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Abstract

This thesis describes the construction of a machine to generate Bose Einstein conden-
sates in 87Rb and the first experiments performed with this machine on superradiant
Rayleigh scattering.

Bose Einstein condensates of 87Rb are produced by evaporatively cooling atoms
in a magnetic trap of the quadrupole-Ioffe configuration. The atoms are loaded
into the magnetic trap in a region of ultra-high vacuum from a double Magneto-
Optical trap set-up. The evaporative cooling is achieved by selectively driving radio-
frequency transitions to untrapped magnetic substates. During the evaporation, the
magnetic trap is relaxed so that density dependent heating does not substantially re-
duce the number of atoms in the condensate. With a duty cycle of about a minute,
we produce pure, prolate condensates containing up to a few million atoms.

The application of an off-resonant beam of light along the long axis of the con-
densate leads to a form of collective Rayleigh scattering analogous to the superradi-
ance that occurs in electronically inverted samples. One can think of this process as
the amplification of quantum noise: photons are spontaneously scattered out of the
pump beam, and due to the extended optical depth along the long axis of the BEC, the
modes that propagate along this axis see the most gain. In the end-pumped geometry,
the strongest superradiant mode is the one where photons are back-scattered by the
atoms. The overlap of stationary and recoiling atoms recoil produces a density mod-
ulation - a Bragg grating - which amplifies the back-scattering. We have performed
a systematic study of the effects of pump detuning on the process while keeping the
single particle scattering rate constant. In this way, we move between the case where
the pump beam functions as a reservoir of photons to the situation where superradi-
ance is clamped by a lack of photons in the pump beam. Our experimental results are
strongly supported by simulations of the system based on 1D Maxwell-Schrödinger
equations. We demonstrate that the dynamics result from the structures that build
up in the light and matter fields along the long axis of the condensate. In particular,
we find that the emission of the first superradiant pulse may be understood in terms
of the overlap of light and matter wave gratings. Finally, the random nature of the
spontaneous scattering that initiates the collective scattering is manifest at later times
in the distribution of arrival times and photon numbers of the first superradiant pulse.
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Sammendrag

I denne afhandling, beskrives konstruktionen af en maskine, der skaber Bose Ein-
stein kondensater i 87Rb og de første forsøg udført med denne maskine i superradiant
Rayleigh spredning.

Bose Einstein kondensater i 87Rb produceres ved fordampningskøling i en mag-
netfælde i en kvadrupol-Ioffe-konfiguration. I et område med ultra-højt vakuum
fyldes magnetfælden med atomer fra en dobbel Magneto-Optisk-fælde opstilling.
Fordampningskøling udføres ved at drive radio-frekvens overgange til ikke-fangede
magnetiske tilstande. Under fordampningsforløbet forminskes magnetfældens ste-
jlhed så tæthedsafhængig opvarmning ikke forårsager en kritisk reduktion i det en-
delige antal atomer i kondensatet. Med en repetitions-rate på omtrent et minut, kan vi
producere rene, aflange kondensater, som indeholder op til nogle få millioner atomer.

Ved brug af en ikke-resonant laserstråle langs kondensatets lange akse opstår der
en form for kollektiv Rayleigh spredning, der er lig superradians i elektronisk invert-
erede atomare ensembler. Man kan betragte denne process som forstærkningen af
kvante-støj: fotoner bliver spontant spredt ud af pumpestrålen og på grund af den
store optiske tæthed langs kondensatets lange akse, oplever lys-modes som bevæger
sig langs denne akse den største forstærkning. I den ende-pumpede geometri er
den kraftigste superradians-mode den, hvor fotoner bliver spredt tilbage af atomerne.
Overlappet af stationære atomer og atomer med rekyl skaber en tæthedsmodulation -
et Bragg gitter - der forstærker tilbage-spredningen af fotoner. Vi har udført en sys-
tematisk undersøgelse af indflydelsen af pumpestrålens detuning på dynamikken for
en konstant enkelt-atom-sprednings-rate. På denne måde, skifter vi mellem, situatio-
nen hvor pumpestrålen optræder som et foton-reservoir, til situationen hvor processen
stoppes på grund af mangel på fotoner i pumpestrålen. Vores eksperimentelle resul-
tater understøttes kraftigt af simulationer af systemet, som bygger på 1D Maxwell-
Schrödinger ligninger. Vi viser, at dynamikken opstår på grund af strukturer, der
bliver dannet i lys- og stof-felterne langs kondensatets lange akse. Desuden finder vi,
at emission af den første superradiante puls kan forstås ud fra overlappet af lys- og
stof-bølger. Endeligt påviser vi, at den tilfældige karakter af den spontane spredning,
som igangsætter processen, viser sig i den senere dynamik i fordelingen af ankomst
tidspunkter af og foton-tal i den første superradiante puls.
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Chapter 1

Introduction

The coherent control of the interaction between light and matter is the cornerstone
of many physical realizations of Quantum Information Processing (QIP). By coher-
ent control of an interaction, we mean that the coupling between the two interacting
systems can be precisely controlled by experimental parameter(s) and that it is much
stronger than the couplings to their respective environments. Such a capability pro-
vides the tools for the generation of arbitrary quantum states of the individual sys-
tems or the combined system, and this has important applications such as quantum
repeaters, or more generally, extended quantum networks. In this setting, the quan-
tum interface between light and atoms is critical, because it links natural information
carriers - photons - with atoms that can be used to store and process information [1].
On a technical level, the preparation of quantum states requires measurements at the
quantum limit, where the effect of the interaction is studied in both the atoms and
the light. Such an approach is more nuanced than, for instance, spectroscopy on an
atomic sample where the light is regarded as a probe that exerts no significant effect
on the atoms; or alternatively, the optical pumping of an atomic sample, where one’s
only focus is the atomic state after the process. In quantum state engineering in light
and atoms, one is interested in both the action of the atoms on the light, and the action
of the light on the atoms.

Until recently, the standard approach was to place atoms in high finesse optical
cavities to increase the strength of the atom-light interaction, but recently the cou-
pling of light to atomic ensembles has emerged as a viable alternative. The latter
approach is appealing because it does not suffer from the same technical difficulties
as cavity Quantum Electrodynamics (QED), such as placing optical cavities in ultra-
high vacuum. In such an approach, the strength of the coupling is increased by a
factor which depends on the finesse of the optical resonator. The analogous quantity
in the coupling of light and atomic ensembles is the resonant optical depth of the
atomic sample OD = σabsñ, where the first factor is the absorption cross section, and
the second is the column density of the sample. In both cases, the interaction is en-
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2 INTRODUCTION

gineered so as to favour the coupling to a limited number of field modes - in contrast
to the case of an isolated atom in free space where the coupling is nearly isotropic;
this is achieved through modified boundary conditions in the case of optical cavities,
and phase-matching the coupling of many atoms in the ensemble approach.

The interaction between light and atomic ensembles may be divided into two
main categories: single quadrature or Quantum Non-Demolition (QND) type cou-
pling, and two quadrature coupling such as beam-splitter and two mode squeezing
interactions. By quadratures, we mean the canonical operators X and P from a quan-
tum mechanical harmonic oscillator - a formalism that may be advantageously ap-
plied to any bosonic system such as a light field or the collective angular momentum
operators of an ensemble of atoms [2]. These two categories may be expressed by
the following effective Hamiltonians:

HI = αXX1X2, (1.1)

HII = αXX1X2 +αPP1P2, (1.2)

where (1.1) describes single quadrature coupling, (1.2) describes two mode coupling,
and the indices 1 and 2 of the operators refer to the respective bosonic fields. The
coupling constants can be expressed as αX,P ∝

√
OD ·R, where R denotes the single

particle scattering rate. Strong coupling is characterized by OD ·R & 1. In the context
of a single mode light field interacting with an ensemble of spin polarized atoms, HI

describes the coupled polarization rotation of the light field by the atomic ensemble
and precession of the macroscopic Zeeman coherences due to light shifts, where X1

represents one of the Stokes operators for light, and X2 represents the collective spin
projection onto the direction of light propagation [3, 4]. In the high and low detuning
limits in light coupling to a Λ-shaped atomic level scheme, HII can be used to model
respectively the Raman and Electromagnetically Induced Transparency (EIT) proto-
cols. Standard experimental realizations of both of these categories have made use of
vapour gas cells, but increasingly ultra-cold atomic samples are becoming popular,
given the value of high optical depth of the atomic ensemble to the coupling strength.

A case in point is a Bose-Einstein condensate: with the realization of Bose-
Einstein condensation in dilute atomic samples in 1995, a new era began in atom
optics. Since the first demonstrations [5, 6, 7], the growth of the field has been re-
markable. Part of the appeal of a Bose Einstein condensate (BEC) in a dilute gas is
that it is a many body quantum system where one can tune the degree of atom-atom
interactions effectively by a variety of methods, whether it be through the atom num-
ber, the trapping potential, or by altering the scattering properties through applied
electromagnetic fields. In the context of light coupling to atomic ensembles, a BEC
provides an atomic sample with unique coherence properties. This has clear bene-
fits in terms of decoherence times, but also adds some complexity to the atom-light
interaction as compared to vapour cells.
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FIGURE 1.1: Protocol for storing a weak pulse of light in the ground state coherence of an
ensemble of 87Rb atoms. The atomic sample is dressed by a strong beam of light with σ−
polarization, and the weak beam has the opposite polarization; both are detuned by some
amount from the D1 line excited states.

We can illustrate this in the context of a quantum memory scheme based on a
Raman interaction. Figure 1.1 shows a memory protocol where a weak quantum field
with left hand circular polarization σ+ is incident on an ensemble of 87Rb atoms held
in the lower hyperfine sublevel |F = 1,mF =−1〉; the atoms are dressed by a strong
classical light field in the opposite polarization [8, 9]. The Raman channel allows the
transfer of a small proportion of the atoms into the |F = 1,mF = 1〉 state: this is an
example of a light-atom interface well described by an HII effective Hamiltonian. In
the cited references it is shown that quantum properties of the weak light field are
transferred with a given fidelity to the coherence between the coupled ground states.
Given that the optical depth is the figure of merit, the light is applied along the longest
axis of the sample so as to attain the strongest coupling.

However, if one applies such a protocol to a trapped Bose Einstein condensate,
a process other than the intended memory scheme can dominate: the spontaneous
scattering due to the strong beam induces a process that is closely related to the
superradiance of electronically inverted samples first described by Dicke [10]. This
collective Rayleigh scattering is a process whereby initially unoccupied modes of the
electromagnetic field become weakly populated by spontaneous Rayleigh scattering,
and then amplified along the direction of highest optical depth. The superradiance
arises because of the long-lived coherence between different motional states of the
condensate, and in fact it can be described by a two-mode squeezing Hamiltonian
with the form of equation (1.2). Typically, condensates are produced in anisotropic
harmonic potentials, so they are cigar shaped, and the transverse modes that dominate
are those that propagate along the long axis of the BEC - these are the so-called
endfire modes. While an atom returns to its initial internal state after a scattering
event, conservation of momentum requires that the atom recoils, and in fact this
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recoil plays a significant role in the dynamics: the overlap of recoiling and stationary
wavefunctions leads to a modulation of the atomic density distribution. For the case
of an end-pumped sample, so that the strong beam propagates along the long axis of
the condensate, the overlap of the mother condensate and one recoiling order leads to
a modulation with spatial period λ/2, where λ is the wavelength of the incident light.
Similarly, the scattered light interferes with the incident light, leading to an intensity
modulation - again with spatial period λ/2. In this way, the dynamics is determined
by the overlap of the light and matter-wave gratings, and in general, these vary in
amplitude and phase over the length of the BEC. As such, this four wave mixing is
an example of the quantum state engineering mentioned above, where the light and
atomic systems exert a comparable effect on each other.

Superradiant Rayleigh scattering is the primary topic of this thesis. Our goal
is to explore the process in order to provide a foundation for later work on quan-
tum memories and in general, the probing of the condensate by off-resonant light.
The experimental work was performed over a four year period, from January 2004 to
February 2008. However, nearly the first three years were spent building the machine
to produce Bose Einstein condensates, and this is the subject of the next two chapters.
Chapter 2 introduces some fundamental results relating to Bose-Einstein condensa-
tion in dilute gases. The first half of chapter 3 describes the more applied background
for the realization of Bose-Einstein condensation in 87Rb: the relevant atomic proper-
ties and the cooling and trapping techniques are described. The second half of chap-
ter 3 describes the practical details in the experimental realization, culminating in
the demonstration of Bose-Einstein condensation. Chapter 4 is a presentation of the
methods we use to probe the atoms; a significant portion of the chapter is devoted to
absorption imaging. Chapter 5 provides an introduction to superradiance, and a pre-
sentation of the 1D Maxwell-Schrödinger equations we use to simulate the process.
Where possible in the later chapters, we point out similarities between the superra-
diance of inverted samples, and the superradiant scattering we observe. Chapter 6
contains a study of the dynamics of superradiant Rayleigh scattering, where the main
results relate to a systematic study of the effects pump beam detuning and depletion
on the dynamics [11, 12]. We compare the experimental data with simulations of the
1D Maxwell-Schrödinger equations and find good agreement, but more generally,
the simulations give great insight into the longitudinal structure that builds up in the
light and matter waves. The most remarkable feature is the formation of resonator
structures within the BEC. Chapter 7 presents two results associated with fluctuations
in superradiance: given that the process is initiated by spontaneous scattering, super-
radiant light scattering may be thought of as the amplification of quantum noise [13].
The final section of chapter 7 is devoted to a first attempt to observe correlations in
the number of diffracted atoms and scattered photons. Finally, chapter 8 presents a
brief summary of the thesis and an outlook for the experiment.



Chapter 2

BEC theory

2.1 Introduction

When the number of Bosons in a particular state becomes so large that it is compara-
ble to the total number of particles in the system, this state is called a Bose-Einstein
condensate. The name comes from the physicists who predicted the phenomenon
[14, 15], and the analogy of vapour condensing on a cold surface: the microscopic
arrangement of particles in the system and hence the ensemble’s physical properties
change dramatically. Since the realization of Bose-Einstein condensation in dilute
alkali gases in 1995 [5, 6, 7], BEC has become an incredibly active field of research
with great interplay between theory and experiments. Developments in experimental
atomic physics have meant that BECs can be produced with a wide variety of prop-
erties such as particle number, geometry, dimensionality, density and inter-atomic
interaction strength, and that these properties can be explored with great precision.
Furthermore, beyond being of fundamental interest, a BEC is a very attractive and
useful atomic sample for its high density and unique coherence properties within the
fields of quantum optics, and more recently, quantum information.

In this chapter, we introduce the ideas necessary for a general understanding of
the realization of Bose-Einstein condensation in dilute gases, and the rudiments of
the mathematical description of trapped BECs. The physics we describe here is one
step removed from that of the realization - the trapping and cooling to degeneracy of
87Rb will be described in chapter 3. We begin with the thermodynamics of a non-
interacting Bose gas, with the goals of getting estimates for the critical temperature
at which Bose-Einstein condensation begins and other thermodynamic quantities that
inform our experimental practices. In particular, we explore how the velocity distri-
butions of thermal clouds and BECs differ, which is an important experimental sig-
nature of Bose-Einstein condensation. We subsequently give a brief introduction to
the microscopic description of an interacting Bose gas, formulated in the language of
second quantization. We then show how a mean-field description of the condensed
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6 BEC THEORY

state arises through an approximation of the field operators. The mean-field descrip-
tion of the condensed state leads to the Gross-Pitaevskii equation (GPE). This is a
Schrödinger equation with a non-linear term that describes interactions between the
atoms at the mean field level. This brief summary draws primarily on [16, 17, 18].

2.2 The non-interacting Bose gas

The mean occupation number ns of the single particle state s is given by the Bose
distribution:

ns = n(εs) =
1

exp((εs−µ)/kBT )−1
, (2.1)

where µ is the chemical potential, kB Boltzmann’s constant, T the temperature and
εs denotes the energy of the single particle state for the given trapping potential. The
total number of particles can then be expressed as:

N =
∞

∑
s=0

ns = N0 +
∞

∑
s=1

ns, (2.2)

where in the last equality we break up the sum to explicitly include the occupation
of the lowest energy state, and write N0 for the ground state occupation number.
Typically the sum over the excited states on the right hand side of equation (2.2) is
replaced by an integral because analytic solutions are difficult to calculate for discrete
energy levels. If the energy eigenvalues of the system are close together compared
to the energy in the system - i.e., kBT � εs - then the discrete levels may be well-
approximated by a continuum. We can rewrite (2.2) using this approximation:

N = N0 +Nex = N0 +
∫

∞

0
dεg(ε)n(ε), (2.3)

where g(ε) is the density of states. The strategy then is to evaluate the number
of bosons in excited states Nex using this method and then to infer the occupation
number N0 from equation (2.2).

In order to proceed, we require an expression for the density of states, and this
means that we must choose the form of the potential used to trap the bosons. In
essentially all experiments used to generate BECs, the trapping potentials can be
regarded as being (at some level of approximation) harmonic, defined by:

V (x) =
1
2

M(ω2
1 x2

1 +ω
2
2 x2

2 +ω
2
3 x2

3), (2.4)

where M is the mass of a particle and ωi is the classical oscillation frequency along
direction i. If we neglect the zero-point motion of the atoms, and make the continuum
approximation described above, we find the density of states for a three dimensional
harmonic oscillator to be:

g(ε) =
ε2

2h̄3
ω̄3

, (2.5)
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where ω̄ = (ω1ω2ω3)1/3 is the geometric mean of the trap frequencies .

2.2.1 Critical temperature

The highest temperature at which there is a macroscopic population in the lowest
energy state is called the critical temperature Tc. Alternatively, we may obtain Tc

(or at least an upper bound for Tc) by finding the lowest temperature at which all
of the particles may be accommodated in the excited states. At Tc, the chemical
potential is very small, slightly negative, and, in principle, the chemical potential
must be set such that equation (2.3) is satisfied. However, another advantage of the
approach of using the occupancies of the excited states to infer N0 is that the exact
value of µ affects Nex very weakly (the excited state energies ε � µTc), whereas it
has a very strong effect on the value of N0 = 1/(exp(−µ/kBTc)−1). Thus, to a good
approximation we may set µ = 0 and find Tc from:

N = Nex(Tc,µ = 0) =
∫

∞

0
dεg(ε)n(ε)

=
1

2h̄3
ω̄3

∫
∞

0
dε

ε2

exp(ε/kBT )−1

=
1

2h̄3
ω̄3

Γ(3)ζ (3)(kTc)3.

(2.6)

The integral is solved by expanding the Bose distribution in powers of exp(−εs/kBT )
and recognizing the gamma function Γ(α) =

∫
∞

0 dxxα−1e−x, and ζ (α) = ∑
∞
m=1 m−α

as the Riemann Zeta function. Rearranging, and noting Γ(3) = 2, ζ (3) = 1.202, we
find:

kBTc = h̄ω̄

(
N

ζ (3)

)1/3

≈ 0.94h̄ω̄N1/3. (2.7)

To put an approximate value to this, equation (2.7) leads to a critical temperature
of ∼ 250 nK for standard experimental values (N ∼ 106 and f̄ = ω̄/2π ∼ 50 Hz).
Corrections such as the effects of finite particle number and collisions between atoms
modify this result by only a few percent [19].

There is an additional way to quantify the conditions under which a BEC is
formed, namely through the phase-space density, which is defined as:

ρ = nλ
3
T = n

(
2π h̄2

MkBT

)3/2

, (2.8)

where n is the particle density, and λT is the thermal de Broglie wavelength. It is in-
structive to consider the phase space density at the centre of a trapped cloud, around
the critical temperature. As we shall see in section 2.2.3, the density distribution of
a thermal cloud in a harmonic trap is Gaussian, so if we consider a small central
volume V of the cloud where the density distribution is essentially flat, then the den-
sity in this region takes the very simple form of n = N/V , i.e., we approximate the
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central portion of the cloud with a uniform gas. With this approximation, equation
(2.8) becomes ρ = N(λ 3

T /V ). From this equation, it is clear that the phase space
density quantifies the ratio between the physical extent of the particle wavefunctions
and the volume they occupy. The equivalent result to equation (2.7) for a uniform
gas is kBTc = (2π h̄2/m)(n/ζ (3/2))3/2. Inserting this into equation (2.8), we find
that at the critical temperature, the phase space density at the centre of the cloud is
ρ = ζ (3/2)≈ 2.612. This suggests the intuitive idea that condensation begins when
the wavefunctions of different particles begin to overlap.

2.2.2 Condensate fraction

Under the approximation µ = 0, the result of equation (2.6) may be used to calculate
the number of particles in the condensate below the critical temperature. We have:

Nex(T,µ = 0) = N
(

T
Tc

)3

, (2.9)

and the number of particles in the condensate is given by:

N0 = N−Nex = N

[
1−
(

T
Tc

)3
]

. (2.10)

2.2.3 Position and momentum distributions

The density and velocity distributions of trapped Bose Einstein condensates are the
main features that are experimentally accessible; for this reason we now give a brief
summary of what is expected from quantum mechanics for the condensed state and
from statistical mechanics for the particles in excited states, when interactions be-
tween particles are neglected.

The wavefunction of the condensed state in the absence of interactions is simply
N times the single particle wavefunction, which in a harmonic potential is Gaussian.
The total density is thus:

n(x) = N |φ0(x)|2 , (2.11)

and the single particle wavefunctions are given by:

φ0(x) =
1

π3/4√σ1σ2σ3
e−x2

1/2σ2
1 e−x2

2/2σ2
2 e−x2

3/2σ2
3 , (2.12)

where σ2
i = h̄/Mωi defines the widths in the three directions. The momentum dis-

tribution is given by the Fourier transform of equation (2.12). Because the Fourier
transform of a Gaussian is also a Gaussian, φ0(p) has the same form as equation
(2.12) except that the widths are given by ς2

i = h̄2/σ2
i = h̄Mωi. This relationship
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is the content of the Heisenberg uncertainty principle for canonical variables x and
p: in this setting the uncertainty principle is essentially a Cauchy-Scwharz inequal-
ity applied to Fourier transform pairs. Thus, wavefunctions that are tightly confined
in space will have correspondingly larger widths in momentum space, meaning that
clouds released from anisotropic traps will expand differently along the different axes
of the trap.

In principle, the density distribution of trapped atoms may be found by evaluat-
ing:

n(x) = ∑
s

ns |φs(x)|2 , (2.13)

where the density distribution of each state is weighted by its occupation number,
given by the Bose distribution (2.1). Such an approach requires knowledge of the
wavefunctions of the given potential and is difficult to work with in general. How-
ever, there exists an alternative, semi-classical approach that works well for the ex-
cited states and reproduces the results for N0, Nex, and Tc that we calculated above
[16]. The approach relies on replacing the discrete energy eigenvalues εs and eigen-
states φs(x) in equation (2.13) with the energy of a free particle in a potential:

ε(p,x) = p2/2M +V (x). (2.14)

In this way, the gas is treated as uniform, where the particle’s energy is determined
by its kinetic energy and the local value of the potential. The approach is valid when
the spatial de Broglie wavelength of the particle is small compared to interval over
which the potential varies significantly. Using (2.14), the Bose distribution can be
modified such that:

n(p,x) =
1

exp((ε(p,x)−µ)/kBT )−1
, (2.15)

where n(p,x)dpdx/(2π h̄)3 yields the number of particles in a phase-space volume
element [20]. Thus, we can obtain in-trap position and momentum distributions for
the excited states by integrating equation (2.15) over p and x respectively. For exam-
ple:

nex(x) =
∫ dp

(2π h̄)3
1

exp((ε(p,x)−µ)/kBT )−1
. (2.16)

To solve the integral, we define z(x) = exp(µ −V (x)/kBT ), adopt spherical polar
coordinates so that dp = p2 sinθd pdθdφ , and make the substitution y = p2/2MkBT
so that (2.16) becomes:

nex(x) =
2√
πλ 3

T

∫
dy

y1/2

z−1 exp(y)−1
. (2.17)

This integral is similar to that found in (2.6), and again one expands the denominator
of the integrand in a power series 1/(z−1ey− 1) = ze−y/(1− ze−y) = ∑

∞
n=1 zne−ny.
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FIGURE 2.1: The density distribution along one axis of a thermal cloud trapped in a harmonic
potential. g3/2(z(x)) (red) and a Gaussian (black) are plotted. The Gaussian corresponds to
the first term of the Bose function.

The result is:

nex(x) =
g3/2(z(x))

λ 3
T

, (2.18)

where

gγ(z) =
∞

∑
m=1

zm

mγ
, (2.19)

is the Bose function. When z = 1 (i.e., V = 0 and µ = 0), the Bose function reduces to
the Riemann Zeta function ζ (γ) in agreement with the results of section 2.2.1. Equa-
tion (2.18) gives the density distribution of the excited states for a given trapping po-
tential. The first term of the series expansion corresponds to the result if we had con-
sidered the Boltzmann distribution rather than the Bose distribution. In the case of a
harmonic potential, and setting µ = 0, z(x) = exp(−M(ω2

1 x2
1 +ω2

2 x2
2 +ω2

3 x2
3)/2kBT ),

we find the expected Gaussian density distribution for a gas at high temperature. As
such, the terms m≥ 2 in equation (2.19) show how the Gaussian density distribution
at high kBT is modified by Bose-Einstein statistics at low temperatures. Indeed, the
density of a Bose gas is larger than that of a classical ideal gas by a factor of g3/2(z)/z
[21], as may be seen in figure 2.1.
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The momentum distribution may be found by the same method, except that in
equation (2.16) we integrate over dx. Due to the fact that the kinetic energy and
potential terms are both quadratic in a harmonic oscillator, the integral over x yields
(up to a constant factor) the same result as equation (2.18). Thus for zero chemical
potential, z(p) = exp(p2/2MkBT ), and the momentum distribution is Gaussian, with
corrections given by the higher order terms of the Bose function. The crucial factor to
note however, is that the momentum distribution in-trap is isotropic, in stark contrast
to that of the condensate.

In summary, the in-trap density and momentum distributions of condensed and
excited non-interacting particles show considerable differences. The density distri-
butions in both cases reflect the shape of the trap: the higher the trapping frequency
in a given direction, the narrower the density distribution along this direction. How-
ever, the widths of the Bose-condensed and thermal clouds differ considerably: even
at Tc the characteristic width of the ground state wavefunctions in a harmonic trap
σi =

√
h̄/Mωi is much smaller than the corresponding widths of the Boltzmann dis-

tribution ξi =
√

kBT/Mω2
i . The ratio of the two widths is ξi/σi =

√
kBT/h̄ωi, and

the same result holds for the ratio of the widths of the momentum distributions. For
standard experimental parameters (see section 2.2.1), this ratio is of order 10, mean-
ing that the different cases are easy to differentiate. Thus the picture that emerges is
that the BEC will appear as a narrow peak at the centre of both the density and mo-
mentum distributions. In the case of the density distribution, the condensate shares
the same aspect ratio as the thermal cloud, determined by the trapping potential;
whereas in the momentum distribution, the condensate will reflect the uncertainty
principle and show the inverse aspect ratio, and the momentum distribution of the
thermal cloud will be isotropic.

2.3 Theory of the condensed state

Given the extremely high density in a BEC, collisions between particles become
important and must be taken into account in the condensed state’s description. Our
main goal in this section is to present the Gross-Pitaevskii equation, the analogue of
the Schrödinger equation for the condensed state that has an additional, non-linear
term that describes the effects of collisions between the particles at the mean field
level. With this equation, we obtain the density distribution of the condensed state
that differs from that obtained in the non-interacting case. However, we first sketch
how the Gross-Pitaevskii equation is obtained and the conditions under which it is
valid.
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2.3.1 Field theoretic description of the condensed state

The many-body Hamiltonian describing the condensed state in position space in sec-
ond quantization is given by [17]:

Ĥ =
∫

dxΨ̂
†(x)

[
− h̄2

2M
∇

2 +V (x)
]

Ψ̂(x)

+
1
2

∫
dxdx′Ψ̂†(x)Ψ̂†(x′)U(x−x′)Ψ̂(x′)Ψ̂(x),

(2.20)

where Ψ̂(x) and Ψ̂†(x) are the bosonic field operators that create and annihilate re-
spectively a particle at position x, and U(x− x′) is the potential of the two body
interaction. The field operators may be decomposed as Ψ̂(x) = ∑s Ψs(x)b̂s such that
the position dependence is absorbed into the single particle wavefunctions Ψs(x),
leaving the bosonic creation and annihilation operators defined in Fock space by:

b̂†
s |n0,n1, . . . ,ns, . . .〉 =

√
ns +1|n0,n1, . . . ,ns +1, . . .〉, (2.21a)

b̂s|n0,n1, . . . ,ns, . . .〉 =
√

ns|n0,n1, . . . ,ns−1, . . .〉, (2.21b)

where ns is the eigenvalue of the number operator defined by:

n̂s = b̂†
s b̂s. (2.22)

The bosonic creation and annihilation operators satisfy the commutation relations:

[b̂s, b̂
†
t ] = δs, t , [b̂s, b̂t ] = 0, [b̂†

s , b̂
†
t ] = 0. (2.23)

The corresponding commutation relations for the position space field operators are
given by:

[Ψ̂(x),Ψ̂†(x′)] = δ (x−x′), [Ψ̂(x),Ψ̂(x′)] = 0, [Ψ̂†(x),Ψ̂†(x′)] = 0. (2.24)

As we have seen, Bose-Einstein condensation occurs when the occupation num-
ber ns of a particular state becomes commensurate with the number of particles in
the system. Here, we only consider the case where s = 0, i.e., when the condensate
forms in the ground state of the system. In this case, n0 = N0 'N, and the ratio N0/N
remains finite in the thermodynamic limit where N → ∞. Accordingly, N0 is gener-
ally a very large number, so that N0 'N0±1 and the physical states corresponding to
these occupation numbers are approximately the same, provided one assumes that a
coherent state is an appropriate description of the condensed state. Formally, one can
replace the operators b̂ and b̂† by their approximate eigenvalues so that b̂ = b̂† =

√
N.

It corresponds to representing the field operators by their approximate mean values
plus a perturbation that retains the operator character. Thus, the field operators may
be expressed in the Heisenberg representation:

Ψ̂(x, t) = ψ(x, t)+δ Ψ̂(x, t), (2.25)
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where ψ(x, t) ≡
〈
Ψ̂(x, t)

〉
is the mean value of the field operator, and δ Ψ̂(x, t) rep-

resents the deviations from this mean. ψ(x, t) is called the condensate wavefunction
or order parameter and has the same interpretation as a many-body wavefunction
from standard first quantization quantum mechanics. The condensate wavefunction
is normalized such that:∫

dxn0(x, t) =
∫

dx |ψ(x, t)|2 = N0. (2.26)

The dynamics of the condensate are obtained from the Heisenberg equation of
motion for the field operator:

ih̄
∂ Ψ̂(x, t)

∂ t
= [Ψ̂, Ĥ]

=
[
− h̄2

2M
∇

2 +V (x)+
∫

dxΨ̂
†(x, t)U(x−x′)Ψ̂(x′, t)

]
Ψ̂(x, t)

(2.27)

If we now substitute equation (2.25) into equation (2.27) and select the mean field
component we obtain the Schrödinger equation for the condensate wavefunction.

ih̄
∂ψ(x, t)

∂ t
=
[
− h̄2

2M
∇

2 +V (x)+
∫

dxψ(x, t)U(x−x′)ψ(x′, t)
]

ψ(x, t) (2.28)

However, in order to continue we require an expression for the interaction term
U(x−x′).

2.4 Interactions in a dilute gas

It is an important feature of most experimentally produced BECs that while their
density is very high, they are still dilute gases in the sense that the length a that char-
acterizes collisions between particles is much smaller than the mean inter-particle
spacing, which is of order ∆x ' (1/n)1/3. Approximate values for these quantities
are a∼ 100a0 ' 5 nm where a0 is the Bohr radius and which gives the approximate
size of an atom; and ∆x ' 100 nm for density n = 1014 cm−3. As such, two body
collisions dominate.

At the low temperatures described in section 2.2.1 where BECs form, the main
form of scattering that occurs is isotropic. That is, s-wave scattering predominates,
corresponding to the l = 0 term in a partial-wave expansion of the scattered wave
[22]. The inter-atomic potential is given by the lowest order van der Waals inter-
action - an induced dipole-dipole interaction - that has the form U ∼ α/r6 as the
separation between atoms r→ ∞, where α is a constant. In this limit, the scatter-
ing is characterized by a single parameter, the scattering length a, and the scattered
wavefunction describing the relative motion, having transformed into the centre of
mass frame, can be written as:

ψ(r) = C
sin(k(r−a))

r
, (2.29)
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where C is a constant. If the scattering length is negative, ψ is drawn closer to
the origin - the interaction is attractive. If the scattering length is positive, then the
relative wavefunction is pushed away from the origin, i.e., the interaction is repulsive,
and the wavefunction (at large r) is equivalent to one that would arise from scattering
from a hard sphere potential of radius a [18]. While the colliding particles are ‘close’
to each other, that is for r < a, the wavefunctions undergo rapid oscillations that
depend on the exact nature of the full potential U . However, under the condition
that two-body, low energy collisions between atoms predominate, the true potential
U(x−x′) may be replaced by an effective interaction between bosons that is exact in
the limit of large separation. This is given by:

U0(x−x′) =
4π h̄2a

M
δ (x−x′). (2.30)

2.5 The Gross-Pitaevskii equation

Upon substitution of equation (2.30) into equation (2.28), and suppressing the time
dependence, we obtain the time-independent Gross-Pitaevskii equation :

− h̄2

2M
∇

2
ψ(x)+V (x)ψ(x)+U0 |ψ(x)|2 ψ(x) = µψ(x). (2.31)

Equation (2.31) is the Schrödinger equation for the mean field of the condensed state
where interactions between atoms are described through a nonlinear, density depen-
dent term [23, 24]. The eigenvalue on the right hand side of equation (2.31) is the
chemical potential rather than the energy.

2.5.1 The Thomas Fermi approximation

For a sufficiently large cloud, the mean field interaction term in equation (2.31) be-
comes large due to its non-linearity. If the scattering length is positive then the effec-
tive interaction between particles is repulsive and the density distribution becomes
broader as particles in the high-density centre of the cloud seek to lower their energy.
In this case, the kinetic energy term in equation (2.31) becomes small relative to the
potential and mean-field terms and may be neglected. Then equation (2.31) becomes:[

V (x)+U0 |ψ(x)|2
]

ψ(x) = µψ(x), (2.32)

which has the solution:

n(x) = |ψ(x)|2 =
µ−V (x)

U0
. (2.33)
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Given the density cannot become negative, the wavefunction must vanish when
µ−V (x)≤ 0. Thus, a cloud in the Thomas Fermi approximation in a harmonic
potential has the form of an inverted parabola:

n(x) =


[
µ− 1

2 M(ω2
1 x2

1 +ω2
2 x2

2 +ω2
3 x2

3)
]
/U0 xi ≤

√
2µ

Mω2
i
,

0 elsewhere.
(2.34)





Chapter 3

Realization

3.1 Introduction

In this chapter, we describe the important elements in our realization of Bose-Einstein
condensation in 87Rb. The path we have taken to generate BEC in 87Rb is reasonably
well-trodden, so essentially all of the material presented here can be found in other
publications. Nonetheless, a coherent description of the diverse physics and tech-
niques that goes into the realization is valuable both for the author and new students
entering the lab. As such, the style of this chapter will be part tutorial and part ‘dis-
tilled experience from the lab’.

To get an idea of the general set-up of the experiment, it actually helps to start at
the final phase of BEC generation: evaporative cooling in a magnetic trap. Evapora-
tive cooling is a multi-step process in which the hottest atoms are selectively removed
from the trap, whereupon, due to elastic collisions between the atoms, a new ‘thermal
tail’ appears in the Maxwell Boltzmann distribution of the sample. When the process
is repeated many times, or continuously in practice, the atoms that carry more than
the mean energy are removed from the sample, leading to a reduction in its temper-
ature - at the expense of discarding some fraction of the atoms. Evaporative cool-
ing works very efficiently when one reaches high densities, but if one doesn’t start
with the appropriate initial conditions, no amount of optimization will be enough to
achieve BEC. One needs to begin with samples of high enough density such that the
elastic collision rate increases throughout the cooling, despite the losses associated
with evaporation and collisions with background gas molecules. This leads to several
practical requirements: a tight trap and a large number of atoms in the sample at the
start of evaporation, so that one can achieve high initial densities, and a very good
level of vacuum so that the lifetime of the trap is sufficient. For the latter reasons,
vacuum chambers for BEC experiments are generally divided into two parts that are
kept at different levels of vacuum. In the first part, the loading chamber, the goal
is to accumulate as many atoms at as low a temperature as possible. In our case,

17
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we run a 2D MOT from a background vapour of 87Rb at ∼ 10−9 torr, produced by
dispensers inside the chamber. This level of background pressure is not compatible
with the stringent vacuum requirements described above - hence the need for a ded-
icated chamber for this purpose. The atoms are transferred by radiation pressure to
the second chamber - the science chamber - where the evaporation takes place. The
atoms are caught in a standard 3D MOT in the science chamber, which is held by dif-
ferential pumping at the required level of vacuum, on the order of 10−11 torr. When a
sufficient number of atoms has been loaded into the science MOT, the trapping light
is extinguished and the magnetic trap is turned on, whereupon we evaporatively cool
the atoms by selectively driving radio-frequency (RF) transitions to untrapped states.

As such, there are several phases in an experimental run to produce a BEC, each
requiring its own techniques and equipment. The chapter begins with a brief de-
scription of some of the relevant properties of 87Rb. Subsequently, we present an
introduction to the cooling and trapping physics we make use of in the experiment.
We give a very brief introduction in section 3.4 to absorption imaging and the dif-
ferent cloud shapes we observe by this method. This leads to a description of the
main components of the laboratory. The chapter concludes with the experimental
demonstration of Bose-Einstein condensation.

3.2 Properties of Rubidium 87

Of the many groups around the world that produce Bose Einstein condensates, by far
and away the most common atomic species used is 87Rb. There are several reasons
for this, but the most obvious are that the wavelengths of the main resonance lines are
accessible by inexpensive lasers, that the vapour pressure at room temperature allows
loading of Magneto-Optical traps (MOTs) from background vapour, and the fact that
it has reasonably favourable collisional properties. Furthermore, it is a species for
which the path to BEC is well known. 87Rb was the first species to be condensed
[5]; followed very closely by Sodium (23Na) [6]. Subsequently the following species
have been condensed: Lithium (7Li) [7, 25], Hydrogen (1H) [26], the other bosonic
isotope of Rubidium (85Rb), metastable triplet Helium (4He∗) [27, 28], Potassium
(41K) [29], Caesium (133Cs) [30], Ytterbium (174Yb) [31], and Chromium (52Cr) [32].
As such, the alkali earths - the left-most column of the periodic table with a single
unbound electron in the outermost shell - have predominated, but atoms with other
configurations are now becoming more popular in the search for atoms with different
(collisional) properties. Here we summarize the properties of 87Rb that are impor-
tant in the realization of Bose-Einstein condensation. An excellent resource for the
properties of 87Rb is reference [33].

The first point to note that 87Rb is a boson comprised of an even number of
fermions - it has integer total spin: 37 protons and electrons each, and 50 neutrons.
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FIGURE 3.1: D1 line of 87Rb: 52S1/2→ 52P1/2. The Zeeman shift for low applied magnetic
field between adjacent magnetic sublevels is shown for the two ground states.

As long as the energies involved in the generation of the condensate are considerably
smaller than the ionization or binding energies of the atom, the fact that it has internal
structure will not affect its ‘bosonic properties’.

The atomic mass of 87Rb is 1.443× 10−25 kg. The vapour pressure at 25◦C
is 3.0× 10−7 torr; it turns out that this value means that a good sized MOT can
be loaded efficiently from a background vapour that is still compatible with Ultra
High Vacuum (UHV - corresponding to pressures lower than ∼ 10−9 torr). If one
compares this value with that for Sodium - 2.2×10−11 torr - it is understandable that
BEC experiments in Sodium require ovens and Zeeman-slowers to produce the atom
flux necessary to load large MOTs.
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FIGURE 3.2: D2 line of 87Rb: 52S1/2→ 52P3/2. The Zeeman shift for low applied magnetic
field between adjacent magnetic sublevels is shown for the two ground states.

3.2.1 Optical transitions

The most frequently used optical resonance lines of 87Rb are shown in figures 3.1
and 3.2. 87Rb has nuclear spin I = 3/2, and the coupling of this with the electron
spin S = 1/2 leads to two ground states, corresponding to total angular momentum
F = I± S = 1,2. In general, the coupling of nuclear spin and the angular momen-
tum of the electron J = L + S - the hyperfine interaction ∝ I ·J - leads to a splitting
of the energy levels. The fine structure splitting - the coupling of the electron spin
with the orbital angular momentum ∝ S ·L - means that the L = 0→ L = 1 transition
D-line is a doublet, and in fact the splitting is so large that the lines are generally
treated separately. Figure 3.1 shows the D1 line, 52S1/2 → 52P1/2, at 795 nm; and
figure 3.2 shows the D2 line, 52S1/2→ 52P3/2, at 780 nm. In terms of optical transi-
tions, the closest one can come to a two-level atom in 87Rb is the cycling transition
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FIGURE 3.3: The Zeeman shift versus applied magnetic field is shown for the two ground
states of 87Rb. The red dots denote the magnetic sublevels F = 2,mF = 2, F = 2,mF = 1,
and F = 1,mF = −1 that are weak-field seeking states which therefore can be trapped in a
magnetic field minimum [34].

F = 2,mF =±2→ F = 3,mF =±3 in the D2 line, in the sense that it is a closed
transition: if an atom is in the F = 3 excited state, according to selection rules for
electric dipole transitions, it can only decay to the F = 2 ground state. Thus if one
wants to scatter as many photons in as simple a configuration as possible, the cy-
cling transition is the most appropriate, and it is used heavily in the laser cooling and
imaging of 87Rb.

3.2.2 Response to a magnetic field

The application of an external magnetic field breaks the degeneracy of the magnetic
sublevels. Figure 3.3 shows how the energy levels are perturbed as a function of
applied magnetic field. The curves in figure 3.3 are calculated from a diagonalization
of the Hamiltonian:

H = AhfsI ·J+ µB(gJJz +gIIz)Bz, (3.1)
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where the applied magnetic field has been chosen to be along the z direction. Equa-
tion (3.1) is valid for the ground state L = 0 provided that the perturbation of the
energy levels is small compared to the fine structure splitting1. Of interest are the
three states that show an (initial) increase in their energy versus applied magnetic
field: these are the weak-field seeking states. As it is only possible to generate a local
magnetic field minimum in a current free region [35], these are the states that can be
magnetically trapped; they are identified with red dots in figure 3.3 and are the states:
F = 2,mF = 2, F = 2,mF = 1, and F = 1,mF =−1. For low magnetic field values,
F is a good quantum number and the change in internal state energy is well described
by the relation:

∆E = mFgF µBB, (3.2)

where gF ≈ 1/2 is the hyperfine Landé g-factor (with correction at the per mil level),
and µB = 1.4 MHz/G is the Bohr magneton. The maximum magnetic field values we
deal with are at the level of a few hundred Gauss, so this approximation is more than
adequate.

3.3 Cooling and trapping physics

3.3.1 Laser cooling and the Magneto-Optical trap

We now give a brief introduction to laser cooling and the Magneto-Optical trap
(MOT). There are a number of excellent texts on the subject, and the reader is re-
ferred to these for a comprehensive presentation of the material [36, 37, 38, 39].

The main idea behind laser cooling is that light exerts a mechanical effect on
atoms. A photon carries momentum h̄kl , where kl = 2π/λ is the wavenumber of the
light, and when a photon is absorbed and re-emitted by an atom, the motion of the
atoms changes so as to conserve momentum. While h̄kl is very small compared to
the momenta of atoms at room temperature, many absorption and re-emission events
arranged in the right way can have a significant effect on an atom’s momentum on
a short (ms or less) time scale. As is evident in section 2.2.3, to cool an atomic
sample means to make its momentum distribution narrower - we require a momentum
(or velocity) dependent force. Likewise, to trap the atoms we require a position
dependent force.

The force from a beam of light on a two-level atom that is often the starting point
for a heuristic discussion of Doppler cooling is given by:

Fsp = h̄klΓρee = h̄klΓ
s0/2

1+ s0 +(2δ/Γ)2 . (3.3)

1The fine splitting is ≈ 7.3 THz, and it is evident from figure 3.3 that the perturbations are on the
order of the hyperfine splitting ∼ 10 GHz, so the condition is satisfied.
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That is, the force on a two level atom is simply given by the momentum of a photon
multiplied by the spontaneous emission rate - the decay rate of the excited state Γ

multiplied by the probability ρee that the atom is in the excited state. The popula-
tion of the excited state is given in terms of the on-resonance saturation parameter
s0 = 2 |Ω|2 /Γ2 = I/Is, where Ω is the Rabi frequency, and Is is the saturation in-
tensity; and the detuning δ = ωl −ω0. Note that for red detunings ω0 < ωl , and
δ < 0. Equation (3.3) does not include the dipole force because at the relatively
low detunings considered the absorption and emission of real photons predominates
over the dispersive interaction. Furthermore, (3.3) assumes that the direction of re-
emission is arbitrary so that on average over many events, the momentum kick from
the absorbtion of a laser beam photon is always in the same direction, whereas the
net momentum change to the atom from the re-emission of photons is zero.

The required velocity and position dependent forces are realized by changing the
effective detuning δ in the force of equation 3.3.

The velocity dependence comes about through the Doppler shift so that the de-
tuning becomes δD(~v) = δ −~kl ·~v. With the choice of red detuning, an atom moving
‘towards the beam’ will be Doppler shifted closer to resonance and hence the scat-
tering rate will increase, leading to a force opposing the atom’s motion. Conversely,
if the atom is moving ‘away from the beam’, the Doppler shift will be negative, and
the force on the atom will be lower than that on a stationary atom. By introducing a
counter-propagating beam, it is thus possible to damp the motion of an atom in one
dimension, provided the atom’s velocity is not so large that the concomitant Doppler
shift is greater than Γ. This capture velocity is of order Γ/kl ≈ 5 ms−1 for the D2
line of 87Rb .

The position dependent force can be effected by introducing a magnetic field gra-
dient, so that the detuning is modified by a Zeeman energy term like 3.2 (expressed as
a frequency): δMOT(~v,z) = δ−~kl ·~v+µB′z, where the magnetic field is applied along
the z direction. It is important to reinforce that our goal is not to magnetically trap
the atom by this arrangement, but to modify the internal energy structure of the atom
via the Zeeman effect with the result that the further away from zero magnetic field
it ventures, the closer to resonance it is pushed, and hence the higher the restoring
force it experiences.

At this point in a serious discussion of laser cooling and trapping, one needs to
introduce the rudiments of the multi-level structure of neutral atoms, and the po-
larization of the light. Given the brevity of this treatment we simply mention that
the cooling and trapping in one dimension can be extended to three dimensions by
introducing six counter-propagating laser beams: forwards and backwards, up and
down, left and right; and by introducing a 3D quadrupole magnetic field. The beams
are red detuned, and with polarizations such that they address the correct magnetic
sublevels, because as we saw in section 3.2.2, the Zeeman shift depends on both the
sign of the local magnetic field, and the response of the given magnetic substate. The
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optical transition used for cooling in 87Rb is the cycling transition on the D2 line (see
figure 3.2); this is called trap light. This transition is closed, but due to the finite
probability of driving the F = 2→ F = 1,2 transitions, atoms can accumulate in the
lower hyperfine ground level F = 1. For this reason, we require repump light tuned
close to F = 1→ F = 2 or F = 1→ F = 3 so that atoms are optically pumped into
the F = 2 ground state manifold, and can continue to be cooled. In the absence of
the repump light, a 87Rb MOT disappears within a matter of several milliseconds.

It turns out that the magnetic sublevel structure plays a crucial role in additional
cooling mechanisms that are more sophisticated than that of Doppler cooling outlined
above. In general, these polarization gradient cooling schemes take into account
the intensity and polarization modulation that occurs when two counter-propagating
laser beams overlap, and the way this affects optical pumping. A simple and very
useful result from a treatment of these mechanisms is that the temperature of an
atomic sample is given by [40]: kBT ∝ h̄Ω2/ |δ |. Thus, to lower the temperature
of an ensemble of atoms in such a scheme, we need to reduce the optical intensity,
and increase the detuning. However, the obtainable temperatures are still limited by
the random momentum kicks inherent in the schemes: kBT = h̄2k2

l /(2M); although
it should be noted that more sophisticated schemes can approach or beat this value
[41, 42, 43].

Moreover, as noted in section 2.2, the quantity we should focus on in order to
generate a BEC is the phase space density. A significant complication in laser cooling
is that as the atomic sample becomes very dense, the light scattered by one atom in
the cooling process is re-absorbed by another, leading to a repulsion between the two
[44]. There are several schemes designed to circumvent this by limiting the amount
of time an atom spends in the F = 2 manifold and hence reducing the light scattered
on the cycling transition; this is achieved by reducing the intensity of repump, either
at some stage in the experimental sequence (as we do), or spatially (the dark-spot
MOT [45]). Nonetheless, we require subsequent forms of trapping and cooling that
do not have intrinsic mechanisms that prevent us from cooling bosonic atoms to
degeneracy: magnetic trapping and evaporative cooling.

3.3.2 Magnetic trapping

As we saw in section 3.2.2, a neutral atom that shows an increase in internal en-
ergy with applied magnetic field can be trapped at the local minimum of an applied
magnetic field. Rewriting equation (3.2) to include the vector character, we obtain:

V (r) =−~µ ·B(r), (3.4)

where |~µ| = µ = mFgF µB. Such a potential leads in general to precessional motion
about the direction of the local magnetic field, and as it moves, the atom attempts to
align its magnetic moment with this field. As such, the ability to trap a neutral atom
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in an magnetic ‘bowl’ depends on how well the atom can adiabatically follow the
field. As an atom travels through an inhomogeneous magnetic field, it experiences
an effective time dependent magnetic field, and this can induce transitions to other
magnetic sublevels which in general will have a different response to the magnetic
field; as is evident in figure 3.3, these other magnetic sublevels will most likely be
untrapped or anti-trapped states. Such a process is called a Majorana spin flip. It is
important to note that it is the directional change in the magnetic field that is critical.
This condition for adiabatic motion can be expressed as:

ωL�
∣∣∣∣dB/dt

B

∣∣∣∣ , (3.5)

where ωL is the Larmor precession rate [36]. If this condition is satisfied, then the
atom experiences a potential proportional to the modulus of the field V (r) = µ |B(r)|.

The depth of a magnetic trap expressed as a temperature can be estimated from
the relation that follows from equation (3.2): T = µ∆B/kB. For standard laboratory
magnetic fields (∼ 500 G), this leads to an order of magnitude estimate of 10 mK.
Thus, it is clear that the atoms need to be pre-cooled before a significant number can
be trapped magnetically, and this is provided by the laser cooling methods outlined
above.

There are two geometries of magnetic trap we need to discuss: the quadrupole
trap, and the Ioffe Pritchard tap.

The quadrupole trap

The standard way of generating a quadrupole field is to pass opposite currents through
two coaxial coils placed a certain distance apart - two coils in anti-Helmholtz config-
uration. A 3D quadrupole field close to the symmetry axis of the two coils may be
written as:

B(r) = B′(x x̂+ y ŷ−2z ẑ), (3.6)

and its modulus is given by:

|B(r)|= B′
√

x2 + y2 +4z2, (3.7)

where B′ is (colloquially) referred to as the magnetic field gradient, and the shared
axis of the coils lies along z. Thus, along any direction, the field increases linearly.
Evidently, the field minimum of the quadrupole trap is zero, and this leads to vio-
lations of the adiabaticity condition of equation (3.5). To put it loosely, the atom
cannot follow the direction of the local magnetic field if the field is zero. More for-
mally, one can consider orbits of atoms in the trap and show that both classically and
quantum mechanically, the adiabaticity condition of (3.5) is violated for low-lying
orbits - those based around the minimum of the trap [36]. As we saw in section 2.2.3,
the colder a cloud becomes, the higher the density at the centre of the trap, and thus,
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the quadrupole trap ‘starts to leak’ as we cool the sample. For this reason, we require
a trap that has a non-zero minimum, and we choose a Ioffe-Pritchard configuration.

The Ioffe-Pritchard trap

The components of the magnetic field in a Ioffe-Pritchard (IP) trap are given by [21]: Bx

By

Bz

= B0

 0

0

1

+B′

 x

−y

0

+
B′′

2

 −xz

−yz

z2− 1
2(x2 + y2)

 , (3.8)

and the magnetic field strength is given by:

|B(r)|=

√(
B′x− B′′

2
xz
)2

+
(
−B′y− B′′

2
yz
)2

+
(

B0 +
B′′

2
z2− B′′

4
(x2 + y2)

)2

.

(3.9)
In standard realizations of a Ioffe-Pritchard trap, |B′| � |B′′|1/2, so that the con-

finement in the radial directions due to the magnetic field gradient |B′| is much
stronger than the harmonic component, and the cloud is generally prolate, with its
long axis along the direction of harmonic confinement. In this limit, we ignore the
radial harmonic dependence and the bias field B0 to give a field that is linear in the
radial direction and harmonic in the axial direction:

|B(r)|=

√
(B′ρ)2 +

(
B′′

2

)2

z4, (3.10)

where ρ2 = x2 +y2. As we shall see in section 3.3.3, a linear potential is advantageous
in evaporative cooling.

In the limit of a cold cloud, we can obtain an approximate expression for the field
magnitude about the centre of the trap using the standard binomial approximation
(1+ x)n ≈ (1+nx) for small x:

|B(r)|= B0 +
ρ2

2

(
B′2ρ
B0
−

B
′′
z

2

)
+

B′′

2
z2. (3.11)

In this limit, the field magnitude is harmonic, and we can express the trapping poten-
tial as:

V (r) = µB0 +
1
2

Mω
2
ρρ

2 +
1
2

Mω
2
z z2, (3.12)

where the trap frequencies are given by:

ω
2
ρ =

µ

M

(
B′2ρ
B0
− B′′

2

)
and ω

2
z =

µ

M
B′′. (3.13)
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It is worth noting that the radial confinement can be modified significantly by the
value of the bias field, although the extent to which one can exploit this depends on
the experimental realization. For instance, in a Ioffe-Pritchard trap where the bias
field and axial confinement are generated by a pair of Helmholtz coils, the bias field
can be modified very simply by changing the current through these coils.

3.3.3 Evaporative cooling

The main idea of evaporative cooling is to remove particles from a system in (ap-
proximate) thermal equilibrium that have energy greater than the mean of the sys-
tem. In this way, energy of the system is lowered disproportionately to the number
of particles lost from the system. The obligatory real-life analogy is the cooling of
a cup of coffee: the hottest molecules have sufficient energy to break away from the
surface of the coffee, carrying away more than their fair share of the energy in the
system. The idea is illustrated in figure 3.4, which shows two Maxwell-Boltzmann
(MB) distributions. The use of classical statistics is justified as the effects of quan-
tum statistics are negligible for all but the very end of the evaporation (see (2.19));
and the energies are such that it is sufficient to consider only s-wave collisions. The
distribution initially (dashed line) has mean energy ε̄i. Subsequently, all particles
with energy greater than the truncation energy εt are removed from the distribution.
After some later time when collisions have re-established quasi-equilibrium, a new,
narrower Maxwell-Boltzmann distribution (solid line) is shown with mean energy ε̄ f .
Numerical simulations have shown that only a few elastic collisions are required per
atom to establish quasi-equilibrium2 [47] . Note that some of the hottest particles in
the new distribution will also be removed from the trap, but at some point this will
stop as the number of particles with energies greater than εt becomes negligible. The
process of systematically lowering the level of εt to cause continued cooling is called
forced evaporative cooling, and is the standard method used to experimentally cool
atoms to degeneracy.

Even in this simplified description, questions arise regarding the optimal value
of the truncation energy εt , and the time scales involved - how quickly one should
lower the truncation energy. From the above example it is perhaps apparent that a
large initial value of εt compared to ε̄i, followed by an arbitrarily slow reduction of it
will be advantageous: in this way, one gets the most out of a given cut by removing
hot atoms generated by re-thermalization, rather than through the spilling of atoms
(to continue the cup of coffee analogy). However, a finite time scale is imposed in
experiments by losses, namely ‘undesirable’ or ‘bad’ collisions.

There are three types of collisions that need to be considered: those between
background gas atoms and trapped atoms, inelastic two-body collisions, and three-

2Although this number can be an order or two larger to establish the extremities of the distribution
[46].
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FIGURE 3.4: Maxwell-Boltzmann distributions illustrating evaporative cooling: an operation
is performed on a system of particles of mean energy ε̄i that causes all particles with energy
greater than some truncation energy εt to be ejected; the particles are allowed to thermalize
via elastic collisions, leading to a new and narrower Maxwell-Boltzmann distribution with
mean ε̄ f <ε̄i [34].

body collisions. Background gas collisions depend on the quality of the vacuum of
the chamber in which the atoms are trapped: such collisions lead to loss of atoms
from the trap and are essentially independent of the sample density. The required
vacuum level depends very much on the type of trap one uses - the tighter the trap,
the higher the elastic collision rate and thus the quicker one can evaporate the atomic
sample to BEC, meaning that the vacuum requirements are not as stringent. In-
elastic two body collisions lead to a change in the internal state of the atom, which
in a magnetic trap generally leads to a loss of atoms. Furthermore, because the
per atom rate scales with the density, inelastic scattering also heats the sample be-
cause it primarily affects the coldest atoms at the centre of the trap. However, two-
body inelastic collisions are significantly suppressed in the doubly polarized state
|F = I +1/2,mF = F〉 and in the maximally stretched state |F = I−1/2,mF =−F〉
in 87Rb 3. An upper bound for the two-body inelastic collision rate constant for the
|1,−1〉 state in 87Rb was measured to be G2 = 1.6×10−16cm3s−1 [48], which leads
to a rate Γ2B loss = G2n0 that is considerably smaller than the elastic collision rate
at all times in the evaporation. Three-body recombination is the process whereby
three atoms collide to form a molecule (dimer), with the third carrying away the
remaining energy. Like inelastic binary collisions, it leads to both trap loss and heat-
ing, but because the per atom rate scales with the density squared, the effects can
be severe towards the end of evaporation. The rate constants in |1,−1〉in 87Rb for
condensed and non-condensed atoms respectively are Gc

3 = 5.8(1.9)×10−30cm6s−1

and Gnc
3 = 4.3(1.8)×10−29cm6s−1 [48]. The fact that the rate for condensed atoms

is lower (by approximately a factor of 3!) than for thermal atoms has been used as

3There are several dipolar processes that can occur; see pp. 125-130 in [16] for details.
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evidence of anti-bunching in Bose-condensed samples [48]. While three body re-
combination can be a significant problem in 87Rb in the last phase of evaporative
cooling, the problem can be circumvented somewhat by relaxing the trap at some
point in the evaporation. Finally, the effects of all of the three collision processes can
be considerably more serious when the density and dimensions of the cloud become
such that the scattering products cannot leave the cloud without colliding with other
atoms, leading to so-called collisional avalanches [49].

The optimal evaporation sequence is found by maximizing the following quantity
for each step in the evaporation process [50]:

γ =
d lnρ

d lnN
≈

ln(ρ f /ρi)
ln(N f /Ni)

, (3.14)

where ρ is the phase space density defined in (2.8), and N the number of atoms.
The extreme right hand side gives the expression when using finite steps. In gen-
eral, logarithmic derivatives like (3.14) appear in treatments of evaporative cooling,
because the relevant quantities (atom number, temperature, density) change by a con-
stant factor in a given time interval. We now sketch an argument from reference [50]
that gives approximate results and identifies the main ideas necessary to understand
evaporative cooling; a comprehensive modelling of evaporative cooling, where the
different collisions and loss mechanisms are included, is possible [46, 51, 52], and
one of these models is applied to our apparatus in reference [34].

Consider the situation represented in figure 3.4. Let us assume the atoms are
confined in a power law potential U(r) ∝ rδ , where δ is defined such that the volume
of the gas scales as T δ : δ = 3/2 for a 3D harmonic potential and δ = 3 for a 3D linear
potential. The total energy of the system before evaporation is given by E = ε̄N, and
- after a change in the truncation energy - the energy is E = ε̄N +(1 + α)ε̄dN. For
particle loss, dN is negative. Through some algebra, one arrives at:

α =
d ln ε̄

d lnN
=

˙̄ε/ε̄

Ṅ/N
=

Ṫ/T
Ṅ/N

. (3.15)

where the final equality follows because the mean energy of a classical particle in
a 3D trap is given by ε̄ = (δ + 3/2)kBT . To avoid carrying factors of kBT in cal-
culations, we define the dimensionless truncation parameter η = εt/(kBT ). In the
following treatment where the use of a truncated MB distribution is valid, α has a
simple representation:

α =
η +κ

δ +3/2
−1, (3.16)

where κ is a small number between 0 and 1, describing how different the energy of
evaporated particles is from η . Table 3.1 lists the exponents relating various quanti-
ties relevant in evaporative cooling to the number of atoms.

The main goal of the argument is to understand how the evaporation rate de-
pends on the elastic collision rate and the truncation parameter. Luiten et al. showed
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Quantity Z Exponent x
Number of atoms, N 1
Temperature, T α

Volume, V δα

Density, n 1−δα

Phase space density, ρ 1−α(δ +3/2)
Elastic collision rate, Γel 1−α(δ −1/2)

TABLE 3.1: Scaling laws for evaporative cooling in a potential U(r) ∝ rδ . Quantities scale
as (Ż/Z) = (Ṅ/N)x [50].

in [46] that the energy distribution of evaporating particles is very well described by
a truncated Maxwell-Boltzmann distribution. For this reason, we may argue using a
standard MB distribution to quantify the rate of scattering into the high-energy tail
of the distribution: i.e., those atoms removed from the trap due to its finite height.
In the limit of high η , it is highly probable an atom with energy greater than εt that
undergoes a collision will be knocked out of the tail. In order to maintain the temper-
ature, there must be a corresponding scattering into the tail; this is detailed balance.
As such, the rate at which atoms are scattered into the tail and hence removed from
the system may be obtained from the collision rate of atoms with energies ε > εt .
The probability of being in the tail is found by integrating the MB distribution:

P(ε̃ > η) =
∫

∞

η

2√
π

√
ε̃e−ε̃dε̃≈ 2√

π

√
ηe−η , (3.17)

where ε̃ = ε/(kBT ), and the final approximate equality is valid for η & 4 [53]. The
velocity vη of atoms with energy ηkBT is v̄

√
πη/2, with the mean velocity given

by v̄ =
√

8kBT/(πM). The evaporative cooling rate is then given by product of the
elastic scattering rate and the number of atoms in the tail:

Γev = n0σelvηP(ε > η)N = n0σelv̄ηe−ηN =
N
τev

, (3.18)

where σel = 8πa2 is the two body elastic collision cross-section, consistent with
equation (2.30), and τev is the evaporation time constant. The mean elastic collision
rate of the sample is given by:

Γel =
1

τel
=
√

2n0σelv̄, (3.19)

so that the ratio τev/τel =
√

2eη/η is seen to increase exponentially with the trunca-
tion energy, confirming the conclusions from the heuristic example above. Such an
expression is in fact valid for any potential in the limit of large η , where n0 is the
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FIGURE 3.5: An estimate of the minimum ratio of good to bad collisions required to sustain
runaway evaporative cooling for a 3D harmonic potential (black) and 3D linear potential
(red). Rmin as given in (3.20), and κ = 1 in the calculation of α .

peak density, because evaporation occurs locally such that each volume element can
be regarded as a square well [46], in keeping with the discussion of section 2.2.1.
Clearly, the elastic collision rate changes as the sample is cooled - it increases as the
density increases, but reduces as the mean velocity of the atoms decreases.

It is evident from the above results that in order for evaporation to be effective,
the elastic collision rate must exceed the loss rate, for which the loss due to collisions
with background gas molecules is the dominant component for all but the very end of
the evaporation. This condition is called runaway evaporative cooling, and it requires
that the ratio of good to bad collisions, R = Γel/Γloss, fulfill:

R≥ Rmin =
λ

α(δ −1/2)−1
, (3.20)

where λ = Γel/Γev. Equation (3.20) is plotted in figure 3.5 for a linear and harmonic
potential. It is evident that a linear potential is preferable, essentially because a cloud
is more compressed in a linear potential, and hence the density and elastic collision
rate are higher.

By the same methods that led to (3.20), one may obtain an expression for equa-
tion (3.14), i.e., the relative increase in the phase space density with decreasing atom
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FIGURE 3.6: The value of γ as a function of η in a 3D harmonic potential for three values
of the ratio of good to bad collisions: R = 250 (black), 500 (red), 5500 (blue).

number:

γ =− d lnρ

d lnN
=

α(δ +1/2)
1+λ/R

−1. (3.21)

Equation (3.21) is plotted in figure 3.6, for three values of the ratio of good to bad
collisions. The first point to note is that the value of R guides the choice of trun-
cation parameter. For values of R ∼ Rmin, the efficiency of evaporative cooling is
maximized by choosing η ≈ 6. If however R is considerably larger than Rmin, it is
advantageous to choose a larger η . In general, the figure shows that one should tailor
the truncation parameter to the value of R, which, as discussed above, changes as the
sample becomes colder.

To summarize, the above discussion demonstrates that to generate a BEC through
evaporative cooling, it is crucial that initially we have a sufficient number of atoms in
the trap, combined with a vacuum level such that the ratio of good to bad collisions
is at least on the order of several hundred. It is clear that the larger our initial clouds,
the easier the rest of the process becomes.

Forced evaporative cooling by RF transitions

Forced evaporative cooling may be implemented by driving radio-frequency (RF)
transitions to untrapped states in the hottest atoms in the trap. The technique makes
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FIGURE 3.7: The effect of RF radiation on the trapped state |F = 1,mF =−1〉. The Zeeman
energies of the three states |F = 1,mF = −1〉, |F = 1,mF = 0〉, and |F = 1,mF = 1〉 are
shown as dashed lines. The state |F = 1,mF =−1〉, dressed by the RF field is shown in red.
The transitions induced by the RF field lead to a mixing of the sublevels, so that an atom
moving in the potential will be adiabatically transferred to an untrapped state if it crosses the
position defined by the resonance condition [34].

use of the fact that the hottest atoms spend most time in the wings of the spatial
distribution. If the cloud is bathed in RF radiation of frequency ωrf then due to the
Zeeman shift of the atoms in the trap, there will be a spatially dependent resonance
condition given by:

h̄ωrf = µ |B(r)| . (3.22)

Thus, atoms in |F = 1,mF = −1〉 will be transferred to the untrapped state |F =
1,mF = 0〉 or the anti-trapped state |F = 1,mF = 1〉. A representation of this in
terms of dressed states is shown in figure 3.7. The Zeeman energy of an atom in one
of the three magnetic sublevels varies with position in the harmonic trap; when an
RF field of given frequency is applied, the transitions from |F = 1,mF =−1〉 to the
other magnetic substates appear as an adiabatic passage out of the trap.

Given that the relevant quantities such as temperature or phase space density
change exponentially as evaporation proceeds, the frequency of the ‘RF knife’ must
follow in a similar way if our strategy is to evaporate at a constant value of η . Thus,
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the frequency ν = ω/(2π) of the RF has the functional form [54]:

ν(t) = (νstart−ν0)e−t/τ +ν0, (3.23)

where νstart is the frequency at which the evaporation begins, ν0 = µB0 is the fre-
quency corresponding to the bottom of the trap, and τ is the evaporation time con-
stant. To optimize the RF evaporation experimentally, one tries several values of τ

within a given frequency interval in which one approximates the elastic collision rate
as being constant, and chooses the time constant that maximizes equation (3.14).

3.4 Cloud shapes in absorption imaging

All the measurements we can perform on the BEC derive from the analysis of light
that has interacted with the condensate and in this section we present the most di-
rect of such measurements: the absorption of quasi-resonant light by the condensate.
This is a very brief introduction so that the methodology used to obtain the results
presented in the following sections is understandable. A longer description of ab-
sorption imaging is presented in section 4.2.

The passage of light through a medium of length L may be described at some
level of approximation by the Lambert-Beer law:

I(x,y) = I0(x,y)e−OD(x,y), (3.24)

where I = I(L) and I0 = I(0) and the optical depth is given by

OD(x,y) =
∫ L

0
σabsn(x,y,z)dz = σabsñ(x,y), (3.25)

where σabs is the absorption cross section, characterizing the strength of the interac-
tion. ñ(x,y) is the column density of the sample - the density integrated along the line
of sight of the imaging beam. A model to visualize the content of the Lambert-Beer
law is a collection of beam-splitters, oriented such that the reflected light is directed
out of the beam. In 87Rb, we use the F = 2,mF = ±2→ F ′ = 3,mF = ±3 cycling
transition to image the atoms.

In practice, we require several raw images to generate a high quality absorption
image of the BEC. A raw image consists of sending a pulse of light through the
region of interest, then imaging the beam at the position of the atoms on a Charge
Coupled Device (CCD) camera with some magnification M. The general procedure
is to take a shadow image Ish of the atomic distribution of interest, wait for the atoms
to fully disperse, take a picture of the beam in the absence of atoms Ibg, then finally
take a bias image Ibia using the same procedure but without the pulse of light. Using
this data, one can invert equations (3.24) and (3.25) to obtain an expression for the
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column density of the atomic distribution:

ñ(x,y)dxdy =
A

σabsM2 ln
(

Ibg(x,y)− Ibia(x,y)
Ishd(x,y)− Ibia(x,y)

)
, (3.26)

where A is the area of a camera pixel. The ratio A/M2 gives the size of a pixel in the
image plane. The bias image is necessary as the raw images contain offsets that vary
from pixel to pixel, and this additive noise must be removed to achieve high quality
processed images.

All of the images presented in this work are absorption images taken some time
after the magnetic trap was extinguished. Such images are called time of flight (TOF)
images, and the delay between release and picture taking is on the order of tens
of milliseconds. In general, such images, rather than in situ images of the trapped
cloud, are easier to obtain from a technical point of view. Ultra-cold atomic clouds
have dimensions on the micrometer scale, and are very dense so that the optical depth
of trapped clouds can be on the order of several thousand. Apart from the high level
of magnification this implies given that the dimensions of pixels in CCD arrays are
also on the several micrometer scale, for technical reasons, absorption imaging works
best at optical depths on the order of two.

3.4.1 Non-condensed clouds

We can use the semi-classical approach from section 2.2.3 to evaluate the density
distributions of non-condensed clouds after time of flight. Taking in-trap momentum
p and position x0 coordinates, the position distribution after time of flight may be
evaluated given that the distance a particle travels in ballistic expansion must be
related to its initial momentum by p = M(x− x0)/t. Modifying (2.16) accordingly,
and noting that ε(p,x0) is defined in (2.14), we have [21]:

ntof
ex (x, t) =

∫ dpdx0

(2π h̄)3
1

exp((ε(p,x0)−µ)/kBT )−1
δ (x−x0−

p
M

t)

=
1

λ 3
T

3

∏
i=1

√
ω2

i

1+ω2
i t2 g3/2

(
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[
µ

kBT
− M

2kBT

3

∑
j=1

x2
j

(
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j

1+ω2
j t2

)])
.

(3.27)

As one would expect from the discussion of section 2.2.3, in the limit of long times
of flight such that t� ω

−1
i , the density profile becomes isotropic:

ntof
ex (x, t) ∝ g3/2

(
exp((µ−Mr2/2t2)/kBT )

)
, (3.28)

where r2 = x2
1 + x2

2 + x2
3. Integrating along the line of sight, the column density is

given by [21]:

ñex(x1,x2) =
ñex(0,0)

g2(1)
g2

(
e1−x2

1/2σ2
1−x2

1/2σ2
2

)
. (3.29)
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Generally, a Gaussian is a perfectly adequate model for all but the very end of
the evaporation. As is evident in figure 2.1, the Bose and Gaussian distributions are
essentially the same in the wings, and only differ substantially towards the centre of
the cloud. For this reason, if one’s intention is to measure the temperature in the
wings of a bi-modal cloud (i.e., one with both BEC and thermal components) then
provided one chooses the fitting region appropriately, a Gaussian suffices. The rms
width of a thermal cloud along a given direction after time of flight is given by:

ξi(ωi,T, t) =

√
kBT
M

(
1

ω2
i

+ t2

)
. (3.30)

3.4.2 Condensed clouds

As we saw in sections 2.2.3 and 2.5.1, the density distribution of a BEC trapped
in a harmonic potential in the limit of weak interactions is a Gaussian, and in the
Thomas-Fermi regime when interactions between atoms are strong, the BEC is an
inverted paraboloid. In the limit of weak interactions, the momentum distribution is
also Gaussian, leading to an expansion upon release from the trap that reflects the
strength of the confinement in the trap. In this case, the relevant fitting function for
the column density is also Gaussian. In the Thomas-Fermi regime, the situation is
not as simple, as the expansion is not purely ballistic, but rather driven initially by
the repulsion between the atoms (assuming a positive scattering length).

Fortuitously, it has been shown that the density profile of a harmonically trapped
BEC in the Thomas-Fermi regime remains parabolic once it has been released from
the trap. In many trap geometries, and in particular in the case of a Ioffe-Pritchard
magnetic trap (see section 3.3.2), trapped clouds are prolate and have cylindrical
symmetry about the long axis of the trap. For an anisotropic trap where the radial
trapping frequency is much greater than the axial, i.e., ωρ �ωz, the expansion of the
cloud may be expressed as a rescaling of the principle axes ρ0 and z0 [55, 56]:

ρ0(t) = ρ0(0)
√

1+ τ2

z0(t) =
ρ0(0)

ε

(
1+ ε

2
[
τ arctanτ− ln

√
1+ τ2

])
, (3.31)

where τ = ωρt and ε = ωz/ωρ . Note that ρ0(0)/ε =
√

2µ/(Mω2
ρ) ·ωρ/ωz.

As such, the column density expression for an expanded BEC is given by inte-
grating (2.34), appropriately modified according to equation (3.31), along the imag-
ing line of sight. Equation (2.34) can be re-written to explicitly include the number
of atoms in the cloud:

nc(x) =
15
8π

N

∏
3
i=1 xi,c

max

(
1−

3

∑
j=1

x2
j

x2
j,c

,0

)
. (3.32)
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In trap Expansion

Radial ρ Axial z Radial ρ Axial z

Thermal cloud
√

kBT
M

1
ωρ

√
kBT
M

1
ωz

√
kBT
M t

√
kBT
M t

Weakly interacting condensate
√

h̄
2M

1√
ωρ

√
h̄

2M
1√
ωz

√
h̄

2M
√

ωρt
√

h̄
2M
√

ωzt

Thomas-Fermi condensate
√

2µ

M
1

ωρ

√
2µ

M
1

ωz

√
2µ

M t
√

2µ

M
πωz
2ωρ

t

TABLE 3.2: Characteristic widths for a thermal cloud, a weakly interacting condensate, and
a condensate in the Thomas-Fermi regime in trap, and after time of flight [21].

Some useful expressions linking the number of atoms and the chemical potential are:

N =
15
8π

(
2µ

Mω̄2

)3/2
µ

U0
, or µ

5/2 =
15h̄2M1/2

25/2 Nω̄
3a. (3.33)

The column density is given by:

ñc(x1,x2) = ñc(0)max

(
1− x2

1

x2
1,c
− x2

2

x2
2,c

,0

)3/2

, (3.34)

where ñc(0) = 4/3x3,cnc(0) = 5N/(2πx1,cx2,c).

3.4.3 Extracting cloud properties from time of flight images

The results of this section provide a method to extract important quantities such as
the number of atoms from absorption images of expanded clouds. Having obtained
a processed image of the column density via equation (3.26), one can fit with the ap-
propriate model: a Bose distribution (equation (3.29)), or a Thomas-Fermi profile for
BECs of sufficient size (equation (3.34)), or simply a 2D Gaussian for either a ther-
mal cloud or non-interacting BEC, or indeed some combination for bimodal clouds.
In this way, one makes use of the light scattering cross-section σabs to convert opti-
cal density to column density. In practice, this can lead to problems in determining
the atom number, because it requires σabs to be known very precisely. This will be
discussed in chapter 4.

However, there is an alternative way to infer the number of atoms from an im-
age of an expanded cloud where one does not require detailed knowledge of the light
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scattering cross section: one uses only the fitted widths to infer the value of the chem-
ical potential, from which the total number of atoms follows via (3.33). The chemical

potential is related to the widths of a Thomas Fermi profile by xi,c =
√

2µ/(Mω2
i )

(see equation (2.34)). Given that a Thomas Fermi profile expands ballistically in the
radial direction ((3.31) and table 3.2), one can infer the initial in-trap width and thus
the chemical potential by:

µ =
M
2

(
ω2

ρ

1+ω2
ρt2

)
ρ

2
c . (3.35)

A similar method can be applied for thermal clouds.

3.5 Components and construction

We now give a description of important parts of the set-up. For a list of the compo-
nents used, the reader is referred to [34].

3.5.1 Vacuum chamber

The general layout of the experiment is shown in figure 3.8, where the view is from
above. The experiment is mounted on an optical table parallel to the table top at
centre height of 30 cm (i.e., the height above the table top at which the atoms are
trapped in the MOTs and magnetic trap). To give an idea of the scale, the chamber
construction is approximately 45 cm in length. The optical table was chosen to be as
solid as possible in order to minimize vibrations; it has dimensions: 120 (width) x
360 (length) x 45 (depth) cm.

We begin with a brief historical introduction, because the form of the vacuum
chamber was heavily influenced by a desire to re-use existing components from a
previous effort in the group to magnetically trap 87Rb . In fact, essentially the en-
tire chamber excluding the science cell was to be re-used, including existing ion
pumps and a Titanium Sublimation pump (where the Non-Evaporable Getter pump
now sits). The loading chamber was originally intended to lie at 90◦ to its present
orientation, such that it could accommodate a 3D MOT. The two chambers were
then connected by a long narrow tube (∼ 30cm long) that functioned as a differen-
tial pumping stage. This was the initial configuration of the chamber, in fact, and
remained so for the first year, while the initial stages of the experiment were being
built up. We had realized a MOT in the loading chamber, and were trying to transfer
atoms to the science chamber MOT when the power supply to the 87Rb dispensers
suffered what we can euphemistically term ‘catastrophic failure’, and sent several
more amps through the dispensers than the supply was rated for.4 This necessitated

4As such, we recommend any group using dispensers invest the 50 cents or so required for a fuse
between supply and dispensers.
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FIGURE 3.8: Schematic drawing of the vacuum chamber, looking from above. The chamber
is divided into two regions with different pressures: the loading chamber and the science
chamber. The pressure difference is maintained by differential pumping. Atoms from the 2D
MOT in the loading chamber are pushed with radiation pressure to a 3D MOT in the science
chamber. The entire chamber construction is approximately 45 cm in length [34].

a new bake-out, and at that time we chose to modify the chamber set-up, because the
indicators of pressure had not been overwhelmingly positive in this configuration. In
particular, the narrow tube connecting the chambers was very delicate, and several
coatings of Vacsealr (a brush-on sealant compatible with vacuum) had been applied,
with ambiguous results.

This led to the present configuration shown in figure 3.8. The loading chamber
was turned onto its side, and a graphite tube, of internal diameter 5 mm and 85 mm
in length, was inserted as the differential pumping stage. Even though this addressed
the main concern with the previous chamber, it is a time-consuming process to bake
out a chamber to the necessary ultra-high vacuum conditions, and we decided to buy
new ion pumps and replace the Titanium Sublimation pump - which we had never
observed to have any effect - with a Non-Evaporable Getter (NEG) pump. The NEG
pump is a passive pump, that is activated (by a heater) in the baking process: it pumps
primarily hydrogen and water.

Except for the science cell, the vacuum chamber is made of stainless steel. The
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loading chamber has AR coated windows built into flanges that have clear diameter
37 mm. The science chamber is a rectangular glass cell with good optical properties
and external dimensions 31x31x100 mm. The cell walls are approximately 3mm
thick, and are anti-reflection (AR) coated on the external surfaces. The assembled
system was baked out at an ultimate temperature of 240◦C for a few weeks with
a turbo pump attached. In the latter stages of the bake-out, the ion pumps were
turned on and the NEG pump activated. The reader is referred to reference [54] for
a thorough description of good Ultra-High Vacuum (UHV) practices. The pressures
can be inferred - to a certain level - from the current passing in the ion pumps. After
the bake-out, the loading chamber ion pump (20 l/s) and the science chamber ion
pump (40 l/s) showed their offset currents, implying an upper bound for the pressure
in the two chambers of 10−9 mbar. Ion gauges in the science chamber end and in the
turbo-pump indicated a pressure of 10−11 mbar. However, pressure readings of this
type are not entirely reliable, because the gauge itself functions as an ion pump of
sorts. The ultimate figure of merit for the level of vacuum is the lifetime of a trapped
sample.

The lifetime of a thermal cloud in the quadrupole magnetic trap was measured
by taking absorption images (see 3.4) after variable hold-times. The result of such
a measurement is shown in figure 3.9, showing exponential decay with fitted time
constant τloss = 62 s. The trap loss due to Majorana spin flips is not critical here
given the temperature of the cloud: the time constant of the decay is ∼ 90 s for
our trap parameters [34, 57]. The life-time due to background losses is more than
sufficient to generate BECs, which in our set-up takes about 45 s in the (two forms
of) magnetic trap. In the evaporation, the atom number drops by approximately two
orders of magnitude, so that the factor of two associated with loss due to background
collisions is not at all critical.

3.5.2 Lasers

Several lasers are required to provide the light for the Magneto-Optical traps, and the
subsequent probing of the atoms. As noted in section 3.3.1, we require two transitions
from the D2 line (780 nm) of 87Rb for laser cooling: so-called trapping and repump
light. These transitions are separated by 6.8 GHz - too far to shift in frequency by
standard techniques such as Acousto-Optic Modulators (AOMS) - so we require two
separate lasers that are locked to these transitions: these lasers are standard External
Cavity stabilized Diode Lasers (ECDL). In order to run the two MOTs, we require
more trapping light than the trap ECDL can provide. We therefore use this frequency
stabilized laser light from the ECDL master laser to inject several slave diodes. All
these lasers are homebuilt, using laser diodes that run freely at 785 nm (at room
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FIGURE 3.9: Measuring the life-time of a thermal cloud in the quadrupole magnetic trap:
absorption images were taken for each value of hold-time. The integrated total count of the
absorption image is shown as a measure of the number of atoms in the cloud. The results
were fitted with a decaying exponential with time constant τloss = 62 s. The errorbar limits
denote the standard error of the mean of five realizations.

temperature). These diodes are inexpensive5 - about 50 $US - although when CD
players become obsolete, these diodes will certainly become more expensive and
harder to procure. It should be noted that this approach is somewhat old-fashioned,
with the preferred option now to use a tapered amplifier instead of the slaves, or
indeed to just buy a commercial diode laser that provides the necessary power and
essentially just requires a locking error-signal in order to work on the right line. The
probing of the BEC is off-resonant to the D1 line (795 nm), and for this we use two
ECDLs such that one is locked to a line in 85Rb, and the other is beat-note locked at
some frequency relative to this reference.

Figure 3.10 shows the layout of the MOT lasers on the trap table. RBS1-RBS4
are the slave diodes. After each laser one can see an anamorphic prism pair to correct
for the elliptical shape of the transverse mode. Subsequently, one finds a Faraday
Isolator (FI) that functions as an optical diode. Beams are split with the combination
of a half-wave plate (λ/2) and a Polarizing Beam Splitter (PBS). It is worth noting
that the polarization of the transmitted light is much purer than the light reflected by

5This is convenient as it seems to be a rite of passage for every new student in the lab to kill at least
one laser diode.
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FIGURE 3.10: Schematic diagram of the layout of the lasers used in the MOTs and in imag-
ing. Light from the frequency stabilized master trap laser is used to inject four slave diodes.
RBS1 and RBS2 each provide light for an arm of the 2D MOT. RBS3 provides light for the
science MOT, and RBS4 supplies the push beam, and the imaging light. Note that RBS3 and
RBS4 are injected with light that is shifted in frequency by an AOM in cat’s eye configura-
tion.

a PBS: Less than 0.04% of radiation polarized vertically to the plane of incidence is
contained in the transmitted light, whereas the reflected light contains 2-3% radiation
polarized parallel to the plane of incidence. As such, to clean the polarization of a
beam, polarizing beam splitters are always used in transmission. The lock point of
the trap laser is chosen such that it has the correct frequency for the loading MOT.
RBS1 and RBS2 provide light for the 2D loading MOT - one laser for each arm. The
switching of these lasers is not critical, so shutters shortly after the Faraday isolators
suffice to switch the light. However, the requirements for the science MOT (SMOT)
and imaging are more exacting: we need to be able to change the frequency and in-
tensity of these beams dynamically in the course of an experimental run. The AOM in
cat’s eye configuration between RBS2 and RBS3 allows us to change the frequency
of the light that injects RBS3 and RBS4 so that we can push it to resonance (for
imaging) or tens of MHz to the red (polarization gradient cooling etc.) on a millisec-
ond timescale. Optical shuttering of these beams is achieved with single-pass AOMs
further down the table (not shown in figure 3.10). The repump is optically shuttered
by an AOM and a mechanical shutter, providing light for the MOTs. For imaging,
the repump AOM is switched off and the zeroth order beam is sent to another AOM
in order to provide a dedicated repump beam.

External Cavity Diode Lasers

As mentioned above, the lab houses four homebuilt external cavity diode lasers to
provide frequency stabilized light trap and repump light for laser cooling and imag-
ing on the D2 line, and probing on the D1 line. A picture of the laser is shown in
figure 3.11. The lasers are of a fairly standard design that use a diffraction grating
in Littrow configuration: i.e., the first order beam is sent back to the diode to pro-
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FIGURE 3.11: View from above of one of the master lasers.

vide optical feedback. The diode is held in commercially available holders, but the
remaining components were machined in the technical workshops at the Niels Bohr
Institute. The laser diodes are very sensitive to changes in temperature and humidity.
As such, the diodes are mounted with very good thermal contact to a peltier using an
alloy for the diode plate and grating mount that has a high copper content for good
thermal conductivity. In turn, the peltier lies flush on a large mounting block that
functions as a thermal reservoir. The lasers are cooled to about 15◦C, such that they
are colder than room temperature but above dew-point, so as to minimize the effects
of changes in the laboratory temperature which is maintained by air conditioning.
The desiccant sachet that is visible in the laser enclosure is a (token) effort to keep
the humidity at a low level. The innards of the ECDLs are enclosed by Perspex,
punctured only by the hole from which the light is emitted.

Each laser has its own Saturated Absorption Spectroscopy (SAS) set-up, where
some light from the laser is sent through a cell with Rubidium vapour which is then
detected by photodiode. ‘Slow’ corrections (up to several kHz) to the frequency of
the laser are made by changing the angle of the grating, achieved by a piezo stack
behind the grating. By driving this piezo with a triangle waveform, one can scan
several hundred MHz without a mode-hop, and certainly enough to sweep across all
the transitions on a given D1 or D2 line. The linewidths of the master lasers are on
the order of a few hundred kHz: a beat-note measurement when the trap and repump
lasers were locked to the same line yielded a result of 500kHz.

We use several techniques to lock the ECDLs. The locking set-ups for the trap
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FIGURE 3.12: The spectra of the trap (left) and repump (lasers), as generated by frequency
modulating light passed to saturated absorption spectroscopy set-ups and with the appropriate
lock-in detection. The locking points are shown as red dots. Labels identify the peaks in such
a spectrum. For instance, in the repump, the left-most peak is the F = 1→ F = 0 transition.
Labels like 0/1 identify cross-over peaks - an artifact of the spectroscopy - that lie in the
middle between a pair of transitions.

and repump lasers were described in [34] but we give a brief summary. The repump
is locked via standard modulation of the current at ≈ 4MHz. The trap laser uses a
different technique: to avoid side-bands on the trap laser - which is also used for
absorption imaging - only the light that is directed to the SAS set-up is frequency
modulated (at ≈ 20kHz) and this is achieved with a double pass AOM in cat’s eye
configuration. With the appropriate lock-in detection, we generate dispersion-like
signals that can be used to lock the lasers [58]. These dispersion signals are sent
to home built lock boxes (based on Proportional Integral Differential (PID) circuits)
which provide the appropriate feedback signals for the piezo and current controllers.
The dispersion signals for the trap and repump lasers that we observe when the piezo
is scanned are shown in figure 3.12.

The probe lasers at 795nm provide light for the interrogation of the atoms. For
this application, power is not an issue but it is important that we can tune the fre-
quency of the probe light by an arbitrary amount from the resonance lines of the
atoms. The first probe laser, Probe 1, is FM locked, typically to a line in 85Rb, some
2.7 GHz away from the nearest line in 87Rb. In an initial set-up, consisting of Probe
1 locked on resonance and shifted away by a few hundred MHz with an AOM, we
experienced difficulties in light leaking through the zeroth order of the AOM and
indeed stray light reflecting from walls and leaking in through the cladding of an
optical fibre. For this reason, and the desire to have freedom in the detuning of the
probe light, we introduced a second ECDL, Probe 2, which we lock via its beat-note
with Probe 1. The beat signal is detected on a photodiode of sufficient bandwidth,
amplified, then sent to a home-built piece of equipment that generates an error signal.
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This phase lock box was designed by Jürgen Appel, and details regarding its design
may be found in [59]. Briefly, the beat signal is digitized, divided by a user-defined
number and compared with a digitized reference signal. The box generates an error
signal that is sent to the PID lockboxes. As the name suggests, the phase lock box
is capable of phase-locking the two lasers but to date we have not made use of this
capability.

The stability of the ECDL lasers is reasonable. In general, once a laser is prop-
erly set-up, it will run without significant adjustment for a period ranging from a
month to several months. By significant, we mean manually changing the vertical
tilt the grating, but for an experienced worker in the lab this takes on the order of
10 minutes. More frequently, a slight tweak of the laser temperature is required to
bring the desired spectrum back to the middle of the ramp. Often, large changes in
outside temperature or humidity (e.g., the first hot period in summer) - despite the
air-conditioning of the laboratory - will force an adjustment of the grating. The main
instability seems to be of a mechanical nature, namely the vertical alignment of the
grating. There are two screws used to control the vertical tilt of the grating. We found
that with a single screw, the acoustic stability left something to be desired. The main
problem is that the material is reasonably soft, as indeed it must be to tilt the grating.
However, it is our impression that screws maintaining the tilt of the grating slip on
the mentioned time period. For this reason, one should not over-tighten these screws
when setting up the laser: it will improve the acoustic stability up to a point, but the
injection of the laser will be lost much more quickly. Furthermore, it is our impres-
sion that the material has some kind of ‘memory’, so that an aggressive alignment
leads to worse long-term stability.

Slave lasers

The slave lasers are simply laser diodes secured in a cooled and sealed mount, similar
to the ECDLs but without the grating. RBS1 and RBS2 are each injected with ap-
proximately 1 mW of light. RBS3 and RBS4 require a little more in steady state op-
eration because they are injected with light that passes through a double pass AOM,
and when the frequency of the AOM is changed, its efficiency changes leading to
a variation in the diffracted power. Furthermore, it is difficult to avoid some beam-
steering despite the cat’s eye configuration, and this, combined with narrow aper-
tures to block unwanted diffracted orders propagating through the system, leads to
a slight variation in the injection as the frequency is changed. Given that the AOM
is pushed both ways in the course of an experimental run - tens of MHz to the red
for sub-doppler cooling and on-resonance or to the blue for imaging - the best proce-
dure is optimize the AOM alignment at roughly in the middle of these two extremes.
Subsequently, one optimizes injection for each laser using approximately the central
frequency it runs at during the experiment (somewhat red for RBS3, the SMOT laser;
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and somewhat blue for RBS4, the push beam and imaging beam). It is a good prac-
tice to spend half an hour or so to inject the slaves and check the alignment of the
cat’s eye AOM on a weekly basis, although this is more of a pre-emptive tactic. Note
that the lasers are injected from the side port so that the output light from a diode
is transmitted through the polarizing beam splitter cubes of the Faraday isolator in
order to ensure the polarization of the light is pure. As described in [34], injection
is checked by modulating the current of the slaves and looking at the response of
the frequency of the laser by its scattering from a Rubidium cell, given that at an
earlier stage these signals were ‘calibrated’ by simultaneously sending the light to a
wavemeter. Nonetheless, this method is could be improved upon, for instance by the
introduction of a monitor-cavity.

Laser spectra

Provided the ECDLs are properly set up and are well locked, and the slaves are
properly injected, the spectral purity of the light is more than adequate for producing
BECs. This is largely due to the fact that laser cooling is not very sensitive to the
linewidths of the trapping and repump light. Nonetheless, there are two main areas
where one needs to be vigilant.

The first area where care must be taken is light leaking from unwanted AOM
diffraction orders, as spurious light on the order of hundreds of MHz away from
the intended frequency can be very problematic. For single-pass AOMs, it is then a
simple matter of picking out the desired diffraction order provided one has enough
distance between AOM and iris. If one does not take care with this, it is a common
problem that light from the zeroth order leaks into the first order beam, and this
can certainly upset laser cooling, not to mention more sensitive applications such as
imaging and probing. Double pass AOMs can be more problematic, as one relies
on polarization optics to separate incoming and outgoing light. For this reason, it
is wise invest in high quality polarization optics such as zero-order quarter-wave
plates for this application and to take great care in the alignment. Nonetheless, it is
straightforward to check that there are not spurious diffraction orders in the beam by
performing a beat-measurement with another (spectrally pure) beam. The output of
the cat’s eye (set for resonant absorption imaging) was measured by this method to
be 40 dB greater than the nearest diffraction order. Similarly, the central frequency
of the imaging beam, having passed through its single pass AOM, was measured to
be 43 dB greater than any other component.

The second problem area is the broad background characteristic of diode lasers.
This background is not filtered by the diffraction grating in the ECDLs because the
output beam is the zeroth order beam. That is, there is no frequency selective com-
ponent in the outcoupling of the light, only in defining which longitudinal mode sees
the most gain. Thus, the broad background, i.e., spontaneous emission by the diode,
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FIGURE 3.13: Large scale spectra of several diode lasers. The spectra were obtained by
scanning spatially filtered beams that had been directed onto a diffraction grating across a slit.
Each point corresponds to the power in a frequency window of≈ 130GHz window. Different
sensitivity settings were used for the peaks and background. The resolution was limited by
the spot size of the beam, which for practical reasons was focused onto the slit. The four
traces correspond to RBS4 injected and free-running, the trap master laser, and Probe 1. The
trap master and RBS4 when injected overlap except for the hump in the injected RBS4 signal
where the diode is free-running at 775nm.

is allowed to propagate through the system, unless one introduces additional filter-
ing. This background was measured by shining spatially filtered light from a given
laser onto a diffraction grating: the diffracted light was scanned across a narrow slit
by a mirror mounted on a stepper motor and the transmitted light was measured on a
photodiode. By performing the same measurement for the D1 and D2 lines, we cal-
ibrated the wavelength of the diffracted light with the position of the stepper motor.
The result is shown in figure 3.13, and confirms the presence of broad backgrounds
on all of the lasers. Another element of concern is the hump present in the injected
RBS4 spectrum, centred at the diode’s free running wavelength of 795 nm. By nu-
merical integration of the injected slave signal, the central peak comprised 97.7% of
the total signal, implying an upper bound of 2.3% for the non-resonant background
component.
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AOMs, switching and shutters

As described above, acousto-optic modulators are employed in single-pass to func-
tion largely as optical shutters, and in double-pass to provide dynamic control of the
frequency of a beam. Typically, we focus weakly into AOMs to obtain reasonably
small waists at the point of diffraction - and hence short switching times - without
costing too much in efficiency due to the increased spread in wavevectors inherent in
a focused Gaussian beam.

The frequency sources for the AOMs are homebuilt Voltage Controlled Oscilla-
tors (VCO). The VCO signal is sent to an RF attenuator and then a digital switch,
from which the signal is amplified by an RF amplifier, and then sent to the AOM. The
cat’s eye VCO is computer controlled: it accepts an analogue signal (0-10V) and the
output frequency - typically 100-200 MHz - can be varied by ±20%. The VCOs can
change their offset slightly on a weekly basis, so it is good practice to check them
with a frequency counter on this time scale. Given that the frequencies of the SMOT
and push beam light depend on the values of three different AOMs (that used in the
trap lock, the cat’s eye, and each beam’s respective single-pass AOM), such off-sets
can add up and affect the performance of the loading of the SMOT. Via an applied
current, the RF attenuator controls the amplitude of the signal to be amplified and
hence the ultimate signal that drives the AOM. Typically, this is controlled manually
(set so as to optimize the diffraction efficiency), but in some cases, such as the SMOT
trap and repump beams, we require dynamic control, in which case the control cur-
rent is derived from an analogue signal from the control computer. Extinction of the
RF signal and the switching times are inadequate with only the RF attenuators, so we
use digital switches. We achieve rise times of less than 100 ns and extinction ratios
of -40 dB.

This extinction ratio is reasonable, but we require mechanical shutters to do the
job properly. The shutters are homebuilt, based on telephone relays and driven by
digital signals derived from the computer. The shutter itself is formed from stiff
black cardboard, augmented by a segment of copper foil where the light is blocked.
Despite this modest technology, the shutters work reasonably well, yielding rise and
fall times of 1-2 ms where the exact time depends on how small the beam is. Each
shutter has a delay on the order of a few milliseconds that depends on how far the
shutter must move before it clips the beam. The shutter is mounted to a plate that
is sandwiched between layers of shock-absorbing material. We use 1/2" diameter
hemispheres made of a proprietary viscoelastic polymer called Sorbothaner as the
shock absorber. The shutter holders work very well: the acoustic effect of a shutter
closing or opening is only weakly visible on the laser lock signals, and never come
close to driving the laser out of lock.
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FIGURE 3.14: Pictures of the 2D loading MOT from above (left) and from in front, looking
down towards the science chamber.

3.5.3 Magneto-Optical traps and push beam

Loading MOT

The loading MOT is comprised of two retro-reflected beams and a 3D quadrupole
field. The beams are approximately 20 mm in diameter and each has 60 mW of
power, at a detuning 28 MHz to the red of the F = 2→ F = 3 transition. The beams
come directly from the slave lasers RBS1 and RBS2 - they are not spatially filtered.
A few milliwatts of repump power is added in each arm. Fortunately, the transverse
mode appears reasonably clean straight from the slave and anamorphic prism pair.
The quadrupole field is generated by two coils run at 4 A, consisting of 99 windings
each, wound with 1.6 mm wire on spools made from teflon laced with 25% glass-
fibre. Teflon is used so as to avoid eddy currents in the holder, and the glass fibre
increases the maximum temperature the teflon can sustain without becoming soft.
The coils lie flat against the loading chamber so that the symmetry axis is along the
line connecting the two chambers.

Push beam

The push beam is weakly divergent, carrying 3 mW of optical power, detuned by
-31 MHz from the F = 2→ F = 3 transition. The beam has a diameter of 2 mm at
the position of the loading MOT, and increases in diameter by about a factor of three
at the position of the science MOT. The beam is chosen to be diverging so as to limit
its effect on the science MOT.

Science MOT

The science MOT is a standard six beam Magneto-Optical trap that uses the quadrupole
coils of the magnetic trap to produce the required magnetic field. We use six individ-
ual beams (each beam pair is taken from the two ports of a polarizing beamsplitter)
rather than three retro-reflected beams, because the atomic cloud casts a significant
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shadow on the beams. Each beam is about 15 mm in diameter and carries about 2
mW of power, detuned by -14.5 MHz from the F = 2→ F = 3 transition; the light is
not spatially filtered. Approximately 7 mW of repump power is added in one of the
two horizontal beam pairs but the reason for this is historical: at an earlier stage we
used the repump MOT beams to optically pump the cold atomic clouds into F = 2
prior to imaging, and with this arrangement we avoided repump light in the (vertical)
imaging beam path.

The science MOT has three pairs of magnetic compensation coils which are typ-
ically used to generate fields on the order of half a Gauss.

3.5.4 QUIC magnetic trap

We realize the Ioffe-Pritchard trap described in section 3.3.2 by a three coil construc-
tion known as the Quadrupole Ioffe Configuration (QUIC) trap [60]. A diagram to
illustrate the main elements of the arrangement is shown in figure 3.15. The QUIC
trap is based on a simple idea: The Ioffe coil is set such that the linear component
of its axial field cancels the linear component of the quadrupole field along the sym-
metry axis of the Ioffe coil. In this way, only the constant, quadratic and higher
order terms remain, and the total magnetic field along this direction (the z direction
in figure 3.15) becomes approximately harmonic about a non-zero minimum. In the
two remaining directions, x and y, the effect of the Ioffe coil is to equalize the linear
components of the quadrupole field. This point may be easily understood given the
magnetic field gradient along the symmetry axis of a single coil has twice the magni-
tude and the opposite sign as the radial components; this is evident in the expression
for a quadrupole field in (3.6), or indeed by just noting ∇ ·B = 0 in this region and
using a symmetry argument [61]. In any case, given we choose B′I,z = −B′Q,z and
given B′Q,y = −2B′Q,x = −2B′Q,z and B′I,z = −2B′I,x = −2B′I,y, it follows that the total
field gradient is the same along any direction perpendicular to the symmetry axis of
the Ioffe coil. Thus, we obtain the Ioffe-Pritchard field geometry of equation (3.8) in
which to trap the atoms.

The QUIC trap has its advantages and its disadvantages. Beyond the apparent
simplicity of requiring only three coils, the QUIC trap has the advantage that initially
the atoms can be trapped in a pure quadrupole potential, and then be transferred to
a full IP trap as the current to the Ioffe coil is increased. The total field for different
stages of the transfer is shown in figure 3.16. This means that the quadrupole coils
can supply the (considerably weaker) field for the SMOT, making it easier to ensure
the overlap between MOT and magnetic trap is good. If it is advantageous, one can
begin to evaporate in the quadrupole trap, making use of the increased collision rate in
that configuration (see section 3.3.3). A more neutral point is that the centre of the IP
trap is displaced from that of the quadrupole - in our trap by about eight millimetres,
as can be seen in figure 3.16. This can be considered advantageous as it draws the
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FIGURE 3.15: A cartoon of the basic idea of the QUIC, and more generally, any magnetic
trap. The fields from different coils are arranged so as to produce a local minimum at a
particular point between the coils. In the QUIC trap, a third coil - the Ioffe coil - is added
to a standard quadrupole or anti-Helmholtz pair of coils. The linear component of the axial
field produced by the Ioffe coil cancels the linear component along the same axis of the field
produced by the quadrupole coils. The field lines are represented by dashed lines and arrows.
The arrows superimposed on the coils indicate the direction of current flow.

cloud away from the line of sight to the loading chamber, and this may improve the
lifetime in the IP trap. On the other hand, the eight millimetre shift draws the cloud
much closer to the cell wall, which can be problematic in terms of stray reflections
from the cell wall so close to the BEC. In general, however, the biggest disadvantage
of the QUIC trap is the reduction in optical access due to the presence of the Ioffe
coil. For this reason, given our desire to probe along the long axis of the BEC (i.e.,
the symmetry axis of the Ioffe coil), we designed the Ioffe coil with a small hole
through which to pass a beam.

It is common in a QUIC trap to use the same current - from the same supply -
in all three coils in the full IP configuration. The point about the same supply is
important: any magnetic trap requires the cancellation of large magnetic fields to
produce the correct trap geometry, and any current supply has some level of noise
on the current it produces; by using the same supply for all three coils, one has the
same noise on all the coils. Clearly, one wants as quiet a supply as possible, but it
is important to note that with a common current, the trap will just shake and change
its geometry slightly, whereas the consequences can be much more severe if each
coil or pair of coils has its own (noisy) supply. The greatest fear is that due to some
non-ideal feature, the trap bottom crosses zero magnetic field, and all the atoms are



52 REALIZATION

FIGURE 3.16: Calculation of the modulus of the magnetic field in a QUIC trap along the
symmetry axis of the Ioffe coil as the current through the Ioffe coil is increased. The field is
initially that provided by the quadrupole coils (black), then the current IIoffe is increased to
1/3 the quadrupole current Iquad (red), 2/3 Iquad (blue), and finally when the same current runs
through all three coils (green). In this case the total quadrupole current was set to 25.7 A.
The Ioffe coil is located to the left, with its front edge sitting at approximately -2 cm.

lost from the trap. The window of safety is somewhat narrow, given we choose to run
the IP trap with a bias field on the order of one Gauss so as to maintain a steep trap
(see section 3.3.2). To persist on the theme of preserving the trap geometry, the coils
in the QUIC trap dissipate a sufficient amount of power that they need to be cooled,
and this must be accounted for in their design. Clearly, as the coils heat up due to the
current, they expand and thus the sensitive cancelation of field gradients can be lost.

Coil construction

To achieve efficient cooling, the coils are wound in layers, separated by thin spacers
and submersed in flowing, chilled water. Water flows into one side of the coil as-
sembly, flows between the layers, passes over the top of the coil, then is forced down
between the windings on the other side of the coil on its way out. The trap is based
on a design by the group of Mark Raizen at the University of Texas at Austin [62].
A schematic diagram showing the assembled coils in their final positions around the
science cell is shown in figure 3.17. The coils were wound according to the results
of computer simulations where the positions and dimensions of each winding were



3.5 COMPONENTS AND CONSTRUCTION 53

FIGURE 3.17: Schematic diagram of the coils comprising the magnetic trap in their assem-
bled positions about the science cell. The view is from the front, looking up to the loading
chamber. The innards of the coils are shown, with the different layers of windings repre-
sented by rectangles. There are holes in the quadrupole coils of 24.6 mm diameter for the
vertical MOT and imaging beams. There is a hole along the symmetry axis of the Ioffe coil
of 4 mm diameter.

modelled so as to achieve an accurate picture of the final field. The coil holders are
made of Poly Vinyl Chloride (PVC), and are made water tight by standard PVC glue
that is used in household plumbing; they were machined by Niels Lindegaard in the
mechanical workshop at NBI. Each coil consists of three main parts: a central rod
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FIGURE 3.18: Pictures of the magnetic trap before its introduction around the science cell.
The three PVC coils are mounted with aluminium supports; the supports are sandblasted to
limit stray reflections from the metal, and have holes cut in them for the horizontal MOT
beams to pass through. The plumbing fittings are visible, as is the wire passing out through
the tubes. The micrometers used to position the Ioffe coil are visible in the picture to the
right.

on which the coils are wound, a base containing holes for the water, and a lid. The
coils were wound by hand on a lathe with the help of several purpose machined teflon
winding blocks. Each layer is secured by quick drying glue, and when the entire coil
is wound, an appropriate electrically insulating and water proof hard epoxy is used
to glue the coils. Each of the quadrupole coils consists of 216 windings, divided into
approximately 10 layers of 22 windings. There are four groupings of layers, each
grouping separated by a layer of 1.5 mm spacers. The first three groupings contain
three layers each, the final grouping contains four layers. The Ioffe coil contains
159 windings divided into approximately four layers of 42 windings, with a conical
shape at the front edge to allow optical access for the horizontal MOT beams. Each
layer of the Ioffe coil is separated by spacers. Both coils are wound with insulated
copper wire, where the quadrupole coils are wound with 1.7 mm diameter wire, and
the Ioffe coil by 0.864 mm diameter wire. The quadrupole coils have two additional
layers (wound with 0.864 mm diameter wire) for the generation of additional homo-
geneous or quadrupole fields. The wire passes out thought the plumbing hoses and
is connected to the outside world though home-made electrical feed-throughs based
on stainless steel T-fittings.

Given that it is desirable that the same current run through all three coils in the
full IP configuration, and that once the coils are sealed it is not possible to add more
windings, the field geometry is determined by the positioning of the coils. Two
pictures of the assembled coils before they were put into position about the science
cell are shown in figure 3.18. The quadrupole coils are secured by rather bulky
aluminum supports with holes cut in them for the horizontal MOT beams. It is not
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FIGURE 3.19: Calculated and measured (circles) magnetic field along the symmetry axis of
the Ioffe coil. The inset shows a close-up of the main figure around the trap minimum.

possible, nor desirable, to move these coils other than by machining these supports;
clearly, it is vital that the entire construction is as stable as possible (so aesthetics
were reluctantly ignored in this instance). The Ioffe coil is sandwiched between two
of these supports, such that it can be pushed backwards and forwards to achieve the
right field geometry. It is secured by screws that pass through counter-sunk slots
cut into the supports. The tapped holes in the Ioffe coil are not cut directly into the
PVC because it is too soft; instead a metal thread is secured in the hole, meaning
that one can properly tighten the mounting screws. During set-up, a temporary plate
was added behind the Ioffe coil through which two micrometers were mounted. By
loosening the Ioffe screws and turning the micrometers, once can very accurately
adjust the position of the Ioffe coil.

The assembled coils generate the correct field and thermalize on a short time
scale. Before the coil assembly was put into position, the field was measured with
a Hall probe, and the result is shown in figure 3.19. The quadrupole trap by itself
generates a gradient along the symmetry axis of 10.2 G/cm/A. The full magnetic
trap running at 25 A dissipates approximately 600 W. When a single quadrupole
coil is cooled with the maximum available cooling water (held at 15◦C), at 25 A the
coil rises in temperature by about 5◦C within a few seconds. The Ioffe coils shows
similar performance. When the cooling water is distributed between the coils as it
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is in the experiment, the cooling is less efficient due to the reduction in flow to the
individual coils, but nonetheless, the system only takes on the order of two complete
BEC production cycles to thermalize.

Magnetic trap frequencies

While the simulated and measured values of the total magnetic field agree very well
in figure 3.19, it is necessary to measure them in situ6. This is achieved by displacing
a cold cloud in the magnetic trap and mapping out its centre of mass oscillations,
otherwise known as sloshing motion. As we have seen, the trap can only be consid-
ered harmonic for cold clouds. Thus, a small displacement was induced by applying
a suitable magnetic field gradient along the chosen direction, whereupon the atoms
were allowed to oscillate in the trap for a variable time. The trap frequencies were
found by fitting a sinusoid to the observed motion. In practice, it is often necessary
to introduce a small exponential decay and/or drift term to the sinusoid. Further-
more, because the amplitude of oscillation within the trap is very small compared to
our imaging resolution, we measure the atoms after a time of flight. In this way, we
probe the sinusoidal variation in the velocity of the cloud, and make use of the time
of flight to resolve this spatially. The displacement or velocity of the cloud is given
by a rather generic damped sinusoid:

A(t) = A0e−t/τ cos(ωt +θ)+ const. (3.36)

The results of the procedure are shown in figures 3.20 and 3.21. Data points
over many oscillation periods were recorded to ensure good sampling of the os-
cillations. The measurements were performed at a current of 17.7 A through the
magnetic coils, corresponding to the ‘weak’ trap in which the final stage of evapora-
tion occurs (see section 3.7.1). The axial and radial trap frequencies were found to
be ωz = 2π×11.38 Hz and ωρ = 2π×116.0 Hz respectively. The trap bottom was
measured before both measurements to be 1.085 ±0.01 G.

The error estimates for the trap frequencies are on the per mil level, but to quote
these would most likely be unrealistic, at least for use over an extended period. The
main concern is the variation of trap bottom over extended periods, and the way this
influences the radial trap frequency (see (3.13)). This relates to the magnetic environ-
ment around the science cell; for instance, one needs to be aware of this point when
introducing new pieces of equipment (containing ferromagnetic materials) close to
the cell. On the other hand, the axial trap frequency should depend only on the rel-
ative positions of the coils, and these have been constant (or at least not adjusted)
since their installation two and a half years ago.

6Indeed, it was necessary to disassemble the coils as shown in figure 3.18 for their mounting around
the science cell. This was a safety precaution given the small clearance between coils and cell and the
torque exerted on the coils by the hoses for the cooling water.
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FIGURE 3.20: Radial trap frequency measurement. A BEC was displaced and then held
within the magnetic trap for a variable time, whereupon the trap was switched off and the
centre position of the cloud after time of flight was measured. Data points are blue circles
superimposed on the sinusoidal fit, yielding ωρ = 2π×116.0 Hz.

FIGURE 3.21: Axial trap frequency measurement. Data points are blue circles superimposed
on the sinusoidal fit, yielding ωz = 2π × 11.38 Hz. A linear offset was added to the fitting
function to account for the drift over long time. The errorbars denote the standard error of
the mean for three realizations.

Cooling water

The cooling water is provided by a recirculating chiller that has a flow of 5 l/min.
The flow is divided between the three coils and the switchbox that will be described
in the following section. On the return line, the chiller is buffered by a large tank that
holds about 180 l of water. The chiller and buffer tank are located in a small room
next to the lab with other noisy equipment; this closet has its own air-conditioning
unit, which often works much harder then the lab units because of the presence of
the chiller and a power supply to a laser used by the adjacent lab (this laser arguably
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functions better as a heater than its intended purpose). Large tubes carry the water
from the closet to underneath the optical table where it is branched off for the coils
and switchbox; this minimizes the length of narrow tubing through which the cooling
water must travel. The recirculating chiller is a Neslab model M33 PD1.

Guided by the chiller’s manual, we use deionized water with a resistivity of ap-
proximately 3 MΩ·cm. Deionized water of this resistivity is used because the cooling
system contains several types of metals. No anti-algal substance is added to the wa-
ter as the tubing to the coils (at least according to the vendor) does not support algal
growth. The cooling water should be changed and the chiller filter cleaned on a
half-yearly basis.

The flow through the path to the switchbox is measured by a flow-wheel. The
flow-wheel (McMillan model 101 flo-sensor) produces a voltage proportional to the
flow. This voltage is monitored by a homebuilt comparator and if the flow moves
outside a user-defined interval, the chiller is switched off and coil power supply is
put into ‘protect mode’ where no current is emitted. See [34] for a schematic of the
inter-lock circuit. This inter-lock is crucial to the safe running of the lab.

Power supply

The magnetic trap is powered by a high quality power supply capable of producing
0-30 A, 0-80 V, with a maximum power of 2100 W. The supply is an Agilent model
E4356A, ‘Telecom DC Power Supply’. We use the supply in constant current mode.
The output current may be controlled remotely: we use an analogue 0-10 V output
from the computer that is buffered by a homebuilt circuit. The buffer uses a linear
opto-coupler to ensure the control computer is electrically insulated from the power
supply. This analogue control is used to ramp the total current through the different
stages of an experimental run.

Switchbox

Fast switching of the magnetic trap, and the conversion from quadrupole to full Ioffe-
Pritchard trap is achieved through a homebuilt ‘switchbox’. A schematic diagram of
the main features of the switchbox is shown in figure 3.22. Switching of the magnetic
field in either configuration is performed with the main switch. To use just a pure
quadrupole trap, the shunt resistance is set to its minimum, and the Ioffe switch is
left open.

To convert to a Ioffe Pritchard trap, the Ioffe switch is first engaged and then the
current though the Ioffe coil is gradually ramped up by increasing the resistance of
the shunt. The shunt resistance is comprised of a bank of power Mosfets, connected
in parallel. The purpose of this is to reduce the resistance of the branch by sharing
the current between three to five Mosfets, thereby reducing the dissipated power. The
Mosfets and switches are mounted on an aluminium block that is cooled by water
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FIGURE 3.22: Schematic diagram of the switchbox used to effect fast switching of the
magnetic field and the current sharing required for a conversion from quadrupole to Ioffe
Pritchard magnetic trap.

from the recirculating chiller. The Ioffe switch is necessary because the resistance of
the Mosfets bank is not negligibly small, and therefore without the Ioffe switch, some
current would pass through the Ioffe coil. For the ramping up of the Ioffe current,
we require a feedback circuit that takes the ‘analogue’ signal from the computer and
compares it with the measured shunt current. We write ‘analogue’ because the signal
needs filtering to remove the digital steps that make up the signal on a fine voltage
scale. The shunt is driven by the output of a Proportional Integral feedback circuit
(the board contains the components for a PID circuit, but the PI configuration was
sufficient). The feedback circuit needs careful attention given the strongly non-linear
response of the Mosfets to applied voltage.

The bypass arm is used to tailor the non-adiabatic turn on of the magnetic trap.
The purpose of using such a sudden switching of the coils is to catch the atoms in
the quadrupole trap after the MOT light is extinguished, given that they begin to fall
due to gravity. This is achieved by instructing the supply to send out a large current
(by the interface described in the previous section) while keeping the main switch
open, leading to a build up of charge on the output capacitors of the supply; when
the switch is closed, the current through the coils increases very steeply over a period
of a few milliseconds. Inevitably, this leads to an overshoot of the current before it
settles on the correct value. As we describe in section 3.6.2, it is best to keep the non-
adiabatic turn on to as small a change in magnetic field as possible. Therefore, we
employ a bypass arm to direct some of the excess current away from the quadrupole
coils during the turn on so as to limit the overshoot.

The switchbox required a considerable amount of work before it worked in a
satisfactory way. In particular, we experienced difficulties in making the feedback
loop work as we wanted. Complicating the debugging process was the propensity to
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burn out Mosfets in the shunt bank. Initially, the shunt bank was soldered together,
making it a messy and somewhat time consuming process to locate and replace the
abused mosfet. This was replaced by a system that works much better but still far
from perfectly: the pins of the Mosfets are connected by pressure to copper rails.
Nonetheless, the performance of the switchbox only improved after a complete re-
building of the feedback circuit, and a tidying up of the layout of the box. One can
certainly learn a lot about good electronic practices from such a piece of equipment
that combines high power switching (of inductive loads) and feedback electronics.
Since the rebuild and improvements, the switchbox has worked very well. Nonethe-
less, if the user programs something ‘unreasonable’ (i.e., stupid) in an experimental
sequence, (s)he can expect to spend some time changing Mosfets.

3.5.5 RF evaporation

The RF evaporation described in section 3.3.3 requires a coil driven by an RF syn-
thesizer. In fact, we use two RF coils: one centred around the quadrupole trap and
one approximately centred on the position of the cloud in the IP trap. The first coil
is circular, 29.5 mm in diameter, and comprised of two windings using 0.45mm total
diameter wire. This coil is mounted to the bottom top quadrupole coil and cen-
tred around the optics hole in the coil. The rationale is that this coil is best suited
to provide uniform RF radiation for evaporation in the quadrupole trap. The other
coil is rectangular, 40 mm × 25 mm, comprised of two windings with the same
gauge lacquered copper wire. This coil is mounted off-centre on the top of the lower
quadrupole coil, so that the centre of the coil lies approximately under the minimum
of the IP trap. The rectangular shape and its size accommodate this goal and the
coil does not obscure the vertical MOT beam. Both coils are secured with Kapton
tape, chosen for its thinness. The coils were tested for resonances in situ using an RF
spectrum analyzer, but none such were found. However, the coils showed a general
increase in radiated power with decreasing frequency.

The coils are driven by an RF synthesizer, with a primary output that can pro-
duce phase continuous frequency ramps in the range 0-20 MHz, and a second ‘back-
panel’ frequency tripled output that is not as spectrally pure. The synthesizer is
an HP 3325B. We use the back panel output for some coarse evaporation in the
quadrupole trap, performed in 40 steps from 50 MHz to 20 MHz over a period of
9.6 s. The back panel output produces RF at a fixed power of 0 dBm, and is thus
amplified (using the same components as those used for an AOM): an RF attenuator
(used at a fixed level), digital switch and a 1 W RF amplifier. In an effort to protect
the RF amplifier, the output is terminated by a 50Ω resistor and then the coil con-
nected in series. The high frequency steps are sent to the synthesizer in ‘real time’ via
a General Purpose Interface Bus (GPIB) during the experimental run. From 20 MHz
down to condensation, the lower, rectangular RF coil is used, taking the signal di-
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rectly from the front panel output which can produce up to 24 dBm. The amplitude
is controlled by an analogue signal from the computer, and in general is reduced as
we approach trap bottom so as to reduce the power broadening of the RF knife. The
ramp is broken up into about 10 exponential ramps, approximated by several phase
continuous linear sweeps; the initial and final frequencies and the duration of each
ramp are produced in Matlab, read in by Labview and downloaded into the synthe-
sizer via GPIB outside an experimental run.

3.5.6 Computer control

A computer is used to control the timing and administer the various remotely con-
trolled pieces of equipment. The user interface is provided through Labview. The
‘control computer’ is augmented by several boards so that it can produce the wide
variety of signals with precise timing that are required for the generation and probing
of a BEC. The set-up is similar to that described in [54].

The central board that controls the timing of the experiment is a Viewpoint
DIO-64. It contains 64 digital channels, 62 of these are used to produce the var-
ious required digital signals (TTL - Transistor-Transistor Logic). At present, only
about half of these are used in the experiment. The channel values and the timing
are stored in the output buffer of the DIO-64 board at the start of an experimental se-
quence. The unique feature of the board is that fine time resolution may be obtained
without an excessive use of the buffer because only updates of the digital channels
are stored. The board has a 20 MHz clock that controls the timing of the time-critical
elements in the experiment7. In principle, this leads to a timing resolution of 50 ns.

Analogue signals are produced with an additional board that is synchronized with
the DIO-64. This ‘analogue board’ has eight analogue and eight digital ports. Ana-
logue signals, such as VCO control voltages or the linear ramps used in the compres-
sion or relaxation of the magnetic trap, are programmed in the Labview front panel
(with a user defined time resolution) and then loaded into the analogue board’s output
buffer upon the initiation of an experimental sequence. This board is synchronized
with the main board through one of the DIO-64’s two remaining digital channels:
the output of the analogue board is updated by a trigger sent from the DIO-64 that is
detected on one of the analogue board’s digital ports. While the possible timing res-
olution of the DIO-64 is 50 ns, the settling time of an analogue port when changing
value is 2 µs; as such, this sets the timing resolution of a the control computer. (At
this stage, the final digital output of the DIO-64 carries an unused copy of the update
signal that is sent to the analogue board.)

For other operations, such as the sending of GPIB or camera pre-trigger com-
mands, where the required timing is not nearly as critical as the 2 µs described above,
‘software timing’ is used. That is, the computer system clock is essentially respon-

7In fact, the clock is 40 MHz, but must be used with two as the minimum divider
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FIGURE 3.23: Schematic diagram of the control system of the experiment.

sible for the timing of such events, administered by Labview, although the loss of
synchronization is guarded against within the Labview code by synchronizing the
system clock with the DIO-64 clock shortly before such an event.

Several other computers are used to interface with the cameras and other detec-
tors used in data taking. Different computers are used for these tasks so as to limit the
burden on the control computer. One is dedicated to the absorption imaging camera,
another to a CCD camera used to image light emitted by the atoms in light scattering
experiments, and finally we use a high-quality digital oscilloscope (which is itself a
computer) to monitor various other signals of interest in a given experiment. The two
cameras are described in chapter 4. A schematic of the set-up is shown in figure 3.23.

3.6 An experimental sequence

3.6.1 Loading the science MOT

Atoms are pushed from a 2D loading MOT by radiation pressure to a 3D science
MOT. As we have mentioned several times, the purpose of this arrangement is to
collect as many laser cooled atoms as possible in the science chamber, whereupon
we can begin evaporative cooling. We typically obtain approximately a few times
109 87Rb atoms in the science MOT in a time of 15 to 25 seconds. The loading is
performed with constant experimental parameters. As the number of atoms in the
SMOT increases, so does the fluorescence, and some of this is collected by a lens
placed close to the cell that directs the light onto a photodiode. The signal from
the photodiode runs into a comparator circuit: when the signal crosses some user-
defined level, the comparator changes its output state and through a digital input (on
the ‘analogue board’, see above), the computer is given the signal to continue with
the rest of the sequence - namely, the loading into the magnetic trap and evaporation.
The signal from the photodiode is shown in figure 3.24.
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FIGURE 3.24: Time trace (red) of the output of the photodiode measuring the fluorescence
of the science MOT. An inverted exponential fit to the trace is also shown (black) [34].

Provided the beam of cold atoms is well collected by the SMOT, the flux of atoms
is given by the initial slope of the curve in figure 3.24, and this is approximately
108 atoms/s. This value for the flux is not unusual in the literature (e.g, [63]), but
fluxes greater than 1010 atoms/s have also been achieved in variants of 2D MOTs
[64, 65]. The initial loading rate shown in figure 3.24 reduces exponentially due
to density dependent losses in the science MOT. The loading curve is fitted with
N(t) = N0(1− exp(−t/τ)), yielding a time constant for the loading of τ = 25 s.

The transfer was optimized empirically, but the parameter space is rather large
(several laser detunings and powers and magnetic field gradients), so inevitably it
could benefit from numerical simulations, some of which are described in the cited
references, and in general a more tailored approach. One point that could be ad-
dressed is the vapour pressure of the loading chamber; this is most likely kept too
low because of conservative use of the dispensers (which probably derives from a
healthy fear of vacuum problems). We attempted to make use of Ultra-Violet desorp-
tion to transiently increase the vapour pressure of the loading chamber [66], but the
efforts were unsuccessful - the optical access is simply not sufficient to get enough
UV light into the loading chamber to have an effect. If at some stage it is deemed
necessary to greatly improve the transfer rate, in all likelihood this will require a
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major overhaul, namely the replacement of the loading chamber with one of more
appropriate size and shape, combined with several changes to the magnetic fields
and beams.

3.6.2 Loading the magnetic trap

There are three main steps in loading the magnetic trap from the science MOT: a
Compressed MOT (CMOT) phase, optical pumping and finally the switch-on of the
magnetic trap. In general, the physical overlap of the cloud at the different stages
from MOT to magnetic trap is crucial to the overall transfer efficiency. At each
step, one must check this overlap; typically this is optimized through the power,
polarization and alignment of the SMOT beams. At least in our set-up, the main
disadvantage of loading a MOT from a cold atom beam is the precise alignment
it requires. Although it is an iterative process, fortunately it is the case that the
loading of the science MOT is dominated by the alignment of the loading MOT and
push beam, whereas the SMOT can be optimized principally for its loading into the
magnetic trap. Provided the optical molasses is well balanced and well centred on
the minimum of the quadrupole field, the remaining optimization largely relates to
the timing and parameter values used in the various steps. In our case, these settings
are set in the computer sequence and lead essentially to global changes in the cloud.

As noted in section 3.5.4, the magnetic trap must be switched on quickly so as
to catch the atoms against gravity. Additionally, the minimum of a weak magnetic
trap is considerably offset by gravity, leading to sloshing motion of the loaded trap,
and a decrease in phase space density. On the other hand, during the fast switch-on
the atoms gain potential energy depending on their position, and again the cloud is
heated. We can make a rough estimate of the energy gained in the non-adiabatic
increase in the magnetic field: The quadrupole trap is switched on at 9 A, leading
to a gradient of about 90 G/cm (see section 3.5.4), or in terms of Zeeman energy
gained, expressed as a temperature, 3 mK/cm. Thus, it is clear that the best strategy
is to make the cloud as small as possible before loading into the magnetic trap, and to
make sure the cloud centres in the SMOT and quadrupole trap overlap. Furthermore,
it is important that the turn-on of the magnetic trap is fast so that the atoms do not
fall too much with respect to the quadrupole centre, leading to more sloshing.

Compressed MOT

As such, the goals of the CMOT phase are to reduce the size of the cloud and increase
its density. As described in section 3.3.1, this is achieved by letting the atoms spend
more time in a dark state (F = 1), thereby reducing the repulsion between atoms due
to reabsorption of trap light. The main changes in the CMOT as opposed to a standard
MOT are thus the reduction of repump power, and the increase in the detuning of the
trap beams. The repump power is reduced by a factor of five, and the red detuning



3.6 AN EXPERIMENTAL SEQUENCE 65

of the trap beams increases from approximately 2.5Γ to 8Γ. At the same time, the
coil supply is instructed to reduce its output, although this occurs slowly, over the
20 ms duration of the CMOT phase. The parameters of the phase were optimized
iteratively, trying to strike the balance between cloud size and number of atoms.

At the end of the CMOT phase, there are 2 ms where the magnetic trap main
switch is opened, thereby putting the experiment into a nominal ‘polarization gradi-
ent cooling’ phase. However, the primary objective is to begin charging up the output
capacitors of the coil power supply, so as to achieve a fast switch-on: the supply is
instructed to send out 24 A in this period.

Optical pumping

The atoms are optically pumped to the F = 1 manifold by switching off the repump
beam. This simple form of optical pumping means that the atoms are distributed
between the magnetic sublevels, leading to approximately a third of the atoms in the
F = 1,mF =−1 state. The optical pumping phase lasts 3 ms. The timing was chosen
so that no discernable number of atoms were observed in the other states that can be
magnetically trapped (F = 2,mF = 1,2); this was confirmed by imaging the cloud in
the absence of repump light.

Magnetic trap switch-on

With the output capacitors of the coil power supply having charged up for 5 ms, the
main switch is engaged and the quadrupole field attains its target value of 9 A within
2.5 ms. There are several parts to this process in order to avoid a significant overshoot
of the current, where the bypass is engaged transiently and various other tricks are
played.

Final numbers in the quadrupole trap

When optimized, we obtain a few times 108 atoms at approximately 150 µK in the
quadrupole magnetic trap, which is more than enough given the obtainable tightness
of the magnetic trap to ensure successful evaporation. Nonetheless, approximately
an order of magnitude is lost in the transfer from the science MOT, where roughly
one third is lost in each step. The loss in going from optical pumping to the magnetic
trap is understandable given the atoms are approximately evenly distributed between
the three magnetic sublevels in the F = 1 manifold. The losses in the other steps also
seem reasonable given the much reduced loading rate of the CMOT, and the absence
of trapping during optical pumping.
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Transfer to QUIC trap

Over a period of 500 ms, the atoms are transferred adiabatically from the quadrupole
trap to the full Ioffe-Pritchard configuration. This is achieved by linearly ramping
up the current to the Ioffe coil, as described in section 3.6.2. As may be seen in
figure 3.16, as the current through the Ioffe coil is increased, the minimum of the
quadrupole trap is drawn towards to the Ioffe coil. When IIoffe is high enough,
a second trap minimum approaches that of the quadrupole field, and the trapped
atoms spill over into the double-well trap. Finally, the transfer is complete when
IIoffe = Iquad, and the trap has a single non-zero local minimum. If performed cor-
rectly, this procedure leads to all the atoms being transferred to the IP trap at no loss
of phase space density. If the procedure is reversed then the atoms are approximately
divided between the two potential wells [60]. This adiabatic transfer requires that
the ramping of the IIoffe is sufficiently slow, and that no (or little) noise is added to
the current by the switchbox. Both would induce heating in the trap, either though
the sloshing motion associated with too fast a transfer, or the shaking of the trapping
potential due to a noisy current flowing through the coils. Initially, the transfer was
performed at a reduced overall current (∼ 16 A) because the feedback circuit could
not cope with the non-linearity of the Mosfets, leading to a step in the Ioffe coil cur-
rent. However, since the switchbox was reworked (see section 3.5.4), the transfer
works well at the standard operating current.

3.7 Demonstration of BEC

3.7.1 Optimization of the evaporation sequence

The evaporation takes place primarily within the full QUIC trap, but there is an ini-
tial phase of cooling in the quadrupole trap. As mentioned in section 3.5.5, this
initial phase makes use of the back panel output of the RF Synthesizer, where the
evaporation is performed in 40 steps from 50 MHz to 20 MHz over a period of
9.6 s. The effect of this evaporation is to reduce the temperature from approxi-
mately 150 to 100 µK, and to reduce the atom number from approximately 3× 108

to 1.5×108.
The main evaporation sequence in the Ioffe-Pritchard trap was optimized em-

pirically according to equation (3.14). That is, the evaporation was broken up into
sections and several frequency ramps were tried for each section; the ramp that pro-
duced the highest gradient ln(ρ f /ρi)/ ln(N f /Ni) was chosen. This was done graph-
ically, and the results of the optimization are shown in figure 3.25. For each ramp,
three pictures were taken of the thermal cloud after time of flight. Using a 2D Gaus-
sian fitting routine, the cloud parameters were extracted from the processed images
and used to evaluate the temperature and the number of atoms. The number of atoms
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FIGURE 3.25: The increase in the phase space density as a function of the number of atoms
for the optimal evaporation sequence. The blue circles are the mean of three realizations for
the optimal evaporation time constant. Until N ≈ 107, ρ ≈ 10−2, the optimal time constant
was found to be τ = 12 s. At this point, denoted by the grey stripe, the trap was relaxed to
limit density dependent heating. From this point, a considerably faster evaporation was found
to be optimal. The red line is a linear fit to the data points, corresponding to an efficiency
parameter of γ = 3.96. The dotted line indicates ρ = 2.612 - the phase space density at which
Bose-Einstein condensation begins.

was estimated by integrating the 2D fit. The temperature was measured along the
long axis of the trap by using the fitted width in equation (3.30). This is not quite
correct for the large initial clouds, because they are more than big enough to sample
the trap outside the region where it is harmonic. The same is true in the radial direc-
tion. Nonetheless, both directions lie within 10 % of each other for the hot clouds,
and within 3% for the cold clouds. Furthermore, the complications with the method
do not change the results of the optimization, but rather the absolute numbers along
the way.

There are two main parts to the evaporation sequence: the bulk of the evaporation
takes place in a ‘tight’ trap so as to maximize the elastic collision rate, but the final
phase occurs in a ‘relaxed’ trap, so as to limit the effects of 3-body recombination.
The optimized evaporation ramp is shown in figure 3.26; the inset shows the period
where the trap is relaxed - which the RF frequency follows - followed by a final phase
with much reduced time constants. The RF coil was driven with the maximum power
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FIGURE 3.26: The frequency ramps produced by the RF synthesizer. For the first 38 s, the
sections comprise an exponential ramp with constant τ = 12 s. Subsequently, the trap is
relaxed as the current is ramped down by a third over 500 ms. In this time, marked by a grey
stripe, the frequency follows the lowering trap bottom and reducing temperature of the cloud.
At the end of the sequence, much shorter ramps are used: τ ∼ 1.

available (24 dBm, see section 3.5.5) for all but the very end of the evaporation.
It was found that an exponential ramp with time constant τ = 12 was optimal

for the majority of the evaporation. In this time, the magnetic trap is driven at
26.7 A, leading to a trap bottom of 1.6 G and trap frequencies of ωz ≈ 2π×13.6,
ωρ ≈ 2π×138 Hz. These frequencies are calculated by the computer simulation
used to design the trap - see section 3.5.4. The exponential ramp is approximated by
linear sections, where the RF synthesizer sweeps the frequency in a phase continuous
manner. At the start of the ramp - 20 MHz - η ≈ 9.

At an RF frequency of 1.5 MHz, the magnetic trap is relaxed so as to limit the ef-
fects of density dependent heating. The heating rate in the stiff trap was measured to
be approximately 190 nK/s, most likely due to three-body recombination; the heat-
ing rate dropped to approximately 50 nK/s when the trap was relaxed by reducing
the current from 26.7 to 17.7 A. The relaxation occurs over 500 ms so as to be adi-
abatic, using a linear ramp. The trap frequencies at this current were measured to
be ωz = 2π×11.38 Hz and ωρ = 2π×116.0 Hz. As a result of the relaxation, the
trap bottom changes from 1.6 G to 1.085 ±0.01 G, as described in section 3.5.4. In
order to maintain the same value of η after the relaxation, the RF knife frequency
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Step νstart (MHz) νstop (MHz) τ (s) Duration (s) RF power (dBm)
1 20 10 12 8.76 24
2 10 5 12 9.26 24
3 5 3 12 7.51 24
4 3 1.5 12 12.67 24
5 1.5 1.07 0.649 0.500 24
6 1.07 0.85 1 0.903 24
7 0.85 0.777 1.5 1 10
8 0.777 5 -0.005 0.022 -56

TABLE 3.3: Experimental evaporation parameters. The time constant in the fifth step - the
relaxation of the trap - is chosen to match the duration of the current ramp. The final step
causes the RF knife to have a negligible effect on the experiments that follow by reducing the
power and sending it to a non-resonant frequency.

is decreased. There are two modifications to consider: the bias field is 0.5 G lower,
and the temperature of the sample has decreased with the lower trap frequencies:
T ∝ ω , and ω ∝

√
I. The current is reduced to two thirds of its initial value, so

that the trap frequencies and hence the temperature are scaled by
√

2/3. Initially,
ν = ν0 + νη = 1120 + 380 kHz where ν0 = µB0/h and νη denotes the frequency
corresponding to η ; after the relaxation ν0 +νη = 770+(380×

√
2/3) = 1080 kHz.

The change in frequency during the relaxation is evident in the inset of figure 3.26.
The final phase of the evaporation uses considerably faster frequency ramps than

the initial phase so as to counteract the heating and loss associated with three-body
recombination [67, 68]. It was found that τ ≈ 1 gave the biggest condensates. How-
ever, we have experienced instability in the atom number and indeed in the position
and orientation of the BEC if the final ramp is too fast and uses too much RF power.
For this reason, the final evaporation phase uses a considerably reduced RF power,
and a slightly shallower ramp.

Important values in the RF evaporation are shown in table 3.3, and absorption
images at various stages in the evaporation are shown in figure 3.27.

As noted in sections 2.2.3 and 3.4, there are significant differences in the expan-
sion of thermal and Bose condensed clouds, and these constitute an important factor
in ‘pronouncing BEC’ for the first time. It is namely the inversion of the aspect ra-
tio that allows one to unambiguously state that Bose-Einstein condensation has been
achieved. In our case at least, the imaging system still required significant work at
the time we reached BEC, making the atom numbers obtained from the absorption
signal somewhat unreliable. To illustrate the differences in expansion, figure 3.28
shows the evolution of the aspect ratio of a thermal cloud and BEC.
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FIGURE 3.27: Absorption images taken under the optimization of the evaporative cooling.
(a) the starting point of' 1.5×108 atoms at approximately 150 µK after 15 ms time of flight;
(b) the cloud after RF evaporation from 20→ 10 MHz, this and all following images taken
after 25 ms time of flight; (c) 10→ 5 MHz; (d) 5→ 3 MHz; (e) the cloud upon release from
the relaxed trap after evaporation down to 1.07 MHz; (f) 1.07→ 0.85 MHz; (g) a bimodal
cloud somewhat below Tc; (h) a near pure condensate.
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FIGURE 3.28: Illustration of the difference in evolution of the aspect ratio of a BEC and a
thermal cloud in time of flight. Aspect ratios (ρ0(t)/z0(t)) for a BEC (circles, solid line) and
a cold thermal cloud (squares, dashed line) are plotted with values calculated from equations
(3.30) and (3.31).





Chapter 4

Atom and light detection

4.1 Introduction

The experiments in this work may be described quite simply as the process of shin-
ing light on a trapped BEC, and recording its ‘response’. This chapter describes the
techniques and equipment by which we measure the light that has interacted with the
condensate. With our set-up, there are two main probes of the system: absorption
images of the density distribution of the atoms after a time of flight, and the count-
ing of photons emitted by the condensate. As mentioned in chapter 1, by shining
quasi-resonant light on the condensate, a self-stimulated Raman process can occur
whereby atoms co-operatively scatter pump photons primarily along the long axis of
the BEC, leading to the emission of a pulse of light and recoiling atoms. We use
time of flight absorption imaging to record the changes to the BEC’s momentum
distribution. We can measure the light pulse emitted by the BEC by two pieces of
equipment: a home-built differential photodetector based on Silicon PIN diodes that
gives us temporal resolution of the emitted pulse, and another CCD camera to image
the spatial distribution of the emitted light. Figure 4.1 illustrates the different beams
and orientations of the experimental set-up.

4.2 Absorption imaging

While a brief description of absorption imaging was presented in section 3.4, we give
here a more detailed treatment. There are several very good resources that contain
fairly comprehensive treatments of the absorption imaging of cold atomic samples,
not surprisingly from the first two groups to achieve BEC [21, 54]. The purpose of
the following is to give a cohesive treatment of what we consider to be the essential
aspects.

73
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FIGURE 4.1: Schematic drawing illustrating the paths along which we interrogate the atoms
with light. Absorption imaging occurs along the vertical axis, taking a shadow picture of
a BEC that has been released from the magnetic trap and allowed to expand, falling due to
gravity in the process. The shadow cast by the atoms on the beam is imaged on a CCD
camera. The probe light is applied along the long axis of the condensate while it is still
trapped. The back-scattered light is collected with the same lens used to focus the probe
beam onto the BEC, and then directed onto polarization optics and either a time-resolved
detector or CCD camera.

4.2.1 Lambert-Beer

The attenuation of the intensity of light passing through an ensemble atoms is given
by the amount of scattered power per unit volume. For a laser beam travelling in the
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z direction through a cloud of two-level atoms, this relationship is given by [36]:

dI′

dz
=−h̄ωlΓρeen =−h̄ωl

Γ

2Is

1
1+ I′/Is +(2δ/Γ)2 I′n, (4.1)

where ωl is the frequency of the laser and the remaining terms were defined in sec-
tion 3.3. If one considers only the linear dependence in I, i.e., the case I� Is, then
such a relationship is known as the Lambert-Beer law (or some variation comprised
of these names). From the definition of the saturation intensity Is = πhcΓ/(3λ 3), and
defining I′(L) = I, I′(0) = I0, the solution of the differential equation may be written:

ln
(

I
I0

)
+

I− I0

Is(1+(2δ/Γ)2)
=−σabsñ(x,y), (4.2)

where the absorption cross section is defined by:

σabs =
3λ 2

2π

1
1+(2δ/Γ)2 , (4.3)

and ñ(x,y) is the column density, as defined in equation (3.25). In the absence of
the inhomogeneous term on the left hand side of (4.2), this is equivalent to equation
(3.24). The inhomogeneous term gives the non-linear intensity dependent component
of the response of a two-level atom to applied light - the term responsible for the
power broadening of a transition. It is worth noting that it is only the homogeneous
part of (4.2) that is defined as the optical depth:

I(x,y) = I0(x,y)e−OD(x,y) ⇔ ln
(

I
I0

)
=−OD(x,y). (4.4)

The inhomogeneous term is then treated as a correction to the true optical depth,
but we now consider this within the more general context of extracting the column
density from realistic absorption images, which always suffer from some level of
experimental imperfection.

4.2.2 Extracting the column density

As described in section 3.4, one requires three pictures to obtain high quality absorp-
tion images of the column density distribution: a shadow image Ish with the atomic
cloud of interest, a background image Ibg of the imaging beam in the absence of
atoms, and a bias image Ibia taken under the same conditions but with no imaging
light. Figure 4.2 shows Ish, Ibg and the final processed image of a cold thermal cloud.
It is worth looking at the various terms contained in a shadow image [21]:

Ish(x,y) = Ish
0

[
P(x,y)e−OD(x,y) +Ssh(x,y)

]
+ Ish

bia(x,y). (4.5)

We write Ish
0 (x,y) = Ish

0 P(x,y) to separate the maximum intensity and the spatial pro-
file of the imaging beam. In general, the imaging beam profile is far from clean
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FIGURE 4.2: Absorption imaging of a cold thermal cloud. (a) Shadow picture Ish, (b) back-
ground picture Ibg, and (c) the final processed image.

due to imperfections and dirt on the optical elements it passes through on its way to
the atoms, as is evident in figure 4.2(b), and this information is included in P(x,y).
Ssh(x,y) represents any feature in the shadow image deriving from the imaging beam
that is not related to σabsñ(x,y). There are two main components to this term: light
that is not resonant with the atoms, and light that is scattered from optical surfaces
after the atoms that somehow finds its way onto the CCD chip. This will be discussed
further, but for the moment we consider it a general spatially dependent piece of ad-
ditive noise on the signal. Ish

bia(x,y) is a spatially dependent offset term that accounts
for any non-ideal feature in a shadow image that is not related to the imaging beam.
Typically this is due to offsets produced in the camera, for instance in the conversion
of photon number to pixel counts or fixed pattern noise on the CCD chip [69]. (In
fact, it is desirable to have a positive offset to the images so that negative values of
the noise are not clipped in the analogue to digital conversion of the photoelectron
charge to counts.) Similarly, the background image may be written:

Ibg(x,y) = Ibg
0

[
P(x,y)+Sbg(x,y)

]
+ Ibg

bia(x,y). (4.6)

With these definitions, we proceed in forming the left hand side of equation (4.2);
let us call the argument of the natural logarithm the transmission T :

T =
Ishd(x,y)− Ibia(x,y)
Ibg(x,y)− Ibia(x,y)

=
Ish
0

[
P(x,y)e−OD(x,y) +Ssh(x,y)

]
Ibg
0 [P(x,y)+Sbg(x,y)]

. (4.7)

Experimentally, one produces shadow and background pulses that are nominally the
same, but that often differ slightly in overall intensity. In our case, the imaging pulses
are produced by an acousto-optic modulator, and these have the tendency to increase
in diffraction efficiency by 1-2% over subsequent pulses after a period of inactiv-
ity. In any case, this difference can be accounted for after the fact by analysing both
shadow and background images in a region where there are no atoms, comparing the
mean values of these regions and multiplying the background image by the appropri-
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FIGURE 4.3: Illustration of the effect of increasing values of S(x,y) on a reconstructed ab-
sorption image given by − ln(T ). The cloud has peak optical depth 3, and the level of addi-
tional noise on the images is characterized by the maximum possible optical depth the system
can detect ODsat. The curves are for ODsat = 100 (black), 4 (red), 3 (blue), and 2 (green). (b)
shows the processed images once the correction has been applied.

ate correction factor. Thus, Ibg
0 → Ish

0 , and (4.7) becomes:

T =
e−OD(x,y) +Ssh(x,y)/P(x,y)

1+Sbg(x,y)/P(x,y)
. (4.8)

In order to proceed, we require a model for the noise terms Ssh(x,y) and Sbg(x,y).
To motivate this model, let us consider the effect of the noise terms on a processed
image, neglecting for the moment the power broadening term in (4.2). For flexibility
in the following arguments, the data is computer generated with realistic parameters.
Figure 4.3 (a) shows traces of a simulated reconstructed absorption image − ln(T )
as Ssh(x,y) = Sbg(x,y)= S(x,y) is varied. It is evident that the greater the value of
S(x,y) applied, the lower the observed peak optical depth. The data was simulated
using:

S(x,y) = P(x,y)exp(−ODsat)+noise. (4.9)

P(x,y) is chosen as a broad Gaussian profile with multiplicative Gaussian noise
that has root mean square variation (rms) σ = 0.2× I0, consistent with experimen-
tal values - the goal is to simulate the imaging beam profile in figure 4.2(b). The
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size of S(x,y) relative to the signal of interest I0(x,y)e−OD(x,y) is determined by
a single number: the maximum optical depth one can observe in a given system,
ODsat. The additive noise used in S(x,y) is also Gaussian distributed, with rms width
σ exp(−OD(x,y)). It is this noise that is responsible for the increased fluctuations at
high optical depth relative to ODsat that is evident in figure 4.3.

With the choice of S(x,y) given in (4.9) (ignoring the noise), it is possible to
correct for the saturation of optical depth. It is a simple matter to solve for the true
optical depth in equation (4.7), and identifying T with the measured optical depth
T = exp(−ODmeas(x,y)), we obtain an expression for the corrected optical depth
which we call ODmod:

ODmod(x,y) =− ln
(

e−ODmeas(x,y)
[
1+ e−ODsat

]
− e−ODsat

)
. (4.10)

Often an approximation to this result in the limit of small exp(−ODsat) is quoted in
the literature:

ODmod(x,y)≈ ln
(

1− e−ODsat

e−ODmeas(x,y)− e−ODsat

)
. (4.11)

The two expressions agree when the measured optical depth is far less than the sat-
urated value, but (4.11) overestimates the value of ODmod when ODmeas ∼ ODsat.
Given both are equally straightforward to program, it is preferable to use equation
(4.10). Figure 4.3 (b) shows the implementation of the correction to the observed op-
tical depth in (4.10). The correction cannot do anything about the noise, but it does
reproduce the correct form of the simulated cloud.

With the observed optical depth corrected for saturation of optical depth, equation
(4.2) may now be written:

−ODmod(x,y)+
I0(x,y)[e−ODmod(x,y)−1]

Is(1+(2δ/Γ)2)
=−ODactual(x,y) =−σabsñ(x,y). (4.12)

This equation gives the correction to the observed optical depth for power broadening
of the optical transition. With the assumption that Ssh(x,y) = Sbg(x,y)= S(x,y), the
noise term S(x,y)/P(x,y) present in Ish and Ibg is cancelled in the inhomogeneous
term ∝ Ish − Ibg. Figure 4.4 shows the effect on the standard optical depth term
− ln(T ) of power broadening (the second term on the left hand side of (4.12)); with
the correction, the true optical depth is observed. Our typical intensity for imaging
is approximately Is/10, leading to a minor correction, on the order of a couple of
per cent. Of course, it is desirable to keep this correction as small as possible given
the experimental likelihood of different spatial noise on the shadow and background
images.

It is apparent from the above discussion that the ability to generate high qual-
ity processed absorption images requires that the noise term S(x,y) is small and as
constant as possible between the taking of pictures. The primary task then is to ex-
perimentally reduce and stabilize the contributions to S(x,y).
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FIGURE 4.4: The correction for power broadening of the optical transition in absorption
imaging. The figure shows the optical depth− ln(T ) that is uncorrected for power broadening
for several values of the intensity; the saturation of optical depth is assumed to be negligible
(i.e., ODsat→∞). The curves show I0/Is = 0.0001 (black), 0.1 (red), 1 (blue), and 10 (green).
With the correction in (4.12) applied, the curves coincide with the black curve.

4.2.3 Set-up

The atoms are imaged along the vertical direction after a time of flight. With this
arrangement, we obtain pictures showing the axial and a radial axis of the BEC,
and as we have seen in previous chapters, this is important for the demonstration
of Bose-Einstein condensation. The imaging light shares a common axis with the
vertical beams of the science MOT, which are mixed and separated with polarization
optics on either side of the science cell. From the previous section, it is clear we
wish to minimise the amount of stray light when taking shadow images: absorption
imaging never occurs with the MOT or any other light on. For most of the images in
this work, the time of flight is 45 ms, meaning that the cloud has dropped by 10 mm
when the image is taken; and, in the case of an unperturbed BEC, the aspect ratio has
inverted. The imaging light is produced by the injection locked slave laser RBS4; this
light is pulsed with an AOM, and is spatially filtered and transported to the upper trap
table by a polarization maintaining single mode (PM) fibre. Polarizing beamsplitters
are used in transmission before and after the fibre to ensure a clean polarization. We
use 50 µs imaging pulses, that have a rise and fall time on the order of 100 ns. Before
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the imaging pulse, the atoms are optically pumped out of the |F = 1,mF =−1〉 state
by a dedicated repump beam. The shadow cast by the atoms is imaged approximately
one-to-one on a CCD camera that sits below and to the left of the lower trap table
(seen from the view in figure 4.1). The imaging light is typically resonant with the
F = 2→ F = 3 transition. A small magnetic field is applied along the vertical axis
to help align the atoms so they experience a uniform polarization during repumping
and imaging. In general, we have tried to make the set-up as stable as possible: solid
plates and supports are used, the imaging beam has good pointing stability, and stray
light shielding is employed. We now describe the salient points in some more detail.

Imaging beam spectral characteristics

The frequency of the imaging light is checked in situ before any important experi-
mental run. In principle, one can work out the frequency very accurately with knowl-
edge of the frequencies sent to the AOMs, but these can change slightly on a daily
basis and clearly the magnetic environment in which the atoms reside can also mod-
ify their internal structure. For these reasons, we perform an imaging lineshape mea-
surement before any significant experimental run. This consists of taking pictures of
identically prepared cold thermal clouds with several different detunings, and thereby
mapping out the lineshape of the imaging light [54]. We use a cold thermal cloud
that has resonant optical depth no greater than 2.5 so that saturation of optical depth
is not an issue. Figure 4.5 illustrates the results of the procedure.

The fact that the fitted linewidth is very close to the expected linewidth in fig-
ure 4.5 indicates that the frequency of the imaging beam is reasonably well-known
and controlled. However, referring to the spectrum of the slave laser used for imag-
ing in figure 3.12, there is a concerning ‘hump’ in the spectrum at 775 nm where
the laser is free-running. As noted in 3.5.2, a numerical integration of the spectrum
suggests the non-resonant light comprises up to 2.3% of the overall power. This is
consistent with the observed maximum optical depth ODsat ' 5.

Camera

The camera used for absorption imaging is a model Chroma C3 made by DTA
Scientific Instrument. The CCD chip is a Kodak KAF3200ME, with pixel size
6.8×6.8 µm2 and dimensions of 2184×1472 square pixels (14.9 mm×10 mm). The
analogue to digital converter is 14 bit, and the camera is run at the maximum gain
setting of approximately 0.8 photoelectrons per analogue to digital unit (ADU, also
called ‘pixel count’). The CCD chip has a quantum efficiency at 780 nm of approx-
imately 59%. We generally do not cool the camera chip, which would reduced the
dark current, but given we clean the chip shortly before an image and the short expo-
sure time to take an image, the dominant contribution to the noise is from the readout.
The read-out noise is about 11 e− rms, or in terms of pixel counts approximately 13.4.
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FIGURE 4.5: An imaging lineshape, used to identify the frequency of the imaging light. Sev-
eral pictures are taken of a cold thermal cloud at several detunings, controlled by the voltage
to the cat’s eye VCO. Blue circles indicate the mean of three data points, and errorbars the
standard error of the mean. The red curve is a Lorentzian fit to the data, and the black curve
is the natural lineshape. The two vertical lines indicate the fitted linewidth Γfit = 6.69 MHz,
compared to the natural linewidth of Γ = 6.07 MHz. However, imaging at I/Is ≈ 0.1 leads
to a power broadened linewidth of Γ

√
1+ I/Is ≈ 6.4 MHz.

A read-out of the full chip takes 2.6 s although we in standard operation use much
smaller regions of interest; the read-out time can be reduced further with binning at
the expense of spatial resolution but we do not use this option. To be able to make the
correction for power broadening of the transition in (4.12) we need to know the re-
sponse of the camera for an applied intensity of light. (Note that the conversion factor
from photons falling on the chip to pixel counts drops out in the homogeneous part
ln(T ).) Under standard operating conditions, the camera was measured to produce
0.738 counts/photon.

While the specifications listed above are satisfactory, the camera has required a
lot of work to function reliably. In particular, the Labview programs and the Digi-
tal Link Libraries (DLLs) that came with the camera did not function well initially.
Mechanically, the camera also has its problems. The most obvious is that the camera
has a single M6 tapped hole for mounting (and this hole is about 3 threads deep!).
As such, to secure the camera, we sandwich it between an additional pair of mounts.
A noisy cooling fan that came mounted to the back of the camera was removed and
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mounted separately on a shutter mount (see 3.5.2). Finally, the camera’s mechani-
cal shutter is very noisy, and the poor software has meant that to date we have not
implemented an imaging procedure in kinetics mode that might improve the image
quality: greatly reducing the time between different raw images mitigates the effects
of acoustic noise and other slow fluctuations.

Camera objective and magnification

For the images presented in this work, the atoms were imaged on the camera chip
with a high quality multi-element lens. The model was Rodenstock Apo-Rodagon N,
with focal length f=105 mm. This lens contains 7 elements, has a maximum clear
aperture of 22 mm, and is optimized for use at approximately 460 and 540 nm. It
was mounted on a lens tube that was connected to the camera by a modular focus
device. The lens and camera are positioned such that the atoms are imaged with
a magnification measured to be 1.07. The transmission through the objective was
measured to be 0.957.

Imaging parameters

The main goal in choosing the imaging parameters is to obtain an integrated photon
count on the camera that optimizes the signal to noise ratio of the raw images while
staying well below the saturation intensity at the position of the atoms. As mentioned
above, we typically aim for an intensity of about Is/10 at the atoms, corresponding to
0.166 mW/cm2. Additionally, we would like to make good use of the dynamic range
of the camera; a mean value of 104 counts out of the possible 1.6× 104 per pixel
integrated over the imaging pulse duration is a safe value, given the intensity fluc-
tuations over the imaging beam profile. Given the response of the camera, and that
the transmission from the position of the atoms to the camera chip is approximately
0.61, an imaging pulse of 50 µs is a reasonable compromise, leading to an estimated
intensity at the atoms of 0.2 mW/cm2 or ∼ 0.12× Is. After 45 ms time of flight, the
atoms drop by 20 µm during a 50 µs imaging pulse; for the standard condensates
we produce, this drop corresponds to less than 5% of their length at the time, and the
depth of focus of the imaging system is much larger than this value.

The noise properties of the detection system become more important as the opti-
cal depth of the atomic cloud increases. Quite simply, the greater the attenuation of
the imaging light, the closer the signal comes to the noise floor of the detection sys-
tem. The goal is to have the shot noise of the light dominating over the other sources
of noise in the system; that is, the electronics noise of the camera and the noise rep-
resented by S(x,y) that in general will exhibit spatial correlations between different
pixels. Assuming the imaging light is well described by a coherent state, the noise
on the photon number is Poissonian, which - scaled by the quantum efficiency of the
camera chip - leads to the observed noise on the photoelectrons, and thus the final
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FIGURE 4.6: Relative error of the optical depth for several values of camera noise. The
curves are generated using equation (4.15). The curves correspond to σcam = 0 (black), 5
(red), 13.4 (blue) - the experimental value, and 20 (green). The inset shows the same curves
around their minima.

raw image. Through an error analysis, one can deduce the optimal optical depth that
minimizes the relative error of the processed signal. For simplicity, we consider the
low intensity limit where the optical depth is given by ln(T ). Furthermore, we work
in terms of the integrated intensities observed on the camera chip, that is in terms of
pixel counts. Then,

OD = ln
(

Nbg−Nbia

Nsh−Nbia

)
and Nsh = Nbge−OD. (4.13)

We model the noise present on the images as follows:

σ
2
sh = Nbge−OD +σ

2
cam, σ

2
bg = Nbg +σ

2
cam and σ

2
bia = σ

2
cam, (4.14)

where Nbg is the shot noise of the imaging light, and σ2
cam represents the variance of

the total camera noise. From the standard formula for error propagation one obtains:

σ
2
OD =

Nbg(1+ eOD)+2σ2
cam(1− eOD + e2OD)

N2
bg

. (4.15)

Figure 4.6 shows the relative error in the optical depth calculated with (4.15) for
several values of camera noise. The relative error is minimized for values of the
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FIGURE 4.7: The size of the two components of (4.15). The dotted line shows
(1+ eOD)/Nbg. The solid curves show 2σ2

cam(1− eOD + e2OD)/N2
bg for σcam = 5 (red), 13.4

(blue) - the experimental value, and 20 (green). It is desirable to operate at optical depths so
that the shot noise of light predominates over technical noise.

optical depth OD ≈ 2. The two contributions to the noise - the shot noise of the
imaging light, and the camera noise - are shown in figure 4.7.

4.2.4 Optical pumping and effective absorption cross-sections

In order to obtain correct absolute values of the density distribution inferred from
absorption imaging, we need to take into account the multilevel structure of 87Rb.
There are two main points to consider: the optical pumping of the atoms from
|F = 1,mF =−1〉 to the F = 2 manifold, and how quickly the atoms are then op-
tically pumped during imaging into an extreme state from which they are driven on
the F = 2→ F ′ = 3 cycling transition. Additionally, the heating induced by the scat-
tering of photons in either repumping or imaging should not significantly alter the
density distribution we are trying to measure. By simulating the master equation
for a 87Rb atom interacting with a laser field we can obtain the deviations in the
real system from the assumed dynamics. The simulations were written by Marco
Koschorreck.

With the dedicated repump beam, the optical pumping from |F = 1,mF =−1〉
to the F ′ = 2 manifold takes on the order of 2 µs and scatters at most two photons in
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FIGURE 4.8: Simulation of the optical pumping of the atoms from the |F = 1,mF =−1〉
state to the F = 2 manifold. The populations in the various atomic states are shown as a
function of time. The oscillations at the beginning are due to the high intensity - the curves
become smooth for lower powers. The inset shows the number of photons scattered v. time.

the process.
The repump beam approaches from the front of the cell - from the direction of

view in figure 4.1. The beam is transported to the trap table by a PM fibre and is
outcoupled from the fibre so that it is approximately collimated with a waist of 1 mm.
The fibre is oriented such that the polarization of the output beam has maximum
transmission through a polarizing beamsplitter. The beam is then directed into the
cell, approximately 10 mm below the position of the trapped cloud for a 45 ms time
of flight. The beam has total power of 6.5 mW, which, given its small waist, provides
a very high intensity at the atoms. The repump pulse is applied for 2 µs (which is the
smallest possible time we can produce directly from the computer control system).
Experimentally, no increase in imaging signal was observed with longer repumping
times. Furthermore, the repumping appeared insensitive to modest misalignment of
the beam. Apart from the fact that a dedicated repump beam is necessary in the set-
up to optically pump the atoms in a sensible time frame, it has the additional benefit
that, with the use of a cylindrical lens, the repump light can take the form of a ‘sheet’
so that only a slice of the atoms is imaged.

The result of the simulation of optical pumping from the |F = 1,mF =−1〉 state
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FIGURE 4.9: Simulation of imaging on the F = 2→ F ′ = 3 transition driven with σ− reso-
nant light using the nominal experimental intensity I = 0.12Is with Is = 1.66 mW/cm2. The
initial populations are those produced by the repumping (see figure 4.8). As time proceeds,
the atoms not already in |F = 2,mF = −2〉 are optically pumped to the extreme state. Once
there, the atoms scatter on the cycling transition corresponding with a rate given by that for
a two level atom (see equation (4.1)). The inset shows the integrated number of photons
scattered v. time from the simulations (black) and from the expression for a two level atom
(red).

to the F = 2 manifold is shown in figure 4.8. With the experimental repump intensity
and polarization, within half a microsecond an atom has with probability one been
transferred to the upper ground state and emitted on average two photons in the pro-
cess. After the optical pumping, an ensemble of atoms is thus distributed among the
F = 2 magnetic sublevels, where the exact nature of the distribution depends on the
polarization of the repump light. Note that the simulation describes the behaviour of
the density matrix of a single 87Rb atom: it does not include any information about
the physical density of the cloud or thus the attenuation as the light passes through
the sample. Nonetheless, the result is consistent with experiment.

Simulation of the imaging procedure reveal that fewer photons are scattered in the
true multi-level system of 87Rb relative to that of a two level atom. Figure 4.9 shows
the populations of the various sublevels as imaging proceeds, where a σ− polarization
and the nominal experimental intensity have been used, and the initial population
distribution is the output of the repump simulation. It is evident that atoms not in



4.2 ABSORPTION IMAGING 87

|F = 2,mF =−2〉 are optically pumped into the extreme state over a period of several
tens of microseconds. This leads to a reduction in the number of scattered photons
as compared to the two-level atom scattering rate used in equation (4.1)). This can
be seen in the inset figure: the number of photons scattered v. time according to
the simulations is shown together with the number from the nominal two-level atom
expression. According to the simulations, 5% fewer photons are scattered than in the
ideal case; if instead we image with σ+ light, the reduction is 10%.

Accordingly, we must modify equation (4.3) to take account of this: we can
define an effective scattering cross-section that produces the final results in figure 4.9.

Finally, we note that the number of photons scattered in the imaging procedure
does not significantly modify the density distribution of the atomic cloud. An atomic
sample exposed to a laser beam changes its velocity along the direction of beam
propagation by Nphvrec and its transverse velocity increases by vrec

√
Nph/3. The

longitudinal change is irrelevant as the camera and lens position are set so to have the
cloud in focus; however the induced heating and thus observed larger cloud width are
of importance. The transverse heating leads to an increase in width of displacements
vrec
√

Nph/3∆t in a time ∆t [21, 70]. Thus, during the 50 µs imaging flash in which
on the order of 100 photons are scattered, the cloud is increased in width by ∼ 2 µm
which is at worst approximately a 2% increase.

4.2.5 Absorption imaging checks and balances

It is possible to check that the absorption imaging is giving sensible results by com-
paring the properties of the observed clouds with theory; there are two main methods.

In the first, one scans the evaporation sequence for the first sign of a condensed
fraction, and compares the observed temperature and number of atoms in the cloud
with those expected from theory. The fitting procedures were discussed in sec-
tion 3.4, and the scaling of the critical temperature with the number of atoms is
the content of equation (2.7). Corrections to Tc due to several factors such as finite
particle number and interactions between atoms are on the per cent level [19]. We
observe that the pair of measured critical temperature (∼ 380 nK) and number of
atoms (∼ 4×106) agrees to within 10% of what is expected from theory.

The second method consists of comparing the atom number inferred by the mea-
surement of the chemical potential with that using the widths and the peak optical
depth in the observed cloud. This was described in section 3.4.3. Briefly, one can
infer the chemical potential from the width of the expanded cloud, and from this
one can obtain the atom number with knowledge of the trap frequencies, mass of the
atom, and the scattering length. Alternatively, one makes use of all the fitted parame-
ters: the widths, and the peak optical depth and, via the scattering cross-section, one
obtains the 2D density distribution and thereby the total atom number. Figure 4.10
shows a comparison of the two methods using on-resonance absorption imaging. The
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FIGURE 4.10: Comparison of atom number measurement of a BEC using two methods. We
generate BECs with a range of sizes using extra-hold time in trap and an aggressive RF shield
(see 6.4); the time of flight was 45 ms. By using the Thomas Fermi radii to infer the chemical
potential, we obtain the number of atoms (circles). The chemical potential is obtained from
the radial width (blue) (hence the perfect agreement), but the axial widths agree very well
with theory. When we use all fitted parameters to obtain the number of atoms (squares), the
agreement is out by a factor of about two. The disagreement illustrates the present technical
limitations of the imaging set-up - the expanded Thomas Fermi profiles have an optical depth
of about 15 and the resonant absorption imaging cannot resolve this given the technical noise
of the system.

atom numbers and Thomas Fermi radii comprise a self-consistent data set, whereas
the numbers obtained using all the fitted parameters do not. In fact, the atom numbers
derived from all the fitted parameters are too low by a factor of order two. The reso-
lution to this disagreement lies in the fact that the observed peak optical depth of the
expanded BEC is limited by technical noise in the imaging. The peak optical depth
of such a cloud is about 15, whereas the fitted peak optical depth is on the order of 7,
depending on the atom number. This is not surprising, given the above discussion of
technical limitations in absorption imaging.

We therefore conclude that the imaging system performs in a way that is consis-
tent with our understanding. Nonetheless, there are obvious limitations that might be
improved upon. If we continue with absorption based imaging and it is important to
image clouds of high optical depth, then a form of anti-trapped expansion could be
employed to reduce the observed optical depth [54]; however this would require the
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development of microwave technology in the lab. Alternatively, selective repumping
could be used to limit the cloud to a slice of atoms. In general, off-resonant absorp-
tion imaging seems frowned upon, given the lensing effects that can occur in such
a high density sample. However, we have never observed any variation in the width
when using a detuned imaging beam. Nonetheless, off-resonant absorption imaging
essentially throws away signal, which is never a good solution. Furthermore, bire-
fringence due to impure polarization in the imaging beam becomes more likely with
off-resonant light, and it would require a careful analysis of the effect of the polariza-
tion optics in the imaging set-up. If off-resonant imaging was chosen, then it would
make sense to move to an imaging method based on dispersion such as phase contrast
imaging.

4.3 Light detection

4.3.1 Time-resolved differential integrating photodetector

To measure the time development of light that has interacted with the trapped atoms,
we use a homemade differential integrating photodetector. Much of the group’s work
relates to the generation and measurement of spin squeezing in atomic ensembles and
quadrature squeezing of light fields. The detector we use is one of four built within
the group in the last few years with the obvious goal of advancing the group’s scien-
tific goals, but it has also served to increase the knowledge base within the group on
the techniques and technology related to ultra-sensitive detection of light - no single
commercially available device can match the characteristics of this detector. The de-
tector is designed to provide shot noise limited measurement of light pulses that have
passed through an atomic ensemble. In order to cancel the classical noise on a laser
signal, the detector should be used in a balanced configuration: i.e., equal (mean)
intensity in both arms. However, to date we have used the detector unbalanced to
measure the photon flux from the BEC, rather than the noise properties of this light.
Here we give a brief summary of the properties of the detector; it was developed and
tested primarily by Patrick Windpassinger, with guidance from Jörg Helge Müller,
and built by Axel Boisen; further details may be found in [71].

The operation of the detector is described in the schematic diagram 4.11. The
difference of the signals from two reverse-biased PIN photodiodes is AC coupled
to an integrating circuit, whereupon near Gaussian pulses are produced by sending
the signal through sequential high and low-pass filters. The PIN diodes have a good
quantum efficiency of ' 87%. The detector is shot-noise limited for photon fluxes
greater than∼ 105/µs; i.e., the shot noise of the light predominates over the technical
noise of the detector for fluxes over this value. While using the detector unbalanced
means that classical fluctuations on the light are not cancelled, this does not affect the
technical noise of the detector. As such, even if the detector is completely imbalanced



90 ATOM AND LIGHT DETECTION

FIGURE 4.11: Schematic diagram of the differential, integrating photodetector. The differ-
ence signal between two PIN photodiodes is AC coupled to an integrating circuit. The signal
is then shaped to produce approximately Gaussian pulses [71].

(i.e., all the light in a single port), the numbers quoted above hold true.

Photodetector pointspread punction

In order to use the detector to measure the time development of light scattered by
the BEC, we need to quantify how the detector modifies the shape of an incident
pulse. Figure 4.12 shows the time traces from a monitor photodiode and the detector
of a pulse used to calibrate the response of the detector. The first thing to note is
that the pulse measured by the photodetector has a rise and fall time on the order
of 1 µs. More precisely, the detector pulse was fitted using a double error function
model, yielding a fitted rms width of 315 ns for the underlying Gaussian. This agrees
well with the theoretical response of the detector to an applied delta function: the
pointspread calculated using the real component values is given by a Gaussian of
width ' 333 ns. Thus, measured pulses will be slightly broadened and delayed by
approximately 1 µs. As we shall see in, the pulses we wish to measure are generally
tens of microseconds long and exhibit reasonable shot to shot fluctuations, so the
change is not of great significance. Another non-ideal feature of the detector is the
slight overshoot at the top and bottom of the pulse. However, this overshoot is on
the order of a percent and is most pronounced for step-functions which are never
observed in experiment.

Photodetector calibration

The detector was calibrated by measuring its response to incident light pulses of
known power. The result of the calibration is shown in figure 4.13. A calibrated
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FIGURE 4.12: The pulse-shaping effect of the photodetector. A rectangular pulse recorded
on a calibrated ‘monitor’ photodiode (black) is plotted with the response of the photodetector
(red). The detector signal has a rise and fall time of ' 1 µs, and there is a slight overshoot of
the voltage on the way up and the way down.

Newport model 840-C with detector head 818-SL was used as the power reference,
with quoted accuracy of ±1% (at the 2 standard deviation level i.e., ≈ 95% of mea-
surements fall within this error interval).

4.3.2 CCD Camera

A CCD camera can be used as an alternative to the differential photodetector: clearly,
it provides spatial resolution of the light scattered by the condensate, but under the
right circumstances it can also offer a better signal to noise ratio if one’s goal is
to count photons. The camera is an Andor Ikon-M DU-934BRDD. The camera is
well suited to our purposes: it is designed to offer very high quantum efficiency in
the Near Infra-Red (NIR) with very low technical noise. The CCD chip is a back-
illuminated, ‘deep depletion’ device centred on 800 nm. With cooling, the camera
chip can reach temperatures as low as -100◦C, but even without cooling fluid the
operating temperature can at least reach -70◦C. We typically use the camera at -60◦C
without any forced cooling fluid; for stability it is preferable to have the camera
working well within its cooling range. At this temperature the chip produces less
than 1e−/pixel/s in dark current. Instead, the read-out noise dominates given we
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FIGURE 4.13: Calibration of the photodetector. Light pulses of known power were di-
rected onto the detector and its response was measured. The calibration yielded a response
of 37.12±1% nW/V.

use the camera at its highest analogue to digital conversion rate of 2.5 MHz at 16 bit.
The sensitivity at the highest gain setting of approximately g−1 = 1.2e−/(A/D count),
with a read-out noise of 9.7e− and a base level of 3348 counts. The CCD chip has
1024× 1024 square pixels of area 13 µm2. The chip has nominally 94% quantum
efficiency at 800 nm.

The camera is run on a third lab computer, taking its trigger from a TTL signal
from the computer that controls the experiment. The software interface for this cam-
era works very well, and did so more or less immediately. We use short programs
coded in the Andor Basic language to control detection sequences containing several
pictures.

CCD Calibration

The camera was calibrated at several different temperatures, and figure 4.14 shows
the result for the CCD chip cooled to -60◦C. The calibration yielded a total gain of
G = 1.24±1% photon/(ADU).

It is possible to isolate the quantum efficiency of the camera chip by combining
the above measurement with another measurement that relies on taking several flat-
field pictures and making use of the statistical properties of the light. The observed
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FIGURE 4.14: Calibration of the Andor CCD camera with chip cooled to -60◦C. Light pulses
of known power were directed onto the camera and its response was measured. The calibra-
tion yielded a response of G = 1.24±1% photon/(ADU).

number of counts of a given frame is given by F = G Nph = g Qeff Nph, where Qeff is
the quantum efficiency of the CCD chip and Nph is the number of photons incident
on the chip. After taking two frames F1 and F2 where the intensity distribution is
uniform and large compared to the technical noise and base level, one forms the
quotient:

M =
var(F1−F2)
〈F1 +F2〉

=
var(F)
〈F〉

, (4.16)

where the second equality follows from the fact that F1 and F2 are independent
realizations taken under identical conditions so that 〈F1F2〉 = 〈F1〉〈F2〉, and that
var(F1) = var(F2)≡ var(F) and 〈F1〉= 〈F2〉 ≡ 〈F〉. (Note that in practice, one has
to account for the technical noise of the camera in (4.16); therefore the variance of
the readout noise was subtracted from the numerator and twice the base level was
subtracted from the denominator.) If the light that illuminates the camera has Pois-
sonian photon statistics, then the variance of the photoelectrons in the CCD chip is
given by: var(F) = g2var(QeffNph) = g2Qeff

〈
Nph
〉
. Thus, M = g and the quantum

efficiency may be obtained from the overall gain G of the camera determined above.
Five flat field frames were taken, leading to 10 independent permutations. The mean
inferred value of the gain and the standard error of the mean over the 10 realizations
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was g−1 = 1.219± 0.007 in agreement with the nominal value. The quantum effi-
ciency at 795nm was found to be Qeff = 98.2±1% (where again, the dominant error
derives from the calibration of the power meter).



Chapter 5

Superradiance

5.1 Introduction

In a dense atomic ensemble, light scattered by an atom can interact with other atoms
in the sample. This effect was noted in connection with the limiting density in a
Magneto-Optical Trap in section 3.3.1, but it is also the general physical idea of the
experimental results in the following chapters. Superradiance is a process whereby
one or more initially unoccupied electromagnetic field modes first become weakly
populated through spontaneous emission, and then amplified with the highest gain
along the direction of greatest optical depth. This implies that the emission can be
highly directional in elongated atomic ensembles, as opposed to normal spontaneous
emission where atoms emit independently into approximately 4π . Furthermore, in-
stead of exponential decay of the light at the natural decay rate Γ as one would expect
from standard spontaneous emission, it is a characteristic feature of superradiance
that the emission comes as a pulse of width ∝ 1/ΓNat and with a peak intensity ∝ N2

at
where Nat is the number of atoms in the sample. These features are depicted in fig-
ure 5.1.

Superradiance has enjoyed periods of considerable interest since Dicke’s seminal
paper on the subject in 1954 [10]. Dicke considered the evolution of a system of two-
level atoms where initially each atom was in the electronic excited state. Accordingly,
we shall refer to this as ‘Dicke superradiance’ or ‘superradiance in electronically
inverted samples’; note that in the literature this form of superradiance is often called
superfluorescence [72]. One might say that this form of superradiance had its hey-
day in the 1970s and early 1980s, with the bulk of experimental results coming in
this period. The first realization was a pencil shaped sample of Hydrogen Fluoride
in 1973 [73]. In general, such experiments involve optically pumping an elongated
atomic sample to an electronically inverted state and recording the light emitted along
the long axis of the sample with a photodetector (using an appropriate frequency filter
to discriminate the longitudinal mode of interest).

95
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FIGURE 5.1: Illustration of the differences between standard spontaneous decay from a di-
lute atomic sample, and Dicke superradiance from a dense and asymmetric sample. Light
within a certain solid angle is detected by a photodetector and the time-trace of the intensity
in both cases is shown in the accompanying figures. Under the right conditions in a suffi-
ciently dense sample, light is emitted as a superradiant pulse of width ∝ 1/ΓNat and with a
peak intensity ∝ N2

at [74].

There are several aspects to superradiance that make it a very rich topic in physics.
First and foremost, superradiance is the process whereby quantum fluctuations in the
form of spontaneous emission are amplified by an atomic gain medium. In this way,
the process is very similar to that in a laser, where the initial photon number statistics
in a given mode are those of a thermal field but as the system evolves the statistics
become Poissonian [75]. As such, it is often the case in treating superradiance that
one is forced to break up the treatment into two parts: first one considers an initial
‘quantum’ phase whereby given modes of light are first populated, and then ‘semi-
classical’ evolution where the populated modes are amplified according to the gain
properties of the atomic medium. It is namely in the amplification phase that com-
plications arise due to the need to consider the propagation of scattered light through
the atomic medium. Another element in the mix is that, at first sight, the concept of
‘coherence in spontaneous radiation processes’ can be somewhat confusing because
it appears to question cherished concepts like stimulated and spontaneous emission.
As noted in [74], this confusion to a large extent arises from whether one chooses
to analyse the system in the Schrödinger or Heisenberg pictures. In the Schrödinger
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picture - as Dicke used - one seeks to solve for the state of the system in an N-atom
generalization of the Wigner-Weisskopf theory of spontaneous emission for a single
atom, whereas in the Heisenberg picture one focusses on a small number of atom
and light field variables. Given the latter picture lies much closer to semi-classical
treatments, we shall argue in these terms.

Superradiance has experienced a renaissance in recent years with the realization
of Superradiant Light Scattering (SLS) in ultra-cold atomic ensembles. The first
observation of SLS was reported in 1999 by Wolfgang Ketterle’s group at the Mas-
sachusetts Institute of Technology (MIT) [76]. In this experiment, a cigar-shaped
BEC confined in a magnetic trap was illuminated by a pulse of off-resonant light
perpendicular to the long axis of the trap with the appropriate polarization to induce
(primarily) Rayleigh scattering; i.e., the internal state of the atom after the scatter-
ing was left unchanged, but its motion changed due to the recoil associated with
absorption and emission of a photon. As well as time-traces and pictures of the emit-
ted superradiant pulses, time of flight images of the atomic density distribution were
used to study the process. This experiment has led to many subsequent investigations
by several groups [77, 78, 79, 80, 81, 82].

In this chapter, we introduce superradiant light scattering by an ultra-cold atomic
sample. Where possible, it is our goal to draw comparisons between superradiant
light scattering and superradiance in inverted samples. As such, we begin the chapter
with a brief treatment of Dicke superradiance. This includes arguments justifying the
use of a semi-classical approach in such problems, and gives the framework within
which we can model fluctuations. Following an introduction to the physics of SLS,
we present 1D Maxwell-Schrödinger equations that describe on a semi-classical level
the time development of superradiant scattering by a BEC.

5.2 Dicke superradiance - the pendulum model

A useful way to view Dicke superradiance is through the motion of the ensemble’s
collective state on the Bloch sphere. For simplicity, we consider a 1D mean field
model, such that we assume that neither the electric field amplitude or the atomic
polarization varies over the length of the pencil-shaped sample. Furthermore, we
consider emission into a single transverse mode. Following reference [74], the equa-
tions describing the evolution of the system are:

dσ+

dt
= iω0σ+ +Γσ+σ3,

dσ3

dt
=−Γσ+σ−. (5.1)

ω0 is the resonance frequency of the two-level atoms with excited and ground states
given by |e〉 and |g〉, and decay from the excited state occurs at the rate Γ. The
diagonal Pauli operator for the jth atom is given by:

σ3, j =
1
2
(|e〉〈e| j−|g〉〈g| j). (5.2)
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The atomic raising and lowering operators are defined by:

σ+, j = |e〉〈g| j and σ−, j = |g〉〈e| j. (5.3)

Equations (5.1) are expressed in terms of the collective raising, lowering, and diago-
nal Pauli operators, that are defined by:

σq = ∑
j

σq, j, for q = +,−,3. (5.4)

It is possible to simplify the solution of (5.1) by treating the operators as classical
variables with initial values sampled from appropriate probability distributions. This
idea corresponds to the fact that a thermal state of the electromagnetic field can be
represented by a fluctuating classical field with given statistics. The term that ini-
tiates the dynamics in the (5.1) is Γσ+σ− - it represents the spontaneous emission
of a photon. It turns out that statistics governing a measurement of σ± (through its
quadratures) are those consistent with a Gaussian phase space distribution of the two
variables α and φ . That is, 〈σ−(t = 0)〉= α exp(iφ), with the respective probability
distributions given by:

Q(φ) =
1

2π
, (5.5)

P(α2) =
e−α2/Nat

Nat
. (5.6)

Note that
〈
α2
〉

= Nat. With these designations, and denoting the now classical vari-
ables by σ cl

− etc, the equations (5.1) describe the rotation of the Bloch vector, while
preserving its length: σ cl

+σ cl
− +(σ cl

3 )2.
With this motivation, we introduce the new variables θ and φ by:

e−iω0t
σ

cl
+(t) =

Nat

2
sin(θ(t))eiφ , (5.7)

σ
cl
3 (t) =

Nat

2
cos(θ(t)), (5.8)

which upon substitution into (5.1) yield:

dθ

dt
=

ΓNat

2
sin(θ), (5.9)

dφ

dt
= 0. (5.10)

A diagram representing the Bloch sphere is shown in figure 5.2. The initial condition
θi may be obtained from expressing 〈σ−〉 in terms of the new variables via (5.6) and
(5.7); the mean ‘tipping angle’ is given by θ̄i = 2/

√
Nat. Equation (5.9) may be
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FIGURE 5.2: The Bloch sphere, where an arbitrary collective atomic state is represented as
a vector in an abstract space identified by the axes 1,2,3. The ensemble in the fully excited
state |e,e, . . . ,e,e〉 corresponds to the vector pointing upwards, and |g,g, . . . ,g,g〉 corresponds
to the vector pointing down. If the dynamics is ‘coherent’, the length of the vector does not
change.

integrated directly to give: ∫
θ

θi

dθ ′

sinθ ′
=
∫ t

0

ΓNatdt ′

2

tan
(

θ

2

)
= tan

(
θi

2

)
eΓNatt/2,

(5.11)

and the radiated intensity is given by:

I(t) =−h̄ω0
dσ cl

3
dt

=
h̄ω0ΓN2

4
sin2(θ)

=
h̄ω0ΓN2

4
cosh−2

[
ΓNat

2
(t− tD(θi))

]
,

(5.12)

with the delay time of the pulse given by:

τP(θi) =− 2
ΓNat

ln
(

θi

2

)
. (5.13)

The mean delay time is given by:

〈τP〉=
1

ΓNat
ln(Nat). (5.14)

Equation 5.11 has the features noted in figure 5.1: a bell-shaped curve with a
peak intensity proportional to the square of the number of atoms, and a width in-
versely proportional to the number of atoms multiplied by the spontaneous emission
rate. Physically, we can view it as the irreversible falling of a pendulum through a
viscous fluid. The non-zero initial condition θi, representing the effect of sponta-
neous emission on the atomic polarization, is necessary to instigate the evolution. It
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is interesting to note the initial exponential growth of θ in (5.11); this is characteris-
tic of the amplification of light through a gain medium where propagation effects are
not accounted for.

5.3 Superradiant light scattering by a BEC

Superradiant light scattering from an ultra-cold atomic sample is self-stimulated Ra-
man scattering that is initiated by spontaneous emission. Like superradiance in elec-
tronically inverted samples, it is a process whereby an initially unoccupied electro-
magnetic field mode becomes weakly populated through spontaneous emission, and
then amplified by stimulated scattering within a dense atomic medium. In SLS, the
electronically inverted sample is replaced by an atomic ensemble ‘dressed’ by a pump
beam. Initially, the pump is spontaneously scattered by the atoms, and subsequently
it acts as a reservoir as photons are coherently scattered from the pump into the super-
radiant mode(s). Note the strong connection with superradiance in inverted samples,
except that the natural decay rate Γ is replaced by the spontaneous scattering rate,
which we shall refer to as R:

R =
Γ

2Is

I
1+ I/Is +(2δ/Γ)2 . (5.15)

Again, some kind of geometrical asymmetry in the sample plays a role in deter-
mining which transverse mode sees the most gain. Typical experimentally produced
BECs are cigar-shaped so that the dominant modes are along the long axes where
the optical depth is greatest; these are the so-called ‘endfire modes’. We use ‘Raman
scattering’ in the general sense that the states before and after a scattering event are
different - whether by the fact that only the external degrees of freedom change in the
scattering process, or that the internal state of the atom also changes. In the literature,
the former process is referred to as Rayleigh superradiance and the latter as Raman
superradiance.

Given that the process is instigated through spontaneous scattering of pump pho-
tons, several modes compete for gain in the atomic medium. Figure 5.3 shows a
cartoon of a common experimental configuration where a BEC is pumped from the
side by a beam that is uniform in intensity over the sample; although the results we
present pertain to an end-pumped BEC, it is useful to consider the side-pumped con-
figuration first because the pump and superradiant modes are clearly distinct. Pho-
tons are scattered out of the pump beam according to their dipole emission patterns,
and the polarization of the pump is chosen so as to drive σ -transitions (choosing the
natural quantization axis along the direction of the bias field). It is evident that σ -
transitions are most probable along the long axis of the condensate. Thus, photons are
spontaneously scattered predominately within a cone centred on the long axis of the
condensate. As such, several transverse modes within this cone are weakly populated
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FIGURE 5.3: Cartoon depicting how SLS is initiated. A pump beam E that is uniform over
the spatial extent of a prolate BEC is applied, causing photons to be spontaneously scattered
according to the dipole emission patterns for circularly (σ ) and linearly (π) polarized light
with respect to a quantization axis that is oriented along the long axis of the BEC (i.e., along
the bias field). Given the polarization of the pump is chosen so as to drive σ -transitions
with respect to this quantization axis, photons will be predominantly scattered within a cone
centred on the long axis of the trap. Gain competition between these modes determines the
observed far field intensity distribution.

at random times by this process. Under the right conditions, the intensity of light that
arises from stimulated scattering increases exponentially as it propagates through the
atomic medium [83]. Thus, the physical picture is one where the final light intensity
distribution is strongly dependent on gain competition between an initially small and
random population of several transverse modes.

Clearly, the diffraction properties of the BEC play a role in the far-field intensity
distribution we observe in experiment. The Fresnel number of the sample is a useful
figure of merit for qualifying the diffraction properties of the sample. It is given by:

F =
πw2

λL
, (5.16)

where w and L are the radius and length respectively of the (assumed cylindrical)
atomic sample, or alternatively w gives the radius of an aperture or waist of a Gaus-
sian beam and L the distance to the plane of observation. If F � 1, the scattered
light is confined to a narrow cone in the forward direction but this comes with the
complication of introducing a strong radial dependence on the transverse modes1.
Alternatively, if F > 1, the axial modes have little radial dependence but non-axial
modes are supported [84].

1Note that F � 1 marks the region of applicability of Fraunhofer diffraction.
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FIGURE 5.4: Coupling scheme used to induce SLS. (a) A circularly polarized pump
beam is applied along the long axis of a trapped BEC. (b) The light drives the
F = 1,mF =−1→ F ′ = 2,mF =−2 transition and is detuned by δ .

It is clear from the above discussion that SLS is in general a multi-mode process,
and the appearance of a predominant intensity peak in elongated samples is the result
of complex dynamics. Indeed, the study of SR without an a priori single mode
assumption is the subject of on-going research [85, 86]. As mentioned in 5.1, the
standard approach to study superradiance or superradiant light scattering in extended
samples is to consider an initial ‘quantum’ phase followed by a one-dimensional
‘semi-classical’ evolution whereby an assumed single mode of light is amplified [83,
87]. In our experimental realization of SLS, the results are well-described by such
an approach, and we now describe the general experimental configuration so as to
motivate the associated 1D model. We defer the discussion of the early phase of
superradiance, and its measurable consequences, to chapter 7.

5.4 Experimental configuration

The trapped BEC is illuminated by a pulse of off-resonant light applied along the
long axis of the condensate. The light is right-hand circularly polarized and drives
the σ− transition between F = 1, mF =−1 and F ′ = 2, mF = −2; it is detuned by
a frequency δ from this transition. Figure 5.4 shows these features. This choice of
transition and detuning approximates very well a two-level atom driven coherently
by an applied laser field. The single particle spontaneous scattering rate R lies in
the range 1− 16× 103 s−1 for the experimental parameters considered. An atom in
the excited to F ′ = 2, mF =−2 may decay to three levels F = 2, mF =−2,−1 and
F = 1, mF =−1 with probabilities 1/3, 1/6 and 1/2 respectively.

With the condensates used in experiments, the Fresnel number of the sample is
approximately one, implying that the main aspects of the system’s dynamics may
be described by a one dimensional theory. Such a choice means that light scattered
within the sample retains its general transverse distribution along the length of the
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FIGURE 5.5: A BEC end-pumped by laser field E exhibits two endfire modes E+ and E−.
Scattering of a pump photon into E− leads to the atom gaining 2h̄kl in momentum, and
because the atom returns to the same internal ground state after the scattering - Rayleigh
scattering - sequential scattering can occur leading to the populating of several forward mo-
mentum orders. If the pump is sufficiently intense, the Kapitza-Dirac regime can arise where
atoms in the zeroth momentum order absorb back-scattered light and re-emit into the forward
direction.

sample, and furthermore that this distribution has little transverse variation; i.e., the
light within the sample is well-described by a single, approximately flat, transverse
mode.

In the end-pumped geometry, light is predominantly backscattered by the atomic
ensemble leading to the concomitant scattering of atoms into forward momentum
orders separated by 2h̄kl . As can be inferred from figure 5.5, an atom with mo-
mentum 2h̄kl arises from the destruction of a pump photon E and the creation of a
backscattered photon E−. Because an atom returns to its initial internal state after
scattering a photon, the process can repeat and with appropriate parameters one can
generate several diffracted orders in the forward direction. For single particle scat-
tering rates much smaller than the recoil frequency ωr = 2π×3.6 kHz, scattering to
higher atomic momentum orders occurs sequentially on a time scale ∼ τr = 2π/ωr.
When R ∼ ωr, there is sufficient gain for atoms to be back-scattered into negative
momentum orders, i.e., the Kapitza-Dirac regime where atoms absorb back-scattered
light and re-emit into the forward direction, as shown in figure 5.5.

5.5 Maxwell-Schrödinger equations

The starting points are the Schrödinger equation for the ground state of a two level
atom in the presence of an off-resonant light field, and the wave equation with a
polarization source term [88, 89]:

ih̄
∂ψ

∂ t
=− 1

2M
∇

2
ψ +

1
h̄δ

(d ·E(−))(d ·E(+))ψ, (5.17)

c2
∇

2E(±)− ∂ 2E(±)

∂ t2 =
1
ε0

∂ 2P(±)

∂ t2 , (5.18)
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where the total electric field is given by E = E(+) + E(−), d is the atomic dipole
moment, M the mass, and the polarization is given by:

P(+)(r, t) =−d |ψ(r, t)|2 d ·E(+)(r, t)
h̄δ

, P(−) = P(+)∗. (5.19)

The excited electronic state has been adiabatically eliminated given the assumed low
rate of real excitations. These equations give a self-consistent description of an en-
semble of two-level atoms interacting with a classical electric field. The applied field
polarizes the atoms according to quantum mechanics, the dipole moments of these
atoms are summed to give the macroscopic polarization P(r, t), and this enters the
wave equation as a source term [90]. We assume that the polarization of the atoms
is linear in the applied electric field, and therefore that there is no saturation of the
atomic transition - a point which needs to be confirmed as a matter of self-consistency
in the solution of the problem. Indeed, for the parameters considered in this work,
this condition is always fulfilled. At this stage, we neglect the harmonic trapping
potential and the mean field interaction term representing collisions between atoms.

In order to solve the above equations, we need to make some approximations.
Based on the discussion of the previous section, it is reasonable to ignore the trans-
verse spatial variation of the condensate wavefunctions and electric fields. As such,
we make the ansatz:

ψ(z, t) = ∑
m=2n

ψm(z, t)e−i(ωmt−mklz), (5.20)

and
E(+)(z, t) = e+1

[
E+(z, t)e−i(ωt−klz) +E−(z, t)e−i(ωt+klz)

]
. (5.21)

ψm(z, t) is the slowly varying amplitude for the atomic momentum order m = 2n
for integer n; the concomitant recoil frequency is given by ωm = m2ωr, with the
recoil frequency ωr = h̄k2

l /(2M). E+ and E− are slowly varying amplitudes for the
forward and backward travelling electric fields, and e+1 denotes the unit polarization
vector for right-hand circular light. Note that in this formalism, we cannot distinguish
between incident and forward scattered light - E+ contains both components. Such
an identification is necessary in a 1D treatment, which assumes that the incident
and scattered fields occupy the same light mode. This identification is supported
somewhat by the fact that the pump is partially mode matched to the BEC, as we
describe in 6.2.

Upon substitution of equation (5.20) into (5.17) we look for terms that oscillate
at (ωmt−mklz). Similarly we substitute (5.21) into (5.18) and look for terms with the
common phase (ωt±klz). For the light fields, we make the Slowly Varying Envelope
Approximation (SVEA). The content of the approximation is to neglect derivatives of
the slowly varying envelopes E+, E−with respect to terms involving the derivatives
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of the fast oscillating exponentials. That is, we assume:∣∣∣∣∂E±
∂ t

∣∣∣∣� |ωlE±|
∣∣∣∣∂E±

∂ z

∣∣∣∣� |klE±| . (5.22)

To simplify the ensuing equations, we rescale the position and time variables such
that ξ = klz and τ = 2ωrt. The light field amplitudes are rescaled according to:

E± = e±
√

h̄ωlkl/2ε0A,

with A the cross-sectional area of the (assumed cylindrical) BEC. Finally, we obtain:

i
∂ψm(ξ ,τ)

∂τ
=− 1

2
∂ 2ψm(ξ ,τ)

∂ξ 2 − im
∂ψm(ξ ,τ)

∂ξ

+Λe∗−(ξ ,τ)e+(ξ ,τ)ψm−2(ξ ,τ)e+2i(m−1)τ

+Λe∗+(ξ ,τ)e−(ξ ,τ)ψm+2(ξ ,τ)e−2i(m+1)τ

+Λ(|e+(ξ ,τ)|2 + |e−(ξ ,τ)|2)ψm(ξ ,τ),

(5.23)

∂e+(ξ ,τ)
∂ξ

=−i
Λ

χ
∑

m=2n
e−(ξ ,τ)ψm(ξ ,τ)ψ∗m−2(ξ ,τ)e−2i(m−1)τ

+e+(ξ ,τ) |ψm(ξ ,τ)|2 , (5.24)

∂e−(ξ ,τ)
∂ξ

= +i
Λ

χ
∑

m=2n
e+(ξ ,τ)ψm(ξ ,τ)ψ∗m+2(ξ ,τ)e+2i(m+1)τ

+e−(ξ ,τ) |ψm(ξ ,τ)|2 , (5.25)

with the coupling constants Λ = |d|2 ωlkl/4ωrh̄δε0A and χ = ckl/2ωr. Retardation
effects have been neglected in equations (5.24) and (5.25) given the length of the
condensate L = 130 µm, which allows us to discard a time derivative term. However,
it is worth noting that with the definition of a retarded time (in unscaled quantities):
t ′ = t− z/c, the result can be made exact [74].

5.6 Four wave mixing

Equations (5.23), (5.24) and (5.25) describe a Raman interaction where a ladder of
momentum states are coupled by two counter-propagating light fields. The first two
terms in (5.23) describe the quantum diffusion and the momentum displacement in-
duced by recoil respectively of the wavefunction envelopes. In our parameter regimes
and interaction times, and given by construction these envelopes are slowly varying,
these terms contribute very little to the dynamics. Terms three and four describe the
coupling to the nearest momentum states via exchange of photons between e+ and
e−. The final terms in (5.23) account for phase rotation of the matter wave due to the
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light shift. Equations (5.24) and (5.25) have terms equivalent to the coupling terms
in (5.23). Specifically, the growth of e− occurs with the corresponding growth of
recoiling atoms ψm+2 and the decrease of e+ photons and ψm atoms. The last terms
in equations. (5.24) and (5.25) describe the effect on light of the slowly varying re-
fractive index due to the large scale atomic density distribution. If one disregards the
quantum diffusion and the momentum displacement terms in equation (5.23), these
equations demonstrate the symmetry of a four wave mixing process.

The equations (5.23)-(5.25) describe a non-linear process: the scattering of atoms
depends on the local intensity of light, and correspondingly the scattering of photons
depends on the local atomic density. In general, a standing wave of light will arise
with spatial period λ/2, but comprised of several frequency components shifted by
multiples of 4ωr - these are represented by the exponential terms exp(±2i(m±1)τ)
in (5.24) and (5.25). Given that the effect on wavelength of these frequency changes
is insignificant over the spatial extent of the condensate, these changes will manifest
themselves as amplitude and phase modulation of the standing wave along the length
of the sample that will change dynamically. A similar picture arises on the atomic
side: condensates with different momenta interfere, and given we consider Rayleigh
scattering where the internal state of the atoms remains unchanged, this leads to a
density modulation2. In general, this matter-wave grating is comprised of as many
spatial periods and oscillating frequencies as there are populated momentum orders.
In the regime of weak excitation, corresponding to a low single particle scattering rate
R, only ψ0 and ψ2 become significantly populated leading to a spatial period of λ/2.
This leads to the very appealing physical picture of the atomic density modulation
comprising a Bragg mirror from which light is ‘reflected’.

This point of view is supported by figure 5.6, which shows time of flight absorp-
tion images of an unperturbed BEC and a BEC exposed to pump beam aligned with
its long axis. In this case, the pump beam was approximately collimated and much
broader than the BEC. It is evident that it is primarily atoms centred around zero
transverse momentum that are diffracted into the 2h̄kl momentum state. Note that
it is reasonable to relate the transverse density distribution after time of flight to the
in-trap momentum distribution because the expansion along the radial direction is
ballistic; such a statement about expansion in the axial direction would need qualifi-
cation given the effects of mean-field repulsion, as noted in section 3.4.2. In a simple
picture, for incident plane waves, the Bragg condition for light to be backscattered is
fulfilled for those atoms with close to zero transverse momentum. One can draw the
analogy to diffraction by an acousto-optic modulator: typically maximum diffraction

2It is perhaps questionable to call the diffracted orders ‘condensates’, but it has been shown that
the different momentum orders generated in such a process are phase coherent [91]. In principle in
the cited reference the component shifted in momentum arose from a seeded process - rather than one
instigated by spontaneous emission - but this was only necessary to provide a phase reference for the
colliding condensates.
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FIGURE 5.6: Illustration of a Bragg condition in superradiant scattering for weak pumping
(R� ωr). A pump beam that was much broader than the transverse extent of the BEC was
flashed on the magnetically trapped atoms; the trapping potential was extinguished immedi-
ately after the interaction. (a) shows the unperturbed BEC, (b) shows a BEC that was dressed
by the pump beam; both are absorption images taken after 45 ms time of flight. With the
pump well-aligned, the diffraction to 2h̄kl occurs primarily for atoms centred around zero
transverse momentum.

efficiency into one of the first orders occurs with the appearance of a narrow stripe
missing from the zero-order beam.





Chapter 6

Coupled wave dynamics in
superradiant light scattering

6.1 Introduction

Here we present experimental results relating to the semi-classical evolution of super-
radiant light scattering from a Bose-Einstein condensate, and using the 1D Maxwell-
Schrödinger equations of section 5.5, we simulate the system and find very good
agreement with experiment over a wide parameter range. Whereas most earlier
experimental studies of superradiant light scattering have largely drawn on time
of flight images of the atomic density distribution, we study the process primarily
through the time-resolved detection of superradiant pulses emitted by the sample
[76, 79, 77, 78, 81, 82].

While the general configuration of the experiment was described in the previous
chapter, we begin with a more practical account of the experimental set-up, and the
forms of data we obtain. Subsequently we present results relating to some general
features of superradiant light scattering. As noted in 5.1, it is a characteristic fea-
ture of superradiance that the peak intensity of the first superradiant scales with the
square of the number of atoms in sample; we begin with this feature. We then present
a systematic study of the effects of pump detuning on the process while the single
particle scattering rate is kept constant. In this way, we investigate the effect of the
detuning of the pump beam in the process, and move between the case where the
pump beam remains essentially undepleted by the scattering, to the situation where
superradiant scattering is ‘clamped’ by a lack of photons in the pump beam. Crucial
to these dynamics is the structure that builds up along the long axis of the conden-
sate, demonstrating characteristics from Dicke superradiance from extended samples
[92]. Through experiments and simulations we show that collective atom light cou-
pling leads to the self-organized formation of dynamic Bragg gratings within the
sample. These gratings lead to an efficient back-scattering of pump photons and
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FIGURE 6.1: Schematic probing set-up for superradiant light scattering experiments (not to
scale!). Pulses from a PM fibre with a pure circular polarization are focussed onto a mag-
netically trapped BEC. The superradiant pulse is back-scattered with the same polarization
and is thus reflected by the polarizing beam splitter PBS 2, then directed on to a differential
integrating photodetector. To minimise this background scattered light recorded by the pho-
todiode, a portion of the input beam is directed onto the ‘subtracting’ port of the differential
photodetector so as to cancel this background signal.

optical resonator structures within the BEC.

6.2 Experimental set-up for SLS

Here we provided a brief summary of the experimental set-up followed by a more
detailed description of the important features that have not been covered in earlier
chapters.
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Superradiant Rayleigh scattering is induced in a trapped BEC by flashing it
with a pulse of off-resonant light along the long axis of the condensate, as shown
in figure 6.1. The BEC is generated by evaporatively cooling a cloud of 87Rb
atoms in the |F = 1,mF = −1〉 hyperfine state in a Ioffe-Pritchard magnetic trap.
Except for experiments where the number of atoms is intentionally varied, cigar
shaped condensates contain 1.35× 106 atoms, with in-trap Thomas Fermi radii of
ρ0 = 6.4 and z0 = 65 µm in the radial and axial directions respectively and with no
discernible thermal fraction. The pump light is detuned by a variable amount from the
|F = 1,mF =−1〉 → |F = 2,mF =−2〉 transition on the D1 line of 87Rb at 795 nm,
and circularly polarized with respect to the long axis of the trap (see figure 5.4). All
data presented is for red detunings (δ = ωl −ω0 < 0); rectangular pump pulse en-
velopes; and where the atoms are interrogated in-trap, with the trapping potential
extinguished immediately after the end of the pump pulse. The pulses are produced
by an acousto-optic modulator before the fibre, and the beam was focused to a waist
of 13 µm at the center of the condensate with negligible change of beam size over
the length of the BEC. Light is back-scattered by the sample in the same polarization
as the input beam, and thus the backward travelling light is reflected by the polariz-
ing beamsplitter PBS 2, then directed onto a sensitive PIN diode photodetector. The
detector, with a bandwidth of 400kHz, is shot-noise limited for photon fluxes greater
than 105 photons/µs. To avoid back reflections from optics and cell windows that
seed the process, the pump beam is inserted at a slight angle (less than 2◦). Pictures
of the atoms are obtained after 45ms time of flight by resonant absorption imaging.

The pump beam is shaped, filtered and directed onto the BEC from a solid bread-
board mounted next to the SMOT platforms. The pump beam is spatially filtered by
a single-mode, polarization maintaining fibre, and outcoupled to form a very weakly
diverging beam with waist ∼ 0.65 mm. The polarization of the beam is filtered by
a polarizing beamsplitter (PBS 1) straight after the fibre. Approximately half the
beam power is split using a 50-50 beamsplitter and directed onto a calibrated, fast-
photodiode used to monitor the input pulses. The power in the beam is considerably
reduced using a collection of Neutral Density (ND) filters. The beam is directed
through a second polarizing beamsplitter (PBS 2), oriented so as to minimise the re-
flected component for P-polarized light. Before PBS 2, the beam passes through a
half-wave plate mounted in a precision rotation stage so that a well-controlled por-
tion of the beam can be split from the beam. This light is directed onto the ‘sub-
tracting’ port of the differential photodetector, and is set in the absence of atoms to
cancel stray light scattered by the science cell and other optics the pump beam passes
through. The pump beam passes through a zero-order quarter wave-plate oriented so
as to maximize superradiant Rayleigh scattering. Finally, the light is focused onto the
BEC using an AR-coated achromat with nominal focal length f=60 mm. The lens is
mounted such that it can be tilted arbitrarily and translated in three directions. With
the exception of a Newport 25 mm linear translation stage used to adjust the position
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FIGURE 6.2: Time of flight absorption images from the initial alignment of the pump beam,
which propagated in the images from right to left. A far red-detuned beam (830 nm) was
directed onto the BEC in the magnetic trap leading to a modification of the trapping poten-
tial. The bare BEC is shown in (a); the effects of poor alignment of the dipole beam led to
displacement of the trap centre (b) and excessive heating (c) given the non-adiabatic turn-on
of the dipole beam. (d) shows the beam well-aligned leading to the trapping of the BEC in a
potential that was much tighter transversely, leading to an exaggerated expansion after time
of flight. (Note that for clarity the greyscale was modified in (c) given the much reduced
optical depth of the strongly heated cloud.)

of the focus along the long axis of the BEC, all of the optics mounts used in trans-
porting the pump beam to the BEC are made by S.Maier GmbH and are of a very
high quality: it has never been necessary to realign the pump beam unless changes
were made to the set-up.

We note a few points that are pertinent to the above description.
Given it is not possible to measure the beam waist at the position of the atoms

using standard methods, it was measured using a nominally identical lens (i.e., the
same model) at approximately the same position in the beam path as it is used in
practice. The results agreed very well with predictions from Gaussian beam optics.
The beam waist was measured to be 13.2 µm by recording the beam’s intensity pro-
file on the Andor CCD camera at several positions around the focus; given that this
is not an in situ measurement, we quote 13 µm as above.

Due to the sensitivity of superradiant light scattering to seeding from stray scat-
tered light, maximizing SLS it is not necessarily an accurate measure of good align-
ment, so instead we employed a method using a far red detuned laser to perform the
initial alignment of the pump beam to the BEC. The light was provided by a laser
diode free running at 830 nm that was coupled through the pump fibre and optics.
Given that the focusing lens is an achromat, the focal point of the dipole beam was
very close to the pump beam. By turning the dipole beam on non-adiabatically, we
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obtained a sensitive probe of the beam’s alignment. First, we optimized the position
of the lens to see the greatest possible (destructive) effect: given the non-adiabatic
turn-on, if the dipole beam is in the same general neighborhood as the magnetic trap
bottom, the shift in effective trapping potential shifts leads to heating of the trap. This
is evident in figure 6.2. Once the dipole beam was well-aligned, so that the two trap
centres overlapped, the effective trapping potential was much tighter in the transverse
direction. A such, the BEC expanded more quickly in the transverse direction and
this effect was easily detected in time of flight absorption imaging.

Given the sensitivity of the superradiant process to atom number, this was mon-
itored closely during experiments. Clearly, it was important to have the experiment
cycling so that the set-up was ‘thermalized’. Typically, five realizations of a given set
of experimental parameters were performed, and the size of the BEC (using the ‘real-
time’ fitting of Thomas Fermi profiles within the Labview program controlling the
absorption imaging camera), and hence the number of atoms in the condensate (see
3.4.3), was monitored before and after. At times, the final cut of the RF evaporation
were be changed by a few kHz to achieve the desired size of BEC.

6.3 Forms of data and simulations

Figure 6.3 illustrates the different forms of data and the level of agreement we obtain
between experiment and simulations.

Figure 6.3(a) shows experimental and simulated time traces for high and low
pump powers, with the corresponding atomic distributions shown in (c) and (d). As
a reference, the time of flight absorption image of an unperturbed BEC is shown in
(b).

Figure 6.3(d) shows the low pump power case case, with single particle scattering
rate R = 2.2× 103 s−1, where the transfer is limited to the first order. At such low
values of R, it is observed experimentally that scattering to subsequent orders occurs
on a slow time scale, so that in principle the appearance of the next diffraction order
coincides with a second superradiant pulse. In general, however, there is not a one-
to-one correspondence between multiple light pulse emission and cascading transfer
to higher momentum states in extended sample Rayleigh SLS because one part of the
sample can be driven by light from another part. This ringing behaviour is a general
feature of superradiance in extended samples [92].

When the pump is strong, that is when R∼ωr, there is sufficient gain for atoms to
be scattered into negative momentum orders. This is the Kapitza-Dirac regime where
atoms absorb back-scattered light and re-emit into the pump beam. This is shown in
figure 6.3(c). An asymmetry in distance between forward and backward scattered
atoms and the center of the original condensate after time of flight is also visible; this
has been observed previously in the side-pumped geometry [77, 88]. This asymmetry
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FIGURE 6.3: Illustrations of the different forms of data we obtain and of the agreement be-
tween simulations and experiment. (a) Traces from the photodetector are shown for high and
low pump powers at a detuning of δ =−2π×2.6 GHz. Simulations for the same param-
eters are presented as red lines. Absorption images after 45ms time of flight (TOF) of the
corresponding atomic distributions are shown in (c) (high power R = 10.7× 103 s−1, pump
pulse duration 50 µs) and (d) (low power R = 2.2× 103 s−1, pump pulse duration 200 µs).
An unperturbed BEC is shown (b). Circles indicating the separation of adjacent momentum
orders after 45 ms TOF are shown in (c); note that they originate from the input light end
(z = ξ = 0) of the BEC. (The greyscale has been changed for the different absorption images
so that the important features in each image are visible.)

can be traced back to the spatial inhomogeneity of superradiant scattering favouring
the input end of the condensate, where the amplitude of the reflected light E− is high-
est. The spatial dimensions of the condensate and the slow expansion upon release
from the trap along the long axis are such that this spatial feature of the scattering is
evident after 45 ms time of flight. For this reason, the circles in figure 6.3(c) mark-
ing the possible forward and backward momentum exchange between the matter and
light fields coincide at the input end of the BEC. The spatially dependent dynamics
within the BEC will be discussed in section 6.6.

The momentum distributions are somewhat distorted due to the input angle of
the beam. When the beam is aligned parallel to the long axis of the BEC, the Bragg
condition is satisfied for the atoms centered around zero transverse momentum as
shown in figure 5.6. However, at the slight incident angle used, the patterns become
more complicated.
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To compare experimental results with simulations, the equations (5.23), (5.24)
and (5.25) were solved numerically for experimental parameters.

We describe briefly the implementation of the 1D Maxwell-Schrödinger equa-
tions. The first attempt made use of several differential equation solvers in Matlab©.
This gave sensible results but the computation time was somewhat long. A more tai-
lored approach was implemented by Dirk Witthaut, where the dynamics of the atoms
is simulated with a split operator technique [93]. This method is based on a splitting
of the time evolution operator:

U(t +dt, t) = exp(−i/h̄
∫ t+dt

t
T +V (t ′)dt ′)

= exp(−i/h̄T dt/2)exp(−i/h̄
∫ t+dt

t
V (t ′)dt ′)exp(−i/h̄T dt/2)+O(dt3)

where T is the time-independent kinetic energy operator and V is the time-dependent
coupling to the light field, and when included, the trapping potential and mean-field.
V is diagonal in real space, so that it can be directly applied to the real space wave
function. In contrast, T is diagonal in momentum space so that one can apply it to
the momentum space wave function and flip between the two representations using
the fast fourier transform. For the moderate number of discrete grid points used here,
however, it is also possible to evaluate exp(−i/h̄T dt/2) numerically in real space.
For a set of standard experimental parameters, a complete simulation takes on the
order of a minute. The number of required momentum orders clearly depends on the
strength of the interaction and is chosen so that the outermost orders are negligibly
populated.

The initial wavefunction ψ0 was taken to be a 1D Thomas-Fermi profile normal-
ized to the number of atoms in the trap Nat. The boundary conditions for the light
fields were typically taken to be e+(0,τ) = ei and e−(klL,τ) = 0, with ei a constant
derived from the experimental pump photon flux and the (assumed) geometrical over-
lap of the BEC and the Gaussian intensity distribution of the pump beam. Note that
|e−(0,τ)|2 is proportional to the back-scattered light intensity measured in experi-
ment, and that the total photon flux is conserved:

|e+(0,τ)|2 = |e−(0,τ)|2 + |e+(klL,τ)|2 . (6.1)

As equations (5.23), (5.24) and (5.25) contain no explicit noise term to instigate
superradiant scattering, we seed the process by taking a non-zero first order momen-
tum component ψ2 = ψ0/

√
Nat, corresponding to a single delocalized atom in the

first side-mode [89]. The random nature of the initiation of superradiant scattering
may be modelled in the present formalism by using random initial conditions sam-
pled from a physically motivated probability distribution [84], and we return to this
in section 7.1.
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The simulations describe well the arrival times and amplitudes of the first super-
radiant light pulse. The agreement arises in part from a careful calibration of the
experimental detection system, but we should note that the nominal field amplitudes
ei derived from experimental parameters have been scaled up by a global factor of
10.5% in simulations to better capture the essential features of the experimentally
observed superradiant pulses. That is, in all simulations shown in this work, the
experimental pump photon flux (as measured on the calibrated monitor photodiode
∝ |ei|2; see figure 6.1) is scaled up by a global factor of 22%.

Clearly, there are limits as to how well one can expect a 1D semi-classical model
to describe a 3D quantum system. It is evident from 6.3(a), that while the amplitudes
and arrival times of the experimental pulses are well described by the simulations, the
agreement of the widths of the first superradiant pulses and the subsequent ringing
behaviour is not as good. This is consistent with similar modeling of superradiance
in inverted samples: experimentally one observes much less ringing than is predicted
by 1D numerical simulations [72]. Nonetheless, it is clear that the simulations cap-
ture the general features of the evolution of the first superradiant pulse well, and are
primarily useful to help our understanding, rather than to provide a comprehensive
model.

6.4 Dependence on atom number

It is interesting to check experimentally and with the 1D model that we can reproduce
the quadratic dependence on the number of atoms Nat of the peak intensity of the first
superradiant pulse. Furthermore, in the subsequent experiments presented, we keep
the atom number nominally constant, so it is pertinent to investigate how sensitive the
signals we measure are to fluctuations in the atom number. It is most likely obvious
to the reader, that it is much easier to produce smaller condensates than bigger ones!
As such, experimentally we can test the dependence only over a limited range before
the detection of light and atoms becomes problematic.

One can generate smaller condensates by simply lowering the RF further, but
we have found the most reproducible method is to simply the leave the BEC in the
trap with the RF knife at the position of the final cut. Essentially, this is just an
(aggressive) RF shield, so that as hot atoms are produced through inelastic collisions
- which we take to be three-body recombination - they are removed from the trap as
the cross the RF knife. By varying the hold time in the trap by up to several seconds,
one can realize arbitrarily small condensates.

However, varying the atom number in a BEC changes its size and therefore the
coupling to the pump beam. This is in contrast to experiments in superradiance by
inverted samples, where the effective number of atoms participating in the process
may be varied by the degree of population inversion, without changing the sample
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FIGURE 6.4: The atom number dependence of the peak value of the first superradiant pulse.
Experimental data (points) and simulations (solid curves) are shown for two values of the
single particle scattering rate: 4.3 (black) and 10.7 (red) ×103 s−1. The atom number for
each point was obtained by fitting the unperturbed BEC with a Thomas-Fermi profile and
using the widths to infer the chemical potential. The errorbars represent the standard error of
the mean of three realizations for each setting. The inset shows the logarithm of the number
of atoms v. hold-time: the ‘super-exponential’ character indicates the decay mechanism is
not related to background gas collisions.

geometry [73]. To simulate SLS from a BEC, one evaluates the chemical potential
from the assumed number of atoms using (3.33) and obtains the in-trap dimensions
of the BEC using expressions in table 3.2; these dimensions are used in the BEC
and light field normalizations, and in evaluating the effective number of photons
interacting with the BEC from its overlap with the pump beam.

Experimental and simulated results where the number of atoms in the BEC is var-
ied are shown in figure 6.4. After a given hold time in the magnetic trap after conden-
sation (the maximum was five seconds), three realizations of the unperturbed BEC
followed by three realizations of superradiant scattering were performed. The atom
number was obtained from fitting Thomas-Fermi profiles to the expanded clouds and
inferring the chemical potential as described section 3.4.3. The inset figure shows
log(Nat) v. time to demonstrate that the decay is consistent with three-body recombi-
nation [48, 94]. The fact that these data do not fit on a straight line indicates that the
decay is not due to background gas collisions, but rather two or three body collisions.
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Indeed, the decay is two orders of magnitude faster than that expected from the level
of vacuum. There is good overall agreement between the simulations and the data,
and it is evident that the peak scattering rate has a weak quadratic dependence in this
parameter range.

We can see how this quadratic dependence on the atom number arises by ma-
nipulating the 1D Maxwell-Schrödinger equations. For simplicity, we consider the
case where only the zeroth and first order atomic modes are populated. Recalling fig-
ure 6.3, this corresponds well to the low pump power case R = 2.2×103 s−1. In this
parameter range, and neglecting the wavefunction kinetic energy and displacement
terms and suppressing the explicit position and time dependence, equations (5.23),
(5.24) and (5.25) become:

∂ψ0

∂τ
=−iΛ

[
e∗+e−ψ2e−2iτ +(|e+|2 + |e−|2)ψ0

]
, (6.2)

∂ψ2

∂τ
=−iΛ

[
e∗−e+ψ0e+2iτ +(|e+|2 + |e−|2)ψ2

]
, (6.3)

∂e+

∂ξ
=−i

Λ

χ

[
e−ψ2ψ

∗
0 e−2iτ + e+(|ψ0|2 + |ψ2|2)

]
, (6.4)

∂e−
∂ξ

= +i
Λ

χ

[
e+ψ0ψ

∗
2 e+2iτ + e−(|ψ0|2 + |ψ2|2)

]
. (6.5)

Given that the growth of e− depends on the coherence - or polarization term - ψ2ψ∗0
we consider:

∂ (ψ2ψ∗0 )
∂τ

= iΛe∗−e+e+2iτ(|ψ2|2−|ψ0|2). (6.6)

The first feature of note is that the growth of the coherence that drives the creation of
e− photons depends on the population difference between the two momentum orders.
In this way, we can regard superradiant Rayleigh scattering as inversion in momen-
tum space, as opposed to population inversion in Dicke superradiance. Evidently, the
growth of the coherence ψ2ψ∗0 is proportional to the number of atoms in the sample,
and given this term appears in the expression for the growth of the field amplitude
e−, it follows that the intensity of the emitted light in the back-scattered mode has
the expected quadratic dependence on the number of atoms. We note further that
the time development of the atomic coherence depends on the light field coherence
e∗−e+. This is consistent with the physical picture that the both the local amplitude
and phase of the matter and light wave coherences determine the evolution of the
system.

6.5 Pump depletion

In the superradiance of inverted samples, all the qualitative features depend on just
the number of atoms Nat and the natural decay rate Γ, and comparisons of superra-
diant light scattering and superradiance in inverted samples rely on the identification
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FIGURE 6.5: Experimental (points) and simulated (lines) peak photon flux of the first su-
perradiant pulse as a function of detuning for R =2.2 (black), 6.4 (red), 10.7 (blue), 15.9
(green)×103s−1. Errorbar limits are the standard error of the mean for five realizations.

of the single particle scattering rate R as playing the role of Γ. However, we now
explore how this identification breaks down by simultaneously varying the detuning
and intensity of the pump beam so as to keep R constant. From physical grounds, it
is obvious that the peak back-scattered photon flux must drop with the detuning, so
that the reflectivity of the sample does not exceed one. This may be seen by rewriting
(5.15) as R = CNpump/δ 2, with C a constant, and Npump the photon flux of the pump
beam. Accordingly, the reflectivity may be written as Nph/Npump = CNph/(Rδ 2).
Given the constancy of R in the following experiments, it is clear that the peak back-
scattered photon flux must decrease as the detuning is decreased so as to maintain an
upper bound (of one) for the reflectivity.

Figure 6.5 shows experimental data (points) and simulations (lines) of the peak
value of the first superradiant pulse as the detuning of the pump beam is varied while
keeping the single particle scattering rate R constant. Results are shown for four
values of R in the range R� ωr to R ∼ ωr. For a large portion of the graph, the
peak value is essentially independent of the detuning, and there is excellent agree-
ment between simulations and data. For lower detunings, the peak value of the emit-
ted pulse falls away, and the experimental data reaches our detection resolution for
δ ≈−2π×300 MHz, while the simulations show the same qualitative behaviour.
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FIGURE 6.6: Experimental superradiant light pulses for several values of the single particle
scattering rate in the high detuning regime (δ = 2π × 2.6 GHz). The curves correspond to
R =2.2 (black), 4.3 (light blue), 6.4 (red), 8.6 (grey), 10.7 (blue), 15.9 (green)×103s−1. For
clarity, the traces have been clipped after the first superradiant pulse. The inset figure shows
the peak value of the pulse v. R. The data (circles) are well described by a linear fit (red line).

As the (red) detuning is increased, one observes experimentally that the atomic
density distributions become more transversely elongated after time of flight. This
is simply the effect of the dipole force: it begins to play more of a role as the power
of the pump beam is increased to compensate for the increased detuning, so as to
maintain the same single particle scattering rate. Note that the spontaneous scattering
rate scales as I/δ 2 whereas the dipole force scales as I/δ (cf. (5.15) and (5.17)).
Given that we use red detunings in the experiment, the atoms are attracted to the
intensity maximum of the pump beam, and because the beam is focused to a moderate
waist of 13 µm at the position of the atoms, the effect is to make the effective trapping
potential much tighter transversely. This is the same effect that was used to align the
pump beam to the BEC described in section 6.2.

To further study the two regimes, figure 6.6 shows experimental time traces for
several different values of R at a high detuning, and figure 6.7 shows experimental
traces for four low detunings while R is kept constant.

Figure 6.6 shows that in the high detuning regime, the superradiant peaks arrive
earlier and are more sharply peaked the higher the pump power. From the inset figure,
it is evident that the peak intensity increases linearly with the pump power, as one
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FIGURE 6.7: Traces corresponding to the decaying portion in figure 6.5, illustrating the
clamping of the superradiant pulse due to depletion of the pump beam. For R = 2.2×103s−1

and detunings δ =−2π× 2.0 (black), 1.0 (red), 0.7 (blue), 0.5 (green) GHz.

would expect from (6.6). This equation generalizes to to the multiple order case in
a straightforward way, given that each momentum order only couples to its nearest
neighbours. The inset figure also indicates a kind of threshold behaviour in that the
data and fit do not pass through the origin; this is consistent with [76].

Figure 6.7 shows how the superradiant pulse intensity is clamped at low detun-
ings. The lower amplitudes can be traced back to the lower incident photon fluxes
and increasingly important pump depletion in the low detuning case. The transition
from high detuning behaviour to the pump-depletion regime occurs in the experimen-
tal data at points where the incident photon flux is approximately 10 times the peak
reflected photon flux. Above this point, while the amplitude of the reflected pulses
drops, the observed peak reflectivity of the sample increases sharply, up to values
of ∼ 30%. The simulations show the same qualitative behaviour in this regime, and
we attribute the loss of quantitative agreement to the incoherent losses that are not
captured by the model: i.e., emission into different modes. The spatial dependence
of the light and matter waves plays a critical role here, and to gain more insight into
the behavior of the system, we explore the light and matter wave dynamics inside the
sample through simulations.
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FIGURE 6.8: Simulated low power dynamics within the BEC at high detuning
δ =−2π×2 GHz. To the left, the density of the different momentum components of the
BEC is shown: ψ−2 (black), ψ0 (red), ψ2 (blue), ψ+4 (green). In the right column, the light
field fluxes for the forward e+ (red line) and backward e− (black line) travelling waves are
shown. Note for each of the light intensity figures, the left (red) scale pertains to e+ and the
right hand scale (black) pertains to e− using the standard unit of 104/µs. The position scale
within the condensate (length L = 130µm) is the same for all the subfigures.

6.6 Spatially dependent dynamics

To gain understanding of the fundamental elements of the dynamics, we consider
simulations for the low power case of R = 2.2×103s−1 where - at least experimen-
tally - only the first order diffracted atomic mode becomes populated. Figure 6.8
shows the results of simulations for δ = −2π × 2 GHz so as to explore the high
detuning regime. For three relevant times during the interaction, atomic density dis-
tributions along the long axis of the BEC are shown in the left column, and the scaled
intensities ∝ |e+|2 and |e−|2 are shown in the right column. The general dynamics
for low input power, high detuning are as follows: The back-scattered light intensity
in the sample builds up at the input end because there it sees gain from approximately
the entire length of the BEC; this is the time shown in the uppermost row. It is this
spatial inhomogeneity in the scattering that was referred to in connection with fig-
ure 6.3. At this point, the rate of transfer of atoms from ψ0 to ψ2 concurrent with the
growth of e− and reduction in e+ begins to increase steeply. At the time shown in the
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FIGURE 6.9: Simulated low power dynamics within the BEC at low detuning. Again, in the
left column the density of the different momentum components of the BEC is shown: ψ−2
(black), ψ0 (red), ψ2 (blue), ψ+4 (green). In the right column, the light field fluxes for the
forward e+ (red line) and backward e− (black line) travelling waves are shown. Note for
each of the light intensity figures, the left (red) scale pertains to e+ and the right hand scale
(black) pertains to e− using the standard unit of 104/µs; the right hand scales are the same for
each of the corresponding subfigures in figure 6.8. The position scale within the condensate
(length L = 130µm) is the same for all the subfigures.

second row, the population in ψ0 is sufficiently depleted at the input edge of the BEC
so that the process slows down and then stops. However, the light field envelopes
then move towards the centre of the condensate, where |ψ0| is still large, and the
exchange between the two light fields continues; this is the time shown in the bottom
row, identified by t = 88 µs. At this time, |ψ0| grows again at the input end of the
condensate, driven there by the destruction of e− photons generated further inside the
sample, and ψ2 atoms. In this way, the back-scattered photon flux out the input end
of the condensate stops, and the first superradiant pulse has been emitted. The basis
of ‘ringing’ behaviour - the emission of subsequent superradiant pulses - is merely a
repetition of the dynamics described above. Furthermore, a fascinating implication
of the above dynamics, visible in the light intensity subfigure at t = 88 µs, is that
at times the light intensity within the BEC is higher than outside - the interaction
leads to the formation of an optical resonator, where partially reflecting mirrors are
formed by the density modulation due to the interference of stationary and recoiling
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matter-waves. These Bragg gratings are centered where ψ0 and ψ2 cross.
The dynamics in the low detuning case is similar, but with two significant differ-

ences. Due to the increased light scattering cross-section at low detunings, the pump
light is significantly depleted in its passage through the BEC, as is evident in the right
hand column of figure 6.9, which shows the same quantities as figure 6.8 except at
a low detuning: δ = −2π × 294 MHz. Accordingly, the build up of back-scattered
light is accelerated and even more localized at the input end of the BEC, so that the
scattering of ψ0 to ψ2 atoms is limited to a very narrow region of atoms at the input
end. This narrowness is reflected at later times in the length of the ‘resonator’. Thus,
the spatial dependence of the pump depletion and hence the size of the scattering
region leads to the reduced amplitude of the back-scattered pulses in figure 6.7. The
second main difference is that the ψ4 mode becomes significantly populated at low
detunings. This means that the first SR pulse is not stopped by a lack of ψ0 atoms, but
rather can continue due to the scattering from ψ2 to ψ4 via the destruction of a pump
photon. This can be seen in the bottom light subfigure, where there is more light
‘leaking’ from the resonator compared to the corresponding subfigure in 6.8; and in
figure 6.7, where the low detuning pulses are broader, and show a secondary peak
soon after the first. In general, the dynamics become complicated as the number of
significantly atomic orders and hence number of timescales in the problem increases.

It is important to note that the reflectivity of the sample is much greater in the
low detuning case than it is for high detunings. By comparing the light figures in 6.8
and 6.9, one can see that the peak reflectivity in the high detuning case is on the order
of 5%, whereas it attains a value in excess of 80% for low detunings.

It is evident that the light intensities of the forward and backward travelling waves
have the same spatial form at each point in time but offset from each other. This can
be understood by a simple energy conservation argument that is valid within the
approximation that retardation of the fields is unimportant; i.e., the relevant time
scales are much greater than the transit time of light through the length of the BEC
L/c. The rate of change of energy in a given slice ∆ξ of the BEC is given by the net
flux of photons into the slice:

dρ

dt
= K

[
|e+(ξ ,τ)|2−|e+(ξ +∆ξ ,τ)|2−|e−(ξ ,τ)|2 + |e−(ξ +∆ξ ,τ)|2

]
, (6.7)

where ρ is the linear energy density, and K is a constant. Given the neglect of retar-
dation so that we do not consider the transient build-up of light intensity within the
sample but instead assume that it is infinitely quick, (6.7) must equal zero. Therefore,

lim
∆ξ→0

|e+(ξ +∆ξ ,τ)|2−|e+(ξ ,τ)|2

∆ξ
= lim

∆ξ→0

|e−(ξ +∆ξ ,τ)|2−|e−(ξ ,τ)|2

∆ξ
,

∂ |e+(ξ ,τ)|2

∂ξ
=

∂ |e−(ξ ,τ)|2

∂ξ
,

(6.8)
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and the desired relation is obtained. In the limit where ∆ξ → klL, equation (6.7)
reduces to the photon flux conservation law of (6.1). However, as we have seen, the
light intensity can attain a local maximum within the BEC, and we now explore this
feature.

6.7 Bragg mirrors and resonator structures

It is an interesting feature of superradiant Rayleigh scattering that one may interpret
the coherence terms like ψ0ψ∗2 that drive the scattering from one light field to the
other as a density grating. In the end pumped geometry, this density grating - like
the total light intensity - has a spatial period of half a wavelength, meaning that the
Bragg condition for back-scattering photons is fulfilled; this supports the analogy
of this structure with a dielectric mirror. Figure 6.10 shows the spatial distribution
of light intensity and atomic density within the sample for the lower power, high
detuning case shown in figure 6.8, with the fast time and space dependence inserted
(i.e., equations (5.20) and (5.21)). The total light intensity has its maximum between
the two main ‘Bragg mirrors’.

A useful way to understand the dynamics is thus through the light and density
gratings: the local amplitudes and phases of these gratings determine the dynamics
of the sample. To motivate this idea, above the main figure of 6.10 we have plotted
close-ups of the gratings at, and to either side, of the intensity maximum. It is evident
that the phase between the the light and matter wave gratings shows symmetric be-
haviour either side of the intensity maximum, whereas at the peak intensity, the nodes
of the density grating coincide with the anti-nodes of the light standing wave. The
dynamics are complicated somewhat by the fact that condensate components other
than ψ0 and ψ2 are populated, leading to several frequency components making up
the matter-wave grating. This can be seen clearly in the close-up figure at the inten-
sity maximum whereas to either side, the grating is dominated by the overlap of ψ0

and ψ2 components, leading to a single, dominant, spatial period.
With this in mind, it is interesting to analyse the spatial dependence of the back-

scattered light intensity. By straightforward manipulation of (5.24) and (5.25), we
obtain:

∂ |e−|2

∂ξ
=−2

Λ

χ
∑
m

im
{

e∗−e+ψmψ
∗
m+2e2i(m+1)τ

}
, (6.9)

and expressing the two coherences in terms of their modulus and phase, we may
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FIGURE 6.10: Simulation of the total electric field intensity and matter wave density distri-
butions for the low power, high detuning case considered in figure 6.8 at time t ′ = 88 µs. The
interfering matter waves form Bragg mirrors that partially reflect the light, and at the chosen
interaction time there are two such mirrors, leading to an intensity maximum within the sam-
ple. Above the main figure are close-ups at different points within the sample, illustrating
that the phase between the light and matter-wave gratings shows symmetric behaviour about
the intensity maximum.

write:

∂ |e−|2

∂ξ
=−2

Λ

χ
∑
m

im
{∣∣e∗−e+

∣∣ ∣∣ψmψ
∗
m+2
∣∣ei(φl+φat+2i(m+1)τ)

}
=−2

Λ

χ
∑
m

∣∣e∗−(ξ ,τ)e+(ξ ,τ)
∣∣ ∣∣ψm(ξ ,τ)ψ∗m+2(ξ ,τ)

∣∣×
sin(φl(ξ ,τ)+φat(ξ ,τ)+2(m+1)τ) ,

(6.10)

where the explicit space and time dependence has been included in the final line.
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FIGURE 6.11: Interpreting the growth in back-scattered light intensity in terms of overlap
of the light and matter wave gratings. (a) As in figure 6.8, simulated low power dynamics
within the BEC at high detuning δ =−2π×2 GHz. The density of the different momentum
components of the BEC is shown at time t = 88µs: ψ−2 (black), ψ0 (red), ψ2 (blue), ψ+4
(green); and |e−|2 is shown (black dashed line). (b) Equation (6.9) (expressed in terms of
unscaled position z) is shown for the different terms in the sum: ψ−2ψ∗0 (black), ψ0ψ∗2 (red),
ψ2ψ∗+4 (blue), ψ+4ψ∗+6 (green). The sum of all the terms is shown as a black dashed line.

This equation summarizes the ideas discussed above: the local growth in space of the
back-scattered light intensity depends on the amplitude and the phase of the light and
matter-wave gratings. Figure 6.11 illustrates this, where (6.9) (expressed in terms of
unscaled position z) is plotted underneath the squared modulus of the slowly varying
envelopes for atoms and light. It is clear that the back-scattered light intensity reaches
its maximum when (6.9) equals zero, and is the case in the figure. The different
frequency components serve to shift slightly the zero crossing of the overlap of the
two gratings. Finally, the observed 90◦ phase shift between light and matter-wave
gratings in figure 6.10 at the intensity maximum can now be understood within the
framework implied by equation (6.10)1.

In summary, the growth in the back-scattered light intensity is the result of phase-
sensitive gain determined by the overlap of the light and matter wave gratings. In the
limiting case of atoms being scattered from a red-detuned optical lattice, one can
view the atoms as being pulled towards the anti-nodes of the lattice. In the more
general situation considered above, it is not a matter of one grating being pulled

1Figure 6.10 shows the total intensity |e+ + e−|2, while the present discussion relates to |e−|2.
However, the two lie within a fraction of the standing wave spatial period of eachother.
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towards the other, but instead more complex dynamics where both light and matter
wave gratings exert a comparable mechanical effect on each other, and this occurs
because they are interacting quantum systems of similar sizes.



Chapter 7

Fluctuations in superradiant light
scattering

We now shift our focus from ‘mean values’ in superradiance to fluctuations and cor-
relations between atoms and photons. As we noted in connection with the superra-
diance of inverted samples in section 5.2, the state of light in the initial phase of the
process is thermal. The same is true in superradiant light scattering, and the random
nature of the spontaneous emission that initiates the process is also manifest at much
longer times [95, 96]. To some extent, one can view SLS from a cold atomic sam-
ple as being analogous to a photomultiplier: the initial detection of a photon occurs
in a probabilistic way, but the subsequent amplification of that signal evolves as a
‘classical process’.

In this chapter, we present three main results in the regime of high detuning, so
that the pump depletion effects of the previous chapter are not significant.

First, we study the fluctuations in arrival times and amplitudes of the superra-
diant light pulses that are induced by the random nature of the way the process is
initiated. For a high and low scattering rate R and using the time resolved pho-
todetector, we performed many realizations with nominally the same experimental
conditions. There are several results from Dicke superradiance that may be applied
to help our understanding. Furthermore, we show that the simulations with initial
conditions sampled from a thermal distribution, produce the same distributions.

The second result relates to the way the state of light and atoms changes as the
superradiant process evolves. Analogous to a laser, the state of the emitted light
evolves from a thermal state to one well described by a coherent state. Using the data
mentioned above, we obtain the cumulative number of photons emitted as a function
of time, and compare this with a result from Dicke superradiance.

Finally, we study the number correlations between recoiling atoms and pho-
tons. Conservation of momentum guarantees that such atoms and photons are created
in pairs according to the generic parametric down conversion Hamiltonian ∝ â†b̂†,

129



130 FLUCTUATIONS IN SUPERRADIANT LIGHT SCATTERING

FIGURE 7.1: Illustration of the variations in the first superradiant pulse in three realizations
with a low value of the single particle scattering rate (R = 2.2×103s−1, δ = 2.6 GHz). The
output of the time-resolved differential photodetector is shown (blue) along with Gaussian
fits (red) to the first portion of the trace so as to capture the essential properties of the pulse
(amplitude, arrival (peak) time τP, and the width). The time over which the pulse was fitted
was 1.4×τP.

where here â† denotes the creation of a photon in the appropriate mode, and b̂† does
the same for an atom in a given momentum order.

7.1 Timing Fluctuations

Figures 7.1 and 7.2 show time traces from the differential photodetector for three
realizations using respectively low and high single particle scattering rates. Given
that the noise on the traces is quite prominent for the low value of R, in order to
obtain good estimates of the peak value and arrival time of the first superradiant
pulse, we fit the first portion of the traces with a Gaussian. The region of fitting is
abbreviated because, as we saw in the previous chapter, the extended length of the
sample leads to ringing behaviour that is a result of complex dynamics. Furthermore,
it is likely that mean-field effects begin to play a role as the process proceeds, as
strong ringing is not evident in either of the figures. As such, we focus on the first
superradiant pulse and use the Gaussian fitting procedure as an empirical model to
obtain quantities of interest. Clearly, the agreement between the data and the fits is
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FIGURE 7.2: As in figure 7.1 but for a high value of the single particle scattering rate
(R = 15.9×103s−1). The time over which the pulse was fitted was 1.25×τP.

very good. Finally, it is evident that the different realizations show variations in the
amplitude, time to peak τP and width.

Figures 7.3 and 7.4 show histograms of the arrival time τP for low and high
values respectively of the single particle scattering rate. The histograms have been
fitted with a time-delay distribution that arises in superradiance in inverted samples;
it is essentially an extreme value distribution.

To see how the distribution comes about, we revisit the analysis of section 5.2,
but this time include the effects of propagation within a 1D model. The following
treatment is based on references [74, 92, 97]. The analogue of (5.9) with propagation
included is known as the Sine-Gordon equation:

∂ 2θ

∂ z∂ t ′
=

ΓNat

2L
sin(θ), (7.1)

where L is the length of the sample, and t ′ = t− z/c is the retarded time. Given the
discussion of 5.5, we neglect retardation and set t ′ = t. The term ΓNat defines the
natural time-scale of the problem, and we thus define:

TR =
1

ΓNat
. (7.2)
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FIGURE 7.3: Histogram of arrival times τP of the first superradiant pulse for 120 realizations
of a low single particle scattering rate R = 2.2×103s−1. The histogram uses 30 bins, and is
fitted with equation (7.11). The result of the fit was 〈τP〉= 82.8 µs, and ∆τP = 5.96 µs.

Equation (7.1) may be rewritten in terms of the single variable given by:

q = 2
(

z
L

t
TR

)1/2

, (7.3)

so that the Sine-Gordon equation becomes:

θ
′′(q)+

1
q

θ
′(q)− sin(θ(q)) = 0, (7.4)

with the boundary conditions:

θ(0) = θi and θ
′(0) = 0. (7.5)

One can now associate ringing behaviour - the emission of several superradiant
pulses - with the oscillatory behaviour of this equation: instead of the irreversible
decay associated with (5.9), the ‘pendulum’ in this model overshoots π and continues
up towards 2π , whereupon the process repeats in an oscillatory fashion. Note that in
the previous model, 0≤ θ ≤ π and 0≤ φ ≤ 2π , so that we may understand values
of θ > π as corresponding to a π change in φ ; that is, the polarization and emitted
electric field undergo a π phase shift between subsequent superradiant emissions
[74].



7.1 TIMING FLUCTUATIONS 133

FIGURE 7.4: Histogram of arrival times τP of the first superradiant pulse for 186 realizations
of a high single particle scattering rate R = 15.9×103s−1. The histogram uses 30 bins, and
is fitted with equation (7.11). The result of the fit was 〈τP〉= 19.9 µs, and ∆τP = 0.896 µs.

One can obtain an expression for the mean time delay and the fluctuations about
this mean starting from equation (7.4). To proceed, we note that for the vast majority
of the delay time to the peak of the first superradiant pulse, θ is very small; this
is intuitively clear of a pendulum or rigid rotor displaced by a minute amount from
pointing directly upwards: for a long time it is slow moving and limited to small
angles, but by the time it crosses (θ(z = L, t = τP) = π/2) it is moving very quickly.
As such, we may assume that the first pulse achieves its maximum at θ ≈ 1, because
given the speed of the pendulum at that point, the time difference between this point
and π/2 is very small. Accordingly, we may approximate sin(θ) with θ . Equation
(7.4) then becomes Bessel’s modified equation, and has the following solution for
small input angles θi [98]:

θ(q) = θiI0(iq), (7.6)

where I0 is the zeroth order modified Bessel function, so that the delay time may be
written:

I0

(
2i
[

τP

TR

]1/2
)
≈ 1

θi
. (7.7)
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FIGURE 7.5: Histogram of the simulated arrival times τP of the first superradiant pulse for
300 realizations of a high single particle scattering rate R = 2.2× 103s−1. The histogram
uses 30 bins, and is fitted with equation (7.11). The result of the fit was 〈τP〉= 63.2 µs, and
∆τP = 11.4 µs.

In general, the delay time is many times greater than TR (see (5.14)) so to a very
good approximation we may replace I0 by its asymptotic value [99]:

I0(iq)→ 1√
2πq

eq. (7.8)

Solving for the delay time:

τP =
1
4

TR

[
ln

(
(16π2τP/TR)1/4

θi

)]2

. (7.9)

This expression is rather complex, but we note that the logarithm is dominated by the
initial tipping angle θi∼ 2/

√
N so that the effect of τP in the argument is rather small.

To simplify matters, we make use of equation (5.14) and approximate the argument
in (7.9) as A = (16π2 ln(Nat))1/4 ≈ 6.9 for Nat = 1.35×106. With this simplification,
the mean delay becomes:

〈τP〉=
1
4

TR

[
ln
(

A
√

Nat

2

)]2

. (7.10)



7.1 TIMING FLUCTUATIONS 135

FIGURE 7.6: Histogram of the simulated arrival times τP of the first superradiant pulse for
300 realizations of a high single particle scattering rate R = 15.9× 103s−1. The histogram
uses 30 bins, and is fitted with equation (7.11). The result of the fit was 〈τP〉= 22.0 µs, and
∆τP = 3.7 µs.

and transforming the thermal statistics of θ into those of the new random variable τP,
we obtain [74]:

P(τP−〈τP〉) = exp
[
−
(

τP−〈τP〉
∆τP

)]
exp
[
−exp

[
−
(

τP−〈τP〉
∆τP

)]]
, (7.11)

with the fluctuations given by:

∆τP =
1
2

√
TR 〈τP〉. (7.12)

The histograms in figures 7.3 and 7.4 are well described by the extreme value
distribution of equation (7.11) but in general the fitted parameters do not agree par-
ticularly well with those predicted by the preceding treatment. For instance for the
low power case, (7.10) predicts a value 〈τP〉= 123 µs for the mean delay, and (7.12)
predicts ∆τP = 12 µs, whereas the fit gives the corresponding values 〈τP〉= 82.8 µs,
and ∆τP = 5.96 µs1, so it seems that we can only take the analogy between the two
systems so far. Clearly, there is a significant difference between Dicke superradiance

1Note that Γ must be scaled by an appropriate factor in (7.10) and (7.12) so as to use the number
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and superradiant Rayleigh scattering, in that in the latter, atoms can scatter multi-
ple times and populate many momentum orders, whereas in Dicke superradiance an
atom can only decay once before requiring re-excitation from light emitted some-
where else in the extended sample. Nonetheless, the general applicability of (7.11)
seems justified and gives insight into how the statistical properties of the instigating
process manifest themselves at long times.

To elaborate on this, it is interesting to examine fluctuations in the simulations.
Following equations (5.5) and (5.6), the simulations were run with a random po-
larization source sampled from a thermal distribution and with a random phase. The
fluctuating polarization source is easiest to implement within the simulations because
the electric field is described by first order differential equations of the longitudinal
spatial variable, and therefore it is natural to specify the field in each case at either
end of the sample (see section 6.3), whereas the wavefunctions are naturally solved
in (5.23) by defining the total wavefunction at time zero in addition to boundary con-
ditions. Given the electric field is in a thermal state due to spontaneous emission,
the corresponding effect on the initial wavefunction is taken to be a random num-
ber sampled from a thermal number distribution in the first order diffraction mode.
The thermal distribution was taken to have mean one, so as to be consistent with the
simulations of the previous chapter.

The results of simulations for the two single particle scattering rates considered
in experiments are shown in figures 7.5 and 7.6. The histograms are again well
described by the extreme value model in (7.11), and show the same trends as the data
- the higher the pump power, the earlier the pulse and the narrower the spread in τP.
The agreement of the fitted parameters between simulations is fair, particularly for
the high power case, although there is a discrepancy in the mean arrival time for the
low power case. We reiterate that the simulations are most useful for understanding
general features of the evolution, as opposed to being a comprehensive model of the
system. For both high and low power cases, the width ∆τP of the simulations is
larger than the experimental data. It is also interesting to note that the ‘noise’ on
the experimental data is smaller than for the simulations (i.e., the residual is greater
for the simulations), despite the fact that one would expect the opposite given more
realizations of the simulations were performed.

of photons spontaneously scattered into the assumed endfire mode. This factor is given by:

µ =
3

16π

(
4
3
− cos(ϑ)− 1

3
cos(ϑ)3

)
,

where ϑ = λ/(πρ0) is the far-field diffraction angle (alternatively, the geometric angle ρ0/z0 could
be used given the choice of Fresnel number F ≈ 1). This expression is simply the solid angle of
emission implied by ϑ weighted by the circular dipole emission pattern. If one takes account the
Thomas Fermi profile then the effective scattering angle increases, leading to an increase in µ and
hence a decrease in 〈τP〉 [100]. An additional factor of 1/2 is included so that only decay into the the
initial state F = 1,mF =−1 is considered (see 5.4).
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FIGURE 7.7: Cumulative integral of the Gaussian function fitted to the first superradiant
pulse in the low pump power regime for the same data set as in figure 7.3. The red line
indicates the time at which we show the photon statistics in figure 7.8.

7.2 Evolution of light field statistics

The change from spontaneous to stimulated scattering in superradiant light scattering
is manifest in the evolution of the emitted light. Initially, the number distribution
of the light field, and hence the atomic polarization, is in a thermal state. As we
saw in the previous chapter, as the number of backscattered photons in the BEC
volume increases, the intensity of backscattered light increases at the input end of
the condensate leading to the emission of the first superradiant pulse. This means
that the photon statistics of the endfire mode evolve throughout the process.

This is closely related to the transient evolution of photon statistics when a Con-
tinuous Wave (CW) laser is switched on [75, 101]. There, the light field evolves from
a thermal distribution to one well described by Poisson statistics. It is important to
note, however, that the process can only achieve CW emission because of continu-
ous repumping of the gain medium. In the case of superradiant scattering in a BEC,
the gain is achieved through the density and physical extent of the atomic medium,
rather than a resonator cavity. Most importantly, however, the process never achieves
a steady state of emission because of local depletion of the atoms, as evident in fig-
ure 6.8.
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FIGURE 7.8: Histogram giving the photon number distribution at a time shortly before the
peak of the superradiant pulse (indicated by the red line in figure 7.7).

We can probe these time dependent photon statistics (somewhat indirectly) with
the data of the previous section. Figure 7.7 shows the cumulative integral of the
Gaussians fitted to experimental pulses in the low pump power regime. As noted in
the discussion of figures 7.1 and 7.2, the Gaussian is only a reasonable model up to
approximately the peak of the first superradiant pulse. Accordingly, we limit our use
of the cumulative integrals that derive from the fits to the point of inflection, cor-
responding to the peak of the pulse. Each cumulative integral gives the number of
photons emitted at a given time for that realization; by considering several realiza-
tions, we may build up a picture of the photon statistics. We use the fits rather than
the traces themselves to avoid spurious results arising from the noise. At early times,
one can observe the thermal number distribution by this method, but the methodol-
ogy is questionable at this early phase because the numbers are so small and depend
strongly on the choice of model and the quality of the fitting, rather than correspond-
ing to a direct measurement. However, at longer times, for instance close to the peak
of the pulse, there is no question that the detector signal and corresponding fit is an
accurate measurement of the photon flux. Nonetheless, in a forthcoming work [13],
we will present more complete measurements of the evolution of the light state by
using the direct counting of photons by the Andor camera.

Figure 7.8 shows the photon number distribution inferred by this method at a
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time shortly before the mean arrival time 〈τP〉 for the data set. This time is indicated
by the red line in figure 7.7. Superimposed on the histogram is a fit to the following
equation [102, 103]:

Pn(t) =
(

Nat

Nat−n

)2

exp
(
− t

TR

)
exp
[
− Natn

Nat−n
exp
(
− t

TR

)]
. (7.13)

This gives the emitted number of photons as a function of time into a single electric
field mode. The experiment of [102] studied the superradiance of Rydberg atoms
in a moderate Q cavity, but the result holds in the absence of a cavity provided the
emission is into a single mode. As we have discussed, this point is of course doubtful
in our set-up, but nonetheless, the function recreates the correct general shape of the
data. The steep edge to the right of the figure represents the exponential distribution
of the initial thermal state. One can view the first phase of the process - well before
〈τP〉 - as corresponding to a thermal state whose temperature is increasing. How-
ever, the point of inflection of the superradiant pulse marks the time when depletion
of the atoms begins to slow down the process. Accordingly, the period of linear
amplification ends leading to a flattening out of the photon number distribution. Sub-
sequently, as depletion becomes more important, the distribution obtains an extended
tail towards zero photons. The corresponding peak in the photon number distribution
during the turn-on transient of a CW laser arises from non-linearity in the atom-field
interaction due to the high intensity within the cavity [75]. Due to depletion of the
BEC, the emitted light does not achieve Poissonian photon number statistics as this
would imply steady-state operation. As we have seen, an extended sample leads to
superradiant ringing behaviour, so that a better analogy to this process might be a
pulsed laser.

7.3 Probing atom-photon correlations

To this point, we have used the superradiant light pulse to investigate the system
experimentally, but we now describe progress towards a joint measurement of the
scattered light and atoms. The results and discussion here represent a first attempt to
demonstrate number correlations between and scattered light and photons at better
than the shot noise level.

The motivation to perform such a measurement lies in the fact that the diffracted
atoms and scattered photons are created in pairs. Considering a low pump power
regime so that atoms predominantly occupy the zeroth and first order momentum
modes, we may represent this process by the Hamiltonian (in the Fock representa-
tion):

H ∼ â†
−b̂†

2â+b̂0 + â†
+b̂†

0â−b̂2, (7.14)

where â†
− denotes the creation of a back-scattered photon, and b̂†

2 the creation of an
atom in the diffraction order with momentum 2h̄kl etc. As we have seen, even in the
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low pump power regime, in the appropriate limit of a high detuning the attenuation
of the pump beam through the sample is negligible so that the pump mode may be
represented by a complex number - i.e., as a coherent state. Similarly, in the early
phase of superradiance, depletion of the mother condensate is negligible, and we
may treat it as a large complex amplitude. In these limits, (7.14) reduces to a generic
parametric down conversion Hamiltonian ∝ â†

−b̂†
2, which is known to generate two

mode squeezed states, or to use other terminology, Einstein-Podolsky-Rosen (EPR)
entangled states. Entanglement in the ultra-low gain regime of such an interaction,
when far less than one atom-photon excitation pair is generated on average, forms
the basis for a quantum repeater [104] and has been studied extensively [1]. Here,
we are interested in the high gain - superradiant - regime where the detection of
entanglement requires in general the measurement of both the phase and amplitude
of the light and matter waves at the sub-shot noise level [105].

A second motivation of the present work is to implement a calibration procedure
of the counting of scattered light and atoms that is analogous to the use of correlated
photons to calibrate single-photon detectors. The procedure in such a calibration is
to use pairs of photons from parametric down conversion; one photon is used in a
trigger channel, and the other is directed onto the detector one wishes to calibrate.
The beauty of the method is that it does not rely on an external standard - the finite
efficiency of the trigger detector is irrelevant, as one merely searches for coincidence
events. Such an approach has a history dating nearly 40 years, such that the first
reported use of the method was also the first demonstration of coincidences of para-
metric down-conversion photon pairs [106, 107].

The conditions for the experiment are very similar to those described earlier.
We use a low single particle scattering rate (R = 3.3× 103 s−1) so that typically
only a single forward diffraction order is substantially populated. The number of
diffracted atoms is counted directly using absorption imaging, and the number of
back-scattered photons is counted on the Andor Camera; both methods are described
in chapter 4. Given that diffracted atoms and back-scattered photons are created
in pairs, we map out the linear dependence by using a few different pump pulse
durations (50 and 55 µs) and make use of the inherent variation in pulse arrival times
to populate an appropriate range of N = Nat = Nph.

Figure 7.9 shows a standard absorption image under these conditions superim-
posed with regions that are important in data processing. The four square regions at
each edge of the picture are those used in the background and raw images to elim-
inate slight intensity differences between the two (section 4.2.2). This difference is
typically on the several per mil level. Clearly, the larger the regions and the closer
they are to the relevant data in the image, the better one can cancel this effect. The red
rectangle indicates the region over which the signal is summed to obtain the number
of atoms diffracted into the first order, and the blue square gives the corresponding
region for the small number of atoms transferred to the second forward order; each
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FIGURE 7.9: Absorption image of a BEC after exposure to a pump pulse illustrating impor-
tant regions to the extraction of the number of diffracted atoms. The black dotted squares in
each corner indicate the regions in the background (Ibg) and raw images (Ish) used to elimi-
nate slight intensity differences between the two. The red rectangle indicates the region over
which the signal is summed to obtain the number of atoms diffracted into the first order. The
blue square gives the corresponding region for the small number of atoms transferred to the
second forward order, and the green square covers the atoms in the first negative order. A
considerable pedestal of scattered atoms is visible between the 0 and 2h̄kl components. In
the event where collisions between these components scatter 2h̄kl atoms into this ‘halo’, the
black rectangle gives the region over which the atom number is summed. The greyscale was
chosen to highlight the background structure.

atom in the 4h̄kl order corresponds to two emitted photons. The green rectangle
covers the region over which −2h̄kl atoms are found.

Figure 7.10 shows the corresponding data for the back-scattered light. The figure
is a background subtracted image showing the relevant region of the camera chip.
The red rectangle denotes the region over which we sum the recorded counts in order
to count the number of back-scattered photons. The same procedure to that used in
the shadow images is used to ensure that the data and background images have the
same integrated count in regions where there are no SR photons.

However, there is a large amount of stray reflection from various optical elements
- particularly the back window of the science cell - and this makes it difficult to
differentiate between the desired signal and the background. By tilting the pump
beam slightly it is possible to separate the two signals at the position of the camera,
but in the data presented here, this separation is imperfect. There is a prominent circle
next to the region of interest in figure 7.10 where this problem is evident. Indeed,
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FIGURE 7.10: Background subtracted image of the superradiant light. The red square indi-
cates the region over which the frame is summed to arrive at the photon count. The back-
ground is flat except for the large circular region next to the signal of interest. In this region,
the background subtraction is complicated by the fact that stray reflections from the far cell
wall is affected by the BEC.

in the background-subtracted image, the circle appears to have a lower background
count than regions far away from the atoms. This derives from the effect that the
atoms have on the pump beam that is scattered from the far wall of the cell. In
general, given the extremely high optical depth and parabolic density profile, the
BEC acts as a lossy, graded index fibre to the pump light - even in the absence of
superradiance, it has a significant effect on the passage of light through the cell. As
such, the scattering of light from the far cell wall is significantly affected by the
presence of the BEC, thereby causing the image and background frames to differ in
the region where this light is concentrated. The end result is that the background
subtracted image becomes negative in this region, which, given its proximity to the
superradiance signal, compromises somewhat the ability to accurately count photons
in this region. The same effect is evident in figures 7.1 and 7.2, where the time trace
of the detector has an initial dip at the time the pulse begins.

The superradiant light pulse moves around slightly from shot to shot, thereby
placing a limit on the size of the region over which we count. This may be seen in
figure 7.11, where one can see small variations - on the order of a few pixels - in
the central position of the pulse on the camera chip. The lens in front of the camera
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FIGURE 7.11: Background subtracted images of the SR pulses for different realizations of
the experiment. A slight variation in the central position of the back-scattered light on the
order of one or two pixels is visible.

was set so as to image the focal plane of the achromat used to focus the pump beam
and collimate the back-scattered light. As such, the set-up is arranged to image the
angular distribution of the back-scattered light.

We observe correlations in the number of atoms and photons, but the fluctuations
are at a considerably higher level than that of

√
N. Preliminary experimental results

towards demonstrating correlations at the shot noise level are shown in figure 7.12.
The first point to note is that the slope of the figure is not one: summing atoms
in the first and second orders, and subtracting the number if the minus first order,
the observed atom number is approximately one quarter the number of measured
photons. The second point is that the fluctuations about the linear fit are on the level
of a few 104 whereas shot noise

√
N fluctuations are on the order of several hundred.

We address each issue separately.
The observed gradient can be caused by the under-counting of atoms, the over-
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FIGURE 7.12: Plot of Nat v. Nph. The data was fitted with a straight line constrained to pass
through the origin. The slope of the line was found to be 0.24.

counting of photons, or a combination of the two. Given the results of section 4.2.5,
and the low observed optical depth (. 2) in the regions where we count, there is
no obvious reason to believe that the atom counting is at fault. A second factor
could be inter-atomic collisions between the moving atoms that scatter atoms out
of the 2h̄kl component [108]. In this way, photons may be detected correctly but
subsequent collisions could disrupt the atom measurement. If one takes into account
half the halo visible in figure 7.9, and uses the larger region shown in black, then the
gradient doubles. However, the fluctuations about the mean increase by a factor of
three. Finally, despite the problems in the overlap of signal and background, it seems
unlikely that we overcount the number of photons in the superradiant pulse.

Given the more complex procedure to obtain the number of atoms, we believe
the excessive noise visible in figure 7.12 derive primarily from the atom counting.
Of course, the success of both methods depends on the ability to produce a clean
signal on top of a flat background, but the transformations used to obtain an absorb-
tion image are more susceptible to noise. In particular, the fine structures visible in
the processed image in figure 7.9 that derive from imperfect overlap of shadow and
background images cause significant problems for the direct counting of atoms.

The task of improving the results is a technical one.
First, we note that a reduction of the number of scattered pairs will improve
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matters. Given that shot noise scales as
√

N and that classical noise scales as N, one
can come closer to the regime where shot noise where shot noise predominates by
going to lower values of N. However, this strategy only carries us so far, because at
some point we approach the technical noise floor.

Second, we might reduce the influence of the technical noise in the images by
moving to smaller regions of interest by reduction in the magnification, or in the case
of atom pictures, changing to smaller times of flight. The advantage of this is twofold.
The lower the number of pixels over which we sum the smaller the influence of the
technical noise of the camera. As noted in sections 4.2.3 and 4.3.2, the technical
noise values of the cameras lie at around 10 e−/pixel. Thus, we must detect more than
100 photons or atoms per pixel in order to be shot noise limited. Additionally, the
smaller the region over which we sum leads a smaller contribution of the imperfectly
cancelled background.

In the case of absorption images, the fine spatial structures associated with im-
perfect overlap of the shadow and background images play an important role in in-
creasing the observed noise when counting pixels. A study of several hundred pro-
cessed images in the absence of atoms revealed persistent, non-white spatial struc-
tures. These are an additional and more complex source of noise on the absorption
images. As such, moving to smaller regions of interest will help, but direct efforts to
improve the stability of the absorption imaging set-up are also required. These relate
to the mechanical stability of all the components, and the frequency stability of the
imaging light.





Chapter 8

Summary and outlook

This thesis describes the construction of a machine to generate Bose Einstein conden-
sates in 87Rb and the first experiments performed with this machine on superradiant
Rayleigh scattering.

Bose Einstein condensates of 87Rb are produced by evaporatively cooling atoms
in a magnetic trap of the quadrupole-Ioffe configuration. The atoms are loaded into
the magnetic trap from a Magneto-Optical trap in a region of ultra-high vacuum. In
order to load this MOT, we generate a cold beam of atoms using another form of
Magneto-Optical trap in a second part of the vacuum chamber; to ensure an intense
beam of atoms, this part of the chamber is held through differential pumping at a
higher vapour pressure of 87Rb. The two chamber arrangement is a standard approach
to obtain a sufficient number of atoms in the magnetic trap, at a level of vacuum that
is good enough to ensure that evaporative cooling reaches the runaway regime. The
evaporative cooling is achieved by selectively driving radio frequency transitions to
untrapped magnetic substates. After approximately 15 seconds of loading in the
second MOT, 50 seconds of evaporative cooling leads to pure, prolate condensates
containing up to a few million atoms. During the evaporation, the magnetic trap is
relaxed so that density dependent heating does not substantially reduce the number
of atoms in the condensate.

The application of an off-resonant beam of light along the long axis of the con-
densate leads to a form of collective Rayleigh scattering analogous to the superradi-
ance that occurs in electronically inverted samples. One can think of this process as
the amplification of quantum noise: photons are spontaneously scattered out of the
pump beam, and due to the extended optical depth along the long axis of the BEC, the
modes that propagate along this axis see the most gain. In the end-pumped geometry,
the strongest superradiant mode is the one where photons are back-scattered by the
atoms. The overlap of stationary and recoiling atoms recoil produces a density mod-
ulation - a Bragg grating - which amplifies the back-scattering. We have performed
a systematic study of the effects of pump detuning on the process while keeping the
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single particle scattering rate constant. In this way, we move between the case where
the pump beam functions as a reservoir of photons to the situation where superradi-
ance is clamped by a lack of photons in the pump beam. Our experimental results are
strongly supported by simulations of the system based on 1D Maxwell-Schrödinger
equations. We demonstrate that the dynamics result from the structures that build
up in the light and matter fields along the long axis of the condensate. In particular,
we find that the emission of the first superradiant pulse may be understood in terms
of the overlap of light and matter wave gratings. Finally, the random nature of the
spontaneous scattering that initiates the collective scattering is manifest at later times
in the distribution of arrival times and photon numbers of the first superradiant pulse.

In chapter 7 we noted the difficulties in demonstrating correlations between back-
scattered photons and recoiling atoms; subsequent efforts have focussed on bridg-
ing the gap between the observed noise and shot noise. As suggested in chapter 7,
the absorption imaging set-up has received the most attention. Given the suspicion
that vibrations associated with the camera shutter were causing differences between
shadow and background images, a variety of measures have been taken to mitigate
this. In particular, the camera objective has been changed to a single Gradium© lens,
mounted independently of the camera on a 3D translation stage. Furthermore, the
camera has been mounted on a linear translation stage, so that focussing the images
is more straightforward and that we can take images at different times of flight in
a reproducible way. This has proven to be useful as we have moved to a reduced
time of flight so as to obtain a smaller region over which to sum the diffracted atoms.
Recent efforts have been directed at the frequency stability of the imaging light: a
narrow-band interference filter of width∼ 0.2 nm has been added to limit the thermal
background on the imaging beam (section 4.2.3); an additional saturated absorption
set-up has been added to monitor the frequency stability of the imaging light; and a
different slave laser is now used to provide the imaging light. The effect on the fre-
quency stability of the imaging light due to vibrations transmitted through the table
from the camera shutter and the turn-off of the magnetic trap has been investigated,
and at present the locking mechanism of the trap laser is being reworked so as to
provide a tighter lock (3.5.2).

However, the changes to date have not brought a substantial improvement to the
data shown in figure 7.12 - the noise is still far in excess of

√
N - suggesting that some

physics might be getting in the way of a good measurement. As noted, collisions
between atoms in different momentum orders are a possible cause of an observed
number of scattered atoms that is lower than that expected from the photon count, and
increased fluctuations in the number that is measured. Furthermore, it is likely that
collisions will constitute a significant decoherence mechanism in future work where
we seek to make use of the external degrees of freedom. Therefore, a significant
experimental and theoretical study of these collisions is required. However, this also
motivates the use of the internal atomic degrees of freedom in pursuing the goal of



SUMMARY AND OUTLOOK 149

coherent control in the atom-light interface.
To this end, a crossed dipole trap will soon be added to the set-up, opening up

the ability to trap the atoms independently of their magnetic substate. The benefits
of such a trap are clear, as it gives full access to the internal degrees of freedom.
With appropriate ambient magnetic field stabilization and such a set-up, we can ob-
tain strong coupling and long coherence times between light and the spin degree of
freedom.

The next experiment will be to observe the Faraday rotation of a linearly po-
larized beam due to the macroscopic spin of the BEC, as represented by equation
(1.1). The experiment can be performed in either the existing magnetic trap or the
coming dipole trap. The light is again focussed onto the long axis of the BEC, and
the scattered light will be detected through the hole in the Ioffe coil. The physi-
cal mechanism by which the polarization rotates is circular birefringence: the two
circular polarizations that comprise the input linear polarization have different cou-
pling strengths (due to different Clebsch-Gordon coefficients) and hence experience
a different phase shift. The strength of the interaction then depends on the spin po-
larization of the sample, and at least in a magnetically trapped BEC, all of the atoms
are oriented along the bias field. As such, the degree of rotation is a quantum non-
demolition measurement of the spin polarization and hence the number of atoms in
the sample. This will be the first step towards a ‘traditional’ measurement for the
group in the context of BEC, and paves the way for measurements where the rotation
occurs due to fluctuations in the collective spin [3]. It is important to note that the
work presented here forms the basis of our understanding of how to experimentally
avoid the regime where superradiance occurs.

In the longer term, we have the important goal of demonstrating a long-lived
quantum memory for light [4] in a Bose Einstein condensate. Other experiments, in
a similar vein, relate to the demonstration of spin squeezing in the BEC. Furthermore,
it would be interesting to combine interactions that make use of both the internal and
external degrees of freedom; for instance Raman superradiance where we extend the
two-mode squeezing to make use of different internal levels. Finally, it could also
be interesting to study superradiant dynamics with the atoms stored in a tight optical
lattice, thereby frustrating the external degree of freedom.
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