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Preface

The studies of the high-temperature superconductors is still not settled 17
years after their discovery. To date more than 120,000 papers dealing with
these materials have been published, and our knowledge about their proper-
ties is quite remarkable indeed. Nevertheless, the understanding of their phase
diagram remains an outstanding challenge in condensed matter theory and
there is no consensus on the correct effective model for these materials.
The systems are characterized by strong correlation, large Coulomb repulsions,
low dimensionality, and a competition between a plethora of different phases
that are separated by small energy differences. The high-Tc materials are anti-
ferromagnetic Mott insulators at half-filling, and the question is what happens
when electrons are progressively removed from the CuO2 planes?
Like a good game, enormous complexities arise in spite of the fact that the
rules are simple: anti-align adjacent spins but allow for holes to hop. Then find
the state that simultaneously minimizes the kinetic energy of the doped holes
and the exchange energy. The tricky business arises because these two terms
are equally important and compete: a localized hole with a spatially confined
wavefunction has a high kinetic energy. Therefore, it tends to delocalize by
hopping to neighboring sites. In doing so, it scrambles the antiferromagnetic
background resulting in high energy exchange bonds. It is fascinating that
in spite of these simple rules, the solutions appear to be surprisingly rich and
complex. For instance, the notion of self-organized topological spin and charge
structures inhomogeneous at the nano length-scale is a robust feature of mod-
els that correctly include the rules of the game. Experimentally, the existence
of these electronic stripes is firmly established for the lanthanum based high-
Tc compounds. In the second half of the thesis, the origin and experimental
consequences of the stripe ordering will be discussed.

In each chapter of this thesis, the main part has been (or is about to be)
published in a physical journal. The other sections in each chapter are in-
tended to clarify the calculations and explain the motivation for the study.
This includes a presentation of experimental results as well as a discussion of
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previous theoretical work. In a few chapters, this has caused a brief overlap
between these background sections and the introductory part of the article.
It would have been easier to simply assemble the articles in the appendices,
but in the present format I hope that the thesis has become more readable for
those who actually embark on that journey.

I am grateful to my advisor Per Hedeg̊ard for ideas, and for his encouragement
throughout the years. I have benefitted from numerous stimulating discussions
with H. Bruus, V. Cheianov, N.B. Christensen, J.C. Davis, K. Flensberg, M.
Granath, J. Jensen, B. Lake, K. Lefmann, D. Mcmorrow, J. Paaske, H.M.
Rønnow, S. Sachdev, K.M. Shen, S.C. Zhang, and M. Zvonarev. Lastly, I
thank Christy Lee, my family and my friends for their encouragement and
patience throughout the past few years.

Brian Møller Andersen
Copenhagen, May 2004.
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‘. . . I like arguments,’ said the Rocket.

‘I hope not,’ said the Frog complacently. ‘Arguments are extremely vulgar,
for everybody in good society holds exactly the same opinions. Good-bye a
second time; I see my daughters in the distance;’ and the little Frog swam away.

‘You are a very irritating person,’ said the Rocket, ‘and very ill-bred. I hate
people who talk about themselves, as you do, when one wants to talk about
oneself, as I do. It is what I call selfishness, and selfishness is a most detestable
thing especially to any one of my temperament, for I am well known for my
sympathetic nature. In fact, you should take example by me, you could not
possibly have a better model. . . ’

‘There is no good talking to him,’ said a Dragon-fly, who was sitting on the
top of a large brown bulrush; ‘no good at all, for he has gone away.’

‘Well, that is his loss, not mine,’ answered the Rocket. ‘I am not going to
stop talking to him merely because he pays no attention. I like hearing myself
talk. It is one of my greatest pleasures. I often have long conversations all by
myself, and I am so clever that sometimes I don’t understand a single word of
what I am saying.’

- ”The Remarkable Rocket” by Oscar Wilde
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1. Introduction to the high-Tc materials 1

1 Introduction to the high-Tc materials

The understanding of the electronic structure of the high-Tc materials is the
problem of doped Mott insulators. What happens when we dilute a quasi two-
dimensional antiferromagnetic Mott insulator? Experimentally, it was found in
1986 by Bednorz and Müller that La2−xBaxCuO2 becomes a superconductor
with Tc = 30K[1]. Because of the poor conductivity in the normal state,
this discovery was unexpected and prompted intense activity in the field of
ceramic oxides. Materials such has YBa2Cu3O7−δ and Bi2Sr2CaCu2O8+δ, both
of which contain two CuO2 planes per unit cell, were found to have maximum
Tc’s around 80-90 K. To date the trilayer material HgBa2Ca2Cu3O8+x has
the highest Tc of 134 K at atmospheric pressure. The mentioned materials
follow the general empirical rule that the critical temperature Tc scales with
the number n of CuO2 layers in the unit cell up to n = 3. For n > 4, Tc

drops monotonically, a mystery that was only recently resolved[2]: for n > 1
the possibility of inter-layer tunnelling of Cooper pairs initially increase Tc,
but for n > 3 a charge imbalance in the CuO2 stack causes the inner layers
to contain less carriers than the outer, effectively pushing the inner layers
toward the underdoped regime even though the overall doping of the entire
material is at optimal doping. As will be discussed in more detail in later
chapters, the underdoped region supports several orders that compete with
the superconductivity. In inner layers therefore nucleate this competing order
which suppress the superconductivity.
Having introduced some of the main characters, I review below some of their
basic experimental properties and the models proposed to describe them.

1.1 Crystal structure and the phase diagram

The crystal structure of the mother material, La2CuO4, of cuprate supercon-
ductors consists of CuO2 planes and insulating LaO spacer layers. In the CuO2

planes each copper ion is surrounded by four oxygen ions. Two additional api-
cal O ions positioned out of the planes result in each Cu ion being surrounded
by a octahedra of oxygens forming a perovskite structure. The octahedron
is elongated since the distance to the apical oxygen ions is large compared
to the planar Cu-O separation. Therefore, the planar Cu-O bonds dominate.
All other cuprate materials also consist of copper-oxygen planes, the electron-
doped ones missing the apical oxygen ions.
In the bulk crystal the planar oxygen is in the O2− valence state with all three
p orbitals occupied completing the p shell. Lanthanum releases three electrons
becoming La3+ and to conserve charge neutrality the copper atoms must have
charge 4 × 2 − 2 × 3, i.e. be in a Cu2+ state with nine electrons in the five d
orbitals. Thus, Cu loses the 4s and one of the 3d electrons creating a hole in
the 3d shell resulting in a net spin of 1/2 per copper ion. For each Cu2+ ion the



2 Coexistence of Magnetic and Superconducting Order...

surrounding octahedron breaks the rotational invariance of the isolated ions
lifting the degeneracy of the 3d orbitals. The state with the highest energy
turns out to be the 3dx2−y2 state, which is therefore the state in which the hole
resides.

The ceramic oxides are usually strongly insulating, and this is also the case
for undoped copper oxides. The undoped materials are dominated by strong
Coulomb electron-electron correlations confining the electrons of the crystal
ions. Therefore, these materials are Mott insulators and not regular band
insulators. In fact, from the odd number of electrons per unit cell, simple
tight-binding band considerations (ignoring Coulomb interactions) erroneously
predict a half-filled band, i.e. a metallic state.
A schematic phase diagram covering all the hole doped cuprate materials is
shown in Fig. 1.1. Without any doping the system consists of a square spin
1/2 system. The spins order antiferromagnetically by superexchange involving
virtual hopping processes and the finite Néel temperature TN comes from the
coupling between the CuO2 planes.

With doping, the intervening layers mainly act as charge reservoirs. For
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Figure 1.1: Schematic phase diagram (temperature T vs hole doping x) of
the cuprates. At half-filling (x = 0) the materials are antiferromagnetic insu-
lators. As holes are doped into the CuO2 planes (x > 0) the system becomes
superconducting at low temperatures and shows ”strange” metallic behavior
at higher temperature. The temperature T ∗ indicates a crossover from the
”normal” to the pseudogap phase.

instance, upon replacing trivalent La3+ by divalent Sr2+ fewer electrons are
available to the CuO2 layers, corresponding to hole doping. The added holes
occupy oxygen ions changing these from the O2− to the O− configuration.
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When increasing the doping x from half-filling the materials quickly loose
their antiferromagnetic ordering, at least in its simplest commensurate form.
At lower temperature the cuprates become superconducting.
The superconducting dome which peaks around x ≈ 0.15, divides the phase
diagram into an underdoped (Tc increasing with doping x), optimally doped
(Tc maximum), and an overdoped regime (Tc decreasing).
In many respects the superconducting phase is similar to the conventional BCS
superconductors, at least in the optimal and overdoped regimes. Exceptions
include the pairing symmetry and the superfluid density. The gap symmetry is
known to be dx2−y2 from a large number of experiments including spectroscopy
and phase sensitive techniques such as Josephson tunnelling and SQUID mag-
netometry. The low superfluid density extracted from muon spin relaxation
measurements presumably derives from the low carrier density of the doped
Mott insulator[3, 4]. This leads to relatively small phase-stiffness and poor
screening which cause large phase fluctuations of the superconducting order
parameter and a non-mean field transition. Experimentally, the maximum
value of the pairing gap is found to decrease with doping, which is opposite to
the doping dependence of the superfluid density[5]. This has led to the sugges-
tion that in general the phase coherence energy scale and the pairing energy
scale are separated[6]. Therefore, in the underdoped regime, preformed singlet
pairs may form at a temperature T ∗ > Tc giving rise to a gap in the spin and
charge spectrum. Tc is the temperature at which the pairs Bose condense into
the superconducting state. In fact, this is one of many suggestions for the
origin of the pseudogap phase which exists in the underdoped regime above
Tc.
Experiments sensitive to the pseudogap find a partial suppression of low-energy
spectral weight when decreasing the temperature below T > Tc. Historically
the pseudogap state was first discovered by nuclear magnetic resonance mea-
surements showing that the onset of a decreasing spin-lattice relaxation rate
occurs well above Tc. To date the pseudogap phase is well established by a
large number of experimental probes. In particular, angular resolved photoe-
mission has shown from the position of the leading edge that the gap exhibits
the same dx2−y2-wave symmetry as the superconducting pairing gap[7, 8]. The
pseudogap temperature scale T ∗ falls monotonically with increased doping and
merges with Tc near the top of the superconducting dome. The true origin of
the pseudogap phase remains unknown but there exists many proposals includ-
ing various exotic types of order. The position of the pseudogap state in the
phase diagram shows that it necessarily contains important information of the
electronic state of a doped Mott insulator before it becomes a superconductor.
Therefore, one may hope that identifying the origin of the pseudogap phase
can unlock the mystery of the high-Tc materials. It still remains controver-
sial whether the pseudogap is caused by true long-range order or a precursor
phenomenon as mentioned above. Recent experimental support for the lat-
ter, comes from measurements of the Nernst effect by Ong et al.[9] In the
underdoped region of the phase diagram they find a large Nernst signal which
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persists well above Tc. This is strong evidence that the pseudogap state con-
tains vortices. In later chapters I return to the discussion of the order that
characterize the pseudogap phase and how to identify it experimentally.
The normal state is everything but ”normal”, and has been dubbed more
appropriately ”the strange metal phase”. The conventional BCS theory for
superconductivity in metals rests on the Fermi-liquid foundation which seems
unable to support the electronic structure in the normal state of the cuprates.
A notorious example of the unusual behavior is given by the in-plane resis-
tivity near optimal doping which remains linear in temperature over several
decades of temperature T . This has led to the suggestion of a marginal Fermi
liquid description of the strange metal phase[10, 11]. In this model the elec-
trons scatter off a bosonic spectrum that remain linear in energy up to T after
which it becomes constant. Thus, the only energy scale that enter is the tem-
perature T . This phenomenology has been supported by photoemission data
that shows a linear scattering rate as a function of energy[12, 13]. Further
discussion of the properties in the pseudogap and strange-metal phases can be
found throughout this thesis and in recent reviews[14, 15].

1.2 Electronic models

The microscopic Hamiltonian that correctly describes the physics of the cuprates
is given by ”the theory of everything”

H =
∑

i

p2
i

2me

+
∑

ij

e2

|ri − rj| +
∑

i

P2
i

2M
+

∑

ij

ZiZje
2

|Ri −Rj| +
∑

ij

Zie
2

|Ri − rj| (1.1)

which includes all the Coulomb interactions between all the particles and con-
stitute an immense problem since the number of particles is of order 1023.
Unfortunately, we do not know how to solve this model for many particles
and resort therefore to constructing effective models that capture the essential
physics.
As mentioned above, if we ignore the interactions we would predict a band
metal with a half-filled conduction band since the number of electrons in each
unit cell is odd. The failure of the single-particle band model to describe
the undoped cuprates lies in the on-site electron-electron Coulomb repulsion
U which is much larger than the bandwidth. As a consequence, the charge
fluctuations are strongly suppressed and the material exhibits a Mott gap as
seen for instance in the optical excitation gap of a few eV. In the cuprates,
the charge transfer gap ∆ between the Cu and the O ions is smaller than the
on-site Cu Coulomb interaction U . Thus these materials are correctly char-
acterized as charge-transfer insulators[16]. To describe the low energy physics
Emery[17] and Varma[18] proposed a three band Hubbard model that includes
the hybridization of the copper dx2−y2 and oxygen px and py orbitals and the
Coulomb interaction U on doubly occupied Cu sites.
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However, by studying a CuO4 cluster containing two holes, Zhang and Rice[19]
showed that a hole located at the Cu site hybridizes strongly with a hole lo-
cated on a linear combination of the four surrounding O hole states forming a
singlet and a triplet state. A large energy difference between the singlet and
triplet states allows one to project out the triplets, resulting in a effective low-
energy spin singlet subspace in which the hole at the O site has been replaced
by a spin singlet state centered at the Cu site. In this way the oxygens have
been mapped out of the problem and the added hole is equivalent to remov-
ing one Cu spin 1/2 from the 2D square lattice of Cu spins. The resulting
one-band model proposed was the t− J Hamiltonian

H = −t
∑

〈i,j〉σ
P

(
ĉ†iσ ĉjσ + H.c.

)
P + J

∑

〈i,j〉

(
Si · Sj − n̂in̂j

4

)
, (1.2)

where J = 4t2/U is the exchange interaction between neighboring spins. Here,

Si denotes the spin 1/2 operator, ni = ĉ†i↑ĉi↑+ĉ†i↓ĉi↓ the charge density operator,
and P is the projection operator that excludes double occupancy. At half-
filling this reduces to the Heisenberg model with antiferromagnetic exchange
coupling. Away from half filling the ground state of the t−J model is unknown
in two dimensions.
The t− J model is realized as the large-U limit of the well-known single-band
Hubbard model given by

H = −t
∑

〈i,j〉σ
ĉ†iσ ĉjσ + U

∑

i

n̂i↑n̂i↓. (1.3)

The delocalizing kinetic energy term −t
∑
〈i,j〉σ ĉ†iσ ĉjσ allows for hopping be-

tween nearest-neighbor sites 〈i, j〉 whereas the localizing term U
∑

i n̂i↑n̂i↓ de-

scribes the competing on-site Coulomb repulsion with n̂iσ = ĉ†iσ ĉiσ. The role
of the U interaction is to split the half-filled conduction band into an empty
upper Hubbard band and a filled lower Hubbard band. Since the first electron-
removal state corresponds to the Zhang-Rice singlet band the cuprates are
effectively equivalent to a Mott-Hubbard insulator with the Zhang-Rice band
having the role of the lower Hubbard band. The upper Hubbard band is sep-
arated from the lower band by the charge transfer gap ∆. In this way the
one-band Hubbard model simulates the charge transfer nature of the materi-
als by an effective Hubbard gap.

1.3 A minimal model

In the last section I advocated that the one-band Hubbard model is the minimal
model describing the carriers in the high-Tc materials. Unfortunately this
deceptively simple model still constitutes a problem of immense complexity
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and no exact solutions are known in the general 2D case. Luckily, life becomes
easier when dealing with ordered states where a mean-field description often
suffices. In principle, since the CuO2 planes the high-Tc materials are 2D,
the Mermin-Wagner-Coleman theorem prohibits true long-range order at any
non-zero temperature. The fact that these materials do have a large TNeel at
half filling is caused by the inter-layer exchange coupling. Thus, when dealing
with ordering in the 2D CuO2 planes away from T = 0 one should remember
the quasi-2D-ness of these planes.
In the antiferromagnetic phase the magnetic order parameter is given by

Mi = meiQ·Ri =

{
+m if Ri belongs to sublattice A
−m if Ri belongs to sublattice B

(1.4)

where the bipartite lattice has been divided into two sublattices, A and B,
hosting the spin-↑ and spin-↓ electrons, respectively. As for any magnetic
order, Mi breaks the time-reversal invariance T S = −S. Furthermore, antifer-
romagnetism breaks spin-rotation invariance and translational invariance. The
spin density in Eqn. (1.4) is only invariant under translations of two lattice
constants a. Concomitantly the reciprocal lattice vectors are integral multiples
of 2π/2a = π/a, and the Brillouin zone is halved.

The spin rotation invariance of the Hubbard model becomes manifest if we
rewrite the interaction term n̂i↑n̂i↓ as follows

n̂i↑n̂i↓ = c†i↑ci↑c
†
i↓ci↓ = c†i↑ci↑(1− c†i↓ci↓) = n̂i↑− c†i↑ci↓c

†
i↓ci↑ = n̂i↑− Ŝ+

i Ŝ−i . (1.5)

As usual, the spin 1
2

lattice operator is given by

Ŝi =
1

2

∑

αβ

ĉ†iασαβ ĉiβ, (1.6)

where σ = (σx, σy, σz) denotes the vector consisting to the Pauli matrices.
Similarly we have

n̂i↑n̂i↓ = n̂i↓ − Ŝ−i Ŝ+
i . (1.7)

From the square of Ŝz
i we have

(Ŝz
i )

2 =
1

4
(n̂i↑ − n̂i↓)2 =

1

4
(n̂i↑ + n̂i↓ − 2n̂i↑n̂i↓) (1.8)

since n̂2
iσ = n̂iσ and n̂i↑n̂i↓ = n̂i↓n̂i↑. Combining these three different expres-

sions for n̂i↑n̂i↓ we get

n̂i↑n̂i↓ =
n̂i↑ + n̂i↓

2
− 2

3
Ŝi · Ŝi. (1.9)
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Therefore the on-site one band Hubbard model can be expressed as

H = − ∑

<ij>σ

[
tijc

†
iσcjσ + H.c.

]
− µ

∑

i

n̂i − 2U

3

∑

i

Ŝi · Ŝi +
UN

2
, (1.10)

where N =
∑

i n̂i↑ + n̂i↓. In the following we discard additive constants to the
Hamiltonian since we are not interested in the total energy.
As can be seen explicitly from Eqn. (1.10) the Hubbard model is invariant
under continuous SU(2) spin rotations. Thus if |0〉 denotes the ground state,
by applying the symmetry operation to |0〉, U |0〉, we can transform it into a new
ground state. Since the symmetry is continuous the ground state is infinitely
degenerate. However, the physical system may pick out a unique state among
this infinite manifold and break the symmetry spontaneously by spin ordering
along the, say, z-direction. The remaining symmetry is U(1) corresponding
to spin rotations about the z-axis. In this case there exist excitations (spin
waves) with vanishing excitation energy at the ordering vector. This is an
example of Goldstone’s theorem. The Goldstone mode is the excitation that
tries to push the system to one of the other ground states in the infinite
manifold of ground states. Since these states all have the same energy the
excitation energy for this transition is zero. Thus, the Goldstone mode tries
to sample all ground states and in this sense restore the symmetry. Other
examples of Goldstone modes include phonons in solids occurring due to broken
translational invariance, ferromagnetic spin waves also from broken rotational
invariance in spin space, and acoustic modes in Josephson junction arrays due
to broken phase invariance.
In the more realistic case of the extended Hubbard model the longer ranged
parts of the Coulomb interaction is also included

H = − ∑

<ij>,σ

[
tijc

†
iσcjσ + H.c

]
− µ

∑

i

n̂i − 2U

3

∑

i

Ŝi · Ŝi − V

2

∑

i,j

n̂in̂j (1.11)

where n̂i = n̂i↑ + n̂i↓. Since in the last term i 6= j, this interaction term is
identical under normal ordering

n̂in̂j =
∑

σσ′
c†iσc

†
jσ′cjσ′ciσ. (1.12)

This Hamiltonian remains SU(2) invariant under spin rotations since [Ŝi, V n̂in̂j] =
0. This will be important later when we discuss transverse spin fluctuations
since, as mentioned above, any state that breaks the continuous symmetry sup-
ports massless Goldstone bosons guaranteed by the relevant Ward-Takahashi
identity.

At this junction we need make a serious decision as to which road we what
to follow (many of which lead straight to hell). The hidden road to paradise is
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the one where, with no further assumptions, one finds the d-wave superconduc-
tor. For now we shall be content with the fact that the d-wave superconductor
exists and discuss the interesting physics of this phase and its possible coexis-
tence with spin density wave order. Thus, we are interested in these ordered
phases of Eqn. (1.11). To this end, we assume that V is actually a nearest
neighbor attraction which in the mean-field decoupling leads to a d-wave su-
perconducting state. We will not be deeply concerned with the microscopic
origin of the attraction V . At the mean-field level the model (1.11) is a reduced
effective model similar in methodology to the effective BCS Hamiltonian pro-
posed for conventional superconductors. This being said, it has been shown
by Simon et al.[20] that an effective attraction in the spin singlet channel is
generated as a result of the mapping of the three-band Hubbard model to the
one-band model. Furthermore, Daul et al.[21] argued that the appropriate
model that incorporates the charge transfer nature of the cuprate Mott insu-
lators is in fact the t−U − J model. It was shown that the antiferromagnetic
exchange term strongly enhances the pairing in the dx2−y2-wave channel. This
pairing tendency is exactly what we attempt to capture at the mean-field level
of the attractive nearest neighbor interaction term in Eqn. (1.11).
The advantage of our approach is that it is simple and allows us to study var-
ious physical observable in the mixed state of d-wave superconductivity and
spin density wave order. A similar approach has been taken by Martin et
al.[22] who studied qualitatively the phase diagram of the effective minimal
model. Later, it has been extensively used to obtain the electronic structure
near impurities and vortices in d-wave superconductors on the verge of a spin
density wave instability[23, 24].

In the following I will discuss some aspects of symmetry broken states in
interacting Fermi systems. Therefore, it is convenient to use the tools of path
integrals and Hubbard-Stratonovich transformations. The partition function,
Z = Tr exp(−βH) where β = 1/kT , can be represented using Grassmann
coherent states c, c∗

Z =
∫
D[c∗, c] exp(−S[c, c∗]), (1.13)

with the Euclidean action given by

S =
∫

dτL[c∗, c] =
∫

dτ

(∑

iσ

c∗iσ∂τciσ +H[c∗, c]

)
, (1.14)

where L is the Lagrangian, and τ ∈ [0, β[ is the Wick rotation of the time,
τ = it. The measure is defined as D[c∗, c] = Πi,τi

dc∗i (τi)dci(τi), which in
discrete Matsubara space, ci(τ) = 1

β
ci,n exp(−iωnτ), is D[c∗, c] = Πi,ndc∗i,ndci,n

since the transformation is unitary and hence has Jacobian equal to unity.
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The standard Gaussian integral identities for real bosonic vector fields

∫
Dϕie

− 1
2
ϕiAijϕj+ϕiJi = [det A]−

1
2 e

1
2
JiA

−1
ij Jj , (1.15)

becomes for the single-band Hubbard model

∫
DMie

− 1
2

3
4U

Mi·Mi+Mi·Si = Ce
1
2

4U
3

Si·Si , (1.16)

where C is an unimportant constant and the fermions are hidden in the spin
operator Ŝi = 1

2

∑
αβ ĉ†iασαβ ĉiβ. It should be noted that the normal ordered

interaction that enters the path integral (with Grassmann variables replacing
the operators) is identical to the S · S term except from a constant −UN/2.
The identity Eqn. (1.16) can be easily verified by completing the square on
the left hand side

−1

2

3

4U
Mi ·Mi + Mi · Si = −1

2

3

4U

(
Mi − 4U

3
Si

)2

+
2U

3
S2

i , (1.17)

and shifting the integration variable Mi → Mi + 4U
3
Si.

Likewise for a complex bosonic scalar field we have the identity

∫
D∆D∆∗e−

2
V

∆∗
ijσσ′∆ijσσ′+∆∗

ijσσ′cjσ′ciσ+∆ijσσ′c
∗
iσc∗

jσ′ = Ce
V
2

c∗iσc∗
jσ′cjσ′ciσ , (1.18)

where, again, C is some constant. Again we can convince ourselves of this iden-
tity by completing the square − 2

V
∆∗

ijσσ′∆ijσσ′ + ∆∗
ijσσ′cjσ′ciσ + ∆ijσσ′c

∗
iσc

∗
jσ′ =

− 2
V

(∆∗
ijσσ′ − V

2
c∗iσc

∗
jσ′)(∆ijσσ′ − V

2
cjσ′ciσ) + V

2
c∗iσc

∗
jσ′cjσ′ciσ, shifting the integra-

tion variables ∆ijσσ′ → ∆ijσσ′ +
V
2
cjσ′ciσ and perform the gaussian integral C.

Introducing these Hubbard-Stratonovich transformations at each site allows
the partition function to be written in terms of the new auxiliary fields Mi

and ∆ijσσ′

Z =
∫
DcDc∗DMD∆D∆∗ exp(−Seff), (1.19)

where the effective action is Seff(c∗, c,M, ∆) =
∫

dτ (
∑

iσ c∗iσ∂τciσ + Heff(c∗, c)).
In the effective Hamiltonian the Hubbard-Stratonovich fields Mi and ∆ijσσ′

couple bilinearly to the fermions which can now be thought of as free fermions
moving in a fluctuating background field. This can be seen explicitly from the
form Heff = H0 + Hint + HM,∆, with

H0 = − ∑

<ij>σ

[tijc
∗
iσcjσ + H.c]− µ

∑

i

ni, (1.20)
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and

Hint = −∑

i

Mi · Si −
∑

i,jσσ′

[
∆∗

ijσσ′ciσcjσ′ + ∆ijσσ′c
∗
jσ′c

∗
iσ

]
, (1.21)

and lastly

HM,∆ =
3

8U

∑

i

|Mi|2 +
2

V

∑

i,jσσ′
∆∗

ijσσ′∆ijσσ′ . (1.22)

In these expressions the negative sign in the nearest neighbor interaction
−V

2

∑
i,j n̂in̂j has already been incorporated so that V > 0.

Restricting the fields ∆ijσσ′ to be of the form of singlet pairing

∆ijσσ′ =
∆ij

2
(δσ↑δσ′↓ − δσ↓δσ′↑), (1.23)

Hint and HM,∆ become

Hint = −∑

i

Mi ·Si−
∑

i,j

[
∆∗

ij

2
(ci↑cj↓ − ci↓cj↑) +

∆ij

2

(
c∗j↓c

∗
i↑ − c∗j↑c

∗
i↓

)]
, (1.24)

HM,∆ =
3

8U

∑

i

|Mi|2 +
1

V

∑

i,j

∆∗
ij∆ij. (1.25)

If ∆ij = +(−)∆ when Ri −Rj is the unit vector along the x(y)-axis and zero
otherwise, the last term in Eqn. (1.24) is nothing but the BCS pairing term
with dx2−y2-wave pairing symmetry. This kind to off-site pairing (as opposed
to s-wave on-site pairing) is natural in systems with strong on-site Coulomb
repulsion U .
From the effective Lagrangian density

L = c∗iσ(∂τ − µ)ciσ − [tijc
∗
iσcjσ + H.c]−Mi · Si +

3

8U
|Mi|2

−
[
∆∗

ij

2
(ci↑cj↓ − ci↓cj↑) +

∆ij

2

(
c∗j↓c

∗
i↑ − c∗j↑c

∗
i↓

)]
+

1

V
|∆ij|2, (1.26)

we see directly that the equations of motion (the saddle point approximation)
for the Hubbard-Stratonovich fields ∆ij and Mi are given by

0 =
δSeff

δ∆∗
ij

⇒ ∆ij =
V

2
〈ci↑cj↓ − ci↓cj↑〉, (1.27)

0 =
δSeff

δMi

⇒ Mi =
4U

3
〈Si〉. (1.28)
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Historically the use of two mean-field conditions is not common even though
there certainly are precedents. For example, P.W. Anderson used both a mean-
field condition for the electron density and the BCS pairing field to study the
role of plasmons in restoring the gauge invariance of the BCS ground state and
discovered the Anderson-Higgs mechanism[25].
The equation (1.28) is identical to what we would immediately expect from
the conditions obtained within the conventional Hartree-Fock decoupling. For
example, if we consider only the magnetism, the on-site Hubbard Hamiltonian
given in Eqn. (1.10) can be decoupled within Hartree-Fock by writing Si =
Si − 〈Si〉+ 〈Si〉

S2
i = (Si − 〈Si〉+ 〈Si〉)2 = (Si − 〈Si〉)2 + 〈Si〉2 + 2〈Si〉 · (Si − 〈Si〉), (1.29)

and discarding the fluctuation term, (Si − 〈Si〉)2. The resulting Hartree-Fock
Hamiltonian HHF is bilinear in fermi fields and given by

HHF = − ∑

<ij>σ

[
tijc

†
iσcjσ + H.c

]
−µ

∑

i

ni−4U

3

∑

i

〈Si〉·Si+
2U

3

∑

i

〈Si〉2. (1.30)

As seen by inspection this is equivalent to the theory of Eqn. (1.26) when
〈Si〉 = 3

4U
Mi which is identical to the condition given by Eqn. (1.28).

As is well-known, there is no quantitative justification for the saddle point
approximation of the one band Hubbard model since there is no small expan-
sion parameter. On the other hand, for large spin this semi-classical treatment
becomes more accurate similarly to the usual spin-wave theory of ordered mag-
nets.
From Eqn. (1.27) it is clear that ∆ij is symmetric upon interchanging the sites,
∆ji = ∆ij so that the original field ∆ijσσ′ is antisymmetric upon interchange of
the two Cooper pair electrons. We may use this property to slightly simplify
Hint to yield

Hint = −∑

i

Mi · Si +
∑

<ij>

[
∆∗

ijcj↓ci↑ + ∆ijc
∗
i↑c

∗
j↓

]
. (1.31)

In addition to the hopping term, this expression constitutes the minimal model
to study the electronic structure when the order include both antiferromag-
netism and d-wave superconductivity. We will use it quite extensively in the
following chapters of this thesis.

Since the effective action Seff is quadratic in the fermion Grassmann fields
c∗, c they can be integrated out by use of the identity

∫
D[c∗, c] exp(−c∗Ac) = det A (1.32)
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Equivalently, by shifting the variable c → c − A−1J , where J is an arbitrary
vector, this becomes

∫
D[c∗, c] exp(−c∗Ac + J∗c + c∗J) = det A exp(

∫
J∗A−1J). (1.33)

In Eqn. (1.33), A denotes the matrix that contains the couplings of the Fermi
fields c∗, c to the auxiliary bose fields in addition to the quadratic hopping
terms. The result of this procedure is an effective action for the bose fields Mi

and ∆ij.
Let us introduce the generalized Nambu spinor ψi(τ) by

ψi(τ) = (ci↑(τ), ci↓(τ), c∗i↑(τ), c∗i↓(τ)). (1.34)

In the following we choose the phase of the superconducting gap function such
that ∆ij becomes real. In terms of this 4-spinor the effective action

Seff =
∫

dτ
∑

ijσ

(c∗iσ(∂τ − µ)ciσ − [tijc
∗
iσcjσ + H.c]− µc∗iσciσ −Mi · Si

+
[
∆ijcj↓ci↑ + ∆ijc

∗
i↑c

∗
j↓

]
+

3

8U
|Mi|2 +

1

V
∆2

ij

)
(1.35)

becomes

Seff =
∫

dτ
1

2

∑

ij

ψ∗i (14×4∂τ −H0(tij, µ,Mi, ∆ij))ψj +
∑

i

3

8U
|Mi|2 +

∑

ij

1

V
∆2

ij,

(1.36)
where 14×4 is the 4×4 identity matrix. The matrix, H0(tij, µ,Mi, ∆ij), is given
by

H0 =




(
Mz

i

2
)δi,j + Kij

(
Mx

i −iMy
i

2

)
δij 0 −∆ij(

Mx
i +iMy

i

2

)
δij (−Mz

i

2
)δi,j + Kij ∆ij 0

0 ∆ij (−Mz
i

2
)δi,j −Kij −

(
Mx

i −iMy
i

2

)
δij

−∆ij 0 −
(

Mx
i +iMy

i

2

)
δij (+

Mz
i

2
)δi,j −Kij




,

(1.37)
or in more condense tensor product notation

H0 = −Kij12×2 ⊗ τ z − δi,j(Mi · σ

2
)⊗ τ z −∆ijσ

y ⊗ τ y, (1.38)

where τα denote the Pauli matrices in Nambu space with 12×2 being the 2× 2
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identity matrix and Kij is defined by

Kij = µδi,j +
∑

j

tij. (1.39)

Above, ∆ij couples only to nearest neighbors whereas the sum in the hopping
term,

∑
j tij, in the last expression extends over the sites in some range of site

i parameterized by t, t′, t′′ etc. Note, that ∂τ enters with the same sign in all
entries, i.e. 14×4∂τ , since the lower hole-particle part of the matrix gains both
a minus sign from the anti-commuting Grassmann fields and from a partial
integration.
After integrating out the fermions ψi by use of Eqn. (1.33) the effective action
for the Bose fields can be written in terms of the Fredholm determinant as

Seff =
∫

dτ
∑

i

3

8U
|Mi|2 +

∑

<ij>

1

V
∆2

ij −
1

2
ln Det [14×4∂τ −H0(tij, µ,Mi, ∆ij)] .

(1.40)
We can use the identity (which is easily proven for finite matrices in a repre-
sentation where A is diagonal)

ln DetA = TrlnA, (1.41)

to obtain

Seff =
∫

dτ


∑

i

3

8U
|Mi|2 +

∑

<ij>

1

V
∆2

ij


−1

2
Tr ln [14×4∂τ −H0(tij, µ,Mi, ∆ij)] .

(1.42)
From this expression one can again determine the stable fields within the saddle
point approximation to obtain the conditions given in Eqn. (1.27)-(1.28). The
bosonic action Eqn. (1.42) will be used later on to study the collective modes
given by the fluctuations around various stabilized mean-field states.

1.4 Discussion

A few more words are in order regarding the effective Lagrangian density
obtained in Eqn. (1.26)

L = c∗iσ(∂τ − µ)ciσ − [tijc
∗
iσcjσ + H.c]−Mi · Si +

3

8U
|Mi|2

−
[
∆∗

ijci↑cj↓ + ∆ijc
∗
j↓c

∗
i↑

]
+

1

V
|∆ij|2, (1.43)
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and the corresponding self-consistency equations

0 =
δSeff

δ∆∗
ij

⇒ ∆ij =
V

2
〈ci↑cj↓ − ci↓cj↑〉, (1.44)

0 =
δSeff

δMi

⇒ Mi =
4U

3
〈Si〉. (1.45)

On an N site lattice we will study the Hamiltonian

HHF = − ∑

<ij>σ

[
tijc

†
iσcjσ + H.c

]
− µ

∑

iσ

niσ +
∑

ij

[
∆∗

ijci↑cj↓ + ∆ijc
∗
j↓c

∗
i↑

]

− ∑

i

Mi · Si. (1.46)

This real-space version ofHHF will be used extensively in the following chapters
to study various magnetic inhomogeneities (impurities, vortices and stripes) in
a d-wave superconductor. Of course this kind of mean-field decoupling cannot
be used in the critical regions close to phase transitions, but can be used inside
the ordered phases.
From the phase diagram of the cuprate materials it is natural to consider
models with incipient coexistence of antiferromagnetism and d-wave super-
conductivity. In fact, ever since the discovery of the high-Tc’s it was proposed
that superconducting correlations already exist in the antiferromagnetic Mott
insulator. Thus, there have been several studies of an antiferromagnet with
competing d-wave Cooper pairing. Close to half-filling, any mean-field model
containing both orders fail to superconduct due to the large insulating anti-
ferromagnetic gap. As will be discussed in detail in later chapters, away from
half-filling this is no longer the case. Finally, one may also wonder about the
presence of weak antiferromagnetism ”on top of” a well-established BCS d-
wave superconductor. This will gap the nodal quasi-particles of the d-wave
superconductor and open a full gap in the density of states. As mentioned, we
return to these issues below.
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2 Andreev bound states in d-wave supercon-

ductors

Some of the material in this chapter has been published by the au-
thor and P. Hedeg̊ard in Physical Review B 66, 104515 (2002)[26].

Andreev reflection is a remarkable phenomenon taking place at the bound-
ary between a normal and a superconducting region[27]. It has played a crucial
role in determining the nature of the superconducting pairing symmetry of the
high-Tc compounds. Unlike the conventional s-wave BCS superconductors, the
d-wave pairing state of the high-Tc cuprates has an internal phase of the pair
potential. This phase has important contributions to the electric properties of
tunnelling junctions. This includes the existence of unusual zero-bias conduc-
tance peaks (ZBCP) and fractional flux quanta[28]. Since these effects arise
from the internal sign change of the pairing symmetry they give information
not included in conventional spectroscopic probes which are sensitive only to
the amplitude squared of the gap.
The study of Andreev scattering serves as a first (introductory) application
of the minimal model derived in the last chapter. We will study the simplest
possible geometry of antiferromagnetic and d-wave superconducting order: an
interface. Initially, however, I review briefly the Andreev physics and the ori-
gin of the ZBCP in the case to dx2−y2-wave pairing symmetry.

2.1 Conventional Andreev reflection

The discussion of Andreev physics in conventional s-wave BCS superconductors
begins from the local Bogoliubov-de Gennes equations

(
K ∆
∆∗ −K

) (
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
, (2.1)

where K = − h̄2∇2

2m
− µ and u(r) and v(r) denote the electron and hole compo-

nents of the wavefunction, respectively.
In the normal state ∆ = 0 there exists electrons and holes, described by the
vectors

ψe
N(r) =

(
1
0

)
exp(±ik+ · r) ψh

N(r) =

(
0
1

)
exp(±ik− · r), (2.2)

with k± = kF

√
1± E/µ ≈ kF ± E/h̄vF where kF (vF ) denote the Fermi

wavevector (velocity). Here, we assumed that the Fermi energy is much larger
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than the quasi-particle energy E.
In the bulk superconductor we can solve Eqn. (2.1) with the ansatz ψS(r) =
(u, v)T exp(iq·r), the secular equation restricting the amplitude of the momen-

tum vectors q± = kF

√
1± (

√
E2 −∆2/µ) ≈ kF± ξ

h̄vF
where ξ =

√
E2 −∆2 and

we assume for simplicity that the Fermi vectors are identical in the normal and
superconducting regions. We then have two types of wavefunctions, electron-
like ψe

S(r) and hole-like ψh
S(r), depending on the corresponding solution in the

normal limit ∆ → 0,

ψe
S(r) =

(
u
v

)
exp(±iq+ · r) ψh

S(r) =

(
v
u

)
exp(±iq− · r), (2.3)

where it follows from the Bogoliubov-de Gennes equations (and |u|2 + |v|2 = 1)
that

u = u(E) =

√√√√1 +
√

1−∆2/E2

2
, v = v(E) =

√√√√1−
√

1−∆2/E2

2
. (2.4)

These wavefunctions correspond to the propagating solutions |E| > ∆. How-
ever, there also exists exponentially decaying solutions important at the sur-
faces. By defining ξ = i

√
∆2 − E2 when |E| < ∆ the above expressions also

describe these decaying sub-gap solutions.
Now, imagine the following 1D situation of a normal metal - superconductor
N/S interface positioned at x = 0,

∆(x) =

{
0, x ≤ 0
∆eiχ, x > 0

(2.5)

and an electron incident on the superconductor from the normal metal

ΨN =

(
1
0

)
exp(ik+x) + reh

(
0
1

)
exp(ik−x) + ree

(
1
0

)
exp(−ik+x). (2.6)

As seen from Eqn. (2.6), we have included the possibility that the electron is
reflected as an electron as well as a hole. On the superconductor side we have
transmitted electron-like and hole-like Bogolons

ΨS = tee

(
u

ve−iχ

)
exp(iq+x) + teh

(
v

ue−iχ

)
exp(−iq−x) (2.7)

By matching the wavefunctions and their derivatives at x = 0 it is straight-
forward to obtain the expressions for the reflection ree, reh and transmission
tee, teh amplitudes. In the so-called Andreev approximation, i.e. to lowest
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non-vanishing order in max(∆,E)
µ

, the reflection amplitudes can be written as

reh = e−iχ E −√E2 −∆2

∆
, ree =

E −√E2 −∆2

4µ
. (2.8)

Thus, the Andreev reflection amplitude acquires the phase −χ from ∆. χ
changes sign when considering hole-electron reflection. Therefore, in the An-
dreev approximation we may write for the Andreev reflection amplitudes

reh(he) = e∓iχ ×
{

e−i arccos E
∆ , E ≤ ∆

e−arccosh E
∆ , E > ∆

(2.9)

For sub-gap particles we see that there is total Andreev reflection |reh(he)|2 = 1.
Charge conservation is fulfilled by insertion of a Cooper pair into the supercon-
ducting condensate. The Andreev reflected particle is said to be retro-reflected
since it changes sign on all the components of its momentum.

2.2 Andreev surface bound states and the origin of the
zero-energy state in d-wave superconductors

The possibility of bound states at the surface of materials that exhibit a gap
in the bulk electron spectrum is well known. In particular, at superconducting
surfaces quasi-particles with energies inside the superconducting gap may be
trapped in bound states formed by total reflection against the vacuum surface
and total Andreev retro-reflection against the superconductor. Saint-James
and de Gennes[29] first studied the quasi-particle surface states for the in-
sulator - normal metal - s-wave superconductor (INS) quantum well similar
to the one shown to the left in Fig. 2.1. From the quasi-classical Bohr-
Sommerfeld quantization condition the bound state energy is determined by
equating the total phase accumulated during one cycle to an integer times 2π.
If γ(E) = arccos(E/|∆|), then for the trajectory shown in Fig. 2.1 we have

β(E)− γ(E)− γ(E)− χ + χ = 2nπ, (2.10)

where −γ(E)−χ (−γ(E)+χ) is the contribution from the Andreev reflections
with propagation in the θ (θ) direction. The phase χ and χ changes sign when
considering the time reversed path. The phase contribution from propagation
in the normal region is β(E) = 2L(k+ − k−) + β0, the first term coming
from the ballistic motion and the latter from the normal reflection at the
I/N interface. For the s-wave case, where χ = χ, Eqn. (2.10) reduces to
−2γ(E) + β(E) = 2nπ, which results in the spectral equation

E = ±∆ cos

(
β(E)

2

)
. (2.11)
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The energy of the surface bound states lie inside the bulk gap, but E = 0 is
clearly not a solution. When the ballistic phase 2L(k+− k−) ≈ 4LE/h̄vF cos θ

dominates over β0, Eqn. (2.11) takes the form E = ±∆ cos
(

E
∆

2L
ξ0 cos θ

)
, which

is the dispersion relation found by Saint-James and de Gennes in 1963[29].
Integrating over the angle θ results in the surface density of states displayed
in the top right graph (a) of Fig. 2.1.
Historically, the existence of surface bound states in superconductors with un-
usual pairing symmetry was first studied by Buchholtz and Zweicknagl[30] in
the context of unconventional pairing in the heavy-fermion superconductors.
In the high-Tc literature Hu[31] predicted the existence of zero-energy states
on the surface of d-wave superconductors. The d-wave symmetry of the pairing
potential of the cuprates results in an orientational dependent boundary condi-
tion at surfaces. This is shown by the rotated cloverleaf ∆(θ) = ∆0 cos(2(θ−α))
in Fig. 2.1. As seen, the Andreev reflections against the superconductor can
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Figure 2.1: Left: I/N/S well and the quasi-classical path giving the bound
states at a specular surface to a 2D superconductor with gap symmetry ∆(θ) =
∆0 cos(2(θ−α)) for d-wave and ∆(θ) = ∆0 for s-wave superconductors. Here,
θ is the propagation angle and α denotes the orientation of the crystal axes of
the superconductor compared to the N/S boundary. Right: Density of surface
states at an s-wave (a) and d-wave (b) superconductor surface with a normal
metal over-layer of thickness L = 1.5ξ0. Adapted from Ref. [32].

probe different lobes of the d-wave clover and thereby acquire an extra π phase
shift, χ = χ− π. The Bohr-Sommerfeld condition now becomes1

β(E)− γ(E)− γ(E) + π = 2nπ, (2.12)

1Note that in the case of d-wave pairing symmetry the Bogoliubov-de Gennes equations
become non-local. Therefore, it is non-trivial that the phases entering the Bohr-Sommerfeld
equation (2.12) are identical to the expressions derived for the s-wave case. This, however,
can be shown to be true by separating out the fast 1/kF oscillations of u and v and solving
the d-wave Bogoliubov-de Gennes equations for the slowly varying envelope functions to
lowest order in 1/kF ξ0[33].
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which always have a zero-energy solution since γ(0) = γ(0) = π/2 and β(0) =
0. This is the mid-gap state discovered by Hu[31]. For arbitrary α, the mid-gap
state exists within the angle window π

2
− α < |θ| < π

2
+ α. Hence, for α = ±π

4

(α = 0, π
2
) the mid-gap states exists for all (none) quasi-particle trajectories,

−π
2

< θ < π
2
. When α = π

4
, Eqn. (2.12) becomes

E = ±|∆| sin
(

E

|∆|
2L

ξ0 cos θ

)
, (2.13)

with the corresponding surface density of states shown in the lower right-hand
graph (b) of Fig. 2.1.
The zero-energy state is extremely robust since it originates from the topolog-
ical property of the d-wave pairing gap. Therefore, it exists at any defect that
cause quasi-particle scattering between lobes of different sign of the d-wave
gap. Furthermore, the mid-gap state is degenerate with respect to both spin
and the direction of the quasi-particle momentum parallel to the surface ±ky.
However, as has been discussed extensively in the literature, the mid-gap state
positioned exactly at the Fermi level is actually energetically unstable. By
lifting the degeneracy and inducing a gap at the Fermi level, the system lowers
the energy with only the lower level occupied. Several mechanisms for split-
ting the mid-gap state has been proposed: 1) the pairing symmetry acquires
a subdominant component near the surface region d → d± is, 2) self-induced
Doppler shifts, and 3) surface spin-density wave formation. Note that when
the ±ky degeneracy is split, at low temperature when only the, say, +ky state
is occupied, a net current flows along the surface. This spontaneous current
manifests the broken time reversal symmetry[34].
Experimentally, the ZBCP was observed already in 1990 in the I−V character-
istic of electron tunnelling into thin YBCO films by Geerk et al[35]. However,
its origin in the d-wave pairing was not realized until the seminal studies by
Hu[31] and Kashiwaya[36].
The internal d-wave sign change also has important consequences for the prop-
erties of Josephson junctions involving combinations of d-wave, s-wave or mis-
oriented d-wave superconducting electrodes. If the junction electrodes have
different sign of the order parameter, this is equivalent to adding an extra π
phase shift to the phase difference across the junction. In fact, a whole in-
dustry has evolved around the study of these π-junctions. For further details
about the properties of mid-gap states and π-junctions the reader is referred to
the recent extensive reviews by Löfwander et al.[32] and Kashiwaya et al.[37]
and reference therein.
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2.3 Andreev bound states at the interface of antiferro-
magnets and d-wave superconductors

In this section we set up a simple transfer matrix formalism to study the exis-
tence of bound states at interfaces and in junctions between antiferromagnets
and d-wave superconductors. The well-studied zero energy mode at the {110}
interface between an insulator and a dx2−y2 wave superconductor is spin split
when the insulator is an antiferromagnet. This has as a consequence that any
competing interface induced superconducting order parameter that breaks the
time reversal symmetry needs to exceed a critical value before a charge current
is induced along the interface.

The discovery of the symmetry of the superconducting order parameter has
been one of the most successful studies of the High-Tc materials. Angular
resolved photoemission spectroscopy has revealed the nodes in the gap func-
tion and tunnelling experiments have proven the sign change between adjacent
lobes of the dx2−y2 wave gap[38, 39, 40]. It was first shown by Hu[31] that this
sign change can lead to zero energy Andreev bound states (ZEBS) at the
surface of an insulator and a d-wave superconductor. These Andreev bound
states were later identified with the zero bias conductance peaks observed in
tunnelling experiments. The experiments by Covington et al.[41] indicated,
however, that the surface states were spontaneously split by a minigap. Sev-
eral ideas were proposed for this effect[32]; one of which included the induction
of a time reversal symmetry breaking is component of the order parameter
near the interface[42]. The resulting gap d+ is lowers the condensation energy
by lifting the directional degeneracy of the ZEBS[34]. Later Honerkamp et
al.[43] used a tight-binding model with onsite repulsion and spin dependent
nearest neighbor interaction to self-consistently study the competition between
additional induced orders near the surface of an insulator and a dx2−y2 wave
superconductor.
Motivation for studying close domains of antiferromagnetism and supercon-
ductivity arises from the existence of striped domains in the cuprate mate-
rials. This was further emphasized by recent elastic neutron scattering ex-
periments showing that static antiferromagnetic order is induced in a super-
structure around the vortices in the mixed state of La2−xSrxCuO4[44] and
La2CuO4+δ[45]. These experiments are consistent with a static environment
of alternating antiferromagnetic and d-wave superconducting stripes around
the vortex cores. Thus the electronic states in such an environment is an im-
portant question.
Inspired by these experiments we set up a simple transfer matrix method to
identify bound states on interfaces and junctions between antiferromagnets
and d-wave superconductors. In particular we discuss a single interface sepa-
rating antiferromagnetic and d-wave superconducting half-planes (AF/dSC),
and point out a few differences from the conventional non-magnetic insulator-
d-wave superconductor interface (I/dSC). Note that the antiferromagnetism
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forces us to study a lattice model which is contrary to the usual discussion of
Andreev interference in terms of semi-classical continuum models[33].
A simple lattice model that includes both d-wave superconductivity and anti-
ferromagnetism is given by the following Hamiltonian

H = −t
∑

〈n,m〉σ
c†nσcmσ + H.c.− µ

∑
nσ

c†nσcnσ (2.14)

+
∑

〈n,m〉
∆n,mc†n↑c

†
m↓ + H.c. (2.15)

+
∑
n

Mn

(
c†n↑cn↑ − c†n↓cn↓

)
(2.16)

where 〈n,m〉 denotes nearest neighbors. Mn and ∆n,m are the spatially de-
pendent magnetic and superconducting order parameters. This Hamiltonian
is quadratic and can be diagonalized by a Bogoliubov-de Gennes (BdG) trans-
formation

γ†σ =
∑
n

uσ(n)c†nσ + σvσ(n)cn−σ. (2.17)

with σ equal to +1 (-1) for spin up (down). We use the notational convention
that the spin indices on uσ and vσ follow that on the Bogoliubov operators γ†σ.
In the case of a dx2−y2-wave superconductor there are two qualitatively differ-
ent orientations of the interface; the {100} and {110} directions corresponding
to a vertical and diagonal stripe respectively. Both cases are studied below
with the x-axis (y-axis) chosen perpendicular (parallel) to the interface which
is placed at x = 0. The lattice constant is set to unity. Assuming translational
invariance along the y-direction the AF/dSC interface reduces to a one dimen-
sional problem. For the {100} interface the resulting Bogoliubov-de Gennes
equations have the form

εσuqσ (x) = −t (uqσ (x + 1) + uqσ (x− 1) + 2 cos(q)uqσ (x))− µuqσ (x)

+ σMxuq+Qσ (x) +
(
∆d

x+1,x

)
vqσ (x + 1) +

(
∆d

x−1,x

)
vqσ (x− 1)

+ 2 cos(q)
(
−∆d

x

)
vqσ (x) (2.18)

εσvqσ (x) = t (vqσ (x + 1) + vqσ (x− 1) + 2 cos(q)vqσ (x)) + µvqσ (x)

+ σMxvq+Qσ (x) +
(
∆∗d

x+1,x

)
uqσ (x + 1) +

(
∆∗d

x−1,x

)
uqσ (x− 1)

+ 2 cos(q)
(
−∆∗d

x

)
uqσ (x) (2.19)
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after Fourier transforming along the y direction. The corresponding equations
for the Fourier components uq+Qσ and vq+Qσ are obtained by simply performing
the substitution q → q + Q. These BdG equations are diagonal in the spin
index with the only difference between spin up and down being the sign of the
magnetic term.
A simple way to study bound states at the interface is in terms of the transfer
matrix method[46]. Thus we introduce a (q, ε)-dependent matrix T (x + 1, x)
defined by

Ψ (x + 1) = T (x + 1, x) Ψ (x) . (2.20)

which transfers the spinor Ψ from site x to site x+1. For a model with nearest
neighbor coupling Ψ takes the explicit form Ψ (x) = (ψ (x) , ψ (x− 1)) where

ψ (x) = (uqσ (x) , vqσ (x) , uq+Qσ (x) , vq+Qσ (x)) . (2.21)

The associated 8× 8 transfer matrix has the general form

T (x + 1, x) =

(
A B
1 0

)
(2.22)

where A (B) denotes the 4×4 coefficient-matrix connecting ψ (x + 1) and ψ (x)
(ψ (x− 1)) determined from the BdG equations (2.18-2.19). In the simplest
case of a sharp interface we have the following spatial dependence of Mx and
∆x

Mx = M (−1)x for x ≤ 0 (2.23)

∆x = ∆d for x > 0 (2.24)

Thus there are effectively three different transfer matrices; one in the bulk
magnetic region TM , one in the bulk superconducting region TSC and one
associated with transfer through the interface TI . By diagonalizing TM and
TSC there exists decaying, growing or propagating eigenstates depending on
whether the eigenvalues are less, larger or equal to one, respectively. Here, de-
caying and growing are referred to propagation along the x-axis for increasing
x. If PETM denotes the matrix obtained after propagating the eigenvectors of
the bulk magnetic transfer matrix through the interface we introduce a matrix
α given by

PETM = ETSC .α (2.25)

where ETSC is the matrix containing the eigenvectors of the bulk supercon-
ducting region as column vectors. The dot indicates matrix multiplication.
Now, let Sm

g and Ssc
g denote the subspace of growing eigenstates of PETM

and ETSC respectively, and consider the following linear combination of the
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Figure 2.2: {100} interface between an antiferromagnet and a d-wave super-
conductor: a) Determinant of αr as a function of energy ε for q = 0.1. There is
a de Gennes/Saint-James bound state close to the superconducting gap edge
which is located at ε = 0.42t for q = 0.1. As seen in b), their dispersion has
the expected downward cosine form until it merges with the continuum.

growing states of PETM

∑

i∈Sm
g

βi|PETM i > =
∑

i∈Sm
g

∑

j∈Ssc
g

βiαji|ETSCj > (2.26)

=
∑

j∈Ssc
g


 ∑

i∈Sm
g

αjiβi


 |ETSCj >

From equation (2.26) it is evident that to have a bound state at the interface
the vector β must belong to the null space of the reduced matrix αr, which is
the Ssc

g ×Sm
g upper left part of the original matrix α since the matrices PETM

and ETSC are organized to have the eigenstates with the largest eigenvalues
as column vectors to the left. In the case that the two subspaces Ssc

g and Sm
g

have the same dimension a bound state at the interface is characterized by the
vanishing of the determinant of αr

Bound states: det (αr) = 0. (2.27)

Plots of the wavefunctions with values of (q, ε) that satisfy Eqn. (2.2) verifies
that these states indeed are bound to the interface (not shown). The following
explicit values of the input parameters are chosen: t = 1, ∆d = 0.14, M = 2.0
and µ = −0.99 (for simplicity we ignore next-nearest neighbor coupling). Fig.
2.2a shows the determinant plotted as a function of energy for the {100} in-
terface. There are bound states close to the superconducting gap edge that
disperses downward in a cosine form (Fig. 2.2b). These are the well-known
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de Gennes/Saint-James states2 existing on the surface of an insulator and a
superconductor[29]. These sub-gap states are bound to the interface and dis-
appear when M → 0.
The induction of additional gap symmetries, extended s-wave or p-wave, near
the {100} interface of a d-wave superconductor and an antiferromagnet has
been studied self-consistently by Kuboki[47]. These local gap perturbations
will slightly modify the graphs in Figure 1. There is no spin splitting of the
dGSJ mode in this geometry.
We turn now to the more interesting configuration of a {110} interface. Al-
lowing for a possible interface induced sub-gap order with extended s-wave
symmetry the Bogoliubov-de Gennes equations have the form

εσuqσ (x) = −2t cos(p) (uqσ (x + 1) + uqσ (x− 1))− µuqσ (x) + σMxuqσ (x)

− 2i sin(q)
(
∆d

x+1,xvqσ (x + 1)−∆d
xvqσ (x− 1)

)

+ 2i cos(q)
(
∆s

x+1,xvqσ (x + 1) + ∆s
xvqσ (x− 1)

)
(2.28)

εσvqσ (x) = 2t cos(p) (vqσ (x + 1) + vqσ (x− 1)) + µvqσ (x) + σMxvqσ (x)

− 2i sin(q)
(
∆∗d

x+1,xuqσ (x + 1)−∆∗d
x uqσ (x− 1)

)

− 2i cos(q)
(
∆∗s

x+1,xuqσ (x + 1) + ∆∗s
x uqσ (x− 1)

)
(2.29)

These equations are diagonal in the Fourier component q obtained after Fourier
transforming parallel to the {110} interface since there is no staggering of the
moments along a diagonal line in a square antiferromagnetic lattice. In Fig.
2.3 we plot again the determinant of the reduced matrix αr as a function of
energy ε when ∆s = 0. As seen the spin degeneracy of the ZEBS (blue curve)
is lifted at a {110} AF/dSC interface. As opposed to the usual dGSJ states in
Fig. 2.2, this splitting is also caused by the fact that a {110} interface belongs
to only one sublattice whereas the {100} interface studied above contains the
same amount of spin up and down sites.
The splitting of the ZEBS by ∆s-mixing in the usual situation of a I/dSC

interface has been extensively studied in the literature[42, 34, 43]. It is also
well-known that a magnetic field further splits the ZEBS[41]. The above spin
splitting at AF/dSC interfaces is similar to this magnetic field effect in the
sense that the magnetic interface effectively acts as a local magnetic field. A
similar effect caused by a correlation induced magnetization near the interface

2The dGSJ states are usually thought of as existing in a narrow normal region (within
the superconducting coherence length ξ) from the surface. However, it is known that these
states survive in the limit ξ → 0. See also Ref. [32] for a pedagogical discussion of dGSJ
states.



2. Andreev bound states in d-wave superconductors 25

-0.04 -0.02 0.02 0.04
e

0.5

1

1.5

2

2.5

Det

Figure 2.3: Determinant of αr versus the energy ε for the {110} AF/dSC
interface. Again this is plotted inside the superconducting gap and with q =
0.1. The blue curve is the usual case of an I/dSC interface which clearly
contains a ZEBS (the insulator state is obtained by performing the substitution
Mn → −Mn for the hole part of the BdG equations only). The red and green
curves show the spin splitting of the ZEBS for this particular value of q.

in the case of a I/dSC surface was discussed by Honerkamp et al.[43] This
“Zeeman” effect is also directly related to the split zero energy Andreev mode
observed in the center of vortex cores of underdoped cuprates where local an-
tiferromagnetism has been shown to exist[49, 50, 51, 52, 53, 54].

To the best of our knowledge there has been no self-consistent calculation
investigating any {110} AF/dSC interface induced subdominant order param-
eters. However, we know from the study of I/dSC surfaces[42, 48] that the
strong pair breaking effects of a {110} geometry, as opposed to a {100} sur-
face, tends to stabilize the subdominant s-wave component. Thus, even though
there is no Fermi surface instability begging for removal of the ZEBS from the
Fermi level in the case of a AF/dSC {110} interface, one should still consider
the effect of an additional local superconducting order parameter is competing
with the splitting caused by the magnetism. The consequences of this compe-
tition for the ZEBS are discussed in Fig. 2.4.
The induction of a surface current is a well-known consequence of the time
reversal symmetry broken state of I/dSC interfaces[42, 34]. However, for the
AF/dSC interface with a locally induced d ± is order parameter there is a
critical value of ∆s

c before a current runs along the interface3. In Fig. 2.4a
we show the situation when the induced ∆s has exceeded this critical value.
Fig. 2.4b is a schematic representation of the splitting of the original ZEBS
with the first sketch corresponding to the parameters from Fig. 2.3 and the
last sketch to those from Fig 2.4a. We stress that only a self-consistent model
calculation can determine the magnitude of the directional splitting caused by
is compared to the spin splitting caused by the antiferromagnetism, and hence

3Here we assume the large effect is the spin splitting since M gives rise to the Hubbard
gap in the bulk antiferromagnet, and ∆s is an extra perturbation. In the opposite case it
would take a critical magnetization Mc to prevent the interface current induced by ∆s.
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Figure 2.4: a) Same as in Fig. 2.3, but with an induced extended s-wave gap
function near the interface, i.e. d → d + is. For clarity we do not show the
original ZEBS (blue curve from Fig. 2.3). b) Schematic representation of the
splitting of the original zero energy Andreev bound state (blue dashed curve):
1) The antiferromagnetic interface breaks the spin degeneracy, as shown in
Fig. 2.3. 2) Induction of a possible sub-dominant s-wave gap parameter ∆s

further splits the spin up/down states by breaking the directional degeneracy.
3) Only when ∆s exceeds a critical value is an interface current induced. In
this last figure, which corresponds to the situation from a), ∆s is equal to ∆d

on the interface and decreases linearly to zero within 20 sites of the interface.

the relevancy of the interface current.
In conclusion we have set up a simple method so determine the existence
of bound states at the interfaces of d-wave superconductors and antiferromag-
nets. In particular we studied the energetics of the notorious zero energy mode
bound to {110} I/dSC interfaces first discovered by Hu[31]. This state is al-
ways spin split when the insulator is an antiferromagnet and is analogous to
the split states found around the magnetic vortex cores of YBCO and BSCCO
crystals. In the case of an array of junctions corresponding to a periodic do-
main of vertical or diagonal stripes these states will hybridize and eventually
form a band. A current along the interface exists only when the effect of a
competing, interface induced is component exceeds the spin splitting.
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3 Impurities in a superconductor

Some of the material in this chapter has been published by the au-
thor and P. Hedeg̊ard in Physical Review B 67, 8127 (2003)[55].

During the last decade the technique of scanning tunnelling microscopy
(STM) has been tremendously improved. Examples of state of the art STM
measurements include the recent studies of quantum corrals and quantum mi-
rages built atom by atom on metallic surfaces and studied with atomic reso-
lution in space and better than one meV resolution in energy[56].
The study of inhomogeneities and disorder in general and single impurities
in particular in high-Tc materials is a subject of great controversy and is still
largely unsettled. Even the physics governing a single nonmagnetic impurity in
the superconducting phase is unresolved. The main reason for the interest in
impurities is that they act as probes of the underlying electronic structure. For
instance, a d-wave superconductor displays clear characteristics in the vicin-
ity of e.g. a nonmagnetic impurity. Indeed, as shown below, this was one of
the cornerstones in proving that the superconducting state has d-wave pairing
symmetry.
The controversy is mainly caused by a bias toward the type of order that ’pops
up’ when an impurity locally destroys the superconductivity. This is also re-
lated to the question of how to deal theoretically with the impurities in the
first place, e.g. is a conventional scattering potential sufficient or are there
strong correlations between the impurity states and the surrounding electrons
that need be taken into account?
After a brief survey of the current experimental status, the following sections
deal with this question. We will see that by performing scanning tunnelling
experiments in the proximity of several impurities, it is possible to resolve this
issue.

3.1 Experimental STM measurements around single im-
purities

According to Fermi’s golden rule, the current I at position i and STM bias
voltage V is (see e.g. Tersoff and Hamann[57])

I(i) =
2πe

h̄

∑

i,ν

|Mt,ν(i)|2f(εt)(1− f(εν))δ(εt − εν + eV ) (3.1)

where e is the electron charge, t and ν denote the tip and surface states respec-
tively, f is the Fermi function, and Mt,ν(i) is the tunnelling matrix element
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from the tip state t to the surface state ν at site i. Thus, the tunnelling current
is simply related to the square of M and the probability of an occupied tip
state and an empty surface state. As usual, the delta function guarantees en-
ergy conservation. Treating the tip as a point source[57], |Mt,ν(i)|2 ∝ |Ψν(i)|2,
where Ψν(i) denotes the eigenfunctions of the surface. Now, using the relation∫

dωδ(εt+eV −ω)δ(ω−εν) = δ(εt−εν +eV ) we can write (at low temperature)

I(i) ∝
∫ eV

0

∑
ν

dε|Ψν(i)|2δ(ε− εν) =
∫ eV

0
dεN(i, ε). (3.2)

Here, we assumed a constant density of states for the tip (and pulled it out of
the integral) and defined the local density of states (LDOS) N(i, ε)

N(i, ε) =
∑
ν

|Ψν(i)|2δ(ε− εν). (3.3)

Thus, the differential tunnelling conductance dI/dV (i, ε) measured at site i is
directly proportional to the LDOS

dI

dV
(i, ε) ∝ N(i, ε) (3.4)

It is this equation that allows us to compare the LDOS calculated within
scattering theory to the STM measurements. In a spectroscopic STM mea-
surement the tip-surface distance is fixed and the energy dependence of the
LDOS is measured by sweeping the bias voltage. This type of measurement
can be used to reveal resonance states near impurity sites.
Below, I discuss briefly some important STM experiments performed near sin-
gle impurities in the superconducting phase of BSCCO. From the history of
superconductivity we know the importance of tunnelling experiments. Indeed
Giaever[58] found the first direct evidence of the BCS pairing gap ∆(T ) in the
superconducting density of states by measuring the minimum energy required
to insert an electron into a superconductor by a tunnelling process.

3.1.1 Nonmagnetic impurities in the unitary limit

The first atomic scale cryostatic STM measurements around nonmagnetic (pre-
sumably Au) impurities on the surface of overdoped Bi2Sr2CaCu2O8 single
crystals were performed by Yazdani et al.[59] and by Hudson et al.[60] In the
superconducting state, it was found that nonmagnetic impurities create lo-
calized low-energy states as evidenced by strong tunnelling peaks near zero
bias, i.e. in the middle of the superconducting gap. The existence of impurity
(virtual) bound states around nonmagnetic defects is in strong contrast to the
conventional s-wave superconductors in which similar bound states are only
created around magnetic impurities. This, of course, is closely related to An-
derson’s theorem concerning the superconductor’s indifference to nonmagnetic
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impurities. On the other hand, since one of the assumptions of Anderson’s
theorem is that the momentum dependence of the gap function is weak, it
breaks down in anisotropic superconductors.
For conventional superconductors such as Nb or Pb, the presence of small con-
centrations of time-reversal symmetry breaking magnetic impurities locally de-
stroy the superconductivity. Similar to the effect of a magnetic field the local
magnetic moments act as pair breakers by spin-flip scattering. This strongly
distinct behavior between magnetic and nonmagnetic impurities in s-wave BCS
superconductors has also been verified by atomic scale STM experiments[61].
More recent and higher spatially resolved tunnelling spectroscopy around well-
identified nonmagnetic impurities was performed by Pan et al.[62] By swapping
zinc atoms for copper in optimally doped BSCCO, localizing the zinc impuri-
ties, and performing STM scans resulted in the data displayed in Fig. 3.1. In
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Figure 3.1: Differential tunnelling conductance versus sample bias taken at
two different locations on the Zn-BSCCO crystal. Solid (open) bullets corre-
spond to STM tip away from (right on top of) the Zn impurity. Clearly, the
impurity induces a low-energy state and strongly suppress the coherence peaks
indicated by the arrows. Adapted from Ref. [62]

the bulk superconductor the d-wave gap and the accociated coherence peaks
are clearly seen. But at the zinc site there is a strong scattering resonance
at low energy, Ω ≈ −2.0meV, (as measured from the Fermi level) and the
coherence peaks are strongly suppressed, indicating a local destruction of the
superconductivity. Thus the main conclusions are identical to those by Yaz-
dani et al.[59]
The characteristic spatial feature of the localized state was found by Pan et al.
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to be cross shaped, rotated 45 degrees compared to the Cu-O bonds, which is a
very strong indication of a d-wave condensate. Colloquially, the quasi-particles
can be said to escape from the scattering site along the nodal direction where
the superconducting gap vanishes. In fact, as will be shown below, the char-
acteristics of the measured state are expected within a potential scattering
scenario of nonmagnetic impurities in d-wave superconductors.
A technical detail which may be of importance in understanding the measured
LDOS is related to a interlayer filtering of the STM signal. The spatial cross
shape of the resonance state as seen by Pan et al.[62] seems to be superimposed
on another cross aligned along the Cu-O bond directions. When the BSCCO
crystals are cleaved, the top surface is the BiO layer, the next a SrO2 layer, and
only the third layer is the CuO2 plane. The two topmost nonconducting layers
may ”filter” the STM signal and modify both the energetics and the spatial
structure of that expected around an impurity in a clean superconductor. The
filtering effect arises from quantum interference between several distinct paths
from the impurity to the STM tip. This effect was first pointed out by Zhu et
al.[63] and Martin et al.[64] The tunnelling may happen either directly between
the tip and the 3dx2−y2 wave functions in the CuO2 planes or indirectly through
excited states from overlapping intermediate orbitals in the SrO2 and BiO lay-
ers. It can be argued that the typical distance of 10 Å in a STM experiment
between the probing tip and the CuO2 planes strongly reduces the direct tun-
nelling signal[64]. On the other hand, indirect tunnelling may happen through
the strongly overlapping 6pz Bi orbital and the 2pz and 3s orbitals of the apical
oxygen. The latter overlaps with the 4s Cu orbitals which extend out of the
CuO2 planes (as opposed to 3dx2−y2). Since the 4s Cu orbital is orthogonal
to the on-site 3dx2−y2 it follows that when keeping the STM tip right above a
surface Bi atom it does not probe the Cu ion two layers directly beneath it.
However, since, in the CuO2 plane, the Cu 4s orbital does couple to the four
neighboring Cu 3dx2−y2 orbitals the resulting tunnelling amplitude at site ix, iy
is proportional to the norm square of Ψix+1,iy + Ψix−1,iy − Ψix,iy+1 − Ψix,iy−1,
where Ψix,iy is the impurity state wave function at site ix, iy. Thus, in con-
clusion, the tunnelling amplitude right above an impurity does not probe its
3dx2−y2 orbitals but rather a linear combination of its four nearest Cu neigh-
bors. This path of interlayer tunnelling through overlapping orbitals is similar
to the early proposed interlayer tunnelling mechanism as the origin of the
d-wave superconductivity[65].

3.1.2 Magnetic impurities in the unitary limit

In contrast to the strong modifications caused by Zn, magnetic Ni atoms in-
serted into a d-wave superconductor has very little effect on the local envi-
ronment. This was initially taken as evidence for a magnetic mechanism of
high-Tc superconductivity[66].
The first atomically resolved STM measurements around Ni atoms substituting
Cu in the CuO2 planes of optimally doped BSCCO were obtained by Hudson et
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al.[67] By the obtained real-space LDOS maps it was found that the particle-
like (positive sample bias) and hole-like (negative sample bias) parts of the
impurity state are rotated 45 degrees with respect to each other. This means
that the particle-like LDOS peaks where the hole-like LDOS is low and vice
versa.

The energy dependence of the LDOS is shown in Fig. 3.2 at four loca-
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Figure 3.2: a) Differential tunnelling conductance versus sample bias at the
Ni position (top), the two nearest neighbors (middle scans), and 30 Å away
from the impurity. The two resonance peaks at eV = ±Ω1 and eV = ±Ω2 are
clearly identified. b) LDOS averaged around the impurity site. Adapted from
Ref. [67]

tions near the Ni site: above the Ni atom (top image), above the nearest Cu
neighbor, above the second nearest Cu neighbor, and at a distance 30 Å away
from the impurity site. Clearly, the two particle-like impurity resonances at
Ω ≈ 9.2, 18.6meV at the Ni site become hole-like at the nearest neighbor and
again particle-like at the second nearest neighbor, a pattern that is in agree-
ment with the overall real-space scattering structure mentioned above. The
coherence peaks are not modified when approaching the impurity site, indicat-
ing that the superconductivity is left intact by a magnetic impurity moment.
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3.1.3 Impurities in the weak limit

As clarified below, the measured LDOS around single impurities can be thought
of as arising from strong potential scattering sites. Recently, there has also
been considerable discussion of experiments probing the LDOS around weak
impurities in the superconducting state of BSCCO. The technique is dubbed
Fourier transform scanning tunnelling spectroscopy.
From such scattering sites (whose precise identity remain unknown) elastic
scattering of quasi-particles mixes eigenstates with different wave vectors but
on the same contour of constant energy and leads to characteristic interference
patterns around the impurities. In this way the impurities cause rippling pat-
terns of the electron waves similar to how pebbles cause ripples in a pond[68].
By Fourier transforming measured real-space LDOS maps containing a large
number of impurity sites it is possible to map out the dispersion of the eigen-
states of the homogeneous system. Indeed, this technique has been utilized to
map out the Fermi surface for several semiconductor materials[69, 70].
For a d-wave superconductor with the normal state Fermi surface shown by
the dashed lines in Fig. 3.3, the contours of constant energy below the max-
imum gap value evolve from a single point at zero energy to the character-
istic banana-shaped closed contours. Since the tips (where |dE(k)/dk|−1 is

Figure 3.3: Left: a) Evolution of the banana-shaped contours of constant
energy with increasing energy, and b) the expected dominating wavevectors of
quasi-particle interference. Right: Dispersion of the interference peaks along
the A) (π, 0) and B) (π, π) direction. Note that the peak disperse to A) lower
and B) larger wavevectors, respectively. This agrees well with the expected
behavior form the Fermi surface shown to the right.Adapted from Ref. [71, 72]

largest) contribute the most to the quasi-particle density of states, we expect
the Fourier transformed spatial LDOS maps to be dominated by peaks at the
wave vectors q1...7 shown in the lower left part of Fig. 3.3. This is because
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a quasi-particle near one tip has a large probability of being scattered to an-
other tip in an elastic scattering event, the scattering vector being given by
kfinal − kinitail = q1...7[73].
For the BSCCO systems this type of experiment was first performed by Hoff-
man et al.[71] and later by McElroy et al.[72]. Some results are shown on the
right hand side of Fig. 3.3, which displays the Fourier amplitude at various en-
ergies as a function of wave vector along the (π, 0) (A) and (π, π) (B) direction.
The dispersive peaks can be identified with the q1 (A) and q7 (B) scattering
vectors, respectively. As shown by McElroy et al.[72] dispersions corresponding
to the other q1-vectors can also be identified even though some are suppressed
in intensity due to destructive effects caused by coherence factors[74]. The
doping dependence (not shown) also agrees with that expected from a shrink-
ing Fermi surface and agrees quantitatively with ARPES measurements (which
probes only the occupied states) on the same materials.
These experiments are important because they seem to indicate that the su-
perconducting state is very well described by a homogeneous d-wave supercon-
ductor with the expected Bogoliubov excitations. If other order parameters
were lurking near by (in energy) one might expect them to be revealed when
the superconducting phase is perturbed around the impurities. Indeed, as dis-
cussed later in this thesis there is strong experimental evidence for spin density
wave (stripe) formation near vortex cores. Recent elastic neutron scattering
measurements indicate that similar pinned stripe order emerges around non-
magnetic impurities. The spin order is oriented along the crystalline directions
of CuO2 planes. In the STM experiments such local order should display a
nondispersive peak when displayed similar to the right of Fig. 3.3. In fact, a
closer look at the lower right graph of Fig. 3.3 does show some evidence for
a nondispersive peak around |qA|/2π ≈ 0.25 which matches the periodicity
of eight lattice constants seen in the neutron scattering data. More exper-
imental evidence for pinned stripe order proximate to the impurity centers
have come from Howald et al.[75] and has been discussed in detail by Bindloss
et al.[76]. At present this issue remains unresolved, but certainly the quasi-
particle scattering interference dominates the low-energy Fourier images for
BSCCO around optimal doping. It would be very interesting to perform simi-
lar STM experiments on LSCO crystals which are available at all doping levels
and known to exhibit stripe order in the underdoped regime.
The discussion above was for energies below the maximum gap, ω < ∆0. At
ω ∼ ∆0 the STM patterns changes significantly to reveal two non-mixing dis-
tinct regimes. It has been speculated that these represent two electronic states
of matter constituting the ”true” nature of the quantum liquid governing the
physics of the high-Tc materials[72]. In fact, recent STM measurements by Ver-
shinin et al.[77] and McElroy et al.[78] strongly support the notion that in the
underdoped regime, the electronic structure is dominated by inhomogeneous
pseudogap islands which in turn are characterized by charge checkerboard or-
der with a periodicity close to 4a.
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3.2 One impurity in a s-wave superconductor

The study of low-energy impurity-induced states in superconductors was ini-
tiated by the work of Yu[79] and Shiba[80] on magnetic impurities in s-wave
superconductors. In this case, it is well known that increasing the impurity
concentration increases the number of bound states, deceases the gap, and
leads first to gapless superconductivity and finally to the destruction of super-
conductivity (Abrikosov-Gorkov theory[81]).
In the following, we ignore the quantum mechanical nature of the impurity
spin. This classical limit of the spin is obtained by, J → ∞ and S → 0,
whereas JS → Vs. The probability of spin-flip scattering is proportional to
J , not the spin S. Therefore, in this limit, the impurity potential is spin de-
pendent but does not flip the spin of the quasi-particles. Below, when dealing
with magnetic impurities, I always choose the spin quantization axis of the
superconducting electrons to be parallel to the impurity spin. This renders
the impurity problem formally equivalent to that of a perturbation caused by
a local magnetic field.
To introduce method and notation let us consider in more detail the case of a
single magnetic impurity in a s-wave superconductor. The BCS Hamiltonian
is given by

H0 =
∑

k,σ

ξ(k)ĉ†kσ ĉkσ +
∑

k

(
∆(k)ĉ†k↑ĉ

†
−k↓ + H.c.

)
, (3.5)

where ξ(k) = ε(k) − µ and for s-wave pairing, ∆(k) = ∆. In terms of the

Nambu spinor ψ̂†k = (ĉ†k↑, ĉ−k↓), the corresponding Nambu Greens function

G(0)(k, ωn) = − ∫
dτdr〈Tτ ψ̂(0, 0)ψ̂†(r, τ)〉 exp(i(k · r− ωnτ)) is given by

G(0)(k, ωn) =
iωnτ0 + ξ(k)τ3 + ∆τ1

(iωn)2 − ξ(k)2 −∆2
, (3.6)

where τ = (τ0, τ1, τ2, τ3) is a vector containing the 2×2 identity matrix (τ0) and
the three Pauli matrices (τ1, τ2, τ3). The perturbation caused by a magnetic
impurity moment oriented along the z-axis and positioned at the origin is
modelled by

Himp = Vm

(
ĉ†0↑ĉ0↑ − ĉ†0↓ĉ0↓

)
= Vm

∑

k,k′

(
ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓

)
, (3.7)

Vm determining the strength of this magnetic delta-function potential. Since
the impurity spin S is coupled to the surrounding electron spin density through
the exchange coupling J , Vm = JS. In Nambu space the Hamiltonian becomes

Himp = Vmψ̂†0τ0ψ̂0 = Vm

∑

k,k′
ψ̂†kτ0ψ̂k′ . (3.8)
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The full Greens function for this system is, of course, determined by the total
Hamiltonian, H = H0 + Himp. Thus, if we for the moment let a, b, c denote
arbitrary quantum numbers, the equations of motion for the two Greens func-
tions G(0)(a, b) = −〈Tτ ψ̂(a)ψ̂†(b)〉0 and G(a, b) = −〈Tτ ψ̂(a)ψ̂†(b)〉 are given
by

[−∂τa −H0(a)]G(0)(a, b) = δa,b (3.9)

[−∂τa −H(a)]G(a, b) = δa,b (3.10)

from which we see that

[−∂τa −H(a)]G(a, b) = [−∂τa −H(a) + Himp(a)]G(0)(a, b) (3.11)

= [−∂τa −H(a)]G(0)(a, b) + Himp(a)G(0)(a, b)

= [−∂τa −H(a)]G(0)(a, b) +
∑

c

δa,cHimp(c)G(0)(c, b).

Acting in the left by the matrix [−∂τa −H(a)]−1 we get the Dyson integral
equation for the full Greens function G(a, b)

G(a, b) = G(0)(a, b) +
∑

c

G(a, c)Himp(c)G(0)(c, b). (3.12)

Now, if we let the indices above denote both Nambu space (which are not
written explicitly, i.e. G and Himp are 2 × 2 matrices like in Eqn. (3.6) and
(3.24)) and sites on a real space lattice, we obtain in the case of a single
impurity at the origin

G(i, j) = G(0)(i− j) + G(i, 0)Himp(0)G(0)(0− j). (3.13)

Then since
G(i, 0) = G(0)(i) + G(i, 0)Himp(0)G(0)(0), (3.14)

we have
G(i, 0) = G(0)(i)

[
1−Himp(0)G(0)(0)

]−1
(3.15)

and therefore the exact solution to Eqn. (3.13) is

G(i, j) = G(0)(i− j) + G(0)(i)
[
1−Himp(0)G(0)(0)

]−1
Himp(0)G(0)(−j), (3.16)

which contains only the unperturbed Greens function G(0) on the right hand
side. Note that only G(0) is translational invariant. In terms of the T-matrix
T

T (0) =
[
1−Himp(0)G(0)(0)

]−1
Himp(0). (3.17)
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the expression for the full Greens function is given by

G(i, j) = G(0)(i− j) + G(0)(i)T (0)G(0)(−j). (3.18)

From Eqn. (3.18) it is clear that the particle can propagate from site j to site
i either directly or scatter off the impurity site at the origin. It is also clear
that the study of single impurities becomes the study of the properties of the
corresponding T-matrix. In order to get a better feel for the unusual properties
of impurities in d-wave superconductors it is instructive to first study briefly
the case of conventional s-wave pairing.
From the solution of the impurity problem given by Eqn. (3.17) and (3.18) the
remaining exercise is to determine G(0)(0). From the expression (3.6) (after
continuing to the real axis) we get

∑

k

ω ± ξ(k)

ω2 − ξ(k)−∆2
= N(0)

∫ B

−A
dξ

ω ± ξ

ω2 − ξ −∆2
=

−N(0)
ω arctan

(
ξ√

∆2−ω2

)

√
∆2 − ω2

∣∣∣∣∣
B

−A

∓ N(0)

2
log

(
∆2 + ξ2 − ω2

) ∣∣∣∣∣
B

−A

=

− πN(0)ω√
∆2 − ω2

∓ N(0)

2
log

(
B2 + ∆2 − ω2

A2 + ∆2 − ω2

)

= − πN(0)ω√
∆2 − ω2

, (3.19)

assuming that the band limits |A|, |B| À ∆, ω and ω < ∆. Here, N(0) denotes
the normal density of states at the Fermi energy. Similarly we get for the off-
diagonal matrix element

∑

k

∆

ω2 − ξ(k)−∆2
= − πN(0)∆√

∆2 − ω2
. (3.20)

Since the bound states are determined by zeros in the denominator of the
T-matrix we have the following condition for bound states with energy ωB

det
[
1−Himp(0)G(0)(0, ωB)

]
= 0. (3.21)

For the magnetic impurity in a s-wave superconductor this leads to

0 = (1− VmG(0)
11 (0))(1− VmG(0)

22 (0))− V 2
mG(0)

12 (0)G(0)
21 (0) ⇔
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0 =


1 +

VmπN(0)ωB√
∆2 − ω2

B




2

−

VmπN(0)∆√

∆2 − ω2
B




2

⇔

ωB = ±∆
1− (VmπN(0))2

1 + (VmπN(0))2 . (3.22)

Since ωB < ∆ bound state solutions exist inside the superconducting gap.
Furthermore, since the s-wave gap fully suppresses states with energy less that
the gap ∆ these impurity states are bona fide bound states. In Fig. 3.4
we plot the two bound state energies as a function of the scattering strength
Vm. As seen there is a level crossing at a critical interaction strength V c

m. As!B=�
0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

Vm=(�N(0))
Figure 3.4: Energy of the impurity states versus magnetic scattering strength
Vm.

discussed first by Sakurai[82] and later by Salkola et al.[83] this corresponds
to a first order quantum phase transition where the spin quantum number of
the superconducting ground state changes from zero for Vm < V c

m to 1/2 for
Vm > V c

m. The total spin then becomes S ± 1/2 depending on the sign of the
interaction Vm (i.e. the sign of the exchange interaction).
For a nonmagnetic impurity Vs it is easy to verify from the condition

0 = (1− VsG(0)
11 (0))(1 + VsG(0)

22 (0)) + V 2
s G(0)

12 (0)G(0)
21 (0), (3.23)

that no impurity bound states are generated.
Historically, the bound state of a single classical magnetic impurity in a s-wave
BCS superconductor given by Eqn. (3.22) was first discussed by Shiba[80]
and Yu[79] in 1968. More extensive studies of the thermodynamic effects of
incoherent spin-flip scattering off magnetic impurities in the superconducting
phase performed by Abrikosov and Gorkov (AG) in 1961[81] were done in
the first Born approximation. Shiba bridged the two approaches by showing
that in this approximation the result (3.22) reduces to the AG results, and
the impurity bound state is indistinguishably close to the gap edge. Further
studies of classical impurities in superconductors can be found in the extensive
review by Flatté and Byers[84].



38 Coexistence of Magnetic and Superconducting Order...

3.3 One impurity in a dx2−y2-wave superconductor

In this section we will see how most of the experimental features discussed
during the brief experimental survey in the beginning of this chapter can be
understood from quasi-particle scattering off a single impurity in a d-wave BCS
superconductor.
We study the electronic structure around a single nonmagnetic (scalar) impu-
rity in a d-wave superconductor

Himp = Vsψ̂
†
0τ3ψ̂0. (3.24)

An example is zinc which is in the Zn2+ state and thus has spin S = 0. Let
us introduce the conventional notation, E2

k = ξ2
k + ∆2

k. Initially the problem
appears simpler with d-wave pairing symmetry since

∑
k ∆k = 0, and therefore

the off-diagonal elements in G(0)(0) obtained from the Fourier transform of

G(0)(k, ωn) =
iωnτ0 + ξ(k)τ3 + ∆(k)τ1

(iωn)2 − ξ(k)2 −∆(k)2
, (3.25)

vanishes. Hence the T-matrix becomes diagonal

T (ω) =




Vs

1−
∑

k
Vsω

ω2−E2
k

0

0 −Vs

1+
∑

k
Vsω

ω2−E2
k


 . (3.26)

Clearly the poles are found at

± 1

Vs

=
∑

k

ω

ω2 − E2
k

. (3.27)

On the other hand, the momentum dependence of the pairing gap makes the
Fourier transform of the Greens function G(0)(k, ω) more complicated than in
the s-wave case

∑

k

ω

ω2 − E2
k

= N(0)
∫ B

−A
dξ

∫ 2π

0
dϕ

ω

ω2 − ξ2 −∆2
0 cos2 2ϕ

= −N(0)ω
∫ 2π

0
dϕ

1√
−ω2 + ∆2

0 cos2 2ϕ
arctan

(
ξ

∆2
0 cos2 2ϕ− ω2

) ∣∣∣∣∣
B

−A

= −4πN(0)
∫ π

2

0
dϕ

1√
∆2

0 cos2 2ϕ

ω2 − 1
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= −4πN(0)
ω√

∆2
0 − ω2

∫ π
2

0

dϕ√
1−

(√
∆2

0

∆2
0−ω2

)2

sin2 2ϕ

= −4πN(0)
ω

∆0

1√
1− ω2

∆2
0

K




1√
1− ω2

∆2
0


 (3.28)

Here, we have again assumed that the band limits |A|, |B| are large compared
to the maximum gap ∆0. K(x) is the complete elliptic integral of the first
kind. We can use the properties of K to get (Gradshteyn and Ryzhik, 8.128.3,
p. 913 and 8.112.1, p. 908)

ω

∆0

1√
1− ω2

∆2
0

K




1√
1− ω2

∆2
0


 =

ω

∆0

1√
1− ω2

∆2
0

(√
1− ω2

∆2
0

[
K(

√
1− ω2

∆2
0

) + iK ′(

√
1− ω2

∆2
0

)

])
=

ω

∆0

(
K(

√
1− ω2

∆2
0

) + iK(
ω

∆0

)

)
, (3.29)

where K ′ is defined through K ′(k′) = K(k) with k′ =
√

1− k2. Thus the
impurity resonance condition becomes

± 1

Vs

= −4πN(0)
ω

∆0

(
K(

√
1− ω2

∆2
0

) + iK ′(

√
1− ω2

∆2
0

)

)
, (3.30)

which in the limit ω/∆0 ¿ 1 reduces to

± 1

Vs

= 4πN(0)
ω

∆0

(
ln

4∆0

ω
+ i

π

2

)
. (3.31)

We cannot solve this equation for ωB in closed form, but to logarithmic accu-
racy the result is

ωB + iΓ = ∆0
πc

2 ln( 8
πc

)

(
1 + i

π

2

1

ln( 8
πc

)

)
(3.32)

in terms of c = 1/πN(0)Vs = cot δ where δ is the scattering phase shift. The
above result is valid in the limit where c becomes small, i.e. cot δ → 0 or
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equivalently δ → π
2

which is the unitary limit corresponding to a strong impu-
rity with large scattering potential Vs. The result (3.32) was first obtained by
Balatsky et al.[85] in 1995. The impurity state is only virtually bound (i.e. a
resonant state) due to the low-energy quasi-particle states near the gap nodes.
Thus, since the DOS decreases only linearly inside the d-wave gap, at the res-
onance energy there exists always an overlap with the continuum causing a
decay rate evidenced by the imaginary part of Eqn. (3.32). In the limit where
Vs → ∞ the state sharpens, i.e. the energy ωB → 0 and Γ → 0 and becomes
marginally bound. This is because the only position where the DOS of the
clean system vanishes is exactly at ω = 0. In the opposite limit, the state
will eventually become ill defined when the width becomes comparable to the
resonance energy ωB ∼ Γ. This evolution of the resonance can be seen from
Fig. 3.5. The impurity-induced quasi-particle states are hole-like (particle-
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Figure 3.5: DOS at (0,0) for a single nonmagnetic (left) and magnetic (right)
impurity positioned at (0,0) in a d-wave superconductor. Upon the sign change
V → −V the nonmagnetic DOS peaks become hole-like, i.e. shift to negative
bias, whereas the magnetic peaks are invariant.

like) for repulsive (attractive) potential. Therefore, the particle residing at a
strongly scattering impurity site is predominantly of hole (Vs > 0) or electron
(Vs < 0) character, leading to local pair-breaking effects. This is also seen
in self-consistent calculations which show a local suppression of the gap near
the impurity. It can be shown, however, that this modified gap amplitude has
only minor changes on the energetics and spatial structure of the resonance
state[86].
Having established these impurity states, the spatial structure of their wave-
function will reflect in the spatial modulation of the local density of states
around the impurity site. Since the local density of states (LDOS) can be
obtained directly from the imaginary part of the full Greens function

N(i, ω) = −Im
G11(i, ωn → ω + iΓ)

π
, (3.33)
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where (still for a single impurity at the origin) from Eqn. (3.18)

G(i, ωn) = G(i, i, ωn) = G(0)(0, ωn) + G(0)(i, ωn)T (ωn)G(0)(−i, ωn). (3.34)

Thus, to calculate the modified DOS we need the full form of the Fourier
transform

G(0)(i, ωn) =
∑

k

iωnτ0 + ξ(k)τ3 + ∆(k)τ1

(iωn)2 − ξ(k)2 −∆(k)2
exp(ik · ri), (3.35)

which for d-wave pairing symmetry is not easily integrated (along the nodal
and anti-nodal directions approximate results were obtained by Joynt[86]).
It is clear, however, that the momentum dependence of the dx2−y2-wave gap
function leads to exponential (power law) decay along the antinodal (nodal)
direction. In the following we resort to numerics to perform the sum in Eqn.
(3.35) by cutting the 2D Brillouin zone into many (typically 800 × 800) tiny
squares. This was also the method used to obtain the graphs displayed in Fig.
3.5.
For the T-matrix given by Eqn. (3.26) the contribution to the LDOS from the
impurity δN(i, ωn) = − 1

π
ImG(0)(i, ωn)T (ωn)G(0)(−i, ωn) is given by

δN(i, ωn) = − 1

π
Im


Vs

G(0)
11 (i, ωn)G(0)

11 (−i, ωn)

1− VsG(0)
11 (0, ωn)

− Vs
G(0)

12 (i, ωn)G(0)
21 (−i, ωn)

1 + VsG(0)
22 (0, ωn)




(3.36)
From the vanishing of the denominators in this expression we see that two

resonance frequencies appear. Also, since G(0)
22 (0, ωn) = −G(0)

11 (0,−ωn) as is
evident from Eqn. (3.25), for the particle-hole symmetric case these resonance
states appear symmetrically around zero energy. The existence of these two
states is due to particle-hole mixing in the superconducting state. In other or-
dered non-superconducting phases only one state will typically be generated,
an example is given in the next chapter dealing with the possible orbital anti-
ferromagnetic ordering in the underdoped region of the cuprate materials, the
d-density wave state.
Exactly at the impurity site i = 0 only a single peak should be seen in the

DOS at 1− VsG(0)
11 (0, ω) = 0 as solved analytically above. This is because the

other resonance does not have weight at i = 0 since the off-diagonal (anoma-

lous) Greens function vanishes at this site, G(0)
12 (0, ωn) = 0, which can again

be seen from the d-wave gap property
∑

k ∆k = 0. In general, i.e. at other
sites near the impurity, this will not be the case. Fig. 3.6 shows the overall
DOS around a single nonmagnetic impurity in a d-wave superconductor at the
resonance energy Ω = −2.0meV (left) and at Ω = +2.0meV (right). Clearly,
the real-space LDOS distribution has maximum at the nearest neighbor sites.
This is not in agreement with the experiments which reveal a strong peak ex-
actly at the impurity site and a second highest intensity on the next-nearest
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Figure 3.6: Real-space map of the LDOS around a nonmagnetic impurity at
the resonance energy Ω = −2.0meV (left) and at Ω = +2.0meV (right). No
filter function is included here.

neighbor. In Fig. 3.7 we plot the LDOS again but ”through” the Bi-O filter
function. Since the filter samples the four nearest neighbors it is clear why

Figure 3.7: Same as Fig. 3.6 but seen through the surface filter function.

the intensity distribution looks like in Fig. 3.7. This is in agreement with the
experiments. An important difference between the figures 3.7 and 3.6 is the
value of the potential Vs needed to generate a resonance state at -2.0 meV. In
Fig. 3.6 the potential needed was strongly repulsive whereas in Fig. 3.7 the
zinc impurity acts as a strongly attractive site. The latter agrees better with
that expected from bandstructure considerations: the 10 electrons of Zn2+ fill
all the 3d orbitals and therefore the relevant 3dx2−y2 orbital is well below the
Fermi level. This inert shell will strongly repel holes, i.e. attract electrons.
At this point we recognize many of the important experimental features around
zinc impurities in the superconducting phase of BSCCO observed by Yazdani
et al.[59] and Pan et al.[62]: the presence of a resonance at the impurity site
giving rise to a large peak in the differential tunnelling conductance and the
spatial structure of this impurity state (when including contributions from the
indirect tunnelling). But what about the magnetic nickel impurities and the
case of weak scattering sites?

For strong magnetic scatterers in a d-wave superconductor, and still allow-
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ing for some normal potential scattering Vs, the T-matrix reads

T (ωn) =




Vm+Vs

1−
∑

k

(Vm+Vs)ωn

ω2
n−E2

k

0

0 Vm−Vs

1+
∑

k

(Vm−Vs)ωn

ω2
n−E2

k


 . (3.37)

In this case, the resonance peak spin splits and a calculation similar to the one
for a purely nonmagnetic scatterer (see also Eqn. (3.32)) yields the resonance
energies

ωB = −∆0
1

2N(0)(Vs ± Vm) ln |8N(0)(Vs ± Vm)| (3.38)

In particular, four resonance states, two at both positive and negative bias,
should be observed in a tunnelling experiment. Indeed this is what was re-
ported by Hudson et al.[67] The spatial structure can also be understood
within the potential scattering model, but only when including the interlayer
filtering[64].

Finally in this discussion of single impurity physics, let us briefly turn to the
case of weak nonmagnetic impurities, i.e. the situation where Vs is no longer the
dominating energy scale. The expected results caused by elastic quasi-particle
scattering and the corresponding interference seen in the Fourier transformed
real-space LDOS images have already been discussed in the presentation of
the experimental results by Hoffman et al.[71] and McElroy et al.[72] In Fig.

-15meV -18meV -21meV -24meV

-3meV -6meV -9meV -12meV

Figure 3.8: Fourier amplitude of the LDOS maps at constant energy. The
amplitudes are shown as a function of momenta kx and ky in the first Brillouin
zone.

3.8 I show the power spectrum of the Fourier images at constant energy for a
nonmagnetic impurity with Vs = 100 meV. For clarity the q = 0 Fourier com-
ponent at the center has been subtracted. For such a weak scattering site the
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resonance is strongly overdamped and no sharp resonance state can be clearly
identified in the DOS as was the case studied above. On the other hand, we
clearly see a set of dispersing features in the images displayed in Fig. 3.8
(which would, of course, be completely featureless in the clean case since then,
at the chosen energy, the LDOS has the same value at each site). Focusing on
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Figure 3.9: Dispersion of the momentum vector associated with scattering
processes q1 (green) and q7 (blue) as defined in the top left image of Fig. 3.3.

the antinodal (0, π) and the nodal (π, π) direction, we have plotted the dispers-
ing peaks as a function of energy in Fig. 3.9. Clearly for these directions the
calculated result agrees with that expected from the quasi-particle scattering
scenario and the STM measurements as seen from Fig. 3.3. The discussion of
what happens at higher energy and lower doping belongs to the discussion of
what is the origin of the pseudogap state. We will not elaborate further on
this largely unsettled issue here, but return to it in the following chapter.
In conclusion one may access that the salient STM findings around a single
impurity can be understood in terms of a conventional d-wave superconductor
perturbed by potential scattering with the possible importance of both direct
and indirect tunnelling. Nevertheless, in the following section I briefly discuss
the motivation and results of an alternative scenario. This will also motivate
our study of the LDOS around two nonmagnetic impurities.

3.4 Discussion

An important fact that was discovered early on in the study of the cuprates,
and which was not mentioned above, is the strong experimental evidence for lo-
calized S = 1/2 magnetic moments induced near nonmagnetic impurities such
as zinc and lithium in the d-wave superconducting phase. This has become
particularly evident from NMR measurements[87, 88, 89, 90, 91]. A possi-
ble explanation is related to 1) the pair-breaking (gap suppressing) property
of nonmagnetic impurities in a d-wave superconductor, and 2) the fact that
the superconducting phase may be proximate to a coexisting phase of super-
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conducting and spin density wave order. In this picture, by suppressing the
pairing condensate near the impurity the subdominant magnetic order is al-
lowed to appear. In fact, it has been shown recently by Chen and Ting[92] that
the minimal model introduced in chapter one, which at a self-consistent level
includes the competition between antiferromagnetism and d-wave supercon-
ductivity, induces a moment near a nonmagnetic impurity with Sz = 0, 1/2, or
1 depending on the strength of the impurity potential compared to the onsite
Coulomb repulsion.
There are, however, other more strongly correlated scenarios in which moments
also develop near nonmagnetic impurities[93, 94, 95]. For instance within the
RVB picture, the nonmagnetic impurity effectively breaks a singlet bond cre-
ating a single unpaired spinon. Thus, a nonmagnetic impurity induces a mag-
netic moment and the resonance peak is a Kondo resonance. However, it is an
unusual Kondo resonance since the density of states of the surrounding d-wave
superconductor vanishes linearly at low energies whereas, in the usual Kondo
effect the density of states is assumed constant at low energies[96, 97]. In the
bond-ordered singlet state by Sachdev et al[98] the spinon is naturally confined
to the holon (i.e. the nonmagnetic impurity) since propagation of the spinon
frustrates the bond order and costs energy. It turns out that in the Kondo sce-
nario the real-space distribution agrees with the experiments without the filter
effect. Thus, it appears that nonmagnetic impurities in the superconducting
phase of the cuprates act either as strong attractive potential scatterers or as
inductors of Kondo moments. In the following section I propose to study the
two-impurity problem in order of resolve this important issue.

3.5 Two impurities in a dx2−y2-wave superconductor

We perform a numerical study of the quantum interference between impurities
in d-wave superconductors within a potential scattering formalism that easily
applies to multiple impurities. The evolution of the low-energy local density
of states for both magnetic and nonmagnetic point scatterers is studied as a
function of the spatial configuration of the impurities. Further we discuss the
influence of a subdominant bulk superconducting order parameters on the in-
terference pattern from multiple impurities.
The past few years have proved the importance of experimental techniques
which can directly test the wealth of information associated with modifications
of the local density of states (LDOS) around impurities, grain boundaries and
vortices in strongly correlated electron systems. In particular scanning tun-
neling microscopy (STM) measurements have provided detailed LDOS images
around single nonmagnetic[59, 62] (Zn) and magnetic[67] (Ni) impurities on the
surface of the high temperature superconductor Bi2Sr2CaCuO4+δ (BSCCO).
For conventional superconductors Yu and Shiba[80] showed that as a result
of the interaction between a magnetic impurity and the spin density of the
conduction electrons, a bound state located around the magnetic impurity is
formed inside the gap in the strong-scattering (unitary) limit. For anisotropic
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superconductors a number of authors generalized the Yu-Shiba approach to
study the LDOS around single impurities[85]. It was found, for instance, that
for a single nonmagnetic impurity there is only a virtual bound (or resonant)
state due to the existence of the low-energy nodal quasi-particles. The one-
impurity problem was recently reviewed by several authors[99, 100].
Recently Hoffman et al.[71] measured the energy dependence of the Fourier
transformed LDOS images on the surface of optimally doped BSCCO below
Tc. The dispersive features were explained from the point of elastic quasi-
particle interference resulting from a single weak, nonmagnetic impurity[73].
This gives credence that a scattering potential picture can yield valuable pre-
dictions in the superconducting state of these materials. Evidence for quantum
interference between strong scatterers has been observed in the CuO chains of
YBa2Cu3O6+x by Derro et al.[101] Future experimental ability to control the
position of the impurities on the surface of a superconductor and perform de-
tailed STM measurements around multiple impurity configurations motivates
further theoretical studies of the resulting quantum interference.
Previous calculations have studied the formation of bonding and antibonding
states around two magnetic impurities in s-wave superconductors[102, 103].
For d-wave superconductors it was found that the interference effects between
two nonmagnetic unitary scatterers depends crucially on the distance and ori-
entation of the impurities[99, 100, 104]. The orientational dependence arises
from the anisotropic gap function, and provides an alternative method to iden-
tify the symmetry of the superconducting gap. Several authors[85, 105] have
previously suggested similar ideas in the case of one impurity.
In this section we study multiple impurity effects by exactly inverting the
Gorkov-Dyson equation. In particular, we discuss the effect of quantum in-
terference between: 1) nonmagnetic impurities in the strong scattering limit,
2) nonmagnetic impurities in the case of induced subdominant superconduct-
ing order parameters, and 3) magnetic and nonmagnetic impurities. All the
calculations are performed within a quasi-particle scattering framework with
classical impurities[80, 105]. The main purpose is to use quantum interference
to obtain results that pose further tests on this approach and to illustrate the
strong sensitivity of the LDOS on the positions of the impurities.
The Greens function Ĝ(0)(k, ω) for the unperturbed d-wave superconductor is
given in Nambu space by

Ĝ(0)(k, ω)=[iωnτ̂0−ξ(k)τ̂3−∆(k)τ̂1]
−1 , (3.39)

where τ̂ν denotes the Pauli matrices in Nambu space, τ̂0 being the 2×2 identity
matrix. For a system with dx2−y2-wave pairing ∆(k) = ∆0

2
(cos(kx)− cos(ky)).

Below, ∆0 = 25meV and the lattice constant a0 is set to unity. In this section
we use a normal state quasi-particle energy ξ(k) relevant for BSCCO around
optimal doping (14%)

ξ(k)=−2t (cos(kx)+cos(ky))−4t′ cos(kx) cos(ky)−µ (3.40)
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with t = 300meV, t′ = −0.4t and µ = −1.18t. Here t (t′) refers to the nearest
(next-nearest) neighbor hopping integral and µ is the chemical potential.
We model the presence of scalar and magnetic impurities in the system by the
following δ-function interactions

Ĥ int =
∑

i

[(
V S

i +V M
i

)
ĉ†i↑ĉi↑ +

(
V S

i −V M
i

)
ĉ†i↓ĉi↓

]
. (3.41)

Here i denotes the set of lattice sites containing magnetic and/or scalar im-
purities and V M

i (V S
i ) is the strength of the corresponding effective potential.

We consider only the z-component of the magnetic impurity interaction and
ignore spin-flip scattering.
For a single nonmagnetic impurity at the origin it is well-known that the scat-
tering modifies the Greens function by

δG11(r, iωn)=

[
G

(0)
11 (r, iωn)

]2

1
V S −G

(0)
11 (0, iωn)

−
[
G

(0)
12 (r, iωn)

]2

1
V S −G

(0)
11 (0,−iωn)

. (3.42)

Here r is the distance to the origin and Gαβ refers to the αβth entry of the
2× 2 Nambu subspace.
Naturally one can derive equivalent expressions for the LDOS modulations
around several impurities. Thus for N impurities all of strength Vs positioned
at R1, ...RN the full Greens function is given by the generalization of Eqn.
(3.18)

G(i, j, ωn) = G(0)(i− j, ωn) +
N∑

k,l

G(0)(i−Rk, ωn)T (Rk, Rl, ωn)G(0)(Rl − j, ωn),

(3.43)
with the T-matrix obtained from the Bethe-Salpeter equation

T (Rk, Rl, ωn) = Vsτ
3δ(Rk −Rl) + Vsτ

3
N∑
m

G(0)(Rk −Rm, ωn)T (Rm, Rl, ωn).

(3.44)
In the case of two impurities at sites R1 and R2 we can solve Eqn. (3.43)-(3.44)
to get

G(i, j, ωn) = G(0)(i− j, ωn) + G(0)(i−R1, ωn)T (ωn)G(0)(R1 − j, ωn) +

[
G(0)(i−R1, ωn)T (ωn)G(0)(R1 −R2, ωn)Vsτ

3 + G(0)(i−R2, ωn)Vsτ
3
]
×

[
1− G(0)(R2 −R1, ωn)T (ωn)G(0)(R2 −R1, ωn)Vsτ

3 − G(0)(0, ωn)Vsτ
3
]−1 ×

[
G(0)(R2 − j, ωn) + G(0)(R2 −R1, ωn)T (ωn)G(0)(R1 − j, ωn)

]
, (3.45)
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where T (ωn) = Vsτ
3(1 − G(0)(0, ωn)Vsτ

3)−1. It can be easily verified that
this expression reduces the single impurity Greens function when either of the
impurities vanishes. Thus, though trivial, it is tedious to calculate the LDOS
around several impurities. Therefore, for a numerical study of the evolution of
the LDOS for multiple impurities positioned at arbitrary lattice sites, we find
that it is easier to invert directly the real-space Gorkov-Dyson equation. The
full Greens function Ĝ(r, ω) is then obtained by solving the equation

Ĝ(ω) = Ĝ
(0)

(ω)
(
Î − Ĥ

int
Ĝ

(0)
(ω)

)−1

, (3.46)

where the double lines indicate that the elements of this equation are matri-
ces written in real- and Nambu space. The size of these matrices depends on
the number of impurities and the dimension of the Nambu space. We have
previously utilized this method to study the electronic structure around vor-
tices that operate as pinning centers of surrounding stripes[106]. We perform

the 2D Fourier transform of the clean Greens function Ĝ(0)(k, ω) numerically
by dividing the first Brillouin zone into a 1400 × 1400 lattice and introduc-
ing a quasi-particle energy broadening of δ = 0.5meV with δ defined from
iωn → ω + iδ.
The differential tunnelling conductance is proportional to the LDOS ρ(r, ω)
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Figure 3.10: DOS at (0, 0) as a function of distance r between two nonmag-
netic impurities (V S = 700meV) at r1 = (0, 0) and r2 = (r, 0). r = 0 (r = 10)
corresponds to the top (bottom) scan. The distance is measured in units of
the lattice constant and the horizontal energy axis in units of meV.
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which in turn is determined from

ρ(r, ω) = − 1

π
Im [G11(r, ω) + G22(r,−ω)] . (3.47)

In the following we model the nonmagnetic unitary scatterers with a poten-
tial V S = 700meV which gives rise to resonance energies around ±1.5meV
in agreement with experiment[62]. (This is seen from the holelike resonance
evident in the bottom LDOS scan in Fig. 3.15a. For a single impurity only
one of the two resonances evident from Eqn. (3.42) has weight on the impu-
rity site since the anomalous part of the Greens function, G12(r, ω), vanishes
at r = 0 due to the symmetry of the d-wave gap.) For interference between
two nonmagnetic unitary impurities Morr et al.[99] found strong variations in
the LDOS as the distance between the impurities R is varied along one of the
crystal axes. This is reproduced in Fig. 3.10. The single-impurity spectrum

DOS(arb.u
nits)

R/p2a0
!=-1.5 meV!=+1.5 meV

20 40 60 80 100 R/a0
!=-1.5 meV
!=+1.5 meV

20 40 60 80 100

Figure 3.11: DOS at (0,0) and at the single-impurity resonance energy
±1.5meV as a function of distance between the two nonmagnetic impurities
separated along the (a) nodal direction and (b) anti-nodal direction. The y-axis
scale is identical for the two figures.

was obtained when R exceeds approximately 10a0. However, as expected for
a dx2−y2-wave superconductor, this length scale is much larger along the nodal
directions. This is seen from Fig. 3.11. Here the density of states is measured
above one of the impurities fixed at the origin while the other is moved away
along the nodal (a) or anti-nodal (b) direction. The single impurity LDOS
is obtained for R well above 100a0. Thus only for impurity concentrations
below 0.1% does the LDOS correspond to the expected result from a single
strong nonmagnetic impurity. For weaker scatterers the decay length will be
considerably reduced.
For quantum interference between multiple fixed nonmagnetic unitary scatter-
ers Fig. 3.12 shows the LDOS as the STM tip is scanned along a crystal axis
on which the impurities are positioned.
In general the resonances are split by the proximity of other impurities and
the number of resonances is directly proportional to the number of interfering
impurities. However, locally the density of states may be strongly influenced
by destructive interference. For instance, for the two impurities (Fig. 3.12a,c)
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Figure 3.12: Low bias STM scans along the horizontal axis in steps of a0/5
from (0, 0) (top line) to (2, 0) (bottom line). The scans are off-set for clarity. In
(a) and (c) there are two nonmagnetic impurities fixed at: (a) (0, 0) and (1, 0);
(c) (0, 0) and (2, 0). In (b) and (d) there are three nonmagnetic impurities at:
(b) (−1, 0), (0, 0), (1, 0); (d) (−2, 0), (0, 0), (2, 0).

sharp resonances exist only when R = 2a0 as is evident from Fig. 3.12c. When
a third impurity is added at (−2, 0) these resonances appear to broaden and
shift to higher energies, Fig. 3.12d. Contrary to this, Fig. 3.12a,b show that
the addition of a third impurity has only a minor effect when R = a0.
The case of three nonmagnetic impurities is studied further in Fig. 3.13 which
shows the evolution of the LDOS at (0, 0) as a function of the distance to a
third impurity along the nodal (b,d) and anti-nodal (a,c) direction. The case
without the third impurity corresponds to the topmost LDOS in Fig. 3.12a
and 3.12c.
As in the case of two nonmagnetic impurities[99, 100] there are very strong
variations in the final LDOS; the number of apparent resonances, their width
and resonance energy depends crucially on the positions of the three impuri-
ties. The small modulations added by the third impurity seen in Fig. 3.13a,b
agree with the destructive interference evident from the corresponding cases
seen in Fig. 3.12a,b. Contrary to this, large modulations are again seen when
increasing the distance between the two fixed impurities by a single lattice
constant, Fig. 3.13c,d.
Recently Zhu et al.[100] suggested a careful study of the two-impurity problem
to extract information of the bulk Greens function of the clean system. In the
following we show how the quantum interference between unitary scatterers
is strongly affected by the induction of a small subdominant superconducting
order parameter. Thus one may utilize the quantum interference between sev-
eral impurities as an alternative method to detect a small subdominant order
parameter.
For instance, tuning through a quantum phase transition from a dx2−y2 to a
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Figure 3.13: LDOS at (0, 0) as a function of distance to a third impurity
along the antinodal (a,c) or nodal (b,d) direction. The two fixed impuri-
ties are positioned at: In (a) and (b): (−1, 0) and (0, 0); in (c) and (d):
(−2, 0) and (0, 0). In (a),(c) the third impurity is positioned at (top to bot-
tom) (1, 0),(2, 0),...,(10, 0).In (b),(d) the third impurity is positioned at (top
to bottom) (1, 1),(2, 2),...,(10, 10).

dx2−y2+idxy superconductor at a critical doping level[107], magnetic impurity
concentration[108] or magnetic field strength[109], a small dxy order could qual-
itatively alter the interference pattern. For ∆xy(k) = ∆0

xy sin(kx) sin(ky) with
∆0

xy=5.0meV, we compare in Fig. 3.14 the LDOS at physically realizable im-
purity positions to the case with ∆0

xy=0. Also we show the difference between
d+ id and d+ is pairing symmetry for these impurity configurations. For most
spatial configurations the secondary pairing (id or is) leads to a sharpening of
the resonances but at particular positions there is a qualitative difference as
shown in Fig. 3.14. For instance, the induction of d+id pairing (Fig. 3.14b)
can result in three apparent resonances contrary to the ground state with pure
dx2−y2-wave pairing (Fig. 3.14a). Similarly, by comparing the LDOS at (1,1)
(dashed lines) in Fig. 3.14d-f, it is evident that the interfering scatterers can
provide a clear distinction between d+id and d+is pairing. Information of the
induction of local order around the impurities can also be inferred from STM
measurements of specific impurity configurations[108].
We turn now briefly to the study of the classical magnetic impurities in dx2−y2-
wave superconductors. The interference of two magnetic scatterers in a s-wave
superconductor was studied recently by Flatte et al.[102] For comparison to
the nonmagnetic case we use a magnetic potential strength |V M | = 700meV
which does, however, not model all magnetic impurities (e.g. Ni) on the sur-
face of BSCCO[67, 110]. Future experiments will reveal whether the scattering
potential formalism utilized here is appropriate or whether more correlated ef-
fects are required[93, 94].
Fig. 3.15 shows the quantum interference between two unitary scatterers: (a,d)
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Figure 3.14: Top row: DOS at (0, 0) for two nonmagnetic impurities at (0,0)
and (2,4). Bottom row: DOS at (0, 0) (solid line) and (1, 1) (dashed line) for
three nonmagnetic impurities at (-1,1), (1,-1) and (-1,-1). Pairing symmetry:
(a) and (d) dx2−y2 , (b) and (e) dx2−y2+idxy, (c) and (f) dx2−y2+is.

one magnetic and one nonmagnetic, (b,e) two parallel magnetic, and (c,f) two
antiparallel magnetic. In all figures one impurity is fixed below the STM tip at
the origin (0, 0) while the other is displaced along the: (a-c) horizontal crystal
axis or (d-f) along the nodal direction. In Fig. 3.15a,d it is the nonmagnetic
impurity that is fixed at the origin. Again the number of resonances, their
position, amplitude and width depends in detail on the distance and nature of
the two scatterers. Further, the spatial evolution of the LDOS is quite similar
for case (a),(b), and (d),(e). These are, however, very different from the inter-
ference between two antiparallel magnetic impurities (c,f) which is dominated
by strong destructive interference at small separations along the antinodal di-
rection and a surprisingly fast recovery to the single impurity case along both
the nodal and antinodal directions.
The results presented above remain qualitative since fits to a specific exper-

iment in addition to details from the tunnelling matrix elements could also
include modified hopping integrals around the impurities, gap suppression and
possibly both magnetic and nonmagnetic scattering potentials[110]. We have
checked that a gap suppression on the bonds around the impurity site does
not produce any qualitative changes[73]. However, on a phenomenological level
the gap suppression could allow for a competing magnetic order parameter to
develop around the impurity. Thus, the gap suppression might be important
for explaining the formation of magnetic moments around nonmagnetic impu-
rities as seen by NMR experiments. These issues are currently controversial
but the vast amount of information inferred from the quantum interference
between multiple impurities may help settle this, and more importantly settle
the validity of the scattering potential scenario versus more correlated models.
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Figure 3.15: DOS at (0, 0) for: (a,d) one magnetic and one nonmagnetic
impurity, (b,e) two magnetic (V M

1 = V M
2 ), (c,f) two magnetic (V M

1 = −V M
2 ).

The topmost graph in each figure is the DOS when the two scatterers are
both positioned at the origin whereas in the lowermost at (0, 0) and (10, 0).
Antinodal separation: (a-c), and nodal separation: (d-f).
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4 Impurities in the d-density wave phase

Most of the material in this chapter has been published by the author
in Physical Review B 68, 094518 (2003)[111] and Brazilian Journal
of Physics 33, 775 (2003)[112].

The underdoped regime of the high-Tc materials appears to be dominated by
competing instabilities and associated exotic order. The various kinds of or-
der are often close in energy making it a difficult task to determine the true
ground state. The robust pseudogap in the low energy spectral weight has
been observed e.g. by tunnelling, NMR, and photoemission experiments[14].
Some of the clearest data comes from tunnelling (see e.g. Fig. 4.2) and ARPES
measurements which for temperatures above Tc find clear evidence for gap-like
structure in the density of states and the leading edge of the energy distribu-
tion curves, respectively. Some of the earliest evidence for a pseudogap came
from NMR studies which found that both the Knight shift and the spin-lattice
relaxation rate 1/T1T began to decrease well above Tc. It is very probable
that the reduction of weight in the single-particle spectrum is caused by the
stabilization of one or several ordered states. The important question remains,
however, what is the dominating order parameter? The d-density wave (DDW)
state is a qualified guess to answer this question! In the following section I
review briefly why the guess is ’qualified’. The second section suggests new
scanning tunnelling experiments near isolated impurities to further test the
validity of the DDW ansatz.

4.1 D-Density wave order

The d-density wave (DDW) order is characterized by an order parameter y
which breaks time-reversal, translational and rotational symmetries

y = i
∑

kσ

fk〈ĉ†kσ ĉk+Qσ〉 (4.1)

with fk = cos(kx)−cos(ky). The order is a particle-hole condensate with inter-
nal angular momentum 2. At the level of a phenomenological Ginzburg-Landau
functional with both DDW and DSC order parameters the generic features of
the high-Tc phase diagram can be reproduced as shown by Chakravarty et
al.[113] Starting from the overdoped regime Tc increases as the doping is de-
creased, saturates around optimal doping and decreases upon further reduction
of the doping. The latter is caused by the stabilization of the competing (in
this case DDW) order which onsets at optimal doping.
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The DDW mean-field Hamiltonian is given by

H =
∑

kσ

(εk − µ)ĉ†kσ ĉkσ +
∑

kσ

Dkĉ
†
kσ ĉk+Qσ, (4.2)

with
Dk =

y

2
(cos(kx)− cos(ky)) (4.3)

resulting in the bands Ek = ±
√

ε2
k + D2

k − µ. The complex i in Eqn. (4.1)

is necessary for the Hamiltonian to be Hermitian:
(∑

kσ Dkĉ
†
kσ ĉk+Qσ

)†
=

−∑
kσ Dkĉ

†
k+Qσ ĉkσ = −∑

kσ Dk+Qĉ†kσ ĉk+Qσ =
∑

kσ Dkĉ
†
kσ ĉk+Qσ. As usual, we

denote by Q the antiferromagnetic ordering vector (π, π). In the underdoped
regime we add to this Hamiltonian a term representing the BCS d-wave or-
dering:

∑
k ∆kĉ

†
k↑ĉ

†
−k↓+H.c., which competes with the DDW order. Thus, the

main idea is that in the underdoped regime, the pure DDW order describes the
normal state (the pseudogap state) while the phase with pure DSC or possibly
coexisting DDW and DSC order describes the superconducting state.
If we rewrite the DDW order parameter y

y = i
∑

kσ

fk〈ĉ†kσ ĉk+Qσ〉. (4.4)

in real-space, we can identify the order to be that of circulating currents alter-
nating on neighboring plaquettes

y = i
∑

kijσ

D

2
(cos(kx)− cos(ky)) 〈ĉ†iσ ĉjσ exp(−i(k + Q) · ri) exp(ik · rj)〉

=
iD

4

∑

iσ

〈(−1)ri
(
ĉ†iσ ĉi+exσ + ĉ†iσ ĉi−exσ − ĉ†iσ ĉi+eyσ − ĉ†iσ ĉi−eyσ

)
〉

=
iD

4

∑

iσ

〈(−1)ri
(
ĉ†iσ ĉi+exσ − ĉ†i+exσ ĉiσ − ĉ†iσ ĉi+eyσ + ĉ†i+eyσ ĉiσ

)
〉

=
iD

4

∑

iσ

(−1)ri〈ĵi→i+ex − ĵi→i+ey〉. (4.5)

Here the current operator is defined as

ĵi→i+ex =
(
ĉ†iσ ĉi+exσ − ĉ†i+exσ ĉiσ

)
. (4.6)

Thus the DDW order is equivalent to the orbital antiferromagnet studied first
by Halperin and Rice in 1968[114]. More recently the order was awakened in
the staggered flux state of the t− J model by Marston and Affleck[115]. Fur-
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Figure 4.1: (a) The circulating plaquette currents constituting the order in
the d-density wave state. (b) Fermi surface pockets: t′ = −0.3t, D = 0.06t
and µ = −t corresponding to 14 % hole doping.

thermore, the fluctuating staggered flux state (i.e. a state that does not order)
exists in the gauge theory formulations of the resonating valence bond theories
for the cuprates[116, 117]. However, in the DDW state this order is static and
an intrinsic part of the microscopic electronic structure. If Dk had s-wave sym-
metry the resulting order would be that of a charge density wave, hence the
name d-wave density wave or simple d-density wave order. The DDW order
is shown in Fig. 4.1a and is clearly seen to break the symmetries mentioned

above. The bandstructure of the pure DDW state, Ek = ±
√

ε2
k + D2

k−µ, con-

tains, at half filling, only quasi-particles at the nodal points k = (±π/2,±π/2).
At finite hole doping the Fermi surface is disconnected as shown in Fig. 4.1b
with hole pockets around the nodal points leading to a metallic normal state.
When d-wave superconductivity competes with the DDW order the bands are
of the form

Ek = ±
√

(
√

ε2
k + D2

k − µ)2 + ∆2
k. (4.7)

This bandstructure can explain quite naturally many of the spectroscopic
probes of the pseudogap. An example is the tunnelling experiments by Renner
et al.[50] shown in Fig. 4.2 where the electronic gap is seen to evolve con-
tinuously from the superconducting gap below Tc to the pseudogap above Tc.
Furthermore, in agreement with ARPES experiments the DDW theory has
(per construction) the angular dx2−y2-wave dependence of both the pseudogap
and the superconducting gap. Digressing a bit on the ARPES data one may
worry about the lacking evidence for hole pockets. Instead, ARPES measure-
ments on underdoped BSCCO find a Fermi arc in the first magnetic Brillouin
zone (inner arc of the elliptic-shaped hole pockets shown in Fig. 4.1b) but
no arc in the second zone needed to complete the pocket. However, as shown
recently by Chakravarty et al.[118] proper treatment of the DDW coherence
factors masks the second arc leading to an apparent single Fermi arc in the
measurements.
Several other experimental probes including measurements of the specific heat,
high-field transport and c-axis optical conductivity have been recently argued
to reveal DDW order. For a thorough discussion of these quantities I refer to
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Figure 4.2: dI/dV measured as a function of sample bias V in an underdoped
BSCCO sample. Clearly, the gap continues to exist above Tc = 83K. Adapted
from Ref. [50].

the literature [113, 119, 120].
What does the spin susceptibility measured by neutron scattering have to say
about the DDW order? Since the constant circulating currents of the DDW
order should produce a magnetic moment one would expect new Bragg peaks
at Q = (π, π) in the neutron measurements when entering the DDW state.
The alternating plaquettes of orbital current would be equivalent to an Ising
order and therefore one expects a gap in the spin excitation spectrum. There
have been several experiments trying to identify the DDW order by neutron
scattering but the results remain inconclusive except from the fact that any
DDW moment must be very weak. The broken discrete Z2 Ising symmetry and
the concomitant normal state spin gap is very different from the long-range
ordered stripe phase. In the latter case the broken continuous spin rotation
symmetry implies low-energy Goldstone modes and no spin excitation gap.
Recent measurements on YBa2Cu3O6.5 show no signs of a normal state spin
gap[121].

4.2 One impurity in the DDW state

It has been proposed[122, 123, 124] that the LDOS around a single impurity
should be able to reveal whether the nature of the background electronic phase
exhibits DDW or d-wave superconducting order. This proposal is based on the
potential scattering model discussed at length in the previous chapter.
From Eqn. (4.2), we can write the DDW mean-field Hamiltonian H in the
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form
H =

∑

kσ

ξ(k)c†kσckσ + i
∑

kσ

D(k)c†kσck+Qσ (4.8)

where Q = (π, π) and D(k) = D0

2
(cos(kx)− cos(ky)) (D0 real). The corre-

sponding unperturbed Greens function reads

Ĝ0(k, iωn)=

(
iωn − ξ(k + Q) −iD(k)

iD(k) iωn − ξ(k)

)

(iωn − ξ(k))(iωn − ξ(k + Q))−D(k)2
. (4.9)

Performing the Fourier transform, Ĝ0(ri, rj, iωn) =
∑

kk′ Ĝ
0(k,k′, iωn)eik·ri−ik′·rj ,

we get

Ĝ0(ri, rj, iωn) =
∑

k

[G0
11(k, iωn)+G0

12(k, iωn)e−iQ·rj +

G0
21(k, iωn)eiQ·ri + G0

22(k, iωn)eiQ·(ri−rj)]eik·(ri−rj), (4.10)

where the sum extends over the reduced Brillouin zone. For delta-function im-
purity potentials we can use Ĝ0(ri, rj, iωn) to solve exactly the Dyson equation

for the full Greens function Ĝ(ri, rj, iωn) and obtain the resulting LDOS. In
the case of a nonmagnetic impurity the T-matrix T (ωn) becomes

T (ωn) =
Vs

1− VsG(0)(0, ω)
. (4.11)

Therefore, the impurity contribution to the full Greens function δĜ(i, ωn) =

Ĝ(0)(ri, iωn)T (ωn)Ĝ(0)(−ri, iωn) can generate only one resonance as opposed to
the d-wave superconducting phase where we have seen that for a nonmagnetic
impurity

δĜ(i, ωn) = Vs
Ĝ

(0)
11 (i, ωn)Ĝ

(0)
11 (−i, ωn)

1− VsĜ
(0)
11 (0, ωn)

− Vs
Ĝ

(0)
12 (i, ωn)Ĝ

(0)
21 (−i, ωn)

1 + VsĜ
(0)
22 (0, ωn)

. (4.12)

In Fig. 4.3 I show the calculated LDOS at the impurity site for a series of
different impurity strengths in the presence of DDW order. The d-wave prop-
erty of the clean DDW phase has the same effect on the impurity resonance as
for d-wave superconductivity: the resonance moves toward the Fermi level and
sharpens as the impurity potential increases. Whereas in the dSC phase at the
nearest neighbor sites both resonances have weight this is obviously not the
case for DDW order. Thus, in principle, this property can be utilized to dis-
tinguish the DDW from the dSC order. However, we know that the real-space
distribution of the LDOS around a single impurity within the potential scatter-
ing formalism is only correct when incorporating the interlayer filtering which
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Figure 4.3: Density of states in the d-density wave phase at the site of a
nonmagnetic impurity of strength V .

acts to wash out this effect. In the next section we show that this problem
can again be solved by scanning the STM tip in the vicinity to two impurities.
The more degrees of freedom in the two impurity problem allow configurations
(and STM scan lines) where the amplitude of the resonances again permits
one to clearly distinguish the DDW order form the superconducting order.

4.3 Multiple impurities in the d-density wave ordered
phase

In this section, the quantum interference between two nonmagnetic impuri-
ties is studied numerically in both the d-wave superconducting (DSC) and the
d-density wave (DDW) state. In all calculations we include the tunnelling
through excited states from the CuO2 planes to the BiO layer probed by the
STM tip. Compared to the single impurity case, a systematic study of the mod-
ulations of the two-impurity local density of states can distinguish between the
DSC or DDW states. This is important if the origin of the pseudogap phase is
caused by preformed pairs or DDW order. Furthermore, in the DSC state the
study of the LDOS around two nonmagnetic impurities provide further tests
for the potential scattering model versus more strongly correlated models.
The study of magnetic and nonmagnetic impurities in the CuO2 planes of the
High-Tc superconductors is far from settled. Experimentally, the local den-
sity of states (LDOS) measured by scanning tunnelling microscopy (STM) in
Bi2Sr2CaCu2O8+δ (BSCCO) around a nonmagnetic impurity such as Zn dis-
plays a sharp peak close to the Fermi level on the impurity site and a second
maximum on the next-nearest neighbor sites[59, 62]. Theoretically, the ques-
tion remains whether a traditional potential scattering formalism[80, 85] or
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more strongly correlated models[107] are needed to describe the impurity ef-
fects. Though still a subject of controversy, it was recently shown that at least
for weak impurities a potential scattering scenario qualitatively agrees with
the measured results for optimally doped BSCCO[71, 73, 125, 126, 127]. Fur-
thermore, it was shown by Martin et al.[64] that both the energetics and the
spatial dependence of the resonance state around a strong potential scatterer
(e.g. Zn) can be accounted for by including the tunnelling (the filter) through
excited states from the CuO2 planes to the top BiO layer probed by the STM
tip[31]. There is also evidence from NMR measurements that magnetic mo-
ments are induced around nonmagnetic impurities[87, 88, 89, 90, 91]. In this
paper we assume, however, that the large potential scattering off the impurity
site itself is dominating the final LDOS.
Recently the experimental ability to manipulate the positions of surface impu-
rities has increased the interest in quantum interference phenomena between
multiple impurities. This includes the physics of quantum mirages[56] and
various multiple impurity effects in superconductors[99, 100, 55, 128]. For ex-
ample, it was shown in Ref. [55] that impurity interference can be utilized as a
sensitive probe for the gap symmetry of exotic superconductors. Motivated by
the experimental progress we compare the expected LDOS around one and two
strong nonmagnetic impurities in either the d-wave superconducting (DSC) or
the d-density wave (DDW) state. Though still controversial we include the
filter effect in all the calculations presented below. As has become clear only
recently[99, 100, 55], we stress that the probed impurities need be well sepa-
rated (10-50 lattice constants) from other possible defects.
The DDW state was recently proposed as a model for the pseudo-gap state
of the cuprates[113]. Any difference in the impurity modified LDOS between
the DSC and DDW states may reveal the hidden DDW order and distinguish
between the scenario of preformed pairs versus static staggered orbital cur-
rents as the origin for the pseudo-gap state[122, 123, 124]. Recently, there has
been several other proposals to probe the DDW order in the cuprates[119, 129].

4.3.1 Model

In this section we briefly discuss the models for the DSC and DDW states
and how to calculate the LDOS around several impurities. The BCS Greens
function Ĝ0(k, iωn) for the unperturbed d-wave superconductor is given by

Ĝ0(k, iωn) = [iωnτ̂0 − ξ(k)τ̂3 −∆(k)τ̂1]
−1 , (4.13)

where τ̂ν denotes the Pauli matrices in Nambu space, τ̂0 being the 2×2 identity
matrix, ξ(k) the quasi-particle dispersion, and ωn is a Matsubara frequency.
For a system with dx2−y2-wave pairing symmetry, ∆(k) = ∆0

2
(cos(kx)− cos(ky)).
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In the DDW state the mean-field Hamiltonian is given by[113]

H =
∑

kσ

ξ(k)c†kσckσ + i
∑

kσ

D(k)c†kσck+Qσ (4.14)

where c†kσ creates an electron with momentum k and spin σ, Q = (π, π) and
D(k) = D0

2
(cos(kx)− cos(ky)). Below, ∆0 = D0 = 50meV and the lattice

constant is set to unity. The large value of the gap corresponds roughly to the
experimentally measured maximum gap in the underdoped regime of BSCCO.
The Greens function for the clean DDW state is given by

Ĝ0(k, iωn)=

(
iωn − ξ(k + Q) −iD(k)

iD(k) iωn − ξ(k)

)

(iωn − ξ(k))(iωn − ξ(k + Q))−D(k)2
. (4.15)

Performing the Fourier transform, Ĝ0(ri, rj, iωn) =
∑

kk′ Ĝ
0(k,k′, iωn)eik·ri−ik′·rj ,

of the Greens function with reference to the entries of Eqn. (4.15) gives

Ĝ0(ri, rj, iωn) =
∑

k

[G0
11(k, iωn)+G0

12(k, iωn)e−iQ·rj +

G0
21(k, iωn)eiQ·ri + G0

22(k, iωn)eiQ·(ri−rj)]eik·(ri−rj), (4.16)

with the sum extending over the reduced Brillouin zone. The presence of scalar
impurities is modelled by the following delta-function potentials

Ĥ int =
∑

{i}σ
Uin̂iσ, (4.17)

where n̂iσ is the density operator on site i. Here {i} denotes the set of lat-
tice sites hosting the impurities and Ui is the strength of the corresponding
effective potential. In this article all the presented results arise from impu-
rities modelled by a potential, U = −15t, corresponding to -4.5eV. In the
DSC state this U generates resonances at a few meV for a single nonmagnetic
impurity[59, 62, 64]. The large scale of this potential renders the effects on the
LDOS from corrections to other energy scales around the impurity site less im-
portant. For instance, we have checked that gap suppression near the impurity
or slightly larger spatial extension of the impurity does not qualitatively affect
the results reported below. In general these effects tend to push the resonances
slightly further towards zero bias. We have also performed calculations (not
shown here) with other values of U and comment on the results below.

The full Greens function Ĝ(r, ω) in the presence of the impurities can be ob-
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tained by solving the real-space Gorkov-Dyson equation

Ĝ(ω) = Ĝ0(ω)
(
Î − Ĥ intĜ0(ω)

)−1
. (4.18)

The size of the matrices in this equation depends on the number of impuri-
ties and the dimension of the Nambu space. We have previously utilized this
method to study the electronic structure around impurities[55] and vortices
that operate as pinning centers of surrounding stripes[106, 181]. This method
is identical to the traditional T-matrix formalism. However, for a numerical
study of several impurities at arbitrary positions we find it easier to solve Eqn.
(4.18) directly.

The 2D Fourier transform of the clean Greens function Ĝ0(k, ω) is performed
numerically by dividing the first Brillouin zone into a 800 × 800 lattice and
introducing a quasi-particle energy broadening of δ = 1meV with δ defined
from the analytic continuation iωn → ω + iδ. The differential tunnelling con-
ductance is proportional to the LDOS which is determined from the imaginary
part of the full Greens function.
So far nothing has been said about the form the band-structure. It is still con-
troversial which quasi-particle energy applies to the DSC and DDW states[124,
130, 131]. The expression for ξ(k) is important since it will influence the final
LDOS around the impurities. We illustrate this in the following by study-
ing two generic band structures: the nested situation, and a t-t′ band be-
lieved to be relevant for BSCCO around 10% hole doping. With the notation
ξ(k) = ε(k)− µ, and

ε(k)=−2t (cos(kx)+cos(ky))−4t′ cos(kx) cos(ky), (4.19)

t (t′) refers to the nearest (next-nearest) neighbor hopping integral and µ is
the chemical potential. The nested situation corresponds to t′ = µ = 0.0 while
the parameters for the 10% hole doped band are: t = 300meV, t′ = −0.3t and
µ = −0.9t. These parameters correspond to the ones previously studied for
a single impurity by Morr[124]. As discussed in Ref. [124] there are physical
reasons to expect the nested band to be relevant for the DDW state and the
t-t′ band for the DSC phase. However, recent photoemission measurements on
LSCO by Zhou et al.[131] observed a Fermi surface consisting of straight lines
connecting the antinodal regions which may indicate that the nested band is
more relevant for impurity studies in LSCO. Thus we find it important for
study both cases below.
In the results presented we include the LDOS filter[64]. This effect modifies
the LDOS, ρ(r, ω) =

∑
n |ψn(r)|2δ(ω − εn), by including the four nearest Cu

neighbors in the underlying CuO2 layer, ψn(r) −→ ψn(r + ex) + ψn(r− ex)−
ψn(r+ ey)−ψn(r− ey). Here ei denote the unit vectors in the CuO2 plane. It
is important to keep in mind that the filtering effect is still controversial. How-
ever, determining experimentally the interference effects around two impurities
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in the DSC state may help resolve the relevance of the filter.

4.3.2 Results for a single impurity

Before studying the two impurity interference effects it is worthwhile to briefly
review the single impurity LDOS in the DSC and DDW states and discuss the
influence of the filter. Without the tunnelling filter we find full agreement with
previously published results[73, 99, 122, 123, 124]. We will see that a single
impurity is not a good probe for distinguishing between these two states.
In the DDW phase one can utilize Eqn. (4.16) and (4.18) to calculate the full

Greens function Ĝ(ri, rj, iωn) = Ĝ0(ri−rj, iωn)+Ĝ0(ri, iωn)T (iωn)Ĝ0(−rj, iωn)
with the T-matrix given by, T (iωn) = U [1 − UG0(0, iωn)]−1. The single reso-
nance condition, 1 = URe[G0(0, ω)], has been previously studied for the DDW
state without the filtering effect[122, 123, 124]. It is well known that the re-
sulting LDOS strongly depends on the band structure. In Fig. 4.4a we plot
the DOS in the clean DDW state for the nested and the t-t′ band without
the filter. Even though the above resonance condition is satisfied at certain
energies for the t-t′ band, we expect the large value of the DOS at all frequen-
cies to over-damp the impurity peaks. This is contrary to the nested situation
where a sharp impurity resonance is allowed to appear in the gap. This is
clearly verified in Fig. 4.4b(c) which depicts the LDOS for the nested(t-t′) set
of band parameters including the filter. The peaks in Fig. 4.4c are not im-
purity resonances (note scale), which are overdamped, but simply the shifted
DDW gap edges. The impurity can only slightly modify the amplitude of these
gap edges. We note that it is t′ which causes the impurity resonances to be
strongly overdamped. When t′ = 0, µ 6= 0 the density of states always vanishes
at minus the chemical potential[123] allowing a well-defined resonance peak to
appear.
As is evident from Fig. 4.4b the most important influence of the filter is to
shift the LDOS maximum from the nearest neighbors to the impurity site and
induce a second maximum on the next-nearest neighbor sites. This weight
redistribution is identical to the situation in the superconducting phase[64].
In the DSC state, the clean DOS is plotted in Fig. 4.5a for both the nested
and the t-t′ band. By comparison to Fig. 4.4a we see the well known result
that the nested DOS is identical for the clean DDW and DSC phase. Indeed
this motivated the original studies of single impurity resonances in the DSC
versus DDW states[122, 123, 124]. The single impurity resonance condition in
the DSC phase, 1 = URe[G0(0,±ω)], generates peaks at positive and negative
energies around a single nonmagnetic impurity. However, the majority of the
quasi-particle weight may reside on only one of these resonances[55]. It is
evident from both Fig. 4.5b and Fig. 4.5c that indeed only one resonance
has weight. This is contrary to the situation without the filter[124]. Thus,
by comparing Fig. 4.4b to Fig. 4.5b (or 4.5c) the result is two almost iden-
tical figures. Therefore, since no qualitative difference is guaranteed to exist
the single nonmagnetic impurity cannot easily distinguish the DSC and DDW
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Figure 4.4: DOS (arb. units) as a function of energy (meV) in the DDW
state: (a) for the clean system with nested (solid) or t-t′ (dashed) band. (b)
DOS at (0, 0) (solid), (1, 0) (dashed), and (1, 1) (dash-dotted) for a nested
band with the impurity at (0, 0). (c) same as (b) but for a t-t′ band.
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Figure 4.5: Same as Fig. 4.4 but for the DSC state.

phases. However, as shown below, the interference between several impurities
can be utilized to tune the amplitude of the potential resonances and thus
clearly distinguish the phases.
The impurity LDOS plotted in Fig. 4.4 and Fig. 4.5 was for a potential
U = −15t. Though of less experimental relevance, we briefly mention an-
other difference between the DSC and DDW states. This relates to the fate
of the resonance in the unitary limit, U → ∞: for the DDW phase the res-
onance energy approaches minus the chemical potential, ω = −µ, whereas
it approaches the Fermi level in the DSC phase (except for a small residual
energy shift caused by a possible particle-hole asymmetry[86]). The different
resonance energy (as U → ∞) arises from the way the chemical potential en-

ters the bands of the clean DDW (E±(k) = |
√

ε(k)2 + D(k)2 ± µ|) and DSC

(E±(k) =
√

(|ε(k)| ± µ)2 + ∆(k)2) states[122, 123].

4.3.3 Results for two impurities, nested band

In general when several impurities are in close proximity the resonances split,
and one expects to see additional peaks in the density of states. The evolution
of the LDOS as a function of distance and angular orientation between two
nonmagnetic impurities in the DSC state has been already studied by several
authors[55, 99, 100]. In the following we elaborate on this work by a numerical
study of the LDOS including the filtering effect and study for the first time the
quantum interference between two strong nonmagnetic impurities in the DDW
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state. In the superconducting phase Fig. 4.6a shows the resulting LDOS for
the nested band when one impurity is fixed at the origin (0, 0) while the other
is moved out along a crystal axis to (10, 0). In Fig. 4.6b the impurities are
fixed at (−1, 0) and (+1, 0) while the STM tip is moved from (0, 0) to (8, 0). As
seen from both figures there are strong variations in the LDOS in agreement
with previous studies without the extra tunnelling effect[55, 99]. The number
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Figure 4.6: (a) DOS at (0, 0) as a function of the distance between two
nonmagnetic impurities in the d-wave superconducting state (here: t′ = µ =
0.0). One impurity is fixed at (0, 0) while the other moves from (0, 0) (top) to
(10, 0) (bottom). (b) the impurities are fixed at (±1, 0) while the STM tip is
moved from (0, 0) (top) to (8, 0) (bottom). The difference between each scan
is 0.2 lattice constants and the graphs are off-set for clarity.

of apparent resonances, their energetic position and width strongly depend on
the impurity configuration and the position of the STM tip. In particular, for
certain impurity separations the resonances completely disappear. In Fig. 4.7
we show the LDOS for the same impurity and STM positions as in Fig. 4.6
but for the DDW state. Clearly, strong quantum interference between the two
nonmagnetic impurities also exists in this state. However, by comparison with
Fig. 4.6 it is evident that the additional resonance states in the DSC allows
one to distinguish this from the DDW phase. We have performed identical
calculations to the ones presented in Fig. 4.6-4.7 for other (but still large)
values of the scattering potential U , and always find qualitatively the same
interference pattern.
As mentioned above, the resonances split when two impurities are in close
proximity. It is therefore nontrivial that only a single, nondispersive peak is
seen in e.g. Fig. 4.7b. This is closely connected to the particular STM scan
and one may worry about the robustness of this result. However, we always
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Figure 4.7: Same as Fig. 4.6 but for the d-density wave state.

find that whenever the impurity positions are invariant under mirror reflection
through the STM scan line, only a single nondispersive peak remains4 in the
DDW state. Importantly, for these same configurations we find the alternating
double peak structure (similar to Fig. 4.6b,4.8b) to be a robust feature in the
superconducting phase. Furthermore, as expected for a d-wave gap[55], we find
(not shown) that the quantum interference patterns are longer ranged along
the nodal directions than along the Cu-O bonds.
As expected from the discussion of the single impurity in the DDW state, we
end this section by noting that when t′ = 0.0, µ 6= 0.0 the interference pattern
is identical to that shown in Fig. 4.7 except for a shifted (by −µ) energy range.

4.3.4 Results for two impurities, t-t′ band

We now turn to the quasi-particle dispersion given by Eqn. (4.19) with t′ =
−0.3t, µ = −0.9t. In this case we know from Fig. 4.4a and Fig. 4.5a that
the clean DOS is clearly different in the DDW and DSC states. This section
serves as an illustration of the importance of the quasi-particle dispersion in
the final LDOS. Fig. 4.8 shows the LDOS in the superconducting phase from
the same STM and impurity positions as Fig. 4.6. It is clear that again the
strong interference between the impurity wavefunctions survive the filtering
effect and pose new constraints on the potential scattering scenario versus
more strongly correlated models[107]. We note that despite the very different
band structure used to calculate the LDOS in Fig. 4.6 and Fig. 4.8, the overall

4This is also valid when the impurity positions coincide with the STM scan line as in
Fig. 4.6b-4.9b.
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evolution of the resonances is quite similar except that the apparent resonances
are shifted to higher energies for the t-t′ band. As mentioned above, it has
been previously suggested that the nested (t-t′) band is appropriate for the
DDW (DSC) state, respectively[124]. In that case we need compare Fig. 4.7
and Fig. 4.8. As opposed to the single impurity LDOS, the configuration in
Fig. 4.7b and Fig. 4.8b again allows one to distinguish the DDW and DSC
states by the number of resonance peaks. This is contrary to Fig. 4.7a and
Fig. 4.8a which are remarkably similar.
In the DDW phase we know from the single impurity case that the current
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Figure 4.8: Same as Fig. 4.6 but for t′ = −0.3t and µ = −0.9t.

choice of band parameters leads to strongly overdamped impurity resonances
(Fig. 4.4c). However, for completeness we show the calculated STM scans in
Fig. 4.9. As expected the quantum interference is weak and causes only minor
changes in the DDW gap edges. Furthermore, the LDOS shown in Fig. 4.9
changes only slightly upon varying the strength of the impurity potential U or
the impurity positions.

4.3.5 Conclusion

In summary we have shown that a systematic STM study around two non-
magnetic impurities can clearly distinguish the DSC and DDW phases. In
particular, we suggest to perform STM scans with the positions of the impu-
rities being invariant under a mirror reflection through the scan line. Even
for the nested band, where the clean and the single impurity LDOS are not a
good probe for the underlying state, this situation provides a robust test for
DSC versus DDW order.
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Figure 4.9: Same as Fig. 4.8 but for the d-density wave state. Note the
energy range. The peaks evident in these scans are the shifted DDW gap
edges (not impurity resonances).

The impurities are modelled as potential scatterers and the results pose further
tests on this approach. An important question remains whether phase fluctu-
ations present about Tc in the pseudo-gap state are strong enough to wash out
the interference patterns. This will be discussed in a future publication[132].
It would also be interesting to study similar multiple impurity interference
effects within other pseudo-gap models and within other proposed scenarios
for the resonances around nonmagnetic impurities in d-wave superconductors.
In particular, within models explaining the single impurity LDOS as a Kondo
resonance arising from a confined spinon[107, 98], one may expect more novel
changes as the distance between two nonmagnetic impurities is decreased. This
is because the cost of frustrated dimers decrease in this limit making it un-
favorable to break another dimer, and hence no spin is expected near the
nonmagnetic impurities.

4.4 Discussion

In the previous sections I discussed the final expected LDOS from impurities
of resonant character. In the future, it should be investigated what is the re-
sulting LDOS in a coexisting phase of DSC and DDW order. Furthermore, one
should study the DOS and quantum interference within models that contain
Cooper pairs but no long-range ordered off-diagonal superconducting order.
The latter should be compared with the pure DDW order whereas the former
need be compared to the pure DSC phase. This is because within the DDW
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scenario we expect, in the underdoped regime, the pure DDW order to exist
above Tc and the mixed DDW-DSC phase below Tc.
In the previous chapter we also discussed how quasi-particle scattering off
weak impurities in the d-wave superconducting leads to interference patterns
in agreement with the Fourier transformed field of view LDOS maps obtained
in STM experiments. It is interesting to understand the changes in these quan-
tum interference patterns in a phase with pure DDW order, or with coexisting
DSC and DDW order. Experimentally, an equivalent change in the patterns
is expected when increasing the temperature through Tc.
The interference patterns in the presence of DDW order around a static non-
magnetic scatterer were calculated recently by Bena et al[133, 134]. In the
mixed phase, at energies below the superconducting gap, the LDOS is identical
to the pure DSC state, while at larger energies there are significant differences
to the pure DSC patterns. The differences lie in the detailed dispersion of
the high-weight features. In the pure DDW state similar differences can be
identified, and we refer to Ref. [133, 134] for more details.
Thus we may conclude this chapter by stressing the large amount of informa-
tion contained in tunnelling spectra around both strong and weak potential
scatterers. Though the final LDOS maps are sensitive to the bandstructure,
future STM experiments should be able to determine whether the DDW order
is relevant to describe the underdoped regime of the cuprate superconductors.
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5 Introduction to the stripe phase

In this chapter I review some essential aspects of the emerging discipline of
stripology. the chapter serves as a background study of the remaining chapters
in this thesis.
The essence of stripology is the self-organization of electrons into inhomoge-
neous nano-scale structures providing a new state of matter. I will discuss some
of the important experimental evidence for the existence of this phenomenon
in the cuprates. However, the important results of stripe evidence originating
from photoemission and STM experiments are not discussed in this chapter,
but can be found in beginning of the following chapters.
The last section contains a brief review of the theories of stripes. This chapter
is by no means a complete review but merely a summary of some important re-
sults (according to the author’s biased opinion). There currently exists rather
comprehensive review articles on the properties of stripes[135, 136].

5.1 Experimental evidence for stripes

What are the experiments that point to the relevance of stripes ? In fact, there
are many. Particularly for the lanthanum based compounds and particularly
at low doping levels. Experimental probes include NMR, NQR, µSR, transmis-
sion electron microscopy (TEM), tunnelling and photoemission spectroscopy,
X-ray- and neutron scattering and transport measurements. Below I discuss
mainly the latter two probes.

5.1.1 Neutron diffraction

Neutrons are natural-born spin detectives. In 1995 Tranquada et al.[137] per-
formed elastic neutron scattering measurements on La1.6−xNd0.4SrxCuO4 and
found magnetic Bragg peaks as shown in Fig. 5.1. The peaks are positioned
in an incommensurate quartet around the antiferromagnetic ordering vector
(π, π), i.e. at (π(1±δ), π) and (π, π(1±δ)). Since the neutrons have no charge
they cannot scatter directly from modulations in the electron density, but can
detect the modulation of the atomic positions induced by the electron charge
density modulation. Importantly, such charge Bragg peaks were also found
by Tranquada et al.[137] at the Fourier points (0, 2π(1± δ) and (2π(1± δ), 0)
suggesting that the charges form domain walls with half the spin periodicity.
These measurements were the first solid evidence for spin- and charge ordering
into stripe domains in the cuprate materials. A cartoon picture of the stripe
ordered system is shown in Fig. 5.2. The holes prefer to segregate into pe-
riodically spaced rivers of charge, which are separated by antiferromagnetic
ordered copper spins. Thus, the ordered stripe phase refers to a state with
unidirectional density wave order, i.e. discrete translational symmetry break-
ing in one direction.
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Figure 5.1: Left: elastic superlattice peaks found in La1.6−xNd0.4SrxCuO4

with x = 0.12, 0.15, 0.20. Right: experimental phase diagram obtained by
Ichikawa et al.[138]. The temperature below which spin and charge ordering is
detected is denoted by Tm and Tch, respectively. Tc is shown by the green line
and the structural transition from the low-temperature orthorhombic (LTO)
to the low-temperature tetragonal (LTT) by the black line. Note that at low
temperature static charge and spin stripes coexist with superconductivity.

Figure 5.2: Idealized electronic spin and charge ordering in the CuO2 plane
in the stripe phase.

The spin order gains an additional π phase when crossing a charge stripe
which causes the spin periodicity to be twice the charge periodicity, 2π/δspin =
2(2π/δcharge). Because of these hole-induced solitons in the antiferromagnetic
background this has been dubbed topological doping. Other forms of stripes
including stripe liquids, nematics and stripe glasses have also been discussed
in the literature. In the experiments, four incommensurate peaks arise because
the stripes form domains with equal probability of being oriented along the x-
or the y-axis5. Alternatively the quartet may arise from a bilayer effect, i.e.
the tendency of the stripes on neighboring planes to be oriented perpendicu-
larly to each other. Certainly, this is relevant in the LTT phase of Nd doped
LSCO where the tilt pattern of the CuO6 octahedra causes lines of displaced

5In the ideal case of all stripes ordered along the, say, x-axis, we would except two neutron
diffraction peaks at Q± πδêy, where êy is the unit vector along the y-direction and 2π/δ is
the stripe spin periodicity.
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oxygen atoms rotated 90◦ between the adjacent layers.
In Fig. 5.2 the size of the unit cell dictates a density of one hole per two Cu
sites in the charge stripe, and the stripes are characterized as quarter-filled.
Around (and above) optimal doping elastic Bragg peaks are not seen in pure
La2−xSrxCuO4. The role of the neodymium doping is to cause a buckling of
the oxygen octahedra surrounding the Cu ion inducing a structural transition
from orthorhombic to tetragonal which effectively locks the stripes.
From inelastic neutron scattering on La2−xSrxCuO4 it was measured as early
as in 1991 by Cheong et al.[139] that the magnetic excitation spectrum is
dominated at low energies by four incommensurate peaks at (π(1± δ), π) and
(π, π(1± δ)), i.e. at exactly the same positions as the stripe Bragg peaks. The
original explanation of the incommensurability was given in terms of Fermi
surface geometry: as the hole-doping increases the Fermi surface hole volume
this shifts the magnetic peaks from commensurate to incommensurability[140].
However, in light of the La1.6−xNd0.4SrxCuO4 measurements, it is natural to
associate these peaks with the spin fluctuations from an incommensurate stripe
state.
As can be seen from Fig. 5.3 the incommensurability δ varies with the doping.
For Nd free La2−xSrxCuO4 a linear dependence of δ as a function of doping x
was found for x < 1/8 indicating that the hole density in each stripe remains
quarter-filled[141]. By increasing the amount of holes in the CuO2 planes, the
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Figure 5.3: Incommensurability δ as a function of doping x obtained for
different high-Tc materials. Adapted from Ref. [136].

number of quarter-filled stripes increase and hence their average separation 1/δ
is reduced. In this regime the stripes act as an incompressible quantum fluid.
For x > 1/8 the incommensurability δ saturates at δ = 1/4 (In units where
the antiferromagnetic (π, π) point is denoted instead (1/2, 1/2), δ saturates at
1/8 as used in Fig. 5.3).
At present, elastic neutron scattering involving both the magnetic and nuclear
structure function S(k, ω), and to some extent X-ray scattering, has detected
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the stripe ordered phase in a number of cuprates: La1.6−xNd0.4SrxCuO4 for
0.05 < x < 0.2, La2−xSrxCuO4 for 0.02 < x < 0.13, La2−xBaxCuO4, and in
under- and optimally doped La2CuO4+δ[135, 136].
In the YBa2Cu2O6+y materials, incommensurate spin fluctuations are found
throughout the doping range where the material is superconducting. The in-
commensurate peaks are found only above a spin gap whose magnitude is of
the order of the superconducting pairing gap. The fact that superconductivity
seems important for these fluctuations may indicate that they are a collective
mode in a homogeneous d-wave superconductor as will be shown later. How-
ever, there is also evidence that stripes are lurking in the YBCO materials. For
instance, Mook et al.[142] performed neutron scattering studies of a partially
(1:2) detwinned YBa2Cu3O6+y sample and found incommensurate peaks with
a 1:2 intensity ratio between the pairs corresponding to horizontal and vertical
stripes, respectively. This supports the notion that in YBCO the stripe or-
dering prefers to align perpendicular to the Cu-O chains. Furthermore, static
charge stripe order persisting up to 300K has been recently observed in under-
doped YBa2Cu3O6.35[143].
In the non-superconducting nickel-oxides, e.g. La2−xSrxNiO4+δ, which is a
structural analogue of La2−xSrxCuO4, it is very well established that diagonal
stripe spin and charge ordering appear in the nickel-oxygen planes[144]. This
is similar to the very underdoped regime of La2−xSrxCuO4 (0.02 < x < 0.05)
where Wakimoto et al.[145] and Matsuda et al.[146] have used neutrons to de-
tect insulating (half-filled, i.e. one hole per Cu site within the stripe) diagonal
stripes.
Finally it is interesting to note that when cooling down from a high tem-
perature, the charge Bragg peaks always appear before the spin superlattice
peaks. This has been advocated by Kivelson et al.[135] to be strong evidence
for charge-driven stripe formation.

5.1.2 Transport

Whereas the neutron scattering data show strong evidence for spin stripes,
they remain elusive for charge stripes. Though evidence has been reported in
LSCO and YBCO, only in the pinned phase of Nd doped LSCO could charge
Bragg peaks be unambiguously verified. It is therefore important to perform
other experiments that directly probe the charges and test their transport
properties.
At low doping Ando et al.[147, 148, 149] found that the in-plane resistivity ρab

and the Hall coefficient RH of La2−xSrxCuO4 show metallic behavior (dρab

dT
> 0,

dRH

dT
= 0) at temperatures down to 100K-150K. The result of measurements

of the temperature dependence of the inplane resistivity is shown in Fig. 5.4
for doping levels covering the whole underdoped regime. Note that for the
low-doped crystals even the Neel ordering at TN does not affect the metallic
dependence. Similar metallic behavior has been reported in YBa2Cu3Oy. Fur-
thermore, by normalizing the resistivity ρab by the nominal hole concentration
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Figure 5.4: Left: inplane resistivity (logarithmic scale) ρab as a function
of temperature T . With decreasing doping the magnitude of the resistivity
increases, but the metallic behavior remains down to low temperatures. For
x = 0.01 this is true even below the Neel ordering temperature TN = 240 (inset
on the right figure). Right: temperature dependence of the inverse mobility.
Adapted from Ref. [147].

nh one may determine the conductivity per charge, i.e. the mobility of the
doped holes. As can be seen on the right hand side of Fig. 5.4, above 150K
the temperature dependence (the slope) and the absolute magnitude of the
doped hole mobility (nhρabe)

−1 differ only slightly in the doping range from
x = 0.01 to x = 0.17. This hints that whatever dominate the physics at low
doping may dominate throughout the underdoped regime of the cuprate phase
diagram.
How, then, is it possible for doped holes in an antiferromagnetic background
to display metallic behavior with relatively high mobility? Certainly, it is well-
known that an isolated hole in a 2D LRO antiferromagnetic state is localized
due to the energy cost of frustrating the spin bonds upon hopping (Trugman
loops restore the anti-parallel spin arrangement but are important only when
J ¿ t). The transport experiments suggest that the holes manage to circum-
vent this energy penalty. The stripe phase offer an explanation since the self-
organization of holes into charge stripe domain walls can facilitate the charge
mobility. The holes gain kinetic energy by propagating along the stripes. In
a later chapter I show the emergence of states inside the Mott-Hubbard gap
induced by the stripe domain walls. This generates states near the Fermi level
along short patches in the Brillouin zone. By correctly taking these states into
account it was shown by Ando et al.[150] how the temperature and doping
dependence of the resistivity and Hall coefficient can be understood.
The stripes prefer to align along one of the unit axes in the orthorhombic unit
cell due to a slight crystalline anisotropy. Because, in the twinned crystals there
are equal domains of x- and y-axis oriented stripes, the stripe domains are fully
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disordered and one does not expect to detect any transport anisotropies at the
macroscopic level. However, in carefully detwinned crystals one would expect
to measure a transport anisotropy corresponding to whether the current runs
parallel or perpendicular to the main stripe ordering vector. In fact, trans-
port anisotropies have already been used to verify the existence of conducting
charge stripes in the higher Landau levels of 2D electron gases[151, 152].
Fig. 5.5 shows the inplane resistivity ρa (along the a-axis) and ρb (along the b-
axis) of heavily underdoped LSCO and superconducting YBCO[153]. Clearly,
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Figure 5.5: Resistivity as a function of temperature revealing a resistivity
anisotropy for lightly doped LSCO (left) and YBa2Cu3Oy with y = 6.35−7.00
(right). Adapted from Ref. [153].

at almost all temperatures the resistivity differs in the two in-plane directions,
ρa/ρb 6= 1. This cannot be accounted for by crystalline anisotropy alone. For
example, from the YBCO data at moderate temperatures on the right hand
side of Fig. 5.5, we see that the resistivity anisotropy ρa/ρb grows with dop-
ing y (below y ∼ 6.60), whereas it is well-known that the crystal anisotropy
decrease with y due to a gradual destruction of the CuO chains. Again this
indicates the presence of self-organized electronic stripes. The localization be-
havior at low temperatures is caused by disorder, a relevant perturbation in
low-dimensional systems.
Finally we note that recent neutron scattering results[146] revealed that at
low temperatures the static spin stripes prefer to align along the a-axis of the
orthorhombic lattice of LSCO with x ≤ 0.05. Since below 100K ρa < ρb,
this points to the fact that stripes seem to be intrinsically conducting at finite
temperatures.
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5.2 Stripe models

From a theoretical point of view the interesting question remains what is the
origin of these stripes? Though it is clear that they originate from a compe-
tition between the magnetic and kinetic energies, the details remain unclear.
In the following I discuss the formation of stripes in the Hubbard model and
their possible relation to the superconductivity.

5.2.1 Hartree-Fock equations of the Hubbard model

The stripe phase was first found theoretically in 1989 by studies of the 2D two-
band Hubbard model at the mean-field level[154]. However, almost immedi-
ately after, several authors reported incommensurate spin and charge ordering
in the single-band version[155]. These studies relate to the soliton physics of
magnetic systems, i.e. the fact that upon addition of excess carriers the spa-
tially modulated spin states are more energetically advantageous than uniform
phases. Allowing for such solutions therefore drastically changes the phase di-
agram of the mean-field Hubbard model.
It is instructive to consider what we initially may expect about the spin or-
dering from a Stoner argument: magnetically ordered states turning stable
when 1 − Uχ0(k) = 0, where χ0(q) is the paramagnetic Lindhard function
at ω = 0[156]. Fig. 5.6 shows the calculated structure of χ0(k) in the case
of half-filling (a) and nh = 0.20 hole doped (b). These results are obtained
by numerical summation of the momentum sums entering χ0(k). As expected
at half-filling the perfect nesting leads to a strong antiferromagnetic instabil-
ity at Q = (π, π). However, with hole doping the peaks are centered at the
incommensurate positions (π, π(1± δ)) and (π(1± δ), π). Therefore, with in-
creasing U we expect SDW modulations along the axes of the CuO2 planes
with periodicity N = 2π/πδ = 2/δ. From the diagonal nesting vector of the
pure antiferromagnetic state, one may have expected a diagonal SDW modu-
lation. However, for a given modulation vector Q, the gap opens at points in
the Brillouin zone where the single-particle dispersion εk satisfies, εk = εk+Q.
The magnetic state is stabilized compared to the paramagnetic phase by the
opening of a gap on parts of the Fermi surface. For the simplest case where
εk = −2t(cos(kx) + cos(ky)), Fig. 5.7 shows that indeed the wave vectors
corresponding to the vertical/horizontal peak positions in Fig. 5.6 should
be energetically favored[156]. However these features change considerably for
other shapes of the Fermi surface and other values of the Coulomb repulsion
U and the hole doping nh. The best way to understand the stripe formation
at the mean-field level is to simply perform the calculation.
Hence, consider the Hubbard model

H = −t
∑

〈i,j〉σ
ĉ†iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ (5.1)
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Figure 5.6: Real part of χ0(k) over the Brillouin zone for (a) the half-filled
band (µ = 0) and (b) the hole doped case corresponding to nh = 0.20 (µ = −t).

→ −t
∑

〈i,j〉σ
ĉ†iσ ĉjσ + U

∑

i

[〈n̂i↓〉n̂i↑ + 〈n̂i↑〉n̂i↓]− U
∑

i

〈n̂i↑〉〈n̂i↓〉,

which we may solve self-consistently. Specifically, we divide the plane into
a large number of supercells of size Nx × Ny (the total number of sites in

the supercell equals N) and write ĉ†iσ =
∑

kn u∗knσ(i)γ†knσ exp(ik · Ri) where
Ri points to the supercell where site i resides and k belongs to the reduced
Brillouin zone, 2π/Nx × 2π/Ny. In other words, the spatial dependence of
uknσ(ri) = uknσ(Ri + i) = uknσ(i) exp(ik · Ri) has the Bloch form in the
supercell vectors and need only be determined on the N sites inside a supercell
for each k. Demanding that the γ’s diagonalize the Hamiltonian is equivalent
to solving for each k and σ the N ×N linear eigenvalue problem

∑

j

H(i, j,k, σ)uknσ(j) = Eknσuknσ(i). (5.2)

One should remember that the eigenvalues Eknσ and eigenvectors uknσ(i) de-
pend inherently on all the densities 〈niσ〉. The self-consistency is enforced by
first guessing the form of 〈n̂iσ〉, diagonalize the Hamiltonian, and then calcu-
late the new densities 〈n̂iσ〉. These are then inserted into H and the procedure
is repeated until convergence. This procedure is equivalent to finding the den-
sity configuration with the smallest energy. The loop runs with the constraint
that

1

N

∑

iσ

〈n̂iσ〉 = 1− nh, (5.3)
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Figure 5.7: The central ring is the Fermi surface for µ = −t. The rest of
the lines show the contour-plot εk+Q = µ for Q = (π, π(1 ± δ)) (left) and
Q = (π(1 ± δ), π(1 ± δ)) (right). As seen, the Q = (π, π(1 ± δ)) modulation
vector allows for larger parts of the original Fermi surface to be gapped out.

where nh is the hole doping, i.e. nh = 0 corresponds to half-filling and N is
the total number of sites in the supercell. The condition (5.3) is fulfilled by
adjusting automatically the chemical potential µ in each run using the fact
that 〈n̂iσ〉 = 〈ĉ†iσ ĉiσ〉 =

∑
kn |uknσ(i)|2f(Eknσ − µ), where unσ and Enσ denote

the eigenvectors and eigenvalues of H, respectively.
The antiferromagnetic case yields a nice testing ground for the computer rou-
tines since in this case we know the answer and can easily perform analytical
calculations. Thus, at half-filling, the up-down periodicity allows us to write

〈n̂iσ〉 =
1

2
(1 + σm(−1)) (5.4)

〈n̂i↑〉+ 〈n̂i↓〉 = 1. (5.5)

The parameter m ranges from 0 to 1, with m = 1 being the fully polarized
state corresponding to the large U limit. Using the relations (5.4)-(5.5), we can
rewrite the Hamiltonian (5.1) in terms of m, perform the Fourier transform
and obtain the bands. When t′ = 0.0 the result is

E±
k =

U

2
− µ±

√
ε2
k +

(
Um

2

)2

, (5.6)

with εk = −2t(cos(kx)+cos(ky)). In this case the total energy per site is given
by

E = −U
(

1

2
+

m

2

) (
1

2
− m

2

)
+ 2

∑′
k
E−

k , (5.7)
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with the momentum sum restricted to the reduced Brillouin zone. In this case
the free energy minimum is equivalent to the gap equation

∑′
k

1√
ε2
k +

(
Um
2

)2
=

1

U
, (5.8)

which determines m for a given U . We have solve this relation m(u) and found
that the same magnetization m results from the iteration procedure. However,
when the system gains incommensurate spin and charge structure away from
half-filling we rely fully on the numerical solutions.
In Fig. 5.8 I show some results for the spin and charge density when nh = 0.125.
For vertical stripes to be stable we find that the Coulomb interaction needs
to exceed some critical value depending on the doping level. Clearly, away

Figure 5.8: Examples of the self-consistently generated bond-centered spin
and charge stripe modulations within a 2×8 unit supercell of the one-band 2D
Hubbard model. The length of arrow and the radius of the circle is proportional
to the spin and the hole density, respectively. Parameters used to generate
these results: nh = 0.125, t′ = 0, and U = 6.0t (top) and U = 4.0t (bottom).

from half-filling the commensurate antiferromagnetic state becomes unstable.
The modulation of the spin is non-sinusoidal and supports the anti-phase shift
across the charge stripes. The magnetization grows with U but vanishes when
the hole doping nh becomes too large. It is also possible to stabilize site-
centered stripes, but I find that they as a general rule have higher energy than
the bond-centered configurations. The energy difference is, however, extremely
small, which indicates that the real systems may fluctuate between the two.
Similar conclusions have been made by other groups[22, 157]. For example,
in Fig. 5.8 I find that for the U = 4, t′ = 0, nh = 0.125 case that the energy
per site in for the bond-ordered solution is E = −0.88399t whereas for the
site-centered solution it is E = −0.88279t. Similarly, when U = 6, t′ = 0, nh =
0.125 for the bond-centered configuration we have E = −0.68940t whereas
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the energy of the site-centered solution is E = −0.67740t. The same conclu-
sion results from many calculations performed at other doping levels nh and
Coulomb interaction U .
The filling of the stripes is determined by the filling of the mid-gap band gen-
erated by the anti-phase stripes (see e.g. the chapter on the stripe effects on
ARPES and DOS). In the present approach we find that when nh = 2/δ the
stripes are always insulating when t′ = 0. However, for finite t′ < 0 it is well-
known that the mid-gap band becomes partially filled and hence the system
becomes metallic[22, 157]. For t′ > 0 we find that it is generally not possible
to stabilize the stripe state. Fig. 5.9 shows the stripe filling (when the overall
system doping is 6%) as a function of t′ for U = 4.0t and V = 0 reproduced
from Ref. [22]. When including a next-nearest neighbor attraction V to induce
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Figure 5.9: The stripe filling versus next-nearest neighbor hopping integral
t′ (U = 4.0t,V = 0). From Ref. [22].

the d-wave superconductivity at the mean-field level, a moderate value of the
attraction V ∼ t induces the instability for the metallic state whereas a larger
V is required to overcome the gap in the insulating state. In this way the
mid-gap states are crucial to the occurrence of superconductivity. We return
to the question of coexisting d-wave superconductivity and spin and charge
stripes within mean-field minimal model in later chapters.
The stability of vertical (VIC) versus diagonal (DIC) incommensurate stripe
phase has been studied in detail by Ichioka et al.[157, 158]. There is was found
that the total energy is lower for the DIC phase than that of the VIC for
higher U and smaller doping nh. For example in Fig. 5.10 where U = 3.0t
and t′ = −0.1t the transition occurs at nhc = 0.1. For larger (smaller) U
this critical doping level nhc increases (decreases). Furthermore, it was found
that when raising t′, nhc is decreased. The DIC state was found to be always
insulating. That is, even though for a parameter range of U, t′, and nh the
DIC bands cross the Fermi level, the VIC phase has lower energy in this re-
gion. This agrees with the experiments: the diagonal stripe phase observed in



82 Coexistence of Magnetic and Superconducting Order...

0.20.10.0
0.0

0.2

0.4

T 
/ t

N

C

VIC

DIC

Insulator Metal
nh

Figure 5.10: Phase diagram (temperature T vs hole-concentration nh) ob-
tained within the Hartree-Fock treatment of the single-band Hubbard model for
U = 3t and t′ = −0.1t. In the figure, N denotes normal state, C commensurate
antiferromagnetism, VIC (DIC) vertical (diagonal) incommensurate stripe or-
der. Since the DIC phase is insulating and the VIC phase metallic this model
explains the metal-to-insulator transition at nh = 0.1 (δ = 0.05). Adapted
from Ref. [157].

heavily underdoped La2−xSrxCuO4 and in La2−xSrxNiO4+δ is insulating.
The case of electron doping nh < 0 has also been studied within the Hartree-
Fock version of the Hubbard model. Here, the commensurate antiferromag-
netic state competes with the VIC state, the latter having the lowest energy
for large |nh| and Coulomb repulsion U . The diagonal stripe state is never
stable for nh < 0. The stable VIC stripes found by Ichioka et al.[157] are
antiphase. However, since the neutron scattering experiments on the electron
doped materials show commensurate antiferromagnetism, it would be interest-
ing to search for in-phase stripes as well.

Below I review some of the other approaches to the stripe phase. Of course,
in a strongly interacting electron system where quantum fluctuations are im-
portant, the Hartree-Fock solutions are not quantitatively correct. However,
even in that case they can provide a guide for other strong-coupling studies.
In fact, we will see that the above Hartree-Fock solutions capture much of the
physics of the stripe phase quite accurately.

5.2.2 Frustrated phase separation and numerical studies

In the large-U limit the Hubbard model maps into the t− J model

H = −t
∑

〈i,j〉σ
P̂

(
ĉ†iσ ĉjσ + H.c.

)
P̂ + J

∑

〈i,j〉

(
Si · Sj − n̂in̂j

4

)
, (5.9)
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where J = 4t2/U is the exchange interaction between neighboring spins,

n̂i = ĉ†i↑ĉi↑ + ĉ†i↓ĉi↓ is the charge density operator, and P̂ is the projection
operator onto states with single site occupancy only. At half-filling Eqn. 5.9
reduces to the Heisenberg model with antiferromagnetic spin ordering. Away
from half filling the ground state of the t− J model is unknown in two dimen-
sions.
Now, assume that J/t À 1, then it costs a lot of energy to break a singlet spin
bond when adding a hole. Thus, in order to minimize the number of broken
spin bonds the holes cluster together and the system phase separates, globally,
into hole-rich and hole-poor regions with electron density per site of zero and
one, respectively. However, the holes are charged and this state is expensive in
charging energy. Therefore, when including the long-range Coulomb interac-
tion (neglected already at the level of the Hubbard model) the phase separation
becomes frustrated, and the system seeks a compromise which for certain com-
binations of the coupling constants leads to the stripe phase. This is the idea
behind the frustrated phase separation scenario by Emery et al.[159, 160]. In
the limit of very large exchange coupling, J/t À 1, this picture is correct, but
for the physically relevant regime, J < t, where the kinetic energy plays an
increasingly important role, there is only weak evidence for phase separation
in the 2D t− J model.
Because of the lack of controlled analytical methods to deal with strong corre-
lation in the two-dimensional t− J or Hubbard model, most of our knowledge
comes from numerical approaches. Unfortunately, advanced numerical calcu-
lations are limited to relatively small systems due to the rapid growth of the
number of states with the system size. This poses some obvious limitations on
these studies. First, small changes in the model such as longer range hopping
t′ or the choice of boundary conditions can have large effects on the obtained
results. Second, only in a few cases has it been possible to determine the long
distance physics from a finite size scaling analysis over a large range of different
system sizes. In the latter case, it was again found that small changes in the
Hamiltonian can lead to very different long distance physics due to the large
number of competing states that are close in energy in the strong correlation
limit. Nevertheless, numerical studies are certainly very valuable and can give
important insight into the properties of a given model. Therefore, let us review
what t− J-numerics tell us about phase separation and stripe formation.
Fig. 5.11 shows the current consensus on global phase separation of the doped
holes in the t− J model in quasi-1D ladder systems and 2D clusters. Besides
being interesting in their own right (exists for instance in Sr2n−2Cu2nO4n−2),
the ladders are important toy models for stripes. Furthermore, a weakly cou-
pled 2D ladder system may constitute a very realistic model for the electronic
structure in the CuO2 planes. From Fig. 5.11a we see that the ladders are
fully separated into a filled (〈ne〉 = 1) and an empty (〈ne〉 = 0) phase for large
J/t. At low hole doping the phase boundary moves to lower J/t with increased
number of legs, i.e. wider ladders. From density matrix renormalization group
(DMRG) calculations known to be very accurate for ladder systems, Rommer
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Figure 5.11: Phase separation in the ne vs J/t plane of the t − J model.
(a) for the ladder systems, 〈ne〉 is the average electron density, and phase
separation is realized to the right of the curves. Adapted from Ref. [161]. (b)
phase separation line as obtained by different authors for 2D t − J clusters.
Adapted from Shin et al.[162].

et al.[161] compared the phase separation boundary at very low doping as a
function of ladder width and estimated that the 2D t− J model would phase
separate (also at very low doping) at J/t ≥ 1.
As seen from Fig. 5.11b there is considerable dispute whether the 2D t − J
model phase separates at low doping at the physical value J/t = 0.3 − 0.4.
Early studies by Emery, Kivelson and Lin[160] (EKL) found that phase sep-
aration happens at all interaction strengths. Hellberg and Manousakis (HM)
reached a similar conclusion from Greens function Monte Carlo methods[163].
All other numerical studies of 2D t− J clusters, some of which have also been
shown in Fig. 5.11b, agree on the phase boundary at low electron density.
When approaching half-filling, however, most find that the phase separation
boundary remain above a critical value Jc/t larger than the physically relevant
ratio J/t = 0.35. For instance, Putikka et al.[164] used a high-temperature
series expansion (HTSE) to conclude that phase separation does not occur for
any doping level when J/t < 1.2. From power Lanczos (PL) techniques Shin
et al.[162] found the lower bound J/t = 0.3 − 0.5. White and Scalapino[165]
performed extensive DMRG calculations on 2D t − J clusters and found no
phase separation when J/t = 0.35. In fact, they found stripes.
A typical result of the calculated spin and charge density is shown in Fig.
5.12. Question: where do the stripes originate from, if the frustrated phase
separation is not in play? Answer: it is already contained in the competition
between the exchange energy and the kinetic energy in Eqn. (5.9). Indeed,
this agrees with the stripe Hartree-Fock solutions of the Hubbard model (i.e.
no need for long-range Coulomb interactions) presented above. The DMRG
calculations show that even at J/t = 0.35 two holes added to a t − J clus-
ter bind into a pair. Upon further doping these pairs can lower their energy
further by forming a domain wall. The π phase shift in the antiferromagnetic
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0.4

0.25

Figure 5.12: Spin and charge density modulations in the ground state of the
t − J model as found from DMRG calculations on a 13 × 8 cylinder with 12
holes[165]. The length of the arrows is proportional to 〈Sz〉 and the diameter
of the circles to the hole density 1 − 〈ne〉 according the the scale displayed
below the main figure.

background across the wall reduces both the frustration of the exchange bonds
produced by the hopping of the holes and the transverse kinetic energy of the
holes. It is the lowering to transverse kinetic energy that drives the domain
wall formation. Had the antiferromagnetic background not gained an extra π
phase shift across the stripe, a costly ferromagnetic bond would be generated
upon hopping to a nearest neighbor site perpendicular to the stripe. For the
same reason the holes cannot propagate into the antiferromagnetic regions,
they are confined to the domain walls and their immediate vicinity.
To obtain a better understanding of the importance of the π phase shift let
us consider the two site-centered stripe domain walls shown in Fig. 5.13[166].
When t = 0 the empty (i.e. electron empty) stripes with in-phase and anti-
phase boundaries are degenerate. To determine the importance of the trans-

(b')(b)

In-phase stripe

(a')(a)

Anti-phase stripe

Figure 5.13: Spin arrangement for the anti-phase and in-phase stripes.
Adapted from Ref. [166].

verse hopping let us ignore kinetic motion along the stripes. Then the t − J
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Hamiltonian is given by H =
∑

iHi, where

Hi = −t
∑

iσ

[(
c†1,i,σc0,i,σ + c†−1,i,σc0,i,σ

)
+ H.c.

]
+ J

∑

〈jj′〉〈ii′〉
Sj,i · Sj′,i′ . (5.10)

Here, i index the 3 × 1 unit cells along the stripe and j is either -1,0 or 1
(j = 0 is the stripe position). Thus, for instance, c†−1,i,σ creates an electron to
the left of the domain wall. Consider first an empty wall and let the energy
of the states | ↑↓ 0〉 and | ↑↑ 0〉 be denoted by Ea and Ei, respectively. The
energy difference ε = Ei − Ea between the good bond and the bad bond is
proportional to the exchange J (ε = J for a Ising model). With this notation
the Hamiltonian becomes

H(a,i) =




0 −t −t
−t E(a,i) 0
−t 0 E(a,i)


 (5.11)

which gives the ground state energy E(a,i)
g = 1

2
(E(a,i)−

√
(E(a,i))2 + 8t2). Thus

if we assume that E(a,i) ¿ t, the difference in kinetic energy gain due to
transverse hopping is given by

Ea
g − Ei

g ≈ −ε

2
− 1

4
√

8t

(
(Ea)2 − (Ei)2

)
. (5.12)

Therefore the transverse zero-point kinetic fluctuations ”pick out” the anti-
phase stripe which we already expected from Fig. 5.13. Note, however, that
when electrons are pumped into the stripe there will be a competing term
favoring the in-phase boundary due to the antiferromagnetic exchange inter-
action. This can be seen in the second row in fig. 5.13. This competition
leads to a transition between anti-phase and in-phase stripes as a function of
stripe filling which has been studied in more detail by Zacher[166] and Liu and
Fradkin[167].
Depending on the boundary conditions the DMRG calculations find both bond-
and site-centered anti-phase stripes. These are found to be extremely close in
energy. Stripes oriented along the Cu-O bonds have lower energy than the di-
agonal stripes. Thus, the main conclusions are very similar to those obtained
from the Hartree-Fock treatments. The stripe energy as a function of the fill-
ing revealed that quarter filling has the lowest energy for J/t = 0.35. This
is contrary to the mean-field studies where the nearest neighbor hopping t′ is
necessary in order to generate metallic stripes.
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5.2.3 Stripe liquids

The theoretical discussion above was related to static ordered stripe arrays
(stripe crystals) which break both the translational- , four-fold rotational-, and
the spin rotation symmetry. The experiments show, however, that large parts
of the phase diagram is dominated by short-range fluctuating, disordered, and
meandering stripe configurations. This has lead to numerous phenomenological
”string theories” attempting to incorporate the notion of a stripe fluid by
describing the low-energy degrees of freedom of the stripes[135].
For instance, Zaanen et al.[168] mapped the transverse kink excitations of the
stripes to a quantum spin-1 chain described by an anisotropic Heisenberg model
with easy-axis terms. The phase diagram for this spin-1 chain and the effects
of stripe pinning by dopants were studied by Morais Smith et al.[169, 170, 171]
Starting from the stripe crystal, one can imagine transverse stripe fluctuations
becoming more important as we increase the temperature and the transverse
zero-point quantum fluctuations, and eventually melt the crystal. Kivelson et
al.[172] classified the stripe liquids with terminology borrowed from the field of
liquid crystals: 1) the stripe smectic6 phase breaks the translational symmetry
along one spatial direction and remains a liquid along the other. In this state
the root mean square magnitude of the transverse stripe fluctuations is below
the inter-stripe spacing. 2) On the other hand, when they become larger
than the inter-stripe spacing, we enter the so-called nematic7 phase which
breaks the four-fold rotation symmetry of the underlying lattice but remain
translational invariant. In this phase the stripes meander and dislocations
restore the translational invariance. Still, the nematic phase maintain a degree
of orientational order by being preferentially aligned along one direction. This
is similar the the conventional nematic liquid crystal phase, which consists
of rod shaped particles with long-range orientational order but no long-range
translational order. Snap-shots of these different phases are shown in Fig.
5.14.

5.3 What do stripes have to do with superconductivity?

It is still controversial whether the stripe formation is important for the occur-
rence of superconductivity or simply another competing order in the under-
doped regime of the phase diagram. The latter seems to be the conclusion from
extensive numerical studies of projected wavefunctions by Sorella et al.[173].
Here the d-wave superconducting state is found to be the ground state of the
2D t − J model at low doping and moderate J/t with no need for stripes.
Unfortunately, the possible bias in the chosen wavefunction questions the gen-
erality of this result.
Experimentally, the pinned stripes suppress the superconductivity as seen by a

6From the Greek word σµεγµα, which means soap and was use to make the original
smectic liquid crystals.

7Comes from the Greek νεµωσ, meaning thread.
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crystal smectic

nematic isotropic

Figure 5.14: Schematic illustration of snap-shots of the local stripe order
in the electronic quantum liquid-crystal phases. The broken lines indicate
charge density modulations along the stripes whereas the solid lines show liquid
stripes. From Ref. [172].

lowering of Tc in the neodymium doped samples. This is presumably also the
explanation of the ”1/8 anomaly”, i.e. a strong suppression of Tc around x ∼
1/8, known from many experiments on La2−xBaxCuO4 and La1.6−xNd0.4SrxCuO4[174].
On the other hand, the δ ∼ x ∼ Tc relation (the so-called Yamada relation[141])
has been taken as evidence for the importance of fluctuating stripes in generat-
ing the superconductivity: as the inter-stripe distance decreases, the Josephson
coupling between the stripes increase and so does Tc. Optimal doping on the
other hand, is characterized by a transition into a regime where the stripes be-
gin to disintegrate which is the reason that Tc drops in the overdoped regime.
Besides, the question of whether self-organized electronic structures can gen-
erate a superconducting state is interesting and seems sufficiently radical that
it may actually be the long-sought high-Tc ”mechanism”.
In addition to the experimental evidence for stripes, there is also purely theo-
retical motivation for attempting to build a 2D high-Tc superconductor from
1D arrays. An example is given by the exact solutions (using Bethe ansatz) to
the 1D Hubbard chain by Fye et al.[175] and Chakravarty et al.[176]. Consider
a 1D Hubbard ring with N sites and N + Q electrons and let E(Q,S) denote
the lowest lying eigenvalue with charge Q and total spin S. The pair-binding
energy EP (Q) is defined as

EP (Q) = 2E(Q + 1)− (E(Q + 2) + E(Q)), (5.13)

where E(Q) has been minimized with respect to S. Thus, a positive pair-
binding energy corresponds to an effective electron attraction: given two N
site rings and 2(N + Q + 1) electrons, it is more favorable to place N + Q + 2
electrons on one ring and N +Q on the other than to place N +Q+1 electrons
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on each ring. The results of adding two electron to a neutral ring (Q = 0)
is displayed in Fig. 5.15a as a function of the length of the ring. As seen,
pair-binding occurs within this purely repulsive model when N = 4n, n being
a positive integer8. In the thermodynamic limit N →∞ the pair-binding van-
ishes EP → 0. The main lesson obtained from Fig. 5.15a is that the pairing is
maximal at intermediate values of the length N .
When the ground state is a spin singlet, the spin gap defined as ∆S(Q) =
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Figure 5.15: a) Pair-binding energy EP of N = 4n and N = 4n+2 Hubbard
chains with U/t = 4, n is a positive integer. b) The spin gap ∆S (open symbols)
and EP (solid symbols) as a function of U/t for a N = 12 site Hubbard ring.
From Ref. [176].

E(Q, 1)−E(Q, 0) yields the energy gap to the lowest S = 1 excitation. In Fig.
5.15b, ∆S(0) and EP (0) are plotted as a function of the Coulomb repulsion
U/t. As seen, they both peak at the same intermediate value of the interaction
strength U/t. In fact, as shown in Ref. [176], for large N , EP ≈ ∆S, indicating
that the pair-binding energy is intimately related to the spin gap formation.
For the chains EP and ∆S both vanish in the thermodynamic limit N → ∞.
However, for the two-leg S = 1/2 t− J ladder DMRG calculations show that
the spin gap and EP remain finite in the N → ∞ limit for a wide range
of doping levels due to strong rung spin-singlet formation. In particular, for
J/t = 0.35 they show that two holes added to the ladder form a d-wave pair in
order to minimize their kinetic energy and the disturbance of the antiferromag-
netic background[177]. The pairing is d-wave in the sense that the rung-rung
(x-direction) and the rung-leg (y-direction) pairing correlations have the same
amplitude but opposite sign. This is different from the regime J À t, where
the two holes are nearest neighbors in order to reduce the number of broken
exchange bonds. As discussed above, several pairs prefer to order in stripes.
However, the energy per hole in the stripe is only slightly lower than in a pair,
and this energy difference can be tuned by increasing the pair mobility by
e.g. a next-nearest hopping term t′. As t′ increases the stripes coexist with

8As shown in Ref. [176], the occurrence of pair-binding for the N = 4n chain as opposed
to the N = 4n + 2 ring is caused by the fact that the ground state for Q = ±2 is a spin
singlet for N = 4n, while for N = 4n + 2 it is a spin triplet.
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the d-wave superconducting phase until they eventually evaporate from the
ground state giving way to a homogeneous d-wave superconducting state[178].
In this sense the static stripes compete with the d-wave superconductivity
in agreement with the suppression of Tc seen in the pinned stripe phase of
La1.6−xNd0.4SrxCuO4.
This conclusion, however is for static stripes in small clusters. It is still an
interesting question whether it is possible to build a high-Tc superconductor
from a 1D stripe array. From the discussion above it follows that one might
expect to generate a 2D superconducting state from an array of coupled two-
leg Hubbard ladders. This is a system at the intermediate length scale in the
transverse direction which exhibits a spin gap. Spatially this configuration is
exactly the bond-centered stripe state9.
There is a problem, however, with building a superconducting state from the
stripe phase consisting of an array of one-dimensional weakly coupled metals
(Luttinger liquids). For such a system the low-temperature phase is known
to be an insulating charge density wave state. This is indicated in Fig. 5.14a
where charge density modulations occur in both the vertical and horizontal di-
rection. For the isolated stripe with a gap ∆S in the spin excitation spectrum,
the low-temperature T low-energy degrees of freedom are the charge density
wave and the superconducting fluctuations whose susceptibilities diverge as
χcdw ∼ ∆sT

−2+Kc and χsc ∼ ∆sT
−2+1/Kc when T → 0. Here, the charge

Luttinger parameter Kc is a critical exponent which for repulsive interactions
satisfy 0 < Kc < 1. When Kc > 1/2 both susceptibilities diverge as T → 0,
with χcdw being the most divergent. When a coupling between the stripes is
included, this causes a 2D insulating charge density wave state. Therefore,
despite the motivation mentioned above for the starting point of a 1D array
of charge rivers each with a built-in tendency for superconductivity (of course
there cannot be true LRO at finite T in a 1D system due to the strong quantum
fluctuations. The point is that the local correlations and enhanced susceptibili-
ties in the 1D system may imply the occurrence of true LRO in the 2D system),
the charge density wave ordered state wins out. Hence, the problem becomes
that of finding a way to tip the balance in favor of the 2D superconducting
state. There are at least two proposals for resolving this problem: transverse
stripe fluctuations or arrays of static stripes of alternating type, ...ABAB...,
differing in e.g. the electron density.
Regarding the first proposal, Kivelson et al.[172] and Emery et al.[179] showed
that the transverse zero-point fluctuations of the stripes in the smectic phase
cause the effective charge density wave coupling between adjacent stripes to
vanish. At the same time, because the Josephson tunnelling amplitude of pairs
of electrons between the stripes depends exponentially on the distance between

9For wider undoped ladders the spin gap ∆S decreases exponentially with the width and
for odd-leg ladders the spin gap is completely absent in the thermodynamic limit. However,
it is not crucial to identify the stripes with two-leg ladders. For instance, even the odd-leg
ladders develop a spin gap as a function of doping. In this case the dx2−y2-wave pairing
correlations are concurrent with the onset of the spin gap ∆S
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neighboring stripes, it can be greatly enhanced when the stripes are allowed to
fluctuate. Thus, below a finite temperature Tc the smectic stripe phase is glob-
ally superconducting (for Kc > 1/2). It is largely an open question whether
the superconductivity survives (or becomes stronger) into the nematic phase
where the quantum stripe fluctuations become even more pronounced.
Another way to circumvent the χcdw-most-divergent problem, is to consider an
array to stripes of alternating types, ...ABAB.... similar to the bond-centered
stripes discussed above. In this case the tendency for an overall 2D charge
density wave state can be strongly suppressed due to the mismatch of the or-
dering vectors between stripes of type A and B. Indeed, by assuming that the
hopping is strongly modulated perpendicular to the stripes, Arrigoni et al.[180]
showed that when both type A and B are in the spin gapped Luther-Emery
phase and the charge Luttinger parameters satisfy K−1

cA + K−1
cB −KcA < 2 and

K−1
cA + K−1

cB −KcB < 2, then the superconducting susceptibility becomes the
most divergent as T → 0. Therefore, the superconducting transition preempts
the charge density wave transition. This constitutes another example where
static stripes coexist with superconductivity.

5.4 The next chapters

Given this strong circumstantial evidence for stripe phases in the high-Tc

cuprates, the following chapters will deal in more detail with model calcu-
lations that show the existence of stripes and how to detect them in STM,
ARPES and neutron scattering experiments.
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6 Stripes in the mixed state

Most of the material in this chapter has been published by the author
and P. Hedeg̊ard in Physical Review B 67, 134528 (2003)[106], and
in Journal of Low Temperature Physics 131(3), 281-285 (2003)[181].

6.1 Pinning of stripes in the mixed state

There exists substantial evidence that when suppressing the condensate of
the superconducting phase by an applied magnetic field the magnetic order
(possibly fluctuating) reappears inside the vortex cores. This is contrary to
conventional BCS superconductors in which the suppression of the order pa-
rameter inside the vortex cores is equivalent to locally raising the temperature,
i.e. entering the normal metallic Fermi liquid state. In the cuprates, suppres-
sion of the superconducting order parameter is equivalent to decreasing the
doping. The enhanced antiferromagnetic order inside the vortex cores results
in insulating core regions as opposed to the metallic Caroli-de-Gennes cores
of conventional superconductors. This was first predicted within the SO(5)
theory where the vortex state is a non-trivial topological texture of the five
component superspin vector[51, 182, 183].
Experimentally, the first evidence for an antiferromagnetic vortex state was
reported in the mixed state of YBCO by Vaknin et al.[184] Further elas-
tic neutron scattering measurements by Katano et al.[185] on LSCO crys-
tals also found enhanced antiferromagnetism when applying a large magnetic
field. More detailed recent measurements by Lake et al.[44] are discussed
below. Other probes such as µSR and NMR measurements on underdoped
YBCO under high magnetic fields show enhanced antiferromagnetic order in
the vicinity of the vortex cores[53, 186, 187]. In the NMR experiments the
Larmor frequency of the probed nucleus is a measure of their location relative
to the vortex core, allowing for site-sensitive NMR. The inverse spin-lattice
relaxation time 1/T1 is a measure of the spin fluctuations, and for 17O the
rate 1/T1 is seen to increase rapidly as the core region is approached and the
decrease inside the cortex cores. This indicates vortex-induced magnetic fluc-
tuations occurring outside the core and strongly suppressed density of states
inside the core region[188].
In the following I discuss in more detail two specific experiments that both
give evidence of more complex magnetic structures emerging near the cuprate
vortices.
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6.1.1 Tunnelling spectroscopy near a single vortex

Hoffman et al.[189] performed scanning tunnelling spectroscopy near the vor-
tex cores in the mixed state of slightly overdoped BSCCO. Specifically they
measured the real-space maps of the local density of states (LDOS) at a range
of energies both with and without an applied magnetic field. Additional spec-
tral weight induced by the applied field near the vortices can then be seen in
the difference function

SE2
E1

(x, y, B) =
E2∑

E1

(LDOS(E, x, y, B)− LDOS(E, x, y, B = 0)) dE. (6.1)

Experimental plots of S12
1 (x, y, 5T ) show that checkerboard patterns emerge in

the vicinity of the vortices. Fig. 6.1a shows the power spectrum of the Fourier
transform of S12

1 (x, y, 5T ) and 6.1b is the schematic version of 6.1a. Similar

Figure 6.1: Two dimensional power spectrum of S12
1 (x, y, 5T ) plotted as in-

tensity versus kx and ky: (A) Raw data, and (B) a schematic representation of
(A). The distance is measured in units of 2π/a where a is the lattice constant.
The atomic peaks (label A) are positioned at the k-space positions (0,±1) and
(±1, 0), B labels the surface supermodulation peaks, whereas the magnetic
field induced peaks C occur at (0,±1/4) and (±1/4, 0).

maps are obtained from measurements performed with other magnetic field
strengths. The important new result is the vortex-induced peaks seen near
(±1/4, 0) and (0,±1/4) in units of 2π/a (a denotes the lattice spacing). This
means that the checkerboard pattern in Fig. 6.1a has spatial periodicity 4a
and is oriented along the Cu-O bonds as indicated in Fig. 6.1b. The spatial ex-
tent for the LDOS modulations was found to be around 30 Å, which certainly
exceeds the core radius estimated to be around 8-10 Å. This means that at 5T
about 25 % of the surface is covered by the checkerboard electronic structure.
Finally, from the intensity distribution of the checkerboard peaks in Fig. 6.1b
it is clear that one direction corresponding to (±1

4
, 0) is preferred. This is

evidence for one-dimensionality in the origin of the checkerboard patterns.
More recently similar LDOS patterns have been observed in the absence of an
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applied magnetic field[75, 77, 78, 190], the origin of which is currently highly
controversial as discussed in the previous chapter on quantum interference ef-
fects near weak impurities. It is becoming evident that the STM measurements
on underdoped samples support evidence for charge order in addition to the
purely low-energy dispersing quantum interference patterns as expected from
a Fermi surface argument. Several authors have attempted to explain these
zero-field STM measurements[107, 192, 191, 193, 194]. Particularly, Podolsky
et al.[191] succeeded in modelling the detailed LDOS modulations by includ-
ing a weak dimerization of the hopping integral and the pairing amplitude.
Similar results can be obtained within the stripe model as will be shown in the
following chapter.

6.1.2 Elastic neutron scattering in a magnetic field

Here, I review recent neutron measurements performed in the mixed state of
La2−xSrxCuO4.
Near optimal doping the magnetic excitation spectrum is dominated by four
incommensurate peaks centered at (1

2
, 1

2
± δ) and (1

2
± δ, 1

2
) with δ ∼ 1

8
(in

units of 2π/a). This corresponds to a fluctuating magnetic density wave with
periodicity 8a oriented along the Cu-O bonds. In the superconducting phase
these fluctuations disappear at low energies (ω ≤ 7meV) due to the opening
of a spin gap[195].
The first evidence for field-induced magnetic order as seen by inelastic neutron
scattering on La2−xSrxCuO4 (x = 0.163) was reported by Lake et al.[196] They
found that upon applying a 7.5T field the intensity of the magnetic fluctua-
tions reappear at the same incommensurate positions, i.e. at (1

2
, 1

2
± δ) and

(1
2
± δ, 1

2
) with δ ∼ 1

8
. The sharpness of the peaks reveals a coherence over

distances of over 60 Å.
It is well known that in the underdoped region of La2−xSrxCuO4 superconduc-
tivity coexists with static magnetic order. How the static order develops with
an applied magnetic field was recent investigated by neutron diffraction[44].
Fig. 6.2a shows the strongly increased intensity at the incommensurate wave
vector in the superconducting state when applying a magnetic field of 14.5T.
The resolution-limited peaks correspond to an in-plane correlation length of
over 400 Å. This is greater than both the coherence length and the inter-
vortex distance. Therefore, throughout the bulk of these underdoped mate-
rials, d-wave superconductivity and incommensurate antiferromagnetism co-
exists. The temperature dependence of the field-induced signal is shown in
Fig. 6.2b. Clearly the incommensurate peaks are strongly enhanced at low
temperatures. Note that a zero-field response also exists and increases as the
temperature is lowered.
Similar field-induced elastic neutron scattering results have been obtained on
La2CuO4+y by Khaykovich et al.[45]
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Figure 6.2: Left: a) Magnetic elastic neutron intensity for underdoped
La2−xSrxCuO4 (x=0.10) as a function of scattering vector through an incom-
mensurate peak in zero magnetic field. b) Same as a) but in a magnetic field
of 14.5 T. Right: The square of the ordered spin moment as a function of mag-
netic field and temperature. At T=1.9K the lower figure shows the magnetic
field dependence of the moment. Adapted from Ref. [44].

6.1.3 Discussion

How may we understand these experiments? One explanation is that the an-
tiferromagnetic vortex cores act as pinning sites for charge- (as seen by STM)
and spin- (as seen by neutron scattering) density waves. In the previous chap-
ter I discussed how neodymium doped into La2−xSrxCuO4 leads to a bulk LTT
phase which ’traps’ the stripes. Here, similarly, the vortices and impurities can
locally pin the stripes.
By assuming that the superconducting phase of La2−xSrxCuO4 is proximate to
a bulk quantum phase transition to a state with coexisting superconductivity
and spin density wave order, Demler et al.[197, 198] and Kivelson et al.[199]
formulated a generalized Landau theory for the mixed state. This is well in
line with the emerging notion that cuprate systems are dominated (especially
in the underdoped regime) by competing order parameters. In this model,
in addition to the usual Ginzburg-Landau action SGL for the superconductor,
there is a bosonic contribution arising from the tendency of the system to form
magnetic order Mi(τ)

SM =
∫

dτ
∑

i

{1

2
|∂τMi(τ)|2 + c2|∇Mi(τ)|2 (6.2)

+ (r + v|Ψi|2)|Mi(τ)|2 +
u

2
(|Mi(τ)|2)2},
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where c, r, v, u are coupling constants that depend on doping and temperature.
As seen, the important quadratic term includes the coupling to the supercon-
ducting order parameter Ψ. The magnetic field couples to the superconducting
order through the term |(∇−iA)Ψ|2 in SGL. The resulting r−H phase diagram
is shown in Fig. 6.3: when H = 0 there is a quantum phase transition at rc

between the coexistence phase (〈M〉 6= 0, 〈Ψ〉 6= 0) to the purely superconduct-
ing state (〈M〉 = 0, 〈Ψ〉 6= 0). Since the coexistence state is separated from

rc r

H

SC

M

AB

D

C

SC+

SDW

SDW

"Normal"

Figure 6.3: r − H phase diagram obtained from the saddle-point equations
of the total action SGL + SM in the low temperature and large N limit, where
M → M1,M2, ...,MN (From Demler et al.[197]).

the superconducting state by the line defined by H = (r−rc)/ ln[1/(r−rc)], it
follows that for a system in the superconducting phase, say along the vertical
arrow in Fig. 6.3, a modest magnetic field H (modest compared to the large
Hc2) drives the system into the coexistence state. Since smaller amount of
doping corresponds to a reduced coupling r, this model agrees with the experi-
mental finding of static spin order in the superconducting phase of underdoped
La2−xSrxCuO4. In this way the application of a magnetic field is similar to
adding neodymium as discussed previously: both move the system into the
stripe ordered phase.
The intensity I(H) dependence of the neutron diffraction signal on the ap-
plied magnetic field is predicted to be, I(H) = I(0) + C2(H/Hc2) ln(Hc2/H)
(with C2 being some constant) which from the full line in Fig. 6.2a is seen to
fit (by tuning C2 only) the experimental data quite well. Within this model,
the peculiar logarithmic dependence arises from the spatial dependence of the
superconducting order parameter Ψi outside the vortex cores caused by the
superflow, |Ψi| = 1− 1/(2r2

i ), so that 〈|Ψ2
i |〉 = 1− (H/Hc2) ln(Hc2/H).

It remains unclear: 1) why the spin ordering prefers a periodicity of eight lat-
tice constants a, and 2) whether the pinned-stripe picture agrees with the STM
measurements by Hoffman et al[189]? In the following section I discuss the lat-
ter question by assuming a 8a spin ordering and calculate the corresponding
LDOS surrounding the magnetic vortex.
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6.2 Pinned stripes around vortex cores

In this section we discuss recent elastic neutron scattering and scanning tun-
nelling experiments on High-Tc cuprates exposed to an applied magnetic field.
Antiferromagnetic vortex cores operating as pinning centers for surrounding
stripes is qualitatively consistent with the neutron data provided the stripes
have the antiphase modulation. Within a Green’s function formalism we study
the low energy electronic structure around the vortices and find that besides
the dispersive quantum interference there exists a non-dispersive checkerboard
interference pattern consistent with recent scanning tunnelling measurements.
Thus both experiments can be explained from the physics of a single CuO2

plane.

The competing orders in the High-Tc cuprates remain a strong candidate for
explaining some of the unusual features of these doped Mott insulators[135,
136, 154, 160]. The competition between superconducting order and antifer-
romagnetic order has recently attracted a large amount of both experimental
and theoretical attention. In particular, experiments in the mixed state have
revealed an interesting coexistence of these order parameters.
Elastic neutron scattering results on La2−xSrxCuO2 (x=0.10) have shown that
the intensity of the incommensurate peaks in the superconducting phase is
considerably increased when a large magnetic field is applied perpendicular
to the CuO2 planes[44]. This enhanced intensity corresponds to a spin den-
sity periodicity of eight lattice constants 8a0 extending far outside the vor-
tex cores. Nuclear magnetic resonance experiments have shown evidence for
antiferromagnetism in and around the vortex cores of near-optimally doped
Tl2Ba2CuO6+δ[188]. Furthermore, muon spin rotation measurements from the
mixed state of YBa2Cu3O6.50 find static antiferromagnetism in the cores[53].
Consistent with these findings scanning tunnelling microscopy (STM) measure-
ments performed on the surface of YBa2Cu3O7−δ and Bi2Sr2CaCu2O8+x[50,
62]have revealed very low DOS inside the vortex cores[51, 200, 201]. Thus,
there is increasing evidence for antiferromagnetic correlations in the vortex
cores of the under- and optimally-doped regime of the hole doped cuprates.
More recent STM measurements of slightly overdoped Bi2Sr2CaCu2O8+x have
shown a checkerboard halo of the local density of states (LDOS) around the
vortex cores[189]. This LDOS modulation observed at low energy |ω| < 12
meV was found to have half the period of the spin density wave (SDW) ob-
served by neutron scattering (i.e. four lattice constants 4a0), and to be oriented
along the crystal axes of the Cu-O plane.
The neutron experiments have been analyzed within phenomenological mod-
els that assume close proximity to a quantum phase transition between or-
dinary superconductivity and a phase with antiferromagnetism or a phase
where superconductivity coexists with SDW and charge density wave (CDW)
order[183, 197, 198, 194]. In these models the suppression of the superconduct-
ing order inside the vortex cores allows the competing magnetic order to arise.
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Demler et al.[197] found that around the vortices the circulating supercurrents
can similarly weaken the superconductivity and induce a SDW.
The field-induced checkerboard LDOS pattern in the mixed state has been
recently considered within the framework of several models[94, 193, 194, 202,
203, 204]. In this paper we add to the discussion by calculating the LDOS in
regions where a d-wave superconductor has been perturbed by induced mag-
netism. First, however, we note that a checkerboard spin modulation is incon-
sistent with the elastic neutron scattering experiments by Lake et al.[44] on
La2−xSrxCuO2 (x=0.10). For example, assuming that the checkerboard CDW
is intrinsic to the Cu-O planes where it gives rise to a static SDW checker-
board pattern (Fig. 6.4a), the expected neutron diffraction pattern is shown
in Fig. 6.4b. As is evident there is a 45 degree rotation of the four main(a) (b)

Figure 6.4: a) Real space picture of the spin structure in a checkerboard
spin geometry. Black (white) represent spin up (down) while gray reveals the
superconducting background. In order to simulate the induced incommensu-
rability each island of antiferromagnetic spins is out of phase with its nearest
neighbor. b) Fourier spectrum of the spin checkerboard structure shown in a).

incommensurate peaks and a plaid pattern of the higher harmonics. The ro-
tated incommensurability (with the correct absence of an increased signal at
(π, π)) shows that this spin structure does not apply to LSCO for doping levels
close to x = 0.10. It is interesting to note that a rotation of the incommen-
surable peaks at low dopings (x < 0.055, close the insulator-superconductor
phase transition) has been observed in LSCO[145]. However, there is no sim-
ple way to create an antiphase spin geometry without frustrating the spins
at low dopings where droplets of charge in an antiferromagnetic background
is the expected situation[205]. However, this might be possible in the highly
overdoped regime where the droplets have been inverted to separate magnetic
islands. In that case a 45 degree rotation of the incommensurable peaks would
be consistent with a checkerboard spin pattern. In this light it would be very
interesting to perform an experiment similar to Lake et al.[44] on highly over-
doped LSCO. In the case of a connected antiferromagnetic background one
would also expect a large weight at (π, π).
The physical picture we have in mind is presented in Fig. 6.5a. In this real
space picture an antiferromagnetic core (center) has pinned a number of sur-
rounding stripes. This pinning effect of SDW by magnetic vortex cores is a
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(a) (b)

Figure 6.5: a) The idealized version of a real space spin configuration consis-
tent with our physical picture. b) Fourier spectrum of the spin density order
from a). Almost all the induced weight is located in the four incommensurable
peaks.

well-known effect from numerical studies[202].
Both experimentally[137] and theoretically[135, 154, 197, 207] we expect an
antiphase modulation of the induced antiferromagnetic ring domains. Indeed
as seen in Fig. 6.5b the related diffraction pattern is qualitatively consistent
with measurements by Lake et al.[44] of enhanced intensity at the incommen-
surate points.
Without an applied magnetic field, only disorder can produce a similar pin-
ning effect of the fluctuating stripes[190]. In addition to the creation of more
pinning centers when applying a magnetic field, the single site impurities are
expected to pin much weaker than the large “impurities” created by the flux
lines. This is qualitatively consistent with the measurements by Lake et al.[44]
of the temperature dependence of the increased magnetic signal for different
magnetic field strengths.
This leads to the question of the electronic structure around extended magnetic
perturbations in d-wave superconductors. The many experiments indicating
coexistence of d-wave superconductivity and antiferromagnetism mentioned
above motivate studies of simple models that enable one to calculate the LDOS
in such regions.
The model Hamiltonian defined on a 2D lattice is given by

H0 = − ∑

〈n,m〉σ
tnmĉ†nσ ĉmσ − µ

∑
nσ

ĉ†nσ ĉnσ (6.3)

+
∑

〈n,m〉

(
∆n,mĉ†n↑ĉ

†
m↓ + H.c.

)

Hint =
∑
n

Mn

(
ĉ†n↑ĉn↑ − ĉ†n↓ĉn↓

)
(6.4)

where ĉ†nσ creates an electron with spin σ at site n and µ is the chemical
potential. The staggering is included in Mn = (−1)n M . The strength of
the antiferromagnetic and superconducting coupling is given by M and ∆,
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respectively.
As discussed previously, the model in Eqn. (6.3)-(6.4) can be viewed as the
mean-field Hamiltonian of a t − U − V Hubbard model, where the nearest
neighbor attraction V gives rise to the d-wave superconductivity. In contrast
the on-site Coulomb repulsion U only causes the antiferromagnetism. In this
section we do not diagonalize Ĥ in the Bogoliubov-de Gennes scheme since such
lattice calculations require unrealistically large magnetic field values. Instead,
we solve the Dyson equation exactly by inverting a large matrix. This approach
has previously been utilized extensively to study various short-ranged impurity
effects in superconductors[105], but can also be used for extended perturbations

embedded in a Ĝ0 medium. Here Ĝ0 is the Green’s function of the parent
medium, in this case a d-wave BCS superconductor. This Green’s function is
given by

Ĝ−1
0 (p, ω) = (ω + iδ)τ0 − ξpτ3 −∆pτ1 (6.5)

where τν denote the Pauli matrices in Nambu space and the gap function
∆p = ∆0

2
(cos (px)− cos (py)). The lattice constant a0 is set to unity and

ξp = εp − µ with

εp = −2t (cos (px)+ cos (py))−4t′ (cos (px) cos (py)) . (6.6)

Here t(t′) refers to the nearest (next-nearest) neighbor hopping integral and µ
is the chemical potential. We perform the 2D Fourier transform of G0(p, ω)
numerically by utilizing a real space lattice of 1000 × 1000 sites and a quasi-
particle energy broadening of δ = 1.0meV.
To simulate the situation around optimal doping of the hole doped cuprates the
following parameters are chosen: t = 300meV, t′ = −120meV, ∆0 = 25meV,
µ = −354meV. When the real space domain affected by Hint involves a finite
number of lattice sites N ×N we can solve the Dyson equation exactly to find
the full Greens function. Writing the Dyson equation in terms of real-space
(and Nambu) matrices it becomes

G(ω) = G0(ω)
(
1−HintG0(ω)

)−1
. (6.7)

The size of the matrix
(
1−HintG0(ω)

)
is given by (d×N2)× (d×N2) where

d is an integer equal to the number of components in the Nambu particle-hole
spinor and N denotes the total number of lattice sites affected by the magnetic
perturbation. Therefore a real-space lattice with 25 × 25 sites affected by
perturbations results in a (1250× 1250) matrix to be inverted.
Knowing the full Greens function we obtain the LDOS

ρ(r, ω) = − 1

π
Im [G11(r, ω) + G22(r,−ω)] , (6.8)
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which is proportional to the differential conductance measured in the STM
experiments.
We have checked that the above approach reproduces the expected LDOS for
unitary non-magnetic impurities in d-wave superconductors[85]. Also in this
one-impurity case we reproduce the constant-energy LDOS maps recently cal-
culated by Wang et al.[73]10

Motivated by the qualitative agreement of the spin structure in figure 6.5a
with the neutron data, we assume that this represents the induced magnetism
around the vortices and calculate the LDOS in this striped environment. To
this end we simply restrict the sum in Eqn. (6.4) to include the sites within
these magnetic regions. The system is depicted in figure 6.5a where the grey
background reveals the underlying superconducting state. Again the black
(white) squares correspond to the sites affected by the staggered magnetic
perturbation.
Figures 6.6 and 6.7 show real-space maps of the LDOS summed over a small
energy window from -12 meV to +12 meV in intervals of 1meV for different
strengths of the antiferromagnetic perturbation M . The vortex center is lo-
cated in the center of the images. Fig. 6.6 (6.7) is calculated with (without)
the antiphase modulation of the adjacent stripes. Thus, the spin configuration
of figure 6.5a corresponds to the images in figure 6.6. The clear difference
between the LDOS images of figures 6.6 and 6.7 reveals that the STM tech-
nique can be used to determine this phase relation. It is clearly seen from both
figures 6.6 and 6.7 that the low energy LDOS structure eventually becomes
ring-shaped as the magnitude of M increases. In this limit the pinned stripes
operate as steep potential walls. Figures 6.6a and 6.6b seem to display the
closest resemblance to the experimental data[189] which indicates that the in-
duced magnetism is very weak. In figure 6.8 we show the Fourier transform of
several constant energy LDOS images for M = 100 meV with the antiphase
spin modulation included. In these figures the Fourier component q = 0 is lo-
cated at the center. The detailed energy dependence of these images is caused
by quasi-particle interference effects as first pointed out by Wang et al.[73] in
the case of a single impurity. The dispersive features of the images presented in
figure 5 are dependent on the microscopic parameters and the associated Fermi
surface. However, it is also evident that the ringshaped stripes surrounding
the vortex cores give rise to non-dispersive intensity around q = 2π

a0
(±1/4, 0)

and q = 2π
a0

(0,±1/4). This in turn leads to the checkerboard pattern in the
low energy sums of the LDOS displayed in figures 6.6 and 6.7 whereas the
dispersive features fade away in these summed LDOS images[190]. We have
confirmed this fact by identifying similar non-dispersive features in the LDOS
around configurations with different periodicity. For instance a structure with
2a0 charge periodicity leads to non-dispersive intensity around q = 2π

a0
(±1/2, 0)

and q = 2π
a0

(0,±1/2). In the above calculation we have not yet included the

10Naturally the full agreement is only obtained when using the same quasi-particle energy
ξp as Wang and Lee[73].
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(a) (b)

() (d)

Figure 6.6: Real-space LDOS summed from -12 meV to +12 meV for: a) M
= 35 meV, b) M = 100 meV, c) M = 200 meV, d) M = 300 meV.

Doppler shift from the circulating supercurrents or the gap suppression close
to the vortex core. As pointed out by Polkovnikov et al.[94] the former effect
is not expected to produce significant changes of the four-period modulations.
As for the latter we have checked that a gap suppression only leads to minor
quantitative changes in the dispersive part of the LDOS. Finally, Podolsky et
al.[191] discussed scenarios of weak translational symmetry breaking and found
that in order to explain quantitatively the zero-field STM results by Howald
et al.[190] one needs to include dimerization, the modulation of the electron
hopping. This dimerization will also produce quantitative changes, but not al-
ter the qualitative conclusion that pinned stripes produce checkerboard LDOS.

In summary we have discussed the phenomenology of a simple physical picture
of pinned stripes around vortex cores which are forced to be antiferromagnetic
by an applied magnetic field. The induction of magnetic striped race-tracks
around the core is consistent with the neutron diffraction spectra observed on
LSCO with a doping level near x=0.10. As expected this is only true if the
stripes are out of phase with their neighbors in the usual sense. In materials
where a checkerboard spin pattern is relevant (possibly Bi2212 or overdoped
LSCO), we show that a 45 degree rotation of the main incommensurable peaks
is to be expected. Finally we studied the electronic structure around the vor-
tices and identified a non-dispersive feature in the LDOS arising from the
induced static antiferromagnetism. This feature gives rise to the checkerboard
LDOS observed experimentally by Hoffman et al.[189] Thus both the STM
measurements and the enhanced intensity of the incommensurable peaks ob-
served by neutron diffraction can be ascribed to the phenomena of a single
CuO2 plane.



104 Coexistence of Magnetic and Superconducting Order...

(a) (b)

() (d)

Figure 6.7: Real-space LDOS summed from -12 meV to +12 meV for: a) M
= 35 meV, b) M = 100 meV, c) M = 200 meV, d) M = 300 meV.

(a) (b)
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Figure 6.8: Fourier images of the constant energy LDOS maps for M = 100
meV and a) ω = 3 meV, b) ω = 6 meV, c) ω = 9 meV, d) ω = 12 meV.
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7 Stripes and photoemission experiments

Some of the material in this chapter has been published by the au-
thor and P. Hedeg̊ard in Solid State Communication 121/6-7, 395
(2002), and Physica C 57, 8127 (1998).

7.1 The photoemission technique and a summary of im-
portant ARPES results

7.1.1 The technique of photoemission

In 1887 F. Hertz discovered that a spark between two electrodes occur more
readily when the cathode is illuminated with ultraviolet light. Subsequently,
Thomson and Lenard identified the the phenomenon as the emission of elec-
trons. This effect is called the photoelectric effect. The independence of the
energy distribution of the photoemitted electrons on the intensity of the in-
cident light was explained by Einstein. The new picture was one where the
light consists of discrete wave packets (photons) that individually impact the
electrons and impart them with their full energy. This initiated the early parts
of the quantum revolution.
Today, the technique of angular resolved photoemission spectroscopy (ARPES)
is a powerful probe of the electronic structure in solid state materials. It has
been improved considerably during the last decade and is currently capable of
providing high momentum and energy resolved spectra. By its very nature the
ARPES technique is surface sensitive.
In an typical ARPES experiment on a 2D material monochromatic light illu-
minates a sample and two quantities are measured: the emission angles of the
photoelectron (θ, ϕ) and the its kinetic energy K. An electron is only emitted
if the incident photon energy is greater then the so-called work function of the
particular sample. If φ denotes this work function and hν the incident photon
energy we have

K = hν − φ− Eb, (7.1)

kx =
√

2mK/h̄2 sin θ cos ϕ, (7.2)

ky =
√

2mK/h̄2 sin θ sin ϕ, (7.3)

kz =
√

2mK/h̄2 cos θ, (7.4)
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where k denotes the momentum of the photoelectron. From these relations
one can work backwards to determine the binding energy Eb and crystal mo-
mentum q of the electrons in the solid. For instance, momentum conservation
parallel to the surface implies that in the extended zone scheme, q‖ = k‖,
since the momentum of the incoming photons are negligible at the typical
photon energies used (∝ 10 − 30 eV). In general kz is not simply related to
the z component of the electron momentum in the solid due to momentum
non-conservation perpendicular to the surface. The work function creates a
potential perpendicular to the surface resulting in a surface force. For layered
compounds, however, there is only negligible dispersion of the electrons in this
direction, and the energy dependence on q can be mapped out.
With fixed incident photon energy and detector angles θ and ϕ, scanning the
kinetic energy results in a so-called energy distribution curve (EDC) in which
the photocurrent intensity is obtained as a function of binding energy. Trac-
ing the intensity maximum as a function of angle allows one to map out the
dispersion of the electrons in the solid. It is also possible to fix the energy
and obtain the intensity as a function of angle (momentum) which results in
a so-called momentum distribution curve (MDC).
But what really happens when the electron is emitted from the surface? In
fact there exists no exact tractable theory of the photoemission process and
the justifications for the approximations below really lies in the fact that the
resulting equations manage to describe the measured data quite well. Usually
one considers the emission process as a three step model (developed by Spicer
in the early 1960s):

1. the optical excitation of the bulk electron.

2. the transport of the electron to the surface.

3. the transmission form the solid into the vacuum.

The resulting photoemission intensity I is then the product of the correspond-
ing three probabilities. Usually the second step is assumed proportional to
an effective mean free path which depends on the probability of an electron
making it to the surface without any scattering events. If the electron scat-
ters inelastically it may excite more electrons, generating what is known as
secondary electrons. The final escape into the vacuum is simply taken to be
either 0 or 1 depending upon whether or not the electron has enough energy to
overcome the work function. Hence the first step, the optical excitation of the
crystal electron contains all the interesting information about the electronic
structure of the solid. For this excitation we employ Fermi’s golden rule

I ∝ 2π

h̄

∑

i,f

|〈ΨN
f |Hint|ΨN

i 〉|2δ(EN
f − EN

i − hν), (7.5)

where ΨN
i , and ΨN

f denote the initial and final states of the N -particle system

with energies EN
i = EN−1

i + Eb and EN
f = EN−1

f + K, respectively. The final
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state ΨN
f includes the photoelectron. The electron-photon interaction is given

by, Hint = e
2mc

(A · p + p · A), p being the momentum operator and A is
the electromagnetic vector potential. Within the sudden approximation it is
assumed that the relaxation effects of the excited N − 1-particle system does
not have time to occur before the electron leaves the solid. In other words the
photoelectron does not interact with the remaining N−1-particle system. This
approximation is only justified at high photon energies and is not obviously
valid at the range of 10 − 30eV typically used in the experiments mentioned
below. However, within this approximation the final photoemission intensity
can be written as

I(k, ω) ∝ ∑

i,f

|Mi,f (k)|2A(k, ω)f(ω), (7.6)

where Mi,f (k) is a momentum dependent matrix element which depends also
on the polarization and frequency of the incident light. The energy of the elec-
tron compared to the Fermi level is denoted by ω. In Eqn. (7.6), f(ω) =
(1 + exp(ω/kT ))−1 denotes the Fermi distribution function and A(k, ω) is
the single particle spectral function indicating that the output intensity at
(k, ω) is proportional to the probability of an electron occupying a state in
the solid with momentum k and energy ω. Since A(k, ω) = − 1

π
ImG(k, ω) =

− 1
π
Im [ω − ξ(k)− Σ(k, ω)]−1, it is clear that the ARPES spectra provide in-

formation on the holy grail a.k.a. the self-energy Σ(k, ω). In the sudden
approximation the matrix element is usually assumed constant or slowly vary-
ing, i.e. Mi,f (k) = M . This assumption can then be checked by measuring
spectra in several Brillouin zones and by varying the incident photon polariza-
tion and frequency.
In this way an angular resolved photoemission experiment probes the occu-
pied part of the single particle spectral function. Thus, for a Fermi liquid we
expect the EDC’s to trace out the broadened quasi-particle delta function at
the band energies. Of course, in a strongly correlated material, one may worry
that interactions between the excited electron and the photohole and the re-
maining N − 1-particle system cause modifications to the above expressions.
For a further discussion of these issues the reader is referred to more extensive
works such as Lynch and Olson and references therein[208].
In the following subsections I discuss some of the salient features of ARPES
experiments on BSCCO and LSCO. Since there exists an enormous amount
of photoemission data on these materials (particularly BSCCO) I restrict the
discussion to features that are relevant for the following sections in this chap-
ter.
The BSCCO materials have been extensively studied by ARPES owing to the
nice and stable cleavage surfaces in ultrahigh vacuum[210, 211, 212, 213, 214].
But the doping range available is restricted to around optimal doping (there
is recent progress in making very underdoped BSCCO samples, see K. Tanaka
et al.[209]). On the other hand, the LSCO ARPES data has covered the full
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doping range with reproducible data of the evolution of the Fermi surface,
the pseudogap, and the band dispersion[215, 216, 217, 218]. Furthermore, the
LSCO systems have a simple crystal structure with single CuO2 planes and
hence no complications from superstructure and bi-layer effects.

7.1.2 BSCCO

The BSCCO high-Tc material comes in a family of three different crystals with
single- (Bi-2201) double- (Bi-2212) and triple-layer (Bi-2223) CuO2 planes.
The electronic structure of the double-layer compounds Bi-2212 is among the
most extensively studied subjects in condensed matter physics. By ARPES
the Fermi surface topology, the bi-layer splitting (for Bi-2212), the supercon-
ducting gap, and the pseudogap have been investigated in great detail. For
recent reviews I refer to Damascelli et al.[219], and Campuzano et al.[220], and
Norman and Pepin[221].
Let us restrict the discussion to the data obtained in the superconducting state.
There the salient results are: 1) the opening of a d-wave pairing gap, and 2)
the appearance of a sharp coherent peak near the (π, 0) point around optimal
doping. The latter feature is seen in Fig. 7.1: as the temperature is lowered the
broad normal state spectrum develops into a peak-dip-hump structure. This

-0.8 -0.6 -0.4 -0.2 0 0.2

NS
SC

E (eV)

dip

hump

peak

Figure 7.1: ARPES spectra at (π, 0) for optimally doped BSCCO in the
normal state (NS) and superconducting state (SC). From Norman et al.[238]

reveals a strong increase in the lifetime of the quasi-particles below Tc. The su-
perconducting peak around (π, 0) fades away when decreasing the doping[230].
The peak-dip-hump structure was first observed in tunnelling experiments[222],
and was initially interpreted in terms of bilayer splitting with the hump (peak)
caused by the bonding (anti-bonding) band.
Below, we show within the SO(5) model that the peak-dip-hump feature arises
due to the coupling between the electrons and the magnetic pseudo-Goldstone
mode existing in the superconducting state (see also Appendix .2). The energy
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of this π-mode and the fact that it is commensurate in BSCCO, i.e. centered
at (π, π), agrees well with the ARPES measurements. For instance, the quasi-
particles connected by a (π, π) translation are centered around the antinodal
points (0,±π) and (±π, 0), which is precisely the location where the dip fea-
ture is strongest.

7.1.3 LSCO

The low-temperature photoemission studies of La2−xSrxCuO4 was initiated by
Ino et al.[215, 216, 217] who reported very different electronic structure from
that in BSCCO: 1) the Fermi surface undergoes a change from hole-like and
centered at (π, π) at optimal- and underdoping to electron-like and centered at
(0, 0) in the overdoped regime. 2) along the nodal direction (0, 0) → (π, π) the
spectrum near (π/2, π/2) is very broad compared to a sharp peak in BSCCO.
3) at the antinodal point (π, 0) as the doping is increased, a broad high-energy
feature in the EDC’s slowly evolve into a peak near the Fermi level. The latter
is notorious for its very flat dispersion when moving away from (π, 0). This
flat feature never crosses the Fermi level for x < 0.2 and moves to higher bind-
ing energies with decreasing doping concentration. There is no experimental
evidence for a peak-dip-hump EDC lineshape as seen in BSCCO.
It was proposed by Ino et al.[215, 216, 217] that the stripe picture may explain
the ARPES data. For instance, along the antinodal direction the high-energy
feature should result from the antiferromagnetic ordered regions (exhibiting a
Mott gap) and the emerging low-energy peak results from the mid-gap states
arising from the charged stripes. Below, I show in more detail what is the im-
portance of the mid-gap induced states in the spectral weight of stripe ordered
systems.
In order to obtain a better understanding of the influence of stripe order-
ing tendency on the electronic structure, Zhou et al.[223, 224] studied the
neodymium doped compound La2−x−yNdySrxCuO4 where static stripes are
known to thrive. Fig. 7.2a shows the spectral weight obtained by integrat-
ing the spectral function A(k, ω) over an energy window ∆ω below the Fermi
level, I(k) =

∫
∆ω dωA(k, ω). In Fig. 7.2, ∆ω = 30meV. Clearly, at this

doping level, the spectral weight is dominated by intensity at the antinodal
regions as expected from the low-energy flat band located near these points.
Note from Fig. 7.2b the strong similarity between the La2−x−yNdySrxCuO4

and the La2−xSrxCuO4 spectra. This is strong evidence for a common origin
of the electronic structure which, in turn, is known to be stripe ordered in
La2−x−yNdySrxCuO4.
When the integration window is increased, the spectral weight moves to-
ward the first Brillouin zone center Γ, i.e. the momentum distribution func-
tion, n(k) =

∫∞
−∞ dωA(k, ω), consists of straight line segments bounded inside

|kx| < π/4 and |ky| < π/4. This suggests two Fermi surfaces defined by
|kx| = π/4 and |ky| = π/4 which agrees with 1D stripe domains oriented along
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Figure 7.2: Spectral weight obtained by integrating the ARPES spectra over
30meV below the Fermi level for: a) La2−x−yNdySrxCuO4 (y = 0.6, x = 0.15)
and b) La2−xSrxCuO4 (x = 0.15)[224]. c-d) show the corresponding sym-
metrized weight within the first Brillouin zone. e-f) shows the results of Ref.
[225].

the y- and x-axis, respectively. The particular value of π/4 corresponds to
quarter filling of the charge stripe domains since from neutron scattering we
know that the charge periodicity is close to 4a. Furthermore, within the stripe
picture, it follows that no quasi-particle peak corresponding to a Fermi surface
crossing should emerge at the nodal point (π/2, π/2).
As seen from Fig. 7.2, however, the antinodal regions are connected by a
ghosty white segment which is evidence for nodal weight not expected within
a perfectly aligned array of stripes. Due to matrix element effects this nodal
weight appears much stronger in the second Brillouin zone[226]. Below, it will
be shown that stripe disorder naturally induce weak nodal weight. Finally
note from Fig. 7.2c-d that the overall spectral weight is remarkably similar
to what one would expect from a simple hole-doped tight-binding band, even
though this originates from a completely different homogeneous model.

7.2 SO(5) theory and the peak-dip-hump feature

In this section we consider the effects of a strong electronic coupling to a collec-
tive mode within the SO(5) theory for high-Tc superconductors. When applied
to the superconducting state the resulting spectral function is shown to have
a peak-dip-hump structure due to renormalization effects. The magnitude of
the renormalization depends on the strength of the SO(5) coupling parameter.
Our model is phenomenological and allows only a qualitative description but
the approach shows how the mode coupling arises in the SO(5) theory due to
fluctuations allowed by the higher symmetry group.
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During the last decade of intense study of the high-Tc superconductors (HTSC)
many of the spectacular experimental discoveries have come from high reso-
lution inelastic neutron scattering (INS) and angular resolved photoemission
spectroscopy (ARPES). In principle these techniques measure the spin sus-
ceptibility and the spectral function, respectively, and can therefore reveal
many-body effects in the electronic self-energy. In particular, the sharp neu-
tron scattering resonance (the π-mode) observed in the superconducting state
of the bi-layer cuprates YBCO [227] and Bi2212 [228] at the (π, π) point of
the Brillouin zone (BZ) has ignited a large amount of both theoretical and ex-
perimental activity. On the ARPES side, important contributions include the
discovery of the superconducting gap structure, existence and d-wave structure
of the pseudogap state and determination of the Fermi Surface (FS)[229]. How-
ever, within the last few years the improved momentum and energy resolution
of the photoemission data have created a fascinating bridge to other experi-
mental techniques and put severe constraints on microscopic models[13, 230].
A good example of this development is the (ARPES) discovery of the so-
called peak-dip-hump structure of the energy distribution curve (EDC) for
T < Tc and its possible relation to the dispersion kink in the superconducting
state[231, 232, 233]. This feature was initially observed in underdoped Bi2212
near the M=(π, 0) point of the BZ but has recently also been seen in the su-
perconducting state of YBCO[234]; exactly the materials where the π-mode is
known to exist at T < Tc.
As pointed out by Shen and Schrieffer the origin of the peak-dip-hump feature
has a natural explanation in terms of a strong coupling of the photohole to
a collective mode with a higher energy[235]. The energy scale of the feature
and its doping, temperature and momentum dependence led several groups to
the conclusion that the relevant mode was in fact the π-mode already seen by
INS[236, 237, 238, 239].
One approach to the problem is to use a phenomenological model based on
the spin susceptibility χ(q, ω) extracted from the INS data. The electronic
self-energy and the resulting spectral function A(q, ω) can then be shown to
fit nicely with the energy distribution curves measured by ARPES[240].
In this section we also perform a phenomenological calculation, but impor-
tantly for a strongly correlated system, our starting point is completely dif-
ferent since we assume an approximate SO(5) symmetry in the underdoped
regime. We do not enter the discussion of the fundamental applicability of
the SO(5) model and restrain our discussion to the superconducting state
where well-defined quasi-particles are known to exist along the ostensible Fermi
surface[12]. However, it is interesting that the SO(5) prediction of antiferro-
magnetic vortex cores recently have been observed in neutron scattering ex-
periments by Lake et. al.[196, 241]. In the light of these developments we find
it interesting to investigate the ARPES data within the SO(5) model. Note,
however, that since ARPES is a surface sensitive probe one should be very
careful in comparing calculated spectral functions with the experimental data.
An example of a further precaution is the recent observation by Pan et. al.[242]
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that cleaved surfaces of BSCCO 2212 can be inhomogeneous in the sense that
several terraces of atomic planes are revealed upon cleavage.
However, below we assume that ideal ARPES experiments can be performed
and address the peak-dip-hump issue in a qualitative calculation starting from
a fully SO(5) symmetric Hamiltonian. In the superconducting state, we show
how the spontaneous breaking of the higher symmetry naturally leads to a cou-
pling with a mode which in the SO(5) model is a spin triplet particle-particle
mode centered at Q = (π, π)[243]. In a typical strong coupling approach we
continue by deriving a set of SO(5) generalized Eliashberg equations. A sim-
ple solution of these equations allows us to determine the resulting spectral
function which exhibits a clear peak-dip-hump structure.

7.2.1 Model

Originally the SO(5) model was proposed as a superspin non-linear sigma
model with emphasis on the phase diagram and the collective (bosonic) modes
of the system[182]. For more details about the foundation of the SO(5) model
I refer to Appendix .2. The extension to the fermionic sector of the SO(5)
model has been clarified by work of Rabello et al.[244], Henley[245], and Eder
et al.[246]. Besides providing the foundation for studying the Fermi sector it
was shown that the well known electronic spectrum of the antiferromagnetic
(AF) and the d-wave superconducting (dSC) phases can be incorporated into
a SO(5) scheme.
As utilized earlier[51, 244] a SO(5) symmetric microscopic Hamiltonian can be
written as

H = H0 +Hint =
1

2

∑
p

εpΨ†
pΨp (7.7)

− V
∑

p,p′,a
(wpΨ†

pΓaΨp+Q)(wp′Ψ
†
p′Γ

aΨp′−Q),

with εp = −t(cos px +cos py) and wp = | cos px− cos py| (lattice constant equal
to unity). The four component spinor Ψp is given by

Ψp = {cp↑, cp↓, φpc†−p+Q↑, φpc†−p+Q↓}. (7.8)

and V is our new single “grand unified” coupling parameter. The interac-
tion term Hint is a scalar product of two SO(5) vectors and hence manifestly
SO(5) invariant. The five 4× 4 Dirac Γa-matrices are given in terms of tensor
products of the standard 2 × 2 Pauli matrices: Γ1 = σ2 ⊗ σ2, Γ2 = I ⊗ σ1,
Γ3 = σ3 ⊗ σ2, Γ4 = I⊗ σ3, and Γ5 = σ1 ⊗ σ2 (see Ref. [244] and Appendix .2
for details).
These definitions constitute a spinor representation of a closed SO(5) Lie alge-
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bra when φp = sign(cos px − cos py)[245]. In this representation the symmetry

generators become Lab = 1
8

∑
p Ψ†

pΓabΨp with Γab = −i
[
Γa, Γb

]
, while the

components of the SO(5) order parameter na (the superspin) can be writ-
ten as na = 1

4

∑
wpΨ†

pΓaΨp+Q. Though written in a very compact form,
na is nothing but a five vector composed of the real and imaginary part of
the superconducting order parameter (a=1,5) and the antiferromagnetic or-
der parameter (a=2,3,4). In the superconducting state where the superspin is
confined to the 1-5 hyperplane it is easy to show that the mean field form of
Hint reduces to a dx2−y2-wave BCS superconductor which is known to provide
a good description of the dSC state of the high-Tc cuprates11.
Since we want to explain a phenomenon in the dSC state, we start from a
mean field level and introduce the fields ∆a

p = −16V wp
∑

p′ wp′〈na
p′〉 allowing

us to write the Hamiltonian H as[247]

H′
0 =

∑

p,p′
Ψ†

p

(
1

2
εpδp,p′ +

∑
a

∆a
pΓaδp,p′+Q

)
Ψp′ , (7.9)

In agreement with Ref. [244] this leads to the Green’s function12

G0(p,p′; ipn) =
(ipn + εp)δp,p′ +

∑
a ∆a

pΓaδp,p′+Q

(ipn)2 − ε2
p − (∆a

p)2
, (7.10)

where pn is a fermion Matsubara frequency. In the superconducting state
the gap function ∆sc

p ≡ ∆0φpwp = ∆0(cos px − cos py) is determined self-

consistently by the gap equation 1 = 16V
∑

p
w2

p

2Ep
with E2

p = ε2
p + (∆sc

p )2.

Now, lacking a Migdal theorem to guarantee convergence we continue by simply
assuming that the coupling parameter V is sufficiently small that a perturba-
tion approach converge. Below, the numerical solution will prove that indeed
the qualitative form of the spectra is stable with respect to variations of the
coupling parameter V . Thus, following a usual strong coupling approach we
make an Ansatz for the general form of the self-energy[247]

Σ(p,p′; ipn) = (1−Z(p, ipn)) ipnδp,p′+
∑
a

∆a
pΓaδp,p′+Q. (7.11)

Inverting the Dyson equation G−1 = G−1
0 − Σ gives

G(p,p′; ipn) =
(Zipn + εp)δp,p′ +

∑
a ∆a

pΓaδp,p′+Q

(Zipn)2 − ε2
p − (∆a

p)2
. (7.12)

11In the antiferromagnetic state it is shown in [244] how the introduction of an anisotropy
term between the magnetic and superconducting sectors removes the d-wave gap nodes in
the single-particle excitation spectrum.

12The delta functions are kept explicit in this equation to refer to different blocks of the
matrix.
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We now consider the superconducting state where the SO(5) symmetry allows
antiferromagnetic oscillations “out of the valley of the Mexican hat” potential,
i.e.

∆sc → ∆sc + δ∆af. (7.13)

This introduces an effective interaction between the quasi-particles in the su-
perconducting state of the form

H′
int = V

∑
pq

(
δ∆af

q

)
Ψ†

p−qΓ
scΨp+Q. (7.14)

A conventional second order expansion gives the matrix equation

Σ(p, ipn)=−V 2

β

∑

q,iωn

ΓscG0(p−q, ipn−iωn)ΓscNaf(q, iωn), (7.15)

where we introduced the mode propagator Naf(q, τ) ≡ −〈Tτ{δ∆af(τ)δ∆af(0)}〉
and ωn is a boson Matsubara frequency. Inserting the explicit expression for
the Green’s function from equation (7.12) into equation (7.15) and comparing
to the Ansatz for the self-energy we obtain the following SO(5) generalized
equation for the renormalization function Z(p, ipn)

(1− Z(p, ipn)) ipn =

−V 2

β

∑

q,iωn

[Z(p−q, ipn−iωn)(ipn−iωn)] Naf(q, iωn)

(Z(ipn−iωn))2 − ε2
p−q − (∆sc

p−q)2
. (7.16)

This expression is a central result of this paper and shows how the antiferro-
magnetic mode coupling arises naturally within the SO(5) model.
In the following we apply equation (7.16) to show how the dip feature of the
ARPES data can arise due to coupling to the π-mode seen in neutron scattering
experiments. The analog of the “conventional” superconducting gap ∆ → Z∆
depends in general on both the momentum and frequency. However, in the
following we assume that the gap is frequency independent and, for simplicity,
we consider only scattering of quasi-particles connected by the antiferromag-
netic ordering vector Q = (π, π) which is the center of mass momentum for
the SO(5) π-mode. These are exactly the hot-spot regions centered around
M = (π, 0) and symmetry related points of the BZ. Furthermore, these are
the points where the d-wave gap attains its maximum value. Thus, in a phe-

nomenological calculation a simple but sufficient form for the mode Naf(q, iωn)
is

Naf(q, iωn) = δ(q−Q)
(

1

iωn − ω0

− 1

iωn + ω0

)
(7.17)

where ω0 is the characteristic energy of the resonance mode and damping effects
are assumed minimal in agreement with the very sharp resonance seen experi-
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mentally. Within the SO(5) model the chemical potential explicitly breaks the
SO(5) symmetry and renders the fluctuations perpendicular to the (equatorial)
superconducting plane massive, hence ω0 6= 0[243].

7.2.2 Results

A first order solution to equation (7.16) is obtained by setting Z = 1 on the
right hand side and then perform the Matsubara sum to obtain the simple
result

Z(ipn) = 1− V 2

2

(
1

(ipn)2 − (ω0 + EM)2

)
(7.18)

in the zero temperature limit. In equation (7.18), E2
M = ξ2

M + ∆sc
M

2
and

ξM = εM − µ with M = (π, 0).
In Fig. 7.3 we plot the real end imaginary part of the renormalization Z(ω)
as a function of energy ω in the case where ∆M = 35meV, ω0 = 41meV,
V = 30meV, ξM = −34meV and ipn → ω + iΓ with Γ = 8meV as an intrinsic
lifetime broadening. The value ξM = −34meV turns out to be appropriate
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Figure 7.3: Real part of the renormalization Z(ω) (upper graph) and imag-
inary part of Z(ω) (lower graph) as a function of binding energy ω (arbitrary
units).

for the flat band at the M = (π, 0) point[248]. The qualitative form of the
renormalization function Z(ω) does not change upon iteration of equation
(7.16).
In the quasi-2D cuprates the ARPES intensity I(p, ω) is believed to be well
approximated by I(p, ω) = I(p)f(ω)A(p, ω) convolved with the instrumental
resolution[249]. In this expression, I(p) is the dipole transition matrix element
between initial and final states, f(ω) is the Fermi function, and A(p, ω) is the
spectral function. Therefore, assuming constant matrix elements the ARPES
spectra essentially map out the spectral function. Though we follow these
assumptions below, they are far from obvious and we refer to the literature for
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further discussion[249, 250, 251].
As shown in Fig. 7.4 the resulting spectral function

A(p, ω) = − 1

π
ImG11(p, ω) (7.19)

exhibits a dip feature. This can be brought to a form qualitatively similar
to the experimental findings (when convolved with a background and a Fermi
cut-off function); a quasi-particle peak followed by a dip and a hump. Thus
within this model the dip feature is caused by quasi-particles coupled with
the π-mode. The distribution of spectral weight and the energetic separation
between the peak and the hump is determined by the strength of the SO(5)
coupling parameter V . Unfortunately the model presented here is too simple
to lead to any quantitative comparisons or predictions. Even a fully self-
consistent solution to equation (7.16) would not lead to quantitative results
due to the phenomenological nature of the underlying model (7.7) and the
uncertainty in the interpretation of the ARPES data.
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Figure 7.4: Spectral function A(p, ω) as a function of energy ω (arbitrary
units) in the superconducting state near the M = (π, 0) point of the BZ.
The mode coupling bound at higher energy suppresses the spectral weight and
results in a dip. As seen, the overall feature resembles the peak/dip/hump
structure.

7.2.3 Summary and Discussion

We have performed a strong coupling calculation starting from a microscopic
SO(5) symmetric Hamiltonian. The symmetry is broken on the mean field level
and explicitly by a chemical potential. After deriving a simple expression for
the renormalization function Z(p, ω) we apply this to show that the resulting
spectral function clearly exhibits a dip feature in the superconducting state in
qualitative agreement with experiments.
In the historical sense a crucial observation of the conventional strong coupling
superconductors such as lead, was the nice fit of the effective tunnelling density
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of states (DOS) by Schrieffer et al.[252] to the measurements by Rowell et
al.[253]. In that case, the anomalous features of the DOS is determined by the
energy scales (emission threshold) of the phonons. It is intriguing that in the
high-Tc superconductors a new characteristic energy scale could be revealed
by the peak/dip/hump feature in the energy distribution curves from ARPES.
However, if the collective π-mode turns out to be the relevant mode to explain
these features it is clear from the above discussion that the origin is completely
different. Furthermore, as opposed to the conventional strong coupling case,
we have shown that the renormalization function Z(ω), and not a frequency
dependent gap function ∆(ω), may be the cause of the feature.

7.3 Photoemission and DOS in a striped system

I now return to the discussion of the electronic structure resulting from stripe
ordered domains. In particular, it will be shown that the salient features of
the APRES measurements on LSCO and Nd-LSCO can be understood within
this picture. Furthermore, some recent results from STM measurements will
be shown to find a natural explanation within the stripe phase. Essentially
all the peculiar features can be described in terms of doping into new mid-gap
states caused by the anti-phase stripe spin configuration[158, 225, 254].

7.3.1 Model

The starting point for discussing the electronic structure in the presence of both
antiferromagnetic ordering tendency and d-wave superconductivity is given by
the familiar minimal model Hamiltonian introduced in chapter 1 defined on a
2D lattice

H = − ∑

〈i,j〉σ
tij ĉ

†
iσ ĉjσ + H.c.− µ

∑

iσ

ĉ†iσ ĉiσ (7.20)

+ U
∑

i

[〈n̂i↓〉n̂i↑ + 〈n̂i↑〉n̂i↓] +
∑

〈i,j〉

(
∆ij ĉ

†
i↑ĉ

†
j↓ + H.c.

)
.

As usual, ĉ†nσ creates an electron with spin σ at site n (at rn) and µ is the
chemical potential. The strength of the antiferromagnetic and superconducting
coupling is given by U and V , respectively. We include nearest t and a number
of next nearest neighbors, i.e. t〈nm〉 = −t, t〈〈nm〉〉 = −t′, and t〈〈〈nm〉〉〉 = −t′′.
The Hamiltonian (7.20) can be diagonalized by introducing the γ̂ operators
through the Bogoliubov-de Gennes transformation

ĉ†iσ =
1√
N

∑

nk

(
γ̂†nkσu

∗
nkσ(ri) + σγ̂nkσvnkσ(ri)

)
, (7.21)
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and demanding that
H =

∑

nkσ

Enkσγ̂
†
nkσγ̂nkσ. (7.22)

Note that the transformation involves both momentum and real-space indices.
This is because we Fourier transform with a basis, the basis constituting a
supercell of Nx × Ny sites. The Bloch vectors k belong to the corresponding
reduced Brillouin zone. Therefore, for the coherence factors we have u∗nkσ(ri) =
u∗nkσ(Ri + i) = u∗nkσ(i) exp(−ik ·Ri).
Specifically, one can obtain the Bogoliubov-de Gennes equations by comparing,
on the one hand, the commutator

[
H, ĉ†iσ

]
=

∑

nk

(
Enkσu

∗
nkσ(ri)γ̂

†
nkσ − σEnkσvnkσ(ri)γ̂nkσ

)
(7.23)

to the one obtained by explicitly ”commuting through” in Eqn. (7.20)

[
H, ĉ†iσ

]
= −∑

〈i,j〉
tij ĉ

†
jσ + (U〈n̂iσ〉 − µ) ĉ†iσ + σ

∑

〈i,j〉
∆ij ĉjσ. (7.24)

This leads to a set of equations for the coefficients, unkσ(i) and vnkσ(i) which
we may solve by standard diagonalization procedures.
The required hole doping nh and the self-consistency of the fields 〈n̂iσ〉 and ∆ij

are ensured by adjusting the chemical potential µ and running the iteration
until all the following relations become stable

1

N

∑

iσ

〈n̂iσ〉 = 1− nh, (7.25)

〈n̂iσ〉 = 〈ĉ†iσ ĉiσ〉 =
∑

nk

[
|unkσ(i)|2f(Enkσ) + |vnkσ(i)|2f(−Enkσ)

]
(7.26)

∆ij = V 〈ĉi↑ĉj↓ − ĉi↓ĉj↑〉 (7.27)

= V
∑

nkσ

[v∗nkσ(i)unkσ(j)f(Enkσ)− unkσ(i)v∗nkσ(j)f(−Enkσ)] .

It is common to define the d-wave order parameter on-site by

∆i =
(
∆i+ex + ∆i−ex −∆i+ey −∆i−ey

)
/4. (7.28)

The final eigenstates (unkσ(i) and vnkσ(i)) and the associated eigenvalues Enkσ

allow us to calculate e.g. the single-particle spectral function and the local
density of states (LDOS).
For the single-particle Greens function, Gσ(ri, rj, τ) = −〈Tτ ĉσ(ri, τ)ĉ†σ(rj, 0)〉,
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it is easy to obtain for Gσ(ri, rj, ipn) =
∫ β
0 dτGσ(ri, rj, τ) exp(ipnτ),

Gσ(ri, rj, ipn) =
∑

nk

unkσ(i)u∗nkσ(j)

ipn − Enkσ

eik·(Ri−Rj) (7.29)

+
∑

nk

v∗nkσ(i)vnkσ(j)

ipn + Enkσ

e−ik·(Ri−Rj),

where pn is a Fermi Matsubara frequency and Ri denotes the supercell in which
site i resides.
Typical self-consistent solutions in different parameter regimes and the asso-
ciated bandstructure, density of states and spectral function are discussed in
the following sections.

7.3.2 Density of states and gap structure in the stripe phase

We may use expression (7.29) to study the local density of states on site i,
Nσ(i, ω), given by

Nσ(i, ω) = − 1

π
Im

∑

nk

[ |unkσ(i)|2
ω − Enkσ + iΓ

+
|vnkσ(i)|2

ω + Enkσ + iΓ

]
. (7.30)

In the following I show the self-consistent results of the spin- and charge den-
sity and the superconducting pairing potential in various regimes of doping
and U/V and show the effect of t′.
First of all, in the half-filled nh = 0.0 antiferromagnetic case we obtain for
V = 0, U = 4.0t the staggered spin order and the bands shown to the left in
Fig. 7.5. The bands shown here are for spin up, but these are degenerate with
the spin down bands. This is also true for the incommensurate spin structures
shown below. The chemical potential is situated in the middle of the gap and
the state is an insulator. We study the 8 × 2 unit cell which results in 16
bands in the reduced zone. The bands are plotted as a function of ky in the
range −π/2 < ky < π/2 and with kx = 0.0, i.e. straight through the center of
the reduced Brillouin zone. The bands have been shifted so that the chemical
potential corresponds to zero on the vertical axis. The LDOS is seen to the
right in Fig. 7.5. All the LDOS plots presented in this section are the sum of
the spin-up and spin-down LDOS, i.e. N(i, ω) =

∑
σ Nσ(i, ω).

Let us turn now to the stripe phase away from half-filling. For nh = 0.250,
t′ = 0 and U = 5.0t we obtain a stable stripe configuration with a spin period-
icity of eight lattice constants. In Fig. 7.6 I show this self-consistent solution
and the associated the bands and density of states. This state is also an in-
sulator since the Fermi level is positioned in the gap as seen from the graphs
of the band dispersion and the DOS. The DOS shown to the right in Fig. 7.6
is the spatial average of the LDOS on the stripe and off the stripe. These
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Figure 7.5: At half-filling nh = 0 for U = 4.0t, t′ = 0 we obtain the expected
staggered spin configuration (upper left) and the band-dispersion shown in the
lower left image. The DOS is displayed to the right.

individual LDOS are shown in Fig. 7.7. The fact that the Hartree-Fock so-
lution is an insulating vertical stripe state for t′ = 0 with the Ichioka rule of
stability δ = nh/2 has been discussed before[22, 158]. Note in Fig. 7.7 that
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Figure 7.6: For spin periodicity N = 8, nh = 0.250, U = 5.0t, and t′ = 0 we
obtain the stable bond-centered stripe spin and charge configuration (upper
left) and the band-dispersion shown in the lower left image. The spatially
averaged DOS is displayed to the right. The Fermi level is at 0.

the mid-gap states generated by the stripes have the largest spectral weight on
the stripes. The wavefunction associated with the mid-gap states is localized
on the stripes. For stripes of longer extent the mid-gap weight can completely
disappear at sites farthest from the stripes as would be expected from Fig.
7.5.
The metallic stripe state can be obtained by including e.g. a next-nearest
neighbor hopping term t′. This can be seen from Fig. 7.8 where we plot the 16
bands obtained when N = 8, nh = 0.250, U = 5.0t and t′ = 0 (A), t′ = −0.1t
(B), and t′ = −0.2t (C), respectively. The bands exhibit stronger dispersion
when t′ 6= 0 and the lower of the mid-gap bands cross the Fermi level as seen



7. Stripes and photoemission experiments 121

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

energy [eV]

D
O

S

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

energy [eV]

D
O

S

(A) (B)

Figure 7.7: Local density of states measured off the bond-centered stripe (A)
and on top of a site in the stripe (B) for nh = 0.250, U = 5.0t, and t′ = 0.0.
The mid-gap states are clearly seen in these graphs. The Fermi level is at 0.
The sum of these two plots generates the DOS shown in Fig. 7.6
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Figure 7.8: Band dispersion as a function of ky through the center of the
reduced Brillouin zone kx = 0 for t′ = 0 (A), t′ = −0.1t (B), and t′ = −0.2t (C).
The bands show stronger dispersion and cross the Fermi level as we increase
|t′|. The Fermi level is at 0.

in Fig. 7.8(B) and Fig. 7.8(C). The spatially averaged DOS corresponding to
the latter two (i.e. the metallic case) are shown in Fig. 7.9. As opposed to the
situation with t′ = 0 shown to the right in Fig. 7.6, the Fermi level on longer
falls in the gap. This is evidence for a metallic stripe phase within the Hartree-
Fock approximation of the single-band Hubbard model[158]. Originally it was
believed that this state would always be insulating. It is also clear that for
situations with spin periodicity N and hole-doping less than 2/N the mid-gap
bands will be partially filled and we have again the metallic stripe phase. This
is because the N − 2 bands below the mid-gap bands are completely filled for
nh ≤ 2/N .
The transition from an insulating to a metallic stripe phase does not have
strong effects on the spin and charge density fields. This is evident from the
small variations seen in Fig. 7.10.
What happens when we include the non-zero nearest neighbor attraction V

in the minimal model? In Fig. 7.11 I show the self-consistent solutions in the
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Figure 7.9: Spatially averaged density of states for t′ = −0.1t (A), and
t′ = −0.2t (B). As opposed to the result shown to the right in Fig. 7.6 the
Fermi level at zero energy is no longer gapped out.
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Figure 7.10: The variation of t′ causes only minor changes to the self-
consistent spin (−1)ix〈Sz〉 and charge n densities. Parameters: U = 5.0t,
nh = 0.25, V = 0.0, t′′ = 0.0 and t′ = 0.0 (dash-dotted line), t′ = −0.1t
(dashed), t′ = −0.2t (solid).

case when U = 5.0t, t′ = t′′ = 0.0t, nh = 0.25 and V = 2.0t and V = 1.6t. As
before (V = 0.0) the spin periodicity is double the charge period. The nonzero
nearest neighbor attraction induces superconductivity as seen in Fig. 7.11C.
In plotting Fig. 7.11C I used the definition given by Eqn. (7.28). However,

in (7.31) and (7.32) I show the raw output of the self-consistent value of the
gap parameter in units of t on the x-links and y-links of the 8× 2 unit cell for
V = 2.0t and V = 1.6t, respectively. There we see explicitly that the nearest
neighbor attraction V induces the sign difference between x and y links as
required for dx2−y2-wave pairing symmetry. As expected for a periodic mod-
ulation along the x-axis there is no difference between the gap values of the
two rows (different y position) for both ∆x and ∆y. The gap has the same
periodicity as the charge and exhibits a distinct anisotropy between the size
of the order on the x-links as opposed to the y-links.
Thus, the static stripe spin and charge ordered phase coexists with the anisotropic
d-wave superconducting phase. As seen from Fig. 7.11 the two orders com-
pete. However, the results disprove the common notion that static magnetic
stripes cannot coexist with superconducting order.
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Figure 7.11: Spin density (−1)ix〈Sz〉 (A) and charge density (B) and su-
perconducting pair potential (C) for U = 5.0t, t′ = t′′ = 0.0, nh = 0.25 and
V = 2.0t (dashed line) and V = 1.6t (solid). In (C) we have also shown the
small induced extended s-wave component existing in the stripe superconduc-
tor.

Recently, there have been calculations by Podolsky et al.[191] and Chen et
al.[255] that point to the existence of a phase in the underdoped regime with
d-wave modulated order. These calculations are attempts to fit the Fourier
components of the ordering vector found in the Fourier images of the LDOS
maps obtained by STM measurements[190, 78]. Here we see that a competing
charge striped phase may be the origin of such a modulated pairing order.

∆x 0.108 0.111 0.114 0.111 0.108 0.111 0.114 0.111
∆x 0.108 0.111 0.114 0.111 0.108 0.111 0.114 0.111
- - - - - - - - -

∆y -0.119 -0.119 -0.137 -0.137 -0.119 -0.119 -0.137 -0.137
∆y -0.119 -0.119 -0.137 -0.137 -0.119 -0.119 -0.137 -0.137

(7.31)
∆x 0.043 0.044 0.045 0.044 0.043 0.044 0.045 0.044
∆x 0.043 0.044 0.045 0.044 0.043 0.044 0.045 0.044
- - - - - - - - -

∆y -0.048 -0.048 -0.054 -0.054 -0.048 -0.048 -0.054 -0.054
∆y -0.048 -0.048 -0.054 -0.054 -0.048 -0.048 -0.054 -0.054

(7.32)
The on-site d-wave order parameter was defined in Eqn. (7.28). From the
solutions (7.31) and (7.32) it is clear that this order is modulated in accordance
with the charge order. However, from the definition of the extended s-wave
order

∆i =
(
∆i+ex + ∆i−ex + ∆i+ey + ∆i−ey

)
/4. (7.33)

it follows that the stripe phase induces a small pairing component of extended
s-wave symmetry. This is not surprising since the stripe solutions explicitly
breaks the C4 symmetry of the CuO2 layer. The size of the extended s-wave
component is seen in Fig. 7.11C.
In both the case of an insulating and metallic stripe phase, there is a thresh-
old value of Vc above which the superconducting order develops. This value
is smaller for the metallic stripes, for instance in the case with U = 5.0t and
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nh = 0.25 we have Vc = 1.55t (t′ = 0.0), Vc = 1.40t (t′ = −0.1), and Vc = 1.35t
(t′ = −0.2). The values of the critical Vc decrease when lowering the Coulomb
repulsion U .
In Fig. 7.12 I show the spatially averaged DOS for the coexisting stripe phase.
As expected the superconductivity reintroduces a gap at the Fermi level. The
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Figure 7.12: Spatially averaged density of states in the coexisting phase of
spin and superconducting stripe order (U = 5.0t, V = 2.0t, nh = 0.25) for
t′ = 0.0t (A), t′ = −0.1t (B), and t′ = −0.2t (C). The Fermi level at zero
energy falls in the gap.

gap structure, however, does not appear to have the simple d-wave form. This
is investigated in more detail in Fig. 7.14 where we show the DOS zoomed in
around the Fermi level for various self-consistently determined configurations.
First of all, when U = 0 we find the usual V-shaped DOS in a d-wave supercon-
ductor as seen in Fig. 7.13. When U 6= 0 and V 6= 0 the final low-energy DOS
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Figure 7.13: DOS in the homogeneous d-wave superconducting phase with
nh = 0.25, U = 0.0t, V = 1.5t and t′ = 0.0. To obtain the required doping
level the chemical potential is µ = −0.640t.

strongly depends on the ratio U/V and the value of the next-nearest neighbor
hopping t′. When U/V is large the nodal quasi-particles in the clean d-wave
superconductor are gapped and we obtain a full gap at the Fermi level. For
nh = 0.25 this is evidently the case when U = 5.0t, V = 2.0t and t′ ≤ 0.1t as
seen in Fig. 7.14(A-B). When t′ becomes sufficiently large the bands strongly
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disperse and the full gap closes as seen in 7.14(C). The resulting gap is d-wave-
like but anisotropic when comparing the weight at positive and negative bias,
respectively. A gap anisotropy similar to that presented in Fig. 7.14(C) has
already been detected experimentally as seen e.g. in the figures of Ref. [78].
What happens at other doping levels? A set of parameters utilized by Ichioka
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Figure 7.14: LDOS in the stripe superconducting phase with nh = 0.25,
U = 5.0t, V = 2.0t and t′ = 0.0 (A), t′ = −0.1 (B), and t′ = −0.2 (C). The
solid line is the LDOS at a site on the stripe and the dashed line shows the
result on one of the sites off the bond-centered stripe.

and Machida[256] to study the BSCCO STM data is: nh = 0.120, t′ = −0.34t,
and t′′ = 0.23t. When V = 0 this bandstructure stabilizes a vertical stripe
phase for U > 4.0t. When V = 1.6t the stripe state appears for U > 4.1t13. By
increasing V we can reenter the homogeneous d-wave superconducting state,
e.g. for U = 4.2t and V > 1.9t. The spin density, charge density and pair
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Figure 7.15: Spin density (−1)ix〈Sz〉 (A), charge density (B) and supercon-
ducting pair potential (C) as a function of site in the unit cell (ix, 0). To
generate these results we used V = 1.6t, t′ = −0.34t, t′′ = 0.23t, nh = 0.120
and U = 4.2t (solid line) and U = 4.3t (dashed line). In (C) we also display the
induced extended s-wave order (close to zero) and the gap in the homogeneous
d-wave superconductor obtained when U = 0.0 (dot-dashed).

potential ∆ is shown in Fig. 7.15 for U = 4.2t and U = 4.3t. These parameters
just within the stripe phase generate weak stripe order. Here we clearly see
how relatively small changes in U/V can affect the induced superconducting
order. The LDOS on one of the bond-centered sites on the stripe (solid line)
and off (dashed) the hole-rich stripe is shown in Fig. 7.16 for both U = 4.2t

13In the notation from Ref. [256] we have V = 2gs for comparison of the results
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Figure 7.16: LDOS in the stripe superconducting phase with nh = 0.12,
V = 1.6t, t′ = −0.34t, t′′ = 0.23t and U = 4.2t (A), and U = 4.3t (B). The
LDOS is calculated on the stripe (solid) and off the hole-rich stripe (dashed).

and U = 4.3t. As opposed to the conventional d-wave gap displayed in Fig.
7.13, a double peak structure develops inside the gap for these stripe super-
conductors. An important difference between the DOS inside and outside the
stripe is the distribution of states on either side of the coherence peaks: at the
stripe site weight is shifted from inside the superconducting gap to above the
gap. This weight redistribution has important consequences for the Fourier
components of the DOS. In fact, if we Fourier transform the LDOS

N(q, ω) =
1

N

∑
ri

N(ri, ω) exp(iq · ri) (7.34)

and plot the real part of the Fourier component N(2q∗, ω) at double the or-
dering vector q∗ = (π, 3π/4) we obtain the graph shown in Fig 7.17. Had the
system been a homogeneous d-wave superconductor, this component would
be identically zero. Note that 2q∗ is the ordering vector of the charge or-
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Figure 7.17: Real part of the Fourier component N(2q∗, ω) at twice the
ordering vector q∗ = (π, 3π/4) versus energy. Parameters: nh = 0.12, V =
1.6t, t′ = −0.34t, t′′ = 0.23t and U = 4.2t (dashed) and U = 4.3t (solid).
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der. For larger values of V the pairing potential increases and the crossing
of ReN(2q∗, ω) and the x-axis moves to larger energies but the overall shape
of ReN(2q∗, ω) remains very similar to the one shown in Fig. 7.17. When
Howald et al[75, 190] measured this component by STM studies they obtained
a result very similar to the one shown in Fig. 7.17. It is non-trivial to obtain
a sign change of this component between low- and high energy. To this end, it
is crucial that the d-wave order parameter is modulated as was discussed by
Podolsky et al.[191] For instance, in Fig. 7.17 I also show the energy depen-
dence of ReN(2q∗, ω) (dotted line) for the stripe system without coexisting
superconductivity, i.e. with V = 0.0. Clearly, this Fourier component does
not cross the ReN(2q∗, ω) = 0 axis.
In a future study it will be interesting to determine whether the gap modula-
tions obtained in the coexisting stripe phase of spin- and charge density waves
and striped d-wave superconductivity can explain more of the features recently
observed in the STM Fourier images[78].

7.3.3 Spectral weight distribution

We may also use expression (7.29) to study the spectral function A(k, ω) mea-
sured in photoemission. To this end, we need

Gσ(k, ipn) =
1

N2

∑
ri,rj

Gσ(ri, rj, ipn) exp(ik · (ri − rj)) (7.35)

where k extends over the full Brillouin zone. Though the momentum vector
in the sums of Eqn. (7.29) only ranges over the reduced zone, we can use that
fact that the Bogoliubov-de Gennes equations are invariant under translation
of the momentum vector by a reciprocal lattice vector of the reduced zone to
obtain

Aσ(k, ω) = − 1

π

1

(NxNy)2
Im

∑

ni,j

eik·(i−j)

(
u∗nkσ(i)unkσ(j)

ω − Enkσ + iΓ
+

v∗nkσ(i)vnkσ(j)

ω + Enkσ + iΓ

)
,

(7.36)
where we also used that u−k = u∗k.
The spectral weight is defined as the integral of the spectral function over an
energy window ∆ω below the Fermi level

Iσ(k) =
∫ µ

µ−∆ω
Aσ(k, ω)dω. (7.37)

Below, the spectral weight I(k) is shown as the sum of both spin parts, i.e.
I(k) = I↑(k) + I↓(k).
The spectral weight has been studied quite extensively within the stripe solu-
tions of the mean-field Hubbard model[22, 157, 157, 256]. Recently, there have
been several other studies of A(k, ω) in a stripe system[158, 257, 258, 259, 260,
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261, 262]. Therefore we refer to the literature for a thorough discussion and
calculate, in the following, only some of the most important results.
The parameters nh = 0.120, t′ = −0.34t, t′′ = 0.23t, U = 4.3t and V = 1.6t
produces a metallic stripe phase. In Fig. 7.18 we show the spectral weight over
the whole Brillouin zone when ∆w = 0.2t(A) and ∆w = 0.5t(B). Without the
existence of the mid-gap bands these figures would be featureless since there
are no states in the original Mott-Hubbard band gap. From Fig. 7.18 it is clear(A) (B)

Figure 7.18: Spectral weight as a function of −π < kx < π and −π < ky <
π obtained by integrating the spectral function over a small energy window
∆ω = 0.2t(A) and ∆ω = 0.5t(B) below the Fermi level.

that the low-energy weight resides near the anti-nodal regions as expected for
partially filled stripes. The nodal region is completely void for spectral weight.
These results are generic and do not depend qualitatively on the parameters
t′, t′′ etc.
For nh = 0.18, t′ = −1/6t and U = 4.0t we have the spectral weight at the
Fermi level (∆ω = 0.05t) shown in Fig. 7.19(A). Fig. 7.19(B) shows, for the
same set of parameters, the contour plot of the spectral function as a func-
tion of energy and wave vector along the symmetry line (0, 0) → (π, 0) →
(π, π) → (0, 0) of the original Brillouin zone. The dispersion is similar to the
simple tight-binding cosine band except from the following: 1) the very flat
band near (π, 0), and 2) the opening of gaps resulting in vanishing weight
near the nodal region, i.e. near (π

2
, π

2
) and symmetry related points. The flat

band at the anti-nodal point lies just below the Fermi level. The ARPES
experiments probe both x- and y-axis aligned stripes. However, superimpos-
ing the contour plot probing the other anti-nodal region, e.g. along a line
(0, 0) → (0, π) → (−π, π) → (0, 0) does not affect these conclusions. These re-
sults are very well in agreement with the ARPES data on LSCO and Nd-LSCO
discussed above.
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(A) (B)
(0,0) (�,0) (�,�) (0,0)

Figure 7.19: (A) Spectral weight at the Fermi level as a function of −π <
kx < π and −π < ky < π obtained by integrating the spectral function over a
small energy window ∆ω = 0.05t. (B) Contour plot of the spectral function
along the line (0, 0) → (π, 0) → (π, π) → (0, 0). The fermi level is at zero.

7.3.4 Spectral weight in arrays of disordered stripes

In any real system there is disorder that ruin the perfect stripe array. There-
fore, it is important to study the effects of disordered stipes. Unfortunately,
it is not possible (due to computer limits) to generalize the above approach
to large systems and perform a disorder average. This kind of calculation is,
however, straightforward if one compromises the self-consistency. For instance
Salkola et al.[225] and Granath et al.[254] have used a stripe ansatz of the form

m(ix, iy) = M
∏

{isx}
Θ(ix − isx), (7.38)

where Θ(x) denotes the antisymmetric Heaviside function: Θ(x) = −Θ(−x) =
1 for x > 0 and Θ(0) = 0. The set of integers {isx} gives the position of the
stripes14. Therefore, the product of the ansatz (7.38) and the staggering,
(−1)ix+iym(ix, iy) produces a site-centered array of anti-phase stripes. The
system is translational invariant along the y-axis except from the staggering.
For a periodic set, e.g. {isx} = {... − 8,−4, 0, 4, 8...} we regain the mid-gap
bands which display large weight around the Fermi level at the antinodal re-
gions. However, for stripes that are nearest (or next-nearest) neighbors the
mid-gap bands shift, and spectral weight is generated around the nodal region.
For a large system we show in Fig. 7.20 the calculated distribution of spec-
tral weight in the upper right quadrant of the Brillouin zone 0 < kx, ky < π
obtained for at large system by averaging over an ensemble of ten different
disordered stripe configurations with an average separation of four lattice con-
stants. Specifically, we choose ten sets of 200 integers randomly between 1...7

14In this section only, we employ the mean-field decoupling scheme, Si · Si → MiS
z
i , of

the Hubbard interaction.
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to constitute the set of stripe spacings which gives {isx}.
When the stripe potential is weak M < 0.25t the spectral weight is seen in
Fig. 7.20 to lie at the Fermi surface as expected. However, for larger values of
M the weight in the nodal region becomes more diffuse whereas the antinodal
weight solidifies. The results in Fig. 7.20 are in remarkable agreement with

Figure 7.20: Spectral weight as a function of 0 < kx, ky < π obtained by
integrating A(k, ω) over a small energy window (∆ω = 0.2t) below the Fermi
level for different values of the spin dependent stripe potential M .

the ARPES measurements on LSCO and Nd-LSCO[224]. For instance, if we
compare the images obtained for M = 1.0t to the spectral weight in the upper
right quadrant of the Brillouin zone shown in Fig. 7.2(c-d), we see a very good
agreement: the antinodal weight in generated by the stripes and the ghosty
nodal line by their disordering. It is interesting that the final spectral weight
actually resembles the original free Fermi surface even though the electronic
structure is completely different.

7.4 Discussion

Another interesting experimental observation is the existence of a ”Fermi arc”
at very low doping x < 0.05 of LSCO as seen by ARPES. At this doping level
we know from neutron diffraction that the incommensurate peaks rotate in
agreement with an arrangement of diagonal antiphase stripes. As discussed
by Granath[263], it is not possible to reproduce the Fermi arc in the spectral
weight by the most naive form of site-centered diagonal stripes. However, if
the stripes organize locally along the Cu-O bonds but globally along the nodal
direction, i.e. have the stair-case shape, they reproduce quite easily the Fermi
arc. For the stair-case stripes there are two important lengths: the stripe dis-
tance and the height of the steps. Interestingly, the magnetic structure factor
crosses over from putative diagonal to putative vertical/horizontal as the inter-
stripe distance is decreased compared to the step height. This agrees with the
neutron experiments.
Finally there have been recent calculations of the spectral function from 1D
stripe Luttinger liquids[264, 265, 266]. The broad EDC line shapes are guaran-
teed by the electron fractionalization in these 1D systems. When the Luttinger
liquids are coupled to e.g. optical phonons the resulting line shape resembles
very well that measured by photoemission[267]
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8 Stripes and neutron scattering experiments

Some of the material in this chapter has been submitted by the
author and P. Hedeg̊ard to Physical Review Letters

8.1 Neutron scattering and a summary of important ex-
perimental results

The scattering of slow neutrons off crystals provides a very powerful probe of
the quantum states in solids because the energy and wavelength of the neu-
trons are comparable to the excitations in the crystal. The neutrons interact
with solids via 1) the nuclear force leading to neutron-ion scattering with pos-
sible emission and absorption of phonons, and 2) the magnetic dipole-dipole
interaction between the very weak magnetic moment of the neutron and the
magnetic moments in the solid[268]. In the following we focus on the dipole
interaction which leads to enhanced neutron scattering signals from magneti-
cally ordered systems.
The magnetic neutron scattering cross section per formula unit is given by

(
d2σ

dΩdE

)
= (γre)

2kf

ki

|F (q)|2S(q, ω) (8.1)

where ki(kf ) is the initial(final) wave vector of the neutron, q = ki−kf the scat-
tering vector, ω the energy loss, γ is the gyromagnetic ratio and re = e2/mec

2.
F (q) denotes the magnetic form factor of the Cu2+ ions. The magnetic struc-
ture factor, S(q, ω), is the Fourier transform of the spin-spin correlation func-
tion. S(q, ω) is related to the imaginary part of the spin susceptibility χ′′(q, ω)
through the fluctuation-dissipation theorem

S(q, ω) =
χ′′(q, ω)

1− exp(−ωβ)
. (8.2)

Since there exists a vast amount of neutron scattering data on the cuprates
I restrict the following discussion of the experimental results to features that
are relevant for this chapter. A major difficulty in studying the magnetic
fluctuations of the cuprate systems is to separate the spin scattering from
the phonon scattering and other spurious processes. Papers that review the
neutron data on both the YBCO and LSCO systems can be found in the
references[269, 270, 271]
In the undoped cuprates, Vaknin et al.[272] first used the neutron scattering
to identify the Bragg peaks from antiferromagnetic spin order. Magnetic mo-
ments of 0.66 µB per Cu ion was found, the reduction from 1µB is caused by
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quantum fluctuations which are rather strong for spin S=1/2 systems. The
measured ordering vector, (π, π, π), shows that the successive planes are also
antiferromagnetically coupled.

8.1.1 A brief review of neutron scattering results on LSNO

It is firmly established that stripes rule the physics of the insulating nickelate
La2−xSrxNiO4[273, 274, 275, 276, 277, 278]. Compared to LSCO, the S = 1/2
Cu spins are replaced by S = 1 Ni spins. From neutron and x-ray diffraction
measurements the stripes are known to order diagonally (i.e. along the [110] or
[110] directions) in the nickel-oxide layers in the doping range 0.135 < x < 0.5.
Obviously, by studying the stripes in these systems one hopes to determine
whether or not the stripes are important for copper-oxide superconductors as
well. The charge stripes are found to be well correlated in the planes with a
correlation length in excess of 100 Å. At fractional doping, commensurate to
the underlying lattice, it is known that the charge stripe ordering is particularly
stable due to pinning. The charge-ordering temperature is found to exceed the
spin-ordering temperature. The incommensurability δ is approximately linear
in the hole concentration nh, δ ≈ nh/2, up to nh = 0.5.
The spin fluctuations have been measured in e.g. La1.69Sr0.31NiO4 with the
result shown in Fig. 8.1[279]. Clearly, spin wave dispersions up to 80 meV
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Figure 8.1: Spin wave dispersions as measured by scans of constant energy
transfer through the incommensurate points Qδ = (1/2, 1/2) ± (δ,−δ). The
blue dot-dashed line shows the spin excitation spectrum obtained in the un-
doped sample La2NiO4 shifted from (π, π) by Qδ. Adapted from Ref. [279]

emerging from the incommensurate magnetic Bragg points are observed. A
spin-only model defined on an incommensurate spin background captures well
this behavior. The branches dispersing toward (π, π) merge around 80 meV
to define the commensurate ”resonance” in this system. The dot-dashed line
shows the spin excitation spectrum obtained in the undoped sample La2NiO4

shifted from (π, π) by Qδ. Effectively, the doped holes only cause a shift of
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the dispersion curves due to their self-organization into stripes. Below, we
compare this spin behavior with that measured in the cuprates.

8.1.2 A brief review of neutron scattering results on LSCO and
LBCO

The single layer material LSCO can be grown in large crystals and has been ex-
tensively studied in neutron scattering measurements. In chapter 6, I discussed
the pinning effects of stripes when applying a magnetic field and the effects
on neutron and STM measurements. Furthermore, as evidence for the stripe
state the presence of elastic Bragg charge and spin peaks in the neodymium
doped LSCO samples was pointed out in chapter 5. Below, instead of embark-
ing on a chronological journey of the last decades extensive neutron results on
LSCO, I mainly show some recent results obtained by Christensen et al.[280]
and Tranquada et al.[281].
The data of Christensen et al.[280] surveyed the magnetic susceptibility χ(q, ω)
over the whole Brillouin zone for energy transfers 0 − 40meV with high reso-
lution in both wave vector q and energy ω for an underdoped (x = 0.10) and
optimally doped (x = 0.163) LSCO sample. Fig. 8.2 displays the measured
spin structure factor as a function of qx, qy at constant energies. Except from

Figure 8.2: Constant energy cuts through the Brillouin zone near (π, π).
(a),(b) at T=10K in the superconducting state for (a) ω = 10meV and (b)
ω = 30meV. (c) T=40K normal state at ω = 10meV, and (d) shows the
incommensurate points and the experimentally probed part of the Brillouin
zone. Adapted from Ref. [280].

an intensity loss the response at ω = 10meV looks similar both below (a)
and above (c) Tc: four incommensurate peaks positioned at (π, π(1± δ)) and
(π(1±δ), π) with δ ≈ 0.25. The presence of inelastic incommensurate peaks in
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LSCO was initially discovered by Cheong et al.[139] in 1991. At higher energy
transfer of 30meV the incommensurate peaks appear broad and shifted toward
(π, π). Their intensity maximum is centered around ω ≈ 15meV.
The dispersion of the incommensurate peaks is seen clearly in the left part of
Fig. 8.3 which shows scans through the incommensurate (a,c) and commen-
surate (b,d) positions at 10meV and 30meV. By mapping out the dispersion
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Figure 8.3: Left: constant energy scans along the trajectory shown in the
inset. All four graphs are taken in the superconducting phase at T=10K and
for ω = 10meV (a-b) and ω = 30meV (c-d). The dashed lines indicate the
dispersion. Right: (a) energy dispersion of the incommensurate peaks for the
optimally doped x = 0.163 (squares) and the underdoped x = 0.10 (triangles)
sample. Filled (empty) symbols are for the superconducting (normal) state.
(b) shows the energy dependence of the HWHM, and (c) compares the incom-
mensurate dispersion for optimally doped LSCO (filled symbols) to that of
YBCO (empty circles). Adapted from Ref. [280].

δ(ω) of the incommensurate peaks Christensen et al.[280] obtained the results
shown on the right in Fig. 8.3. Clearly, the peak positions disperse inward
toward (π, π) with increasing energy ω. There is no significant difference be-
tween the dispersion in the normal versus the superconducting state. The peak
widths (middle graph on the right hand side of Fig. 8.3) are slightly sharper
below Tc at low energy ω ≤ 20meV. Note that in the superconducting state
(filled symbols) there are no points below ω ≤ 7meV. This is due to the pres-
ence of a spin gap in the magnetic excitation spectrum at optimal doping. In
the the lower right image of Fig. 8.3 the dispersion of the incommensurate
peaks is compared to the results obtained from a near-optimally doped YBCO
sample (Tc = 89K). Apart from the crossing at (π, π) and a substantially
larger spin gap, the dispersion δ(ω) is remarkably similar in the two cuprates.
This has led to a recent ubiquitous view of the spin fluctuations in the cuprate
materials.
As mentioned in the chapter 5, the spin excitation gap in optimally doped
LSCO quickly vanishes when reducing the strontium doping concentration x.
Experimentally, it is found that for x ≤ 0.13 elastic peaks are observed in
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LSCO.
How can we understand these results? Assuming that the underdoped LSCO
is in the stripe phase, it is characterized by a long-range ordered stripe order
parameter which is revealed in the elastic neutron peaks. When increasing
the doping x, there is a quantum critical point where the stripe order melts,
the order becomes short-range ordered and fluctuating. The Goldstone modes
present in the underdoped regime are no longer condensed and we expect a
spin excitation gap. In this sense, the main difference between LSCO and
YBCO is that the latter cuprate is ”longer from the stripe ordered phase”,
the stripes are highly fluctuating and the spin gap is larger. Recent experi-
ments in the highly underdoped regime (YBCO6.35, Tc = 39meV) show that
a spin gap of ω ≈ 10meV prevails[283]. However, in this doping regime there
exists static charge order with the expected halved periodicity compared to
the incommensurate spin fluctuations. This is another remarkable example of
a superconducting Mott insulator with static charge order.
An important question is related to the evolution of the spin excitations at
higher energies, i.e. ω > 40meV. Unfortunately, this has not yet been clearly
resolved for LSCO. For La1.875Ba0.125CuO4 however, this was recently measured
by Tranquada et al.[281, 282] with the results shown in Fig. 8.4. LBCO is
known to support a static stripe ordered system which at x = 1/8 has strongly
suppressed the superconductivity as evidenced by the very low Tc=3 K. At
T=12 K and at low energy transfer the neutron data is consistent with spin-
wave excitations dispersing from the incommensurate Bragg points. These
merge at the commensurate (π, π) point at approximately 60 meV. For higher
energies the data indicates a π/4 rotated quartet of maximum intensity peaks
which disperse to larger wavevectors q with increased energy transfer. These
seem to be connected by lines of substantial weight contrary to the situation
at low energy.
Before studying in more detail the spin fluctuations expected in the stripe state,
we discuss in the next two sections the neutron scattering data from YBCO
(and BSCCO), and then follow what initially seems a different approach to the
spin incommensurability, namely that the incommensurate peaks are in fact a
natural consequence of nesting effects in a homogeneous d-wave superconduct-
ing state.

8.1.3 A brief review of neutron scattering results on YBCO and
BSCCO

The most prominent feature of the low-energy magnetic scattering in the
YBCO and BSCCO materials is the so-called π-resonance[227, 228, 284, 285,
286, 287, 288, 289]. The resonance was earlier shown to be a possible origin
of the so-called peak-dip-hump feature in the ARPES line shape around (π, 0)
and symmetry related points. In neutron experiments it is revealed in the
spin-flip channel with an intensity maximum at (π, π) and an energy around
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Figure 8.4: Maps similar to Fig. 8.2 for La1.875Ba0.125CuO4 and measured
to higher energy transfer. From Tranquada et al. Ref. [281].

40meV at optimal doping for both the YBCO and BSCCO materials. Away
from optimal doping the resonance energy Ω scales with Tc

Ω ≈ 5kTc. (8.3)

Thus, the gap ∆, which falls monotonically with increased doping, has the
opposite doping behavior as Ω.
The resonance has also been found in the single layer material Tl2Ba2CuO6+δ[290].
An important question is the dispersion of the resonance mode: the disper-
sion is downward in the sense that the intensity maximum of the mode moves
to incommensurate wave vectors when decreasing the energy transfer. This
downward dispersion appears to be a generic property of the resonance. The
mode does not disperse all the way to zero energy but fades away, and the
low-energy part of Imχ(q, ω) is dominated by a large spin gap. The spin gap
is an increasing function of the doping with a maximum of 32meV at optimal
doping in YBCO. These important features were already presented in Fig. 8.3
for the optimally doped LSCO sample. Now, however, it is evident that an
apparent difference between LSCO and YBCO is the intensity distribution of
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Figure 8.5: Left: (top) constant energy scans in the superconducting phase
through the Brillouin zone at the resonance energy 34 meV (left) and at 24.5
meV (right) for YBa2Cu3O6.6. (bottom) schematic overview of the dispersion
of the π resonance. Adapted from Ref. [284]. Right: temperature dependence
of the resonance intensity for YBCO at three different doping levels. Adapted
from Ref. [288].

the incommensurate peaks: as opposed to YBCO, in LSCO the intensity de-
creases (and the peaks broaden) when approaching (π, π).
The intensity of the resonance strongly increases upon entering the supercon-
ducting state as shown in Fig. 8.5. In the overdoped regime there is no sign
of a π-resonance above Tc whereas in the underdoped region it clearly prevails
into the pseudo-gap phase. In the normal state it was originally believed that
the magnetic response was commensurate and weak compared to the resonant
intensity below Tc. Recent measurements, however, seem to indicate that the
normal state also exhibits incommensurate spin fluctuations.
In the next section I discuss how the salient features of the resonance can
be understood from the spin-1 collective mode in a homogeneous d-wave su-
perconductor. Within this approach, we will see that the presence of the
superconducting condensate is crucial for the mode to survive.

8.2 Spin susceptibility of a homogeneous d-wave super-
conductor

There is strong evidence that the superconducting state in YBCO and BSCCO
is close to a conventional BCS superconductor with d-wave pairing symmetry.
This is true at least in the optimal and overdoped regimes[78]. Therefore, it
is important to exhaustively study the spin spectrum of a dx2−y2-wave super-
conductor. As is well-known, but also derived in Appendix .1, the bare spin
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susceptibility, χ0
BCS(q, iωn), of a BCS superconductor is given by

χ0
BCS(q, iωn) =

∑

k

1

2

(
1 +

ξkξk+q + ∆k∆k+q

EkEk+q

)
f(Ek)− f(Ek+q)

iωn − (Ek − Ek+q)

+
1

4

(
1− ξkξk+q + ∆k∆k+q

EkEk+q

)
f(Ek) + f(Ek+q)− 1

iωn − (Ek + Ek+q)

+
1

4

(
1− ξkξk+q + ∆k∆k+q

EkEk+q

)
1− f(Ek)− f(Ek+q)

iωn + (Ek + Ek+q)
.(8.4)

Here, E2
k = ξ2

k + ∆2
k and ξk = εk − µ and ∆k = ∆0

2
(cos kx − cos ky). The full

susceptibility χ(q, iωn) is of the RPA form (see below)

χ(q, iωn) =
χ0

BCS(q, iωn)

1− Uχ0
BCS(q, iωn)

, (8.5)

where U is the Coulomb repulsion. In the t− J model, χ(q, iωn) is similar to
Eqn. (8.5) but with U → J(cos qx + cos qy). Note, that the assumption of a
spatially homogeneous phase allows us to write the spin susceptibility solely in
momentum space and the remaining problem is to perform the k-sum in Eqn.
(8.4). Furthermore, since there is no spin ordering the susceptibility tensor is
isotropic and hence carries no cartesian indices. Life will become more com-
plicated in the next section.
In the literature this approach to the spin dynamics was first taken by Wermbter
and Tewordt[291], Si et al.[292], Bulut et al.[293, 294], and Lavagna and
Stemmann[295] to understand the NMR and neutron scattering data on LSCO.
Later, when higher resolution neutron measurements became available, Dahm
et al.[296], Brinckmann and Lee[297], Kao et al.[298], Norman[299], and Pfeuty
and Onufrieva[300] realized the importance of the correct detailed bandstruc-
ture εk. Rather extensive spin fluctuation studies have also been performed
within the spin-fermion[301] model. Finally, as discussed previously, in the
SO(5) model there is a natural magnetic Goldstone mode within the super-
conducting state which exists in the particle-particle channel[243].
In the following we study the salient features of the spin susceptibility in the
particle-hole channel resulting from Eqn. (8.4)-(8.5). In particular, this model
will be seen to reproduce the experimental detection of a downward dispersion
of the resonance mode.

8.2.1 The two-particle continuum of a d-wave superconductor

Since the most important input to Eqn. (8.5) is the bandstructure εk we use a
photoemission fit by Norman[299]: εk =

∑
i ciηi(k) with the coefficients ci and
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basis functions ηi(k) given by

ci ηi(k)
0.1197 1
-0.5881 1

2
(cos(kx) + cos(ky))

0.1461 cos(kx) cos(ky)
0.0095 1

2
(cos(2kx) + cos(2ky))

-0.1298 1
2
(cos(2kx) cos(ky) + cos(kx) cos(2ky))

0.0069 cos(2kx) cos(2ky)

(8.6)

In Fig. 8.6 we plot the Fermi surface and a set of constant energy contours
for this dispersion. The bandstructure fit was performed to optimally doped
BSCCO and is believed to be similar to optimally doped YBCO. As opposed

−3 −2 −1 0 1 2 3
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Figure 8.6: Fermi surface and contours of constant energy for the bandstruc-
ture in Table 8.6. The opposite sign between nearest and next-nearest neighbor
hopping leads to a hole-like Fermi surface. The flat contours of constant en-
ergy leads to dynamical nesting that favor peaks in χ(q, ω) at connecting wave
vectors.

to the banana shaped contours of constant energy encountered earlier, the con-
tours shown in Fig. 8.6 are very flat. We expect strong weight to be present
at wave vectors (nesting vectors) connecting the flat parts of the contours.
In the following the k sums in Eqn. (8.4) is performed numerically by dividing
the Brillouin zone in the a 1200×1200 mesh and introducing a small smearing
Γ = 0.5meV. The temperature is set by kT = Γ which corresponds to 5.5K.
In Fig. 8.7 we plot the bare susceptibilities Reχ0(q, ω) and Imχ0(q, ω) for
q = (π, qy) with qy = 0.7π, 0.8π, 0.9π, π. The imaginary part clearly reveals
a gap by exhibiting a threshold energy to particle-hole excitations. By virtue
of the Kramers-Kronig relations the steps in Imχ0(q, ω) turns into logarith-
mic singularities in Reχ0(q, ω). Clearly, the excitation gap ωq (the spin-gap)
to electron-hole excitations varies with qy as can be seen from the low-energy
part of Imχ0(q, ω). In Fig. 8.8 we map out the boundary to the continuum,
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Figure 8.7: The bare spin susceptibility Reχ0(q, ω) (left) and Imχ0(q, ω)
(right) as a function of energy ω as a selected set of wave vectors q = (π, qy)
with qy = 0.7π, 0.8π, 0.9π, π.

ωq = mink(Ek + Eq+k) where Ek is the quasi-particle energy in the supercon-
ducting state. As seen, the continuum edge has a nontrivial downward curva-
ture from the (π, π) point. This is a characteristic feature of d-wave pairing.
For a conventional BCS superconductor with s-wave pairing the electron-hole
continuum is independent of wave vector, ωq = 2∆ for all q. In the direc-
tion (π, qy) we see that there is a full gap below which there are no magnetic
two-particle fluctuations. This conclusion changes along any line where (qx, qy)
coincides with the node-node scattering vector. From Fig. 8.8 we also see that
above the spin gap there is only a very narrow region in q-space near (π, π)
where particle-hole excitations are allowed.
It is interesting that recent inelastic neutron scattering experiments by Pail-
hes et al.[302] have found a ’silent band’ and new dispersing modes evident in
the constant energy scans in the superconducting state of YBa2Cu3O6.85. In
the picture of Fig. 8.8 the silent band corresponds to the narrow low-energy
continuum strip around qy = 0.7π and qy = 1.3π and the new modes to the res-
onance branches dispersing through these strips into the spin gapped regions
at qy > 1.3π and qy < 0.7π.
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Figure 8.8: Lower edge of the particle-hole continuum along (π, qy), i.e. ωq =
mink(Ek + Eq+k).

8.2.2 Collective modes in a homogeneous d-wave superconductor

In this subsection I discuss the collective effects that arise in a d-wave super-
conductor in the presence of interactions, i.e.

χ(q, iωn) =
χ0

BCS(q, iωn)

1− Jχ0
BCS(q, iωn)

. (8.7)

We assume a constant superexchange interaction J , and have checked that
the omission of the nearest neighbor term, cos(qx) + cos(qy), leads to only
minor changes. As an interlude, one may wonder if the static Stoner criterion
1−JReχ0(q, 0) = 0 for a spin-density wave (SDW) instability is ever satisfied.
It can be shown, however, that for the value of the superexchange interaction
J utilized below, the SDW instability is not fulfilled and the superconducting
state exhibits only short range spin fluctuations[297].
To study the collective dynamical effects it is evident that energies and wave
vectors satisfying the dynamical Stoner criterion

1− JReχ0(q, Ω) = 0 and Imχ0(q, Ω) small, (8.8)

cause resonances or poles in the final spin susceptibility χ(q, ω). In Fig. 8.9
we plot again the bare susceptibility Reχ0(Q, ω) and Imχ0(Q, ω) at q = Q =
(π, π). From Reχ0(Q, ω) we see that if J = 155meV the resonance condition
is fulfilled at some energy ΩQ ≈ 40meV that lies below the continuum, i.e.
undamped since Imχ0(Q, ΩQ) = 0. In this sense the resonance mode is a
particle-hole bound state. Note that the value J = 155meV is very close the
the experimental estimates J ≈ t/3 ≈ 130meV. The full spin susceptibility
χ(Q, ω) at q = Q = (π, π) is shown as a function of energy to the right in Fig.
8.9. As can be seen, there is a δ-function like undamped peak around 40meV
in agreement with a large number of inelastic neutron scattering experiments
on YBCO.
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Figure 8.9: Left: Reχ0(Q, ω) (green) and Imχ0(Q, ω) (red) with Q = (π, π)
The vertical line indicates the value 1/J with J = 155meV. The intersection
point between 1/J and Reχ0(Q, ω) happens within the gap creating a true
bound state. This is shown to the right where Imχ(Q, ω) exhibits a δ-function
peak at 41meV (blue). The green line shows Imχ(Q, ω) in the normal state.

For other bandstructures approximately similar to the t−t′-band the resonance
is also present, even though its intensity and sharpness in energy is different
from the results presented here. The fact that the (π, π) resonance is not re-
lated to the bi-layer property of YBCO of BSCCO, as was initially proposed,
is in agreement with the finding of a commensurate resonance in single-layer
Tl2Ba2CuO6+δ[290].
A important question is related to the dispersion of this mode Ωq when moving
away from (π, π). In Fig. 8.10 (left) we show the position of the resonance
condition along the line (π, qy) and Fig. 8.10 (right) displays the full suscepti-
bility Imχ0(q, ω) as a function of energy at various values of qy. We see that
indeed the mode disperses downward until it merges with the continuum and
fades away at lower energies. This is exactly what is observed in the neutron
scattering experiments on YBCO.
The downward dispersion of the resonance condition is a feature that is very
sensitive to the bandstructure. For instance, a typical t− t′-band does not lead
to a strong incommensurate intensity.
In Fig. 8.11 we show a series of constant energy cuts through the 2D Brillouin
zone. Clearly, there is a incommensurate-commensurate continuous evolution
of the spin exciton with an intensity maximum at (π, π). Again, this seems
consistent with the experimental results discussed in the beginning of this
chapter. The evolution of the resonance energy with doping can also be ex-
plained within this picture. However, since the d-wave superconducting phase
is crucial, there are problems with the existence of the resonance above Tc.
This may be cured by the presence of superconducting fluctuations (preformed
pairs) in the pseudogap phase in underdoped regime. The dramatically differ-
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Figure 8.10: Left: Continuum edge (blue) and resonance condition
Reχ0(q,Ω) = 1/J (green) as a function of qy with qx = π fixed. The collec-
tive mode clearly lives inside the gap and merges with the continuum around
qx = 0.75π. Right: The full spin susceptibility Imχ(q, ω) as a function of en-
ergy ω. As expected the mode fades away when is crashes into the continuum.

ent behavior in the normal state is illustrated in the right graph of Fig. 8.9
(green line). Clearly, Imχ(q, ω) is not of resonant behavior.
A striking property of this approach is the lack of structure in Imχ(q, ω) above
the resonance. In fact, the constant energy maps similar to Fig. 8.11 at higher
energy (not shown) remain completely featureless. This is contrary to the peak
rotation seen in LBCO shown in Fig. 8.4. However, for the LBCO materials
around nh = 1/8 the superconductivity is strongly suppressed. This brings
about the question of what happens to the incommensurate-commensurate
crossover when we reduce the gap ∆. In Fig. 8.12 I plot again the real and
imaginary part of χ0(Q, ω) at the commensurate wave vector Q = (π, π) ob-
tained for different values of the maximum gap ∆. From these plots we expect
the properties of Imχ(q, ω) at lower gap values ∆ to be similar to the ones
at ∆ = 25meV except from a shift to lower energy of the incommensurate-
commensurate crossover. This expectation can be confirmed by constant en-
ergy plots (not shown) similar to Fig. 8.11. Again this seems problematic for
the recent LBCO data where Tc = 3K and ∆ is (presumably) small while the
incommensurate-commensurate crossover happens around 60 meV. Further-
more, even for the YBCO systems, in the underdoped regime the resonance
energy is known to scale with Tc (Eqn. 8.3), i.e. it increases as the doping
is increased. This is contrary to the maximum value of the gap ∆ which de-
creases monotonically as the doping is increased. This latter point is a serious
objection to the approach presented in this section.
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Figure 8.11: Constant energy cuts of Imχ(q, ω) through the 2D Brillouin
zone. The images are plotted on the same scale for comparison. The incom-
mensurate peaks are clearly seen to evolve continuously into the resonance at
41meV.

8.3 Spin susceptibility in the stripe phase

In the previous section the spin susceptibility was calculated from the starting
point of a homogeneous d-wave BCS superconductor. This approach was fairly
successful in reproducing some of the important features of the measured neu-
tron scattering data. What is the motivation for attempting to go beyond the
picture of collective modes in a homogeneous d-wave superconductor? Besides
the reasons mentioned in the last part of the previous section, we are motivated
by the strong experimental evidence for striped phases, particularly in LSCO.
Furthermore, the downward dispersion of the collective resonance mode could
alternatively be interpreted as the crossing of two magnon branches emerging
from incommensurate momentum positions close to (π, π). This latter picture
is what we will study in greater detail in the remainder of this chapter.

8.3.1 A spin-only approach to the incommensurate stripe phase

The large U limit of the Hubbard model is given by the t-J-model which, at
half filling, reduces to the Heisenberg model due to the constraint of no double
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Figure 8.12: Left: Reχ0(Q, ω) versus energy, Q = (π, π), the vertical line
indicates the value 1/J with J = 155meV. The intersection point between 1/J
and Reχ0(Q, ω) happens within the gap creating a true bound state. Right:
Imχ0(Q, ω) versus energy

occupancy,
H = J

∑

<ij>

Ŝi · Ŝj, (8.9)

with J = 4t2/U . As a first approach to the low energy excitations in an incom-
mensurate stripe phase we might be tempted to forget about the charges for a
moment and solve the resulting spin-only problem[303, 304]. By conventional
linear spin-wave theory this is indeed what Batista et al.[305] and Krüger et
al.[306] recently did, i.e. use Eqn. (8.9) in a stripe spin state and obtain the
corresponding spin waves. The qualitative evolution of the incommensurate
peaks have also been discussed within a phenomenological string-stripe model
by Hassselmann et al.[307]
Fig. 8.13 shows the resulting spin wave dispersion ω(qx, π) as obtained by
Krüger et al.[306] in the case of vertical stripes with spacing p = 3, 4, 5. The
parameter λ determines the exchange coupling J ′ between the spins across a
charge stripe, J ′ = λJ , with J being the exchange within a magnetic domain.
Clearly, the Goldstone modes disperse to zero energy where they develop into
the Bragg peaks expected for the static incommensurate input spin pattern, i.e.
at qx = π±2π/2p which in units of 2π, as in Fig. 8.13, becomes qx = 0.5±1/2p.
The spin wave branches merge at (π, π) at a finite energy ωπ which depends
on both λ and p. Therefore, in the spin-only picture, the resonance is nothing
but the energy associated with the lowest spin excitation at (π, π). The linear
dependence on 1/p (ωπ = α1/p) is in agreement with the neutron scattering
measurements on YBCO. This follows from the Yamada relation[141]

kTc ∼ δ = 1/p (8.10)
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Figure 8.13: Spin wave dispersions for vertical site-centered stripes along
(H,π) for different stripe spacings p and couplings (i.e. exchange couplings
across the stripes) λ. Adapted from Ref. [306].

and the empirical relation, ωπ ≈ 5kTc, for the (π, π) resonance. From the
incommensurability δ in LSCO and the measured spin-wave velocity Batista
et al.[305] predicted a resonance energy of 14 − 16meV in 10% doped LSCO.
This energy is not in agreement with recent inelastic neutron measurements
however[280]. Another important discrepancy between the spin-only predic-
tions and the neutron data is the consistent experimental lack of the outward
dispersing branches of the spin waves, i.e. the mode dispersing to higher
(smaller) values of qx from the Bragg points 0.5 + 1/2p (0.5 − 1/2p). As op-
posed to the nickel-oxide systems, neutron measurements on the cuprates have
never found any evidence for these ”wings” seen in all the plots in Fig. 8.13. In
this respect the mode dispersion of the spin exciton in a homogeneous super-
conductor agrees better with the experiments. In the present section however,
we insist on the stripe picture but include the charges when obtaining the spin
fluctuations.

8.4 Fluctuations around the mean-field state of the min-
imal model

In this section we study the formalism used to calculate the spin fluctuations
around stable spin- and charge configurations found within the minimal model
discussed in the previous chapters. We will be mostly interested in fluctuations
around the stripe phase.
In chapter 1 we derived the following effective action

Seff(M, ∆,H) =
∫

dτ
∑

ijσ

(c∗iσ(∂τ − µ)ciσ − [tijc
∗
iσcjσ + H.c]− µc∗iσciσ −Mi · Si
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+
[
∆ijcj↓ci↑ + ∆ijc

∗
i↑c

∗
j↓

]
+

3

8U
|Mi|2 +

1

V
∆2

ij −Hi · Si

)
. (8.11)

Here, I have here added the source term −Hi · Si. By shifting the integration
variables Mi → Mi −Hi of the partition function, the action becomes

Seff(M, ∆,H) = Seff(M, ∆, 0)+
3

8U

∫
dτ

∑

i

H2
i −

3

4U

∫
dτ

∑

i

Hi ·Mi. (8.12)

The fermions can be integrated out of Seff(M, ∆, 0) to obtain, again in terms
of the notation of chapter one,

Seff(M, ∆, 0) =
∫

dτ


∑

i

3

8U
|Mi|2 +

∑

<ij>

1

V
∆2

ij




− 1

2
Tr ln [14×4∂τ −H0(tij, µ,Mi, ∆ij)] . (8.13)

In the following we write H0(tij, µ,Mi, ∆ij) = H0(Mi, ∆ij) and 14×4 = 1. To
obtain the spectrum of the bosonic spin excitations we start by expanding the
effective action Seff in powers of the deviation δMi(τ) from the static mean-
field value Mc

i , i.e.
Mi(τ) = Mc

i + δMi(τ). (8.14)

Since the matrix H0 given by Eqn. (1.38) is linear in Mi it is evident that we
have

H0(Mi(τ)) = H0(M
c
i) +H0(δMi(τ)), (8.15)

with
H0(δMi(τ)) = −(δMi(τ) · σ

2
)⊗ τ z, (8.16)

where the imaginary time τ should not be confused with the Nambu space
Pauli matrices τα. Thus, the action becomes

Seff(M, ∆,H) =
∫

dτ


∑

i

3

8U

(
(Mc

i)
2 + δMi(τ)2 + 2Mc

i · δMi(τ)
)

+
∑

<ij>

1

V
∆2

ij




− 1

2
Tr ln [∂τ −H0(M

c
i , ∆ij)−H0(δMi(τ), ∆ij)]

+
3

8U

∫
dτ

∑

i

H2
i −

3

4U

∫
dτ

∑

i

Hi · (Mc
i + δMi(τ)) . (8.17)

As usual we may write

+ Tr ln [∂τ −H0(M
c
i , ∆ij)−H0(δMi(τ), ∆ij)] (8.18)
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= Tr ln
[
(∂τ −H0(M

c
i , ∆ij))

(
1− (∂τ −H0(M

c
i , ∆ij))

−1H0(δMi(τ), ∆ij)
)]

= Tr ln [(∂τ −H0(M
c
i , ∆ij)) (1 + G(Mc)H0(δMi(τ), ∆ij))]

= Tr ln [∂τ −H0(M
c
i , ∆ij)]− Tr

∞∑

n=1

(−1)n

n
[G(Mc)H0(δMi(τ), ∆ij)]

n

where

G(Mc) = − 1

∂τ −H0(Mc
i , ∆ij)

. (8.19)

To Gaussian order (n = 2) we then get

Seff(M, ∆,H) =
∫

dτ


 3

8U

∑

i

(Mc
i)

2 +
3

8U

∑

i

H2
i −

3

4U

∑

i

Hi ·Mc
i +

∑

<ij>

1

V
∆2

ij


 (8.20)

+
∫

dτ

(
3

4U

∑

i

(Mc
i −Hi) · δMi(τ)− 1

2
Tr G(Mc)H0(δMi(τ), ∆ij)

)

− 1

2
Tr ln [∂τ −H0(M

c
i , ∆ij)]

+
∫

dτ

[∑

i

3

8U
δMi(τ)2 +

1

4
Tr G(Mc)H0(δMi(τ), ∆ij)G(Mc)H0(δMi(τ), ∆ij)

]
,

which by virtue of the minimum condition for Mc, becomes

Seff(M, ∆,H) =
∫

dτ


 3

8U

∑

i

(Mc
i)

2 +
3

8U

∑

i

H2
i −

3

4U

∑

i

Hi ·Mc
i +

∑

<ij>

1

V
∆2

ij


 (8.21)

−
∫

dτ
3

4U

∑

i

Hi · δMi(τ)− 1

2
Tr ln [∂τ −H0(M

c
i , ∆ij)]

+
∫

dτ

[∑

i

3

8U
δMi(τ)2 +

1

4
Tr G(Mc)H0(δMi(τ), ∆ij)G(Mc)H0(δMi(τ), ∆ij)

]
.

For the particle-hole bubble in the last term we have

+
1

4
Tr G(Mc)H0(δMi(τ), ∆ij)G(Mc)H0(δMi(τ), ∆ij) (8.22)

=
1

16

∫
dτ

∑

iα

〈αiτ |G(Mc)(δMaσa ⊗ τ z)G(Mc)(δMbσb ⊗ τ z)|τiα〉
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=
1

16

∫
dτdτ ′

∑

ij

Gαβ(iτ ; jτ ′Mc)(σa ⊗ τ z)βγGγδ(jτ
′; iτMc)(σb ⊗ τ z)δαδMa

i (τ)δMb
j(τ

′),

with summation over all sub- and super indices. We define the kernel Kab by

Kab =
1

2
Gαβ(iτ ; jτ ′Mc)(σa ⊗ τ z)βγGγδ(jτ

′; iτMc)(σb ⊗ τ z)δα (8.23)

and redefine δM → 3
4U

δM (δM dimensionless) to write the action as

Seff(M, ∆,H) =
∫

dτ


2U

3

∑

i

(Mc
i)

2 +
3

8U

∑

i

H2
i −

∑

i

Hi ·Mc
i +

∑

<ij>

1

V
∆2

ij




−
∫

dτ
∑

i

Hi · δMi(τ)− 1

2
Tr ln [∂τ −H0(M

c
i , ∆ij)] (8.24)

+
1

2

∫
dτdτ ′

∑

abij

4U

3

[
δabδijδ(τ − τ ′) +

U

3
Kab

]
δMa

i (τ)δMb
j(τ

′).

In the homogeneous case the parts of the action S̃eff(δM,H) containing δM
(and the H2 term) is given by

S̃eff(δM,H) =
3

8U

1

β

∑

kωna

Ha(k, ωn)H∗a(k, ωn) (8.25)

− 1

2

1

β

∑

kωna

[δMa(k, ωn)H∗a(k, ωn) + δM∗a(k, ωn)Ha(k, ωn)]

+
1

2

1

β

∑

k,ωna

4U

3

[
δab +

U

3
Kab(k, ωn)

]
δMa(k, ωn)δM∗b(k, ωn).

By integrating out the bosonic mode this reduces to

S̃eff(H) =
3

8U

1

β

∑

kωnab

Ha(k, ωn)

(
δab − 1

δab + U
3
Kab(k, ωn)

)
H∗b(k, ωn).

(8.26)
For the τ -ordered spin-spin correlation function we have

χab(iτ ; jτ ′) = −〈TτS
a
i (τ)Sb

j (τ
′)〉 = − 1

Z

∫
D[cc∗]Sa

i (τ)Sb
j (τ

′)e−S = (8.27)

− 1

Z

1

β2

∑

ωnω′n

∑

qq′

∫
D[cc∗]Sa

q(ωn)Sb
q′(ω

′
n)e−Seiq·ri−iωnτ+iq′·rj−iω′nτ ′ =
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− 1

Z

1

β2

∑

ωnω′n

∑

qq′

∫
D[cc∗]

δ2

δHa(−q,−ωn)δHb(−q′,−ω′n)
e−Seiq·ri−iωnτ+iq′·rj−iω′nτ ′ .

By use of Eqn. (8.26) we therefore finally get

χab(iτ ; jτ ′) = − 3

U

1

β

∑
qωn

(
δab − 1

δab + U
3
Kab(q, ωn)

)
eiq·(ri−rj)−iωn(τ−τ ′), (8.28)

or simply

χaa(q, ωn) =
χ0(q, ωn)

1− U
3
χ0(q, ωn)

, (8.29)

with χ0 = −Kaa.
In the following we are interested in the ordered phases, i.e. when ∆ij and
Mc

i have acquired a finite expectation value. We denote the axis parallel to
the assumed co-linear staggered magnetization as the z-axis. Thus, the order
parameter Mi is of the form

Mc
i = (0, 0,Mi). (8.30)

As we know from the staggered antiferromagnet[308], there exists high energy
longitudinal amplitude fluctuations above a mode gap that increases rapidly
with the Coulomb repulsion U . The low energy spin fluctuations are expected
to be transverse to this direction. Therefore, in the following, we restrict the
discussion to the case where

δMi(τ) = (δMx
i (τ), δM y

i (τ), 0). (8.31)

In this case we can determine the mean-field Greens function Gαβ(i, τ ; j, τ ′;Mc
i)

defined by

Gαβ(i, τ ; j, τ ′;Mc
i) = −〈i, τ, α| 1

∂τ −H0(Mc
i)
|j, τ ′, β〉. (8.32)

As opposed to the usual 2× 2 Greens function matrices known from the pure
magnetic or pure superconducting phases, the Greens function in Eqn. (8.32)
is 4× 4.
Since the classical mean-field has no dynamics we can also write Eqn. (8.32)
as

Gαβ(i, j, iωn;Mc
i) = −〈i, α| 1

iωn −H0(Mc
i)
|j, β〉. (8.33)

If the system was in a homogeneous phase of d-wave superconducting order,
we can Fourier transform Eqn. (1.38) and obtain

H0 = ξk1⊗ τ z −∆kσ
y ⊗ τ y, (8.34)
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where

ξk = −2t(cos(kx) + cos(ky))− 4t′(cos(kx) cos(ky))− µ, (8.35)

∆k =
∆

2
(cos(kx)− cos(ky)), (8.36)

in the case of nearest (t) and next-nearest (t′) neighbor hopping integrals and
dx2−y2-wave pairing. In this case we then get for the Greens function

G(k, iωn) =
iωn1 + ξkσ

z ⊗ 1 + ∆kσ
y ⊗ τ y

(iωn)2 − ξ2
k −∆2

k

, (8.37)

which is nothing but a spin-expanded version of the Nambu Greens function
for BCS superconductors. As usual the single-particle excitation energies are
given by E2

k = ξ2
k + ∆2

k.
On the other hand, when the system is in an pure antiferromagnetic state with
Mc

i = (0, 0,Mi) = (0, 0,meiQ·ri) the excitation energies are E2
k = ξ2

k + m
4

2. In
fact, to obtain a better feel for the formalism and test the computer routines
it is instructive to briefly consider in the following the antiferromagnetic case.
Later, we will not be interested in the homogeneous states, i.e. the states
which are translational invariant within one or two lattice sites. Instead, we
focus on the spin response from stripe phases which are translational invariant
within a larger unit cell containing e.g. eight or sixteen lattice sites. In that
case the Matsubara algebra is identical to the results above, but the Fourier
transform of the real-space indices needs be done with a basis, the number of
basis states equal to the number of sites in the unit cell.

8.5 Antiferromagnetic spin waves

Before discussing the general stripe ordered case, it is instructive to consider
first the well known antiferromagnet[308]. In this case the Greens function

G(iτ ; jτ ′; M c) ≡ −〈iτα| 1

∂τ +H0(M c)
|jτ ′β〉 (8.38)

and H0(M
c) are determined from

〈iτα|H0(M
c)|jτ ′β〉 =

(
−tδ〈ij〉 − t′δ〈〈ij〉〉 − µδi,j

)
δ(τ − τ ′)δα,β

− M c
i

2
τ 3
αβδi,jδ(τ − τ ′) (8.39)
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where 〈〉 (〈〈〉〉) indicate nearest (next-nearest) neighbor sites. In the antiferro-
magnetic phase, M c

i = M c exp(iQ · ri). We can multiply Eqn. (8.38) on both
sides from the left by 〈kτ ′′γ|∂τ +H0(M

c)|iτα〉 and sum over i, τ, α. In Fourier
space the resulting equation becomes

−δαβ = (−ipn + εq − µ)Gαβ(q, pn)− M c

2
τ 3
αγGγβ(q−Q, pn) (8.40)

where
εq = −2t (cos qx + cos qy)− 4t′ cos qx cos qy. (8.41)

In terms of ξq = εq−µ and the vector G(q, pn) = (G(q, pn),G(q−Q, pn))t we
have

−
(

τ 0

τ 0

)
=

(
(−ipn + ξq)τ

0 −Mc

2
τ 3

−Mc

2
τ 3 (−ipn + ξq−Q)τ 0

)
G(q, pn) (8.42)

Thus

G(q, pn) =

(
(ipn − ξq−Q)τ 0 − Mc

2
τ 3

(ipn − ξq)τ
0 − Mc

2
τ 3

)

(−ipn + ξq)(−ipn + ξq−Q)− (Mc

2
)2

(8.43)

and then for t′ = µ = 0 (where εq±Q = −εq) the Greens function becomes

G(q, pn) =
(ipn + εq)τ

0 − Mc

2
τ 3

(ipn)2 − E2(q)
(8.44)

where E2
q = ε2

q + (Mc

2
)2. Armed with this expression, we can attack the bare

susceptibility given by Eqn. (8.23). For instance for χxx
0 (q, ωn) we get

χxx
0 (q, ωn) = − 1

β

∑

q′pn

Trs
1

(ipn)2 − E2
q′

(
0 ipn + εq′ − Mc

2

ipn + εq′ +
Mc

2
0

)

× 1

(ipn + iωn)2 − E2
q′+q

(
0 ipn + iωn + εq′+q − Mc

2

ipn + iωn + εq′+q + Mc

2
0

)

= − 2

β

∑

q′pn

[
(ipn + εq′)(ipn + iωn + εq′+q)−

(
Mc

2

)2
]

((ipn)2 − E2
q′)((ipn + iωn)2 − E2

q′+q)
. (8.45)

From the poles and the residues of the function

f(z) =
2(z + εq′)(z + iωn + εq′+q)−

(
Mc

2

)2

(z2 − E2
q′)((z + iωn)2 − E2

q′+q)
(8.46)
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we can immediately perform the fermion Matsubara sum to get

χxx
0 (q, ωn) =

∑

q′
f(Eq′)

(Eq′ + εq′)(−Eq′ − iωn − εq′+q) +
(

Mc

2

)2

Eq′((Eq′ + iωn)2 − E2
q′+q)

+ (Eq′ → −Eq′)

+
∑

q′
f(Eq′+q)

(−iωn + Eq′+q + εq′)(−Eq′+q − εq′+q) +
(

Mc

2

)2

Eq′+q((Eq′+q − iωn)2 − E2
q′)

+ (Eq′+q → −Eq′+q). (8.47)

The remaining momentum sums are done numerically by dividing the Brillouin
zone into many tiny squares and performing the discrete sum. The same
expression (8.47) is valid for χyy

0 (q, ωn) whereas the low-energy spectrum of
the longitudinal susceptibility χzz

0 (q, ωn) is dominated by a mass gap.
For T = 0 and U = 4.0t, I show in Fig. 8.14(left) the real part of χxx

0 (q, ω)
for qy = π as a function of qx and ω. The full spin susceptibility χxx(q, ω) is

Figure 8.14: (a) The real part of the bare susceptibility χxx
0 (qx, π, ω) at

qy = π as a function of qx and the energy ω. The red line shows the contour
where the mountain intersects the plane, i.e. where Reχxx

0 (qx, π, ω) = 3/U .
(b) Similar plot of the full susceptibility χxx(qx, π, ω) which clearly displays
the spin waves.

shown in Fig. 8.14(right). Clearly, the transverse susceptibility is dominated
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by the antiferromagnetic spin waves dispersing toward (π, π) as the energy
decreases. These modes match the resonance condition 1− U

3
Reχxx

0 (q, ω) = 0
of the ’bare’ susceptibility and agrees with the symmetry considerations of
Goldstones theorem. By plotting the imaginary part of the full susceptibility
χxx(q, ω) at constant energies as a function of both qx and qy we see in Fig.
8.15 the isotropic dispersion of the spin wave cones.

A crucial ingredient for the Goldstone modes to come out correctly is the

Figure 8.15: Constant energy cuts through the Brillouin zone (π/2 < qx, qy <
3π/2 for the half-filled antiferromagnet showing the uniform dispersion of the
spin-wave cone centered at (π, π).

self-consistency of the magnetism, i.e. the size of the magnetization M c must
be determined self-consistently from the Hamiltonian. This is because the
Coulomb interaction U is the real coupling constant giving rise to a finite M c

and enters the full spin susceptibility in the denominator, 1 − U
3
χxx

0 (q, ω). In
Fig. 8.14 where U = 4.0t the self-consistent antiferromagnetic solution has
〈Sz〉 = 0.2556t corresponding to M c = 4U/3〈Sz〉 = 1.3632t.
We can understand the importance of the self-consistency and the satisfaction
of Goldstones theorem (at least the satisfaction of zero-energy modes at the
ordering vector Q) by showing that both lead to the gap equation. Thus,
consider the action S of the ordered antiferromagnet (t′ = µ = 0)

S =
∫

dτ
∑

q,pnσ

(−ipn + εq) c∗qσcqσ − M c

2
σc∗qσcq+Qσ +

3

8U
(M c)2 (8.48)
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=
∫

dτ
∑′

qpnσ

(
c∗qσ

c∗q+Qσ

) (
−ipn + εq −σMc

2

−σMc

2
−ipn − εq

) (
cqσ

cq+Qσ

)
+

3β

8U
(M c)2

where
∑′ denotes the sum over the folded Brillouin zone, and σ = ±1 for spin

up and down respectively. When integrating out the electrons we get for the
free energy F = S/β,

F = − 1

β

∑′
qpnσ

ln det

(
−ipn + εq −σMc

2

−σMc

2
−ipn − εq

)
+

3

8U
(M c)2

= − 2

β

∑′
qpn

ln
(
(ipn)2 − E2

q

)
+

3

8U
(M c)2, (8.49)

with E2
q = ε2

q +
(

Mc

2

)2
. Requiring M c to minimize the free energy F , we get

0 =
∂F

∂M c
=

2

β

∑′
qpn

M c/2(
(ipn)2 − E2

q

) +
3

4U
M c. (8.50)

Performing the frequency sum this condition becomes

∑
q

1

Eq

(1− 2f(Eq)) =
3

U
, (8.51)

where the symmetry of Eq was used to extend the sum to the full Brillouin
zone. This gap equation yields a relation between U and M c and the solution
is shown graphically in Fig. 8.16.
On the other hand a necessary condition for a soft transverse mode at the

2.5 5 7.5 10 12.5 15 17.5 20
U

0.1

0.2

0.3

0.4

0.5
Sz

Figure 8.16: Solution of 〈Sz〉 as a function of U from the gap equation. This
also gives M c(U) since M c = 4U/3〈Sz〉. Clearly, for U →∞ the magnetization
saturates, i.e. |〈Sz〉| → 1

2 .
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ordering vector Q = (π, π) is 1− U
3
χxx

0 (Q, 0) = 0 where

χxx
0 (Q, 0) = − 2

β

∑
qpn

(ipn + εq)(ipn − εq)−
(

Mc

2

)2

((ipn)2 − E2
q)((ipn)2 − E2

q)

= − 2

β

∑
qpn

1

(ipn)2 − E2
q

=
∑
q

1

Eq

(1− 2f(Eq)) , (8.52)

which clearly leads to the same gap equation obtained from minimizing the
free energy.
In the following we are interested in the states where antiferromagnetism and
d-wave superconductivity coexist. For instance in the form of stripe arrays
where the system self-organizes into mesoscopic domains of alternating mag-
netic and superconducting order. In this case we will diagonalize the single-
particle Hamiltonian Eqn. (1.37) on a real-space cluster and use the resulting
eigensystem to draw conclusions about the spin fluctuations of stripe systems.

8.6 Spin susceptibility in the phase of coexisting stripe
and superconducting order

We now return to the question of the spin response from stripe phases. In par-
ticular, we are interested in the recent inelastic neutron scattering experiments
on LSCO by Christensen et al.[280] and LBCO by Tranquada et al.[281] There
have been recent theoretical progress in understanding these measurements.
For instance, Vojta et al.[309] and Uhrig et al.[310] have found reasonably
agreement with the neutron results on the LBCO system from calculations
of coupled two-leg spin ladder systems. In these spin-only calculations the
starting-point is also a bond-ordered stripe system, but sophisticated treat-
ments of the spin-ladders allows one to go beyond the semi-classical spin-wave
approach[305, 306]. The importance of superconductivity is, however, not
straightforward to infer from these spin-only models.
In the following we are motivated by the success of the mean-field one-band
Hubbard model to describe STM and ARPES data to also apply it to the neu-
tron results. In order to better compare results with other groups[22, 157, 158]
we choose the mean-field decoupling scheme of the Hubbard interaction used
in the previous chapter, i.e. Un̂i↑n̂i↓ → U〈ni↑〉n̂i↓ + U〈ni↓〉n̂i↑ − U〈ni↑〉〈ni↓〉.
Therefore, we use the following expression for the bare transverse susceptibility
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derived in the appendix

χxx
0 (q, iωn) =

1

4(NxNy)2

∑

knm
ijσ

[
a1(u, v)

1− f(Enkσ)− f(Emk+qσ)

iωn + Emk+qσ + Enkσ

+ a2(u, v)
f(Enkσ) + f(Emk+qσ)− 1

iωn − Emk+qσ − Enkσ

(8.53)

+ b1(u, v)
f(Enkσ)− f(Emk+qσ)

iωn + Emk+qσ − Enkσ

+ b2(u, v)
f(Emk+qσ)− f(Enkσ)

iωn + Enkσ − Emk+qσ

]
eiq·(j−i),

with the coefficients a1(2)(u, v) and b1(2)(u, v) given by the following combina-
tions of the coherence factors u and v

a1(u, v) = v∗nkσ(i)umk+qσ(i)
(
vnkσ(j)u∗mk+qσ(j)− unkσ(j)v∗mk+qσ(j)

)
,(8.54)

a2(u, v) = u∗nkσ(i)vmk+qσ(i)
(
unkσ(j)v∗mk+qσ(j)− vnkσ(j)u∗mk+qσ(j)

)
,(8.55)

b1(u, v) = u∗nkσ(i)umk+qσ(i)
(
unkσ(j)u∗mk+qσ(j) + vnkσ(j)v∗mk+qσ(j)

)
,(8.56)

b2(u, v) = v∗nkσ(i)vmk+qσ(i)
(
vnkσ(j)v∗mk+qσ(j) + unkσ(j)u∗mk+qσ(j)

)
.(8.57)

Here, the site indices i, j belong to the supercell (typically of size 2 by 8) and
k is a Bloch index belonging to the corresponding reduced Brillouin zone. The
eigensystem is obtained from a diagonalization of the Bogoliubov-de Gennes
equations for each k.
The full susceptibility obtained within linear response is then given by

χxx(q, iωn) =
χxx

0 (q, iωn)

1− Uχxx
0 (q, iωn)

, (8.58)

which is similar to the expression (8.29) used previously15. The difference in
the factor of 2U/3 (2 from spin summation in (8.29)) versus U in the denomina-
tor of Eqn. (8.58) originates from the slightly different mean-field decoupling

15For a derivation of this result see e.g. the books by S. Doniach and E.H. Sondheimer:
Green’s functions for solid state physicists, or S.W. Lovesey: Condensed matter physics,
Dynamic correlations. Within linear response, because of the applied magnetic field the
z-component of the spin is no longer a constant of the motion. Therefore, terms such as
〈ĉ†i↑ĉi↓〉 neglected in the decoupling Un̂i↑n̂i↓ → Un̂i↑〈n̂i↓〉+Un̂i↓〈n̂i↑〉−U〈n̂i↑〉〈n̂i↓〉 need be
taken into account. Inclusion of these terms leads to Eqn. (8.58).
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scheme used here.
In the half-filled antiferromagnetic state (V = nh = 0.0) this approach pro-
duces the expected spin waves similar to the results shown in Fig. 8.14 and
Fig. 8.15. This is plotted in a slightly different way in Fig. 8.17.
There is a subtle problem associated with the numerical studies of models

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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6

q
x
 [π]

t´=0.0t, t´´=0.0t, doping=0.0, U=4.0t, N=8, q
y
=π

Figure 8.17: Dispersion of the AF spin waves as seen in plots of Imχ(qx, qy =
π, ω) versus qx at fixed energy from ω = 0.0− 0.5t in steps of 0.1t. The scans
are offset for clarity and the intensity has been normalized for each energy
scan. Without this energy normalization it is clear from Fig. 8.14 that the
intensity strongly increases when reducing the energy transfer. Parameters:
U = 4.0t, nh = t′ = t′′ = 0.0.

that exhibit incommensurate spin or charge density wave order: how does one
match the chosen unit cell size with the natural periodicity of the system? For
example, imagine that we have a huge system and choose some values of the
input parameters such as U , V , t′ and the doping nh. Then we expect the oscil-
lations of, say, the spin density wave to have some wavelength λ whose specific
value depends on the value of the parameters. Knowing λ, we could perform
fast calculations by splitting the system into unit cells given by the size of this
wavelength λ. In this way, instead of diagonalizing an enormous system, we
only diagonalize a system with the size of a unit cell but need to perform the
sum over Bloch wavevectors belonging to the corresponding reduced Brillouin
zone. However, since the formalism has to be set up in the reserve order, we
have to find a set of parameters that match our chosen system size. To do this,
we use the fact that Goldstones theorem need apply whenever we have a bro-
ken continuous symmetry. In particular, when studying systems of size 2 × 8
and searching for parameters that have this as a stable supercell we search for
Goldstone modes positioned at (2π/2, 2π/2± 2π/8) = (π, π(1± 1/4). This is
rather extensive numerical work due to the number of sums in Eqn. (8.53) and
the fact that the runs are time-consuming and most results need be discarded
since the spin spectrum does not produce the correct Goldstone modes. Of
course, this problem is related to the search for, at least, meta-stable states.
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The numerical routines can stabilize many stripe states that appear stable,
but, in fact, are not even the lowest energy stripe state.
In the following we present results first for V = 0, i.e. no superconductivity.

Figure 8.18: (a) The real part of the bare susceptibility χxx
0 (qx, π, ω) at qy = π

as a function of qx and the energy ω. Parameters: nh = 0.125, U = 4.0t,
V = 0.0, t′ = −0.385t and t′′ = 0.10t. The red line shows the contour where
Reχxx

0 (qx, π, ω) = 1/U . (b) Similar plot of the full susceptibility χxx(qx, π, ω)
which clearly displays the spin waves.

Then, for a chosen Coulomb interaction U and hole doping nh we tune t′ and
t′′ until the Goldstone modes appear at the correct positions. This tuning of
t′ and t′′ changes the filling of the mid-gap bands until the chosen periodicity
matches the chosen overall doping level nh. The main question we attempt to
clarify is dispersion of the spin modes and the associated intensity distribution.
In Fig. 8.18a I show the the real part of the bare susceptibility and the contour
where it cuts 1/U for nh = 0.125, V = 0, U = 4.0t.
To obtain the Goldstone modes that correctly produce Bragg peaks at (π(1±
1
4
), π) the hopping parameters had to be set to t′ = −0.385t and t′′ = 0.10t.

Fig. 8.18b shows the imaginary part of the full spin susceptibility for this set of
parameters. For a different doping level nh = 0.160 we obtain a similar result
for U = 4.0t, V = 0.0, t′ = −0.13t, and t′′ = 0.21t as seen in Fig. 8.19. In
both cases we see clearly the expected spin modes dispersing from (π(1± 1

4
), π)

similar to the results from the spin-only models seen in Fig. 8.13.
What is the intensity distribution along the spin wave branches? In the an-
tiferromagnet this was isotropic, i.e. equal intensity on the two branches as
seen in Fig. 8.17. Along the branches Reχxx

0 (qx, π, ω) = 1/U , and therefore
Imχxx(qx, π, ω) ∝ 1/(U2Imχxx

0 (qx, π, ω). Thus, the structure in the imaginary
part of the bare susceptibility determines the relative intensity of the two
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Figure 8.19: Same as Fig. 8.18 but for the following set of parameters:
nh = 0.160, U = 4.0t, V = 0.0, t′ = −0.13t and t′′ = 0.21t.

branches. For the situation without superconductivity V = 0, the low-energy
form of Imχxx

0 (qx, π, ω) remains featureless resulting in equal intensity ratio
between the inner and outer spin mode branch. The intensity monotonically
decreases as the energy is increased. Above the resonance energy only the
outer branch can be seen.
The spin waves also disperse in qy. Therefore, it is important to show the
dispersion in the full Brillouin zone. In Fig. 8.20 I show the constant energy
cuts through the Brillouin zone π

2
< qx, qy < 3π

2
of the imaginary part of the

full susceptibility similar to Fig. 8.15. These images have been symmetrized
to simulate the equal amounts of vertical/horizontal stripe domains. Clearly,
the dispersion is characterized by four cones pivoted at (π(1 ± 1

4
), π). The

cones merge in at the (π, π) point around ω = 0.32t and cause an apparent
resonance. Above this energy scale the outer branches cause a diffuse ring
that continues to disperse away from the commensurate (π, π) point as the
energy increases. The ring shaped response above the (π, π) resonance is the
superposition of two rectangles originating from vertical and horizontal stripe
domains. The strongest intensity appear where they overlap which happens at
points rotated 45 degrees to the original four incommensurate Bragg points.
Many of these features are similar to the recent measurements of Tranquada
et al.[281] The main difference to the LBCO neutron data appears to be the
rather strong intensity at isolated points of the outer branches below the res-
onance energy as seen e.g. at ω = 0.20t and ω = 0.25t in Fig. 8.20. Note,
however, that even at these energies the strongest intensity is positioned on
the inner branches. In the future, we will study further the robustness of this
result toward changes in the doping, Coulomb repulsion U and band structure
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Figure 8.20: Dispersion of the incommensurate spin waves as seen in plots of
Imχ(qx, qy, ω) versus π

2 < qx, qy < 3π
2 at fixed energy. Parameters: U = 4.0t,

V = 0.0, nh = 0.125, t′ = −0.385t, t′′ = 0.10t. The color scale is the same for
all images.

parameters. For the parameter set corresponding to the results shown in Fig.
8.19 the 2D constant energy cuts are shown in Fig. 8.21. Qualitatively, we
have the same behavior as in Fig. 8.20: incommensurate-commensurate-ring
crossover as the energy transfer is increased. Above the resonance the diffuse
ring is more square formed, and the band-parameters cause the strongest in-
tensity to be located around the (0, π) and (π, 0) directions.

What happens when we include the nearest neighbor attraction V 6= 0? The
existence of the superconducting phase is one of the crucial differences between
the nickelates and the cuprates. Since the continuous spin rotation symme-
try is still broken, we again expect Goldstone modes condensed around the
reciprocal points (π(1 ± δ), π) for vertical stripes with spin periodicity 2/δ.
However, we also expect the pairing to strongly influence the low-energy form
of Imχxx

0 (qx, qy, ω). In particular, we know from the homogeneous d-wave BCS
superconducting phase that the spin gap, i.e. the lower edge of Imχxx

0 (qx, qy, ω)
at qy = π has the form shown in Fig. 8.8. For certain parameters one may
expect the wings of the continuum to coincide with the outer branches of the
spin waves. This will strongly over-damp these modes as appears to be the
case experimentally[280], at least in LSCO.
For U = 4.0t, V = 1.6t and nh = 0.125 we can still find t′ and t′′ such that the
expected Goldstone modes emerge. This is shown in Fig. 8.22. The imagi-
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Figure 8.21: Dispersion of the incommensurate spin waves as seen in plots of
Imχ(qx, qy, ω) versus π

2 < qx, qy < 3π
2 at fixed energy. Parameters: U = 4.0t,

V = 0.0, nh = 0.160, t′ = −0.13t, t′′ = 0.21t. The color scale is the same for
all images.

nary part of the bare susceptibility Imχxx
0 (qx, π, ω) is shown in Fig. 8.23(left).

Clearly, the low-energy region is protected from the damping effects of the
particle-hole continuum. In Fig. 8.23(right), we show Imχxx

0 (qx, π, ω) for the
self-consistent stripe solution obtained when U = 4.0t, V = 1.6t, nh = 0.160,
t′ = −0.09t, and t′′ = 0.17t. For this particular set of parameters, the real
part of the bare susceptibility Reχxx

0 (qx, π, ω) and the imaginary part of the full
response Imχxx(qx, π, ω) is shown in Fig. 8.24. From the contour determined
by the condition Reχxx

0 (qx, π, ω) = 1/U we find the same spin wave branches
as in the graphs above. However, as opposed to the situation when V = 0, the
continuum of the particle-hole excitations strongly damps the outer branches
as these fall inside the particle-hole continuum. This is evident from the full
spin susceptibility plotted to the right in Fig. 8.24. Only a diffuse remnant
of the outer branches remains. The larger intensity of the inner branch can
also be clearly seen from Fig. 8.25 which displays a set of constant energy cuts
through the graph in Fig. 8.24. The intensity has been normalized to that at
ω = 0.05t.
We find that also at lower doping levels, e.g. at nh = 0.100 and nh = 0.125,
it is possible to find band-parameters such that the spin modes appear at
(π(1 ± 1

4
), π) and the outer branches are damped. For U = 4.0t, V = 1.6t

and nh = 0.125 this solution exists when t′ = −0.35t and t′′ = 0.14t. Within
the minimal model, this is the explanation of the neutron scattering results
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Figure 8.22: (a) The real part of the bare susceptibility χxx
0 (qx, π, ω) at qy = π

as a function of qx and the energy ω. Parameters: nh = 0.125, U = 4.0t,
V = 1.6t, t′ = −0.37t and t′′ = 0.1t. The red line shows the contour where
Reχxx

0 (qx, π, ω) = 1/U . (b) Similar plot of the full susceptibility χxx(qx, π, ω)
which clearly displays the spin waves.

by Christensen et al.[280] Of course, at doping levels below 1/8 we expect the
stripes to be farther apart leading to smaller incommensurability parameter δ
and larger required supercells. The results in this limit will be explored in the
future.

8.7 Conclusion and discussion of some unanswered ques-
tions

So where does all this bring us regarding a consensus on the spin susceptibility
of the cuprate materials?
We know that there are stripes in the lanthanum based cuprate materials.
Therefore, the stripe state is an appropriate starting point to describe the
spin dynamics of these materials. The recently discovered ubiquity in the spin
spectrum between the LSCO and YBCO systems shown in Fig. 8.3 hints that
the same is true for the other cuprate families. Of course, there exists the
possibility that this apparent ubiquity is, in fact, merely a coincidence. In
that case, the band-structure and pairing gap of YBCO have conspired with
the stripe periodicity and the spin-wave velocity of the LSCO materials to
produce a seemingly very similar spin fluctuation spectrum. When this is not
the case, the question remains as to what is the best model to describe the
stripe state? Here, we used the mean-field decoupling of the one-band Hubbard
model which supports incommensurate spin- and charge density wave order.
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Figure 8.23: The imaginary part of the bare spin susceptibility χxx
0 (qx, π, ω)

at qy = π as a function of qx and the energy ω. Parameters: (left) nh = 0.125,
U = 4.0t, V = 1.6t, t′ = −0.37t and t′′ = 0.1t, and (right) nh = 0.160,
U = 4.0t, V = 1.6t, t′ = −0.09t and t′′ = 0.17t

This approach allowed us to include the superconductivity in the transverse
spin susceptibility, and the results appear very promising even though more
results are required. Particularly, the intensity distribution evident from the
constant energy scans of Imχxx(qx, π, ω)) similar to the images in Fig. 8.20
and Fig. 8.21 need be clarified in the coexisting phase of stripes and d-wave
superconductivity. From Fig. 8.24 it is clear that the main feature of these
plots will be an incommensurate-commensurate crossover at the resonance en-
ergy. There will be no sizable outer spin branches. It remains to be seen what
is the predictions for the dispersion above the resonance energy.
Experimentally, detailed 2D cuts through the Brillouin zone similar to the data
shown in Fig. 8.2, but at higher energy transfer, are very desired.
What about the spin fluctuations in the homogeneous d-wave superconductor
discussed in section 8.2 of this chapter? At finite energies the resulting spin
susceptibility appears quite close to the experimental results. The spin gap
is a direct consequence of the formation of Cooper pairs (and no broken spin
rotation symmetry). However, as was pointed out above, in the underdoped
regime, the pairing gap and the resonance are directly proportional which is
contrary to experiment. The stripe model does not suffer from this problem.
Furthermore, for the homogeneous d-wave superconductor we have not found
it possible to obtain the rotated square above the commensurate spin reso-
nance as seen by Tranquada et al.
Another interesting effect that will be investigated in the future is the effects
of modulated hopping parameters. Since the charge modulation causes a dis-
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Figure 8.24: (a) The real part of the bare susceptibility χxx
0 (qx, π, ω) at qy = π

as a function of qx and the energy ω. Parameters: nh = 0.160, U = 4.0t,
V = 1.6t, t′ = −0.09t and t′′ = 0.17t. The red line shows the contour where
Reχxx

0 (qx, π, ω) = 1/U . (b) Similar plot of the full susceptibility χxx(qx, π, ω)
which clearly displays the spin waves.

placement of the ions one can imagine that the hopping matrix elements, which
are known to be very sensitive to the distance between the ions, have a spatial
dependence. This introduces another parameter α which determines the value
of the overlap integral αt for hopping on to the stripes.
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Figure 8.25: Constant energy scans of the full transverse spin susceptibility
χxx(qx, π, ω) at qy = π as a function of qx. Parameters: nh = 0.160, U = 4.0t,
V = 1.6t, t′ = −0.09t and t′′ = 0.17t. The ten lines correspond to χxx(qx, π, ω)
at the energies ω = 0.05t− 0.5t in steps of ∆ω = 0.05t. These lines are off-set
for clarity.
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Appendices

.1 The spin susceptibility

We want to calculate the spin susceptibility in the case of a system that ex-
hibits order that is translational invariant within a certain unit cell. In the
case of no Hubbard interaction (U = 0) this reduces to the result from a ho-
mogeneous BCS superconductor with dx2−y2-wave pairing symmetry. On the
other hand, when the nearest neighbor attractive interaction V = 0 we ob-
tain some incommensurate spin order away from half-filling. We start from a
real-space formulation even though, of course, in the case of a homogeneous
state, it would be easier to work in momentum space. We do not yet specify
a Hamiltonian but have in mind the minimal model used previously.
From the definition of the spin susceptibility and the use of Wick’s theorem
we get

χ+−
0 (ri, rj, τ) = 〈Tτ Ŝ

+
i (0)Ŝ−j (τ)〉

= 〈Tτ ĉ
†
i↑(0)ĉi↓(0)ĉ†j↓(τ)ĉj↑(τ)〉

= −〈Tτ ĉj↑(τ)ĉ†i↑(0)〉〈Tτ ĉi↓(0)ĉ†j↓(τ)〉

− 〈Tτ ĉ
†
i↑(0)ĉ†j↓(τ)〉〈Tτ ĉi↓(0)ĉj↑(τ)〉. (.1)

Note the sign changes that occur when interchanging two fermion operators.
The Bogoliubov-de Gennes transformation is defined by

ĉ†iσ =
1√
N

∑

nk

(
γ̂†nkσu

∗
nkσ(i)e−ik·Ri + σγ̂nkσvnkσ(i)eik·Ri

)
, (.2)

where ĉ†iσ = ĉ†σ(ri) = ĉ†σ(i + Ri) and we Fourier transform in the supercell
vector Ri such that the Bloch index k belongs the the corresponding reduced
Brillouin zone. Then we get

χ+−
0 (ri, rj, τ) = − 1

N2

∑

nmkk′

(
unk↑(j)u∗nk↑(i)〈Tτ γ̂nk↑(τ)γ̂†nk↑(0)〉 (.3)

+ vnk↓(j)v∗nk↓(i)〈Tτ γ̂
†
nk↓(τ)γ̂nk↓(0)〉

)

×
(
umk′↓(i)u∗mk′↓(j)〈Tτ γ̂mk′↓(0)γ̂†mk′↓(τ)〉
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+ vmk′↑(i)v∗mk′↑(j)〈Tτ γ̂
†
mk′↑(0)γ̂mk′↑(τ)〉

)
e−i(k−k′)·(Ri−Rj)

−
(
−u∗nk↑(i)vnk↑(j)〈Tτ γ̂

†
nk↑(0)γ̂nk↑(τ)〉+ vnk↓(i)u∗nk↓(j)〈Tτ γ̂nk↓(0)γ̂†nk↓(τ)〉

)

×
(
umk′↓(i)v∗mk′↓(j)〈Tτ γ̂mk′↓(0)γ̂†mk′↓(τ)〉

− v∗mk′↑(i)umk′↑(j)〈Tτ γ̂
†
mk′↑(0)γ̂mk′↑(τ)〉

)
e−i(k−k′)·(Ri−Rj)

where I already used that 〈γ̂aγ̂
†
b〉 ∼ δa,b. By further utilizing the relations

〈Tτ γ̂n(τ)γ̂†n(0)〉 = (1− f(En))e−Enτ , (.4)

〈Tτ γ̂
†
n(τ)γ̂n(0)〉 = f(En)eEnτ , (.5)

〈Tτ γ̂n(0)γ̂†n(τ)〉 = −f(En)eEnτ , (.6)

〈Tτ γ̂
†
n(0)γ̂n(τ)〉 = −(1− f(En))e−Enτ , (.7)

where as usual the Fermi-Dirac distribution function reads, f(E) = (eEβ+1)−1,
this becomes

χ+−
0 (ri, rj, τ) = − 1

N2

∑

nmkk′

(
unk↑(j)u∗nk↑(i)(1− f(Enk↑))e−Enk↑τ

+ vnk↓(j)v∗nk↓(i)f(Enk↓)eEnk↓τ
)

×
(
−umk′↓(i)u∗mk′↓(j)f(Emk′↓)eEmk′↓τ

− vmk′↑(i)v∗mk′↑(j)(1− f(Emk′↑))e−Emk′↑τ
)
e−i(k−k′)·(Ri−Rj)

+
(
u∗nk↑(i)vnk↑(j)(1− f(Enk↑))e−Enk↑τ − v∗nk↓(i)unk↓(j)f(Enk↓)eEnk↓τ

)

×
(
−umk′↓(i)v∗mk′↓(j)f(Emk′↓)eEmk′↓τ

+ vmk′↑(i)u∗mk′↑(j)(1− f(Emk′↑))e−Emk′↑τ
)
e−i(k−k′)·(Ri−Rj). (.8)

Transforming first to Matsubara frequency

χ+−
0 (ri, rj, iωn) =

∫ β

0
dτχ+−

0 (ri, rj, τ)eiωnτ , (.9)
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and using the relations

f(x)f(y)b(x + y) = 1− f(x)− f(y), (.10)

(1− f(x))(1− f(y))b(−x− y) = f(x) + f(y)− 1, (.11)

f(x)(1− f(y))b(x− y) = f(y)− f(x), (.12)

(.13)

where b(x) = exβ − 1, we get

χ+−
0 (ri, rj, iωn) =

1

N2

∑

kk′nm

[
unk↑(j)u∗nk↑(i)umk′↓(i)u∗mk′↓(j)

f(Enk↑)− f(Emk′↓)
iωn + Emk′↓ − Enk↑

+ unk↑(j)u∗nk↑(i)vmk′↑(i)v∗mk′↑(j)
f(Enk↑) + f(Emk′↑)− 1

iωn − Emk′↑ − Enk↑

+ vnk↓(j)v∗nk↓(i)umk′↓(i)u∗mk′↓(j)
1− f(Enk↓)− f(Emk′↓)

iωn + Emk′↓ + Enk↓

+ vnk↓(j)v∗nk↓(i)vmk′↑(i)v∗mk′↑(j)
f(Emk′↑)− f(Enk↓)
iωn + Enk↓ − Emk′↑

+ u∗nk↑(i)vnk↑(j)umk′↓(i)v∗mk′↓(j)
f(Enk↑)− f(Emk′↓)
iωn − Enk↑ + Emk′↓

− u∗nk↑(i)vnk↑(j)vmk′↑(i)u∗mk′↑(j)
f(Enk↑) + f(Emk′↑)− 1

iωn − Enk↑ − Emk′↑

− v∗nk↓(i)unk↓(j)umk′↓(i)v∗mk′↓(j)
1− f(Enk↓)− f(Emk′↓)

iωn + Enk↓ + Emk′↓

+ v∗nk↓(i)unk↓(j)vmk′↑(i)u∗mk′↑(j)
f(Emk′↑)− f(Enk↓)
iωn + Enk↓ − Emk′↑

]
e−i(k−k′)·(Ri−Rj).

The measured neutron cross section is proportional to the Fourier transform
χ+−

0 (q, iωn) given by

χ+−
0 (q, iωn) =

∑

ij,RiRj

χ+−
0 (ri, rj, iωn)eiq·[(Rj+j)−(Ri+i)] (.14)
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summing over all sites and remembering the notation that rj = Rj + j. Re-
garding the supercell sum

∑

RiRj

e−i(q+k−k′)·(Ri−Rj) (.15)

we can uniquely translate q into the reduced Brillouin zone of the supercells by
their reciprocal lattice vectors. However, since the only way the Bloch index
enters the Bogoliubov-de Gennes equations is through exp(±ik·Ri) it is evident
that the resulting eigenvalues (Enkσ) and eigenvectors (unkσ(i), vnkσ(i)) are
invariant under shifts of k by a reciprocal supercell lattice vector. Therefore,
from a Nx×Ny unit cell we have simply

∑
RiRj

exp(−i(q+k−k′)·(Ri−Rj)) =

(N/NxNy)
2δ(q + k− k′). Thus, we get

χ+−
0 (q, iωn) =

1

(NxNy)2

∑

knm
ij

[
unk↑(j)u∗nk↑(i)umk+q↓(i)u∗mk+q↓(j)

f(Enk↑)− f(Emk+q↓)
iωn + Emk+q↓ − Enk↑

+ unk↑(j)u∗nk↑(i)vmk+q↑(i)v∗mk+q↑(j)
f(Enk↑) + f(Emk+q↑)− 1

iωn − Emk+q↑ − Enk↑

+ vnk↓(j)v∗nk↓(i)umk+q↓(i)u∗mk+q↓(j)
1− f(Enk↓)− f(Emk+q↓)

iωn + Emk+q↓ + Enk↓

+ vnk↓(j)v∗nk↓(i)vmk+q↑(i)v∗mk+q↑(j)
f(Emk+q↑)− f(Enk↓)
iωn + Enk↓ − Emk+q↑

+ u∗nk↑(i)vnk↑(j)umk+q↓(i)v∗mk+q↓(j)
f(Enk↑)− f(Emk+q↓)
iωn − Enk↑ + Emk+q↓

(.16)

− u∗nk↑(i)vnk↑(j)vmk+q↑(i)u∗mk+q↑(j)
f(Enk↑) + f(Emk+q↑)− 1

iωn − Enk↑ − Emk+q↑

− v∗nk↓(i)unk↓(j)umk+q↓(i)v∗mk+q↓(j)
1− f(Enk↓)− f(Emk+q↓)

iωn + Enk↓ + Emk+q↓

+ v∗nk↓(i)unk↓(j)vmk+q↑(i)u∗mk+q↑(j)
f(Emk+q↑)− f(Enk↓)
iωn + Enk↓ − Emk+q↑

]
eiq·(j−i).

The expression for χ−+
0 (ri, rj, τ) = 〈Tτ Ŝ

−
i (0)Ŝ+

j (τ)〉 is identical to the result
Eqn. (.16) when interchanging the spin indices ↑↔↓. From the definition of
the raising and lowering operators

Ŝ+
i = Ŝx

i + iŜy
i , Ŝ−i = Ŝx

i − iŜy
i , (.17)
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it follows that for the transverse spin-spin correlation function 〈Tτ Ŝ
x
i (0)Ŝx

j (τ)〉
we have

〈Tτ Ŝ
x
i (0)Ŝx

j (τ)〉 =
1

4

(
〈Tτ Ŝ

+
i (0)Ŝ−j (τ)〉+ 〈Tτ Ŝ

−
i (0)Ŝ+

j (τ)〉
)
. (.18)

Hence, to obtain χxx
0 (q, iωn) we simply sum over the spin indices σ, σ in Eqn.

.16. Therefore, we can write for the final expression for χxx
0 (q, iωn) in the

general case of incommensurate spin density wave order

χxx
0 (q, iωn) =

1

4(NxNy)2

∑

knm
ijσ

[
a1(u, v)

1− f(Enkσ)− f(Emk+qσ)

iωn + Emk+qσ + Enkσ

+ a2(u, v)
f(Enkσ) + f(Emk+qσ)− 1

iωn − Emk+qσ − Enkσ

+ b1(u, v)
f(Enkσ)− f(Emk+qσ)

iωn + Emk+qσ − Enkσ

+ b2(u, v)
f(Emk+qσ)− f(Enkσ)

iωn + Enkσ − Emk+qσ

]
eiq·(j−i)

where

a1(u, v) = v∗nkσ(i)umk+qσ(i)
(
vnkσ(j)u∗mk+qσ(j)− unkσ(j)v∗mk+qσ(j)

)
,(.19)

a2(u, v) = u∗nkσ(i)vmk+qσ(i)
(
unkσ(j)v∗mk+qσ(j)− vnkσ(j)u∗mk+qσ(j)

)
,(.20)

b1(u, v) = u∗nkσ(i)umk+qσ(i)
(
unkσ(j)u∗mk+qσ(j) + vnkσ(j)v∗mk+qσ(j)

)
,(.21)

b2(u, v) = v∗nkσ(i)vmk+qσ(i)
(
vnkσ(j)v∗mk+qσ(j) + unkσ(j)u∗mk+qσ(j)

)
.(.22)

In the normal state, the expression for χxx
0 (q, iωn) reads

χxx
0 (q, iωn) =

1

4(NxNy)2

∑

knm
ijσ

[
u∗nkσ(i)umk+qσ(i)unkσ(j)u∗mk+qσ(j)

× f(Enkσ)− f(Emk+qσ)

iωn + Emk+qσ − Enkσ

]
eiq·(j−i). (.23)

In the case when all the spatial structure of the eigenfunctions u, v is contained
in the exponential factors and there is spin degeneracy, this expression reduces



172 Coexistence of Magnetic and Superconducting Order...

to

χ0
BCS(q, iωn) =

∑

nmk

g1(u, v)
f(Ek)− f(Ek+q)

iωn − (Ek − Ek+q)
(.24)

+ g2(u, v)
f(Ek) + f(Ek+q)− 1

iωn − (Ek + Ek+q)
(.25)

+ g3(u, v)
1− f(Ek)− f(Ek+q)

iωn + (Ek + Ek+q)
, (.26)

where

g1(u, v) = (|unk|2|umk+q|2 + |vnk|2|vmk+q|2 + u∗nkvnkumk+qv
∗
mk+q

+ unkv
∗
nku

∗
mk+qvmk+q) (.27)

g2(u, v) = (|unk|2|vmk+q|2 − u∗nkvnkumk+qv
∗
mk+q) (.28)

g3(u, v) = (|vnk|2|umk+q|2 − u∗nkvnkumk+qv
∗
mk+q). (.29)

In the particular case of a homogeneous superconducting state we have the
well-known expressions for the coherence factors uk and vk fully described by
the momentum quantum number k

u2
k =

1

2

(
1 +

ξk

Ek

)
(.30)

v2
k =

1

2

(
1− ξk

Ek

)
(.31)

with eigenvalues E2
k = ξ2

k + ∆2
k and the single-particle dispersion ξk = εk − µ.

Inserting these expressions into Eqn. (.24) we find after some algebra

χ0
BCS(q, iωn) =

∑

k

1

2

(
1 +

ξkξk+q + ∆k∆k+q

EkEk+q

)
f(Ek)− f(Ek+q)

iωn − (Ek − Ek+q)
(.32)

+
1

4

(
1− ξkξk+q + ∆k∆k+q

EkEk+q

)
f(Ek) + f(Ek+q)− 1

iωn − (Ek + Ek+q)

+
1

4

(
1− ξkξk+q + ∆k∆k+q

EkEk+q

)
1− f(Ek)− f(Ek+q)

iωn + (Ek + Ek+q)
.
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This expression is indeed the well-known BCS expression for the spin suscepti-
bility. However, for dx2−y2-wave pairing symmetry the gap function is momen-
tum dependent. In particular, the relation, ∆k+Q = −∆k with Q = (π, π),
has important consequences for the observables in the d-wave superconducting
state.
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.2 Introduction to the SO(5) theory

In this appendix the SO(5) non-linear σ-model (NLσM) introduced by Zhang
in 1996, is presented [182]. In particular, I discuss a SO(5) symmetric Hamil-
tonian in the Fermi sector, the motivation for Eqn. (7.7)-(7.10), and the origin
of the π mode in the superconducting state. For a recent review article on the
SO(5) theory see Ref. [311].

Assume that antiferromagnetism and d-wave superconductivity constitute
the important order parameters at zero temperature. Instead of the con-
struction of a Hamiltonian from specific microscopic considerations, the SO(5)
model unifies the SO(3) and SO(2) symmetries known to exist in the antiferro-
magnetic and superconducting regime of the phase diagram, respectively. This
unification is performed by means of a new 5D order parameter dubbed the
superspin. Thus, the approach is phenomenological and resembles a Ginzburg-
Landau theory for the high-Tc superconductors.

In the antiferromagnetic phase Haldane[312] has shown that the low-energy
dynamics of the isotropic Heisenberg antiferromagnet is described by a contin-
uum field theory shown to be the SO(3) NLσM with the effective Lagrangian
density

L(r) =
1

2
χ (∂τn)2 − 1

2
ρ|∇rn|2 with |n|2 = 1. (.33)

Here, n denotes the continuous unit-vector field describing the slow variation
of the spins, while χ and ρ are the spin susceptibility and spin stiffness, respec-
tively. The first term of the Lagrangian density is the kinetic energy resulting
from the rotational degrees of freedom, while the second contribution is the
potential energy arising from the “tension” between neighboring spins. The
verification of the SO(3) NLσM as an appropriate description of the low-energy
sector of antiferromagnets was given in 1988 by Chakravarty et al. [313].

The SO(5) approach generalizes the NLσM to the case of high-Tc su-
perconductors. The superspin is a generalized spin, which unifies antiferro-
magnetism and d-wave superconductivity into a single five dimensional vector
n = (n1, n2, n3, n4, n5). Here n1 and n5 are identified with the real and the
imaginary part of the usual d-wave superconducting order parameter while the
remaining three components m = (n2, n3, n4) are identified with the antiferro-
magnetic order parameter

m =
1

2

∑
p

c†p+Qτ cp, (.34)

where cp =

(
cp↑
cp↓

)
and τ denotes the Pauli matrices and Q is the antiferro-

magnetic ordering vector.
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The generators of infinitesimal rotations in the antiferromagnetic subspace
(n2, n3, n4) and the superconducting subspace (n1, n5) is the total spin S and
charge Q, respectively. Orthogonal rotations between these two sectors is
generated by the six π-operators defined by

π† =
1

2

∑
p

ϕpc†p+Q (τ τy) c†−p, π =
(
π†)† , (.35)

where π = (πx, πy, πz) and c†p =

(
c†p↑
c†p↓

)
, and ϕp = 1

2
sign (cos px − cos py).

In general there are 1
2
N(N−1) symmetry generators in SO(N). If, however,

we want the above ten operators (Q,S,π,π†) to be a complete representation
of the generators Lab (= −Lba) of the SO(5) Lie group, they must satisfy the
SO(5) Lie algebra. Using the definition

Lab =




0
π†x + πx 0
π†y + πy −Sz 0
π†z + πz Sy −Sx 0

−Q i
(
π†x − πx

)
i
(
π†y − πy

)
i
(
π†z − πz

)
0




, (.36)

it is straightforward, but tedious, to verify that indeed these generators Lab

satisfy the Lie algebra commutation relations

[Lab, Lcd] = i (δacLbd − δadLbc − δbcLad + δbdLac) . (.37)

The introduction of the SO(5) generalized angular momenta Lab given by
equation (.36) allows the superspin n to be defined as a vector representation
of the SO(5) Lie algebra. This follows from the commutation relation

[Lab, nc] = iδacnb − iδbcna, (.38)

which can be verified by directly inserting the expressions for Lab and n. Equa-
tion (.38) shows that the generators Lab rotate the components of the superspin
into each other. Because the orthogonal transformations preserve the length of
the superspin vector, n2 = |ψ|2 +m2 = 1. This introduces the convenient geo-
metric picture of the superspin lying on a 5D sphere with the antiferromagnetic
and superconducting phases appearing as 3D and 2D projections, respectively.
In this unified description, the two subspaces are no longer independent, but
coupled by a simple rotation of the superspin.
The low-energy dynamics of the cuprates are described by the SO(5) NLσM

L(r) =
1

2
χ

∑
a

(∂τna)
2 − 1

2
ρ

∑
a

|∇rna|2, |n|2 = 1, (.39)



176 Coexistence of Magnetic and Superconducting Order...

in terms of the generalized susceptibilities χc, χs, χπ and the stiffness ρc, ρs, ρπ

in the charge, spin, and π sector, respectively.

The following model will modify the SO(5) symmetric NLσM (.39) by in-
troducing two additionally symmetry breaking terms. First of all, the chemical
potential µ breaks the symmetry because it couples only to the electric charge
L15, which is just one of the ten SO(5) generators. Secondly, an ad hoc poten-
tial V given by

V (n) = −g

2

(
n2

2 + n2
3 + n2

4

)
= −g

2
m2, g > 0, (.40)

will explicitly break the symmetry by favoring an antiferromagnetic ground
state at half-filling (µ = 0) and low temperatures T < TN .

Below, it will be shown how the symmetry breaking terms V and µ par-
tially compensate each other (and vanish completely at the transition point)
such that the SO(5) symmetry is still approximately valid.

Taking these three symmetry breaking terms into account, the Lagrangian
density (.39) can be written

L(r) =
∑

a<b

χab

2
ω2

ab(n)−∑

a<b

ρab

2
v2

ab(n)− V (n), (.41)

where
wab(n) = na (∂τnb − 2µ [δb1n5 − δb5n1])− (a ↔ b), (.42)

and
vab(n) = na∇rnb − (a ↔ b), (.43)

and ∇r = (∂x, ∂y). In the isotropic case where χπ = χs = χc ≡ χ, expression
(.41) simplifies to

L(r) =
1

2
χ

∑
a

(∂τna)
2 − 1

2
ρ

∑
a

|∇rna|2 + (2µ)χ (n1∂τn5 − n5∂τn1)

+
(2µ)2

2
χ

(
n2

1 + n2
5

)
+

1

2
g

(
n2

2 + n2
3 + n2

4

)
. (.44)

Thus the effective potential Veff for the static solutions become

Veff = −g

2

(
n2

2 + n2
3 + n2

4

)
− (2µ)

2
χ

(
n2

1 + n2
5

)
. (.45)

Clearly, this reveals a competition between the antiferromagnetic and super-
conducting order parameters with g favoring the antiferromagnetic sphere
(n2, n3, n4) and µ favoring the superconducting plane (n1, n5). Minimizing
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Veff with the constraint f 2 + m2 = 1 (by using e.g. the method of Lagrange
multipliers) leads to a phase transition between the antiferromagnetic and su-
perconducting phases at

µ = µc ≡ 1

2

√
g

χ
. (.46)

Below this critical chemical potential µc, the system is in the antiferromag-
netic phase (m2 = 1, f 2 = 0) while µ > µc leads to a superconducting state
(m2 = 0, f 2 = 1). From (.46) it follows that when g = 0, any finite value of
the chemical potential will flop the superspin into the superconducting plane.
In the anisotropic situation where χc 6= χπ more complex phase diagrams with
coexisting order is possible as shown by Zhang[182].

Turning, briefly to the discussion of the collective modes, we expect from
Goldstone’s theorem that new bosons arise from the higher symmetry of the
action. For instance, when the superspin vector is fixed in the (n1, n5) plane
the SO(2) gauge invariance is spontaneously broken, and a new triplet mode
from the spin sector is expected. The collective modes are identified with the
Gaussian fluctuations of the superspin around the minima, and are determined
from the Lagrange equations of motion with a second order expansion of the
Lagrangian density (.41).

For simplicity, it is convenient again to consider the isotropic situation
where χπ = χs = χc ≡ χ. Without loss of generality, we may choose the two
ground state superspin configurations to be

n0 = naf = (0, 1, 0, 0, 0) for µ < µc, (.47)

n0 = nsc = (1, 0, 0, 0, 0) for µ > µc, (.48)

corresponding to antiferromagnetism and superconductivity, respectively. Al-
lowing infinitesimal deviations δn the vectors become

n = naf + δn = (δn1, 1, δn3, δn4, δn5) , (.49)

n = nsc + δn = (1, δn2, δn3, δn4, δn5) . (.50)

The deviations δn are the dynamical variables of the following discussion. The
vectors (.49) and (.50) do not contain deviations in the ground state coordinate
because that turns out to lead to third order contributions.

By a simple expansion to second order of the Lagrangian density

L(n) = L(n0 + δn) = L(n0) + L(2)(δn) = L(n0) +
1

2
δn · ∂2L

∂δn2
(n0) · δn, (.51)

where the first derivative disappears at the extremum, the second order terms



178 Coexistence of Magnetic and Superconducting Order...

become

L(2)
af (δn) =

1

2
χ

∑

a 6=2

(∂τδna)
2 − 1

2
ρ

∑

a 6=2

(∇rδna)
2 (.52)

− (2µ)χ (δn1∂τδn5 − δn5∂τδn1) +

(
(2µ)2

2
χ− g

2

) (
δn2

1 + δn2
5

)
,

L(2)
sc (δn) =

1

2
χ

∑

a 6=1

(∂τδna)
2 − 1

2
ρ

∑

a 6=1

(∇rδna)
2 (.53)

+

(
g

2
− (2µ)2

2
χ

) (
δn2

2 + δn2
3 + δn2

4

)
.

By using Lagrange’s equations of motion

∂τ
∂L(2)

∂(∂τδna)
+∇r · ∂L(2)

∂(∇rδna)
=

∂L(2)

∂δna

, (.54)

the collective modes can be readily obtained.
For instance, in the superconducting ground state (µ > µc) this results in the
following equations

χ∂2
τ δn5 = ρ∇2δn5, (.55)

χ∂2
τ δn2,3,4 = ρ∇2δn2,3,4 +

(
g − (2µ)2χ

)
δn2,3,4, (.56)

where Eqn. (.55) is the standard sound mode in the superconductor. By means
of the Anderson-Higgs mechanism this is rendered massive and turned into a
plasmon mode. The second equation reveals the antiferromagnetic fluctuations
in the superconducting phase. This new Goldstone mode has the following
dispersion relation

ω2,3,4(q) =

√
ρq2 − g + (2µ)2χ

χ
. (.57)

Hence, the energy gap at q = 0 of this collective mode also disappears at µc.
I light of the above picture this corresponds to a solidification of the quantum
superfluid of Cooper pairs to an antiferromagnetic crystal. In the SO(5) model
we identify this new mode with the π resonance mode known from inelastic
neutron scattering experiments.

The problem of constructing exact SO(5) symmetric Fermionic models was
first solved in 1997 by Burgess et al.[314], Henley [245] and Rabello et al. [244].
They showed how the construction of bilinears from a SO(5) spinor leads to
a natural definition of exact SO(5) symmetric microscopic Hamiltonians. In
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the case of SO(N) one of the most important representations is the spinor
representation with the introduction of N matrices Γa satisfying the following
anticommutator {

Γa, Γb
}

= 2δab. (.58)

This set of matrices is called a Clifford algebra. The spinor representation of
the SO(N) generators Γab can now be written as

Γab = − i

2

[
Γa, Γb

]
. (.59)

This can be verified explicitly by inserting Γab into (.37). The Pauli and Dirac16

matrices are well-known sets satisfying the Clifford condition from equation
(.58). In the first case a spinor representation is formed by the usual Pauli
spinors Ψt

p = (cp↑, cp↓). From these, one can construct exact SO(3) symmetric

models by taking the scalar product of two SO(3) vectors np = Ψ†
pτΨp as

we saw in the discussion of the Hubbard model. Indeed the scalar product is
rotation invariant.
In the case of SO(5) symmetry these ideas can be readily extended by using
five 4×4 generalized Pauli matrices Γα given by

Γ1 =

(
0 −iτy

iτy 0

)
, (.60)

Γα =

(
τα 0
0 τ t

α

)
α = x, y, z, (.61)

Γ5 =

(
0 τy

τy 0

)
, (.62)

where the superscript t indicates transposition. Since the Pauli matrices form
a Clifford algebra, so will the Γ-matrices.

Expecting the following constructed Hamiltonian to unify antiferromag-
netism and superconductivity we define the spinor

Ψt
p =

(
cp↑, cp↓, ϕp c†−p+Q↑, ϕp c†−p+Q↓

)
, (.63)

where ϕp ≡ sign (cos px − cos py), and Q = (π, π) is the antiferromagnetic
ordering vector. As was mentioned earlier the sign factor ϕp closes the SO(5)
algebra exactly.

If restricting the momenta p,p′ to be given within the first magnetic Bril-

16With the usual notation γn with n = 0, 1, 2, 3, it is the set {γ0, iγ1, iγ2, iγ3} that satisfy
the Clifford relation.
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louin zone, it is seen that the spinor Ψp satisfies the anticommutation relations

{
Ψ†

pα, Ψp′β

}
= δαβδ(p− p′), (.64)

{
Ψ†

pα, Ψ†
p′β

}
= {Ψpα, Ψp′β} = 0, (.65)

which simply follows from the fact that each component satisfies the anticom-
mutation relations.
The SO(5) spinor Eqn. (.63) can be used to construct the SO(5) vector (the
superspin)

n =
1

4

∑
p

Ψ†
pΓΨp+Q. (.66)

Similarly the generators in this representation can be written as

Lab =
1

4

∑
p

Ψ†
pΓ

abΨp. (.67)

For instance, by a simple expansion the operator L12 is seen to be

L12 =
i

4

∑
p

ϕp

(
c†p↑c

†
−p+Q↑ − c†p↓c

†
−p+Q↓ + cp↑c−p+Q↑ − cp↓c−p+Q↓

)
= −

(
π†x + πx

)
,

(.68)
in agreement with the definition given by equation (.36).
An important property of the spinor representation is that it allows a simple
of constructing exact SO(5) invariant interactions,

Hint = − ∑

pp′q
V (q)

(
Ψ†

pΓΨp+q

)
·
(
Ψ†

p′ΓΨp′−q

)
, (.69)

where V (q) is a coupling strength dependent on the momentum transfer q =
p−p′. Being the scalar product of two SO(5) vectors, Hint is manifestly SO(5)
symmetric17.

Of course a fully rotational symmetric model cannot possibly be correct
since it implies that the superconducting and antiferromagnetic phases have
the same single-particle excitation spectra. However, the d-wave supercon-
ductor has gap nodes, while an antiferromagnet has a large energy gap in
the charge excitation spectrum. For instance, a mean-field calculation with
∆(q) = −∑

p′ V (q)〈Ψ†
p′ΓΨp′−Q〉 and in the limit where q = Q the total

17In general a SO(5) spinor bilinear will have 4×4 = 16 components. These can be
decomposed (Schur’s Lemma) into a direct sum of a scalar, a vector and an antisymmetric
tensor (1+5+10 = 16). In the above expression for Hint only the vector interaction term
has been included since this seems to capture all the essential physics.
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Hamiltonian can be written as

H =
∑
p

Ψ†
p (εpδpp′ + ∆ · Γδp′p+Q) Ψp′ =

∑
p

Ψ†
pHΨp′ . (.70)

Inverting the matrix (ωI −H) to find the Green function gives

Gαβ(p,p′, ω) =
(ω + εp)δαβδpp′ + ∆ · Γαβδpp′+Q

ω2 − ε2
p − |∆|2 + iδ

. (.71)

These last three equations (.69-.71) and the SO(5) concomitant π mode ex-
plain the starting point of the studies of the peak-dip-hump structure (see
Eqns. (7.7-7.10)) in the single particle spectral function as a result of coupling
between the electrons and the π mode.
In the antiferromagnetic regime where ϕp completely vanishes from ∆, the

quasi-particle excitation spectrum Ep =
√

ε2
p + |∆|2 (given as usual by the

poles of the Green function) contains a full s-wave gap. In the superconduct-
ing state the topological form of the spectrum is the same, but a sign change
appears across the nodes because the ϕp factor survives in this state. An im-
portant question is therefore how to slightly break the SO(5) symmetry such
that the physically correct excitation spectra emerge. Additionally, one has to
figure out what are the further consequences of the symmetry breaking terms.
This is usually done by constructing the corresponding effective low-energy
Lagrangian.

In complete agreement with the discussion of the SO(5) NLσM, Rabello et
al. [244] proposed the following symmetry-breaking terms

Hµ = −2µL15 = −2µQ, (.72)

Hg = −g
∑

pp′

∑

a=2,3,4

(
Ψ†

pΓaΨp+Q

) (
Ψ†

p′Γ
aΨp′+Q

)
, (.73)

between the antiferromagnetic and superconducting states. Thus, the total
Hamiltonian H reads

H = Hkin + Hint + Hg + Hµ (.74)

The expressions for Hµ and Hg are identical to Hµ = −2µL15 and V (n) =
−g

2
(n2

2 + n2
3 + n2

4) introduced in the discussion of the SO(5) NLσM. By re-
peating the mean-field calculation presented in (.70) and (.71) with Hµ and
Hg included, Rabello et al. showed that indeed the effect of Hg is to remove
the gap nodes of the antiferromagnetic spectrum, while leaving the d-wave
superconducting gap unaffected [244]. Thus, the microscopic representation
of the SO(5) model also predicts antiferromagnetic order at half-filling and
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d-wave superconductivity away from half-filling. Furthermore, it was shown
that the Goldstone mode spectra including the mass gap produced by the
symmetry-breaking terms are identical to the spectra obtained by the SO(5)
NLσM. Therefore, Hµ and Hg are observed again to partially compensate each
other such that the concept of SO(5) symmetry is still approximately valid.
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