with improving the quality factors and effective
masses of nanomembranes. On the other hand, high-finesse optical resonators with
better confinement of the light are being developed [128–130].

As an alternative to these approaches, it has been suggested to exploit other physical
mechanisms than radiation pressure to mediate the interaction with potentially much
larger forces exerted per single photon. This could be done with mechanical resonators
made of optically active semiconductor materials which absorb photons, create charge
carriers and enable coupling to the mechanical motion via the electronic degrees of
freedom. Examples of this are photothermal coupling [131, 132] and piezoelectricity
[133, 134]. The latter was recently demonstrated in [135], where optically generated
electrons and holes in a gallium arsenide (GaAs) cantilever are spatially separated by
means of a built-in electric field and thus induce a piezoelectric force that actuates the
cantilever. Interestingly, in this system cooling and amplification of the fundamental
mechanicalmode can be realizedwithout the need of an optical cavity. This is because of
a feedback between motion and optical absorption at the edge of the electronic bandgap,
mediated by the deformation potential which quantifies the change in the energy bands
due to the strain in the cantilever. While at this point the effect only allows cooling by
about a factor of two from a bath temperature of 9.4 K, the experiment provides a first
glimpse of the rich physics that systems with carrier-mediated optomechanical coupling
can benefit from.
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In 2012 researchers in our group experimentally demonstrated that local heating
due to the non-radiative decay of optically generated carriers in GaAs results in photo-
thermal forces much stronger than radiation pressure [132]. Using these forces in
combination with a low-finesse cavity they optically cooled a mechanical mode of
a GaAs membrane [136] from 300 K to an effective temperature of 4 K. To reach
lower temperatures, it was suggested to employ forces originating directly from the
deformation potential. This should not be confused with the feedback mechanism
implemented in [135] and mentioned above; the proposal was based on the fact that
the excitation of carriers into the conduction band entails an increase of the lattice
constant and hence a hydrostatic stress. So far this effect has only been observed in
optomechanical resonators with GHz frequencies [137], whose periods of oscillation
match the typical carrier lifetime in GaAs of several ns. For nanomembranes in the
∼ MHz regime, the lifetime needs to be enhanced by almost three orders of magnitude.
As was suggested in the work of our group, this can readily be achieved with a quantum
well structure.

The work presented in this chapter is motivated by this idea. We study optome-
chanical forces induced by optically generated, long-lived electron-hole pairs (EHPs)1
in coupled quantum wells (CQWs) embedded in a nanomembrane. Identifying contri-
butions from both the piezoelectric effect and the deformation potential, we find that
these forces are much larger than expected from radiation pressure. Furthermore, the
carrier-induced forces respond with a delay which matches the independently measured
carrier lifetimes in the CQWs. We envision that the delay can be harnessed as the retar-
dation mechanism necessary to enable dynamical backaction cooling and amplification.
This approach is in contrast to radiation-pressure-based systems where the retardation
is provided by the finite storage time of light inside an optical cavity [138] (see also
Appendix A.3.2).

Our description in this chapter closely follows our published work [4], which was
conducted in collaboration with the Quantum photonics groups at NBI and ETH in
Zürich2. In Section 3.2.1 we first present our device focusing on its mechanical and
optical properties. Notice that a discussion of the device fabrication process3 is not
part of this thesis and can be found in the Supplementary Information of [4] and
[139]. In Section 3.3 we distinguish and study the carrier-mediated forces by means of
driven response measurements. In Section 3.4 we discuss the feasibility of using the
carrier-mediated forces for cavity optomechanics. Finally, we conclude this chapter in
Section 3.5.

1In what follows we often use the terms EHPs and (charge) carriers interchangeably.
2The group leaders of the two groups are P. Lodahl and A. İmamoǧlu, respectively.
3The device fabrication was carried out by L. Midolo.
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10 µm 1 µm

Figure 3.1: SEM images of a free-free membrane with CQWs. Left: The membrane is suspended by
four thin beams, colored in blue. Right: A close-up image shows the membrane cross section with the
vertical position of the CQWs marked in red. Adapted from [4].

3.2 Device design

3.2.1 Free-free membranes
In our experiments we use free-free nanomembranes [140] which consist of a 40 µm ×
12.73 µm rectangular plate with a thickness of 562 nm, suspended by four thin beams.
Such a device is shown on the left hand side of Figure 3.1. It is made of a GaAs-
based heterostructure, detailed in Section 3.2.2, including two CQWs where carriers are
optically generated. Due to the off-center position of the CQWs, the forces induced by
the carriers cause a bending motion and thus enable coupling to the symmetric bending
mode of the membrane. The mechanical modes of the free-free membrane and their
properties are discussed further in the following.

3.2.1.1 Eigenmodes

The motion of the nanomembrane is analyzed using our home-built Michelson interfer-
ometer, whose functionality is described in Section 1.2.1. With regard to the optically
active materials used in the device, it should be noted that the probe laser at a wave-
length of λ = 1064 nm is energetically well below any interband optical transition in
the CQWs. Hence, at this point, we do not excite any carriers but simply observe the
out-of-plane membrane motion with the probe laser.

We first measure the thermally excited motion of the nanomembrane in vacuum at
T = 300 K probing near the center of the rectangular plate and use an incident optical
power of 800 µW focused to a spot radius of ∼ 1 µm. The normalized displacement PSD
extracted from this measurement is shown in Figure 3.2, where we find a number of
sharp peaks in theMHz regime. The two peaks that are of interest for our experiment are
at mode frequencies ofΩM1/2π = 0.828 MHz andΩM2/2π = 1.602 MHz, referred to in
the following as mode M1 and M2, respectively. Their simulated displacement patterns
are shown on the right hand side of Figure 3.2. M1 can be described as the fundamental
drummode in which the entire central plate is displacedwithout deforming. M2 exhibits
a symmetric bending motion with significant displacement and maximum curvature in
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Figure 3.2: Eigenmodes of a free-free membrane. Left: Displacement PSD normalized to SN
measured close to the center of the membrane with mode M1 at a frequency of ΩM1/2π = 0.828 MHz
and M2 at ΩM2/2π = 1.602 MHz. The vertical dashed line indicates the calibration peak at a frequency
of 250 kHz. Right: Simulated mode shapes of membrane for the two modes.

the center of the plate. Notice that the four thin beams are not displaced vertically as
their anchor points coincide with the nodes of M2. This feature results in a suppression
of phonon-tunneling loss as demonstrated in [140].

Due to its curvature, mode M2 efficiently couples to the bending force induced by
the EHPs in the CQWs. We therefore focus primarily on M2 in the following and first
experimentally verify the simulated mode shape by applying the raster-scan technique
detailed in Section 1.2.1.3. For this we drive a PZT that is mounted close to the sample
in the vacuum chamber and at each measurement point of the scan the drive frequency
swept over the resonance atΩM2. The resulting signal is analyzedwith a lock-in amplifier
and is fit to the expression for the mechanical susceptibility (see Equation (A.15)) to
extract the amplitude and the phase of the motion at resonance. From these data, we
compose a displacement map, shown in Figure 3.3, revealing large motion at the long
ends of the rectangular plate and near the center. As represented by an opposite sign of
the displacement, the center and the ends oscillate out of phase, which is expected from
the simulation.
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Figure 3.3: Identification of the symmetric bending mode. We spatially scan the membrane and
measure the displacement while mechanically exciting its motion at a mode frequency of ΩM2/2π =
1.643 MHz with a PZT. The phase of the displacement is used to extract the sign of the displacement.
Redrawn from [4].
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Figure 3.4: Quality factor of the symmetric bending mode M2. Left: Ringdown measurement (red)
of mode M2 at a temperature of T = 57.4 K and exponential fit (black) resulting in a maximum quality
factor of Q = 2.8 × 104. Right: Quality factor as a function of temperature. Dashed lines at 12 K
and 56 K indicate the temperatures at which the linear expansion coefficient of GaAs β ≈ 0. Redrawn
from [4].

3.2.1.2 Quality factor

To measure the quality factor of mode M2 we use ringdown fitting, described in Sec-
tion 1.2.1.4. In Figure 3.4 we show data obtained at a temperature of T = 57.4 K,
from which we extract that Q = 2.8 × 104. This result is comparable to that found for
the same type of membranes in [140], despite the different temperature and membrane
material used. The temperature behaviour of Q for our devices is interesting since it
varies by almost a factor of three in the range of 10...100 K, as can be seen on the right
hand side of Figure 3.4. In particular, we find that the quality factor peaks near 12 K and
56 K, which coincide with the zero-crossings of the coefficient of thermal expansion β
for GaAs and other III-V compounds used in the heterostructure [141,142]. We are led
to conclude that thermoelastic damping, which is proportional to the square of β [41],
plays a major role in the dissipation of mechanical energy in our nanomembranes [143].
Other than that, we suspect loss due to defects at the interfaces and surfaces of the
different layers in the heterostructure [144] but have yet to confirm this hypothesis.

3.2.2 Coupled quantum wells
3.2.2.1 Heterostructure and band diagram

The crucial ingredient to extend lifetimes of EHPs in our device enabling large carrier-
mediated forces is an epitaxially-grown GaAs-based heterostructure4. In Figure 3.5 we
show an illustration of this heterostructure which constitutes the 562-nm-thick mem-
brane cross section. At the top and bottom side are p and n doped GaAs layers5,
respectively, functioning as electrical contacts for a bias voltage Vb. Embedded in be-
tween two AlGaAs layers are 9-/5-/9-nm InGaAs/GaAs/InGaAs CQWs which host the

4The wafer was grown by J. Miguel-Sanchez at ETH.
5Each of the two layers has a doping concentration of 2 × 1018 cm−3.
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Figure 3.5: GaAs heterostructure with coupled quantum wells. Left: Illustration of membrane
cross-section. The heterostructure is 562 nm thick, includes InGaAs/GaAs CQWs and provides two
doped GaAs layers as electrical contacts for the bias voltage Vb. Right: Band diagram of CQW at
Vb = −1 V where the edges of the conduction and valence bands are shown in black. The squared carrier
wavefunctions and the corresponding energy levels are shown in solid and dashed gray lines. Direct (D)
and indirect (I) optical transitions are indicated with arrows. Adapted from [145].

long-lived EHPs in our experiment. A band diagram of the CQWs is shown on the
right hand side of Figure 3.5, including the first three wavefunctions of electrons e1, e2,
e3 and holes h1, h2, h3. The wavefunctions are found by solving the one-dimensional
single-particle Schrödinger equation numerically.6 The band diagram is shown for
Vb = −1 V and a bias electric field Eb ≈ Vb/h + E0 = 19 kV cm−1, where h = 562 nm
is the membrane thickness and E0 = 30 kV cm−1 is the built-in electric field due to the
doped layers. Here the EHP ground state consist of e1 and h1, spatially separated by
the thin potential barrier between the CQWs. This means that the state is indirect, in
contrast to the direct states, in which electrons and holes reside in the same quantum
well. The two direct states are formed by e1 and h3, as well as e2 and h1.

As described below, our experiments are performed at a temperature of T = 12 K.
It should be noted that at this temperature EHPs in the CQWs can occur in two different
phases. At relatively low densities they bound as insulating pairs, known as excitons, due
to coulombic attraction. Increasing the carrier density or the sample temperature leads
to a transition into a conducting phase, in which excitons ionize and form a EHP plasma
(Mott-transition). The two phases exhibit slightly different recombination energies and
lifetimes as demonstrated in [145, 146]. For our discussion below we will not make a
distinction between the two phases.

3.2.2.2 Photoluminescence spectra

EHPs generated in the CQWs recombine radiatively via the interband transitions
sketched in Figure 3.5, allowing us to study the carrier dynamics by means of pho-
toluminescence (PL) measurements. To do this, we first cryogenically cool the sample

6This calculation was carried out by P. Tighineanu.
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to T = 12 K and focus continuous-wave, above-bandgap laser light at a wavelength of
λ = 785 nm to a spot radius of ∼ 0.75 µm at the center of a membrane using a micro-
scope objective. PL emitted from the CQWs is collected by the same objective and
passes through a longpass dichroic mirror with a cutoff wavelength of 875 nm rejecting
directly reflected light from the sample. Then, a spectrum of the PL is obtained by a
spectrometer.

Figure 3.6 shows examples of such a spectrum in the wavelength range from 890 nm
to 950 nm at Vb = 0 V. We find a small peak at around 935 nm corresponding to the
radiative recombination of the indirect ground state (I) and a large peak around 905 nm
that is due to the two direct transitions (D). When probing the PL at the center of the
membrane the peaks in the spectrum are red shifted by a few nm and slightly broadened
in comparison to the peaks found when measuring on the bulk. We attribute these
differences to stress release at the membrane and surface effects, slightly modifying the
band structure.

The energies of the electron and hole states in the CQWs can be shifted by changing
the applied electric field Eb, or rather the bias voltage Vb. This effect is known as the
quantum confined Stark shift [147] and is characterized in our device by extracting
the peak values in the PL spectrum for different values of Vb, as shown on the right
hand side of Figure 3.6. We find that the wavelength of I decreases linearly with about
−20 nm V−1. The wavelengths of D, on the other hand, are nearly constant between
Vb ≈ 0 V...1 V. For smaller voltages our model predicts that they shift linearly with
Vb. This is a result of the overall skew of the energy bands visible in Figure 3.5,
decreasing the separation between the valance band and the conduction band within the
same quantum well. Notice also that the wavefunctions are reshaped so that they are
predominantly located at the opposite corners of the quantum well, indicating that the
transition D becomes slightly indirect.
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Figure 3.6: PL spectra of optical transition in the CQWs. Left: PL spectra of the CQWs measured in
bulk (gray) and at the center of a membrane (black) for a bias voltage of Vb = 0 V. The wavelength of the
peaks corresponding to the indirect (I) and direct transitions (D) are marked with dashed lines. Right:
Wavelength of the peaks for different values of Vb. We confront the data measured on the membrane
(colored dots) with calculations for D (blue) and I (red). Gray dots are the peak values when measuring
on the bulk.
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Figure 3.7: Three-level scheme for the lowest EHP states and transitions. In the scheme G(t) denotes
the time-dependent generation rate and γph an acoustic phonon-mediated decay. ΓD and ΓI are the
radiative decay rates of the direct state |D〉 and indirect state |I〉, respectively. Adapted from [4].

3.2.2.3 Carrier decay dynamics

We will now turn our attention towards the decay dynamics of carriers in the CQWs.
To begin with, we assume a model based on the three-level scheme shown in Figure 3.7
and derive rate equations for the area densities nI and nD of carriers in the indirect
state |I〉 and direct state |D〉, respectively. ΓI and ΓD denote the corresponding radiative
decay rates and the rate γph refers to a non-radiative decay from |D〉 to |I〉 mediated by
acoustic phonons.7 The state |0〉 denotes the reservoir from which EHPs are generated.
The small overlap between the wave functions e1 and h1 in the indirect state implies
that the probability of photoabsorption αI associated with the transition I is negligible
(αI ≈ 0). Therefore, we assume that above-bandgap laser light used in our experiments
only generates carriers via the direct transition D and introduce the time-dependent
generation rate per unit area G(t) = αDI(t)/~ωl, where αD = 0.0214 [145] is the
absorption probability corresponding to transition D, I(t) is the intensity of the incident
light, and ωl = 2πc/λ. This leads us to the following rate equations:

ÛnD(t) = G(t) − γphnD(t), (3.1)
ÛnI(t) = γphnD(t) − ΓInI(t). (3.2)

In Fourier domain, where d/dt → iΩ, they can be easily solved. Following [148], we
simplify the solution by assuming that the phonon-mediated decay is fast and γph �
ΓD,Ω. Then, we get nD(Ω) ≈ 0 and

nI(Ω) ≈ G(Ω)
ΓI + iΩ

. (3.3)

Evidently, all the carriers are now found in the state |I〉. We are interested in their
dynamics in response to an amplitude-modulated optical pump with I(t) = I0(sin(Ωt)+
1), where I0 is the amplitude and Ω is the frequency of the modulation. By inspection
of Equation (3.3) we see that if ΓI � Ω the overall carrier density is relatively small
and modulated in phase with the pump. On the other hand, if ΓI ≤ Ω a much larger
density |nI | and a phase shift arg(nI) ≤ −π/4 are expected. This regime is realized

7Notice that EHPs cannot transition in the opposite direction via phonons since the energy difference
between the two states ∆E ≈ 0.05 eV is much larger than kBT ≈ 1 meV, where T = 12 K.
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Figure 3.8: Decay dynamics of the charge carriers. Left: Time-resolved PL measurements at the
indirect transition wavelength for bias voltages Vb of −2 V (blue) and −1 V (purple), where black lines
are fits. Colored dashed lines indicate the start time of the fits. The photon counts are normalized to
the peak value in each trace. Right: Extracted lifetimes for ΓI (red dots) as a function of Vb, as well as
calculated lifetimes of the indirect transition (black). Redrawn from [4].

by our device and is interesting because it enables strong carrier-mediated forces and a
retardation mechanism necessary to implement dynamical backaction cooling.

In order to measure the lifetime Γ−1
I we modify our PL setup (see Section 3.2.2.2)

in the following way: Instead of using continuous-wave laser light to excite carriers, we
send picosecond light pulses to the center of the membrane and then spectrally filter the
PL in a narrow bandwidth around the indirect transition wavelength. After that, the light
is detected by an APD whose photocurrent is recorded over time. This measurement
is repeated after each of many consecutive pulses until the accumulated photon counts
are well-above the background noise. As exemplified in Figure 3.8, the resulting signal
quickly builds up as carriers transition into the indirect state via acoustic phonons and
then slowly decays. To extract Γ−1

I we fit an exponential function to the tail of the
curve and repeat the procedure for different Vb. The result, shown on right hand side
of Figure 3.8, demonstrates that we can tune the lifetime over more than two orders
of magnitude reaching a maximum value of Γ−1

I = 749.5(4) ns at Vb = −2 V. This
behavior agrees well with a calculation8 based on Fermi’s Golden rule, in which we
numerically evaluate the overlap of the wave functions of the indirect state |I〉 (e1 and
h1) and assume no free parameters. Discrepancies between the data and the model are
found in the voltage range from −2 V to −1 V, likely due to fast surface recombination
at the edges of the membrane.

3.2.2.4 Carrier diffusion

As a next step, we consider the diffusion of carriers across the membranes. This is
particularly important because of the long lifetimes achieved in our CQWs. For similar
structures the diffusion has been measured via time-resolved optical imaging in [149]
showing that EHPs can travel over large distances of several 100 µm. In our PL setup
we do not have access to such a measurement technique and therefore we analyze the

8This calculation was carried out by P. Tighineanu.

75



Carrier-mediated forces in coupled quantum wells

−10 0 10
0

5

10

15

x (µm)

Ph
ot

on
co

un
ts

(1
04 )

−2 −1 0 1
0

5

10

15

20

Vb (V)

Sp
ot

ra
di

us
R s

(µ
m

)

Figure 3.9: Imaging of carrier diffusion. Left: Imaged PL (inset) and cross section along the horizontal
dashed line for bias voltages of 0 V (blue) and −2 V (red). Black solid lines are fits using double-Gaussian
functions. Right: Spot radii extracted from the fits as a function of bias voltage. Redrawn from [4].

diffusion by imaging the time-averaged PL onto a CCD camera instead. As before, this
is done while the center of the membrane is illuminated with laser light at a wavelength
of 785 nm and a spot radius of ∼ 0.75 µm. On the left hand side of Figure 3.9, we
present an image captured with the CCD camera for Vb = 0 V. Here the PL spreads
over a larger area than the excitation spot. At the membrane edges we see bright lines
that are likely due to scattering of the PL and are thus not considered further. Near
the center we analyze the cross section of the image along the x-direction and find a
peak that is well-reproduced by a double-Gaussian function. We fit the data and for
each Gaussian extract the variance, here referred to as the spot radius Rs. Repeating
this measurement at different values of Vb results in the plot shown on the right side of
Figure 3.9. It can be seen that one of the two spot radii is overall larger with a maximum
value of Rs = 16.7 µm at Vb = −2 V and changes by more than a factor of three in the
measured range. We attribute this feature to the PL of the transition I, associated with
the recombination of indirect EHPs that have widely tunable lifetimes. Accordingly,
the nearly constant and generally smaller spot radius shown in Figure 3.9 is likely due
to PL of the direct transition D.

Based on the above assumption we extract the diffusion constant D = R2
s ΓI/2,

considering only the largest measured spot radii at Vb ≤ −1 V and the corresponding
lifetimes Γ−1

I shown in Figure 3.8. The result is D = 2.0(3) cm2 s−1 which is comparable
to the values reported in [149]. With this, we are now ready to model the area density of
the carriers nI(x, y,Ω) in response to an incident laser beammodulated at a frequencyΩ,
wherewe also explicitlywrite down the dependence on the position (x, y). Equation (3.3)
is extended to include the diffusion of EHPs across the membrane in the following way:

D∇2nI(x, y,Ω) ≈ (ΓI + iΩ) nI(x, y,Ω) − G(x, y,Ω). (3.4)

While it is possible to solve this equation analytically for the case of an infinitely large
membrane, we need to consider the more complicated boundary conditions defined by
the finite, rectangular shape of the membrane and solve Equation (3.4) numerically
as part of the finite-element simulations in Section 3.3.2. In these we choose the
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Figure 3.10: Spectral reflectance of the membrane and the DBR. Using the TMM we calculate the
reflectance of the DBR |rdbr |2 (blue), as well as the membrane |rm |2 (red) as a function of wavelength,
assuming a temperature of T = 300 K. The dashed black line indicates the wavelength λ = 880 nm used
in our experiments.

modulation frequency on resonance Ω/2π = ΩM2/2π ≈ 1.6 MHz and a Gaussian beam
spot so that the generation rate reads

G(x, y,ΩM2) = αD
~ωl

e
− x2+y2

2R2
s I0 (sin(ΩM2t)) . (3.5)

The other parameters correspond to those used in our driven responsemeasurements (see
Section 3.3.3), that is to say, the power of the modulated light is P0 = πI0R2

s /4 = 0.5 µW
and Rs = 1 µm.

3.2.3 Integrated optical cavity
Our device features a Fabry-Pérot cavity formed by the nanomembrane and an integrated
distributed Bragg reflector (DBR). While studying carrier-mediated forces we avoid
driving any optical resonances of this cavity, which is why it plays no role throughout
most of this chapter. However, in Section 3.4 we discuss how the integrated cavity could
be used for optical cooling via carrier-mediated forces.

3.2.3.1 Distributed Bragg reflector

The nanomembrane is released by etching away a 2-µm-thick sacrificial layer exposing a
DBRbelow themembrane. TheDBR consists of 20 alternating layers of GaAs andAlAs
with thicknesses of 66 nm and 79 nm, respectively. It is optimized for the wavelength
range of the indirect transition I (900 nm to 950 nm) as can be seen in Figure 3.10 where
we plot the reflectance |rdbr |2 of the DBR versus wavelength calculated via the TMM
(see Appendix A.4). At a wavelength of λ = 880 nm, used in our driven response
measurements, we are at the edge of the stop band and get |rdbr |2 ≈ 76 %. Furthermore,
themembrane has a reflectance of |rm |2 ≈ 66 %meaning that the finesse of the integrated
cavity is expected to be F ≈ 9.
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3.2.3.2 Cavity characterization

The vertical position of the membrane above the DBR and thus the cavity length
L are not well-defined by the thickness of the sacrificial layer. This is because the
membrane buckles and deforms when released, as was initially observed in scanning
electron microscope images of the device. To investigate this further, we use a confocal
microscope and perform topography measurements of a nanomembrane. In Figure 3.11
we show a cross section of this measurement along the x-direction, where the height
profile of the 40 µm-long plate is visible as a curved graph in the center. Compared
to the profile of the bulk, visible near the edges of the plot, the membrane is buckled
upwards by more than 1 µm and is deformed in a U-shape around the center. This
behavior is expected from the stress release of different layers in the heterostructure. By
fitting a quadratic function to the profile of the membrane and subtracting its thickness
h = 562 nm, we extract the position-dependent cavity length L(x). Furthermore, we
calculate the second derivative with respect to x and find the radius of curvature in
the center (x = 0) to be Rc = 578(2) µm. Rc is positive by choice of the coordinate
system, yet technically the membrane constitutes a convex mirror with negative radius
of curvature −Rc in relation to the integrated cavity. This means than the cavity is
unstable as the condition 1 − L(0)/(−Rc) ≤ 1 is not satisfied [97].

As a next step, we characterize the cavity using a focused laser at λ = 880 nm
with a spot diameter of ∼ 2 µm. We measure the reflectance at various positions x
across the deformed membrane and find a resonance as shown on the right hand side
of Figure 3.11. Here we translate each position x into a cavity length via L(x). The
resonance at L ≈ 3.1 µm has a FWHM of δL = 170(7) µm resulting in a finesse of
F = λ/2δL = 2.6(1), which is quite different from the expected value mentioned
above. The discrepancy could be because of photo absorption in the membrane, which
was not taken into account in our TMM. Furthermore, the unstable nature of the cavity
may cause diffraction loss at the membrane’s edges.
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Figure 3.11: Cavity characterization at room temperature. Left: Topography measurement along the
x axis (blue dots) and quadratic fit to the membrane surface (black solid line). Subtracting the membrane
thickness from the fit (dashed line) we determine the length of the integrated cavity. Right: Reflectance
of the integrated cavity at λ = 880 nm vs cavity length as measured (red dots) and fitted (solid line).
Redrawn from [4].
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Figure 3.12: Dependence of the cavity length on membrane buckling. Cavity length L extracted at
the center of each of 26 nanomembranes with different beam lengths (purple). A linear fit with a slope
of 0.038(1) is shown as a black line, while the 1-sigma standard deviations to the fit are indicated with
dashed lines. Errors of the data points are < 1 % and are not shown.

At a fixed wavelength and probing position we can adjust the cavity detuning by
changing the length L. To this end, we control the buckling by varying the length of the
four thin beams that suspend the central plate. We fabricate a sample including an array
of 26 membranes with beam lengths ranging from 17 µm to 37 µm and characterize their
topography with the confocal microscope. For each membrane we extract the cavity
length averaged over an area of 10 µm×10 µm at the center. Figure 3.12 shows the result
of this measurement, where we find a linear relation between L and the beam length.
From a fit to the data we get a slope of 0.038(1) and a 1-sigma standard deviation on the
cavity length of ∼ 58 nm. The latter serves as a measure for the precision with which we
can target a given L using this method. In comparison, this is about three times smaller
than δL, meaning that at least a coarse adjustment of the cavity detuning is possible. It
should be noted that the measurements were performed at room temperature and when
cooling the membranes down to T = 12 K the buckling changes. Thus far this change
has not been characterized thoroughly.

For the measurements presented in Section 3.3.3 we exclude membranes that feature
a resonance in the center at T = 12 K. This is because we want to quantify the behavior
of carrier-mediated forces at a given input power without having to take into account the
enhancement of the light inside the cavity or any optomechanical effects. In Section 3.4
we will discuss how the integrated cavity could be of use in regard to the implementation
of a cavity optomechanical system.

3.3 Carrier-mediated optomechanical forces

3.3.1 Physical mechanisms
Let us now consider the forces mediated by optically generated EHPs in the CQWs.
There has been a number of thorough experimental studies on the different physical
mechanisms underlying these forces in various materials, typically in form of pump-
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Figure 3.13: Schematic illustration of a band diagram upon the generation of an EHP. The absorp-
tion of a photon with energy ~ωl > Eg, indicated by a red arrow, promotes an electron (black circle) to
the conduction band and creates a hole (white circle) in the valence band. As a result, the band gap (gray
shaded area) locally increases by dEc + dEv as described by the deformation potential. The dashed lines
show the band gap edges without the presence of an EHP. The blue line indicates intraband relaxation
processes of the electron mediated by acoustic phonons.

probe measurements with femto-second lasers to temporally resolve acoustic phonons
in the GHz or THz regime. Following a comprehensive review of this topic in [150], we
identify three mechanisms relevant for our device that will be described in the sections
below.

3.3.1.1 Deformation potential

The deformation potential refers to the interdependence of strain and energy of the
electronic distribution in the crystal. At the microscopic level it describes the fact that
the generation of an EHP alters the interatomic bonds in the crystal, leading to a new
equilibrium position of the atoms and a new lattice constant. The result is a local
deformation of the crystal, or rather a volumetric strain dε , accompanied by a change
in the bandgap energy Eg, as is illustrated in Figure 3.13. Here we distinguish the
contributions from the conduction band dEc and the valence band dEv, and for each
define a deformation potential parameter

dc/v B
dEc/v

dε
. (3.6)

The values depend only on the material and have been measured in GaAs to be de =
−5.3 eV and dh = 2.7 eV [151]. Given a distribution of electrons ne and holes nh in the
material the hydrostatic stress reads

σdp = dcne − dvnh. (3.7)

In order to apply Equation (3.9) to our device we first need to consider that the
CQWs spatially separate electrons and holes in the indirect state I. In the z-direction
the separation is described by the wavefunctions e1 and h1 introduced in Section 3.2.2
which we approximate by normalized Gaussian profiles Ψe/h peaked at the center ze/h of
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each of the two quantum wells, where the indices ‘e’ and ‘h’ refer to the electrons and
holes, respectively:

Ψe/h(z) = 1
2
√

2πRqw
e
− (z−ze/h)

2

2R2
qw . (3.8)

Here the FWHM Rqw = 2 nm corresponds to the confinement radius of the well. In the
x- and y-direction the density of EHPs is described by the distribution nI(x, y,Ω) so that
Equation (3.9) is modified as follows:

σdp(x, y, z,Ω) = nI(x, y,Ω) (dcΨe(z) − dvΨh(z)) . (3.9)

We see that the stress is proportional to nI(x, y,Ω) and thereby directly follows the
dynamics derived in Sections 3.2.2.3 and 3.2.2.4. Aswill be shown later the deformation
potential contributes a sizeable bending force in our device, owing to the fact the CQWs
are located off-center near the bottom layer of the membrane heterostructure.

3.3.1.2 Photothermal force

Figure 3.13 depicts a scenario, in which an EHP is excited by a photon whose energy
~ωl is larger than the band gap Eg. The excited electron quickly dissipates energy until
it reaches the band gap edge. This intraband relaxation process is mediated by acoustic
phonons and causes local heating in the material. The increase in temperature per EHP
is given by

dT =
~ωl − E′g

Ch
, (3.10)

where Ch is the heat capacitance and E′g = Eg + dEc + dEv. The numerator describes
the total energy of the phonons created by the relaxation process. If the EHP undergoes
non-radiative instead of radiative recombination9, an additional heating occurs and we
have to add the term E′g/Ch to Equation (3.10). In any case, the local heating causes
hydrostatic stress in the material:

σpt = −3BβdT . (3.11)

Here B denotes the bulk modulus and β is the coefficient of linear thermal expansion.
The phenomenon is generally known as the bolometric or photothermal force.

As previously mentioned, our group has demonstrated optical cooling of a GaAs
membrane based on the photothermal force in [132]. An important detail here is the fact
that the membrane was kept at a temperature of T = 300 K, where β ≈ 5 × 10−6 K−1

for GaAs [152]. In comparison, in the range of 0...15 K the linear expansion is more
than two orders of magnitude smaller and vanishes at T = 12 K (see Section 3.2.1.2),
where we perform measurements in this work. Since σpt is proportional to β according
to Equation (3.11) we expect the photothermal force in our device to be negligible.

9Non-radiative recombination can prevail in the prescence of surfaces and defects in the crystal.
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Figure 3.14: Deformation of a free-free nanomembrane due to the piezoelectric effect. We illustrate
the top-view of a nanomembrane for two different orientations in purple and blue with respect to the
crystallographic axes (denoted by Miller indices) when a shear stress τpz is applied. The dashed lines
show the membrane outline without the stress. The deformations are exaggerated for illustration purpose.

3.3.1.3 Piezoelectric effect

The piezoelectric effect describes the coupling betweenmechanical stress and an electric
field, initiated from electric dipoles within the material that align upon application of
the stress. The reverse process in which an electric field causes a deformation of the
material is also possible and the mechanism of interest here. The piezoelectric effect
can be expressed by the following linear relation between the stress tensor σ̃pz and the
electric field vector ®E:

σ̃pz = ẽ ®E, (3.12)

where ẽ is the piezoelectric tensor. The latter depends on the material and has consid-
erable components in certain crystals, ceramics, and semiconductors.

In the context of optomechanics, the effect is often used to actuate mechanical
motion. An example is presented in [134], where a GHz-frequency voltage drive is
applied to electrodes surrounding an aluminium nitride cavity optomechanical resonator
and the excited mechanical modes are probed via optical readout. In our device a
piezoelectric stress occurs upon carrier generation in the CQWs because the electrons
and holes are spatially separated in the indirect state, resulting in an electric field Eeh
applied in the z-direction across the thin GaAs barrier:

Eeh(x, y,Ω) = q
ε0εr

nI(x, y,Ω), (3.13)

where q is the elementary charge, ε0 is the vacuum permittivity, and εr ≈ 13 is the
relative permittivity. To translate Eeh(x, y,Ω) into a frequency-dependent stress (per
unit area) via Equation (3.12), we employ the piezoelectric tensor of GaAs, known
to have only off-diagonal elements that result in a shear stress τpz directed along a
certain crystallographic axis. Accordingly, the free-free nanomembrane is deformed as
illustrated in Figure 3.14, where we consider two orientations of the membrane with
respect to the crystal axes. The latter are denoted by Miller indices. It should be noted
that the in-plane deformation can translate into the z-direction (out-of-plane) because
it only occurs in the CQWs. Similar to the hydrostatic stress due to the deformation
potential, this means that the piezoelectric force gives rise to a bending force.
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Figure 3.15: Dependence of carrier-mediated forces on the membrane orientation. Simulated
magnitude of acceleration as a function of membrane orientation (indicated by the Miller indices) for the
piezoelectric force (blue) and deformation potential force (red). The diffusion of carriers was neglected
by assuming a short carrier lifetime, i.e., ΓI � ΩM2.

3.3.2 Distinction of the forces
3.3.2.1 Simulations

How do the deformation potential and the piezoelectric effect translate into forces that
drive the out-of-plane motion of our membrane? We address this question by carrying
out finite-element simulations10 using a three-dimensional geometry that consists of the
free-free nanomembrane, reshaped according to the buckling and deformation charac-
terized in Section 3.2.3.2. Furthermore, we assume a 5 µm undercut ring, whose outer
ring constitutes a fixed boundary condition. Eigenfrequency analysis of the geometry
reveals the mode shapes (see Section 3.2.1.1) and frequencies.11 The latter agree to
within 10 % with the measured frequencies. By multiplying the distribution of the ma-
terial density ρ and the mode shape, normalized to the maximum displacement of the
mode, and integrating over the entire computational domain, we determine the effective
mass meff of each mode. For M2 we get meff = 340 pg.

The next step is to include the stresses in Equations (3.9) and (3.12), and for each
calculate the overlap with M2. This gives us effective forces Feh(ΩM2), or rather
accelerations aeh(ΩM2) = Feh(ΩM2)/meff. As before we are interested in the frequency
component at ΩM2 since we want to resonantly drive M2 using amplitude-modulated
light. Notice that Feh and aeh are derived from the complex carrier density nI(x, y,ΩM2)
and, in general, constitute complex quantities whose real and imaginary parts reveal the
in-phase and out-of-phase components of the drive, respectively.

Our strategy to distinguish the two forces in the experiment is based on the anisotropic
character to the piezoelectric tensor and the resulting behavior when the membrane ori-
entation with respect to the crystallographic axes is changed. An intuitive understanding
of this can be obtained from Figure 3.15. Here we rotate the reference frame of the
geometry and plot the absolute value of aeh(ΩM2) due to each force as a function of
rotation angle. The angle is referred to the different crystal axes, again denoted byMiller

10The finite-element simulations were carried out by L. Midolo.
11All material parameters used are listed in the Supplementary Information of [4].
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Figure 3.16: Simulated carrier-mediated forces versus lifetime in the indirect EHP state. Magnitude
(top) and phase (bottom) of acceleration impressed on the symmetric bending mode M2 at a frequency
of ΩM2 as a function of carrier lifetime Γ−1

I . The red and blue lines show the behavior of the deformation
potential force and the piezoelectric force, respectively, while the black solid lines are the sum of the two.
Dashed lines indicate where ΓI = ΩM2. Each column corresponds to a different membrane orientation
that is sketched above the plots. Here the red shaded areas in the membrane’s center depict the Gaussian
excitation spots with radii Rs = 1 µm used in the simulation. Redrawn from [4].

indices. As can be seen, the piezoelectric force is highly dependent on the membrane
orientation and maximal if the long edges of the rectangular membrane are parallel to
either [1̄10] or [110]. On the other hand, the force vanishes when the membrane is
rotated by ±45°, aligned to either [010] or [100]. This is in contrast to the deformation
potential force, which is smaller on average and varies less as a function of the mem-
brane orientation. Note that in Figure 3.15, the carrier diffusion was discarded (D = 0)
so that nI(x, y,ΩM2) is a simply Gaussian distribution with variance equal to the spot
radius Rs = 1 µm. This description is valid as long as the decay dynamics of the indirect
state are fast, i.e., ΓI � ΩM2.

We now include the full diffusion model presented in Section 3.2.2.4 and set the
input power to be P0 = 0.5 µW, as well as D = 2 cm2 s−1. Moreover, we focus on only
two membrane orientations along [1̄10] and [010]. For each force the amplitude and
the phase of aeh(ΩM2) is shown as a function of lifetime Γ−1

I in Figure 3.16. We see
that all curves follow a similar trend as nI(x, y,ΩM2), in particular exhibiting a large
amplitude and phase shift for ΓI < ΩM2. Other than that, two important features are
immediately apparent: First, the piezoelectric force is not entirely suppressed for a
membrane aligned along [010]. In fact, if ΓI < ΩM2 and the carriers diffuse further
away from the center, the piezoelectric force is only about a factor of two smaller than
the deformation potential force. Second, the two forces have opposite signs as revealed
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Figure 3.17: Identification of the membrane orientation. Piezoelectrically induced frequency shift
of mode M1 relative to ΩM1/2π at Vb = 1.52 V as a function of bias voltage. By evaluating the slope
of linear fits (black lines), three different membranes are identified to be orientated along [1̄10] (blue),
[010] (purple) and [110] (cyan). Redrawn from [4].

by the phase differences of π. Crucially, this phase difference is also expected when
comparing the total forces between the membrane orientations, which can be directly
measured using our Michelson interferometer.

3.3.2.2 Identification of the membrane orientation

In order to correctly identify the membrane orientation with respect to the crystal axes
in the experiment, we use the cleavage plane of the GaAs wafer, parallel to the axis
[100], as a reference. We also utilize a technique based on the static piezoelectric effect
induced by the bias voltage Vb. As described in Section 3.3.1.3, the piezoelectric stress
is proportional to an applied electric field and can cause a length change in the four
beams that depends on the membrane orientation. Consequently, the frequency ΩM1 of
the drum mode M1 (see Section 3.2.1.1) linearly shifts as a function of Vb. As shown in
Figure 3.17, large frequency shifts with negative and positive slopes are found when the
membrane is oriented along the axes [1̄10] and [110], respectively, while ΩM1 is nearly
constant if the membrane is aligned along [010]. Notice that in the figure we show all
frequency shifts relative to their corresponding mode frequency and set them to zero for
Vb = 1.52 V, where the applied field cancels the built-in electric field due to the doped
GaAs layers in our device and the piezoelectric effect vanishes.

3.3.3 Driven response measurements
Having established a theoretical understanding of the carrier-mediated forces in our
device, we now return to the experiment and present our main findings of this chapter.
The findings are based on a series of driven response measurements, in which we
determine how the membrane mode M2 responds to optical excitation with above-
bandgap laser light as a function of Vb.
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Figure 3.18: Driven response of the mechanical resonance. rms amplitude (top) and phase response
(bottom) of mechanical mode M2 when optically excited with amplitude-modulated light at a wavelength
of λ = 880 nm. Blue and red dots are data for bias voltages Vb of 0 V and −1 V, respectively, and black
solid lines are fits. We extract the peak amplitude and phase at resonance Ω = ΩM2, as indicated by
dashed lines. The membrane is oriented along the crystal axis [010]. Redrawn from [4].

3.3.3.1 Method and results

We place our device in a cryostat at a temperature ofT = 12 K and continuously monitor
the displacement of mode M2 using our Michelson Interferometer (see Section 1.2.1) at
a wavelength of 1064 nm with the probe beam focused to the center of the membrane.
A second laser beam at λ = 880 nm is incident at the same location with an optical
power of 2P0 = 1 µW and generates carriers in the CQWs. We amplitude-modulate the
second laser beam using an AOM so that the time-dependence of the optical power at
the membrane surface is P(t) = P0(sgn(sin(Ωt)) + 1). The modulation frequency Ω is
swept in a narrow window across the frequency ΩM2 ≈ 1.5 MHz while we record the
signal from the interferometer with a lock-in amplifier. This way, we fully determine
the mechanical response, i.e., the displacement

q(Ω) = χm(Ω)Feh(Ω), (3.14)

where Feh(Ω) is the total optical force and χm(Ω) is the susceptibility defined in Equa-
tion (A.14). From a fit to the data we extract the peak rms amplitude q0 = |q(ΩM2)|/

√
2

as well as the phase φ0 = arg (q(ΩM2)). Examples of such a measurement are shown in
Figure 3.18.

The next step is to measure q0 and φ0 for different values of the bias voltage Vb, with
which we tune the carrier lifetime and consequently the magnitude and phase of the
carrier-mediated forces Feh. In doing so, it is necessary to compensate for the fact that
the mechanical quality factor Q and thus χm(ΩM2) = −iQ/meffΩ

2
M2 varies by ∼ 10 %

as a function of Vb.12 After each sweep we perform 10 ringdown measurements to

12The mode frequency ΩM2 is constant to within 0.06 %.
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Figure 3.19: Driven response measurements versus bias voltage. Peak rms amplitude q0 normalized
by the quality factor (top) and phase φ0 (bottom) of mode M2 as a function of bias voltage Vb measured
for membranes orientated along [1̄10] (blue) and [010] (purple). The colored dots are data points and
the solid lines are theoretical curves based on finite-element simulations. The dashed line indicates the
normalized rms amplitude Arad/Q expected from a radiation pressure drive of the mode. Relative errors
on the data points are < 10 % and are not shown. Redrawn from [4].

determine Q and use it to normalized q0. In Figure 3.19 we compose data from our
driven response measurements acquired in the rangeVb = −2 V...+1 V for two different
membrane orientations along the crystal axes [1̄10] and [010].

3.3.3.2 Discussion

The simulated total acceleration aeh(ΩM2) presented in the previous section is readily
compared to the data by employing the following equations for the amplitude and phase,
derived directly from Equation (3.14):

q0
Q
=
|ξ |√

2Ω2
M2

|aeh(ΩM2)|, (3.15)

φ0 = −π + arg (ξ) + arg (aeh(ΩM2)). (3.16)

Here the complex number ξ is a free parameter, determined via a fit to the data from
the membrane oriented along the crystal axis [010], where we use the simulations
of aeh(ΩM2) shown in Figure 3.16 as well as the theoretical curve of the lifetime in
Figure 3.8. We get |ξ | = 0.39(7) and arg (ξ)/π = −0.55(2), and use these values to plot
both theoretical curves in Figure 3.19. Fitting to only one of the two datasets is crucial
since we want to distinguish the strength and sign of aeh(ΩM2) in the two orientations.
It lets us contrast the piezoelectric force, prevailing in the membrane aligned to the axis
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[1̄10], with the deformation potential force, dominant if the membrane is rotated by 45°
and oriented along [010]. This analysis constitutes a major aspect of our work.

Our model captures the overall behavior observed in the data, loosely separated into
three different regimes: ForVb & 0 V the response is characterized by short lifetimes Γ−1

I
and low carrier densities resulting in relatively small amplitudes q0. An abrupt change
appears in the range Vb ≈ −1 ... 0 V, where ΓI ≈ ΩM2 and q0 significantly increases.
The phase φ0 drops as explained by the delay of the motion due to the prolonged carrier
lifetime. For Vb . −0.5 V the amplitude and phase are almost constant in the theory
curves, while the data feature a small decrease of q0 near Vb = −2 V. Comparing
the two different membrane orientations along [1̄10] and [010], we see that q0 of the
former is larger by approximately a factor of four, meaning that the piezoelectric force
is significantly stronger in our device as expected from the simulations presented in
Figure 3.16. Most importantly, the predicted phase difference of π, indicating opposite
signs of the two carrier-mediated forces, is found in the data.

With regard to the obvious discrepancies between data and theory, we consider
several sources of systematic errors: The first concerns screening of Vb due to the
electric field Eeh from the separation of electrons and holdes in the indirect state I, as
has been studied before in CQWs [153, 154]. According to Equation (3.13), Eeh is
proportional to the area density of EHPs nI which we estimate in the steady-state by
setting ÛnD = ÛnI = 0 in Equations (3.1) and (3.2). Moreover, the density is assumed to
be homogenous across an area of a circle with radius Rs and yields

n̄I =
αDP̄

~ωlΓIπR2
s
. (3.17)

Here P̄ = P0 = 0.5 µW is the average power of the modulated light, ωl = 2πc/λ, and Rs
is the spot radius under continuos illumination, shown in Figure 3.9. We find a maximal
value of n̄I ≈ 4 × 109 cm−2 for Vb = −2 V, Γ−1

I = 750 ns, and Rs = 16.7 µm. This
means that the average electric field is Ēeh = qn̄I/ε0εr ≈ 56 kV m−1, nearly two orders
of magitude smaller than the field provided by the applied voltage Vb = −2 V. We are
lead to conclude that screening due to optically generated EHPs is negligible and does
not explain the mismatches in Figure 3.19.

Another problem could be that photothermal forces, proportional to the expansion
coefficient β (see Section 3.3.1.2), are not accounted for in our model. The assumption
that β vanishes in our device for T = 12 K may not be fully justified when considering
the small differences in β for the various III-V compounds used in the heterostructure.
On top of that, the temperature could be marginally different from 12 K. Now, if for any
of these reasons photothermal forces play a role in the driven response measurements we
expect to see a significant temperature dependence of the normalized amplitude q0/Q,
similar to that measured in β. However, this is not the case as shown in Figure 3.20,
where we set Vb = −1.5 V and plot q0/Q versus T . Indeed, the amplitude is rather
constant in the range from 10 K to ∼ 70 K, where two zero-crossings of β occur in GaAs
and consequently we observe maximal quality factors Q as discussed in Section 3.2.1.2.
For T & 70 K we see a drop of q0/Q likely due to thermal escape of carriers out of
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Figure 3.20: Driven response measurement versus temperature. Peak rms amplitude q0 normalized
by the quality factor as a function of temperature T for a membrane orientation of [010] and Vb = −1.5 V.
Dashed lines at 12 K and 56 K indicated zero crossings of the thermal expansion coefficient β of GaAs.

the CQWs [155]. The data shown in Figure 3.20 confirms that photothermal forces are
insignificant in our device.

Lastly, we suspect that our description of the EHP generation and recombination
in the CQWs is oversimplified. In particular, the three-level scheme in Section 3.2.2.3
could be inaccurate since higher-order EHP states, such as those formed by the wave-
functions e3 and h3, might be occupied andmay influence the carrier dynamics. Another
plausible source of error in our model is non-radiative surface recombination of carriers
at the membrane’s edges. The diffusion measurements in Section 3.2.2.4 evidence that
the EHPs indeed reach the edges, if the excitation beam is placed in the center of the
membrane. Since surface recombination effectively decreases the lifetime ΓI, especially
for large negative bias voltages, it could explain the reduced amplitude seen in the data
for Vb . −1.5 V. Outliers near Vb = 1 V are likely due to diode forward current,
introducing additional charges in the CQWs.

Remarkably, the carrier-mediated forces studied here are much stronger than radia-
tion pressure. For the latter we estimate the rms displacement qrad using Equation (1.10),
where the amplitude of the incident power is P0 = 0.5 µW, the membrane reflectivity is
|rm |2 ≈ 66 %, λ = 880 nm, and meff = 340 pg. This yields qrad/Q ≈ 0.051 fm, which is
more than three orders of magnitude smaller than the maximum value measured in the
experiment, namely max (q0/Q) = 61.6(3) fm at Vb = −1.2 V (see Figure 3.19), corre-
sponding to the case where the membrane is predominantly driven by the piezoelectric
force. It should be noted that the membrane heterostructure could be optimized to make
for even larger displacements, for example, by decreasing the thickness and placing the
CQWs further away from the center to promote greater bending forces.

3.4 Use in optomechanics
Let us now discuss the prospects of utilizing the carrier-induced forces in a cavity
optomechanical system. The idea is that the retardation necessary to realize dynamical
backaction is given by the carrier lifetime instead of the photon lifetime in the cavity; the
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Figure 3.21: Schematic of the optomechanical coupling mechanism. We consider four interrelated
quantities in our system: the displacement q of the mechanical mode M2, the optical power Pcqw at the
CQWs, the carrier density nI in the indirect state I, and the total carrier-induced force Feh. The optical
damping due to dynamical backaction is described by the effective damping rate Γeff.

latter is the case if the coupling is mediated by radiation pressure. This novel approach
can in principle be implemented using the integrated Fabry-Pérot cavity in our device
(see Section 3.2.3) as will be detailed in the following.

3.4.1 Coupling via the integrated cavity
Figure 3.21 shows a schematic diagram of the mechanism for the optomechanical
coupling, where we assume that the cavity is driven by above-bandgap laser light with
a constant input power P0. A small displacement q of the membrane due to thermal
motion results in a change in the intra-cavity optical power and, accordingly, the power
Pcqw at the CQWs. As the laser light generates EHPs, the change in power translates
into the density of carriers occupying the indirect state nI. As discussed before, this
process is subject to a delay given by the finite carrier lifetime Γ−1

I . We now get a change
in the total force Feh ∝ nI which drives the membrane motion and again results in a
displacement q. This feedbackmechanism gives rise to optical damping and an effective
mode temperature Teff = TΓm/Γeff (see Appendix A.3.2). The effective damping rate
reads [138,156]

Γeff = Γm +
Γ−1
I

1 +Ω2
M2Γ

−2
I

∇Feh
meff

, (3.18)

where Γm = ΩM2/Q ≈ 2π × 59 Hz is the mechanical damping rate of mode M2. ∇Feh
is the photo-induced rigidity, i.e., the gradient of Feh with respect to q or equivalently
the cavity length L. It may be written as follows:13

∇Feh = −|ξ |meff
d |aeh |
dPcqw

dPcqw

dL
. (3.19)

Here we need take into account the correction factor |ξ | ≈ 0.39 which we have extracted
from the driven response measurements in Section 3.3.3.2.

To estimate the optical damping in our system, we first employ the TMM (see
Appendix A.4) to model the electric fields propagating in the cavity and calculate Pcqw

13The negative sign in Equation (3.19) is due to the definition of aeh in our simulation.
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Figure 3.22: Calculation of optical cooling and amplification with the integrated cavity. Left:
Derivative of the optical power Pcqw at the CQWs with respect to the cavity length L normalized by the
input power P0. The dashed lines indicate where the detuning from the cavity is zero at a wavelength
of λ = 880 nm. Right: Cooling factor Γeff/Γm as a function of L and bias voltage Vb for a membrane
oriented along [010]. The dashed line is a contour at Γeff/Γm = 1.

normalized to P0 assuming λ = 880 nm andT = 12 K. The derivate reveals dPcqw/dLP0
exhibiting positive and negative values on either side of the cavity resonance, as shown
in Figure 3.22. Next, we use the force simulations (see Figure 3.16) to calculate
d |aeh |/dPcqw, where d |aeh | is the magnitude of the acceleration and dPcqw = 0.5 µW is
the amplitude to the modulated optical drive. Combining Equations (3.18) and (3.19)
we then determine the cooling rate Γeff/Γm for a membrane oriented along the crystal
axis [010], and plot it as a function of Vb and L on the right hand side of Figure 3.22.
We assume an input power of P0 = 50 µW and find that both cooling (Γeff/Γm > 1)
and amplification (Γeff/Γm < 1) are expected. To get maximum cooling, the parameters
need to be adjusted to Vb ≈ −0.5 V and L ≈ 3.084 µm, resulting in a reduction of the
temperature by a factor of T/Teff = Γeff/Γm ≈ 7.4. On the other hand, an instability due
to the amplification occurs if Γeff/Γm < 0, giving rise to self-oscillations.

To see these effects in our experiment, we probe the displacement of mode M2 with
the interferometer while driving the cavity resonance in the center of the membrane
with laser light at a wavelength of 880 nm and a constant input power P0. For a few
devices and at relatively large values of P0 & 100 µW we observe amplification and
self-oscillations of the mode showing a dependence on the bias voltage, yet no optical
cooling or broadening of the linewidth can be seen. It is not clear why this is the case.
We suspect that addressing the correct cavity detuning for the cooling by selecting a
membrane with a specific buckling is too inaccurate (see Section 3.2.3.2). Indeed, we
could only find three out of 26 devices with different beam lengths in which the cavity
resonance was found near the center of the membrane. Tuning the laser frequency to
fine-adjust the detuning is ineffective because of the ∼ 10 THz cavity linewidth.

3.4.2 Other implementations
It is possible to enable better control over the detuning by implementing a MiM system
(see Section 2.2.1). In that case the free-free nanomembrane no longer serves as an end-
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mirror, but instead as a dielectric film inside the optical cavity formed by the DBR and a
curved, high-reflective mirror that is placed above the membrane. Such an arrangement
could have a significantly larger cavity length and thus a reduced linewidth, allowing
us to precisely target any detuning by simply adjusting the laser frequency in a more
accessible range. A challenge regarding this implementation concerns the required spot
size of the cavity mode. In order to avoid scattering of the light at the edges of the
membrane, the spot should not be larger than a few µm. Using the relatively large
mirrors14 normally employed in our lab, whose radii of curvature are Rc & 8 mm, such
a small spot size aligned to a specific position of the membrane is technically difficult
to realize. An easier solution is to incorporate a curved miniaturized mirror [157] or
a mirror fiber tip [158] each with typical values of Rc = 10 µm...100 µm. We have
attempted to realize the latter in collaboration with the Quantum photonics group at
ETH. Due to time-constraints on this project we could not complete the fiber cavity
setup and can therefore not report on any relevant findings at this point. Resuming the
project in the future could reveal interesting insights about the usage of carrier-mediated
forces in a MiM configuration.

Apart from the Fabry-Pérot cavities discussed so far, we envision another sys-
tem that could benefit from the carrier-mediated forces, namely GaAs-based disk res-
onators [159], in which light travels in whispering-gallery modes and couples to me-
chanical breathing modes via photoelastic coupling [160]. Typically driven at telecom-
wavelengths (λ = 1.3 µm) where the optical absorption is low, these resonators have
remarkably large single-photon coupling rates of g0/2π ∼ 1 MHz and higher, mediated
by radiation pressure and electrostriction. A possible route to enhance the interaction
even further could be to embed quantum wells or quantum dots in the disc, generate car-
riers with above-bandgap laser light and drive the breathing modes via the deformation
potential. Due to the Ωm/2π ∼ 1GHz frequencies, the carrier lifetime does not have
to be prolonged to several 100 ns, as is demonstrated in our work, but could be in the
range of 1...10 ns to match the period 1/Ωm. Now, it should be noted that a drawback
in the suggested approach would be the absorption of light reducing the finesse of the
cavity. In fact, this is true for any system implementing our method.

In general, GaAs-based optomechanical resonators are interesting platforms because
of the many possibilities to realize novel electro-optomechanical hybrid systems. Exam-
ples are nanowires coupled to quantum dots [161], beams coupled to superconducting
circuits [162], and optomechanical crystal cavities acting as transducers between radio-
frequency signals and light [163]. We hope that our work will stimulate even more
research involving, for instance, polaritons [164–166] or active cavities of semiconduc-
tor lasers [167, 168].

14The mirrors have diameters and heights of a few mm.
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3.5 Conclusion
In summary, we have used GaAs nanomembranes with CQWs to study forces induced
by optically generated charge carriers. The forces are due to the deformation potential
and the piezoelectric effect, controlled by means of a bias voltage across the CQWs
that alters the carrier lifetime. In comparison to radiation pressure the carrier-mediated
forces are measured to be about three orders of magnitude larger and could be used
in cavity optomechanical systems to enhance the interaction. Our work opens up a
new route for electro-optomechanical hybrid systems, exploiting the rich physics of
quantum-confined semiconductor structures.
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Appendix A

Theoretical framework

A.1 Spectral analysis
In the following section, we briefly introduce the means of analyzing the frequency
content of a time signal. For a more thorough description than presented here the reader
is referred to [169]. To begin with, we define an important mathematical tool, the
Fourier transform F , as follows:

F [x(t)] B
∞
ż

−∞
x(t)e−iΩt dt. (A.1)

Here x(t) is a time signal and x(Ω) B F [x(t)] denotes the complex distribution of its
frequency components.

Let us assume that x(t) is a single realization of a random process with constant
statistical properties over time (stationary), as is often the case in our work. An
important identity is the Wiener-Khinchin theorem, showing that the (real) spectrum, or
more precisely the double-sided power spectral density (PSD) Sxx(Ω) of x(t), is equal
to the Fourier transform of the autocorrelation function:

Sxx(Ω) B F [〈x∗(t)x(t + t′)〉]. (A.2)

If x(t) is real, it follows that Sxx(Ω) = Sxx(−Ω) and a single-sided PSD Sx(Ω) can be
used, which is a factor of two larger and zero for Ω < 0. From Equation (A.2), we also
find that x(Ω) and x∗(−Ω) B F [x(t)]∗ can be used to find the PSD:

Sxx(Ω) =
∞
ż

−∞
〈x∗(−Ω)x(Ω′)〉dΩ′. (A.3)

In the quantum description we have the same definitions as mentioned above, but we
substitute the signal with an operator x(t) → x̂(t) and x(Ω) → x̂(Ω). Furthermore, the
ensemble averages in Equation (A.2) and Equation (A.3) are replaced by the expectation
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value. Notice that the quantum PSD for an hermitian operator is not necessarily
symmetric since in this case calculating Sxx(−Ω) involves the potentially complex
commutator [x̂(t), x̂(t + t′)] , 0 in Equation (A.2). We will come back to this feature
in Appendix A.2.3, where we also refer to the classical part of the spectrum using the
symmetrized PSD

S̄xx B
Sxx(Ω) + Sxx(−Ω)

2
. (A.4)

In the experiment, time signals are typically acquired digitally with a sampling rate
fs and a number of samples Ns. The PSD is then estimated via the periodogram, i.e.,
the absolute square of the Fast Fourier Transform normalized by fsNs [170], revealing
the power within each frequency bin up to the Nyquist frequency fs/2. The interval
between two frequency bins is the resolution bandwidth

RBW =
1

fsNs
=

1
T
, (A.5)

whereT is the length of the signal in units of time. We often acquire many periodograms
and average them together to reduce the variance on the spectral estimate.

A.2 Mechanical resonators
We now summarize the theory of nanomechanical resonators relevant for our discus-
sions above. Appendices A.2.1 and A.2.2 deal with classical models of membrane
motion and thermally excited harmonic oscillators, respectively, detailed in [24,38]. In
Appendix A.2.3, we introduce the quantum description, closely following [11].

A.2.1 Out-of-plane membrane modes
The out-of-plane motion of a thin membrane is readily described by the theory of
elasticity [171]. As an example, we examine the case of a square SiN membrane
under uniform tensile stress σ with side length l and thickness h � l, as illustrated in
Figure A.1. We start with the two-dimensional wave equation [172]

D
h
∇4w(x, y, t) − σ∇2w(x, y, t) = −ρ ∂

2

∂t2w(x, y, t), (A.6)

where w(x, y, t) is the displacement at a given point (x, y) on the membrane evolving in
time t. Furthermore, ρ is the material density and D the flexural rigidity:

D =
Eh3

12(1 − ν2), (A.7)

where E is Young’s modulus and ν is Poission’s ratio. The wave equation is solved by
separation of variables under the boundary conditions that w(x, y, t) and its derivatives
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Figure A.1: Illustration of a square SiN membrane. The out-of-plane motion of a membrane with
thickness h and side length l, fixed to the frame is described by the displacement w(x, y, t).

with respect to x and y vanish at the membrane edges. The solutions are approximated
by sinusoidal transverse mode shapes of the form:

w(x, y, t) ≈ q(t) sin (nk x) sin (mky), (A.8)

where k = π/l and the integers n and m denote the number of antinodes along the
x and y direction, respectively. A small exponential correction near the edges has
been neglected, which is due to the first term on the left hand side of Equation (A.6)
referring to the bending of the membrane. This approximation is valid when identifying
the modes of highly-stressed SiN membranes, as is done in Section 1.2. However,
when calculating internal dissipation of such membranes the correction contributes the
majority of bending loss and needs to be included (see Section 1.4.2).

Themembrane displacement follows one-dimensional harmonic motion, at an antin-
ode of a mode we can write q(t) = q0 cos (Ωmt + φ), where q0 is the amplitude and φ
a phase that depends on the initial condition. The mechanical angular frequency Ωm is
given by the following relation:

Ω2
m =

π2σ

ρl2

(
n2 + m2

)
. (A.9)

For the harmonic motion q(t) we can find an effective mass by spatially integrating the
square of the mode shape [38]:

meff = ρh

l
ż

0

l
ż

0

sin2 (nk x) sin2 (mky) dx dy =
m0
4
, (A.10)

where m0 = ρl2h is the physical mass of the membrane. Notice that the effective mass is
independent of the mode (n,m), which is unique for square and rectangular membranes.

A.2.2 Thermally excited harmonic motion
Amechanical resonator, such as themembrane discussed above, coupled to a thermal en-
vironment is subject to a fluctuating force Fth(t). This force excites the one-dimensional
displacement q(t) as described for a single mode by the equation of motion for a damped
harmonic oscillator:

Üq(t) + Γm Ûq(t) +Ω2
mq(t) = Fth(t)

meff
. (A.11)
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Here the inverse of the damping rate Γ−1
m is the time constant characterizing the expo-

nential decay of the amplitude, also referred to as the ringdown time. The number of
oscillations before the amplitude decays to 1/e of its initial value is the quality factor

Q =
Ωm
Γm

, (A.12)

valid for the case of underdamped motion, i.e., Γm � Ωm. The damping relates to the
fluctuating force Fth(t) via the fluctuation dissipation theorem [173]. Indeed, the PSD
of the force reads

Sth
FF(Ω) = 2ΓmmeffkBT, (A.13)

where kB is the Boltzmann constant and T is the temperature of the environment.
Notice that this is independent of Ω (white noise). We can solve Equation (A.11) in the
Fourier domain, where the time derivative d/dt → iΩ, and get the algebraic expression
q(Ω) = χm(Ω)Fth(Ω) in which the mechanical susceptibility is defined as follows:

χm(Ω)−1 = meff

(
Ω2

m −Ω2 + iΩΓm
)

(A.14)

≈ 2meffΩm

(
Ωm −Ω + i

Γm
2

)
. (A.15)

In the last line, we approximate the susceptibility close to the resonance frequency
|Ωm − Ω| � Ωm revealing that its absolute square |χm(Ω)|2 is a Lorentzian function
with a peak at Ω = Ωm and a FWHM of Γm. The PSD is now found via Equation (A.3):

Sqq(Ω) = |χm(Ω)|2Sth
FF(Ω). (A.16)

Finally, we can integrate the PSD and thereby reveal the variance of the mode displace-
ment to be the following:

〈q2〉 =
∞
ż

−∞
Sqq(Ω) dΩ

2π
=

kBT
meffΩ

2
m
. (A.17)

Evidently, this result is in agreement with the equipartition theorem stating that the
resonator’s average energy, i.e., twice the average potential energy, is equal to kBT .

A.2.3 Quantum description
The quantum description of a single mode of a mechanical resonator is characterized
by discrete energy levels, equidistantly separated by the energy ~Ωm. This is found by
solving the Schrödinger equation with the Hamiltonian

Ĥ = ~Ωm

(
b̂†b̂ +

1
2

)
, (A.18)
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where n̂ = b̂†b̂ is the number operator. b̂ and b̂† are the annihilation and the creation
operator, respectively, which are related to the position operator q̂ and the momentum
operator p̂ in the following way:

q̂ = qzp
(
b̂† + b̂

)
, (A.19)

p̂ = ipzp
(
b̂† − b̂

)
, (A.20)

Here qzp and pzp = ~/2qzp describe the zero-point motion due to the finite energy of the
ground state with 〈n̂〉 = 0, and the rms displacement yields

qzp B
√
〈q̂2〉 − 〈q̂〉2 =

√
~

2meffΩm
. (A.21)

When coupled to thermal phonons from the environment at a temperature T , the
harmonic oscillator must be written as a mixed state which, in equilibrium, is governed
by Bose-Einstein statistics. The mean occupancy of this state is given by

n̄th B 〈n̂〉 =
(
e
~Ωm
kBT − 1

)−1
(A.22)

≈ kBT
~Ωm

. (A.23)

For the parameters used in our experiments T > 4.2 K and Ωm/2π ≈ 1 MHz it is
reasonable to assume the high temperature classical limit kBT � ~Ωm and use the
approximation in Equation (A.23).

If we prepare our mechanical resonator in a pure state, such as the ground state, it
will be out of equilibrium. The mean occupancy as a function of time then follows the
equation [11]:

Û̄n(t) = Γmn̄th − Γmn̄(t). (A.24)

With the occupancy of the mechanical resonator initially given by n̄(0) = 0, we find the
solution of Equation (A.24) to be

n̄(t) = n̄th
(
1 − e−Γmt

)
, (A.25)

converging towards the steady-state solution n̄th as shown in Figure A.2. From Equa-
tion (A.25) we evaluate the time for an average of one quanta from the thermal environ-
ment to enter our resonator, i.e., the thermal coherence time

τ = −
ln

(
1 − 1

n̄th

)
Γm

≈ 1
Γmn̄th

, (A.26)

where we again assume the high temperature limit n̄th � 1 in the last identity. Notice
that this approach to quantify the coherence is only valid for the ground state. For
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Figure A.2: Time evolution of the mean occupancy. The harmonic oscillator, initially in the ground
state, converges to the thermal equilibrium with the decoherence rate 1/τ. Here we set n̄th = 2.

a mechanical Fock state with a phonon number n, the decoherence rate τ−1
n must be

calculated as the sum of upwards and downwards going transition rates, as detailed
in [11], and thus yields the following:

τ−1
n = Γm (n̄th(n + 1) + (n̄th + 1)n) . (A.27)

This means that the coherence time decreases with n as τ/τn ≈ 2n + 1 for n̄th � 1.
In complete analogy to the classical description in Appendix A.2.2, we now evaluate

the thermally excited displacement starting with the equation of motion

Ü̂q(t) + Γm Û̂q(t) +Ω2
mq̂(t) = F̂th(t)

meff
. (A.28)

Here the operator F̂th(t) denotes the random force exerted onto the oscillator due to
the thermal bath. The quantum version of the fluctuation-dissipation theorem is given
by [11]

Sth
FF(Ωm) = 2Γmmeff~Ωm(n̄th + 1), (A.29)

Sth
FF(−Ωm) = 2Γmmeff~Ωmn̄th. (A.30)

A striking difference between these expressions and the classical fluctuation dissipation
theorem in Equation (A.13) is the fact that Sth

FF(Ωm) , Sth
FF(−Ωm), carrying further onto

the spectrum of the displacement. The latter is extracted by solving Equation (A.28) and
assuming the force PSD to be constant across the bandwidth of the mechanical mode.
Then, we use the approximate susceptibility in Equation (A.15) and get [52]

Sqq(Ω) = q2
zpΓm

(
n̄th

(Ωm −Ω)2 + Γ2
m/4
+

n̄th + 1
(Ωm +Ω)2 + Γ2

m/4

)
. (A.31)

Notice that both the fluctuation dissipation theorem and the mechanical spectrum are
reduced to their classical counterparts in Equation (A.13) and Equation (A.16), respec-
tively, by using the approximation of n̄th in Equation (A.23) and the symmetrized PSD
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âin

âout

â

L

qκ

Γm

Figure A.3: Illustration of a canonical optomechanical system. A single mode of a light field â inside
a FP cavity of length L couples parametrically to the motion of a mirror described by q = 〈qzp(b̂† + b̂)〉.
Optical and mechanical losses are denoted κ and Γm, respectively.

defined in Equation (A.4). On the other hand, for low occupancies Sqq(Ω) behaves very
differently compared to the classical case; it constitutes a large asymmetry between the
two Lorentzian peaks at ±Ωm. In Section 2.3, this feature is exploited to determine the
phonon occupancy, a method known as Raman sideband thermometry.

A.3 Optomechanical dynamics
We will now turn our attention to the basic theory of cavity optomechanics which has
been developed thoroughly in the literature. We refer the reader to [11] for a particularly
comprehensive review and also follow this reference in our remarks. After introducing
the dynamic equations of motion in Appendix A.3.1, we describe the most relevant
effects for the topic of this thesis, namely dynamical backaction in Appendix A.3.2 and
the standard quantum limit in Appendix A.3.3.

A.3.1 Equations of motion
Consider a Fabry-Pérot cavity with a movable mirror as illustrated in Figure A.3.
Mechanical displacement q of the mirror changes the cavity length L and thus the
resonance frequency ωc = nπc/L, where n is an integer denoting the longitudinal mode
number and c is the speed of light. For small displacements q � L this parametric
coupling is expressed in the last term of the following Hamiltonian:

Ĥ = ~ωcâ†â + ~Ωmb̂†b̂ + ~g0â†â
(
b̂† + b̂

)
, (A.32)

where â and â† are the annihilation and creation operators of the intra-cavity field,
respectively. Furthermore, we introduce the single-photon coupling rate

g0 = qzp
dωc
dq

, (A.33)

which yields g0 = qzpωc/L for this canonical optomechanical system. Notice that in
Equation (A.32) both the (single) cavity mode and the mechanical mode are described
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as quantum harmonic oscillators, for which we neglected the respective constant ground
state energy terms ~ωc/2 and ~Ωm/2, since these will not contribute to the dynamics
of the system discussed here. The same is true for a driving term proportional to â† + â
that is often introduced at this point, but cancels out when assuming a constant coherent
drive and linearizing the equations of motion, as is shown below.

The next step is to consider the coupling of the system to a thermal environment. In
Appendix A.2.2 this has already been done for the mechanical resonator by introducing
the disspation rate Γm. On the other hand, we will denote the rate at which the cavity
field leaks through one mirror with

√
κ, establishing a connection with the drive field

âin. With this, we are in a position to formulate the quantum Markovian Langevin
equations [11] which are of the form

Û̂O = 1
i~
[Ô, Ĥ] + ξ̂, (A.34)

where Ô is an operator and ξ̂ is the corresponding noise operator. This yields the
dynamics of the cavity field â as well as the position q̂ and momentum p̂ of the
mechanical resonator:

Û̂a = − κ
2

â + i
(
∆ − g0

qzp
q̂
)

â +
√
κâin, (A.35)

Û̂q = p̂
meff

, (A.36)

Û̂p = −meffΩ
2
mq̂ − Γm p̂ + F̂th − ~g0

qzp
â†â. (A.37)

Here we transform â into a rotating frame, defining the detuning between laser frequency
ωl and cavity resonance ∆ B ωl − ωc. Counter-rotating terms including ââ or â†â†

are neglected (rotating wave approximation). As can be seen, the equations are linked
via the optomechanical coupling rate g0, and setting g0 = 0 recovers Equation (A.28)
describing only the evolution of the mechanical resonator. In this general form, the
Langevin equations are difficult to solve due to the quadratic terms and it is common to
linearize them via the transformations

â→ α + δâ, (A.38)
âin → αin + δâin, (A.39)

where α and αin refer to the amplitudes and δâ and δâin are small fluctuations of the
strong coherent cavity field and the drive field, respectively. Without loss of generality,
we set α to be real. The interaction term of the Hamiltonian in Equation (A.32) now
simplifies to

Ĥint = ~g
(
δâ† + δâ

) (
b̂† + b̂

)
, (A.40)

where g B g0α is the cavity-enhanced coupling rate. Notice that we omit a constant
term proportional to α2 describing a static force, as well as the second order term
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including δâ†δâ. Furthermore, let us introduce the amplitude and phase quadrature
fluctuations of the intra-cavity field, which are

δX̂ =
δâ† + δâ√

2
, (A.41)

δŶ =
i(δâ† − δâ)√

2
, (A.42)

respectively. The quadratures of the drive, δX̂in and δŶin, are defined in the same way
with respect to δâin. The Langevin equations are now linear and read

δ Û̂X = − κ
2
δX̂ − ∆δŶ + √κδX̂in, (A.43)

δ Û̂Y = − κ
2
δŶ + ∆δX̂ −

√
2g

qzp
q̂ +
√
κδŶin, (A.44)

Û̂q = p̂
meff

, (A.45)

Û̂p = −meffΩ
2
mq̂ − Γm p̂ + F̂th −

√
2~g
qzp

δX̂ . (A.46)

As described in Section 2.2.3.3, the constant term neglected here give rise to a mean
displacement and shifted detuning, both of which we can simply set to zero when
investigating the dynamics of the system in the following discussion.

A.3.2 Dynamical backaction
The most important consequences of the optomechanical coupling, when using a strong
optical drive as is the case in all of our experiments, can directly be inferred from the
linearized Langevin equations above. Combining all Equations (A.43–46) we solve for
the displacement q̂(Ω) in Fourier domain and get

q̂(Ω) = χeff(Ω)
(
F̂th(Ω) + F̂ba(Ω)

)
, (A.47)

which has a similar form as Equation (A.28) but with a fluctuating force due to radiation
pressure back-action. This important feature will be discussed later. For the time being,
consider that we have replaced χm(Ω) by an effective susceptibility:

χeff(Ω)−1 B χm(Ω)−1 +
i~g2

q2
zp

(
χ∗c (−Ω) − χc(Ω)

)
, (A.48)

where the susceptibility χc(Ω) of the optical cavity has been introduced in analogy to
Equation (A.15), whose squared magnitude is a Lorentzian function peaked at Ω = ∆
and with κ being the FWHM:

χc(Ω)−1 B
κ

2
− i(∆ −Ω). (A.49)
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Figure A.4: Dynamical backaction for negative detuning. Left: Absolute square of mechanical
susceptibility versus frequency, where we set κ = −∆ = Ωm. For g/Ωm we used 0.1 (red), 0.2 (gray),
and 0.3 (blue). The dashed line shows the maximum curve |χeff(Ωeff)|2. Right: Scattering picture of
optomechanical cooling. The cavity susceptibility |χc(Ω)|2 (gray line) weights the mechanical sidebands
(gray shaded areas) around the optical carrier (black arrow) and thereby modifies the scattering rates Γ−
and Γ+.

Defining χeff(Ω)−1 B meff
(
Ω2

eff −Ω2 + iΩΓeff
)
we find that the coupling changes the

mechanical linewidth Γeff B Γm + Γopt (optical damping) and shifts the frequency
Ω2

eff B Ω
2
m +Ω

2
opt (optical spring effect). With Ω = Ωm we get

Γopt = κg
2
(
|χc(Ωm)|2 − |χc(−Ωm)|2

)
, (A.50)

Ω2
opt = 2Ωmg

2
(
(∆ +Ωm) |χc(Ωm)|2 + (∆ −Ωm) |χc(−Ωm)|2

)
. (A.51)

In Figure A.4 we show the absolute square of the effective susceptibility as a function
of frequency for different values of g. Besides optical damping and the optical spring
effect, we see that for ∆ < 0 the area underneath the curve decreases with g. Indeed,
this is also true for the displacement PSD Sqq(Ω) calculated via Equation (A.47), if we
discard the backaction force F̂ba. Integrating Sqq(Ω), which is akin to Equation (A.31),
we get the variance:

〈q̂2〉 = Γm
Γeff

~(n̄th + 1/2)
meffΩeff

. (A.52)

In the classical limit n̄th � 1 this result can be compared to the case without op-
tomechanical coupling, i.e., Equation (A.52), suggesting an effective temperature of the
mechanical resonator:

Teff =
Γm

Γm + Γopt
T . (A.53)

We thus see that the motion can be optically cooled (Teff < T) if ∆ < 0 and amplified
(Teff > T) if ∆ > 0. The latter reaches an instability when Γeff < 0, resulting in large
coherent oscillations of the resonator.

The effects described above are referred to as ‘dynamical backaction’ and can be
understood in two different ways: firstly, we recall that for ∆ , 0 the harmonic motion
of the mechanical resonator modulates the amplitude quadrature of the intra-cavity field
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and thus the radiation pressure force at the frequency Ωm. If the force is delayed by
the photon lifetime in the cavity 1/κ, it is out-of-phase with the motion, creating a
feedback which alters the energy stored in the mechanical resonator. The second picture
to describe dynamical backaction is equivalent to Raman scattering of photons from
atoms or molecules. Consider the two sidebands generated by the mechanical motion
of the resonator illustrated in Figure A.4, which correspond to photons with energies
~(ωl + Ωm) (anti-Stokes scattering) and ~(ωl − Ωm) (Stokes scattering). If the cavity is
detuned such that it enhances scattering of photons with higher energy and suppresses
those with lower energy, phonons will be removed from the mechanical resonator, thus
lowering the effective temperature. This is deduced from Equation (A.50), where the
damping rate Γopt = Γ− − Γ+ is given by the asymmetry of the downward (Γ−) and
upward (Γ+) transition rates [10]. The two rates are proportional to the magnitude of
the cavity susceptibility evaluated at different sideband frequencies:

Γ− = g2κ |χc(+Ωm)|2 , (A.54)
Γ+ = g2κ |χc(−Ωm)|2 . (A.55)

The theoretical description of dynamical backaction above is sufficient for many
optomechanical systems, but it is not complete. We have so far discarded the backaction
force in Equation (A.47):

F̂ba(Ω) =
√

2κ~g
qzp

∆δŶin − (κ/2 + iΩ)δX̂in

(κ/2 + iΩ)2 + ∆2 . (A.56)

To incorporate this force into the model we want to find the backaction force PSD
Sba

FF(Ωm) using Equation (A.3) and assume that the input noise quadratures correspond
to a coherent drive, so that in the rotating frame [11]

〈δŶ†in(−Ω)δŶin(Ω′)〉 = 〈δX̂†in(−Ω)δX̂in(Ω′)〉 = 1
2
δ(Ω +Ω′), (A.57)

〈δŶ†in(−Ω)δX̂in(Ω′)〉 = −〈δX̂†in(−Ω)δŶin(Ω′)〉 =
i
2
δ(Ω +Ω′). (A.58)

The result is simply the Lorentzian cavity response which we evaluate at the mechanical
resonance frequency:

Sba
FF(Ωm) = ~

2g2κ

q2
zp
|χc(Ωm)|2 . (A.59)

= 2~meffΩmΓoptn̄min. (A.60)

In the last line we used Equation (A.21) and Equation (A.50) to show that the backaction
force behaves the same way as the thermal force described by the fluctuation dissipation
theorem in Equation (A.29). As a matter of fact, we can say that the mechanical
resonator couples with a rate Γopt to an optical bath whose occupancy is

n̄min = − κ
2/4 + (∆ +Ωm)2

4∆Ωm
. (A.61)
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Integrating Sqq(Ω) = |χeff(Ω)|2(Sth
FF(Ωm) + Sba

FF(Ωm)), where both force PSDs are as-
sumed to be constant across themechanical linewidth Γm, we find that the variance of the
displacement features an additional term compared to Equation (A.52). The effective
temperature, or here the corresponding mean phonon occupancy n̄, of the mechanical
resonator is now given by

n̄ =
Γmn̄th + Γoptn̄min

Γm + Γopt
, (A.62)

where we again assumed n̄th � 1. In most cases Γm � Γopt, meaning that n̄min denotes
the minimum occupancy achievable through optical cooling (backaction limit).

A.3.3 Standard quantum limit
Let us now turn our attention to the weak, continuous measurement of the mechanical
displacement q̂ using the reflected light from the cavity âout (see Figure A.3). We are
interested in the precision achievable without altering the mechanical response, i.e.,
χeff(Ω) = χm(Ω), and therefore choose the frequency of the input laser light âin such
that ∆ = 0. In this case, the linearized Langevin equations reveal that q̂ only couples
to the phase quadrature of the intra-cavity field δŶ , as can be seen in Equation (A.44).
The output field with âout = αout + δâout, where αout is the coherent amplitude and
δâout denotes small fluctuations, allows us to access q̂ and is given by the following
input-output relation

δŶout = δŶin −
√
κδŶ, (A.63)

where δŶout = i(δâ†out − δâout)/
√

2. In Fourier domain, the solution of Equation (A.44)
is inserted in Equation (A.63), resulting in

δŶout(Ω) =
√

2κg
qzp(κ/2 + iΩ) q̂(Ω) −

κ/2 − iΩ
κ/2 + iΩ

δŶin(Ω). (A.64)

Next, wewant to calculate the PSDof the output phase fluctuations Sout
YY (Ω) and transform

it into units of m2 Hz−1 dividing by the absolute square of the prefactor in the first term
of Equation (A.64). The transformed PSD is

Sout
qq (Ω) B

2Γmeas

q2
zp

Sout
YY (Ω), (A.65)

where we use the measurement rate Γmeas = 4g2/κ. Now, the PSD is found using
Equation (A.3) and by considering the quadrature correlations in Equations (A.57)
and (A.58):

Sout
qq (Ω) = |χm(Ω)|2

(
Sth

FF(Ω) + Sba
FF(Ω)

)
+ Simp

qq (Ω) + ~Im (χm(−Ω)) . (A.66)

The expression consists of four terms: the first two describe the mechanical motion
excited by the thermal force and the backaction force, both of which we have already
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Figure A.5: Standard quantum limit of weak, continuous position measurements. Calculated
displacement PSD S̄out

qq (Ωm) if measured using laser light reflected from an optomechanical cavity with
∆ = 0. The values are normalized to the peak displacement of the mechanical resonator in the ground
state and plotted as a function of probing strength 4Γmeas/Γm ∝ g2 for n̄ = 0 (solid blue line) and n̄ = 100
(solid black line). The red and purple dashed lines are Simp

qq (Ωm) and |χm(Ωm)|2 Sba
FF (Ωm), respectively.

The black, horizontal dashed line at S̄out
qq (Ωm)Γm/2q2

zp = 2 indicates the standard quantum limit.

encountered in the previous sections. The third term denotes the imprecision due to the
SN of the probe beam and is given by

Simp
qq (Ω) =

q2
zp

4Γmeas
. (A.67)

The last term in Equation (A.66) describes correlations between the imprecision noise
and the backaction noise, both derived from the vacuum fluctuations of the probe beam.
It vanishes in the case of homodyne detection, where the symmetrized spectrum S̄out

qq (Ω)
is measured, and cancels in the case of heterodyne detection with a cross-term in the
amplitude quadrature δX̂out, which needs to be taken into account (see Section 2.3.1).
In Figure A.5 we evaluate the symmetrized spectrum at the mechanical resonance and
plot it as a function of 4Γmeas/Γm ∝ g2 ∝ α2, where the latter is the number of photons
in the cavity. If the mechanical resonator is in the ground state with n̄ = 0, we see
that the imprecision noise S̄imp

qq (Ωm) dominates for 4Γmeas/Γm < 1. On the other hand,
if 4Γmeas/Γm > 1, noise due to the backaction |χm(Ωm)|2 S̄ba

FF(Ωm) is prevalent. At
4Γmeas/Γm = 1 the PSD reaches a minimum that is known as the standard quantum
limit. Here the imprecision and the backaction are the same, while their sum is equal
to the noise of the mechanical resonator in the ground state. In essence, the added
noise is a consequence of the Heisenberg uncertainty principle, prohibiting arbitrary
precision on the displacement measurement via backaction. Indeed, in this context we
can express the uncertainty principle in the following way:

Simp
qq (Ω)Sba

FF(Ω) ≥
~2

4
. (A.68)

The equality is realized in our case of a perfectly coherent laser drive, as is readily
deduced from Equation (A.59) and Equation (A.67).
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Finally, let us consider the case where the resonator is thermally excited and n̄th � 1.
For very large values of 4Γmeas/Γm the backaction force can exceed the thermal force.
In order to quantify this regime we define the quantum cooperativity

Cq B
Sba

FF(Ωm)
Sth

FF(Ωm)
=
Γmeas
Γmn̄th

. (A.69)

We note that the measurement rate Γmeas may be interpreted as the rate at which
information about q̂ is extracted. Cq compares this rate to the decoherence rate Γmn̄th
(see Equation (A.26)), describing how fast a given quantum state degrades. In other
words, quantum coherent interaction between the mechanical resonator and the light is
enabled if Cq > 1.

A.4 Transfer-matrix method
Wewill now outline the transfer-matrix method for optical multilayer used in this thesis.
For a thorough derivation of the method the reader is referred to [174] whose notation
we adapt in the following.

Consider a beam of light at a wavelength λ with an electric field Ein impinging on a
stack of N optical layers. The reflected field Erefl and transmitted field Etrans are found
by the linear equation (

Ein
Erefl

)
=M0,1

N∏
j=1

P jM j, j+1

(
Etrans

0

)
(A.70)

=

(
T11 T12
T21 T22

) (
Etrans

0

)
. (A.71)

The 2 × 2 matrix in Equation (A.71) is the transfer matrix and gives the amplitude
reflection and transmission coefficients of the optical multilayer as r = T21/T11 and
t = 1/T11, respectively. The propagation matrix P j and refraction matrix M j, j+1
describe the relation between electric fields at each layer j and are defined as follows:

P j =

(
eiknjdj 0

0 e−iknjdj

)
, (A.72)

M j, j+1 =
1

t j, j+1

(
1 r j, j+1

r j, j+1 1

)
. (A.73)

Here n j is the (complex) refractive index and d j the thickness of layer j, while k = 2π/λ.
At the interface between layer j and j + 1 the reflection and transmission coefficients
are denoted r j, j+1 and t j, j+1, respectively. These can be specified directly, for instance,
to include a mirror with known reflectance and transmittance. Alternatively, they are
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Figure A.6: Transfer-matrix method for a dielectric mirror. Given the refractive indices n of
alternating layers (top), we calculate the normalized squared electric field |E/Ein |2 of an incident plane
wave (bottom) as a function of distance from the mirror surface.

given by the Fresnel relations (at normal incidence) [98]

r j, j+1 =
n j − n j+1

n j + n j+1
, (A.74)

t j, j+1 =
2n j

n j + n j+1
. (A.75)

To demonstrate this method, we take a lossless dielectric mirror on a glass substrate,
where the coating materials are magnesium fluoride (nMgF2 = 1.38) and zinc sulfide
(nZnS = 2.32). Figure A.6 shows the arrangement of N = 8 alternating layers, each with
a thickness of n j d j = λ/4, where λ = 1 µm. We find the coefficients r ≈ −0.979 and
t ≈ 0.165. The electric field of an incident plane wave penetrates the mirror stack with
a depth of ∼ λ/2 as also described in [88].

A.5 Jones calculus
Jones calculus is used to model the polarization state of light as it travels through
different optical elements. We will now briefly sketch this method and introduce the
identities used in this thesis. A more detailed introduction can be found in [175].

The electric field of a polarized plane wave is orthogonal to the direction of propa-
gation and can be described by a two-dimensional vector z in the xy−plane:

®E = 1√
E2

x + E2
y

(
Exeiφx

Eyeiφy

)
, (A.76)

where we omit the complex exponential including the time and position dependence of
the wave. ®E is known as the normalized Jones vector and describes linear horizontal
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and vertical polarization if the components Ey = 0 and Ex = 0, respectively. For
right-circularly polarized light we set Ex = Ey, φx = 0 and φy = −π/2 such that:

®ERH =
1√
2

(
1
−i

)
. (A.77)

Optical elements that change the polarization of light are represented by Jones
matrices of dimension 2 × 2 which are simply multiplied with the Jones vector. The
most general phase retarder is given by

Jδ,θ = R−1
θ

(
e−iδ 0

0 eiδ

)
Rθ, (A.78)

where δ denotes the relative phase between the fast and slow axis. The azimuth angle θ
between x and the fast axis accommodates for any rotation of the element with respect
to the basis, which we express by the rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (A.79)

As an example, an arbitrarily-rotated half-wave plate with δ = π yields a rotation of the
polarization state by −2θ and reads

Jπ,θ = e−iπ/2
(

cos 2θ − sin 2θ
− sin 2θ − cos 2θ

)
. (A.80)

Finally, a horizontal linear polarizer selects the x−component of the Jones vector and
is therefore given by

P =
(
1 0
0 0

)
. (A.81)
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