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Abstract

Part I: This research explores the dynamics of polar active particles under vary-
ing active stresses, revealing distinct flow fields and self-organizing patterns. A
crossover from defect-free to defect-laden active turbulence with increasing stress
is observed, leading to the restoration of SO(2) symmetry, indicated by the rapid
decay of the two-point correlation function in the polar field. The mechanism of
defect pair nucleation is examined, and conducting a stability analysis of the diffu-
sive charge density provides additional insights into the onset of active turbulence
laden with topological defects.

Part II: This work examines active turbulence, focusing on the dynamic behavior
of topological defects in active nematic fluids. An information-theoretic divergence
measure is utilized, which does not require any prior knowledge of the system, to
quantify spatiotemporal order. By extracting defect positions and analyzing their
dynamics, two key transitions are identified: the onset of defect nucleation and a
subsequent hidden spatiotemporal transition marking fully-developed active tur-
bulence, characterized by the optimal spatial and temporal organization of these
defects.

Part III: This study unveils a universal feature in the flow patterns of collectively
moving cells across diverse biological systems. Experimental evidence demon-
strates robust conformal invariance in flows generated by dog kidney cells, human
breast cancer cells, and two strains of pathogenic bacteria. Remarkably, these
systems exhibit consistent adherence to the Schramm-Loewner Evolution (SLE)
and percolation universality class. A continuum model of active matter repro-
duces the observed conformal invariance and SLE behavior. These findings sug-
gest that living biological matter possesses universal translational, rotational, and
scale symmetries, independent of the microscopic properties. The study high-
lights the conservation of flow patterns among diverse cellular systems, offering
unexpected opportunities to test theories for conformally invariant structures in
biological contexts.
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Resumé

Part I: Denne forskning udforsker dynamikken af polære aktive partikler under
varierende aktiv mekanisk belastning, hvilket afslører særskilte strømningsfelter
og selvorganiserende mønstre. En overgang fra defekt-fri til defekt-mættet aktiv
turbulens ved stigende mekanisk belastning er observeret, hvilket fører til geno-
prettelsen af SO(2)-symmetrien, hvilket er indikeret ved den hurtige aftagen af
to-punkts korrelationsfunktionen i det polære felt. Mekanismen for defekt par
nukleation undersøges, og gennemførelse af en stabilitetsanalyse af den diffusive
ladningstæthed giver yderligere indblik i ophavet til aktiv turbulens mættet med
topologiske defekter.

Part II: Dette arbejde undersøger aktiv turbulens med fokus på den dynamiske
adfærd af topologiske defekter i aktive nematiske væsker. Et informationsteoretisk
divergensmål anvendes, som ikke kræver nogen forudgående viden om systemet, til
at kvantificere spatiotemporal orden. Ved at udtrække defektpositioner og anal-
ysere deres dynamik identificeres to centrale overgange: begyndelsen af defekt
nukleering og en efterfølgende skjult spatiotemporal overgang, der markerer fuldt
udviklet aktiv turbulens, karakteriseret ved den optimale rumlige og tidsmæssige
organisering af disse defekter.

Part III: Dette studie afdækker en universel egenskab ved strømningsmønstrene
for kollektivt bevægende celler på tværs af forskellige biologiske systemer. Eksperi-
mentelle vidnesbyrd viser robust konform invarians i strømninger genereret af hun-
denyreceller, menneskelige brystkræftceller og to stammer af patogene bakterier.
Bemærkelsesværdigt nok udviser disse systemer en konsekvent overholdelse af
Schramm-Loewner Evolution (SLE) og perkolation universalitet klassen. En kon-
tinuumsmodel for aktivt stof gengiver den observeret konform invarians og SLE-
adfærd. Disse resultater tyder på, at levende biologisk stof besidder universelle
translations-, rotations- og skalasymmetrier, uafhængigt af de mikroskopiske egen-
skaber. Studiet fremhæver bevarelsen af strømningsmønstre blandt forskellige cel-
lulære systemer, hvilket giver uventede muligheder for at teste teorier for konformt
invariante strukturer i biologiske sammenhænge.
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Chapter 1

Introduction and objectives

This thesis is organized into three discrete sections, not due to their complete inde-
pendence, but rather to enhance clarity by presenting each part as a self-contained
narrative. Adopting a synopsis style, the thesis offers a moderate level of detail
on the subjects addressed, while acknowledging that more comprehensive explana-
tions are accessible in the accompanying published manuscripts. Notably, many of
the figures and method descriptions presented in this thesis are reproductions from
these manuscripts, conveniently included at the end of each respective chapter.

Although separate, the three projects revolve around a common theme: tran-
sitions and symmetries in active systems. These projects include both continuum
simulations and experimental data involving monolayers of eukaryotic and prokary-
otic cells.

Part I concerns research done on a continuum description of a two-dimensional
active polar fluid in the context of flow characteristics and topological defect dy-
namics – singular points in the polarity field where order breaks down. Many living
organisms, on length scales ranging from bacterial suspensions up to animal herds,
exhibit polar order at the level of individual agents. This local polarity facilitates
spatial symmetry breaking on global scales, in addition to sustaining a form of
chaotic flows at low Reynolds numbers known as active turbulence. Making the
study of active polar matter crucial for understanding the underlying principles of
life-like processes and the development of novel materials.

Part II concerns research done on a continuum description of a two-dimensional
active nematic fluid, another type of active fluid characterized by the presence
of half-integer topological defects and the sustained active turbulent state. The
motion of these topological defects is intricately connected with the formation of
flow patterns, including the arrangement of vortices and jets. The objective of this
research is to to expand upon an information-theoretic approach to infer insights
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2 CHAPTER 1. INTRODUCTION AND OBJECTIVES

regarding the spatiotemporal ordering of these topological defects.

Part III explores the conformal symmetries and universalities exhibited by spon-
taneously generated vortical flow structures at large scales within high-resolution
measurements of monolayers composed of four distinct cellular genotypes, span-
ning both prokaryotes and eukaryotes. For prokaryotes, the investigation includes
both the wild type Pseudomonas aeruginosa pathogen alongside its hyperpiliated
deletion mutant ∆pilH . In the realm of eukaryotes, the study encompasses the
extensively researched Madin-Darby Canine Kidney (MDCK) cells, as well as the
formidable human breast cancer cell line MCF-7. The analysis grounded in the
theory of Schramm-Loewner evolution (SLE) processes and involves the identifi-
cation of zero-vorticity isolines as putative SLE processes.



Chapter 2

Symmetry-restoring crossover in
polar active fluids

Active polar fluids are fascinating because they comprise self-propelled particles
that exhibit complex collective behaviors, significantly different from those seen in
passive systems. These behaviors include spontaneous flow generation [1, 2], with
associated nonequilibrium steady states [3, 4], and turbulence at low Reynolds
numbers, driven by the continuous input of energy at the scale of individual con-
stituents. This study is solely grounded in [5] and its novelty lies in its exploration
of the crossover from defect-free to defect-laden turbulence in polar active fluids,
an area that has been relatively underexplored. Previous research has primarily
focused on active nematics [6–8], which lack polarity and self-propulsion, leaving
a gap in understanding the role of topological defects in polar active systems. By
combining numerical simulations with theoretical analysis, this study provides new
insights into the criteria for the emergence of defect-laden turbulence and its im-
pact on global symmetry and spatiotemporal organization, thereby contributing
to the broader field of active matter physics.

2.1 Continuum model for active polar fluids

A two-dimensional incompressible active polar fluid is examined, characterized
by a local orientational order represented by a two-component order parameter
pi aligned with the direction of self-propulsion. It is noteworthy that we do not
treat the polarity as a fixed unit vector with a constant magnitude. Instead, the
magnitude of polarity is considered a significant dynamic variable within this for-
mulation. The fluid’s velocity and density are denoted by ui and ρ, respectively.
Hydrodynamic equations on a coarse-grained level can be derived through phe-
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4 CHAPTER 2. SYMMETRY-RESTORING CROSSOVER IN POLAR . . .

nomenological reasoning [9–11] and are expressed as follows:

ρ(∂t + uj∂j)ui = ∂jΠij, (2.1)

(∂t + uk∂k)pi − (λEij + Ωij) =
1

γ
hi. (2.2)

along with the incompressibility condition ∂iui = 0. The strain rate tensor
Eij = (∂iuj + ∂jui)/2 and the vorticity tensor Ωij = (∂iuj − ∂jui)/2 represent
the symmetric and antisymmetric parts, respectively, of the velocity gradient ten-
sor. The stress tensor Πij in the momentum balance equation (2.1) comprises three
parts; viscous stress Πviscous

ij = 2µEij, passive stress

Πpassive
ij = −Pδij +

(
λ+ 1

2
δikδjl −

λ

2
δijδkl +

λ− 1

2
δilδjk

)
pkhl, (2.3)

and active stress Πactive
ij = −ζ

(
pipj − 1

2
p2δij

)
. The first term in the passive

stress (2.3) is the familiar hydrodynamic pressure and the second term accounts
for anisotropic elastic stresses. The alignment parameter λ determines whether
strain or vorticity dominates the polar constituents collective response to shear
flow. The molecular field hi = −δF/δpi ensures diffuse relaxation of the polar
order to the minimum of the free energy

F =

∫ {
A
(
−p2

2
+

p4

4

)
+

K

2
(∂ipj)

2

}
d2x (2.4)

on a timescale set by the rotational diffusive constant γ. The free energy consists of
a local energy density, governed by an energy scale A, which regulates the isotropic-
polar transition favoring the emergence of finite polarity at p = 1, and a nonlocal
energy contribution with an elastic constant K that penalizes deformations in the
polarity field.

2.1.1 Simulations and parameters

The governing equations (2.1 -2) are numerically integrated using a hybrid lattice-
Boltzmann method. This approach combines the finite-difference method for the
evolution of the polarity vector (2.2) and the lattice-Boltzmann method for solving
the incompressible Navier-Stokes equations (2.1). Simulations were initialized with
quiescent velocity field and sleightly perturbed polar alignments close to the uni-
formly oriented state with polarity aligned along the x-axis. The system is evolved
on a periodic quadratic domain of linear dimension L = 1024 until a statistical
steady state is reached. The lattice spacing and time step are set to unity, and
density ρ = 40 and viscosity µ = 3.6 are chosen to ensure a negligible Reynolds
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number (Re ≪ 1) in the simulations. The remaining four dimensionless variables
characterizing the system are the dimensionless ratio of the viscosities µ/γ = 3.6,
the flow alignment parameter λ = 0.1, the dimensionless active stress ζ̄ = ζ/A,
and the ratio of micro to macro length scales lp/L = 0.0002, ensuring that the co-
herence length lp =

√
K/A is significantly smaller than the domain size L. These

values are fixed unless otherwise stated.

2.1.2 Defect charge density

Topological defects are singular points in the polarity field pi where the order
breaks down and around which the orientation field winds by an integer multiple
of 2π [9,12,13]. Only energetically stable defects of charge ±1 are examined here-
after. Defects of higher charge, although topologically stable in two-dimensions,
are energetically unstable and tend to dissociate into elementary defects, as their
intrinsic energy increases with the square of the charge [14]. The Halperin-Mazenko
method [15–17] begins by recognizing that defect dynamics are identified with the
movement of zeros in the polarity field, with the topological charge distribution
represented according to:

ρ(t,x) =
∑

k

qkδ (x− xk(t)) , (2.5)

where xk and qk denotes the position and charge of the respective defect. Suppose,
the defect charge distribution is described in terms of the zeros of the polarity field
rather than the positions of defects xk. The result of which being:

ρ(t,x) = (δ ◦ p) (t,x)D(t,x), (2.6)

where the defect charge density D = det(∇p) is the Jacobian determinant asso-
ciated with transformation from the physical space to the order-parameter space
(appendix A). The consequences being that D is a smooth scalar field, vanishing
everywhere except at the singular points of the transformation – localized regions
centered the core of topological defects where the order breaks down. The dynam-
ical implications of this transformation are simple. The defect charge density obey
the continuity equation (A.14)

∂tD = ∂iJi, (2.7)

with current density given by (A.15)

Ji = ϵijϵmn∂tpm∂jpn. (2.8)

Merely reflecting the fact that topological charges are conserved necessitates that
the topological charge density (2.6) adheres to a continuity equation.
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2.2 Results

The polar order parameter belongs to the SO(2) group of symmetries and carries
full integer defects. It is globally characterized by the unsigned topological defect
density ρd. As shown in figure 2.1C, increasing activity beyond a certain threshold
leads to a continuous rise in defect density in both extensile (ζ > 0) and contractile
(ζ < 0) systems. Verification was conducted to ensure that these activity thresh-
olds are independent of system size L, with simulations across various domain sizes
(512 × 512, 1024 × 1024, and 4096 × 4096) demonstrating the same quantitative
relationship between defect density and activity.
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Figure 2.1: (A-B) Snapshots depicting the polarity field (left panel) and its associ-
ated vorticity field (right panel), alongside streamlines, captured within a cropped
portion of the complete domain. Topological defects are denoted by red stars (+1
defect) and blue squares (−1 defect). (C) Variation of defect density and rms
velocity with activity levels. Highlighted in blue are regions signifying peaks in
the excess kurtosis (bottom panel), indicating the activity threshold.
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The flow field is globally characterized by the root-mean-square (rms) velocity
V rms = Vrms/Vp, measured relative to the passive relaxation velocity of the polar
particles Vp =

√
AK/µ. Interestingly, rms velocity measurements show that ac-

tive stresses disturb the polarity field and generate spontaneous flows within the
system, even below the activity threshold for defect nucleation, for any nonzero
activity. At higher activities, these flows become laden with full-integer topological
defects. Thus, there is a well-defined activity threshold marking the crossover from
defect-free to defect-laden active turbulence. This transition is evident from the
averaged defect density and rms velocity, showing that topological defects form
and persist only beyond a finite threshold, with different excess kurtosis values
indicating the nature of the crossover.

At elevated activity levels, the excess kurtosis in defect density tends to dimin-
ish, suggesting a near-equilibrium state where defect population follow a Gaussian
distribution. Conversely, under low activity levels, defects are absent, and conven-
tionally, the excess kurtosis is assigned a value of −3. The transition between these
states is marked by rare occurrences of defect formation and annihilation, evident
from peaks in the surplus kurtosis, highlighted in blue in figure 2.1C. Interestingly,
no such peaks are observed for the surplus kurtosis of the rms velocity, indicating
the absence of an equivalent crossover regime.

This observation aligns with qualitative findings from examining the velocity
field below the threshold for defect nucleation in the system. Here, chaotic flows
prevail, characterized by the presence of flow vortices and jets traversing the system
(Fig. 2.1A). Remarkably, despite the chaotic nature of these flows, no topological
defects are discernible in the polarity field. As activity levels increase, qualitatively
similar chaotic flows persist, albeit with a reduction in the characteristic length
scale, as dictated by the active length scale Lact =

√
K/|ζ|. However, a significant

transformation occurs: the chaotic flows become populated with full-integer topo-
logical defects, notably unbound vortex and antivortex pairs, prominently visible
in the polarity field (Fig. 2.1B).

2.2.1 Recovery of SO(2) symmetry

Examining the global polarization (Fig. 2.2 orange markers), defined here as the
spatiotemporal average of the polarity field

Ψ =

∫
dt

T

∫
d2x

L2
p(t,x), (2.9)

to probe the crossover between the two active turbulence regimes. As the active
stress increases from zero, the active turbulence state immediately displays broken
SO(2) symmetry, as evidenced by a nonzero value of |Ψ| in the absence of topo-
logical defects. The global polarization decreases in magnitude with increasing
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activity, and notably, it drops to zero beyond a critical activity level necessary
for the nucleation of topological defects. This behavior indicates the recovery of
SO(2) symmetry in the defect-laden turbulent state.
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Figure 2.2: Top panel displays defect density (blue markers) and magnitude of the
polarization Ψ (orange markers), averaged over independent system realizations.
Bottom panel shows the correlation length (measured in units of the coherence
length lp) derived from the equal-time, spatial pair-correlation function for fluctu-
ations in the polarity field (Fig. 2.3).

To further characterize the crossover, the equal-time spatial pair-correlation
function for the polarity field Γ(r) = ⟨δpi(x)δpi(x + r)⟩ is measured (Fig. 2.3).
Here, δpi(x) = pi(x)− ⟨pi(x)⟩ represents the deviation from the local mean value.
Averaging is performed over ten independent realizations, with distinct initial con-
ditions and over time, once the system has reached a statistical steady state. The
correlation length ξ is derived by fitting an exponential to the pair-correlation func-
tion. Normalized with respect to the coherence length lp, the correlation length
ξ = ξ/lp decreases with increasing activity (Fig. 2.2). Correlation measurements
were verified to be independent of domain size for large systems up to 4096×4096.
The behavior of the correlation length parallels that observed in frustrated two-
dimensional Heisenberg magnets, showing a crossover from a defect-dominated
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regime at high temperatures to a spin-wave regime at low temperatures. These
findings indicate that the transition from defect-free to defect-laden active turbu-
lence significantly affects both global symmetry and local polarity correlations in
active matter systems. Lastly, it is important to note that no differences are ob-
served between longitudinal and transverse correlations in the polarity field. The
correlation length does not diverge with system size within the ordered state. This
behavior is likely due to the nonequilibrium nature of the system and the break-
ing of detailed balance [18] through activity-induced flows that interact with the
dynamics of the order parameter.
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Figure 2.3: The equal-time, spatial pair-correlation function for fluctuations in the
polarity field Γ(r) = ⟨δpi(x)δpi(x+ r)⟩ as function of the radial distance scaled by
correlation length.

2.2.2 Defect pair nucleation mechanism

In figure 2.4, snapshots capture the polarity field moments before, during, and
after a single pair of defects forms under both contractile (Fig. 2.4C) and extensile
(Fig. 2.4D) stresses. The onset of nucleation coincides with a surge in bulk free-
energy (Fig. 2.4A-B), indicating polarity flipping within kink walls overcoming
energy barriers. Once formed, the defect pair’s presence reduces bulk free-energy.
The normalized diffuse charge density helps pinpoint and track topological defects.
Negatively charged antivortices exhibit similar structures in both systems, while
positively charged defects take on distinct forms, as predicted analytically. This
insight into defect nucleation mechanisms informs our understanding of the activity
threshold, highlighting the interplay between bulk and elastic energies and activity-
induced flows.
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Figure 2.4: (A-B) The temporal evolution of the average bulk free-energy F bulk =
(Fbulk +A/4) /ALact measured in units of ALact relative to the background field
−A/4. (C-D) Simulation snapshots illustrating the polarity field and diffuse charge
density before, during, and after the nucleation of a single pair of oppositely
charged topological defects. Panels (A) and (C) depict a contractile (ζ < 0)
system, while panels (B) and (D) represent a extensile (ζ > 0) system.

2.2.3 Onset of defect-laden active turbulence

To gain further insights into the onset of defect pair nucleation, a stability analysis
of the topological charge density field is performed. To achieve this,

(i) fluid inertia is neglected, as it is insignificant in the viscous limit that becomes
relevant on the length scales of bacterial suspension.

(ii) backflow generated by elastic stress is neglected, as it is orders of magnitude
smaller than the flow due to active stress in our simulations.

(iii) any pressure gradient is also neglected.

As a result, the governing equation for the flow field (2.1) simplifies to an approx-
imate local relation that balances the viscous stress with the active stress

2µEij ≈ ζ

(
pipj −

1

2
p2δij

)
. (2.10)

Due to viscosity and incompressibility constraints, the effects of advection and
rotation of the polar field caused by flow velocity and vorticity are nonlocal. Con-
sequently, these effects cannot be reduced to linear operators acting on solely on
the defect charge density D. Therefore, when considering only the contribution
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from shear flow alignment and the molecular field, the governing equation for the
polar field (2.2) becomes

∂tpi − λEij =
1

γ

[
A
(
1− p2

)
pi +K∆pi

]
. (2.11)

In light of these approximations, the continuity equation for the topological charge
density (2.7) is given by reaction-diffusion equation:

∂tD ≈ K

γ
∆D +

(
2A
γ

(
1− 2p2

)
+

ζλ

µ
p2
)
D, (2.12)

where the ratio of the elastic constant K to its relaxation timescale γ determines
an effective diffusivity coefficient and thereby setting the scale of the diffusive
core. The crossover activity threshold is estimated from a linear stability analysis
of (2.12) about the ordered stated, by considering perturbations of the form p =
1+ δp and D = δD. This leads to balancing the two contributions to the reaction
term, revealing that defect charge density remains stable for

ζ ≲
2µ

γλ
A, (2.13)

assuming that the flow alignment parameter λ is positive. Interestingly, this sug-
gests that the topological charge density becomes unstable to defect nucleation
only for extensile systems (ζ > 0). However, by neglecting the effects of advection
and rotation of the polar field in (2.11), the contributions of flow velocity and vor-
ticity as a destabilizing forces that induce instabilities in the defect charge density
field are also neglected. Nonetheless, the contribution of vorticity to the evolution
of D is symmetric with respect to the sign of active stress ζ. Consequently, any
instability induced by vorticity would occur at a critical activity for both extensile
and contractile systems, also exhibiting symmetry with respect to the sign of ζ.

The estimated threshold activity (2.13) is solely derived from the effects of flow
alignment, with all other destabilizing forces neglected. Therefore, the threshold
activity observed in simulations is not expected to be in quantitative agreement
with the estimated prediction (2.13). Nonetheless, the stability analysis above
provides valuable insights and predicts qualitative properties of the threshold ac-
tivity:

(i) It depends on the energy scale A controlling polar order, in the vicinity of
the threshold activity.

(ii) It is asymmetric with respect to the sign of the active stress, in the presence
of flow alignment.
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Figure 2.5: The steady-state defects density ρd dependence on (A) the flow-
aligning parameters λ and (B) the bulk free-energy strength A. The inset in
panel (B) reveals that normalizing the active stress by

√
A leads to a data collapse

in the vicinity crossover point.

Figure 2.5A illustrates how defect density ρd changes with activity for three
flow-aligning parameter values. When λ = 0, the activity threshold for defect
formation is symmetric regardless of activity sign. Positive (negative) values shift
the curve, reducing the threshold for extensile (contractile) activities compared to
their counterparts, leading to more asymmetric defect density profiles. Consistent
with the prediction. Figure 2.5B shows that reducing the energy scale A in in the
bulk free-energy lowers the activity threshold for defect nucleation. This aligns
with the mechanism for defect pair nucleation, where decreasing A reduces the
energy barrier for polarity flipping within kink walls (Fig. 2.4C-D), thus reducing
the activity threshold, as predicted.
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2.2.4 Universal scaling in defect-free and defect-laden active
turbulence

The polarity power spectrum Êp(k) =
1
2
⟨p̂i(k)p̂i(−k)⟩, for a range of extensile ac-

tivities spanning across both defect-free and defect-laden active turbulent states,
is depicted in figure 2.6A as function wave vector magnitude averaged over az-
imuthal direction. When nondimensionalizing Fourier space by the active length
scale Lact =

√
K/|ζ| the power spectra Êp(k) collapses onto each other and show

exponential decay at length scales smaller than the active length scale. The kinetic
energy Êv(k) = 1

2
⟨v̂i(k)v̂i(−k)⟩ and enstrophy Êw(k) = 1

2
⟨ŵi(k)ŵi(−k)⟩ spectra

both exhibit power-law behavior at large length scale relative to the active length
scale, as evident from figure 2.6C-D. This is significant, as it demonstrates that in
polar active matter, both defect-free and defect-laden turbulence exhibit universal
scaling laws despite their different symmetries (Fig. 2.2 top panel) and correlation
lengths (Fig. 2.2 bottom panel).
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Figure 2.6: Power spectra for polarity (A), enstrophy (C), and kinetic energy on
semi- (B) and double-logarithmic plot (D). All spectra are normalized with its
corresponding maximum value.
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2.3 Conclusion
In conclusion, the study elucidates the intricate dynamics of polar active particles,
highlighting the pivotal role of active stresses in governing their collective behavior.
Increasing active stress in polar active fluids induces a crossover from a defect-free
state to a defect-laden active turbulence state. This crossover is marked by the
nucleation of topological defects in the polar order parameter beyond a threshold
activity, which effectively screens the global polar order and restores the SO(2)
symmetry in the system. Despite the different topological characteristics of the
two turbulence regimes, universal scaling is observed in the power spectra of polar
order, flow velocity, and vorticity across both defect-free and defect-laden turbulent
states.
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Coherent flows of self-propelled particles are characterized by vortices and jets that
sustain chaotic flows, referred to as active turbulence. Here, we reveal a crossover be-
tween defect-free active turbulence and active turbulence laden with topological defects.
Interestingly, we show that concurrent to the crossover from defect-free to defect-laden
active turbulence is the restoration of the previously broken SO(2) symmetry signaled
by the fast decay of the two-point correlations. By stability analyses of the topological
charge density field, we provide theoretical insights on the criterion for the crossover to the
defect-laden active turbulent state. Despite the distinct symmetry features between these
two active turbulence regimes, the flow fluctuations exhibit universal statistical scaling
behaviors at large scales, while the spectrum of polarity fluctuations decays exponentially
at small length scales compared to the active energy injection length. These findings reveal
a dynamical crossover between distinct spatiotemporal organization patterns in polar active
matter.

DOI: 10.1103/PhysRevFluids.8.063101

I. INTRODUCTION

Recent developments in active matter have shed light on a form of chaotic flows sustained by
living microswimmers at low Reynolds numbers, often known as active turbulence [1]. A distinctive
feature of active turbulence, compared to classic inertial turbulence, is the continuous injection of
energy at the scale of individual constituents of the active material. Striking examples are dense
bacterial suspensions [2,3], cellular monolayers [4,5], and assemblies of subcellular filaments [6,7],
which are all composed of active elements—i.e., individual bacterium, single cell, or motor proteins
walking on single filaments—each capable of converting chemical energy to mechanical work
[8–10]. Although, most of the work so far has been limited to visual resemblance with inertial
turbulence, recent works suggest the existence of universal scaling features in active turbulence
[7,11] and even show [12] that crossover to a confined active turbulence belongs to the same directed
percolation universality class as in the inertial turbulence [13].

Nevertheless, a majority of studies of active turbulence so far, including the works suggesting
universal scaling laws and universality classes of turbulence transition, have focused on a subclass of
active materials known as active nematics [14–19], which models flows generated by dense assem-
blies of elongated particles [10]. Within the active nematic framework, the particles are essentially
characterized as shakers [20]: they have neither any polarity nor ability to propel themselves and
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BENJAMIN H. ANDERSEN et al.

instead generate head-tail symmetric (nematic) active stresses in the fluid. The active stresses in
turn drive hydrodynamic instabilities in the flow and the orientation field of particles, resulting in
a chaotic flow state that is interleaved with topological defects—singular points in the orientation
field where the order breaks down [8,10,21].

Previous studies of polar active matter have characterized spontaneous flows [22,23] and asso-
ciated nonequilibrium steady states [24,25]. On the other hand, studies of self-propulsion effects
on active turbulence have mostly neglected orientational couplings. Instead, the focus has been
put on generalized Navier-Stokes equations, where activity is introduced through the addition of
phenomenological higher-order terms in the momentum equation, corresponding to a second-order
negative viscosity and a fourth-order hyperviscosity, to give characteristic vortex length to active
turbulence [2,26–28]. As such, characteristics of active turbulence in models of polar active fluids
in the presence of topological defects have only been marginally explored in the context of
polar active emulsions [29] and polar flocks with inertia [30]. Additionally, notwithstanding the
interesting recent characterization of the annihilation of topological charges in colloidal flocks
[31] and despite the emerging roles of topological defects in various biological fluids [32–35], the
majority of research so far has focused on nematic topological defects [10,34,36] and studies of
active turbulence in polar fluids in the presence of polar topological defects are lacking.

Here we use numerical simulations of continuum polar active matter together with analytical
arguments to shed light on the turbulence characteristics of active fluids laden with topological
defects, accounting for both hydrodynamic effects and polar ordering. We first show how increasing
active stresses results in a regime shift from defect-free active turbulence to active topological
turbulence, where chaotic flows are interleaved with chaotic arrangements of full-integer topological
defects. We provide theoretical arguments to predict the activity threshold for the crossover to active
topological turbulence, based on the stability analyses of the topological charge density field. We
further show that ordering and symmetry characteristics are different within these two dynamical
regimes: while SO(2) symmetry is broken within the defect-free active turbulence, the defect-laden
turbulence restores the global SO(2) symmetry. Additionally, we demonstrate the existence of
universal scaling behavior in the power spectra of enstrophy and polarity. This is observed for all
activities and within both defect-free and defect-laden active turbulence.

II. METHODS

A. Hydrodynamic model

We consider an incompressible polar active fluid in two spatial dimensions, with the local
orientational order described by a two-component order parameter p pointing in the direction of
self-propulsion. Let then u and ρ be the velocity and density of the polar fluid, respectively. Coarse-
grained hydrodynamic equations can be derived by phenomenological considerations [8,30,37] and
take the form

Dui

Dt
= 1

ρ
∂ jσi j, (1a)

Dpi

Dt
− (λEi j + �i j )p j = 1

γ
hi, (1b)

along with the incompressibility condition ∂iui = 0. Here D
Dt = ∂t + u j∂ j is the usual advective

derivative. The strain rate tensor Ei j = (∂iu j + ∂ jui )/2 and the vorticity tensor �i j = (∂iu j −
∂ jui )/2 are respectively the symmetric and antisymmetric parts of the velocity gradient tensor. In the
momentum balance Eq. (1a), the stress tensor σi j is broken into a sum of three parts: viscous stress

σ vis.
i j = 2ηEi j , passive stress σ

pas.
i j = −Pδi j + Ci jkl pkhl , and active stress σ act.

i j = −ζ (pi p j − p2

2 δi j )
[38,39]. The first term in the passive stress is the usual hydrodynamic pressure. The second term
accounts for elastic stresses through the anisotropic tensor Ci jkl = λ+1

2 δikδ jl − λ
2 δi jδkl + λ−1

2 δilδ jk ,
with λ being the flow alignment parameter and h = −δF/δp [40,41] being the molecular field
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defined here from the free energy

F =
∫

d2x
{

A

(
−| �p|2

2
+ | �p|4

4

)
+ K

2
∂i p j∂i p j

}
. (2)

The free energy contains a local energy density with an energy scale A that controls the isotropic-
polar transition favoring the emergence of finite polarity at |p| = 1, and a nonlocal energy
contribution with an elastic constant K that penalizes deformations in the polarity field [42]. It
is important to note that we do not treat the polarity as a unit vector, with fixed magnitude. Instead,
in this formulation the polarity modulus is an important dynamical variable.

B. Numerical method and the simulation parameters

We simulate Eqs. (1a) and (1b) using a hybrid lattice-Boltzmann method, combining the finite-
difference method for the evolution of the polarity vector, Eq. (1b), and the lattice-Boltzmann
method for solving the incompressible Navier-Stokes equation, Eq. (1a), with ρ = 40 and η = 3.6 in
lattice Boltzmann units, ensuring that the Reynolds number in the simulations is negligible (Re � 1)
[12,43]. The other relevant dimensionless numbers describing the system are (i) the dimensionless
ratio of the viscosities η/γ , (ii) the ratio of micro to macro length scales (

√
K/A)/L, (iii) the flow

alignment parameter λ, and (iv) the dimensionless active stress ζ̄ = ζ/A. Unless otherwise stated,
we fix the viscosity ratio to η/γ = 3.6, micro to macro length scale to (

√
K/A)/L = 2 × 10−4

(assuring that the coherence length lp = √
K/A is significantly smaller than the domain size L), and

the flow alignment parameter to λ = 0.1.
Simulations were initialized with quiescent velocity field and noisy polar alignments close to the

uniformly oriented state p = êx under periodic boundary conditions, on quadratic domains of linear
dimension L = 1024, unless otherwise is stated.

III. RESULTS

A. Activity-induced crossover to defect-laden turbulence

We begin by introducing global measures of the flow fluctuations and polar order parameter
as functions of the activity parameter ζ̄ . The flow is globally characterized by the dimensionless
root-mean-squared (rms) velocity V rms = Vrms/Vp that is normalized by the characteristic velocity of
passive relaxation of polarity Vp = √

AK/η. The polar order parameter is associated with the SO(2)
symmetry and carries full-integer topological defects. Its global measure is given by the average
density of topological defects ρd = 〈Nd〉/L2. The averaging is done both over space and time in the
statistical steady-state regime. As evident from Fig. 1, increasing activity beyond a certain threshold
results in a continuous increase in the defect density for both extensile (ζ > 0) and contractile
(ζ < 0) systems. We have carefully checked that the activity thresholds do not depend on the
system size L, by simulating different domain sizes of 512 × 512, 1024 × 1024, and 4096 × 4096
and finding precisely the same quantitative dependence of defect density on the activity (see
Fig. 2; square and circle symbols). Interestingly, simultaneous measurement of the rms velocity
V rms indicates that even below the critical activity for defect nucleation, active stresses disturb the
polarity field such that spontaneous flows are generated within the system, for any nonzero activity
[Fig. 1(c)]. A closer look at the velocity field of the system below the defect nucleation threshold
shows that chaotic flows characterized by flow vortices and jets span the system [Fig. 1(a); only a
fraction of the entire domain is shown], although no topological defects are present in the polarity
field. Qualitatively similar chaotic flows manifest at higher activities with a smaller typical length
scale Lact. defined below, though with the distinctive feature that the flows are now laden with the
presence of full-integer topological defects (unbound vortex and antivortex pairs) in the polarity
field [Fig. 1(b)]. Together, these results establish that there is a well-defined activity threshold for
the crossover from defect-free and defect-laden active turbulence in polar active matter.
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(a) (b)

(c)

FIG. 1. Crossover from defect-free to defect-laden active turbulence upon increasing strength of active
stresses. Shown here are the averaged defect density (blue dots) and the rms velocity (orange dots) in units
of Vp = √

AK/η, characterizing the passive relaxation velocity of the polar particles. Active turbulence arises
as soon as the activity is nonzero, but topological defects form and persist in the polarity field only beyond
a finite threshold in both contractile (ζ < 0) and extensile systems (ζ > 0). Results were averaged over time
and for ten simulations from different initial conditions; the error bars stand for the corresponding standard
deviation. The excess kurtosis κi values of both quantities are also represented at the bottom. For large activity
levels, κ (ρd ) � 0, which indicates the population of defects is typically equilibriumlike and follows a normal
distribution law. For small activity levels, there are no defects at all and κ is set by convention to −3. In between,
the crossover is characterized by very rare formation and annihilation events, as evidenced by the peaks in κ

(blue highlighted areas). There are no such peaks for the kurtosis of the rms velocity, which indicates there
is no equivalent crossover regime. (a) and (b) illustrate the polarity field (left panels) and the corresponding
velocity field (right panels) characterized by streamlines (solid black lines) colored by the normalized vorticity
ω/ωmax. Only a small subset of the full domain (1/16th zoomed-in region) is shown. Within the polarity field
positive and negative integer topological defects are marked by red asters and blue squares, respectively.

B. Global symmetry is restored in the defect-laden active turbulence

We next investigate whether the emergence of topological defects leads to alterations in the
global ordering features of the polar active turbulence. To this end, we first introduce the global
polarization � as the spatiotemporal average value of the polarity field p:

� =
∫

dt

T

∫
d2x
L2

p(t, x). (3)

The magnitude of this global polarization |�| is a macroscopic order parameter for polar order akin
to total magnetization in spin systems: |�| = 0 is associated with disordered states (i.e., continuous
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(a)

(b)

FIG. 2. Global symmetry restoration. (a) Averaged defect density ρd , blue solid line, and averaged mag-
nitude of the global polarization � [Eq. (3)], orange solid line. (b) The correlation length ξ̄ (in units of
lp = √

K/A) defined by fitting an exponential to the pair-correlation function �(r). The square and circle
symbols in panel (b) correspond to the simulations results for 4096 × 4096 and 1024 × 1024 domains,
respectively, showing no detectable difference.

rotational symmetry) while |�| > 0 is associated with ordered states (discrete or broken rotational
symmetry). We use this global measure to probe the crossover between the two active turbulence
regimes as shown in Fig. 2(a) (orange solid line). Upon increasing the active stress from zero, the
active turbulence state immediately manifests a broken SO(2) symmetry evident from a nonzero
value of |�| in the absence of topological defects. The global polarization decreases in magnitude
with increasing activity and, remarkably, drops to zero beyond a critical activity for the nucleation
of topological defects. This is indicative of the restoration of the SO(2) symmetry in the active
defect-laden turbulence.

To further characterize the signature of this crossover, we also measure the equal-time, spatial
pair-correlation function for the polarity field �(r) = 〈δpi(x)δpi(x + r)〉, where δpi(r) = pi(r) −
〈pi(r)〉 is the deviation from the local mean value and the averaging is performed over ten different
realizations, with distinct initial conditions and over time, once the system has reached a statistical
steady state. Accordingly, the correlation length ξ is obtained by fitting an exponential to the
pair-correlation function �(r). Similar to the global polarization, the correlation length ξ̄ = ξ/lp,
normalized with respect to the coherence length lp = √

K/A, decreases with increasing activity
(Fig. 2). The regime shift is marked by the crossover from the fast decay to the slow decay of the
correlation length ξ̄ , which matched with the onset of defect nucleation and the vanishing of |�| = 0
as evidenced in Figs. 2(a) and 2(b). We have carefully checked that correlation measurements
are independent of the domain sizes for very large systems up to 4096 × 4096. We note that the
behavior of the correlation length shares interesting similarity to that in frustrated two-dimensional
Heisenberg magnets, where a crossover between a topological defects dominated regime at high
temperatures, and a spin-wave regime at low temperatures is observed [44]. Together, these mea-
surements of the global polarization and the correlation length indicate that the crossover from
defect-free to defect-laden active turbulence is marked by significant alterations in both the global
symmetry of the collective organization and in the local correlations between the polarities of active
constituents.
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(a) (b)

(c) (d)

FIG. 3. Defect pair nucleation process. (a), (b) Temporal evolution of the average bulk free-energy F̄bulk =
(Fbulk + A/4)/ALact. (top panels) measured in units of ALact. relative to the background field −A/4; along with
(c, d) simulation snapshots depicting the polarity field and diffuse charge density (heat plot) before, at, and after
the nucleation of one pair of oppositely charged topological defects (bottom panels). Panels (a) and (c) are
contractile, and panels (b) and (d) are extensile. The blue regions in panels (a) and (b) mark the period of
existence of the defect pair considered. Time t̄ is measured in units of the passive relaxation time of polarity
over the simulation domain tp = γ L√

AK
(see also Supplemental Movies [46]).

It is important to note that the observed restoration of the SO(2) symmetry is solely activity-
driven and is in the noiseless limit of the equations of motion. Furthermore, the results presented
in Fig. 2 demonstrate that, point-by-point, for any activity, (i) the correlation length, (ii) the
polarization, and (iii) the defect density for domain sizes 1024 × 1024 and 4096 × 4096 fall
exactly on top of each other. This strongly suggests a system-size independent behavior, at least
for the numerically accessible system sizes. The question about the existence of a well-defined
thermodynamic limit of this symmetry-breaking or symmetry-restoring transition remains open for
future studies. Additionally, it is constructive to note that we do not observe any difference between
longitudinal and transverse correlations in the polarity. The correlation length does not diverge with
the system size within the ordered state, which we conjecture is due to the nonequilibrium nature of
the system and the breaking of detailed balance [45] through activity-induced flows that couple to
the dynamics of the order parameter.

C. Mechanism of defect pair nucleation in active turbulence of polar particles

Having established the significant impact of the topological defects on the collective organization
of polar active matter and its spontaneous flows, we next explore the mechanism of how topological
defects are formed within the active turbulence state as the activity approaches the threshold
value. Figure 3 illustrates zoomed-in snapshots of the polarity field at the onset of one defect pair
nucleation. Three snapshots are shown at simulation times corresponding to the following: before,
at, and after a single pair nucleation for both extensile and contractile active stresses. To identify and
track topological defects, we make use of the diffuse charge density, defined in the next section as
D = 1

2π
εi jεkl∂i pk∂ j pl : it carries the ±1 charge of the integer topological defect at the singularities

in the polarity field and is zero elsewhere. Shortly before the onset of defect pair nucleation, the
polarity field is characterized by locally ordered domains separated by lines of kink walls (Fig. 3
and Supplemental Movies [46]). At the onset of defect pair nucleation the polarity within one of the
kink walls flips locally, leading to spontaneous emergence of a pair of full-integer defects (Fig. 3).
After the nucleation event, the defect pair gets separated by an ordered region of polarity alignment
(Fig. 3). While the negatively charged antivortices (−1 topological defects) have similar structures
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in both extensile and contractile systems, the positively charged +1 topological defects take the
form of asters and vortices in contractile and extensile systems, respectively [Figs. 3(c) and 3(d)],
in agreement with earlier analytical predictions on the stability of defect structures in polar active
matter [47].

In order to gain more insight into the defect pair nucleation process, we measure the averaged
bulk free-energy of the system from Eq. (2) during the time leading to a single defect pair
nucleation event, as depicted in Figs. 3(a) and 3(b). For both extensile and contractile systems
the onset of defect nucleation coincides with a burst in the bulk free-energy. This is consistent with
the spontaneous flipping of the polarity within the kink walls that occurs when activity-induced
fluctuations in the polarity overcome the energy barrier of local flipping, set by the bulk free-energy.
Once the defect pair is formed, the bulk free-energy drops as the high energy stored in the kink
walls is released. In the following section, we look more closely at this defect nucleation process
and derive an analytical description of the activity threshold that is set by the competition between
bulk and elastic energies of the system and by activity-induced flows.

D. Onset of active defect-laden turbulence

To gain more theoretical insights into the onset of defect pair nucleation, we perform a stability
analysis of the topological charge density field. A stability analysis of the polarity field to probe
the nucleation of topological defects is unfeasible since it is intrinsically nonlinear. However, we
take advantage of the property of the topological charge density field being zero for low-energy
excitations of the polarity field (aka kinks and domain walls) to study the onset of defect nucleation
as an instability to a nonzero and localized charge density field. To this end, we employ the
Halperin-Mazenko method [48–50] of topological defects as zeros in the polarity vector field p, i.e.,
localized regions where p vanishes in magnitude while its orientation is undefined (multivalued).
The associated topological charge is a quanta of the phase jump measured around an arbitrary
contour Cα enclosing the defect

2πqα =
∮

Cα

dl · ∇θ, (4)

where θ = arg(p). By Stokes’ theorem, we see that topological defects correspond to phase singu-
larities where the phase ceases to be irrotational,

2πqα

∫
Aα

d2x δ(x − xα ) =
∫

Aα

d2x∇ × ∇θ. (5)

As shown in Ref. [50], the topological content inside an area region Aα can be also obtained from
the corresponding integration in the order parameter space p = (p1, p2):

2πqα

∫
Aα

d2x δ(x − xα ) =
∫

d2pdet(∇p)δ(p). (6)

We relate the topological defect density D with the Jacobi determinant of the transformation to the
order parameter space, which is the same as the determinant of the distortion tensor ∇p, to define

D = 1
2εi jεkl∂i pk∂ j pl , (7)

which is a smooth scalar field that vanishes where p is smooth and becomes nonzero and localized
at the core of topological defect, picking up the phase singularity. We have validated the defects
detected by D field against our routine approach of using winding angles and have obtained identical
results, in agreement with previous studies on active nematics, where the D field was defined as
the diffuse charge density [51–53]. The D field has the physical interpretation of a nonsingular
topological charge density field which follows the conservation law [50]

∂t D + ∂iJi = 0, (8)

063101-7



BENJAMIN H. ANDERSEN et al.

with the corresponding topological current density

Ji = −εi jεkl∂t pk∂ j pl , (9)

which is fully determined by the evolution of the polarity p and the flow field u through the main
equations, Eqs. (1b) and (1a).

We perform a stability analysis of Eq. (8) around the ground state of zero D associated with
slowly varying polar order to estimate the critical activity for the onset of defect nucleation,
identified as an instability where D becomes nonzero because polar order vanishes locally. In
general, the evolution of D, resulting from inserting the evolution of p from Eq. (1b) into Eq. (8),
cannot be closed only in terms of the D field. However, in the limit of retaining only the shear flow
alignment contribution and the molecular field, the evolution of p from Eq. (8) can be reduced to

∂t D = εi jεkl

[
λ∂i(Ekn pn)∂ j pl + 1

γ
∂ihk∂ j pl

]
. (10)

Now, by balancing viscous stress with the active stress in Eq. (1a), we relate the traceless strain
rate Ekn directly to the nematic order parameter, namely,

Ekn = ζ

2η

(
pn pk − p2

2
δnk

)
, (11)

such that the flow alignment contribution dominated by orientational distortion has a closed form
given by

ζλ

4η
εi jεkl∂i(p2 pk )∂ j pl = ζλ

4η
(p2εi jεkl∂i pk∂ j pl + 2εi jεkl pk pm∂i pm∂ j pl )

= ζλ

2η
p2D + ζλ

2η
p2(∂1 p1∂2 p2 − ∂2 p1∂1 p2) = ζλ

η
p2D. (12)

The molecular field is due to the elastic distortions and the ordering potential

hk = K∇2 pk + A(1 − p2)pk,

and it leads to the contribution

εi jεkl∂ihk∂ j pl = K∇2D + 2A(1 − 2p2)D.

Thus, within this limiting case, the evolution of the D field reduces to a diffusion-reaction equation:

∂t D ≈ K

γ
∇2D +

(
2A

γ
(1 − 2p2) + ζλ

η
p2

)
D. (13)

First, we notice that the polarity stiffness K enters as an effective diffusivity coefficient and sets
the scale of the diffusive core. The kinetic rate coefficients arise from the stabilizing passive contri-
bution through the energy scale parameter A of the local order potential and its relaxation timescale
γ , as well as from the destabilizing contribution through the term that includes flow alignment λ,
activity ζ , and viscosity η. At first sight, Eq. (13) looks nonconservative due to the source/sink
term. This is, however, not the case since this term is derived from a conservative current and is
related to the fact that the D field itself is the divergence of a vector field, D = ∂i(εi jεkl pk∂ j pl )/2.
We estimate the critical activity from the linear stability analysis of Eq. (13) about the ordered state
p = 1 + δp and D = δD. By balancing out the two contributions to the reaction term we find that
the equation becomes unstable at

ζc ≈ 2η

γ λ
A. (14)
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FIG. 4. Dependence of the steady-state density of defects on (a) the flow-aligning parameters λ and (b) the
bulk free-energy strength A. Inset in panel (b) shows that normalizing the active stress by

√
A results in a data

collapse near the crossover point.

Thus, in the limit where we neglect the convective and rotational terms to the evolution of the D
field (i.e., u · ∇p and [�, p]), the topological charge density becomes unstable to defect nucleation
only for extensile systems where ζ > 0. This instability is due to the flow alignment.

Advection and rotation of polarity p, due to flow velocity and vorticity, could also trigger insta-
bilities in the D field. Alas, their contributions are nonlocal through viscosity and incompressibility
constraint and cannot be reduced to linear operators acting on D. However, it turns out that the
contribution of vorticity to the D evolution is symmetric with respect to the sign of ζ , and, from
this, we can infer that an instability induced by vorticity would occur at a critical activity both for
extensile and contractile systems, also symmetric with respect to the sign of ζ .

It is important to note that in numerical simulations all these destabilizing forces orchestrate and
compete with the relaxation to uniform order. Therefore, the value of the critical activity is different
than the estimated one corresponding to an isolated triggering factor. However, this stability analysis
is informative and predicts generic properties of ζc: (i) it depends on the energy scale A controlling
polar order, and (ii) the threshold activity has an asymmetry with respect to extensile and contractile
active stresses in the presence of flow alignment.

To test the theoretical predictions on the activity threshold for defect nucleation, we next explore
the dependence of defect density on the flow-aligning parameter λ and the energy scale A for the bulk
free-energy. Figure 4(a) compares the variation of the defect density ρd with activity for three values
of the flow-aligning parameter λ. Interestingly, and consistently with the theoretical prediction,
for λ = 0 the activity threshold for defect nucleation is symmetric with respect to the sign of the
activity. Additionally, as predicted from the theory, a positive (negative) flow-aligning parameter
shifts the defect density curve such that the activity threshold becomes smaller—in absolute value—
for extensile (contractile) activities compared to their contractile (extensile) counterparts, leading to
a more asymmetric profile of the defect density with respect to the sign of the activity. Moreover, as
predicted from the theory, decreasing the energy scale in the bulk free-energy A lowers the activity
threshold for defect nucleation [Fig. 4(b)]. This is also consistent with the mechanism identified for
the nucleation of pairs of defects, relying on the spontaneous flipping of the polarity within the kink
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(a)

(b)

(c)

(d)

FIG. 5. Universal scaling in defect-free and defect-laden active turbulence. Power spectra normalized with
its corresponding maximum value for (a) polarity Êp(k) and (b) kinetic energy Êv (k) on semilog plots,
demarcating the exponential decay at small scales (large wave numbers), which implies the dynamics is
dominated by viscous dissipation. (c), (d) Power spectra normalized with its corresponding maximum value
for (c) the enstrophy Êw (k) and (d) the kinetic energy again, on log-log plots, showing the power-law scaling
at scales larger than the active length scale Lact.. Insets show the nonscaled power spectra and the colorbar
indicates the dimensionless active stress strength ζ̄ .

walls (Figs. 3(c) and 3(d) and Supplemental Movies [46]): since the parameter A sets the depth of a
double-well potential in the bulk free-energy, decreasing its value amounts to lowering the energy
barrier for flipping the polarity, and as such leads to a reduced activity threshold for defect pair
nucleation.

E. Universal scaling in defect-free and defect-laden active turbulence

Having established the mechanism of defect nucleation and the difference between defect-free
and defect-laden active turbulence, we now investigate the common features between these two
active turbulent states by characterizing the energetic features of the flow and order parameters
(Fig. 5). To this end, we first measure the power spectrum of the polarity order parameter Êp(k) =
1
2 〈p̂i(k) p̂i(−k)〉, with k being the wave number averaged over azimuthal direction, for a range
of activities spanning both defect-free and defect-laden turbulent states. Interestingly, when the
wave number is nondimensionalized by the active length scale Lact. = √

K/|ζ |, which characterizes
the scale of energy injection into the system by active stresses, the power spectrum Êp for all
activity values shows an exponential decay at wave numbers larger than the inverse active length
scale, as evident from a semilog plot of the order parameter spectrum versus the normalized
wave number [Fig. 5(a)]. The exponential cutoff scale still depends on activity and approaches a
constant value at sufficiently high activity. This is related to the initial fast decay of the correlation
function �(r), with a correlation length that is activity dependent as discussed earlier. Notice
that the exponential dependence of Êp on k breaks down for small wave numbers. On the other
hand, robust exponential tails at large wave numbers are characteristic for the spectral properties
of the spontaneous flow, measured by the kinetic energy spectrum Êv (k) = 1

2 〈v̂i(k)v̂i(−k)〉, with
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v̂i being the Fourier transforms of flow velocity [Fig. 5(b)]. However, for wave numbers below
the inverse active length scale, the kinetic energy spectrum Êv (k) and the enstrophy spectrum
Êω(k) = 1

2 〈ω̂(k)ω̂(−k)〉 ∼ k2Êv (p) both exhibit power-law behavior [Figs. 5(c) and 5(d)]. This
is important, because these activity levels span both the defect-free and the defect-laden active
turbulence states, indicating that for a polar active matter, despite distinct symmetry features and
correlation lengths, there exist universal scaling of flow and order parameter spectrum in the active
turbulence state with and without topological defects. In particular, the enstrophy power spectrum
that relates to the flow field shows a universal power-law scaling at length scales larger than the
active length Lact., while the polarity power spectrum that relates to the order parameter field shows
a universal exponential decay at length scales smaller than the active length scale. These two distinct
scaling relate defect-free and defect-laden turbulence in polar active matter. It is important to note
that the scaling observed here is different from the power-law scaling suggested for active nematic
turbulence without topological defects, where the orientational field is treated as a unit vector field
with fixed modulus [11]. The heuristic argument of the scaling behavior reported in Ref. [11] is
based on a spectral analysis of the equation for the vorticity source to argue for the power-law
scaling of Êp(k) and Êv (k) at small k. The scaling argument hinges on two important assumptions:
(i) the vorticity source is dominated by the active stress determined only by phase gradients;
(ii) at small k (long wavelength) phase fluctuations become uncorrelated. Both of these assumptions
fail to apply when the polarity magnitude is allowed to vary, since the vorticity fluctuations couple
with fluctuations in both the magnitude and the phase of the polarity. Thus, the power spectrum of
the vorticity source is not trivially related to the polarity power spectrum by extending the scaling
analysis from Ref. [11]. Therefore, we do not expect to observe the same scaling behavior at long
wavelength as in Ref. [11].

IV. DISCUSSION

The results presented herein reveal distinct flow fields and patterns of collective self-organization
of polar active particles that are primarily controlled by active stresses. We show that increasing
active stress in a polar active fluid leads to a dynamical crossover from a defect-free to a defect-laden
active turbulence state. Above a critical activity threshold, the turbulent flow is seeded with topo-
logical defects nucleated in the polar order parameter. Importantly, we find that the proliferation of
defects screens the global polar order. Thus, in the defect-laden turbulent states the SO(2) symmetry
is restored, whereas the defect-free active turbulence is endowed with broken SO(2) symmetry.

Interestingly, we show that in spite of their distinct topological content, the two active turbulence
regimes share similar statistical properties with robust exponential tails for power spectra of polar
order, flow velocity, and vorticity on length scales smaller than the active length scale. On the other
hand, over the length scales that are larger than the active length scale, enstrophy and energy spectra
of flow fluctuations exhibit self-similarity with power-law scaling exponents. These statistical
properties are also universal in the sense that they do not depend on the presence of topological
defects, which may indicate that nontopological dissipative structures (e.g., kink walls) are the
dominant driving force to fluctuations in order and flow of polar active fluids.

It is noteworthy that despite the ubiquitous presence of polarity in living and synthetic active
materials [8,9], the majority of the current understanding of topological defects and flow features
within the active turbulence is based on studies of active nematics. This is in part due to the growing
number of biological systems that are identified with half-integer, nematic, topological defects
[21,32,34] and discovery of potential biological functions for such defects [53–55]. It is important to
note, however, that full-integer defects have also been identified as possible organization centers for
mitotic spindles in microtubule-motor protein assemblies [56] and more recently as potential sites
for mechanotransduction [35], and for cell differentiation in mouse myoblasts [33] and cartilage
cells [57]. Our results provide a quantitative characterization of the dynamical crossovers, as well
as the statistical imprints of flow and topological defects in polar active matter. Future work should
focus on details of the dynamic distinctions in topological and flow features between the active
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turbulence in polar and nematic active materials, as well as generalized frameworks of the coupling
between polar and nematic symmetries that have already been suggested theoretically [37,58,59]
and observed experimentally [56,57].
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Chapter 3

Spatiotemporal transition in active
nematic fluids

The foundation of this chapter rests entirely on [1] and seeks to investigate the
presence of transitions or crossovers in active nematic fluids, extending beyond the
well-established hydrodynamic instability of the ordered state [2, 3]. To facilitate
this, an information-theoretic measure of spatiotemporal ordering of topological
defects is utilized, grounded in the recently introduced concept of computable in-
formation density [4]. Understanding the evolution of active systems with varying
levels of activity is of fundamental importance in a wide range of biological sys-
tems. The dynamics of topological defects are particularly important, as they are
closely linked to the emergent flows in living materials [5,6], and have been demon-
strated to carry biochemical information on the membrane of living cells [7,8] and
enhance the topological mixing in filament-motor protein mixtures [9].

3.1 Nematohydrodynamic model

The continuum description of suspended active nematogens provides an effective
coarse-grained representation, extending the Beris-Edwards equations [10] for pas-
sive nematic liquid crystal hydrodynamics. The governing equations for active
nematohydrodynamic are extensively documented [11–13]. Relevant variables in-
clude the density ρ, the velocity field ui, and the two-dimensional, traceless, and
symmetric nematic order parameter Qij = 2S (ninj − δij/2). This second-rank
tensor represents orientational order, with scalar order parameter S and director
ni denoting its largest eigenvalue and corresponding eigenvector, encoding mag-
nitude and direction of nematic ordering, respectively. The governing dynamics
consist of three coupled continuum equations describing incompressibility, mo-
mentum balance, and advection-diffusion of the nematic order-parameter field,
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respectively:

∂iui = 0, (3.1)
ρ(∂t + uj∂j)ui = ∂jΠij, (3.2)

(∂t + uk∂k)Qij − Sij = ΓHij. (3.3)

The generalized advection term

Sij = (λEik + Ωik)

(
Qkj +

1

2
δkj

)
+

(
Qik +

1

2
δik

)
(λEkj − Ωkj)

−2λ

(
Qij +

1

2
δij

)
(Qkl∂kul)

(3.4)

is a co-rotational term, expressing the response of the nematic ordering to flow
gradients (i.e. any shear flow will either turn or tumble the nematogens) described
by the strain rate tensor Eij = (∂iuj + ∂jui)/2 and the vorticity tensor Ωij =
(∂iuj−∂jui)/2. The alignment parameter λ determines whether strain or vorticity
dominates the nematogens collective response to shear flow, with positive and
negative values corresponding to rod-like and disk-like shapes, respectively. The
molecular field

Hij = − δF

δQij

+
1

2
δijTr

(
δF

δQkl

)
(3.5)

ensures diffuse relaxation of the nematic ordering to the free energy minimum

F =

∫ {
K (∂kQij)

2 +
A
2
(1−QijQji)

2

}
d2x (3.6)

on a timescale set by the rotational diffusive constant Γ; with K being the Frank
elastic constant and A the energy constant associated with the Landaue-de Gennes
free energy. The stress tensor Πij consist of three parts; viscous stress Πviscous

ij =
2µEij, elastic stress

Πelastic
ij = −Pδij + 2λ

(
Qij +

1

2
δij

)
QklHlk − λHik

(
Qkj +

1

2
δkj

)

−λ

(
Qik +

1

2
δik

)
Hkj − ∂iQkl

δF

δ∂jQlk

+QikHkj −HikQkj,

(3.7)

and active stress Πactive
ij = −ζQij. Here, P represents pressure, and ζ dictates the

strength and nature of activity, with positive and negative values characterizing
extensile- and a contractile- nematogens, respectively. The elastic stress introduces
back-flow, while the active stress implies that any gradients in the nematic ordering
generate flows, rendering the nematic state unstable and ultimately leading to
active turbulence [13–16].
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3.1.1 Simulations and parameters

The governing equations (3.1 - 3) constitutes a coupled system, and are numeri-
cally integrated using a hybrid lattice-Boltzmann method [13, 17]. This approach
combines the finite-difference method for the evolution of the nematic order pa-
rameter (3.3) with the lattice-Boltzmann method for solving the incompressible
Navier-Stokes equations (3.2). Simulations were initiated with a quiescent velocity
field and sleightly perturbed nematic alignment close to the uniform nematic state
with the nematic director aligned along the x-axis, on a periodic quadratic domain
of linear dimension L = 1024. The system is evolved until a statistical steady state
is reached. The lattice spacing and time step is taken as unity and the additional
parameters are chosen so the resulting flow patterns reproduce that observed in
flow-aligning and low Reynolds number experiments on microtubule–motor protein
mixtures [11]

rotational diffusion Γ elasticity K viscosity µ density ρ alignment λ activity ζ
0.05 0.05 1.0 40 1.0 0.1

and the parameter A in the Landau-de Gennes bulk free energy expansion are
taken above the nematic-isotropic transition, so that any potential local nematic
ordering solely is induced by the activity. All of the model parameters are reported
in lattice units.

3.2 Spatiotemporal defect disorder

To quantify the chaotic dynamics following from the continuous proliferation and
annihilation of defects in the steady state, we employ the recently introduced
information-theoretic extensive measure of order for systems both in and out of
equilibrium [4,18]. This measure relies on a universal — does not necessitate prior
knowledge of the system dynamics — lossless compression algorithm, specifically
the Lempel-Ziv 77 (LZ77) compression algorithm [19]. In addition to being univer-
sal, the LZ77 algorithm has the advantage of being asymptomatically optimal, in
that the total binary code length L(s) of the losslessly compressed data sequence
s converges to the entropy in the thermodynamic limit for a stationary ergodic
process [20]. This does not only make L a good approximation for the equilibrium
entropy when it is defined but also a suitable proxy thereof when undefinable, as
in the case of systems far from equilibrium. The central idea behind this naïve
quantitative measure is simple: data with a high-level of correlations, and thus or-
der, are more compressible than data with either low- or no- level of correlations.
Thus making L a satisfying measure of what most intuitively would perceive as
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complexity. L has been demonstrated to reveal first and second order phase tran-
sitions in equilibrium as well as nonequilibrium systems; along with the position of
the critical point, the exponent for the critical slowing down, and the correlation
length [4, 21].

3.2.1 Lempel-Ziv 77 complexity

The LZ77 algorithm is relatively straightforward yet powerful. It achieves lossless
compression by replacing repeated substrings with references to their occurrences
elsewhere in the input data. This is best illustrated with an example. Consider the
data string s = 010110011100111001. Reading left to right, the first character is
0. The string now becomes 0 · 10110011100111001, where the added dot signifies
that 0 is the longest substring not previously encountered. The second character,
1, is also encountered for the first time, thus forming a substring not previously
encountered. Consequently, the string now reads 0 · 1 · 0110011100111001. The
longest substring not yet encountered after the second character is 011, result-
ing in the string reading 0 · 1 · 011 · 0011100111001. By continuing this pro-
cedure, we derive the final sequence of steps: 0 · 1 · 011 · 00 · 11100111001 →
0 · 1 · 011 · 00 · 111 · 00111001. The count of longest substrings not previously
encountered is the LZ77 complexity of the data string s, which in this case is
6. Figure 3.1 depicts the flowchart of the program utilized for computing the
LZ77 complexity in this study.

START
c = 1

ind = 1
inc = 0
len = len(S)

i = 0
max = 0 ind + inc < len

inc != 0 c ++

STOP

S[i + inc] =
S[ind + inc]

inc ++

inc > max

max = inc

i ++
inc = 0 i = ind

c ++
ind += max + 1

FALSE

TRUE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

FALSE

TRUE

Figure 3.1: Flowchart depicting the program employed to compute the Lempel-Ziv
77 complexity c of a data string with a length of len.
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3.2.2 Procedure for scanning three-dimensional spatiotem-
poral data

t=3

t=2

t=1

L

l =
L/
2

t=0

s = 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1...

Figure 3.2: Procedure for constructing and flattening/scanning three-dimensional
spatiotemporal defect position data.

Operating on one-dimensional strings of characters, the LZ77compression scheme
requires us to flatten our three-dimensional spatiotemporal data array to accom-
modate its application. Various procedures exist for imposing a partial linear
ordering on higher-dimensional datasets, each method distinguished by its spe-
cific properties. This study uses a three-dimensional Peano-Hilbert ordering due
to its locality-preserving behaviour [22, 23]; meaning that points that originally
are spatiotemporally close remains relatively near to each other in the flattened
array. There are a total of eight possible and distinct Peano-Hilbert orderings
for our three-dimensional spatiotemporal data. This redundancy will come into
play latter. The procedure unfolds as follows: Defect positions are extracted from
the director field at every time-step and stacked chronologically to form a three-
dimensional data grid, as shown in Fig. 3.2. In the depiction Fig. 3.2, blue circles
depict +1/2 defect and green triangles depict −1/2 defect. Each grid point is
labeled using a binary dictionary, where the presence of a defect is denoted by
1 and its absence by 0. We do not differentiate between ±1/2 defects. The
three-dimensional grid is flattened by imposing a linear partial ordering, here fa-
cilitated by the space filling Hilbert curve; depicted as the orange curve in Fig. 3.2.
This Peano-Hilbert ordering s systematically covers the three-dimensional grid in
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a self-similar manner while maintaining spatiotemporal locality. To mitigate the
issue posed by defects situated close to each other in the vicinity of the periodic
boundary, from becoming substantially separated in the one-dimensional Hilbert
ordering s, a centered and quadratic observation window of linear size l = L/2 is
chosen. Only defects falling within this window are considered. This window is
depicted by the red square in Fig. 3.2.

3.3 Results
Examining how defect density η varies with active stress ζ. Topological defects
begin to emerge above a specific activity threshold, indicated by (I) in figure 3.3.
Below this threshold, elastic energy accumulates along system spanning kink lines
(Fig. 3.3a), created by the hydrodynamic instability [2]. The director field ex-
periences significant bending deformations, generating active stresses as a result.
These stresses, however, are initially too weak to exacerbate the bend instabilities,
thus maintaining the dynamic stability of the kink lines and preventing the for-
mation of topological defects. As active stress increases, it eventually causes the
kink lines to break up, leading to the formation of topological defects (Fig. 3.3b-c).
This breakup is followed by a rapid rise in defect density as activity levels continue
to increase.

3.3.1 Divergence measure

To quantify the information excess present in the measured spatiotemporal distri-
bution of defects relative to a random uniform distribution of the same defects, a
divergence measure is introduced [24]. This measure serves as a mathematical tool
to gauge the deviation from randomness and provides insights into the underlying
patterns or structures within the distribution.

D(s) =

〈
1− L(s)

E [L(ssh)]

〉
, (3.8)

where L(ssh) is the L-measure of a random shuffle of the data sequence s, and
E [L(ssh)] is the sample average over several such shuffles. To ensure robustness
in our analysis and mitigate unintentional biases stemming from the choice of the
Peano-Hilbert ordering, an average ⟨·⟩ across all eight such possible orderings is
computed.

Defect proliferation threshold

Examining figure 3.3d reveals that the threshold activity for defect proliferation
is accurately captured by the abrupt change and subsequent rapid increase in the
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Figure 3.3: (a-c) Snapshots showing the director field and elastic energy at three
stages: before, at, and after the defect nucleation threshold. The corresponding
active stresses are (a) ζ = 0.018, (b) ζ = 0.0205, and (c) ζ = 0.022. Topological
defects are indicated by blue circles (+1/2 defect) and green triangles (-1/2 de-
fect). (d) Divergence measure and defect density plotted against the active stress.
Both ordinates are aligned at zero, as highlighted by the horizontal dashed black
line. The vertical dashed black line (I) indicates the onset of defect proliferation,
while the vertical dashed red line (II) marks the maximum in the divergence mea-
sure. The lower panel displays the peaks in both the variance and gradient of the
divergence as functions of active stress.

D-measure (3.8), before reaching its maximum. In this range defined by the ac-
tivity threshold (indicated by I) and the maximum (indicated by II) the system
undergoes a transient state from defect-absent to defect-laden active turbulence,
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dominated by rare events. Indeed, figure 3.3b reveals that within this activity
range defects tend to form and congregate in the vicinity of other defects. This
clustering behavior suggests a strong correlation between defect activity and their
spatiotemporal distribution, highlighting the critical nature of the threshold in
transitioning the system to a state characterized by active turbulence. This tran-
sient state is further elucidated by examining the gradient dD/dζ (bottom panel in
Fig. 3.3d). Remarkable, the fluctuations in D and its peak coalesce with the gra-
dient, indicative of an approximate proportionality between dD/dζ and Var(D).
This relationship mirrors an analog of the fluctuation–dissipation theorem from
equilibrium statistical mechanics. The coherence between D’s fluctuations and
its gradient suggests a dynamic balance akin to that seen in equilibrium systems,
where fluctuations and dissipation are intimately linked. This finding underscores
the intricate interplay between system dynamics and the emergence of defects,
shedding light on the underlying mechanisms driving the transition to defect-laden
active turbulence.

3.3.2 Director decorrelation time

Topological defects represent spatial locations where the nematic order breaks
down, identified by the minima in the largest eigenvalue S of the nematic order
parameter Qij. Upon examining figure 3.4a, it is evident that the excess order
in the scalar order parameter S spikes at the activity level where a peak in the
fluctuations of the divergence measure was previously observed. This correlation
indicates a significant change in the director dynamics coinciding with defect nucle-
ation. The spike in S suggests that the system’s order parameter becomes highly
responsive at the threshold of defect proliferation, further emphasizing the critical
nature of this activity level in the transition to defect-laden active turbulence.

To shed further light on the temporal features of the director dynamics during
defect nucleation events, the decorrelation time in the order parameter S was
calculated by fitting an exponential decay to the temporal autocorrelation of the
fluctuations in S and subsequently averaging this space. This analysis aims to
provide deeper insights into how quickly the system’s order parameter responds
and evolves during the critical phase of defect proliferation, offering a more detailed
understanding of the dynamic processes underpinning the transition to defect-
laden active turbulence. Figure 3.4b reveals a significant slowing in the director
fluctuations prior to the onset of defect proliferation. The introduction of defects
swiftly alters the characteristic timescale for fluctuations, as evidenced by a sharp
decrease in the decorrelation time by more than an order of magnitude within the
previously defined transition range, consistent with the observations in figure 3.3d.
However, at higher levels of activity, the decorrelation time shows only a moderate
decrease with increasing activity.
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Figure 3.4: (a) Excess order as function of activity. The spike coalesce with the
peak in the D-measure fluctuations. (b) Director decorrelation time vs. active
stress. The abrupt drop of the director decorrelation time, a space-averaged and
temporal measure, only picks up the first transition. The transition points labeled
(I) and (II) correspond to those in figure 3.3d.

3.3.3 Defect pathlength

The defect pathlength measures the average distance defects travel over time, nor-
malized by the average distance between defects. The first transition point (I)
in figure 3.5 corresponds to the onset of defect nucleation, where non-linearities
in defect dynamics become apparent. At this stage, defects begin to form and
proliferate due to increased active stress, leading to a noticeable change in the sys-
tem’s behavior. However, it is the second transition point (II) that reveals more
intricate dynamics. Here, the defect pathlength reaches its peak, indicating an
optimal state for defect motion and organization. This peak represents the max-
imum pathlength before the system transitions into a state dominated by strong
interactions, characterized by more frequent annihilation events among defects,
and shorter individual defect paths despite the increasing defect density.

3.4 Conclusion
The findings reveal a sequence of transitions in the evolution of collective self-
organization patterns with increasing activity of the material. Beyond the known
hydrodynamic instability of the ordered state [3,14], a first activity threshold was
identified, initiating the nucleation of topological defects. At this threshold, the
director decorrelation time drops sharply, indicating a rapid increase in temporal
fluctuations. Further investigation uncovered a hidden dynamic transition be-
yond this threshold, characterized by optimal spatial and temporal organization
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Figure 3.5: Defect pathlength, normalized by the average defect separation dis-
tance. Transition points labeled (I) and (II) correspond to those in figure 3.3d.

of topological defects. This spatiotemporal transition is not apparent through
purely spatial or temporal analyses alone. The existence of such a threshold for
spatiotemporal organization could have significant implications for the evolution
of self-organization patterns in living materials [25–27]. This research highlights
the need to explore order parameters that evolve in both space and time to uncover
phase transitions in non-equilibrium systems.
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DRAFT
Fully developed active turbulence: Emergence of hidden spatiotemporal transition in

active nematic fluids

Robin V. Bölsterli†, Benjamin H. Andersen†, and Amin Doostmohammadi∗
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark

(Dated: May 28, 2024)

In living materials, collective motion often manifests as flow vortices and jets, forming what
is known as active turbulence. Using a continuum theory of active nematics and employing an
information-theoretic divergence measure, we report on the existence of a nonlinear transition in
active nematic fluid with increasing activity levels. Specifically, beyond the threshold activity for
topological defects nucleation, we find a second activity threshold for a hidden dynamic transition to
a state we term fully-developed active turbulence, and show that this transition is of spatiotemporal
nature – remains concealed to purely spatial or purely temporal order parameters. We further
show that the transition point marks the maximum pathlength for active topological defects and
saturation of the scaled flow mixing rate. The results offer new insights into characterizing non-
equilibrium phase transitions and the optimal evolution of active materials across varying activity
levels.

Topological defects mark singularities in the order pa-
rameter, where the order breaks down, and are ubiqui-
tous in a wide range of systems, from vortex and antivor-
tex pairs in quantum fluids [1] to disclination lines in liq-
uid crystals [2]. Since they are topologically-protected,
such defects are robust to structural changes and are fun-
damental to structural properties of the material [3, 4]. In
addition to their classical characterization in inanimate
condensed matter systems [5, 6], there is now a growing
list of biological processes in which topological defects
are identified as the center of organization and hotspots
for the localization of biochemical and mechanical infor-
mation [7]. Striking examples are topological defects in
the phase field of bioelectrical signaling in the heart and
brain that are linked to arrhythmia [8, 9], topological de-
fects in subcellular filaments as organization centers of
morphogenesis in the Hydra genus [10], and topological
defects in bacterial biofilm and tissue alignment fields as
hotpots for bacteria and cell accumulation [11, 12], es-
cape to the third dimension [12–14], and cell death and
extrusion [15]. The common feature of all these biological
implications is that, unlike their inanimate counterparts,
topological defects in living materials are continuously
created and annihilated in pairs due to the continuous
injection of energy by the constituent elements of mat-
ter [16, 17]. This activity of living materials is shown to
result in the self-propulsion of certain topological defects
in filament-motor protein mixtures [18–20], in bacterial
suspensions [11, 13], and in cellular tissues [12, 15], sys-
tems that are characterized as realizations of active liquid
crystals [21–23].

The motion of active topological defects is shown to
be closely interlinked with the emergent flows in living
materials [24–27], and topological defects organization is
often interleaved with fluid flow vortices and jets, form-
ing a state called mesoscale- or active-turbulence [28–

∗ Correspondence email address: doostmohammadi@nbi.ku.dk
† These authors contributed equally to this work.

30]. The active turbulent state arises due to an inher-
ent hydrodynamic instability of the active nematic fluid
[31, 32]: active stresses induce deformations in the ori-
entational arrangement of the particles, which manifests
as the formation of bend-splay walls. The walls then get
unzipped by topological defects, initiating a cascade of
fluid stirring that culminates in the emergence of seem-
ingly chaotic flow vortices and jets in active turbulence
[19, 33]. While the hydrodynamic instability that leads
to the initiation of deformations is well-established, and
in unbound systems is expected to occur for any finite ac-
tivity level, the existence of additional phase transitions
or nonlinear cross-overs at higher activity levels remains
obscure.

In this Letter, we uncover a hidden transition in
active nematics by employing the recently introduced
information-theoretic divergence measure of spatiotem-
poral ordering based on the concept of computable infor-
mation density (CID) [34–37]. The divergence measure
quantifies organizational order in the turbulent regime of
active nematics, a chaotic, highly non-equilibrium pro-
cess. Remarkably, we show that not only the hidden
transition marks the optimal defect pathlength, but also
coincides with a change of scaling in the mixing rate, and
therefore describes a change in the global flow features of
the system. Importantly, we show that the hidden transi-
tion is of spatiotemporal nature, and as such will remain
hidden to purely spatial or purely temporal characteri-
zations of the system. Furthermore, we show that this
hidden transition is distinct from, and occurs at higher
activity levels well beyond the activity threshold for de-
fect nucleation. Our findings uncover a new, hitherto
hidden, spatiotemporal phase transition in active nemat-
ics, which could be of potential relevance to a range of
dense active systems which manifest active turbulence.

We employ a two-dimensional continuum nematohy-
drodynamic model [38, 39] as a coarse-grained descrip-
tion of ordered suspension of active particles [24, 40–42].
This continuum description extends the Beris-Edwards
equations [43] originally formulated for passive liquid
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crystal hydrodynamics. The dynamics of the nematic
order parameter Q and velocity field u evolve according
to

∂tQ+ (u · ∇)Q− S = ΓH, (1a)

∂tu+ (u · ∇)u =
1

ρ
∇ ·Π, (1b)

along with the incompressibility condition ∇·u = 0. The
molecular field H = − δF

δQ + I
2 Tr

(
δF
δQ

)
governs the diffu-

sive relaxation of nematic ordering towards the minimum
of the free energy F =

∫
A
(
1− 1

2Q
2
)2

+ K
2 (∇Q)

2
d2x,

operating on a timescale dictated by the diffusive con-
stant Γ. Here, A represents the constant associated with
the Landau-de Gennes free energy, and K is the orien-
tational elasticity, assuming a single Frank elastic con-
stant. The co-rotational term S = (λE+Ω) ·

(
Q+ I

2

)
+(

Q+ I
2

)
· (λE−Ω) − 2λ

(
Q+ I

2

)
(Q : ∇u) in (1a) de-

scribes the response of the nematic ordering to gradients
in the flow field, which include the strain rate E and
vorticity Ω tensors representing the symmetric and an-
tisymmetric part of the flow gradient ∇u, respectively.
Their comparative influence in affecting the alignment
of nematogens with flow is characterized by the tum-
bling parameter λ. The stress tensor Π in (1b) comprises
three parts; viscous stress Πviscous = 2µE, elastic stress
Πelastic = −P I + 2λ

(
Q+ I

2

)
(Q : H) − λH ·

(
Q+ I

2

)
−

λ
(
Q+ I

2

)
· H − ∇Q( δF

δ∇Q ) + Q · H − H · Q, and ac-
tive stress Πactive = −ζQ. Here, P is the pressure field
and ζ is setting the strength of the activity. The active
stress ζ is reported in units of the Landau-de Gennes
free energy constant A, namely the non-dimensionalized
active stress ζ̃. Elastic stress induces backflow, and has
been numerically and experimentally shown to be rel-
evant to ±1/2 defect annihilation dynamics in passive
nematics [25, 44, 45]. Meanwhile, active stress causes
gradients in nematic ordering to generate flows, desta-
bilizing the nematic state and ultimately leading to ac-
tive turbulence [16, 21, 31, 33]. We ensure to choose
appropriate simulation parameters such that we are in
the flow-aligning regime and at low Reynolds number,
Re ≪ 1 (see SI for the details of the simulations and
parameters).

We begin with examining the defect density η as a
function of activity (Fig. 1). Above an activity thresh-
old, topological defects emerge. This is then followed by
a steep increase in defect density with increasing activity
levels. A close inspection of the temporal evolution of
the system [46] indicates a significant change in the di-
rector dynamics upon defect nucleation. To characterize
this temporal feature, we calculate the director decor-
relation time τd, determined by fitting an exponential
decay to the temporal autocorrelation of the fluctuations
in the scalar order parameter S and subsequently averag-
ing over space. We scale the director decorrelation time
by the active timescale τa = µ

ζ to obtained the scaled
decorrelation time τ̃d. This quantity clearly shows the

Figure 1. Director decorrelation time and defect den-
sity. Director decorrelation time τ̃d as a function of active
stress ζ̃. The abrupt drop of the director decorrelation time,
a space-averaged and temporal measure, picks up the defect
nucleation threshold.

reorganization of the director configuration upon defect
nucleation, in time, opposed to the usually considered
spatial correlations. Interestingly, we find a sharp drop
in the decorrelation time τ̃d of the director field exactly
at the activity threshold for defect nucleation. As such,
across a narrow range of activities, the fluctuations in the
director field rapidly increase.

To delve deeper into the crossover from a defect-
free to a defect-laden state, we proceed to quantify
the divergence measure, which is a recently introduced
information-theoretic measure of order for systems both
in and out of equilibrium [34]. This measure rests on the
Lempel-Ziv 77 (LZ77) compression algorithm [47]. In ad-
dition to being universal, the LZ77 algorithm has the ad-
vantage of being asymptomatically optimal, in that the
total binary code length L(s) of the losslessly compressed
data sequence s converges to the entropy in the thermo-
dynamic limit for a stationary ergodic process [48]. This
does not only make L a good approximation for the equi-
librium entropy when it is defined, but also a suitable
proxy thereof when undefinable, as in the case of sys-
tems far from equilibrium. The central idea behind this
quantitative measure is simple: data with a high-level of
correlations, and thus order, are more compressible than
data with either low- or no- level of correlations. Thus
making L a satisfying measure of what most intuitively
would perceive as complexity.

The LZ77 compression scheme, operating on one-
dimensional strings of characters, requires us to flat-
ten our three-dimensional spatiotemporal data array
to accommodate its application. We employ a three-
dimensional Peano-Hilbert ordering (depicted as the or-
ange curve in Fig. 2) due to its locality-preserving be-
havior [49]; this means that in the flattened array, points
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Figure 2. Procedure for flattening three-dimensional
spatiotemporal data. Defect positions are extracted from
the director field and stacked chronologically to form a three-
dimensional data grid. Blue circles depict +1/2 defects and
green triangles depict −1/2 defects. A grid point is labeled
using a binary dictionary; here we have used 1 to label the
presence of a defect and 0 for the absence thereof. The three-
dimensional grid is flattened/scanned by imposing a linear
partial ordering, here provided by the space-filling Hilbert
curve (orange curve). This Peano-Hilbert ordering s covers
the three-dimensional grid in a self-similar fashion while pre-
serving locality.

that were originally close together in terms of space and
time will still be positioned relatively close to each other.

Defect positions are extracted from the director field
at each time step and stacked chronologically to form
a three-dimensional array (representing two-dimensional
space plus one dimension for time), as shown in Fig. 2. In
this array, the entries are designated with a value of 1 to
indicate the presence of a defect, while the entries labeled
0 denote the absence of a defect. Finally, to quantify the
information excess in the observed spatiotemporal distri-
bution of defects relative to that of a random uniform
distribution of the same defects, we introduce the diver-
gence measure defined by [36]

D(s) =

〈
1− L(s)

E [L(ssh)]

〉
, (2)

where L(ssh) is the L-measure of a random shuffle of
the data sequence s, and E [L(ssh)] is the sample average
over several such shuffles. This divergence measure has
been demonstrated to reveal first and second order phase
transitions in equilibrium as well as non-equilibrium sys-
tems, such as in the Vicsek model and in motility-induced
phase separation, along with the position of the critical
point, the exponent of the critical slowing down, and the
correlation length [34–36].

The threshold activity for defect proliferation is accu-
rately captured by the abrupt increase in the D-measure
(Fig. 3). This rapid variation in D in the vicinity of
the threshold activity is made more explicit by studying

the gradient dD/dζ. In particular, the threshold activity
and the corresponding local maximum define a range at
ζ = 0.0195 and at ζ = 0.0225 in Fig. 3), in which the
system undergoes a transient state from defect-less ac-
tive turbulence to defect-laden active turbulence and is
dominated by rare events. Indeed, within this activity
range defects tend to form and congregate in the vicin-
ity of other defects (see Supplementary Videos [46]. We
note in passing that the fluctuations in the divergence
measure D and its peak coalesce with the gradient, i.e.
dD/dζ ≈ Var(D), thereby mirroring an analog of the fluc-
tuation–dissipation theorem from equilibrium statistical
mechanics.

Beyond the activity threshold for defect nucleation,
which additionally marks the abrupt drop of the director
decorrelation, the divergence measure reveals the exis-
tence of a spatiotemporal transition. This transition is
marked by a peak in the divergence measure, and oc-
curs at a higher activity compared to the defect nucle-
ation threshold. The peak in the divergence measure
indicates that this second activity threshold character-
izes the emergence of states where the defects have self-
organized into a spatiotemporal ordered state relative to
the uniformly random state at higher activity levels. Im-
portantly, this peak disappears when repeating the di-
vergence measure with purely spatial (time-averaged) or
purely temporal (space-averaged) defect positions, indi-
cating that this second activity threshold is related to a
change in a truly spatiotemporal feature of the system.
Thus, the divergence measure (Eq. 2) signals a dynamic
transition at finite activity levels. However, the diver-
gence measure does not provide insights into the relevant
order parameter undergoing the transition. Therefore,
our focus shifts to examining spatiotemporal features of
the system around the activity level that is picked up by
the maximum of the divergence measure.

Qualitatively observing the defect dynamics after the
transition point, defects start to increasingly interact
with each other, leading to more annihilation events and
thereby shortening of the pathlength for an increasing
number of defects in the system [46]. Interestingly, the
measured defect pathlength ld (scaled with the average
distance between the defects, Fig. 4) peaks at the tran-
sition point. Despite ever increasing defect density, the
pathlengths of individual defects become shorter beyond
the observed spatiotemporal transition.

The stirring of topological defects, especially due to
the self-propelled +1/2 defects, is linked closely to a very
efficient mixing protocol [26, 50, 51]. Therefore, we hy-
pothesize a clear signature in the flow mixing rate at the
transition point, together with the observed optimal de-
fect pathlength. To quantify the mixing exerted by the
flow, we introduce a scalar tracer field, which evolves with
the advection-diffusion equation. The degree of mixing
as a function of time is then quantified according to the
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Figure 3. Spatiotemporal defect disorder. The dependence of the divergence measure on the dimensionless active stress
ζ̃. Both ordinates are aligned at zero as highlighted by the horizontal dashed black line. The vertical dashed black line marks
the maximum in the divergence measure. The lower panel shows the peak in both variance and gradient of divergence vs.
active stress.

H−1 mixing norm [52],

||(c(·, t)||2H−1 =
∑

k̸=0

|ck|2
|k|2 (3)

where the ck are the coefficients of the Fourier-
transformed tracer field. The mixing norm is normalized
to the value in the initial configuration and fitted to an
exponential function ∼ exp−νt to determine the mixing
rate ν [26].

Interestingly, despite no qualitative change in the
flow structure is observed before or after the transition
(Fig. 4a, b), the mixing rate shows a clear signature of the
transition(Fig. 4c). This is best demonstrated by scaling
the mixing rate with the active timescale τa = µ

ζ , obtain-
ing the scaled mixing rate ν̃. At the defect nucleation
threshold, non-linearities in the dependence from the ac-
tive stress appear. Remarkably, these non-linearities then
disappear exactly at the transition point. This observa-
tion is noteworthy because, unlike the divergence mea-
sure and the defect pathlength, which characterize only
topological defects dynamics, the mixing rate is a global
feature of the system, which characterizes the spatiotem-
poral features of the fluid flow. As such, there exists an
activity threshold beyond which the scaled mixing rate
saturates. We term the flow states that emerge after this
transition point as fully developed active turbulence, in
which not only the organization of topological defects be-
comes more uniform and the system crosses over from a

maximal defect pathlength, the scaled mixing rate of the
active flows no longer increases with increasing activity.

Understanding the evolution of active systems with
varying levels of activity is of fundamental importance in
a wide range of biological systems, where the living units
can adapt their activity in response to various chemi-
cal and mechanical stimuli [53, 54]. Our findings reveal a
succession of transitions in the evolution of collective pat-
terns of self-organization with increasing activity of the
material. Beyond the well-established hydrodynamic in-
stability of the ordered state [31, 32], we show that there
exists a first activity threshold, above which nucleation
of topological defects gets initiated. We further find that
precisely at this activity threshold the director decorre-
lation time abruptly drops, signifying a rapid enhance-
ment of temporal fluctuations in the director field. Mov-
ing beyond this activity threshold for defect nucleation,
we uncover, a hitherto, hidden dynamic transition. This
second transition is inherently spatiotemporal and thus
hidden to purely spatial (time-averaged) and purely tem-
poral (space-averaged) characterizations. At this second
activity threshold, the organization of topological defects
in space and time becomes optimally ordered relative to
uniformly random organization at higher activities, de-
fect pathlength normalized by the average distance be-
tween the defects peaks, and the scaled mixing rate of
the activity-induced flows saturates.

The existence of such an activity threshold for



DRAFT

5

Figure 4. Mixing rate and defect pathlength. (a), (b):
Snapshot of flow velocity magnitude overlaid with the line
integral convolution of the velocity field at ζ̃ = 0.0205, resp.
ζ̃ = 0.024. (c): Mixing rate ν̃ (scaled with the active timescale
µ/ζ) and defect pathlength ld (scaled with the average dis-
tance between the defects) as a function of active stress ζ̃.
The transition point is marked by a vertical dashed black
line.

spatiotemporal organization of topological defects and
collective flows of active particles could have implica-
tions for the optimal evolution of the self-organization
patterns in living materials [55–57]. Recent studies
have shown that within the active turbulence state, the
movement of topological defects can carry biochemical
information on the membrane of living cells [58, 59]
and enhance the topological mixing in filament-motor
protein mixtures. Interestingly, it was found that the
non-dimensionless topological entropy remains con-
stant across a range of activities in the fully turbulent
regime [60]. It would be interesting to explore the
connections between the spatiotemporal transition found
in this work, to topological entropy in living materials.
Finally, as the identification of suitable order parameters
for non-equilibrium phase transitions remains a chal-
lenging task, the spatiotemporal nature of the transition
highlights the importance of exploring order parameters
that evolve both in space and in time for uncovering
phase transitions in non-equilibrium systems, both
experimentally and in the models of active materials.
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Chapter 4

Conformal invariance in biological
matter
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b

Figure 4.1: High-resolution analysis of coherent flows generated by groups of eu-
karyotic and prokaryotic cells. Shown are representative velocity and vorticity
patterns observed in monolayers of (a) Madin-Derby Canine Kidney (MDCK) eu-
karyotic cells, and (b) wild-type Pseudomonas aeruginosa prokaryotic cells. The
colormap indicates local vorticity, with zero-vorticity isolines depicted by black
lines. Vorticity values are normalized to their maximum. Insets highlight a subset
of cells within a single field of view, overlaid with green arrows representing local
velocity. Movement was quantified using single-cell particle tracking velocimetry
(PTV).

This study is entirely grounded in [1] and its objective is to investigate whether
the observed scale invariance in the energy and enstrophy spectra of bacterial [2]
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and active turbulence [3] can be extended to conformal invariance of zero-vorticity
isolines. This will be achieved through a comprehensive statistical analysis of
large-scale vortical flow phenomena in biological matter. By exploring the statis-
tical properties of vortical flow at different length scales and employing various
analytical techniques, such as Schramm-Loewner evolution (SLE) processes, the
study aims to elucidate the potential presence of conformal symmetry in turbulent
biological flows. Understanding the extent to which conformal invariance governs
the dynamics of vortical flow in biological systems could provide valuable insights
into the underlying principles shaping the behavior of active matter and contribute
to the development of predictive models for complex biological phenomena.

4.1 Methods

4.1.1 Experimental data

High-resolution measurements, employing single-cell tracking, were conducted on
monolayers composed of four distinct cellular genotypes, encompassing both eu-
karyotic and prokaryotic organisms. Within the eukaryotic group, this study in-
cluded the widely studied Madin-Darby Canine Kidney (MDCK) cells and aggres-
sive human breast cancer cells (MCF-7). As for prokaryotic cells, the opportunis-
tic pathogen Pseudomonas aeruginosa was studied, renowned for its utilization of
small appendages known as pili to navigate solid surfaces, a behavior commonly
referred to as twitching motility. Two strains of Pseudomonas aeruginosa were
investigated: the wild type (WT) and the hyperpiliated ∆pilH mutant, which ex-
hibited heightened motility and formed elongated cells compared to the parental
WT strain. Both strains where previously published and characterized in [4, 5].
Each of these four cellular genotypes forms confluent monolayers, culminating in
the emergence of two-dimensional patterns of collective motion, a hallmark of
disordered flows observed across a wide array of systems. Notably, vortical flow
structures, a hallmark of disordered flows observed across a wide array of systems,
are evident in all four cellular genotypes investigated in this study (Fig. 4.1). Each
vortex within these flows demonstrates either clockwise or counterclockwise rota-
tion, with the zero-vorticity isolines delineating the boundary between regions of
opposing rotational directions.

4.1.2 Numerical model

While various physical models of active matter have been proposed to approximate
specific types of cells and their unique processes, this study focuses exclusively on
the nematohydrodynamic model detailed in section 3.1. This model represents a
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continuum framework that captures the collective behavior of active matter by
coupling a nematic order parameter, which describes cell orientation, with an in-
compressible velocity field. The decision to utilize this specific model stems from
its ability to capture essential features of cellular dynamics observed in experi-
mental settings. The simulations were conducted a periodic quadratic domain of
linear dimension L = 2048, all other parameters remained identical to those re-
ported in section 3.1.1. By maintaining consistency with the parameters outlined
in the previous section, a direct comparison between numerical predictions and
experimental observations is facilitated.

4.1.3 Contour tracing

In fluid dynamics, analyzing contours of zero vorticity plays a pivotal role in un-
derstanding flow patterns and identifying regions of uniform or stagnant flow. To
accomplish this, the vorticity field ω is derived from the velocity field data (ux, uy)

⊺,
using ω = ∂xuy − ∂yux. Both of the spatial derivatives are computed numerically
using a 5-point stencil at every grid point. To locate the positions of zero-vorticity
countours, we generate a binary field from the vorticity field using the ternary
expression; 1 if w > 0 else 0. Subsequently, contours of zero-vorticity are
traced using the marching squares algorithm, a powerful tool that traces these
contours by employing linear interpolation across grid cells. Additionally, to en-
sure accuracy and resolve potential ambiguities, foreground pixels are considered
as four-connected at saddle points. This method preserves the orientation of con-
tours by positioning sites of positive vorticity consistently to the right (Fig. 4.4b).
Through the precise delineation of these contours, we gain valuable insights into
the intricate dynamics of fluid flow phenomena.

4.2 Cluster geometry and scale invariance

Vorticity clusters are expected to possess a fractal nature, not unlike that of critical
percolation. And as such, we expect both its complete- and accessible external-
perimeter to be scale invariant. Clusters are identified and labelled using the two-
pass binary connected-component labelling algorithm of Hoshen and Kopelman [6].
The complete perimeter (solid red curve in Fig. 4.2) is identified by tracing the
contour of a cluster according to the above contour tracing algorithm (Sec. 4.1.3).
The associated accessible external boundary (dashed green curve in Fig. 4.2) is
constructed by dilating the boundary morphology [7,8] of the binary representation
of the cluster, and its perimeter is then measured once more using the contour
tracing algorithm.

The fractal dimension is measured by comparing the perimeter l to its radius of
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accessible external perimeter

Figure 4.2: Three distinct clusters of positive vorticity identified in monolayer of
wild-type Pseudomonas aeruginosa bacteria using PTV, accompanied by their
complete perimeter (shown as a solid red curve), accessible external perimeter
(displayed as a dashed green curve), and radius of gyration (depicted black circle).

gyration Rg (solid black curve in Fig. 4.2), for a large sample of vorticity clusters.
The radius of gyration is computed as the positional mean squared displacement
from its center of mass:

R2
i =

1

|si|
∑

n,m∈si
(rn − rm)

2 and R2
g =

1

N

N∑

i=1

R2
i , (4.1)

where si denotes the set of lattice sites belonging to the i’th cluster and |si| its
cardinality. Remarkably, after rescaling the perimeter and radius of gyration of
each system by the corresponding radius of gyration of the largest vorticity cluster
(as shown in table 4.1), the results for all four distinct experiments and the model
collapse onto the same line, indicative of a universal power-law behavior (Fig. 4.3).
The fractal dimension for both the complete- and external-perimeter is found to
agree with D = 7/4 and D∗ = 4/3, respectively. Measured values for each of the
five datasets are obtained through fitting, and the resulting fractal dimensions are
reported in table 4.2.

WT bacteria ∆pilH bacteria MDCK MCF7 Model
193µm 200µm 1150µm 1130µm 828

√
K/ζ

Table 4.1: Radius of gyration of the largest vorticity cluster. The model is reported
in units of the active length scale

√
K/ζ.
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The fractal dimension of SLEκ curves are known to be [9,10] Dκ = 1+ κ/8 for
κ < 8. Additionally, it is conjectured [11] that the accessible external perimeter
locally resembles SLEκ∗ curve with diffusivity parameter κ∗ = 16/κ < 4. This
implies the fulfillment of the duality relation 4(Dκ − 1)(Dκ∗ − 1) = 1, indicative
of a conformal field theory with zero central charge. Consequently, the system
maintains scale invariance on both manifolds with and without boundary, even
with non-zero Euler characteristic. These observations align with the notion that
these biological flow structures, besides being scale invariant, could exhibit much
richer conformal symmetries [12].
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Figure 4.3: Complete- and accessible external-perimeter of vorticity clusters as a
function of their radius of gyration. The complete perimeter collapse onto the top
line with a slope of 7/4, while the accessible external perimeter collapse onto the
bottom line of slope 4/3. Dashed lines are included as visual aids.

4.3 Vorticity contours and conformal invariance
Candidate SLEκ traces are identified as follows (Fig. 4.4):

1) Draw a horizontal line representing the real axis across the binary vorticity
field.

2) Label the intersection of a zero-vorticity contour and the real axis as the
origin.

3) An explorer starting from the origin moves along the zero-vorticity contour
according to the contour tracing algorithm (Sec. 4.1.3).
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4) If returning to the real axis, tread on it while preserving orientation, until
the explorer can re-enter the upper-half plane.

This procedure is guaranteed to faithfully reproduce the statistics of SLEκ in the
scaling limit if and only if this exploration process satisfy the locality property
of SLE6 [13], which dictates that it does not interact with the boundary until
it reaches it. As our observations confirm κ = 6, this procedure demonstrates
self-consistency. A comparable technique was utilized in [14] for examining zero-
vorticity isolines in two-dimensional turbulence.
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Figure 4.4: Schematic depiction of the procedure for generating candidate SLEκ

traces. (a) A binary vorticity field derived from monolayer of wild-type Pseu-
domonas aeruginosa bacteria using PTV, with black/blue sites denoting nega-
tive/positive vorticity. (b) A zero-vorticity contour crossing a horizontal line rep-
resenting the real axis. (c) The labeled zero-vorticity contour is mapped to the
upper half-plane and a schematic depiction of the turning angle αi, defined as
angle between the two consecutive line segments [zi−1, zi] and [zi, zi+1].

4.3.1 Winding angle

In the realm of stochastic processes, particularly within the framework of Schramm-
Loewner evolution, the study of winding angles unveils fascinating insights. One
notable feature facilitated by the elegant properties of SLE’s is the precise predic-
tion of winding angle behavior. The winding angle θj of a curve sampled at the
points {zj}Nj=0 is defined as the cumulative sum θj =

∑j
i=1 αi of the local turning

angles αi. The turning angle αi is given by the angle between the two consecutive
line segments [zi−1, zi] and [zi, zi+1], as depicted in figure 4.4c. SLE theory enables
exact predictions regarding the distribution of winding angles in the scaling limit.
Specifically, it has been proven that these winding angles follow a Gaussian distri-
bution, with a variance that exhibits logarithmic growth [15–18] with the distance
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along the curve (arc length s), consistent with the following relationship:

Var(θ) = a+ α log(s), with α =
2κ

8 + κ
. (4.2)

Figure 4.5b shows the rescaled probability distribution function (PDF) of the
winding angle θ at two distinct distances, agreeing with the standardized Gaus-
sian distribution represented by the dashed black curve. Complementing this,
figure 4.5a depicts the variance of the winding angle as function of the arc length
s. The diffusivity parameter κ is estimated through fitting in accordance with
equation (4.2) for each of the five datasets. The resulting parameters are then
compiled and presented in table 4.2 for reference.
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6/7

Figure 4.5: Winding angle statistics. (a) The variance of the winding angle as
function of the distance along the curve (arch length s) reveals a notable pattern;
the data collapses onto the dashed line, which serves as a visual reference, with
a slope of 6/7. (b) The rescaled probability distribution of the winding angle
is depicted for two distinct arc lengths: 64 (indicated by filled marks) and 512
(represented by open marks). A dashed black curve, representing the standardized
Gaussian distribution, is included to aid visualization.

4.3.2 Left-passage probability

A renowned result from the SLE theory states that the probability Pκ of a chordal
SLEκ curve, where κ ∈ [0, 8), passes to the left of a designated point z = ρeiϕ in
the upper-half plane solely relies on its argument ϕ. This probability is precisely
given by Schramm’s formula [19]:

Pκ(ϕ) =
1

2
+

Γ(4/κ)√
πΓ

(
8−κ
2κ

) cot(ϕ) 2F1

[
1

2
,
4

κ
,
3

2
,− cot2(ϕ)

]
, (4.3)
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where Γ is Euler’s gamma function and 2F1 is Gauss’ hypergeometric function.
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Figure 4.6: (a) The left-passage probability of putative SLE traces for each of the
four cellular genotypes and the numerical model closely align with Schramm’s
formula (4.3) for κ = 6, depicted by the dashed black line. (b) The weighted
mean square deviation Q(κ) as function of the diffusivity κ for the wild-type
Pseudomonas aerugisona bacteria is illustrated using PTV data. A blue verti-
cal dashed line serves as a visual guide at κ = 6. The minimum value of the mean
square deviation is identified at κ = 5.94 ± 0.08, represented by the red vertical
dashed line. The shaded magenta region delineates the error bar associated with
the measured minimum value.

The left-passage probability is assessed by fixing a finite set S comprising 512
points, regularly distributed within a semi-annulus centered at the origin. Subse-
quently, the probability P (z) is calculated, denoting the probability of a putative
SLE trace passing to the left of the points in S. Figure 4.6a shows the result of
averaging the distribution P (z) along radial directions for each angular value ϕ.
In accordance with [20], the diffusivity parameter κ is determined by minimizing
the weighted mean square deviation:

Q(κ) =
N − 1

|S|
∑

z∈S

[P (z)− Pk(arg z)]
2

P (z)[1− P (z)]
, (4.4)

where N is the number of samples and |S| denotes the cardinality of the set S.

4.3.3 Driving function

The stochastic driving function Ut : [0, T ] → R encoding the information of a
chordal SLEκ curve is measured by numerically integrating the forward chordal
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Loewner equation [21]:

∂tgt(z) =
2

gt(z)− Ut

, (4.5)

with initial condition g0(z) = z. The numerical integration scheme is simple;
introduce a partition 0 = t0 < t1 < . . . < tn = T of the time interval [0, T ]
and approximate the driving function Utk = δk as constant on each short time
interval ∆k = tk − tk−1. Then the uniformizing conformal map gtk(z) is obtained
by explicitly solving the Loewner eqaiton (4.5). There are many such solutions [22]
and this study use the perhaps simplest of them all, the vertical slit-map [23]:

gtk(z) =
√
(z − δk)2 + 4∆k + δk, (4.6)

which merely sends the vertical slit extending from δk to δk +2i
√
∆k onto the real

axis (Fig. 4.7a-b). Presume we have a putative chordal SLEκ trace sampled at
the points {z00 = 0, z01 , . . . , z

0
l }, the Loewner times tk and driving function Utk are

computed iteratively by successive application of the vertical slit-map (4.6). At
each iteration step, the points {zk−1

k , zk−1
k+1 , . . . , z

k−1
l } gets mapped to the reduced

sequence of points {zkk+1 = gtk(z
k−1
k+1), . . . , z

k
l = gtk(z

k−1
l )}, as depicted in figure 4.7c.
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Figure 4.7: (a-b) Schematic illustrating the vertical slit-map (equation 4.6). (c)
Visualization of the vertical zipper algorithm: the initial path (black) undergoes
successive conformal mappings onto the real axis through an iterative process.

In figure 4.8a, the variance of the driving function is displayed for each of
the four cellular genotypes alongside the numerical model. This involves linearly
interpolating each instance of the driving function to ensure that all instances
are defined for a uniform and equally spaced time sequence. In order to assert
that zero-vorticity curves are genuinely SLE curves, possessing both conformal
invariance and adhering to the domain Markov property, the extracted driving
function Utk must be a one-dimensional Brownian process. Specifically, its variance
should scale linearly with Loewner time according to Var(Ut) = κt, and it should
be Gaussian distributed at every time instance as well, as observed in figure 4.8b.
Nonetheless, as demonstrated by [24] these criteria alone are not sufficient tests,
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Figure 4.8: Driving function statistics. (a) The variance of the driving function
Ut as function of the Loewner time t closely matches the prediction of it being a
one-dimensional Brownian process with κ = 6 (shown by the dashed black line).
(b) The rescaled probability distribution of the driving function is depicted for two
separate Loewner times: 0.25 (indicated by filled marks) and 0.75 (represented by
open marks). Additionally, a dashed black curve, which represents the standard-
ized Gaussian distribution, is included as a guide to the eye.

as they are also satisfied by non-SLEκ processes. Following [20], an examination
of the correlation function

C(t; τ) =
Cov(δUt+τ , δUt)√
Var(δUt+τ )Var(δUt)

(4.7)

of the driving function increments δUt can determine whether the driving function
indeed behaves as a Markovian process. The autocorrelation function, as depicted
in figure 4.9, exhibits a rapid decay with lag time. This observation is consistent
with the Markov property anticipated for Schramm-Loewner evolution contours in
the scaling limit.

4.4 Conclusion
The analysis of various metrics such as the fractal dimension of zero-vorticity clus-
ters, winding angle, left-passage probability, and driving function of zero-vorticity
contours (table 4.2) strongly suggests that the statistical behavior of zero-vorticity
isolines across the four cellular genotypes alongside the numerical model are de-
scribed by a SLE6 process within experimental accuracy and consequently fall
into universality class of critical percolation, the simplest universality of critical
phenomena. This discovery is remarkably because, despite the collective cellular



4.4. CONCLUSION 63

0.0 0.2 0.4 0.6 0.8 1.0

lag time ø

0.0

0.2

0.4

0.6

0.8

1.0

au
to

co
rr

el
at

io
n

fu
n
ct

io
n

WT bacteria

¢pilH bacteria

MDCK

MCF7

Model

exponential fit

0.000 0.025 0.050 0.075 0.100

lag time ø

0.0

0.2

0.4

0.6

0.8

1.0

au
to

co
rr

el
at

io
n

fu
n
ct

io
n

WT bacteria

¢pilH bacteria

MDCK

MCF7

Model

exponential fit

Figure 4.9: Autocorrelation function of the driving function (4.7) plotted against
lag time τ . The initial decay is attributed to the finite lattice spacing, which
introduces short-range correlations. The exponential fit reveals a half-life of 0.0036,
in Loewner time units. The inset provides a magnified view of the initial decay.

motility generating flow patterns with significantly larger length scales than those
of individual cells (see figure 4.1), the resulting zero-vorticity contours exhibit the
locality property inherent to SLE6 processes. Furthermore, considering the non-
local constraint imposed by the flow incompressibility condition in the numerical
model (in contrast to the experimental data), it is surprising that the contours ex-
hibit this locality property. Further exploration is needed to determine the extent
to which these discoveries signify that the universal nature of percolation extends
to biological matter, particularly active turbulence. Additionally, it is crucial to
investigate whether and how conformal invariance is broken in the statistics of
non-zero vorticity isolines.

continuum
model

experimental data percolation
universality

class
bacterial cells eukaryotic cells

WT ∆pilH MDCK MCF7

scale invariance complete perimeter D 1.75± 0.01 1.72± 0.02 1.72± 0.04 1.74± 0.02 1.74± 0.03 7/4 = 1.75
external perimeter D∗ 1.345± 0.003 1.27± 0.01 1.30± 0.02 1.29± 0.02 1.27± 0.01 4/3 ≈ 1.33

conformal invariance winding angle α 0.853± 0.005 0.86± 0.01 0.87± 0.01 0.85± 0.01 0.87± 0.02 6/7 ≈ 0.857
Schramm-Loewner

Evolution
left-passage probability κ 6.02± 0.02 5.97± 0.05 5.96± 0.05 5.95± 0.03 5.95± 0.06 6

driving function κ 5.96± 0.05 6.03± 0.06 5.96± 0.06 5.98± 0.04 5.93± 0.04 6

Table 4.2: Critical exponents and parameters measured from the velocity fields
derived from each of the four cellular genotypes using single-cell particle tracking
velocimetry (PTV), in conjunction with the numerical model. Errors represent
standard deviation about the mean.
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Abstract
Collective cellular movement plays a crucial role in many processes fundamental to

health, including development, reproduction, infection, wound healing, and cancer. The
emergent dynamics that arise in these systems are typically thought to depend on how cells
interact with one another and the mechanisms used to drive motility, both of which exhibit
remarkable diversity across different biological systems. Here, we report experimental evi-
dence of a universal feature in the patterns of flow that spontaneously emerges in groups of
collectively moving cells. Specifically, we demonstrate that the flows generated by collec-
tively moving dog kidney cells, human breast cancer cells, and by two different strains of
pathogenic bacteria, all exhibit conformal invariance. Remarkably, not only do our results
show that all of these very different systems display robust conformal invariance, but we
also discovered that the precise form of the invariance in all four systems is described by
the Schramm-Loewner Evolution (SLE), and belongs to the percolation universality class.
A continuum model of active matter can recapitulate both the observed conformal invari-
ance and SLE form found in experiments. The presence of universal conformal invariance
reveals that the macroscopic features of living biological matter exhibit universal transla-
tional, rotational, and scale symmetries that are independent of the microscopic properties
of its constituents. Our results show that the patterns of flows generated by diverse cellular
systems are highly conserved and that biological systems can unexpectedly be used to ex-
perimentally test predictions from the theories for conformally invariant structures.

1

ar
X

iv
:2

40
3.

08
46

6v
1 

 [c
on

d-
m

at
.so

ft]
  1

3 
M

ar
 2

02
4



Understanding the collective movement of large populations, and how it arises from its con-
stituents, is a central problem in biology, ecology, material science and physics [1, 2, 3, 4]. In
these living systems, work is produced at the level of an individual constituent, and this ‘activ-
ity’ is translated into patterns of collective motion at larger length scales through interactions
between them [5, 1]. However, many of the processes involved in collective movement, includ-
ing the mechanisms that individual constituents use to propel themselves, the processes that
give rise to interactions, and the behavioural responses to stimuli, are incredibly diverse in dif-
ferent biological systems and are often difficult to decode [6, 7]. While many different models
have been proposed to reproduce the specific pattern of collective movement made by partic-
ular organisms, we lack a general unifying theory or set of principles that unite the collective
movement observed across distinct biological systems.

In contrast, the study of the complex interactions between the components that make up cer-
tain inanimate materials, like metals and alloys, has led to the discovery of universal behavior
near the so-called critical regimes. In these conditions, the global macroscopic properties no
longer depend on the specific properties of the individual constituents, but rather exhibit “uni-
versal” behavior [8]. The principles that give rise to this universality in inanimate materials
have been described using the framework of conformal field theory [9, 10], which predicts how
shapes and angles of structures will be locally conserved across different systems, but not nec-
essarily their length scales or curvatures. While the techniques used to describe conformally
invariant structures have long been used to make theoretical predictions in statistical mechanics
and condensed matter physics [9, 10] and to establish the universality of critical phenomena (for
example, using numerical studies of turbulence [11, 12, 13] and rigidity percolation [14, 15]),
direct experimental observation of conformal invariance and robust universal critical behavior
in living matter remains elusive.

In this paper, we experimentally demonstrate that the patterns of collective movement ob-
served in different types of living matter exhibit universal characteristics that transcend the
particular properties of the cells from which they are composed. We show that vastly different
systems, including colonies of pathogenic bacteria, groups of collectively moving dog kidney
cells, and human breast cancer cells, all spontaneously generate flows that exhibit a universal
conformal invariance that can be described by the percolation universality class. This finding
suggests that collective cellular movement, which plays an important role in many biological
systems [3, 16, 17], could potentially serve as a fundamental test bed for theories that are based
on conformal symmetry.

We made high-resolution measurements of monolayers composed of four different cellular
genotypes, including both prokaryotes and eukaryotes, to resolve whether we could identify
common features in their collective motility. For prokaryotes, we studied the opportunistic
pathogen Pseudomonas aeruginosa, which uses tiny grappling hooks called pili to pull them-
selves along solid surfaces, a process known as twitching motility [18]. We considered two dif-
ferent strains of this rod-shaped bacteria - wild type (WT) PAO1 and a deletion mutant �pilH
lacking one of the response regulators in the Pil-Chp system, which causes it to become hyper-
piliated, move faster, and form longer cells than its parental WT [18, 19, 20]. For the eukaryotic
cells, we considered the commonly studied Madine-Darby-Canine-Kidney (MDCK) cells [21],
and aggressive human breast cancer cells (MCF-7) [22]. Each of these genotypes forms mono-
layers through in-situ growth and exhibits two-dimensional collective patterns of motion when
they reach confluence. Vortical flow structures, a characteristic feature of the disordered flows
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Figure 1: High-resolution measurements of the coherent flows from collectives of eukary-
otic and prokaryotic cells. Representative velocity and vorticity fields observed in monolayers
of (a) eukaryotic Madin-Derby Canine Kidney (MDCK) cells, and (b) prokaryotic wild-type
Pseudomonas aeruginosa cells. The colormap shows the local vorticity and zero-vorticity con-
tours are marked with black lines. The vorticity is normalised by its maximum value. Insets
show a subset of the cells within a single field of view, which have been overlaid with green
arrows showing the local velocity. Here we have quantified movement using single cell tracking
(PTV), but we have also verified our results using particle image velocity (PIV) (Materials and
Methods).

observed in wide diversity of different systems [23], are observed in all four of the cellular geno-
types investigated here (e.g. see Fig. 1). Each vortex either exhibits clockwise or anti-clockwise
rotation and the line that sits at the boundary between flows that rotate in opposite directions,
the zero-vorticity contour, provides a measure of the underlying structure of the flow.

To compare how the flow structure varies across the four different experimental systems, we
first measure the fractal dimension of the vorticity contours by plotting the perimeter of closed
contours as a function of their radius of gyration. Surprisingly, without any fitting, special
scaling, or free parameters, the results for all four different experiments collapse on the same
line and exhibit the same power-law behavior (Fig. 2a). This provides concrete evidence of scale
invariance and indicates that the flows generated by these diverse cellular systems share the
same generic features. Interestingly, the slope of the perimeter-gyration radius plot, or fractal
dimension, is D = 7/4 for the complete perimeter and D⇤ = 4/3 for the accessible external
perimeter (Fig. S2) and satisfies the duality relation 4(D � 1)(D⇤ � 1) = 1, conjectured for
conformally invariant curves [24]. This finding suggests that these biological flow structures, in
addition to being scale invariant, could exhibit much richer conformal symmetries [25].

To test whether our experimental data exhibits conformal invariance, we calculated the
winding angle of the vorticity contours across the four different experimental systems. The
winding angle is defined as the angle between two points on a contour that are separated by a
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Figure 2: Vorticity contours from four distinct cellular systems exhibit the same patterns of
scale and conformal invariance, which is recapitulated using a continuum model of active
fluids. (a) The perimeter of contours as a function of their radius of gyration for two prokaryotic
and two eukaryotic genotypes, including wild-type P. aeruginosa bacteria (yellow circles) and a
hyperpilated �pilH P. aeruginosa mutant (blue squares) that individually move faster, Madine-
Darby Canine Kidney cells (red diamonds), and MCF-7 human breast cancer cells (purple stars).
Here we separately analysed the complete perimeter and accessible external perimeter of the
contours (SI Fig. S2) - we found that the experimental data for all four genotypes collapsed
onto lines with slopes of approximately 7/4 and 4/3 respectively for the two different perimeter
measurements. The flow fields produced by a numerical model of active fluids (Materials and
Methods) generated vorticity contours with a power-law dependency in close agreement with
that observed in experiments. The radius of gyration is normalised by the maximum system
size (Materials and Methods). (b) The variance in the distribution of the winding angle, plotted
here as a function of distance along the curve for the four experimental systems and numerical
model, all exhibit the same logarithmic scaling with a slope of 6/7 (dashed line). (b; inset)
In addition, the distribution of winding angles for a fixed distance along the contour is closely
approximated by a Gaussian (dashed line). Both findings are consistent with that predicted for
conformally invariant curves, which exhibit the same fractal dimension that we obtained for
our data in Fig. 2a. The dashed lines correspond to the slope 6/7 and a standard Gaussian
distribution, respectively. In (b; inset) the winding angles are obtained for segments of contours
of length 64 (filled symbols) and 512 (empty symbols) and measured relative to the average
angle of the contour. Results are averages over different samples and error bars represent the
standard deviation (see Materials and Methods).

given distance measured along the contour (Materials and Methods). For conformally invariant
curves (i) the winding angles are Gaussian distributed and (ii) the variance in the distribution of
winding angles increases logarithmically with the length of the curve [26]. Our experimental
data is in close agreement with both predictions for conformal invariance – with both metrics
collapsing the data from the vorticity contours of the four cellular systems onto the same line
(Fig. 2b and Fig. S4). Moreover, the rate at which the variance of the winding angle increases
with the logarithm of the length is predicted to scale as ↵ = 6/7 = 2(D�1)/D for conformally
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invariant curves [26]. Thus, for the fractal dimension of D = 7/4 we measured in Fig. 2a, we
would predict that ↵ = 6/7, which is supported by our direct measurements of the variance
(Fig. 2b).

Our results strongly suggest that the flows spontaneously generated by diverse cellular geno-
types exhibit robust conformal invariance. We next sought to ascertain we could resolve which
universality class these biological flows belong to. One of the central mathematical break-
throughs of the last few decades was to demonstrate that certain systems with conformal in-
variance and domain Markov property, can be described, in the scaling limit of interfaces, by
a family of planar curves defined by a single parameter . This formalism is known as the
Schramm-Loewner Evolution (SLE) [27, 28] and the value of the  distinguishes different fun-
damental statistical mechanics models at criticality and thus resolves the universality class that
a system belongs to [29, 30, 31]. To determine if the vorticity contours in the cellular systems
are SLE curves, we extracted the  parameter from the four experimental systems. We used two
distinct and independent methods [32]: (i) directly calculating the driving function [33], and (ii)
measuring the left-passage probability, comparing both to analytic predictions for the SLE [34]
(Materials and Methods). Both methods consistently yielded  = 6, for all four cellular geno-
types (Fig. 3). The value of  = 6 is also consistent with the estimated fractal dimension, (D,
Fig. 2a), which for SLE is related to , as D = 1 + /8 [35]. This particular value of  has an
important physical meaning, as it has been uniquely proven for  = 6 that SLE curves corre-
spond to the contours of critical percolation clusters and have the locality property (such that the
properties only depend on the immediate neighborhood) [30, 36]. As such, our analyses reveal
that the vorticity contours found in the four different cellular systems are not only conformally
invariant, but they also all fall into the universality class of percolation.

Our experimental results indicate that diverse cellular types collectively generate flows with
remarkably similar patterns of scale and conformal invariance, implying that the physical mech-
anisms that underlie the flow structures are highly conserved. While many different physical
models of active matter have been developed to approximate specific types of cells and the
processes unique to them [5, 2, 37], we tested whether a generic model could recapitulate our
experimental observations. We used a simple continuum model in which a nematic order pa-
rameter (corresponding to cell orientation) was coupled to an incompressible velocity field (see
Materials and Methods for further details). The two main parameters are the activity ⇣ , rep-
resented by active stress generation in the velocity equation, and elasticity, represented by the
elastic constant K that penalizes deformations. Dimensional analysis of the governing equa-
tions yields a characteristic length scale of K/⇣ , which defines the fundamental length scale
of the flow. We find that the vorticity contours of this minimal model recapitulate each of the
measurements observed in our experimental systems, including the fractal dimension D = 7/4
(Fig. 2a), winding angle scaling ↵ = 6/7 (Fig. 2b), and the scaling of the driving function
and left-passage probability  = 6 (Fig. 3 and Table 1). While differences in cell morphology,
intercellular adhesion, mechanotransduction, and the mechanisms that give rise to local align-
ment can all affect patterns of collective motility [38, 39, 7], the results of our continuum model
imply that such idiosyncratic characteristics do not materially influence scale and conformally
invariant flow patterns, but rather they are a generic feature of collective cellular flows.

The observed scaling of the vorticity contours from both experiments and model are com-
patible with the Schramm-Loewner evolution (SLE) with  = 6, for more than two decades in
range and this was confirmed using two independent methods (Fig. 3 and Table 1). Remarkably,
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Figure 3: Resolving the underlying universality class of vorticity contours using two inde-
pendent methods. (a) The left-passage probability is defined as the probability that a point in
space is on the right-hand side of the contour for a given polar angle. Data from all four cellular
genotypes and the results from the numerical model are in close agreement with Schramm’s
formula for  = 6 (dashed black line, [34]). (b) Time-dependence of the variance of driving
function obtained from a unique conformal slit map [33]. The dashed black line shows the
result for one-dimensional Brownian motion with  = 6. (b, inset) Probability distribution of
the driving function, rescaled by t, where t is the Loewner time. Here the data at two different
times t = 0.25 and t = 0.75 is shown, which collapses onto the same curve. For further details
see Materials and Methods.

this finding demonstrates that, although the collective cellular motility spontaneously generates
patterns of flow with lengthscales much larger than that of individual cells (Fig. 1) [38, 3], the
associated vorticity contours are local and fall into the same universality class as those from
random percolation [30]. Moreover, the collective cellular motion we studied here is driven
far from equilibrium by the motility of individual cells that continuously inject energy into the
system at small scales. The observation of conformal invariance in collective cellular flows that
are continuously driven far from thermodynamic equilibrium presents both challenges and new
opportunities for the development of non-equilibrium conformal field theories [40].

continuum
model

experimental data percolation
universality

class
bacterial cells eukaryotic cells

WT �pilH MDCK MCF7
scale invariance fractal dimension D 1.75 ± 0.01 1.72 ± 0.02 1.72 ± 0.04 1.74 ± 0.02 1.74 ± 0.03 7/4 = 1.75

conformal invariance winding angle ↵ 0.853 ± 0.005 0.86 ± 0.01 0.87 ± 0.01 0.85 ± 0.01 0.87 ± 0.02 6/7 ⇡ 0.857
Schramm-Loewner

Evolution
left-passage probability  6.02 ± 0.02 5.97 ± 0.05 5.96 ± 0.05 5.95 ± 0.03 5.95 ± 0.06 6

driving function  5.96 ± 0.05 6.03 ± 0.06 5.96 ± 0.06 5.98 ± 0.04 5.93 ± 0.04 6

Table 1: Measurements of the fractal dimension, winding angle, left-passage probability,
and driving function of the four different cellular genotypes and numerical simulations.
The values are calculated from the velocity fields obtained from single cell tracking (Materials
and Methods) and the errors represent standard deviation about the mean.

These results suggest that the theories used to describe conformally invariant structures
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might have a much broader range of applications than previously anticipated. While collec-
tive movement is observed in diverse biological systems, that observed in microscopic cellular
systems is particularly amenable to experimental analysis because in-situ cell division rapidly
gives rise to large genetically identical populations, two-dimensional movement of monolay-
ers of cells can be readily imaged, and the environmental conditions can be carefully con-
trolled. Similar to the collective cellular motility studied here, many different kinds of living
systems are formed of strongly interacting components driven far from thermal equilibrium and
exhibit complex vortical patterns, including subcellular flows [41, 42], synthetic active mate-
rial [43, 1, 44], animal swarms [45, 46], and in-vitro reconstitutions of cytoskeletal transport
systems [47, 48, 49]. In addition, emergent vortical structures also shape many important pro-
cesses in biology including cell differentiation [16], cartilage regeneration [50], embryogene-
sis [51], signaling waves that propagate along cell membranes [52] and between cells [53], as
well as vortical waves associated with cardiac arrhythmia [54] and spiral-like patterns of brain
activity linked to cognitive processing [55]. We speculate that such biological processes might
not only serve as novel test bed to validate predictions based on conformal symmetry, but this
robust symmetry might also lead to the development of new analytical techniques to identify the
fundamental mechanisms that give rise to both function and dysfunction in complex biological
systems.
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Appendix A

The Dirac δ-distribution of a
composite argument

Let T : Ω ⊆ Rn → Rn be a sufficiently well behaved function with a countable
number zeros {xk}. Its composition with the Dirac δ-distribution results in a new
Schwartz distribution, specifically

(δ ◦ T )(x) = 1

|D(x)|
∑

k

δ(x− xk), (A.1)

where D = det(∇T ) is the familiar Jacobian of T .
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Figure A.1: Schematic illustration of the “well-behaved ” nature and characteristics
of the function T : Ω ⊆ Rn → Rn, which possesses a countable number zeros {xk}.
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82 APPENDIX A. THE DIRAC δ-DISTRIBUTION OF A COMPOSITE . . .

A.1 A heuristic and not fully rigorous derivation
The support of the Dirac δ-distribution consist of the single point 0, implying that

supp(δ ◦ T ) = {x1,x2,x3, . . . ,xk, . . .} . (A.2)

Consequently, T only needs to be well-behaved in the vicinity of its zeros. There-
fore let Uk ⊆ Ω be a neighbourhood of the zero xk such that the bijective restriction
T |Uk

: Uk → Rn defines a diffeomorphism. Now, let φ : Ω → Rn be some suffi-
ciently smooth test function and consider

⟨δ ◦ T, φ⟩ .
=

∫

Ω

(δ ◦ T )(x)φ(x) dnx (A.3)

=
∑

k

∫

Uk

(δ ◦ T )(x)φ(x) dnx (A.4)

=
∑

k

∫

Uk

(δ ◦ T |Uk
)(x)φ(x) dnx. (A.5)

The diffeomorphism T |Uk
defines a transformation x 7→ y = T |Uk

(x) with an
associated Jacobian J : Uk → R. According to the inverse function theorem, this
Jacobian is given by the reciprocal of

(
D ◦ T |−1

Uk

)
, hence

=
∑

k

∫

T (Uk)

δ(y)
(
φ ◦ T |−1

Uk

)
(y)

dny∣∣(D ◦ T |−1
Uk

)
(y)

∣∣ (A.6)

=
∑

k

(
φ ◦ T |−1

Uk

)
(0)∣∣(D ◦ T |−1

Uk

)
(0)

∣∣ (A.7)

=
∑

k

φ(xk)

|D(xk)|
(A.8)

and using the sifting property of the δ-distribution

=
∑

k

∫

Uk

δ(x− xk)

|D(x)| φ(x) dnx (A.9)

and from the linearity of Schwartz distributions

=

∫

Ω

∑

k

δ(x− xk)

|D(x)| φ(x) dnx (A.10)

=

〈∑

k

δ(x− xk)

|D(x)| , φ

〉
. (A.11)

Thereby concluding that (A.1) or equivalently that

(δ ◦ T )(x) =
∑

k

δ(x− xk)

|D(xk)|
. (A.12)
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A.2 The continuity equation for the Jacobian
It is instructive to consider the aforementioned function T as an n-component
order parameter and its countable set of zeros {xk} as defect positions. In this
context, equation (A.1) represents a change of variables from the defect positions
{xk} to the order parameter T . By definition, the Jacobian determinant of this
change of variables can be expressed as

D =
1

n!
ϵi1i2...inϵj1j2...jn∂i1T

j1∂i2T
j2 · · · ∂inT jn , (A.13)

where ϵi1i2...in is the usual n-dimensional permutation symbol. Interestingly, the
Jacobian has to obey the continuity equation:

∂tD = ∂iJ
i, (A.14)

where the current density

Jk =
1

(n− 1)!
ϵki2...inϵj1j2...jn∂tT

j1∂i2T
j2 · · · ∂inT jn (A.15)

is determined by a yet-to-be-specified governing equation for T , such as a time-
dependent Ginzburg-Landau model.

Proof. For simplicity, let T be a two-component order parameter with Jacobian

D =
1

2
ϵijϵmn∂iT

m∂jT
n. (A.16)

Now, take the temporal derivative:

∂tD =
1

2
ϵijϵmn (∂t∂iT

m∂jT
n + ∂iT

m∂t∂jT
n) (A.17)

=
1

2

(
ϵijϵmn∂t∂iT

m∂jT
n + ϵjiϵnm∂jT

n∂t∂iT
m
)

(A.18)

= ϵijϵmn∂t∂iT
m∂jT

n (A.19)

and when applying the Leibniz product rule

= ϵijϵmn {∂i (∂tTm∂jT
n)− ∂tT

m∂ijT
n} , (A.20)

where the last term vanishes because ϵij is skew-symmetric while ∂ij is symmetric,
assuming T is at least C2.


