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Abstract

Part 1: How are organs and complex biological shapes formed by polarized cells?
Biological shape formation in the animal kingdom is characterized by enormous
diversity and remarkable robustness. We present a computational point-particle
model of cells endowed with apical-basal and planar cell polarity and use it to
simulate tube-forming processes in vasculogenesis, gastrulation and neurulation.
We find that a simple set of dynamically enforced rules can adequately capture
these very different processes.
Part 2: How is the crystallization of stripe-forming block copolymers affected by
substrate curvature? It is known that pattern formation of lamellar phase smectic
block copolymers is sensitive to intrinsic curvature. In our study, we show that
the systematic inclusion of finite thickness fundamentally changes this picture,
resulting in a coupling between stripe orientation and the extrinsic curvature of
the substrate. We simulate the model obtained and show how extrinsic as well as
intrinsic curvature can be used to guide pattern formation.
Part 3: How does heterogeneity and superspreading affect the mitigation of infec-
tious diseases? The spread of infectious diseases can be affected by heterogeneities
of many different kinds, from differences in the disease progression to social and
behavioural differences and heterogenities in infectiousness or susceptibility. Using
agent-based models, we focus on two different types of heterogeneity, namely so-
cial activity in the form of contact rates and network structure, and transmission
overdispersion in the form of superspreading. We find that superspreading has
profound implications for the effectiveness of lockdown-like mitigation strategies
and that heterogeneous social activity is generally beneficial for contact tracing.
Finally, we show that superspreading and non-pharmaceutical interventions may
conspire to affect the evolution of a highly overdispersed pathogen such as SARS-
CoV-2.

Dansk resumé

Del 1: Hvordan dannes organer og komplekse biologiske strukturer af polariserede
celler? Dannelse af biologiske former i dyreriget er præget af en slående diversitet
og robusthed. Vi præsenterer en computationel punktpartikelmodel af celler ud-
styret med to polariteter: apical-basal (AB) og planar cell polarity (PCP). Ved
hjælp af denne model simulerer vi rørdannelsesprocesser i vaskulogenese, gastru-
lation og neuralrørsdannelse. Vi finder at et sæt af simple, dynamisk opretholdte
regler kan indfange disse meget forskelligartede processer.
Del 2: Hvordan påvirkes stribedannende blok-copolymerers krystallisering af sub-
stratets krumning? Det er kendt at mønsterdannelsen i smektiske blok-copoly-
merer i lamel-fasen er følsom overfor intrinsisk krumning. I vores studie viser vi,
at systematisk inklusion af en endelig filmtykkelse ændrer billedet fundamentalt og
leder til en kobling mellem stribeorienteringen og substratets ekstrinsiske krumn-
ing. Vi simulerer den resulterende model og viser hvordan ekstrinsisk såvel som
intrinsisk krumning kan bruges til at kontrollere mønsterdannelsen.
Del 3: Hvordan påvirker heterogenitet og superspredning afbødningen af smit-
somme sygdomme? Smitsomme sygdommes spredning kan påvirkes af mange for-
mer for heterogenitet, fra forskelle i sygdomsforløb til sociale og adfærdsmæs-
sige forskelle og heterogeniteter i smitsomhed eller modtagelighed. Ved hjælp af
agentbaserede modeller fokuserer vi på heterogenitet på to områder, nemlig so-
cial aktivitet, i form af kontaktrater og netværksstruktur, samt overdispersion i
sygdomsoverførsel (superspredning). Vi finder at superspredning har betragtelige
konsekvenser for virkningen af lockdown-/nedlukningslignende afbødningsstrate-
gier og at heterogen social aktivitet generelt er gavnligt for kontaktopsporing.
Endelig viser vi at superspredning og ikke-farmakologiske indgreb sammen kan
påvirke evolutionen af et udpræget superspreder-patogen såsom SARS-CoV-2.
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The reductionist hypothesis does not by
any means imply a “constructionist” one.
The ability to reduce everything to simple
fundamental laws does not imply the
ability to start from those laws and
reconstruct the universe. The
constructivist hypothesis breaks down
when confronted with the twin difficulties
of scale and complexity.

More Is Different
P. W. Anderson
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Introduction

This thesis is split into three distinct parts, not because each is completely unrelated to the others,
but because treating each part as a self-contained story only makes the exposition clearer. The
thesis is written in the style of a synopsis. As such, it provides a moderate level of detail about
each of the subjects it covers, with the understanding that a more detailed exposition is available
in the published manuscripts. The relevant manuscripts are included at the end of each chapter.
The first part concerns research we have done on the subject of the dynamics of polar cells in
the context of morphogenesis – the formation of biological shapes. In many organisms, some cells
– epithelial cells in particular – express one or more polarities. These polarities facilitate spatial
symmetry breaking and affect the mechanical and adhesive properties of cells and are instrumental in
the formation of cell sheets and elongated structures. Our research is an attempt to create a simple
dynamical model of these polarized cells and their interactions, in order to simulate processes in
organ formation and identify the necessary and sufficient mechanisms for embryonic shape formation
to occur.
The model is fully local, meaning that shapes arise on the basis of interaction between cells, and
not due to externally orchestrated signals. This self-organizing system can lead to some highly
nontrivial shapes, such as the one illustrated in Figure 1. Furthermore, our model allows for self-
assembly of complex structures from random initial conditions, a property which formed the basis
of our studies of vasculogenesis.
The second part concerns another self-organizing system, albeit of a non-living nature. Diblock
copolymers have the ability to spontaneously assemble into nano-scale striped patterns which have
several promising applications. Among these are the use of thin films of block copolymers as etch
masks in lithographic fabrication of microelectronic circuitry elements. However, for this to bear
fruit, a method for guiding the pattern formation is necessary. Our contribution to this problem
consists of a continuum model of how patterns form on curved surfaces, which shows how one may
direct the patterns formed by means of manipulating the geometry of the underlying substrate. We
simulate the equations obtained in several cases and demonstrate the kinds of patterns that can
then form on cylindrical surfaces, Gaussian bumps, saddle geometries and irregular (but smooth)
bumpy surfaces.
The third and final part concerns the spread of disease in a population under non-pharmaceutical
interventions, and how the spread is affected by certain heterogeneities.
This story consists of two separate arcs. One has to do with contact tracing – specifically TTI,
test-trace-isolate – and how realistic heterogeneities of social contact networks and contact rates
impact the effectiveness of this mitigation strategy.
The second story arc concerns transmission heterogeneity. One of the more striking features of the
COVID-19 pandemic has been overdispersed transmission - i.e. superspreading - the phenomenon
that some individuals infect very many while the majority of infected persons hardly infect at all.
Our work shows that this feature of the disease renders the epidemic highly vulnerable to lockdown-
type interventions. These interventions thus have a much larger effect than would be the case in
a disease with a similar basic reproductive number but more homogeneous spreading. This result
is connected to our finding that random, non-repeated contacts make an outsized contribution to a
superspreading epidemic. In a separate paper, we studied the effects of social network modulation
on an overdispersed disease. Here we found that a superspreading disease is highly sensitive to
reductions in personal contact network size as well as to the clustering of said network. The last
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project of this thesis concerns the evolution of new SARS-CoV-2 variants with different levels
of overdispersion. This was inspired by observations that the Alpha variant, while exhibiting a
higher mean respiratory viral load, actually exhibited a lower relative variation when compared
with the ancestral variant. Our simulations showed that non-pharmaceutical interventions may
exert a selection pressure, favouring the development of more homogeneously spreading variants.



Chapter 1

Biological self-organization and
shape formation: Epithelial cells

Figure 1: A structure composed of AB-polarized cells, formed by self-organized aggregation of an initially randomized collection
of cells. Blue and red color schemes distinguish apical from basal, while the shading indicates apical-basal (AB) polarity
orientation.

The question of how organs are formed at the scale of interacting biological cells can be posed and
answered at several different levels. There are questions of how cells communicate locally, which
biochemical signaling agents are released and how the temporal and spatial regulation of these
organizing molecules occurs. None of these questions have been the focus of our work in this area.
Rather, we have taken the somewhat coarse-grained approach of attempting to answer the following
question:

“Given a few empirical rules, can one formulate a simple 3-dimensional
dynamical model of polarized cell-cell interactions which can repro-
duce central processes and transitions in organogenesis?”

Our goal was to reproduce morphogenic transitions in a model where

• All interactions are local (i.e. cell-to-cell neighbour interactions),

• Two types of cellular polarity are included: apical-basal (AB) and planar cell polarity (PCP),

7
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• Cells are represented as point particles.

Our main focus has been on transitions which involve sheets of cells. Either the self-assembly of
cell monolayers (sheets) or transitions of preexisting cell sheets which result in topological changes.
The work presented here is a continuation of theoretical work published in [1] and [2].
Simply put, the two types of polarity mentioned above each serve a well-defined primary role.
Apical-Basal (AB) polarity induces and maintains a sheet-like structure by compelling a cell to
align its own AB polarity with those of its neighbours and to preferentially adhere to cells which lie
in the plane orthogonal to this polarity. Planar Cell Polarity (PCP) is slightly more involved. Its
primary purpose in our model is to facilitate convergent extension, a biological mechanism behind
the elongation of tissues by means of T1 transitions.

1.1 Budding, wrapping and invagination

This subsection is based entirely on the work published as Ref. [3].

Neurulation

Gastrulation

Budding

Cell wedging &
intercalation

Polarized
particles

Figure 2: Wedging and intercalation of polarized cells drive central processes in development. Figure from Ref. [3].

In morphogenesis, the topology-changing formation of tubular structures from flat sheets of cells
has widespread importance. How, for instance, do gut and neural tubes form from flat sheets of
epithelial cells? In Drosophila gastrulation and mammalian neurulation, a (section of a) flat sheet
of cells wraps in an axisymmetric manner until the edges meet and fuse to form a tube (a simulation
of this is visualized in Figure 4D-F). The “orthogonal process” also occurs, with a tube being formed
perpendicularly to the initial sheet of cells (illustrated in Figure 4A-C). This mode of tube forma-
tion is called budding. One example of this is the gut formation – gastrulation – of sea urchins.
Budding is ubiquitous in organ development, with examples including salivary glands and trachea
in Drosophila and lung and kidney development in vertebrates [4].
Several mechanisms may participate in these transitions, but it is not clear to what extent they are
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necessary, sufficient or complementary. The mechanisms behind sheet-to-tube transitions include
cell shape changes – apical and basal constriction, where either the apical [5] or basal [6, 7] sides
of cells constrict to render the cell wedge-shaped – and convergent extension by directed cell inter-
calation [4, 8]. Additionally, spatially restricted cell division and apoptosis can contribute to the
formation of tubular structures [4].

Below, we give a description of our model of interacting cells in 3D, equipped with apical-basal
and planar cell polarity as well as a mechanism for generating spontaneous curvature in the cell
sheet, mimicking apical or basal constriction. We use this model to investigate the necessary and
sufficient mechanisms for epithelial sheet-to-tube transitions.

1.1.1 Methods

Our work builds on the basic model originally developed in [2]. We have extended the model to
include cell wedging effects, which we will introduce below. First, we will describe the base model
in the absence of wedging.

The Base Model. Cells are treated as point particles and interact with neighbouring cells
through a pair potential Vij (with indices i and j labeling cells). The potential has a rotationally
symmetric (i.e. polarity independent) repulsion term and a polarity-modulated attraction term.
The potential can be formulated in dimensionless form in terms of the inter-cell distance rij as
follows:

Vij = e−rij −
[
λ1Sij(A) + λ2Sij(AP ) + λ3Sij(P )

]
e−rij/β. (1.1)

Here, β determines the energetically optimal distance (i.e. the equilibrium distance) between cell
centers and is fixed at β = 5, since this ensures an equilibrium distance of 2 (corresponding to
measuring all lengths in units of the typical cell radius). The parameters λn (n = 1, 2, 3) are
coupling constants which determine the strength of polar interactions and satisfy a normalization
condition

∑
n λn = 1. There are two types of polarities in the model, modeled as unit vector

quantities associated with each cell. The vector p represents apical-basal (AB) polarity while
q represents planar cell polarity (PCP). The three polarity-dependent factors are given by the
following expressions:

Sij(A) = (pi × r̂ij) · (pj × r̂ij) (1.2)
Sij(AP ) = (pi × qj) · (pj × qi) (1.3)
Sij(P ) = (qi × r̂ij) · (qj × rij) (1.4)

Since each of these expressions are scalar quadruple products, they can be rewritten as sums (of
products) of inner products, which is perhaps more illuminating:

Sij(A) = pi · pj − (pi · r̂ij)(pj · r̂ij), using that r̂ij · r̂ij = 1, (1.5)
Sij(AP ) = (pi · pj)(qi · qj)− (pi · qi)(pj · qj), (1.6)
Sij(P ) = qi · qj − (qi · r̂ij)(qj · r̂ij). (1.7)

The equilibrium configuration is somewhat more easily gleaned from this description, since the
dynamics is such that the quantities which enter with a positive sign will be maximized while those
with a negative sign will be minimized. Close to equilibrium, we furthermore expect (heuristically)

• pi · pj = 1 +O(ε)

• pi · r̂ij = O(ε)

• qi · qj = 1 +O(ε)

• pi · qj = O(ε)
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• qi · r̂ij = O(ε)

with ε a small deviation from the optimal configuration. We mention this mostly in order to build
intuition about each term: for instance, pi ·pj−1 is a “first order term” while e.g. (pi · r̂ij)(pj · r̂ij) is
a second order term in this description, and should thus be subdominant. A systematic classification
and description of polar point particle models as a near-equilibrium expansion is underway, but not
yet finished for inclusion in this thesis.
The overall purpose of Sij(A) is to dynamically organize cells into a sheet with AB polarities

Figure 3: In the absence of wedging (panel A), apical-basal (AB) polarity favours a flat sheet. Wedging is introduced by an
interaction which energetically favours tilted AB polarities. Wedging may be either isotropic (panel B) or anisotropic (pane C)
with the latter leading to axially symmetric bending of sheets.

orthogonal to the local cell layer. Sij(AP ) mainly exists to ensure orthogonality of apical-basal
and planar cell polarities. Finally, Sij(P ) keeps planar cell polarities uniform across neighbouring
cells (dynamically enforcing qi · qj ≈ 1). It should be noted that while Sij(A) and Sij(P ) are
similar, save for depending on AB polarity and PCP, respectively, the AB-related coupling constant
λ1 must always be greater than the PCP-associated λ3. Otherwise, the two types of polarity will
switch roles. In other words, the symmetry between AB and PCP is broken simply by one coupling
much more strongly to the local geometry than the other does.
When parametrized in this way (λ1 ∼ λ2 � λ3), planar cell polarity has the effect of facilitating
elongation of structures (lateral organization) through convergent extension.
The time development of the model is governed by overdamped (relaxational) dynamics under the
above potential:

∂ri
∂t

= −∂Vi
∂ri

+ η, (1.8)

∂pi
∂t

= −∂Vi
∂pi

+ η, (1.9)

∂qi
∂t

= −∂Vi
∂qi

+ η, (1.10)

where Vi =
∑

j Vij is the total potential experienced by the cell i (so the sum index j runs over
the neighbours of the i’th cell). The neighbours are determined geometrically by a Voronoi-like
line-of-sight criterion, which is described in more detail in [2]. Lastly, η is a Gaussian noise term
with vanishing mean. Some of our simulations also include cell division. This is incorporated as a
Poisson (i.e. constant-rate) process with daughter cells being spawned randomly at a distance of
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one cell radius from the mother cell.

Wedging. The potential as described above – specifically the Sij(A) term – favours the formation
of a flat cell sheet. We introduce wedging by extending this model with a single parameter, α. This
deformation parameter introduces an energetically favoured tilt in neighbouring AB polarity vectors.
Speficially, we modify Sij(A) according to

Sij(A) = (p̃i × r̂ij) · (p̃j × r̂ij), (1.11)

where

p̃i = pi, for no wedging, (1.12)
p̃i ∝ pi − αr̂ij , for isotropic wedging, (1.13)
p̃i ∝ pi − α(q)r̂ij , for anisotropic wedging. (1.14)

The proportionality sign ∝ just indicates that we have suppressed a normalization factor in the
equations. The introduction of the wedging parameter α thus causes the preferred angle between
neighbouring polarities to deviate from 0 (i.e. parallel), as illustrated in Figure 2 and Figure 3. In
the isotropic case (Figure 3B), the favoured tilt is the same towards all neighbouring cells. In the
case of anisotropic wedging (Figure 3C), the wedging parameter α is modulated by the direction of
PCP. When computing the interaction between cells i and j, α(q) is given by:

α(q) = α0 〈q〉ij · r̂ij , (1.15)

where 〈q〉ij denotes the arithmetic mean of the PCP vectors of cells i and j. This ensures that
wedging primarily happens towards (or away from, depending on the sign of α0) the cells whose
PCP is aligned along the line of sight between the two cells. The effect is for PCP to cause uniformly
PCP-polarized cell sheets to “curl up” such that the PCP field ends up running around the resulting
tube or groove.

1.1.2 Results

Here we give a brief account of our results - further details can be found in [3].

Roles of Convergent Extension and Wedging in Budding Experimental results suggest
that wedging and convergent extension (CE) both contribute to invagination in budding transitions
[9, 8]. Computational models, on the other hand, have generally focused on either CE as a driver of
tissue elongation or wedging as the driving force of invagination. We combine the two mechanisms
in order to probe their roles in budding, separately and combined.
First, we find that apical constriction alone is not enough to initiate budding. A ring of basally
constricting cells (as in Figure 4A), however, can facilitate invagination by themselves.
Our simulations of budding show that successful invagination and tube elongation can happen
when both wedging and PCP (which drives CE) act in parallel, see Figure 4A-C (videos of these
simulations can be found in [3]). This is not restricted to a planar geometry, and we have also
simulated budding starting from a spherical shell (as in sea urchin gastrulation, see Figure 5).
In addition, we show that budding can proceed in the absence of wedging provided that noise is
present (random fluctuations in cell position and polarity orientation). Even slight noise is sufficient
to facilitate the symmetry breaking between the two sides of the cell layer, and allow CE-driven
tubulation to take over. The limitation is that directional robustness of the process is destroyed,
and tube formation may occur on either side of the local sheet. Furthermore, relying on noise to
break the symmetry results in a higher proportion of failed invaginations at low noise levels. This
leads us to suggest that the primary role of wedging in budding is to ensure correct orientation and
consistent initial invagination.
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A

B

C

D

E

F

Figure 4: Simulations of tube formation by budding and wrapping. Panels A-C) Budding, where initial invagination is provided
by a ring of isotropically wedging cells, constricting basally. Panels D-F) Wrapping. Here, wedging is anisotropic and modulated
by planar cell polarity. Buckling is driven by differential proliferation. The polyhedra at the top of the figure illustrate isotropic
vs. anisotropic wedging.

Figure 5: Simulation of budding in a spherical geometry, as is seen in Sea urchin gastrulation.
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Anisotropic wedging and differential proliferation can drive wrapping The other sheet-
to-tube transition we simulate is wrapping, as occurs in e.g. vertebrate neurulation. A stripe in
the middle of the cell sheet represents the neuroepithelium (NE) and is assigned to anisotropically
apically constrict (the grey cells in Figure 4B). The remaining cells then represent ectoderm (E).
Initially, PCP is assumed to be uniform and pointing in the direction orthogonal to the axis of the
future tube.
We find that this anisotropic wedging is required for wrapping. Replacing the anisotropically wedg-
ing cells by isotropic ones leads to a rounded, bulging invagination rather than a tube. With
anisotropic wedging, a proto-tube groove forms. However, in order to obtain full closure of the
tube, differential proliferation of cells at the NE-E boundary was found to be necessary (consistent
with Ref. [10]). Concretely, we found that tube formation was possible within a rather broad range
of cell cycle lengths (3-23 h, see Supporting Information of Ref. [3] for the dimensional analysis
which allows translation of model timescales into hours). Longer or shorter cell cycles resulted in
open-tube morphologies somewhat reminiscent of those seen in neural tube defects such as spina
bifida (see Figure 6). The range of cycle durations seen here is consistent with the ≈ 4 hours seen in
Ref. [10]. If proliferation is too fast, we observe that the sheet does not have time to equilibrate and
that CE does not act fast enough to consistently narrow the tube. Due to this, sections of the tube
fail to fuse properly. If proliferation is too slow, on the other hand, the out-of-equilibrium buckling
effect is too weak and the folds never come close enough to fuse. Experimentally, slow proliferation

Cell cycle/hrs3.3 23

4 hours (Observed by McShane et al (2015))

Figure 6: The fate of the neural tube as a function of cell cycle lengths (i.e. the inverse of proliferation speed). If cells divide
too fast (cell cycle ≤ 3.3 hours), sections of the tube do not fuse properly while other parts bulge. If cells divide too slowly (cell
cycle ≥ 23 hours) buckling is too weak and the two sides never come close enough to fuse.

has indeed been show to lead to neural tube defects in mice [11]. In humans, mutations affecting
the PAX3 transcription factor are known to be implicated in Waardenburg syndrome [12, 13] which
is characterized by incomplete neural tube closure. This transcription factor is also essential in
ensuring sufficient cell proliferation [14]. To our knowledge, overly fast proliferation has not been
studied in this context and thus represents an interesting open question.

1.2 Vasculogenesis

In this section, we will treat the problem of vasculogenesis, i.e. the formation of the initial plexus
of the vascular system. A remarkable property of this process is that it happens by aggregation
of cells. In other words, a sparse collection of cells self-assemble into a vascular structure. Our
model tackles two prominent features of this process, namely morphology-maintaining growth (i.e.
proliferation without loss of topology or overall shape) and growth-induced buckling, the non-
equilibrium phenomenon of proliferation generating curvature.
The remainder of this section is based on Ref. [15].

1.2.1 Methods

The model described in the last section, and used in Ref. [3], treated polarities as unit vector
quantities. It may seem that this is the natural choice for a quantity whose primary purpose is



Bjarke Frost Nielsen Self-organizing systems and disease modelling Niels Bohr Institute 14/205

to single out a direction. However, in biological processes of sheet formation it is not obvious
that the in-plane polarity should not be flip-symmetric. The (out-of-plane) AB polarity of course
distinguishes the apical and basal sides, and it makes sense that the theory is not symmetric1 under
the transformation pi → −pi. However, the same requirement doesn’t a priori exist for the in-plane
polarity q. In branching processes, which will play a central role in the next part of this section,
this asymmetry is in fact counterproductive. The alternative is a nematic order where polarities are
more accurately pictured as line elements rather than arrows. In Figure 7, which originally appeared
in the supplementary material of Ref. [15], we show two simulations of branched structures, one
with nematic PCP and one with vectorial PCP. Vectorial PCP evidently induces an asymmetry
which is reflected on the macro scale. The origins of this are field defects (indicated by black arrows
on the figure) which form at the branch point. To appreciate this, it is perhaps instructive to look
at the flow field instead (i.e. the integral curves of the vectorial/nematic fields). These are shown
in Figure 8.

Figure 7: Branching structures with either (a) nematic or (b) vectorial planar cell polarity. The black arrows indicate defects
in the PCP field. In the nematic case, four -1/2 defects appear symmetrically, while the vectorial case allows for just two -1
defects which induce an asymmetry in the branching.

Figure 8: The same branching experiment as in the previous figure. Here, the integral curves – i.e. the stream lines – of the
PCP fields are shown.

In both cases, the topological defect charges sum to the Euler characteristic χ = 2− 2g = −2 (with
g the genus). However, nematic order allows for half-integer defects, enabling four −1/2 defects to
appear symmetrically as opposed to the two −1 defects which appear in the vectorial case2.

1There is a subtlety here. The theory is symmetric under the transformation pi → −pi when performed for all
cells. This simply corresponds to relabeling the apical and basal sides. It is, however, not symmetric under the flip
of a single apical-basal polarity vector.

2One could object that the surfaces are not closed, and thus the Euler characteristic doesn’t apply. However, the
structures are such that one can close them by fusing the ’arms’ pairwise, without introducing new defects or altering
the genus.
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In order to introduce nematic PCP, we take the polarity dependent part of the original model:

S̃ij = λ1S
ij
1 + λ2S

ij
2 + λ3S

ij
3 , (1.16)

where

Sij1 = (pi × rij) · (pj × rij),

Sij2 = (pi × qj) · (pj × qi),

Sij3 = (qi × rij) · (qj × rij). (1.17)

and modify it by taking the absolute value of the terms involving q:

S̃ij = λ1S
ij
1 + λ2

∣∣∣Sij2
∣∣∣+ λ3

∣∣∣Sij3
∣∣∣ . (1.18)

Furthermore, we introduce a spherically symmetric attractive term with a coupling constant λ0:

S̃ij = λ0 + λ1S
ij
1 + λ2

∣∣∣Sij2
∣∣∣+ λ3

∣∣∣Sij3
∣∣∣ . (1.19)

Our reason for introducing such a term is that we wish to study lumen formation, i.e. the transition
from a bulk of cells to a structure with sheet-like walls. We continue to impose the normalization∑3

n=0 λn = 1. This allows the model to be run in the absence of any polarity (λn = 0 for all n > 0).
Starting from a situation with λ0 = 1 and then turning on AB polarity does produce a transition
from a solid structure to one consisting of cell monolayers (compare panels a and b of Figure 9),
but a consistent tubular structure is not formed. This also holds if PCP is turned on (by letting
e.g. λ1 = 0.5, λ2 = 0.42, λ3 = 0.08.

(a)

(b) (c)

Figure 9: Transition from an initial solid structure (panel a) to a structure composed of cell monolayers. In the absence of the
polarity-orienting term Vi, a structure similar to that of panel b is formed. When Vi is turned on, a tubular structure as seen
in panel c can form.

To facilitate the consistent formation of AB polarity, we introduce a potential term:

Vi = γ
∑

j

f(rij)pi · r̂ij (1.20)

where f(r) ∼ exp(−r2/(2)). The total potential is then V =
∑

ij Vij +
∑

i Vi, where the first sum
runs over all pairs of neighbouring cells. The Vi potential is inspired by experiments which have
suggested that cell-cell contact orients AB polarity [16]. This potential precisely has the effect of
locally aligning AB polarity towards regions of high cell density. With γ = 5 and the AB coupling
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constant λ1 = 1, this setup produces regular tubes as seen in Figure 9c, mimicking lumen formation
by cord hollowing.

1.2.2 Results

In Figure 10, we show the formation of a vascular network by aggregation in our model . In
Figure 10a the initial, randomly positioned collection of cells are shown. Note that the color
gradient in this plot does not indicate AB polarity, but is only added to aid depth perception. By
t = 2×102, a coarse sheet structure has started to emerge, signifying that AB polarities have mostly
aligned, locally (Figure 10b). At a later stage, a vascular network has formed into a stable structure
(t = 104, Figure 10c).

(a)

(b)

(c)

Figure 10: Formation of a vascular network by self-assembly from a disperse collection of cells. a) t = 0. b) t = 2 × 10
2 c)

t = 10
4. Note that color does not indicate polarity but is only added to aid depth perception.

The successful vasculogenesis seen in Figure 10 is not guaranteed, though. If the initial density of
cells is too low, this process fails to take place. In fact, this process is very similar to the classic
problem of percolation, and we find that it exhibits a phase transition from disjointed lumina to
a connected network. In Figure 11, we plot the percolation probability as a function of the initial
density of cells and find a transition occurring around a critical density of ρc ≈ 8.2× 10−3. Here,
we define percolation probability as the probability for a cell to belong to the largest cluster. The
inset of Figure 11 shows the formation of disjointed lumina at subcritical density.

After the initial vascular network is formed, it is of course biologically necessary for the system
to be able to grow while maintaining its general morphology and density. Consider the growth of
the vasculature of the islets of Langerhans over 44 weeks as shown in Figure 12 (image and data
from Berclaz et al. [17]). Note that the vascular density remains approximately constant during
this growth and that total vessel length certainly grows much more than the diameter. Another
striking feature is the tortuosity of the vascular network, with vessels having undergone extensive
buckling.

In order to replicate this type of growth, we induced cell division (modelled by a Poisson process
as described in the last section). With λ3 = 0, i.e. without the PCP-induced convergent exten-
sion (CE) term of the model, this results in density non-preserving growth with vessels primarily
increasing their diameter, as seen in Figure 13.

However, if λ3 > 0, the growth pattern is profoundly altered. λ3 sets a preferred curvature
of the tubes and this results in a tendency for vessels to grow in length rather than in diameter.
In Figure 14, we begin with a small metastable vascular network (panel a) and then allow for
proliferation until a certain effective radius has been reached. In panel b, the structure resulting from
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Figure 11: Transition between formation of disjointed lumina and connected networks is governed by initial density. Parameters:
λ1 = 0.5, λ2 = 0.45, λ1 = 0.05, γ = 5.0. The legend indicates the radius of the sphere within which cells are initiated. For radii
r ≤ 40, the percolation probability doesn’t drop to zero below the threshold since the system is too small to allow for several
well-formed lumina.
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Figure 12: a-d) Growth of the vasculature of the islets of Langerhans over 44 weeks. e) Vascular density over time. Images
and data from Ref. [17].
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(a) (b)

Figure 13: Vessel growth by proliferation in the absence of PCP (λ3 = 0). In this case, growth occurs primarily by thickening
of the vessels. Vascular density is clearly not preserved.

a growth rate of ν = 2.5× 10−6 is shown, having reached 15,000 cells. In panel c, we have allowed
cells to divide at a growth rate of ν = 5.0× 10−5. This structure has thus reached 45,000 cells at
a similar effective radius and thus much higher density. In panel d, we show the time evolution of
the density under growth at different growth rates. Note that the time variable (horizontal axis)
has been rescaled by the growth rate ν so as to be comparable across structures grown at different
rates. This shows that rapidly increasing, decreasing or even approximately constant-density growth
is possible with the same underlying mechanism. Furthermore, the figure clearly shows a certain
growth-induced buckling which produces a tortuous structure consistent with what was shown in
the islets of Langerhans in Figure 12.

(c)
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t
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5.2e-05
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(a)

(b)

Figure 14: Growth of a vascular network with planar cell polarity. a) The initial, metastable structure. b) A structure resulting
from a growth rate of ν = 2.5× 10

−6, having reached 15,000 cells. c) A structure resulting from a growth rate of ν = 5.0× 10
−5.

The structure has reached 45,000 cells at a similar effective radius as that of panel c, but at a much higher density. d) Time
evolution of the density under growth at different growth rates. The time variable has been rescaled by the growth rate ν so as
to be comparable across structures grown at different rates.

1.3 Discussion

This concludes the chapter on the generation of biological shapes. However, there are many open
questions in this field. Most computational models in morphogenesis have been vertex or continuum
models (implemented as e.g finite-element simulations), and most have been two-dimensional. Some
examples of three-dimensional vertex models exist [18] and a three-dimensional finite-element model
of bud formation in lung tissue has also been published [19]. Perhaps the main advantage of a particle
model, with the cells themselves (and their polarities) as the degrees of freedom, is how readily
it lends itself to in-silico experiments. As we have seen, the relative simplicity of the approach
means that it can incorporate multiple polarities, cell division and wedging, to name just a few
elements. It is also straight-forward to extend it to couple to e.g. molecular concentration fields
[15]. Furthermore, it can describe aggregation and self-assembly processes as well as dynamically
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changing topologies – all of which are difficult to handle in continuum and vertex models.
A particularly interesting open question is whether there is a certain uniqueness in the mechanical
polarized point-particle theories that one can write down for systems of polarized cells. One place to
start would be with near-equilibrium configurations in which the deviations from the energetically
optimal configuration can be treated as a small parameter in which to perform an expansion.
Furthermore, symmetries severely restrict the possible terms that one could write down in a polarity-
dependency factors such as the S of Equation (1.16). This classification is a work which we have
started on, but it is not yet at the publication stage. If the space of reasonable theories is sufficiently
restricted, one may hope to argue for a degree of universality in such polarized cell systems.
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SUMMARY

Howdo flat sheets of cells formgut and neural tubes? Across systems, several mechanisms are at play:

cells wedge, form actomyosin cables, or intercalate. As a result, the cell sheet bends, and the tube

elongates. It is unclear towhat extent eachmechanism can drive tube formation on its own. To address

this question, we computationally probe if one mechanism, either cell wedging or intercalation, may

suffice for the entire sheet-to-tube transition. Using a physical model with epithelial cells represented

by polarized point particles, we show that either cell intercalation or wedging alone can be sufficient

and that each can both bend the sheet and extend the tube. When working in parallel, the two mech-

anisms increase the robustness of the tube formation. The successful simulations of the key features in

Drosophila salivary gland budding, sea urchin gastrulation, and mammalian neurulation support the

generality of our results.

INTRODUCTION

Early tubes in embryonic development—gut and neural tubes—form out of epithelial sheets. In mammalian

neurulation and Drosophila gastrulation, the cell sheet wraps around the tube axis until the edges make

contact and fuse. As a result of such wrapping, a tube is formed parallel to the cell layer. In sea urchin,

the gut is formed orthogonal to the epithelial plane by budding out of the plane. Budding also appears

to be a predominant form of tube formation in organ development (lungs and kidneys in vertebrates, sali-

vary gland, and trachea in Drosophila [Andrew and Ewald, 2010]). The same key mechanisms drive both

wrapping and budding sheet-to-tube transitions: changes in cell shape, contracting myosin cables span-

ning across cells, and convergent extension (CE) by directed cell intercalation (Andrew and Ewald, 2010;

Chung et al., 2017). Cells change their shapes by adjusting their apical surfaces relative to their basal sur-

faces—apical constriction (AC) (Sawyer et al., 2010) or basal constriction (Gutzman et al., 2018; Visetsouk

et al., 2018). In the following, we will refer to apical or basal constriction as wedging and directed cell inter-

calation as CE. In addition, oriented cell division and spatially restricted apoptosis (Andrew and Ewald,

2010) contribute to tubulogenesis in other systems.

Until recently, the consensus has been that wedging and CE each lead to distinct morphological transfor-

mations: wedging bends the sheet, and CE elongates the sheet and the eventual tube (Andrew and Ewald,

2010). Over decades, wedging was assumed to be a primary mechanism for invagination in budding (Pal-

uch and Heisenberg, 2009). However, results by Sanchez-Corrales et al. (2018) show that wedging and

radial CE are coupled, and both contribute to the invagination in Drosophila salivary gland. Furthermore,

Nishimura et al. (2012) argue that in mammalian neurulation, CE and wedging are coupled through planar

cell polarity (PCP). First, the direction of cell intercalations, orthogonal to the tube axis, is set by PCP. Sec-

ond, wedging must be anisotropic—with a preferred direction parallel to PCP and the direction of interca-

lation—for the sheet to wrap into a tube and not a spherical lumen. This anisotropy may stem from the

coupling between PCP and wedging, apical as well as basal constriction. This is supported by data at

the molecular level (for neural tube closure [Nishimura et al., 2012; Ossipova et al., 2014], the midbrain-

hindbrain boundary in zebrafish [Gutzman et al., 2018; Visetsouk et al., 2018], and gastrulation in

C. elegans [Lee et al., 2006], sea urchin [Croce et al., 2006], and Xenopus [Choi and Sokol, 2009]). Although

the role of anisotropic wedging has been well characterized in Drosophila gastrulation (Chanet et al., 2017;

Guglielmi et al., 2015; Martin et al., 2010; Sweeton et al., 1991), the origins of the anisotropy are still being

debated (Doubrovinski et al., 2018).

The recent developments open for new questions: What are wedging and CE capable of on their own?

Can invagination happen by CE alone? Is anisotropy in wedging essential for tubulogenesis, and, if so,

when?
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In this paper, we introduce a theoretical model to address these questions. Theoretical models have been

essential for understanding tubulogenesis. However, they are often limited to 2D and thus focus on either

wedging or CE (Belmonte et al., 2016; Collinet et al., 2015; Spahn and Reuter, 2013). Although there are

3D models for budding and neurulation (Inoue et al., 2016; Kim et al., 2013), they lack the coupling be-

tween planar polarization, wedging, and CE and do not capture the entire sheet-to-tube transition. To

close this gap, we introduce a model of polarized cell-cell interactions where cells are treated as point

particles. As a starting point, we consider the model suggested in Nissen et al. (2018), which was used

to study polarized adhesion. We use term polarized adhesion to refer to the cell-cell interaction where

adhesion proteins are either apicobasally polarized (AB) or planar polarized by, e.g., PCP. The model

parts describing PCP are not limited to the PCP pathway but can be applied to systems where planar po-

larity is induced by other pathways (e.g., polarized Baz/Par3 in Drosophila germband extension [Paré

et al., 2014] or salivary gland budding [Sanchez-Corrales et al., 2018]). The model in Nissen et al.

(2018), however, could not explicitly account for changes in cell shapes. Here, we show that the effect

of cell wedging can be very simply modeled within a point-particle representation by modifying cell-

cell forces to favor a tilt in AB polarities.

In line with the proposition by Chung et al. (2017), simulations show that, although CE alone can lead to a

budding transition, it is less reliable, with frequent failure of invagination and even evagination. Our re-

sults suggest that isotropic wedging orients the budding process and allows for robust invagination.

When applied to wrapping in neurulation, we find that anisotropic wedging alone was insufficient for final

tube closure. However, closure as well as tube separation from the epithelium can be aided by differential

proliferation. Furthermore, we find that anisotropic wedging on its own may be sufficient for tube elon-

gation. Together, our results support the mutual complementarity of wedging and CE in bending and

elongation.

RESULTS

To investigate the role of cell wedging in budding and wrapping, we aimed at capturing both isotropic and

anisotropic (PCP-driven) wedging with as few parameters as possible.

Modeling Wedging of a Point Particle by Favoring Tilt in AB

Apical constriction leads to cell wedging and, as a consequence, the AB axes of neighboring cells become

tilted toward the wedged cell (Figures 1B and 1C). In Nissen et al. (2018), a flat epithelial sheet was modeled

by a cell-cell interaction force favoring parallel AB polarities in neighboring cells (Figure 1A, Equation S1 in

the Transparent Methods). Tomodel the effect of wedging, wemodify the force to favor AB polarity vectors

pi in neighbor cells to tilt toward the wedged cell (Figures 1B and 1C). That is, when the force is calculated,

we replace pi by ~pi (Equations 1–3).

~pi = pi ðfor no wedgingÞ; (Equation 1)

~pi fpi � abr ij
�
for isotropic wedging

�
; (Equation 2)

~pi fpi � aCbqDij
�
for anisotropic wedging

�
: (Equation 3)

Here, brij is the normalized displacement vector between cells i and j, whereas CbqDij is the averaged PCP vec-

tor of the two interacting particles.

This change required only one parameter, a, setting the extent of the tilt (large a corresponds to pro-

nounced wedging). If the wedging is isotropic, i.e., equally pronounced in all directions (Sanchez-Corrales

et al., 2018), all neighbors to the wedged cell tend to tilt equally. In neurulation, the wedging is anisotropic:

the wedging happens primarily parallel to the cell’s PCP and perpendicular to the axis of the tube (Nishi-

mura et al., 2012). To capture this PCP-directed anisotropy, we couple the direction of AB tilting to the

orientation of the cell’s PCP (Equation 3, Figure 1C). See the Transparent Methods section for details of

the model and simulations.

Note that we aim only to capture the effects of wedging-PCP coupling and not the molecular mechanism.

Also, in an attempt to generalize our results, we focus on a minimal set of conditions necessary for the

outcome.

We first consider the complementary roles of CE and wedging in budding.
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Complementary and Unique Roles of CE and Wedging in Budding

Results by Sanchez-Corrales et al. (2018) and Chung et al. (2017) suggest that both wedging and CE

contribute to invagination. However, computational models have generally focused on either wedging

as a driver for invagination or CE as a driver of tissue elongation (Belmonte et al., 2016; Collinet et al.,

2015; Spahn and Reuter, 2013). To date, no computational models have managed to combine both mech-

anisms or probe the role of CE in invagination.

We set out to reproduce these experimental observations. The aim is to only capture the budding, leaving

out the finer details of the Drosophila salivary gland, such as off-center invagination. We start with a flat

sheet of AB polarized cells. Motivated by the possible link between organizing signals (e.g., WNT), PCP,

and wedging (Habib et al., 2013; Loh et al., 2016), we define a region of ‘‘organizing signals’’ such that

the cells within this region exhibit isotropic wedging and PCP. In Drosophila salivary glands, the apically

constricting cells are distributed on a disk around the future center of the tube. With this configuration,

we did not find parameters where both CE and wedging could act in parallel to form a well-defined

tube Figures S8A–S8C. However, a ring of basally constricting cells remedied this problem and allowed

for wedging and CE to act in parallel. This was the case whether a disk of apically constricting cells was

included (Figures S8D–S8F) or not (Figure 2A). Supporting this, the data by Sanchez-Corrales et al.

(2018) suggest that there are basally constricting cells in the outer region of the placode. Furthermore,

basal and apical constriction seems to be induced by the same organizing signal (Gutzman et al., 2018)

through PCP pathways. Also, in sea urchin gastrulation, both types of wedging seem to be at play (Komi-

nami and Takata, 2004). For simplicity, we limit our simulations to basal wedging, where basally constricting

cells are distributed on a ring (Figures 2A and S5).

Our budding simulations thus show that successful invagination and tube elongation can proceed if both

wedging and PCP (and thus CE) act in parallel (Video S2, Figures 2A–2C). We have also succeeded in simu-

lating sea urchin gastrulation where budding starts from a sphere of cells (Figure 3, Video S3, Kimberly and

Figure 1. Wedging Is Introduced through a Cell-Cell Interaction that Favors Tilted AB Polarity Vectors

a is the extent of wedging. The blue-red gradient indicates the apical-basal axis.

(A) No wedging (a= 0), AB polarities (arrows) tend to be parallel.

(B) With isotropic wedging, the tilt a is the same in all directions.

(C) With anisotropic wedging, the tilt has a preferred direction. Blue and red signify, respectively, basal and apical

surfaces. pi and pj are the AB polarities of cells i and j.

See also Figure S3 and S9, Video S1.
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Hardin, 1998; Lyons et al., 2012). This proceeds essentially like in the planar case (see Transparent Methods

for details).

In addition, we find that budding can proceed without wedging if we allow for noise—random fluctuations

in cell position and polarity orientation (Figure S1, Equation S4 in the Transparent Methods). Even slight

noise, with a width of less than a tenth of a cell radius, breaks the symmetry between the two sides of

the plane and initiates the CE-driven tubulation in one of the two directions orthogonal to the plane. How-

ever, the robustness of the outcome decreases in two ways. First, the proportion of failed invaginations is

higher (Figure S1). Second, the tube can form on either side of the epithelial plane.

Thus, it seems that the role of wedging is to aid in the initial invagination and ensure correct orientation.

Interestingly, in the mutants where wedging is compromised, Chung et al. (2017) observe that, despite

initial invagination in the right direction, the tubes form less reliably and sometimes reorient in the wrong

direction. Our results, showing complementary roles of CE and wedging, are thus in line with the findings

by Sanchez-Corrales et al. (2018) and Chung et al. (2017).

Figure 2. Isotropic and Anisotropic Wedging Drive Budding and Wrapping, Respectively

Wedging cells are labeled in gray, with a shading that indicates the PCP direction.

(A–C) Time evolution of budding simulation (similar toDrosophila salivary glands). Here, gray cells constrict basally and all

cells on and inside the ring intercalate radially. The couplings are ðl1;l2;l3Þ= ð0:5;0:4;0:1Þ, the degree of wedging is jaj=
0:5, and the annulus within which wedging occurs is given by the radii r0 = 5 and r1 = 15. See section Modeling budding

from a plane for details, as well as Figure S5. Total number of time steps was 6:253104 at dt = 0:2. Snapshots correspond to

times 5, 800, and 1:253 104. The width of the Gaussian noise was s= 0:05. See also Figures S1, S7, and S8, Video S2.

(D–F) Time evolution of wrapping simulation (similar to neurulation). Here, gray cells representing neuroepithelium

constrict apically and constriction is anisotropic, follows the direction of PCP (Eq 3). Cells proliferate only at the gray/

colored boundary (with 7-h doubling time), mimicking differential proliferation at the neuroepithelium/ectoderm

boundary. The couplings are ðl1;l2;l3Þ= ð0:6;0:4;0Þ, the degree of wedging is jaj= 0:5. See sectionModeling neurulation/

wrapping for details, as well as Figure S4.

Total number of time steps was 3:93104 at dt = 0:1, and snapshots were taken at times 5, 900, and 3:93 103. The cell cycle

length in simulation time units is 600. This simulation was run without added Gaussian noise, but noise is supplied by

proliferation, which is implemented as a Poisson process. See also Videos S4 and S5.
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Cell shape change, intercalation, and tissue compression by supracellular myosin cables are also critical

players in wrapping (Nishimura et al., 2012). The differences that cause some tubes to form parallel

and others to form orthogonal to the epithelial plane appear to be encoded in the geometrical

arrangement of the cells that participate in these three processes. In budding, such cells are arranged

on a ring or a disk (circular symmetry), whereas in wrapping, they are arranged on a band (axial

symmetry).

Anisotropic Wedging and Differential Proliferation Are Sufficient for Wrapping

To test if this difference in geometry alone is sufficient for wrapping, we choose a stripe of cells in the mid-

dle of the epithelial sheet to represent the neuroepithelium (NE) (shown as gray in Figures 2D and 2E) and

the remaining cells to represent ectoderm (E) (colored cells in Figures 2D–2F). The NE cells are then as-

signed anisotropic apical constriction and PCP pointing orthogonal to the future tube axis (Figure S4).

Wrapping Requires Anisotropy in Wedging

In the case of isotropic wedging, one would expect a collection of NE cells to eventually form a round

invagination or spherical lumen—the minimum energy state (Video S1). If we impose isotropic wedging

in our neurulation simulations, we obtain a bulging, rounded invagination, rather than a tube. See

Video S4.

Motivated by the results of Nishimura et al. (2012), showing that wedging is anisotropic (Equation 3) and

cells wedge primarily in the direction orthogonal to the tube axis, we asked if anisotropic wedging can

aid in tube closure. As expected, the tissue bends around the tube axis without capping at the ends of

the tube (Figures 1C and S2).

Interestingly, anisotropic wedging also leads to cell intercalation by CE, narrowing, and elongating neuro-

epithelium (see Figure S3), thus supporting the link between PCP-driven wedging and cell intercalations.

The simple, intuitive argument for this comes from how wedged cells pack in the tube. In the minimum en-

ergy state, the extent of wedging, a, determines how many cells can pack around the circumference of the

tube (Figures 1 and S9). If the cells do not change in size, fewer cells are needed to close the circumference

as wedging increases. If there are more cells than the wedging can allow for, the ‘‘extra’’ cells will be dis-

placed (to minimize energy). Because of the forces mediated by AB polarity (e.g., tight junctions), cells are

constrained to move within the epithelium and are, as a result, displaced along the tube axis (Figure S3).

CE-driven narrowing of the epithelium was proposed as necessary for tube closure (Wallingford et al.,

2002). In our simulations, wedging and CE alone succeeded in bending the tissue in an axially symmetric

fashion (Figure S2). However, we could not obtain successful tube closure even with maximal possible

Figure 3. Isotropic Wedging in Conjunction with PCP Is Sufficient to Drive Sea Urchin Gastrulation without

External Forcing

The gray ring shows cells with (isotropic) basal constriction, and the shading indicates the direction of planar cell polarity,

which curls around the vertical axis in our simulation. The couplings are ðl1;l2;l3Þ= ð0:5;0:4;0:1Þ, the degree of wedging is

jaj= 0:4, and the annulus within which wedging occurs is given by the radii r0 = 7 and r1 = 21. See section Modeling

gastrulation for details. Total number of time steps was 1:253105 at dt = 0:1 and snapshots were taken at times 5, 1:53

103, and 1:253 104. The width of the Gaussian noise was s= 0:05.

See also Video S3.
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CE and wedging (both tuned by the strength of a in Equation 3). This suggests that additional mechanisms

are necessary for final tube closure.

Buckling by Proliferation at the NE Boundary Aids in Tube Closure

Images of neurulation cross-sections (see e.g., Galea et al. [2018]) show a sharp bending at the neuroepi-

thelium-ectoderm (NE-E) boundary, with a curvature opposite to that inside the neuroepithelium (neural

folds) (Smith and Schoenwolf, 1997). This is believed to be a result of combined forces from the ectoderm

due to (1) change in cell shape (ectoderm cells become flatter and neuroepithelial cells become taller); (2)

adhesion between basal surfaces of NE and E close to the neuroepithelium-ectoderm (NE-E) boundary

(Smith and Schoenwolf, 1997), and (3) increase in cell density at this boundary either due to cell proliferation

or intercalation (McShane et al., 2015).

Our goal was to test if the model can capture full tube closure with at least one of the mechanisms, so for

simplicity, we focused on differential proliferation. When cells were set to proliferate only at the NE-E

boundary (McShane et al., 2015), we found that the resulting buckling can lead to successful neural tube

closure (Video S5). In the simulations, the out-of-equilibrium buckling created by rapid cell proliferation

is necessary to create a narrow neck that allows epithelial folds to fuse. We find that tubulation is possible

within a rather broad range of cell cycles (3–16 h). Shorter or longer cell cycles resulted in open-tube mor-

phologies reminiscent of neural tube defects such as spina bifida (Figure 4). In both cases, the folds are too

far apart to fuse, but for different reasons. If proliferation is too slow, the folds are far apart because the

buckling is too weak.

On the other hand, when proliferation is too fast, the sheet does not have time to equilibrate, and CE does

not catch up in narrowing it. Because of this, some sections of the tube become too wide to fuse. Interest-

ingly this can sometimes lead to tube doubling/splitting (Figure S6).

The effect of slow proliferation in our simulations is in line with the experimental data. In Copp et al. (1988),

it was shown that low proliferation rates could lead to neural tube defects in mice. In humans, mutations of

the PAX3 transcription factor are implicated in Waardenburg syndrome (Baldwin et al., 1994; Tassabehji

et al., 1993) characterized by incomplete neural tube closure. The same transcription factor is essential

in ensuring sufficient cell proliferation (Wu et al., 2015). The effect of increased (compared with wild-

type) proliferation has not been addressed experimentally, and we hope that our predictions will motivate

experiments in this direction.

DISCUSSION

Larger organisms rely on tubes for distributing nutrients across the body as well as for exocrine functions.

How these tubes reliably form is an open question. A few recurrent mechanisms are known, e.g., directed

Figure 4. The Cell Cycle Length at the Neuroepithelial-Ectoderm Boundary Affects Tube Closure

For cell cycle lengths below 3.3 h and above 23 h the neural tube fails to close in our simulations. It should be noted that

this broad interval also contains the cell cycle length of 4 h found for cells in the dorsolateral hinge points by McShane

et al. (2015). The insets show outcomes of simulations run at short (2.6 h), intermediate (12 h), and long (26 h) cell cycle

lengths. In simulation time, these correspond to 400, 1,800, and 4,000, respectively. See also Figures S2 and S6.
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or differential proliferation, changes in cell shapes, supracellular myosin cables, polarized adhesion, and

cell rearrangements. As evolution proceeds by tinkering rather than engineering, it is not surprising that

these mechanisms have overlapping functions. Recently quantitative experiments (Chung et al., 2017;

Nishimura et al., 2012; Sanchez-Corrales et al., 2018) enabled us to look beyond a ‘‘one mechanism,

one function’’ relationship and toward a map of where mechanisms overlap and how they complement

each other.

In this work, we have taken a step toward charting the functional overlap and complementarity among

CE, wedging, and proliferation. A phenomenological point-particle representation allows us for the first

time to combine PCP-driven cell intercalation (CE) and anisotropic wedging in thousands of cells in 3D

and with a few free parameters. With this new tool we arrive at the following key results: First, our sim-

ulations show that CE can drive invagination in the absence of wedging, thus suggesting that this is a

general mechanism that does not require forces from surrounding tissues. The invagination is, however,

unreliable, and isotropic wedging plays a complementary role by setting the direction of invagination.

The PCP pathway is not expressed in Drosophila salivary gland budding. One might therefore question

why modeling the effects of planar polarity—and its role for CE—is valid in this system. However, despite

differences at the molecular level, similarities emerge at the cellular level. At the cellular level, planar

polarized adhesion is ubiquitous in systems undergoing CE: In mammalian neurulation, the adhesion

protein Celsr is planar polarized by PCP (Nishimura et al., 2012); in early Drosophila development,

Baz/Par3 is also planar polarized (by Toll receptors in gastrulation [Paré et al., 2014] and by unknown

sources in salivary glands [Sanchez-Corrales et al., 2018]). Within our coarse-grained description of polar

cell-cell interactions it is not necessary to differentiate whether the effects of planar polarization are due

to PCP pathways or other sources, as long as polarized adhesion drives cell-cell intercalation. Also, we do

not explicitly model the origins of planar polarity patterning, e.g., WNT signals orienting PCP (Humphries

and Mlodzik, 2018) or Toll receptors orienting Baz/Par3 (Paré et al., 2014). Instead we pre-pattern the

orientation of polarities directly. We can then either keep the orientation of planar polarities fixed, to

simulate a global patterning by, e.g., Toll receptors, or let the global planar polarity pattern dynamically

emerge from cell-cell interactions.

Second, our results predict that anisotropic, PCP-coupled wedging may play a role in tube formation and

elongation. Our model predicts that anisotropy in wedging maintains axial symmetry of the tube during

wrapping. Remarkably, anisotropic wedging can also lead to CE-like cell intercalation and, consequently,

tube elongation. Although we have only tested the contribution of anisotropic wedging in wrapping, the

same principle may apply in budding. In support of this, in budding, the initially isotropic wedging (Röper,

2012; Sanchez-Corrales et al., 2018) becomes anisotropic after the invagination, when the tube elongates

(Pirraglia et al., 2010). Such an isotropic-to-anisotropic transition in wedging has been reported in

Drosophila furrow formation (Leptin and Roth, 1994; Sweeton et al., 1991). Furthermore, visual inspection

of tube cross-sections in the pancreas and kidneys suggests that cells are wedged. By analogy to neurula-

tion, it is reasonable to expect wedging to be anisotropic in all tubes. It will be interesting to confirm this

experimentally by, e.g., whole-mount 3D imaging of stained tubes.

Third, differential proliferation together with anisotropic wedging are sufficient for tube closure and

separation in wrapping. Each of the mechanisms has to be spatially constrained. To buckle the cell sheet,

proliferation must be faster at the neuroepithelium/ectoderm boundary than in the remaining

tissue. Because only neuroepithelium forms the tube, anisotropic wedging must be localized to these

cells. Differential proliferation has been proposed by McShane et al. (2015) as a mechanism for forming

dorsolateral hinge points (DLHPs), regions where the tissue curvature has the same sign as at

medial hinge points (MHPs). We find that modifying the extent of apical constriction or how it is

distributed, i.e., throughout the entire neuroepithelium, or combinations of DLHPs and MHP, could

not result in tube closure. Instead, our results highlight the importance of forming regions of opposite

curvature at the boundaries. Our simulations suggest that differential proliferation buckles the bound-

aries and aids tube closure as it curves the epithelium oppositely to the curvature resulting from apical

constriction.

Our simulations predict a wide range of proliferation rates capable of producing sufficient buckling for

closure. These results call for testing for differential proliferation in systems without DLHPs (by accelerating

or reducing proliferation rate in mutants or by molecular inhibitors [Li et al., 2017]). Although not
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immediately feasible, it is also interesting to consider how to perturb the ‘‘opposite’’ curvature by inter-

fering with differences in cell shapes or basal adhesion (Smith and Schoenwolf, 1997) of the neuroepithe-

lium and ectoderm close to the boundary.

Models of tubulogenesis date back at least a few decades (Kerszberg and Changeux, 1998); however,

most of them are limited to 2D and focus on either wedging or cell intercalation. Recently, Inoue et al.

(2016) formulated a 3D vertex model of neurulation focusing on cell elongation, apical constriction, and

active cell migration. The model does not include either cell proliferation or PCP but instead relies on

active cell migration to pull the neural cells toward the midline. Although successful in bringing folds

sufficiently close, it does not cover the separation of the tube from the sheet. In another system, the

experimental and 3D modeling results by Osterfield et al. (2013) suggest that CE may be important

in the early budding of the eggshell appendage. In their model, however, the initial invagination

was driven by pre-patterned tension in the epithelium and neither cell polarity nor wedging were

considered. Also, a recent 3D model of tube budding in the lung epithelium concluded that wedging

can only result in rounded tubes and that it is insufficient to drive the entire process (Kim et al., 2013).

Still, in that study, only isotropic wedging was considered. In our simulations, we see that anisotropy is

necessary for tube formation.

We have demonstrated that cell wedging can be phenomenologically captured in a point-particle repre-

sentation. This is not restricted to apical constriction but also covers, e.g., basal constriction, and can, in a

similar spirit, be extended to capture changes in cell height and width. Also, adding oriented cell prolifer-

ation and local apoptosis is straight forward and could allow for modeling a wider range of tubulogenesis

phenomena. Furthermore, we are now in a position to address tube branching in, e.g., lungs and vascular-

ization, where cells forming the tubes also are the ones that secrete organizing signals that locally re-orient

PCP polarities and may induce anisotropic changes in cell shapes.

Limitations of Study

A major limitation of our study is that we do not model the coupling of polarities to orienting morphogens

(e.g., WNT, FGF, or BMP).

As a consequence, cell properties such as expression of apical-basal and planar cell polarity (and the orien-

tation of polarities in individual cells) had to be assigned at the start of simulations. Furthermore, in the case

of budding, the orientation of PCP had to be maintained fixed through the entire sheet-to-tube transition.

We anticipate that, by including the morphogen-polarity coupling, the right distribution of cell types and

polarity directions will emerge without externally imposed constraints.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The source code for the simulations is available on GitHub (Nielsen, 2019).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100830.
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Supplementary Figures

Figure S1 Budding outcomes in the absence of wedging. Related to Fig 2.

Normal MisorientedFailed

40% 0% 60%

50% 30%20%

σ = 0.1
N = 50

High Noise

Low Noise
σ = 0.002
N = 50

100% 0%0%No Noise
σ = 0
N = 50

Budding outcomes without wedging at high and low noise as well as in the absence
of noise. The first column shows the proportion of normal initiations of tubulation, the
middle column shows failed invaginations while the last column shows evaginations. σ is
the width of the Gaussian noise, while N is the number of simulations run at the given
noise level. See the Methods section for details on the implementation of noise. In all
cases dt = 0.1. The couplings were kept at (λ1, λ2, λ3) = (0.4, 0.5, 0.1) and the annulus
within which wedging occurs is given by the radii r0 = 5 and r1 = 10. Since wedging is
absent, α = 0.

Figure S2 Lack of proliferation. Related to Fig 4.

The fate of the neural sheet in our simulations in the absence of proliferation. Here
the couplings are (λ1, λ2, λ3) = (0.6, 0.4, 0), the degree of wedging is |α| = 0.5. See the
section Modeling neurulation/wrapping for details. Total number of time steps was
1.4× 105 at dt = 0.1. The simulation was run without noise.

Figure S3 T1 transition induced by wedging. Related to Fig 1.

The T1 transition was induced by starting with a tube which was stabilized with
anisotropic wedging of strength |α| = 0.3 and then increasing the extent of wedging to
|α| = 0.5, causing the structure to tighten and elongate by intercalation. The couplings
are (λ1, λ2, λ3) = (0.55, 0.45, 0) and the width of the Gaussian noise is 0.1 with time
step size dt = 0.2.

Figure S4 The initial configuration of the cell sheet for neurulation.
Related to Fig 2.
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}d
PCP

The initial configurations of the cell sheet for neurulation. Wedging is turned on in a
band of width d (gray) with PCP running orthogonal to this band.

Figure S5 The initial configuration of the cell sheet for budding. Related
to Fig 2.

PCP

r0

r1

The initial configurations of the cell sheet for budding. Wedging is turned on in an
annulus (gray) where PCP curls around tangentially.

Figure S6 Tube splitting observed with excessive proliferation rate.
Related to Fig 4. The proliferation rate corresponds to a cell cycle length of 1.5h for
cells at the neuroepithelium/ectoderm boundary. The remaining parameters are as in
the main neurulation simulation, as described in Fig 2

Figure S7 Influence of the parameter β. Related to Fig 2.

Budding simulations run with β = 2.5 (left) and β = 10 (right). This affects the
equilibrium distance so that cells are closer together resp. further apart (and thus come
across as larger resp. smaller) but budding progresses in a qualitatively similar manner.
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The remaining simulations in this paper were all run with β = 5 ensuring an equilibrium
distance of deq = 2.

Figure S8 Apical constriction in budding. Related to Fig 2.

A

B

C

D

E

F

(A-C) Time evolution of budding simulation when only a disk of apically constricting
cells (light gray) are assigned, and no basally contracting cells. The couplings are
(λ1, λ2, λ3) = (0.5, 0.4, 0.1), the degree of wedging is |α| = 0.3. The radius of the disk of
apically constricting cells is given by r0 = 10. Total number of time steps was 6.8× 104

at dt = 0.1. Snapshots correspond to times 175, 600 and 6800.
(D-F) Time evolution of budding simulation when a disk of apically constricting

cells (light gray) as well as a ring of basally constricting cells (dark gray) are assigned.
The couplings are (λ1, λ2, λ3) = (0.5, 0.4, 0.1), the degree of wedging is |α| = 0.3. The
outer radius of the ring for which basal constriction occurs is given r1 = 10 while the
radius of the disk of apically constricting cells is given by r0 = 5. Total number of time
steps was 2.2× 104 at dt = 0.1. Snapshots correspond to times 25, 400 and 2200.
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Figure S9 The degree of wedging affects the circumference of the tube.
Related to Fig 1.

Number of cells along circumference

Extent of cell wedging, α

Transparent Methods

Model

Following Nissen et al. (2018), cells are treated as point particles interacting with
neighboring cells through a pair-potential Vij . The potential has a rotationally
symmetric repulsive term and a polarity-dependent attractive term. In terms of rij (the
distance between two cells i and j), the dimensionless potential can be formulated as

Vij = erij − [λ1 Sij(A) + λ2 Sij(AP ) + λ3 Sij(P )] e−rij/β . (S1)

The parameter β has the fixed value β = 5, since this ensures that the equilibrium
distance is always 2, corresponding to 2 cell radii. In Figure S7 we have shown that one
can obtain qualitatively similar results at other values of β. The parameters λi are
coupling constants which define the strength of polar interactions in the model. Sij(A)
gives the form of the interaction between AB polarity and position, whereas Sij(AP )
and Sij(P ) give the coupling of PCP with AB and position, respectively, as described in
Nissen et al. (2018). These couplings are formulated in terms of AB vectors pi, PCP
vectors qi and a unit vector r̂ij from cell i to j. The coupling
Sij(AP ) = (pi × qi) · (pj × qj) dynamically maintains the orthogonality of the PCP
unit vectors qi and qj to their corresponding AB polarity vectors while lateral
organization is favored by Sij(P ) = (r̂ij × qi) · (r̂ij × qj). In the absence of any cell
shape effects, the coupling between AB and position is given by
Sij(A) = (r̂ij × pi) · (r̂ij × pj), which favors a flat cell sheet. Wedging of cells is
introduced into our model by a single deformation parameter α, which describes an
attractive interaction between the AB polarity unit vectors pi and pj :

Sij(A) = (r̂ij × p̃i) · (r̂ij × p̃j), (S2)
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where p̃i is given by

p̃i = pi (for no wedging),

p̃i =
pi − αr̂ij
|pi − αr̂ij |

(for isotropic wedging),

p̃i =
pi − α 〈q̂〉ij
|pi − α 〈q̂〉ij |

(for anisotropic wedging). (S3)

Here, 〈q̂〉ij denotes the mean of PCP vectors qi and qj belonging to the two interacting
cells. The above substitution, pi → p̃i, is only performed in Sij(A), so as to only affect
the coupling between AB polarity and position.

Setting α = 0 favors a flat sheet (see Fig 1A–B) whereas a non-zero α favors bending
of AB polarity vectors towards (or away from) one another and induces curvature in a
sheet of cells (Fig 1C–D).

The time development is simulated by overdamped (relaxational) dynamics along
the gradient of the above potential, Eq (S1):

∂ri
∂t

= −∂Vi
∂ri

+ η,

∂pi
∂t

= −∂Vi
∂pi

+ η,

∂qi
∂t

= −∂Vi
∂qi

+ η, (S4)

where the potential energy function for the i’th cell is Vi =
∑
j Vij . The sum runs over

those cells j which are within direct line of sight of the i’th cell as described in Nissen
et al. (2018). η is a noise term corresponding to Gaussian white noise with vanishing
mean. This noise term provides a degree of randomness to cell position as well as the
orientation of polarities. Cell division (when present) is modeled as a Poisson process
with daughter cells being placed randomly around the mother cell at a distance of one
cell radius.

The model was implemented in Python using PyTorch for automatic differentiation
(Paszke et al. 2017). Numerical integration of the equations of motion is implemented
through the Euler method, usually with dt = 0.1. We have checked that the model
converges to similar results (tested for budding) with dt = 10−4. The source code for
the simulations is available on GitHub (Nielsen 2019).

Parameter estimation and robustness

We have tested the robustness of our approach on a number of model cases and find
that, for example, budding can be reproduced with a broad range of wedging
parameters, α ∈ [0.1, 0.6] and for diverse PCP coupling strengths λ3 ∈ [0.8, 0.14]. For
these intervals, the budding is qualitatively similar to that illustrated in Fig 2A. Our
typical values of wedging used in simulations, α ∈ [0.3, 0.5] are comparable with the
wedging strains reported in Sanchez-Corrales et al. (2018), e.g. 0.03pp/µm,
corresponding to α = 0.4 (assuming a cell diameter of 13µm) (Brown & Bron 1987).

We further explore our model by re-instating dimensions in the formulation of the
potential and the equation of motion and estimating dimensionful quantities. With
dimensions reinstated, the pair-potential takes the form

Vij = V0 [exp(−r/`)− S exp(−r/(β`))] . (S5)
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The overdamped equation of motion (without noise) becomes

0 = γvi +
∂Vij
∂ri

, (S6)

where vi = ∂ri/∂t. We now introduce dimensionless (tilded) parameters

Vij = V0Ṽij , ri = `r̃i, vi = v0ṽi =
`

t0
ṽi. (S7)

and insert the dimensionless parameters in our equation of motion

ṽi = − V0
`γv0

∂Ṽij
∂r̃i

. (S8)

Inserting the dimensionless equation of motion, this reduces to V0 = `γv0. In Eskandari
& Salcudean (2008), a typical value for the dynamical viscosity µ was reported to be on
the order of 250Pa s. This can be related to the coefficient γ by Stokes’ Law of viscous
drag, γ = 6πµ`. We now compare our model with epithelial cell extrusion and use the
typical cell speed reported in Yamada et al. (2017), v0 ≈ 1mm h−1 and use the typical
cell size reported in Brown & Bron (1987), 2` = 13µm. With these numbers, our model
predicts a typical extrusion energy on the order of

12V0 ≈ 12× 6πµ`2v0 ≈ 2× 10−13J. (S9)

The factor of 12 = 2× 6 is due to the hexagonal structure of the cell sheet. Note that
our estimate of the extrusion energy is consistent with the finding in Yamada et al.
(2017) for epithelial cell extrusion. Here, an actomyosin ring is measured to exhibit a
contraction force of the order of 1kPa, which results in an extrusion energy of the order
1kPa× `3 ≈ 3× 10−13J.

With these identifications of parameters, it is possible to extract dimensionful
quantities from our simulations. This is what allows for e.g. the computation of cell
cycle lengths in Fig 4.

We anticipate that the values of the couplings λi can be estimated from the extent
and speed of CE (e.g in our model these would be determined by the values of λ3
relative to λ1).

Modeling neurulation/wrapping

The starting point for our simulation of neurulation is a planar sheet of cells where a
line with a width of six cell radii is given non-zero wedging strength |α| = α0 > 0 and
all other cells have α = 0. The line is centered at x = 0 and PCP is initialized
orthogonally to this line, along the x direction (q|t=0 = x̂). See Figure S4.

Cell proliferation is simulated as a Poisson process by choosing a rate Γ for each cell
to divide in each time unit. Only cells at the neuroepithelium-ectoderm boundary
(defined as cells with |α| > 0 who are neighbours of cells with α = 0) proliferate (with
rate Γ = Γ0 > 0) while the rest have Γ = 0. Daughter cells inherit all properties of their
mother cell and are initiated randomly in a distance of one cell radius from their mother
cell.

It should be noted that the initial width of the strip is not particularly important,
since wedging will ensure the correct tube width given sufficient proliferation.

All cells in the simulation have the same coupling constants, typically
λ = (0.6, 0.4, 0). Typical values for Γ0 and α0 are 2.8× 10−4 and 0.5. respectively.
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Modeling gastrulation

In our gastrulation simulation, the assignment of PCP and cell wedging is characterized
by two radii, describing an annulus (see Figure S5):

r0 = 7, (S10)

r1 = 3r0 = 21. (S11)

PCP is assigned within the disk Ω1 given by

Ω1 =
{

(x, y, z)
∣∣∣
√
x2 + y2 < r1

}
. (S12)

The PCP coupling strength λ is taken to be

λ =

{
(0.5, 0.5− λ3, λ3) inside Ω1,

(1, 0, 0) everywhere else.
(S13)

where a typical value for λ3 is between 0.08 and 0.12.
The PCP vector field q is initially assigned so that it spirals around the axis of tube

formation (the z-axis):

q|t=0 = ẑ × r, (S14)

In the gastrulation simulations, the PCP vector field is fixed on a per-cell basis.
Nonzero apical constriction parameter α is assigned in an annulus Ω2, which shares

its outer radius with the disk Ω1:

Ω2 =
{

(x, y, z)
∣∣∣r0 <

√
x2 + y2 < r1

}
. (S15)

The magnitude of α for the cells in Ω2 is taken as 0.4:

|α| =
{

0.4 inside Ω2,

0 everywhere else.
(S16)

The regions Ω1 and Ω2 are fixed in space and not on a particle basis. The number of
particles in this simulation is N = 4000.

Modeling budding from plane

The budding simulation is, apart from global topology, very similar to the gastrulation
simulation.

The relevant length parameters are r0 and r1 with r0 < r1. Typically we take

r0 = 5, (S17)

r1 = 2r0 or r1 = 3r0. (S18)

Two regions are correspondingly defined – the disk Ω1 and the annulus Ω2:

Ω1 :=
{

(x, y, z)
∣∣∣
√
x2 + y2 < r1

}
, (S19)

Ω2 :=
{

(x, y, z)
∣∣∣r0 <

√
x2 + y2 < r1

}
. (S20)

The PCP coupling strength λ is taken to be

λ =

{
(0.5, 0.5− λ3, λ3) inside Ω1,

(1, 0, 0) everywhere else.
(S21)

December 28, 2019 7/8



where a typical value for λ3 is between 0.08 and 0.12.
The PCP vector field q is initially assigned so that it spirals around the center of

invagination (the origin of coordinates):

q|t=0 = ẑ × r, (S22)

In the gastrulation simulations, the PCP vector field is fixed on a per-cell basis.
Nonzero apical constriction parameter α is assigned in the annulus Ω2 with

magnitude 0.5:

|α| =
{

0.5 inside Ω2,

0 everywhere else.
(S23)

The total number of particles in the simulation is 1384.
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The experimental actualization of organoids modelling organs from brains
to pancreases has revealed that much of the diverse morphologies of organs
are emergent properties of simple intercellular ‘rules’ and not the result of
top-down orchestration. In contrast to other organs, the initial plexus of the
vascular system is formed by aggregation of cells in the process known as vas-
culogenesis. Here we study this self-assembling process of blood vessels in
three dimensions through a set of simple rules that align intercellular apical–
basal and planar cell polarity. We demonstrate that a fully connected network
of tubes emerges above a critical initial density of cells. Through planar cell
polarity, our model demonstrates convergent extension, and this polarity
furthermore allows for both morphology-maintaining growth and growth-
induced buckling. We compare this buckling with the special vasculature of
the islets of Langerhans in the pancreas and suggest that the mechanism
behind the vascular density-maintaining growth of these islets could be the
result of growth-induced buckling.

1. Introduction
Tubes are ubiquitous features of numerous biological systems. In humans, they
form the gastrointestinal tract, the ductal network of the pancreas, the fallopian
tubes, the urinary tract and so on, with the most obvious example being the
entire vascular network of blood vessels. On the relevant time scales of multicel-
lular energy consumption, diffusion is limited to delivering metabolites over
length scales smaller than ∼100 μm. Instead, on larger length scales, tissue
needs some form of directed transport [1]. In vertebrates, this active transport
is provided by the beating heart through the vascular network, which in turn
has to branch into every part of the organism to nourish tissue and remove waste.

The development of the vascular network involves mainly two processes: vas-
culogenesis and angiogenesis [2,3]. During vasculogenesis, individual endothelial
cells coalesce and de novo form functional vessels [4–6]. Studies of vasculogenesis
in vitro have beenmainly restricted to twodimensions [7], but recently three-dimen-
sional vascular organoids have been produced [8]. Vasculogenesis results in a
randomly connectedvascularplexus,which is subsequently remodelledbypruning
or branching [9–12] to a mature vascular network, e.g. with a hierarchical tree-like
structure. In angiogenesis, the tree-like structure is formed by branching processes
involving either splitting (intussusception) or sprouting dynamics from already
formed blood vessels [2,13,14]. This remodelling can be guided by blood flow,
pressure and vessel wall stresses [15]. We shall be interested in modelling blood
vessel organoids and will thus not consider this latter reorganization, which
becomes relevant only in connectionwith certain organs (such as a pumping heart).

From a theoretical and computational viewpoint, the most intriguing feature
of vasculogenesis is its three-dimensional self-assembly of tubular networks.
Of equal importance is whether these self-assembled networks percolate across
the tissue, i.e. whether a fully connected network of tubes is formed. What den-
sities of endothelial cells are needed in three dimensions to ensure these

© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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criteria? We will additionally be interested in questions of
growth. Once a network is formed, can this network undergo
stable growth? And what are the possible mechanisms for
such networks to grow while maintaining a constant space-
to-vessel density?

Understanding blood vessel formation computationally
has received much attention [16]. Continuum models enable
descriptions of density fields of chemotaxing endothelial
cells during vasculogenesis [7,17–19]. Likewise, cellular
Potts models [20] and models of individual cells [21] have
been employed. These studies of vasculogenesis have focused
mainly on two-dimensional systems. In this paper, we
introduce a coarse-grained description of tubes in three
dimensions using a formulation that resolves features of
both single cells and full organs (vessel network). In particu-
lar, we are able to simulate vascular networks comprising up
to hundreds of thousands of particles.

Our focus will be on emergent features of the model such
as vasculogenesis and buckling during growth, but we note
that our model also has the ability to describe angiogenetic
sprouting [22] (budding) and intussusception, which on the
cell level resembles gastrulation [23]. While lumen formation
in blood vessels is its own research field [5,24–26], we intro-
duce a simple mechanism for lumen formation by describing
the evolution of the apical–basal polarity of cells, thus yielding
a fully emergent approach to tubulogenesis.

The paper is organized as follows. In §2, we introduce the
methodology and mathematics of the model and demonstrate
lumen formation. Section 3 is devoted to vasculogenesis and
the percolation of the vascular network. In §4, we study the
growth of vascular networks for various parameters of the
model and show that both morphology-maintaining and
buckling growth patterns can arise. Lastly, in §5, we describe
the vasculature of the islets of Langerhans in the pancreas
and describe how their tortuous features could be the result
of buckling during growth. In particular, we show that the
vascular density during the growth of these islets could be
maintained simply by a buckling mechanism without the
need for angiogenetic processes.

2. Model, polarities and lumen formation
Contrary to two-dimensional models, in three dimensions, cell
polarity is crucial to model cell sheets. Our coarse-grained
model describes a collection of particles/cells each defined by
their position x, their apical–basal polarity (AB) p, and their
planar cell polarity (PCP) q, illustrated in figure 1. Our model is
coarse grained in the sense that a collection of particles model a
cell, and as such, even though each particle is a sphere, shape
deformations are possible in a collection of particles. In a tube,
such as a blood vessel, the AB polarity of cells will define the
inside versus the outside of the vessel, while PCP defines the
direction around the tube versus the direction along the tube.

To model cell behaviour, we use a slightly modified
version of the model of Nissen et al. [23]. In this model,
particles interact pairwise only if they are line-of-sight
Voronoi neighbours and their mutual potential energy is

Vij ¼ exp (�rij)� Sij exp (�rij=b), (2:1)

for which

Sij ¼ l0 þ l1S
ij
1 þ l2jSij2 j þ l3jSij3 j, (2:2)

where

Sij1 ¼ (pi � r̂ij) � (p j � r̂ij),

Sij2 ¼ (pi � qi) � (p j � q j),

Sij3 ¼ (qi � r̂ij) � (q j � r̂ij)

)
(2:3)

and r̂ij ¼
rij
rij

¼ xi � x j

jxi � x jj : (2:4)

We keep β = 5, which sets the inter-particle spacing to≃2 units,
and furthermore enforce λ0 + λ1 + λ2 + λ3 = 1 with λ1≥ λ3. This
strikingly simple model can describe a plethora of phenomena
related to polarity-driven morphogenesis in organoids [23].
Naturally, real interactions between polarized cells will be
much more complex than the model used here; indeed, these
depend on the precise distribution of the surface proteins
that make up the polarity of the cells. The interactions used
here can be thought of as the first relevant and symmetry-
obeying terms that give rise to polarity-aligning cells. The
simplicity of the present model is thus agnostic towards the
underlying microscopic details. Here we introduce a small
extension to this model that permits the de novo formation of
tube-like structures.

The dynamics of the model follows from taking all
mobilities to be equal. Hence,

@xi
@t

¼ � @V
@xi

,
@pi
@t

¼ � @V
@pi

,
@qi
@t

¼ � @V
@qi

, (2:5)

with the norms of p and q kept at unity. For this study,
the model was implemented using PYTORCH and run with
CUDA-acceleration.

With only spherical interactions, i.e. λ0 = 1.0, a solid tube
is a meta-stable structure of this model, as shown in
figure 2a. Lumen formation corresponds to the formation of
AB polarity, i.e. the discrimination of the inside and outside
of the tube. Various methods for lumen formation exist, e.g.

pi
qi

pj

qj
r̂̂kj

r̂̂ij

pk

qk

r̂̂ki

Figure 1. The polarity of each particle, which stems from a distribution of
proteins, is modelled as vectors. AB polarity is indicated by p and PCP
by q. For a tube, as illustrated, p points away from the tube (distinguishing
outside from inside) and q curls around the tube (distinguishing along versus
around the tube). Interactions between cells depend on their orientation
between each other, ^̂r ij . In equations (2.3), S1 favours pi and pj parallel
and both orthogonal to ^̂r ij , S2 favours p’s and q’s orthogonal and S3 favours
q i and q j parallel and both orthogonal to ^̂r ij . Note that, in reality, cells can
deform based on the polarities, but we model them as point particles. Shape
deformation is captured by collections of multiple particles. (Online version in
colour.)
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extracellular cord hollowing and lumen ensheathment
or intracellular vacuole fusion [27]. While the specifics of
these mechanisms vary, they all establish the AB polarity
of the tubes. If we turn on AB polarity in the present
model, that is, we let λ0→ 0.0 and λ1→ 1.0, the solid
structure tube of figure 2a opens up into a sheet-like structure
as shown in figure 2b. This behaviour occurs because of the
random initialization of the AB polarity (as illustrated in
figure 2a).

To allow AB polarity to form properly we introduce
the potential

Vi ¼ g
X
j

f(rij) pi � r̂ij, (2:6)

where f(r) ≃ e�r2=2‘2 , such that the total potential is

V ¼
X
ij

Vij þ
X
i

Vi: (2:7)

This potential aligns AB polarity against local areas of high
density, in correspondence with experiments suggesting
cell–cell contact directs AB polarity [28]. It can also be
thought of as alignment along a gradient field c,

Vi ¼ g pi � rc, (2:8)

where c is a molecular, diffusing field of particles nucleated at
cell locations,

Dr2c ¼ k c�
X
i

d(xi): (2:9)

This formulation assumes the existence of such a molecular
field. Although many molecular gradients are set up during
blood vessel growth, such as vascular endothelial growth
factor (VEGF), which elongates and reorganizes cells [6], it
is unclear if these interact with and orient the polarity of
cells. It is thus easier to think of the interaction as a direct
cell–cell interaction as described by equation (2.8).

With γ > 0, lumen formations occur and the solid tube
becomes hollow and fully enclosed, as shown in figure 2c.
While network formation and lumen formation in reality are
separate processes, in this studywewill consider the simplified
system of them occurring simultaneously. While γ > 0 ensures
enclosed structures, PCP with λ3 > 0 is needed to control the
tube thickness. That is, λ3 > 0 creates a preference for length-
wise alignment of particles, and thus establishes convergent
extension, which in turn happens through cell intercalation
events. Mathematically, the only difference between AB (p)
and PCP (q) is the fact that λ1 > λ3. The λ2 term keeps p and q
approximately orthogonal, and themagnitude of λ3 thus deter-
mines how much AB alignment is favoured over PCP
alignment, which in turn controls the thickness of the tubes
since thicker tubes will have better aligned PCP.

In equation (2.2) we include vectorial interactions of AB
polarity (S1), but only nematic interactions of PCP (S2, S3), since
we do not want to impose a handedness to the vascular tubes.
At branch points of the vascular network, there must be defects
in PCP alignments, since, in a similar fashion to how you cannot
perfectly comb the hair on a sphere, you cannot have a smooth
surface vector field at a tube branch point. Taking the absolute
value in equation (2.2) turns vectorial − 1 charge defects into
two − 1/2 defects, which establishes symmetric branch points
(see electronic supplementary material).

Finally, we note that we only model the endothelial cells
themselves; in the jargon of active matter research, our
model is ‘dry’. In organoid experiments, there will naturally
also be culture medium, extracellular matrix, pericytes, etc.,
present, and the system will perhaps be embedded in, for
example, matrigel and collagen [29]. These components miti-
gate their own interactions between one another and with
the cells and could be explicitly modelled in a similar
manner to our cell–cell interactions. Such interactions would
complicate our model a lot and make interpretations harder,
but one should keep in mind that the parameters we use effec-
tively include these interactions and are not solely the result of
pure cell–cell interactions. For instance, the effects of the vis-
cosity of the culture medium would effectively introduce
mobilities in equation (2.5). Likewise, the effects of shaking
could be modelled effectively by including external noise in
equation (2.5). We have tested such effects and our results
remain qualitatively unchanged.

3. Vasculogenesis
During vasculogenesis blood vessels form from aggregating
endothelial cells [2]. Figure 3 shows the self-assembly of
three-dimensional vessels in our model. From an initial
random distribution (figure 3a) the cells start aggregating
(figure 3b) and form a tubular network (figure 3c). In
figure 3, cells are initially sampled from a uniform distribution
within a sphere but any distribution works.

Naturally, a major concern in vasculogenesis is to form a
network of blood vessels that is fully connected. It has pre-
viously been shown how this percolation condition, i.e.
whether all particles connect to one another, depends on
the density of endothelial cells [7]. In our model, cells have
a preferred distance to one another and can attract over
long distances. At first glance, therefore, it seems that initial
density might not be an important quantity. However, par-
ticles only attract if their polarizations match, and as soon

(a)

(b) (c)

Figure 2. Hollowing of a solid tube with self-organizing AB polarity. (a)
Initial solid-tube particles having only spherical interactions (λ0 = 1) and
random AB polarity. (b) Self-organization of AB polarity with γ = 0. Similar
behaviour is observed with λ1 = 1.0 and with λ1 = 0.5, λ2 = 0.42, λ3 =
0.08 with PCP already organized. (c) Self-organization of AB polarity with
λ1 = 1.0 and γ = 5.0. Tubes are enclosed in simulations, but cut open for
illustration. Colours indicate AB polarity. (Online version in colour.)
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as vessel structures have formed, enclosed vessels will not
attract one another, since two vessels nearing each other
will have opposing AB polarity on their adjacent surfaces.
Because of this polarization, the vasculogenesis process in
our model is also density dependent.

The density-dependent percolation behaviour is visual-
ized in figure 4, which shows the probability for a particle
to be part of the largest cluster P as a function of the initial
density ρ. This is shown for various initial radii, or, in other
words, for various numbers of particles ranging from ∼250
to ∼30 000. As is clear, the vessel network percolates at
around ρc∼ 8.2 × 10−3, i.e. at an initial length scale of
r
�1=3
c � 5—the same order of magnitude as the inter-particle
spacing = 2. Figure 4 also shows some finite-size effects, since
for a small number of particles, even those far below the tran-
sition point, the largest cluster, albeit small, will constitute a
significant fraction of the whole system.

4. Growth and buckling
As organisms grow, their networks of blood vessels also need
to grow. The vascular system needs to grow in two
distinct ways: first, blood vessels need to increase their
diameter in order to deliver increased amounts of blood.
However, as vessels grow, their surface area to volume
fraction decreases and so does their effectiveness. Thus,
they also need to grow their network structure to maintain
a space-filling network with small diameter vessels, capil-
laries, as the ‘leaves’ of the network [30]. This latter version
of growth is called angiogenesis and, as mentioned, is not
the focus of our study. In this section, we introduce the
growth of the blood vessel and consider the effect of PCP
strength λ3, which creates a preference for growth in tube
length rather than in tube diameter. The next section will
demonstrate a less considered alternative to space-filling
growth exploiting the buckling phenomenon demonstrated
in this section.

First, we demonstrate that the growth of vessel diameters
follows naturally when λ3 = 0. Cell division is implemented as
a Poisson process in the sense that each cell has a constant
rate of division ν. When a cell divides, a new cell is created
with the same polarities p and q, but placed at a random
position next to its mother cell in the plane orthogonal to p,
meaning that cells divide within the cell sheet.

Figure 5 shows the results of growth dynamics with λ3 =
0. Figure 5a is the steady-state result of a self-assembly with
λ3 = 0.08. We then let λ3→ 0 and ν→ 3 × 10−5. Figure 5b

(a)

(b)

(c)

Figure 3. Self-assembly of a vascular network from ∼104 particles initialized uniformly randomly within a sphere (q). (a) Initial conditions. (b) Early equilibration of
polarization at t = 2 × 102, in simulation units. (c) Vascular network formed at t = 104. Parameters: λ1 = 0.5, λ2 = 0.42, λ3 = 0.08, γ = 5.0. Scale bar: five particle
diameters. Lines indicate the direction of PCP. Colours for visualization purposes only. (Online version in colour.)

10–3 10–2

r

40

1.0

0

0.2

0.4

0.6

0.8

50
60
70

P

Figure 4. Percolation of vascular networks. Graphs show the probability P for
particles to belong to the largest cluster as a function of the initial density
ρ = n/(4/3 πr3), where n is the number of particles and r is the radius of the
initialization sphere, its value indicated by the legend. The critical density is
found to be ρc∼ 8.2 × 10−3. Inset shows the small clusters for n = 3300
and r = 50. Parameters: λ0 = 0.0, λ1 = 0.5, λ2 = 0.45, λ3 = 0.05, γ =
5.0. The critical percolation density ρc depends on λ3, since thinner structures
percolate more easily. (Online version in colour.)
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shows the result of the growth from 3500 particles to 25 000
particles. As is evident, the vascular network can grow uni-
formly under this model. However, the structure as a whole
does not grow much, and, in fact, the density (vascular
volume to free space) grows as well. This happens because
we only model the cell division of the vascular network. In
reality, the tissue between the vessels, which are cells we are
not modelling, will also be dividing and in turn grow the
structure as a whole.

If we instead consider the case of λ3 > 0 with cell division,
this leads to completely different growth. Since λ3 induces a
preferred diameter, this creates a tendency to grow more in
length than thickness. Figure 6a–c shows how this leads to
a growth-induced buckling instability [31], i.e. growth that
does not retain the structure’s shape. The buckling occurs
because cell division is faster than the time to relax shape
perturbations on long length scales.

A simple measure of buckling of a growing ring is to com-
pare the curve length L with the structure’s effective radius r.
If no buckling occurs L/r = 2π. This definition works well as
long as the structure remains a simple curve. Figure 6d shows
this buckling as a function of time for various division rates ν.
Clearly, the buckling occurs even for exceedingly small

division rates at approximately the same value of νt, i.e.
approximately the same number of cells. After the transition,
the buckling degree grows exponentially in time, or, in other
words, linearly with the number of cells. In this regime, this
can be understood as the structure growing mostly in struc-
ture length L and not in effective size r. This continues until
one side of the structure meets the other.

The inset of figure 6d shows the thickness of tubes calcu-
lated as N/L, where N is the number of cells in the structure.
As is clear, a high growth rate leads to thicker tubes as the
time scale for growth severely outpaces relaxation. The thick-
ness of the tubes grows until buckling starts to occur, after
which the thickness decreases as there is suddenly room to
grow in length instead of thickness and the thickness stabilizes.
The peak in thickness occurs at slightly later νt for larger ν.

5. Islets of Langerhans
In the pancreas, the so-called islets of Langerhans are respon-
sible for the production of hormones such as insulin. While
these islets constitute only about 1% of the pancreatic
volume they contain about 10% of the blood vasculature.
This dense vessel network is needed to provide energy to

(a) (b)

Figure 5. Growth of vascular network with λ3 = 0. (a) Steady structure formed of n = 3500 particles with λ3 = 0.08. (b) After cell division to n = 25 000 particles
with λ3 = 0. Remaining parameters: λ0 = 0.0, λ1 = 0.5, λ2 = 0.42, γ = 5.0. Scale bar: five particle diameters. (Online version in colour.)
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Figure 6. Buckling of vessels during cell growth with λ3 > 0. (a) Initial condition of a torus of 1000 cells. (b,c) Buckling during growth. (d ) Buckling measured as
the vessel contour length L over the effective radius r as a function of time re-scaled by division rate ν, which is shown by colour; its value is given in the legend.
νt∼ 0.03 corresponding to ∼2100 cells. Inset shows tube thickness (N/L) during buckling. (Online version in colour.)
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the islets; it is also needed for intercellular communication
[32] and to measure and regulate the production and injection
of hormones into the bloodstream.

The dense vasculature of pancreatic islets is shown in
figure 7. The figure also shows the growth of these islets
over 44 weeks. A crucial observation is that the islets’ vascu-
lar density, despite the overall growth of the islets, remains
almost constant [33]. Furthermore, the thickness of the
blood vessels also does not change much over this course

(figure 7; variations in thickness are linked to age [34]). In
other words, the growth of the vessel network is unlike
that of figure 5. Angiogenesis is the canonical explanation
for the growth of vascular network structure and this is
indeed a factor for pancreatic islets [32].

What is also clear from figure 7 is the tortuous structure of
the vasculature. This is in contrast to normal vasculature,
which is regular and structured, as can be seen, for example,
in the surrounding vessels in figure 7. Considering only

0 4540353025

weeks

2015105

20

%

0

10

(e)

(a) (b)

(c) (d)

Figure 7. Growth of the vasculature of islets of Langerhans over 44 weeks. Images show the vasculature at weeks 2 (a), 6 (b), 35 (c) and 44 (d). The islet is
growing, but its vascular density remains approximately constant, as shown in (e). The y-axis shows the percentage of the vascular volume of the total islet volume.
During these 44 weeks, the islet more than triples its volume. Data and images from Berclaz et al. [33]. (Online version in colour.)
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Figure 8. Vasculature growth. (a) Initial meta-stable structure of 3500 particles. (b) Structure at ∼15 000 particles under ν≈ 2.5 × 10−6 growth. (c) Growth with
ν≈ 5.0 × 10−5 having reached the same effective radius as (b), but at ∼45 000 particles and thus at a much higher density. (d ) Vascular density ρ of the structure
as a function of time (rescaled by division rate ν, as given in the legend). Scale bar: five particle diameters. (Online version in colour.)
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angiogenesis as a growth mechanism, the tortuous structure
and the space-filling growth are independent observations.

Both observations can, however, be simultaneously
explained by growth-induced buckling, as we demonstrate in
figure 8. Figure 8b,c shows the different structures that can be
attained in our model with different growth rates. As is clear,
growing vessel structures with λ3 > 0 leads to very tortuous
structures. Furthermore, as shown in figure 8d, the division
rate ν also determines the vascular density. With a large div-
ision rate, the structure does not have time to relax under the
division-induced stress and the vascular density increases.
Conversely, the vascular density is decreased for small division
rates. Hence, a simple feedbackmechanismwhere the prolifer-
ation rate inversely depends on the density can keep vascular
density constant during growth. While this effect would defi-
nitely be co-occurring with angiogenesis, it is intriguing that
it simultaneously gives an explanation for the tortuousness
of the vascular network. Although the AB polarity-aligning
parameter γ is only used for self-assembly, during this sort of
growth γ > 0 can allow for anastomosis, the fusing of separate
blood vessels.

6. Conclusion
We have demonstrated three-dimensional vasculogenesis in a
simple model that aligns cell polarities through cell–cell inter-
actions. The initial self-assembly of enclosed structures is
ensured through the alignment of AB polarity against cell
density. This is the key driver of lumen formation and enables
the de novo formation of tubes. This interaction also allows for
fusing of vessels (anastomosis). While PCP is not needed for
the formation of enclosed structures, this polarity ensures
thin tubular structures and convergent extension.

The self-assembly of the vascular networks results in fully
connected vessels if the particles are initialized above a criti-
cal density, in accordance with previous two-dimensional
experiments [7]. Enclosed, non-connected structures appear
at lower densities, and these do not interact because of their
opposing AB polarities.

Introducing cell proliferation in our model leads to distinct
behaviour depending on the strength λ3 of PCP, which controls
the preference of tube diameter. With λ3 = 0, we have shown
that uniform growth is possible. With λ3 > 0 the tubes buckle
under growth. While blood vessel buckling is typically associ-
ated with high blood pressure [35], this shows that such
behaviour can also stem from cell proliferation.

Considering this bucklingmode of growth, we compared it
with the vasculature of islets of Langerhans,which showa large
degree of tortuousness. The vessel density of these pancreatic
islets furthermore remains constant during their growth. We
suggest that a simple explanation for this behaviour is growth-
induced buckling in which the cell division rate is coupled to
the vascular density. This rate, in turn, may be controlled by
negative feedback from the blood supply to the tissue.

Tortuous blood vessels are in general also found in can-
cerous tumours [36]. Cancer growth is often associated with
angiogenesis in nearby tissue, a process that we did not
explore here, but could easily be introduced via local cell
shape changes [22]. The abnormality of tumour vessels is
thought to be, in part, due to over-expression of VEGF-A
[37]. We have shown how tortuousness in blood vessels can
be linked to the growth rate. This could thus also play a
major role in the abnormal morphology of tumour
vascularization.
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Chapter 2

Chemical self-organization: Block
copolymers

Figure 15: Simulation of crystallization of lamellar phase block copolymers on a curved substrate. Figure from Ref. [20].

2.1 Introduction

We now turn to a non-living system, which does however bear similarity with the one discussed
in the previous chapter in one respect. In that chapter, we saw how cells can self-organize into
elongated structures such as the tubes of the vascular system. In this chapter, we will be looking at
molecules which can self-organize into patterns of elongated structures, namely stripes. This class
of molecules is called diblock copolymers. The ‘copolymer’ part refers to polymers which consist
of more than one species of monomer. The ’block’ part then refers to the fact that the monomers
occur in patterns such as A-A-A-A-B-B-B-B-A-A-A-A, as opposed to e.g. stochastic or random
copolymers. Finally the ’di’ part refers to the fact that only two types of blocks are involved in
these particular polymers.
In this chapter, which is based wholly on Ref. [20], we develop a finite-thickness model of (thin)
layers of diblock copolymers. This is done by starting from a flat 2D description, covariantizing
it and extending the theory into the third dimension by means of a small thickness parameter in

51
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which we can expand the free energy functional. We then develop a novel numerical framework for
solving these equations on curved manifolds. The solutions reveal how curvature can be used as
a guiding field to control the pattern formation. The space of applications is vast, ranging from
micreoelectronics to microfluidics.

2.2 Methods

The theoretical development of our model starts from the Brazovskii free energy, which has previ-
ously been used to describe block copolymers [21, 22, 23, 24, 25]. This free energy, denoted F (ψ), is
a Ginzburg-Landau expansion in the order parameter ψ(x). We work with the free energy density
functional, which is just the free energy per volume, f = F/V :

f(ψ) =
1

V

∫
dV
[
2(∇2ψ)2 − 2 |∇ψ|2 +

τ

2
ψ2 +

1

4
ψ4

]
. (2.1)

The order parameter ψ is the “relative composition”, i.e. it measures the over-density of the ’A’ or
’B’ monomers. Formally it is the deviation ψ(x) = φ(x) − φ0 from the average composition φ0 at
the critical temperature Tc. The model thus has a single tunable parameter, namely the reduced
temperature τ = (T − Tc)/Tc. We assume φ0 = 0 throughout our study, since we’re interested in
the compositionally symmetric lamellar phase. To see that this free energy favours the emergence
of periodic patterns with a certain wavelength, we insert a ”stripe field” (which is periodic in only
one direction, which we take to be the x direction without loss of generality), ψ(x) = ψ0 sin(q0x).
The free energy then becomes3

f(ψ) = (q4
0 − q2

0)ψ2
0 (2.2)

This is of course analogous to studying the Fourier transformed equations of motion, with q0 the wave
number. Minimizing the free energy gives q0 = 1/

√
2 corresponding to a characteristic wavelength

of λ = 2π
√

2. Any deviation from this wavelength is energetically penalized, ensuring that a stripe
pattern of a well-defined spacing is preferred.
Our goal is to develop a theory for thin films of such block copolymers on curved surfaces. The
natural first step is to take the two-dimensional free energy and adapt it for a curved surface. This
entails replacing partial derivatives with their covariant counterparts, i.e. ∂ → ∇, to make sure
that derivatives transform tensorially even on a general curved background. The simple flat-space
volume element dxdy must also be replaced by its invariant counterpart. We write:

f(ψ) =
1

Ã

∫
dÃ
[
2(∇̃2ψ)2 − 2

∣∣∣∇̃ψ
∣∣∣
2

+
τ

2
ψ2 +

1

4
ψ4

]
. (2.3)

Here the tilde denotes a surface quantity. It is also important to understand that the shorthand∣∣∣∇̃ψ
∣∣∣
2
no longer stands for the Euclidean norm (∇xψ)2+(∇yψ)2+. . . but rather for the appropriate

inner product, formed by contraction with the surface metric gij , i.e.
∣∣∣∇̃ψ

∣∣∣
2

= gij∇̃iψ∇̃jψ. We use
the Einstein summation convention, where a repeated index is implicitly summed over. The indices
i, j, . . . take on the values {1, 2}.

This programme of replacing the bulk free energy with a covariantized surface version has been
used in related models [26, 27, 28, 25, 29]. It introduces a coupling between the pattern and the
underlying geometry through the intrinsic curvature of the surface. If the surface has intrinsic
curvature along some particular direction, the pattern will either be compressed or stretched in this
direction. This necessarily carries an energy penalty and the pattern will respond by reorienting.
The effect of this is thus to align the stripes along the direction of largest intrinsic curvature.

3The ’trick’ to obtain simple expressions not involving higher powers of ψ0 is to compute the average energy over
an entire wavelength of the pattern.
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However, this covariantization approach is not enough to describe a film that has a non-zero
thickness. It does not take the extension of the pattern into the third dimension into account. This,
as we shall see more clearly later, is equivalent to saying that it does not take the extrinsic curva-
ture of the surface into account. Consider the cylindrical substrate illustrated in Figure 16. Such a
geometry has no intrinsic curvature whatsoever, only extrinsic curvature. Hence every orientation
of the stripe pattern is equally energetically favourable according to (2.3). However, due to the
finite thickness of the film, the orientations in panels a and b clearly place the innermost parts of
the stripe pattern under compression while the outermost part is dilated, meaning that neither will
obtain the most favourable spacing. Only the configuration in panel c allows for uniform, optimal
spacing throughout. This is a clear argument for the importance of not only intrinsic, but also
extrinsic curvature as a guiding field for pattern formation in block copolymers.

a) b) c)

Figure 16: Three possible orientations of a striped pattern of definite wavelength on a cylindrical surface. Note that the
cylindrical surface is extrinsically curved but carries no intrinsic curvature. The orientation in panel a is maximally energetically
unfavourable, since the stripes are forced to deviate from their preferred spacing (λ0), being compressed (λ < λ0) near the
inner surface and dilated (λ > λ0) near the outer surface. The pattern shown in panel b is intermediate, while the one shown
in panel c allows the pattern to obtain its preferred spacing throughout.

Geometric setup. Our scheme for including the third dimension in a thin-film approximation is
to consider the film as a three-dimensional region Ω of thickness h defined symmetrically around the
midplane S̃, which is then a regular two-dimensional surface. The setup is sketched in Figure 17.
Note that we use a tilde to denote midsurface quantities. The normal coordinate is denoted by
ξ ∈ [−h/2, h/2] and the surface S̃ is parametrized by the coordinates u and w. As such, a position
p(u,w, ξ) in the region Ω can be reached by choosing a point p̃(u,w) in S̃ (the projection of p onto
the surface) and moving a distance ξ along the surface normal ñ(u,w):

p(u,w, ξ) = p̃(u,w) + ξñ(u,w). (2.4)

In order to compute the surface metric g̃ij we need the tangent vectors ãi. Note that these comprise
a family of three-dimensional vectors which also carry surface indices, since a three-dimensional
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tangent vector exists for each coordinate direction on the surface. In this case, it is cleaner to
switch to index notation with separate sets of indices for the three-dimensional manifold Ω and
the two-dimensional submanifold S̃. We thus denote the tangent vectors ã µi , with the latin indices
i, j, k, . . . referring to the surface and the Greek indices µ, ν, ρ, . . . referring to Ω. These tangent

p̃(u,w)

ξ

h
2

0
− h

2
ñ(u,w)

p(u,w,ξ ) = p̃(u,w)+ξ ñ(u,w)
S

S̃

Ω

Figure 17: Schematic of the geometric setup used in the derivation of the effective free energy. The film is modeled as a
thin three-dimensional region Ω with thickness h distributed uniformly around the midplane S̃. The coordinates on the two-
dimensional surface S̃ are taken as u and w. Each point p ∈ Ω can then be reached from a point p̃ ∈ S̃ by moving some
distance ξ (the normal coordinate) along the normal vector ñ(u,w). This is our chosen parametrization of Ω.

vector components are also themselves elements of the Jacobian or change-of-coordinate matrix,
and are also referred to as projectors. The reason for this nomenclature is that they are the objects
which allow us to pull back ambient quantities onto the surface. For instance, a co-vector ωµ may
be projected according to:

ω̃i = ã µi ωµ. (2.5)

Recall the tensor transformation law under change of coordinates from e.g. xµ to Xi:

T i
j =

∂xρ

∂Xj

∂Xi

∂xσ
T σ
ρ . (2.6)

The projectors (or tangent vectors) and their inverses4 can thus be identified as

ã µi =
∂xµ

∂Xi
, (2.7)

ãiµ =
∂Xi

∂xµ
, (2.8)

where we have denoted the coordinates on the surface by Xi (with (X1, X2) = (u,w)) and the
three-dimensional coordinates by xµ (with (x1, x2, x3) = (x, y, z)).
The induced metric on the surface can then be computed by a pullback as described above:

g̃ij = ã µi ã
ν
j δµν = ãi · ãj , (2.9)

where we used the fact that the three-dimensional background of course has the Euclidean metric
δµν . The inverse metric g̃ij can be obtained by a pullback like the above or by solving the equation
g̃ikgkj = δij (i.e. by matrix inversion).
The curvature tensor can then be computed as

Kij = nµ∇̃iã µ
j . (2.10)

4One may object that since ã µi is not in general represented by a quadratic matrix, it doesn’t have a true inverse.
The inverses used here are in fact projective inverses.
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The curvature tensor as defined above should not be conflated with either the Riemann or Ricci
tensors, which are completely intrinsic. Kij , on the other hand, contains information about the
extrinsic curvature as well.
This curvature tensor also allows for the identification of the principal curvatures at a point p̃ on
the surface, which we shall denote κ1(p̃) and κ2(p̃). This allows us to more precisely define what it
means to work in the thin film limit. We first define a local curvature length scale l(p̃) by:

l(p̃) = min
[

1

κ1(p̃)
,

1

κ2(p̃)

]
. (2.11)

l(p̃) is thus the shortest curvature radius at the given point, corresponding to the greatest curvature.
The global curvature scale ` is then defined as the shortest local curvature length on the surface:

` = min
p̃ in S̃

{l(p̃)}. (2.12)

The thin film limit is then defined by the condition
(
h

`

)2

� 1. (2.13)

Before we turn to the systematic thickness expansion, we will introduce a central assumption. We
assume that the order parameter ψ can be considered as uniform throughout the thickness of the
film, i.e. that ψ(p̃+ξñ) = ψ(p̃) for all points p̃ in S̃ and all ξ ∈ [−h/2;h/2]. This assumption could
be violated by polymers which change their configuration appreciably in response to compression
or dilation.

Energy density thickness expansion. Our goal is to develop an effective two-dimensional
theory which nonetheless takes into account extrinsic curvature effects in the thin film limit. We
start with the three-dimensional free energy density functional of (2.1) and write it as an expansion
in the normal coordinate ξ. This will allow us to integrate out this parameter and obtain an effective
2D free energy functional to lowest order in the small dimensionless parameter (h/`).
Due to orthogonality of tangent and normal vectors, the curvature tensor can be written in terms
of derivatives of either:

Kij = ñµ∇̃iã µ
j = −ã µ

j ∇̃iñµ. (2.14)

In the latter form it is clear that the curvature tensor measures the (projected) rate of change of
the normal vector as one moves across the surface. In general, we will assume the curvature to be
slowly varying, so that its derivatives can be neglected in the equations of motion.
In the end, we wish to write the equations in terms of surface quantities. Now, due to the definition
of the surface tangent vector, ãi = ∂ip̃ and the occurrence of the normal vector in (2.4), the metric
gij of a subsurface inside Ω (at some given ξ) will depend explicitly on the curvature. The exact
expression is:

gij = g̃ij − 2ξKij + ξ2Kk
iKjk. (2.15)

While that expression is exact, we compute the inverse metric to second order in the small quantity
ξ/`. In these expansions, the curvature has order `−2.

gij = (1− 2ξ2K)g̃ij + 2(ξ + 2ξ2H)Kij +O(ξ/`)3. (2.16)

Here, H denotes the mean curvature H = (1/2)Ki
i and K is the Gaussian curvature K = det(Ki

j ).
While the latter is intrinsic, the former encodes extrinsic curvature as well.
The above expression for the metric also immediately shows that the curvature will affect the |∇ψ|2
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and (∇2ψ)2 terms of the free energy, something which becomes clearer when writing them in their
full index form:

|∇ψ|2 = gij(∂iψ)(∂jψ), (∇2ψ)2 = (gij∇i∇jψ)2. (2.17)

The remaining terms of the free energy are not free from curvature effects, however. The invariant
volume element √gddx which multiplies all terms of the free energy involves the determinant of the
metric. Here we use g as short hand for the metric determinant. When written in terms of ξ and
midsurface quantities, it becomes:

√
g = Jξ

√
g̃, where Jξ = 1− 2Hξ +Kξ2. (2.18)

Splitting the volume element into a ξ part and a two-dimensional part as dV = dξdA we can write
the total volume, which occurs in the denominator of the free energy, as:

V =

∫

Ω
dV =

∫ h/2

−h/2
dξ
∫

dÃJξ = Ãh+
h3

12
χ (2.19)

Combining these terms and integrating out the ξ dependence, we can write the free energy as

f =
hÃ

V

(
fS̃ + kS̃

)
(2.20)

where fS̃ is the covariantized Brazovskii surface free energy given in (2.3) and the finite-thickness
correction kS̃ is given by:

kS̃ =
h2

12Ã

∫

S̃
dÃ
[
8
(

(Kij∇̃i∇jψ)2 +H(Kij∇̃i∇̃jψ)(∇̃2ψ)
)]

− 10K(∇̃2ψ)2 − 4
(
HKij −Kg̃ij

)
(∇̃iψ)(∇̃jψ) +K

(
τ

2
ψ2 +

1

4
ψ4

)
. (2.21)

The only ingredient missing before we can begin to implement this equation in a numerical frame-
work is a time evolution equation. This is given by the relaxational dynamics of a conserved order
parameter with free energy functional f :

∂ψ

∂t
= M∇̃2 δf

δψ
, (2.22)

where δ
δψ is a functional derivative operator and M is a mobility coefficient which merely sets the

time scale and plays no interesting role for our results.

Numerical implementation. In order to solve the equation of motion derived above, we de-
veloped a numerical framework by the name of Surfaise as a layer on top of the FEniCS/Dolfin
system for solving partial differential equations (PDEs) using the finite element method. The frame-
work we developed is in fact very general, and allows one to input any analytically parametrizable
curved surface and then solve a wide range of PDEs on said surface. Surface derivatives, curvature
tensors and related quantities are then automatically computed using the SymPy Python package
for symbolic manipulations. The software developed for this study is open source and available
at https://github.com/gautelinga/surface_pfc/SoftMatter2019. For a detailed description of
our implementation of the equations of motion, see the appendix of Ref. [20].



Bjarke Frost Nielsen Self-organizing systems and disease modelling Niels Bohr Institute 57/205

2.3 Results

We wish to gain a systematic understanding of the effects of curvature (intrinsic and extrinsic)
on the formation of lamellar patterns. Before we do so, we simulate the system on a randomly
generated substrate of sinusoidal bumps and ridges to develop some intuition for the solutions. In
Figure 18, we plot the end state of crystallization for three different values of the film thickness
(panels a-c) along with the mean and Gaussian curvatures of the underlying surface (panels d-e).
As the thickness increases and curvature effects become stronger, it is clear that the stripes have a

-0.0075 0.01500.120-0.12

a) b) c)

d) e)

Mean curvature Gaussian curvature

Figure 18: Crystalization at different values of the film thickness. a) (h/`)
2

= 0. b) (h/`)
2

= 0.49. c) (h/`)
2

= 1.25 (formally
outside the thin film approximation). d) Mean curvature of the substrate. d) Gaussian curvature of the substrate.

tendency to encircle the bumps and run perpendicular to the ridges. For the sake of intuition, recall
that ridges are similar to cylinders in that they are dominated by extrinsic curvature, whereas the
bumps have intrinsic curvature as well.
In order to separately study these effects, we study the crystallization on a few select, simple
geometries. Assume that the surface can be locally parametrized in terms of two coordinates
x1 = u and x2 = w and that these are chosen such that the coordinate curves are lines of curvature.
This particular choice results in a diagonal curvature tensor which can be written entirely in terms
of the mean and Gaussian curvatures:

Ki
j = diag

(
H ±

√
H2 −K,H ∓

√
H2 −K

)
. (2.23)

In order to delineate the effects of intrinsic and extrinsic curvature, we study two geometries which
are extremal in the sense that they have either Gaussian (K) or mean curvature (H). These
geometries are the cylinder (K = 0, H 6= 0) and the saddle (K 6= 0, H = 0).
For the cylinder, we find analytically that the preferred angle of the stripes is π/2 relative to the
axis of the cylinder, causing stripes to run around the cylinder, consistent with what we observed
for the ridges in Figure 18. Simulating the crystallization process on the cylinder, we find that
the angle π/2 is strongly preferred when film thickness is taken into account, while letting h = 0
results in no preferred direction arising (Figure 19). In order to reach the minimum-energy state, we
employed an annealing procedure where the system was repeatedly heated, then cooled, to prevent
it from getting stuck in a local “false” minimum.
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Figure 19: The frequency of pattern orientations on the cylinder. Left: With h = 0, no particular preferred orientation
is observed. Right: With h > 0, an orientation of π/2 is strongly preferred, corresponding to stripes running around the
cylinder.

We now turn to the saddle geometry, which has intrinsic curvature (K < 0) but no extrinsic
curvature (H = 0). Analytically, we can again insert a sinusoidal stripe pattern with amplitude
ψ0 (although the expression is more involved, due to the nontrivial instrinsic geometry, see [20] for
details). We find that the finite thickness correction to the free energy reduces to

kS̃ =
h2

3Ã
ψ2

0 cos(4α) + const. (2.24)

Here, α is the angle with one of the principal directions on the saddle. The minimum-energy con-
figuration thus occurs when the director (which is orthogonal to the stripes) makes a 45◦ angle.
Simulations very clearly corroborate this (Figure 20). At the top of the figure, we show an example
of a configuration reached by annealing, while the bottom shows a plot of the average distribution
of angles (from entirely radial to azimuthal), clearly showing how curvature directs the pattern
formation.
Our last example is the Gaussian bump. The central part of the Gaussian bump has positive
nonzero intrinsic as well as extrinsic curvature. However, the Gaussian curvature changes as one
moves radially outwards from the top. At a certain radial coordinate, r = σ, the Gaussian curva-
ture locally vanishes and then changes sign. The bump of course has two principal curvatures, a
radial and an azimuthal curvature which we denote by κr and κφ, respectively. To gain a better
understanding of the relative strength of these curvatures, we plot their ratio in Figure 21 for five
different values of the reduced height h̃, which is the ratio h0/σ between the height and the width
of the bump. Note that these variables should not be confused with the film thickness denoted by
h. Likewise, the radial coordinate plotted on the horizontal axis is the reduced radius, r̃ = r/σ.
We see that the azimuthal curvature is generally stronger (when r ≤ σ) and that the ratio quickly
drops as a function of distance when the bump is tall.
In Figure 22a we show the outcome of a simulated crystallization on the Gaussian bump with finite
thickness effects taken into account. The pattern clearly confirms the finding of Figure 18, where we
observed a tendency for stripes to run around bumps. In Figure 22b, we plot the ensemble averaged
stripe orientation, with a black circle showing the radius at which the intrinsic curvature vanishes
(r = σ) and a red circle showing the radius at which the strength of the two curvatures are equal.
From panels b and c, we can clearly see that the tendency for stripes to run around the bump (at
h/` > 0) is very strong inside the red circle, but that long-range order quickly vanishes beyond this
point.



Bjarke Frost Nielsen Self-organizing systems and disease modelling Niels Bohr Institute 59/205

Figure 20: Top: A crystallized pattern on a saddle geometry. Bottom: The mean orientation of the director (perpendicular
to the stripes) based on 12 separate runs. The orientation is measured as | cos(θ)| where θ = ∠(r̂, ∇̃ψ). In this plot, the
directions of principal curvature run in the horizontal and vertical directions. The director is clearly seen to orient itself along
the radial vector at an azimuthal angle of π/4, as predicted by the theory. In these simulations, (h/`)

2
= 0.23.

Figure 21: The relative strengths of the two principal curvatures on the Gaussian bump - the radial curvature κr and the
azimuthal curvature κφ. The colours indicate different (reduced) bump heights, as indicated by the legend.
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Figure 22: a) Outcome of a simulated crystallization on a Gaussian bump. b) The average orientation of the director field,
relative to the radial vector. c) Again, the average orientation of the director, but only as a function of radial coordinate. The
azimuthal angle has been averaged over. The tendency for stripes to run around the bump is seen to depend strongly on film
thickness.

2.4 Discussion

This concludes the chapter on chemical self-assembly. In closing, it deserves mention that there are
several relevant possible extensions of this model. For instance, we have assumed that the surface
is perfectly rigid, but it would be fascinating to see what happens if one allows for some feedback
between the pattern and the underlying geometry in this finite thickness model, by e.g. promoting
the metric tensor or the thickness itself to a dynamical variable. A 2015 paper by Matsumoto et
al. [30] did study how defects can give rise to deformations of the underlying surface, but did so
in a simple covariantized Brazovskii model and so could not take extrinsic curvature effects into
account.
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2.5 Publications for Chapter 2

The second chapter of this thesis builds on the following manuscript. The paper was written during
this degree and I have not submitted it for any other academic degree.

1. B. F. Nielsen, G. Linga, A. Christensen, and J. Mathiesen, “Substrate curvature governs
texture orientation in thin films of smectic block copolymers”, Soft Matter 16 (2020), no. 14,
3395–3406.
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Substrate curvature governs texture orientation
in thin films of smectic block copolymers

Bjarke Frost Nielsen, a Gaute Linga, b Amalie Christensenac and
Joachim Mathiesen *a

Self-assembly of ordered nanometer-scale patterns is interesting in itself, but its practical value depends

on the ability to predict and control pattern formation. In this paper we demonstrate theoretically and

numerically that engineering of extrinsic as well as intrinsic substrate geometry may provide such a

controllable ordering mechanism for block copolymers films. We develop an effective two-dimensional

model of thin films of striped-phase diblock copolymers on general curved substrates. The model is

obtained as an expansion in the film thickness and thus takes the third dimension into account, which

crucially allows us to predict the preferred orientations even in the absence of intrinsic curvature.

We determine the minimum-energy textures on several curved surfaces and arrive at a general principle

for using substrate curvature as an ordering field, namely that the stripes will tend to align along

directions of maximal curvature.

1 Introduction

Thin films of block-copolymers have received strong attention
in the last two decades due to their diverse nanometer-scale
self-assembly properties. Their ability to form regular hexagonal
and cylindrical as well as lamellar patterns makes them promising
candidates for applications in microelectronics and optics as well
as nanofluidics. In microelectronics and the semiconductor
industry, where feature-size is of the essence, much of the appeal
comes from the use of thin block copolymer films as etch masks
for fabrication of ultra-small circuitry elements and memory
devices. ‘‘Bottom-up’’ self-organization of block co-polymers
promise to continue the miniaturization to length scales where
traditional ‘‘top-down’’ lithography ceases to be feasible.1,2

Cylindrical phase block copolymers allow for manufacture
of nanoporous membranes for ultrafiltration and molecular
sieves3–7 as well as superhydrophobic materials in nano-
fluidics.8

Lamellar and cylindrical phase block copolymer films have
been demonstrated as viable templates for microelectronic
circuitry and polarizing grids as well.9–13

For most of these applications, a high degree of long-range
order and control over macroscopic patterning is desirable.
In practice, this is complicated by the formation of defects and

microdomains. Different experimental techniques have been
developed in attempts to avoid defects and obtain a macro-
scopic order. One such method is chemoepitaxy, where the
substrate is pretreated with another chemical species, thus
using the interfacial energy to facilitate the formation of long-
range ordered patterns.14–16 Shearing flow11,12,17 as well as
applied electric fields13,18 have also been used with some
success. Perhaps the most obvious approach to annihilating
defects is annealing–heating to near the order–disorder transi-
tion temperature and subsequently cooling. A more sophisticated
version of this is the sweeping temperature gradient method,
which has also proven relatively effective.19,20 Our work focuses
on using curvature as an ordering field – i.e. using substrate
topography to control the macroscopic order of lamellar patterns,
analogously to an external field. Experimental studies have
already shown this graphoepitaxy technique to be a viable method
to control microdomain formation.21–28 However, for this
technique to be generally applicable, we must understand how
to design substrates to favour the formation of specific patterns
and – conversely – which types of pattern formation to expect as
a function of substrate geometry. Our focus is on the smectic-
symmetry stripe patterns obtained from compositionally sym-
metric diblock copolymers.

In this paper we consider a free energy which is dominated
by the deviation of the stripe spacing from its preferred value,
in accord with the approach of Pezzutti et al.29 Our strategy is to
formulate a free energy which takes into account not only the
intrinsic geometry, but also the extrinsic geometry. The latter
comes into play due to the fact that the co-polymer film has a
non-zero thickness. While the film is thin, the extension into
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the third dimension nonetheless has implications for the minimum-
energy pattern on any given curved surface. Consider, as an
example, the thin striped layers in Fig. 1(a and b). Due to
bending of the surface, the stripe spacing is forced to vary across
the thickness of the film, leading to the layer being simulta-
neously under compression and dilation. Hence, even though
the film is thin, the third dimension cannot be neglected as it
effectively couples the free energy to the extrinsic curvature of
the surface.

By performing a systematic expansion in the thickness of the
film, we obtain a two-dimensional effective theory which leads
to an explicit coupling between extrinsic geometry and pattern
formation. We perform computer simulations of this system,
assuming the dynamics to consist of the relaxation towards
equilibrium of a conserved order parameter. We find that
in situations where the intrinsic curvature vanishes, such as
on cylinders, on ridges and in trenches, the extrinsic curvature
can serve to orient the pattern in a controllable fashion. Conse-
quently, the coupling to extrinsic geometry is indispensable in
such situations. In cases where there is only appreciable Gaussian
curvature, such as the saddle geometry, the intrinsic geometry
picks out a preferred direction. In situations where both types of
curvature are present we find that the extrinsic and intrinsic
features may work together in orienting the pattern. As such, we
show that there are situations where extrinsic curvature is merely
a contributing factor and others where it is the crucial component
in determining the macroscopic order.

There have been previous attempts at modeling the effect of
curvature on lamellar phase block co-polymer assembly, but
none which correctly incorporate the effects of film thickness
and coupling to extrinsic curvature for general surfaces. Several
authors have developed models,30,31 where both intrinsic and
extrinsic bending of the stripes themselves is energetically
penalized. Intrinsic bending occurs when the stripes deviate
from geodesics of the surface. Extrinsic bending, on the other
hand, occurs when the stripes bend in three-dimensional
space. As an example, consider the two-dimensional top layers
of the cylindrical films in Fig. 1. The stripes running along the
cylinder (Fig. 1a) have neither intrinsic nor extrinsic bending,
whereas stripes running around the cylinder (Fig. 1c) have no
intrinsic bending but do have extrinsic bending because they
are curved in three-dimensional space. The type of model
employed in ref. 30 and 31 implies that stripes prefer to be
straight in 3D and that running along the cylinder as in Fig. 1a
is preferred.

The starting point for our expansion is a Brazovskii-type free
energy. This type of free energy has been used before to model
the effects of curvature on block copolymer configurations.29,32,33

Pezzutti et al.29 employ a covariantized Brazovskii surface free
energy and perform a finite-thickness expansion specifically in the
case of the cylinder and thus arrive at the conclusion that the
preferred stripe direction is around the cylinder, as in Fig. 1c.
However they do not derive a general finite-thickness model for
arbitrary surfaces and, furthermore, investigate only surfaces of
vanishing Gaussian curvature. Matsumoto et al.32 employ the
same type of block copolymer free energy and couple it to
a Canham–Helfrich membrane model of the substrate.
By covariantizing the free energy, the metric – and thus the
intrinsic geometry – naturally couples to the copolymer pattern.
This leads to a model that predicts stripe patterns running
perpendicular to substrate wrinkles for nonzero Gaussian
curvature. However, since vanishing thickness is assumed,
the coupling of the phase field to the extrinsic curvature is
not captured. As such, this model cannot predict a preferred
orientation of stripes in e.g. a cylindrical geometry. Interest-
ingly, Matsumoto et al.32 also allow the surface to adapt to the
copolymer pattern by assuming a relaxational dynamics of the
height field. Vega et al.33 take a different approach, namely
three-dimensional (3D) simulation of a Brazovskii-type model
confined to a thin, curved patch of 3D space. They arrive at the
prediction that the stripes tend to run around the cylinder. Their
approach is simple in principle, requiring no covariantization or
finite-thickness expansion of the free energy, but it has the
disadvantage of not making the curvature-coupling explicit and
of requiring simulation of a large number of degrees of freedom.

It is thus clear that attempts at modeling the effects of
curvature on block copolymer stripe patterns have led to
contradictory results. However, experiments32–34 may shed light
on the features one should expect from a successful model of
these phenomena. The simplest experimental paradigm in this
regard is the cylinder, since it exhibits uniform extrinsic
curvature while possessing no intrinsic curvature, thus allowing
a separation of the effects owing to extrinsic geometry. In ref. 33,

Fig. 1 Stripe textures on a cylindrical surface, with different texture
orientations, given by the angle a between the stripe direction and the
axial direction. (a) When the stripe texture runs along the cylinder axis
a = 0, the finite thickness of the layer and the curvature of the cylinder
results in a slight increase of the stripe wavelength l with the radial
coordinate, see inset. (b) Also the stripes with orientation a = p/4 experi-
ence an increase of the wavelength in the radial direction, although the
effect is smaller. (c) When the stripes run around the cylinder, a = p/2 they
are not affected by the curvature. This figure is inspired by ref. 29.
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polystyrene-block-poly(ethylene-alt-propylene) diblock copolymers
were annealed on a substrate with trenches of vanishing Gaussian
curvature, and it was clearly shown that the in-plane striped
pattern tends to orient itself perpendicularly to the trenches.
In ref. 32, the same type of block copolymer were deposited
on more topographically diverse substrates, and the same
tendency was seen.

In ref. 34 the authors perform experiments with polystyrene-
block-poly(ethylene-alt-propylene) diblock copolymers on both
a ridge-like geometry (with vanishing Gaussian curvature) and a
bumpy geometry consisting of numerous Gaussian-like smooth
bumps. For the cylindrical geometry, they find that the block
copolymer cylinders tend to align along the direction of curva-
ture. For the bumpy substrate, they find that both directions
of principal curvature constitute preferred orientations for the
block copolymer pattern. This is in accordance with what our
model predicts, as will be shown in this paper, namely that
stripes preferentially align with curvature.

The paper is organized as follows. In Section 2, we discuss
the free energy functional which is the starting point of
our description and the motivation for developing a finite-
thickness model. In Section 3, we first describe the general
strategy and then perform the expansion. Section 4 is devoted
to studying pattern formation on different geometries by
numerical simulations of the model. We go on to extract the
general features of the ordering mechanism and discuss the
implications for pattern formation. In Section 5 we make our
closing remarks.

2 The free energy

The Brazovskii model35 and closely related Phase Field Crystal
models36,37 have been applied to a broad range of systems
undergoing pattern formation and selection of a specific length
scale. These Brazovskii-type models have previously been
employed to describe block copolymers29,32,38–40 but the approach
is very general and also nucleation and pattern formation
processes,41–43 crystal defect dynamics,36,44–46 grain boundary
melting47–49 and liquid crystals50,51 have been studied. A Brazovskii-
type model was also famously shown by Swift and Hohenberg52 to
describe Rayleigh–Bénard convection.

The Brazovskii mean field free energy F(c) is a Ginzburg–
Landau expansion in the order parameter c(x). We will work
with the corresponding free energy density f = F/V:

f ðcÞ ¼ 1

V

ð
dV 2 r2c

� �2 � 2 rcj j2 þ t
2
c2 þ 1

4
c4

� �
; (1)

where V is volume, c(x) = f(x)� f0 measures the local deviation
from the average composition f0 at the critical temperature Tc.
The model has one parameter, the reduced temperature
t = (Tc � T)/Tc. We assume f0 = 0 throughout, since we study
the compositionally symmetric lamellar phase.

The negative sign of the gradient-squared in eqn (1) makes
spatial modulations of the order parameter field c energetically
favorable. In combination with the positive Laplacian-squared,

the gradient-squared favors a specific wavelength l ¼ 2p
ffiffiffi
2
p

.
To see this, consider the free energy density of a field
c = c0 sin (q0x):

f ðcÞ ¼ q0
4 � q0

2
� �

c0
2 þ t

2
c0

2 þ 3

32
c0

4: (2)

The free energy density is minimized for q0 ¼ 1
� ffiffiffi

2
p

resulting in

a characteristic wavelength l ¼ 2p
ffiffiffi
2
p

. Any deviation from this
spacing of the stripe pattern is energetically penalized. Since
Brazovskii-type models favour a single wavelength, the simu-
lated profiles most closely resemble block copolymers in the
weak segregation limit where the composition profile (density
of either component) is approximately sinusoidal,53 but the
patterns themselves are more general.

In the current work, we focus on thin films on curved
surfaces. A simple way to describe the free energy of the thin
film is to consider the two-dimensional surface version of
eqn (1) where all derivatives have been replaced with their
covariant surface equivalents:

f ðcÞ ¼ 1

~A

ð
d ~A 2 ~r2c

� �2 � 2 ~rc
�� ��2 þ t

2
c2 þ 1

4
c4

� �
: (3)

Here, ~r denotes a covariant surface derivative on the surface S̃
and dÃ is the area element of the curved surface. The strategy of
replacing bulk derivatives with their surface equivalent has
been applied to crystallization on curved surfaces using the
related Phase Field Crystal model40,54 as well as in treatments
of nematic crystals on curved surfaces using the Frank
energy.31,55,56 Replacing the bulk derivatives with their surface
equivalents preserves the optimal wavelength l. This covariant
formulation introduces a coupling between stripe orientation
and intrinsic curvature which is geometrically clear: if the
surface is intrinsically curved in some direction, the stripe
pattern will effectively be stretched (or compressed) along this
direction. Stretching the pattern along the stripe direction does
not affect the spacing, while stretching orthogonal to the
stripes does. Thus the effect is to align the stripes along the
direction of maximal intrinsic curvature.

However, this approach does not take the third dimension
into account and results, for example, in all stripe orientations
on a cylinder being equally favorable, since the cylinder has
vanishing intrinsic (Gaussian) curvature. This is not a proper
description of the striped phase, which can be seen by consi-
dering Fig. 1. Whereas all layers in Fig. 1c have the same
wavelength, this is not the case for the configuration in
Fig. 1a, where the wavelength increases with the radial coordinate.
Thus the configuration in Fig. 1c should have the lowest free
energy.

To properly account for the third dimension, we will start
with the three-dimensional free energy density in eqn (1) and
expand it in the thickness of the film, to obtain a two-
dimensional free energy density which takes both the intrinsic
and extrinsic curvature of the surface into account.

Soft Matter Paper



3398 | Soft Matter, 2020, 16, 3395--3406 This journal is©The Royal Society of Chemistry 2020

3 Coupling between substrate
curvature and texture orientation
3.1 Geometrical setup

We consider a thin three-dimensional region O of thickness h
around a regular compact surface S̃ – see Fig. 2. We define ñ to
be the unit normal vector field to the surface S̃. The volume O is
described by the three-dimensional position vector p(u,w,x)
parametrized by the three internal parameters (u,w,x):

p(u,w,x) = p̃(u,w) + xñ(u,w), (4)

where p̃ is the normal projection of the point p onto S̃. The
distance between p and the surface S̃ along the normal ñ at a
point p̃ is given by |x|. The surface is of thickness h and thus
x A [�h/2;h/2].

The tangent vectors at the point p̃(u,w) A S̃ are

ãi = qip̃, (5)

where the tilde indicates that the tangent vectors belong to the
surface S̃ and the index i runs over the reference coordinates
u and w.

The induced metric (first fundamental form) on the surface
S̃ is

g̃ij = ãi�ãj, (6)

where � indicates the standard Euclidean inner product in R3.
The metric determinant will be denoted g̃. The metric inverse is
g̃ij and defined such that g̃ikg̃kj = di

j where repeated indices
indicate summation (Einstein convention). The metric and its
inverse can be used to raise and lower indices. The curvature
tensor† (second fundamental form) of the surface S̃ is:

Kij = ñ�qiãj. (7)

We denote the two principal curvatures at a point p̃ as k1(p̃) and
k2(p̃) respectively. If we define the local curvature length scale,
l(p̃) and the global curvature length scale c as:

l ~pð Þ ¼ min
1

k1 ~pð Þ;
1

k2 ~pð Þ

� �
; ‘ ¼ min

~p2 ~S
l ~pð Þ; (8)

then the requirement of the volume V being a thin shell can be
formulated as

h

‘

	 
2

� 1: (9)

We consider a scalar order parameter c which is constant
throughout the thickness of the shell – something which will
be important once we derive the effective two-dimensional free
energy:

c(p̃ + xñ) = c(p̃) for all p̃ A S̃, x A [�h/2;h/2].

Our model is thus valid for block copolymer configurations
which are approximately homogeneous over the thickness of the
(thin) film. This assumption could be violated by e.g. asymmetric

polymers or polymers which appreciably change conformation
when placed under compression or dilation.

The goal is to express the three-dimensional free energy
density described by eqn (1) in terms of the curvature tensor in
eqn (7), invariants of the surface S̃ such as the mean curvature
H and the Gaussian curvature K and surface covariant deriva-
tives of the fields. We write it as an expansion in the surface
normal coordinate x. Once this has been done, the surface
height x A [�h/2;h/2] can be integrated out to arrive at an
effective two-dimensional free energy density to lowest order in
the surface thickness to curvature ratio h/c.

3.2 Expansion of the free energy density

Geometrically, the curvature tensor Ki
j = gimKmj expresses the

rate of change of the normal vector projected onto the surface:

Kij = ñ�qiãj = �ãj�qiñ (10)

In our analysis we will assume the curvature to vary slowly
compared to the characteristic wavelength such that gradients
of the curvature tensor can be neglected.

When combining eqn (4) with ai = qip it is clear that the
tangent vectors of the surface S will involve the extrinsic
curvature. The metric tensor gij = ai�aj then inherits this
dependence on curvature:

gij = g̃ij � 2xKij + x2Kk
i Kkj. (11)

This expression is exact. To second order in the small quantity
x/c the inverse metric gij takes the following form:

gij = (1 � 3x2K)g̃ij + 2(x + 3x2H)Kij + O(x/c)3. (12)

The curvature will then enter into the |rc|2 and (r2c)2 terms
of the free energy through the metric. However, the volume
element itself is also affected. The invariant volume element in
differential geometry is

ffiffiffi
g
p

ddx where g is the determinant of
the metric. We imagine the volume O to be foliated by a series
of surfaces S, each being a level set of x described by (4) such
that x = 0 corresponds to the midsurface S̃. The volume of O is
denoted by V while the surface areas of S and S̃ are denoted by A
and Ã, respectively. The volume element dV = dxdA depends on
x through the area element dA. This dependence follows from

Fig. 2 The geometric setup for the expansion. O is the entire three-
dimensional volume of the film while S̃ defines the midsurface (blue) and S
represents a surface (red) within O, separated from S̃ by a distance x along
the normal vector ñ.

† Not to be confused with either the Riemann or Ricci curvature tensors which
are purely intrinsic.
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the expansion of the metric determinant in terms of x, which is
given by:57

ffiffiffi
g
p ¼ Jx

ffiffiffi
~g

p
; Jx ¼ 1� 2Hxþ Kx2: (13)

The area element of S is then dA = JxdÃ. It follows that the total
volume V which enters the free energy density is given by

V ¼
ð
O
dV ¼

ðh=2
�h=2

dx
ð

~S

d ~AJx ¼ ~Ahþ h3

12
w;

where w �
Ð

~Sd
~AK is the integrated Gaussian curvature which,

by the Gauss–Bonnet theorem, equals 2p times the Euler
characteristic for a closed surface.

The gradient-squared term is expanded as

Jx rcj j2¼ Jxg
ijricrjc ¼ ~rc

�� ��2þc1xþ c2x2 þ c3x3 þO x=‘ð Þ4

where

c2 ¼ 2HKij ~ric ~rjc� 2K ~rc
�� ��2:

The odd terms (c1 and c3) will not contribute to the effective 2D
theory, since they integrate to zero over x A [�h/2,h/2].

The Laplacian-squared term can be expanded similarly to
yield

Jx r2c
� �2¼ ~r2c

� �2þd1xþ d2x2 þ d3x3 þO x=‘ð Þ4

where the relevant curvature coupling term is given by

d2 ¼ 4 Kij ~ric ~rjc
� �2þ4H Kij ~ric ~rjc

� �
~r2c� 5K ~r2c

� �2
:

The last ingredient in the expansion is the local, polynomial
part of the free energy. This depends on x only due to the metric
determinant as it appears in the volume element.

The final effective two-dimensional energy up to and including
order (h/c)3 takes the form

f ¼ h ~A

V
f ~S þ k ~S

� �
(14)

Here, fS̃ is the covariantized Brazovskii surface free energy as given
by eqn (3), to which this effective energy reduces when h - 0.
The correction kS̃ due to a finite film thickness is given by:

k ~S ¼
h2

12 ~A

ð
~S

d ~A 8 Kij ~ri
~rjc

� �2þH Kij ~ri
~rjc

� �
~r2c
� �
 �h

� 10K ~r2c
� �2�4 HKij ~ric

� �
~rjc
� �

� K rcj j2

 �

þ K
t
2
c2 þ 1

4
c4

	 
�
:

3.3 Relaxation towards equilibrium

We now turn to the dynamics of c = c(p̃), the order parameter
restricted to the midsurface. Assuming a conserved order
parameter field, the relaxation in time t towards equilibrium
can be described by the equation

@c
@t
¼M ~r2df

dc
; (15)

where M is a diffusion coefficient which sets the time scale of
the dynamics, and df/dc denotes the functional derivative of the
free energy in (14).

To study the effects of curvature on non-trivial surfaces,
we solve the dynamic eqn (15) numerically using a finite element
method in space and an implicit finite difference scheme in time.
The numerical method is described in detail in Appendix A.

Note that the equation of motion (15) guarantees that the
free energy f decreases in time, and thus the system will
eventually reach at least a local free energy minimum. However,
when the initial state c(p̃,t = 0) is sufficiently disorganized, this
local minimum state may be far from the global minimum in
the free energy, which we typically seek. To get closer to this
state, a cyclic annealing procedure, as outlined by Zhang
et al.,40 was implemented. This procedure is described in more
detail in Section 4.1.

4 The effects of curvature as an
ordering field

In order to understand how to design substrates in order to
obtain specific textures, it is necessary to understand how
curvature acts as an ordering field for the striped phase in
specific geometries. In this section we will study the low-energy
texture configurations on qualitatively different curved surfaces
which exemplify the distinct configurations of Gaussian curva-
ture K and mean curvature H. The surfaces considered are the
cylinder (K = 0, H a 0), the saddle geometry (K a 0, H = 0) and
the Gaussian bump (H a 0, K a 0).

Before delving into the details of the mechanism on model
geometries, we have simulated the model on a random
landscape of sinusoidal bumps and ridges, see Fig. 3. As film

Fig. 3 Effect of thickness on pattern formation. Shown above are the
results of quenching simulations on a random landscape for (a) (h/c)2 = 0,
(b) (h/c)2 = 0.49 and (c) (h/c)2 = 1.25 respectively. Note that the rightmost
plot corresponds to h/c 4 1 and thus lies outside the thin shell regime.
(d) Mean curvature. (e) Gaussian curvature. Open boundary conditions
were employed, see Appendix A for details.
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thickness increases from left to right in the figure, it becomes
clear that there is a tendency for the stripes to run perpendi-
cularly to the ridge-like features and to encircle the bumps.

With this intuition in mind, let us turn to the study of pattern
formation on simpler model surfaces. We take the surface to be
locally parametrized in terms of coordinates x1 = u and x2 = w and
that the coordinate curves are chosen as lines of curvature,
rendering the metric as well as the curvature tensor diagonal.
The curvature tensor may then be completely specified by the
mean curvature H and Gaussian curvature K:

Ki
j ¼

H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

0

0 H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

2
4

3
5; (16)

In order to see the role of intrinsic and extrinsic geometry
separately in the finite-thickness energy contribution, it is instruc-
tive study the model in the extremal cases of vanishing Gaussian
curvature (K = 0, H a 0) and vanishing mean curvature (K a 0,
H = 0), respectively. Below we study two simple examples of
such extremal geometries and solve for the preferred pattern
orientation, namely the cylinder and the saddle geometry.

We can parametrize a one-mode stripe pattern on a surface
(such as those of Fig. 1) as

c = c0 cos[k0(cos(a)su + sin(a)sw)] (17)

where su and sw are the surface arc lengths along the coordinate
curves of u and w, which are assumed orthogonal. In the next
section we will use this expression to derive preferred orienta-
tions on different geometries.

4.1 Cylinder

The cylinder is an example of a geometry satisfying K = 0, H a 0
as described above. In this case the curvature effects are entirely
extrinsic in nature, meaning that the finite-thickness contribu-
tion to the energy is crucial in breaking the symmetry between
all the possible stripe orientations.

We parametrize a cylindrical surface S̃ of radius R and length
L by the cylindrical coordinates y A [0,2p], z A [0,L]:

~pðy; zÞ ¼ R cosðyÞ R sinðyÞ z½ �T (18)

Relevant geometrical quantities associated for this specific
parametrization are:

~gij ¼
~gyy ~gyz

~gzy ~gzz

2
4

3
5 ¼ R2 0

0 1

2
4

3
5;

Kij ¼
R 0

0 0

2
4

3
5;

K ¼ 0; H ¼ 1=ð2RÞ:

As in ref. 29, we consider a striped texture making an angle a
with the axis of the cylinder, see Fig. 1. By applying eqn (17),
we obtain the following expression:

c(y,z) = c0 cos[q0(Ry cos(a) + z sin(a))].

Since the Gaussian curvature vanishes everywhere, the curvature
contribution to the free energy in eqn (14) reduces to:

k ~S ¼
1

12

h

R

	 
2

c0
2 cos4ðaÞ:

where we have inserted the preferred wavenumber q0 ¼ 1
� ffiffiffi

2
p

in the last step. The curvature contribution to the energy is
minimized when a = p/2 and the stripes on every parallel
surface are able to maintain the preferred lattice spacing q0,
as shown in Fig. 1c. This specific result for the cylinder
has previously been derived29 and is in agreement with
the observation of stripe textures running perpendicular to
substrate ridges.32,33

We have simulated the model on a cylinder and measured

the angle of the gradient ~rc, which is of course perpendicular
to the stripes. The angle histograms for the h = 0 (vanishing
thickness) and h 4 0 cases are shown in Fig. 4. The tendency
for stripes to run around the cylinder is very clear.

To obtain such a clear result, it was necessary to perform a
cyclical heat treatment – annealing – in order to decrease the
number of dislocations and reach a low-energy state. Our
annealing protocol consists of cycling sinusoidally between a
low temperature (t = 0.1) and a high temperature (t = 0.99)
which lies very close to the order–disorder transition point at
t = 1.

4.2 Saddle geometry

An example of the H = 0, K a 0 situation can be realized in a
simple saddle geometry. This geometry can be parametrized as

~pðx; yÞ ¼ x; y;
a

2
y2 � x2
� �h iT

in Monge gauge. In this case the

Fig. 4 Average angle distribution on the cylinder after annealing. Left:

(h/c)2 = 0. Right: (h/c)2 = 0.5. Here y = y ¼ ff f̂; ~rc

 �

. For h 4 0 there is a

clear tendency for ~rc to be oriented in the axial direction (along ẑ),
meaning that the stripes tend to run around the cylinder (along f̂). The
histograms are based on 5 (left) and 17 (right) simulations. Periodic
boundary conditions were employed.
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metric and curvature tensor is

~gij ¼
1þ a2x2 �a2xy

�a2xy 1þ a2y2

" #
;

Kij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2 x2 þ y2ð Þ
p �a 0

0 a

" #

We will focus on the saddle point x = y = 0, where these tensors
reduce to gij = diag(1,1) and Kij = diag(�a,a). Applying (17), we
get an expression for a stripe pattern:

c(x,y) = c0 cos[q0(s(x)cos(a) + s(y)sin(a))]

where

sðxÞ ¼
ðx
0

ffiffiffiffiffiffiffi
gxx
p

dx0 ¼ 1

2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2x2

p
þ 1

2a
sinh �1ðaxÞ

In this case the finite-thickness energy density kS̃ as a function
of azimuthal angle a reduces to

k ~S ¼
h2

3 ~A
c0

2 cosð4aÞ þ const:

We see that the minimum energy configuration occurs for
a = �p/4. This fits well with what we find in simulations of
the striped phase on a saddle geometry, see Fig. 5.

4.3 Gaussian bump

A Gaussian bump can be parametrized in the following way in
Monge gauge:

~pðr;fÞ ¼ r cosðfÞ r sinðfÞ h0 exp �r2
�

2s2
� �� �� �T

(19)

with r Z 0, f A [0,2p].
In general the Gaussian bump has mean curvature as well as

Gaussian curvature. However, at the ring given by r = s, the
Gaussian curvature vanishes and the surface is locally equiva-
lent to a cylinder, with r corresponding to the axis direction and
f to the azimuthal direction. The model proposed in this paper
therefore predicts that there should be a local tendency for to
the stripes run around the circle as if it was a cylinder.

For a more global view, we must investigate the curvatures
of the Gaussian bump in its entirety (not just the K = 0 circle).
The two principal curvature directions of the bump are given by
r̂ and f̂. Whenever two non-zero principal curvatures are
present, there will correspondingly exist two stripe orientations
which corresponds to local minima of the curvature energy.
If properly annealed, the stripes should align along the direction
of greatest curvature – however this tendency is of course more
pronounced when the two curvatures are markedly different.

To study the relative strength of the two minimal-energy
orientations, we form the ratio of the two principal curvatures

F ~r; ~h

 �

: ¼ kr
kf

where we have defined the two dimensionless

quantities r̃ = r/s and h̃ = h0/s. One finds:

F ~r; ~h

 �

¼ 1þ ~rð Þ 1� ~rð Þ

1þ ~h~r

 �2

e�~r2
(20)

This ratio is plotted in Fig. 6 as a function of r̃ for several values
of the height-to-width ratio h̃. We see that F drops quickly as
a function of r̃ when h̃ is large, corresponding to a tall and
narrow Gaussian bump. Thus we should see the strongest
tendency to orient the stripes azimuthally for narrow and tall
Gaussian bumps.

In Fig. 7, the average orientation on the Gaussian bump
is shown, with the stripe pattern quite clearly displaying a
tendency to run azimuthally (i.e. around the bump). As with
the cylinder, these were obtained by annealing.

5 Discussion and conclusions

Stripe textures of copolymers have frequently been modeled as
two-dimensional nematic crystals with a one constant Frank
free energy.31,55,56 However, due to the use of surface deriva-
tives, this approach does not take the extrinsic geometry into
account, and results in all orientations on the cylinder being
equivalent. Napoli and Vergori58 considered the influence of

Fig. 5 Stripe textures in the vicinity of a saddle point. Top: A tilted view of
a representative stripe pattern on the saddle geometry, reached by
annealing. Bottom: Spatial angle distribution, averaged over 12 runs such
as the one shown in the top figure. The color denotes |cos(y)| with

y ¼ ff r̂; ~rc
� �

being the angle between the radial vector and the gradient

of c along the curved surface. These simulations were run with (h/c)2 =
0.23. Open boundary conditions were employed, see Appendix A for
details.
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extrisic geometry on a nematic phase on a curved surface, by
expanding the three-dimensional Frank elastic energy of
nematic crystals to zeroth order in the small parameter x/c
following the technique described in ref. 59. They also consi-
dered a cylindrical surface and found that the absolute free
energy minimum occurs when the director field is aligned
with the axis (a = 0). Thus a similarity between the nematic
description and ours arises if the director field is identified

with the direction of ~rc. A nematic description was also
employed by Mbanga et al.60 who studied defects in a nematic
phase on a catenoid, and by Segatti et al.61 who investigated the
behavior of the model by Napoli and Vergori58,59 on a torus. The
block copolymer textures considered in this paper are smectic,
rather than nematic, but preferred orientations will in many
cases turn out to be similar to those obtained in Napoli
and Vergori’s model,58 due to their model penalizing normal
curvature of the director field. However their approach also

penalizes any geodesic torsion of the director, something which
does not arise in our model.

Hexemer30 experimentally studied triblock co-polymer films
on an approximately Gaussian bump. In their study, they
focused on the orientation at the ring of vanishing Gaussian
curvature and found that the stripes tend to be perpendicular
to the circle at r = s. Our model describes only diblock
copolymers, but their result points to the possibility to extend
this type of substrate curvature analysis to triblock systems,
which have quite different mechanical properties from diblock
copolymers.62

Gómez and Vega63 and Garca et al.64 found that the strain
induced by positive (negative) defects could be reduced by
positive (negative) Gaussian curvature, albeit in the h = 0 case
(i.e. considering only intrinsic geometry). This echoes the defect
formation seen on and between the bumps in Fig. 3. Thus we
see that curvature may stabilize defects, which in turn have
long-range effects on the pattern formed. In simulations,
the local influence of defects can sometimes overpower the
organizing effect of curvature, and thus annealing is usually
necessary. Even with annealing, the ordering effect of extrinsic
curvature often only becomes significant for relatively large ratios
of film thickness to substrate radius of curvature, on the order of
(h/c)2 B 0.1–1. This should be contrasted with the fact that our
perturbative approach is strictly speaking limited to thin films
and moderate curvatures – i.e. systems for which the film thick-
ness does not exceed the local radius of curvature. Experiments
are often conducted outside this regime – consider e.g. the
experiments of Hexemer30 in which the film is several layers thick.

Furthermore, annealing on highly curved substrates has
been shown in some cases to lead to the formation of dewetted
regions.33 In Vega et al.,33 orientation was observed to be random
close to these dewetted regions. While this phenomenon can thus
clearly affect ordering, it is not captured by our model.

Fig. 6 Ratio of the principal curvatures on the Gaussian bump. The
azimuthal curvature kf is always strongest, regardless of r̃ = r/s and
h̃ = h/s.

Fig. 7 Pattern formation on the Gaussian bump. (a) Stripe pattern formed on Gaussian bump after annealing at (h/c)2 = 1.0. (b) Average orientation on
the Gaussian bump. The color denotes |cos(y)| with y ¼ ff r̂; ~rc

� �
being the angle between the radial vector and the gradient of c along the curved

surface. There is a clear tendency for stripes to run azimuthally, i.e. ‘‘around the bump’’. The black circle represents the curve r = s where the Gaussian
curvature vanishes. The red circle represents the curve where the two principal curvatures have equal strength, i.e. |kr/kf| = 1. For this particular bump,
h̃ = h0/s = 3. This plot is an average over 12 simulations run with (h/c)2 = 1.0. (c) Average orientation of stripes as a function of radial coordinate.
The strength of the orientation effect is clearly controlled by the ratio (h/c)2. In these simulations, open boundary conditions were employed.
See Appendix A for details.
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To conclude, our study finds that curvature has an impor-
tant effect on pattern formation in thin film block copolymers.
The model that we have developed shows that it is necessary to
take the effects of extrinsic curvature into consideration – effects
which become apparent due to the finite thickness of the film.
Through analysis of three geometries exhibiting distinct signatures
of mean vs. Gaussian curvature, we conclude that the general
tendency is for stripes to align with the direction of maximal
curvature. This simple principle provides a straightforward recipe
for optimizing the substrate to favour a desired pattern.
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Appendix A: numerical method

To solve the relaxation dynamics (15) with the free energy
functional (14), we have used a numerical framework65 devel-
oped by the authors for solving partial differential equations on
arbitrary parametrized surfaces. The numerical framework is
built as a layer on top of the FEniCS/Dolfin framework66,67 for
solving PDEs using the finite element method. FEniCS inter-
faces to e.g. PETSc68 for solving large sparse linear systems
arising in the finite element method. Our numerical framework
is not constrained to the equations of motion described here,
but the full functionality will be documented and published
elsewhere. In particular, the framework is accessed using Python
and supports arbitrary analytical surface parametrizations.
Surface derivatives, which enter in the metric curvature tensor
fields, are computed symbolically using SymPy,69 thereby achieving
accuracy only limited by the interpolation onto the unstructured
spatial mesh.

In order for the results to be directly reproducible by the
reader, the numerical cases presented here are found as example
scripts at the GitHub repository https://github.com/gautelinga/
surface_pfc/SoftMatter2019.

A.1 Functional derivative of the free energy

The functional derivative of the free energy f which enters in the
equation of motion (15), is given by

df
dc
¼ h

V
m; (21)

where the chemical potential m = m0 + h2m2 can be
decomposed into

m0 ¼W 0ðcÞ þ 4~Dcþ 4~D2c; (22a)

m2 ¼
1

12
KW 0ðcÞ þQ1½c� þQ2½c�: (22b)

Here, we have introduced the operators

~Df ¼ ~ri
~rif ðsurface LaplacianÞ (23)

~
f ¼ ~ri K
ij ~rj f

� �
ðcurvature LaplacianÞ (24)

and further

Q1½ f � ¼
2

3
H ~
f � K ~Df
h i

; (25)

Q2½ f � ¼
1

3
4 ~
2f � 5K ~D2f þ 2H ~D ~
f þ ~
~Df


 �h i
; (26)

for an arbitrary scalar function f. Finally, W0(c) denotes the
derivative of the double well potential W(c) = tc2/2 + c4/4.

A.2 Time-stepping scheme

We discretized the equations of motion (15) using an implicit
approach:

ck � ck�1

Dtk
¼ ~M ~r2mk; (27)

where ck approximates c(p̃,tk), mk approximates m at time tk, and
the constant mobility M̃ has absorbed the prefactor in (21),
i.e. M̃ = (h/V)M (compare (15)). The time step is given by
Dtk = tk � tk�1 and selected adaptively; an initial estimate is
based on

Dtk� ¼
c

max rmk�1j jf g (28)

where c is a heuristically chosen constant. An estimate like (28)
is fairly standard for phase-field models, cf. ref. 70, and it leads
to large (small) time steps when the driving forces are small
(large). If the time step is still too large to achieve convergence
within a few iterations, a new time step is chosen as half of

the previous estimate, i.e. Dtk� ! Dtk�
�
2, which is repeated until

convergence.
The chemical potential is given by

mk = mk
0 + h2mk

2, (29)

where

mk0 ¼W 0 ck;ck�1� �
þ 4~Dck þ 4~D2ck; (30a)

mk2 ¼
1

12
KW 0 ck;ck�1� �

þQ1 ck
� �

þQ2 ck
� �

; (30b)

In (30a) and (30b), the function W 0 ck;ck�1� �
approximates the

derivative of the double well potential W0(c). Herein, we choose
the fully implicit nonlinear discretization

W 0 ck;ck�1� �
¼W 0 ck

� �
: (31)

Apart from the terms involving W0, the model is linear. Further,
with the choice (31), it can be shown that the numerical scheme
satisfies a second law of thermodynamics on the discrete level;
i.e. the discrete free energy replacing c - ck in (14) decays
in time:

f [ck] r f [ck�1]. (32)

A.3 Boundary conditions

We choose trivial boundary conditions, i.e. the boundary con-
ditions which allow us to pass from eqn (27), (29) and (30), to
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the weak form (37) below by integration by parts, such that all
boundary integral terms vanish. For open (non-periodic)

boundaries, this implies, most importantly, that ni ~rick ¼ 0

(which encodes a preferred 90-degree ‘‘contact angle’’ between

the boundary and stripe pattern) and ni ~rimk ¼ 0 (no energy flux
across the boundary). Here ni is the boundary normal on the
reference domain. It should be noted that the boundary con-
ditions were chosen mainly for numerical convenience and
boundary effects are not a main focus in this study. A more
systematic study of the implications of boundary effects should
be undertaken in the future.

A.4 Variational form

The problem is solved using mixed finite elements, all of which
belong to the space of piecewise continuous functions.
In particular, we introduce the auxiliary fields

nk ¼ ~Dck; and n̂k ¼ ~
ck; (33)

such that our trial functions are given by

ck; mk; nk; n̂k
� �

2W ¼ H1ðOÞ
� �4

: (34)

Further, to save some notation, we define the ‘‘gradient
products’’

I[a,b] = gija,ib,j, (35)

K½a; b� ¼ Kija;ib;j ; (36)

where a, b are scalar fields.
The variational problem to be solved can now be posed as

the following: given ck�1, find ck; mk; nk; n̂k
� �

2W such that for

all test functions [w,Z,z,ẑ] A W, we have

0 ¼
ð

~O

ck � ck�1

Dtk
wþM= mk; w

� �� �
d ~S; (37a)

0 ¼
ð

~O
mkxd ~S �m; (37b)

0 ¼
ð

~O
nkzþ= ck; z

� �� �
d ~S; (37c)

0 ¼
ð

~O
n̂kẑþ K ck; ẑ

h ih i
d ~S; (37d)

where, in (37b):

m = mNL + m0 + h2m2. (38a)

The nonlinear contribution is given by

mNL ck;ck�1; x
� �

¼
ð

~O
1þ h2

12
K

	 

W 0 ck;ck�1� �

xd ~S; (38b)

and the (zeroth and second order in h) linear contributions are
given by

m0 nk; x
� �

¼ 4

ð
~O
nkx�= nk; x

� �� �
d ~S; (38c)

m2 nk; n̂k; x
� �

¼ 1

3

ð
~O
2 Hn̂k � Knk
� �

x� 4K n̂k; x
� �

þ 5K= nk; x
� ��

� 2H = n̂k; x
� �

þ K nk; x
� �� ��

d ~S:

(38d)

At each time step k, this gives the solution vector ck; mk; nk; n̂k
� �

wherein ck is used for the next time step k + 1.
Since the variational problem has a nonlinear contribution

from mNL, the problem must be linearised and solved in an
inner iteration cycle at each time step. In practice, this
is automatically handled in FEniCS, which automatically
generates the Jacobian of the system based on the symbolic
expression for W0(ck) to be used in a Newton method with ck�1

as an initial guess for ck.
The full set of eqn (37) with eqn (38) was discretized on the

reference domain, i.e. a linear system was found i.e. using

ð
~O
ð�Þd ~S ¼

ð
O
ð�Þ

ffiffiffiffiffiffi
gj j

p
dS: (39)

For stability purposes (particularly when h/c was large), the best
convergence rate was achieved using a direct linear solver.
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Chapter 3

Spreading and heterogeneity:
COVID-19

Figure 23: Simulated infection network due to a superspreading disease propagating in a restricted social network.

This is the last of the three main chapters of the thesis. It deals with a topic that is very different
from the preceding two, namely dynamical modeling of disease spread, particularly as it pertains
to COVID-19. The main focus of this chapter is on heterogeneity and how it impacts spreading
and interacts with mitigation strategies. Heterogeneity is of course a very broad term, and we are
being intentionally general here, since we will consider some social as well as biological sources of
heterogeneity.
The bulk of the simulations in this chapter are of the agent-based – or individual-based – type. These
are implemented computationally by having a number of separate agents interact, each possessing
their own properties and state information. This is to be contrasted with e.g. aggregate, compart-
mental models such as the SIR (Susceptible-Infectious-Recovered) model, which is not formulated
in terms of individual agents, but rather by stratifying the population into a few compartments, the
state of each being described by a single real number – namely its occupancy.
Our reasons for choosing to work with agent-based models are several, but let me describe just a few
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of them here. The first has to do with contact structures. In our work, contact structure is of great
importance – the fact that people generally have a mixture of repeated and one-off (or just very
seldom repeated) contacts. It is not possible to include this in aggregate compartmental models for
the simple reason that the identities of individuals are not tracked, so repeat contacts cannot be
ensured. In aggregate models, homogeneous mixing is generally assumed within each compartment.
Formulated in agent-based terms, this would mean that any individual belonging to certain com-
partment has the same chance of meeting any member of some other, given compartment. Even
with age stratified populations, you get statements such as “any 25-30 year-old infectious person
has the same chance of infecting any 30-35 year old susceptible person”. This is an approximation
which can be entirely valid in certain situations and inadequate in others. Examples of this will
become clear throughout this chapter.
The first part of the chapter concerns a special kind of heterogeneity, namely overdispersed trans-
mission or superspreading. This term covers a phenomenon where the distribution of individual
reproductive numbers is very wide. In other words, some infected persons end up causing a large
number of new infections, while the majority hardly infect at all. Investigations into this phe-
nomenon have been rendered especially relevant by the emergence of SARS-CoV-2, the causative
agent of the COVID-19 pandemic. This pandemic has been characterized by overdispersion, man-
ifesting itself as superspreading. Evidence suggests that around 10% of infected individuals with
COVID-19 are responsible for 80% of new cases [31, 32, 33, 34].

The second part of the chapter concerns contact tracing as a mitigation strategy, and how it
is impacted by heterogeneities of real-world contact networks and social activity patterns. We
have analyzed a social contact network between a cohort of university students with high temporal
resolution and simulated a disease outbreak in this setting. On top of this simulation, a contact
tracing scheme was implemented, allowing us to study how e.g. differences in social activity, network
structure and degree distributions affects the effectiveness of contact tracing. Our method for doing
this largely relies on comparing the performance of contact tracing on the real-world contact network
with several artificially homogenized analogues. The study was motivated by the importance of
contact tracing in COVID-19 in general, as well as by the introduction of multiple app-based
contact tracing solutions [35, 36].

3.1 Superspreading

Our research into the superspreading phenomenon has focused not on the mechanism behind it, but
rather on the consequences. Specifically, we have focused on three main questions:

How does overdispersion . . .

• . . . affect mitigation strategies?

• . . . affect the sensitivity of an epidemic to contact network struc-
ture?

• . . . affect the evolution of a pathogen?

We have addressed aspects of each of these questions in Refs. [37], [38] and [39], respectively. We
also included a section on the impact of overdispersion in the broad COVID-19 review article [40].
We will begin by looking at the first of these questions, namely how overdispersion impacts the
effectiveness of lockdowns. This particular non-pharmaceutical intervention has been used very
widely during the COVID-19 pandemic. By April of 2020, more than half of the world population
were under some kind of lockdown [41] and their use has continued in response to periods of rising
case numbers and/or fatalities.

Originally, we were motivated by the observation that lockdowns were remarkably effective for
COVID-19 – much more so than typical aggregated models predicted when accounting for the ob-
served reduction in contact rates. Meanwhile, it was becoming increasingly clear that superspreading
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was a prominent feature of the pandemic – to a much higher extent than what has been seen in
several other respiratory infectious diseases such as pandemic influenza [42, 43, 44]. Now, it is not a
priori clear how to include superspreading in a model of disease transmission, as superspreading can
have diverse orgins, ranging from behavioural to biological [45]. One might assume that biological
infectiousness does not vary very much between individuals and that the observed overdispersion is
primarily a result of some people being hypersocial. There are, however, a few problems with this
assumption: 1) observed low household transmission in COVID-19, 2) overdispersion patterns vary
widely between diseases with similar routes of transmission and 3) observed correlations between
respiratory viral load variations and overdispersed transmission. We will comment on each of these
in more detail below.

Low household transmission. Several studies of household transmission of COVID-19 from
around the globe have found that household transmission is quite low in this disease. Two studies
from China reported household attack rates of 15% and 12% [46, 47], a smaller South Korean study
reported 16% and a nationwide Danish study found an average household attack rate of 17%. Why
is this relevant for superspreading? Well, if behaviour and highly variable numbers of contacts are
to blame, it is difficult to explain why so many infected individuals do not infect even their closest
contacts. If, on the other hand, there is a large biological inter-individual heterogeneity component,
so that the majority of individuals simply do no become very infectious, while a few become highly
infectious, this pattern of low household transmission is exactly what one would expect to see.

Overdispersion varies between comparable diseases. As mentioned above, the level of
overdispersion for e.g. pandemic influenza is very different from that of COVID-19. In fact, overdis-
persion is a widely variable trait between different diseases, even those sharing common modes
of transmission [48, 49, 42]. This is difficult to explain from a purely behavioural superspreading
perspective.

Respiratory viral load variability and overdispersion are correlated. A recent study
showed that just 2% of COVID-positive individuals carry 90% of the virus [49], consistent with
a biological mechanism. Another recent study compared the overdispersion levels of influenza A
(H1N1), SARS-CoV-1 and SARS-CoV-2 and found that increased variability in respiratory viral
load was associated with a higher transmission heterogeneity [50].

In this context, it is worth discussing a fundamental concept from statistical physics, which turns
out to be directly relevant for the problem of superspreading – and for our studies of contact tracing
as well – namely namely that of annealed versus quenched disorder. Quenched disorder occurs
when some variables describing the behaviour of a system are random but do not evolve in time.
An example could be a material which has been rapidly cooled into a frozen yet disordered state
(such as in the glass phase). Annealed disorder, on the other hand, occurs when some variables
fluctuate randomly in time, such as the speeds of individual particles in a gas. In a superspreading
context, these two types of disorder can come into play in several ways. For instance:

• Model 1 (annealed disorder): Each infected individual has a chance of causing a super-
spreading event at any given time. This can be modeled by a temporally varying contact
rate, such that each individual has the same time-averaged contact rate but large temporal
fluctuations.

• Model 2 (quenched disorder): Some individuals develop high infectiousness while others
never do. This can be modeled by a person-specific (fixed) infectiousness, drawn from a
statistical distribution once the individual becomes infected.

These are of course far from being the only possible superspreading models, but a simple choice
between quenched and annealed disorder makes an enormous difference - for instance, one neatly
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explains the household transmission observation while the other does not. In our research, we have
mainly assumed a quenched-type model, but other schemes have been explored by collaborators
[51].
Chronologically, we first studied how overdispersion affects the effectiveness of lockdowns in Ref.
[37]. While the model used in that study is of course very much an idealization, it is more complex
than most statistical physics models, having a three-tiered social structure, age structure, and rules
for interactions between age groups in each of the social tiers. However, the model suggested that
some network theoretical aspects of overdispersed transmission dynamics had previously been over-
looked, and we decided that it would be worthwhile to study them in a simpler, dedicated network
model. To this end, we developed a simple model of superspreading dynamics in a static network
and implemented it in a modular fashion (in C++, as opposed to the PNAS model’s FORTAN
code). This allowed us to straightforwardly probe the sensitivity of a superspreading epidemic to
network structure, connectivity etc. This lead to the study published in Physical Review Letters as
Ref. [38].
After finishing that study, data emerged which suggested that the novel Alpha (B.1.1.7) variant of
SARS-CoV-2 had a lower variability in respiratory viral loads, compared with the ancestral type
[52, 53]. This, in turn, suggested that overdispersion could be an unstable trait, and that it may
even be the object of evolutionary pressures. Having, by now, a reasonably firm grasp on the
network aspects of superspreading, we turned to the question of whether mitigation strategies and
overdispersion affected pathogen evolution. This lead to the study in Ref. [39] which has yet to
undergo peer review at the time of writing.

This remainder of the chapter is organized as follows. Our three main studies within this topic
([37, 38, 39]) are each given a subsection in which we discuss the Methods and Results. Perspectives
of these findings are then discussed at the end of the chapter, together with the contact tracing
research of section 3.2. The reason for opting for this structure is that the models and results of
the underlying papers are sufficiently disjoint that a combined description of all three would only
create confusion. However, taken together the results are part of a bigger story which deserves to
be discussed together and placed in a coherent perspective. The three subsections which follow are
not faithful to the chronology of the projects, but rather begins with the simplest of the models.

3.1.1 Superspreaders on networks

This subsection is based on the study [38]. As with most of our treatments of superspreading, this
is mainly based on an agent-based model, the details of which are explained below.

Methods

The model used in Ref. [38] is the simplest of our superspreading models and can serve as a basis
for describing the other models we have developed.

Infectiousness is treated as a stochastic variable representing a quenched disorder in the sense
described above. The infectiousness of an individual is drawn from a statistical distribution at the
outset of the simulation (or once an individual becomes infected – this is immaterial as long as
the superspreading tendency/overdispersion doesn’t change over time). A Gamma distribution is
commonly used to parametrize infectiousness [48], and this is also the case in our model. This
distribution has two parameters, the mean µ and the dispersion parameter k. This dispersion
parameter is related to the coefficient of variation (CV ) as CV = 1/

√
k, such that a higher k value

corresponds to a more homogeneous pattern of infectiousness while a low k value is the signature
of a heterogeneously spreading disease. For COVID-19, the k value has been estimated by multiple
methods to be around 0.1 [31, 32, 33, 34]. For low values of the dispersion parameter (k � 1), k
itself approximately corresponds to the fraction of infectious individuals responsible for 80% of new
infections. For COVID-19, it thus holds that approximately 10% of infected persons lead to 80%
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of the new infections. Note that the Gamma distribution becomes a Dirac δ distribution in the
limit of k → ∞, corresponding to completely deterministic infectiousness. In Figure 24b we show
the relation between the k value and the fraction of infectious individuals responsible for 80% of
new infections. Along with this, we show estimates of k for SARS, MERS [48, 54] and pandemic
influenza [42].

a)

COVID-19

SARS

MERS

1918 Flu

b) c)

Figure 24: Characteristics of superspreading infectious networks. a) Infection network characterized by superspreading
with k = 0.1. b) The relation between the k value and the fraction of infectious individuals responsible for 80% of new infections.
Along with this, we show estimates of k for SARS, MERS [48, 54] and pandemic influenza [42]. c) Infection network characterized
by homogeneous transmission with k →∞, i.e. a Dirac δ distributed infectiousness. Figure from Ref. [38].

The basic disease progression model that we employ is a compartmental SE(P)IR type model,
i.e. Susceptible-Exposed-(Presymptomatic-)Infected-Recovered. The presymptomatic stage is only
important in models of contact tracing (which we will cover later) – otherwise it is treated identi-
cally to the Infected state. The individual states along with their average durations are shown in
Figure 25. Each stage is modeled as having a constant rate for leaving, leading to exponentially
distributed occupation times. The durations indicated in the figure are thus the reciprocals of the
rates for leaving each state.

Susceptible Exposed Presymptomatic Infected Recovered

1.2 1.2 1.2 5

Figure 25: The basic disease progression models used in our study. Figure from Ref. [38], Supplemental Material.

The exposed state is divided into two exponentially distributed 1.2-day stages in order to produce
a Gamma-distributed state with k = 2. This splitting is done to prevent an unrealistically short
exposed period, which would occur with a high probability if the state had been modeled as a single
constant-rate process, as is the case in traditional S(E)IR models. The reason for this is of course
that an exponential distribution (p(τ) ∼ e−cτ , τ ≥ 0) attains its maximal value at the origin, i.e.
for τ = 0, corresponding to skipping the exposed period entirely. The infectious state is also split
into two stages, the Presymptomatic and the Infected stage. This has a dual purpose of, again, pre-
venting unrealistically short infectious periods, and furthermore the inclusion of a presymptomatic
stage makes extension to contact tracing situations more straightforward (more on this in the next
section).

The contact dynamics of our base model is based on static random networks. We will describe
the nature of these random networks in more detail below. Once a network has been established,
the contact dynamics consists of each agent choosing a number of its contacts to interact with in
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each time step. In the base model, with uniformly distributed social activity, this number has been
normalized to 1. If an infected and a susceptible person come into contact, the disease is transmitted
with a probability rate given by the personal infectiousness parameter of the infected individual.

The basic network simulation scheme can be summarized as follows:

• Initialization:

– Generate the contact network (e.g. Erdös–Rényi, clustered network or scale-free)

– For each agent i, draw a personal infectiousness parameter ri from a Gamma distribution
with dispersion parameter k.

– Initiate all agents in the Susceptible state (except for a few, see next step).

– Designate a certain fraction (e.g. 0.1%) as initially Infected.

• Time evolution (re-iterate for each timestep):

– For each agent in the network, activate one associated edge, simulating a contact event.

∗ (Note: This is in the simplest case of uniform social activity levels.)

– When a network edge between an infectious individual i and a susceptible individual j
is activated, the susceptible individual becomes exposed with a probability rate ri.

∗ (Note: This assumes uniform susceptibility. Stochastic susceptibility is a straight-
forward extension.)

– Exposed and infectious individuals leave their current stage at the probability rate given
by the inverse of the mean duration of the stage given in Figure 25.

– Increment time t by ∆t = 30min.

Analytic description. Although a full agent-based model, as described above, is necessary for
some of our simulations, some particularly simple results can be obtained directly from an analytic
description – as long as global saturation effects can be ignored.
We consider an infected person with c contacts (the degree of the node, in network parlance). All
contacts are assumed susceptible. The infectiousness of this individual is drawn from a distribution
PI(r), which we assume to be a Gamma distribution with dispersion parameter k and mean µ. For
simplicity, we notationally suppress these parameters when referring to the distribution PI(r). The
distribution of the reproductive number R of an individual with a known infectious parameter r
and degree (number of contacts) c is then:

P (R; r, c) =

(
c

R

)(
1− e−r/c

)R (
e−r/c

)c−R
(3.1)

In the limit of c→∞ this becomes a Poisson distribution with mean r, as would be expected when
there are no limitations on available susceptible contacts.
For an individual with an a priori unknown infectiousness, the number r must be drawn from the
Gamma distribution PI . The distribution of the reproductive number thus becomes

P (R; c) =

∫ r=∞

r=0
dr PI(r)P (R; r, c) (3.2)

In the aforementioned limit of infinite connectivity, c → ∞, this becomes a negative binomial
distribution, which is thus the distribution of personal reproductive number of an overdispersed
disease in a homogeneous-mixing contact structure [48]. If the limit k → ∞ is taken as well, the
distribution simply becomes Poissonian.
The above computations were for an individual with a known number of contacts c, but if a degree
distribution PC(c) is given, the expected reproductive number for an individual with an a priori



Bjarke Frost Nielsen Self-organizing systems and disease modelling Niels Bohr Institute 82/205

unknown number of contacts can be computed as
∑

c PC(c)P (R; c) (since PC is necessarily discrete).
As can be gathered from these equations, the actual reproductive number does not only depend on
infectiousness, but on connectivity and contact structure as well.

Results

In panels a and b of Figure 26, we compare how the distribution of reproductive numbers, as well as
the mean reproductive number is affected by reductions in network size. The conclusion is that even
moderate reductions in network size have a drastic effect in a disease characterized by superspread-
ing (panel b) while a homogeneously spreading disease is much less affected (panel a). In panel c we
show the basic reproductive number as a function of the average connectivity and dispersion factor,
thus giving an overview of the connection between superspreading and contact network size. These
computations are all based on the analytic description described towards the end of the Methods
section above. Details can be found in Ref. [38] and Supplemental Material.
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Figure 26: The effect of network reduction depends strongly on overdispersion. a) Distribution of personal (basic)
reproductive number in a homogeneously spreading disease (k →∞) for three different connectivities. b) Distribution of per-
sonal (basic) reproductive number in a superspreading disease (k = 0.1, similar to COVID-19) for three different connectivities.
c) Basic reproductive number as a function of connectivity (average number of contacts) and overdispersion (the k value –
higher k corresponding to more homogeneous spreading). Figure from [38].

While these computations are tractable in the analytic description, it does not suffice for simulat-
ing an entire epidemic trajectory or computing e.g. attack rates. The reason for this is that it
fundamentally neglects global saturation (as well as some aspects of local saturation). For the full
simulations, we turn to the agent based model described in the Methods section. The disease in
question has been parametrized to have an initial growth rate of 23% per day in a homogeneous
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mixing contact structure, giving an R0 of 3, both figures representative of the early COVID-19
pandemic [55, 56, 38, 57]. In Figure 27, the trajectory of a homogeneously spreading (panel a)
and a superspreading disease (k = 0.1, panel b) are shown in each of the three connectivity cases
(〈c〉 = 10, 〈c〉 = 15 and well-mixed, which formally corresponds to c→∞).
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Figure 27: The spread of an infectious disease in contact networks with different mean connectivities. a) A disease with a
homogeneous infectiousness distribution (k →∞). b) An overdispersed disease prone to superspreading (k = 0.1). Figure from
[38].

This shows very clearly how sensitive a superspreading (i.e. highly overdispersed) epidemic is to
contact network size – something which is perhaps even clearer here than when just comparing re-
productive numbers. These simulations are run on Erdös-Renyi networks, which are characterized
by being essentially devoid of clusters. However, by introducing a network with a high degree of
clustering, we can assess the sensitivity of a superspreading disease to this aspect of network struc-
ture. The exact algorithm for generating this type of network can be found in the Supplemental
Material of Ref. [38], but the concept is as follows. Each person is a member of two ”groups”, each
of which is fully internally connected. As an example, consider a network with mean connectivity
10. A representative person will then be a member of two groups of size five5. This person will
typically be the only link between those two groups, but everyone who is a member of either group
will also have a connection with every other member of the same group.
In Figure 28, we show the total attack rate (also known as the final epidemic size) as a function of
connectivity and dispersion parameter k, similarly to how we plotted the reproductive number in
Figure 26. The new aspect here is the clustered network in panel b. Clearly, clustering has a large
effect on the attack rate, and even more so for a very heterogeneously spreading disease.
The last result of this section is an analytical one. We present an analytic derivation of an equa-
tion for the reproductive number as a function of connectivity and dispersion which qualitatively
reproduces the plot of Figure 26c.
The derivation starts from equation (3.1). The basic reproductive number, given an infectiousness
(Gamma) distribution PI with dispersion parameter k and average infectiousness µ, can then be
written as:

R0(c, k, µ) =

∞∑

R=0

∫ r=∞

r=0
dr RPI(r, k, µ)P (R; r, c)

= c− c
(

1

1 + µ/(ck)

)k
(3.3)

In the limit c→∞, this becomes R0 = µ, a reflection of the fact that the average infectiousness µ
precisely equals the basic reproductive number in the homogeneous mixing limit.
Recall that all c contacts were assumed to be susceptible. More realistically, we can take into account
that one contact in the personal network of each infected person will in general be insusceptible,
even where computations of the basic reproductive number R0 are concerned. This insusceptible
individual is the one who transmitted the disease to the infected person we are considering. This is

5Note that the group size is stochastic, but we’re just considering a representative node in the network for simplicity.
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Figure 28: The dependence of the finale epidemic size (attack rate) on network connectivity, superspreading tendency and
network clustering. a) Attack rates in an Erdös-Renyi network which is free from clustering. b) Attack rates in a clustered
network, where the contact network of each person is divided into two internally connected groups. Figure from [38].

however easy to implement, by considering instead the function R0[c − 1, k, (1 − 1
c+1)µ], which we

have plotted in Figure 29. Note that it closely resembles Figure 26c.

Figure 29: The basic reproductive number as a function of connectivity and dispersion factor. This plot is obtained directly
from Equation (3.1) and reproduces Figure 26 with two minor differences: 1) a fixed (δ distributed) connectivity c is assumed,
while in Figure 26 it followed a Poisson distribution, and 2) here, all integrals could be performed analytically, while the results
in Figure 26 were evaluated numerically, out of necessity.

3.1.2 Superspreading, lockdowns and non-repeated contacts

This section is based on the study published in PNAS as Ref. [37]. Here, we model the impact of
superspreading on the effectiveness of lockdowns as non-pharmaceutical interventions. This turns
out to reveal a plausible explanation for the relatively large observed effect of lockdowns in mitigating
the COVID-19 pandemic.

Methods

The model employed here bears many similarities to the simple network model described in the
previous section, but is substantially more complex. Like the previous model, this is an agent-based
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model. However, this study aims to capture some more subtle aspects of mitigation strategies and
includes a three-tiered contact structure as well as age-dependent social activity levels.

A

B

Close

Regular (adults)

Regular (children)

2

Susceptible Exposed Infectious
symptomatic

Removed

2.5 2.5 3

Symptomatic
non-infectious

Infectious
presymp.

Transmission

Figure 30: A) The disease progression model employed in Ref. [37]. B) A scaled-down version of the social networks employed
in Ref. [37]. The link colours denote the sectors to which the contact relations belong, as indicated in the legend. The node
colours indicate the age of the individual in question, with darker reds indicating older individuals and pale yellow indicating
a young individual. Figure from Ref. [37].

In these simulations, each individual is assigned to one close and one regular unit. These units
are part of a static network, so contacts are repeated over the course of the epidemic. Aside from
these fixed units, each individual also participates in random interactions with contacts drawn from
the entire population. These latter contacts are non-repeated, i.e. devoid of temporal correlation.
The population is structured by age into 10-year intervals, each with a corresponding social activity
level ai. The age structure of the population and the associated relative contact rates are given
in Table 1. The activity levels are fitted such that the observed contact rates in an unmitigated
simulation scenario match those given in the table. The age structure is based on Ref. [58] while
the activity levels are based on Ref. [59].
Each close unit is reminiscent of a household. It has an average size of 2.3 and a cofficient of (size)
variation of 0.59. These figures closely match those reported in The European Union Statistics on
Income and Living Conditions Survey, which gives an average size of 2.3 with CV = 0.57 [60]. In
close units, adults are in the same or adjacent age bands, while children are taken to be 20 to 40
years younger than adults of the same unit.
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Table 1: Population age structure and age-structured social activity data used in [37]. The age structure data is from [58] while
age-structured activity data is from [59].

Age (y) Share of population (%) Relative social time per person

0-9 10.9 1.21

10-19 11.9 1.70

20-29 13.3 1.45

30-39 11.7 1.45

40-49 13.6 1.38

50-59 13.6 1.31

60-69 11.7 1.06

70-79 8.9 0.81

80+ 4.3 0.81

The regular units have more structure. For agents 20-70 years of age, the regular unit is Poisson-
distributed with an average size of 8 and approximately represents a workplace. Individuals under
20 years of age are assigned to regular units of 18 members, which are also assigned two adults aged
20 to 70 each. Agents above the age of 70 are not assigned to a regular unit.
The disease progresion model is an agent-based SEIR framwork similar to the one described in
section 3.1.1. See Ref. [37] for the exact details. As before, infectiousness is taken to be Gamma
distributed and is treated as a quenched variable.
The time evolution scheme is also similar to that described in section 3.1.1, with the addition that
each individual now has an activity-dependent (and thus age-dependent) probability of making a
contact in each time step. These possible contacts are chosen from the three social sectors, and the
relative frequency of each of these sectors is based on a population-based survey of mixing patterns
in eight European countries by Mossong et al. [59]. They found that the “home” sector made up 19
to 50% of all contacts, while the “work/school” sector accounted for 23 to 37%, and the remaining
sectors amounted to 27 to 44%. These intervals are consistent with equipartitioning, so we chose to
simplify by letting one third of social time fall into each of the three sectors of our model. This holds
for the unmitigated base scenario – mitigation strategies will generally affect this partitioning. The
purpose of this additional social structure is mainly to simulate mitigation strategies which rely on
reducing contact in either the regular or the random sectors.

Results

Our main result concerns the effect of limiting contacts in the regular and random sectors in an
overdispersed or homogeneously spreading disease. We do not limit contacts in the close sector
since this does not correspond to a credible mitigation strategy. In Figure 31, we show the effects of
each of these two mitigation strategies. In panel A, the disease in question is assumed to have a δ-
distributed infectiousness profile – i.e. every infected person develops the same level of infectiousness
– corresponding to the limit k → ∞. Here, the conclusion is that restricting contacts in either of
the two sectors has a similar effect. Contrast this with panel B. Here a dispersion factor of k = 0.1
is assumed, and the effect of limiting random contacts is drastically enhanced despite the biological
mean infectiousness of the disease being unchanged. The interpretation of this is quite clear: For
a superspreading disease, the number of different contacts an individual comes into contact with is
more important than the total contact time. For a homogenously spreading disease, the opposite is
true: contact time is the important variable.
In Figure 32, we systematically vary the dispersion parameter and show the trajectory of the
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Figure 31: The effect of mitigation strategies based on restricting either regular or random contacts. A) A homogeneously
spreading disease, meaning that infectiousness is δ-distributed, corresponding to taking the limit k →∞. B) A superspreading
disease with an overdispersion of k = 0.1, similar to COVID-19.

epidemic under the lockdown-like random sector mitigation for each value of k. The dependence on
the dispersion parameter is quite dramatic.
Further details and sensitivity analyses can be found in Ref. [37]. We analyzed the sensitivity of
these results to variations in initial growth rate, relative sizes of compartments (in terms of social
time in all three as well as the number of distinct contacts in close and regular), inter-individual
heterogeneity in number of random contacts and total social time. The overarching finding was
that the result is robust to these perturbations.
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Figure 32: The trajectory of an epidemic under a mitigation strategy based on the reduction of random sector contacts,
at different levels of transmission heterogeneity. Lower values of k corresponds to more heterogeneous transmission. The
overdispersion level for COVID-19 is likely around k = 0.1. The effectiveness of this type of mitigation strategy is seen to
depend strongly on overdispersion.

3.1.3 Overdispersion as an evolving characteristic

In the beginning of 2021, preliminary data on the distributions of respiratory viral loads (or Ct
values) in persons infected with the then-emerging Alpha-variant (B.1.1.7) of SARS-CoV-2 became
available [52, 53]. This variant has been reported to be ∼ 50% more transmissible than the ancestral
SARS-CoV-2 virus under varying degrees of lockdown [61, 62, 63]. In the aforementioned viral load
studies themselves, focus was mostly on changes in the mean or median viral load, since these are
most obviously correlated with infectiousness. However, we noticed that it was not only the average
viral load that had changed, but the variability as well. Using data from Ref. [52], we calculated that
the viral loads in samples of the Alpha variant were associated with a lower coefficient of variation
(≈ 2), compared to the ancestral strain (≈ 4). In Ref. [53], the authors presented viral load
distributions for samples on the basis of the presence or absence of some of the defining mutations
of the Alpha variant, namely the N501Y substitution and the ∆H69/V70 deletion. Again, these
distributions suggested a reduced variability in the Alpha variant.
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In [37] we had shown that the highly overdispersed variants were at a significant disadvantage
when it came to spreading under (partial) lockdowns - i.e. mitigation strategies which primarily
rely on reducing the number of contacts. Together, these findings led us to speculate that a)
overdispersion could be an evolving characteristic and b) non-pharmaceutical interventions may
exert an evolutionary pressure in this direction.
We emphasize that the phrase “evolutionary advantage” has more than one meaning. In terms
of viral strains, it is natural to distinguish between the “survival ability” and the “competitive
advantage” of a variant. Our goal is to explore these two aspects separately. The first aspect we
explore by performing a stochastic extinction analysis under a lockdown-like scenario as well as
in an unmitigated scenario. This involves simulating the evolution of an outbreak starting from a
single case of a given variant and recording the probability that the outbreak is sustained beyond a
few generations or goes extinct. This can be done in a fairly simple branching process type model
as well as using generating function methods – see the Methods section below and the Supporting
Information of [39] for details.

Studying the “competitive advantage” aspect, on the other hand, requires a full-fledged epidemic
simulation. We created an agent-based model which allowed for coexistence of multiple variants
with different dispersion and (mean) infectiousness as well as evolution and inheritance of those
characteristics.

Methods

The main model of this study is an extension of the agent-based model described in section 3.1.1.
The disease progression and social network aspects are the same. We have however implemented a
few extensions, mainly to allow us to study the evolution of overdispersion (modeled as mutations
affecting the k parameter of the infectiousness distribution).

Stochastic extinction model We model stochastic extinction using a branching process algo-
rithm based on sampling of probability distributions with an analytic description. In practice, we
have performed the computation by numerical sampling. Initially, a single infected individual is
introduced. This individual is infected with a disease characterized by a certain mean infectiousness
and dispersion parameter.

We present the algorithm below, which is reiterated for each new generation of the outbreak.
Without loss of generality, we therefore here describe just a single generation which initially consists
of I infected individuals. Note that for the initial generation, I = 1.

• For i ∈ {1, . . . , I}:

– Draw individual infectiousness ri from Gamma distribution Pr(r; k, µ)

– Draw number of contacts c from a Poisson distribution with a given mean connectivity.

– Given number of contacts c, draw personal reproductive number Ri from the distribution
(3.4)

PR(R; r, c) =
( c
R

)(
1− e−r/c

)R (
e−r/c

)(c−R)
. (3.4)

• Let the number of newly infected be I =
∑

iRi and repeat the algorithm with this updated
value of I.

If the number of infected I drops to zero at any point, the outbreak is said to have gone extinct in
that generation. By performing multiple such branching process simulations for each value of the
parameters µ (mean infectiousness) and k (dispersion factor) we build up a statistic of the survival
chance of each specific variant.
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Agent-based evolution model The basic model, including the disease progression and contact
structure, is similar to that described in section 3.1.1. Here we will describe only the extensions
which we have introduced.
Two-strain simulations: In the two-strain simulations, we study only the fitness of the two variants,
and mutations affecting overdispersion do not occur during the simulation. Initially we designate
some fraction x1 of the infected individuals as having been infected with the heterogeneous an-
cestral variant (k = 0.1) and the remaining fraction x2 = 1 − x1 as having been infected with a
more homogeneous emerging variant (k = 0.2). When an individual infected with a given variant
infects a susceptible person, the characteristics of the disease are passed on to the newly infected
individual. The infectiousness of this individual is then drawn from a Gamma distribution with
dispersion parameter k determined by the variant in question.
Evolution simulations: In these simulations, mutations affecting overdispersion are introduced.
They occur randomly and without any intrinsic bias, allowing us to study any external evolutionary
pressures exerted by e.g. mitigations. We allow the pathogen to stochastically mutate its overdisper-
sion upon transmission with a certain probability p. When such a mutation occurs, the dispersion
parameter is either increased (k → rk, r > 1) or decreased (k → k/r) with equal probability. On the
microscopic level, the dispersion parameter thus performs an unbiased geometric Brownian motion.
In our simulations, we have chosen the mutation probability p = 1/3 and magnitude r = 3/2. The
figure 1/3 was chosen since the SARS-CoV-2 pathogen has been estimated to mutate at a rate of
approximately 2 substitutions per genome per month [64], translating to about one mutation per
three transmissions. However, these simulations should be seen as entirely conceptual, since the
frequency of mutations affecting dispersion are likely to be much lower, and the expected magnitude
of such mutations is currently not known.

Results

The first aspect of evolutionary advantage that we study is the ability of a pathogen to avoid
stochastic extinction in the initial stage of a potential outbreak. In Figure 33, we plot the survival
chance after 10 generations as a function of dispersion and mean infectiousness. In panel A, we
consider an unmitigated scenario, modeled by a homogeneous mixing contact structure (formally
infinite connectivity). The central finding here is that the initial survival chance depends very
strongly on overdispersion. In panel B, contact restrictions are in place, limiting each person to
10 distinct contacts in order to simulate a partial lockdown scenario. This allows us to probe how
strongly the survival chances of variants with different degrees of overdispersion are affected by this
kind of mitigation strategy, and we see a moderate dependence. Superspreading variants are clearly
hit harder by these restrictions, in terms of extinction risk.
In Figure 34, we take a different perspective and look at the relative ability of two differently-
dispersed variants to spread after gaining a foothold, i.e. after having moved past the initial stage
where stochastic extinction risk is high.
We do this by initially letting 1% of the population be infected with the ancestral variant (k = 0.1)
and just 0.01% with an emerging, more homogeneous variant (k = 0.2). Initially, connectivity is
restricted to 10 people, but once the emerging variant reaches a share of 20% of current infec-
tions – around day 65 – restrictions are lifted. This is modeled by transitioning to a homogeneous
mixing contact structure (connectivity → ∞). In panel A, the epidemic trajectories of each of
the two strains are shown on a linear scale. The original strain is approximately stationary under
the restricted social conditions, while both variants predictably surge when restrictions are lifted.
The initial part of the trajectory is more clearly seen on a logarithmic scale, as presented in panel
B. Here, one can clearly see that the emerging variant grows essentially exponentially even under
partial lockdown conditions while the old variant doesn’t grow appreciably. After the reopening,
the two variants are seen to spread equally well. This latter point is more clearly seen in panel
C, where the relative incidence of the two variants are shown - i.e. each variant’s share of current
infections. The emerging variant’s share grows fast in the initial stage, but after society reopens, the
new variant completely loses its competitive advantage and the relative incidence stabilizes at close
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Figure 33: Survival chance of variants with different biological mean infectiousness and dispersion parameter. Top: Unmitigated
scenario, modeled by a homogeneous mixing contact structure. Bottom: Partial lockdown scenario, modeled by limiting
contacts to 10.

to 20%. This underscores that the fitness advantage of new variants can be enormously context
dependent, and not necessarily reflective of a higher biological mean infectiousness. Consequently,
this finding has implications for attempts at extrapolating the basic reproductive number of an
emerging variant on the basis of measurements obtained under mitigation.
In order to systematically quantify the relative fitness of variants with different levels of overdis-
persion and mean infectiousness, we ran epidemics for variants with k ∈ [0.05, 1.0] and mean infec-
tiousness ranging from 1/3 to 2 times that of the ancestral variant. In Figure 35A, the results for
a connectivity of 50 are shown. Clearly, there is a strong relation between mean infectiousness (the
horizontal axis) and observed reproductive number. However, it is also clear that the dispersion
plays a substantial role. In panel B, where connectivity is restricted to 10, this effect becomes
much stronger, as evidenced by the bending of the contour lines. The dashed white line in each
plot indicates pathogens which spread as effectively as the ancestral variant. Remarkably, panel B
shows that it is possible for a pathogen that has only half the mean infectiousness of the ancestral
variant to spread just as efficiently, provided it is more homogeneous (k ≈ 1).
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Figure 34: Competition of two variants with different levels of overdispersion. Initially, the heterogeneous ancestral variant
(k = 0.1) makes up 99% of infections while an emerging, more homogeneously spreading variant (k = 0.2) makes up just 1%
of infections. Initially, a partial lockdown is in place (modeled by an Erdos-Renyi network with 10 contacts/person). When
the emerging variant makes up 20% of current infections (at t ≈ 65days), society is reopened (modeled by transitioning to
a homogeneous mixing contact structure). A) Incidence of the two variants over time, linear scale. B) Incidence of the
two variants over time, logarithmic scale. C) Relative incidence of the two variants. After reopening, the fractions stabilize,
indicating that the two variants spread equally well under these conditions.
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Figure 36: Evolution of the dispersion parameter k under different conditions. In each panel, the red curve shows the combined
incidence of all strains while the purple curve shows the average value of k among currently infected individuals. The shaded
purple area shows the 25% and 75% percentiles of the k distribution as a function of time. A) Unmitigated scenario. During
the epidemic, a weak tendency towards increasing homogeneity (increasing k) is seen. B) Partial lockdown (connectivity = 15)
scenario. The k value increases dramatically, indicating that homogeneous spreading is being strongly selected for. C) No social
network restrictions (i.e. no lockdown), but transmissibility lowered by other means (corresponding to e.g. mask wearing) until
initial growth rate matches that of panel A. )

We have seen that there are apparently large fitness advantages associated with lower levels of
dispersion, and that this is even more true in (partial) lockdown-like scenarios. We have also seen
preliminary evidence that overdispersion is not a fixed property and that the Alpha variant may
show reduced overdispersion [53, 52]. It is thus natural to ask: if dispersion is allowed to mutate
randomly, will it be driven in any particular direction? Using the evolution model described in the
Methods section, we simulate the spread of a pathogen which initially has the properties of the
ancestral variant (k = 0.1 and R0 = 3 in an unmitigated scenario). In an unmitigated scenario
(Figure 36A) this leads to a weak tendency towards increased homogeneity, with a k value that only
grows slightly over the course of the epidemic. In Figure 36B, we run a similar scenario albeit with
average connectivity restricted to 10. Suddenly, a dramatic increase in the average k value over
time is seen. Since the mutations are completely random and unbiased at the microscopic scale,
any observed drift is caused by a fitness advantage. Of course, one could object that the scenarios
in panels A and B are not directly comparable since the epidemic in panel B is much less rapid,
leaving the pathogen with many more generations in which to mutate. For this reason, we included
a scenario where the infectiousness of the pathogen has been reduced such that the initial growth
rate is identical to that of panel B, but without the connectivity restrictions. Here we see a slightly
greater increase in k compared to panel A, but nowhere near as dramatic as in panel B. It is thus
clear that it is the lockdown which exerts an evolutionary pressure on the overdispersion, driving
the pathogen towards more homogeneous patterns of spreading.

3.2 Contact tracing in heterogeneous social networks

In this section we use a real-life, temporally resolved contact network to assess the impact of network
and contact heterogeneities on contact tracing as a mitigation strategy in a COVID-19-like disease.
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The contact tracing algorithm used is a model of digital (app-based) contact tracing, which the
underlying data set is well-suited to study, since it consists of proximity data similar to what many
contact tracing apps rely on. This section is based on the (preprint) study Ref. [65].

Figure 37: A single simulation of an outbreak on an empirical contact network. We show a zoom view of a small geographical
part of the system, based on recorded GPS coordinates. Contacts (as defined in the Methods section) are represented by pink.
the corresponding epidemic trajectory is shown in the inserts, at three different times during the outbreak.

3.2.1 Methods

The dataset we work with consists of temporally resolved proximity data collected using smart-
phones distributed to a group of 1000 students at the Technical University of Denmark as part
of the Copenhagen Networks Study [66, 67]. These smartphones had been pre-installed with an
application which collected communication, location and proximity data in the form of call and
messaging logs, geo-location by means of GPS as well social proximity using Bluetooth. Every
five minutes, Bluetooth ports on all participating devices would open and scan for nearby devices.
Bluetooth signal strength as well as GPS location would then be recorded. This signal strength can
then in turn be used as an approximate proxy for distance. The data we used were collected in the
period 2013-2015, i.e. pre-pandemic. As such they reflect usual day-to-day contact patterns in the
absence of any disease awareness or non-pharmaceutical interventions.
In order to transform these Bluetooth data into a temporal contact network, we must define a notion
of contact that is epidemiologically relevant. Such a definition depends on the disease in question.
If fomite or environmental transmission is significant, a simple measure based on proximity time
and distance is insufficient. For COVID-19, there is evidence that fomite transmission is only a
minor contributing factor, and we have used a cut-off in (RSSI) signal strength of -85dBm which
captures almost all ≤ 1m interactions while excluding most ≥ 3m interactions. This allows us to
define a time-dependent social network with a time step size of 5 minutes.

The epidemic model consists of an agent-based SEPIR (Susceptible-Exposed-Presymptomatic-
Infected-Recovered) model run on top of the time-dependent social network. The disease progression
model itself is very similar to the one described in section 3.1.1. For more details, see Ref. [65]. As
opposed to the previous agent-based modelling studies described in this thesis, we do not impose a
specific contact dynamics here, since it is predetermined by the empirical contact network. When
two persons are in contact, there is a fixed probability per unit of time for an infection to be
transmitted, provided that one is infectious and the other susceptible. In addition to the five states
(S, E, P, I and R), an individual may also be flagged as Quarantined (Q). This quarantine is
assumed to be perfect, and while it is active the individual cannot infect anyone or be infected. The
significance of the presymptomatic (P) state will become clear once the contact tracing algorithm
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is described, but in the absence of contact tracing, an agent in the P state is treated similarly to
one in the infected (I) state.

b)

c)

a)

Susceptible Exposed Presymptomatic Infected Recovered

1.2 1.2 1.2 4

Figure 38: a) A small fragment of a cumulative one-week contact network. The thickness of each link indicates total time
active. Only links with more than two hours of activity are included. Black links are recurring relative to the previous week
while red links indicate new connections. b) Top: Histogram of contact events over a one-day period (semi-logarithmic). The
mean is 131 and the coefficient of variation (CV) is 1.03. Bottom: Histogram of contact events over 7 weeks, rescaled to a daily
rate (semi-logarithmic). The mean is 86 and the CV is 0.95. c) Disease progression model for the agents in the system.

The contact tracing (TTI) model. Our contact tracing model is based on a test-trace-isolate
(TTI) scheme. It thus contains three elements: a regular testing scheme, a mechanism for tracing
contacts of discovered infected persons and a set of rules for isolation of suspected (or confirmed)
cases. Regular (“background”) testing happens at a constant rate rtest. Once a positive individual
is found by regular testing, the contact tracing algorithm is initiated. First, the positive individual
and their recent contacts are placed under quarantine for a specified time tQ and tested once the
quarantine has elapsed (before potentially being released from quarantine). The contact tracing
algorithm is as follows:

• A list of contacts is kept for each individual. When the index case is tested positive, contacts
more recent than a certain retention time are kept, while the rest are discarded. This retention
time is set at 5 days in our simulations. A sensitivity analysis for this parameter is performed
in the supporting information of Ref. [65]. We refer to the remaining contacts on the list as
traced individuals.

• If a traced individual has been in (cumulative) contact with the index case for longer than a
certain contact threshold, the traced individual is also placed in quarantine, with a minimum
quarantine duration of tQ.

• Once the quarantine duration tQ has elapsed, the individual is tested and released if negative.
Otherwise a new quarantine of duration tQ is issued.
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We generally measure the rate of testing in units of 1/τI , so a testing rate of e.g. 1 corresponds to
having a 50% chance of being tested during the Infectious state (since the rate for leaving the state
then equals the rate for being tested).

Perturbing heterogeneities. Our general objective is to assess the importance of different types
of social contact heterogeneity for the effectiveness of contact tracing. To this end, we implement
different ways of partially homogenizing contact patterns. By comparing the performance of the
simple contact tracing algorithm on these partially homogenized networks with its performance on
the true network, we can separately probe the importance of heterogeneities.
The first method is edge swapping. This algorithm, when performed on a contact network, preserves
the degree distribution but destroys correlations in who contacts who. In other words, it is a way
of probing the importance of the specific network structure, without conflating it with the degree
distribution (number of contacts per person).
The second method, randomization, homogenizes the degree distribution as well as the network
structure.
The edge swapping algorithm works as follows. The following steps are re-iterated many times,
until each edge has been swapped multiple times on average:

• Randomly select two edges A↔ B and C ↔ D.

• Swap the chosen edges, leaving instead the edges A↔ C and B ↔ D.

Since any node which participates in this procedure merely has its edges replaced but never destroyed,
the degree distribution remains intact.
The randomization algorithm is simpler yet. The following step is simply reiterated until each edge
has been swapped multiple times on average:

• Select an edge A ↔ B at random. Replace the endpoints A and B with nodes C and D
chosen from the population at random.

This homogenizes the degree distribution as well as the network structure, but the overall level of
social activity in the system is unchanged (edges are replaced with new edges, never destroyed).
Both algorithms are performed within each timestep, meaning that edges are swapped at times
tn and tn+1 independently of each other. Thus, the distribution of social contact durations is not
preserved. For this reason, we also implemented a version of the edge swapping which is duration
preserving. For the purposes of describing this algorithm, we introduce bit of notation. Let the
collection of fixed-time contact networks at time steps t = 1, 2, . . . , T be denoted by G = {Gt}. Gt is
then the network of contacts at time step t, repesenting a five minute window. Duration-preserving
edgeswapping requires a global (in time) view of connections, and cannot be performed on a single
Gt. Before swapping, we run through the collection G and record the times at which each connection
begins, labeling each with a persistent and unique connection ID. This allows the recognition of
equivalent contacts across time steps. Once this has been done, the swapping algorithm proceeds
very similarly to before:

• For each t ∈ {1, . . . , T}:

– For each edge in Gt, check whether the contact was initiated at time t (i.e. is a new
contact) or is a continuation of an existing one. If it is new, generate a connection ID Li
and add it to a list L = {Li}.

– Perform a random pairing of IDs in L, with the additional rule that only contacts of
equal duration can be paired.

– Perform the simple edge swapping algorithm described above on the pairings from the
previous step.

– Record swaps performed in this time step so that they can be consistently performed in
succeeding time steps.
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– Perform each swap recorded in previous time steps, unless it has elapsed. In the latter
case, discard it.

3.2.2 Results

Heterogeneity persists on outbreak time scale. We find that the distribution of daily contact
events, as well as the distribution of contact events over 7 weeks both have a coefficient of variation
close to 1 (1.03 and 0.95, respectively), consistent with an exponential distribution (see Figure 38).
This shows that heterogeneity is pronounced and persists on a time scale relevant for the outbreak.
It approximately represents a quenched disorder.

Social structure reduces epidemic severity. In the absence of mitigation, Figure 39 shows that
the peak of the epidemic is much higher in both the randomized and the edge swapped networks than
in the true network. This indicates that the network structure in itself is important in determining
the epidemic peak.
The final size of the epidemic, on the other hand, is similar for the true and edge swapped networks,
while it is much higher for the randomized network. This shows that heterogeneous social activity
levels are important in reducing the final size of the epidemic, while social structure itself plays a
smaller role.

Figure 39: Trajectories of epidemics in the true empirical network as well as the edge swapped and randomized versions. Blue
curves show cumulative epidemic sizes while red curves show current incidence.

The dependence of contact tracing on heterogeneity is controlled by the contact thresh-
old. As shown in Figure 40, the relative effectiveness of contact tracing on the true and homog-
enized networks depends heavily on the contact threshold, i.e. the minimum duration of contact
between an infected and a susceptible person before they are considered relevant for contact tracing.
At a high threshold (125 minutes, panel c), the true network performs drastically better than all
(partially) homogenized networks, including the duration-preserving edge swapped one. At shorter
thresholds (15 minutes of cumulative contact, panel a), the story becomes more nuanced. Here, the
true and edge swapped networks (whether duration-preserving or not) perform about equally well
in terms of mitigative power. Furthermore, they all perform much better than the randomized net-
work. However, it should be noted that the true network attains this mitigation with substantially
lower levels of quarantine (panel b). In this sense, the contact tracing is more targeted in the true
network, indicating lower socioeconomic cost.
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Figure 40: a+c) Epidemic trajectories at a contact threshold of either 15 (a) or 125 (c) minutes. Incidence curves for the true
network as well as edge swapped, duration-preserving edgeswapped and randomized networks are shown. b+d) Quarantined
fraction of the population as a function of time, for each of the four network types.
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Contact tracing efficiency depends non-trivially on regular testing. As intuition would
perhaps have it, the size of the epidemic is an increasing function of the contact threshold, while the
total time spent in quarantine is a decreasing function (Figure 41b). When it comes to the rate of
testing, the picture is more subtle (Figure 41a). For small values of the testing rate, the time spent
in quarantine goes up when the testing rate is increased. This of course makes sense, since more
cases are identified. However, at even higher testing rates, the mitigative effect begins to dominate,
and the time that an average person spends in quarantine actually decreases. The net effect is that
the function has a maximum at a testing rate of ∼ 0.20.

a)

b)

Figure 41: a) Dependence of effectiveness of contact tracing on the rate of testing (in the real, empirical network). Note
that, while the final size of the epidemic is a monotonically decreasing function of regular testing rate, the total days spent in
quarantine actually reaches a maximum around a rate of testing of 0.2, before declining. b) Contact tracing dependence on the
contact threshold (in the real, empirical network).

3.3 Discussion

In a broader perspective, the work outlined in sections 3.1 and 3.2 emphasizes the importance of
taking stochasticity and heterogeneity into account when modeling disease spreading. Not only
is it important to include a degree of randomness in spreading phenomena, but one must also
realize that noise is not just noise. In the case of superspreading, we have seen that quenched
disorder in transmission gives rise to a phenomenon which has profound impact on lockdown-type
mitigation strategies which rely on broad reductions in contact numbers. However, more targeted
interventions can also benefit from overdispersion if done correctly. In Ref. [68], the authors used
a simple branching process model to estimate the impact of superspreading on backward (also
known as ”retrospective”) contact tracing and found that it, too, was enhanced. When an infected
individual is discovered, this strategy relies on asking “Who was this person infected by and who else
could that person have infected?” rather than “Who did this person infect?” as in forward contact
tracing. Our simulations in [38] corroborate these findings. A simple way of estimating the relative
efficacy of retrospective contact tracing is by measuring how many secondary cases each infected
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person allows one to trace with and without superspreading. In a homogeneous mixing scenario,
we find that the answer is 2.7 in the absence of overdispersion (k =∞) and 24 with superspreading
at a COVID-19-like level (k = 0.1). This is of course a best-case scenario. In practice, test-trace-
isolate programmes based on retrospective contact tracing have further limitations, especially due
to temporal constraints inherent to a disease with a relatively short generation time.

The importance of quenched noise is by no means limited to infectiousness and disease trans-
mission. Our findings on the importance of (non-)repeated contacts in [37] were an example of
quenched social structure versus homogeneous mixing. Network models often assume entirely static
social networks – which may be reasonable over shorter time frames – while traditional aggregated
compartmental models usually assume homogeneous mixing (which may be reasonable in certain
environments). The truth necessarily lies somewhere in between, and in [65] we studied disease
transmission on an empirical contact network precisely to disentangle these effects. As outlined
above, we found that social activity patterns in the student population remained quite stable on
the scale of a couple of months and that the different contact heterogeneities (network structure,
differences in activity levels, differences in contact durations) each contributed to the effectiveness
of the contact tracing strategy studied to varying degrees. In Ref. [69], the authors studied how
“rewiring” of social networks over time may cause resurgences of an epidemic, again highlighting
the importance of temporal correlations in social behaviour and the lack thereof.

The findings of section 3.2 highlight the importance of incorporating realistic contact hetero-
geneity into models of contact tracing if numerically credible conclusions are to be reached. While
heterogeneity becomes especially crucial for mitigation strategies which rely directly on contact
network structure, such as contact tracing, even unmitigated epidemics are significantly affected
by social heterogeneities. Among the networks studied in this section, the randomized type closely
mimics the homogeneous mixing seen in classical, aggregated S(E)IR models. As shown above,
simulations on such a homogeneous network systematically and substantially overestimates the size
of the epidemic relative to the empirical network. Some degree of social activity heterogeneity
can actually be included in aggregated models, however only in a coarse-grained fashion. A recent
study [70] did this and similarly found that epidemic size was reduced. The evident importance of
heterogeneity and stochasticity, as well as the distinction between quenched and annealed noise are
arguments in favour of agent based models.
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The third and final chapter of this thesis builds on the following manuscripts. The papers were
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increases the effectiveness of limiting nonrepetitive contacts for transmission control”, Pro-
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2. B. F. Nielsen, L. Simonsen, and K. Sneppen, “COVID-19 superspreading suggests mitigation
by social network modulation”, Physical Review Letters 126 (2021), no. 11, 118301.

3. B. F. Nielsen, A. Eilersen, L. Simonsen, and K. Sneppen, “Lockdowns exert selection pressure
on overdispersion of SARS-CoV-2 variants”, medRxiv (2021).
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• Note: The version included in this thesis is updated relative to the online preprint, and
instead bears the title “Differences in social activity increase efficiency of contact tracing”.
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Increasing evidence indicates that superspreading plays a domi-
nant role in COVID-19 transmission. Recent estimates suggest that
the dispersion parameter k for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is on the order of 0.1, which corre-
sponds to about 10% of cases being the source of 80% of infec-
tions. To investigate how overdispersion might affect the outcome
of various mitigation strategies, we developed an agent-based
model with a social network that allows transmission through con-
tact in three sectors: “close” (a small, unchanging group of mutual
contacts as might be found in a household), “regular” (a larger, un-
changing group as might be found in a workplace or school), and
“random” (drawn from the entire model population and not re-
peated regularly). We assigned individual infectivity from a gamma
distribution with dispersion parameter k. We found that when k
was low (i.e., greater heterogeneity, more superspreading events),
reducing random sector contacts had a far greater impact on the
epidemic trajectory than did reducing regular contacts; when k was
high (i.e., less heterogeneity, no superspreading events), that differ-
ence disappeared. These results suggest that overdispersion of
COVID-19 transmission gives the virus an Achilles’ heel: Reducing
contacts between people who do not regularly meet would sub-
stantially reduce the pandemic, while reducing repeated contacts
in defined social groups would be less effective.

pandemic | overdispersion | mitigation strategies | superspreading | social
networks

Countries worldwide have responded to the COVID-19 pan-
demic by implementing unprecedented “lockdown” strate-

gies: closing schools and workplaces; closing or strictly regulating
restaurants, bars, theaters, and other venues; and banning large
gatherings. Such measures moderately reduced disease trans-
mission in the 1918 Spanish influenza epidemic (1); however, in
the COVID-19 pandemic, lockdowns have been highly effective,
albeit at great cost to society (2). Not enough is known about
which of the mitigation measures used during lockdowns is most
effective. Understanding the relative contributions of reducing
different types of contacts in different settings is essential for the
current situation as well as for pandemic preparedness.
The occurrence of “superspreading events,” in which a large

number of people are infected in a short time (often in a single
location), is a well-documented aspect of the COVID-19 pan-
demic (3), from a string of superspreading events at fitness centers
in Seoul, South Korea (4) to a wedding reception at the Big
Moose Inn in Millinocket, ME at which at which over half the
guests were infected (5).
Heterogeneity in transmission is well known in several infec-

tious diseases (6–9), including the recent coronavirus threats
severe acute respiratory syndrome (SARS) (10) and Middle East
respiratory syndrome (MERS) (11). In 2005, Lloyd-Smith et al.
(6) surveyed the importance of superspreading events across
infectious diseases and pioneered the use of the “dispersion
parameter” k to describe how the number of infections

generated by an individual is distributed around the mean, with
lower values of k corresponding to a broader distribution.
Multiple studies have found that k for SARS-CoV-2 is on the

order of 0.1, corresponding to ∼10% of infected people causing
80% of new infections (12–15) This also implies that the majority
of infected individuals cause less than one secondary infection
and thus, cannot sustain the epidemic on their own should the
superspreading events somehow be prevented.
Consistent with this, the household attack rate is low, as shown

by several studies. In China, figures of 15 and 12% have been
reported (13, 16), while a nationwide study from Denmark gave a
household attack rate of 17% (17); in the context of a super-
spreading event in a South Korean call center, the household
attack rate was 16% (18). The low household attack rate implies
that most infected people do not even infect their household
contacts. The overdispersion seen in SARS-CoV-2 stands in
contrast to pandemic influenza, which was found to have a dis-
persion parameter of about k = 1 (19), so that 45% of infected
people cause 80% of new infections.
Measurements of the level of transmission heterogeneity in

COVID-19 have been based on several different methodologies,
each having its own strengths and weaknesses. Perhaps the most
direct measurement is by contact tracing (13). This method al-
lows for a straightforward assessment of overdispersion but may
be affected by biases inherent in contact tracing data, such as
close contacts being more readily found or large outbreaks being
more carefully investigated. Other studies have relied on ag-
gregate incidence data (12, 15, 20) and even phylodynamic
methods (14). These disparate studies found similar levels of

Significance

Evidence indicates that superspreading plays a dominant role
in COVID-19 transmission, so that a small fraction of infected
people causes a large proportion of new COVID-19 cases. We
developed an agent-based model that simulates a super-
spreading disease moving through a society with networks of
both repeated contacts and nonrepeated, random contacts.
The results indicate that superspreading is the virus’ Achilles’
heel: Reducing random contacts—such as those that occur at
sporting events, restaurants, bars, and the like—can control
the outbreak at population scales.
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heterogeneity, increasing the robustness of the basic finding that
overdispersion is high in COVID-19.
Given the importance of superspreading to COVID-19 trans-

mission, modeling studies assessing the effect of different mitiga-
tion strategies would do well to take superspreading into account.
Agent-based models, which set up a network of individual agents
that interact according to defined rules, are well suited to exploring
the impact of mitigation in the presence of superspreading. Like
standard compartmental Susceptible, Exposed, Infected, Recov-
ered (SEIR) models, they can reproduce the epidemic curves ob-
served in a population in an unmitigated scenario. Unlike purely
compartmental models, agent-based models can easily adjust in-
dividual infectivity and mimic repeated social interactions within
defined groups, as might be found in households, schools, and
workplaces. Agent-based models can also include different types of
social interaction and phenomena such as a disease saturating
some households or workplaces by infecting all susceptible agents.
We therefore developed an agent-based model with a social

network structure to investigate how overdispersion might affect
nonpharmaceutical mitigation efforts to control a superspreading
disease such as COVID-19. In brief, we simulated epidemic tra-
jectories in an agent-based model with a population of 1 million
agents. Upon infection, agents transition from susceptible to ex-
posed, infected, and recovered states (Fig. 1A); agents are on
average infectious for 5.5 d. We allowed contacts of three types:
close (within a small, unchanging group as might be found in a
household or other close association), regular (within a larger,
unchanging group as might be found in a workplace, school, ex-
tended family, or other social unit), and random (drawn randomly
from the entire agent population and not repeated regularly)
(Fig. 1B). We adjusted the contact rates to achieve a 1:1:1 ratio of
contact time in the three sectors, consistent with survey data from
Mossong et al. (21). Within the timescale set by the generation
time of COVID-19, our close and regular networks can be con-
sidered constant. Contacts that occur less frequently belong to the
random sector. To simulate superspreading, we assigned infec-
tivity according to a gamma distribution with dispersion parameter
k = 0.1 and adjusted the overall infectivity to produce an initial
growth rate of 23% per day, as observed for COVID-19 in Europe
and North America (22–24), which corresponded to a basic re-
productive number of 2.5. In the unmitigated case, contacts were
allowed in all three sectors; we then simulated two additional
scenarios in which the regular and random contacts were re-
stricted. These three scenarios were simulated under two condi-
tions, with k set to infinity (no superspreading) and with k set to
0.1 (superspreading). The model is described in detail in Methods.
Our findings suggest that superspreading gives COVID-19 an

Achilles’ heel: Limiting contacts in the part of the social envi-
ronment where many random contacts are encountered—and where
superspreading events are most likely to occur—slows transmission
dramatically and far more effectively than limiting contacts in social
groups where people meet repeatedly, such as in the home, work,
or school.

Results
We found that the presence of superspreading profoundly im-
proves the impact of reducing random contacts in mitigating the
epidemic. Regardless of whether superspreading is present in the
model, the overall percentage of the population infected in a no
mitigation scenario is 90% (Fig. 2). Thus, superspreading has
hardly any effect on the trajectory of an unmitigated epidemic.
Furthermore, comparing Fig. 2, it is clear that a mitigation
strategy based on restricting regular contacts performs similarly
in both the superspreading (Fig. 2B) and nonsuperspreading
(Fig. 2A) scenarios. However, when a mitigation strategy based
exclusively on restricting random contacts is employed in the
superspreading scenario, the effect is dramatically enhanced:

The final epidemic size is just 15%, compared with 57% in the
absence of superspreading.
We performed several sensitivity tests to investigate whether

our findings were robust to changes in model parameters.
We varied the dispersion parameter k in the interval [0.05, 1.0]

and found that as it increased, the effect of preventing random
contacts gradually diminished (Fig. 3). This shows that the effi-
cacy of random sector-based mitigation increases monotonically
with the degree of superspreading. On the other hand, even
partial mitigation of the random sector still had a considerable
effect when k = 0.1 (SI Appendix, Fig. S1).
By adjusting the mean infection rate, we varied the initial

epidemic growth rate from 16 to 30% per day (SI Appendix, Fig.
S2), an interval that covers the range of premitigation growth
rates observed in Europe and North America (22–24). We
found, as expected, that a faster-growing epidemic is more dif-
ficult to mitigate; however, the enhanced effect of random sector
mitigation when superspreading is present remains.
To assess the sensitivity of our results to the partitioning of the

three social sectors, we varied the ratio of contacts in each sector
from the base case of 1:1:1 to 2:2:1 for close, regular, and ran-
dom contacts (SI Appendix, Fig. S3A) and increased the size of
the groups from which regular and close contacts were drawn,
respectively (SI Appendix, Fig. S3 B and C). These variations had
only a moderate negative effect on mitigation, reflecting that a
mitigation strategy based on removing random contacts becomes
relatively less effective if fewer random contacts are made in the
premitigation scenario. In a related analysis, we analyzed the effect
of introducing heterogeneity in the number of individuals with whom
an agent interacts. We did this by letting half of the population
spend only 1/6 of their contact time in the random sector while
allowing the other half to spend 1/2 of their contact time interacting
in the random sector. In this way, we maintained the overall activ-
ity in the random sector to be 1/3. The result was a moderate de-
crease in the degree of mitigation (SI Appendix, Fig. S4).
To determine the effect of increased heterogeneity in social

activity, we exponentially distributed the overall contact time of
individuals, so that some agents would make contact more fre-
quently than others (SI Appendix, Fig. S5). This heterogeneity was
found to decrease the epidemic size in general, similar to what
Britton et al. (25) recently showed for COVID-19. Nonetheless,
random sector-based mitigation remained by far the most effective.
Finally, we measured the distribution of the number of sec-

ondary infections arising in our simulations (SI Appendix, Fig.
S6). This analysis is an important test of our model since it is
crucial that the model reproduces the degree of transmission
heterogeneity reported in the literature; the analysis also allows
us to assess the degree of transmission heterogeneity introduced
by the model’s social structure alone. When we set the dispersion
parameter for infectivity to k = 0.1 (our base superspreading
scenario), the coefficient of variation (CV) of the observed dis-
tribution of secondary cases is 3.1, consistent with an observed k
value of ∼0.1 for a negative binomial distribution (6), indicating
that the model has the desired level of transmission heteroge-
neity in our base superspreading scenario. When the distribution
of infectiousness is taken to be homogeneous (i.e., the non-
superspreading scenario [formally obtained at infinite k for in-
fectivity]), the observed distribution of cases has a CV of 0.7,
consistent with an observed k value of 3.3 for a corresponding
negative binomial distribution. Thus, the social structure by itself
contributes only very moderately to the transmission heteroge-
neity observed in our superspreading simulations.
Across the sensitivity analyses, our basic finding remains un-

changed: In an epidemic driven by superspreading, restricting
random nonrepeating contacts is far more effective than limit-
ing the regular repeating contacts that occur in interconnected
groups.
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Discussion
Policy makers worldwide face excruciating choices as they seek
to ease restrictions as much as possible without causing a surge in
COVID-19 cases that would overwhelm health care systems, es-
pecially by exceeding available intensive care unit beds needed to
keep critically ill COVID-19 patients alive. These policy choices
must take new information into account as the pandemic unfolds.
Evidence is now overwhelming that superspreading plays a key

role in COVID-19 transmission (12–15). Yet, models used to
predict effects of mitigation strategies often do not consider this
phenomenon (26–28). In this study, we built an agent-based
model with an underlying social structure to take on this task.
Our results indicate that reducing random contacts has an out-

sized effect in an epidemic characterized by superspreading; in the
absence of superspreading, the same mitigation strategy is much
less effective. This means that mitigation policies should focus on
limiting contacts during activities that bring together large numbers

of people who would otherwise not routinely come into contact,
such as at sporting events, restaurants, bars, weddings, funerals, and
religious services; repeated contacts that occur in smaller social
groups are much less important. If such gatherings cannot be avoi-
ded, steps such as wearing face masks and moving events outdoors
might also help. Our results also suggest that in complex settings
such as workplaces and schools, which have characteristics of both
our regular and random sectors, preventing congregation of large
groups of people who would otherwise rarely meet is important.
Why does our model suggest that the presence of superspreaders

favors these policy choices? When random contacts are prevented,
regular contacts become the main source of infection. However, be-
cause the number of possible connections is limited in a regular social
unit, a highly infectious individual soon runs out of susceptible contacts.
When random contacts are allowed, however, there is no such limi-
tation because as far as the superspreading agent is concerned, every
contact is new. It follows that an epidemic driven by superspreading is

A

B

Fig. 1. (A) Schematic representation progression of disease in our agent-based model. Individual agents become infectious 2.5 d before symptom onset on
average. Agents enter the recovered state after an average of 3 d of symptoms, giving an average total infectious period of 5.5 d. (B) Schematic repre-
sentation of the connectivity between 150 agents. Individuals are represented as nodes, with shading indicating age (light = young, dark = older). Edges
represent social connections, with bright yellow denoting close contacts, orange denoting regular contacts between adults, and red edges denoting regular
contacts involving children. Random contacts are not pictured. The network diagram was generated by running our simulation on a smaller population of just
150 individuals, with the same rules for connectivity as in the full-scale simulations.
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fueled more by the diversity of contacts—the total number of different
people encountered—and less by the duration of contacts—how long
one spends with each. Thus, preventing random contacts in the model
provides more benefit than preventing regular contacts.
It is worth noting that an equal ratio of contact time across

sectors does not mean that the number of secondary infections is
the same in each. Even when k is high so that superspreading is
not present (Fig. 2A), about 40% of transmissions occur during
random contacts because the saturation effect is small. When k is
low and superspreading is present, this fraction increases to about
60%, the removal of which corresponds to a 2.5-fold reduction in
the reproductive number of the disease—a reduction sufficient to
mitigate the epidemic (Fig. 2B).
Our finding that the propagation of an overdispersed disease

is more sensitive to the many random contacts (rather than the
few but persistent regular contacts) is broadly applicable, re-
gardless of the underlying biological mechanism. If, for example,
one considers a disease where the high reproductive number of
some individuals is the result of a prolonged infectious period,
transmission would still be limited by the number of different
persons an individual encounters. In our model, this number is
set by the combined size of their close and regular contacts, when
access to random contacts is restricted.
The most important limitation of our study is the model’s simplicity

compared with the complex reality of human society. Our social
structure does not precisely reproduce the complex and fluid inter-
actions of human societies. However, our division of contacts ap-
proximates the range of possible interactions, from familiar to
random. We relegated all nonrepeating contacts to the random sec-
tor, so that contacts with known persons occurred only through two
fixed social networks, one small and one somewhat larger. In the real
world of large families, workplace cafeterias, school playgrounds, and
neighborhood restaurants, many interactions in the random sector
would be with familiar but rarely seen people such as old friends and
extended family; likewise, some contacts with random people would
occur in places dominated by repeat contacts with familiar people.We
simply separated those into two artificially distinct spheres.
The mechanism that underlies superspreading is not under-

stood, but relevant factors include both the rate at which an

infected person sheds the virus and the environment in which the
virus is shed, including the density of people and their suscepti-
bility. Behavior, including shouting or singing, can increase both
the rate of viral shedding and the susceptibility to infection, and a
gathering in a closed room with poor ventilation involves consid-
erably higher risk than one outdoors (29, 30). Superspreading has
been broadly categorized in three main categories: biological,
behavioral/social, and opportunistic (31). However, these cate-
gories are not mutually exclusive, and superspreading is generally
a question of means (high infectiousness) and opportunity (social
and environmental context). In order for a superspreading event
to occur, a highly infectious individual must have access to a large
number of distinct contacts. In our model, the means is simulated
by assigning a distribution of individual infectiousness from a
gamma distribution. While we do not specifically model events, we
do allow many contacts in the random sector, which allows some
agents to cause large clusters of secondary infections.
Other recent studies modeling superspreading in COVID-19

have generally come to the conclusion that “cutting the tail” (i.e.,
targeted elimination of superspreaders) would be an effective

A B

Fig. 2. The impact of mitigation on modeled incidence. Simulation of epidemic trajectories with mitigation starting when 1% of the population has been
infected. In each panel, we show three trajectories corresponding to the unmitigated epidemic, the case where we completely restrict all regular contacts, and
the case where we restrict all random contacts. When superspreading is not present (i.e., k is infinite; A), the effect of eliminating regular and random
contacts is similar; however, when superspreading is a factor in transmission (i.e., when k = 0.1; B), the effect of eliminating random contacts is dramatically
enhanced. We did not consider mitigation by limiting close contacts as this would not be a credible mitigation strategy.

Fig. 3. Sensitivity of model results to dispersion factor k. When an epidemic
size of 1% is reached, a mitigation scheme consisting of restricting all random
contacts is initiated. We explore the epidemic trajectories for different values
of the overdispersion factor k. As k decreases (i.e., transmission heterogeneity
increases), eliminating random contacts has a progressively greater effect.
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means of mitigation (31–33). What is less clear is how to con-
struct policies to accomplish that and how to identify the situa-
tions and modes of contact which are likely to lead to
superspreading. By distinguishing between repeated and random
contacts, our model points to a feasible population-wide miti-
gation strategy. This is not possible in well-mixed (32), branching
process (31), or purely network-based models (33), which do not
incorporate different types of social contacts.
The social network underlying our model is of the “small-

world” variety (34), insofar as it is characterized by cliquishness
and short typical distances between nodes. Thus, any given node in
our model can typically be reached by moving through only a few
close and regular units. Block et al. (27) recently used small-world
networks to explore how mitigation strategies that alter typical
nodal distance and cliquishness affect the epidemic trajectory. In
the same vein, Leng et al. (35) studied the influence of social
bubbles on mitigation efforts using an agent-based model with
three levels of transmission: within households, between house-
holds in the same bubble, and lastly, community spread (akin to
our random sector). However, none of these papers addressed the
effect of superspreading on the mitigation strategies. Our results
lend support to mitigations based on cutting links between cliques
(27, 35) since the mixing of different close and regular groups
occurs primarily through encounters in the random sector. Our
work further shows that this kind of mitigation strategy is en-
hanced in a pandemic characterized by superspreading, as illus-
trated by Fig. 2B (compared with Fig. 2A).
Superspreading is a defining feature of the COVID-19 pan-

demic; a relatively small minority of the population causes the
majority of infections, while most do not even infect people in their
own household. As it is not possible to identify these super-
spreaders before transmission occurs, we here suggest an effective
alternative strategy, namely that policies should aim to reduce
contact diversity, rather than attempt to limit total contact time.
This means that mitigation policies should focus on limiting ac-
tivities that bring together many people who would otherwise not
routinely come into contact.

Methods
We developed an age-stratified, agent-based model with three sectors of social
contact through which the disease can be transmitted. Each agent is assigned to
one close and one regular unit, within which contacts are repeated over time,
and participates in random contacts drawn from the entire population.

Agents are stratified by age in 10-y intervals and assigned age-dependent
social activity levels ai, which are adjusted such that the observed contact

rates in an unmitigated scenario fit the age-dependent activity given in Ta-
ble 1 (21). Close units have some properties of households: an average of 2.3
members, adults are in the same or adjacent age bands, and children are taken
to be 20 to 40 y younger than adults in the same unit. The CV of the generated
close contact network sizes is 0.59. This may be compared with The European
Union Statistics on Income and Living Conditions Survey, which reports an av-
erage household size of 2.3 with a CV of 0.57 (36). Regular units have properties
of workplaces and schools: Agents 20 to 70 y of age are assigned to a Poisson-
distributed cluster with an average of eight agents. Agents under 20 y old are
assigned a regular unit of 18 members. Each of these units is also assigned two
adults aged 20 to 70. Agents older than 70 y are not assigned to a regular unit.
Random contacts are chosen from the entire population at random for each
infection attempt to simulate brief contacts without temporal correlation.

The progression of the disease is modeled in an SEIR framework, with
agents passing through each stage at a rate determined by the average dura-
tions given in Fig. 1. The exposed state is subdivided into four stages, each of
1.25 d in length, with a constant probability rate for transitioning from one
stage to the next. The first two of these stages comprise the gamma-distributed
preinfectious state (average total duration: 2.5 d, SD: 1.8 d). The next two stages
comprise the presymptomatic infectious state (average total duration: 2.5 d, SD:
1.8 d). This is followed by the infected state, in which agents are infectious and
symptoms may be displayed [average total duration: 3 d (37, 38), SD: 3 d].
Agents then pass into the recovered state where they are no longer infectious.
Simulations are run in a population of 1 million, randomly seeded with 100
infected agents. Agents are assigned a gamma-distributed infectivity β·si, where
si is drawn from a gamma distribution P(s), proportional to sk−1 exp(−k s) with
continuous s > 0 [Lloyd-Smith et al. (6)]. Here, k is the dispersion parameter,

which determines the CV of the distribution according to CV = 1=
̅̅̅
k

√
. The rate

constant β is calibrated to reproduce the observed initial exponential growth
rate of 23% per day of an unmitigated COVID-19 epidemic (22–24).

In each time step of size Δt (of 30-min duration), each infected agent has
an age-dependent probability for making contact to another agent; for each
such contact, a contact partner is drawn from one of the three social sectors.
The rate at which each of these sectors is chosen is based on a population-based
survey of mixing patterns in eight European countries by Mossong et al. (21).
That study found that the “home” sector made up 19 to 50% of all contacts,
while the “work/school” sector accounted for 23 to 37%, and the remaining
sectors amounted to 27 to 44%. For our model, we approximated this stratifi-
cation by letting one-third of all contacts fall into each of the three sectors, for
our base case. In SI Appendix, Fig. S2, we investigate the effect of varying these
sector-specific social contact frequencies. Potential targets for infection are se-
lected proportional to the age-dependent social activity listed in Table 1.

At each contact, the disease is transmitted with probability Pt = β si Δt. The
time step length is chosen small enough to ensure that the probability of in-
fection in any given time step is always less than one, even for the most in-
fectious individuals. We simulate mitigation strategies by not permitting
infection in a chosen fraction of contacts in one or more of the contact sectors.
Mitigation is initiated when the infected population reaches 1% of the total.
Whenmitigation by reduction of random contacts is performed, social networks
are kept fixed, and the same numbers of contacts are removed in super-
spreading and nonsuperspreading scenarios to facilitate direct comparison.

To analyze the impact of heterogeneous social activity, we assigned each
agent a separate activity parameter ai selected from an exponential distri-
bution (SI Appendix, Fig. S5). At each contact attempt from agent i to agent
j, if ai < aj then the contact proceeds as usual; however, if ai > aj, then the
contact proceeds with a probability aj/ai. This procedure yields an expo-
nential distribution of observed social activity, with more active agents be-
ing removed from the susceptible pool earlier in the epidemic.

Data Availability. Model code data have been deposited in GitHub (https://
github.com/NBIBioComplexity/SuperCoV) (39).
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Although COVID-19 has caused severe suffering globally, the efficacy of nonpharmaceutical
interventions has been greater than typical models have predicted. Meanwhile, evidence is mounting
that the pandemic is characterized by superspreading. Capturing this phenomenon theoretically requires
modeling at the scale of individuals. Using a mathematical model, we show that superspreading drastically
enhances mitigations which reduce the overall personal contact number and that social clustering increases
this effect.
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During the ongoing COVID-19 pandemic, news stories
have frequently appeared detailing spectacular events
where single individuals—so-called superspreaders—have
infected a large number of people within a short time frame
[1–3]. By now, there is substantial evidence that these are
not just singular events but that they reflect a marked
transmission heterogeneity [4–6], a signature feature of the
disease. In a well-mixed population, such heterogeneity has
little bearing on the trajectory of an epidemic, but, when
public sphere contacts are restricted, heterogeneity takes on
a decisive role, as shown in Ref. [7]. In this Letter, we
investigate the effects of transmission heterogeneity—i.e.,
superspreading—on mitigation strategies which rely on a
general reduction in social network size and probe the
influence of social clustering on such interventions.
The origins of superspreading can be diverse, depending

on the characteristics of the pathogen in question.
Superspreading events may occur due to circumstances
and behavior as well as biology. Even medical procedures,
such as intubation and bronchoscopy, which facilitate the
production of aerosols [8], can lead to superspreading
events in respiratory diseases. However, the most straight-
forward model of superspreading is that some individuals
simply shed the virus to a much greater extent than the
average infected person. For COVID-19, this ”biological
superspreader” phenomenon has some traction and is
supported by the observation that household transmission
is limited, despite the relatively high average infectiousness
of COVID-19 [9–11].

Superspreading is not a phenomenon which is particular
to SARS-CoV-2 but has been observed in connection with
several other pathogens, including coronaviruses such as
SARS [12,13] and MERS [14], as well as in diseases such
as measles [15] and Ebola virus disease [16,17]. Pandemic
influenzas such as the 1918 Spanish flu, on the other hand,
are believed to be far more “democratic” [18]. The
heterogeneity of transmission is usually quantified using
the Gamma distribution [15]. This is the origin of the
dispersion parameter or k value, which determines
the fraction of infectious individuals who account for the
majority of infections (Fig. 1). Smaller k means greater
heterogeneity—in fact, when k is small (jkj ≪ 1), it
approximates the fraction of infected individuals who give
rise to 80% of infections. For COVID-19, which is believed
to have a k value of perhaps 0.1 [4–6], the most infectious
10% of individuals thus cause approximately 80% of
infections.
The fundamental difference between a homogeneously

spreading disease and a highly heterogeneous one is
reflected in the infection networks they give rise to, as
visualized in Fig. 1. When only a small fraction of
individuals cause the bulk of infections, a reduction in
social network connectivity amounts to decreasing the
likelihood that a superspreader infects another super-
spreader and thus propagates the disease. Consequently,
in a network characterized by superspreading [Fig. 1(a)],
the outbreak can be stopped by cutting only a few select
edges. Not so for the network in Fig. 1(c).
In this Letter, we present a model of superspreading

phenomena which assumes that the driving force is a
biological heterogeneity in infectiousness. We implement
this as an agent-based model with contact networks and are
also able to capture much of the phenomenology in
analytical formulas. In the model, N agents are placed
as the nodes in a contact network. We investigate different
types of network, but our base case is the Erdös-Renyi
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network, which is characterized by a Poisson degree
distribution and an absence of clustering.
At initialization, the infectiousness of each individual is

drawn from a Gamma distribution [15]. As such, it is an
innate property of each individual. The possible states of
each individual are susceptible, exposed, infected, and
recovered (for details, see Supplemental Material [19],
which includes Refs. [20–27]). At each time step, each
individual randomly selects one of its contacts to interact
with, meaning that only a subset of the network is active at
any given time. While a link between an infectious and a
susceptible individual is active, there is a constant prob-
ability of infection per unit of time, as determined by the
individual infectiousness.
This basic setup also lends itself to analytic calcula-

tions, as long as saturation effects can be ignored.
Consider a single infected person who has c contacts,
who are all assumed susceptible. First, the infectiousness r
of the individual is drawn from a gamma distribution
PIðrÞ with dispersion parameter k and mean μ. The
distribution of the reproductive number R of an individual
with a known infectiousness r and degree (i.e., connec-
tivity) c is given by

PðR; r; cÞ ¼
�
c
R

�
ð1 − e−r=cÞRðe−r=cÞðc−RÞ: ð1Þ

Taking the variability in infectiousness into account, the
overall distribution of R becomes

PðR; cÞ ¼
Z

r¼∞

r¼0

drPIðrÞPðR; r; cÞ: ð2Þ

In the limit of infinite connectivity, corresponding to a
well-mixed population, this becomes a negative binomial
distribution. That particular case has been studied in
Ref. [15]. Given a contact network and a corresponding
degree distribution PCðcÞ—for example, a Poisson dis-
tribution in the case of an Erdös-Renyi network—
the connectivities can be summed over to yield a
distribution of individual reproductive numbers, PðRÞ ¼P

c PCðcÞPðR; cÞ.
As reflected in the equations above, the actual number of

secondary infections depends not only on biological
infectiousness. In Figs. 2(a) and 2(b), we use this analytical
framework to explore how the number of personal contacts
affects the resultant distribution of infections. Without
superspreading [Fig. 2(a)], a reduction in the contact
number has a very modest effect and the distributions
overlap. When the heterogeneity is at a COVID-like level
[Fig. 2(b)], it is quite a different story. Here, a decrease in
mean connectivity has a considerable effect, and mitigation
suddenly looks feasible. Previously, another mitigation
strategy which benefits from superspreading was suggested
by Ref. [15], with the crucial difference that it relies on
prior identification and targeting of superspreaders, in
contrast to the broad reduction in mean connectivity
explored here.
To quantify the sensitivity of the epidemic to social

network size, we consider the basic reproductive number

FIG. 1. The characteristics of superspreading. (a) Simulated infection network characterized by superspreading, with a dispersion
parameter k ¼ 0.1, within what has been observed for COVID-19 [4,5]. Superspreaders appear as hubs, while most individuals are
“dead ends,”meaning that they do not transmit the disease. The epidemic mainly grows by spreading from one superspreader to the next.
(b) The dispersion parameter k provides a measure of superspreading, with lower k values corresponding to a greater heterogeneity. With
a k value of 0.1 for COVID-19, approximately 10% of the population has the infectiousness to cause 80% of transmission. SARS and
MERS are also characterized by a significant heterogeneity [14,15], while pandemic influenza is believed to be more homogeneous [18].
(c) Simulated infection network without superspreading (all individuals have equal infectiousness). Here, most individuals spread the
disease to a few others, leading to a branched structure.
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R0, meaning the average number of infections that each
infected person causes in a situation where all contacts are
still susceptible. In Fig. 2(c), the R0 is given as a function of
the dispersion parameter k and the average contact number.
The epidemic is evidently much more sensitive to reduc-
tions in contact numbers when the transmission hetero-
geneity is high. A mitigation in which the average number
of contacts goes from being unrestricted, down to about 10,
causes a reduction in R0 which lowers both the peak and
total number of persons infected during the course of the
epidemic (the attack rate). The overall trajectory of a

homogeneous disease is largely unaffected by social con-
nectivity [Fig. 3(a)], whereas a heterogeneous epidemic is
very sensitive [Fig. 3(b)]. We find a particularly large
sensitivity to a reduction of contact number from 15 down
to 10 [Fig. 3(b)], indicating a critical threshold for disease
spreading, in line with the threshold indicated by the
dashed curve in Fig. 2(c).
Crucially, a reduction in contact time is not necessary

when the disease is characterized by superspreading. What
counts is rather a reduction in contact diversity, meaning the
number of different persons with whom you come into
contact during the time you are infectious [7]. This differs
fundamentally from SIR models, where contact time and
diversity are not differentiated between [28]. In our model,
a reduction in the size of an individual’s social circle is not
accompanied by a reduction in contact time, since the same
number of contact events is maintained, with each remain-
ing person being contacted more often. Thus, a mildly
infectious individual will not experience appreciable sat-
uration by a reduction in contact diversity, whereas a
superspreader will be highly limited by the resultant local
saturation.
So far, our analysis has been based on the Erdös-

Renyi network, which is largely devoid of clusters.
This was chosen as a clean setting in which to probe
how social connectivity affects superspreading. However,
any realistic social network will involve clusters of
people who know each other [29–31]—after all, your
colleagues know each other as well as knowing you. It
is thus natural to ask whether such cliquishness impacts
superspreading. In Fig. 4, we compare a cluster-free net-
work to one characterized by a high degree of clustering
[32]. See Supplemental Material [19] for the algorithm used
to generate this network.
The attack rate of the disease is clearly lowered by

clustering, in general (Fig. 4), but the effect is especially
significant when heterogeneity is high. The mechanism
behind this is that of local saturation. If a superspreader

(a) (b)

FIG. 3. The epidemic trajectory of a heterogeneous disease is
highly sensitive to mitigation. Epidemic trajectories as a function
of the number of people that each person interacts with during an
infectious period. (a) Time evolution in the absence of any
infection heterogeneity. (b) Time evolution for a disease
with dispersion parameter k ¼ 0.1, roughly representative of
COVID-19.

(a)

(b)

(c)

FIG. 2. The reproductive number. Distributions of individual
reproductive number R and value of R0 for different dispersion
parameters and number of social contacts during an infectious
period. This figure is based on the analytical framework described
in the main text. See Supplemental Material [19] for details on the
calculation. (a) Distribution of R for a disease where all
individuals have equal infectiousness. (b) Distribution of R for
a disease characterized by superspreading (dispersion parameter
k ¼ 0.1). (c) Basic reproductive number R0 as a function of social
connectivity and dispersion. The dashed line represents R0 ¼ 1.
These calculations take into account the Poisson distributed
contact number and the fact that each infectious person will
have one insusceptible person in their network (the individual
from whom the infection originated), even when computing the
basic reproductive number. Details on an analytic computation of
R0 for fixed (δ-distributed) contact number can be found in
Supplemental Material [19].
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infects a significant portion of his network, there is a risk
that one of these individuals will turn out to be another
superspreader. However, if there is clustering, a large part of
this second superspreader’s network will already have been
exposed, and the second superspreader does comparatively
little harm.
In the literature, there exists ample evidence that social

heterogeneity, implemented either through wide distribu-
tions of social activity [28] or through social networks with
broad degree distributions [23–26], has a significant effect
on the course of an epidemic. Notably, epidemics tend to
attain lower final sizes in networks with broad degree
distributions [23,24,26,33,34] and in clustered networks
[26]. While the effects of varying degree distributions as
well as clustering were explored in Ref. [26], mitigation by
contact network reduction was not investigated, and no
variation in individual infectiousness was assumed. As we
have shown, the effects of biological superspreading on
mitigation are profound in networks with a representative
mean. In Supplemental Material [19], we simulate an
epidemic on a much more socially heterogeneous (fat-
tailed) network based on data from Ref. [27] and find that
our conclusions are robust to alterations in the degree
distribution.
Beyond the mitigation strategies discussed here, which

rely on broad reductions in contact numbers, more targeted

strategies are possible—most prominently, test-trace-
isolate (TTI) strategies. While an in-depth treatment of
the implications of superspreading for TTI strategies is
beyond the scope of this Letter, our simulations do imply
that backward contact tracing (see, e.g., [35]) is more
effective in the presence of superspreading. When encoun-
tering an infected individual, this strategy relies on asking
“Who was this person infected by, and who else might that
person have infected?” rather than simply asking “Who
might this person have infected?,” as one would in forward
tracing schemes. We can estimate the efficacy of backward
tracing in our simulations by measuring how many sec-
ondary cases each infected person allows one to trace, with
and without superspreading. In a well-mixed scenario, we
find the answer to be 2.7 without superspreading (k ¼ ∞)
and 24 with COVID-like superspreading (k ¼ 0.1). Of
course, such a backward contact tracing scheme may run
into practical limitations, especially regarding the temporal
constraints arising from a disease with a relatively short
generation time. Nevertheless, these results seem to indi-
cate that transmission heterogeneity may profoundly in-
fluence TTI mitigation strategies as well.
Superspreading is now a well-established phenomenon

for a number of diseases [15], including COVID-19 [4,5].
In spite of this, the extent to which circumstance and
person-specific properties contribute to the observed over-
dispersion in COVID-19 is still not clear. Superspreading
can also have a social component, exemplified by highly
social individuals, who come into contact with a large
number of people in a limited time frame. However, such
individuals would also be superreceivers, a trait which
impacts the epidemic even in the absence of mitigation
[36,37]. In any case, ability as well as opportunity is
necessary for superspreading to occur. In our model, we
have focused on interindividual variation in ability to
produce and transmit virus. This simplification is supported
by cases of one person infecting many people at different
times and locations [38] and by the observation that most
infected people do not even infect their spouse [9–11].
However, more complex models could incorporate realistic
social heterogeneity as well as large temporal variations in
viral load [39,40]—effects which we have not probed.
Furthermore, studies which address event-driven super-
spreading as well as contact tracing in the presence of
superspreaders are also needed.
Regardless of the origin of superspreading, we empha-

size the particular fragility of a disease in which a major
part of infections are caused by the minority. If this is the
case, the disease is vulnerable to mitigation by reducing the
number of different people that an individual meets within
an infectious period. The significance is clear: Everybody
can still be socially active but generally only with relatively
few—on the order of ten persons. Importantly, our study
further demonstrates that repeated contact with intercon-
nected groups (such as at a workplace or in friend groups) is

(a)

(b)

FIG. 4. Final attack rate (total fraction of the population
infected) as a function of network connectivity and transmission
heterogeneity. In (a), we investigate an Erdös-Renyi network,
with the same degree distribution as in Fig. 2. (b) explores a
network where each person is assigned to two groups of people,
leading to a highly clustered network. The black regions indicate
conditions where the disease cannot spread in the population. On
the right-hand side, small fragments of the networks in question
are shown. Each of the two contour plots in this figure are based
on 1500 runs of the model. A detailed description of the
algorithm used to generate the clustered network is included
in Supplemental Material [19].
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comparatively less damaging than repeated contacts with
independent people.
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The SARS-CoV-2 ancestral strain has caused pronounced super-
spreading events, reflecting a disease characterized by overdisper-
sion, where about 10% of infected people causes 80% of infections.
New variants of the disease have different person-to-person varia-
tions in viral load, suggesting for example that the Alpha (B.1.1.7)
variant is more infectious but relatively less prone to superspread-
ing. Meanwhile, mitigation of the pandemic has focused on limiting
social contacts (lockdowns, regulations on gatherings) and decreas-
ing transmission risk through mask wearing and social distancing.
Using a mathematical model, we show that the competitive advan-
tage of disease variants may heavily depend on the restrictions im-
posed. In particular, we find that lockdowns exert an evolutionary
pressure which favours variants with lower levels of overdispersion.
We find that overdispersion is an evolutionarily unstable trait, with a
tendency for more homogeneously spreading variants to eventually
dominate.
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One of the major features of the coronavirus pandemic has1

been overdispersion in transmission, manifesting itself2

as superspreading. There is evidence that around 10% of3

infected individuals are responsible for 80% of new cases (1–4

4). This means that some individuals have a high personal5

reproductive number, while the majority hardly infect at all.6

A recent study has shown this is reflected in the distribution of7

viral loads which is extremely wide, with just 2% of of SARS-8

CoV-2 positive individuals carrying 90% of the virus particles9

circulating in communities (5). Overdispersion is in fact a key10

characteristic of certain diseases (6–8). However, this is by no11

means a universal signature of infectious respiratory diseases.12

Pandemic influenza, for example, is characterized by a much13

more homogeneous transmission pattern (9–11).14

As an emerging virus evolves, its transmission patterns may15

change and it may become more or less prone to superspreading.16

The Alpha (B.1.1.7) variant of SARS-CoV-2 has been reported17

to be ∼ 50% more transmissible than the ancestral SARS-CoV-18

2 virus under varying degrees of lockdown (12–14). Meanwhile,19

others have shown that the Alpha variant possesses a higher20

average viral load and a reduced variability between infected21

persons, compared to the ancestral strain (15, 16). It remains22

to be seen how this reduced variability affects the transmission23

patterns of the virus.24

The altered viral load distributions seen in persons in-25

fected with the Alpha variant have also been investigated at26

the level of individual mutations. The spike protein of the27

Alpha variant prominently features the N501Y substitution28

(asparagine replaced by tyrosine at the 501 position) as well29

as the ∆H69/V70 deletion (histidine and valine deleted at30

the 69 and 70 positions). Investigators found that the viral31

load is, on average, three times as great for the Alpha variant 32

compared with the ancestral strain (16). Furthermore, viral 33

load distributions in samples taken from persons infected with 34

a variant with the ∆H69/V70 show a lower variance, whether 35

or not they also have tyrosine at the 501 position. However, 36

the difference in variance was most pronounced for those sam- 37

ples which had the deletion as well as the 501Y mutation. 38

Similarly, an analysis of samples with the N501Y mutation 39

show that they have a higher median viral load as well as a 40

substantially diminished variance compared to those without 41

it. Using data from Ref. (15), we calculate that the viral loads 42

in samples of the Alpha variant are associated with a lower 43

coefficient of variation of approximately 2, compared to 4 for 44

the ancestral strain. Importantly, the exact relation between 45

viral load and infectiousness is not well understood; however, 46

a higher viral load is logically expected to increase the risk of 47

disease transmission. By this logic, the decreased variability 48

in the viral load for the Alpha variant may translate into a 49

reduced overdispersion in transmission. 50

In this paper, we use a mathematical model to study the 51

competition between idealized variants which differ in their 52

level of overdispersion (k) and their mean infectiousness. Our 53

focus is on exploring whether overdispersion confers any evo- 54

lutionary (dis)advantages, and whether non-pharmaceutical 55

interventions which restrict social network size and transmis- 56

sibility change the fitness landscape for variants with varying 57

degrees of overdispersion. While it is evident that a higher 58

mean infectiousness confers an evolutionary advantage to an 59

emerging pathogen, it is not a priori obvious if a competitive 60
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advantage can be gained by specifically altering the variability61

in infectiousness (while keeping transmissibility unchanged).62

Our recent studies have shown that the presence of overdisper-63

sion makes a pandemic far more controllable than influenza64

pandemics when mitigating by limiting non-repetitive contacts65

(17) and personal contact network size (18). We therefore spec-66

ulate that restrictions which alter social contact structure may,67

conversely, provide a fitness advantage to variants with more68

homogeneous transmission, and may thus play a role in viral69

evolution.70

Across several diseases, individual variations in infectious-71

ness have been approximated by a Gamma distribution (6)72

characterized by a certain mean value and a dispersion pa-73

rameter known as k, which is related to the coefficient of74

variation (CV ) through CV = 1/
√
k. In the simplest of cases75

(a well-mixed population), infection attempts are modeled as76

a constant-rate (Poisson) process, which leads to a personal77

reproductive number which follows a negative binomial distri-78

bution. The dispersion parameter k characterizes the degree of79

transmission heterogeneity; a lower k corresponds to greater80

heterogeneity. For small values of k, it approximately corre-81

sponds to the fraction of infected individuals responsible for82

80% of new infections The value for the SARS-CoV-2 ancestral83

virus is around 10%, corresponding to a k-value of approxi-84

mately 0.1. Other coronaviruses are also prone to superspread-85

ing, with the k-values of SARS-CoV-1 and MERS estimated86

at 0.16 (6) and 0.26 (19), respectively. To explore questions of87

how such overdispersion affects fitness and pathogen evolution,88

we use an agent-based model of COVID-19 spreading in a89

social network, as originally developed in Ref. (18).90

Overdispersion in personal reproductive number – i.e. su-91

perspreading – is a phenomenon that requiresmeans (biological92

infectiousness) as well as opportunity (social context). Super-93

spreading can have diverse origins, ranging from purely be-94

havioural to biological (8, 20). However, a recent meta-review95

(21) compared the transmission heterogeneity of influenza96

A (H1N1), SARS-CoV-1 and SARS-CoV-2 and found that97

higher variability in respiratory viral load was closely associ-98

ated with increased transmission heterogeneity. This suggests99

that biological aspects of individual diseases are decisive in100

determining the level of overdispersion, and thus the risk of101

superspreading.102

Initial survival of variants103

The words fitness and competitive advantage may take on104

several meanings in an evolutionary context. For our purposes,105

it is especially important to distinguish between the ability106

of a pathogen to avoid stochastic extinction and to reproduce107

effectively in a population.108

To quantify the ability to avoid stochastic extinction we109

use a branching process to simulate an outbreak of a variant110

with a given level of overdispersion in a naive population. We111

then record whether it survives beyond the first 10 generations112

of infections, as a measure of the ability of that variant to take113

hold. Repeating these simulations multiple times allows us114

to compute the survival chance of each variant as a function115

of its infectiousness and overdispersion, in the absence and116

presence of mitigation (Fig. 1). Since we are dealing with a117

few related quantities, some definitions must be made. By118

the basic reproductive number (R0) we mean the average num-119

ber of new infections which each infected person gives rise to120
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Fig. 1. Initial survival chance depends strongly on overdispersion and mod-
erately on lockdown status. A) The epidemic spreads in an unrestricted setting
(homogeneous mixing contact structure) B) The epidemic spreads in a situation with
limited social connectivity (modeled as an Erdos-Renyi network of average connec-
tivity 10). The survival chance is computed by simulating several outbreaks, each
starting from a single infected individual in a susceptible population. This initial in-
dividual is infected with a variant of a given overdispersion. For each outbreak, the
variant is recorded as having survived if it does not go extinct within 10 generations.
The dashed white line indicated parameters for which the variant has a 5% chance
of surviving. The biological mean infectiousness (horizontal axis) has been scaled
such that it equals the basic reproductive number (R0) in the homogeneous mixing
scenario of panel A. For details on these calculations, see the Materials and Methods
section.

when all contacts are susceptible. This is in contrast to the 121

effective reproductive number (known variously as R, Rt and 122

Re), which is affected by population immunity. Note that R0 123

as well as Re are context dependent, since behaviour (and 124

mitigation strategies) will affect e.g. the number of contacts 125

that a person has and thus the reproductive number. Another 126

parameter entirely is the (biological) mean infectiousness, by 127

which we mean the rate at which transmission occurs when an 128

infected person is in contact with a susceptible person. This is 129

a property of the disease and not of the social environment. In 130

Fig. 1, the independent variables are thus the mean infectious- 131

ness and the dispersion parameter, both of which are assumed 132

to be properties of the disease. The details of the calculation 133

can be found in the Materials and Methods section. 134

In the unmitigated scenario (Fig. 1A), the procedure is rel- 135

atively straightforward. A single infected individual is initially 136

introduced, with a personal reproductive number z drawn from 137

a negative binomial distribution PNB[Z;R0, k] with mean value 138

R0 and dispersion parameter k. Thus, this individual gives 139

rise to z new cases, and the algorithm is reiterated for each of 140

these subsequent infections. 141

In the case of a lockdown scenario, in terms of restrictions 142

of the number of social contacts (Fig. 1B), the algorithm is 143

slightly more involved. In this case, a degree c (the number of 144

contacts) is first drawn from a degree distribution (in this case 145
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a Poisson distribution, to mimic an Erdös-Renyi network). A146

biological reproductive number ξ (the infectiousness) is then147

drawn from a Gamma distribution with mean value R0 and148

dispersion parameter k. The actual personal reproductive149

number z is then drawn from the distribution150

P (z; ξ, c) =
(
c

z

)(
1− e−ξ/c)z (e−ξ/c)(c−z)

. [1]151

This reflects that the personal reproductive number z is, natu-152

rally enough, limited by the number of distinct social contacts153

c. This algorithms is then reiterated for each of the z new154

cases.155

Similar results can be obtained analytically by considering156

the probability that an infection chain dies out in infinite157

time. Let that probability be d and let pi, i ∈ {0, 1, . . . } be158

the distribution of personal reproductive number (i.e. pi is159

the probability that a single infected individual will infect i160

others). Then the extinction risk d is the sum:161

d = p0 + p1d+ p2d
2 + . . . [2]162

where the first term on the right hand side is the extinction163

risk due to the index case producing no new infections, the164

second term is the case where the index case gives rise to165

one branch of infections which then dies out (this being the166

reason for the single factor of d in the second term) and so on.167

Since each new branch exists independently of the other, the168

extinction events are independent and the probabilities may169

be combined by simple multiplication as in Eq. Eq. (2).170

We find that the survival chance depends very strongly171

on overdispersion (Fig. 1), with more homogeneous variants172

(k ∼ 1) having a good chance of survival while highly overdis-173

persed variants (k ≤ 0.1) are very unlikely to survive beyond174

10 generations. This finding fits well with the general pat-175

tern of overdispersed spreading, namely that many individuals176

hardly become infectious while a few pass the disease onto177

many others. The uneven distribution of infectiousness makes178

heterogeneous diseases more fragile in the early stages of an179

epidemic, and thus more prone to stochastic extinction.180

For the case of homogeneous mixing (Fig 1A) and the num-181

ber of generations tending to infinity, Lloyd-Smith et al (6)182

performed a similar calculation using the generating function183

method described in Eq. 2. For a disease with R0 = 3 and a k184

value of 0.16 (similar to what they estimated for SARS-CoV-1),185

the survival chance was found to be 24%. Our model yields186

the same figure in the unmitigated connectivity→∞ limit.187

To assess the effect of lockdown-like non-pharmaceutical188

interventions on the initial survival chances of a pathogen, we189

performed an analogous computation in a socially restricted190

setting (Fig. 1B). Compared with the unmitigated scenario of191

Fig. 1A, it can be seen that the mitigation has an effect on the192

survival chance, affecting highly overdispersed variants (small193

k) much more than their more homogeneous counterparts194

(with the same mean infectiousness). This result is parallel195

to the effect of lockdown-like interventions on the competitive196

advantage of a variant, which we explore in the next section.197

In Ref. (20), the authors study stochastic extinction of198

a superspreading disease under a targeted intervention they199

call cutting the tail. They introduce a cutoff value Ncutoff200

for the personal reproductive number, and if a person has a201

personal reproductive number z ≥ Ncutoff, a new z is drawn202

until one below the threshold is obtained. Since the disease is203

highly heterogeneous, this process is analogous to ”removing” 204

a potential superspreading event and replacing it with a much 205

lower personal reproductive number (typically z = 0). This is 206

exactly why the intervention is rightly called targeted. Their 207

approach is thus based on viewing superspreading entirely as 208

an event-based phenomenon, where one can directly remove 209

superspreading events above some threshold size, and instead 210

let the individuals take part in other less risky events. Our 211

approach, on the other hand, assumes superspreading to be 212

due to a combination of high individual biological infectious- 213

ness and opportunity, e.g. a large number of social contacts. 214

These two viewpoints are complementary in obtaining a com- 215

prehensive description of superspreading phenomena, rather 216

than mutually exclusive (17). 217
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Fig. 2. Simulations of the emergence of a new variant. An initially dominant
(”ancestral”) strain with dispersion parameter k = 0.1 (red) has initially infected 1%
of the population. The figure follows the emergence of a new variant (purple), which
has the same biological mean infectiousness, but is more homogeneous (k = 0.2).
Initially, 0.01% of the population is infected with the emerging variant. The two variants
exhibit perfect cross-immunity. The initial scenario is a partially locked-down society
(modeled as an Erdös-Renyi network with 10 contacts/person). When the new variant
reaches 20% of all current infections (around day 65), the lockdown is completely
lifted (modeled by a homogeneous mixing contact structure with the same total social
time available per person). A) Incidence of each strain as a function of time since
the new variant was introduced. Notice that the new variant spreads approximately
exponentially until day 65 (see also panel B), whereas the ancestral strain stays
at about 1% incidence. When restrictions are lifted, both surge. B) Same data as
panel A, but plotted on a logarithmic scale. In this plot, exponential growth shows
up as a straight line, and it is thus clear that the new variant spreads approximately
exponentially during the lockdown phase. C) The relative proportions of the old
and new variants. In the locked-down society, the new variant has a distinct fitness
advantage, as revealed by its increasing share of infections. Once restrictions are
lifted around t = 65 days, the fitness advantage is lost and the two variants spread
equally well.
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Competitive advantage is determined by context218

We now turn to the competition between two variants which219

have already managed to gain a foothold, and so have moved220

past the initial risk of stochastic extinction. This is a separate221

aspect of “fitness”, distinct from the initial survival ability222

described in the last section. Fig. 2 explores the competi-223

tion between two strains which differ only in their level of224

overdispersion. The ancestral variant has a broad infectious-225

ness distribution (k = 0.1) while the other – the new variant –226

is more narrowly distributed (k = 0.2). In the initial partial227

lockdown scenario, each person is only allowed contact with228

10 others, At first, the fraction of infections due to the new229

variant is observed to grow rapidly. When it reaches a 20%230

share of active infections, around day 65, the lockdown is231

lifted (simulated by a shift to a homogeneous mixing contact232

structure). Naturally, this more permissive contact structure233

causes a surge in both variants (Fig. 2c). However, the frac-234

tion of infections owing to each variant suddenly stabilizes,235

indicating that the more homogeneous new variant has lost236

its competitive advantage in the unmitigated scenario.237

This sudden loss of competitive advantage demonstrates238

conceptually that the fitness of variants with different pat-239

terns of overdispersion depends on context, in the form of240

non-pharmaceutical interventions or the absence thereof. To241

quantify this dependence, we separately simulate the spread242

of several pathogen variants, each with its own specified mean243

infectiousness and dispersion parameter k, and measure the244

resulting basic reproductive numbers. In each case we let the245

pathogen spread in an Erdös-Renyi network with a mean con-246

nectivity of either 10 or 50, to simulate scenarios with either247

a restricted or fairly open society. The results are shown in248

Fig. 3, where the competitive (dis)advantage of each variant249

is plotted as a function of its a given biological mean infec-250

tiousness and dispersion. The infectiousness is given relative251

to the SARS-CoV-2 ancestral strain which is set to average252

infectiousness = 1 and has dispersion k = 0.1. This average253

infectiousness of 1 corresponds to a basic reproduction number254

of R0 = 3 in a well-mixed scenario, representative of COVID-255

19 (22). In the socially restricted case with only 10 contacts,256

the competitive advantage depends strongly on the dispersion257

parameter, as evidenced by the contour lines in Fig. 3A. The258

dashed white contour in the figure indicates variants which259

spread as well as the ancestral strain. Concretely, a variant260

with just half the biological infectiousness of the ancestral261

strain has no substantial competitive disadvantage, provided262

it is sufficiently homogeneous (k & 1.0). In the more socially263

connected scenario (Fig. 3B), the competitiveness of a strain264

is observed to depend less strongly on dispersion, and is pri-265

marily determined by biological mean infectiousness. Viewed266

more broadly, these results imply that an observed increase267

in R0 for an emerging variant may be due to a combination268

of changes in transmission patterns (k) and biological mean269

infectiousness270

So far, our focus has been on mitigation strategies which271

rely on reductions in contact network. However, even when272

societies reopen by allowing contact with an increased num-273

ber of individuals, non-pharmaceutical interventions which274

decrease transmission risk per encounter may be in force.275

These may include face masks and regular testing. In the276

Supporting Information, we show that interventions which277

decrease the transmission risk per encounter (i.e. per unit of278

contact time) in fact decrease the competitive advantage of 279

more homogeneous variants. These types of interventions thus 280

have essentially the opposite effect, relative to strategies which 281

reduce social connectivity. 282
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Fig. 3. Relative fitness of variants. The color indicates the basic reproductive
number that each variant exhibits under the given circumstances. The dashed white
line indicates variants which have the same fitness as the ancestral strain, which is
estimated to have k = 0.1. The biological mean infectiousness (horizontal axis) has
been scaled such that it equals the basic reproductive number (R0) in a homogeneous
mixing scenario. A) Spread of the disease in a connectivity 10 Erdös-Renyi network,
corresponding to a partial lockdown. B) Spread of the disease in a connectivity 50
Erdös-Renyi network, corresponding to a mostly open society.

Interventions exert selection pressure 283

As the observed differences in the viral load distributions of 284

the Alpha (B.1.1.7.) variant and the ancestral strain suggest, 285

overdispersion is not a fixed property, but rather one that may 286

evolve over time. Furthermore, the SARS-CoV-2 pathogen 287

has been estimated to mutate at a rate of approximately 2 288

substitutions per genome per month (23), translating to about 289

one mutation per three transmissions. In Fig. 4, we explore 290

the consequences of overdispersion as an evolving feature of 291

the pathogen. In these simulations, the virus has a mutation 292

probability of 1/3 at each transmission. When it mutates, the 293

overdispersion factor is either increased (by a factor of 3/2) or 294

decreased (by a factor of 2/3). Thus, we assume no drift on 295

the microscopic scale, but one may arise macroscopically due 296

to selection pressure from the environment. It should of course 297

be noted that while the assumed mutation rate is realistic for 298

SARS-CoV-2, many mutations will be neutral and only very 299

few mutations will affect transmission dynamics. As such, the 300

present model will likely overestimate the magnitude of the 301

drift in overdispersion. It is however conceptually robust – 302

decreasing the mutation rate merely slows down the drift, but 303

the tendency remains. 304

In our simulations, we find that there is always a tendency 305
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for overdispersion to decrease (i.e. for the k value to increase),306

leading to more homogeneous disease transmission. This makes307

sense, since we have already established that heterogeneous308

disease variants are more likely to undergo stochastic extinc-309

tion (Fig. 1) and that they have a competitive disadvantage310

as soon as contact structures are anything but well-mixed311

(Fig. 3). In the absence of any interventions, the tendency312

to evolve towards homogeneity is quite weak (Fig. 4A), but313

when a partial lockdown is instituted, the picture changes314

dramatically and the k value increases exponentially. The315

conclusion is thus that lockdowns exert a selection pressure on316

the virus when it comes to overdispersion, towards developing317

a less superspreading-prone phenotype.318

One may of course object that the scenarios of Fig. 4A (un-319

restricted spread) and 4B (partial lockdown) are not directly320

comparable, since the epidemic in 4A unfolds much more321

rapidly. For this reason, we have included the scenario shown322

in 4C, where the transmission rate per encounter has been323

lowered, but social structure is unrestricted. The transmission324

rate is lowered such that the initial daily growth rates in Fig.325

4B and 4C are identical (11%/day averaged over the first 14326

days). This slightly increases the growth of k over the course of327

the epidemic, but to a much lower level than in the lockdown328

scenario, demonstrating that it is indeed the restriction of329

social network that provides the selection pressure driving k330

upwards.331

Discussion332

With this paper we have demonstrated that the relative success333

and survival of mutants of a superspreading disease depends on334

the type of mitigation strategies employed within a population.335

The choice of a certain mitigation strategy may well amount to336

selecting the next dominant variant. If, for example, a simple337

lockdown is enacted while still allowing people to meet within338

restricted social groups, the evolution of more homogeneously339

spreading disease variants may become favoured.340

The spreading of an emerging virus in a human society is341

a complex phenomenon, where the actual reproductive num-342

ber depends on sociocultural factors, mitigation policies and343

self-imposed changes in the behaviour of citizens as awareness344

grows in the population. The spread of a disease such as345

COVID-19 cannot simply be characterized by a single fitness346

quantity like the basic reproductive number R0, but will also347

depend on the heterogeneities of transmission patterns within348

the population. If schools are open, mutants which spread349

more easily among children may be selected for, whereas rapid350

self-isolation of infected individuals may tend to favor vari-351

ants which temporally separate disease transmission from the352

development of symptoms. We have focused on modeling the353

evolutionary effects of biological superspreading in the context354

of mitigations such as lockdowns which have been implemented355

globally during the COVID-19 pandemic. We found that such356

lockdowns will favour the emergence of homogeneously spread-357

ing variants over time.358

Our findings also have implications for the assessment of359

new variants. They highlight the importance of taking overdis-360

persion into account when evaluating the transmissibility of an361

emerging variant. We have shown that the disease can spread362

more effectively not only by increasing its biological mean363

infectiousness, but also by changing its pattern of transmission364

to become more homogeneous. Practically, this means that365

transmission data obtained under even partial lockdown can 366

lead to an overestimation of the transmissibility of an emerging 367

variant. We thus call for an increased focus on measuring the 368

overdispersion of variants, as this may be critical for estimat- 369

ing the reproductive number of new variants. These estimates 370

in turn determine the required vaccination levels to reach herd 371

immunity. 372

0.0

0.5

1.0
D

is
pe

rs
io

n 
fa

ct
or k

Infected 

0%

50%

100%

0.0

0.5

1.0

D
is

pe
rs

io
n 

fa
ct

or k

Infected 

0%

50%

100%

0 25 50 75 100 125
Time [days]

B

A

C

0.0

0.5

1.0

D
is

pe
rs

io
n 

fa
ct

or k

Infected 

0%

50%

100%

Fig. 4. Evolution of overdispersion is driven by imposed restrictions. In these
simulations, random mutations occur which alter the level of transmission overdisper-
sion in a non-directed fashion. However, external evolutionary pressures are seen to
drive the disease towards developing more homogeneous spreading patterns. The
filled red curve shows the combined incidence of all strains. The purple curve shows
the average dispersion factor k in the infected population (with higher k corresponding
to a more homogeneous infectiousness). The shaded purple area shows the 25% and
75% percentiles of the distribution of dispersion factors in the infected population. A)
The pathogen evolves in an open society with no restrictions imposed (homogeneous
mixing contact structure). B) Partial lockdown, with an average social network connec-
tivity restricted to 15 persons. C) No restrictions on social network, but infectiousness
lowered by other means (e.g. face masks).

Materials and Methods 373

We use an individual-based (or agent-based) network model of 374

disease transmission as originally developed in Ref. (18). In this 375

section, we present only a brief overview of the basic model, and 376

refer to Ref. (18) for a more detailed description. We then go on 377

to describe in detail the simulations and calculations which are 378

particular to this manuscript. 379

The disease progression model consists of four overall states, 380

Susceptible, Exposed, Infected and Recovered. The exposed state 381

has an average duration of 2.4 days and is subdivided into two 382

consecutive states with exponentially distributed waiting times (i.e. 383
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having constant probability rate for leaving the state) of 1.2 days384

each, thus constituting a gamma distributed state when viewed as385

a whole. The infectious state is divided into two states as well, of386

1.2 and 5 days in duration, respectively.387

Each individual in the model is associated with a fixed social388

network. Only a subset of edges are activated in each timestep, to389

simulate a contact event. In the simulations of this work, we always390

use either an Erdös-Renyi network with finite mean connectivity, or391

a homogeneous-mixing contact structure, which is also obtainable392

as the infinite connectivity limit of an Erdös-Renyi network.393

When an edge connecting a susceptible and an infectious in-394

dividual is active, there is a certain probability per unit of time395

for disease transmission to occur. This rate is determined by the396

individual infectiousness ri of the infectious agent, which is drawn397

from a gamma distribution with dispersion parameter k before the398

individual has become infectious. As such, the infectiousness for399

any given individual is assumed constant throughout the infectious400

stage of the disease. The infectiousness distribution determines an401

upper bound on size ∆t of the the timesteps in the model, since402

the inequality ri ·∆t < 1 must hold for all agents. A timestep of403

size ∆t = 30min was used throughout, since this was sufficient to404

ensure that the inequality was satisfied.405

Below we go into more detail as to how the simulations involving406

multiple strains were performed.407

Stochastic extinction. The stochastic extinction (or, conversely, sur-408

vival) plots of Figure 1 in the main text rely entirely on a branching409

process algorithm with sampling of probability distributions with410

an analytic description. In practice, we have performed the compu-411

tation by numerical sampling.412

In each generation of the epidemic, the computation is reiter-413

ated. Without loss of generality, we therefore here describe a single414

generation which initially has I infected individuals. Note that for415

the initial generation, I = 1 infected individuals.416

• For i ∈ {1, . . . , I}:417

– Draw individual infectiousness ξi from Gamma distribu-418

tion Pξ(ξ; k, µ)419

– Draw number of contacts c from a Poisson distribution420

with a given mean connectivity.421

– Given number of contacts c, draw personal reproductive422

number zi from the distribution Eq. (3)423

Pz(z; ξ, c) =
(
c

z

)(
1− e−ξ/c)z (e−ξ/c)(c−z)

. [3]424

• Let the number of newly infected be I =
∑

i
zi and repeat the425

algorithm with this new value of I.426

If the number of infected I ever drops to zero, the outbreak is said427

to have undergone stochastic extinction in that generation. By428

performing multiple such branching process simulations for each429

value of the parameters µ (mean infectiousness) and k (dispersion430

factor) we build up a statistic of the survival chance of each specific431

variant. To generate Figure 1, this is repeated for two different432

values of the mean connectivity c.433

Two-strain competition simulations. In Fig. 2, two strains spread434

simultaneously in the population of N = 106 individuals. Initially,435

0.99% of the population are infected with the heterogeneous ”old”436

variant (k = 0.1), while 0.01% are infected with the more homo-437

geneous ”new” variant (k = 0.2). Once a person with a given438

variant infects a susceptible individual, the characteristics of the439

variant are passed on to the newly infected individual, such that440

the infectiousness of this person is drawn from a Gamma distri-441

bution with dispersion parameter k set by the variant. In other442

words, these simulations assume that no further mutations affecting443

overdispersion occur, allowing us to track solely the competition of444

two differently-dispersed variants within a population.445

Evolutionary model. In Fig. 4, we allow the pathogen to stochasti-446

cally mutate upon transmission, with the mutations affecting the447

degree of overdispersion. In the simulations, the pathogen mutates448

on average once for each new host it is transmitted to (i.e. with449

mutation probability p = 1/3) and the mutations are assumed to 450

always affect overdispersion, by either increasing the k value by a 451

factor of 3/2 (i.e. k → 3k/2) or decreasing it by a factor of 2/3 452

(i.e. k → 2k/3). On a microscopic level, the dispersion level thus 453

performs an unbiased (multiplicative) random walk. The value of 454

this step-size parameter is arbitrarily chosen, and as such the simula- 455

tions can only be regarded as qualitative and conceptual. However, 456

although no intrinsic bias is built into the mutation mechanism, 457

external selection pressures may drive the level of overdispersion in 458

the population up or down, as is explored in Fig. 4. 459

In Fig. 4C, the average infectiousness of the strain is lowered so 460

as to produce an initial growth rate that is identical to that of 4A, 461

namely 11% per day in the first 14 days of the epidemic. 462
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Digital contact tracing has been suggested as an effective strategy for controlling an epi-

demic without severely limiting personal mobility. Here, we use smartphone proximity data

to explore how social structure affects contact tracing of COVID-19. We model the spread of

COVID-19 and find that the effectiveness of contact tracing depends strongly on social net-

work structure and heterogeneous social activity. Contact tracing is shown to be remarkably

effective in a workplace environment and the effectiveness depends strongly on the minimum

duration of contact required to initiate quarantine. In a realistic social network, we find that

forward contact tracing with immediate isolation can reduce an epidemic by more than 70%.

In perspective, our findings highlight the necessity of incorporating social heterogeneity into

models of mitigation strategies.

I. INTRODUCTION7

For diseases which are primarily transmitted in spatial proximity, contact patterns invariably8

play a central role in the course of an epidemic [1, 2]. For the purposes of modeling infectious9

diseases, contact patterns can be represented by a network where each individual is a node and10

spatial proximity between individuals is represented by time-dependent edges. Nonetheless, well-11

mixed compartmental models remain the typical approach to modeling epidemics [3–6]. Even such12

models, which do not incorporate a network structure, make assumptions about the underlying13

social contact patterns. In well-mixed models, the assumption is that mixing patterns are homo-14

geneous inside sub-populations [7–13]. Although interaction rates between sub-populations can be15

adjusted, well-mixed models may fail to predict the evolution of an epidemic when social interac-16

tions are spatiotemporally restricted [14–16], as in real contact networks.17

An oft-taken approach to modelling of contact tracing schemes is branching process simulation18

[17–19]. In these models, the outbreak is modeled generation by generation and the susceptible19

population is usually taken to be constant in size, rendering the models most useful for studying20
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early outbreaks. Such models have clear advantages in terms of mathematical tractability, but21

lack the (disease and social) dynamics which is the main focus of this study. Social interactions22

tend to follow a characteristic pattern of spatiotemporal correlation, where you meet the same23

people at specific times during a week, at work or at home. At the same time, social activity varies24

significantly from person to person. This correlation increases transmission heterogeneity, i.e. the25

tendency of cases to occur in clusters.26

During the COVID-19 pandemic, contact tracing has been the center of much attention due27

to its promises of epidemic control without severely restricting mobility [20–25]. As a mitigation28

strategy, contact tracing relies directly on the contact network structure and may benefit from29

clustering of cases [26]. In order to assess contact tracing strategies, detailed information on30

contact networks is indispensable, and the usual well-mixed approach is inadequate – more so than31

when modelling unmitigated spreading [27, 28].32

In this paper, we utilize Bluetooth proximity data obtained from a cohort of university students33

at a large European university (see Methods for details). In most studies of this nature, mobility34

data collected from mobile phones rely on spatial locations derived from estimated distances to cell35

towers, GPS coordinates [29] or the proximity to known Wi-Fi access points. Whereas this kind36

of data is useful for studies of aggregate mobility [30], the accuracy is typically not sufficient to37

infer epidemiologically relevant social proximity between individuals. In contrast, the Bluetooth38

data that we consider here can identify social proximity with a high spatial resolution (<1m). In39

addition, our data has a high temporal resolution (<5mins), meaning that brief encounters (indi-40

viduals passing by each other) can be distinguished from longer meetings. A high spatiotemporal41

resolution is necessary to faithfully simulate disease transmission through a social network, since42

diseases (such as COVID-19) may be less likely to transmit during short encounters or between43

individuals separated by more than a few meters [31, 32]. The upper limit for the range of our44

Bluetooth data is approximately 15 meters [33]. We also note that our data are similar in nature45

to those collected by contact tracing smartphone applications [34].46

Like all real-life proximity data, the data set used in this study comprises just a section of the47

complete contact network of each participant. However, our data still display a well-defined and48

robust heterogeneity which is the object of our study. We further note that contact heterogeneity49

is pronounced despite the fact that our participant group is homogeneous in age and occupation,50

and would be treated as undifferentiated in typical epidemiological models.51

To study the effects of contact heterogeneity on an epidemic, we simulate the propagation of52

COVID-19 on the empirical contact network, and compare with artificially homogenized versions53
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FIG. 1. Simulating the spread of COVID-19 on the contact network. Here, a zoom view on the geographical

positions of a few individuals (based on GPS coordinates) during a typical work day and for a representative

run of the epidemic model. Regions of contact (defined by signal strength exceeding the −85dBm cutoff)

are shown as diffuse clouds of pink. Snapshots shown are at day 2, 23 and 44 of the outbreak.

of this network. This allows us to maintain certain features of the network (size, average contact54

rate) while altering others (network structure and degree distribution). We can then separately55

study how these features affect the outcomes of the epidemic, with and without mitigation. For56

that purpose, we introduce three degrees of heterogeneity: i) the true (observed) network. ii)57

an edge swapped version of the network [35], which retains heterogeneity in activity levels but58

homogenizes the network structure and edge correlations, and iii) a randomized network, which59

retains only the overall (mean) contact frequency, but eliminates heterogeneity.60

Our main question is if contact tracing of of COVID-19 is affected by the variation in individual61

social activity levels and by the structure of the social network itself. Our contact tracing algorithm62

has two key parameters, the probability for a symptomatic individual to undergo testing and the63

maximum duration of social proximity to an exposed individual allowed, before a self-quarantine64

is triggered. The latter is especially useful, since it is a directly controllable parameter when e.g.65

designing contact tracing smartphone applications [34].6667

II. METHODS68

We use temporally resolved social proximity data collected using smartphones distributed to69

1000 participants (undergraduate students at the Technical University of Denmark [36, 37]). The70

smartphones were equipped with an application that collected communication in the form of call71
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b)

c)

a)

Susceptible Exposed Presymptomatic Infected Recovered

1.2 1.2 1.2 4

FIG. 2. a) A small subset of a contact network for one week. Link thickness indicates the cumulative

contact time, with links with less than 2 hours cumulative activity being omitted. Black lines represent the

links recurring from the previous week, whereas the red lines are new links. b) Top: Histogram of contact

events over a single day (semi-logarithmic plot). The coefficient of variation is cV = 1.03 and the mean is

µ = 131. Bottom: Histogram of contact events over a seven week period, divided by the number of days

to obtain an average daily rate (semi-logarithmic plot). Here, cV = 0.95 and µ = 86. Both plots show a

marked heterogeneity, demonstrating that contact heterogeneity is approximately a quenched disorder on

the timescale of a few weeks. c) Our agent-based model of COVID-19 spreading on a contact network.

Individuals in the Susceptible state may be exposed by those in the Presymptomatic as well as Infected

states. The Exposed-Presymptomatic triplet of states together comprise the gamma-distributed incubation

period.

and text messaging logs, geo-location (GPS coordinates) and social proximity data using the Blue-72

tooth port. Every 5 minutes, all smartphones in the study scanned for nearby devices included in73

the study, and recorded Bluetooth signal strength as well as the GPS coordinates of the phone.74

The data we consider were collected over a period of two years, 2013-2015.75

The approximate distance between participants can be inferred from the strength (RSSI) of76

the Bluetooth signal transmitted between devices. The signal strength can resolve distances in77

the range of ≤ 1 meter to approximately 10-15 meters [33]. To prepare our data for modeling of78

disease transmission, the collected RSSI values are related to an epidemiologically relevant notion79

of contact. The definition of a contact depends on the disease in question and its dominant mode(s)80

of transmission. If environmental transmission is significant, a simple short-distance cutoff would81
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be incorrect, and simple proximity data would be insufficient. However, for SARS-CoV-2, there82

is evidence that transmission by fomite is minor [38]. Our transmission model assumes that the83

transmission risk of COVID-19 increases sharply as interpersonal distance is decreased below 1-2m84

[32, 39–42]. Thus, we define two individuals to be in social contact whenever the Bluetooth signal85

strength between their respective devices exceeds −85dBm. This definition of contact captures86

essentially all ≤ 1m interactions while excluding a large portion of the 3m interactions and above87

[33].88

From the social contacts, we can create a well-defined time-dependent contact network where89

individuals are represented by nodes and social contact by time-dependent links, similar in nature90

to the network used in [43]. The link activity, i.e. the contact between individuals, is resolved in91

temporal windows of 5 minutes. This time-dependent contact network is the basis for our modeling92

of the transmission of COVID-19.93

We model the spread of COVID-19 by an agent-based model (where the study participants94

serve as the agents) with five states: Susceptible to the disease, Exposed, Pre-symptomatic (but95

infectious), Infected (possibly with symptoms) and Recovered/Removed. In the absence of contact96

tracing (described below), the P and I states are identical, in that an individual in one of these97

states can infect others. Aside from these mutually exclusive states, persons can also be flagged as98

Quarantined. In Fig. 1 an example trajectory is shown, together with a closeup of the university99

campus. The disease progression model is illustrated in Fig. 2. The transmission routine works by100

assuming a constant pairwise infection rate between individuals, when they are in contact. When101

a susceptible person comes into contact with a person in the I or P state, there is a probability pinf102

of transmission of the disease in each 5-minute window. The basic model (without contact tracing)103

thus has four parameters: The transmission probability upon contact pinf, and three time-scales104

characterizing the exposed, presymptomatic and infected states, τE, τP and τI.105

As shown in Fig. 2, we assume the incubation time to be gamma-distributed with a mean of106

3.6 days, of which the last 1.2 days comprise the presymptomatic infectious state. The infectious107

state, where symptoms may be displayed, is set at four days. The last remaining parameter of the108

disease model, the transmission probability in each window of time, is fitted to reproduce a daily109

growth rate of 23% in the early epidemic, based on estimates from [44, 45]. This gives a basic110

reproductive number of R0 = 2.8 when simulated on the empirical social network. Note that this is111

the pre-mitigation value, which fits well with the reproductive number obtained in a recent review112

[46].113

By employing two different ways of shuffling the network connections (edges), we study both114



6

the effects of heterogeneity in activity levels (social contact time) and in the network structure.115

The first method, edge swapping, preserves the degree of connectivity of each person (node), while116

destroying any network structure arising from e.g. group formation and spatial preferences [35].117

The second method, randomization, preserves only the overall connectivity level in each window118

of time, but homogenizes the number of contacts for each person.119

The edge swapping procedure works as follows. Given a contact network at an instant of time120

(representing, in our case, a 5 minute time window), we iterate the following steps:121

• Select two edges at random. Denote the pairs of connected nodes A↔B and C↔D, respec-122

tively.123

• Swap the chosen edges such that the connected pairs are now A↔C and B↔D.124

This is repeated until each edge in the system has been swapped several times, on average. Since125

no node loses or gains an edge by this procedure, the degree distribution is unchanged. Thus,126

the heterogeneity in social activity levels is preserved as well. However, since edge swapping is127

performed independently during each time step, the durations of contacts are not preserved. A128

10 minute contact is thus treated as two 5-minute contacts and each undergoes swapping inde-129

pendently. In the supplemental material, we describe a duration-preserving variation on the edge130

swapping algorithm.131

The randomization procedure is simpler, and each iteration proceeds as follows:132

• Select an edge at random. Rewire the edge by replacing its endpoints with two nodes, chosen133

at random from the entire system.134

As with the edge swapping procedure, this is repeated until each edge of the network has been135

swapped several times, on average. Since edges are only rewired, and not created or destroyed, the136

overall connectivity of the network is preserved.137

Contact tracing138

The contact tracing scheme consists of two parts: regular testing of symptomatic individuals139

(with a constant rate of testing rtest) and the contact tracing algorithm itself, which is activated140

once an individual tests positive. Once a positive individual is found by regular testing, their141

recent contacts are put in quarantine for a specified time and tested once the quarantine period142

has elapsed (before potential release). In other words, the contact tracing scheme proceeds as143

follows:144
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• For each individual, a list of contact events is kept. When a person (the ‘index case’) is145

tested positive, all contacts older than 5 days (the retention time) are discarded, the index146

case is quarantined for 5 days.147

• If a traced individual has been in contact with the index case for longer than a certain148

cumulative contact threshold, the traced individual is also quarantined for 5 days.149

• After the quarantine period has elapsed, the individual is tested. If negative, the individual150

is released. Otherwise a new 5-day quarantine is issued.151

The quarantine is assumed to be instantaneous and a quarantined person is assumed to have no152

contact with others. We assume that regular testing happens at a constant rate when an individual153

is in the symptomatic infected state. This rate of testing rtest is measured in units of 1/τI , the154

rate at which an individual leaves the infected state. Thus a rate of testing of e.g. 1 corresponds155

to a 50% chance of being tested while infected. Note that the simple algorithm used here is156

non-recursive. This choice was made to simplify the analysis, i.e. to facilitate the comparison of157

contact tracing in networks with different types of heterogeneity. For an exploration of the impact158

of recursive vs. standard contact tracing, we refer to Refs. [47, 48].159

The minimum quarantine time is set at 5 days in our simulations, as suggested by [25], but we160

have performed a sensitivity analysis (see Supplemental Material) which shows that, while there161

is still some benefit, the marginal effect of increasing the quarantine time decreases above five162

days. We also performed a sensitivity analysis for the retention time, i.e. the maximum age of163

contact events deemed relevant when performing contact tracing. It is clear that including contacts164

which occurred long ago will lead to many unnecessary quarantines, but also that it may increase165

epidemic control. Our sensitivity analysis shows that the total time spent in quarantine depends166

only weakly on the retention time, but indicates that 5 days is a reasonable trade-off. See the167

Supplemental Material for details.168

III. RESULTS169

The distribution of the number of daily contact events for each person in the study is found170

to closely follow an exponential distribution (Fig. 2b), with a coefficient of variation of 1.03 and171

a mean of 131. This reflects a marked heterogeneity in activity levels. When we consider the172

distribution over a 7-week window, a significant degree of contact heterogeneity is retained, albeit173

with some attenuation. Here the coefficient of variation is 0.95, still close to the value for an174
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FIG. 3. The effects of social heterogeneity on an unmitigated epidemic. The red curves show the

incidence, measured as the sum of exposed and infectious individuals (whether symptomatic or not). The

blue curves indicate the attack rate, i.e. the cumulative fraction of the population who have been exposed

to the disease. In both cases, the curves correspond to the true, edge swapped and randomized networks, in

order of increasing brightness. Each trajectory represents an average of 50 simulations.

exponential distribution, and the mean is 86. It is clear that extreme social behaviour becomes less175

frequent over the longer time-window, reflecting that individuals do not participate in larger social176

events every single day. The mean value of 86 corresponds to individuals being socially inactive on177

34% of workdays.178

Social structure reduces the epidemic severity. To assess the impact of social hetero-179

geneity on an unmitigated epidemic, we compare the simulated evolution of COVID-19 on three180

different contact networks (Fig. 3): The true (unshuffled) network, the edge swapped and the fully181

randomized network where each person is assigned an average contact frequency. Each trajectory182

is averaged over 50 runs, each similar in nature to the one shown in the inserts of Fig. 1.183

184

We find that the final size of the epidemic (the total number of exposed individuals) is very185

sensitive to heterogeneity in social activity, but not to the network structure. Heterogeneity in186

social activity prevents the disease from spreading to all parts of the network, with the total187

fraction exposed reaching 76% in the true network and 98% in the randomized network. The edge188

swapped network, on the other hand, results in an epidemic size similar to the true network, despite189

the homogenization of social network structure caused by this procedure.190
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a)

b) d)

c)Threshold: 15 minutes Threshold: 125 minutes

FIG. 4. The effects of social heterogeneity on contact tracing at different thresholds. Comparison

of exposed + presymptomatic + infected (red) and recovered (blue) individuals in the three networks

types. The testing rate is set at 0.5 times the rate for leaving the symptomatic infectious stage, giving a

25% probability of being tested while infected.

The epidemic peak, on the other hand, is quite sensitive to the social structure. The peak height191

increases by 10 percentage points when social network structure is destroyed, whereas eliminating192

the differences in social activity levels as well causes a further increase of just 4 percentage points.193

Furthermore, the heterogeneous activity leads to a faster initial growth of the epidemic, reaching the194

peak earlier. The mechanism behind this is that highly socially active individuals are more likely195

to contract as well as transmit the disease, meaning that they dominate the early epidemic.[49]196

Tracing depends on heterogeneity in a contact threshold-sensitive fashion Contact197

tracing is most effective on the true social network, and performs poorly on the randomized network198

(Fig. 4), regardless of the contact threshold. The relative efficiency on the edge swapped network,199

however, depends quite strongly on the contact threshold, i.e. on how much cumulative contact200

time with a known infected person is allowed before triggering a quarantine. With a fairly short201
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a)

b)

FIG. 5. Contact tracing effectiveness. Disease parameters are identical to those of Fig. 3. a) Rate of testing

vs final size of epidemic and average number of days spent in quarantine per person. The contact threshold

is set at 15 minutes. The rate of testing is measured in units of the rate for leaving the infected state,

meaning that a rate of testing of 1 corresponds to a 50% chance of being tested during the infectious period.

b) Contact threshold vs final size of epidemic and average number of days spent in quarantine per person.

The rate of testing is set at 0.5 times the rate for leaving the symptomatic infectious stage, giving a 25%

probability of being tested while infected. For each value of the parameter, 50 simulations were run.

contact threshold of 15 minutes (Fig. 4a), contact tracing on the edge swapped and true network202

are both highly effective, resulting in a final epidemic sizes of 22-23%. With a higher contact203

threshold of 125 minutes (Fig. 4c+d), contact tracing is much less effective in general, but now204

both of the homogenized networks perform much worse than the true network. This finding owes205

to the fact that repeated contacts are less frequent in the homogenized networks. It also explains206

the fact that the average quarantine time is much lower in the homogenized networks at high207

thresholds (Fig. 4d), since very few infected contacts are traced. A higher contact threshold thus208

has the advantage of reducing the overall time spent in quarantine (Fig4b+d) but results in a209

reduced epidemic control.210

For contact tracing to be effective at higher contact thresholds, a substantial degree of temporal211
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correlation in contact dynamics is necessary. Both edge swapping and randomization reduce the212

temporal correlation. To quantify this, we find that the median fraction of long contacts (of at213

least 60 minutes cumulative duration) which are repeated from one week to the next is 30% in214

the real network, while edge swapping and randomizing reduces this number to zero. Evidently,215

repeated contacts are necessary for tracing to be effective at higher thresholds.216

The edge swapping procedure reduces temporal correlation in two ways, which may be studied217

separately. Firstly, it destroys correlations in social structure (“who meets who”), i.e. the identities218

of contact partners are randomized, reducing the occurrence of repeated contacts as described219

above. Secondly, the procedure destroys the duration distribution of contact durations, breaking220

e.g. a 10 minute contact into two uncorrelated 5 minute contacts. In the Supplemental Material, we221

describe an alternative edge swapping algorithm which preserves the durations of contacts, while222

still swapping the individuals. This allows us to study the importance of the contact duration223

distribution and the existence of repeated contacts separately. At high contact tracing thresholds224

(125 minutes) We find that even duration-preserving edge swapping reduces the mitigative effect225

of contact tracing relative to the true network. The reduction is not as strong as with the simple226

edge swapping algorithm, leading us to conclude that there are two effects at play: destroying227

the duration distribution leads to poorer performance, but simply randomizing the identities of228

contacts while preserving degree and duration distributions has a detrimental effect in and of229

itself. Conversely, one may conclude that repeated contacts (temporal correlations in the identities230

of contact partners) as well as an inhomogeneous contact duration distribution are important231

features which improve the effectiveness of contact tracing. Our finding that contact tracing on232

the randomized network performs poorer than the edge swapped version is in good agreement with233

the findings of [50], which shows theoretically that the presence of highly connected hubs in a social234

network improves contact tracing.235

Due to the limited temporal resolution of the Bluetooth proximity data, obtained only at 5 minute236

intervals, the fidelity at very short contact tracing thresholds of e.g. 5 minutes will be lower. In237

the Supplemental Material we explore the results obtainable at these lower contact thresholds, and238

present a theoretical argument for the observed patterns. We find that mitigation by test-trace-239

isolate (TTI) is always more efficient on the true network, in the sense of preventing more cases240

per day of quarantine, but that the randomized network may in fact lead to a lower final attack241

rate when contact thresholds tend to zero. The effect is due to the number of quarantines triggered242

in the random network diverging in this limit.243
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The rate of testing and contact threshold The regular testing considered in our contact244

tracing algorithm is determined by a rate of testing which reflects several real-world factors not245

individually modeled here, such as general test capacity, symptom development and willingness to246

participate in testing. In Fig. 5a, we explore the influence of the rate of testing on the final size of247

the epidemic and the average time spent in quarantine. As one would expect, the quarantine time248

vanishes at very low rates of testing, where the epidemic size is maximal. Whereas the epidemic249

size is a decreasing function of testing, the quarantine time does not display a simple monotonic250

response to an increase in testing. Rather, it attains a maximum at 10% probability of being251

tested, followed by a gradual decline. This highlights the importance that changes in the testing252

strategy should go hand-in-hand with considerations of the nontrivial influence on the quarantine253

time. As such, it is possible to achieve a lower total quarantine time by increasing testing levels,254

simply due to the improved epidemic control.255

If the aim is to keep the final size of the epidemic below for example 25%, our results show256

that a contact threshold of less than 30min is necessary (Fig. 5b). Note that the concurrent257

implementation of other mitigation strategies such as social distancing or limits on gathering will258

increase this critical threshold.259

IV. DISCUSSION260

In order to assess and credibly model the effectiveness of mitigation strategies, it is necessary261

to know which idealizations can be safely made, and which complexities must be retained in262

models. The present work shows that realistic social structure is an indispensable complexity263

when attempting to model contact tracing strategies and predict their effectiveness.264

Although the social proximity data used in this study do not represent the social activity in a265

complex society, it exhibits a relevant level of social heterogeneity, which is stable over timescales266

long enough that it can influence epidemic dynamics. In this sense, the data can serve as a267

valuable model system in which to evaluate the impact of heterogeneity on disease propagation and268

mitigation of epidemics. We have found that social activity levels are exponentially distributed in269

this cohort, something which is consistent with observations of [7], who find a coefficient of variation270

of 0.8 for social contacts, for persons aged 20-30. The person-specific social activity exhibited in271

our data remains consistent over time, with both the 1-day and the 7-week activity patterns having272

coefficients of variations close to 1, representing a quenched disorder on the relevant timescale.273

Even in the absence of mitigation, the social heterogeneity exhibited by our cohort significantly274
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affects the epidemic trajectory. However, not all outcomes are affected similarly. The epidemic peak275

height is found to be sensitive to the social structure, while the final size of the epidemic is primarily276

affected by heterogeneity in social time. The isolated sensitivity of attack rates to heterogeneous277

social activity, i.e. differences in contact time, can be studied in a well-mixed compartmental model,278

as was recently done [51], underscoring that the effect is not only present in structured networks.279

The influence of social structure, however, is a more complex phenomenon and requires network280

models, either synthetic or using observational social network data [1]. The effects of network281

structure in epidemic spreading were previously studied by Barthélemy et al. using synthetic282

social networks, which were however assumed static [49]. They found the mechanism to be a283

hierarchical progression, with more well-connected individuals being infected early on, and more284

sparsely connected nodes being affected later in the epidemic, if at all. However, this mechanism285

depends on connectivity being a quenched variable, i.e. one that sticks to each individual over286

time. We find that this condition is satisfied, at least on a timescale of a few months.287

The sizable effects of social structure and heterogeneous activity seen in this study has implications288

for epidemiological modelling in general. Due to their lack of social structure, traditional well-289

mixed S(E)IR models would overestimate the severity of the epidemic, or, conversely, lead to an290

underestimation of transmission risk when fitted to an observed epidemic trajectory. In a previous291

modelling study [52], it was shown that heterogeneity in the susceptibility of individuals likewise292

reduces the overall severity.293

Once contact tracing is implemented, the effect of social heterogeneity becomes more complex.294

We found that social structure and heterogeneous activity levels substantially increase the efficiency295

of contact tracing. However, when the contact tracing threshold is low, heterogeneity in activity296

levels alone improves effectiveness substantially, and network structure alone has less of an effect.297

When the contact tracing threshold is high, both social network structure and heterogeneous298

activity levels are necessary for efficient tracing. Furthermore, we found that the presence of299

heterogeneity in contact duration improves the efficiency of contact tracing in itself. Our findings300

also highlight that neither a quenched nor an annealed view of contact networks are sufficient for301

modelling the spread of a disease such as COVID-19, since no clear separation of scales is present.302

Important network dynamics takes place on time-scales shorter than an infectious period, while303

some aspects of network structure and social activity are stable on timescales corresponding to304

several generations of the disease. While many previous approaches have relied on such a separation305

of time scales, sophisticated analytic frameworks for epidemic spreading on time-varying networks306

have been proposed in recent years, allowing for e.g. continuously varying networks [53, 54].307
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The two central parameters of our contact tracing algorithm, the rate of testing and the contact308

threshold, are not on equal footing. The rate of testing is influenced both by factors which are309

within our control, such as the overall availability of testing, and by factors which are essentially310

intrinsic to SARS-CoV-2, such as the rate at which symptoms develop. The contact threshold, on311

the other hand, is a fully controllable parameter and essentially constitutes a design decision when312

e.g. developing contact tracing applications [34]. Our results indicate that the contact threshold313

must be kept quite low (< 30 minutes) if relatively efficient control (reducing epidemic final size by314

about two thirds) is to be attained in an otherwise unmitigated epidemic. We find that the strength315

of mitigation depends strongly on the rate of testing. This is expected since the ability to trace316

contacts depends on the chance of identifying at least one case in the infection chain by regular317

testing. What is perhaps less obvious is that the total quarantine time has a nontrivial (inverted318

U-shaped) dependence on the rate of testing. As the rate is increased from 0, the quarantine319

time increases. However, once an appreciable level of epidemic control has been achieved through320

contact tracing, it begins to decline, with the peak value being attained at a rate corresponding to321

a 10% probability of being tested while infected.322

In this study, we have only considered forward contact tracing, where the primary objective is to323

track down individuals who might have been infected by the index case. However, other schemes324

exist, and two recent papers which came out after the initial publication of this manuscript have325

shown that backwards contact tracing has an advantage in scenarios with highly clustered cases326

[55, 56], i.e. where the transmission dynamics is overdispersed such that a few individuals cause327

a high number of secondary infections while the majority cause few. Such clustering may arise by328

several mechanisms of biological as well as social origin [57]. Recently, several studies have found329

that COVID-19 transmission is in fact highly heterogeneous [57–62]. While we have focused on330

the impact of social heterogeneity on mitigation by contact tracing, a recent study showed that331

heterogeneity in biological infectiousness has a considerable impact on the feasibility of COVID-19332

mitigation strategies which rely on contact network reduction [63], such as lockdowns.333

While our study has highlighted the importance of network and activity heterogeneity for the334

efficiency of contact tracing, some previous studies have highlighted other network measures, such as335

degree, betweenness and reach as useful in further targeting contact tracing [29, 64]. It is our opinion336

that there is still much to be learned about the usage of network data for the improvement of contact337

tracing – and in order to identify the relevant mechanisms, modeling studies are indispensable.338

In conclusion, heterogeneity in social activity makes mitigation by contact tracing much more339

effective. If only more frequent contacts can be traced, social network structure becomes important340
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as well. It is thus important that realistic social heterogeneity and structure be taken into account341

when modeling contact tracing, as failure to do so may lead to underestimation of its effectiveness.342
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Abstract (398 words)
The response to the ongoing COVID-19 pandemic has been characterized by draconian measures 

and far too many important unknowns, such as the true mortality risk, the role of children as 

transmitters and the development and duration of immunity in the population. More than a year 

into the pandemic much has been learned and insights into this novel type of pandemic and 

options for control are shaping up.  

Using a historical lens, we review what we know and still do not know about the ongoing COVID-

19 pandemic. A pandemic caused by a member of the coronavirus family is a new situation 

following more than a century of influenza A pandemics. However, recent pandemic threats such 

as outbreaks of the related and novel deadly coronavirus SARS in 2003 and of MERS since 2012 

had put coronaviruses on WHOs blueprint list of priority diseases.  Like pandemic influenza, 

SARS-CoV-2 is highly transmissible (R0 ~2.5). Furthermore, it can fly under the radar due to a 

broad clinical spectrum where asymptomatic and pre-symptomatic infected persons also transmit 

the virus – including children. COVID-19 is far more deadly than seasonal influenza; initial data 

from China suggested a case fatality rate of 2.3% – which would have been on par with the deadly 

1918 Spanish influenza.  But, while the Spanish influenza killed young, otherwise healthy adults, 

it is the elderly who are at extreme risk of dying of COVID-19. We review available 

seroepidemiological evidence of infection rates and compute infection fatality rates (IFR) for 

Denmark (0.5%), Spain (0.85%) and Iceland (0.3%).  We also deduce that population age 

structure is key. SARS-CoV-2 is characterized by superspreading, so that ~10% of infected A
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individuals yield 80% of new infections. This phenomenon turns out to be an Achilles heel of the 

virus that may explain our ability to effectively mitigate outbreaks so far.  

How will this pandemic come to an end? Herd immunity has not been achieved in Europe due to 

intense mitigation by non-pharmaceutical interventions; for example, only ~8% of Danes were 

infected across the 1st and 2nd wave. Luckily, we now have several safe and effective vaccines. 

Global vaccine control of the pandemic depends in great measure on our ability to keep up with 

current and future immune escape variants of the virus. We should thus be prepared for a race 

between vaccine updates and mutations of the virus. A permanent reopening of society highly 

depends on winning that race.
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1. Coronaviruses: An era of new pandemic threats.

SARS-CoV-2, the virus that causes COVID-19, has led to the first confirmed coronavirus 

pandemic, and to many it has come as a surprise. We have experienced regular influenza 

pandemics for centuries [1], but there have been signs for some time that something new was on 

the horizon. A first warning came with the deadly outbreak of SARS-CoV in Asia in 2003, in 

which 10% of known cases died; the outbreak was controlled, and the virus eliminated rapidly 

despite the high transmissibility.  Then MERS-CoV emerged in the Middle East in 2012, a virus 

with a far higher mortality rate but a poorer ability to spread among humans; it remains a 

pandemic threat to this day[2].  Previously, coronaviruses were thought to cause only mild illness 

in humans as the four existing human coronaviruses merely cause a common cold, but after these 

outbreaks, coronaviruses were put on WHOs blueprint list of priority diseases[3]. Predicting the 

severity and virus family of the next pandemic is difficult, but one thing is certain: Pandemics will 

occur intermittently in the future, as they have done historically[1].

 

Pandemic influenza has been characterized by an emerging novel virus that has adapted to spread 

effectively among humans.  It has historically been accompanied by a shift in mortality to younger 

ages[4, 5]. But the COVID-19 deaths are largely affecting the elderly, with a mean of ~80 years in 

Denmark. Likewise, only 2.7% of Danish COVID-19 deaths have occurred in people younger than 

60 years of age as of February 15, 2021[6]. This is quite different from historic influenza 

pandemics[7]: the Spanish Flu (1918), the Asian Flu (1957), the Hong Kong Flu (1968) and the 

Swine Flu (2009). In both the 1918 and 2009 pandemics, the mean age at death was 25-30 years, 

and 95% of deaths occurred in people younger than 65 years of age because of a greater degree of 

immunity in the older generations. The pandemics of 1957 and 1968 were somewhere in between 

these extremes in terms of age distribution[8]. A historical timeline of pandemics is seen in Figure 

1.

Apart from this striking difference in the age-distribution of mortality, SARS-CoV-2 seems to 

spread in clusters – temporally as well as geographically. This might in part be due to the concept 

of superspreading which was also a characteristic of SARS-CoV and MERS-CoV.
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In the following we will focus on the lessons from the COVID-19 pandemic and extract key 

insights that may point a way forward to end this world crisis. 
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2. What makes SARS-CoV-2 so dangerous?

SARS-CoV-2 is a highly contagious respiratory pathogen that can spread directly through droplets 

and indirectly through fomite. In addition, there are several reports of superspreader events where 

aerosolized spread is the most likely explanation (Table 2). However, the relative importance of 

fomite and aerosols remains unknown[9]. The basic reproduction number, R0 (the average number 

of contacts infected by each infected person), is around 2.5[10] in the absence of control. This is 

on par with the Spanish Flu[11, 12], meaning that a large fraction of the population needs to be 

immune in order to stop the epidemic from growing. This fraction (F) is classically estimated 

using the following formula[13]:
F = 1 ― 1/R0

In the case of SARS-CoV-2, this means that around 60% of the population must be immune in 

order to reach herd immunity according to this formula. This in turn means that a very large 

number of people would be infected if we let the epidemic run its natural course.

As SARS-CoV-2 is a newly emerged pathogen meaning there is no specific pre-existing 

immunity, it is assumed that almost everyone is susceptible to infection

In the beginning of the pandemic, there were reports of a high case fatality rate of around 2.3% 

and 19% getting severe disease requiring oxygen therapy and/or ICU admission. Some speculated 

correctly that we were just seeing the tip of the iceberg and thus overestimating these figures while 

others disagreed[14-17]. We are now certain that these proportions are way too high. Estimating 

the true proportions of infected people that are hospitalized, admitted to the ICU or die is best 

done with serology data. We have shown examples of such calculations based on serology, 

hospital and mortality data from Denmark, Spain and Iceland in table 1[18-24]. See our Danish 

report with SSI for details on assumptions and calculations [25].

It is interesting that the ICU rate is higher and the IFR lower in Iceland than in Denmark and 

Spain. Perhaps the Icelandic IFR is simply lower because of the younger age pattern of cases, 

suggesting elderly were better shielded from infection[18, 26]. ICU and hospitalization rates are 

difficult to compare across countries as those depend on local admission criteria and ICU 

definitions.A
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It is expected that the measured IFR would vary greatly depending on the demography of each 

country and other factors.  For example, when we applied the Spanish age specific IFRs to the far 

younger demography of Ethiopia, we found an all-age IFR of only 0.10%, compared to 0.85% 

measured in Spain. To truly know the IFR in low-income settings, we would need national 

serology studies and complete COVID-19 mortality statistics. But our Ethiopia example gives a 

sense that the measured IFR may vary 10-fold between countries with an aging and a young 

population. Large meta-analyses have found similar effects[27, 28]. 

The WHO published a meta-analysis estimating the global IFR to be ~0.23%[29]. Another meta-

analysis based on all available serology studies estimated a mean IFR of 0.68% (0.53-0.82%) [30]. 

These large differences show the importance of referring to a specific population or age stratum 

when stating an IFR.

Although the COVID-19 IFR is many times lower than for SARS and MERS, the quick and 

efficient spread of the SARS-CoV-2 virus has already given rise to many more infections and 

deaths. An alternative measure to the official death count is excess in all-cause mortality – above 

what is expected for a specific time of the year.  The European EUROMOMO surveillance system 

allows for timely tracking of excess mortality in European countries and offers both historical and 

contemporary incidence in mortality (https://www.euromomo.eu/).   Excess mortality follows the 

pandemic wave patterns in Europe over the last year. Excess mortality is clearly highest in the 

older age groups, but a slightly significant excess mortality is also seen in the age group of 15-44 

years. No excess mortality is seen in the group of 0-14 years.

Finally, it is becoming increasingly clear that the disease burden is not adequately described by 

acute illness and mortality alone. An unknown proportion of recovered patients experience longer 

lasting and, in some instances, debilitating symptoms such as fatigue, dyspnea, chest pain, joint 

pain, anosmia and dysgeusia[31]. Only with time, and from ongoing study of large, representative 

populations of seropositive individuals, we will understand the duration of these sequelae and get 

a better idea of the true proportion of all infected individuals that experiences them.
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3. Does SARS-CoV-2 have a weak spot?

Throughout the COVID-19 pandemic, news stories about superspreading events – in which a 

single person infected a large number of people within a short timeframe – have been cropping up 

regularly. By now, there is significant evidence from outbreaks and RNA sequence analyses that 

these are not just isolated events. Rather, a marked heterogeneity in transmission is part of the 

signature of SARS-CoV-2 [32-34]  Many outbreaks involving such superspreading have already 

been documented, and a database of more than 2000 cases has been compiled[35], we have 

included a few clear examples[36-41] where one individual infects several others. 

Superspreading is known to have played a significant role in some previous coronavirus outbreaks, 

such as SARS and MERS[35, 42, 43] and is one of the epidemiological footprints that differentiate 

them from pandemic influenza[44].

The mechanism behind superspreading is not yet fully determined. It is not clear whether 

superspreading events can primarily be ascribed to large inter-individual variability in viral 

shedding over the duration of an infectious period, or if it is perhaps a highly temporal 

phenomenon, with short-lived spikes in shedding. It is clear that certain behaviors and procedures 

which facilitate aerosolization can at least contribute. These can range from everyday occurrences 

such as singing, to medical procedures such as intubation and tracheoscopy. Some studies found 

large variations in viral shedding and viral load between infected individuals[45, 46], but it is not 

clear that these were not just representing various stages of infectivity even though some cases 

point to specific persons being biological superspreaders.  Most compelling, in one study from 

China, a single person caused a superspreading event, then went on to also infect everyone at 

home, suggesting that it was a particular superspreading person, rather than a singular event[41]. 

However, in several superspreading events, behavior seems to play a role – examples of high-risk 

activities are whistling and singing. This suggests that superspreading is a property of action also.  

Needless to say, the presence of a large (typically indoor) crowd is also a risk factor.

With a basic reproductive number of around 2.5[10], such a marked heterogeneity in transmission 

entails that the majority of infected individuals hardly transmit the disease at all. In Figure 2a, a A
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simulated infection chain is shown, clearly showing how the spread of the disease is entirely 

dependent on superspreaders[47].

This transmission heterogeneity can be summarized by the overdispersion parameter k (a number 

that - for small values of k - approximates the fraction of people that are responsible for 80% of 

the transmissions) [42], with lower k denoting a more heterogeneous transmission – i.e., one prone 

to superspreading events. For SARS-CoV, this was estimated to be 0.16, corresponding to a high 

level of transmission heterogeneity, while estimates for SARS-CoV-2 have been even more 

dramatic – around 0.10 [32, 33, 48]. This indicates that for SARS-CoV-2, the 10% most infectious 

individuals are responsible for approximately 80% of the transmission. Pandemic influenza, on the 

other hand, is much more homogenously spread, with an estimated k value close to 1[44]. As we 

discuss below, this has significant consequences, and so we argue that the k value deserves 

widespread recognition, similar to the reproduction number R0. From a mathematical standpoint, 

this amounts to saying that it is not just the mean of the infectiousness distribution which matters, 

but also its variance.

Mathematical models have been used to study the impact that superspreading has on the 

effectiveness of mitigation strategies, demonstrating that efficiency of such strategies primarily 

rely on reducing social mixing in society[47], including for example a

ban of large gatherings. Capturing these phenomena requires modeling on the level of individuals 

and this is not possible within traditional compartmental epidemiological models which assume 

completely random mixing. In popular terms, these models assume that each individual goes to a 

new job each minute and returns to a new home every evening.

The main finding is that the ability of superspreaders to transmit the disease to anywhere near their 

full potential can be effectively curbed by even a moderate reduction in the number of contacts 

that any given person has during an infectious period. For a more homogeneously transmitted 

disease, this would not be the case. In that case it would be necessary to reduce the number of 

distinct social contacts very close to the reproductive number R0 to achieve significant mitigation.

As illustrated in figure 2a, superspreading has a tendency to lead to bursty infection chains which 

then have an increased chance of dying out, as the chain effectively terminates if none of the 

recently infected persons are themselves superspreaders[49]. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Thus, superspreading is in full agreement with the bursty, geographically clustered outbreaks seen 

during this pandemic[50]. 

Figure 2b shows the result of reducing contacts outside households and work in an agent-based 

model. For a virus prone to superspreading the impact is substantial, while it has little impact for a 

more homogeneously transmitted virus. Thus, superspreading represents an Achilles heel of 

SARS-CoV-2, making the epidemic vulnerable to even moderate reductions in contacts. This, in 

turn, explains the high effectiveness of lockdown strategies.  

It may be tempting to think that superspreading is merely a product of some people having many 

contacts – i.e., social heterogeneity. This social aspect of superspreading is probably partly true as 

socially active people are more likely to infect more. Interestingly, socially 

hyperactive people also have higher risk of becoming infected, meaning that highly active people 

are also super-receivers. A modeling study found that social heterogeneity lowers the herd 

immunity threshold, even in the absence of mitigation[51]. Purely biological superspreading that 

does not correlate with the superspreaders’ own probability of becoming infected does not change 

the herd immunity threshold.

We saw earlier how superspreading drastically improves the effect of mitigation strategies which 

rely on reducing contacts. It is known that social heterogeneity leads to clustering of  cases and so 

increases the effectiveness of another form of mitigation, namely test-trace-isolate strategies[51]. 

Since cases also have a tendency to occur in clusters in this case, superspreading too should make 

contact tracing easier and more effective. This is especially true if backward contact tracing is 

performed, since any given infection is quite likely to stem from a superspreader[52].

In conclusion, superspreading seems to represent an Achilles heel of SARS-CoV-2, which opens 

up possibilities for particularly effective mitigation, far more than what could ever be achieved for 

pandemic influenza.  We argue that models used to explore the pandemic trajectory should take 

heterogeneity into account when evaluating possible mitigation strategies (and not just view it as 

“statistical noise”). 
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4. Unanswered questions

What role do children play in the COVID-19 pandemic? 

In prior influenza pandemics, children played a major role as transmitters. It was therefore 

surprising that so few children figured amongst known cases in the early phase of the COVID-19 

pandemic. This could be explained by children typically having only mild symptoms, but it was 

suspected early on that children were less susceptible and infectious than adults[53, 54]. Could it 

be true that children are not important transmitters in this pandemic? The best way to answer this 

question is by testing for SARS-CoV-2-antibodies in local outbreak settings or in randomized 

population samples; however, there are ethical and legal concerns when drawing blood from 

healthy children.

For adolescents (14-20 years old) new evidence has since clarified that this age group indeed plays 

an important role in the pandemic. High school outbreaks have been reported all over the world. 

The latest Danish evaluation of population seroprevalence found the second highest 

seroprevalence in the 12-19 years old age group (6.6% vs. 3.9% in the general population)[22].  A 

meta-analysis[55] found similar seroprevalences in adolescents and adults in population wide 

screening studies of several different countries. Secondary household attack rates were as high or 

higher for adolescents compared to adults. 

For younger children, the same analysis found a lower seroprevalence in this age group than in 

adults[55]. However, to the best of our knowledge, none of the used antibody tests have been 

validated on pediatric populations. A German study found no difference between viral load in 

children and adults suggesting that children might be as infectious as adults[56].

A meta-analysis of contact tracing studies suggests a lower probability of secondary infections in 

children than adults, but the study was not conclusive[55]. When excluding studies with a high 

risk of bias (e.g., testing only symptomatic contacts – i.e., fewer children), this lower probability 

became non-significant[57]. A meta-analysis of contact tracing studies suggests a lower 

probability of secondary infections in children than adults, but the study was not conclusive[55]. 

When excluding studies with a high risk of bias (e.g., testing only symptomatic contacts – i.e., 

fewer children), this lower probability became non-significant[57]. A
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Finally, household contact studies show a lower probability of a child being the index case of a 

household[58]. However, this could be due to a bias in ascertaining the index person – typically a 

symptomatic adult – masking the possibility that it was an asymptomatic child who brought the 

disease into the household in the first place.  

Since the reopening of countries following the initial lockdowns, several notable outbreaks have 

been reported in younger pediatric populations.  Examples include a youth overnight camp in 

Georgia for age 6-19 years in the US, where mass PCR testing revealed an attack rate of at least 

44% among campers[59].  Additionally, 41 of 825 schools in Berlin had to close two weeks after 

reopening due to school outbreaks[60]. In the US, serious concerns were raised over re-opening 

schools after the summer[61]. 

Studies in which all pupils, teachers and their home contact are all tested – preferably using 

antibody tests – regardless of symptoms are the most informative and less biased. A study of this 

kind was performed at a high school in Oise, France, and underscored the high susceptibility and 

transmissibility in adolescents[62].

In conclusion, while susceptibility and infectiousness of children were downplayed for a long 

time, it has become increasingly clear (from the above-mentioned serology studies) that 

adolescents play an important role in this pandemic. The question remains open for younger 

children, an age group rarely tested. We do not, however, have evidence to suggest they can be 

disregarded. Furthermore, with the rise of the new British B.1.1.7 variant there is evidence from 

Israel that this variant leads to high attack rates even among young children[63]. Knowing the 

infectiousness of young children is naturally of key importance in informing policy decisions 

about keeping young children in schools and institutions. It is however very clear that children and 

adolescents have very mild infections – the reason for this remains a mystery, but a tempting 

explanation is a better innate immune response in children[64]. An exception to this is the 

multisystem inflammatory syndrome in children (MIS-C) after infection with SARS-CoV-2 which 

in some aspects resembles Kawasaki disease. Patients present with fever and severe illness 

involving two or more organ systems. The suggested pathogenesis involves post-infectious 

immune dysregulation. The syndrome is rare, and when it occurs it has a mortality rate of around 

1,5%. The possibility of sequelae in children after SARS-CoV-2 is another important point, but A
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the data so far are inconclusive, and more research is needed to truly understand the impact of 

COVID-19 in children[65, 66]. This is important in weighing the risks and benefits of vaccinating 

children against COVID-19[67, 68].

SARS-CoV-2 immunity

In the early stages of the COVID-19 pandemic, there was intense debate over the immune 

response to SARS-CoV-2. Some researchers argued for long-lasting, effective immunity – even 

suggesting that we create immunity passports. Others, however, doubted that antibody responses 

would be lasting and remain highly prevalent in recovered individuals. Early on some were even 

concerned that the antibodies might not even be neutralizing[69, 70]. 

We now know that most people do in fact develop a lasting antibody response, lasting at least 

several months – and several studies have found antibodies to be neutralizing[24, 71-75]. There is 

evidence to suggest that cellular immunity is robust as well – and it might prove important if 

antibody titers decline[76]. Interestingly, between 20-50% of unexposed individuals (that is, from 

blood drawn before the pandemic virus existed) display significant SARS-CoV-2 specific T-cell 

response, possibly originating from immunity to the common and related cold coronaviruses [77]. 

The implications of this are still uncertain, but it would be interesting to examine the effect of this 

on SARS-CoV-2 susceptibility.  More research is needed, and it would be particularly interesting 

to examine differences in pre-existing immune responses between different age groups including 

children and elderly.

Re-challenge studies in macaques also points towards a protective immune response[57, 78]. 

There is thus a theoretical basis for immunity. 

An interesting case of real-life immunity was reported in a fishery vessel outbreak with a PCR-

confirmed attack rate of 85.2% (104 of 122 individuals). Three previously recovered individuals 

with neutralizing antibodies were on board and none of them experienced any symptoms nor 

tested positive in the PCR-test. This real-life situation thus provides evidence of the protective 

effect of neutralizing antibodies (p=0.002, Fisher’s exact test)[79]. Another notable real-life 

example was seen at an overnight summer school retreat in Wisconsin in the summer of 2020 

reported by the CDC[80]. There was a great outbreak with an attack rate of 76% (116 cases) 

among the 152 attendees. 24 of the participants had positive serologic results before going to the A
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camp – all of these got negative RT-PCR results. The report provides no statistical test for this 

apparent immunity, but we have performed a Fisher’s exact test showing p<0.001. Thus, there is 

both theoretical and real-life evidence of immunity.

On the other hand, there have been reports of a few credible reinfection events in Hong Kong, 

Belgium and the Netherlands[81, 82]. Highly concerning is the growing evidence from Manaus, 

Northern Brazil, where herd immunity following the 1st wave was later overcome by a new variant 

dominating the 2nd wave[83-85]. 

What is the best way to control the epidemic until vaccine immunity is achieved?

While the world awaits widespread distribution of effective vaccines, it is critical to find a 

sustainable and acceptable way of living while suppressing the epidemic until we have vaccine-

induced immunity, especially amongst the elderly and others at high risk. In our opinion, this is 

best achieved by measures that reduce excessive contacts in the public space, to avoid 

superspreading events[47].  

While most countries adapted draconian measures, Sweden did not use lockdowns during the first 

wave and remained a semi-open society with open borders.  Early on, Sweden had a high death 

toll which can be explained by a late implementation of their control measures, a full two weeks 

after the other Nordic countries went into lockdown. In Sweden, these measures were focused on 

voluntary changes in mobility and work behavior and, importantly, a further restriction of 

gatherings from a maximum of 500 to a maximum of 50 persons, as well as intensified efforts to 

secure elderly in nursing homes, while schools for children under 16 years remained open. With 

this relatively light control strategy, they achieved epidemic control around May 1st, so that the 

effective reproductive number was below 1 over the summer; until autumn where partial lifting of 

this ban, along with seasonal change, resulted in a substantial second wave (Figure 3).  We wonder 

if the situation in Sweden during May-September showed us the potency of restrictions on large 

gatherings, isolated from the effect of other factors imposed in a full lockdown.    
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In our view, the Swedish success is that of getting to Re below 1 – albeit too late – while 

maintaining a fairly free and open society. Furthermore, had this been achieved 2 weeks sooner, 

then Sweden would not have suffered the large death toll in the spring.  

Some have argued that allowing Re to somewhat exceed 1 could be desirable because it allows 

herd immunity to slowly build up in the population (Great Barrington Declaration)[86]. In our 

view however, this comes at an unacceptably high cost in terms of disease burden and deaths. We 

computed that cost for Denmark, by multiplying the IFR and the hospitalization rate, assuming the 

final epidemic size would be 60% of the danish population (Table 3). Using our estimates based 

on the latest two seroprevalence studies and the latest blood donor data from Denmark (week 4 of 

2021) this gives us:

We found that natural herd immunity in Denmark would lead to ~20,000 deaths and ~90,000 

hospitalizations. In developing countries, the cost of following such a strategy would presumably 

be far less dramatic, due to having low proportions of people above 60 years of age. In Denmark 

this age group accounts for 97.3% of COVID-19 deaths as of February 15, 2021[6]. One might 

suggest isolating the elderly and chronically ill and allowing herd immunity to develop in the rest 

of the population. In a sense, the numbers above actually already account for that because isolation 

of elderly and chronically ill has already been a part of the Danish strategy from the start. From 

the seroprevalence data, it is also clear that this has actually been quite successful. In the third 

round of the national seroprevalence study, the seroprevalence was estimated at 1.9% (0.9-3.4%) 

in those above 65 years of age while it was 7.3% (5.3-9.9%) in those between 20 and 29 years of 

age. In a situation with higher infection rates in society, it seems more difficult to avoid infections 

in nursing homes, hospitals and in the elderly part of the general population. In that case, the 

estimates of mortality and hospitalizations above are too low.

In addition, to avoid hospital overburdening, the reproductive number would have to be kept close 

to 1 (meaning a similar degree of restrictions to those needed to keep Re<1) until significant 

effects of herd immunity kick in – and this is a very slow process that is nowhere near happening 

in any western countries despite high death tolls. A
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On the contrary, with strict border control and quarantining of incoming travelers, a strategy of 

testing, contact tracing, local outbreak control combined with social distancing and hygiene 

measures has allowed to suppress the epidemic resulting in very low death tolls in islands such as 

Iceland, Faeroe Islands, South Korea, Taiwan and New Zealand despite having quite open 

societies during most of the pandemic[87].  Acting quickly to get Re below 1 while disease 

prevalence is still low is, in our view, the best way to keep an open society in the long term. 

However, the situation has recently been complicated by new, faster spreading variants such as 

lineage B.1.1.7, commonly known as the UK variant. This variant requires even tougher 

restrictions than what has been necessary until now, due to increased (around 50%) higher 

transmissibility[88]. 

5. How will this end? 

Historically, influenza pandemics ended when sufficient immunity had built up in the population, 

even in the recent 2009 pandemic when the vaccine only became available after several 

waves[89]. We see four mutually non-exclusive ways of ending the crisis:

 A highly effective and widely available treatment of COVID-19 

 Herd immunity achieved by natural infection of at least 60% of the population 

 Herd immunity achieved by mass vaccinations 

 Widespread availability of inexpensive rapid tests for repeated mass testing

Several treatments are in use, but none have been proven to drastically improve the prognosis of 

the disease. Remdesivir seemed initially to improve mortality in a specific subgroup of 

hospitalized patients[90], but a later meta-analysis by the WHO found no reduction in mortality 

for Remdesivir nor three other studied drugs (hydroxychloroquine, lopinavir and interferon beta-

1a). Furthermore, a recent Cochrane review concludes that there is currently no evidence-based 

treatment for COVID-19 [91]. Combining this knowledge with the current vaccine advances, a 

game changer of a treatment does not seem to be the most plausible way out of the crisis in any 

near future.  

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

As discussed in section 4, aiming for natural herd immunity is undesirable due to the substantial 

cost in terms of disease burden and lives lost. This is further complicated by the fact that new and 

more contagious variants like B.1.1.7 have emerged and are replacing the original variant in many 

countries, thus requiring an even higher percentage of the population to recover from infection in 

order to achieve herd immunity. Furthermore, allowing widespread infections while building up 

herd immunity increases the risk of escape mutations that can cause reinfections and give rise to 

future epidemic waves even though herd immunity has been established. This is a quite probable 

explanation of recent events in Manaus, Brazil, where a second, deadlier wave of COVID-19 has 

hit the Amazonas capital after an estimated attack rate of 76% in the first wave had apparently 

conferred herd immunity[84, 85]. Genetic sequencing points to the immune escape lineage P1 

playing a major role in the second wave. In December, 51% of the sequenced SARS-CoV-2 

genomes in the Amazonas belonged to the P1 strain and in January this figure had risen to 91% 

[83]. 

Preliminary data from the Novavax COVID-19 vaccine trial in South Africa – where an escape 

variant, B.1.351, is highly prevalent – points towards 60% (19.9-80.1%) protection against 

symptomatic, confirmed COVID-19 in HIV-negative, vaccinated individuals. Of concern is that 

the 1/3 of participants who were seropositive at entry (thought to have been due the original 

SARS-CoV-2 strain in the first wave) had no protection relative to the placebo group. This (along 

with the Manaus data) points to an unfortunate preliminary conclusion – the naturally acquired 

immunity does little to nothing to protect against reinfection with escape variants. Luckily, at least 

the Novavax vaccine seems to offer some protection. It will be interesting to see if this holds true 

for the other vaccine candidates. Based on in vitro studies on 8 human sera and sera from non-

human primates, Moderna has found preliminary evidence suggesting that their mRNA-based 

COVID-19 vaccine (mRNA-1273) might not induce as high neutralizing antibody titers against 

the B.1.351 lineage relative to prior strains. The titers are still expected high enough to confer 

immunity, but out of caution Moderna has already sent an emerging variant booster vaccine into 

trial (mRNA-1273.351) against the B.1.351 variant[92]. By rapidly updating vaccines, we will 

have a more sustainable weapon against the new variants than allowing recurrent waves of new 

escape variants to confer herd immunity. Even though the vaccines do not completely protect 

against mild infections, all of the approved vaccines in the EU confer very high protection against 

severe disease[93].A
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A combination of natural and vaccine-based immunity is also possible, however, and one could 

argue that broadly imposed restrictions do no longer have ethical merit once those vulnerable to 

severe outcomes of infection have been vaccinated. However, hospitalization rates are not as age 

dependent as the fatality rate, so care must be taken that hospitals are not overwhelmed by quick 

lifting of measures. Also – immune senescence might leave many elderly vulnerable even after 

vaccination. Gradual reduction of restrictions while maintaining Re around or below 1 based on 

hospital admissions might be the best way for a balanced return to a normal society. As more and 

more risk groups are vaccinated, we should expect a lowering of the risk of hospitalization 

meaning that an increase in infection rates will not necessarily significantly increase 

hospitalizations. Mathematical modelling will be crucial in informing the timing of reopening 

attempts – who and how many must be vaccinated before a COVID-19 wave in an open society is 

unable to overburden hospitals?

Regardless of how herd immunity is achieved, SARS-CoV-2 is likely to become endemic, and 

may cause occasional large resurgences, either due to waning of antibodies or due to the 

appearance of immune escape variants[94]. These phenomena mean that we might need to 

repeatedly vaccinate a large part of the population – e.g. each winter as we do for the seasonal flu. 

It is thus clear that COVID-19 should not just be viewed as a temporary pandemic phenomenon, 

and that sustainable strategies are required. On a positive note, rapid tests have now become 

widely available, and these can significantly increase the speed of outbreak detection in vulnerable 

settings and of contact tracing in general. If rapid tests become cheaper and available for home 

use, they could realistically be used for recurrent mass testing of the entire population in order to 

curb the spread – such as it was successfully done in Slovakia in October 2020[95].
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Figure 1 Timeline of respiratory viral pandemics in the 20th and 21st century.  After a century of influenza A 

pandemics, a pandemic coronavirus emerged. The 1918, 1957 and 1968 pandemics are thought to have arisen from 

birds in Asia, whereas the 2009 originated in Mexican pigs. The origin of SARS-CoV-2 is thought to be Chinese bats. 

The colored labels indicate the pathogen responsible for the disease in question.
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Table 1 shows 

estimates of the proportion of all infected individuals who are hospitalized, admitted to the ICU and die. We base our 

estimates of the number of infected individuals by inferring from seroprevalence studies[19, 21-24]  

*We have adjusted the crude Spanish estimate of 5.0% for estimated sensitivity (82.1%) and specificity (100%) of the 

used IgG POCT. 

Testing 

period

Seroprevalence

estimate

Hospitalization 

rate 

ICU rate Infection fatality 

rate (IFR)

Danish 

seroprevalence 

study, round 2

17/8-4/9 2.2%

(1.8-2.6%)

2.2%

(1.9-2.7%)

-- 0.49%

(0.41-0.60%)

Danish 

seroprevalence 

study, round 3

14/12-8/1 3.9%

(3.3-4.6%)

3.0%

(2.6-3.6%)

-- 0.55%

(0.46-0.65%)

Danish blood 

donors, week 4 

of 2021

25/1-29/1 8.1%

(6.9-8.9%)

2.4%

(2.2-2.8%)

-- 0.46%

(0.42-0.54%)

Spanish data,

ENECOVID

27/4-11/5 6.1%* 2.59%                      0.24% 0.85%

Data from 

Iceland

Post first wave

seroprevalence

0.9%

                      (0.8-0.9%)

3.6% 0.9% 0.3%
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Location Event type and 

comments

Date 

(duration)

Estimated 

number of 

secondary 

infections from 

one 

superspreader

Participants Attack rate

Skagit 

County, USA

Choir practice 

with social 

distancing 

transmission*

March 10

(2.5 hours)

52 61 87%

Calgary, 

Australia

Service and 

party in a 

church with 

social 

distancing*

Mid-March 

(a few 

hours)

23 41 59%

Guangzhou, 

China

Restaurant, 

asymptomatic 

superspreader

**

January 24

(one lunch 

period)

9 91 11%

Edmonton, 

Canada

Bonspiel 

(curling event)

March 11-

14

(4 days)

23** 72*** 33%

Chicago, 

USA

A dinner, a 

funeral and a 

birthday party

Feb-March

(three 

distinct 

events)

10 - -
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Zhejiang 

province, 

China

Bus ride and 

worship event 

(WE)*

Bus ride: 

100 mins

WE: 150 

mins

Bus 1: 0

Bus 2: 23

WE, others: 7

WE, total: 30

Bus 1: 60

Bus 2: 68

WE, others: 

172

WE, total: 300

Bus 1: 0 %

Bus 2: 35%

WE, others: 4%

WE, total: 10%

Table 2 Shows examples[36-41] of evident COVID-19 superspreader events, meaning that they occurred in a limited 

time period so that it most likely represents multiple secondary infection from a single superspreader.

A long list of 1400 outbreaks is available in the following database:  

https://docs.google.com/spreadsheets/d/1c9jwMyT1lw2P0d6SDTno6nHLGMtpheO9xJyGHgdBoco/edit

*Highly probable case of aerosolized transmission

**High probability of at least some tertiary infections 

***“Roughly 72 attendees”

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure 2. Simulations of an agent-based model with network and superspreaders (see full model and 

assumptions in [47]). a) A single infection tree – the result of a model simulation of superspreading. The epidemic 

spreads due to a small proportion of individuals who are highly infectious, while the majority do not transmit the 

disease. 

b) Effect of mitigating in the public domain to reduce opportunities for superspreading.  If a sizable proportion 

of infections are caused by superspreaders, the simulations show that just reducing contacts in the public space (that is, 

outside households and workplaces/schools), has a large mitigation effect (right subpanel); but without superspreaders 

in the model, not much is gained (left subpanel). Data for panel b from [47].

In these simulations, superspreaders are individuals with a higher personal reproductive number, thus having the 

potential to transmit the disease to many in an unmitigated scenario. Drastically reducing the number of different 

persons that one meets (by e.g., banning large gatherings) thus has an outsized effect in a disease characterized by 

superspreading, providing an opportunity for improved mitigation. The theoretical background for this effect is 

explored in ref. [49].
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Figure 3 A sustainable control strategy in Sweden? On March 28th, Sweden introduced a ban on events >50 persons 

and the daily numbers of deaths started to decline a few weeks after[96].  On October 8 some gatherings were again 

allowed up to 300. Many other factors were in effect in Sweden, including working from home, less traveling, more 

effective shielding of the elderly, closed universities and the seasonal changes in temperature and humidity.  But 

borders remained open, as did schools for children up to 16 years of age in this time period.
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COVID-19 

Hospitalizations

% of 

population  

hospitalized

COVID-19 

Deaths

% of 

population 

dead

Estimates based on 

seroprevalence study, 

round 2
76,500

(64731-93500)

1.3%

(1.1-1.6%)

17,100

(14469-20900)

0.29%

(0.25-0.36%)

Estimates based on 

seroprevalence study, 

round 3
105,538

(89478-124727)

1.8%

(1.5-2.1%)

19,154

(16239-22636)

0.33%

(0.28-0.39%)

Estimates based on Danish 

blood donor serology  

study; week 4, 2021
82,993

(75533-97426)

1.4%

(1.3-1.7%)

16,059

(14616-18852)

0.28%

(0.25-0.32%)

Table 3 Shows the hypothetical cost of controlled, natural herd immunity in Denmark in terms of deaths and 

hospitalizations.  The resulting figures are far greater than the current cumulative burden of ~2,300 deaths and 

~12,000 hospitalizations in our country (as of Feb 16, 2021). 
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Additional publications

In addition to the publications included in the preceding chapters, I published one additional paper
in Physical Review E during my PhD programme [71]. This manuscript is not included as part of
the works submitted for evaluation, but merely included for completeness.
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We develop the geometric description of submanifolds in Newton-Cartan spacetime. This provides the
necessary starting point for a covariant spacetime formulation of Galilean-invariant hydrodynamics on curved
surfaces. We argue that this is the natural geometrical framework to study fluid membranes in thermal equilibrium
and their dynamics out of equilibrium. A simple model of fluid membranes that only depends on the surface
tension is presented and, extracting the resulting stresses, we show that perturbations away from equilibrium
yield the standard result for the dispersion of elastic waves. We also find a generalization of the Canham-Helfrich
bending energy for lipid vesicles that takes into account the requirements of thermal equilibrium.

DOI: 10.1103/PhysRevE.101.062803

I. INTRODUCTION

The dynamics of surfaces and interfaces plays a prominent
role in various instances of physical phenomena, ranging from
fluid membranes in biological systems [1,2], to the interplay
between liquid crystal geometry and hydrodynamics [3], to
surface or edge physics in condensed matter systems [4].
Fluid membranes comprising lipid bilayers are essential in the
physics of biological systems, and the characterization of their
geometric properties has been an active field of research for
decades, as well as being key in understanding experimental
outcomes (see, e.g., Refs. [5–9] for reviews). Hydrodynamics
on curved surfaces has also recently received considerable
attention, not only due to its relevance in embryonic processes
[10] or cell migration [11] where activity also plays a role,
but also due to its relevance in understanding topological
properties of wave dynamics such as Kelvin-Yanai waves
on the Earth’s equator [12], flocking on a sphere [13], or
turbulence in active nematics [14–16].

While the geometry and dynamics of surfaces in (pseudo)-
Riemannian geometry has been deeply studied in both physics
and mathematics, a systematic treatment using covariant and
geometrical structures has so far not been developed for
Galilean-invariant systems. In view of the relevance of such
systems in many branches of physics, and immediate applica-
tions in biophysical systems detailed below, the main goal of
this paper is to develop the theory of submanifolds in Newton-
Cartan spacetime. This can be considered as the Galilean

*j.armas@uva.nl
†j.hartong@ed.ac.uk
‡emil.have@ed.ac.uk
§bjarkenielsen@nbi.ku.dk
‖obers@nbi.ku.dk

analog of the (pseudo)-Riemannian case for which the ge-
ometry and its embeddings have local Euclidean (Poincaré)
symmetry as opposed to Galilean symmetries. The formalism
we develop allows for a covariant spacetime formulation of
Galilean-invariant hydrodynamics on curved surfaces.

As such it is thus the natural framework to study fluid
membranes in thermal equilibrium along with their dynamics
away from equilibrium. This includes in particular biophysi-
cal membranes such as lipid bilayers, which are membranes
composed of lipid molecules that enclose the cytoplasm. The
lipid molecules move as a fluid along the membrane surface,
which itself behaves elastically when bent. It is well known
that at mesoscopic scales, lipid bilayers can be approximated
by thin surfaces whose equilibrium configurations are ac-
curately described by geometrical degrees of freedom and
a small set of material coefficients that encode the more
microscopic biochemical details (see, e.g., Ref. [9]). The
shapes of lipid bilayers, such as discoids characterizing the
morphology of red blood cells, are found by extremizing
the Canham-Helfrich (CH) free energy [5,6], which depends
only on geometric properties. The stresses associated to such
bilayers have received considerable attention [9,17] as well as
deformations of the CH free energy away from equilibrium in
order to identify stable deformations [18].

However, despite the CH free energy being taken to repre-
sent a system in thermodynamic equilibrium [19] (as well as
its analog in nematic liquid crystals, the Frank energy [20]), it
disregards the basic lesson of equilibrium thermal field theory:
that temperature and mass chemical potential (conjugate to
particle number) also have a geometric interpretation. This
results in the CH free energy giving rise to inaccurate stresses
characterizing the membrane, explicit by the fact that they do
not describe the stresses intrinsic to a fluid, and neither do they
yield elastic wave dispersion relations when deforming away
from equilibrium. In this paper, we argue that the development
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of a spacetime covariant formulation of Galilean-invariant
hydrodynamics using Newton-Cartan geometry is a more
useful approach to understanding fluid dynamics on curved
surfaces and the physics of equilibrium fluid membranes.

Newton-Cartan (NC) geometry was pioneered by Cartan in
order to geometrize Newton’s theory of gravity [21,22].1 As
a nondynamical geometry its importance stems from the fact
that it is the natural background geometry that nonrelativistic
field theories couple to [25,26]2 and thus provides a geometric
and covariant formulation of many aspects of nonrelativistic
physics including broad classes of long-wavelength effective
theories such as hydrodynamics. In particular, in the past few
years NC geometry and variants have been applied to the
formulation of Galilean-invariant fluid dynamics [33,34], Lif-
shitz fluid dynamics [35,36] as well as hydrodynamics without
boost symmetry [37–40],3 which encapsulate the former as
cases with extra symmetries. Furthermore, in the context of
condensed matter systems, it was realized that NC geometry
is the natural setting for developing an effective theory of the
fractional quantum Hall effect [41–44]. This body of work,
together with previous work on Galilean superfluid droplets
[45] and connections between black holes and CH functionals
[46,47], suggests that NC geometry can also be useful in
describing hydrodynamics on curved surfaces.

The development of submanifold calculus in (pseudo-
)Riemannian or Euclidean geometry, written in multiple vol-
umes (e.g., Ref. [48]) and furthered in different contexts
[49–53], is an essential prerequisite for describing surfaces
and hence for formulating and extremizing the CH free en-
ergy. Therefore, the majority of the work presented in this
paper, in particular Secs. II and III and Appendix A, consists
of the development of submanifold calculus in Newton-Cartan
geometry, the identification of geometrical properties describ-
ing surfaces, and the formulation of appropriate geometric
functionals whose extrema are NC surfaces. Thus, the main
part of the work presented here is foundational. However, in
Sec. IV we apply this machinery to different fluid membrane
systems in order to show its usefulness and provide a gener-
alized CH model that takes into account the requirements of
thermodynamic equilibrium. The work developed here will be
the basis for a more detailed study of effective theories of fluid
membranes, which takes into account a larger set of responses
including viscosity, providing a more solid foundation for the
physics of fluid membranes [54].

1See also Ref. [23] for a modern perspective and earlier references,
and the recent work [24] for an action principle for Newtonian
gravity.

2In particular, the most general coupling requires a torsionful gen-
eralization of NC geometry, called torsional Newton-Cartan (TNC)
geometry which was first observed as the boundary geometry in
the context of Lifshitz holography [27–29]. TNC geometry also
appears as the ambient space-time for nonrelativistic strings; see,
e.g., Refs. [30–32].

3The boost-noninvariant hydrodynamics of these papers is formu-
lated in the regime where momentum is conserved, but may be
generalized to include further breaking of translation symmetry, in
which case it applies to flocking and active matter.

A. Organization of the paper

A more detailed outline of the paper, including a brief
summary of the main results is as follows.

In Sec. II, after reviewing the geometric structure of a
Newton-Cartan spacetime, we first define what a submanifold
structure is in such spacetimes. In particular, we develop the
necessary geometric tools to define an induced NC structure
on the submanifold. We highlight in particular how the objects
transform under local Galilean boosts, which is a key property
for nonrelativistic geometries. We then show, using the affine
connection that is known for NC structures, how to construct
a covariant derivative along the surface directions, and give an
expression for the corresponding surface torsion tensor. With
this in hand, we discuss the exterior curvature and show how
the (Riemannian) Weingarten identity gets modified in this
case.

Section III develops the variational calculus for NC sub-
manifolds, which is essential technology in order to find
equations of motion from effective actions. We consider first
general variations of the relevant quantities describing the em-
bedding. Subsequently we obtain expressions for embedding
map variations as well as Lagrangian variations, which are
diffeomorphisms in the ambient NC spactime that keep the
embedding maps fixed. From the corresponding variations of
the induced NC structures and the normal vectors we find in
particular how the extrinsic curvature transforms under such
variations. We subsequently use this technology to consider
the dynamics of submanifolds that arises from extremization
of an action. The resulting equations of motions for NC
submanifolds are thus obtained from the general response to
varying the induced NC metric structure on the manifold and
the extrinsic curvature. These split up in a set of intrinsic
equations, which are conservation equations of the world-
volume stress tensor and mass current accompanied by a set of
extrinsic equations. We also analyze the boundary terms that
appear as a result of varying the general action functional and
obtain the resulting boundary conditions.

Then in Sec. IV we apply the action formalism presented in
the previous section to describe equilibrium fluid membranes
and lipid vesicles as well as their fluctuations. We will show
that employing NC geometry for such surfaces is not only
natural but also provides a more complete description. First,
it introduces (absolute) time and therefore fluctuations of the
system can include temporal dynamics in a covariant form.
Moreover, the symmetries of the problem are made manifest
via the geometry of the submanifold and ambient spacetime.
Even more important is the aspect that NC geometry allows
to properly introduce thermal field theory of equilibrium fluid
membranes. To illustrate all this we first consider equilibrium
fluid branes, i.e., stationary fluid configurations on an arbi-
trary surface and the simplest example with a free energy
depending on surface tension only, for which we compute
the resulting stresses. We then show that perturbations away
from equilibrium yield the standard result for the dispersion
of elastic waves. We also briefly consider the case of a
droplet, by adding internal or external pressure to the previous
case. Then we revisit the celebrated Canham-Helfrich model,
which describes equilibrium configurations of biophysical
membranes. We show how this model can be described using
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Newton-Cartan geometry and generalize it by allowing its
(material) parameters to depend on temperature and chemical
potential. Finally, we review the classic lipid vesicles using
this framework.

We end in Sec. V with a brief discussion and description of
further avenues of investigation.

A number of appendices are included containing further
details. Since it is known that torsional NC spacetimes can
be obtained from Lorentzian spacetime using null reduction,
we show in Appendix A a complimentary perspective on NC
submanifolds, by null reducing submanifolds of Lorentzian
spacetimes. Appendix B describes different classes of NC
spacetimes, depending on properties of the torsion. In Ap-
pendix C we find the relation between the NC connections
of the ambient spacetime and the submanifold (described in
Sec. II B 5). Finally, in Appendix D we show how the Gauss–
Bonnet theorem reduces the number of independent terms in
an effective action for (2 + 1)-dimensional membranes that
appear as closed codimension one surfaces embedded in flat
(3 + 1)-dimensional Newton-Cartan geometry.

II. THE GEOMETRY OF NEWTON-CARTAN
SUBMANIFOLDS

This section is devoted to a proper geometrical treatment
of surfaces (or embedded submanifolds) in NC geometry with
the goal of subsequently applying it to the description of
membrane elasticity and fluidity in later sections. To that aim,
we begin by introducing the reader to the essential details
of NC geometry. The basic structures that define a given
NC geometry are then understood as background fields for
the dynamical surfaces or objects, in direct analogy with
embedding of surfaces in a (pseudo-)Riemannian geometry
with background metric gμν . This paves the way for defining
the geometric structures that characterize nonrelativistic sur-
faces.4 In Appendix A we provide an alternative method for
obtaining the theory of NC surfaces directly from the theory
of surfaces in Lorentzian geometry.

A. Newton-Cartan geometry

Let Md+1 be a (d + 1)-dimensional manifold endowed
with a Newton-Cartan structure, which consists of the fields
(τμ, hμν, mμ). Here the Greek indices denote spacetime in-
dices such that μ, ν, · · · = 0, . . . , d . The tensor hμν is sym-
metric with rank d and has signature (0, 1, 1, . . . ), while the
nowhere vanishing 1-form τμ is such that −τμτν + hμν has
full rank. The field mμ is the connection of an Abelian gauge
symmetry that from the point of view of a Galilean field
theory on a NC spacetime can be thought of as the symmetry
underlying particle number conservation. Since the latter is

4Intuition originating from the description of surfaces in (pseudo-)
Riemannian geometry suggests that geometric structures character-
izing surfaces in NC geometry would naively be constructed from
pullbacks of NC ambient spacetime fields. It will turn out that this is
only true for submanifolds of NC geometry provided we take the
pullbacks of quantities that are invariant under the local Galilean
boost transformations of the ambient NC geometry.

a compact Abelian symmetry we refer to mμ as the U (1)
gauge connection. It is useful to define an inverse NC structure
(vμ, hμν ), where vμ spans the kernel of hμν and τμ spans the
kernel of hμν . The 1-form τμ is sometimes called the clock
1-form, while the vector vμ is known as the Newton-Cartan
velocity. These structures satisfy the completeness relation
and normalization condition:

δμ
ν = −vμτν + hμρhρν, so that vμτμ = −1. (2.1)

It is occasionally useful to introduce vielbeins ea
μ, eμ

a with
a, b, · · · = 1, . . . , d (that is, spatial tangent space indices are
underlined lowercase Latin letters) such that

hμν = δabea
μeb

ν, hμν = δabeμ
a eν

b, (2.2)

which furthermore satisfy the orthogonality relations

vμea
μ = 0, τμeμ

a = 0, eμ
a eb

μ = δb
a. (2.3)

The Newton-Cartan structure on Md+1 in terms of the
fields (τμ, hμν, mμ) transforms under diffeomorphisms (coor-
dinate transformations), U (1) (mass) gauge transformations
(akin to gauge transformations in Maxwell theory), local
rotations and local Galilean boosts (also known as Milne
boosts) in the following way:

δτμ = £ξ τμ, δea
μ = £ξ ea

μ + λa
beb

μ + λaτμ,

δmμ = £ξ mμ + λaea
μ + ∂μσ, (2.4)

δvμ = £ξv
μ + λaeμ

a , δeμ
a = £ξ eμ

a + λa
beμ

b .

Here ξμ is the generator of diffeomorphisms, σ is the param-
eter of mass gauge transformations, and λa is the parameter
of local Galilean boosts. Finally, λa

b = −λb
a corresponds to

local so(d ) transformations. When describing physical sys-
tems in NC geometry by means of a Lagrangian or action
functional, one requires invariance under the gauge transfor-
mations (2.4). In the restricted setting of a flat NC back-
ground (i.e., a spacetime with absolute time whose constant
time slices are described by Euclidean geometry), which is
the most relevant case in the context of biophysical mem-
branes, invariance under (2.4) implies invariance under global
Galilean symmetries centrally extended to include mass con-
servation. The centrally extended Galilei group is known as
the Bargmann group. This implies that the geometry can be
viewed as originating from “gauging” the Bargmann algebra
as detailed in Ref. [23].

1. Galilean boost-invariant structures

One may readily check that given (2.4), the NC fields hμν

and hμν , which are constructed out of the vielbeins as in (2.2),
transform as

δhμν = £ξ hμν, δhμν = £ξ hμν + 2λ(μτν ), (2.5)

where λμ = ea
μλa, immediately implying that λμvμ = 0. We

conclude from this that hμν∂μ∂ν is an invariant of the geom-
etry, a cometric, while hμνdxμdxν is not an invariant because
it transforms under the Galilean boosts. On the other hand
τμdxμ is invariant. This means that NC geometry has a
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degenerate metric structure given by τμτν and hμν and that
hμν should not be viewed as a metric.5

Notice that while hμν transforms under Galilean boosts
it does not transform under U (1) gauge transformations. It
is possible to define objects that have the opposite property,
namely, that they are Galilean boost invariant but not U (1)
invariant. We will often work with these fields, and so we
discuss their construction here. We can trade U (1) gauge
invariance for boost invariance by introducing the set of fields

h̄μν = hμν − 2τ(μmν ), v̂μ = vμ − hμνmν, (2.6)

which transform as6

δh̄μν = £ξ h̄μν − 2τ(μ∂ν )σ, δv̂μ = £ξ v̂
μ − hμν∂νσ, (2.7)

and hence are manifestly Galilean boost invariant. Addition-
ally, it is also possible to construct a boost-invariant scalar,
which is the boost-invariant counterpart of the Newtonian
potential [56], namely,


̃ = −vμmμ + 1
2 hμνmμmν . (2.8)

The Newtonian potential itself is just the time component of
mμ. These quantities will be useful when discussing effective
actions for fluid membranes in later sections.

2. Covariant differentiation and affine connection

NC geometry provides a way of formulating nonrelativis-
tic physics in curved backgrounds and substrates which has
recently become an active research direction in soft matter
[12–16]. Additionally, even in the traditional case of lipid
membranes sitting in Euclidean space, it is useful to have
explicit coordinate independence as it can simplify many
problems of interest. Therefore, it is important to introduce a
covariant derivative adapted to curved backgrounds. However,
in contrast to (pseudo-)Riemannian geometry without torsion,
there is no unique metric-compatible connection in Newton-
Cartan geometry. Rather, the analog of metric compatibility in
NC geometry is

∇μτν = 0, ∇μhνρ = 0, (2.9)

where ∇ is the covariant derivative with respect to the affine
connection �ρ

μν . It is possible to choose the affine connection

5We can fix diffeomorphisms such that τi = 0 where we split
the spacetime coordinates xμ = (t, xi ). In this restricted gauge the
metric on slices of constant time t is given by hi jdxidx j which is
invariant under the diffeomorphisms that do not affect time. In this
sense the constant time slices are described by standard Riemannian
geometry. However, when we include time into the formalism we
have to abandon the notion of a metric and instead work with the
NC triplet (τμ, hμν, mμ). In this setting, in order to evaluate areas
or volumes of given surfaces one can use the integration measure
e = √−det(−τμτν + hμν ), which is both Galilean boost and U (1)
invariant.

6Note that this is possible because the U (1) connection mμ also
transforms under Galilean boosts. In this sense it is different from the
Maxwell potential. The difference comes from the fact that the mass
generator forms a central extension of the Galilei algebra whereas the
charge U (1) generator of Maxwell’s theory forms a direct sum with
in that case the Poincaré algebra. See Refs. [23,55]) for more details.

as [57,58]7

�ρ
μν = −v̂ρ∂μτν + 1

2 hρσ (∂μh̄νσ + ∂ν h̄μσ − ∂σ h̄μν ). (2.10)

Given the connection �, covariant differentiation acts on
an arbitrary vector X μ in a similar manner as in (pseudo)-
Riemannian geometry:

∇μX ν = ∂μX ν + �ν
μρX ρ. (2.11)

Notably, and in contradistinction to the Levi-Civita con-
nection of (pseudo)-Riemannian geometry, the connection
�λ

μν is generally torsionful. This is due to the condition
∇μτν = 0. In particular, the affine connection has an antisym-
metric part given by

2�λ
[μν] = −2v̂λ∂[μτν] = −v̂λτμν, (2.12)

where we defined the torsion 2-form

τμν = 2∂[μτν]. (2.13)

For all physical systems studied in this paper, the torsion
vanishes. However, when performing variational calculus (of
the NC fields) it is required to keep variations of τμ arbitrary.8

As written in (2.10) in terms of boost-invariant quanti-
ties, the affine connection does not transform under Galilean
boosts. However, under the U (1) gauge transformations (2.7),
it transforms as

δσ�ρ
μν = 1

2 hρλ(τμν∂λσ + τλν∂μσ + τλμ∂νσ ). (2.14)

In the absence of torsion, τμν = 0, the connection is invariant
under such transformations.

3. Absolute time and flat space

Depending on the conditions imposed on the clock 1-form
τμ, there are different classes of NC geometries [28,58]. We
refer the curious reader to Appendix B, which contains a clas-
sification of the different classes NC geometries, while in this
section we focus on the most relevant case for the purposes of
this work. If τμ is exact, that is, τμ = ∂μT for some scalar T ,
the torsion (2.13) vanishes and we are dealing with Newtonian
absolute time. This is the simplest kind of Newton-Cartan
geometry and the relevant one for the applications we consider
in this work, namely, lipid vesicles or fluid membranes. For
example, for membrane geometries, which for each instant
in time are embedded in three-dimensional Euclidean space,
the ambient NC spacetime in Cartesian coordinates can be
parametrized as

τμ = δ0
μ, hμν = δi

μδi
ν, vμ = −δ

μ
0 , hμν = δ

μ
i δν

i ,

mμ = 0. (2.15)

7As shown in Refs. [57,58], the most general affine connection sat-
isfying (2.9) takes the form �̄ρ

μν = �ρ
μν + W ρ

μν where W ρ
μν is the pseu-

docontortion tensor, obeying τρW ρ
μν = 0 and W ν

μλhλρ + W ρ

μλhνλ = 0.
The choice (2.10) corresponds to W ρ

μν = 0. This choice is also the
natural choice from the perspective of the Noether procedure [55].

8The condition that τμ be unconstrained is not necessary when we
perform variations of embedding scalars in a fixed ambient space
geometry.
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In the context of nonrelativistic physics in spatially curved
backgrounds, the clock 1-form will still have the form τμ =
δ0
μ but the tensor hμν can be nontrivial in the sense that it

is not gauge equivalent to flat space. Thus for all practical
applications, the first term in the affine connection (2.10)
vanishes and the connection is purely spatial. However, while
for physically relevant spacetimes we will always require that
τμ must be of the form τμ = ∂μT , when we are dealing with
τμ as a background source in some action functional for matter
fields, we need to require that it is unconstrained in order to
be able to vary it freely.

B. Submanifolds in Newton-Cartan geometry

In this section we formulate the theory of nonrelativistic
NC timelike9 surfaces (or submanifolds) embedded in arbi-
trary NC geometries. Following the literature that deals with
the relativistic counterpart [53], we focus on the description
of a single surface placed in an ambient NC spacetime and
not on a foliation of such surfaces. In practice, this means that
all geometric quantities, such as tangent and normal vectors,
describing the surface are only well defined on the surface and
not away from it. In this section we introduce the necessary
geometrical structures for dealing with a single surface in a
NC spacetime.

1. Embedding map, tangent, and normal vectors

A (p + 1)-dimensional Newton-Cartan submanifold �p+1

of a (d + 1)-dimensional Newton-Cartan manifold Md+1 is
specified by the embedding map

X μ : � → M, μ = 0, . . . , d, (2.16)

which maps the coordinates σ a on �p+1 to X μ(σ a) on M
(lowercase Latin letters, a, b, . . . = 0, . . . , p, denote submani-
fold spacetime indices). Concretely, the embedding map spec-
ifies the location of the surface as xμ = X μ(σ a) where xμ are
coordinates in M. The manifold M into which the embedding
scalars map is usually referred to as the target spacetime. The
manifold described by the spacetime coordinates xμ is the
ambient spacetime. For simplicity, we will refer to both as
ambient spacetime.

Given the embedding map, the tangent vectors to the
surface are explicitly defined via uμ

a = ∂aX μ. In turn, the nor-
mal 1-forms nI

μdxμ (where I runs over the d − p transverse
directions) are implicitly defined via the relations

nI
μuμ

a = 0, hμνnI
μnJ

ν = δIJ , I = 1, . . . , d − p. (2.17)

This normalization implies that in the normal directions we
can use δIJ and δIJ to raise and lower transverse indices,
meaning that we can write YIY I = Y IY I for some arbitrary
vector Y I . However, Eq. (2.17) does not fix the normal
1-forms uniquely. In fact, the 1-forms nI

μ transform under
local SO(d − p) rotations such that

nI
μ → MI

JnJ
μ, (2.18)

9The submanifolds we consider are timelike in the sense that
the normal vectors are required to be spacelike [see (2.24)]. The
submanifolds will inherit a NC structure of their own.

where MI
J is an element of SO(d − p). The transformation

(2.18) leaves (2.17) invariant and hence expresses the freedom
of choosing the normal 1-forms.10

We can furthermore introduce “inverse objects” ua
μ and nμ

I
to the tangent vectors and normal 1-forms via the complete-
ness relation

δμ
ν = uμ

a ua
ν + nI

νnμ
I , (2.19)

which in turn satisfy the relations

ua
μnμ

I = 0, uμ
a ub

μ = δb
a, nμ

I nJ
μ = δJ

I . (2.20)

The tangent vectors, normal 1-forms and their inverses can be
used to project any tensor tangentially or orthogonally to the
surface. For instance, we may project some tensor X μ

νρ
λ and

denote the result as

X a
I b

J = ua
μnν

I uρ

b nJ
λX μ

νρ
λ. (2.21)

It is also useful to define the tangential spacetime projector

Pμ
ν = uμ

a ua
ν = δμ

ν − nμ
I nI

ν, (2.22)

which can be shown to be idempotent and of rank p + 1. The
object (2.22) can be used to project arbitrary tensors onto
tangential directions along the surface and satisfies Pμ

ν nI
μ = 0.

2. Timelike submanifolds and boost invariance

Our goal is formulate a theory of nonrelativistic submani-
folds �p+1 characterized by a Newton-Cartan structure that is
inherited from the NC structure of the ambient spacetime. We
introduce the submanifold clock 1-form as the pullback of the
clock 1-form of the ambient spacetime such that

τa = uμ
a τμ. (2.23)

As mentioned earlier, we focus on timelike submanifolds, by
which we mean that the normal vectors nμ

I satisfy

τI = nμ
I τμ = 0, (2.24)

and so τa is nowhere vanishing on �p+1 (see Fig. 1 for an
illustration of this condition). Then, taking

nμI = hμνnI
ν, (2.25)

we make (2.24) manifest. We note that these considerations
imply that

hIJ = hμνnI
μnJ

ν = δIJ , (2.26)

haI = hμνua
μnI

ν = ua
μnμI = 0, (2.27)

hIJ = hμνnμ
I nν

J = hμνhνρnμ
I nρJ = (

δρ
μ + vρτμ

)
nμ

I nρJ = δIJ ,

(2.28)

haI = hμνuμ
a nν

I = hμνuμ
a hνρnρI = vIτa, (2.29)

where vI = nIμvμ, which we will denote as the normal
velocity.

10More formally, since the orientation of the normal 1-forms can
be chosen freely as inward or outward pointing, MI

J is a matrix in
O(d − p).
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FIG. 1. Graphical depiction of the embedding of timelike
Newton-Cartan submanifolds. The vertical direction represents the
time t , and the spatial directions are in the plane orthogonal to the t
axis. The spatial hypersurfaces of constant time are denoted by their
corresponding value of t . Note in particular that the condition (2.24)
implies that the submanifold does not “bend” away from the time
direction in the ambient spacetime.

The description of submanifolds in NC geometry must
be invariant under Galilean boosts, as these just express a
choice of frame. This implies that the defining structure of
NC submanifolds, namely, (2.17) and (2.20), must be invariant
under local Galilean boost transformations. We start by noting
that the embedding map does not transform under boosts, that
is

δGX μ = 0 ⇒ δGuμ
a = 0, (2.30)

and hence the tangent vectors to the surface are boost invari-
ant.11 Specializing to timelike submanifolds, using (2.25), the
variations of (2.17) and (2.20), together with (2.30), require

uμ
a δGnI

μ = −nI
μδGuμ

a , nμJδGnI
μ = 0 ⇒ δGnI

μ = 0,

ua
μhμνδGnμI = −nμ

I δGua
μ, (2.31)

uμ
a δGub

μ = −ub
μδGuμ

a ⇒ δGua
μ = 0,

while δGnμ
I = 0 follows trivially from (2.25). Thus, Eq. (2.30)

ensures that the defining structure of timelike NC submani-
folds is boost invariant.12

11Note that the embedding map specifies the location of the sur-
face such that xμ = X μ(σ a). The spacetime coordinates xμ do not
transform under local Galilean boosts and hence neither does the
embedding map X μ(σ ).

12In particular, (2.31) implies that δGvI = nI
μδGvμ = nI

μhμνλν =
λI . This is consistent with (2.31) since nI

μ = nI
∗∗∗ae∗∗∗a

μ − vIτμ, so
that nI

∗∗∗a = eμ
∗∗∗anI

μ. Given that δGeμ
∗∗∗a = δGτμ = 0 and δGe∗∗∗a

μ =
λ∗∗∗aτμ, we find that δGnI

μ = nI
∗∗∗aλ

∗∗∗aτμ − λIτμ and since λμ =
nI

μλI + ua
μλa, we get nI

∗∗∗aλ
∗∗∗a = nI

∗∗∗ae∗∗∗aμλμ = λI , thus confirm-
ing (2.31).

3. Induced Newton-Cartan structures

Besides the defining conditions (2.17) and (2.20), NC
submanifolds have other inherent geometric structures, such
as induced tensors, that can be introduced via appropriate
contractions of ambient tensors with any of the objects ua

μ and
uμ

a . We wish to identify the induced NC structures on the sub-
manifold that have the same properties as the NC structures of
the ambient spacetime. For instance, these induced structures
should transform as in (2.4) and (2.5) but now involving only
tangential directions to the submanifold.

The basic building blocks are the clock 1-form τa in
Eq. (2.23) and the normal velocity vI in Eq. (2.29) along with
the pullbacks of the remaining ambient space fields

hab = uμ
a uν

bhμν, va = ua
μvμ, hab = ua

μub
νhμν,

ma = uμ
a mμ. (2.32)

It is possible to see that these structures mimic many of
the properties of the ambient NC structure. For instance,
we have τahab = 0 and vaτa = −1 by virtue of (2.24) and
τμhμν = 0 as well as vμτμ = −1. Additionally, they give rise
to the completeness relation hachcb = δa

b + vaτb, which in turn
implies the relation hμνua

μ = habuν
b . However, using (2.29), we

find that

vahab = ua
μvμuρ

a uσ
b hρσ = −vI hIb = −vIvIτb, (2.33)

which is nonzero, contrary to the corresponding ambient NC
result vμhμν = 0. Hence, the individual structures in (2.32) do
not form a NC geometry on the submanifold. Using (2.33) we
instead define

ȟab = hab − vIvIτaτb, (2.34)

which leads to a completeness relation and satisfies the re-
quired orthogonality condition, that is

hacȟcb = δa
b + τbv

a, vaȟab = 0. (2.35)

For ȟab to be considered a NC structure on the submanifold,
one must also ensure that it transforms under Galilean boosts
as its ambient space counterpart hμν [cf. (2.5)]. Using (2.4),
(2.5), (2.31), and13 vaλa = −vIλI , it can be shown that

δGva = habλ̌b, δG(vahab) = −2τbλ
IvI , δGhab = 2τ(aλb),

δGȟab = 2τ(aλb) − 2τaτbv
IλI = 2τ(aλb) + 2τaτbv

cλc

= 2τ(aλ̌b), (2.36)

where we have defined

λ̌a = λa + vcλcτa = ȟabhbcλc, (2.37)

which satisfies vaλ̌a = 0, analogously to the ambient or-
thogonality condition vμλμ = 0. Thus ȟab transforms under
submanifold Galilean boosts in the same manner as hμν

transforms under ambient Galilean boosts.
NC submanifolds admit boost-invariant structures similar

to the ambient structures (2.6) and (2.8). Given that the set of
tangent and normal vectors is boost invariant [see Eq. (2.31)],

13This follows from the statement that vμλμ = 0.
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two of these structures are obtained by contractions of the
corresponding ambient quantities, namely,

h̄ab = uμ
a uν

bh̄μν = ȟab − 2τ(am̌b), v̂a = ua
μv̂μ = va − habm̌b,

(2.38)

where we have defined the submanifold U (1) connection

m̌a = ma − 1
2vIvIτa, (2.39)

which transforms under boosts as δGm̌a = λ̌a, analogous to
the boost transformation of the ambient connection mμ. Given
that in the ambient space we have the identity v̂ν h̄νμ = 2
̃τμ

where 
̃ is defined in (2.8) we require an analog condition of
the form v̂ah̄ab = 2
̌τb for some scalar 
̌. Explicit manipula-
tion shows that

v̂ah̄ab = ua
μv̂μuν

auρ

b h̄νρ = v̂ν h̄νρuρ

b − nI
μhνσ nI

σ v̂μuρ

b h̄νρ

= 2(
̃ − 1/2v̂I v̂I )τb, (2.40)

which leads us to identify


̌ = 
̃ − 1
2 v̂I v̂I = −vam̌a + 1

2 habm̌am̌b, (2.41)

thus taking the same form as its ambient counterpart (2.8) but
now in terms of m̌a.

In summary, we define the induced Newton-Cartan struc-
ture on the submanifold �p+1 to consist of the fields
(τa, ȟab, m̌a) and (va, hab) along with the boost-invariant com-
binations v̂a, h̄ab, and 
̌, satisfying the relations

δa
b = hacȟcb − τbv

a, τahab = 0, vaȟab = 0, (2.42)

as well as

v̂ah̄ab = 2
̌τb. (2.43)

These are related to the ambient Newton-Cartan structures in
the following way:

τa = uμ
a τμ, ȟab = uμ

a uν
bhμν − vIvIτaτb = hab − vIvIτaτb,

(2.44)

m̌a = uμ
a mμ − 1

2vIvIτa = ma − 1
2vIvIτa, va = ua

μvμ,

hab = ua
μub

νhμν, (2.45)

v̂a = va − habm̌b = ua
μv̂μ, h̄ab = ȟab − 2τ(am̌b)

= uμ
a uν

bh̄μν, (2.46)


̌ = −vam̌a + 1
2 habm̌am̌b = 
̃ − 1

2 v̂I v̂I . (2.47)

These structures transform according to

δτa = £ζ τa, δȟab = £ζ ȟab + 2λ̌(aτb),

δm̌a = £ζ m̌a + λ̌a + ∂aσ, (2.48)

δva = £ζv
a + habλ̌b, δhab = £ζ hab, (2.49)

δv̂a = £ζ v̂
a − hab∂bσ, δh̄ab = £ζ h̄ab − 2τ(a∂b)σ,

δ
̌ = £ζ 
̌ − v̂a∂aσ , (2.50)

under submanifold diffeomorphisms ζ a, Galilean boosts λ̌a

(satisfying vaλ̌a = 0), and U (1) gauge transformations σ .

4. The role of the transverse velocity vI

In order to elucidate the role of vI , we consider for con-
creteness a codimension one submanifold � moving with
(constant) linear velocity v

μ
� = (0, 0, 0, v) in the z direction

of a four-dimensional flat ambient Newton-Cartan spacetime,
which was introduced in (2.15) and where i runs only over
spatial directions. Defining � via the embedding equation

F (x, y, z − vt ) = 0, (2.51)

we can write the normal 1-form as

n = NdF = N∂xF + N∂yF + N∂uFdz − v∂uFdt, (2.52)

where we have defined u = z − vt and where N is fixed by the
normalization condition (2.17). This means that

vμnμ = −n0 = vN∂uF, v
μ
�nμ = vnz = vN∂uF, (2.53)

leading us to conclude that vμnμ = v
μ
�nμ. Thus, the normal

projection of the NC velocity is the same as the normal
projection of the linear velocity vector v

μ
� of the submanifold

�.
To illustrate this in the simplest possible setting, we con-

sider an infinitely extended moving flat membrane embedded
in (3 + 1)-dimensional flat NC space, described by

u = z − vt = 0, (2.54)

leading to the normal 1-form

nμ = −vδ0
μ + δ3

μ ⇒ vμnμ = v. (2.55)

Therefore, for a flat brane, where the normal vector is the
same everywhere, we see that the normal projection of the
NC velocity vector is just the magnitude of the linear velocity
of the plane.

5. Covariant derivatives, extrinsic curvature, and external rotation

Since we are dealing with the description of a single
surface, and not of a foliation, covariant differentiation of
submanifold structures only has meaning along tangential
directions to the surface. Analogously to Lorentzian surfaces
(see, e.g., Ref. [53]), we define a covariant derivative along
surface directions that is compatible both with the surface
Newton-Cartan structure, Daτb = 0 = Dahbc, and the ambient
Newton-Cartan structure, Daτμ = 0 = Dahμν , that acts on an
arbitrary mixed tensor T bμ as

DaT bμ = ∂aT bμ + γ b
acT cμ + uρ

a �
μ
ρλT bλ, (2.56)

where we have introduced the surface affine connection ac-
cording to

γ c
ab = −v̂c∂aτb + 1

2 hcd (∂ah̄bd + ∂bh̄ad − ∂d h̄ab), (2.57)

in analogy with the the spacetime affine connection (2.10).
Note in particular that Da does not act on transverse indices.
The relation between γ c

ab and �
μ
ρλ is obtained in Appendix C

and is shown to be

γ c
ab = �c

ab + uc
μ∂auμ

b = uc
μuν

a∇νuμ

b , (2.58)

where the corresponding surface torsion tensor is

2γ c
[ab] = −v̂cτab = −v̂cuμ

a uν
bτμν, (2.59)
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and where the last equality follows from the fact that exterior
derivatives commute with pullbacks.14

It is also convenient to introduce a covariant derivative Da

that acts on all indices, i.e., μ, a, I [53], and whose action
on the normal 1-forms and tangent vectors allows for the
Weingarten decomposition15

DanI
σ = ∂anI

σ − �λ
μσ uμ

a nI
λ − ωa

I
JnJ

σ = −ub
σ Kab

I + 1
2 ub

σ v̂Iτab,

Dauμ

b = Dauμ

b = nμ
I Kab

I − 1
2 nμ

I v̂Iτab, (2.60)

where we have defined the extrinsic curvature to the subman-
ifold according to

Kab
I = nI

μDauμ

b + 1
2 v̂Iτab = nI

μ

(
∂auμ

b + uν
auρ

b �
μ
(νρ)

)
= −uμ

a uν
b∇(

μ
nI

ν

). (2.61)

The extrinsic curvature tensor, when defined in this manner, is
symmetric and invariant under Galilean boosts but transforms
under U (1) gauge transformations according to

δσ Kab
I = 1

2τIa∂bσ + 1
2τIb∂aσ, (2.62)

where we used (2.14). In (2.60) we also introduced the exter-
nal rotation tensor, which can be interpreted as a SO(d − p)
connection, defined as

ωa
I
J = nμ

J DanI
μ, (2.63)

which is antisymmetric in I, J indices and transforms under
U (1) gauge transformations as

δσωa
I
J = − 1

2 (τaJ∂
Iσ + τ I

J∂aσ + τ I
a∂Jσ ). (2.64)

If the submanifold is codimension one, the external rotation
vanishes by definition.

Both the extrinsic curvature tensor and the external rotation
tensor introduced here are direct analogues of their Lorentzian
counterparts [53]. To see that ωa

I
J transforms as a connection

we examine what happens if we perform a local SO(d − p)
rotation of the normal vectors as in (2.18). If we focus on
an infinitesimal rotation MI

J = δI
J + λI

J where λI
J = −λJ

I ,
the extrinsic curvature tensor and external rotation tensor
transform as

δλKab
I = λI

JKab
J , δλωa

I
J = ∂aλ

I
J + λI

Kωa
K

J + λJ
Kωa

I
K .

(2.65)

In addition, under a change of sign of the normal vectors
nμ

I → −nμ
I , the extrinsic curvature changes sign.

6. Integrability conditions

Certain combinations of geometric structures of Lorentzian
submanifolds are related to specific contractions of the Rie-
mann tensor of the ambient space. These are known as inte-
grability conditions. In this section we derive the analogous
conditions in the context of NC submanifolds, which are

14Alternatively, this conclusion can be reached via the relation
∂auμ

b = ∂a∂bX μ = ∂b∂aX μ = ∂buμ
a .

15The action of Da on some vector T I takes the form DaT I =
DaT I − ωa

I
J T J .

known as the Codazzi-Mainardi, Gauss-Codazzi, and Ricci-
Voss equations. In order to do so, we note that in the presence
of torsion, the Ricci identity takes the form

[∇μ,∇ν]Xσ = Rμνσ
ρXρ − 2�

ρ
[μν]∇ρXσ , (2.66)

where the Riemann tensor Rμνσ
ρ of the ambient space is given

by

Rμνσ
ρ = −∂μ�ρ

νσ + ∂ν�
ρ
μσ − �

ρ
μλ�

λ
νσ + �

ρ
νλ�

λ
μσ . (2.67)

The integrability conditions to be derived below take a nice
form if we work with an object that is closely related to the
extrinsic curvature, namely,

K̃ab
I = nI

μDauμ

b = Kab
I − 1

2 v̂Iτab, (2.68)

which has a nonvanishing antisymmetric part 2K̃[ab]
J =

−v̂Jτab.
We begin by deriving the Codazzi-Mainardi equation (see,

e.g., Refs. [48,53]) by considering the quantity DaK̃bc
I −

DbK̃ac
I . We find

DaK̃bc
I = K̃ab

I nρ
I

(∇ρuμ
c

)
nI

μ − ωb
I
J K̃ac

J − uμ
c uρ

a uσ
b ∇ρ∇σ nI

μ,

(2.69)

where we used (2.63). From here, using (2.66) and the covari-
ant derivative Da introduced in (2.60) we derive the Codazzi-
Mainardi equation

DaK̃bc
I − DbK̃ac

I = −Rabc
I + v̂dτabK̃dc

I . (2.70)

In order to derive the Gauss-Codazzi equation, we let
ωc be any submanifold 1-form that is the pullback of ωμ

whose normal components vanish, i.e., ωμ = uc
μωc. The Ricci

identity for the submanifold reads

[Da, Db]ωc = Rabc
dωd + v̂dτabDdωc, (2.71)

where Rabc
d is the Riemann tensor of the submanifold and

takes the same form as (2.67) but with the connection �ρ
νσ

replaced by γ c
ab of (2.57). Using ua

μDbuμ
c = 0 [which follows

from (2.58)] and nμ
I Dbud

μ = hdeK̃beI , explicit manipulation
leads to

Rabc
dωd + v̂dτabDdωc = hed K̃ac

I K̃beIωd − hed K̃bc
I K̃aeIωd

+ Rabc
dωd + τab

(−v̂I nρ
I uμ

c ∇ρωμ

+ v̂νuμ
c ∇νωμ

)
, (2.72)

where we used (2.66). In this expression, the terms propor-
tional to τab on both sides cancel and since it must be true for
any one form ωc, the Gauss-Codazzi equation becomes

Rabc
d = K̃ac

I K̃b
d

I − K̃bc
I K̃a

d
I + Rabc

d , (2.73)

where K̃b
d

I = hdcK̃bcI .
Although we will not use it in this paper, we will briefly

discuss the Ricci–Voss equation for completeness. This equa-
tion becomes useful for surfaces of codimension higher than
one, where we can define the outer curvature in terms of the
external rotation tensor (2.63) as

�I
Jab = 2∂[aωb]

I
J − 2ω[a|I Kω|b]

K
J . (2.74)
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In terms of this tensor, the Ricci-Voss equation for Newton-
Cartan geometry can be shown to read

�I
Jab = RabJ

I − 2hcd K̃[a|cI K̃|b]dJ . (2.75)

This completes the description of the geometric structures of
NC submanifolds.

III. VARIATIONS AND DYNAMICS
OF NEWTON-CARTAN SUBMANIFOLDS

In the previous section we defined timelike NC subman-
ifolds and their characteristic geometric properties. In this
section, closely following the Lorentzian case [53], we de-
velop the variational calculus for NC submanifolds for the
geometric structures of interest. These results are necessary
to later introduce geometric action functionals capable of
describing different types of soft matter systems, including the
case of bending energies for lipid vesicles.

A. Variations of Newton-Cartan objects on the submanifold

In the following, we consider two types of variations,
namely, embedding map variations, which are displacements
of the submanifold, and Lagrangian variations which con-
sist of the class of diffeomorphisms that displace the am-
bient space but keep the embedding map fixed (see, e.g.,
Refs. [49,50] and also Refs. [46,53]). As in the Lorentzian
case [53], the sum of these two types of variations yield
the transformation properties of the submanifold structures
under full ambient space diffeomorphisms. When considering
action functionals that give dynamics to submanifolds, they
are equivalent, up to normal rotations.16

1. Embedding map variations

Before specializing to any of the two types of variations,
it is useful to consider general variations of the normal vec-
tors. In particular, we decompose the variation of the normal
vectors as

δnI
μ = ua

μuν
aδnI

ν + nJ
μnν

JδnI
ν

= −ua
μnI

νδuν
a + 1

2 nμJ
(
nνJδnI

ν + nνIδnJ
ν

)
+ λI

JnJ
μ, (3.1)

where

λI
J = 1

2

(
nν

JδnI
ν − nνIδnJν

)
, (3.2)

is a local so(d − p) transformation of the normal vectors.
By varying the second relation in (2.17), we find the relation
nνJδnI

ν + nνIδnJ
ν = −nI

μnJ
νδhμν and hence

δnI
μ = −ua

μnI
νδuν

a − 1
2 nμJnI

νnJ
ρδhνρ + λI

JnJ
μ. (3.3)

By varying the completeness relation (2.19) one may express
variations of δhνρ in terms of variations of τν and hνρ such
that δhμν = 2v(μhν )λδτλ − hμρhνσ δhρσ . This leads to

δnI
μ = −v(I nJ )νnμJδτν + 1

2 nρJnμJnνIδhρν − nI
νua

μδuν
a

+ λI
JnJ

μ, (3.4)

16In the context of continuum mechanics, these two viewpoints are
known as the Lagrangian and Eulerian descriptions.

which describes arbitrary infinitesimal variations of the nor-
mal vectors.

We now specialise to infinitesimal variations of the embed-
ding map which we denote by

δX μ(σ ) = −ξμ(σ ), (3.5)

where ξμ(σ ) is understood as being an infinitesimal first order
variation. Under this variation, the ambient tensor structures
evaluated at the surface [i.e., τμ(X ), h̄μν (X )] vary as

δX τμ(X ) = −ξν∂ντμ, δX h̄μν (X ) = −ξρ∂ρ h̄μν, (3.6)

which follows from δX τμ(X ) = τμ(X − ξ ) − τμ(X ) =
−ξν∂ντμ + O(ξ 2). In turn, the tangent vectors transform
as

δX uμ
a = ∂aδX μ = −∂aξ

μ, (3.7)

while variations of the induced metric structures take the form

δX τa = −uμ
a £ξ τμ, δX h̄ab = −uμ

a uν
b£ξ h̄μν. (3.8)

In other words, for these structures, performing embedding
map variations is equivalent to performing a diffeomorphism
in the space of embedding maps that keep uμ

a fixed, i.e., they
are diffeomorphisms that are independent of σ a. Using (3.4),
we can write the variation of the normal vector as

δX nI
μ = −nμJn(I

ρ nJ )ν∇νξ
ρ − nμJ v̂

(I nJ )ντνρξ
ρ

+ nI
ρ∂μξρ + λ̃IJnμJ , (3.9)

where the third term ensures that the orthogonality relation
uμ

a nI
μ = 0 is obeyed after the variation while the last term is a

local transverse rotation of the form λ̃IJ = λIJ + n[J
ρ nI]ν∂νξ

ρ .
For the purposes of this work, as mentioned in Sec. II A 3,

we will be focusing on ambient NC geometries with absolute
time, i.e., zero torsion. This extra assumption greatly sim-
plifies many expressions after variation. We stress, however,
that it is in general not possible to assume zero torsion before
variation, as variation and setting torsion to zero do not always
commute.17

However, specifically in the case of embedding map or
Lagrangian variations, the variation of τμν is guaranteed to
vanish when the torsion itself vanishes. This means that
we can set torsion to zero in the Lagrangian if all we are
interested in are the equations of motion for X μ. For example,
δX τμν (X ) = −ξρ∂ρτμν , which vanishes when dτ = 0. Under
the assumption of vanishing torsion, variations of the extrinsic
curvature (2.61) take the form

δX Kab
I = (

δX nI
μ

)
∂auμ

b − nI
μ∂a∂bξ

μ + (
δX nI

μ

)
uρ

a �
μ

ρλuλ
b

− nI
μ(∂aξ

ρ )�μ
ρλuλ

b − nI
μuρ

a ξκ∂κ

(
�

μ
ρλ

)
uλ

b

− nI
μuρ

a �
μ

ρλ∂bξ
λ

= −nI
μDaDbξ

μ+ξρRρab
I+n[I

ρ nJ]ν�ρ
νσ ξσ KabJ , (3.10)

17For instance, when considering equations of motion for surfaces
via extremization of a Lagrangian as in the next section, a term of
the form X μντμν in the Lagrangian can give a nonzero contribution
to the equation of motion of τ as neither X μν nor δτμν need to vanish
on ambient spaces with zero torsion.
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where we have used (3.9) as well as δX �
μ

ρλ(X ) = −ξκ∂κ�
μ

ρλ.
The last term in (3.10) denotes a local so(d − p) transfor-
mation, and we have explicitly ignored further rotations by
setting λIJ = 0 in (3.4). It is also straightforward to consider
variations of the external rotation tensor (2.63), but since we
do not explicitly consider this structure in the dynamics of
submanifolds, we will not dwell on this.

2. Lagrangian variations

In the previous section we have described how to perform
variations of the embedding map. In this section we focus on
a particular class of diffeomorphisms xμ → xμ − ξμ that act
only on fields with support in the entire ambient spacetime,
that is, they only act on the NC triplet (τμ(x), hμν (x), mμ(x)).
In general, diffeomorphisms also displace the embedding map
according to δξ X μ = −ξμ where δξ denotes an infinitesimal
diffeomorphism variation. However, here we consider the
case of Lagrangian variations for which δξ X μ = 0 (see, e.g.,
Refs. [46,49,50,53]). In turn, this implies that the tangent
vectors do not vary:18

δξ uμ
a = 0. (3.11)

In the remainder of this section, we will explicitly work
out Lagrangian variations of submanifold structures and com-
pare them with embedding map variations, thereby extracting
the transformation properties under full ambient diffeomor-
phisms. In particular, using (3.11) and the fact that δξ τμ =
£ξ τμ and δξ h̄μν = £ξ h̄μν we find

δξ τa = uμ
a £ξ τμ, δξ h̄ab = uμ

a uν
b£ξ h̄μν. (3.12)

Comparing this with (3.8), it follows that for pullbacks of
Newton-Cartan objects we have the relations

(δξ + δX )τa = (δξ + δX )h̄ab = 0, (3.13)

and thus these objects transform as scalars under ambient
diffeomorphisms. For later purposes, we rewrite these results
as

δξ τa = τρDaξ
ρ, (3.14)

δξ h̄ab = h̄ρbDaξ
ρ + h̄ρaDbξ

ρ − 2τaτbξ
σ ∂σ 
̃

− 2ξσ τσ τ(a∂b)
̃ − 2τ(aK̄b)σ ξσ , (3.15)

18If we were working with foliations of surfaces instead of a
single surface, we could define a set of vector fields uμ

a (x) where
x is any point in the ambient spacetime. We could then require
that the Lie brackets between these vector fields vanish so that
their integral curves can be thought of as locally describing a set
of curvilinear coordinates for the submanifold. In other words,
the restriction of these vector fields to the submanifold obeys the
condition that the uμ

a are tangent vectors, i.e., uμ
a (x)|x=X = ∂aX μ.

When we perform ambient diffeomorphisms within the context of
a foliation, we must ensure that this condition is respected. This
means that [ξρ (x)∂ρuμ

a (x) − uρ
a (x)∂ρξ

μ(x)]|x=X = £ξ uμ
a = δξ uμ

a = 0.
Lagrangian diffeomorphisms are thus generated by ξμ(x) such that
(3.11) is obeyed. See, e.g., Ref. [52].

where we have used the relation (valid in the absence of
torsion)

∇σ h̄μν = −2τμτν∂σ 
̃ − 2τσ τ(μ∂ν )
̃ − 2τ(μK̄ν )σ , (3.16)

as well as v̂λh̄λμ = 2τμ
̃ and where K̄μν = −£v̂ h̄μν/2.
Considering the normal 1-forms, using (3.4) we find that

δξ nI
μ = −v(I nJ )νnμJτρ∇νξ

ρ + nλJnμJnνI hρ(λ∇ν )ξ
ρ

= nμJn(I
ρ nJ )ν∇νξ

ρ, (3.17)

where we have used (3.16) as well as the identity nλ
I hρλ =

hρI = τρvI + nρI and assumed vanishing torsion. Comparing
this to the embedding map variation (3.9), we find that

(δξ + δX )nI
μ = λ̃I

JnJ
μ + nI

ρ∂μξρ, (3.18)

where λ̃IJ = −n[I
ρ nJ]ν∂νξ

ρ is a local so(d − p) transformation
and we have set λIJ = 0 in (3.4). This implies that, up to a
SO(d − p) rotation, the normal 1-forms nI

μ transform as 1-
forms under ambient diffeomorphisms. This is the expected
result (and analogous to the Lorentzian case [53]) as the 1-
forms carry a spacetime index μ. Repeating this procedure
for the extrinsic curvature, we find that

δξ Kab
I = Kab

μδξ nI
μ + nI

μuρ
a uλ

bδξ�
μ

ρλ. (3.19)

Since �
μ
ρλ is an affine connection, it transforms in the follow-

ing way under diffeomorphisms

δξ�
μ
λν = ξρ∂ρ�

μ
λν− �

ρ
λν∂ρξ

μ+ �μ
ρν∂λξ

ρ + �
μ
λρ∂νξ

ρ + ∂λ∂νξ
μ

= ∇λ∇νξ
μ − ξρRρλν

μ, (3.20)

where in the second equality we assumed vanishing torsion.
This implies that

δξ Kab
I = nI

μDaDbξ
μ − 1

2 nI
μKab

σ∇σ ξμ + 1
2 KabJnJ

ρnIν∇νξ
ρ

− nI
μuλ

auν
bξ

ρRρλν
μ

= nI
μDaDbξ

μ − ξρRρab
I − KabJn[I

ρ nJ]ν∇νξ
ρ. (3.21)

Comparing this to (3.10), we obtain

(δX + δξ )Kab
I = λ̃IJKabJ , (3.22)

which, as in the Lorentzian case [53], states that the extrinsic
curvature transforms as a scalar under ambient diffeomor-
phisms up to a transverse rotation.

B. Action principle and equations of motion

Equipped with the variational technology of the previous
section, we consider the dynamics of submanifolds that arise
via the extremization of an action. In the context of soft
matter systems this action can be interpreted as a free energy
functional that depends on geometrical degrees of freedom.
Examples of such systems are fluid membranes and lipid visi-
cles, described by Canham-Helfrich-type free energies. The
equations of motion that arise from extremization naturally
split into tangential energy and mass-momentum conservation
equations in addition to the shape equation (which describes
the mechanical balance of forces in the normal directions), as
well as constraints (Ward identities) arising from SO(d − p)
rotational invariance and boundary conditions.
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1. Equations of motion and rotational invariance

Following Ref. [53], we consider an action S on a (p + 1)-
dimensional NC submanifold that is a functional of the metric
data τa, h̄ab (this set contains all the fields τa, hab, ma and is
an equivalent choice of NC objects) as well as the extrinsic
curvature, that is S = S[τa, h̄ab, Kab

I ]. The variation of this
action takes the general form

δS =
∫

�

d p+1σe
(
T aδτa + 1

2T abδh̄ab + Dab
IδKab

I
)
. (3.23)

Here e is the integration measure given by e =√−det (−τaτb + hab) and invariant under local Galilean
boosts and U (1) gauge transformations. The response T a is
the energy current,19 while the response T ab is the Cauchy
stress-mass tensor [59]. Finally, Dab

I is the bending moment,
encoding elastic responses, and typically takes the form of
an elasticity tensor contracted with the extrinsic curvature
(strain) [46,53]. Both T ab and Dab

I are symmetric as they

inherit the symmetry properties of h̄ab and Kab
I . The temporal

projection of the Cauchy stress-mass tensor, τbT ab, is the
mass current.

We require the action (3.23) to be invariant under U (1)
gauge transformations for which δσ h̄ab = −2τ(a∂b)σ and in-
variant under SO(d − p) rotations for which the extrinsic
curvature transforms according to (2.65). Ignoring boundary
terms, to be dealt with in Sec. III B 2, this leads to mass
conservation and a constraint on the bending moment, respec-
tively:

Db
(
T abτa

) = 0,Dab[I Kab
J] = 0. (3.24)

In particular, the latter condition takes exactly the same form
as in the Lorentzian context [46,53] and can also be obtained
by performing a Lagrangian variation of (3.23) as we shall see.
In order to obtain the equations of motion arising from (3.23),
we can perform a Lagrangian variation as originally consid-
ered in Refs. [49,50] and developed further in Ref. [53].20

Under a Lagrangian variation, using Sec. III A 2, the action
(3.23) varies according to

δξ S =
∫

�

d p+1σ eξρ
[ − τρDaT a − Da(h̄ρbT ab) − T ab{τaτb∂ρ
̃ + τρτa∂b
̃ + τaK̄bρ} + DaDb

(
Dab

I n
I
ρ

) − Dab
I Rρab

I
]

+
∫

�

d p+1σ eDa
[
T aτρξ

ρ + T abh̄ρbξ
ρ + Dab

I n
I
ρDbξ

ρ − Db
(
Dab

I n
I
ρ

)
ξρ

] +
∫

�

d p+1σ eDab
I KabJn[I

ρ nJ]σ∇σ ξρ. (3.25)

In this equation, the second integral gives rise to a boundary
term which we consider in Sec. (III B 2). The last integral van-
ishes due to the requirement of rotational invariance (3.24).
However, even if (3.24) was not imposed, given that the last
term involves a normal derivative of ξμ, it cannot be inte-
grated out and hence must vanish independently giving again
rise to the second condition in (3.24), as in the Lorentzian
case [53].

The first integral in (3.25) must vanish for an arbitrary
vector field ξμ and hence it gives rise to the equation of motion

−τρDaT a − h̄ρbDaT ab − T abh̄ρσ Kab
σ + 2τρT abτa∂b
̃

+τρK̄abT ab + DaDb
(
Dab

I n
I
ρ

) − Dab
I Rρab

I = 0, (3.26)

where we have used (3.16). In Appendix A we provide the
relation (A28) between K̄ab, which is the pullback of K̄μν ,
and K̄�

ab = −£�
v̂ h̄ab/2 which is the actual surface-equivalent

of K̄μν . Here £�
v̂ denotes the surface Lie derivative along

v̂a. Using this relation, as well as (2.41), which relates the
Newtonian potential on the submanifold 
̌ to its ambient
spacetime counterpart 
̃, the equation of motion (3.26) can

19As mentioned throughout this paper, we have focused on the case
of vanishing torsion τμν = 0, meaning that τa = ∂aT , where T is
some scalar. Therefore, varying τa is actually varying T in (3.23),
which in turn implies that we are not able to extract T a from the
action but only its divergence. This is sufficient for the purposes of
this work.

20Alternatively, we may perform embedding map variations.

be written as

τρDaT a + h̄ρbDaT ab + T abh̄ρσ Kab
σ − 2τρT abτa∂b
̌

−τρK̄�
abT ab − τρ v̂

I Kab
IT ab − DaDb

(
Dab

I n
I
ρ

)
+Dab

I Rρab
I = 0. (3.27)

The equation of motion (3.27) can be projected tangentially
or orthogonally to �, yielding two independent equations.
The tangential projection, known as the intrinsic equation of
motion, is given by

τc
[
Da(T a − 2
̌T abτb) − T abK̄�

ab

] + h̄bcDaT ab

+ 2Da
(
Kbc

IDab
I
) − Dab

I DcKab
I = 0, (3.28)

where we have used the Codazzi-Mainardi equation (2.70),
assuming vanishing torsion, in order to eliminate contrac-
tions with the Riemann tensor. Equation (3.28) can be fur-
ther projected along hcd and v̂c, which again yields two
independent equations. These projections can be simplified
by defining T ad

m = T ad + 2Db(a
I hd )cKbc

I and T a
m = T a −

2v̂cKbc
IDab

I . In particular, the spatial projection using hcd

gives rise to mass and momentum conservation

DaT ad
m + 2Da

(
Db[a

I h
d]cKbc

I
) − hcdDab

I DcKab
I = 0, (3.29)

where we have used invariance under U (1) gauge transfor-
mations [the first condition in (3.24)]. In turn, the projection
along v̂c leads to energy conservation

DaT a
m − T ab

m K̄�
ab − 2T ab

m τb∂a
̌ + Dab
I v̂

cDcKab
I = 0, (3.30)

where we have used the identity Dav̂
c = −hcd (K̄�

ad + τa∂d
̌)
as well as the first condition in (3.24).
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The intrinsic equations (3.29) and (3.30) result from dif-
feomorphism invariance along the tangential directions ξ a =
ua

μξμ or, equivalently, from tangential reparametrization in-
variance δX μ = uμ

a δX a. Since the action only depends on
the NC objects τa, h̄ab, and Kab

I , the intrinsic equations are
nothing but Bianchi identities that result from the diffeo-
morphism invariance of the action and hence are identically
satisfied.

Finally, the transverse projection of (3.27) is usually re-
ferred to as the shape equation, and it is given by

T abKab
I = DaDbDabI − Dab

JKac
I Kbd

Jhcd − Dab
JRIab

J ,

(3.31)

where we have used the covariant derivative Da introduced
in (2.60). Equation (3.31) is valid in the absence of torsion
and takes the exact same form as its Lorentzian counterpart
[46,53], and it is a nontrivial dynamical equation that deter-
mines the set of embedding functions nI

μX μ. This equation,
which is one of the main results of the paper, appears exten-
sively in the context of lipid vesicles (see, e.g., Ref. [9]) but
without time components.

2. Boundary conditions

In the previous section we considered the equations of
motion arising from (3.23) on �. In this section we consider
the possibility of such submanifolds having a boundary. In
such cases, the second integral in (3.25) is nontrivial and gives
rise to a nontrivial boundary term that must vanish, namely,∫

∂�

d py e∂ηa
[(

T aτρ + T abh̄ρb − DbDab
ρ − Dab

I DbnI
ρ

)
ξρ

+ Dab
I Dbξ

I
] = 0, (3.32)

where ηa is a normal covector to the boundary while e∂ is
the integration measure on ∂� (parameterized by y). With the
help of the boundary completeness relation �c

b = δc
b − ηbη

c

where ηc = hcdηd , the boundary term can be rewritten as∫
∂�

d py e∂ηaηbDab
Iη

c∂cξ
I

+
∫

∂�

d py e∂ηa
{[

T aτρ + T abh̄ρb − Db
(
Dab

I n
I
ρ

)
− Dab

I DbnI
ρ

]
ξρ + �c

bDab
I∂cξ

I
} = 0. (3.33)

As in the case of the bulk equations of motion on �,
normal derivatives to the boundary of the form ηc∂cξ

I cannot
be integrated out. Hence the above equation splits into two
independent conditions:

ηaηbDab
I

∣∣
∂�

= 0, (3.34){
ηa

[
T aτρ + T abh̄ρb − Db

(
Dab

I n
I
ρ

) − Dab
I DbnI

ρ

]
−nI

ρ�
d
c Dd

(
ηaDab

I�
c
b

)}∣∣
∂�

= 0. (3.35)

The first boundary condition in (3.34) is a consequence of
SO(d − p) invariance of the action and can also be derived by
keeping track of boundary terms when using (2.65) in (3.23).
The second of these conditions can be projected tangentially

and transversely to �, yielding, respectively,

ηa
[
T aτc + T abh̄bc + 2Dab

I Kbc
I
]∣∣
∂�

= 0,[
Dab

J�
c
bDcηa − 2Db(ηaDab

J )
]∣∣
∂�

= 0, (3.36)

where we have used the first boundary condition (3.34) as
well as ηaτbT ab|∂� = 0, which is a consequence of the U (1)
invariance of (3.23). These boundary conditions can be further
projected along hcd and v̂c, leading to[

ηaT ad
m + 2ηaDb[a

I h
d]cKbc

I
]∣∣

∂�
= 0, ηaT a

m

∣∣
∂�

= 0, (3.37)

where T ad
m and T a

m were introduced in (3.29) and (3.30),
respectively. This completes the analysis of the equations of
motion and its boundary conditions. In the specific examples
below, however, we will not consider the presence of bound-
aries.

IV. APPLICATIONS TO SOFT MATTER SYSTEMS

In this section we apply the action formalism in order to
describe equilibrium fluid membranes and lipid vesicles as
well as their fluctuations. These systems are such that their
deformations, at mesoscopic scales, are described by purely
geometric degrees of freedom (see, e.g., Ref. [9]) and few
material or transport coefficients, such as the bending modulus
κ . The development of Newton-Cartan geometry for surfaces
in the previous sections brings several advantages to the
description of these systems. First, it introduces absolute time
and therefore fluctuations of the system can include temporal
dynamics in a covariant form. Second, the symmetries of the
problem are manifested via the geometry of the submanifold
or ambient spacetime.21

More importantly, however, is perhaps the fact that NC
geometry allows to properly introduce thermal field theory
of equilibrium fluid membranes. Material coefficients such as
κ are functions of the temperature T (see, e.g., Ref. [19])
but also of the mass density μ. However, the fact that T
and μ can be given a geometric interpretation, via the hy-
drostatic partition function approach, in which case they are
associated with the existence of a background isometry (or
timelike Killing vector field), is disregarded in all models of
lipid vesicles. However this approach is required in order to
understand the correct equations that describe fluctuations.
We begin with a simple fluid membrane with only surface
tension in order to elucidate these fundamental aspects and
end with a generalization of the Canham-Helfrich model.

A. Fluid membranes

In this section we consider equilibrium fluid membranes,
by which we mean stationary fluid configurations that live

21This point is reminiscent of the strategy adopted by Son et al.
in Refs. [41,42,60] where the authors take advantage of the fact
that Newton-Cartan geometry is the natural geometric arena for the
effective description of the fractional quantum Hall effect. In this
way, by coupling a suitable field theory to Newton-Cartan geometry,
information about correlation functions involving mass, energy and
momentum currents can be extracted via geometric considerations.
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on some arbitrary surface.22 As mentioned above, equilibrium
requires the existence of an ambient timelike Killing vector
field kμ such that the fluid configuration is time independent.
In general, since we wish to describe fluids that are rotating
or boosted along some directions, equilibrium requires the
existence of a set of symmetry parameters K = (kμ, λK

μ,�K )
such that the transformation on the NC triplet [cf. Eqs. (2.4)
and (2.5)] vanishes,

£kτμ = 0, £kh̄μν = 2τ(μ£kmν ) + 2τ(μ∂ν )�
K ,

£kmμ + λK
μ + ∂μ�K = 0, (4.1)

and whose pullback ka = ua
μkμ is also a submanifold Killing

vector field satisfying the relations

£kτa = 0, £kh̄ab = 2τ(a£km̌b) + 2τ(a∂b)�
K ,

£km̌a + λ̌K
a + ∂a�

K = 0. (4.2)

These relations make sure that the space in which the fluid
lives does not depend on time.

The simplest example of kμ in flat NC space (2.15) is the
case of a static Killing vector where kμ = δ

μ
t .23 Since the

fluid is in equilibrium, it is straightforward to construct an
Euclidean free energy24 from the action S by Wick rotation
t → it , compactification of t with period 1/T0 and integration
over the time circle, where T0 is the constant global temper-
ature. This means that the Euclidean free energy F is given
by

F [τa, h̄ab, Kab
I ] = T0St→it . (4.3)

Given the transformations (4.1) and (4.2), the free en-
ergy can depend on two scalars, the local temperature T
and chemical potential μ (associated with particle number
conservation), defined in terms of the symmetry parameters
as

T = T0

kaτa
,

μ

T
= �K

T0
+ 1

2T
h̄abuaub, ub = kb

kaτa
, (4.4)

where uμ is the fluid velocity.25 We will now look at different
cases.

22We follow previous constructions of relativistic [46,61–63] and
nonrelativistic fluids [33,34].

23Specific surfaces where the fluid lives, besides a timelike isom-
etry, may have additional translational or rotational isometries. In
such situations the Killing vector kμ can have components along
those spatial directions. The chemical potential μ introduced in (4.4)
captures the spatial norm of the Killing vector, which is associated
with the presence of linear or angular momenta.

24This is also referred to as hydrostatic partition function −i ln Z =
T0F [61,62].

25The free energy considered here only depends on geometric
quantities such as T and μ, where the Killing vector Kμ and the
gauge parameter �K solve (4.2). It is possible to promote the free
energy to an effective action that does not require time independence
by treating S as also being dependent on a arbitrary vector βμ and
gauge parameter � (see Ref. [64]).

1. Surface tension

The simplest example of a fluid membrane is one in which
the action depends only on the surface tension χ (T, μ). Such
an action describes, for instance, soap films. Thus the free
energy (4.3) takes the form

F =
∫

�s

d pσesχ (T, μ), (4.5)

where �s and es denote the spatial part of � and the volume
form e, respectively, due to integration over the time direction.
We can now use (3.23) to extract the currents at fixed symme-
try parameters. It is useful to explicitly evaluate the variations

δT = −Tuaδτa, δμ = �K

T0
δT + 1

2
uaubδh̄ab + ū2 δT

T
, (4.6)

where we have defined ū2 = h̄abuaub. This allows us to derive
the variation of the surface tension as

δχ=sδT + nδμ = −
(

T s + nμ + n

2
ū2

)
uaδτa + n

2
uaubh̄ab,

(4.7)

where we have defined the surface entropy density and surface
particle number density (mass density) as

s =
(

∂χ

∂T

)
μ

, n =
(

∂χ

∂μ

)
T

. (4.8)

From (4.7) we also directly extract the Gibbs-Duhem relation
dχ = sdT + ndμ. Using (4.7) we also determine the currents

T a = −χ v̂a −
(
ε + χ + n

2
ū2

)
ua, T ab = χhab + nuaub,

(4.9)

where we have defined the internal energy ε via the Eu-
ler relation ε + χ = T s + nμ. This defines the constitutive
relations of a Galilean fluid living on a submanifold in an
ambient NC spacetime. Using the stress-mass tensor in (4.9),
the nontrivial shape equation (3.31) in the absence of bending
moment becomes

T abKI
ab = 0 ⇒ χKI + nuaubKI

ab = 0. (4.10)

Physically relevant fluid membranes are codimension one
and so we can omit the transverse index I . The shape equation
(4.10) expresses the balance of forces between the surface ten-
sion χK (normal stress) and the normal acceleration nuaubKab

of the fluid.26 If we would consider a surface tension with no
dependence on the temperature and chemical potential, then
n = 0 and the shape equation reduces to the equation of a min-
imal surface. To complete the thermodynamic interpretation
of (4.5), we note that varying the free energy with respect to
the global temperature T0 gives rise to the global entropy

S = ∂F
∂T0

=
∫

�s

d pσes
s

kaτa
=

∫
�s

d pσes suata, (4.11)

26Using the definition of extrinsic curvature (2.61), we can rewrite
uaubKI

ab = nI
μuν∇νuμ. Hence the second term in (4.10) is in fact the

normal component of the acceleration of the fluid uν∇νuμ where
uμ = uμ

a ua. If the fluid is rotating along the surface, this term gives
rise to centrifugal acceleration.
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where we have defined the timelike vector ta = τa/(kbτb), and
where sua is the entropy current.

2. Surface fluctuations: Elastic waves

The shape equation (4.10) describes equilibrium config-
urations of fluid membranes in the absence of any bending
moment. We consider a fluid at rest in the simplest scenario
of a surface with two spatial dimensions embedded in a
NC spacetime with 3 spatial dimensions such that τa = δt

a
where a = t, 1, 2. The fluid thus has a velocity ua = (1, 0, 0).
Such a trivial time embedding, τa = δt

a, is typically the most
physically relevant setting for soft matter applications. In this
context, we have that uaubKab = 0 since Ktb = 0 trivially.
Thus, the second term in (4.10) does not contribute in equi-
librium, and it is acceptable to simply ignore the fact that
the surface tension depends on the temperature and chemical
potential. However, if one is interested in fluctuations away
from equilibrium, the second term in (4.10) cannot be ignored.
Here we consider the simplest case where the surface is flat
and hence also trivially embedded in space such that

hab = δi
aδ

i
b, ma = 0, nμ = δ3

μ. (4.12)

This is an equilibrium configuration that trivially solves (4.10)
since Kab = 0.

We now consider a small fluctuation of the embedding map
along the normal direction X 3 = X ⊥. Using (3.10) we find

δX T abKab + T abδX Kab = (χhab + nuaub)∂a∂bξ
⊥ = 0,

(4.13)

where we have used that Kab = 0 to eliminate the first term
and converted Da → ∂a as we are dealing with a flat surface
in a flat ambient space. Equation (4.13) is a wave equa-
tion, and considering wavelike solutions of the form ξ⊥ ∼
e−iωt+i(k1σ1+k2σ2 ) one finds the linear dispersion relation

ω = ±
√−χ

n
k, (4.14)

where ω is the frequency, k1, k2 are wave numbers, and k2 =
k2

1 + k2
2 .27 This is the classical answer for the oscillations of

uniform elastic sheets (see, e.g., Ref. [65]).
This result shows the importance of considering NC ge-

ometry in the theory of fluid membranes, since omitting the
dependence of the surface tension on the temperature and
chemical potential would not have allowed for the derivation
of (4.14). We note that the result (4.14) is valid for any
type of elastic membrane with mass density and does not
require any “flow” on the membrane, in particular the initial
equilibrium configuration was static ua = (1, 0, 0).28 In a
future publication, we will consider a more general analysis
of fluctuations of fluid membranes which will also include the
Canham-Helfrich model [54].

27Note that in order to match conventions with the classical litera-
ture one should redefine χ → −χ .

28If one was describing an elastic material, the surface tension
would also be dependent on the Goldstone modes of broken trans-
lations and hence on intrinsic elastic moduli.

3. Droplets

Here we briefly consider the case of a droplet (or soap
bubble) in which the fluid membrane encloses some volume
with uniform internal pressure Pint separating it from an
exterior medium with uniform external pressure Pext. In order
to describe these situations we augment the action with the
bulk pieces

Sbulk =
∫

int(�)
dd+1x ebPint +

∫
ext(�)

dd+1x ebPext, (4.15)

where eb is the bulk measure and int(�) is the interior of the
closed surface �,29 whereas ext(�) is the exterior region of
the bulk outside the surface. The variation of the density eb

with respect to a bulk (or ambient spacetime) diffeomorphism
reads

δξ eb = ∂μ(ebξ
μ), (4.16)

which, using Stokes theorem, implies that the variation takes
the form

δξ Sbulk = −�p
∫

�

ddσ nμξμ, (4.17)

where �p = Pext − Pint is the constant pressure difference
across the surface �.30 In a biophysical context, where the
pressure difference is attributable to two different chemical
solutions separated by a semipermeable membrane, this pres-
sure is the osmotic pressure [66].

From (4.17), we deduce that Sbulk does not contribute to the
intrinsic equations of motion, while it adds the constant term
−�p to the shape equation (4.10) such that

T abKab = χK + nuaubKab = −�p. (4.18)

This is a generalization of the Young-Laplace equation, which
includes the possibility of the fluid having nontrivial acceler-
ation, and was first derived in Ref. [45] in the context of null
reduction.

B. The Canham-Helfrich model revisited

In this section we consider a more elaborate case of fluid
membranes, namely, that of the Canham-Helfrich model [1,2].
This model describes equilibrium configurations of biophysi-
cal membranes (see, e.g., Ref. [6]) comprised of a phospolipid
bilayer [67], and captures several shapes of biophysical in-
terest [6], namely, the sphere (corresponding to spherical
vesicles such as liposomes), the torus (toroidal vesicles) and
the biconcave discoid (the red blood cell or erythrocyte). This
model includes, besides the presence of a surface tension χ ,
also the bending modulus κ that incorporates the bending
energy of the membrane. We show how to describe this
model within Newton-Cartan geometry and generalize it by
allowing the material parameters to be functions of T, μ. We
also review the family of classical lipid vesicles (spherical,

29By a closed surface we mean a NC submanifold whose constant
time slices are closed.

30In order to describe gases or fluids in the interior or exterior, one
should consider the dependence of internal or external pressures on
bulk temperature and chemical potential as in Ref. [45].
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toroidal, discoid) within this framework. We leave a more
detailed analysis of this model and its generalizations to a
future publication [54].

1. Generalized Canham-Helfrich model

The Canham-Helfrich model contains quadratic terms in
the extrinsic curvature and a set of material coefficients. It
describes lipid vesicles in thermal equilibrium. As in the
previous section, a proper description of such systems requires
taking into account the dependence of the material coefficients
on the temperature and chemical potential. As a starting point
we take the more general free energy

FCH =
∫

�s

d pσes[a0(T, μ) + a1(T, μ)K + a2(T, μ)K2

+ a3(T, μ)K · K], (4.19)

where {a0, a1, a2, a3} is a set of material coefficients char-
acterizing the phenomenological specifics of the biophysical
system under scrutiny. In the expression above, we have
defined K · K = hachbcKabKcd .

It is well known that the last term in (4.19) can usually
be ignored due to the Gauss-Codazzi equation (2.73) in flat
ambient space, as it can be related to the Gaussian curvature of
the membrane and hence integrated out for two-dimensional
surfaces (see Appendix D for details). However, this is pos-
sible only if a3 is treated as a constant. Since a proper
geometric and thermodynamic treatment requires promoting
a3 to a nontrivial function of T, μ this implies that new
nontrivial contributions to the equations of motion will appear.
Additionally, based solely on effective field theory reasoning,
it is possible to augment (4.19) with further terms involving
the fluid velocity (see [46] for the relativistic case). We will
leave a thorough analysis of this for the future [54]. Here we
focus on extracting the stresses on the membrane using (3.23).

We find the energy current

T a =−(
a0 + a1K + a2K2 + a3K · K

)
v̂a

− (
L0 + L1K + L2K2 + L3K · K

)
ua , (4.20)

where we have defined the thermodynamic parameters

Li = T si + niμ + ni

2
ū2, si =

(
∂ai

∂T

)
μ

, ni =
(

∂ai

∂μ

)
T

.

(4.21)

Similarly, we extract the Cauchy stress-mass tensor

T ab = hab
(
a0 + a1K + a2K2 + a3K · K

)
−2hachbd Kcd (a1 + 2a2K ) − 4a3h f d hcahebKcd Ke f

+(
n0 + n1K + n2K2 + n3K · K

)
uaub. (4.22)

As this model contains terms involving the extrinsic curvature,
it has a bending moment of the form

Dab = a1hab + Yabcd Kcd , Yabcd = 2a2habhcd + 2a3ha(chd )b,

(4.23)

where Yabcd is the Young modulus of the membrane and has
the usual symmetries of a classical elasticity tensor.31 Equa-
tions (4.22) and (4.23) demonstrate that if a3 is a nontrivial
function of T, μ, then it will contribute nontrivially to the
shape equation (3.31).

Let us be a bit more precise about the role of a3. First,
we redefine the coefficient a2 as a2 = ã2 − a3 so that a3

now multiplies the integrand of the Gauss-Bonnet term, the
Gaussian curvature. All terms proportional to a3 in the shape
equation can be shown to cancel identically using a set of
identities such as the Codazzi-Mainardi and Gauss-Codazzi
equations [i.e., (2.70) and (2.73) suitably adapted to the case
of a codimension one submanifold] as well as the identity
(D6) which expresses the fact that the Einstein tensor of the
Riemannian geometry on constant time slices vanishes in two
dimensions. This means that a3 will contribute only to the
shape equation through its derivatives that we denoted by s3

and n3. There are only two such terms, n3K · KuaubKab and
(hachbd Kcd − habK )DaDba3. In particular the latter is interest-
ing since it will make a contribution to the shape equation even
in the case of a static fluid.

We now show how the model (4.19) recovers the standard
Canham-Helfrich model.

2. The standard Canham-Helfrich model

We focus on three-dimensional flat spacetime (2.15) and
surfaces with two spatial dimensions. We also assume that
the functions {a0, a1, a2, a3} are constant. In this case, as
explained above and detailed in Appendix D, we can set a3 =
0. Additionally, we require the free energy (4.19) to be invari-
ant under a change of the inwards and outwards orientation
of normal vectors, that is, invariant under nμ → −nμ. This
leads to

FCH =
∫

�s

d2σ es[χ + κ (K + c0)2], (4.24)

where we have redefined the coefficients such that

a0 = χ + κc2
0, a1 = 2κc0, a2 = κ, (4.25)

and where c0 changes sign under nμ → −nμ. This is the
direct analog of the Canham-Helfrich model of lipid bilayer
membranes [2]. The constant c0 is the spontaneous curvature,
which reflects a preference to adopt a specific curvature due
to, e.g., different aqueous environments or lipid densities on
the two sides of the bilayer [69]. The parameter χ is the
surface tension and the parameter κ is the bending modulus
[6]. In this case, si = ni = 0 and the shape equation (3.31)
upon using (4.22) and (4.23) becomes

−a0K − a1K2 − a2K3 + a1K · K + 2a2K (K · K )

+ 2a2habDaDbK − �p = 0, (4.26)

where we have added the contribution from constant interior
andexterior pressures as in Sec. IV A 3. We will now review
particular solutions to this model.

31This was first introduced in an effective theory for relativistic
fluids in Ref. [46]. The Young modulus tensor also appears when
considering finite size effects in the dynamics of black branes [68].
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(a) Sphere (b) Torus (c) Biconcave discoid

FIG. 2. The three axisymmetric biophysical solutions to the Canham-Helfrich model and how they arise as surfaces of revolution. The
coordinate ρ measures the perpendicular distance to the z axis (blue), and ψ is the angle between the tangent of the contour and the ρ axis.

3. Biophysical solutions: Axisymmetric vesicles

Here we discuss three well-known axisymmetric solutions
of the Canham-Helfrich model [6] (the spherical vesicle,
the toroidal vesicle, and the red blood cell) and how they
are described within this approach. These surfaces arise as
surfaces of revolution and therefore a particularly convenient
way of parametrizing these is to consider a “cross-sectional
contour” described by the perpendicular distance ρ to the
symmetry axis (which we will take to be the z axis) and the
angle ψ , which is the angle between the tangent of the contour
and the ρ axis (see Fig. 2 for a graphical depiction). This
gives us the relation tan ψ (ρ) = dz

dρ
. The entire surface is then

obtained by rotating this contour such that

X μ =

⎛
⎜⎝

t
ρ cos φ

ρ sin φ

z0 + ∫ ρ

0 d ρ̃ tan ψ (ρ̃ )

⎞
⎟⎠, (4.27)

which in turn gives rise to

K = − sin ψ (ρ)

ρ
− cos ψ (ρ)ψ ′(ρ),

K · K = sin2 ψ (ρ)

ρ2
+ cos2 ψ (ρ)[ψ ′(ρ)]2. (4.28)

Spherical vesicle:. A sphere of radius R [see Fig. 2(a)] is
described by

sin ψ (ρ) = ρ

R
, (4.29)

which gives rise to the equation

0 = �pR2 + 4c0κ + 2c2
0Rκ + 2Rλ. (4.30)

As was also pointed out in Ref. [6], this has two solutions
when viewed as an equation for the radius, provided that
�p < 0 and −4c0κ�p + (κc2

0 + χ )2 > 0. The first condition
reflects the fact that the internal pressure must be greater than
the external pressure to stabilize the structure.

Torus:. The torus can also be obtained as a surface of
revolution [Fig. 2(b)]. This is achieved via

sin ψ (ρ) = 1

r
ρ + R

r
, (4.31)

where R is the major axis and r the minor axis. From this, we
get the shape equation

0 = (−κR3 + 2κr2R) + ρ2
[
r2R

( − κc0
2 − χ

) − 4αc0rR
]

+ρ3
[ − 2r2

(
κc0

2 + χ
) + 4κc0r + �pr3

]
. (4.32)

Each coefficient of {ρ0, ρ2, ρ3} must vanish independently,
giving us three equations

R =
√

2r, χ = κc0(4 − c0r)

r
, �p = 4κc0

r2
. (4.33)

The first of these predicts a universal ratio between the major
and minor axes. Theoretically predicted in Ref. [70], this ratio
was observed experimentally in Ref. [71] with high precision.

Biconcave discoid:. The biconcave discoid [Fig. 2(c)] is
the shape of the red blood cell. This axisymmetric vesicle is
described by

sin ψ (ρ) = aρ(log ρ + b), (4.34)

where a, b are parameters that are related to the characteristics
of the discoid.32 The resulting equation of motion is

0 =[
κa3 − 2κa2b − 4κab2 + 4κabc0 − a

(
κc2

0 + χ
) + 4κb2c0 − 2b

(
κc2

0 + χ
) + �p

]
+ log ρ

[ − 2κa3 − 8κa2b + 4κa2c0 + 8κabc0 − 2a
(
κc2

0 + χ
)] + log2 ρ(−4a3κ + 4a2κc0), (4.35)

32For example, the radius of the discoid, i.e., the maximum value of
ρ = ρR, is implicitly given by 1 = aρR(log ρR + b), since ψ (ρR ) =
π/2 (see also Ref. [66]).

which again gives three equations. These equations yield

a = c0, χ = �p = 0. (4.36)

Thus, we recover the result that the biconcave shape of the red
blood cell relies on isotonicity, i.e., that the pressures on each
side of the membrane are equal [66] (see also Ref. [72]).
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V. DISCUSSION AND OUTLOOK

The majority of the work presented here was of a foun-
dational nature. In order to describe the physical properties
of fluid membranes in thermodynamic equilibrium, we devel-
oped the submanifold calculus for Newton-Cartan geometry.
This parallels how the submanifold calculus of (pseudo-)
Riemannian or Euclidean geometry is a prerequisite for for-
mulating and varying the standard Canham-Helfrich bending
energy. We identified the geometric structures characterizing
timelike submanifolds in NC geometry33 and obtained the
associated integrability conditions. Deriving expressions for
the infinitesimal variations and transformation properties of
the basic objects allowed us to formulate a generic extremiza-
tion problem for broad classes of NC surfaces, including fluid
membranes whose equilibrium configurations only depend on
geometric properties.34

In Sec. IV we applied this toolbox that we developed to
the description of fluid membranes in thermodynamic equi-
librium. The unique aspect of these applications is that the
dependence on temperature and chemical potential of material
coefficients, such as surface tension and bending modulus,
is critical for the emergence of wave excitations. This relied
on the fact that temperature and chemical potential have a
geometric interpretation related to the existence of a timelike
isometry in the ambient spacetime. Standard examples of
free energies such as the Canham-Helfrich bending energy
are straightforwardly generalized by taking into account the
geometric interpretation of thermodynamic variables. The re-
sulting free energies are still purely geometric but the derived
stresses on the membrane are different than standard results
found in the literature. In particular, the Gaussian bending
modulus can play a role in the shape of lipid vesicles since
the Gaussian curvature cannot be integrated out when material
coefficients are not constant. The resulting stresses produce
elastic waves when perturbing away from equilibrium thus
providing the correct dynamics of fluid membranes.

This paves the way for tackling several open questions,
which we plan to address in a future publication [54]:

(1) The fact that the Gaussian curvature cannot be inte-
grated out in thermal equilibrium suggests that the family
of closed lipid vesicles reviewed in Sec. IV B 3 should be
revisited and the effects of the Gaussian bending modulus
should be considered [i.e., a3 in (4.19)], including the effects
on deviations away from equilibrium.

(2) The lipid vesicle solutions in Sec. IV B 3 are static
solutions, in which ua = (1, 0, 0). However, in principle such

33The case of spacelike submanifolds is also interesting to pursue
as it can be useful for understanding entanglement entropy in nonrel-
ativistic field theories [73].

34It would be interesting to understand the connection between this
work and other recently considered constructions involving extended
objects embedded in Newton-Cartan spacetime (or related geome-
tries), such as nonrelativistic strings [30–32,74], nonrelativistic D-
branes [75], and Newton-Cartan p-branes [76]. It would also be
interesting to connect this work to Ref. [77], where the boundary
description of quantum Hall states involves a notion of Newton-
Cartan submanifolds.

solutions can sustain rotation along the direction φ. The
question is thus: is it possible to obtain lipid vesicles with
stationary flows?

(3) From an effective field theory point of view, the
Canham-Helfrich bending energy (4.19) does not contain all
possible responses that take into account thermal equilibrium.
For instance a term quadratic in the extrinsic curvature of
the form uaubhcd KbcKad involving the fluid velocity can be
added to (4.19) (similarly to its relativistic counterpart [46]).
However, there are further couplings that involve derivatives
of ua such as the square of the fluid acceleration (uaDaub)2 or
the square of the vorticity. Some of these terms are related
to the Gaussian curvature and thus, by the Gauss-Codazzi
equation (2.73), to combinations of squares of the extrinsic
curvature. Therefore, from an effective theory point of view,
they cannot be ignored a priori.

(4) We have shown in Sec. IV A 2 that taking into account
the geometric definitions of temperature and mass chemical
potential in equilibrium gives rise to the correct dispersion
relation for an elastic membrane when perturbing away from
equilibrium. It would now be interesting to consider per-
turbations away from equilibrium solutions of the Canham-
Helfrich model (4.19) using the stresses (4.20)–(4.23). This
would shed light on the stability of lipid vesicles.

(5) The construction of effective actions or free energies
in the manner described in this work is appropriate to de-
scribe equilibrium configurations. However, including differ-
ent types of dissipation [78], either due to viscous flows or
diffusion of embedded proteins is of interest [8]. In order
to include dissipation from an effective action point of view
one could consider the more elaborate Schwinger-Keldysh
framework [79–81] and adapt it to nonrelativistic systems.
Alternatively, one may construct the effective theory in a long-
wavelength hydrodynamic expansion by classifying potential
terms appearing in the currents T a and T ab and obtaining
constitutive relations (see, e.g., Refs. [82,83]). We plan on
addressing this in the near future.

(6) We focused on extrinsic curvature terms in effective
actions (3.23), but it would also be interesting to consider the
effect of the external rotation tensor (2.63). In the (pseudo-)
Riemannian or Euclidean setting, this corresponds to spin-
ning point particles/membranes [46,53,84,85] and are directly
related to the Frenet curvature and Euler elastica (see, e.g.,
Refs. [86–88] for a recent discussion).

(7) In Secs. II and III we formulated the description of
a single surface in Newton-Cartan geometry for which the
scalars X μ can be seen as Goldstone modes of spontaneous
broken translations at the location of the surface. It would be
interesting to extend this further to the case of a foliation of
surfaces, in which case the scalars X μ form a lattice and can
be used to describe viscoelasticity as in Ref. [89].

In this work we considered Newton-Cartan geometry but
there are many other types of non-Lorentzian geometries
depending on the space-time symmetry group, which can be,
e.g., Lifshitz, Schrödinger, or Aristotelian, which have direct
applications for the hydrodynamics of strongly correlated
electron systems as well as for the hydrodynamics of flocking
behavior and active matter [37–39,90]. In these contexts, it
is required to develop the mathematical description of sub-
manifolds within these different types of ambient spacetimes.
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The description of surfaces within these geometries will be of
interest for surface or edge physics in hard condensed matter.
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APPENDIX A: NULL REDUCTION OF RIEMANNIAN
SURFACES AND PERFECT FLUIDS

In this Appendix we provide a completely different ap-
proach to formulating the theory of surfaces and fluid mem-
branes in Newton-Cartan geometry. This approach consists
in starting from relativistic surfaces and fluid membranes
and performing a null reduction so as to obtain results in
NC geometry. The purpose of this technical Appendix is to
provide a nontrivial check of the main results in the core of
this paper.

1. Submanifolds from null reduction

It is well known that any Newton-Cartan geometry can
be obtained as the null reduction of a Lorentzian manifold
in one dimension higher equipped with a null killing vector
[28,36,91]. Therefore, if we choose a timelike submanifold
in a Lorentzian geometry such that the null Killing vector
is tangent to the submanifold, its null reduction provides us
with a Newton-Cartan submanifold embedded in a Newton-
Cartan ambient spacetime. We illustrate this in the commuting
diagram below:

(Σ̂p+2, γ̂)
ûµ̂
â (M̂d+2, ĝ)

null red. null red.

(Σp+1, {τ |Σ, ȟ, m̌})
uµ
a

(Md+1, {τ, h,m})
(A1)

In Sec. II B we described how to go from the NC
manifold (Md+1, {τ, h, m}) to the NC submanifold
(�p+1, {τ |�, ȟ, m̌}), while passing from the Lorentzian
manifold (M̂d+2, ĝ) to the Newton-Cartan manifold
(Md+1, {τ, h, m}) is achieved by null reduction.

In this Appendix, we will traverse the other route: our goal
is to go from (M̂d+2, ĝ) to (�p+1, {τ |�, ȟ, m̌}) via (�̂p+2, γ̂ ).
The procedure to go from (M̂d+2, ĝ) to (�̂p+2, γ̂ ) is nothing
but the theory of submanifolds in Lorentzian geometry and is
well known (see, e.g., Refs. [46,53]). We coordinatise M̂d+2

with xμ̂ = (u, xμ) and �̂p+2 with σ̂ â = (w, σ a). The metric on
M̂d+2 can, by assumption, be written in null reduction form

ds2
M̂d+2

= ĝμ̂ν̂dxμ̂dxν̂ = 2τμdxμ(du − mνdxν ) + hμνdxμdxν .

(A2)

This line element is invariant under the Newton-Cartan gauge
transformations (2.4) and conversely all gauge invariance
of this line element are of the form (2.4). The invariance
under the U (1) transformation with parameter σ (xμ) requires
that we vary the higher-dimensional coordinate u as δu = σ .
From the higher-dimensional perspective this corresponds to
a diffeomorphism that leaves the xμ unaffected but that shifts
u by some function of xμ.

The Lorentzian submanifold is defined via a set of embed-
ding maps X̂ μ̂(σ â) in the usual way. We define the projector

P̂μ̂
ν̂ = ûμ̂

â ûâ
ν̂ = δ

μ̂
ν̂ − n̂I

ρ̂ n̂J
ν̂ δIJ ĝρ̂μ̂, (A3)

where n̂I
ρ̂ are the normal 1-forms to �̂p+2 and where ûμ̂

â =
∂âX̂ μ̂. We require that the null direction is shared between
M̂d+2 and �̂p+2, which can be expressed as the requirements

ûu
w = 1, ûu

a = 0, (A4)

where the null direction on the submanifold is described by
w. Further, we want to impose a null reduction analog of
the timelike requirement (2.24). To this end, we introduce a
vector U μ̂ = ( ∂

∂u )
μ̂ = δμ̂

u so that Uμ̂ = (0, τμ). Requiring that
the null Killing vector field is tangential to the submanifold
n̂I

u = U μ̂n̂I
μ̂ = Uμ̂n̂μ̂I = 0 for all I implies the desired relation

τμnμ
I = 0 where we have identified n̂μ

I = nμ
I . This further im-

plies that nμI = ĝμν̂ n̂I
ν̂ = hμνnI

ν in agreement with the timelike
constraint. This also implies that P̂μ

ν = Pμ
ν , as well as the

normalization ĝμ̂ν̂ n̂I
μ̂n̂J

ν̂ = hμνnI
μnJ

ν = δIJ . Further, the above
considerations lead us to conclude that

n̂uI = ĝuμ̂n̂I
μ̂ = −v̂μnI

μ = −v̂I . (A5)

The metric on �̂p+2 can also be written in null reduction
form

ds2
�̂p+2

= γ̂âb̂dxâdxb̂ = 2τadxa(dw − mbdxb) + habdxadxb

= 2τadxa(dw − m̌bdxb) + ȟabdxadxb,

(A6)

where we recall the definitions of ȟab and m̌a in (2.34) and
(2.39), respectively. As manifested in the equations above, the
null reduction form of the metric is Galilean boost invariant
and does not distinguish between checked and unchecked
metric data. In turn, the Lorentzian metric γ̂ on �̂p+2 is the
pullback of the metric ĝ on M̂d+2, that is

γ̂âb̂ = ûμ̂
â ûν̂

b̂
ĝμ̂ν̂ , (A7)

which implies that

τa = γ̂aw = ûμ̂
a ûν̂

wĝμ̂ν̂ = ûμ
a ûu

wĝμu + ûμ
a ûν

wĝμν

= ûμ
a τμ + ûμ

a ûν
wh̄μν. (A8)
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Thus, taking

ûμ
w = 0, (A9)

and identifying ûμ
a = uμ

a we get the desired relation between
the two clock 1-forms, namely, τa = uμ

a τμ. Next, we consider

h̄ab = γ̂ab = ûμ̂
a ûν̂

bĝμ̂ν̂ = ûμ
a ûν

bĝμν + ûμ
a ûu

bĝμu + ûu
aûν

bĝuν

= uμ
a uν

bh̄μν, (A10)

where we have used (A4), which again agrees with the results
of Sec. II B. The relation ûμ̂

wûw
μ̂ = ûw

u = 1 where we used
(A9), fixes ûw

u = 1. To determine ûw
μ we bring into play

the orthogonality requirement ûw
μ̂ n̂μ̂I = ĝμ̂ν̂ ûw

μ̂ n̂I
ν̂ = 0, which

translates into the relation

v̂μnI
μ = ûw

μnμI , (A11)

where we have used that ûw
u = 1 and nμ

I = δIJhμνnJ
ν . This is

possible only if

ûw
μ = v̂I nI

μ. (A12)

The null reduction of the ambient inverse metric is

ĝuu = 2
̃, ĝuμ = −v̂μ, ĝμν = hμν, (A13)

while the relation between ĝ−1 and γ̂ −1 is given by γ̂ âb̂ =
ûâ

μ̂ûb̂
ν̂ ĝμ̂ν̂ . In turn, the relation γ̂ ab = hab requires that ûa

u = 0.
Using this, we can write

γ̂ wa = ûw
μ̂ ûa

ν̂ ĝμ̂ν̂ = v̂I nI
μûa

νhμν + ûa
ν ĝuν, (A14)

where we have used (A12), which leads us to identify ûa
μ = ua

μ

and, by the orthogonality relation (2.25), leads to v̂a = ua
μv̂μ

as desired. The relation (A12) furthermore implies that

γ̂ ww = ûw
μ̂ ûw

ν̂ ĝμ̂ν̂ = 2
̃ − v̂I v̂I = 
̌. (A15)

In summary, the Lorentzian objects arrange themselves
under submanifold null reduction according to

ûμ̂
â

null red.−→ ûμ
a = uμ

a , ûu
w = 1, ûμ

w = 0, ûu
a = 0, (A16)

ûâ
μ̂

null red.−→ ûa
μ = ua

μ, ûw
u = 1, ûw

μ = v̂I nI
μ, ûa

u = 0, (A17)

n̂I
μ̂

null red.−→ n̂I
μ = nI

μ, n̂I
u = 0, (A18)

n̂μ̂
I

null red.−→ n̂μ
I = nμ

I , n̂u
I = −v̂I . (A19)

The metric on �̂p+2 is

ds2
�̂p+2

= 2τadxa(dw − m̌bdxb) + ȟabdxadxb, (A20)

while the components of the inverse metric on �̂p+2 are

γ̂ ww = 2
̌ = 2
̃ − v̂I v̂I , γ̂ wa = −v̂a, γ̂ ab = hab.

(A21)

a. Null reduction of the connection the extrinsic curvature

We now consider the null reduction of the Lorentzian con-
nection. The nonzero components of the higher-dimensional

Christoffel symbols are

�̂ρ
μν = �̄

ρ
(μν) = �̄ρ

μν + 1
2 v̂ρτμν, (A22)

�̂u
μν = −K̄μν − 2τ(μ∂ν )
̃, (A23)

�̂ρ
uμ = 1

2 hρσ τμσ , (A24)

�̂u
uμ = 1

2 aμ, (A25)

where

K̄μν = −1

2
£v̂ h̄μν, aμ = £v̂τμ = v̂ρτρμ. (A26)

The NC extrinsic curvature K̄μν should not be confused with
the submanifold extrinsic curvature Kab

I . The pullback of the
ambient TNC extrinsic curvature, K̄ab = uμ

a uν
bK̄μν , is related

to the TNC extrinsic curvature on the submanifold �p+1,

K̄�
ab = −1

2
£�

v̂ h̄ab, (A27)

where £�
v̂ denotes the Lie derivative along v̂a on �p+1, in the

following way:

K̄ab = K̄�
ab − τ(a∂b)(v̂

I v̂I ) + v̂I Kab
I . (A28)

This can be shown by starting with K̄ab = uμ
a uν

bK̄μν and using
v̂ρ = v̂cuρ

c + v̂I nρ
I in (A26). The identity

£nI h̄μν = 2∇(μnI
ν ) + 2τ(μ∂ν )v̂

I (A29)

together with Eq. (2.61) can then be used to derive (A28).
The higher-dimensional extrinsic curvature K̂âb̂

I is de-
termined in terms of the higher-dimensional analog of the
surface covariant derivative of (2.56), which we will call D̂â.
It acts on a mixed tensor T̂ b̂μ̂ according to

D̂âT̂ b̂μ̂ = ∂âT̂ b̂μ̂ + γ̂ b̂
âĉT̂ ĉμ̂ + ûν̂

â�̂
μ̂

ν̂λ̂
T̂ b̂λ̂, (A30)

where γ̂ b̂
âĉ is the Levi-Civita connection of γ̂ , while �̂

μ̂

ν̂λ̂
is the

Levi-Civita connection of ĝ. The higher-dimensional extrinsic
curvature is

K̂âb̂
I = n̂I

μ̂D̂âûμ̂

b̂
= n̂I

μ̂

(
∂âûμ̂

b̂
+ ûν̂

â�̂
μ̂

ν̂λ̂
ûλ̂

b̂

)
, (A31)

which using (A16) and (A18) means that

K̂ab
I = nI

μDauμ

b + 1
2 v̂Iτab = Kab

I , (A32)

where we have recognized the extrinsic curvature of (2.61).
This is invariant under both gauge transformations and
Galilean boosts. The other nonzero components of the higher-
dimensional extrinsic curvature are K̂wb

I = − 1
2τIb.

Below Eq. (A2), we have shown that the U (1) gauge
transformation is a specific diffeomorphism in the higher-
dimensional description. This is a useful way to find out how
various objects transform under the σ gauge transformation.
This also applies to tensors defined on the submanifold �p+1,
since they descend from the Lorentzian manifold �̂p+2. A
diffeomorphism of a generic tensor Xâ

b̂ is given by

δXâ
b̂ = ξ̂ ĉ∂ĉXâ

b̂ + Xĉ
b̂∂âξ̂

ĉ − Xâ
ĉ∂ĉξ̂

b̂. (A33)

In order to find the U (1) transformation, we need to choose
a diffeomorphism for which ξ̂ â = −σδâ

w. Since all objects
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are independent of u we find that a 1-form Xa in this case
transforms as

δXa = −Xw∂aσ, (A34)

while a vector X b is U (1) invariant. Applying this to the
extrinsic curvature K̂ab

I we find

δσ K̂ab
I = −K̂aw

I∂bσ − K̂wb
I∂aσ. (A35)

Using that K̂wb
I = − 1

2τIb we recover the transformation rule
(2.62).

b. Variations from null reduction

Here we obtain some of the results of Sec. III A using null
reduction. We begin with the variations of the normal 1-forms.
In the relativistic case, the normal 1-forms can be shown to
transform as [53]

δn̂I
μ̂ = 1

2 n̂ν̂
J n̂J

μ̂n̂ρ̂Iδĝν̂ρ̂ − n̂I
ν̂ ûâ

μ̂δûν̂
â + 1

2 n̂μ̂J
(
n̂ν̂Jδn̂I

ν̂ − n̂ν̂Iδn̂J
ν̂

)
.

(A36)

Restricting to μ̂ = μ, the last term simply reduces to λI
JnJ

μ.
This follows from demanding that n̂I

u = 0 is preserved under
transformations, implying that δn̂I

u = 0. Ignoring rotations of
the normal 1-forms, we get

δnI
μ = − 1

2 v̂ρnJ
ρnμJnνIδτν − 1

2 nνJnμJ v̂
ρnI

ρδτν

+ 1
2 nρJnμJnνIδh̄ρν − nI

νua
μδuν

a, (A37)

where we have used that n̂uI = −v̂μnI
μ. Using the definitions

of v̂ and h̄, we find that the variation can be written as

δnI
μ = −v(I nJ )νnμJδτν + 1

2 nρJnμJnνIδhρν − nI
νua

μδuν
a,

(A38)

in agreement with the result (3.4) [up to a local so(d − p)
transformation that we ignored].

With this at hand, we rederive (3.10) using the method of
null reduction. The relativistic result reads [53]

δX̂ K̂âb̂
I = −n̂I

μ̂D̂âD̂b̂ξ̂
μ̂ + n̂I

μ̂ξ̂ λ̂ûν̂
â ûρ̂

b̂
R̂λ̂ν̂ρ̂

μ̂ + λ̂I
J K̂âb̂

J , (A39)

where

λ̂IJ = n̂μ̂[I n̂J]ν̂ ξ̂ ρ̂∂ν̂ ĝμρ̂ = n̂[I
ρ̂ n̂J]ν̂ �̂

ρ̂
ν̂σ̂ ξ̂ σ̂ . (A40)

We keep the null direction fixed, so that

ξ̂ μ̂ = −δX̂ μ̂, ξ̂ u = 0. (A41)

We are interested in (â, b̂) = (a, b) and since n̂I
u = 0 = ûu

a,
(A39) reduces to

δX K̂ab
I = −nI

μD̂aD̂bξ
μ + nI

μξλuν
auσ

b R̂λνσ
μ + λ̂I

J K̂ab
J ,

(A42)

where ξ̂ μ = ξμ so that δX̂ μ = δX μ. In the absence of torsion,
the null reduction of the Riemann tensor gives

R̂λνσ
μ = −∂λ�̂

μ
νσ + ∂ν�̂

μ

λσ − �̂
μ

λρ̂�̂
ρ̂
νσ + �̂

μ
νρ̂ �̂

ρ̂

λσ = Rλνσ
μ.

(A43)

Since in the absence of torsion D̂wξμ = 0 and D̂bξ
μ = Dbξ

μ,
we find that

D̂aD̂bξ
μ = DaDbξ

μ, (A44)

while the null reduction of (A40) gives λ̂IJ = n[I
ρ nJ]ν�ρ

νσ ξσ

and so we obtain (3.10), as expected.

c. Note on the reduction of the Lorentzian action

The variational principle for NC surfaces in Sec. III B 1 can
be obtained from null reduction of the relativistic variational
principle [46]:

δS =
∫

�

d p+1σ
√

−γ̂

(
1

2
T̂ âb̂δγ̂âb̂ + D̂âb̂

IδK̂âb̂
I

)
. (A45)

The null reduction formulas of the previous section, for in-
stance, (A42), imply that the null reduction of (A45) will
include a dependence on variations of K̂wa

I = − 1
2τIb. Such

torsion dependent terms were not included in (3.23). The
reason, as mentioned throughout the paper is that we have
assumed to be working without torsion, that is, τμν = 0 at the
expense of only being able to extract the divergence of the
energy current instead of the energy current itself.

2. Perfect fluid from null reduction

In this section, we consider the null reduction of the
equilibrium partition function of a relativistic space-filling
perfect fluid, that is a fluid that is not living on a surface.
The case in which the fluid is confined to the surface (i.e., a
fluid membrane) considered in Sec. IV A is a straightforward
modification of this analysis. The result provides us with the
hydrostatic partition function of a Galilean-invariant perfect
fluid.

We begin with the null reduction of the unit normalized
relativistic fluid velocity ûμ̂, which obeys ĝμ̂ν̂ ûμ̂ûν̂ = −1. We
define the nonrelativistic fluid velocity uμ as follows [36]:

uμ = ûμ

ûu
, (A46)

where ûu = ĝuμ̂ûμ̂ = τμûμ. This implies that τμuμ = 1 which
is the standard normalization of the contravariant velocity of
a nonrelativistic fluid. The relativistic condition

ĝμ̂ν̂ ûμ̂ûν̂ = h̄μν ûμûν + 2τμûμûu = −1, (A47)

can be used to solve for ûu, leading to

ûu = − 1

2ûu
− 1

2
ûuh̄μνuμuν . (A48)

We still need to find a lower-dimensional interpretation of
ûu. This can be achieved as follows. Let T̂ μ̂

ν̂ be the energy-
momentum tensor of the higher-dimensional relativistic the-
ory. For a perfect fluid this is T̂ μ̂

ν̂ = (Ê + P̂)ûμ̂ûν̂ + P̂δ
μ̂
ν̂ .

The mass current of the null reduced theory is given by T̂ μ
u

(see, e.g., Ref. [36]). In the lower-dimensional theory, this is
equal to nuμ, where n is the mass density. Comparing the two
expressions yields

û2
u = n

Ê + P̂
. (A49)
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We will later find expressions for Ê and P̂ in terms of the
nonrelativistic energy and pressure.

In the hydrostatic partition function approach for a rela-
tivistic fluid, one identifies the intensive fluid variables such as
temperature and velocity with a timelike Killing vector of an
otherwise arbitrary Lorentzian curved background geometry.
By varying the metric while keeping the Killing vector fixed,
one extracts the fluid energy-momentum tensor. This approach
has been applied to nonrelativistic fluids on a NC background
in Refs. [33,92] and here we will show how this follows
from null reduction. In the higher-dimensional Lorentzian
geometry, we assume the existence of a Killing vector k̂μ̂ such
that

k̂μ̂ = β̂ûμ̂, (A50)

where β̂ is the relativistic (inverse) temperature, and ûμ̂ the
relativistic fluid velocity. Just like in the Lorentzian setting,
we will introduce a Newton-Cartan Killing vector kμ that
is proportional to the nonrelativistic fluid velocity uμ and
that is timelike, where τμkμ relates to the nonrelativistic
temperature. Hence we write

kμ = βuμ, (A51)

where β = τμkμ is the nonrelativistic (inverse) temperature.
The null reduction of k̂μ̂ is just k̂μ̂ = (k̂u, kμ) = β(μ̂, uμ),
where we write k̂u = βμ̂ with μ̂ a parameter to be determined.
This means that

βuμ = β̂ûμ. (A52)

Now, since k̂μ̂ is a Killing vector, we have that

£k̂ĝμ̂ν̂ = 0, (A53)

which, after null reduction, turns into the statements

£kτμ = 0, £kh̄μν = −2τ(μ∂ν )k̂
u. (A54)

In a NC geometry a Killing vector is defined by setting to
zero the transformations in (2.4) [and thus also implying that
the variations in (2.7) give zero]. Here k̂u is thus a specific
U (1) gauge transformation parameter that is associated with
the existence of a Killing vector.

The relativistic hydrostatic partition function at ideal order
in derivatives is an integral of the pressure which depends on
the intensive variables, i.e., scalar quantities built from the
Killing vector. One of these is the norm of k̂μ̂ which relates
to the relativistic temperature. However, in the case of null
reduction we actually have, besides k̂μ̂, another Killing vector
which is U μ̂ = ( ∂

∂u )
μ̂

. Since U μ̂ is null, we can form only one
other scalar,

ĝμ̂ν̂U μ̂k̂ν̂ = τμkμ = β, (A55)

which is the nonrelativistic (inverse) temperature. The other
scalar is of course

−β̂2 = ĝμ̂ν̂ k̂μ̂k̂ν̂ = β2(2μ̂ + h̄μνuμuν ). (A56)

This determines the proportionality between the relativistic
and nonrelativistic temperatures. We define

μ = μ̂ + 1
2 h̄μνuμuν . (A57)

We will see below that μ is a chemical potential related to the
mass conservation, which is a consequence of the null Killing

vector and we note that its definition implies μ < 0. In the
grand canonical ensemble for a system at rest, the partition
function is of the form Z = Tr e−βH+βμN , where H is the
Hamiltonian and N the conserved mass of the system.

a. Null reduction of the hydrostatic partition function

At the end of Sec. A 1 a, we discussed the role of the
U (1) transformation from the null reduction point of view,
and we showed that such a transformation corresponds to a
diffeomorphism generated by ξ̂ μ̂ = −σδμ̂

u . Applying this to
our Killing vector k̂μ̂, we learn that under δξ̂ k̂μ̂ = £ξ̂ k̂μ̂, the

NC Killing vector kμ is left inert and that k̂u transforms as

δσ k̂u = kμ∂μσ. (A58)

Since τμ is also invariant it follows that β also does not
transform. Hence, using k̂u = βμ̂ and kμ = βuμ, we can write

δσ μ̂ = uμ∂μσ. (A59)

It then follows that μ defined in Eq. (A57) is U (1) invariant,
making μ together with β the two parameters on which
the lower dimensional pressure in the hydrostatic partition
function should depend.

In a d + 1-dimensional theory, the hydrostatic partition
function is given by

S =
∫

dd+1xeP(T, μ), (A60)

where P is the fluid pressure. Next, we vary S keeping the
Killing vector fixed, i.e., δkμ = 0 = δk̂u. The variation of the
temperature is then given by

δT = δ(τμkμ)−1 = −(τνkν )−2kμδτμ = −Tuμδτμ, (A61)

while the variation of the chemical potential reads

δμ = δμ̂ + 1

2
uμuνδh̄μν + h̄μνuνδuμ

= μ̂
δT

T
+ 1

2
uμuνδh̄μν

+ ū2 δT

T
. (A62)

This allows us to compute

δP =
(

∂P

∂T

)
μ

δT +
(

∂P

∂μ

)
T

δμ = sδT + nδμ (A63)

= −
(

sT + nμ + 1

2
nū2

)
uμδτμ + 1

2
nuμuνδh̄μν, (A64)

where s is the entropy density and n the mass density. Thus,
combining our findings, we obtain

δS =
∫

dd+1xe

(
T μδτμ + 1

2
T μνδh̄μν

)

=
∫

dd+1xe

[
1

2
(Phμν + nuμuν )δh̄μν − Pv̂μδτμ

−
(

sT + nμ + 1

2
nū2

)
uμδτμ

]
, (A65)
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TABLE I. The three classes of Newton-Cartan geometries and
their properties.

Geometry Constraint on τ Causality Torsion

TNC None Acausal Yes
TTNC τ ∧ dτ = 0 Surfaces of absolute simultaneity Yes
NC dτ = 0 Absolute time No

leading us to identify the energy current and the Cauchy
stress-mass tensor as

T μ = −Pv̂μ −
(

sT + nμ + 1

2
nū2

)
uμ

= −Pv̂μ −
(

E + P + 1

2
nū2

)
uμ, (A66)

T μν = Phμν + nuμuν, (A67)

where we defined E , the internal energy, via the relation E +
P = sT + nμ. This matches the results of Ref. [36], where
these equations were obtained by directly null reducing the
expression for the relativistic energy-momentum tensor.

The relation between the relativistic and nonrelativistic
currents can be found from

1

2

√
−ĝT̂ μ̂ν̂δĝμ̂ν̂ = e

(
T μδτμ + 1

2
T μνδh̄μν

)
. (A68)

Hence the energy current is given by T μ = T̂ uμ. For a perfect
fluid, this is T μ = (Ê + P̂)ûμûu − P̂v̂μ. Comparing this with
(A66) implies that we have the identification P̂ = P, as well
as

E + P + 1
2 nū2 = −(Ê + P̂)ûuûu = 1

2 (Ê + P̂) + 1
2 nū2, (A69)

where ū2 = h̄μνuμuν and where we used (A46), (A48), and
(A49). Hence we conclude that, since P̂ = P, we have Ê =
2E + P. Finally, we note that Eq. (A49) can be obtained
from comparing T̂ μν = T μν . Replacing P in (A60) by χ and
confining the fluid to a surface leads to (4.5) upon Wick
rotation.

APPENDIX B: CLASSES OF NEWTON-CARTAN
GEOMETRIES

As mentioned in Sec. II A 3, while it is not necessary
to work with torsion for relevant systems, it is nevertheless
formally necessary to introduce it in order to obtain the
correct variational calculus [see discussion around (2.13)].
Thus it is instructive to briefly mention other types of Newton-
Cartan geometry for which different conditions on τμ are
considered. In the most general version of NC geometry, “tor-
sional Newton-Cartan geometry” (TNC geometry [27–29]),
the clock 1-form is completely unconstrained. A more moder-
ate version, referred to as “twistless torsional Newton-Cartan
geometry” (TTNC geometry), requires that the clock 1-form
be hypersurface-orthogonal (i.e., it satisfies the Frobenius in-
tegrability condition τ ∧ dτ = 0). We summarize these differ-
ent notions in Table I. In fact, these conditions are intimately
linked with torsion. In particular if τ is closed (dτ = 0), there
is no torsion, but if τ is hypersurface-orthogonal (τ ∧ dτ = 0)
the twist vanishes, ω2 = hμρhνσωμνωρσ = 0, where the twist
tensor is given by ωμν = hρσ hσμhλκhκντρλ. Finally, if the
clock 1-form is completely unconstrained, so is the torsion.

When there is no constraint on τμ, it was shown in Ref. [44]
that the spacetime becomes acausal in the sense that given a
point P there exists a neighborhood of P such that all points
in the neighborhood are separated from P by curves that
are spacelike, i.e., their tangent vectors are orthogonal to τμ.
When τμ is hypersurface orthogonal, the spacetime admits a
foliation in terms of constant time slices. At different points
on such a hypersurface clocks may tick at a slower or faster
rate as time evolves, although all observers on such a constant
time slices agree that they are simultaneous with each other.
When there is no torsion (and τ is exact) the rate at which time
evolves is the same for all points on the constant time slices
and we are dealing with absolute time. In this case the interval
between two events P and Q connected by a curve γ joining
P and Q, i.e.,

∫
γ

τ , is independent of the choice of γ .

APPENDIX C: CONNECTIONS ON THE SUBMANIFOLD

The purpose of this Appendix is to find the relation be-
tween the NC connections of the ambient spacetime and the
submanifold as described in Sec. II B 5.

Consider first the projection of the submanifold covariant
derivative acting on a vector V ν ,

uμ
a ub

ν∇μV ν = uμ
a ub

ν

(
∂μV ν + �ν

μρV ρ
) = ∂a

(
ub

νV ν
) − V ν∂aub

ν + uμ
a ub

ν�
ν
μρV ρ

= ∂aV
b − V σ

(
uν

c uc
σ + nν

I nI
σ

)
∂aub

ν + uμ
a ub

ν�
ν
μρ

(
uρ

c uc
σ + nρ

I nI
σ

)
V σ

= ∂aV
b + �b

acV
c − V cuν

c∂aub
ν − VI h

bcK̃ac
I , (C1)

where we defined

�b
ca = uμ

a ub
νuρ

c �ν
ρμ. (C2)

Now, if the vector is a pushforward of a submanifold vector as in V μ = uμ
a V a, the last term in the expression above vanishes,

which leads us to define

γ b
ac = �b

ac − uμ
c ∂aub

μ. (C3)
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The connection on the submanifold is also given by (2.57), which we can write using the ambient structures as

−v̂c∂aτb = −uc
μuν

auρ

b v̂μ∂ντρ − v̂cuν
aτρ∂νuρ

b , (C4)

hcd∂ah̄bd =uc
μud

ν uρ
a uλ

buσ
d ∂ρ h̄λσ + hcd h̄bλ∂auλ

d + hcλh̄λσ ∂auσ
b . (C5)

Substituting these back into (2.57), we find that

γ c
ab − �c

ab = −v̂cτρ∂auρ

b + 1
2 hcd h̄bλ∂auλ

d + 1
2 hcλh̄λσ ∂auσ

b + 1
2 hcd h̄aλ∂buλ

d + 1
2 hcλh̄λσ ∂buσ

a − 1
2 hcd h̄aλ∂d uλ

b − 1
2 hcd h̄λb∂d uλ

a

= uc
σ ∂auσ

b , (C6)

obtaining the result (2.58).

APPENDIX D: GAUSS-BONNET AND
(2 + 1)-DIMENSIONAL MEMBRANES

For a closed co-dimension one surface embedded in flat
(3 + 1)-dimensional Newton-Cartan geometry, the Gauss-
Codazzi equation (2.73) relates K2 and K · K according to

K2 − K · K = R, (D1)

where R is the spatial Ricci scalar R = habRacb
c. This is the

Ricci scalar of a two-dimensional spatial metric on constant
time slices of �. This can be seen from the perspective of
gauging the Bargmann algebra (see, e.g., Refs. [23,55,56]) as
we will briefly review.

In this section we will denote surface tangent space indices
as ā, b̄, . . . = 1, 2. It is well known that (2 + 1)-dimensional
Newton-Cartan geometry arises as a gauging of barg(2, 1),
which is generated by (H, Pā, Gā, Jāb̄, N ) with the following
nonvanishing brackets:

[H, Gā] = Pā, [Jāb̄, Gc̄] = 2δc̄[āGb̄], [Jāb̄, Pc̄] = 2δc̄[āPb̄],

[Jāb̄, Jc̄d̄ ] = 4δ[ā[d̄ Jc̄]b̄], [Pā, Gb̄] = Nδāb̄. (D2)

The gauging procedure then proceeds as follows. We intro-
duce a Lie algebra valued connection

Aa = Hτa + Pāeā
a + Nma + Gāωμ

ā + 1
2 Jāb̄ωa

āb̄, (D3)

with an associated curvature two-form F = dA + A ∧ A
whose Lie algebra expansion is given by

Fab = HRab(H ) + PāR̄ab
ā(P) + NR̄ab(N )

+ GāR̄ab
ā(G) + 1

2 Jāb̄R̄ab
āb̄(J ). (D4)

In Ref. [58] it is shown that the Riemann tensor is related to
the curvatures appearing in the gauging procedure as follows:

Rabd
c = ec

āτdR̄ab
ā(G) − edāec

b̄R̄ab
āb̄(J ). (D5)

The curvature of the spatial rotations R̄ab
āb̄(J ) is the curvature

2-form of the constant time slices which for (twistless tor-
sional) NC geometry is Riemannian. In (2 + 1)-dimensional
Newton-Cartan geometry, therefore, the spatial Ricci scalar
R only depends on the curvature two-form R̄ab

āb̄(J ) and we
have the usual identities from two-dimensional Riemannian
geometry for the spatial projections of Rabd

c. For example,
the vanishing of the two-dimensional Einstein tensor would
read

hachbeRabc
d − 1

2Rhde = 0. (D6)

In the case of torsionless NC geometry the (2+1)-
dimensional integration measure e is just the integration mea-
sure on the constant time slices (since the time direction has a
trivial measure when we are dealing with absolute time). The
Gauss-Bonnet theorem then tells us that∫

�

d3σeR = 4π

∫
dσ 0χ (�s), (D7)

where χ (�s) is the Euler characteristic of the constant time
slices �s. Hence, the Gauss-Codazzi equation (D1) gives us a
relation between the coefficients a2, a3 of (4.19), allowing us
to set either a2 or a3 equal to zero (but only when both a2 and
a3 are constant). In (4.24), we have chosen to set a3 to zero.
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