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Abstract

This thesis concerns theoretical aspects of electrons in man-made nanostruc-
tures. Advances in nanofabrication technology during recent decades have
made it possible to produce electrical devices on the nano-scale, whose func-
tionality is determined by the quantum mechanical nature of a single or a few
electrons. Such few-electron devices are expected to form the building blocks
of future electrical circuits and it is thus necessary to develop a thorough
theoretical understanding of the physics of electrons in nanostructures. Re-
garding applications there is a particular interest in the possibilities offered
by the quantum mechanical behavior of electrons when it comes to informa-
tion processing. This branch of research is also concerned with fundamental
questions in physics.

Besides an introduction to the above-mentioned subjects, the thesis con-
tains a number of contributions to the fields of coherent electron manip-
ulation and the statistical description of electron transport through nano-
devices. The physics of the electrons are described with a combination of
numerical methods, developed and applied in the thesis, and more analytical
approaches, which are also discussed. The thesis contains a study of the in-
teraction between the spins of electrons and proposals for novel methods of
confining and manipulating electrons in nanostructures. Moreover, a novel
coupling mechanism between electron spins and light in the form of photons is
described, which could find applications in quantum-based communication.
The statistical description of electron transport through nanostructures is
based on rate equations, and the primary contribution of the thesis in that
respect is the development of a method that allows for the calculation of the
distribution of electrons passing through a device. The method is illustrated
with applications to two nano-electromechanical systems and is finally ex-
tended such that it also takes into account possible memory effects in the
transport.
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Resumé

Denne afhandling omhandler teoretiske aspekter af elektroner i menneske-
skabte nanostrukturer. De seneste årtiers udvikling af nanofabrikationstek-
nikker har muliggjort, at man i dag kan fremstille elektriske komponenter
p̊a nanometerskala, hvis funktionalitet er bestemt af enkelte eller f̊a elek-
troners kvantemekaniske natur. S̊adanne f̊a-elektron-komponenter forventes
at danne byggestenene i fremtidens elektriske kredsløb, og det er derfor
nødvendigt med en dybtg̊aende teoretisk forst̊aelse af elektroners fysik i
nanostrukturer. Med henblik p̊a anvendelser er der især interesse omkring de
muligheder, elektroners kvantemekaniske opførelse giver i forbindelse med in-
formationsbehandling. Denne gren af forskningen berører ogs̊a fundamentale
spørgsmål i fysikken.

Udover en introduktion til de ovennævnte emner indeholder afhandlingen
en række bidrag til omr̊aderne omhandlende kohærent manipulering af elek-
troner i nanostrukturer samt den statistiske beskrivelse af elektrontransport
gennem nanokomponenter. Beskrivelsen af elektronernes fysik er baseret p̊a
en kombination af numeriske metoder, der udvikles og anvendes i afhand-
lingen, og mere analytiske tilgange, der ligeledes beskrives. Afhandlingen
indeholder et studie af vekselvirkningen mellem elektroners spin samt forslag
til nye metoder til at fastholde og manipulere elektron-spin i nanostrukturer.
Herudover beskrives en ny koblingsmekanisme mellem elektroners spin og lys
i form af fotoner, der vil kunne finde anvendelse i kvante-baseret kommu-
nikation. Den statistiske beskrivelse af elektrontransport gennem nanostruk-
turer baserer sig p̊a rate-ligninger, og afhandlingens primære bidrag er i den
forbindelse udviklingen af en metode, hvormed fordelingen af elektroner, der
passerer igennem en komponent, kan beregnes. Metoden illustreres ved an-
vendelse p̊a to nano-elektromekaniske systemer, og til slut udvides metoden
s̊a den ogs̊a omfatter eventuelle hukommelseseffekter i transporten.
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[B] C. Flindt, T. Novotný, and A.-P. Jauho, ‘Current noise in a
vibrating quantum dot array’, Phys. Rev. B 70, 205334 (2004)
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Chapter 1

Introduction

The field of solid state physics has reached a level of sophistication where it is
now possible to detect and manipulate single electrons in man-made nanos-
tructures. This has opened up a variety of possibilities for observing and
exploiting quantum mechanical behavior of individual electrons in solid-state
structures, which is interesting not only from a fundamental physics point
of view, but also offers intriguing technological pathways to novel nano-sized
semiconductor devices whose functionality is based on the quantum mechan-
ical behavior of single electrons inside the devices. With the continuous
miniaturization that electronic devices are currently undergoing, the possi-
bility of fabricating such quantum mechanical single-electron devices in a not
so far future does not seem unrealistic.

In order to progress towards that goal it is, however, necessary to develop
a thorough understanding of the physics governing electrons in nano-scale
devices. Relevant questions to address concern the ability to manipulate sin-
gle electrons and the extraction of information about the intrinsic electronic
processes in these devices from measurements of the flow of electrons passing
through them. This requires detailed theoretical descriptions of the elec-
trons in the envisioned devices and their interactions with the environment,
combined with thorough experimental investigations. While solid state and
condensed matter physics have typically been formulated in a many-body
language, the ability to isolate single electrons in a solid-state structure has
added several new ingredients which for many years have been studied in
another field of physics, namely quantum optics. Here, quantum coherent
processes involving only a few photons are routinely investigated, and many
of these ideas and concepts can now be transferred to the solid-state, where
electrons then play the roles of the photons.

Due to the well-developed, industrial semiconductor technology that has
already proven successful in the fabrication of large-scale integrated electronic
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2 CHAPTER 1. INTRODUCTION

circuits, there is good reason to believe that solid state physics may provide
suitable systems and architectures for studies and applications of coherent
and controlled dynamics of many electrons. This is, in particular, interesting
in relation to the discovery that quantum mechanics can be a highly useful
resource in the processing of information, enabling a remarkable speed-up to
certain computational problems with algorithms that are based on the laws
of quantum mechanics rather than on classical physics, as conventional algo-
rithms. The implementation of quantum hardware exploiting these concepts
is consequently an important milestone in physics and in the engineering
sciences.

1.1 This thesis

This thesis contains of number of theoretical studies and proposals related to
various aspects of electrons in nanostructures. The two main lines of inves-
tigation concern coherent manipulation of confined electrons spins and the
theory of full counting statistics applied to transport through nano-scale de-
vices. Besides the introductory and concluding chapters, the thesis contains
three main chapters, Chapters 2, 3, and 4. Moreover, a number of published
or submitted papers have been included at the end of the thesis. Since most
of these papers assume that the reader has a fairly good knowledge of the
specific fields related to these papers, one goal with the thesis is to provide
the reader with sufficient background knowledge needed in order to under-
stand the included papers. This includes not only the theory related to the
different fields touched upon, but also some considerations concerning the
experimental aspects of the fields, including the current experimental status.
Altogether, this is meant to put the included papers into a broader context,
and, hopefully, clarify the motivation behind each of the works. It is also
my hope that the thesis will be useful to other graduate students and re-
searchers entering these fields, and the thesis reflects in many ways my own
efforts in getting acquainted with the fields studied throughout the thesis. I
have consequently focused on giving the type of introduction to the various
fields that I would have found useful when I began with the research work
described in the following. Below, I give a brief overview of the contents of
the thesis.

Chapter 2 gives a brief introduction to various types of quantum dots,
or artificial atoms, which are small man-made confining regions in a solid
state system, where electrons can be trapped. The strong correlations be-
tween electrons in quantum dots due to their mutual Coulomb interaction are
discussed, which among other phenomena leads to Coulomb blockade. Al-
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though the exposition given here only scratches the surface of this vast topic,
the essentials needed to understand the following chapters and the included
papers are given. In the following section, the field of nanoelectromechan-
ical systems (NEMS) is introduced, and two models of so-called nano-scale
charge shuttles are described. These models have already been described and
studied in previous works, and here only the main features of the two models
and previously obtained results are summarized. The two systems are stud-
ied in further detail in Chapter 4. The last section of Chapter 2 concerns a
novel proposal for trapping of electrons in designed defects in an otherwise
periodic potential modulation of a two-dimensional electron gas.

Chapter 3 concerns the spins of confined electrons, in particular, when
considered as possible candidates for information storage and processing in
a future solid-state quantum computer. First, a brief introduction to quan-
tum computing is given, and again, without being exhaustive, this section
provides the reader with the necessary background knowledge needed for the
following sections and the included papers. Next, the exchange coupling be-
tween electron spins in coupled quantum dots in introduced. The exchange
coupling has been promoted as a controllable interaction in a future solid-
state quantum computer. The origin of the interaction is discussed and
various approaches to the evaluation of the coupling strength are described.
Several standard approximations are benchmarked against numerically exact
results. In the following section the strong spin-orbit coupling in, e.g., InAs
nanowires is proposed as a general means to coherent manipulation of elec-
tron spins in quantum dots. Finally, a proposal for an optoelectronic device
that would provide a quantum optical interface to electron spins trapped in
quantum dots is described. Here, information is shared between an emitted
photon and electron spins trapped in the device, in such a way that emitted
photons can be used to connect remote devices.

Chapter 4 deals with full counting statistics (FCS) within a rate equation
formulation. FCS describes the stochastic propagation of electrons through
nano-scale devices and is introduced at the beginning of the chapter with a
few simple examples that illustrate the central concepts of the theory. Next,
a general approach to the calculation of the cumulants of the current through
a nano-scale device is presented and applied to the charge shuttle systems in-
troduced in Chapter 2. It is shown how the first three cumulants can be used
to identify a mechanical bistability and how the finite-frequency noise may
reveal frequency shifts and internal energy scales. While the systems con-
sidered so far in the chapter are memoryless or Markovian, two approaches
to the calculation of current cumulants for non-Markovian systems are pre-
sented and applied to two simple models. It is argued that it may be difficult
to distinguish between signatures in the FCS due to quantum coherence and
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classical, non-Markovian dynamics, respectively.
Finally, Chapter 5 contains a summary of the thesis and an outlook de-

scribing possible future directions.
The included papers at the end of the thesis have each been assigned

a letter in the List of Publications which will be used, when I refer to one
of these works. Other works referred to in the thesis, not authored or co-
authored by me, have been numbered and the corresponding references can
be found in the Bibliography. I sometimes refer to a paper from the List
of Publications which has not been included in the thesis, and in that case
I clearly state together with the reference that the paper is not included.
According to ministerial orders, joint author statements describing my share
of each included publication must be signed by all co-authors and submitted
together with the thesis. Although it is not mandatory, I have chosen also
to include these statements in the thesis together with the included papers,
since I feel that they give a clear picture of my contribution to each of the
works.

Throughout the remainder of the thesis I shall be using “we” rather than
“I”. This is not because we prefer to refer to ourselves in plural, but “we” in
this context should be thought of as the author and the reader, and also the
many collaborators without whom much of the work presented in this thesis
would not have been possible.



Chapter 2

Quantum Dots

Advances in micro and nanofabrication techniques have made it possible to
fabricate structures on sub-micron scales that confine electrons to nano-scale
regions in a solid-state environment [1, 2, 3]. Such structures are commonly
referred to as quantum dots, or as artificial atoms due to the quantized or-
bital level-structure that arises due to the tight confinement of the electrons,
resembling real atoms. Quantum dots provide a unique, man-made platform
for experimental studies of few-electron systems with a high degree of con-
trol of the various parameters defining the “atom”, and with a variety of
experimental methods for probing the system electronically or optically. As
electronic devices have decreased dramatically in size over the last decades
and seemingly continue to do so, it is also highly likely that quantum dots
will form an important building block in future nano-scale electronics with
applications in digital and analog circuitry, metrological standards, sensors,
light-emitting diodes (LEDs) and also quantum information processing [4].
Understanding the physics of quantum dots is consequently an important
scientific task with promising applications in future technologies.

Quantum dots come in a large variety of shapes, sizes, materials, and
functionality, depending on their fabrication. One prominent type are the so-
called gate-defined quantum dots consisting of a electrostatic, confining po-
tential, created by metallic gate electrodes, in which electrons can be trapped.
Typically, the gate electrodes are fabricated using electron-beam lithography
on top of a heterostructure with a two-dimensional electron gas (2DEG)
trapped at the interface between two semiconductor materials [1, 5, 6, 7, 8],
e.g., GaAs and Ga1−xAlxAs. More recently, quantum dots have been defined
along semiconductor nanowires [9, 10, 11, 12] or carbon nanotubes [13, 14]
by placing them across grids of metallic gate electrodes. The size of a gate-
defined quantum dot is roughly determined by the spacing between the gate-
electrodes, which is typically on the order of a few hundred nanometers. Since

5



6 CHAPTER 2. QUANTUM DOTS

the voltages applied to the gate electrodes are experimentally controllable,
gate-defined quantum dots allow for a high degree of tunability of tunnel
barriers, occupation numbers, etc.

Self-assembled quantum dots provide a complementary approach to con-
finement of charges in the solid-state [15]. Such quantum dots can be fab-
ricated using a combination of molecular-beam-epitaxy (MBE) growth tech-
niques and strain-driven self-assembly, also known as the Stranski-Krastanov
process. Here, the difference between the lattice constants of two semicon-
ductor materials drives the formation of small islands during the growth
process. If the island material has a smaller band gap than the surrounding
material, a quantum dot is formed at the location of the island. In contrast to
gate-defined quantum dots, self-assembled quantum dots do not only confine
electrons, but also holes due to the band gap differences between the quan-
tum dot material and the surrounding material, and they are consequently
optically active and addressable [16, 17, 18, 19]. Moreover, self-assembled
quantum dots are usually smaller than their gate-defined counterparts, with
typical dimensions in the range 10-50 nm. On the other hand, the tunability
offered by gate-defined quantum dots is less pronounced, when it comes to
the self-assembled quantum dots. Finally, we mention that optically active
quantum dots can also be fabricated inside nanowires by varying the wire
material during growth. This approach was used in Ref. [9], where two tun-
neling barriers of InP were introduced during the growth process of InAs
nanowires with diameters of 50 nm. By changing the barrier distance be-
tween 10 nm and 100 nm, the size of the quantum dot inside the nanowires
could be varied. In Ref. [20] a quantum dot was grown inside a nanowire be-
tween n and p doped regions, such that electrons and holes could be injected
into the quantum dot region with subsequent electron-hole recombination
followed by light emission.

2.1 Coulomb blockade

While the quantized energy spectrum plays an important role in the under-
standing of quantum dots, another important constituent are the strong inter-
actions and correlations among charged particles confined to sub-micrometer
dimensions. In such systems Coulomb interactions are responsible for a large
variety of charge dynamics and effects, and in particular, the phenomenon of
Coulomb blockade is important in order to understand the physics of quan-
tum dots that are weakly coupled to surrounding electrodes. In this section
we discuss the effects of Coulomb blockade on the charging dynamics of single
quantum dots and tunnel-coupled quantum dots and introduce the concept
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of charge stability diagrams which provide a convenient means to visualize
the stable charge configurations as function of various experimentally con-
trollable parameters.

We start by considering a so-called single-electron transistor (SET) con-
sisting of a small island, a metallic dot, coupled via tunnel junctions to source
and drain electrodes and capacitively coupled to a gate voltage VG that can
be controlled externally. The island is weakly coupled to the electrodes,
such that the number of electrons on the island is a good quantum number.
Within the effective capacitance model the charging energy of the island with
n electrons reads [5]

Ech(n, nG) =
e2

2C
(n− nG)2, (2.1)

where C is the total capacitance of the island (i.e. the sum of the capaci-
tances associated with the two junctions and the gate electrode), while nG

is proportional to VG. The magnitude of the charging energy is set by the
capacitance entering the pre-factor e2/2C, which we denote by U . With ca-
pacitances in the range from fF to aF the charging energy lies in the range
from sub-meV to eV.

The charging energy strongly influences electron transport through the
island. In order to understand this effect, and in particular, how the elec-
tron flow through the SET can be controlled by the gate potential VG, it is
customary to plot the parabolas defined in Eq. (2.1) for fixed values of the
occupation number n [5]. A number of these parabolas are shown in Fig.
2.1. For different values of nG one can read off the electron number n cor-
responding to the lowest energy state. It is seen that for nG = n + 1/2, the
charge states n and n + 1 are energetically degenerate, such that the island
can switch between having n and n + 1 electrons, thereby allowing current
to flow through the island, one electron at a time, even at low bias-voltages.
Away from these so-called degeneracy points (marked by circles) the low-bias
conductance is suppressed, which is known as Coulomb blockade. In the fol-
lowing when we use the concept of “an additional electron”, we are referring
to the one electron that enters and leaves the island, when the occupation
number switches from n to n + 1 and back again. From the above discussion
the notion of a single-electron transistor becomes clear: The device allows
for electrostatic control of the single-electron flow in a way which is similar
to the functionality of a conventional transistor.

We next consider the charging dynamics of a tunnel-coupled double quan-
tum dot modeled as two single-particle levels with energies εL and εR, re-
spectively, and tunnel-coupling τ . The quadratic part of the Hamiltonian of
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Figure 2.1: The charging energy Ech(n, nG) = U(n− nG)2 with U = e2/2C.
For different integer values of the electron number n of the island, we plot
the charging energy as function of the gate-controlled parameter nG. For a
fixed value of nG we can read off the electron number n corresponding to the
state with lowest energy. The circles mark points where states with electron
numbers n and n + 1 are energetically degenerate. A similar figure can be
found in Ref. [5].
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the double quantum dot reads

H0 = εLn̂L + εRn̂R + τ(c†LcR + c†RcL), (2.2)

where c†L(R) creates an electron on the left (right) dot, and the tunnel matrix
element τ has been assumed to be real. The spin degree of freedom is a
central subject in the following chapter, and for now we just include the
spin-degeneracy of the two levels by allowing them to be doubly occupied,
such that the occupation number operators n̂α, α = L,R, have eigenvalues
0, 1, and 2. For the Coulomb interaction between electrons on the double
quantum dot we use a simple model reading

Ĥch = ULL(n̂L − nL)2 + URR(n̂R − nR)2 + ULR(n̂L − nL)(n̂R − nR), (2.3)

where ULL and URR denote the interaction strengths for electrons on the same
dot, while the last term in the Hamiltonian accounts for long-range Coulomb
interactions between electrons on different quantum dots with strength ULR.
Again we assume that nL and nR can be controlled by adjusting the local
gating of the quantum dots. From a computational point of view, it is worth
noticing that the full Hamiltonian of the double quantum dot HDQD = H0 +

Ĥch can be written as a direct sum (i.e. on block form) of Hamiltonians
corresponding to different numbers of electrons on the double quantum dot,
i.e., HDQD =

⊕4
i=0 H

(i)
DQD, where H

(n)
DQD is the Hamiltonian of the double

quantum dot with n electrons.
The double quantum dot is assumed to be tunnel-coupled to a left and

a right electrode, described as reservoirs of non-interacting electrons kept at
chemical potentials µL and µR, respectively. Electrons may tunnel between
the left lead and the left quantum dot, and the right lead and the right
quantum dot. The Hamiltonian of the full system is

Ĥ = HDQD + HT + HL + HR, (2.4)

where HL(R) is the Hamiltonian of the left (right) lead, while HT is a standard
tunneling Hamiltonian, describing the tunnel coupling to the leads. In the
following, we assume that the coupling to the leads is so weak that the
double quantum dot is well-described by a probability distribution P (αn) for
the double quantum dot to be in the many-particle eigenstate |αn〉 with n
electrons. Transitions between different eigenstates that differ in occupation
number by one occur due to tunneling of single electrons between the leads
and the double quantum dot and can be described using Fermi’s Golden rule
rates, treating the tunneling Hamiltonian HT as the perturbation (the details
of such calculations can be found in Ref. [21]).
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With the Fermi’s Golden rule transition rates at hand, the equation of
motion for P (αn) reads

d

dt
P (αn) = −

∑

β,m=n±1

Γβm←αnP (αn) +
∑

β,m=n±1

Γαn←βmP (βm), (2.5)

which in matrix form can be written

d

dt
P = MP, (2.6)

where P is a vector containing the probabilities P (αn) and M is a matrix
containing the transitions rates from Eq. (2.5). Equations like Eqs. (2.5) and
(2.6) are referred to as rate or Master equations. The solution of Eq. (2.6)
formally reads P(t) = eM(t−t0)P(t0) with the stationary solution given by the
long-t limit, i.e., Pstat = limt→∞ eM(t−t0)P(t0). Assuming that the stationary
solution is unique [i.e. independent of the initial condition P(t0)], it may
also be found as the normalized solution to the matrix equation MPstat = 0,
which typically can be solved numerically. Using this approach we can calcu-
late numerically the stationary probability distribution P stat(αn) of the dou-
ble quantum dot as function as various parameters, e.g., the single-particle
energy levels, the bias across the double dot, etc. Having found the station-
ary state, we can in principle also calculate the current through the system,
which we, however, refrain from doing in this chapter.

From the probability distribution P stat(αn) we have access to the sta-
ble charge configurations of the two quantum dots, which we can visualize
using a charge stability diagram [2, 3]. In Fig. 2.2 we show a numerically
calculated charge stability diagram for the double quantum dot described
above. Here, we have introduced two gate voltages VL and VR that shift nL

and nR, respectively, assuming simple linear relations reading VL = ULLnL

and VR = URRnR. As these voltages are changed, the stationary mean oc-
cupations of the two dots (mL,mR) = (〈n̂L〉, 〈n̂R〉) change, and the quasi-
hexagonal, so-called honeycomb structure appears. For the shown charge
stability diagram, we have taken the single-particle levels to be identical and
zero, i.e., εL = εR = 0, and we have assumed that no bias is applied between
the left and right electrodes. Also, a constant tunneling density of states
Γα ≡ 2π|tα|2Dα, α = L,R, has been assumed, where tL(R) is the tunnel-
coupling from the left (right) quantum dot to states in the left (right) lead
with density of states DL(R), and we have assumed that the coupling to the
leads is symmetric, i.e., ΓL = ΓR (for finding the stationary state, only the
ratio of the two rates matters, not their magnitude, although it has already
in the weak coupling limit been assumed that the level-broadening due to
these rates is negligible compared to the smearing due to the temperature).



2.2. MECHANICAL VIBRATIONS 11

In experiments similar charge stability diagrams can be mapped out by
monitoring the current through a quantum point close to the double quantum
dot. If the quantum point contact is tuned close to a conductance step, the
current through it is highly sensitive to the number of charges on the nearby
double quantum dot [2, 3]. This approach to charge sensing also opens up the
possibility of real-time counting of electrons propagating through the double
dot [22], which will be the subject of Chapter 4. From the charge stability
diagram many of the parameters entering the model described above can
be extracted, including the tunnel coupling, which gives rise to hybridized
single-particle states and corresponding curvature of the boundaries between
different charge stability regions [2, 3]. For the shown charge stability dia-
gram a relatively large tunnel coupling has been used (see the figure caption
for the used parameters), and the curvature is clearly seen in the honeycomb
diagram. The temperature can be seen in the smearing of the transitions
between different charge stability regions.

Although that we in this section do not perform any calculations of trans-
port through the double dot, the charge stability diagram still provides us
with information about when we can expect low-bias transport to occur.
Similarly to the charging energy parabolas shown in Fig. 2.1, we can locate
degeneracy points, where three charge stability configurations of the form
(mL,mR), (mL +1,mR), and (mL,mR +1), are equally possible [for example
(0, 0), (1, 0), and (0, 1), as indicated by a circle in Fig. 2.2]. At such a triple
point, single electrons can propagate through the double quantum dot, tak-
ing it through the sequence (mL,mR) → (mL + 1,mR) → (mL,mR + 1) →
(mL,mR), where we have assumed that the electron enters the left quantum
dot from the left lead and leaves the right dot via the right lead. With-
out Coulomb interaction between the two dots, it may also be possible to
find points, where four charge stability configurations of the form (mL,mR),
(mL+1,mR), (mL,mR+1), and (mL+1,mR+1), are equally possible and all
participate in transport. Finally, we note that the charge stability configura-
tion (1, 1) offers a unique experimental setting for studies of the interactions
between two (fairly) well-isolated electrons. In the models presented here,
the spin degrees of freedom were not included, but the study of spin-spin
interactions between two trapped electrons will be a central theme in the
following chapter.

2.2 Mechanical vibrations

In the previous section we considered conventional Coulomb blockade quan-
tum dots, where mainly the electronic degrees of freedom are of interest.
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Figure 2.2: Charge stability diagram of two tunnel-coupled quantum dots.
For a given setting of the gate voltages VL and VR we can read off the stable
charge configuration of the double quantum dot, where the notation (mL,mR)
denotes the mean number of electrons on the left and right quantum dot, re-
spectively. The strengths of the Coulomb interaction on each of the quantum
dots are ULL = URR = 4 meV, while the strength of the inter-dot Coulomb
interaction is ULR = 1 meV. The tunnel-coupling between the dots is τ = 1
meV, giving rise to the clear curvature of the boundaries between different
charge stability regions. The smearing of the boundaries is due to a finite
temperature of the leads, here kBT = 0.5 meV (or T ' 6 K). A triple-point,
where low-bias transport is allowed, is marked by the circle. The scale-bar
denotes the total number of electrons on the two quantum dots.
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In the field of nano-electromechanical systems (NEMS) electron transport is
combined with mechanical vibrations, adding an extra degree of complexity
on top of the quantum dot physics already described. Typically, the mechan-
ical degrees of freedom are provided by a nano-to-micrometer size cantilever
or pillar or by a molecule trapped between the source and drain electrodes.
The mechanical degrees of freedom may couple capacitively to the electronic
degrees of freedom as in the experiment reported in Ref. [23], where a super-
conducting single-electron transistor (SSET) was used as a sensitive probe
of the position of a doubly clamped nano-resonator. In Ref. [24] measured
conductance steps were associated with vibration-assisted electron tunneling
through a C60 molecule, whose mechanical degrees of freedom were assumed
quantized. Nano-electromechanical systems with quantized vibrations form
a subfield of NEMS, which has been coined quantum electromechanical sys-
tems or QEMS [25].

An interesting type of NEMS (or QEMS), which will be our main focus
in the following, is the so-called charge shuttle, originally proposed in Ref.
[26]. In this proposal a nano-sized metallic island is imagined to be trapped
in a soft matrix between source and drain electrodes. The system is operated
close to a degeneracy point in the Coulomb blockade regime, where electrons
propagate one-by-one through the system. If the applied bias is sufficiently
large, an electromechanical instability occurs, and the system goes from the
standard tunneling regime to the so-called shuttling regime, where the grain
is driven into mechanical oscillations back and forth between the electrodes:
When an electron tunnels from the source onto the metallic grain, the electric
field between the leads drives the grain towards the drain electrode, where
the electron is then released, the grain returns towards its equilibrium posi-
tion, and the process repeats. The system displays an interesting interplay
between electronic and mechanical degrees of freedom, since the flow of elec-
trons drives the oscillations of the grain, which, in turn, affects the electron
tunneling processes via the exponential dependence of the tunneling proba-
bility on the position of the grain. In terms of applications, the system is
interesting, since it is expected to provide a highly well-defined, low-noise
charge flow with an average current given by the electron charge e and the
oscillator frequency ω0, i.e., I = eω0/2π.

The shuttling instability has not yet been demonstrated experimentally
on the nano-scale, although progress towards that goal has been reported
[27, 28]. In Ref. [28] an integer number of electrons were transported between
source and drain electrodes via the tip of a vibrating silicon nano-pillar.
The mechanical oscillations were, however, not driven by a pure DC-bias
across the tip, and the Coulomb blockade regime was not reached. On the
theoretical side, a series of works have dealt with various aspects of nano-
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scale charge shuttling. For example, spin transport in shuttle systems was
considered in Refs. [29, 30, 31], noise properties and counting statistics of a
classical and an AC-driven shuttle in Refs. [32, 33, 34, 35], and shuttling of
Cooper pairs in Refs. [36, 37, 38]. A first-principles calculation of a molecular
shuttle system was reported in Ref. [39], and also more exotic phenomena,
like Kondo shuttling [40], have been discussed.

An important question relates to the mechanical motion in nano-sized
shuttle systems: How does a shuttle system behave, when its dimensions
are so small that the vibrational degrees of freedom become quantized? In
the experiment described in Ref. [41] a nanomechanical resonator was cooled
towards the quantum mechanical ground state, indicating that the idea of
a quantum shuttle, where the mechanical motion is quantized, may be ex-
perimentally reachable. This idea has been discussed theoretically in Refs.
[42, 43, 44, 45], and we shall here mainly focus on the models of charge
transport through quantum shuttles developed in Refs. [42, 43].

Both of these models are described by many-particle Hamiltonians of the
form

Ĥ =Ĥelec + Ĥosc + Ĥbath + Ĥleads

+ Ĥelec−osc + Ĥosc−bath + Ĥelec−leads,
(2.7)

where the first line contains the Hamiltonians of the various subsystems – the
electronic states of the quantum shuttle, Ĥelec, the mechanical oscillator, Ĥosc,
an external heat bath providing mechanical dissipation, Ĥbath, and the source
and drain electrodes, Ĥleads – while the second line describes their mutual
couplings and interactions. The two models mainly differ in their electronic
level structure, Ĥelec, and the electro-mechanical coupling, Ĥelec−osc. While
both systems are operated in the Coulomb blockade regime such that only a
single additional electron may enter the device, the model considered in Ref.
[42] consists of an array of three coherently coupled quantum dots, where only
the central quantum dot has a mechanical degree of freedom. In contrast,
the model considered in Ref. [43] consists of a single mechanically vibrating
quantum dot coupled to left and right electrodes. Although, the former
model was the first proposal for a charge shuttle with quantized mechanical
degrees of freedom, we shall refer to it as a vibrating quantum dot array, since
the coherent coupling to the additional quantum dots both complicates and
enriches the physics beyond standard “shuttle physics”. Instead we refer to
the second model consisting of a single vibrating quantum dot as a quantum
shuttle.

In both models, the mechanical oscillations are described by a harmonic
oscillator with mass m and frequency ω0, i.e., Ĥosc = p̂2/2m + mω2

0x̂
2/2.
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The systems are tunnel-coupled to source (left) and drain (right) electrodes,
which are treated as reservoirs of non-interacting fermions kept at chemical
potentials µL and µR, respectively, and mechanical dissipation is provided by
a generic heat bath at temperature T consisting of harmonic oscillators that
couple linearly to the position of the oscillating dot. For the quantum shuttle
only a single electronic state with energy ε0 is considered and the coupling
to the harmonic oscillator is provided by the electric field E between the
electrodes, such that [43]

Ĥshut
elec + Ĥshut

elec−osc = (ε0 − eEx̂)c†0c0. (2.8)

The oscillator affects the electronic tunnel-coupling to the leads via expo-
nential dependencies of the effective tunneling rates on the position x̂. The
system is shown schematically in Fig. 2.3. In the model of the vibrating quan-
tum dot array three electronic states, |L〉, |C〉, and |R〉, are tunnel-coupled
in series, such that [42, 46]

Ĥarray
elec + Ĥarray

elec−osc =




εb/2 tL(x̂) 0
tL(x̂) −εbx̂/2x0 tR(x̂)

0 tR(x̂) −εb/2


 , (2.9)

where we for the electronic degrees of freedom have used a matrix repre-
sentation in the basis consisting of |L〉, |C〉, and |R〉. The tunnel-couplings
between the quantum dots depend exponentially on the position of the oscil-
lator, i.e., tL(x̂) = τLe−α(x̂+x0), tR(x̂) = τReα(x̂−x0), where it has been assumed
that the outer dots are positioned at ±x0 (not the characteristic oscillator
length here) and α denotes the inverse tunneling length, while the position
of the central dot is denoted x̂. In this model the electron flow drives the
oscillator via the energy difference εb between the outer dots, referred to as
the device bias. The coupling to the leads does not depend on the oscillator.
The vibrating quantum dot array is shown schematically in Fig. 2.4.

Calculating the transport characteristics of these models is a highly non-
trivial, non-equilibrium, many-particle problem, which has no simple solu-
tion. Combining many-body correlations with broadening of levels due to
the coupling to continua of states, e.g., the leads, under non-equilibrium
conditions forms a core problem in quantum transport theory [21, 47]. In
one approach, the leads and the heat bath are traced out, and an equation
of motion, a so-called generalized Master equation, for the reduced density
matrix ρ̂(t) of the electronic states and the oscillator can be derived. Such
derivations are still highly complicated and the resulting equations are typi-
cally only valid in certain parameter ranges and under certain assumptions.
In Ref. [48] Gurvitz and Prager devised a systematic approach to microscopic
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Figure 2.3: Illustration of the quantum shuttle. A high bias drives electrons
through the quantum dot, causing the shuttle instability to occur. The in-
jection of electrons from the left lead and the ejection of electrons via the
right lead depend on the position x̂ of the quantum dot. The mechanical
vibrations are damped with rate γ due to a surrounding heat bath. The
probability of having collected n electrons during the time span t is denoted
Pn(t) and is a central object in characterizing transport through the shuttle,
which will be one of the subjects of Chapter 4. Figure from Paper D.

Lead Lead

−x0 0 x̂ x0

µL = ∞

µR = −∞

L

C

Rεb
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Figure 2.4: Illustration of the vibrating quantum dot array. A high bias
drives electrons through the array whose outer quantum dots are dealigned
by the device bias εb. The central quantum dot can vibrate mechanically,
and thereby modify the tunnel-coupling to the outer quantum dots that are
assumed to be static at positions ±x0. The mechanical vibrations of the
central quantum dot are damped with rate γ due to a surrounding heat
bath. Figure from Paper B (not included).



2.2. MECHANICAL VIBRATIONS 17

derivations of generalized Master equations in the contexts of quantum trans-
port taking as starting point a many-particle Hamiltonian. The method was
applied to a number of few-state systems, and the resulting generalized Mas-
ter equations were shown only to hold, if the electronic states lie well within
the bias window, such that the width of the states due to the coupling to the
leads does not extend outside the bias window. This we refer to as the high-
bias limit. Moreover, a constant tunneling density of states was assumed,
such that injection of electrons from the left lead end ejection via the right
lead can be described by single rates ΓL and ΓR, respectively.

The approach by Gurvitz and Prager was also applied in Refs. [42, 43] to
describe transport through the quantum dot array and the quantum shuttle,
respectively, and here we just quote the resulting equations. For a thorough
account of their derivation we refer to Ref. [49]. In both cases, the generalized
Master equation takes the form

Lρ̂(t) = (Lcoh + Ldriv + Ldamp)ρ̂(t), (2.10)

where the Liouvillean L consists of Lcoh, containing the coherent dynamics
of the system, if it were isolated, Ldriv, describing the coupling to the leads
and the injection and ejection of electrons, and the damping kernel Ldampρ̂(t)
accounting for dissipation due to the heat bath. The coherent part has the
form Lcohρ̂(t) = −i[Ĥelec + Ĥosc + Ĥelec−osc, ρ̂(t)] (with ~ = 1). For the
quantum shuttle the driving part reads for the electronic diagonal elements
[43]

Lshut
driv ρ̂00 = −ΓL

2
(e−

2x̂
λ ρ̂00 + ρ̂00e

− 2x̂
λ ) + ΓRe

x̂
λ ρ̂11e

x̂
λ ,

Lshut
driv ρ̂11 = −ΓR

2
(e

2x̂
λ ρ̂11 + ρ̂11e

2x̂
λ ) + ΓLe−

x̂
λ ρ̂00e

−x̂
λ ,

(2.11)

where λ is the tunneling length entering the exponential position dependence
of the tunnel rates. For the quantum dot array, the driving term can be
written

Larray
driv ρ̂ =




ΓRρ̂RR − ΓLρ̂00 0 0 0
0 ΓLρ̂00 0 −1

2
ΓRρ̂LR

0 0 0 −1
2
ΓRρ̂CR

0 −1
2
ΓRρ̂RL −1

2
ΓRρ̂RC −ΓRρ̂RR


 , (2.12)

where ρ̂ij ≡ 〈i|ρ̂|j〉 is the electronic matrix element of ρ̂(t) between the
electronic states |i〉 and |j〉, i, j = 0, L, C,R. Note that these matrix elements
are still operators in the oscillator space. Finally, the damping Ldamp can
take different forms, which we will not discuss in further detail here, since
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the exact form does not play a significant role, as long as the damping is
sufficiently weak. Importantly, however, the damping kernel contains a rate
γ at which the oscillator is damped and a temperature T which, via the Bose-
Einstein distribution, defines the mean occupation number of the oscillator
at thermal equilibrium. We note that the high-bias assumption effectively
means that the source and drain electrodes can be considered as completely
filled and empty Fermi seas, respectively, and the temperature of the electron
reservoirs consequently drops out of the problem.

In Refs. [42, 43] the mean current through the quantum shuttle and the
quantum dot array was calculated numerically as function of the damping
γ and the device bias εb, respectively. In particular, for the quantum shut-
tle charge-resolved Wigner phase space distributions of the oscillator led to
an easy identification of a cross-over from a standard sequential tunneling
picture to the shuttling regime with decreasing damping [43]. In the shut-
tling regime, a clear correlation between the motion of the oscillator and
the charge state could be seen and the mean current saturated to a value
which is consistent with the expected shuttle current given by the electron
charge and the oscillator frequency. In Ref. [42], peaks in the mean current
were identified at values of the device bias close to integer multiplies of the
oscillator frequency, strongly indicating the occurrence of electro-mechanical
resonances and vibration-assisted transport through the array.

While the Wigner phase space distributions provide a convenient, the-
oretical means to visualize and investigate the dynamics of the mechanical
degrees of freedom, such phase-space distributions may not be easily exper-
imentally accessible. As an alternative way of probing and investing the
systems we consequently went beyond studies of the mean current and con-
sidered in Papers A and B (not included) the current fluctuations or the
noise of the systems, which is a quantity that is more routinely measured
in experiments [50]. Calculating the current noise of systems described by
generalized Master equations of the form given in Eq. (2.10) is, however, a
non-trivial technical challenge which we had to address. In Chapter 4 we de-
scribe in further detail the set of tools (and extensions thereof) we developed
in this effort. Most interestingly, we found numerically that both systems
in certain parameter regimes exhibit a large noise enhancement, which we
tentatively attributed to an electro-mechanical bistability leading to a slow
switching between two current channels, also known as telegraph noise [50].
This claim was further substantiated and supported in Papers D and F and
is also discussed in more detail in Chapter 4. Finally, we mention that while
generalized Master equations of the form given in Eq. (2.10) are clearly local
in time and thus Markovian, another more general and interesting class of
equations are those with a memory-kernel, so-called non-Markovian general-
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ized Master equations, which constitute another important topic in Chapter
4.

2.3 Defect states

At the beginning of this chapter we introduced a series of conventional meth-
ods to confine electrons in man-made solid-state structures on the nano-scale.
All of these approaches have successfully been demonstrated in numerous ex-
periments, and each have their individual advantages in terms of quantum
dot tunability, optical activity, etc. In order to devise a readily scalable pro-
cedure that would allow for the fabrication of a large number of coupled,
localized electronic states, we explored in Paper I an idea to create “arti-
ficial” band structures and band gaps, in which localized electronic states
can reside, very much in the spirit of the principles exploited in photonic
crystals [51, 52] and photonic crystal fibers [53].1 Although the exact origin
of the potential modulation is not essential or crucial for the idea presented
in the following, we were inspired by almost two decades of semiconductor
fabrication of so-called antidot lattices [54, 55, 56, 57, 58]. These struc-
tures typically consist of a semiconductor heterostructure interface hosting
a two-dimensional electron gas (2DEG). Using a conducting atomic force
microscope (AFM) tip the heterostructure is locally oxidized, leading to a
depletion of the underlying 2DEG. Such a depletion region, which can be on
the order of 100 nm or less in diameter, is referred to as an antidot, and a
periodic pattern of antidots is commonly known as an antidot lattice. While
perfectly periodic antidot lattices have been the subject of numerous exper-
imental studies, antidot lattices containing “defects”, i.e., missing antidots,
have not yet been considered, and the main goal of Paper I was exactly to
consider designed defects in antidot lattices and, in particular, the formation
of bound states, which we shall refer to as defect states, at the location of
the missing antidots.

We thus consider a simple model of a two-dimensional electron gas re-
siding at a semiconductor heterostructure interface with a periodic potential
modulation. The electrons are treated in the effective mass approximation,
obeying the standard quadratic dispersion relation εk = (~k)2/2m∗ in ab-
sence of the potential modulation, where m∗ is the effective electron mass
determined by the host material (e.g. m∗ = 0.067me for GaAs). In the ef-
fective mass approximation the two-dimensional single-electron Schrödinger

1Of course, the idea behind photonic band gaps etc. might originally have been inspired
by similar concepts in solid-state physics, and in that sense we are “stealing” it back.
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equation then reads
[
− ~2

2m∗∇2 +
∑

i

V (r−Ri)

]
ψn(r) = Enψn(r), (2.13)

where the sum runs over the positions Ri of the anti-dots. Each antidot
is modeled as a circular potential barrier of height V0 and diameter d, i.e.,
V (r) = V0 for |r| < d/2 and zero otherwise. We consider the lattice of anti-
dots to be hexagonal with a center-to-center distance between the antidots
denoted Λ, commonly referred to as the pitch in the field of photonic crystal
fibers. The lattice is shown schematically in the left inset of Fig. 2.5, where
the Wigner-Seitz cell is also indicated in gray. Moreover, we consider states
residing energetically well below the barrier height V0, such that penetra-
tion of the electron wave functions into the antidots can be neglected, i.e.,
ψn(r) = 0 in the anti-dots. The assumption is not crucial, as long as V0 is
larger than the other energy scales that we consider, but it simplifies our
calculations in the following by reducing Eq. (2.13) to

− Λ2∇2ψn(r) = εnψn(r), (2.14)

where we have introduced the dimensionless eigenenergies εn = 2m∗Λ2En

~2 .
The periodicity imposed by the antidot lattice can be used to construct

an eigenbasis corresponding to Eq. (2.14). In particular, it can be seen from
Fig. 2.14 that eigenstates can be chosen which are left invariant, up to a phase
factor, under translation by the distance Λ in the directions a1 = (1, 0) and
a2 = (1,

√
3)/2. These are, of course, the Bloch states ψn,k(r) which fulfill

the translational constraint ψn,k(r − Rn) = e−ik·Rnψn,k(r), where Rn =
Λ(n1a1 + n2a2) with n1, n2 ∈ Z. This observation allows us to calculate the
effective band structure due to the antidot lattice by solving Eq. (2.14) on the
finite-size domain defined by the Wigner-Seitz cell with periodic boundary
conditions. Such numerical calculations are easily implemented and carried
out using commercially available finite-element packages. In Fig. 2.5 we show
results of band structure calculations for the high-symmetry axes illustrated
in the right inset, where the first Brillouin zone can be seen. A number of
band gaps have clearly appeared due to the periodic potential modulation,
and in the following we shall consider the lowest-lying gap, indicated with ϑeff ,
in more detail. We note that Ref. [59] and Papers P, Q (both not included),
and R contain more elaborate, numerical band structure and density-of-
states calculations.

As already mentioned, the appearance of band gaps opens up the possibil-
ity of creating localized states, residing inside the band gaps, by introducing
designed “defects” in the lattice, i.e., leaving out one or several antidots in the
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Figure 2.5: Band structure of a periodic antidot lattice. Results were ob-
tained by solving numerically the single-particle Schrödinger equation with
periodic boundary conditions on the boundaries of the Wigner-Seitz cell
shown with gray in the left inset and assuming that the wavefunction van-
ishes inside the antidots indicated with circles. The band structure in shown
along the high-symmetry axes indicated on the first Brillouin zone shown in
the right inset. Results were obtained with d/Λ = 0.5. The dimensionless
energies are εn = 2m∗Λ2En/~2 with ~2/2m ≈ 0.6 eVnm2 for GaAs. With
Λ ' 100 nm, the gap ϑeff is on the order of 2 meV. Figure from Paper I.
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Figure 2.6: Energy spectrum of a single defect. The energy of three (local-
ized) defect states are shown as function of the ratio d/Λ together with
the gap height ϑeff (full line), giving an upper limit to the existence of
bound states. The thin dotted line is a semi-analytic expression for the
first level derived in Paper I. The inset shows the absolute square of the
localized eigenfunctions corresponding to the first (upper panel) and the sec-
ond (lower) panel eigenenergies at d/Λ = 0.5. The dimensionless energies are
εn = 2m∗Λ2En/~2 with ~2/2m ≈ 0.6 eVnm2 for GaAs. Figure from Paper I.

structure. As an example of such defect states we consider an antidot lattice
with a single defect. The level-structure corresponding to this configuration
of antidots can again be found using finite-element methods by solving the
single-particle Schrödinger equation on a large super-cell, containing many
antidots surrounding the defect, and assuming that eigenfunctions vanish far
from the defect. In Fig. 2.6 we show the energy spectrum for a single defect
as function of the ratio d/Λ. Together with the position of the eigenenergies
we show the height of the effective potential (or gap height) ϑeff surrounding
the defect, giving an upper limit to the existence of localized states (in the
first gap). It is interesting to note, that the number of localized states can
be controlled via the ratio d/Λ, and in particular, it is seen that only a single
localized state forms, if d/Λ < 0.42. The insets show the absolute square of
two localized states formed for d/Λ = 0.5.
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Two neighboring defects may lead to a level-structure which resembles
that of conventional tunnel-coupled quantum dots. Also in the present case,
bonding and anti-bonding states form, which are energetically split by twice
the tunnel-coupling, i.e., ∆ε = 2τ . From the energy-spectrum of the coupled
defect states we can thus find the tunnel-coupling τ , which is shown in Fig. 2.7
as function of the width w of a constriction separating the two defects. This
could for example be implemented using a split-gate geometry as indicated
on the figure, and the width could be controlled by changing the applied
voltages on the gate electrodes making up the split-gate. The inset shows
snap shots of coherent oscillations of an electron initially localized in the
left defect, resembling similar charge dynamics observed in tunnel-coupled
quantum dots, e.g., in the isolated silicon double-dot structure described in
Ref. [60].

Based on the principles outlined above, anti-dot lattices may provide a
convenient experimental platform for studies of electron dynamics in several
tunnel-coupled defect states. From an experimental point of view it should, in
principle, not present any significant extra effort to fabricate several coupled
defect states, once two coupled states have successfully been implemented
in an antidot lattice. Coherent transport through arrays of tunnel-coupled
quantum dots has been studied in Refs. [61, 62], where a highly precise tuning
of the tunnel couplings between neighboring quantum dots in a linear array
was suggested as a means to obtain complete population transfer from one
end of the array to the other. As an alternative approach to coherent charge
transfer between spatially well-separated electronic levels, which does not
reply on a precise tuning of tunnel couplings, we have recently explored an
idea based on resonant coupling of two distant defect states in an antidot
lattice inspired by related ideas for transverse light guiding in optical fibers
[63, 64]. The mechanism behind the resonant coupling is described in Ref.
[59] and Paper R.

Finally, we discuss the importance of the length scale Λ which via the re-
lation En = ~2εn/2m

∗Λ2 determines the actual eigenenergies En by relating
them to the dimensionless eigenenergies εn. Clearly, smaller values of Λ lead
to tighter confinement of the defect states and corresponding larger (actual)
level-splittings, which should be compared to the other energy scales of the
system, e.g., temperature. While it might not be conceivable to fabricate
antidot lattices with values of Λ much below 100 nm using local oxidation
techniques, one could alternatively imagine creating tighter confinements by
pattering a sheet of graphene with a lattice of holes and use that as an an-
tidot lattice structure in which designed defects can be introduced. Sheets
of graphene can now be routinely fabricated [65, 66, 67] and with available
electron beam techniques it should be possible to make holes with a radius
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Figure 2.7: Tunnel coupling as function of constriction width. Two single-
level defects are tunnel-coupled via a split-gate geometry as indicated on the
insets, showing the time evolution of a particle initialized in the right defect
(upper inset). The absolute square of the wavefunction is shown. The width
w of the constriction is assumed to be controllable using the voltages applied
to the gate electrodes indicated on the insets. The three curves correspond
to different values of the ratio d/Λ, while the time-evolution was carried out
with d/Λ = 0.4 and w/Λ = 0.6. The dimensionless tunnel coupling is defined
as |τ | = 2m∗Λ2|t|/~2 with ~2/2m ≈ 0.6 eVnm2 for GaAs. With Λ ' 100 nm
the oscillation period is T ' 0.3 ns. Figure from Paper I.
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on the order of a few tens of nms. With such small structures, the band gaps
would be on the order of 1 eV, making graphene antidot lattices an interest-
ing candidate system for coherent electron and electron spin manipulation.
As proposed in Ref. [68] graphene may be a suitable material for coherent
spin manipulation and quantum information processing due to the low spin-
orbit coupling in graphene and because the predominant carbon isotope 12C
has zero nuclear spin and consequently no hyperfine interaction with the
electron spin. Very recently, we have considered defect states in graphene
antidot lattices as a possible platform for quantum information processing
with electron spins. This proposal in described in Paper S (not included).
The next chapter deals with electrons spins in tunnel-coupled quantum dots
as a resource for quantum information processing in the solid-state.
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Chapter 3

Spin Physics

The electrons internal1 contribution to its angular momentum, the spin, has
for decades been a physical quantity of immense interest and research, par-
tially due to its potential applications in future technologies. For example,
within the field of spintronics, the spin of the electron plays a role simi-
lar to that of the electron charge in conventional electronics. Rather than
controlling the flow of electron charge through a device, the aim is to de-
velop devices whose functionality is determined by the flow of spin polarized
currents. In a different field, solid-state quantum computing, the electron
spin is considered as a promising candidate for quantum information storage
and manipulation, since the electron spin provides a natural two-level system
that could serve as a quantum bit, a qubit, in a future solid-state architecture
for quantum information processing. While the field of spintronics is often
concerned with large numbers of spins, spin based quantum information pro-
cessing deals with the manipulation and control of just a single or a small
number of electron spins.

In this chapter the emphasis lies on the use of the electron spin as a carrier
of information in a future device for quantum information processing in the
solid-state. We first give a very brief introduction to quantum computing,
including the criteria needed to be addressed for a physical implementation,
and we discuss the current experimental status of quantum computing with
electron spins in quantum dots. We then consider the exchange coupling
between electron spins in tunnel coupled quantum dots, which forms an im-
portant building block for spin based quantum computing. In particular, we
discuss the origin of the coupling and various approaches for calculating the
coupling strength. The two last sections are devoted to two proposals for
novel approaches to spin manipulation and quantum optical interfacing of

1By internal we here mean independent of the orbital degrees of freedom.
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quantum dot systems. In the first proposal we consider the spin-orbit cou-
pling in a one-dimensional geometry, e.g., a nanowire, as a general means to
manipulate and couple electron spins in gate-defined double quantum dots.
In the second proposal we consider an opto-electrical device for electrical
generation of single photons that are entangled with the spin states of the
electrons in a double quantum dot.

3.1 Quantum computing

Conventional, or classical, computers are based on information storage in bits
that can take the values 0 or 1. This approach to information storage and
processing has already been demonstrated to be extremely successful from a
technology point of view, when combined with digital electronics based on
discrete voltage levels. It may, however, be fruitful to challenge this approach,
and ask what possible advantages could be gained, if the individual bits of a
computer were replaced by quantum mechanical bits, or qubits, that would
exploit the full Hilbert space spanned by two quantum states |0〉 and |1〉,
corresponding to the classical bit 0 and 1, respectively. Rather than just
being in the state |0〉 or |1〉, the state of such a qubit would in general be of
the form

|Ψ〉 = a|0〉+ b|1〉, (3.1)

with |a|2 + |b|2 = 1. Such thoughts were first articulated by R. P. Feynman
[69, 70] and D. Deutsch [71] in the mid-eighties, and it was subsequently
realized that qubits indeed would make it possible to construct certain quan-
tum algorithms that would out-speed the corresponding classical algorithms.
Most prominent are Shor’s algorithm for prime number factorization [72]
and Grover’s search algorithm [73]. Even if only a few quantum algorithms
to date have been constructed and shown superior to their classical counter-
parts, there may be good belief to think that quantum computers can provide
speed-up to a much larger class of computational problems. At least, one
could argue that it probably would be more surprising if it turned out that
the algorithms developed so far were the only ones where quantum mechanics
proved helpful, and from a more “variational” point of view, one can follow
D. P. DiVincenzo in the claim that a quantum computer must be as least as
good as a classical computer [74]: Since classical physics follows as a special
case of quantum mechanics, there are no tasks that a classical computer can
solve more efficiently than a quantum computer.

In the following we will not be concerned with the question of which types
of problems could possibly be solved on a quantum computer. Instead we
discuss the necessary conditions that must to be met in order to physically
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implement a future device for quantum information processing. Five require-
ments have been formulated by D. P. DiVincenzo, which we quote from Ref.
[74]:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state,
such as |000 . . .〉.

3. Long relevant decoherence times; much longer than the gate operation
time.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

Criteria 3 states that the time that a quantum bit can be kept in a
quantum mechanical superposition of the form given in Eq. (3.1) before it
via interactions with its environment reduces to a statistical mixture with a
density matrix reading ρ̂ = |a|2|0〉〈0|+ |b|2|1〉〈1|, should be much longer than
the typical time of an operation on the qubit. Since quantum algorithms
consist of a series of unitary operations on the qubits, it should be possible
to implement any operation on the qubits as stated in criteria 4, but in
most physical systems it may not be obvious how to implement a given
desired interaction among the qubits. It has, however, been shown that any
operation can be constructed from a universal set of quantum gates consisting
of all single-qubit operations and a single two-qubit operation known as the
controlled-NOT, or CNOT, gate [75]. The CNOT gate operates on a two-
qubit state |i, j〉 as UCNOT|i, j〉 = |i, i⊕j〉 with i, j = 0, 1 and i⊕j ≡ i+j−2ij.
The CNOT gate flips the second qubit conditioned on the state of the first.
It is interesting to consider the application of the CNOT gate to a two-qubit
state, where the first qubit is in the state (|0〉+ |1〉)/√2 and the second is in
the state |0〉,

UCNOT
1√
2

(|0〉1 + |1〉1) |0〉2 =
1√
2

(|0〉1|0〉2 + |1〉1|1〉2) . (3.2)

As can be seen, the CNOT leads to a two-qubit state, which cannot be writ-
ten as a product of single-qubit states, also known as an entangled state.
The ability to generate entanglement between different qubits is thus a cor-
nerstone in any physical implementation of a quantum computer according
to DiVincenzos criteria. In many possible realizations of a quantum com-
puter it may not be straightforward to implement the CNOT gate, but other
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two-qubit operations also suffice, as long as they, with the use of single-qubit
operations, can be transformed into the CNOT gate.

Having outlined the requirements for a future quantum computer, we
next turn to an actual physical system. Already, a variety of systems from
different fields of physics have been promoted and studied theoretically and
experimentally. Candidate systems include trapped ion systems [76, 77],
implementations based on nuclear magnetic resonance [78, 79, 80], nuclear
spins of donor atoms in doped silicon devices [81], superconducting systems
[82, 83], and nitrogen-vacancy (NV) centers in diamond [84, 85]. Here, we
shall focus on a particular proposal from the solid-state, namely the spins
of electrons trapped in gate-defined quantum dots [86, 87]. In this proposal,
pioneered by D. Loss and D. P. DiVincenzo, the relatively well-isolated spin
of an electron provides a natural two-level system in which a qubit can be
encoded by defining, e.g., | ↓〉 ≡ |0〉 and | ↑〉 ≡ |1〉. The electron spins are
envisioned to be trapped in gate-defined quantum dots as the ones described
in the previous chapter, and in particular, two-qubit operations between spins
in tunnel coupled quantum dots are carried out by electrically pulsing the
exchange interaction between them [87]. The exchange interaction will be the
subject of the following section, but for now we note that the Hamiltonian
describing the exchange interaction between two electron spins σ1 and σ2

takes the form H = Jσ1 ·σ2 which can be used to implement the so-called
square-root of swap operation,

√
SWAP, which via single-qubit operations

can be mapped onto the CNOT gate [86]. The proposal is of particular
interest in relation to DiVincenzos first criteria concerning scalability, since
it is based on semiconductor technology which has already proven to be
highly scalable when it comes to conventional computers.

Since the idea of using electron spins in gate-defined quantum dots for
quantum computing was first proposed in 1998, a series of experiments have
been addressing each of DiVincenzos criteria. Single-spin rotations using
electron spin resonance (ESR) have thus been experimentally demonstrated
(see Section 3.3) [88], as well as electrostatic control of the exchange coupling
in a double quantum dot [6] and single-shot read-out of a single electron spin
[89]. The main decoherence mechanism has proven to be the hyperfine cou-
pling of the electron spin to nuclear spins in the host material [6, 86, 87]
and ongoing experimental activities are consequently aimed at implementing
the same ideas and concepts in materials, which in contrast to GaAs, have
zero nuclear spin. Among such materials, two promising candidates are sili-
con [60] and graphene [68]. While criteria 2-5 essentially may be considered
fulfilled, criteria 1 concerning scalability still remains experimentally unad-
dressed, but, as already mentioned, the success of semiconductor technology
within conventional information processing makes it reasonable to believe
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that an implementation of a large number of coupled quantum dots may be
within experimental reach, and theoretical work towards that goal is already
in progress [90].

Before finishing this section we briefly mention DiVincenzos additional
criteria for the physical implementation of quantum communication, i.e., the
transmission of intact qubits over a long distance. This would be desirable
for, e.g., quantum cryptography and quantum key distribution [91, 92]. The
additional requirements read [74]

6. The ability to interconvert stationary and flying qubits,

where flying qubits typically mean optical photons which, for example, can
carry quantum information in the two light polarizations, and

7. The ability to faithfully transmit flying qubits between specified loca-
tions.

Concerning criteria 6, we propose in Section 3.4 a semiconductor device that
would allow for emission of single photons that are frequency-entangled with
the spin states of a double quantum dot. Before doing so, however, we start
by considering in detail the exchange coupling between two electron spins in
a double quantum dot.

3.2 Exchange interaction

As we saw in Chapter 2 tunnel-coupled double quantum dots can be tuned
into a charge regime, where only a single electron occupies each of the two
quantum dots. In this charge regime the spin and charge dynamics can be
described by a spin-independent two-particle Hamiltonian of the form

H(r1, r2) = h(r1) + h(r2) + C(|r1 − r2|), (3.3)

where the single-particle Hamiltonians read h(r) = [p+eA(r)]2

2m
+ V (r), while

C(|r1 − r2|) = e2

4πεrε0|r1−r2| is the Coulomb interaction between the two elec-
trons. Since we are considering tunnel-coupled quantum dots, the external
potential V (r) has a double-well shape, while the dimensionality of the prob-
lem depends on the type of quantum dots considered [here, we consider two
dimensions, i.e., r = (x, y)]. The vector potential A(r) is chosen correspond-
ing to a possible, applied magnetic field B, i.e., B = ∇×A.2 As we shall see,

2The Zeeman shift due to the magnetic field has been omitted in the Hamiltonian, but
is trivial to include in final total energy calculations.
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the Pauli principle leads to an effective interaction between the spin degrees
of freedom, even though the problem defined by Eq. (3.3) at first glance does
not seem to concern the spins [93].

The Pauli principle states that the total wavefunction Ψσ1,σ2(r1, r2) de-
scribing two fermions must change sign under interchange of the particles,
i.e., Ψσ1,σ2(r1, r2) = −Ψσ2,σ1(r2, r1). In a second quantized description this
is ensured by the anti-commutation relation of the creation operators that
reads {ĉ†ασ, ĉ

†
βσ′} = ĉ†ασ ĉ

†
βσ′ + ĉ†β,σ′ ĉ

†
α,σ = 0, where ĉ†ασ, α = L,R, creates an

electron with spin σ =↑, ↓ in the ground state of the left (α = L) or right
(α = R) quantum dot. Assuming first that the two quantum dots are well-
separated, such that tunnel coupling and Coulomb interaction between the
two dots may be neglected, the ground state of the two-particle system is
four-fold degenerate, and the ground state manifold may be spanned by the
spin-singlet state

1√
2

(
ĉ†L↑ĉ

†
R↓ − ĉ†L↓ĉ

†
R↑

)
|0〉 ↔ Ψ

(0)
S (r1, r2)⊗ 1√

2
(| ↑ 〉1| ↓ 〉2 − | ↓ 〉1| ↑ 〉2)

and the spin-triplet states

ĉ†L↑ĉ
†
R↑|0〉 ↔ Ψ

(0)
A (r1, r2)⊗ | ↑ 〉1| ↑ 〉2,

1√
2

(
ĉ†L↑ĉ

†
R↓ + ĉ†L↓ĉ

†
R↑

)
|0〉 ↔ Ψ

(0)
A (r1, r2)⊗ 1√

2
(| ↑ 〉1| ↓ 〉2 + | ↓ 〉1| ↑ 〉2) ,

ĉ†L↓ĉ
†
R↓|0〉 ↔ Ψ

(0)
A (r1, r2)⊗ | ↓ 〉1| ↓ 〉2.

In the right column we have included the real-space representation of the two-
particle states with Ψ

(0)
S/A(r1, r2) ≡ [ψL(r1)ψR(r2)± ψR(r1)ψL(r2)] /

√
2 be-

ing (anti-)symmetric combinations of the orbital groundstate wavefunctions
ψL/R(r) of the (isolated) left and right dots, respectively.3 It is important

to notice that the orbital part, Ψ
(0)
S , of the spin-singlet state is symmetric,

while the spin-triplet states have an anti-symmetric orbital part, Ψ
(0)
A . If the

two quantum dots are moved closer together tunnel coupling and Coulomb
interactions become important, and the non-interacting orbital wavefunc-
tions Ψ

(0)
S and Ψ

(0)
A given in terms of Slater permanents and determinants,

respectively, are no longer eigenfunctions of the Hamiltonian in Eq. (3.3).
Instead, the eigenvalue problem HΨS/A = εS/AΨS/A must be solved. The
splitting JV (B) ≡ εA−εS of the two groundstates energies, corresponding to
symmetric and anti-symmetric orbital wavefunctions, respectively, generally

3Here, we have not allowed for linear combinations of the single particle states ψL

and ψR, since this would lead to doubly occupied dots, which would be energetically
unfavorable.
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depends on the shape of the confining potential V and the applied magnetic
field B. As we shall shortly see the exchange energy JV (B) determines the
strength of an effective spin-spin interaction.

Since the Pauli principle intimately links the symmetries of the spin and
the orbital parts, it is possible to think of the splitting JV (B) between the
orbital groundstate eigenfunctions as a splitting between the spin states in-
stead [93]. The mapping between orbital and spin degrees of freedom can
be constructed by considering the square of the operator of the total spin
σ = σ1 + σ2 of the two electrons, σ2 = σ2

1 + σ2
2 + 2σ1 ·σ2. We note that σ2

has eigenvalues s(s + 1) corresponding to states with total spin s, and thus
σ2

i = 1/2(1/2 + 1) = 3/4, i = 1, 2 (since the electrons have spin si = 1/2).
Consequently, the operator σ1 ·σ2 has eigenvalues s(s+1)/2−3/4, i.e., −3/4
for the singlet state (s = 0) and 1/4 for the triplet states (s = 1). Using these
observation, we construct the operator (εS +3εA)/4+(εA−εS)σ1 ·σ2, which
exactly has the eigenvalues εS for the singlet state and εA for the triplet
states, respectively. If we omit the common energy term (εS + 3εA)/4, we
may then think of the splitting JV (B) as arising from an effective interaction
in spin space described by the Hamiltonian

H = JV (B)σ1 ·σ2. (3.4)

This is the well-known Heisenberg Hamiltonian. The mapping onto (or re-
striction to) the 4-dimensional spin space is strictly speaking only valid, when
the two (symmetric and antisymmetric) orbital groundstates are energetically
well-separated from the rest of the energy spectrum, such that the higher-
lying states can be excluded, making a low-energy description, as Eq. (3.4)
is, reasonable. It is worth noticing that the strength JV (B) of the interaction
between the spins depends on the confining potential V (r) and the magnetic
field B via the orbital (or charge) degrees of freedom, and the exchange in-
teraction thus provides a convenient way of controlling electrostatically the
magnetic interaction. This is in particular relevant when considering gate-
defined quantum dots, where the external potential V (r) can be controlled
with the gate electrodes.

Evaluating the interaction strength JV (B), given a confining potential
V (r) and an applied magnetic field B, is in general non-trivial and has been
a topic of intense research, since the first treatment of the Helium molecule
by W. Heitler and F. London [94]. In the Heitler–London approximation the
exchange coupling is simply evaluated as

JHL
V (B) = 〈Ψ(0)

A |H|Ψ(0)
A 〉 − 〈Ψ(0)

S |H|Ψ(0)
S 〉, (3.5)

where |Ψ(0)
S 〉 and |Ψ(0)

A 〉 are the non-interacting two-particle orbital wavefunc-
tions introduced above, and H is the full two-particle Hamiltonian given in
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Eq. (3.3). While the Heitler–London approximation may be a simple esti-
mate of the exchange coupling, it is often useful to get a rough idea of the
qualitative features of the coupling strength, and for simple model potentials
it may even be possible to obtain closed-form analytic expressions where var-
ious parameter dependencies can be clearly identified [87, 95]. The range of
validity of the Heitler–London approximation is, however, not immediately
clear. One can show that the singlet-state without magnetic field is always
the ground state and consequently, JV (B = 0) ≥ 0 [93, 96]. This crite-
rion was used in Ref. [97] to test the Heitler–London approximation. While
the criterion may reveal, when the Heitler–London breaks down by predict-
ing a negative exchange coupling at zero magnetic field, it cannot, on the
other hand, tell, if positive exchange coupling predictions are correct. Addi-
tionally, the criterion is not applicable with finite magnetic fields. A more
quantitative test was provided in Ref. [98], where Heitler-London results were
compared with numerically exact results obtained for weakly tunnel-coupled
quantum dots as function of the magnetic field. The results show that the
Heitler–London approximation for the chosen parameters predicts at too low
exchange coupling.

The Heitler–London approximation can be improved by choosing dif-
ferent single-particle wavefunctions as recently suggested in Ref. [99], or,
more conventionally, by including doubly occupied singlet states, i.e., two-
particle states, where both electrons are occupying the same orbital quan-
tum dot state (which is only allowed for the spin singlet). The latter ap-
proach is known as the Hund–Mulliken approximation [87]. If inter-dot
Coulomb interactions are negligible and the tunnel-coupling t between the
two quantum dots much smaller than the onsite Coulomb interaction U ,
the Hund–Mulliken approximation leads to the standard Hubbard expres-
sion JH

V (B) = 4t2/U . Obviously, the Hubbard expression cannot explain
that the exchange coupling can become negative with finite magnetic fields,
since JH

V (B) ≥ 0, and the inter-dot Coulomb interaction has to been in-
cluded in order to account for this behavior [87]. As already briefly men-
tioned above, numerical methods constitute an alternative approach to ex-
change coupling calculations. Numerically exact results can for example be
obtained by expanding the full two-particle Hamiltonian in Eq. (3.3) in a
suitable two-particle basis and diagonalizing numerically the resulting matrix
representation of the Hamiltonian [98, 100, 101, 102, 103, 104]. In contrast
to the various approximations introduced above, the numerical results can in
principle be considered exact, if a sufficiently large number of basis states are
used. On the other hand, the advantages provided by closed-form analytic
expressions in terms of clear parameter dependencies are not immediately
available.
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In order to test the various approximative schemes we developed in con-
nection with Paper O a numerically exact finite-element method inspired
by Ref. [105], where exchange coupling calculations using an expansion in
two-dimensional Gaussian wavefunctions were reported. Our method was
implemented using a commercially available finite-element solver providing
a convenient platform for exchange coupling calculations. The details of the
method and the implementation are given in Paper O and, in particular, Ref.
[59]. The method is best suited for systems with a substantial wavefunction
overlap between the two quantum dots, which is also the regime that from
an experimental point of view would be most interesting: As the overlap is
reduced, e.g., by an increase of the distance between the quantum dots, the
exchange coupling falls off dramatically, making it vanishing for any practical
point of view. Our aim was thus to provide a stringent test of the various
standard approximations by comparing them to numerically exact results for
quantum dots with a large overlap. As an illustrative example, we considered
the double-dot potential

V (r) =
mω2

0

2

[
min{(x− d)2, (x + d)2}+ y2

]
. (3.6)

for values of the inter-dot distance d comparable to the characteristic oscil-
lator length r0 ≡

√
~/mω0. A figure showing the potential can be found in

Paper O. While this potential might be a very crude approximation of the ac-
tual potential inside a realistic double quantum dot, it has the main features
one would expect from a double-dot potential (two potential wells separated
by a tunnel barrier) and is as such useful for benchmark calculations as the
ones presented here.

In Figs. 3.1 and 3.2 we show comparisons of the standard approximations
with numerical results for the exchange coupling as function of inter-dot dis-
tance and magnetic field, respectively. Without magnetic field, the Hubbard
approximation gives fairly reasonable predictions of the exchange coupling as
function of inter-dot distance, while most of the other approximations fail.
In contrast, the extended Hubbard approximation, which also includes inter-
dot Coulomb interactions, seems better at predicting the exchange coupling
at finite magnetic fields. The results are discussed in further detail in Paper
O, where also the one-dimensional case is considered. In general, the results
show that approximative calculations of the exchange coupling in quantum
dots with large wavefunction overlap is highly non-trivial, and great care
should be taken when the standard approximations are applied. In Paper R
we applied our numerical method to calculate the exchange coupling between
electron spins in tunnel coupled defect states in the antidot lattice geometry
introduced in Section 2.3.
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Figure 3.1: Exchange coupling in a two-dimensional double quantum dot.
The exchange coupling J is calculated numerically as function of the inter-
dot distance d with different confinement energies ~ω0. The characteristic
oscillator length is r0 ≡

√
~/mω0. For comparison we show results obtained

with the following approximations: Heitler–London (JHL), Hund–Mulliken
(JHM), extended Hubbard (J∗H and J∗H − V ), and Hubbard (JH) – see Paper
O for details. The vertical lines correspond to the values of d for which the
magnetic field dependence is shown in Fig. 3.2. Figure from Paper O.
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Figure 3.2: Exchange coupling in a two-dimensional double quantum dot in a
perpendicular magnetic field. The exchange coupling J is calculated numer-
ically as function of the magnetic field strength B with ~ω0 = 6 meV, and
d/r0 = 0.25, 1.5, where r0 ≡

√
~/mω0. The electron g∗-factor does not enter

in these calculations, since the exchange coupling is a purely orbital effect.
For comparison we show results obtained with the following approximations:
Heitler–London (JHL), Hund–Mulliken (JHM), extended Hubbard (J∗H and
J∗H − V ), and Hubbard (JH) – see Paper O for details. Figure from Paper
O.
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3.3 Spin-orbit coupling

In the previous section we introduced the exchange coupling and discussed
various methods for calculating the coupling strength JV (B). As we pointed
out, the exchange coupling provides a convenient way of electrostatically
controlling the magnetic interaction between electron spins in gate-defined
quantum dots. Herein lies, however, also a potential source of erroneous
quantum gate operations due to random fluctuations in the electrostatic en-
vironment that change the external potential V (r), e.g., fluctuations in the
gate electrodes or movements of nearby trapped charges. Such electrostatic
fluctuations in the surroundings change the exchange interaction in an un-
controllable way, thereby reducing the ability to carry out a desired two-qubit
operation on the spins. This scenario was studied in Ref. [95], where it was
found that charge fluctuations may present a serious challenge for the use
of the exchange coupling for two-qubit operations in large-scale quantum
computing architectures. As an alternative approach to spin manipulation,
which potentially could be less susceptible to such fluctuations, we explored
in paper J the possibility of using the spin-orbit coupling in nanostructures.
Although it has previously been suggested that the spin-orbit coupling could
play a role in coherent electron manipulation [106, 107, 108], the spin-orbit
coupling is typically considered to be an undesired effect, since it couples
the spin to the orbital (or charge) degrees of freedom, which couple more
strongly to the environment than the spin itself [109, 110]. In Paper J we
took the ideas of exploiting the spin-orbit coupling further and proposed to
use the spin-orbit coupling as a general means to control and manipulate
trapped electron spins. In this section we discuss our proposal.

The spin-orbit is a relativistic effect which arises when a charged particle
travels through a static electric field: In the rest-frame of the particle, the
electric field is transformed into a magnetic field which couples to the spin.
In a solid electrons may experience an electric field from the charged atoms
in the crystal lattice of the material giving rise to a coupling between the
spin and the orbital degrees of freedom [3]. This microscopic effect should be
included in the detailed description of electrons in a solid, e.g., at the level of
band structure calculations, but as often in solid-state physics simpler models
may suffice and capture the essential physics. As an example, one could
mention the effective-mass approximation, where all band structure effects
are collected in an effective mass entering the free-electron picture. Similarly,
simple, effective descriptions of the spin-orbit coupling exist that capture the
effects of the solid-state material and its crystal structure. Two prominent
examples are the Rashba [111, 112] and Dresselhaus [113] couplings that
describe the spin-orbit coupling of electron spins in two-dimensional quantum
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dots due to lack of crystal lattice symmetry [3]. Here, we refrain from going
into a deeper discussion of the underlying microscopic theory, and in the
following we employ a simple model of the spin-orbit coupling in a one-
dimensional system.

As a promising candidate system for an experimental implementation of
our idea, we consider InAs nanowires with a gate-defined double quantum
dot along the length of the wire. The setup is shown schematically in Fig.
3.3. Successful fabrication and electrostatic control of the external potential
within such a nanowire were reported in Ref. [10]. The choice of material is
interesting, since InAs has a large electron g∗-factor and spin-orbit coupling,
which would enhance the effects that we describe in the following. In Ref.
[10] the few-electron regime of the double quantum was not reached, but in
a subsequent experimental study with a further optimized design, control
of the electron number down to the last electron was reported [114]. We
consider the two-electron regime and model the one-dimensional system with
the Hamiltonian

H(x1, x2) = h(x1) + h(x2) + C(|x1 − x2|) (3.7)

where C(|x1−x2|) = e2

4πεrε0|x1−x2| is the Coulomb interaction between the two
electrons and the single-particle Hamiltonians read

h(x) =
p2

x

2m
+ V (x) +

1

2
g∗µBBσz + αpxσ

y. (3.8)

Compared to the Hamiltonian given in Eq. (3.3), we have in the single-
particle Hamiltonians included the Zeeman term 1

2
g∗µBBσz and a phenomeno-

logical spin-orbit coupling of the form αpxσ
y. Here, we have assumed that

the motion of the electron generates an effective magnetic field which is lin-
ear in the momentum px of the electron along the nanowire, which defines
the x-axis in the orbital space. The effective magnetic field due to the spin-
orbit coupling defines a direction in spin space which we (freely) denote by y.
The external magnetic field is applied in a perpendicular direction, which we
choose to denote by z. Finally, the spin-orbit coupling contains the param-
eter α which quantifies the coupling strength. The external potential V (x)
is defined by a number of perpendicular gate electrodes along the nanowire
as illustrated in Fig. 3.3. The vector potential corresponding to the external
magnetic field is chosen such that it has no component in the x-direction and
consequently does not enter the single-particle Hamiltonians in Eq. (3.8).

In order to understand the effect of the spin-orbit term we start by con-
sidering only the single-particle Hamiltonian given by Eq. (3.8). First, we
note that in the absence of an external magnetic field, an electron traveling
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Figure 3.3: InAs nanowire across three gate electrodes. The three gate elec-
trodes, positioned at x = −b, 0, b with a distance h to the nanowire, are used
to define a double-dot potential inside the nanowire. A representative curve
of the potential along the nanowire is shown to the right. In the experiment
reported in Ref. [10] the spacing between the electrodes was b = 210 nm and
the distance to the nanowire was h = 25 nm (two more gate electrodes used
in the experiment are not shown here). Figure from Paper J.

along the x-axis, with spin initially pointing along the z-axis or x-axis, will
have its spin flipped after a distance of πlso/2,4 where we have introduced
the spin-orbit length lso = ~/mα. It is interesting to note that this does not
depend on the speed at which the charge is traveling, but only the traversed
length. At the time when Paper J was published the exact values of the
electron g∗-factor and the spin-orbit length lso for confined electrons in InAs
nanowires were not known, and we used |g∗| = 14 and ~α = 30 meVnm
or lso = 94 nm with m = 0.027me, inspired by numbers of the same order
found in the literature for two-dimensional electron gases [115, 116] and un-
confined electrons in InAs nanowires [11]. In the following we still use these
values, although a recent experimental study of the spin-orbit coupling in
InAs nanowires reported a spin-orbit length of lso ' 127 nm and an effective
g∗-factor |g∗| ' 8 ± 1 [114]. For the Coulomb interaction in InAs, we use
εr = 15.15.

The spin-orbit coupling allows an efficient way of flipping the spin of
an electron using fast variations of the external potential. This idea is de-
scribed in detail in Papers J and K and here we give a physical picture of
the proposed mechanism. In order to simplify matters, we consider a single
electron confined by the harmonic potential V (x) = mω0[x− x̄(t)]2/2, where
we assume that the equilibrium position x̄(t) can be controlled with the gate

4Using a simple ‘back-of-an-envelope’ calculation we find that eiαpxσy∆t/~ = iσy, if
αpx∆t/~ = l∆t/lso = π/2, where l∆t is the distance that the electrons travels during time
∆t and lso ≡ ~/mα. We thus find l∆t = πlso/2.
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electrodes. We denote the characteristic oscillator length by l0 ≡
√
~/mω0.

First of all, we assume that we can change the equilibrium position x̄(t) on
a time-scale which is fast compared to the one associated with the Zeeman
splitting of the spin states. At the same time, we need the change to be slow
compared to the time scale associated with the level splitting of the orbital
degrees of freedom. These criteria we can express as |g∗µBB/~| ¿ |ẋ0(t)/lso|
and |ẋ0(t)/l0| ¿ ω0, or simply |g∗µBB/~| ¿ |ẋ0(t)/l0| ¿ ω0, if we as-
sume that the oscillator length and the spin-orbit length are comparable,
i.e., lso ' l0.

5 The first criterium allows us to neglect the precession of the
spin due to the magnetic field, while the effective magnetic field arising from
the spin-orbit coupling is “turned on” during a translation of the equilibrium
position x̄(t). The second criterium ensures that the electron stays in the
orbital ground state without being excited to higher-lying orbital states dur-
ing the translation (in more technical terms, we assume that the translation
is adiabatic with respect to the orbital degrees of freedom). Within these
assumptions our scheme for flipping the spin reads:

1. Translation of x̄(t) by a distance of πlso/4. This rotates the spin around
the y-axis, down into the xy-plane, pointing along the x-axis.

2. Free evolution of the spin in the external B-field for a period of T =
~π/g∗µBB. This rotates the spin by an angle of π around the z-axis,
such that it ends up pointing in the negative-x direction.

3. Translation of x̄(t) back to the initial position. This rotates the spin
around the y-axis by an angle of π/2, such that the spin ends up in the
state |↓〉.

The trajectory on the Bloch sphere of a spin, initialized in the state | ↑〉,
during this procedure is shown in Fig. 3.4. In Paper J the total spin flip time
was estimated to be below 1 ns. During the spin-flip operation the electron
is translated back and forth by the distance πlso/4 = 74 nm. If such a large
translation cannot be obtained with the given gate configuration, one can
instead construct more complex manipulation schemes which, on the cost
of higher complexity, would need shorter translations. For example, if one
only translates the electron by the distance πlso/8 = 37 nm during the steps

5In these expressions we should in principle take into account the fact that the spin
states here are actually, in a quantum optical language, dressed states of spin and or-
bital degrees of freedom due to the spin-orbit coupling. The Zeeman energies of the
states are renormalized by the spin-orbit coupling, leading to an effective g∗-factor read-
ing g∗e−(l0/lso)

2
, which should be used in these inequalities. This is described in Papers J

and K.
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Figure 3.4: Spin flip on the Bloch
sphere. The spin is initially point-
ing north (thick arrow). The
three dashed lines are the rota-
tions of the spin during the spin
flip scheme. Rotations around
the y-axis are due to the spin-
orbit coupling (steps 1 and 3),
while the rotation in the x-y plane
are due to the externally applied
magnetic field (step 2). Figure
from Paper K.

1-3, the spin would end up pointing in the negative-x direction. Such an
operation could consequently replace steps 1-2 in the full spin-flip rotation
described above. With the principles outline here, it is, in general, possible
to construct manipulation schemes, that would allow the spin to reach any
point on the Bloch sphere. Finally, we note that in order to carry out a more
quantitative description of the scheme, it is convenient to work in a rest frame
that follows the spin-orbit induced rotation of the spin as discussed in Paper
K.

It is worth comparing our method to more conventional schemes for spin
flipping, which typically rely on the principle of electron spin resonance
(ESR). In ESR, a time-dependent magnetic field is applied perpendicularly
to the Zeeman field which defines the z direction. If the time-dependent field
is rotating with a frequency that is resonant with the Zeeman splitting, the
rotation exactly cancels the effect of the static field. This conclusion is most
easily reached using a frame that follows the rotating magnetic field [117].
The spin will then precess around the direction of the time-dependent field,
making a spin-flip possible. The frequency of the precession is given by the
magnitude of the time-dependent field. If the involved g∗-factor and Zeeman
fields are large, it can, however, be an experimental challenge to produce
sufficiently fast oscillating magnetic fields. Nevertheless, such ESR driven
oscillations of an electron spin in a quantum dot have been experimentally
realized [88]. ESR driven spin rotation where a time-varying effective mag-
netic field is obtained using a combination of time-varying electric fields and
the spin-orbit coupling have also been suggested in Refs. [118, 119], and this
was very recently demonstrated in the experiment described in Ref. [120].
Compared to these schemes, our proposal does not rely on any resonance
condition.
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We now return to the two-particle Hamiltonian in Eq. (3.7) and present
the results for the effective spin-spin coupling arising due to the spin-orbit
coupling. It is not surprising that the spin-orbit coupling in combination
with the Coulomb interaction between the two electrons can give rise to
an effective spin-spin coupling: The spin-orbit coupling couples the spins of
the individual electrons to the orbital degrees of freedom of the respective
electrons, which in turn are coupled due to the Coulomb interaction. We
first develop a simple model of the electrostatic potential generated by the
three gate electrodes, modeling each of the electrodes as infinitely long line
charges with charge densities λl, λc, and λr for the left, central, and right
electrodes, respectively. With these assumptions, the electrostatic potential
along the nanowire reads

Vg(x) = Ve(x + b, βl) + Ve(x, βc) + Ve(x− b, 1), (3.9)

with Ve(x, β) = −β~ωg ln[(x2 + h2)/x2
g], where we have introduced βl(c) ≡

λl(c)/λr, ~ωg ≡ eλr/4πε0εr, and xg ≡
√
~/mωg. A representative plot of

the potential is shown in Fig. 3.3. The model potential allows us to charac-
terize the sensitivity of the spin-spin coupling to fluctuations in the charge
densities. However, before doing so, we first approximate the two potential
wells with two harmonic oscillator potentials with frequency ω0 displaced by
the distance d. This approximation allows us to calculate analytically the
strength of the effective spin-spin interaction. The results presented below
are only valid to second order in the magnetic field and to lowest order in the
Coulomb interaction, which we expand using 1/|x2−x1| ' 1/d−δ/d2+δ2/d3,
where we have assumed that d À δ ≡ (x2 − x̄2) − (x1 − x̄1). The result is,
however, correct to all orders in the spin-orbit coupling α.

In Papers J and K we presented two different derivations of the effective
spin Hamiltonian and here we just quote the final result,

H = τσx
1σx

2 +
1

2
g̃∗µBB(σz

1 + σz
2), (3.10)

where

τ = − e2

4πε0εr

2l40(g̃
∗µBB)2

l2so(~ω0)2d3
(3.11)

and the renormalized g∗-factor is g̃∗ = g∗e−(l0/lso)2 , as already mentioned.
We note, that the above result was reproduced in Ref. [121], where a thor-
ough analysis of the spin-orbit induced spin-spin coupling between two two-
dimensional quantum dots was presented. The analytic result can be bench-
marked against numerically exact results obtained from the low-energy spec-
trum of the two-particle Hamiltonian in Eq. (3.7). Compared to the pre-
vious section, where we studied the exchange coupling between electrons in
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Figure 3.5: Spin-spin coupling as function of magnetic field. Numerical re-
sults are shown with circles, while full lines correspond to the analytic expres-
sion in Eq. (3.11). Parameters are ~ωg = 1 meV (xg = 53 nm), h = 0.5xg,
b = 10xg, βl = 1, βc = 0.6 (upper circles), 0.7, 0.8 (lower circles). Corre-
sponding to the three values of βc we have used ~ω0 = 0.39, 0.40, 0.42 meV
and d = 8.3xg, 8.7xg, 9.1xg. Figure from Paper J.

two two-dimensional quantum dots, the present problem is computationally
cheaper due to the lower dimensionality. For the results shown in the fol-
lowing, we have used a simple discretization of the two-particle Hamiltonian
on a real-space grid, with the number of grid points being on the order 100-
500, leading to a sparse matrix representation from which it is feasible, with
conventional numerical methods, to extract the low-energy spectrum.

In Fig. 3.5 we show the strength of the coupling as function of the mag-
netic field. The numerical results, shown with circles, confirm the parabolic
dependence on the magnetic field. For the given parameters the spin-orbit
induced coupling is on the order of µeV, which is much larger than the ex-
change coupling at the same inter-dot distance, however, smaller than the
exchange coupling for quantum dots with a large overlap as those considered
in the previous section and in Paper O. Although, it may not be possible
to control the strength of the spin-orbit coupling experimentally, the depen-
dence of the spin-spin coupling on the spin-orbit coupling is interesting due to
the competing effects of the spin-orbit coupling as it enters via the spin-orbit
length in the denominator, giving rise to a parabolic dependence on α, and
the renormalized g∗-factor that leads to an exponential dependence on the
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Figure 3.6: Spin-spin coupling as function of the spin-orbit coupling. Numer-
ical results are shown with circles, while full lines correspond to the analytic
expression in Eq. (3.11). The spin-spin coupling is denoted τxx in this figure,
while the spin-orbit coupling is denoted α. Parameters are B = 160 mT,
~ω0 =0.4 meV (l0 =80 nm) and d = 750 nm. Figure from Paper K.

spin-orbit coupling. These two effects are clearly seen in Fig. 3.6, where the
spin-spin coupling is shown as function of the spin-orbit coupling α. For low
values of α the parabolic dependence is dominating, while the exponential
suppression prevails for larger values. When the oscillator length is much
longer than the spin-orbit length, the orbital ground state averaging leads to
a vanishing effective g∗-factor.

As previously mentioned, it has been argued that the exchange coupling
is sensitive to fluctuations in the electrostatic environment [95], and it is
thus relevant to study the corresponding sensitivity of the spin-orbit induced
coupling. Following Ref. [95] we characterize the sensitivity of the spin-spin
coupling to slow fluctuations in the electrostatic environment by calculat-
ing numerically ∂τ/∂βc/l. Our numerical results also contain the contribu-
tions from the exchange coupling J , which we may extract by setting the
spin-orbit coupling to zero, and thereby compare quantitatively the two cou-
pling mechanisms. In Fig. 3.7 we show the strengths of the two coupling
mechanisms as function of the charge density on the central electrode, pa-
rameterized by βc, which determines the height of the barrier separating the
electrons. We also show |(1/τ)∂τ/∂βc|, |(1/J)∂J/∂βc|, and |(1/τ)∂Ez/∂βc|,
where Ez = g∗µBBe−(l0/lso)2 is the renormalized Zeeman splitting. The fig-
ure clearly shows that |(1/τ)∂τ/∂βc| ¿ |(1/J)∂J/∂βc|, which we interpret
as a smaller sensitivity of the spin-orbit induced coupling, compared with
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the exchange coupling, to electrostatic fluctuations in the central electrode.
Here, we have only compared the two coupling mechanisms for well-separated
quantum dots, which is not necessarily the optimal operational regime for
the exchange coupling, which is most effective for quantum dots with a large
overlap as discussed in the previous section. In Paper J we also studied
the sensitivity of the two coupling mechanisms to fluctuations in the charge
densities of the outer electrodes, for which we found that the two coupling
mechanisms are, to a good degree, equally sensitive.

Figure 3.7 shows that the renormalized Zeeman splitting it highly sensi-
tive to gate fluctuations. This is not surprising, considering the exponential
dependence on the oscillator length. For controlled, coherent evolution, it is,
however, problematic with energetically fluctuating levels, and in the present
case, the problem could potentially be circumvented by only encoding a sin-
gle qubit (rather than two) in the spin pair as suggested in Ref. [122], and
experimentally implemented in Ref. [6]. Here, the qubit states |0〉 and |1〉
are represented by the spin singlet state (| ↑↓〉 + | ↓↑〉)/√2 and the unpolar-
ized spin triplet state (| ↑↓〉 − | ↓↑〉)/√2, which (in contrast to the polarized
spin triplets |↑↑〉 and |↓↓〉) do not couple to homogenous magnetic fields, or
changes of the renormalized Zeeman energy due to electrostatic fluctuations
in case of the spin-orbit coupling.

3.4 Spin-photon entanglement

In the previous sections we have been focusing on two-electron systems in
gate-defined quantum dots, and, in particular, various mechanisms for ma-
nipulating their spins and having them interact. While such two-electron
systems could be important as building blocks in a future solid-state quan-
tum computing architecture, another important task concerns the interaction
between different computational units over long distances, which would be
desirable for quantum communication purposes. In order to achieve this goal
it is generally believed that it would be necessary to interface spin qubit sys-
tems with quantum optical systems, such that quantum information can be
transferred, converted, or shared between the stationary qubits (the electron
spins) and flying qubits, typically optical photons. In Paper M we conse-
quently proposed and analyzed a novel semi-conductor device that would
allow for electrically controlled generation of single photons that are entan-
gled with the spins of a two-electron system in a double quantum dot. By
interfering outgoing photons from two distant devices on a beam-splitter, it
would be possible to generate entanglement between the spin states in the
two devices. In this section we describe and analyze our proposal.



3.4. SPIN-PHOTON ENTANGLEMENT 47

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1e-08

1e-06

1e-04

1e-02

1e-00

••
••

••
••

••
••

••
••

••
••

••
•

βc

|τ
|
[µ

eV
]

0.1 0.2 0.3 0.4 0.5 0.6
0

25

50

75

100

125

150

••••••••••••••••••••

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗∗∗∗∗∗∗∗∗

βc

Figure 3.7: Sensitivity to gate fluctuations. The left figure shows numerical
calculations of the spin-orbit induced coupling τ (open circles) and the ex-
change coupling J (filled circles) as functions of the charge density on the
central electrode parameterized by βc. The right figure shows |(1/τ)∂τ/∂βc|
(open circles), |(1/J)∂J/∂βc| (filled circles), and |(1/τ)∂Ez/∂βc| (stars),
where Ez = g∗µBBe−(l0/lso)2 is the renormalized Zeeman splitting. Parame-
ters are ~ωg = 1 meV (xg = 53 nm), βl = 1, h = 0.5xg, b = 10xg, and B = 40
mT (left figure), 80 mT (right figure). Figures from Paper J.
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The system that we have in mind consists of a p-i-n diode structure
with two tunnel-coupled quantum dots in the intrinsic region. A possible
realization could be a nanowire similar to those fabricated and experimentally
studied in Ref. [20] which reports on single, optically active quantum dots
grown inside nanowires between p and n doped regions. In our proposal, the
single quantum dot would be replaced by a double quantum dot as illustrated
in Fig. 3.8, where the envisioned structure is shown schematically together
with a band edge diagram. As discussed in Chapter 2 such a structure can be
fabricated by varying the semiconductor material used in the growth process
such that n and p doped regions can be introduced and tunneling barriers can
be defined in order to create confinement in the intrinsic region. As illustrated
in the figure, these types of structures do not only confine electrons, but also
holes, and the basic idea of our approach is to control the injection of single
electrons and holes into the double quantum dot by adjusting the bias across
the intrinsic region and the voltages applied to a local gate electrode close
to one of the quantum dots. This would allow us to create a metastable
electron-hole complex that recombines under the emission of a photon that
is frequency-entangled with the spin states of the final-state electrons.

In order to devise a suitable injection scheme we consider the charge
stability diagram of the device, which we calculate numerically following the
procedure outlined in the previous chapter. The n and p doped regions are
modeled as Fermi seas of non-interacting electrons and holes kept at chemical
potentials µn = µ0

n + eV/2 and µp = µ0
p − eV/2, respectively, where µ0

n and
µ0

p are given by the doping levels of the n and p regions, and V is the voltage
difference between the two Fermi seas. The two charge reservoirs are assumed
to be weakly tunnel-coupled to the double quantum dot, which we model with
the many-particle Hamiltonian

ĤDQD = Ĥ l
ee + Ĥr

ee + Ĥr
hh + Ĥr

eh + Ĥτ + ĤF , (3.12)

describing Coulomb interactions between different charges, tunnel coupling
of the two quantum dots, and the shift of the levels in the right quantum
dot due to the local gate electrode F indicated in Fig. 3.8. For the Coulomb
repulsion between similar particles on the same quantum dot we use a simple
model reading Ĥs

qq = Uqqn̂
s
q(n̂

s
q − 1)/2, where n̂s

q is the number operator of
particles on the left (s = l) or right (s = r) quantum dot with charge q = e, h.
In order for the scheme that we describe in the following to work ideally, we
assume that the hole states of the left quantum dot remain unoccupied, which
could occur due to substantial band-gap differences (0.1 eV or more) between
the two quantum dots, arising, e.g., from strain and dot size differences. For
the Coulomb attraction between electrons and hole in the right quantum dot
we use Ĥr

eh = −Uehn̂
r
en̂

r
h. Tunneling of electrons between the quantum dots
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Figure 3.8: Schematic nanowire diode structure, band edge diagram, and
charge stability diagram. (a) The diode structure consists of an optically
active double quantum dot sandwiched between n and p doped regions. (b)
Numerically calculated charge stability diagram. The scale-bar denotes the
total number of charges on the double-dot, while the labeling (n,m) corre-
sponds to a configuration with n electrons on the left quantum dot, and m
electrons on the right quantum dot, but no holes. The symbol X− denotes a
negatively charged exciton consisting of two electrons and one hole. Arrows
correspond to the charging sequence described in the text. Parameters are
Uee = 30 meV, Uhh = 50 meV, Ueh = 40 meV, τ = 1 meV, and identical tun-
nel couplings to the leads being much smaller than the temperature T = 4
K. The values of µ0

n and µ0
p were used to fix the occupations of the quantum

dots at V, F = 0. Figure from Paper M.
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with tunnel coupling τ is contained in the term Ĥτ , while ĤF = −eF (n̂r
h−n̂r

e)
incorporates the shift of the electron and hole states in the right quantum
dot due to the local gate electrode F . No electrostatic cross-talk between the
quantum dots is included. In Fig. 3.8 we show the resulting charge stability
diagram, where the total number of charges on the double quantum dot is
given as function of the bias across the device V and the local gate F . With a
given setting of V and F the system tends towards the corresponding stable
charge configuration indicated on the diagram. The notation is explained in
the figure caption.

While the main features of the charge stability diagram are determined
by the charge degrees of freedom due to the strong Coulomb interaction, the
charges, of course, also carry spin with them. Conduction band electrons in
conventional semiconductors are often well-described as free electrons with an
effective mass m∗ and spin σ = ±1/2. The valence band electrons (or holes),
on the other hand, have a more complicated band and pseudo-spin structure.
Typically, the hole band structure of bulk semiconductors consists of three
bands, namely, the split-off, the heavy-hole, and the light-hole bands (the
last two bands deriving their names from the corresponding effective masses)
[123]. The hole states can be characterized by the total angular momentum,
containing contributions from the orbital and the spin degrees of freedom.
In particular, the light and heavy holes have total angular momentum 3/2
with corresponding projections ±1/2 for the light holes and ±3/2 for the
heavy holes [123]. In confined geometries, injected holes are predominately
of heavy-hole character [123], and we consequently only consider heavy-holes
with (pseudo-)spin Σ = ±3/2. In the following, heavy holes are created in
the right quantum dot with the operator d̂†r,Σ, while electrons in the left and

right quantum dots are created by ĉ†l,σ and ĉ†r,σ, respectively. The system is
considered to be in a so-called Faraday configuration where both the applied
magnetic field B and the direction of the emitted light lie along the growth
axis (the z-axis in Fig. 3.8) [123].

The charging sequence now consists of the following steps:

1. The system is initialized in the charge configuration (0, 2) in the lower-
left corner of the charge stability diagram. Due to the tight confine-
ment, the two electrons will pair up in a spin singlet configuration,
which we write as |0, 2S〉 = ĉ†r,↑ĉ

†
r,↓|0〉.

2. By increasing the bias, an extra electron is injected into the left quan-
tum dot. We assume for now that the injected electron has spin σ =↑,
such that the state of the system is |1↑, 2S〉 = ĉ†l,↑|0, 2S〉.

3. By control of the local gate F we move to the charge stability region



3.4. SPIN-PHOTON ENTANGLEMENT 51

(1, X−), and assume for now that the injected hole has spin Σ =⇓.
This brings us to the meta-stable state |1↑, X−

S,⇓〉 = d̂†r,⇓|1↑, 2S〉.
With the system in the meta-stable state |1↑, X−

S,⇓〉, electron-hole recombina-
tion is expected to take place under emission of a single left-hand circularly
polarized photon with a frequency on the order of the band gap (typically
on the order of 1 eV) [123]. Since the final state |1↑, 1↓〉 = dr⇓cr,↑|1↑, X−

S,⇓〉
is different from the (meta-)stable charge configuration (1, X−) for the given
setting of V and F , refilling by an electron and a hole is expected, leading to
emission of more than one photon. Therefore, we rapidly (compared to the
decay rate) move to the regime, where (1, 1) is the stable charge configura-
tion, such that the fourth step of the sequence is

4. We rapidly change the bias V in order for electron-hole recombination
to take place in the charge stability region (1,1), leaving us with the
final state |1 ↑, 1 ↓〉 = dr⇓cr,↑|1 ↑, X−

S,⇓〉 upon photon emission.

At the end of the sequence, the system can be reinitialized by returning to
the (0, 2) charge stability region, and the sequence can be repeated. In Fig.
3.8 the full cycle is indicated with arrows on the charge stability diagram.
In particular, the rapid move from (1, X−) to (1, 1) is indicated with a thick
arrow. We note that the spin of the heavy-hole determines the polarization
of the emitted photon [123], allowing us to polarization filter photons that
may have been emitted with the injected hole in the wrong spin state (in
step 3). The spin of the injected electron must be dealt with separately and
we return to this question below. A diagram showing the possible final states
depending on the initial electron and hole spins can be found in Paper M.

It is important to notice that the envisioned final state of the two electrons
is a superposition of the unpolarized singlet and triplet energy eigenstates,
i.e.,

|1 ↑, 1 ↓〉 =
1√
2

(|(1, 1)S〉+ |(1, 1)T0〉) , (3.13)

where |(1, 1)S〉 = 1√
2

(
ĉ†l↑ĉ

†
r↓ − c†l↓c

†
r↑

)
|0〉 and |(1, 1)T0〉 = 1√

2

(
ĉ†l↑ĉ

†
r↓ + c†l↓c

†
r↑

)
|0〉,

which with finite tunnel-coupling are split by the exchange energy J as dis-
cussed at the beginning of this chapter. These states have been, as already
mentioned in the previous section, shown to provide a single robust qubit [6].
The emitted photon will thus be frequency-entangled with the spin states of
the remaining electrons, such that the combined state of the electron spins
and the photon field reads

|Φ〉 =
1√
2

[
|(1, 1)S〉 ⊗ ξ̂†(ωS)|0〉+ |(1, 1)T0〉 ⊗ ξ̂†(ωT0)|0〉

]
, (3.14)
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where we have assumed equal branching ratios for the two decay paths, the
difference between the photon frequencies is |ωT0 − ωS| = |J |, and ξ̂†(ω) cre-
ates a photon with frequency ω. The exact shape of the photon wavepackage
can be found within standard Wigner-Weißkopf theory for spontaneous pho-
ton emission [124]. Here, the probability amplitude for being in the excited
state, denoted ce(t), decays exponentially, i.e.,

ċe(t) = −
(γS

2
+

γT0

2

)
ce(t) = −γ

2
ce(t), (3.15)

where γS and γT0 are the spontaneous decay rates for decaying into the singlet
and (unpolarized) triplet states, respectively, and where we have introduced
their sum γ = γS + γT0 . The assumption of equal branching ratios corre-
sponds to taking γS = γT0 . Above we have assumed that the final state
charge configuration (1, 1) is reached via electron-hole recombination. Non-
radiative decay can, however, also occur, if the electron-hole pair, rather than
recombining, tunnels back into the electron and hole reservoirs. Correspond-
ing to this process, we introduce a rate Γo, which should also enter the total
rate γ, i.e., γ → γ + Γo.

The (total) decay rate γ gives rise to a Lorentzian broadening of the pho-
ton frequency, such that the photon creation operator in a one-dimensional
model takes the form ξ̂†(ω) =

∑
k ξ(ω, k)â†k, where â†k creates photons of

mode k, and the wavepacket amplitude reads [124]

ξ(ω, k) =
1√
2π

√
γe−ikz0

(ωk − ω) + iγ/2
. (3.16)

In order for the entanglement to be detectable it is necessary that photons
corresponding to different spin states are distinguishable, corresponding to
their overlap |J |2 ≡ |∑k ξ(ωS, k)ξ∗(ωT0 , k)|2 = γ2

γ2+(ωT0
−ωS)2

being smaller

than unity. With the exchange coupling J = ωT0−ωS reaching values on the
order of meVs and the decay rate being in the GHz regime (corresponding
to µeVs), we have J À γ, and thus J ' 0.

The spin-photon entanglement can be used for probabilistic spin-spin en-
tanglement between distant double quantum dots using approaches similar
to those suggested for atomic systems [125]. We consequently consider the
beam splitter setup depicted in Fig. 3.9. Here, two photons emitted from
two distant nanowire structures are interfered on a 50/50 beamsplitter and
subsequently detected at the shown detectors. The probability for detecting
the two photons at different detectors reads P (1L, 1R) = (1−|J |2)/1, where
J is the overlap of the wavepacket amplitudes of the two photons [126]. For
identical photons |J | = 1, which leads to so-called Hong-Ou-Mandel bunch-
ing: The photons are with certainty detected in the same detector. This is,
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of course, very different from fermions that instead would anti-bunch and go
to different detectors. On the other hand, if the photons are distinguishable,
J = 0, they do not interfere, and with probability 1/2 they are detected
at different detectors, consistent with the expected result for uncorrelated
particles. Using these principles, we can now consider two spin-photon pairs
prepared in a entangled state of the form given in Eq. (3.14). The two pho-
tons are again interfered on the beam splitter, and if the outgoing photons are
subsequently detected at different detectors, the detected photons must have
different frequencies, and consequently correspond to different spin states in
the two nanowire structures. From the input-output relations of the beam
splitter it follows that the entangled state of the spins in the spatially sepa-
rated nanowires reads

|ΨL,R〉 =
1√
2

[|(1, 1)S〉L|(1, 1)T0〉R − |(1, 1)T0〉L|(1, 1)S〉R] , (3.17)

conditioned on photon detection in different detectors. Here, the subscripts
correspond to the left (L) and right (R) device depicted in Fig. 3.9. The prob-
ability of detecting the photons at different detectors reads η2 × 1/2 × 1/2,
where η is the combined single photon emission and detection probability,
and the two factors of 1/2 correspond to the probability of the two photons
being in different states (one corresponding to the spin singlet and the other
to the spin triplet), and the probability, in that case, to detect the photons
at different detectors, respectively. Entanglement is thus not generated on
demand, but only probabilistically. However, if photon emission and de-
tection do not lead to entanglement generation, the charging sequence and
accompanying photon emission can be repeated until entanglement has been
generated.

In the above scenario, ideal conditions were considered, under which pho-
ton detection at different detectors leads to entanglement generation of the
spin states. In reality, however, photon detection at different detectors could
also occur for other reasons, for example, a time delay between photon emis-
sions from the two devices would lead to different arrival times at the beam
splitter, preventing the photons from interfering. Such an error process could
lead to detection at different detectors without entanglement generation, and
would thus reduce the fidelity of the entanglement procedure. Other error
processes include wrong electron spin preparation in step 2 of the charging
sequence and different energy levels in the two nanowire devices, leading
to different photon frequencies. The effects of such error processes can be
quantified by calculating the fidelity defined as F ≡ 〈ΨL,R|ρ̂s|ΨL,R〉, where
|ΨL,R〉 is the desired spin state defined in Eq. (3.14) and ρ̂s is the reduced
density matrix of the spin states, taking into account these error processes.
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Figure 3.9: Beam splitter setup and entanglement fidelity. (a) Photons from
a left and a right device are interfered on a 50/50 beam splitter and subse-
quently detected at the two detectors. Detections at different detectors leads,
in the ideal case, to entanglement between the spin states of the two distant
devices. (b) Entanglement fidelity F as function of the electron reservoir
temperature T over Zeeman splitting and the ratio of the energy mismatch
δω and the decay rate γ. The average delay time between the arrival of the
two photons was τ̄ = 0.03γ−1. In the white region F > 0.9. Figure from
Paper M.

A calculation of the fidelity is given in Paper M, and the result is shown in
Fig. 3.9. We note that entanglement generated with less than unity fidelity is
still useful for quantum computing and communication, as protocols exist for
entanglement purification, if only the entanglement can be generated with
fidelity larger than 1/2 [127, 128]. From Fig. 3.9 we see that it is possible to
generate entanglement with a high fidelity, if the temperature of the electron
reservoir is small compared to the Zeeman energy and the difference δω in
frequency of, say, the photons emitted from the two devices corresponding
to singlet spin states, is small compared with the total decay rate γ.



Chapter 4

Counting Statistics

The flow of electrons through nano-scale devices is in general a stochas-
tic process, and the number of transferred charges in a given time interval
can at best be described by a probability distribution. The study of this
probability distribution and its moments or cumulants has been motivated
by the expectation that it potentially may contain more information about
the intrinsic transport processes in a nano-scale system than the average
current or conductance. While this has been a topic of intense theoretical
research (see for example Refs. [129, 130, 131] and references therein), only
recently experimental studies of real-time counting of electrons have appeared
[22, 132, 133, 134, 135]. In these experiments, a quantum point contact close
to one or two quantum dots was used as a sensitive real-time probe of the
number of charges on the dot(s), making it possible to detect single electrons
as they propagated through the dot(s).

In this chapter we introduce the basic concepts of full counting statistics
(FCS), the stochastic theory of charge transfer through mesoscopic systems.
We consider a number of simple examples that help us develop an intuitive
understanding of the theory and allow us to introduce some of the key con-
cepts in FCS. Roughly speaking, the theory of FCS can be divided into two
branches: One branch, which was pioneered by L. S. Levitov and G. B.
Lesovik [136, 137], is based on scattering theory, relevant for non-interacting
particles propagating through open quantum dots, quantum point contacts,
etc. The other branch, developed by D. A. Bagrets and Yu. V. Nazarov [138],
describes charge transport using rate equations, which may be relevant for
systems, where particle interactions are so strong, that a single-particle de-
scription is no longer valid. This is for example the case, when considering
electron transport through Coulomb blockade quantum dots, which will be
our main focus. In the rate equation approach, the number of transferred
charges is considered to be a classical stochastic variable. This, in turn,

55
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makes the theory applicable to systems well outside the field of mesoscopic
physics.1 Here, we first consider the FCS of memoryless or Markovian sys-
tems, before we proceed with a more general theory that also takes into
account non-Markovian effects.

4.1 Current fluctuations

Our first goal is to introduce the concept of cumulants and the cumulant
generating function. This is most easily done by considering a concrete ex-
ample. We thus consider particles transmitted through a barrier with rate Γ
starting at t = 0. The probability of having transmitted n particles at time
t is denoted Pn(t). The probabilities obey the equation of motion

d

dt
Pn(t) = Γ [Pn−1(t)− Pn(t)] (4.1)

with solution

Pn(t) = Γ

∫ t

0

dτe−Γ(t−τ)Pn−1(τ) + e−ΓtPn(t = 0). (4.2)

Since Pn<0(t) = 0 and Pn(t = 0) = δn,0, we readily find the expression

Pn(t) =
(Γt)n

n!
e−Γt, t > 0, n = 0, 1, 2, . . . , (4.3)

which is the well-known Poisson distribution. The probabilities peak [Ṗn(tn) =
0] at t = tn = n/Γ with peak heights Pn(tn) = e−nnn/n!. In Fig. 4.1 we show
the probability distribution Pn(t) at different times t.

Rather than the probabilities Pn(t), it is often more convenient to consider
the cumulant generating function S(χ, t) which we now define as follows2

eS(χ,t) ≡ Pχ(t) =
∑

n

Pn(t)einχ. (4.4)

From the cumulant generating function the m’th cumulant of the number
of transmitted charges 〈〈nm〉〉(t), m = 1, 2, . . . is obtained by differentiating
with respect to the counting field χ at zero, i.e.,

〈〈nm〉〉(t) =
∂mS(χ, t)

∂(iχ)m

∣∣∣∣
χ→0

. (4.5)

1As suggested in Ref. [139] one could think of people entering and leaving a night club,
and it is not difficult to develop similar ideas of airplanes taking off and landing in an
airport.

2We note that our convention differs in sign compared to the one often encountered in
the literature [131].
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Figure 4.1: Poisson process. The Poisson distribution Pn(t) = (Γt)ne−Γt/n!
is shown at different points of time. The lines serve as guides to the eye.

By inspection it is easily seen that

〈〈n1〉〉 = 〈n〉,
〈〈n2〉〉 = 〈(n− 〈n〉)2〉,
〈〈n3〉〉 = 〈(n− 〈n〉)3〉,
〈〈n4〉〉 = 〈(n− 〈n〉)4〉 − 3〈(n− 〈n〉)2〉2.

(4.6)

Here, single brackets denote averaging with respect to the probability dis-
tribution Pn(t), i.e., 〈f(n)〉(t) =

∑
n f(n)Pn(t). The second (variance) and

third (skewness) cumulants are identical to the second and third central mo-
ments, respectively, while the fourth (kurtosis) and higher order cumulants
in general are different from the corresponding central moments.

For the Poisson process described by Eq. (4.3) we find

eSp(χ,t) = e−Γt

∞∑
n=0

(Γteiχ)n

n!
= e−Γ(1−eiχ)t (4.7)

or

Sp(χ, t) = Γ(eiχ − 1)t. (4.8)

From Sp(χ, t) we see that all cumulants of a Poisson process are identical
and given as 〈〈nm〉〉p(t) = Γt, m = 1, 2, . . .. If we normalize cumulants with
respect to the first cumulant, we find for a Poisson process 〈〈nm〉〉p/〈〈n1〉〉p = 1.
This is often referred to as the Poissonian limit. In Fig. 4.1 it can be seen,
how the average number of transferred charges 〈〈n1〉〉(t) and the variance of
the distribution 〈〈n2〉〉(t) grow linearly with time.
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It is instructive to compare the results for a Poisson process with those of a
deterministic process, where particle transfers occur at fixed times τ1 < τ2 <
τ3 < . . .. For such a process we have Pn(t) = θ(t − τn) − θ(t − τn+1), where
θ(t) is the Heaviside step function. The probabilities fulfill Pn(t)Pn′(t) =
δn,n′Pn(t) leading to the property 〈nm〉d = 〈n〉md , where the subscript denotes
deterministic, and for the first three cumulants we thereby find 〈〈n〉〉d(t) =∑

n θ(t− τn) and 〈〈n2〉〉d(t) = 〈〈n3〉〉d(t) = 0. A deterministic process thus has
zero variance and skewness.

For the Poisson process we saw that the cumulants grow linearly in time.
For example, for the average number of charges 〈〈n〉〉(t) = Γt, and it is natural
to consider Γ as the mean current of charges. This leads us to the definition
of current cumulants

〈〈Im〉〉 =
d

dt
〈〈nm〉〉(t)

∣∣∣
t→∞

,m = 1, 2, 3, . . . , (4.9)

where the limit t → ∞ ensures that steady-state has been reached. The
first current cumulant 〈〈I1〉〉 is obviously the mean current, while the second
cumulant can be related to current-current correlations within the system: If
we consider transport through a system, where the current across a barrier,
connected to, say, a right lead, can be described by an operator Î = d

dt
N̂R,

where N̂R is the operator of charges in the right lead, the current-current
correlator in steady-state is defined as CII(t) = 〈{Î(t), Î(0)}〉/2 − 〈Î(0)〉2,
where the curly brackets denote an anti-commutator. The current noise
spectrum is then the Fourier transform of CII(t), i.e.,

SII(ω) =

∫ ∞

−∞
dtCII(t)e

iωt. (4.10)

As discussed in Papers B (not included) and G, the zero-frequency noise
SII(0) can be related to the second cumulant as

SII(0) = 〈〈I2〉〉 =
d

dt

[〈n2〉 − 〈n〉2]
∣∣∣
t→∞

. (4.11)

This result suggests an interpretation of the zero-frequency noise as an ef-
fective charge-diffusion coefficient [see e.g. Ref. [140] and Paper B (not in-
cluded)]: The zero-frequency noise determines the speed at which the vari-
ance of the distribution grows.

Above, we did not include the electric charge q of the transferred (quasi-)
particles in the definition of the current operator. However, if the charge
were included, a measurement of the ratio of the first two cumulants, the so-
called Fano factor F , would reveal the effective charge of (quasi-) particles
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transmitted with a Poissonian statistics, i.e., Fp = q [141]. This principle
has been used in experiments on Cooper pair transport, where a doubling
of the Fano factor was observed, i.e., Fp = 2 [142], and in experiments in
the fractional quantum Hall regime, where Fano factors of 1/3 and 1/5 were
measured [143, 144, 145]. Throughout this chapter we will use the convention
q = 1 and ~ = 1.

In general, the second cumulant of the current can be related to the
frequency dependence of the current-current correlator via the MacDonald
formula [146]

SII(ω) = ω

∫ ∞

0

dt sin(ωt)
d

dt

[〈n2〉 − 〈n〉2] , (4.12)

Here, it is important that the product ω sin(ωt) is considered as a distribution
given by the expression

ω sin(ωt) → [ω sin(ωt) + η cos(ωt)] e−ηt, η → 0, (4.13)

ensuring that the zero-frequency limit [given by Eq. (4.11)] is obtained for
ω → 0, where MacDonalds formula seemingly would yield zero otherwise.
This is discussed in further detail in Paper G. In general, the zero-frequency
noise is conserved throughout a system [see e.g. Paper B (not included)],
implying that the zero-frequency noise measured in one of the two leads in
a standard transport setup, in principle, should be the same as the zero-
frequency noise at any barrier throughout the system. For measurements of
the finite-frequency noise it is, on the other hand, important also to include
displacement currents and corresponding noise contributions. Such contribu-
tions may be included via the Ramo-Shockley theorem as described in Refs.
[129, 147] and Paper G.

Having introduced the concept of current cumulants, we next consider
a simple example of how they can be calculated: We consider a transport
setup where single particles are injected into and leaving a system with rates
ΓL and ΓR, respectively, such that the system at each particle transfer event
switches between the states 0 and 1. This is a relevant description when
considering electron transport through a single, weakly coupled Coulomb
blockade quantum dot operated close to a degeneracy point as described
in Chapter 2. We describe the system by the probability vector pn(t) =
[pn(0, t), pn(1, t)]T containing the probabilities pn(i, t), that the system at
time t is in the state i = 0, 1, while n charges have been transported through
the system. The time evolution of pn(t) is given by a Markovian equation of
motion reading

d

dt
pn(t) =

( −ΓL 0
ΓL −ΓR

)
pn(t) +

(
0 ΓR

0 0

)
pn−1(t). (4.14)
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The counting field χ is introduced via the Fourier transformation pχ =∑
n pneinχ, under which Eq. (4.14) translates to

d

dt
pχ(t) = W(χ)pχ(t). (4.15)

with

W(χ) =

( −ΓL eiχΓR

ΓL −ΓR

)
. (4.16)

Although, it is possible to study the charge transport statistics of this model
in its Markovian formulation, we choose for illustrative purposes to “compli-
cate” matters by tracing out the two states of the quantum dot, and instead
study the resulting non-Markovian dynamics of the probability distribution
Pn(t) ≡ pn(0, t)+pn(1, t), whose equation of motion (in Fourier space) reads3

d

dt
Pχ(t) = ΓR(eiχ − 1)pχ(1, t). (4.17)

We note that d
dt

pχ(1, t) = ΓLpχ(0, t) − ΓRpχ(1, t) = ΓL[Pχ(t) − pχ(1, t)] −
ΓRpχ(1, t) with solution

pχ(1, t) = ΓL

∫ t

0

dτe−(ΓL+ΓR)(t−τ)Pχ(τ) + e−(ΓL+ΓR)tpχ(1, t = 0), (4.18)

leading us to the non-Markovian equation of motion for Pχ(t),

d

dt
Pχ(t) =ΓLΓR(eiχ − 1)

∫ t

0

dτe−(ΓL+ΓR)(t−τ)Pχ(τ)

+ ΓR(eiχ − 1)e−(ΓL+ΓR)tpχ(1, t = 0).

(4.19)

In Laplace space, defined by Pχ(z) =
∫∞

0
dtPχ(t)e−zt, Eq. (4.19) becomes an

algebraic equation which we can solve for Pχ(z),

zPχ(z)− Pχ(t = 0) = Λ0(χ, z)

[
Pχ(z) +

1

ΓL

pχ(1, t = 0)

]
, (4.20)

having introduced

Λ0(χ, z) =
ΓLΓR(eiχ − 1)

z + ΓL + ΓR

. (4.21)

We assume that we start counting charges at t = 0 and that the system at
that time has reached steady-state, such that Pχ(t = 0) = 1 and pχ(1, t =
0) = ΓL/(ΓL + ΓR). We thereby find

Pχ(z) =
1

z − Λ0(χ, z)

[
1 +

Λ0(χ, z)

ΓL + ΓR

]
. (4.22)

3For comparison Eq. (4.1) reads d
dtPχ(t) = Γ(eiχ − 1)Pχ(t) in Fourier space.
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Figure 4.2: Complex contour for
integration. The line segment γr

extends from a−ir to a+ir, a, r >
0, while Cr is a half-circle connect-
ing the same points as illustrated.
The closed contour Cr ∪ γr is used
for r →∞.

We return to the time domain by an inverse Laplace transformation given
by the so-called Bromwich integral [148]

Pχ(t) =
1

2πi

∫ a+i∞

a−i∞
dz

ezt

z − Λ0(χ, z)

[
1 +

Λ0(χ, z)

ΓL + ΓR

]
, (4.23)

where a is a positive number sufficiently large for Pχ(t)e−at to be integrable.
The integral can be carried out by closing the contour and using residue
theory. The poles of the integrand are given by the solution to the equation

z − Λ0(χ, z) = 0 (4.24)

or
(ΓL + z)(ΓR + z)− ΓLΓReiχ = 0, (4.25)

which has the solutions

z±(χ) = −ΓL + ΓR

2
±

√(
ΓL + ΓR

2

)2

+ ΓLΓR(eiχ − 1). (4.26)

With straightforward algebra we then find

Pχ(t) =
1

2πi

∮
dz

z + ΓL + ΓR + Λ0(0, χ)

[z − z+(χ)][z − z−(χ)]
ezt, (4.27)

where the closed contour for t > 0 is shown in Fig. 4.2 together with the
two poles. In the limit r → ∞, the contribution from the integral along Cr

vanishes as the integrand goes to zero.
We first consider the zero-frequency current cumulants given by the long-

t behavior of S(χ, t). Evaluating the complex contour integral using residue
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theory, we see that the long-t behavior of Pχ(t) is governed by the pole with
the smallest real part (since the contribution from each pole is damped as
eαt, where α is the real part of the corresponding pole), and consequently

Pχ(t) = eS(χ,t) → C(χ)ez+(χ)t (4.28)

for t →∞, where C(χ) is a time-independent function of the counting field.
We have thus found the important result that the cumulant generating func-
tion in the long-t limit approaches z+(χ)t asymptotically, i.e.,

S(χ, t) → z+(χ)t. (4.29)

Although, we have only obtained this result for the given example it holds at
a more general level as we will now discuss. First, it is important to notice
that the two poles z+(χ) and z−(χ) were found by solving Eq. (4.25), which
is seen also to be the characteristic equation for the matrix W(χ) defined in
Eq. (4.16). The two poles are consequently eigenvalues corresponding to this
matrix, and, in particular, z+(χ), which is the eigenvalue that develops adia-
batically with χ from the zero-eigenvalue of W(0), i.e., z+(0) = 0, determines
the cumulant generating function in the long-t limit. In Ref. [138] and Paper
D this statement was shown to hold in general for Markovian (generalized)
Master equations of the form given in Eq. (4.15) with any number of states.

From a formal point of view this is an important result, however, it does
not tell us how to determine the χ-dependence of this eigenvalue when the
matrixW(χ) is of large dimensions. This may be the case, for example, when
considering the quantum electromechanical systems introduced in Section
2.2. For these systems, the quantized mechanical vibrations are included in
the (generalized) Master equations which are consequently of very large (in
principle, infinite) dimensions, corresponding to the dimensionality of the
oscillator Hilbert space. The technical question of how to determine the
χ-dependence of the zero-eigenvalue is the subject of the following section.

The example considered above also provides us with an important result
for systems with non-Markovian dynamics whose equations of motion in
Fourier and Laplace space read Pχ(z) = [z −W(χ, z)]−1Pχ(t = 0). In Ref.
[149] it was shown that Eq. (4.24) holds for this kind of non-Markovian
equations, where Λ0(χ, z) is then the eigenvalue of W(χ, z) that develops
adiabatically from the zero-eigenvalue with χ, i.e., Λ0(0, z) = 0, and the
appropriate solution of Eq. (4.24), denoted z∗(χ) is the one that goes to zero
with χ going to zero, i.e., z∗(0) = 0. Again, this is mostly a formal result,
and the question of how to find the current cumulants in the non-Markovian
case will be the subject of later sections in this chapter.

After these remarks, we return to the calculation of the current cumu-
lants for the given example. Combining Eqs. (4.26) and (4.29) we find the
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well-known results [129, 132, 150] for the current, noise, and higher order
cumulants

〈〈I1〉〉 =
ΓLΓR

ΓL + ΓR

,

〈〈I2〉〉
〈〈I1〉〉 =

Γ2
L + Γ2

R

(ΓL + ΓR)2
=

1

2
(1 + a2),

〈〈I3〉〉
〈〈I1〉〉 =

1

4
(1 + 3a4),

〈〈I4〉〉
〈〈I1〉〉 =

1

8
(1 + a2 − 9a4 + 15a6),

(4.30)

where we as in Ref. [132] have introduced the asymmetry a = (ΓL−ΓR)/(ΓL+
ΓR). Although these results are well-known, the derivation presented here,
based on a non-Markovian equation obtained by tracing out the two charge
states, is non-standard and possibly new. We note that the results for the
zero-frequency cumulants are not dependent on the choice of initial conditions
but only on the pole (or eigenvalue) z+(χ).

The finite-frequency cumulants, on the other hand, depend on the choice
of initial condition and the full set of poles. In the following, we consider the
frequency dependence of the second cumulant found from the full solution
for Pχ(t), again assuming that the system at t = 0 has reached steady-state.
Evaluating the expression in Eq. (4.27) using residue theory, we then find for
t ≥ 0

Pχ(t) =
[ΓL + ΓR + Λ0(χ, 0)]

[
ez+(χ)t − ez−(χ)t

]
+ z+(χ)ez+(χ)t − z−(χ)ez−(χ)t

z+(χ)− z−(χ)
,

(4.31)
from which we can find the t-dependence of the second cumulant 〈〈n2〉〉(t) =
〈n2〉(t) − 〈n〉2(t) by differentiating with respect to the counting field χ at
zero [in this context, it may be more appropriate to refer to the second
cumulant as the second (central) moment, since it is found from Pχ(t), which
generates moments and not cumulants as S(t, χ)]. The expression for 〈〈n2〉〉(t)
is rather lengthy and is not shown here. However, having found 〈〈n2〉〉(t) we
may calculate the finite-frequency current-current correlation function using
MacDonald’s formula given by Eq. (4.12). Carrying out the integration is
rather cumbersome and we just quote the final result

S(ω)

〈〈I1〉〉 = 1− 2ΓLΓR

(ΓL + ΓR)2 + ω2
. (4.32)

This result is also known from the literature [129], but again the derivation
presented here is non-standard and illuminating for the general approach to
the calculation of finite-frequency current fluctuations.
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4.2 Markovian dynamics

In this section we consider the technical question of how to calculate the cur-
rent cumulants given an n-resolved Markovian (generalized) Master equation
of the form

d

dt
ρ̂n(t) =

∞∑

n′=−∞
W(n− n′)ρ̂n′(t), (4.33)

where n denotes the number of transferred charges at time t. Similarly to
the examples considered in the previous section, we introduce the counting
field χ via the Fourier transformation ρ̂χ(t) =

∑∞
n=−∞ ρ̂n(t)einχ yielding

d

dt
ρ̂χ(t) = W(χ)ρ̂χ(t). (4.34)

As discussed in the previous section the cumulant generating function S(χ, t)
in the long-t limit is given as S(χ, t) → tΛ0(χ), where Λ0(χ) now denotes
the eigenvalue of W(χ) that develops adiabatically from 0 with χ (z+(χ)
in the previous section). If W(χ) is of large dimensions (> 5) it may be
highly non-trivial to determine the χ-dependence of Λ0(χ) around χ = 0 and
non-standard approaches must be developed. In order to find the m’th order
cumulant we Taylor expand Λ0(χ) to m’th order in χ around χ = 0. This we
do using Brillouin-Wigner perturbation theory as shown in the following.

We first write
W(χ) = W +W(χ), (4.35)

having defined W ≡ W(0) and W(χ) ≡ W(χ) −W . Moreover, we will be
using the short hand notation W ′ ≡ ∂χW(χ)|χ→0 and similarly for higher
order derivatives. We also define the two projectors P = P2 = |0〉〉〈〈0̃| and
Q = Q2 = 1 − P , obeying the relations PW = WP = 0 and QW =
WQ = W . Here, we have introduced right and left eigenvectors of W , a
corresponding bra(c)ket notation, and an inner product,

ρ̂stat ↔ |0〉〉, 〈〈0̃| ↔ 1̂, 〈〈0̃|0〉〉 = Tr(1̂†ρ̂stat) = 1. (4.36)

Finally, the pseudoinverse, defined as R(Λ) ≡ Q[W−Λ]−1Q, will be of great
importance.

The Brillouin-Wigner perturbation theory allows us to express Λ0(χ) ex-
clusively in terms of the left and right nullvectors 〈〈0̃| and |0〉〉, the pseudoin-
verse R(Λ) and the perturbation W(χ). Following Ref. [117] we start by
deriving a formal expression for Λ0(χ) given by the eigenvalue problem

W(χ)|0(χ)〉〉 = [W +W(χ)]|0(χ)〉〉 = Λ0(χ)|0(χ)〉〉. (4.37)
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By choosing the normalization 〈〈0̃|0(χ)〉〉 = 1, it follows easily that

〈〈0̃|[Λ0(χ)−W ]|0(χ)〉〉 = Λ0(χ) = 〈〈0̃|W(χ)|0(χ)〉〉 (4.38)

and

|0(χ)〉〉 = |0〉〉+Q|0(χ)〉〉. (4.39)

Moreover, we get from Eq. (4.37)

Q[Λ0(χ)−W ]|0(χ)〉〉 = QW(χ)|0(χ)〉〉, (4.40)

and using that W and Q commute, we find

Q|0(χ)〉〉 = Q[Λ0(χ)−W ]−1QW(χ)|0(χ)〉〉
= −R[Λ0(χ)]W(χ)|0(χ)〉〉, (4.41)

having recognized the pseudoinverseR. Inserting this expression for Q|0(χ)〉〉
into Eq. (4.39), we get

|0(χ)〉〉 = |0〉〉 − R[Λ0(χ)]W(χ)|0(χ)〉〉, (4.42)

which by iteration leads to

|0(χ)〉〉 =
∞∑

n=0

[−R[Λ0(χ)]W(χ)
]n |0〉〉

=
[
1 +R[Λ0(χ)]W(χ)

]−1 |0〉〉
(4.43)

and finally, from Eq. (4.38), the formal expression for Λ0(χ)

Λ0(χ) = 〈〈0̃|W(χ)|0(χ)〉〉

= 〈〈0̃|W(χ)
∞∑

n=0

[−R[Λ0(χ)]W(χ)
]n |0〉〉

= 〈〈0̃|W(χ)
[
1 +R[Λ0(χ)]W(χ)

]−1 |0〉〉,

(4.44)

which forms the starting point of our perturbative calculation of the current
cumulants.

In order to calculate the first three current cumulants we expand Eq.
(4.44) to third order in χ using

W(χ) = W ′
χ +

1

2!
W ′′

χ2 +
1

3!
W ′′′

χ3 + . . . , (4.45)
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and similarly forR[Λ0(χ)] (using the short hand notationR′ ≡ ∂χR[Λ0(χ)]|χ→0,
etc.). Notice that W(0) = 0 (according to the definition). Ordering terms
according to the order of χ we find

Λ0(χ) =
[
〈〈0̃|W ′|0〉〉

]
χ +

1

2!

[
〈〈0̃|W ′′|0〉〉 − 2〈〈0̃|W ′RW ′|0〉〉

]
χ2

+
1

3!

[
〈〈0̃|W ′′′|0〉〉 − 3〈〈0̃|W ′′RW ′

+W ′RW ′′|0〉〉

−6〈〈0̃|W ′R′W ′|0〉〉+ 6〈〈0̃|W ′RW ′RW ′|0〉〉
]
χ3 + . . .

(4.46)

From this expansion we can identify the first three current cumulants:

〈〈I1〉〉m =〈〈0̃|W ′|0〉〉/i,
〈〈I2〉〉m =

[
〈〈0̃|W ′′|0〉〉 − 2〈〈0̃|W ′RW ′|0〉〉

]
/i2,

〈〈I3〉〉m =
[
〈〈0̃|W ′′′|0〉〉 − 3〈〈0̃|W ′′RW ′

+W ′RW ′′|0〉〉

−6〈〈0̃|W ′R(RW ′P −W ′R)W ′|0〉〉
]
/i3.

(4.47)

In the last line we have used R′ = R2∂χΛ0(χ)|χ=0 = R2〈〈0̃|W ′|0〉〉 and simpli-
fied the expression by reintroducing the projector P . Above, we have added
the subscript m, since the expressions are valid for systems with Markovian
dynamics. The procedure for calculating the cumulants is straightforward to
extend to higher orders, e.g., using Mathematica. For example, the fourth
order cumulant reads

〈〈I4〉〉m =
[
〈〈0̃|W ′′′′|0〉〉 − 6〈〈0̃|W ′′RW ′′|0〉〉 − 4〈〈0̃|W ′′′RW ′

+W ′RW ′′′|0〉〉
− 12〈〈0̃|W ′′R(RW ′P −W ′R)W ′|0〉〉
− 12〈〈0̃|W ′R(RW ′′P −W ′′R)W ′|0〉〉
− 12〈〈0̃|W ′R(RW ′P −W ′R)W ′′|0〉〉
− 24〈〈0̃|W ′R

(
R2W ′PW ′P −RW ′PW ′R

−W ′R2W ′P −RW ′RW ′P +W ′RW ′R
)
W ′|0〉〉

]
/i4.

(4.48)

The expressions for the higher order cumulants are increasingly lengthy and
we do not show them here.

In order to calculate the cumulants given the above expressions, one needs
to determine the (normalized) right eigenvector |0〉〉 ↔ ρ̂stat by solving the
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matrix problem W ρ̂stat = 0. Even for (very) large systems, and consequently
(very) large matrices W (say, of size 104 × 104), ρ̂stat can be found using
available numerical techniques [151, 152]. On the other hand, it is not nec-
essary to find the pseudoinverse R = QW−1Q explicitly. It is only necessary
to solve matrix equations of the form |x〉〉 = QW−1Q|b〉〉 ⇒ W|x〉〉 = Q|b〉〉,
where |b〉〉 is given by the problem at hand. The matrix equation has (in-
finitely many) solutions, since Q|b〉〉 lies in the space spanned by Q, where W
is non-singular. Even for (very) large matrices, a solution, |x′〉〉, can be found
using available iterative methods as described in Ref. [152] and Paper B (not
included). Having found a solution |x′〉〉, the particular and unique solution
|x〉〉 is obtained by application of Q, i.e., |x〉〉 = Q|x′〉〉. In this process, it was
not necessary to determine R explicitly.

In Paper D we calculated numerically the first three current cumulants
of the quantum shuttle introduced in section 2.2. For this model, we may
write the perturbation W(χ) as

W(χ) = (eiχ − 1)I+ + (e−iχ − 1)I−. (4.49)

Here I+/− is the current (super-)operator describing single electron transfer
events across a junction in the forward/backward direction. The net current
across the junction is given by their difference, i.e., I ≡ I+−I−, while their
sum is denoted J ≡ I+ + I−. Combining Eqs. (4.47) and (4.49) we find the
expressions

〈〈I1〉〉 =〈〈0̃|I|0〉〉,
〈〈I2〉〉 =〈〈0̃|J |0〉〉 − 2〈〈0̃|IRI|0〉〉,
〈〈I3〉〉 =〈〈0̃|I|0〉〉 − 3〈〈0̃|JRI + IRJ |0〉〉 − 6〈〈0̃|IR(RIP − IR)I|0〉〉,

(4.50)

which were also reported in Paper D. In Paper D these expressions were
derived using Rayleigh-Schrödinger perturbation theory, which, however, is
very cumbersome to extend beyond the first three current cumulants, unlike
the Brillouin-Wigner approach presented here.

In Paper G we extended the result for the second cumulant to finite-
frequency current-current correlations. Using the MacDonald formula we
found, for uni-directional current given by the current (super-)operator I+,
the expression

S(ω) = 〈〈0̃|I+|0〉〉 − 2Re
[〈〈0̃|I+R(−iω)I+|0〉〉

]
, (4.51)

where R(−iω) = Q[W + iω]−1Q.4

4Note that a different definition of the pseudoinverse was used in Paper G.
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The study of the FCS of the quantum shuttle was, as already mentioned in
Section 2.2, motivated by a giant enhancement of the Fano factor (F ' 100 À
1) found in Paper A (not included). Here, the large noise enhancement
together with plots of the Wigner phase space distribution of the mechanical
oscillator was taken as an indication that the system in certain parameter
regimes exhibits a mechanical bistability with slow fluctuations between two
oscillator amplitudes leading to random telegraph noise in the charge transfer
process. A similar switching phenomenon was found and referred to as the
“whistle effect” in Ref. [153], where the noise of a quantum dot system in the
cotunneling regime was considered. In a simple model of this behavior, the
system is considered as switching between two oscillator-amplitude states,
denoted 1 and 2 in the following, with rates Γ1←2 and Γ2←1, respectively, and
corresponding mean currents I1 and I2, respectively, associated with each of
the two states. If the switching rates, Γ1←2 and Γ2←1, are much slower than
the typical charge transfer rates, given by I1 and I2, the first three cumulants
read [154, 155]

〈〈I1〉〉 =
I1Γ1←2 + I2Γ2←1

Γ2←1 + Γ1←2

,

〈〈I2〉〉 = 2(I1 − I2)
2 Γ1←2Γ2←1

(Γ1←2 + Γ2←1)3
,

〈〈I3〉〉 = 6(I1 − I2)
3 Γ1←2Γ2←1(Γ2←1 − Γ1←2)

(Γ1←2 + Γ2←1)5
,

(4.52)

or for the third cumulant

〈〈I3〉〉 = 3〈〈I2〉〉2 (I1 + I2)/2− 〈〈I1〉〉
(I2 − 〈〈I1〉〉)(〈〈I1〉〉 − I1)

. (4.53)

Equation (4.53) provides a necessary condition for the occurrence of a bista-
bility. Thus, by calculating numerically the first three current cumulants as
function of a chosen control parameter, one can check if Eq. (4.53) is fulfilled
and, if so, obtain good reason to believe that the system is going through
a bistability as the control parameter is varied. From Eq. (4.52) it is also
evident that the second cumulant diverges as 1/Γ for comparable switching
rates Γ1←2 ' Γ2←1 ' Γ, which would explain the giant enhancement of the
noise found in the quantum shuttle.

For the quantum shuttle, the two states (or current channels), 1 and 2,
could be identified from the Wigner phase space distribution of the oscilla-
tor. For large dampings, the low-amplitude state, corresponding to an almost
static quantum dot, is dominating, and the corresponding current, denoted
I1, can be found from a simple two-state picture, which is confirmed by the
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Figure 4.3: First three current cumulants of the quantum shuttle as function
of the damping γ. Full lines show numerical results, while circles correspond
to Eq. (4.53). Parameters are ΓL = ΓR = 0.01ω0, λ = 1.5x0, d = eE/mω2

0 =
0.5x0, x0 =

√
~/mω0. Figure from Paper F.

corresponding results for the zero-frequency noise. For low dampings, the
large-amplitude state dominates, and from charge-resolved Wigner phase dis-
tributions it can be seen that single electrons are being transported from the
source to the drain electrode with clear correlations between the momentum
of the oscillator and the charge-state of the dot. In this so-called shuttling
regime, the current, denoted I2, is expected to be qf , where f = ω0/2π is the
frequency of the oscillations, and q is the charge of the transferred particles
(the oscillator frequency is discussed further in connection with the finite-
frequency noise). Since charges are transported in an orderly manner, the
zero-frequency noise is close to 0.

In Fig. 4.3 we show numerical results for the first three cumulants as
function of damping. Together with the third cumulant we show Eq. (4.53)
using the numerical results for the first two cumulants. The good agreement
between Eq. (4.53) and the numerical results for the third cumulant strongly
supports the claim that the system in the region with large noise enhancement
is bistable, switching slowly between the two current channels. While it may
be very difficult to monitor or measure the phase space distribution of a
nano-scale oscillator in an experiment, the first three cumulants may, on the
other hand, provide experimentally accessible quantities that could be used
to detect a bistability in the transport through a nano-scale device. At the
same time, it is not immediately clear, if the same knowledge concerning
the internal dynamics of the system can be obtained by just considering the
mean current or conductance, and this example thus provides a clear case,
where useful information can be extracted from the first few cumulants.

The bistability can also be detected in the finite-frequency noise. Here,
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the frequency-dependent Fano factor takes the Lorentzian form [49, 50]

F (ω) =
S(ω)

〈〈I1〉〉 =
2

〈〈I1〉〉
Γ1←2Γ2←1

Γ1←2 + Γ2←1

(I1 − I2)
2

(Γ1←2 + Γ2←1)2 + ω2
, (4.54)

which again can be compared to the numerical results. The switching rates
Γ1←2 and Γ2←1 are in this case needed, and they can be extracted from the
numerical results for the first two cumulants using the analytic expression
given in Eq. (4.52). In Papers F and G the switching rates as function of
damping and the agreement between Eq. (4.54) and the numerical results for
the finite-frequency noise in the bistable regime, respectively, can be found.
From the rates shown in Paper F, a clear crossover between the two current
channels can be identified.

In general, the finite-frequency noise can reveal information about the
internal energy scales of the system [129]. In Paper G we therefore calcu-
lated the finite-frequency current noise of the quantum shuttle over a range
of frequencies comparable with the oscillator frequency ω0 [in contrast, we
only considered the low-frequency regime ω ¿ ω0, when studying the bista-
bility, since the switching behavior, according to Eq. (4.54), is visible in the
low-frequency noise spectrum around frequencies comparable to the (slow)
switching rates]. In these calculations contributions due to displacement cur-
rents are included via the Ramo-Shockley theorem. The results are shown
in Fig. 4.4. Three resonances (or peaks) at finite frequencies are seen, and,
in particular, it is interesting to observe that the first peak appears slightly
above ω = ω0. In Ref. [156] the finite-frequency current noise of a single-
electron transistor capacitively coupled to a classical resonator was calculated
and peaks in the current noise at the frequency of the resonator were iden-
tified. Following these lines, we take the position of the peak slightly above
ω = ω0 as signature of a renormalization of the oscillator frequency, such
that oscillations occur with the frequency 1.03ω0, being the position of the
first peak. This would imply that the current in the shuttling regime should
read 1.03ω0/2π = 0.164ω0 and not ω0/2π = 0.159ω0. Numerically, the value
0.164ω0 is found for the current, strongly supporting the suggested frequency
renormalization.

The methods described above and the expressions given in Eqs. (4.50) and
(4.51) are applicable to a large class of systems, including recent studies of
transport through single molecules [157, 158] and nano-resonators coupled to
normal [159] or superconducting [160] single-electron transistors.5 In Paper

5During a visit to the group of Lecture Andrew D. Armour at University of Nottingham,
a similar bistability occurring in a superconducting single-electron transistor coupled to a
nano-resonator was identified in numerical results for the third cumulant and the finite-
frequency noise obtained using the methods described here.
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F we used them to study transport through the vibrating quantum dot array
described in Section 2.2. In Paper B (not included) a giant enhancement
of the noise was found in certain parameter regimes, and by comparing Eqs.
(4.53) and (4.54) with numerical results for the third cumulant and the finite-
frequency noise, we could again ascribe the enhancement to a slow switching
process. The details of this switching process are described in Paper F.

As already mentioned, the finite-frequency noise may be used to probe
the internal energy scales of a system. In the noise spectrum of the quantum
shuttle we found clear signatures of the oscillator frequency, and it is relevant
to search for similar signatures of coherent couplings within a system, e.g.,
between the electronic states of coupled quantum dots. In Fig. 4.5 we show
numerical results for the noise spectrum of the vibrating quantum dot array
in a frequency range around the oscillator frequency ω0. The overall structure
of the noise spectrum can be explained using a two-state picture with highly
asymmetric rates and the corresponding expression for the finite-frequency
noise given in Eq. (4.32) (leading to the dashed curve). However, a series of
tiny signatures are also observed. These signatures occur at the Bohr fre-
quencies, i.e., the level splittings, of the isolated array and oscillator system,
which are marked by arrows in the figure. Again, it is not immediately clear,
if calculations or measurements of just the mean current or conduction could
reveal these internal energy scales in a similar manner. We note that, re-
cently, similar noise calculations were used to identify vibrational coherences
in a nano-electromechanical system [161].

4.3 Non-Markovian dynamics

We now turn to the question of how to determine the current cumulants
given a non-Markovian (generalized) Master equation of the form

d

dt
ρ̂n(t) =

∞∑

n′=−∞

∫ t

0

dt′W(n− n′, t− t′)ρ̂n′(t
′), (4.55)

which in Laplace (t → z) and Fourier space (n → χ) translates to

zρ̂χ(z)− ρ̂χ(t = 0) = W(χ, z)ρ̂χ(z). (4.56)

As already discussed in Section 4.1, the cumulant generating function is in
the long-t limit given as S(χ, t) → z∗(χ)t, where z∗(χ) is the solution to the
equation

z∗ − Λ0(χ, z∗) = 0 (4.57)
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Figure 4.5: Finite-frequency noise spectrum of the vibrating quantum dot
array. Numerical results for the frequency-dependent Fano factor F (ω) =
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that goes to zero with χ going to zero, i.e., z∗(0) = 0. Here, Λ0(χ, z) is the
eigenvalue of W(χ, z) that develops adiabatically from the zero-eigenvalue
with χ, i.e., Λ0(0, z) = 0.

In order to determine z∗(χ) we again apply Brillouin-Wigner perturbation
theory. The formal expression given in Eq. (4.44) is still valid, provided that
R[Λ0(χ)] and W(χ) are replaced by R[Λ0(χ, z)] and W(χ, z) = W(χ, z) −
W(0, 0), respectively,

Λ0(χ, z) = 〈〈0̃|W(χ, z)
[
1 +R[Λ0(χ, z)]W(χ, z)

]−1 |0〉〉. (4.58)

We now expand this formal expression in χ and z, which combined with Eq.
(4.57) and an expansion of z∗(χ) in χ, i.e., z∗(χ) = 〈〈I1〉〉(iχ)+ 1

2!
〈〈I2〉〉(iχ)2 +

1
3!
〈〈I3〉〉(iχ)3 + . . ., allows us to solve for the current cumulants. The details

of this procedure are not given here, and we just quote the final results for
the first three current cumulants

〈〈I1〉〉 =〈〈I1〉〉m,

〈〈I2〉〉 =〈〈I2〉〉m − 2i〈〈I1〉〉m
(
〈〈0̃|Ẇ

′
|0〉〉 − 〈〈0̃|W ′RẆ|0〉〉

)
,

〈〈I3〉〉 =〈〈I3〉〉m − 3〈〈I2〉〉
2〈〈I1〉〉m

(〈〈I2〉〉m − 〈〈I2〉〉)

− 3〈〈I1〉〉m
(
〈〈0̃|Ẇ

′′
− 2Ẇ

′
RW ′ −W ′′RẆ

−2W ′R(RẆPW ′ −W ′RẆ − ẆRW ′
+ Ẇ

′
)|0〉〉

)
.

− 3i〈〈I1〉〉2m
(
〈〈0̃|Ẅ

′
−W ′RẄ − 2Ẇ

′
RẆ + 2W ′RẆRẆ|0〉〉

)
,

(4.59)

where we have introduced the shorthand notation Ẇ ≡ ∂zW(χ, z)|χ,z→0, etc,

used R′ = R2∂χΛ0(χ, z)|χ,z=0 = R2〈〈0̃|W ′|0〉〉 and Ṙ = R2∂zΛ0(χ, z)|χ,z=0 =
0, and reintroduced the projector P in order to simplify the expressions. In
the above expressions, the terms with subscript m correspond to the ones
given in Eq. (4.47) for Markovian dynamics [obtained from W(z = 0, χ)]. It
is interesting to note that the mean current is not sensitive to non-Markovian
effects, while higher order cumulants are. We have not attempted to derive
an expression for the fourth (or higher) order cumulant, although it is in
principle possible, however, cumbersome.

The expressions above are again generally applicable to a large class of
systems, in particular, of course, those with non-Markovian dynamics. Here,
we illustrate the developed formalism by considering a transport model of
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current research interest [162]. The model describes coherent charge trans-
port of electrons through two coupled single-level quantum dots given by the
Hamiltonian

Ĥ = ĤS + ĤT + Ĥleads, (4.60)

where ĤS =
∑

α=L,R εαc†αcα + Ω(c†LcR + c†RcL) is the Hamiltonian of the
levels of the left (L) and right (R) quantum dot with energies εL and εR,
respectively, coherently coupled with tunneling matrix element Ω (assumed
to be real). Here, we have not included any Coulomb interaction between
the dots, but this would be straightforward to introduce (see below), and in
particular, if double-occupancies of the system are excluded, the model can
be mapped onto an effective pseudo-spin description [147, 163]. The double
quantum dot is tunnel-coupled to left (L) and right (R) leads via the tunnel-
Hamiltonian ĤT =

∑
kα,α=L,R(Vkα ĉ†kα

cα + h.c.), with both leads described as

non-interacting fermions, i.e., Ĥα =
∑

kα
(εkα − µα)ĉ†kα

ĉkα , α = L,R, where

we above have defined Ĥleads =
∑

α=L,R Ĥα.
Following Refs. [48, 162, 164] charge transport through the system can be

described by a Markovian (generalized) master equation of the form d
dt

ρ̂χ(t) =
W(χ)ρ̂χ(t), where ρ̂ = (ρ00, ρ10, ρ01, ρ11, Re[ρ10,01], Im[ρ10,01])

T contains the
Fourier transform of the four diagonal elements ρij of the reduced density
matrix of the double quantum dot, with i, j = 0, 1 denoting the number of
charges on the left and right dot, respectively, and the real and imaginary
parts of the off-diagonal matrix element ρ10,01. The operator W(χ) in matrix
notation reads

W(χ) =




−ΓL 0 ΓReiχ 0 0 0
ΓL 0 0 ΓReiχ 0 2Ω
0 0 −2Γ 0 0 −2Ω
0 0 ΓL −ΓR 0 0
0 0 0 0 −Γ −ε
0 −Ω Ω 0 ε −Γ




(4.61)

with Γ ≡ (ΓL +ΓR)/2 and ε = εL− εR. The rates are given by the tunneling
density of states, i.e., Γα = 2π

∑
k |Vkα|2δ(ε − εkα), α = L, R, which are

assumed to be constants. The counting field χ has been introduced in the
off-diagonal elements that correspond to tunnel processes which change the
number of electrons collected in the right lead by one. The equation above
is only valid, if the applied bias µL−µR is much larger than any of the other
above-mentioned energy scales [48].

Rather than calculating the current cumulants of the model using the
Markovian description given by Eq. (4.61) (which was done in Ref. [162]),
we trace out the off-diagonal elements in order to find an effective equation
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of motion for the diagonal elements of the reduced density matrix. First, we
note that the last two rows of W(χ) constitute two coupled linear inhomo-
geneous differential equations reading

d

dt

(
Re[ρ10,01]
Im[ρ10,01]

)
=

(−Γ −ε
ε −Γ

)(
Re[ρ10,01]
Im[ρ10,01]

)
+

(
0 0
−Ω Ω

)(
ρ10

ρ01

)
. (4.62)

By an appropriate change of basis the two differential equations can be de-
coupled, and having solved the resulting equations, we may return to the
original basis, thereby constructing the real and imaginary parts of the off-
diagonal matrix element. Following this procedure we find for the imaginary
part

Im[ρ10,01](t) =
1

2Ω

∫ t

0

dt′ΓΩ(t− t′)[ρ01(t
′)− ρ10(t

′)], (4.63)

where we have defined

ΓΩ(t) = 2Ω2Re
[
ei(∆ε+iΓ)t

]
. (4.64)

For the initial condition we have assumed Im[ρ10,01](t = 0) = 0, which,
however, does not play a role for the zero-frequency cumulants. We will not
be needing the real part Re[ρ10,01](t) in the following. Laplace transforming
Eq. (4.63) we find

Im[ρ10,01](z) =
1

2Ω
ΓΩ(z)[ρ01(z)− ρ10(z)], (4.65)

where

ΓΩ(z) =
2Ω2

Γ + z
L[ε, 2(Γ + z)], (4.66)

with L[x, y] ≡ [1 + (2x/y)2]−1. We note that ΓΩ(z = 0) corresponds to the
Fermi’s golden rule rate for incoherent tunneling found in Ref. [162].

Combining Eqs. (4.61) and (4.65) we find a Laplace transformed equation
of motion for the vector ρ̃ = (ρ00, ρ10, ρ01, ρ11)

T , containing the four diagonal
elements, of the form zρ̃χ(z)− ρ̃in

χ = W(χ, z)ρ̃χ(z) with

W(χ, z) =




−ΓL 0 ΓReiχ 0
ΓL −ΓΩ(z) ΓΩ(z) ΓReiχ

0 ΓΩ(z) −[2Γ + ΓΩ(z)] 0
0 0 ΓL −ΓR


 . (4.67)

We see that the dynamics is now effectively non-Markovian, having traced
out parts of the system. With the matrix W(χ, z) at hand we may calcu-
late the first three current cumulants using Eq. (4.59), and, in particular,
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we can compare results with and without the non-Markovian contributions
[corresponding to the full χ- and z-dependence of W(χ, z) and W(χ, z = 0),
respectively].

In Fig. 4.6 we show calculations of the first three current cumulants as
a function of the energy dealignment ε. We note that we obtain the same
results when calculating the current cumulants using the expressions given
in Eq. (4.47) applied to the model in its Markovian version as it is given
in Eq. (4.61). With dashed lines we show the current cumulants obtained
without the non-Markovian corrections. These results correspond to the cur-
rent cumulants one obtains by taking the limit z → 0 in Eq. (4.67) and
applying the expressions given in Eq. (4.47). From the figure, the impor-
tance of the non-Markovian contributions to the second and third cumulants
is obvious. In Ref. [162] it was stated that the higher order cumulants are
sensitive to quantum coherence, which is also clear from the results presented
here, since the non-Markovian dynamics resulted from tracing out the off-
diagonal elements of the reduced density matrix. However, non-Markovian
dynamics does not necessarily have to occur due to parts of a system with a
clear quantum nature (like the off-diagonal elements in the example above)
being traced out. In Paper N we considered a purely classical model of
real-time electron counting with a finite-bandwidth detector coupled to the
charge states of a quantum dot. By tracing out the charge states of the
quantum dot, an effective two-state model with non-Markovian dynamics
was obtained, and the second cumulant for this two-state model was shown
to differ significantly compared to the corresponding result for a Markovian
two-state system given in Eq. (4.30). Therefore, we generalize the statement
concerning the effects of quantum coherence on the counting statistics from
Ref. [162], and conclude that the higher order current cumulants are sensitive
to non-Markovian effects, which may (or may not) be caused by quantum co-
herence within the system. This statement may be of relevance in connection
with the measured noise enhancement in transport through double quantum
dots reported in Ref. [165], and, in particular, the recent interpretation of
these results given in Ref. [166], where it was stated that the measured noise
is a direct indicator of quantum coherent coupling between the quantum dots.

It is worth noting that while the examples of non-Markovian systems
considered here were obtained in a somewhat artificial way by tracing out a
finite number of states of an otherwise Markovian system, it is not difficult to
find systems, where only a non-Markovian description is feasible. One exam-
ple is the dissipative spin-boson model studied in Refs. [147, 163], where the
current noise spectrum of the charge transport through a double quantum
dot coupled to a dissipative boson bath was evaluated. For such a system,
it is typically not feasible (nor necessarily interesting) to keep track of the
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Figure 4.6: First three current cumulants of the transport through the double
dot model. Here, without Coulomb interactions between the two quantum
dots, such that double occupancy of the double dot is allowed. Full lines
correspond to the full non-Markovian dynamics, while the dashed lines only
include the Markovian contributions. The cumulants are shown as functions
of the level dealignment ε = εL−εR, while other parameters are ΓL = ΓR = Γ
and Ω = 0.5Γ.

infinitely many states associated with the heat bath, which is consequently
traced out, leading to possible non-Markovian effects in the resulting dy-
namics. In Paper Q (not included) the zero-frequency noise of a very similar
model was calculated using the approach for systems with non-Markovian
systems described in this section.

We end this chapter by discussing a purely numerical approach to the
calculation of the current cumulants given a non-Markovian rate equation.
While it may be highly cumbersome to extend the analytic expressions in
Eq. (4.59) beyond the first three cumulants, the recursive approach described
below allows for relatively easy calculations of higher order cumulants. As
starting point we take the formal expressions

Λ0(x, z) = 〈〈0̃|W(x, z)|0(x, z)〉〉 (4.68)

and

|0(x, z)〉〉 = |0〉〉+R[Λ0(x, z)−W(x, z)]|0(x, z)〉〉, (4.69)

which both follow easily using an approach similar to that described in Sec-
tion 4.2. In order to simplify the notation we have used the substitution
iχ → x. The eigenvalue Λ0(x, z), the right eigenvector |0(x, z)〉〉, and the
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perturbation W(x, z), are expanded in x and z, such that

Λ0(x, z) =
∞∑

k=1,l=0

xk

k!

zl

l!
c(k,l),

|0(x, z)〉〉 =
∞∑

k=0,l=0

xk

k!

zl

l!
|0(k,l)〉〉,

W(x, z) =
∞∑

k=1,l=0

xk

k!

zl

l!
W(k,l)

.

(4.70)

Inserting these expansions into Eqs. (4.68) and (4.69) and collecting terms
to same order in x and z, we find the following recursive expressions with
K = 1, 2, 3 . . ., L = 0, 1, 2 . . .,

|0(K,L)〉〉 =
K∑

k=1

(
K

k

) L∑

l=0

(
L

l

)
R

[
c(k,l) −W(k,l)

]
|0(K−k,L−l)〉〉, (4.71)

and

c(K,L) =
K∑

k=1

(
K

k

) L∑

l=0

(
L

l

)
〈〈0̃|W(k,l)|0(K−k,L−l)〉〉, (4.72)

where
(

N
n

)
= N !/[n!(N−n)!]. We note that c(K,0), K = 1, 2, 3 . . ., is the K’th

current cumulant without the non-Markovian contributions.
Having determined the expansion coefficients c(K,L) in the expression for

Λ0(z, x) in Eq. (4.70), we proceed with the solution of Eq. (4.57) by insertion
of z∗(x) =

∑∞
n=1

xn

n!
c(n), where c(N), N = 1, 2, 3 . . ., is the N ’th current

cumulant that we are seeking, yielding

∞∑
n=1

xn

n!
c(n) =

∞∑

k=1,l=0

xk

k!

1

l!

[ ∞∑
n=1

xn

n!
c(n)

]l

c(k,l). (4.73)

Collecting terms to order N = 1, 2, 3, . . . in x, we find the current cumulants

〈〈IN〉〉 = c(N) = N !
N∑

k=1,l=0

1

k!

1

l!
P (N−k,l)c(k,l), (4.74)

with

P (K,L) ≡
{

K∑
n1=1,...,nL=1

c(n1)

n1!
· · · c

(nL)

nL!

}
∣∣
n1+...+nL=K

, (4.75)
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where we have indicated that only terms in the sums for which n1+. . .+nL =
K should be included. The P (K,L)’s can be calculated recursively by noting
that

P (K,L) =
K∑

n=1

c(n)

n!
P (K−n,L−1) (4.76)

with P (K,0) = δK,0, K = 1, 2, 3, . . .. Together with Eqs. (4.71) and (4.72),
Eqs. (4.74) and (4.76) form a recursive scheme for numerical calculations of
the current cumulants for a non-Markovian system. In order to apply the
method it is necessary to implement the pseudo-inverse R and the expansion
of the perturbation W(z, x), as expressed in Eq. (4.70), must be known. In a
numerical implementation it is worth exploiting the matrix product structure
of Eqs. (4.74) and (4.76).

In order to illustrate the method we again consider the double dot model
described above, however, now with strong Coulomb interaction between the
two quantum dots, such that double occupation of the double dot is excluded.
In that case, we only need to consider the three diagonal elements contained
in the vector P(χ, t) = [ρ00(χ, t), ρLL(χ, t), ρRR(χ, t)]T , whose equation of
motion in Laplace space reads P(χ, z) = [z −W(χ, z)]−1P(χ, t = 0), where
[compare with Eq. (4.67)]

W(χ, z) =



−ΓL 0 ΓReiχ

ΓL −ΓΩ(z) ΓΩ(z)
0 ΓΩ(z) −[ΓΩ(z) + ΓR]


 . (4.77)

The function ΓΩ(z) was defined in Eq. (4.66), however, here with Γ =
(ΓL + ΓR)/2 replaced by ΓR/2. The perturbation W(x, z) can easily be
expanded in z and x, enabling us to apply the recursive method described
above. Numerical results for the first 16 cumulants are shown in Fig. 4.7.
We have checked that the first three cumulants are identical to the results
obtained using the expressions in Eq. (4.59), but we underline again that an
extension of these expressions to higher orders would most likely be highly
cumbersome, and the recursive approach presented here consequently pro-
vides a much more convenient method to the evaluation of higher order
cumulants. The results presented in Fig. 4.7 serve only as an illustration
of the method, and we shall here refrain from going into an analysis of the
underlying physics.
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Figure 4.7: First 16 current cumulants of the transport through the double
dot model. Here, with strong Coulomb interactions between the two quantum
dots, such that double occupancy of the double dot is excluded. Full lines
correspond to the full non-Markovian dynamics, while the dashed lines only
include the Markovian contributions. The cumulants are shown as functions
of the tunnel coupling Ω, while other parameters are ΓL = ΓR = Γ and
ε = εL − εR = 0.
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Chapter 5

Summary

In this thesis we have considered various theoretical aspects of electrons in
man-made nanostructures. The two focal points have been the coherent ma-
nipulation of electron spins in coupled quantum dots, aimed at future solid-
state devices for large-scale quantum information processing, and full count-
ing statistics, the stochastic theory of charge transport through nanoscale
devices. The most important scientific contributions of the thesis have been
(here neither in chronological order nor order of significance):

1. The proposal of a scalable method for trapping electrons in a solid-state
structure based on designed defects in an otherwise periodic potential
modulation of a two-dimensional electron gas (Papers I and R).

2. The numerical study of the exchange coupling between two electron
spins in tunnel coupled quantum dots (Paper O). In the experimen-
tally relevant regime, where the two electrons have a large wavepacket
overlap, the results showed that a number of analytic approximations
only have limited predictive powers.

3. The proposal to use the strong spin-orbit coupling in InAs nanowires
as a general means to manipulate the spins of electrons in gate-defined
quantum dots (Paper J and K). The proposal included ideas for single
spin rotations as well as a two-spin coupling mechanism.

4. The proposal for an opto-electronic device that would enable elec-
trically controlled generation of single photons which are frequency-
entangled with the spin states of two electrons trapped in the device
(Paper M). The photons can be used to generate entanglement between
the spin states of electrons in remote devices with high fidelity.

83
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5. The development of a general theory and method for the calculation
of the current cumulants for transport systems described by Marko-
vian (generalized) master (or rate) equations (Paper D). The method
was extended to include also the finite-frequency noise of such systems
(Paper G).

6. The study of current fluctuations in quantum electromechanical sys-
tems (Papers D, G, and F). The first three current cumulants were
used to detect mechanical bistabilities occurring in two systems, while
the finite-frequency noise was used to detect frequency shifts and in-
ternal energy scales.

7. The extension of the method for calculating current cumulants to the
non-Markovian case. Analytic expressions were derived for the first
three current cumulants, while a recursive method was developed for
the calculation of higher order cumulants. The results showed that it
may be difficult to distinguish between signatures in the counting statis-
tics arising due to quantum coherence and classical, non-Markovian
effects, respectively (Paper N).

These contributions were described in Chapters 2, 3, and 4 of this thesis, and
in Papers D, F, G, I, J, K, M, N, O, and R, which are included. Below,
we give a short summary of the thesis.

In Chapter 2 we briefly introduced a number of different types of quan-
tum dots and discussed the important concept of Coulomb blockade which is
essential in order to understand the charging dynamics of quantum dots. We
next introduced a class of transport systems which combine electronic and
mechanical degrees of freedom at the nano-scale, namely nanoelectromechan-
ical systems, or NEMS. In particular, we considered two models of so-called
charge shuttles, whose mechanical degrees of freedom were assumed quan-
tized. Finally, we discussed our proposal for trapping electrons at designed
defects in an otherwise periodic potential modulation of a two-dimensional
electron gas.

In Chapter 3 we focused on the spins of electrons in coupled quantum
dots, which are relevant in the context of future solid-state devices for quan-
tum information processing. We first gave a brief introduction to quantum
computing, providing the necessary background needed to understand the
following sections and the included papers. We then focused on a certain
spin-spin interaction, the so-called exchange interaction, discussed its origin
and various approaches to the calculation of the coupling strength. Our nu-
merical results showed that a number of analytic approximations only have
limited predictive powers in the experimentally relevant regime, where the
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two-electron system has a large wavepacket overlap. In the following section
we discussed our proposal for using the strong spin-orbit coupling in, e.g.,
InAs nanowires as a general means to manipulate spins in gate-defined quan-
tum dots. We described a scheme for carrying out single-spin rotations and
found an effective spin-orbit induced spin-spin coupling. Finally, we discussed
our proposal for an opto-electronic device that would allow for electrically
controlled generation of single photons that are frequency-entangled with the
spin states of two electrons in the device. We discussed a protocol for high-
fidelity entanglement generation between electron spins in remote devices
based on two-photon interference at a beam splitter.

In Chapter 4 we introduced the theory of full counting statistics within
the framework of rate equations. We first considered a number of simple ex-
amples in order to gain an intuitive understanding of various aspects of the
theory. In particular, we considered a simple, well-studied Markovian two-
state model, which we, in a fairly unconventional manner, transformed into
a non-Markovian problem for which we showed how a number of well-known
results can be obtained, however, within the non-Markovian formulation.
The following section was concerned with the development of a general ap-
proach to the calculation of the cumulants of the current through systems
described by Markovian rate equations of arbitrary dimensions. The meth-
ods were applied to the charge shuttle systems introduced in Chapter 2, and
it was shown how the first three current cumulants can be used to detect
mechanical bistabilities in these systems. The finite-frequency noise of the
systems was used to detect frequency shifts of the mechanical oscillations
and internal energy scales of the systems. The last section dealt with the
inclusion of non-Markovian effects in the calculations of current cumulants.
The analytic results obtained in the previous section were extended with non-
Markovian contributions, and a novel, purely numerical recursive approach
was developed and shown to allow for calculations of current cumulants of
higher order than the first few ones. It was shown that it may be non-trivial
to distinguish between signatures in the counting statistics arising due to
quantum coherence and non-Markovian, classical dynamics, respectively.

5.1 Outlook

Projects of a limited duration are bound to leave a number of questions
unanswered and ideas untouched. This is also the case for the work described
in this thesis, which to some extent should be considered more as a status
report on the different projects at the time of writing rather than a finalized
piece of work. We thus conclude the thesis by listing a series of possible
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future directions and questions to be addressed.
In our proposal for the use of antidot lattices as a scalable spin qubit

platform both spin and charge degrees of freedom were considered to be com-
pletely coherent and only the effects of static lattice disordered were briefly
touched upon. It would be interesting to study the effects of the environ-
ment, e.g., on electron transport via the resonant coupling mechanism. This
could in practice be implemented by combining the numerical wavepacket
propagations with stochastic quantum jumps that account for fluctuations
and dissipation due to the surrounding environment. This approach to non-
unitary time evolution is described in Refs. [167] and [168].

While we only studied the exchange coupling between electron spins in
two-dimensional double quantum dots, it might be possible also to include
the effects of spin-orbit coupling in the numerical calculations. This would
allow for numerical studies of the spin-orbit induced spin-spin coupling in
closely situated, two-dimensional quantum dots, which could be compared
with the analytic results reported in Ref. [121]. Further comparative studies
of the spin-orbit induced spin-spin coupling and the exchange coupling for
closely situated quantum dots would also be interesting, since both couplings
increase in magnitude at shorter distances, making that regime most relevant
for experiments. Further theoretical modeling of an actual experiment on
spin manipulation using the spin-orbit coupling in a nanowire would of course
be highly interesting.

The proposal for an opto-electrical device for spin-photon entanglement
generation was based on a relatively simple modeling of the proposed device,
and it would be obvious to invoke more sophisticated methods that would
allow for more detailed modeling and design and material optimization. First
principles calculations could for example provide precise band structures of
the nanowire diode, which, among other things, would be necessary in order
to understand its optical properties in detail. A different question concerns
the coupling of electron spins in optically active quantum dots, as those
considered in relation to the nanowire diode, and electron spins in gate-
defined quantum dots, which were used in the experiments on coherent spin
manipulation that we described. Proposals for coupling between electrons in
these two types of quantum dots already exist (see Ref. [169]), but further
extensions of these ideas could be interesting. Again, a collaboration with
experimentalists on the fabrication and testing of an actual device would be
highly interesting.

While we, except for the finite-frequency noise, only studied zero-frequency
current cumulants, it would be relevant to seek an extension of the analytic
results, both in the Markovian and the non-Markovian case, to finite fre-
quencies. Finite-frequency cumulants in the Markovian case have recently
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been studied in Ref. [170] and it might be possible to express some of the re-
sults reported there in a general superoperator notation. Also, the extension
to non-Markovian dynamics would be of high relevance. Concerning non-
Markovian systems, we have so far only studied a few, relatively simple sys-
tems, and it would be obvious to study more complicated models, where the
memory effects would be clearly outspelled. One evident candidate would be
the dissipative spin-boson model studied in Refs. [147, 163]. Concerning the
finite-frequency noise, it is worth noting that also unsymmetrized noise (in
contrast to the symmetrized current-current correlators studied in this thesis)
can be measured in experiments, revealing energy quanta being transferred
between the measurement apparatus and the measured system [171, 172].
Could one somehow consider similarly unsymmetrized current cumulants of
higher order?

On a more general level, the question concerning the information con-
tained in the higher order cumulants also deserves further investigation. We
have seen how bistabilities can be detected in the first three cumulants, but
it would be desirable to have a more clear picture of the information which
is available in the higher order cumulants. This would surely lead to an in-
creased experimental interest in the field of full counting statistics. It has
been suggested that the full counting statistics can be useful for charac-
terizing entanglement between electrons [173, 174], which would provide an
interesting link to the field of quantum information processing. Finally, the
approach to full counting statistics presented in this thesis, based on rate
equations, makes the developed methods applicable well outside the field of
nanophysics. Rate equations similar to the ones studied have, for example,
found use within the fields of medicine [175], cell physiology [176], and net-
work traffic [177]. Could the results presented in this thesis find use in similar
fields outside physics?
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[166] G. Kiesslich, E. Schöll, T. Brandes, F. Hohls, and R. J. Haug, ‘Noise
enhancement due to quantum coherence in coupled quantum dots’,
arXiv:0706.1737 (2007).

[167] J. Dalibard, Y. Castin, and K. Mølmer, ‘Wave-Function Approach to
Dissipative Processes in Quantum Optics’, Phys. Rev. Lett. 68, 580
(1992).

[168] K. Mølmer, Y. Castin, and J. Dalibard, ‘Monte-Carlo Wave-Function
Method In Quantum Optics’, J. Opt. Soc. Am. B 10, 524 (1993).

[169] H.-A. Engel, J. M. Taylor, M. D. Lukin, and A. Imamoglu, ‘Quantum
optical interface for gate-controlled spintronic devices’, arXiv:cond-
mat/0612700 (2006).

[170] C. Emary, D. Marcos, R. Aguado, and T. Brandes, ‘Frequency-
dependent counting statistics in interacting nanoscale conductors’,
arXiv:cond-mat/0703781 (2007).

[171] R. Aguado and L. P. Kouwenhoven, ‘Double Quantum Dots as De-
tectors of High-Frequency Quantum Noise in Mesoscopic Conductors’,
Phys. Rev. Lett. 84, 1986 (2000).

[172] H.-A. Engel and D. Loss, ‘Asymmetric Quantum Shot Noise in Quan-
tum Dots’, Phys. Rev. Lett. 93, 136602 (2004).

[173] F. Taddei and R. Fazio, ‘Counting statistics for entangled electrons’,
Phys. Rev. B 65, 075317 (2002).



BIBLIOGRAPHY 103

[174] L. Faoro, F. Taddei, and R. Fazio, ‘Clauser-Horne inequality for
electron-counting statistics in multiterminal mesoscopic conductors’,
Phys. Rev. B 69, 125326 (2004).

[175] P. S. Albert and M. A. Waclawiw, ‘A two-state Markov chain for het-
erogeneous transitional data: A quasi-likelihood approach’, Stat. Med.
17, 1481 (1998).

[176] E. Neher, ‘The Charge Carried by Single-Channel Currents of Rat Cul-
tured Muscle-Cells in the Presence Of Local-Anesthetics’, J. Physiol.
339, 663 (1983).

[177] A. Adas, ‘Traffic models in broadband networks’, IEEE Commun. Mag.
35, 82 (1997).



104 BIBLIOGRAPHY



Paper D

C. Flindt, T. Novotný, and A.-P. Jauho
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Abstract. – We develop a theory for the full counting statistics (FCS) for a class of nano-
electromechanical systems (NEMS), describable by a Markovian generalized master equation.
The theory is applied to two specific examples of current interest: vibrating C60-molecules and
quantum shuttles. We report a numerical evaluation of the first three cumulants for the C60

setup; for the quantum shuttle we use the third cumulant to substantiate that the giant en-
hancement in noise observed at the shuttling transition is due to a slow switching between two
competing conduction channels. Especially the last example illustrates the power of the FCS.

Introduction. – The full counting statistics (FCS) of charge transport in mesoscopic sys-
tems is an active topic of recent research [1–5]. Calculation and measurement of the whole
probability distribution of transmitted charge is motivated by the fact that FCS provides more
information about a particular system than just the mean current or current noise which are
the first two cumulants of the large-time asymptotics of the probability distribution. Very re-
cently, a measurement of the third cumulant, which quantifies the skewness of the distribution,
was reported [6]. The detailed nature of charge transport in nanoelectromechanical systems
(NEMS), another modern field in mesoscopics, poses many challenges both to experiments and
theory, and the computation of FCS for NEMS is an important task that needs to be addressed.
The first steps were taken recently with a calculation of FCS for a driven, classical shuttle [7].

In this letter, we present a theory for the evaluation of cumulants in a wide class of NEMS
encompassing the majority of systems considered thus far, namely those which can be de-
scribed by a Markovian generalized master equation (GME). The current cumulants turn out
to be fully determined by an extremal eigenvalue of the system evolution superoperator (Liou-
villean) in analogy with previous studies [4,5]. Their evaluation is, however, more complicated
since in NEMS there are generally many relevant states which need to be taken into account.
We solve the problem by formulating a systematic perturbation theory, and using this, derive
explicit formulas for the first three cumulants. The method is illustrated by two examples
of NEMS —the C60 experiment [8] and the quantum shuttle [9–11]. To test the method we
calculate the first three cumulants for the model of the C60 setup from [12]. In case the oscil-
lator is equilibrated, the cumulants can be calculated alternatively using P (E)-theory which
gives the same results. For the quantum shuttle we use the third cumulant to substantiate
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that the giant enhancement of the current noise in the transition region [10] is caused by a
slowly fluctuating amplitude of the shuttle resulting in a slow switching between two current
channels, i.e. tunneling and shuttling. This part complements [7], which considered a fixed
driving amplitude, and [13] describing a related phenomenon in a different model.

Theory. – We consider a nanoelectromechanical system with discrete energy levels elec-
tronically coupled to two leads and mechanically coupled to a generic heat bath providing
dissipation. The system is described by the reduced density operator ρ̂(t), which, we assume,
evolves according to the Markovian GME,

˙̂ρ(t) = Lρ̂(t). (1)

The Liouvillean L describes the dynamics of the system and we assume that the system tends
exponentially to a stationary state ρ̂stat. This implies that the Liouvillean, which is a non-
Hermitian operator, has a single eigenvalue equal to zero with ρ̂stat being the corresponding
(normalized and unique) right eigenvector which we denote by |0〉〉 [14]. The corresponding left
eigenvector is the identity operator 1̂, denoted by 〈〈0̃|, and we have 〈〈0̃|0〉〉 ≡ Tr(1̂†ρ̂stat) = 1.
The pair of eigenvectors allows us to define the projectors P ≡ |0〉〉〈〈0̃| and Q ≡ 1−P obeying
the relations PL = LP = 0 and QLQ = L. We also introduce the pseudoinverse of the
Liouvillean R ≡ QL−1Q, which is well defined, since the inversion is performed only in the
subspace spanned by Q, where L is regular. The assumption of exponential decay to the
stationary state is equivalent to the spectrum of L in the subspace spanned by Q having a
finite negative real part.

In order to evaluate the FCS of the system, i.e. the probability Pn(t) of n electrons being
collected in, say, the right lead in the time span t, we resolve the density operator ρ̂(t) and the
GME with respect to n. The GME is a continuity equation for the probability (charge) and,
therefore, we can identify terms corresponding to charge transfer processes between the system
and the right lead. Specifically, we introduce the superoperator I+ of the particle current of
electrons tunneling from the system to the right lead, and the corresponding superoperator
I− of the reverse process, where electrons tunnel from the right lead to the system. In terms
of these superoperators the n-resolved GME can be written as

˙̂ρ(n)(t) = (L − I+ − I−)ρ̂(n)(t) + I+ρ̂(n−1)(t) + I−ρ̂(n+1)(t) (2)

with n = . . . ,−1, 0, 1, . . . . From the n-resolved density operator we can obtain, at least in
principle, the complete probability distribution Pn(t) = Tr[ρ̂(n)(t)].

It is practical first to evaluate the cumulant generating function S(t, χ) defined as

eS(t,χ) =

∞
∑

n=−∞

Pn(t)einχ. (3)

From S(t, χ) we then find the m-th cumulant of the charge distribution (we take e = 1)
by taking the m-th derivative with respect to the counting field χ at χ = 0, i.e. 〈〈nm〉〉(t) =

∂mS
∂(iχ)m

|χ=0, and from the knowledge of all cumulants we can reconstruct Pn(t). The cumulants

of the current in the stationary limit t → ∞ are given by the time derivative of the charge
cumulants, i.e. 〈〈Im〉〉 = d

dt
〈〈nm〉〉(t)

∣

∣

t→∞
. The first two current cumulants give the average

current and the zero-frequency current noise, respectively.
Using ρ̂(n)(t) we may express S(t, χ) as eS(t,χ) = Tr[

∑∞
n=−∞ ρ̂(n)(t)einχ] = Tr[F̂ (t, χ)],

where we have introduced the auxiliary operator F̂ (t, χ) whose equation of motion follows
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from the n-resolved GME,

∂

∂t
F̂ (t, χ) =

[

L −
(

1 − eiχ
)

I+ −
(

1 − e−iχ
)

I−
]

F̂ (t, χ) ≡ LχF̂ (t, χ) (4)

with the formal solution F̂ (t, χ) = eLχtF̂ (0, χ). We assume adiabatic evolution of the spectrum
of Lχ with increasing χ, i.e. there is a unique eigenvalue Λmin

χ of Lχ associated with the
projector Pχ which develops from the zero eigenvalue of L and which is the closest to zero for
small enough χ. The rest of the spectrum still has a finite negative real part which ensures
the damping of its contribution for large times. Thus, we have

eS(t,χ) =
〈〈

0̃
∣

∣eLχt
∣

∣F (0, χ)
〉〉

−→ eΛmin

χ
t
〈〈

0̃
∣

∣Pχ

∣

∣F (0, χ)
〉〉

= eΛmin

χ
t+Cinit

χ for t → ∞, (5)

where C init
χ depends on the initial state of the system. However, the current cumulants in

the stationary state do not depend on the initial conditions, but are totally determined by
Λmin

χ in full analogy with previous studies [4, 5]. For NEMS in general Lχ is of very large

dimensions, and the numerical evaluation of higher-order derivatives of Λmin
χ may become a

formidable numerical problem. In order to circumvent this problem, we determine Λmin
χ using

Rayleigh-Schrödinger perturbation theory for Lχ = L + L′
χ, treating L′

χ as the perturbation.
Since the Liouvillean is not Hermitian, we cannot assume that it has a spectral decomposition
in terms of its eigenvectors, and one cannot use directly the standard formulas. However, it
is possible to formulate the perturbation theory exclusively in terms of the projectors P, Q
and the pseudoinverse R. As in standard Rayleigh-Schrödinger perturbation theory, the first-
order correction is given by the average of the perturbation with respect to the unperturbed
eigenstate. Taking the derivative of the first-order correction with respect to iχ and letting
χ → 0, we find

〈〈I〉〉 =
〈〈

0̃|I |0
〉〉

, (6)

where I ≡ I+ − I−. As expected, the first cumulant equals the average current. For the
second cumulant, i.e. the zero-frequency current noise, one finds

〈〈

I2
〉〉

=
〈〈

0̃|J |0
〉〉

− 2
〈〈

0̃|IRI |0
〉〉

, (7)

where J ≡ I+ + I−. In the high-bias limit (where 〈〈0̃|I−|0〉〉 = 0, since backward tunneling
is blocked) this expression yields the result previously derived in [14]. The expression for the
third cumulant

〈〈

I3
〉〉

=
〈〈

0̃|I |0
〉〉

− 3
〈〈

0̃|IRJ + JRI |0
〉〉

− 6
〈〈

0̃|IR(RIP − IR)I |0
〉〉

(8)

is the main result of this section, and below we evaluate it for two specific cases. Higher-order
cumulants can be obtained in the same manner by calculating the corresponding higher-order
corrections.

Model 1: The C60 experiment. – An experiment with a NEMS that has received much
attention is the measurement of the IV -curves of a vibrating C60-molecule [8]. The experiment
has been modelled in several papers [12, 15, 16] using a model which will also be employed
here. Calculations of IV -curves [12, 15] have been found to be in good agreement with the
experiment, and the current noise has been predicted [16]. We calculate the third cumulant
for this setup by applying our method to the model as described in [12].

In the model of [12] both the coupling to the leads and to the heat bath are treated in
the weak-coupling approximation which reduces the full GME to an ordinary Pauli master
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equation for the probabilities of occupation of the individual eigenstates of the system:

dPm,σ,l

dt
= −

[

Wl+1←l + Wl−1←l +
∑

m′,σ′,l′,s

Γ
(s)
m′,σ′,l′←m,σ,l

]

Pm,σ,l +

+
∑

m′,σ′,l′,s

[

Γ
(s)
m,σ,l←m′,σ′,l′ + Wl←l′(δl+1,l′ + δl−1,l′)δσ,σ′δm,m′

]

Pm′,σ′,l′ , (9)

where m, σ, l denote the (extra) charge on the molecule (m = 0, 1), the spin, and the
vibrational state, respectively, while s indicates whether an electron tunneled from/to the left
(s = −1) or right (s = 1) lead. Pm,σ,l is the probability of being in the eigenstate labelled by
the subindices. Bath-mediated transitions between different vibrational states are given by
the thermal rates

Wl+1←l = Wl←l+1e
−h̄ω0/kBT = K

l + 1

eh̄ω0/kBT − 1
, (10)

where ω0 is the natural oscillator frequency. The charge transfer rates are

Γ
(s)
1,σ,l′←0,0,l = Γ(0)

∣
∣
〈
l′
∣
∣eγ(â†−â)

∣
∣l
〉∣
∣
2
f

(

EC +
seV

2
+ h̄ω0

(
l′ − l − γ2

)
)

,

Γ
(s)
0,0,l←1,σ,l′ = Γ(0)

∣
∣
〈
l
∣
∣eγ(â†−â)

∣
∣l′

〉∣
∣
2
[

1 − f

(

EC +
seV

2
+ h̄ω0

(
l′ − l − γ2

)
)]

, (11)

where f is the Fermi function, Γ(0) is the bare tunneling rate, EC is the charging energy
difference, and V is the symmetrically applied bias. The quantity γ describes the bias depen-
dence of the electric field at the position of the molecule, and is assumed to have the form
γ = c1 + eV

h̄ω0
c2 [12]. Here we do not consider the case where the rates depend on the position

of the molecule, although this can easily be included.
The current superoperators are identified from the expression for the stationary current,

Istat =
∑

σ,l,l′

[

Γ
(1)
0,0,l′←1,σ,lP

stat
1,σ,l

]

︸ ︷︷ ︸

〈〈0̃|I+|0〉〉

−
∑

σ,l,l′

[

Γ
(1)
1,σ,l′←0,0,lP

stat
0,0,l

]

︸ ︷︷ ︸

〈〈0̃|I−|0〉〉

. (12)

Here |0〉〉 is a diagonal density matrix containing the stationary probabilities P stat
m,σ,l. Due to this

diagonal form of the density matrices the relevant superoperators needed for the cumulants
can be represented by matrices of dimension 2N ×2N (N is the number of vibrational modes)
which makes the calculation of the cumulants numerically straightforward.

In fig. 1 we show the bias dependence of the first three cumulants for parameters corre-
sponding to fig. 3 of [12]. Since Γ(0) � K, the oscillator is in equilibrium and, therefore, the
FCS of the model can also be calculated from a simple two-level model with 4 rates given by
P (E)-theory. We have verified that the semi-analytical results coincide with numerics (not
shown) which we view as a non-trivial test of our method. In non-equilibrium cases there are
no simple alternatives to the numerics. We demonstrate the full power of the method in the
second example.

Model 2: The quantum shuttle. – We consider the model of a quantum shuttle used
in [9–11]. The system consists of an oscillating nanoscopic grain coupled to two leads (fig. 2).
In the strong Coulomb blockade regime the grain effectively has just one electronic level.
The oscillations of the grain are treated fully quantum-mechanically, and damping of the



110 Paper D

C. Flindt et al.: FCS of NEMS 479

-50 0 50

-0.6

-0.3
0

0.3
0.6

-50 0 50
0

0.1

0.2

0.3

0.4

-50 0 50
-0.2

-0.1

0

0.1

0.2

V (mV)V (mV)V (mV)

〈〈
I
〉〉

Γ
(0

)

〈〈
I
2
〉〉

Γ
(0

)

〈〈
I
3
〉〉

Γ
(0

)

Fig. 1 – Results for the C60 setup. First three cumulants as a function of the bias V . The parameters,
which correspond to fig. 3 of [12], are Ec = 10 meV, h̄ω0 = 5meV, h̄Γ(0) = 1 µeV, kBT = 0.15 meV,
K = 0.1ω0, and c1 = 0 (dashed line), 0.8 (dotted line), 1.5 (full line), c2 = 0.005.

oscillations is due to a surrounding heat bath. As in [10], we consider the n-resolved system

density matrices ρ̂
(n)
ii (t), i = 0, 1, where n is the number of electrons that have tunneled into

the right lead in the time span t. In the high-bias limit n is non-negative, and the ρ̂
(n)
ii (t)

evolve according to the n-resolved GME,

˙̂ρ
(n)
00 (t) =

1

ih̄

[

Ĥosc, ρ̂
(n)
00 (t)

]

+ Ldampρ̂
(n)
00 (t) −

ΓL

2

{

e−
2x̂

λ , ρ̂
(n)
00 (t)

}

+ ΓRe
x̂

λ ρ̂
(n−1)
11 (t)e

x̂

λ ,

˙̂ρ
(n)
11 (t) =

1

ih̄

[

Ĥosc−eEx̂, ρ̂
(n)
11 (t)

]

+Ldampρ̂
(n)
11 (t)−

ΓR

2

{

e
2x̂

λ , ρ̂
(n)
11 (t)

}

+ΓLe−
x̂

λ ρ̂
(n)
00 (t)e−

x̂

λ , (13)

with n = 0, 1, . . . and ρ̂
(−1)
11 (t) ≡ 0. Here the commutators describe the coherent evolution of

the charged (ρ11) or empty (ρ00) shuttle which is modelled by a quantum-mechanical harmonic
oscillator of mass m and frequency ω. The electric field between the leads is denoted E. The
terms proportional to ΓL/R describe transfer processes from the left to the right lead with

hopping amplitudes that depend exponentially on the position x̂
λ , where λ is the electron

tunneling length. The mechanical damping of the oscillator is described by the damping
kernel (here T = 0) Ldampρ̂ = − iγ

2h̄ [x̂, {p̂, ρ̂}] − γmω
2h̄ [x̂, [x̂, ρ̂]] [9, 10]. We identify the current

superoperators from (13): I+ρ̂ = ΓRe
x̂

λ |0〉〈1|ρ̂|1〉〈0|e
x̂

λ , I− ≡ 0.
In [9, 10] it was found that the quantum shuttle exhibits a crossover from tunneling to

shuttling when the damping, starting above a certain threshold value, is decreased. This
transition is clearly recorded both in the current [9] and the zero-frequency current noise [10].
The FCS in the tunneling and shuttling limit is to a first approximation captured by the re-

Lead Lead

0 x̂

µL = ∞

µR = −∞

ΓL ΓR Pn

Fig. 2 – The quantum shuttle consists of a nanosized grain moving in a harmonic potential between
two leads. A high bias between the leads drives electrons through the grain.
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Fig. 3 – Results for the quantum shuttle. First three cumulants as a function of the damping γ. The

parameters are ΓL = ΓR = 0.01ω, λ = 1.5x0, d ≡ eE/mω2 = 0.5x0, x0 =
√

h̄/mω. The full lines

indicate numerical results, while the circles indicate the analytic expression for the third cumulant

assuming that the shuttle in the transition region effectively behaves as a bistable system.

sults for the zero amplitude (with appropriately renormalized rates) and the large (shuttling)
amplitude of a driven shuttle [7], respectively. When approaching the semi-classical regime, a
giant enhancement of the noise was found in the transition region. This behavior was tenta-
tively attributed to amplitude fluctuations in the spirit of [13]; however, a more quantitative
explanation has been missing. The phase space representation of the stationary state of the
shuttle in the transition region indicated that shuttling and tunneling processes coexist [10]
leading to the conjecture that the giant noise enhancement is caused by switching between
two current channels(1) (tunneling and shuttling) induced by infrequent jumps between two
discrete values of the shuttle amplitude. Very recently the FCS of such bistable systems has
been studied [18], and it was found that the first three cumulants are (assuming that the
individual channels are noiseless)

〈〈I〉〉 =
ISΓS←T + ITΓT←S

ΓT←S + ΓS←T

, (14a)

〈〈

I2
〉〉

= 2(IS − IT)2
ΓS←TΓT←S

(ΓS←T + ΓT←S)3
, (14b)

〈〈

I3
〉〉

= 6(IS − IT)3
ΓS←TΓT←S(ΓT←S − ΓS←T)

(ΓS←T + ΓT←S)5
. (14c)

Here IS/T denote the current associated with the shuttling/tunneling channel(2), while ΓT←S

is the transition rate from the shuttling to the tunneling channel and ΓS←T is the rate of the
reverse transition.

The rates can be evaluated analytically in the limit λ → ∞ and E → 0 [19]. However,
for other parameters an alternative approach is needed. First, one evaluates the first three
cumulants numerically following the theory presented above. Then, one calculates the rates
from the first two cumulants (eqs. (14a), (14b)) and compares the numerically calculated third
cumulant from eq. (8) with the one obtained from eq. (14c). The numerical calculation of the
cumulants is only possible by a truncation of the oscillator Hilbert space. By retaining the N
lowest oscillator states the (non-sparse) matrix representations of the superoperators entering
eqs. (6)-(8) are of dimension 2N2 × 2N2, which for the required values of N ∼ 100 leaves us
with non-trivial numerical matrix problems. However, using the iterative methods described
in [14], the cumulants can be evaluated numerically.

(1)Such a behavior, referred to as the “whistle” effect, was first reported in [17].

(2)IS = ω/2π, IT = Γ̃LΓ̃R

Γ̃L+Γ̃R

, with Γ̃R = ΓReh̄/mωλ2

e2eE/mω2λ, Γ̃L = ΓLeh̄/mωλ2

[10, 19].
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In fig. 3 we show the γ-dependence of the first three cumulants for λ = 1.5x0, where x0 =
√

h̄/mω. The first cumulant, the current, shows the transition from the tunneling to shuttling
current with decreasing damping. The transition is also evident from the second cumulant,
the zero-frequency current noise, which exhibits a giant enhancement in the transition region,
before dropping to very low values in the shuttling region. Together with the numerical results
for the third cumulant we show the analytic expression (eq. (14c)) with rates extracted from
the first two cumulants. As can be seen, the two data sets coincide, which we take as evidence
that the quantum shuttle in the transition region indeed behaves as a bistable system for
which the FCS is known [18]. When approaching the deep quantum regime, λ ∼ x0 (not
shown), the transition from tunneling to shuttling is smeared out and the distinct current
channels cease to exist. In this limit the bistable system model is not valid.

Conclusion. – We have presented a method for computation of the FCS for typical
nanoelectromechanical systems and applied it to two specific models. For the C60 setup with
equilibrated oscillator we have calculated the first three cumulants and explained the results
in terms of a simple two-level model. For the quantum shuttle we have used the first three
cumulants as evidence that the shuttle in the transition region behaves as a bistable system.
This example clearly illustrates the usefulness of the FCS in probing a microscopic system.
Here we have only shown explicit expressions for the first three cumulants. Our method,
however, can be extended to the calculation of cumulants of any order, and we believe that
the method has a broad range of applicability.
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Abstract. We present a study of current fluctuations in two models proposed as quantum shuttles.
Based on a numerical evaluation of the first three cumulants of the full counting statistics we have
recently shown that a giant enhancement of the zero-frequency current noise in a single-dot quantum
shuttle can be explained in terms of a bistable switching between two current channels. By applying
the same method to a quantum shuttle consisting of a vibrating quantum dot array, we show that the
same mechanism is responsible for a giant enhancement of the noise in this model, although arising
from very different physics. The interpretation is further supported by a numerical evaluation of the
finite-frequency noise. For both models we give numerical results for the effective switching rates.

Keywords: Current noise and fluctuations, bistabilities, quantum shuttles.
PACS: 85.85.+j, 72.70.+m, 73.23.Hk

Introduction – In 1998 Goreliket al. proposed a nano-electromechanical system
(NEMS), the charge shuttle, consisting of a movable nanoscopic grain coupled via
tunnel barriers to source and drain electrodes [1]. Originally the motion of the grain
was modelled using a classical harmonic oscillator. Here we present a study of current
fluctuations in two models of (quantum) shuttles, where the oscillator is quantized.

Models– Two models have been proposed as quantum shuttles (the 1-dot shuttle [2]
and the 3-dot shuttle [3]). The 1-dot shuttle consists of a single mechanically oscillating
quantum dot situated between two leads. In the 3-dot shuttle the mechanically oscillating
quantum dot is flanked by two static dots, thus making up an array of dots. Both devices
are operated in the strong Coulomb blockade regime, and consequently only one excess
electron at a time is allowed in the device. In the 1-dot (3-dot) model the coupling to the
leads (the interdot coupling) depends exponentially on the position of the vibrating dot.
For detailed descriptions of the models we refer to Refs. [2, 3, 4].

Both models are described using the language of quantum dissipative systems [5].
As the “system” we take in the 1-dot model (3-dot model) the single (three) electronic
state(s) of the occupied dot (array) and the unoccupied state plus the quantum harmonic
oscillator with natural frequencyω0. In the limit of a high bias between the leads [6], and
assuming that the oscillator is damped due to a weak coupling to a heat bath, the time
evolution of the reduced density matrix of the systemρ̂(t) is governed by a Markovian
generalized master equation (GME) of the form [2, 3, 4]

˙̂ρ(t) = L ρ̂(t) = (Lcoh+Ldamp+Ldriv)ρ̂(t). (1)

HereLcoh describes the internal coherent dynamics of the system, whileLdamp and
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Ldriv give the damping and the coupling to the leads, respectively. In the following we
consider the stationary state defined by˙̂ρstat(t) = L ρ̂stat(t) = 0. The GME is only valid
in the high-bias limit, and hence we cannot use the applied bias as a control parameter.
Instead, we vary in the 1-dot model the strength of the damping, denotedγ , and in the
3-dot model the difference between the energy levels corresponding to the outer dots,
referred to as thedevice bias and denotedεb.

Theory – We have recently developed a systematic theory for the calculation of the
n’th cumulant of the current〈〈In〉〉 for NEMS described by a Markovian GME of the
form given in Eq. (1) [7]. In Ref. [7] a numerical evaluation of the first three cumulants
showed that the 1-dot model in a certain parameter regime behaves as a bistable system
switching slowly between two current channels. The first three cumulants of a bistable
system switching slowly (compared to the electron transfer rates) with ratesΓ1←2 and
Γ2←1 between two current channels 1 and 2 with corresponding currentsI1 and I2,
respectively, are [8]

〈〈I〉〉 =
I1Γ1←2 + I2Γ2←1

Γ2←1 +Γ1←2
,

〈〈I2〉〉 = 2(I1− I2)
2 Γ1←2Γ2←1

(Γ1←2 +Γ2←1)3 ,

〈〈I3〉〉 = 6(I1− I2)
3Γ1←2Γ2←1(Γ2←1−Γ1←2)

(Γ1←2 +Γ2←1)5 .

(2)

As pointed out by Jordan and Sukhorukov [8, 9] these expressions are very general,i. e.
they do not depend on the microscopic origin of the rates or the current channels. For
the 1-dot model the two current channels were identified from phase space plots of the
oscillating dot as ashuttling and atunneling channel, respectively, with known analytic
expressions for the corresponding two currents [7, 11]. By comparing the numerical
results for the first two cumulants with the corresponding analytic expressions given
above, the two ratesΓ1←2 and Γ2←1 could be extracted, and finally a comparison of
the numerical results for the third cumulant and the analytic expression given above
(with the extracted rates1 Γ1←2 andΓ2←1) confirmed the conjecture about the bistable
behavior (see Fig. 1). This in turn explained a giant enhancement of the zero-frequency
current noise (the second cumulant) found in Ref. [11].

A similar enhancement of the zero-frequency current noise was found in a study of
the 3-dot model [4]. Also in this case, the enhancement was tentatively attributed to a
switching behavior, however, neither the number nor the nature of the individual current
channels were clarified, and no quantitative explanation could be given. Phase space
plots of the oscillating dot seem to indicate the existence of two current channels [4]: One
channel, where electrons tunnelsequentially through the array of dots, and one channel,
where electronsco-tunnel between the static dots. The current corresponding to each
of the two channels can be read off from the numerical results obtained in Ref. [4]. By
proceeding along the lines outlined above, the conjecture that the enhanced noise is due
to a slow switching between the sequential and co-tunneling channel can be scrutinized.

1 In a certain limit the rates may even be found analytically, see Ref. [10].
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FIGURE 1. First three cumulants for the 1-dot model as a function of the damping strengthγ (model
parameters correspond to Fig. 3 in Ref. [7]). The shuttling channel current isIshut = ω0/2π and the
tunneling channel currentItun = 0.0082ω0 (e = 1). Full lines indicate numerical results, while circles
show the (semi-) analytic results for the third cumulant. The central panel shows the giant enhancement
of the zero-frequency noise. (Reproduced from Ref. [7]).
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FIGURE 2. First three cumulants for the 3-dot model as a function of the device biasεb (model
parameters correspond to Fig. 4 in Ref. [4]). The sequential tunneling channel current isIseq= 0.043ω0
and the co-tunneling channel currentIcot = 0.0008ω0 (e = 1). Full lines indicate numerical results,
while circles show the (semi-) analytic results for the third cumulant. The central panel shows the giant
enhancement of the zero-frequency noise. (Left and central panel reproduced from Ref. [4]).

Results – In Figs. 1, 2 we show numerical results for the first three cumulants for
the two models together with the analytic expression for the third cumulant of a bistable
system with rates extracted from the first two cumulants. We take the agreement between
the numerical and (semi-) analytic results as evidence that both models exhibit a bistable
behavior. In Ref. [12] this interpretation was further supported by numerical studies of
the finite-frequency current noise in the 1-dot model. Correspondingly, we show in Fig.
3 the agreement between the numerical results for the finite-frequency noise in the 3-dot
model and semi-analytic results for a slow bistable switching process [12]. In Fig. 4 we
show the extracted rates for both models. Most noteworthy is the crossing of the two
rates in the 1-dot case, which results in the change of sign of the third cumulant seen in
Fig. 1. On each side of the crossing one of the current channels dominates. In the 3-dot
case, the two rates close in, however, without crossing each other. Consequently one of
the current channels, the sequential tunneling channel, never dominates. It should also
be noted that in both models one of the currents is comparable to one of the rates, which
implies that some corrections to Eq. 2 are expected [9]. However, we have found that
these corrections do not contribute significantly.

Conclusion – We have presented a study of noise in two models of quantum shuttles.
By evaluating numerically the first three cumulants of the full counting statistics, we
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have shown that a giant enhancement of the zero-frequency current noise in both models
can be explained in terms of a slow bistable switching behavior. For both models, this
interpretation is supported further by a numerical evaluation of the finite-frequency
current noise. We underline that although the two models behave very differently, it
is the same mechanism that is responsible for the giant enhancement of the noise.
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Abstract

We present a method for calculating the full current noise spectrum SðoÞ for the class of nano-electromechanical

systems (NEMS) that can be described by a Markovian generalized master equation. As a specific example we apply the

method to a quantum shuttle. The noise spectrum of the shuttle has peaks at integer multiples of the mechanical

frequency, which is slightly renormalized. The renormalization explains a previously observed small deviation of

the shuttle current compared to the expected value given by the product of the natural mechanical frequency and the

electron charge. For a certain parameter range the quantum shuttle exhibits a coexistence regime, where the charges are

transported by two different mechanisms: shuttling and sequential tunneling. In our previous studies we showed that

characteristic features in the zero-frequency noise could be quantitatively understood as a slow switching process

between the two current channels, and the present study shows that this interpretation holds also qualitatively at finite

frequency.

r 2005 Elsevier B.V. All rights reserved.

PACS: 85.85.+j; 72.70.+m; 73.23.Hk

Keywords: NEMS; Quantum shuttles; Current noise

1. Introduction

A decade of advances in microfabrication

technology has pushed the typical length scales

of electromechanical systems to the limit, where

quantum mechanical effects of the mechanical

motion must be taken into account [1]. Such nano-

electromechanical systems (NEMS) exhibit a

strong interplay between mechanical and electro-

nic (or magnetic) degrees of freedom, and their

electronic transport properties reflect this interplay

in an intricate manner.

A modern trend in transport studies of meso-

scopic systems has been to not only consider the

current–voltage characteristics of a given device,
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but also to examine the noise properties, or even

the higher cumulants (i.e. the full counting

statistics (FCS)) of the current distribution [2,3].

The current noise, either its zero-frequency com-

ponent or the whole frequency spectrum, provides

more information than just the mean current and

can be used to discern among different possible

mechanisms resulting in the same mean current.

While the noise spectra in generic mesoscopic

systems have been studied well over a decade, it is

only very recently that the study of noise spectra of

NEMS has been initiated [4–6].

The aforementioned three studies deal with the

noise spectra of a classical shuttle, a classical

nanomechanical resonator coupled to a single

electron transistor (SET), and the C60-SET in a

strong electromechanical coupling regime, respec-

tively. The first two studies [4,5] found peaks in the

current noise spectra at the first two multiples of

the mechanical frequency. For low bias voltages

and strong electromechnical coupling the third

study [6] found a power-law frequency dependence

of the noise spectrum attributed to scale-free

avalanche charge transfer processes. In all three

cases the noise spectra revealed interesting details

about the systems. From the technical point of

view, two of the studies [4,6] used Monte Carlo

simulations, whereas [5] used a model-specific

numerical evaluation of the MacDonald formula

(see below).

In this work, we present a study of the full

frequency spectrum of the current noise of a

quantum shuttle [7–9]. We extend the general

formalism developed for the zero-frequency noise

[10,11] and the FCS [12] calculations for NEMS

described by a Markovian generalized master

equation (GME). The presented formalism applies

not only to the shuttle studied here but could

equally well be used for all three systems from the

previous studies [4–6] for the determination of the

noise spectra.

We apply the developed theory to compute

numerically the noise spectrum of the shuttle in the

deep quantum regime1 as function of the damping

coefficient. The spectrum has peaks at integer

multiples of the slightly renormalized

mechanical frequency. The renormalization of

the bare oscillator frequency as read off from the

current spectrum explains a small but observable

deviation from the expected value of the current

in the shuttling regime I shut ¼ eo0=2p [8]. It turns

out that it is the renormalized oscillator frequency

~o0 which should enter this relation. Finally, we

focus on the low-frequency part of the spectrum

when approaching the semi-classical regime for

intermediate values of the damping, i.e. in the

coexistence regime, where both shuttling and

tunneling are effective. We use the frequency

dependence of the spectrum for o5o0 to identify

additional qualitative evidence for the bistable

behavior of the shuttle in this regime described

by a simple analytical theory of a slow switch-

ing between two current channels (compare with

Refs. [12,13]).

2. Model

We consider the model of a quantum shuttle

described in Refs. [7–10]. The shuttle consists of a

mechanically oscillating nanoscale grain situated

between two leads (see Fig. 1). In the strong

Coulomb blockade regime the grain can be treated

as having a single electronic level only. A high

bias between the leads drives electrons through

the grain and exerts an electrostatic force on

the grain, when charged. The grain is assumed

to move in a harmonic potential, and the oscilla-

tions of the grain are treated fully quantum

mechanically. Damping of the oscillations is

described by interactions with a surrounding heat

bath.

From the Hamiltonian of the model one can

derive a generalized master equation resolved with

respect to the number of electrons n that have been

collected in the right lead during the time span 0 to

t. The n-resolved GME describes the time evolu-

tion of the n-resolved system density matrix r̂ðnÞðtÞ,

where the ‘system’ consists of the electronic level of

the grain and the quantized oscillations. In the

following we only need the n-resolved GME for

the part of r̂ðnÞðtÞ that is diagonal in the electronic

ARTICLE IN PRESS

1In this regime l ’ x0, where l is the tunneling length (see

also Eq. (1)) and x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=mo0

p

sets the length scale for the

quantum mechanical zero-point motion.
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components, which reads [10]

_̂r
ðnÞ

00 ðtÞ ¼
1

i_
½Ĥosc; r̂

ðnÞ
00 ðtÞ� þLdampr̂

ðnÞ
00 ðtÞ

�
GL

2
fe�2x̂=l; r̂ðnÞ00 ðtÞg þ GRe

x̂=lr̂
ðn�1Þ
11 ðtÞex̂=l,

_̂r
ðnÞ

11 ðtÞ ¼
1

i_
½Ĥosc � eEx̂; r̂ðnÞ11 ðtÞ� þLdampr̂

ðnÞ
11 ðtÞ

�
GR

2
fe2x̂=l; r̂ðnÞ11 ðtÞg þ GLe

�x̂=lr̂
ðnÞ
00 ðtÞe

�x̂=l

ð1Þ

with n ¼ 0; 1; 2; . . . and r̂
ð�1Þ
11 ðtÞ � 0. The commu-

tators describe the coherent evolution of the charged

(r̂
ðnÞ
11 � h1jr̂ðnÞj1i) or empty (r̂

ðnÞ
00 � h0jr̂ðnÞj0i) shuttle

with mass m and natural frequency o0. The electric

field2 between the leads is denoted E. The terms

proportional to GLðRÞ describe transfer processes

from the left (to the right) lead with hopping

amplitudes that depend exponentially on the

ratio between position x̂ and the electron tunnel-

ing length l. The mechanical damping of the

oscillator is described by the damping kernel (here

at zero temperature) Ldampr̂
ðnÞ
jj ¼� ig

2_
½x̂; fp̂; r̂ðnÞjj g�

�
gmo0
2_

½x̂; ½x̂; r̂ðnÞjj ��; j ¼ 0; 1 [8,10].

The n-resolved GME can be recast into the

compact form [11]

_̂r
ðnÞ

¼ ðL�IRÞr̂
ðnÞ þIRr̂

ðn�1Þ; r̂ð�1Þ � 0, (2)

where we have introduced the Liouvillean L,

describing the evolution of the system density

matrix r̂ðtÞ ¼
P

nr̂
ðnÞðtÞ, i.e. _̂rðtÞ ¼ Lr̂ðtÞ, and the

superoperator for the tunnel current through the

right junction (taking e ¼ 1), defined by its action

on the density operator

IRr̂ ¼ GRe
x̂=lj0ih1jr̂j1ih0jex̂=l. (3)

Assuming that the system tends exponentially to

a stationary state r̂stat the Liouvillean has a single

eigenvalue equal to zero with r̂stat being the

(unique and normalized) right eigenvector which

we denote by j0ii [11]. The corresponding left

eigenvector is the identity operator 1̂ which

we denote by hh~0j, and from the definition of the

inner product3 we have hh~0j0ii ¼ Trð1̂
y
r̂statÞ ¼ 1. In

terms of IR the average tunnel current in the

stationary state can be expressed as

hÎRi ¼ TrðIRr̂
statÞ ¼ hh~0jIRj0ii. (4)

We define the projectors P ¼ j0iihh~0j and Q ¼

1�P obeying the relations PL ¼ LP ¼ 0 and

QLQ ¼ L. In terms of the two projectors we can

express the resolvent of the Liouvillean Gð�ioÞ ¼

ð�io�LÞ�1 as

Gð�ioÞ ¼ �
1

io
P� Q

1

ioþL
Q ¼ �

1

io
P�RðoÞ,

(5)

where we have introduced the frequency depen-

dent superoperator RðoÞ, which is well-defined

even for o ¼ 0, since the inversion in that case is

performed only in the subspace where L is

regular.

3. Theory

We consider the current autocorrelation func-

tion defined as

CII ðt
0; t00Þ ¼ 1

2
hfDÎðt0Þ;DÎðt00Þgi, (6)

where DÎðtÞ ¼ ÎðtÞ � hÎðtÞi. In the stationary state

CII ðt
0; t00Þ can only be a function of the time

difference t ¼ t0 � t00, and we thus write

CII ðtÞ ¼
1
2
hfDÎðtÞ;DÎð0Þgi. (7)

ARTICLE IN PRESS

Fig. 1. The quantum shuttle consists of a nanosized grain

moving in a harmonic potential between two leads. A high bias

between the leads drives electrons through the grain.

2In order to obtain a Markovian GME it is necessary to

assume that the bias applied between the leads is the highest

energy scale of the system [8]. Nevertheless, we consider the

electric field between the leads as a free parameter of the model.

3We define the inner product of two supervectors as hhajbii ¼

TrðÂ
y
B̂Þ with the identification joii2Ô, where Ô is a quantum

mechanical operator and joii is the corresponding supervector.
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The current noise spectrum is the Fourier trans-

form of CII ðtÞ, i.e.

SII ðoÞ �

Z 1

�1

dtCII ðtÞe
iot. (8)

In order to calculate the current noise measurable

in, say, the right lead one must recognize that the

current running in the lead is a sum of two

contributions, namely the tunnel current through

the right junction and a displacement current

induced by electrons tunneling between leads and

grain. This is reflected in the Ramo–Shockley

theorem [2]

Î ¼ cLÎR þ cRÎL. (9)

Here Î is the current operator for the current

running in the lead, whereas ÎLðRÞ is the operator

for the tunnel current through the left (right)

junction, and cLðRÞ is the relative capacitance of

the left (right) junction in the sense cL þ cR ¼ 1.

Combining the Ramo–Shockley theorem with

charge conservation leads to an expression for

the current noise measured in the lead [14]

SII ðoÞ ¼ cLSIRIR ðoÞ þ cRSILIL ðoÞ

� cLcRo
2SNN ðoÞ, ð10Þ

where N̂ ¼ j1ih1j is the occupation number opera-

tor of the electronic level of the grain. In the

following we neglect any dependence of the

capacitances on the position of the grain and

consider the symmetric case cL ¼ cR ¼ 1
2
.

The two first terms of Eq. (10) can be evaluated

using the methods developed by MacDonald [15].

The starting point of the derivation is the property

CII ðtÞ ¼ CII ð�tÞ, which immediately leads to

SIRIR ðoÞ ¼

Z 1

0

dtCIRIR ðtÞðe
iot þ e�iotÞ. (11)

Let us consider the first term

Sþ
IRIR

ðoÞ �

Z 1

0

dtCIRIR ðtÞe
iot, (12)

the second term, S�
IRIR

ðoÞ, follows analogously.

Defining Q̂RðtÞ as the operator of charge collected

in the right lead in the time span 0 to t we have

DQ̂RðtÞ ¼ Q̂RðtÞ � hQ̂RðtÞi ¼

Z t

0

dt0DÎRðt
0Þ, (13)

and we can express the current autocorrelation

function as

CIRIRðtÞ ¼
1

2

d

dt
hfDQ̂RðtÞ;DÎRð0Þgi. (14)

Introducing the convergence factor e ! 0þ and

performing the integration by parts in Eq. (12)

we get

Sþ
IRIR

ðoÞ ¼

Z 1

0

dthfDQ̂RðtÞ;DÎRð0Þgi

�
oþ ie

2i
eiðoþieÞt. ð15Þ

Since hfDQ̂RðtÞ;DÎRð0Þgi ¼ hfDQ̂RðtÞ;DÎRðtÞgi ¼
d
dt
hDQ̂

2

RðtÞi in the stationary state4 we canwrite

Sþ
IRIR

ðoÞ ¼

Z 1

0

dt
d

dt
hDQ̂

2

RðtÞi
oþ ie

2i
eiðoþieÞt.

(16)

Similarly, we find

S�
IRIR

ðoÞ ¼ �

Z 1

0

dt
d

dt
hDQ̂

2

RðtÞi
o� ie

2i
e�iðo�ieÞt,

(17)

and consequently

SIRIRðoÞ ¼

Z 1

0

dt
d

dt
hDQ̂

2

RðtÞi

�ðo sinotþ e cosotÞe�et. ð18Þ

We now make use of the fact that

hDQ̂
2

RðtÞi ¼ hQ̂
2

RðtÞi � hQ̂RðtÞi
2 ¼ hn2ðtÞi � hnðtÞi2

(19)

with hnaðtÞi �
P1

n¼0n
aPnðtÞ; a ¼ 1; 2, where PnðtÞ is

the probability of having collected n ¼ 0; 1; 2; . . .

electrons in the right lead during the time span 0 to

t. This finally leads us to the commonly used form

of the MacDonald formula (cf. Refs. [5,14,15])

SIRIRðoÞ ¼ o

Z 1

0

dt sinðotÞ
d

dt
½hn2ðtÞi � hnðtÞi2�,

(20)
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4The first equality follows from a simple substitution

t ! t� t in the chain hfDQ̂RðtÞ;DÎRð0Þgi ¼
R t

0
dthfDÎRðtÞ;

DÎRð0Þgi ¼
R t

0
dthfDÎRðtÞ;DÎRðtÞgi ¼ hfDQ̂RðtÞ;DÎRðtÞgi.
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where the regularization

o sinðotÞ !
1

2i
ððoþ ieÞeiðoþieÞt � ðo� ieÞe�iðo�ieÞtÞ

¼ ðo sinotþ e cosotÞe�et; e ! 0þ ð21Þ

is implied. Only the proper treatment of the

regularization ensures correct results including

the o ¼ 0 case where the zero-frequency noise

MacDonald formula is recovered (by using the

Laplace transform identity for e ! 0þ)

SIRIR ð0Þ ¼ e

Z 1

0

dt e�et d

dt
½hn2ðtÞi � hnðtÞi2�

¼
d

dt
½hn2ðtÞi � hnðtÞi2�jt!1. ð22Þ

In order to evaluate the current noise spectrum

we now introduce the quantity

~SðoÞ ¼ o

Z 1

0

dteiot
d

dt
hn2ðtÞi � 2hnðtÞi

d

dt
hnðtÞi

� �

(23)

with either SðoÞ ¼ Im ~SðoÞ or SðoÞ ¼ ð ~SðoÞ þ
~Sð�oÞÞ=2i and evaluate it along the lines of

Ref. [11]. Since PnðtÞ ¼ Trðr̂ðnÞðtÞÞ, Eq. (2) leads

to (keeping in mind that TrðL�Þ ¼ 0)

_PnðtÞ ¼ Tr½IRðr̂
ðn�1ÞðtÞ � r̂ðnÞðtÞÞ�, (24)

and as shown in Ref. [11]

d

dt
hnðtÞi ¼ TrðIRr̂ðtÞÞ ¼ hh~0jIRj0ii, (25)

d

dt
hn2ðtÞi ¼ 2Tr IR

X

n

nr̂ðnÞðtÞ

" #

þ hh~0jIRj0ii,

(26)

where we have used r̂ðtÞ ¼ r̂stat, since we are

considering the stationary limit. The sum enter-

ing Eq. (26) is evaluated by introducing an

operator-valued generating function defined as

F̂ ðt; zÞ ¼
P1

n¼0r̂
ðnÞðtÞzn, from which we get

q

qz
F̂ ðt; zÞjz¼1 ¼

X

n

nr̂ðnÞðtÞ. (27)

From the definition of the Laplace transform,
~̂
F ðs; zÞ ¼

R1

0
dtF̂ ðt; zÞe�st, we see that the integra-

tion in Eq. (23) can be considered as a Laplace

transform evaluated at s ¼ �ioþ e (remember the

proper regularization; from now on we skip

explicitly mentioning the e-factors). In Ref. [11] it

was shown that

q

qz

~̂
F ðs ¼ �io; zÞjz¼1 ¼ Gð�ioÞIRGð�ioÞr̂ð0Þ

þ Gð�ioÞ
X

n

nr̂ðnÞð0Þ. ð28Þ

Again, we have r̂ð0Þ ¼ r̂stat, and moreover we

assume the factorized initial condition [14,16]

r̂ðnÞð0Þ ¼ d0nr̂
stat, i.e. we start counting the charge

passing through the right junction at t ¼ 0 and the

system is in its stationary state. Now, combining

Eqs. (5), (23)–(28) and having in mind that

Pr̂stat ¼ r̂stat;Qr̂stat ¼ 0, straightforward algebra

leads to

~SðoÞ ¼ i hh~0jIRj0ii � 2hh~0jIRRðoÞIRj0ii
� �

. (29)

We thus arrive at

SIRIRðoÞ ¼ hh~0jIRj0ii � 2Re½hh~0jIRRðoÞIRj0ii�

¼ hh~0jIRj0ii

� 2hh~0jIR

L

L
2 þ o2

� �

IRj0ii. ð30Þ

For the left junction one similarly finds

SILIL ðoÞ ¼ hh~0jILj0ii � 2Re½hh~0jILRðoÞILj0ii�

(31)

with

ILr̂ ¼ GLe
�x̂=lj1ih0jr̂j0ih1je�x̂=l. (32)

For the evaluation of the charge-charge correla-

tion function SNN ðoÞ we note that N̂ is a

system operator, and the quantum regression

theorem thus applies [17]. Following [11] we

immediately get

SNN ðoÞ ¼ �2Re½hh~0jNRðoÞNj0ii�, (33)

having introduced the superoperator N corre-

sponding to N̂, defined as

Nr̂ ¼ j1ih1jr̂j1ih1j. (34)

Collecting all terms in Eq. (10) we finally obtain

the expression for the current noise measured
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in the leads for the symmetric setup (cL ¼ cR ¼
1
2
)

SII ðoÞ ¼ hh~0jIRj0ii þ
o2

2
Re½hh~0jNRðoÞNj0ii�

�Re½hh~0jIRRðoÞIR

þILRðoÞILj0ii�. ð35Þ

We notice that for o ¼ 0 we get the previous result

[10–12]

SII ð0Þ ¼ hh~0jIRj0ii � 2hh~0jIRRð0ÞIRj0ii, (36)

since the zero-frequency tunnel current noise is

the same at both junctions and the second term is

real [11].

The numerical evaluation of Eq. (35) is only

possible by truncating the number of oscillator

states. As in previous studies [8,10,12] we retain

the 100 lowest oscillator states, which however still

leaves us with the task of dealing numerically with

the matrix representations of the relevant super-

operators, which are of size 20 000� 20 000. As

explained in Ref. [11] the stationary density matrix

r̂stat (or j0ii) can be found using the Arnoldi

iteration scheme, and RðoÞ can be evaluated using

the generalized minimum residual method

(GMRes). Both methods are iterative and rely

crucially on an appropriate choice of precondi-

tioner to ensure that the iterations converge and to

speed up the computation. It should be stressed

that finding a suitable preconditioner for a given

problem is by no means simple. For finding r̂stat

and Rð0Þ it turns out that the Sylvester part of the

Liouvillean, which is the part that can be written

Lsylvr̂ ¼ Âr̂þ r̂Â
y
, is well-suited for precondi-

tioning [11]. This preconditioner separates the zero

eigenvalue from the rest of the spectrum of L

leading to a decrease in computation time.

For finding RðoÞ the original preconditioner

must be modified in order to separate the relevant

eigenvalue from the rest of the spectrum.

A reasonable choice is the superoperator M

defined as

Mr̂ ¼ Âþ
io

2


 �

r̂þ r̂ Â�
io

2


 �y

. (37)

For the range of parameters discussed in the

present paper this choice of preconditioner was

sufficient for convergence, however the obtained

computational speedup is considerably smaller

than the speedup provided by Lsylv, when

computing Rð0Þ. This observation combined with

the fact that GMRes fails to converge for certain

parameters in the semi-classical regime indicates

that the identification of the optimal precondi-

tioner for the problem at hand remains an open

problem.

4. Results

In Fig. 2 we show results for the current noise

spectrum of the quantum shuttle in the deep

quantum regime. In accordance with previous

studies [4,5] we find peaks at integer multiples of

the mechanical frequency. A close look at the

spectrum reveals a slight renormalization of the

mechanical frequency with the peaks appearing at

o ¼ ~o0; 2 ~o0; 3 ~o0, where ~o0 ’ 1:03o0. In the shut-

tling regime the current is expected to saturate at

a value expressed as one electron per cycle of the

mechanical vibrations. For a shuttle with mechan-

ical frequency o0 this implies that the saturated

shuttle current is I shut ¼ o0=2p ’ 0:159o0. For the

given parameters the numerical calculation yields a

slightly higher value, namely I shut ¼ 0:164o0 ¼

0:159� 1:03o0 ’ ~o0=2p, and this can now be

understood in light of the observed renormaliza-

tion of the mechanical frequency.

In Refs. [12,13] it was shown that an observed

giant enhancement of the zero-frequency noise [10]

in the coexistence regime of a shuttle approaching

the semi-classical regime can be understood in

terms of a simple model of a bistable system

switching slowly between two current channels

(shuttling and tunneling). Denoting the currents of

the two channels5 as IS and IT, respectively, and

the switching ratesGS T and GT S, one can show

(following Ref. [13]) that the ratio between the

current noise spectrum and the current (in the

zero-frequency limit known as the Fano factor)

F ðoÞ ¼ SðoÞ=I for the bistable system has the

ARTICLE IN PRESS

5IS ¼
~o0
2p
, and IT ¼

~GL
~GR

~GLþ ~GR
, with ~GR ¼ GRe

_=mo0l
2
e2eE=mo2

0
l,

~GL ¼ GLe
_=mo0l

2
[10,13].
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Lorentzian form

F ðoÞ ¼
2

I

GS TGT S

GS T þ GT S

ðIS � ITÞ
2

ðGS T þ GT SÞ
2 þ o2

,

(38)

where

I ¼
ISGS T þ ITGT S

GS T þ GT S

. (39)

The two switching rates, GS T and GT S, can be

extracted from the numerical values of current and

zero-frequency noise, and by comparing Eq. (38)

with the noise spectrum obtained numerically, one

can perform another independent test of the

hypothesis that the shuttle behaves as a bistable

system in the coexistence regime.

In Fig. 3 we show numerical results for the low-

frequency current noise of the quantum shuttle in

the coexistence regime. Together with the numer-

ical results we show the analytic expression for

the current noise of the bistable system (Eq. (38))

with rates extracted from the numerical values of

current and zero-frequency noise. It should be

noted that the agreement between the numerical

and analytic results could only be obtained by

assuming that the shuttling current for the given

values of the damping is not fully saturated to the

value I shut ¼ ~o0=2p. The current noise spectrum

thus provides us with qualitative evidence for the

shuttle behaving as a bistable system in the

coexistence regime, while it, however, leaves us

with an open question concerning the saturation of

the shuttling current.

5. Conclusion

We have presented a theory for the calculation

of the current noise spectrum of a large class of

nano-electromechanical systems, namely those

that can be described by a Markovian generalized

master equation. As a specific example we have

applied the theory to a quantum shuttle. For the

quantum shuttle numerical calculations of the

current noise spectrum in the deep quantum

regime revealed a slight renormalization of the

ARTICLE IN PRESS

0 1 2 3
0.02

0.04

0.06

0.08

0

0.5

1

1.5

�

�0

�0

�

F
( 

)
�
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F ðoÞ ¼ SII ðoÞ=hÎi as function of the damping g and frequency
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values of F ðoÞ ’ 20 (not shown) for g ¼ 0:02 and decreases

monotonously with increasing g to F ðoÞ ’ 6 for g ¼ 0:09. The
insert shows a representative curve (g ¼ 0:05).
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Fig. 3. The ratio between the current noise and the current

F ðoÞ ¼ SII ðoÞ=hÎi for low frequencies (o5o0). The parameters

are g ¼ 0:035o0 (lowest curve), 0:04o0; 0:045o0; 0:05o0 (top-

most curve), GL ¼ GR ¼ 0:01o0, l ¼ 1:5x0; d � eE=mo2
0

¼ 0:5x0, where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=mo0

p

. The circles indicate numerical

results, while the full lines indicate the analytic results for the

current noise spectrum of a bistable system. It should be noted

that in order to obtain the agreement between the numerical

and analytic results it is necessary to assume that the shuttling

current for the given values of g is not fully saturated to the

value I shut ¼ 1:03o0=2p. Corresponding to the different values

of g we have used I shut ¼ 1:01o0=2p ðfor g ¼ 0:03o0Þ,

1:00o0=2p, 0:98o0=2p, 0:94o0=2p ðfor g ¼ 0:05o0Þ, respec-

tively.
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mechanical frequency—this, in turn, explains an

observed small deviation of the shuttle current

compared to the expected value given by the

product of the natural mechanical frequency and

the electron charge. When approaching the semi-

classical regime the low-frequency noise served as

another evidence for the quantum shuttle behaving

as a bistable system, switching slowly between two

current channels, thus supporting this claim,

previously based on the calculation of the full

counting statistics of the quantum shuttle. The

theory presented here has a broad range of

applicability, encompassing the few previous

studies of the current noise spectra of nano-

electromechanical systems.

Acknowledgements

The authors would like to thank A. Donarini,

A.D. Armour, and A. Isacsson for stimulating

discussions.

References

[1] M. Blencowe, Phys. Rep. 395 (2004) 159.
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ABSTRACT

We propose a new structure suitable for quantum computing in a solid-state environment: designed defect states in antidot lattices superimposed
on a two-dimensional electron gas at a semiconductor heterostructure. State manipulation can be obtained with gate control. Model calculations
indicate that it is feasible to fabricate structures whose energy level structure is robust against thermal dephasing.

At present an intensive search is taking place for solid-state
structures which are suitable for quantum computing; a
typical example consists of gate-defined double-dot systems
studied by several groups.1-6 A necessary requirement for a
practical application is scalability,7 and many of the existing
structures do not immediately offer this possibility. Here we
propose an alternative scheme: quantum-mechanical bound
states which form at defects in an antidot superlattice defined
on a semiconductor heterostructure. Scalability is not a
critical issue for the suggested structures, which enable the
fabrication of a large number of solid-state qubits with no
particular extra effort. The flexibility offered by e-beam or
local oxidation techniques allows the sample designer to
optimize the samples for many different purposes with a very
high degree of control.

Antidot lattices on semiconductor heterostructures have
been a topic of intense research due to their interesting
transport properties. In the semiclassical regime novel
oscillatory features in magnetoresistance have been discov-
ered,8 and as the lattice spacing is diminished and the quan-
tum regime is approached, exotic energy spectra, such as
the Hofstadter butterfly9 may become experimentally acces-
sible. The fabrication of antidot lattices with lattice constants
as small as 75 nm has been demonstrated in experiments.10

Smaller lattice constants are however expected to be within
experimental reach11 leading to a further enhancement of
quantum effects. We shall in this paper demonstrate that
state-of-the-art antidot lattices may have important practical
applications in quantum information processing.

Consider a two-dimensional electron gas (2DEG) at a
GaAs heterostructure12 superimposed with a triangular lattice
of antidots with lattice constant Λ. In the effective-mass

approximation the two-dimensional single-electron Schröd-
inger equation reads

where the sum runs over all antidots i, positioned at Ri. Each
antidot is modeled as a circular potential barrier of height
V0 and diameter d, i.e., V(r) ) V0 for r < d/2, and zero
elsewhere. It is convenient to express all energies in terms
of the length scale Λ. Assuming that V0 is so large that the
eigenfunctions ψn do not penetrate into the antidots, i.e., ψn

) 0 in the antidots, eq 1, simplifies to13

where we have introduced the dimensionless eigenenergies
εn ≡ EnΛ

22m*/p2. For GaAs p2/2m* = 0.6 eV nm2.
We first consider the perfectly periodic structure defined

by the Wigner-Seitz cell shown in the left inset of Figure
1. For definiteness, we now take d/Λ ) 0.5. Imposing
periodic boundary conditions leaves us with the problem of
solving eq 2 on a finite-size domain. This class of problems
is well-suited for finite-element calculations, and the available
software packages make the required computations simple,
convenient, and fast.14 Figure 1 shows finite-element calcula-
tions of the band structure along the high-symmetry axes
indicated in the right inset of the figure. For state-of-the-art
samples, Λ = 75 nm, implying a band splitting of the order
of 3 meV between the two lowest bands at the Γ-point. On
the figure we have also indicated the gap ϑeff below which
no states exist for the periodic structure.* Corresponding author. E-mail: cf@mic.dtu.dk.
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Next, we turn to the case where a single antidot has been
left out of the lattice. Relying on the analogy with photonic
crystal fibers, where similar ideas have been used to design
confined electromagnetic waves,15 we expect one or several
localized states to form at the location of the “defect”. The
eigenfunctions ψn corresponding to localized states decay
to zero within a finite distance from the defect, and it is again
sufficient to solve eq 2 on a finite-size domain. The inset in
Figure 2 shows finite-element calculations of eigenfunctions
corresponding to the two lowest eigenvalues for the geo-
metrical ratio d/Λ ) 0.5. The computed energy eigenvalues
are converged with respect to an increase of the size of the
domain on which eq 2 is solved. The two lowest eigenvalues
correspond to localized states, whereas higher eigenvalues
correspond to delocalized states (not shown). The second
lowest eigenvalue is 2-fold degenerate, and we only show
one of the corresponding eigenstates. One observes that the
shown eigenstate does not exhibit the underlying 6-fold
rotational symmetry of the lattice. This can be traced back
to the fact that the mesh on which eq 2 was solved also
lacked this symmetry. However, as recently shown by
Mortensen et al.16 even weak disorder in the lattice leads to
a significant deformation of the higher-order eigenstates, and
the shown eigenstate is thus likely to bear a closer resem-
blance to the states occurring in experimental structures,
rather than the one found for an ideal lattice. Similarly, we
note that the formation of defect states does not rely crucially
on perfect periodicity of the antidot lattice, which thus allows
for a certain tolerance in the fabrication of the antidot lattice.

Figure 2 also shows finite-element calculations of the
lowest eigenvalues corresponding to localized states as a
function of the geometrical ratio d/Λ. In addition, the gap
ϑeff as indicated on Figure 1 is plotted as a function of d/Λ.

The gap gives an upper limit to the existence of bound states
and can be considered as the height of an effective two-
dimensional spherical potential well in which the localized
states reside. For GaAs with d/Λ ) 0.5 and Λ ) 75 nm the
energy splitting of the two levels is ∆E ) E2 - E1 = 1.1
meV, which is much larger than kBT at subkelvin tempera-
tures. Thus, a missing single antidot in the lattice leads to
the formation of a quantum dot with two levels at the location
of the defect with an energy level structure suitable for a
charge (orbital) qubit. As d/Λ is increased, the confinement
becomes stronger and the eigenvalues and their relative
separations increase. Moreover, the number of levels in the
quantum dot can be controlled by adjusting d/Λ, allowing
for n ) 1, 2, 3, ..., levels in the quantum dot. In particular,
for any d/Λ < 0.42 a single-level quantum dot is formed.

For sample optimizing purposes it is convenient to have
simple expressions for the eigenvalues. In the limit of d/Λ
approaching 1, the problem can be approximated with that
of a two-dimensional spherical infinite potential well with
radius Λ - d/2. For this problem the lowest eigenvalue is
ε1

(∞)
) Λ2

R0,1
2/(Λ - d/2)2, where R0,1 = 2.405 is the first

zero of the zeroth order Bessel function. Although this
expression yields the correct scaling with d, the approxima-
tion obviously breaks down for small values of d/Λ. In that
limit we follow the ideas of Glazman et al.17 who studied
quantum conductance through narrow constrictions. The
effective one-dimensional energy barrier for transmission
through two neighboring antidots has a maximum value of
π2, and we thus approximate the problem with that of a two-
dimensional spherical potential well of height π2 and radius
Λ. The lowest eigenvalue ε1

(π2) for this problem can be

Figure 1. Band structure for the periodic structure. The ratio
between the diameter of the antidots and the lattice constant is d/Λ
) 0.5. Only the five lowest bands are shown. On the (dimension-
less) energy axis we have indicated the gap ϑeff which can be
considered as the height of an effective potential (see text). Left
inset: Wigner-Seitz cell (gray area) for the periodic structure.
Circles indicate antidots. Right inset: First Brillouin zone (gray
area) with indications of the three high-symmetry axes along which
the band structure was calculated.

Figure 2. Energy spectrum for a single quantum dot. The three
lowest dimensionless eigenvalues, ε1, ε2, ε3, (corresponding to
localized states) as a function of the ratio between the antidot
diameter d and the lattice constant Λ. The full line indicates the
height ϑeff of the effective potential giving an upper limit to the
existence of bound states (see text). The thin dotted line is the
semianalytic expression given in eq 3. Inset: Localized eigenfunc-
tions ψ1(r) (upper panel) and ψ2(r) corresponding to the eigenvalues
ε1 and ε2, respectively, for d/Λ ) 0.5. The absolute square
|ψi(r)|2, i ) 1, 2, is shown.
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determined numerically, and we find ε1
(π2) = 3.221. Cor-

recting for the low-d/Λ behavior we find

In Figure 2 we show this expression together with the results
for the lowest eigenvalue determined by finite element
calculations. As can be seen on the figure, the expression
given above captures to a very high degree the results
obtained from finite-element calculations. For the higher-
order eigenvalues, similar expressions can be found.

The leakage (transmission probability for penetrating the
effective potential) due to a finite size of the antidot lattice
can be found in the WKB approximation.18 Multiplying by
a characteristic attempt frequency we get the following
estimate for the inverse lifetime

where N is the number of rings of antidots surrounding the
defect, and Veff ) ϑeffp

2/2m*Λ2. For GaAs with Λ ) 75 nm,
d/Λ ) 0.4, and N ) 1, 2, 3, 4, 5, respectively, we find τd =

0.8 ns, 0.3 µs, 90 µs, 30 ms, 10 s. We see that even relatively
small “superlattices” offer nearly perfect confinement.

We next consider the case where an antidot and one of its
next-nearest neighbors have been left out of the lattice. Due
to the close proximity of the resulting quantum dots, the
different states of the two quantum dots couple with a
coupling determined by the overlap of the corresponding
single-dot wavefunctions. In particular, for two single-level
quantum dots, L and R, with corresponding states |L〉 and
|R〉, respectively, a bonding |-〉 ) (|L〉 - |R〉)/x2 and an
antibonding state |+〉 ) (|L〉 + |R〉)/x2 form. The corre-
sponding eigenenergies are E( ) E ( |t|, with E being the
eigenenergy corresponding to each of the states |L〉 and |R〉
and t being the tunnel matrix element. From the eigenenergy
splitting we easily obtain the tunnel matrix element as |t| )
(E+ - E-)/2.

The coupling of the two levels can be tuned using a
metallic split gate defined on top of the 2DEG in order to
control the opening connecting the two quantum dots. By
increasing the applied gate voltage, one squeezes the opening,
thereby decreasing the overlap of the two states |L〉 and |R〉.
In the following we model the split gate with an infinite
potential barrier shaped as shown on the inset in Figure 3.
Changing the applied gate voltage effectively leads to a
change of the width w of the opening, which we in the
following take as a control parameter.

In Figure 3 we show finite-element calculations of the
dimensionless tunnel matrix element |τ| ≡ |t|Λ22m*/p2 as a
function of the geometrical ratio w/Λ for a number of
different values of d/Λ in the single-level regime, i.e., d/Λ
< 0.42. For GaAs with Λ ) 75 nm and d/Λ ) 0.4, w/Λ )

0.6, the tunnel matrix element is |t| ) 0.015 meV. With this
coupling an electron initially prepared in the state |L〉 is
expected to oscillate coherently between |L〉 and |R〉 with a
period of T ) h/2|t| ) 0.14 ns. We note that the period agrees
well with the time scale set by the lifetime obtained from
eq 4 with N ) 1. According to the figure the coupling varies
over several orders of magnitude, thus clearly indicating that
the coupling of the two quantum dots can be controlled via
the applied gate voltage.

We have performed a numerical time propagation of an
electron initially prepared in the state |L〉. In the inset of
Figure 3 we show a number of snapshots at different points
in time as the electron propagates from the left to the right
quantum dot. Once located in the right quantum dot, the
electron starts propagating back to the left quantum dot (not
shown), confirming the expected oscillatory behavior.

Considering the double-dot as a charge qubit, one-qubit
operations may be performed by controlling the tunnel matrix
element as described above. Alternatively, one may consider
the spin of two electrons, each localized on one of the
quantum dots, as qubits. In that case the qubits (the spins)
couple due to the exchange coupling, which again depends
on the amplitude for tunneling between the two quantum
dots. In this manner one may perform two-qubit operations
as originally proposed in ref 1.

In this work we have carried out a number of model
calculations showing that an implementation of qubits using
defect states in an antidot lattice is feasible. While we have
here only considered the most basic building blocks of a

Figure 3. Coupling between two single-level quantum dots. The
dimensionless tunnel matrix element |τ| as a function of the ratio
between the width w of the opening defined by the split gates and
the lattice constant Λ for different values of d/Λ (0.2, 0.3, 0.4) in
the single-level regime. The width w is defined as the shortest
distance between the split gates. Inset: Time propagation of an
electron initially prepared in the state |L〉 (uppermost panel).
Parameters are d/Λ ) 0.4 and w/Λ ) 0.6 which for GaAs with Λ

) 75 nm implies as oscillation period of T ) 0.14 ns (see text).
The following panels show the state of the electron after a time
span of T/8, 2T/8, 3T/8 (lowest panel), respectively. The absolute
square |ψ(r)|2 of the electron wavefunction is shown.
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quantum computer, a single charge qubit or two spin-qubits,
we believe that the suggested structure can readily be scaled
to a larger number of qubits. It is not difficult to imagine
large architectures consisting of an antidot lattice with several
coupled defect states and/or linear arrays of defect states
constituting quantum channels along which coherent and
controllable transport of electrons can take place.19 We
believe that the suggested structure, when compared to
conventional gate-defined quantum dots, has the advantage
that less wiring is needed. The individual antidots need not
be electrically contacted, which in the case of conventional
gate-defined structures may be a critical issue for large
structures consisting of many quantum dots.

In conclusion, we have suggested a new structure which
seems to offer many attractive features in terms of flexibility,
scalability, and operation in the pursuit of achieving solid-
state quantum computation.
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We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots,

enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by

temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based on a

combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to

existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random

electrical fluctuations in the electrodes defining the quantum dots.

DOI: 10.1103/PhysRevLett.97.240501 PACS numbers: 03.67.Lx, 71.70.Ej, 73.21.La

It is believed that solid-state systems could facilitate

large-scale quantum computing [1] due to the well-

developed fabrication techniques that allow for a high

degree of scalability. On the other hand, solid-state systems

are inherently more noisy than, e.g., quantum optical sys-

tems, and, in particular, several sources of low-frequency

noise are typically present in a solid-state environment.

One prominent candidate for solid-state quantum comput-

ing uses electron spins in semiconductor quantum dots as

carriers of the fundamental unit of information, the qubit

[2]. Electron spins have the advantage that they are weakly

coupled to the surroundings and therefore weakly sensitive

to noise. At the same time, however, this weak coupling

makes the electron spin hard to control experimentally. To

couple two spin qubits, it was proposed to use the exchange

coupling between electron spins in neighboring quantum

dots [3], and this was recently demonstrated experimen-

tally [4]. Here the triplet and singlet spin states have differ-

ent charge profiles, thereby enabling electrical control of

the coupling. Unfortunately, this spin-charge coupling also

makes the qubits sensitive to electrical noise and, in par-

ticular, to low-frequency noise [5]. In this setting the spin-

orbit interaction is also considered as a source of decoher-

ence [6], because it mixes spin and charge. Recently,

however, it has been proposed that it could also play a

role in the coherent interaction of qubits [7]. In this Letter

we take these ideas further and propose to use the spin-

orbit interaction as a general means to manipulate electron

spins. The spin-orbit interaction allows for electrical con-

trol of both single- and two-qubit operations, but unlike the

exchange interaction, the spin-orbit interaction generates

dressed states of spin and charge where the mixing happens

at a high frequency, making the interaction less susceptible

to low-frequency noise.

While the general methods we propose in this Letter are

applicable in a wide range of situations, we only consider a

simplified one-dimensional model where the electrons are

localized in quantum dots by an external potential V�x�.
Physically, we may think of a structure like the one shown

schematically in Fig. 1 which was recently realized experi-

mentally [8], and we give realistic parameters correspond-

ing to such a system. In our model we include a

perpendicular magnetic field B (defining the z direction)

and a spin-orbit coupling of the form p�y, where p denotes

the momentum in the x direction [9]. With two electrons

trapped in a double-dot potential the Hamiltonian of the

system reads

H�H1 �H2 �
e2

4�"r"0jx2 � x1j
;

Hi �
p2

i

2m
�V�xi��

1

2
g�BB�

z
i ��pi�

y
i ; i� 1;2:

(1)

Here � denotes the strength of the spin-orbit coupling,

while m is the effective electron mass. Below, we first

consider how the spin-orbit interaction allows us to control

the spin state of a single electron and then move on to

discuss how the combination of the spin-orbit interaction

and the Coulomb interaction enables two-qubit operations

in a manner analogous to the method used for trapped ions

[11].

First, we consider a single electron, and for our analyti-

cal calculation we assume that the potential is harmonic,

but has a time varying equilibrium position denoted �x�t�,

Vg

b

h
x

− b b0
x

FIG. 1 (color online). A nanowire (light gray) placed above

three electrodes. The electrodes are used to define electrostati-

cally a double quantum dot within the nanowire. The electrodes

are placed at a distance b apart, while the nanowire is situated at

a distance h above the plane of the electrodes. The inset shows a

representative curve for the potential Vg�x� along the nanowire

(the x axis) with the electrodes placed at positions x � �b, 0, b,

respectively. The shown setup resembles the one used in the

experiment in Ref. [8].
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V�x� � m!2
0�x� �x�t��2=2. We have omitted the subscript

i, since we are considering a single electron. Physically the

time varying equilibrium position can be induced with time

varying potentials on the electrodes. We proceed by per-

forming a unitary transformation H ! UHUy with U �
exp�i�y�x� �x�0��=‘so�, where we have introduced the

spin-orbit length ‘so � @=m�, which characterizes the

length scale of the spin-orbit interaction, i.e., in the ab-

sence of a magnetic field, a spin along the x or z directions

is flipped after traveling a distance �‘so=2. With this trans-

formation the Hamiltonian becomes

H �
p2

2m
�

1

2
m!2

0�x� �x�t��2 �
1

2
g�BB

�

�

cos

�

2�x� �x�0��

‘so

�

�z � sin

�

2�x� �x�0��

‘so

�

�x

�

:

(2)

We further assume that the renormalized Zeeman splitting

�z 	 ~g�BB (~g defined below) is much smaller than the

oscillator energy @!0, and that the equilibrium position is

changed adiabatically with respect to the oscillator fre-

quency !0 
 �1=‘o��d �x�t�=dt�, where ‘o �
���������������

@=m!0

p

is

the characteristic oscillator length. In this limit, we can

trace out the motional degrees of freedom and obtain

Hspin �
1

2
~g�BB

�

cos

�

2� �x�t� � �x�0��

‘so

�

�z

� sin

�

2� �x�t� � �x�0��

‘so

�

�x

�

; (3)

with the renormalized g factor [12] given by

~g � ghe2i�x� �x�0��=‘soi � g exp���‘o=‘so�
2�: (4)

The renormalization of the g factor reflects that the

qubits states are not pure states of the electron spin, but

dressed states of spin and position [13]. Normally, such

admixture of spin and position introduces decoherence

because the position is coupled to charge fluctuations, but

in this case the charge distribution is independent of the

spin state, and produces no decoherence in the absence of a

magnetic field. With a magnetic field the dressed states are

still insensitive to slowly varying electric fields (slow

compared to the Zeeman frequency �z=@), which only

shift the equilibrium position, while the spin state follows

adiabatically. The dressed states will, however, be sensitive

to slowly varying gradients of the electric fields which

change the trap frequency !0. Because of the dependence

of ~g on ‘o in Eq. (4) such fluctuations in !0 will affect the

Zeeman splitting and thereby cause decoherence of the

spin states. As we shall see below this is one of the major

limitations for the coupling of two qubits, but it will not

significantly affect the fast single-qubit operations, pro-

vided that the ground state width is reasonably well

defined.

Remarkably, the coupling of spin and position can be

used to perform single-qubit operations if one applies an

electric field with a sufficiently fast variation in time. If we

consider the Hamiltonian in Eq. (3) there are two distinct

principles for such single-qubit operations. One was con-

sidered in Ref. [14], where small amplitude oscillations of

the equilibrium position (j� �x�t�j � ‘so) at the Zeeman

frequency produced spin-orbit induced electron spin reso-

nance (ESR) oscillations between the two spin states. The

second possibility, similar to Ramsey spectroscopy, for

producing spin reversals is to first perform a large rapid

change of the equilibrium position for a very short dura-

tion. In particular, if we change �x�t� by �‘so=4 on a time

scale much shorter than @=�z, the effective Hamiltonian

becomes Hspin � �z�
x=2. Consequently, after a time

@�=�z the spin state has been flipped and we can then

change �x�t� back to the original position. The second

procedure has the advantage that it does not rely on any

resonance conditions and allows for very rapid manipula-

tion of the spin. Since the time scale can be changed by

changing the magnetic field, the spin flip time will in

practice only be limited by how fast one can change the

voltage on the electrodes. As a particular example of

material parameters, we take parameters typical for InAs,

i.e., m � 0:027me, @� � 3� 10�8 meVm and g � 14:8,

giving ‘so � 94 nm. With B � 40 mT and @!0 �
0:5 meV, we get ‘o � 75 nm, so that the Zeeman fre-

quency is �z=@ � �2��4:4 GHz. The required displace-

ment of the electron spin can be achieved by applying an

electric field E � �‘som!2
0=4e � 6:6 �V=nm, which for

a setup like in Fig. 1 with an electrode spacing of b �
500 nm corresponds to a voltage of roughly 3 mV, and the

entire spin flip process can be achieved in approximately

0.1 ns.

In addition to being important for performing logical

operations in a quantum computer, the ability to perform

rapid spin flips also allows the reduction of the leading

kinds of decoherence due to the presence of magnetic

impurities and the hyperfine coupling to nuclear spins.

For electron spins in GaAs a dephasing time on the order

of 10 ns has been reported [4], and we expect a similar time

scale for InAs. This dephasing can, however, be reversed

by applying pulses, which flip the spin on a much shorter

time scale [4].

The spin-orbit interaction can also mediate two-qubit

interactions in a very effective way. Returning to the setup

shown in Fig. 1 described by the Hamiltonian in Eq. (1), we

consider next the possibility of using the dipole moment

associated with displacements of the electron charges to

couple the two spins. In this one-dimensional geometry the

two dots holding each one spin are separated by a distance

d � �x2 � �x1 > 0. We consider the limit where the two

electrons are well separated, allowing us to expand the

Coulomb interaction term as 1=jx2 � x1j ’ 1=d� �=d2 �
�2=d3, while using d 
 � 	 �x2 � �x2� � �x1 � �x1�. The

first term in this expansion gives a constant contribution to

the energy, the second term corresponds to constant forces,

which redefine the two equilibrium positions. The last term
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has diagonal terms, x2i , which provide a small renormal-

ization of the trapping frequencies. Finally, the interesting

term is the cross term �2�x1 � �x1��x2 � �x2�=d
3, which

results in a coupling of the two orbitals degrees of freedom,

and hence also, via the spin-orbit interaction, between the

two spin degrees of freedom.

To calculate this coupling we go back to Eq. (2) (for each

electron) with time independent equilibrium positions

�xi�t� � �xi�0�, and perform perturbation theory in the mag-

netic field. To second order in B the effective Hamiltonian

for a single electron spin is still given by Eq. (3), i.e., Hi �
~g�BB�

z
i=2 (for i � 1, 2) plus a spin independent contri-

bution. The cross term that couples the two spins gives rise

to an effective spin coupling term given by

Hspin;12 � �
e2

2�"0"rd
3
hx1 � �x1ihx2 � �x2i; (5)

where the brackets only refer to a trace over the vibrational

state, not the spin state. Because the two orbital degrees to

this order are decoupled the expectation value separates. To

leading order in B, the displacement of the electrons can be

found from Eq. (2) by first order perturbation theory, and

we obtain

hxi � �xii � �x
i

~g�BB‘
2
o

@!0‘so
: (6)

Combining this with the single particle contributions, we

arrive at the final effective Hamiltonian for the two spins

Hspin � ��x
1�

x
2 �

1

2
~g�BB��

z
1 � �z

2�; (7)

where the coupling constant � is given by

� � �
e2

4�"0"r

2‘4o�~g�BB�
2

‘2so�@!0�
2d3

: (8)

We stress that this effective Hamiltonian is correct to all

orders in the spin-orbit coupling, but only to second order

in the B field and first order in the Coulomb interaction

between the two electrons. The last approximation can,

however, be relaxed without changing the form of the

Hamiltonian, but at the expense of a more complicated

expression for �.

To characterize the stability of the proposed coupling

mechanism to slowly varying perturbations, such as fluc-

tuations in the gate electrodes, we develop a more realistic

model for the double-dot potential V�x�. We are having in

mind an experimental setup like the one shown in Fig. 1

[8], and, consequently, we consider the electrostatic poten-

tial Vg�x� created by three parallel electrodes with spacing

b, each modeled as an infinite line charge, along the x axis

running perpendicular to the electrodes at a distance h
above the plane of the electrodes. The ratio of the charge

density on the left (central) electrode �l�c� and the right

electrode �r is denoted �l�c�, i.e., �l�c� 	 �l�c�=�r, which

we assume can be controlled via the voltages applied to the

electrodes. Moreover, we define @!g 	 e�r=4�"r"0 and

xg 	
����������������

@=m!g

q

, in terms of which we express the electro-

static potential as

Vg�x� � Ve�x� b; �l� � Ve�x; �c� � Ve�x� b; 1� (9)

with Ve�x;�� � ��@!g ln��x
2 � h2�=x2g�. A representa-

tive curve for Vg�x� is shown the inset of Fig. 1.

We have implemented numerically on a finite-size real-

space grid the two-particle Hamiltonian in Eq. (1) using

Vg�x� in Eq. (9) as the potential V�x�. With N � 100–500

grid points, the resulting matrix representation of the

Hamiltonian is large (dimension 4N2 � 4N2), but sparse,

allowing for computationally cheap calculations of the

low-energy spectrum from which we can extract the cou-

pling of the various spin states. In the left panel of Fig. 2 we

show numerical calculations of the coupling � as a function

of the applied B field. The renormalized Zeeman splitting

due to the applied B field is much smaller than the spacing

of the orbital levels, and we thus expect Eq. (8) to hold. The

numerical results show excellent agreement with the ana-

lytic expression. For the parameters used in the figure

typical interaction strengths are �=@ � �2��f, with f�
0:1 GHz, corresponding to gate times on the order of

1=�2f� � 5 ns.

In the right panel of Fig. 2 we show numerical results for

the coupling � as a function of the voltage applied to the

central electrode parametrized by �c. In order to determine

the contribution arising from the bare exchange coupling

(due to the Pauli principle and the Coulomb interaction),

we also show numerical results for the splitting of the spin

states without the spin-orbit coupling. Compared to the

bare exchange coupling J, which is clearly exponentially

dependent on the applied voltage, the spin-orbit induced

coupling shows a weaker voltage dependence.
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FIG. 2 (color online). Numerical calculation of the coupling �.

Material parameters correspond to InAs and we use @!g �

1 meV, �l � 1, xg � 53 nm, h � 0:5xg, b � 10xg. Left panel:

The coupling � as function of applied magnetic field B for �c �
0:6 (upper circles), 0.7, 0.8 (lower circles). Solid lines show

Eq. (8) with the orbital energy spacing @!0 extracted from the

low-energy spectrum and d being the only fitting-parameter.

Corresponding to �c � 0:6, 0.7, 0.8, we have @!0 � 0:39,

0.40, 0.42 meV, and d � 8:3xg, 8:7xg, 9:1xg, respectively.

Right panel: Open circles show the coupling � as a function of

the applied voltage on the central electrode parametrized by �c

with B � 40 mT. Solid circles show the contribution from the

bare exchange coupling J.
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Fluctuations in the electrostatic environment cause fluc-
tuations of the orbital level splitting @!0 and the distance
d. Typically these fluctuations have the form of 1=f noise
and concentrating on the dominating low-frequency com-
ponent, we characterize in the following the sensitivity of
the coupling to electrical fluctuations using a purely static
calculation by taking derivatives with respect to �c and �l.
For the spin-orbit induced coupling � given in Eq. (8), we
have j�1=���@�=@!0��!0j � 4j�!0=!0j and j�1=���
�@�=@d��dj � 3j�d=dj. In order to perform reliable two-
qubit operations, both of these quantities must be much
smaller than unity, which for the fluctuations imply
j�!0=!0j, j�d=dj � 0:1. In Fig. 3, we show j�1=���
�@�=@�i�j as a function of �i, i � c, l. The coupling is
stable for j�1=���@�=@�i���ij � 1, i � c, l, implying
j��ij< 0:1, i � l, c according to the numerical results.
This does not impose any unrealistic requirements on the
experimental setup. For comparison we also show j�1=J��
�@J=@�i�j, i � c, l for the exchange interaction J, which
for fluctuations in �c is an order of magnitude more
sensitive.

As discussed previously, electrical fluctuations also
cause fluctuations of the renormalized Zeeman split-
ting, �z. For �z, we have j�1=���@�z=@!0��!0j �
�4�"r"0@md3!3

0
=e2~g�BB�j�!0=!0j. For InAs with d �

500 nm, @!0 � 0:3 meV, B � 80 mT, j�1=���
�@�z=@!0��!0j ’ 50j�!0=!0j, implying the stricter con-
dition j�!0=!0j � 0:01. In Fig. 3, we show numerical
results for j�1=���@�z=@�i�j as a function of �i, i � c; l.
The results indicate that we must require j��ij< 0:01, i �
l; c for the renormalized Zeeman splitting to be stable. If
this requirement cannot be met in experiments, the prob-

lem may be circumvented by encoding a single qubit in a
singlet-triplet pair as recently discussed in Refs. [4,15] or
alternatively by combining the gate with fast spin-echo
pulses implemented by rapidly shifting the position of
the electrons.

In conclusion, we have presented a spin-orbit induced
mechanism for coherent control of spin qubits in quantum
dots. The spin-orbit coupling allows for fast single-qubit
operations, and the two-qubit operations are robust against
electrical fluctuations in the electrodes defining the double
dot. We emphasize that although some of the above con-
clusions have been made in connection with a specific
experimental setup in mind, they also hold at a more
general level.
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FIG. 3 (color online). Numerical calculations of the sensitivity
to fluctuations in the gate electrodes. The sensitivity of the spin-

orbit induced coupling � and the Zeeman splitting �z are
quantified by j�1=���@�=@�i�j, i � c; l (open circles) and

j�1=���@�z=@�i�j, i � c; l (stars), respectively. Material parame-
ters correspond to InAs. The other parameters are B � 80 mT,
@!g � 1 meV, xg � 53 nm, h � 0:5xg, and b � 10xg. In both

panels solid circles show the sensitivity of the bare exchange

coupling j�1=J��@J=@�i�j, i � c; l. Left panel: Sensitivity to
fluctuations in the central electrode. The electrostatic potential
is symmetric, i.e., �l � 1. Right panel: Sensitivity to fluctuations

in the left electrode with �c � 0:7.
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Spin-orbit induced spin-qubit control in nanowires
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Abstract. We elaborate on a number of issues concerning our recent proposal for spin-qubit

manipulation in nanowires using the spin-orbit coupling. We discuss the experimental status

and describe in further detail the scheme for single-qubit rotations. We present a derivation

of the effective two-qubit coupling which can be extended to higher orders in the Coulomb

interaction. The analytic expression for the coupling strength is shown to agree with numerics.

1. Introduction

Gate-defined quantum dots containing only a few electrons have been promoted as a possible
candidate for solid state quantum information processing [1]. Qubits are envisioned to be
encoded in the spin degree of freedom of the trapped electrons, which are manipulated
individually using local electron spin resonance (ESR). Two-qubit gates are carried out by
pulsing electrically the exchange coupling between electrons in neighboring tunnel-coupled
quantum dots [2]. Experimentally, electric control of the exchange coupling between two
electrons in a double quantum dot was recently reported in Ref. [3]. A review of the current
status of quantum computing with spins in solid state systems can be found in Ref. [4].

We have recently proposed to use the spin-orbit (SO) coupling in nanostructures as a general
means to manipulate electron spins in a coherent and controllable manner [5]. More specifically,
we have shown how single-spin flips may be achieved by combining the SO coupling with fast
gate-induced displacements of the electron(s), and how the SO coupling together with the
Coulomb interaction gives rise to an effective spin-spin coupling, which is less sensitive to charge
fluctuations compared to the exchange coupling [6].

Here, we elaborate on a number of issues related to our proposal. First, we discuss a relevant
experimental setup consisting of a gate-defined double-dot in an InAs nanowire [7]. This type of
setup is of particular interest to us due to the strong SO coupling measured in InAs nanowires
[8]. We discuss in further detail our scheme for single-spin flips and present a derivation of
the two-spin interaction, which can be extended to arbitrary order in the Coulomb interaction.
Finally, we show that the analytic expression for the two-spin interaction agrees with numerics.

2. Quantum dots in nanowires

In the work described in Ref. [7] a setup consisting of an InAs nanowire placed above a
number of gold electrodes was successfully fabricated. The gold electrodes were used to define
electrostatically a double quantum dot within the InAs nanowire, which was characterized
using low-temperature transport measurements, and electrostatic control of the tunnel coupling
between the two quantum dots was demonstrated. The setup is shown schematically in Fig. 1.

IOP Publishing Journal of Physics: Conference Series 61 (2007) 302–306
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Figure 1. An InAs nanowire (light gray) placed above three gold electrodes. The three
electrodes are used to define electrostatically a double quantum dot along the InAs nanowire.
A representative curve for the electrostatic potential Vg(x) along the wire is shown on the inset
to the right. The gold electrodes are placed at positions x = −b, 0, b, respectively. Typical
length scales are h � 25 nm and b � 200 nm. In the experiment of Ref. [7] two additional gold
electrodes were used as plunger gates (not shown).

The choice of material is interesting due to the strong SO coupling and the large g-factor in
InAs compared to GaAs. In Ref. [8] measurements of a positive correction to the conductivity of
InAs nanowires were attributed to weak antilocalization arising from spin relaxation of electrons
propagating through the nanowires. This interpretation was supported further by applying a
magnetic field that was sufficiently strong to break time-reversal symmetry, thereby suppressing
the weak antilocalization correction to the conductivity. A spin relaxation length on the order of
200 nm was reported, but no definitive microscopic theory for the underlying spin-orbit coupling
mechanism could be given. The exact nature of the SO coupling in InAs nanowires is still to
be fully understood and deserves further experimental and theoretical investigation. We expect,
however, that the allowed type and strength of the SO coupling in InAs nanowires are highly
dependent on various experimentally controllable parameters, e.g., the growth direction of the
nanowire.

3. Single-spin manipulation

We now describe how the SO coupling can be used to flip the spin of an electron in a controllable
manner. Motivated by the structure described above we consider a one-dimensional system1

consisting of a single electron trapped in a gate-defined quantum dot which we approximate
with the harmonic potential V (x, t) = 1

2
mω2

0(x − x̄(t))2 along the x-axis. We assume that
the minimum position of the harmonic potential, denoted x̄(t), can be varied by changing the
voltages on the gate electrodes. A static B-field perpendicular to the x-axis splits the spin states
and determines the z-axis. The x-, y-, and z-axis define the lab frame in which the Hamiltonian
reads

Hlab =
p2

x

2m
+

1

2
mω2

0(x − x̄(t))2 +
1

2
gµBBσz + αpxσy. (1)

Here α denotes the strength of the SO coupling. The particular form of the SO coupling is
assumed to arise from lack of inversion symmetry in the yz-plane [9]. In order to get a feeling
for the SO coupling it is useful to introduce the SO length lso ≡ h̄/mα: Without an applied
B-field, a spin along the z-axis is flipped after having traveled the distance πlso/2 along the
x-axis. Another important length scale is the oscillator length defined as l0 ≡

√

h̄/mω0.
It is convenient to work in a frame that follows the SO induced rotation of the spin. We shall

refer to this frame as the rest frame. The Hamiltonian in the rest frame Hrest is obtained by the

1 The following results are not only valid for InAs nanowires, but more generally for gate-defined quantum dots

in one-dimensional systems with strong SO coupling.
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unitary transformation Hrest = UHlabU
†, where U = exp (iσy(x − x̄(0))/lso), and we find

Hrest =
p2

x

2m
+

1

2
mω2

0(x − x̄(t))2 +
1

2
gµBB

[

cos

(

2(x − x̄(0))

lso

)

σz − sin

(

2(x − x̄(0))

lso

)

σx

]

. (2)

The static B-field in the lab frame is rotating in the rest frame of the spin as it travels along
the x-axis. In the following we work in a regime, where the equilibrium position x̄(t) is slowly
changed on the time-scale of the orbital degree of freedom, while fast on the time-scale of the
spin, i.e., gµBB/h̄ � (1/l0)dx̄(t)/dt � ω0. This allows us to trace out the orbital degree of
freedom by projecting Hrest onto the oscillator ground state, whereby we arrive at an effective
spin Hamiltonian reading

Hspin =
1

2
g̃µBB

[

cos

(

2(x̄(t) − x̄(0))

lso

)

σz − sin

(

2(x̄(t) − x̄(0))

lso

)

σx

]

(3)

with the renormalized g-factor given by

g̃ = g
〈

e2i(x−x̄(0))/lso
〉

= ge−(l0/lso)2 . (4)

Here the brackets denote an average with respect to the oscillator ground state.
Using the spin Hamiltonian given in Eq. (4) we can manipulate the spin by changing the

equilibrium position x̄(t). Below we describe a scheme for spin flips, which does not rely on any
resonance conditions as in previous studies [10, 11]. Instead, our scheme relies on fast (on the
time scale of the spin) and large (on the order of lso) changes of x̄(t) obtained by controlling
the potentials on the gate electrodes. Considering a spin being in an eigenstate of the spin
Hamiltonian at t = 0, i.e., Hspin = 1

2 g̃µBBσz, the scheme reads:

(i) Fast displacement of x̄(t): x̄(0) → x̄(0) + πlso/4. This rotates the B-field into the x-axis of
the rest frame.

(ii) Free evolution of the spin now governed by the spin Hamiltonian Hspin = −
1
2 g̃µBBσx for a

time span ∆t = h̄π/g̃µBB. This rotates the spin in the rest frame by π around the x-axis.

(iii) Fast return of x̄(t): x̄(0) + πlso/4 → x̄(0). This returns the B-field to the initial position in
the rest frame, pointing along the z-axis.

After the three steps, a spin initially prepared in an eigenstate of Hspin = 1
2 g̃µBBσz has been

flipped into the other eigenstate. For realistic experimental parameters one finds an estimated
time for the spin flip process on the order of 0.1 ns [5]. A graphical interpretation of the spin
flip process (as seen in the lab frame) is given in Fig. 2. We note that the spin Hamiltonian
given in Eq. (4) allows for rotations of the spin to any point on the Bloch sphere.

Figure 2. Bloch sphere in the lab frame with the full black
arrow denoting the initial spin state. The three colored dashed
lines indicate the rotations of the spin during the spin flip
scheme. The green lines correspond to the fast displacements
of x̄(t), while the blue line in the xy-plane corresponds to the
rotation around the static B-field. The dashed black arrow
denotes the final spin state.
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4. Two-spin manipulation

The SO coupling also couples spins in neighboring quantum dots. The form and the strength
of the coupling can be found by considering two electrons, each described by a (rest frame)

Hamiltonian H
(i)
rest of the form given in Eq. (2) with different values of x̄i, i = 1, 2, for each

of the two quantum dots. The orbital degrees of freedom are coupled due to the Coulomb
interaction between the electrons, which we expand using 1/|x2 − x1| � 1/d − δ/d2 + δ2/d3,
where we have introduced the distance between the quantum dots d ≡ x̄2 − x̄1 > 0 and assumed
that d � δ ≡ (x2 − x̄2) − (x1 − x̄1). Retaining only the term in the expansion of the Coulomb
interaction that couples the positions of the electrons, the two-particle Hamiltonian reads

H = H
(1)
rest + H

(2)
rest −

e2

2πε0εrd3
(x1 − x̄1)(x2 − x̄2). (5)

For the two-spin coupling temporal variations of x̄i, i = 1, 2, are not necessary.
An effective two-spin Hamiltonian Heff can be found using imaginary time formalism. The

two-particle Hamiltonian given in Eq. (5) is written H = H0 + H ′, where H0 denotes the
Hamiltonian of the two oscillators and H ′ ≡ H − H0. We define e−βHeff ≡ Trosc(e

−βH)/Z0,
Z0 ≡ Trosc(e

−βH0), where Trosc denotes a (partial) trace over the two oscillators. Introducing

the operator Û(β) ≡ eβH0e−βH , and the thermal average of an operator A with respect to

H0, 〈A〉0 ≡ Trosc(Ae−βH0)/Z0, we write e−βHeff = 〈Û(β)〉0. Using the formal expression

Û(β) = Tτ exp
(

−
∫ β
0 dτĤ ′(τ)

)

, where Tτ denotes the (imaginary) time-ordering operator and

Ĥ ′(τ) ≡ eτH0/h̄H ′e−τH0/h̄ is the interaction picture representation of H ′ (in imaginary time),
we can in principle calculate the effective two-spin Hamiltonian Heff to any order in H ′. The
first non-vanishing term that couples the two spins arises from the expansion of Û(β) to third

order in H ′ and has the form τxxσ
(1)
x σ

(2)
x , where τxx is to be determined. Concentrating on this

term, we find

e−βHeff � . . .+
(egµBB)2

8πε0εrd3

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3G(x1− x̄1, τ1− τ2)G(x2− x̄2, τ2− τ3)σ

(1)
x σ(2)

x + . . . ,

(6)
where we have assumed that the spin degrees of freedom evolve much slower than the orbital

part, and σ̂
(1)
x and σ̂

(2)
x are thus taken to be time-independent. The correlation function G(xi, τ)

is defined as

G(xi, τ) ≡

〈

Tτ sin

(

2x̂i(τ)

lso

)

xi

〉

0
, (7)

and can be evaluated using linked cluster theory. We find

G(xi, τ) =
l20
lso

e−(l0/lso)2
[

Θ(τ)
(

nB(βh̄ω0)e
ω0τ + (1 + nB(βh̄ω0))e

−ω0τ
)

+ (τ → −τ)
]

, (8)

where Θ(τ) is the Heaviside step function and nB(x) = 1/(ex − 1). Collecting all terms and
carrying out the triple integral, we find

e−βHeff = . . . +
e2

4πε0εr

2l40(gµBB)2

l2so(h̄ω0)3d3
e−2(lso/l0)2(1+nB(βh̄ω0))F (βh̄ω0)σ

(1)
x σ(2)

x + . . . (9)

with F (x) = [x(cosh(x) − 2) + sinh(x)]/2 sinh2(x/2). Having solved the finite-temperature
(β < ∞) problem, we let β → ∞, and identify

τxx = −
e2

4πε0εr

2l40(g̃µBB)2

l2so(h̄ω0)2d3
(10)
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in agreement with our previous work [5]. The imaginary time formalism outlined here allows for
calculation of the coupling to higher order in the Coulomb interaction and corrections due to a
finite temperature.

5. Numerics

In Ref. [5] we used a numerical implementation of the two-particle Hamiltonian in Eq. (5) to
study the coupling τxx in case of non-harmonic confining potentials. Here we use the numerical
implementation to calculate τ as a function of the SO coupling strength α. In Fig. 3 we show a
comparison of numerical results for τxx using nearly harmonic confining potentials and Eq. (10).
The numerical results agree well with the analytic results, and as expected the coupling depends
quadratically on α, i.e., τxx ∝ α2 for small values of α (corresponding to lso � l0), while it for
large values of α is dominated by the renormalized g-factor which drops off exponentially with
increasing α.

0 20 40 60 80
0

0.1

0.2

h̄α [meVnm]

|τ
x
x
|
[µ

eV
]

Figure 3. Two-qubit coupling τxx as a function
of the SO coupling α. Parameters are εr =
15.15, m = 0.027me, g = 14.8, B = 160 mT,
l0 = 80 nm (h̄ω0 � 0.4 meV) and d � 0.75 µm.
Circles indicate numerical results, while the full
line shows Eq. (10).

6. Conclusion

We have elaborated on our recent proposal for spin-qubit manipulation using the SO coupling in
nanostructures. We have discussed an experimental setup with strong SO coupling which may
be relevant for realizing our proposal. We have described in detail how single-spin rotations may
be carried out using fast displacements of the electron(s), and we have derived an expression for
the effective two-spin interaction using imaginary-time formalism. Finally, we have shown that
the analytic result for the two-spin interaction agrees with numerics.
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We propose a semiconductor device that can electrically generate entangled electron spin-photon states,

providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure

that incorporates a coupled double quantum dot. We show that electronic control of the diode bias and

local gating allow for the generation of single photons that are entangled with a robust quantum memory

based on the electron spins. Practical performance of this approach to controlled spin-photon entangle-

ment is analyzed.

DOI: 10.1103/PhysRevLett.98.240501 PACS numbers: 03.67.Mn, 71.35.�y, 73.40.Ty

Many practical approaches to quantum communication

and computation rely upon interfacing stable quantum

systems, which provide a good quantum memory, with

carriers of quantum information (optical photons) at the

level of single quanta. One promising approach to quantum

memory uses electron spins confined in semiconductor

quantum dots [1]. Quantum dots in diode structures can

also be used for creating devices with novel electronic and

optical properties. In particular, the Coulomb blockade

exhibited by quantum dots is being used in experiments

involving single charge and spin transport and manipula-

tion [2–4] as well as for optical experiments such as

generation of single-photons [5–8]. Application of these

systems for quantum communication and computation

protocols is a vibrant area of research [9–16].

In this Letter, we propose and analyze a novel semicon-

ductor device in which an electrically pumped diode struc-

ture can combine controlled photonic interface with stable

quantum memory. Such a device features purely electrical

control over photonic and spin degrees of freedom.

Specifically, we show that it can be used for controlled

generation of entangled states between the frequency of an

outgoing photon and the spin state of the electrons in a

double quantum dot in the insulating layer of the diode

similar to recent laser-driven experiments in atomic sys-

tems [17–19]. Using recently demonstrated techniques

[20], the double-dot spin states can provide a robust quan-

tum memory for long-term information storage, while out-

going photons can be used for probabilistic generation of

long-distance entanglement in direct analogy to ap-

proaches being explored for atomic systems [21]. Finally,

when integrated with gate-controlled quantum dot systems

[22], this device could also form a building block for

scalable quantum computation.

The basic idea of our approach can be understood by

considering the semiconductor nanowire shown in

Fig. 1(a), in which a Coulomb-blockade double quantum

dot is sandwiched between the positively and negatively

doped semiconductor regions, forming a p-i-n diode. By

manipulating the bias across the diode and the local gate,

we can control the injection of electrons and holes into the

double dot at the level of single charges. This allows us to

electrically prepare a metastable exciton complex that

FIG. 1 (color online). Diode structure, charge stability dia-

gram, and decay paths. (a) The device consists of a double

quantum dot within the intrinsic region of a p-i-n diode struc-

ture. A schematic band-edge diagram is shown below. The left

hole state (gray) is assumed to be energetically out of reach.

(b) The stable charge configuration of the double quantum dot as

a function of the bias V and the local gate F. The scale bar

indicates the total number of charges, while the labeling (n, m)

corresponds to the number of electrons on the left (n) and right

(m) dot, replaced by X� for dots containing a negatively charged

exciton consisting of two electrons and a hole. As discussed in

the text, the charging sequence indicated by arrows preferen-

tially initializes the dots in the state j1"; X�
S;+i. (c) Initial and final

states for excitonic recombination together with the polarization

of the emitted photon. The desired decay processes (shown in

black) are selected by filtering �� polarization.
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decays by electron-hole recombination to a charge con-

figuration with a single electron in each of the two dots.

When the two-electron spin states are split by the exchange

coupling [1], the left circularly polarized photon that is

emitted under the electron-hole recombination process will

be frequency-entangled with the spin state of the remaining

electrons [Fig. 1(c)].

Double dots can be grown inside p-i-n junctions with

techniques similar to those recently used to fabricate single

quantum dot nanowire LEDs [23,24]. Alternatively, self-

assembled dots on wafers can be used [25]. As illustrated

in Fig. 1(a), the chemical potentials of the p and n regions

on each side of the intrinsic region can be controlled by

applying a bias across the device, while a gate electrode

nearby the double dot can be used to tune the levels inside

the dots independently of the applied bias. In what follows,

we focus on III-V semiconductors, but in practice, other

optically active materials can be used.

The electrostatic properties of the device can be visual-

ized by using a charge stability diagram [26]. We describe

the charge degrees of freedom of the double quantum dot

using the Hamiltonian

Ĥ DQD � Ĥl
ee � Ĥr

ee � Ĥr
hh � Ĥr

eh � Ĥ� � ĤF; (1)

where the Coulomb repulsion between similar charges

(q � e, h) on the left or right dot reads Ĥs
qq � Uqqn̂

s
q�n̂sq �

1�=2, s � l, r, while the Coulomb attraction between elec-

trons and hole in the right dot reads Ĥr
eh � �Uehn̂

r
en̂

r
h.

Here, n̂lfrg
e�h� is the operator for the number of electrons

(holes) in the left {right} dot. Tunneling of electrons

between the dots with tunnel coupling � is contained in

the term Ĥ�, while ĤF � �eF�n̂rh � n̂re� incorporates the

shift of the electron and hole states in the right dot due to

the local gate F. Electrons with spin � � �1=2 on the left

and right dots are created by ĉyl;� and ĉyr;�, respectively,

while heavy holes in the right dot are described by d̂y
r;�

,

with � � �3=2. In order for the scheme we consider to

work ideally, we assume in the following that the hole

states of the left dot remain unoccupied. This could occur

due to the substantial band gap differences (0.1 eVor more)

between the two dots, due, e.g., to strain and dot size

differences. Electrons are injected into the left dot from

the electron Fermi sea in the n-region at chemical potential

�n, while holes are injected into the right dot from the hole

Fermi sea in the p-region at chemical potential �p.

Assuming weak coupling to the electron and hole Fermi

seas, we solve numerically the master equation for the

probability of occupying the different many-body eigen-

states of the double dot and find the stable charge configu-

rations for the chosen parameter range.

In Fig. 1(b), we show the resulting charge stability

diagram, where the total number of charges on the double

quantum dot is given as function of the bias across the

device V and the local gate F. Here, �n � �0
n � eV=2 and

�p � �0
p � eV=2, where �0

n and �0
p, given by the doping

levels of the n and p regions, respectively, determine the

filling of the double dot without applied voltages. In the

numerical calculations, the values of �0
n and �0

p were used

to fix the occupations of the dots at V, F � 0. For the

shown charge stability diagram we have used the parame-

ters Uee ’ 30 meV, Uhh ’ 50 meV, Ueh ’ 40 meV, � �
1 meV, and the tunnel couplings to the electron and hole

Fermi seas being identical and much smaller than the

temperature T � 4 K. With a given setting of V and F,

the system rapidly reaches the corresponding stable charge

configuration. On the figure, we also indicate the charge

configuration of each of the two dots, where the labeling

(n, m) refers to the charges on the left dot (n) and the right

dot (m), respectively. For configurations with no holes, the

two labels correspond to the number of electrons in the left

and right dot, respectively, while the symbol X� denotes a

negatively charged exciton consisting of two electrons and

a hole. Such excitonic states have previously successfully

been generated and controlled optically [27,28], but the

procedure presented here works all electrically and thereby

does not require any laser control. An external magnetic

field B is applied to the system parallel to the light emission

and growth axis [the z-axis on Fig. 1(a)], i.e., in a Faraday

configuration. In order to have reliable electron spin state

preparation, we will require the Fermi seas to be suffi-

ciently cold: kBT � jg��BBj (see below).

We now describe the charge injection sequence indi-

cated by arrows in Fig. 1(b). The sequence allows us

repeatedly to prepare a desired spin and charge configura-

tion, by injecting charges one at a time, and to direct its

decay and corresponding photon emission process. We

assume that single charges may be injected faster than

the spontaneous decay time ( 	 1 ns for GaAs self-

assembled dots). By controlling the bias V and the local

gate F, the system is first put in the charge configuration (0,

2). The expected ground state spin configuration of this

state is a singlet due to the tight confinement of the elec-

trons to a single dot: j0; 2Si � ĉyr;"ĉ
y
r;#j0i. By increasing the

bias, an additional spin-" electron is added to the left dot,

taking j0; 2Si to j1"; 2Si � ĉyl;"ĉ
y
r;"ĉ

y
r;#j0i. A spin-+ heavy

hole is now added to the right dot by control of the local

gate, yielding the state j1"; X�
S;+i � d̂yr;+ĉ

y
l;"ĉ

y
r;"ĉ

y
r;#j0i, which

we expect to decay to j1"; 1#i � ĉyl;"ĉ
y
r;#j0i via excitonic

recombination (d̂r;+ĉr;"). However, before recombination

takes place, we rapidly (faster than the decay rate) move

to the region, where (1, 1) is the stable charge configura-

tion, hereby preventing emission of more than one photon

(by refilling of an electron and a hole) in each cycle of the

sequence.

The exciton decay couples the state j1"; X�
S;+i to j1"; 1#i.

With finite tunnel coupling between the left and right dots,

this may be written as a superposition j1"; 1#i �

j�1; 1�Si � j�1; 1�T0i�=

���

2
p

, of the exchange-split singlet

and triplet eigenstates j�1; 1�S�T0�i � 2�1=2�ĉyl;"ĉyr;# �
ĉyl;#ĉ

y
r;"�j0i. Since S and T0 have different energies, the
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frequency of the outgoing photon will be entangled with

the spin state [see Fig. 1(c) and Eq. (2) below]. These S-T0

spin states were used in recent double-dot experiments

where it was shown that they form a decoherence free

subspace when manipulated with fast spin-echo pulses

[3,29,30]. With the system in Faraday configuration, the

spin of the hole determines the polarization of the emitted

photon. While a spin-+ heavy-hole recombines with a

spin-" electron under emission of a left-hand circularly

polarized (��) photon, a spin-* heavy-hole recombines

with a spin-# electron under emission of a right-hand

circularly polarized (��) photon. With temperature being

comparable to or larger than the (small) hole Zeeman

energy, the injected hole has a random spin state. With

suitable polarization filtering, it is, however, possible to

exclude photons that have been emitted with the heavy-

hole incorrectly in the spin- * state; thus, in practice when

the hole g-factor is substantially smaller than the electronic

g-factor or has the opposite sign, the possibility of incor-

rect hole spin states does not limit our approach. However,

we still require kbT � jg��BBj for the reliable prepara-

tion of the desired electron spin state in the left dot as this

electron spin has no effect on the final polarization of the

photon.

The resulting spin-photon entangled state can be used

for generating spin-spin entanglement between two remote

devices by interfering the emitted photons on a beam

splitter as shown in Fig. 2(a) [31]. If the spin state in

both devices are identical, both incoming photons can be

mode matched in space, frequency, and time, so that Hong-

Ou-Mandel bunching will occur, leading to photon detec-

tion in only one arm of the beam splitter. On the other hand,

if the spin states are different, the photons are distinguish-

able, and no ‘‘bunching’’ will occur. A photon detection in

each arm of the beam splitter therefore leads to an en-

tangled state of the spins in the spatially separated devices

j�12i � �jSi1jT0i2 � jT0i1jSi2�=
���

2
p

, where we have omit-

ted the charge labeling (1, 1). In the following, we consider

the distinguishability of our outgoing photons to determine

the requirements for such entanglement generation.

We first consider spontaneous decay associated with

electron-hole recombination in a single device. The pro-

cess can be described within the framework of Wigner-

Weisskopf theory yielding a characteristic decay rate �.

We note that the ground state charge configuration (1, 1)

may also be reached by the electron-hole pair tunneling

back into the Fermi seas with rate �o rather than recombin-

ing. This does not impact the fidelity of entanglement,

since no photon is emitted and we always condition on

two clicks in the detectors, but it does reduce the success

probability. After spontaneous decay has taken place the

combined state j�i (conditioned on electron-hole recom-

bination) of the charges and the photon field reads

j�i � 1
���

2
p 
jSi � �̂y�!S�j0i � jT0i � �̂y�!T0

�j0i�; (2)

where �̂y�!� � P

k��!; k�âyk with ��!; k� � 1
�����

2�
p 


���

�
p

e�ikz0

�!k�!��i�=2
and âyk being the creation operator for photons

of mode k. Here, j0i is the vacuum state of the photon field,

while the position of the double quantum dot is z0, and !S

and !T0
denote the splittings between the excited state and

the singlet and triplet ground states, respectively, so that

j!S �!T0
j equals the exchange coupling J. The width of

the photon wave packet is given by � � �S � �T0
� �o,

and above we have taken the same rates, �S � �T0
, result-

ing in equal branching ratios for the two processes.

We now consider the beam splitter setup depicted in

Fig. 2(a) and consider two photons emitted by similar

devices. With probability 1=2, the two photons are in states

corresponding to the same spin state of the electrons in the

two devices (both singlet or both triplet). The probability of

detecting two photons, in states j�Li � �y
L�!L�j0i and

j�Ri � �y
R�!R�j0i, respectively, at different detectors (de-

noted L and R) after they have scattered on the 50=50 beam

splitter is P�1L; 1R� � �1� jJ j2�=2, where J �
P

k�L�!L; k���
R�!R; k� is the overlap of the wave packet

amplitudes. With !L � !S and !R � !T0
, we find

P�1L; 1R� �
1

2

�

1� �2

�2 � J2

�

: (3)

Typical electron-hole recombination rates are on the order

of GHz, and the width of the wave packets � therefore is on

the order of �eVs, which is smaller than the exchange

coupling J between tunnel-coupled quantum dots, which is

in the range 10 �eV to 1 meV. Thus, we expect

P�1L; 1R� 	 1=2 and a corresponding success rate of

�2=4 for detecting the two photons at different detectors,

where � is the combined single photon emission and

detection probability.

Besides the success rate, we need to consider the fidelity

F � h�12j�̂sj�12i of the entangling procedure, where

j�12i is the desired state, and �̂s is the reduced density
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FIG. 2 (color online). Beam splitter setup and entanglement

fidelity. (a) Photon interference leading to entanglement between

two devices. The entanglement fidelity may be reduced due to

different arrival times � at the beam splitter, mismatch 	!
between energy splittings in the two devices, and incorrect

spin initialization (not indicated). (b) Entanglement fidelity F

as function of temperature T and energy mismatch 	!. For the

calculations, we have used �
 �� � 0:03. In the white region,

F > 0:9.
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matrix for the spins in the two devices. Possible error

processes include wrong initialization of the spin states,

jitter in the hole injection and path length differences

leading to different arrival times at the beam splitter, and

different energy splittings between the excited state and the

ground states in the two devices. We remark that the

specific device details could be tuned, e.g., with dc Stark

shifts, to minimize these errors. To evaluate the effect of

jitter and the different energy splittings, we write the full

density matrix of the spins and photons as �̂ �
j�i1j ~�i22h ~�j1h�j where both j�i1 and j ~�i2 are of the

form given in Eq. (2), but j ~�i2 has a component on a field

mode perpendicular to the field mode emitted by device

number 1; i.e., for j ~�i2, �̂y is replaced by J �̂y �
�������������������

1� jJ j2
p

�̂y
err. Here, �̂y

err creates a photon in an undesired

mode due to the jitter and energy shifts, and J denotes the

corresponding wave packet overlap. Conditioned on clicks

in different detectors after the beam splitter, we find that

the erroneous field component generates the spin states

jT0i1jT0i2, jSi1jSi2, jT0i1jSi2, and jSi1jT0i2 with equal

probability �1� jJ j2�=�4� 3jJ j2�. The fidelities corre-

sponding to these states are 0, 0, 1=2, and 1=2, respectively.

The desired state �jSi1jT0i2 � jT0i1jSi2�=
���

2
p

(with fidelity

1) is generated with probability jJ j2=�4� 3jJ j2�.
Combining these numbers, we find the fidelity 1=�4�
3jJ j2�, which, however, does not yet include the possibil-

ity of wrong spin initialization.

In thermal equilibrium, the probability of initializing the

wrong spin state j #i in the left dot is given by the

Boltzmann factor p# / e�g��BB=2kBT . Wrong initialization

of the spin in one or both of the devices leads to states with

fidelity 0. For the probability of detection at different

detectors due to a wrong spin in one or both of the devices,

we use the upper bound �2�2p# � p2

# �=2. Including this

estimate for the effect of wrong spin initialization in the

above expression for the fidelity, we find

F � 1

4� 3jJ j2
1

1� 2�2p# � p2

# �
: (4)

Two photons created by �̂y�!� and �̂y�!� 	!� with a

time difference � have the wave packet overlap jJ j2 �
�2e��j�j

	!2��2 . For the time difference, we assume a Gaussian

probability distribution with width ��, P ��� / e���= ���2=2.
This distribution is relevant when noise in the gates con-

trolling the hole injection is responsible for the photons

being created at different times or when the optical paths

do not have exactly the same length. When evaluating the

fidelity, we average the expression in Eq. (4) with respect

to the Gaussian distribution. In Fig. 2(b), we show the

fidelity as function of temperature and energy mismatch.

We see that with realistic parameters, it is possible to

obtain a high degree of fidelity, F > 0:9, and even with

temperatures comparable to the Zeeman energy, the fidel-

ity may be larger than 0.5, the lower bound for the use of

entanglement purification protocols [32]. Furthermore, the

loss of fidelity due to time jitter or energy mismatch may be

suppressed by gating the detectors in time, thereby improv-

ing the shown results.

In conclusion, we have presented a proposal for an all-

electrically controlled device for long-range electron spin

entanglement and shown that entanglement can be gener-

ated with a high degree of fidelity using available experi-

mental techniques. When combined with existing quantum

optical methods and solid-state technologies for spin ma-

nipulation and detection, our proposed device may form an

important building block in future quantum communica-

tion and information processing architectures.
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[28] M. Atatüre et al., Science 312, 551 (2006).

[29] J. Levy, Phys. Rev. Lett. 89, 147902 (2002).

[30] J. M. Taylor et al., Nature Phys. 1, 177 (2005).

[31] L. M. Duan et al., Phys. Rev. A 73, 062324 (2006).

[32] H. J. Briegel et al., Phys. Rev. Lett. 81, 5932 (1998).

PRL 98, 240501 (2007)
P H Y S I C A L R E V I E W L E T T E R S week ending

15 JUNE 2007

240501-4



152 Paper M



Paper N

C. Flindt, A. Braggio, and T. Novotný
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Abstract. We consider the theoretical description of real-time counting of electrons tunneling
through a Coulomb-blockade quantum dot using a detector with �nite bandwidth. By tracing out the
quantum dot we �nd that the dynamics of the detector effectively is non-Markovian. We calculate
the cumulant generating function corresponding to the resulting non-Markovian rate equation and
�nd that the measured current cumulants behave signi�cantly differently compared to those of a
Markovian transport process. Our �ndings provide a novel interpretation of noise suppression found
in a number of systems.
Keywords: Full counting statistics, detectors, non-Markovian dynamics
PACS: 72.70.+m, 73.23.Hk, 73.23.-b

The theory of full counting statistics concerns the probability P(n, t) of having trans-
ferred n charges through a mesoscopic system at time t, when starting counting at t = 0
[1]. Rather than the probability distribution P(n, t), it is often more convenient to con-
sider the cumulant generating function S(χ , t) de�ned as

eS(χ,t) ≡ P(χ, t) = ∑
n
P(n, t)einχ

, (1)

from which the zero-frequency cumulants of the current can be found in the long-t limit
by deriving with respect to the counting �eld χ at zero, i.e.,

〈〈In〉〉 =
d
dt

dnS(χ , t)
d(iχ)n

∣

∣

∣

∣

χ=0, t→∞

, n = 1,2,3, . . . (2)

In this work we consider the effects of a �nite bandwidth of the apparatus detecting
charge transfers on the measured counting statistics. In particular, we show that the
�nite bandwidth makes the effective dynamics of the detector non-Markovian, and
we discuss how non-Markovian dynamics in general can make the counting statistics
and the corresponding current cumulants behave signi�cantly differently compared to
Markovian transport processes. Although, the conclusions reached below are obtained
for a speci�c setup, we argue that they are valid for a large class of systems.

We consider a model of real-time counting with a �nite-bandwidth detector [2] re-
cently employed in order to explain experimental counting statistics results on electron
transport through a Coulomb-blockade quantum dot [3]. In the experiment a quantum
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(1, 0)(0, 0)

(0, 1) (1, 1)

ΓDΓD

ΓL

ΓR

ΓL

ΓR

FIGURE 1. Detector-dot model. The system switches with rates ΓL, ΓR, and ΓD between the states
(i, j), where i = 0,1 denotes the charge state of the quantum dot and j = 0,1 the charge state as measured
by the detector. Each switching event between the states (1,0) and (1,1) corresponds to the measurement
of a single electron having entered the quantum. In the ideal detector limit ΓD → ∞, the system effectively
switches between the states (0,0) and (1,1) with rates ΓL and ΓL, while the other states essentially remain
unoccupied. We note that similar �gures can be found in Refs. [2, 3].

point contact was used to monitor the two charge states participating in transport through
a nearby quantum dot weakly coupled to source and drain electrodes and each switching
event between the two charge states was associated with an electron either entering the
quantum dot from the source electrode or leaving it via the drain. Rather than just con-
sidering the two charge states of the quantum dot, while keeping track of the number of
electrons n that have tunneled through the quantum dot, the model also takes into account
the state of the detector that counts the electrons. In the following Pi j(n, t) denotes the
probability that the system at time t is in a state, where the quantum dot is occupied by
i = 0,1 extra electrons, while the detector indicates j = 0,1 extra electrons on the quan-
tum dot, and n electrons according to the detector have been transferred through the
quantum dot. We collect these four probabilities in the vector P = (P00,P10,P11,P01)T
and note that P(n, t) = P00(n, t)+P10(n, t)+P11(n, t)+P01(n, t). The counting �eld is
now introduced via a Fourier transformation as in Eq. (1) and the Markovian equation
of motion for P(χ , t) then reads

d
dtP(χ , t) =M(χ)P(χ , t), (3)

where

M(χ) =







−ΓL ΓR 0 ΓD
ΓL −(ΓD +ΓR) 0 0
0 ΓDeiχ −ΓR ΓL
0 0 ΓR −(ΓD +ΓL)






. (4)

Here, ΓL and ΓR denote the rates at which electrons are injected and leave the quantum
dot, respectively, while ΓD is the rate (or the bandwidth) at which the detector reacts to
changes of the charge state of the quantum dot (see Fig. 1). An ideal detector (ΓD → ∞)
is able to count every electron that is transported through the quantum dot. On the
other hand, when ΓD is comparable to the electron tunneling rates ΓL and ΓR, the �nite
bandwidth of the detector reduces the ability of the detector to count every electron
transfer event. This, of course, affects the measured counting statistics.
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In the following, we trace out the quantum dot and show that the resulting dynamics of
the detector is non-Markovian. The quantum dot is traced out by de�ning Pj ≡∑i=0,1Pi j,
j = 0,1, whose equations of motion read �P0 = ΓD(P01−P10) and �P1 = ΓD(eiχP10−P01),
respectively. The probabilities Pj(χ, t), j = 0,1, only contain information about the state
of the detector and the number of electrons counted by the detector. By observing that
�P10 = ΓLP00 − (ΓD + ΓR)P10 = ΓLP0 − (ΓD + ΓL + ΓR)P10 and �P01 = ΓRP11 − (ΓD +
ΓL)P01 = ΓRP1− (ΓD +ΓL +ΓR)P01, we �nd

P10(χ, t) = ΓL

∫ t

0
dτe−(ΓD+ΓL+ΓR)(t−τ)P0(χ,τ)+ e−(ΓD+ΓL+ΓR)tP10(χ, t = 0), (5)

and a similar expression for P01(χ, t). In the following, we focus on the long-t limit,
where the initial condition P10(χ , t = 0) (and P01(χ , t = 0)) may safely be neglected.1
This leads to a non-Markovian rate-equation for p(χ, t) = (P0,P1)T , reading

d
dt p(χ, t) =

∫ t

0
W(χ, t− τ)p(χ,τ), (6)

where
W(χ, t− τ) = ΓDe−(ΓD+ΓL+ΓR)(t−τ)

(

−ΓL ΓR
ΓLeiχ −ΓR

)

. (7)

In Laplace space this translates to the algebraic equation

zp(χ,z)−p(χ, t = 0) =W(χ,z)p(χ,z) (8)

or
p(χ,z) =

1
z−W(χ,z)p(χ, t = 0) (9)

with
W(χ,z) = D(z)

(

−ΓL ΓR
ΓLeiχ −ΓR

)

, (10)

having introduced D(z) = ΓD/(z+ ΓD + ΓL + ΓR). We note that in the limit ΓD → ∞,
D(z) → 1, and the detector follows the Markovian dynamics of the quantum dot.

One can show (see e.g. Refs. [4, 5]) that the cumulant generating function in the long-t
limit is given as S(χ , t) = z∗(χ)t, where z∗(χ) solves the equation

z∗(χ)−Λ0[χ,z∗(χ)] = 0. (11)

Here Λ0[χ ,z] is the eigenvalue ofW(χ,z) which for χ = 0 is zero, i.e., Λ0[0,z] = 0, and
the solution z∗(χ) must be chosen such that z∗(0) = 0. We �nd Λ0[χ,z] = D(z)λ0(χ)

with λ0(χ) = −(ΓL +ΓR)/2+
√

(ΓL +ΓR)2/4+ΓLΓR(eiχ −1), and

z∗(χ) = −

ΓD +ΓL +ΓR
2 +

√

(

ΓD +ΓL +ΓR
2

)2
+ΓDλ0(χ). (12)

1 We note that the initial condition plays a crucial role when studying �nite-frequency �uctuations.
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For large matrices, in general, it may be non-trivial to �nd z∗(χ) and more sophisticated
methods, as the one we describe in Ref. [5], may be needed. Having found the cumulant
generating function in the long-t limit, S(χ , t) = z∗(χ)t, we may calculate the current
cumulants, and here we just give the results for the �rst two current cumulants, although
it, in principle, is possible to obtain any cumulant having found S(χ, t),

〈〈I1〉〉 =ΓR

[

1+a
2

]

×

[

k
1+ k

]

,

〈〈I2〉〉 =

[

1+a2
2 −

k(1−a2)
2(1+ k)2

]

〈〈I1〉〉.
(13)

These are the results also found in Ref. [3] using the model in its Markovian formulation
given by Eq. (4), and following that work we have also introduced the asymmetry
a = (ΓR−ΓL)/(ΓR+ΓL) and the relative bandwidth k = ΓD/(ΓR+ΓL).

It is interesting to consider the so-called Fano factor F ≡ 〈〈I2〉〉/〈〈I1〉〉. In the ideal
detector limit ΓD → ∞, we �nd the well-known result F = (1+ a2)/2 for a Markovian
two-state model with uni-directional transport where 1/2≤F ≤ 1. For �nite bandwidths,
the Fano factor may, however, be suppressed below 1/2, and for the given model, we �nd
that the Fano factor is bounded from below by the value 3/8 (a= 0, k= 1). In a number of
papers, the sensitivity of the counting statistics to coherent versus sequential tunneling
has been discussed [6], and particularly, it has been conjectured that a suppression of
the Fano factor below 1/2 for transport through a double barrier resonant diode could
be an indication of coherent tunneling rather than sequential [7]. The results found in
the present work show that a suppression below 1/2 can occur due to non-Markovian
dynamics, which is not necessarily induced by quantum coherence, but in general arises
from tracing out parts of a system. We believe that a similar interpretation can explain
the recently calculated Fano factor suppression of incoherent transport through a single
electron transistor (SET) coupled to a nano-mechanical resonator [8]. There, we believe
that the dynamics of the SET effectively is non-Markovian due to the coupling to the
resonator, which in turn can explain the suppression of the Fano factor below 1/2.

In conclusion, we have presented a study of the full counting statistics of electron
transport through a Coulomb-blockade quantum dot as measured by a detector with
�nite bandwidth. In particular, we have calculated the current cumulants of the measured
charge transport described by a non-Markovian rate equation obtained by tracing out the
quantum dot and only considering the dynamics of the detector. Our results show that
non-Markovian effects may strongly effect the charge transport statistics.
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We calculate the exchange coupling for a double dot system using a numerically exact technique based on

finite-element methods and an expansion in two-dimensional Gaussians. Specifically, we evaluate the exchange

coupling both for a quasi-one- and a two-dimensional system, also including an applied magnetic field. Our

numerical results provide a stringent test of standard approximation schemes �e.g., Heitler-London, Hund-

Mulliken, Hubbard�, and they show that the standard methods do not have reliable predictive power even for

simple model systems. Their value in modeling more realistic quantum-dot structures is thus cast in serious

doubt.
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I. INTRODUCTION

The possibility of coherent manipulation of electron spins

in low-dimensional nanostructures, aimed at future large-

scale quantum information processing,1 calls for a thorough

understanding of the spin interactions at play. In the proposal

for quantum computing with quantum dots by Loss and Di-

Vincenzo, the exchange coupling between the spins of elec-

trons in tunnel-coupled quantum dots was envisioned as the

controllable mechanism for coherent manipulation of spin

qubits.1,2 Recently, this fundamental building block of a pos-

sible future solid-state quantum computing architecture was

realized in an experiment, demonstrating electrostatic control

of the exchange coupling.3

In this paper, we present numerically exact finite-element

methods for calculations of the exchange coupling between

electron spins in tunnel-coupled quasi-one- and two-

dimensional quantum dots. Such structures have already

been under intensive theoretical investigation using various

numerical methods, e.g., based on an exact diagonalization

of the underlying Hamiltonian4–10 or using quantum-

chemical approaches such as self-consistent Hartree-Fock

methods.11 Such numerical approaches often require exten-

sive numerical work. Therefore, much attention has been de-

voted to simple approximations which lead to closed-form

analytic expressions for the exchange coupling.2,12,13 It is,

however, not immediately obvious to what extent these ap-

proximations yield correct predictions, and where they break

down. For example, in a recent work,12 the validity criterion

for such approximations was the requirement that the ex-

change coupling at zero magnetic field must always be posi-

tive. A criterion like this can only provide a necessary con-

dition for an approximate scheme to be acceptable.

The aim of this work is to provide a quantitative compari-

son of the Heitler-London, the Hund-Mulliken, and the Hub-

bard approximations, applied to a simple model potential of

a double quantum dot, with numerically exact results. In par-

ticular, we focus on the case, where the distance between the

two quantum dots is short, such that the single-dot electron

wave functions have a large overlap. For short distances, the

exchange coupling can reach values on the order of several

meV, making it sufficiently large to exploit and observe in

experiments, and our comparative study is thus highly rel-

evant for on-going experimental activities within the field.

The finite-element methods used here allow an easy imple-

mentation using available numerical packages,14 also when

finite magnetic fields are included, which strongly influence

the exchange coupling in two-dimensional geometries. We

find that the approximative schemes may provide reasonable

predictions of the exchange coupling for certain parameter

ranges, while they fail, also qualitatively, for short distances,

even for the simple model potential considered here. Their

value in modeling more realistic quantum-dot structures used

in experiments is thereby cast in serious doubt.

II. DOUBLE QUANTUM-DOT MODEL

Experimentally, electrons can be confined in double quan-

tum dots using metallic gates on top of a semiconductor

heterostructure3,15,16 or across a nanowire17,18 or a

nanotube.19,20 By suitable electrostatic gating, such

FIG. 1. �Color online� Double quantum dot and numerically

calculated charge density. The double quantum dot is described by

the potential V�r� given in Eq. �4� �here with �=1, ��0=4 meV

and d /r0=1�. The two-dimensional contour plot shows how the

charge of two electrons in a singlet spin state is distributed within

the double quantum dot. With finite tunnel coupling between the

two quantum dots, the spins of the electrons interact due to the

exchange interaction.

PHYSICAL REVIEW B 76, 125323 �2007�

1098-0121/2007/76�12�/125323�6� ©2007 The American Physical Society125323-1
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Coulomb-blockade double quantum dots can be brought into

a few-electron regime,21 where only a single electron occu-

pies each of the two quantum dots. In this regime, the spin

and charge dynamics are described by a two-electron Hamil-

tonian of the form

H�r1,r2� = h�r1� + h�r2� + C��r1 − r2�� , �1�

where

C��r1 − r2�� =
e2

4��r�0�r1 − r2�
�2�

is the Coulomb interaction and the single-particle Hamilto-

nians are

h�r� =
p2

2m
+ V�r� , �3�

with V�r� denoting the confining potential. As in many real-

izations of double quantum dots, we assume that the motion

of the electrons is restricted to maximally two dimensions,

i.e., r= �x ,y�. The inclusion of a magnetic field is discussed

below.

As an illustrative example,22 we consider a simple double

dot potential reading6,23

V�r� =
m�0

2

2
�min��x − d�2,�x + d�2� + ��y�2� . �4�

Here, m is the effective electron mass, ��0 is the character-

istic confinement energy, 2d measures the center to center

distance between the quantum dots, and � denotes the ratio

of the confinement strengths in the x and y directions. More-

over, we introduce the characteristic oscillator length r0

=�� /m�0. The potential is shown in Fig. 1 together with a

numerically calculated charge density. In the limit d→0, the

potential reduces to that of a single quantum dot. In our

calculations we use material parameters typical of GaAs �m
=0.067me, �r=12.9�. We consider both the quasi-one-

dimensional limit ��1 and the two-dimensional case �=1.

The exchange coupling between the two electrons is a

purely orbital effect which arises as a consequence of the

Pauli principle and the Coulomb interaction which lead to a

splitting J=EA−ES of the lowest eigenvalue ES correspond-

ing to a symmetric orbital wave function of the two elec-

trons, �S�r1 ,r2�=�S�r2 ,r1�, and the lowest eigenvalue EA

corresponding to an antisymmetric orbital wave function,

�A�r1 ,r2�=−�A�r2 ,r1�. Due to the Pauli principle, the or-

bital part of a singlet state must be symmetric, while the

orbital part of a triplet state must be antisymmetric. The

splitting of the orbital wave functions may thereby be

mapped onto an effective spin Hamiltonian, H=JS1 ·S2.25

The task is to calculate the exchange coupling J as a function

of various parameters, e.g., the distance between the quan-

tum dots and the applied magnetic field. A magnetic field

only affects the exchange coupling significantly in two-

dimensional geometries and we consequently concentrate on

the inclusion of a magnetic field in the two-dimensional case

�=1.

III. VALIDITY OF APPROXIMATE METHODS

A. Quasi-one-dimensional limit

We first consider the quasi-one-dimensional limit ��1,

which may be relevant, e.g., for describing confined elec-

trons in nanowires. In this limit, we integrate out the motion

in the y direction and consider an effective one-dimensional

model reading

H = h�x1� + h�x2� + C̃���x1 − x2�� , �5�

where the single-electron Hamiltonian is

h�x� =
px

2

2m
+ V�x� , �6�

V�x� =
m�0

2

2
�min��x − d�2,�x + d�2�� , �7�

and we have introduced

C̃���x�� =
e2

4��r�0

� �

2�r0
2
e�x2/4r0

2

K0��x2/4r0
2� �8�

as the �regularized� Coulomb interaction in one dimension.

Here, K0 is the zeroth-order modified Bessel function of the

second kind. The exchange coupling can now be calculated

using finite elements by mapping the one-dimensional two-

particle problem onto an effective two-dimensional single-

particle problem: We consider the two-particle wave function

��x1 ,x2� as describing a single fictitious particle with spatial

coordinates r̃= �x1 ,x2� and momentum p̃= �px1
, px2

�. Math-

ematically, the corresponding single-particle-like Hamil-

tonian then reads

H = p̃2/2m + W�r̃� , �9�

where

W�r̃� = V�x1� + V�x2� + C̃���x1 − x2�� �10�

is the effective external potential that the fictitious particle

experiences.

In this reformulation of the problem, the symmetry of

the original two-particle wave function enters via the bound-

ary condition along the diagonal x2=x1. Symmetric wave

functions fulfill �S�x1 ,x2�=�S�x2 ,x1� and consequent-

ly ��x1
�S�x1 ,x2��x2=x1

= ��x2
�S�x1 ,x2��x2=x1

�Neumann condi-

tion�, while antisymmetric wave functions fulfill �A�x1 ,x2�
=−�A�x2 ,x1� and thus ��A�x1 ,x2��x2=x1

=0 �Dirichlet

condition�.26 Since W�r̃� is a confining potential, eigenfunc-

tions go to zero in the limit �r̃�→�. In the numerical calcu-

lations, we assume that the eigenfunctions are zero outside a

certain finite range, and we check that the results converge

with respect to an increase of this range. Thus, we only need

to solve a one-particle problem on a finite-size two-

dimensional domain with well-defined boundary conditions.

This class of problems is computationally cheap with avail-

able finite-element method packages.14

Before discussing the numerical results, we briefly review

the standard approximations.2 In the Heitler-London approxi-
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mation, the exchange splitting is calculated as JHL= 	−�H�−

− 	+�H�+ 
 with the Heitler-London wave functions �± 

= ��L
1�R
2± �R
1�L
2� /�2�1± �	L �R
�2�, where H is the full

two-particle Hamiltonian, and �L
 and �R
 are the single-

particle Fock-Darwin ground states of a single quantum dot

centered at rL= �−d ,0� and rR= �d ,0�, respectively. The

Heitler-London approximation can be improved by including

doubly occupied spin singlet states and diagonalizing the

Hamiltonian in the resulting Hilbert space. This is known as

the Hund-Mulliken approach and yields the expression JHM

=V−Ur /2+
1

2
�Ur

2+16tr
2. Here, Ur and tr are the on-site Cou-

lomb interaction and the tunnel coupling, respectively, renor-

malized by the interdot Coulomb interaction as described in

Ref. 2, while V �not to be confused with the confinement

potential� is the difference in Coulomb energy between the

singly occupied singlet and triplet states. Additional details

about the approximative methods are given in Appendix A.

If the interdot Coulomb interaction is negligible, the

renormalized quantities Ur and tr reduce to their bare values,

U and t, while V=0, and if moreover t /U	1, the Hund-

Mulliken expression reduces to the standard Hubbard expres-

sion JH=4t2 /U. The Hubbard approximation, which always

predicts a positive exchange energy, obviously cannot ex-

plain that the exchange energy with an applied magnetic field

can be negative. This failure can be corrected by retaining

the interdot Coulomb interaction, and in the limit tr /Ur	1,

the Hund-Mulliken approximation then yields the extended

Hubbard approximation: JH
* =4tr

2 /Ur+V. The energy differ-

ence V is important for the prediction of the exchange cou-

pling at finite magnetic fields, where it allows for the pre-

dicted exchange coupling to become negative.

In Fig. 2, we show numerical results for the exchange

coupling as a function of the interdot distance with different

values of the confinement energy ��0 for the quasi-one-

dimensional case �=10�1. Together with the numerical re-

sults, we show the Heitler-London, the Hund-Mulliken, and

different variations of the Hubbard approximations. The va-

lidity of the Heitler-London approximation is strongly de-

pendent on dimensionality due to the increasingly dominat-

ing Coulomb interaction in lower-dimensional systems,12 and

for the quasi-one-dimensional case JHL is negative in the

entire range considered for ��0
8 meV. The standard Hub-

bard approximation predicts reasonably well the d depen-

dence, while both the Hund-Mulliken and extended Hubbard

approaches lead to �unphysical� negative values of the ex-

change coupling for a wide range of system parameters. We

discuss these discrepancies in more details when we consider

the two-dimensional case below. Confinement energies larger

than 18 meV are required for these approximations to yield

positive exchange couplings for all interdot distances. For

higher values of �, corresponding to stronger confinement in

the y direction, the range of validity of these approximations

is further reduced.

B. Two-dimensional case

We next consider the two-dimensional case �=1. In two

dimensions, the exchange coupling is strongly dependent on

applied magnetic fields, and we include a magnetic field per-

pendicular to the motion of the electrons by the substitution

p→p+eA, where A=Bz�−y ,x� /2 is a vector potential corre-

sponding to the applied magnetic field Bzẑ. The Zeeman term

does not affect the exchange coupling and is trivial to include

in final total energy calculations.

Rather than mapping the two-dimensional two-particle

problem onto an effective four-dimensional one-particle

problem, we construct a two-particle basis from single-

particle eigenstates �i�r� with eigenenergies �i found by di-

agonalizing the single-particle Hamiltonian h�r�=
�p+eA�2

2m

+V�r�, again using finite-element methods.14 The �un-

symmmetrized� two-particle basis functions are then

�i,j�r1 ,r2�=�i�r1�� j�r2�, in terms of which the matrix ele-

ments of the two-particle Hamiltonian read

�H�ij,i�j�
= 	�i,j�H��i�,j�


 = ��i + � j��i,i�
� j,j�

+ 	�i,j�C��i�,j�

 .

�11�

The Coulomb matrix elements are evaluated by inserting a

set of two-particle states constructed from orthonormalized

Gaussian single-particle wave functions. From the low-

energy spectrum of H, we then obtain the exchange coupling

J. The details of this procedure are described in Appendix B.

In Fig. 3, we show the results for the two-dimensional

case �=1. While the standard Hubbard approximation pre-

dicts well the d dependence of the exchange coupling, the

Heitler-London and the Hund-Mulliken approximations yield

predictions that in certain parameter ranges deviate signifi-

cantly from the numerical results. In particular, in the case

��0=4 meV, a range of distances exists around d=r0, where

both approximations predict negative exchange couplings. It
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FIG. 2. �Color online� Exchange coupling as function of interdot

distance in a quasi-one-dimensional double quantum dot, �=10.

The distance d is measured in units of r0��� /m�0. Together with

the numerical results, we show the exchange couplings obtained

with the Heitler-London JHL, the Hund-Mulliken JHM, the extended

Hubbard JH
* , and the standard Hubbard JH approximations. We also

show JH
* −V, where V is the Coulomb energy difference between the

singly occupied singlet and triplet states.
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is well known that the Heitler-London approximation fails at

short distances, when the overlap of the Heitler-London

wave functions becomes large, and that the range of validity

is reduced as the ratio between the Coulomb and confine-

ment energy is increased.12 This explains why the discrepan-

cies are less pronounced in the case ��0=6 meV. We con-

jecture that the poor predictions by the Hund-Mulliken and

the extended Hubbard approximations are mainly due to the

Coulomb energy difference between the singly occupied sin-

glet and triplet states, denoted V, overestimating the effects

of the interdot Coulomb interaction at short distances �d

�r0�, leading to a too low �or even negative� exchange en-

ergy. For large distances �d�2r0�, this overestimation de-

creases and a better agreement with the full numerics is ob-

tained. In the figure, we also show J
H

* −V which predicts well

the exchange coupling, indicating that the effects of the in-

terdot Coulomb interaction indeed seem to be overestimated.

With larger confinement energies, this overestimation be-

comes less significant, and a better agreement with the nu-

merically exact results is found.

In Fig. 4, we show numerical results for the exchange

coupling as function of the magnetic field B with different

interdot distances d. Together with the numerical results, we

again show the Heitler-London, the Hund-Mulliken, and dif-

ferent variations of the Hubbard approximations. The results

show that none of the approximations predicts well the de-

pendence of the exchange coupling over the full range of

magnetic fields for short distances d
r0. For the Hund-

Mulliken and the extended Hubbard approximations, we

again attribute the discrepancy to an overestimation of the

effects of the interdot Coulomb interaction. For large dis-

tances, this overestimation is less pronounced, and a good

prediction of the qualitative features is obtained.

IV. CONCLUSIONS

We have presented numerically exact finite-element cal-

culations of the exchange coupling between electron spins

confined in low-dimensional nanostructures. We have tested

a number of approximations often encountered in the litera-

ture by applying them to a simple double dot potential and

found that they only predict well the exchange coupling in

restricted parameter regimes, when compared to numerical

exact results. While the approximative schemes may yield

some insight into the qualitative features of the exchange

coupling, we find it unlikely that they would suffice in the

exchange coupling calculations for actual experimental

structures and experiments, having seen how they may fail

even in the case of a simple model potential.
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APPENDIX A: APPROXIMATIVE METHODS

In the quasi-one-dimensional limit ��1, we have evalu-

ated the approximative methods numerically using MATH-

EMATICA, ensuring convergence of the results with respect to

a screening length �→0 of the regularized Coulomb interac-

tion. In the following, we list analytical expressions obtained

for the various approximative methods presented in the paper

for the two-dimensional case �=1.

The single-dot potentials corresponding to the double dot

potential in Eq. �4� are those of a harmonic oscillator cen-

tered at �±d ,0�. The single-dot orbitals are thus the Fock-
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FIG. 3. �Color online� Exchange coupling as function of interdot

distance in a two-dimensional double dot, �=1. See Fig. 2 for de-

tails. The vertical lines denote the two values of d /r0 for which the

dependence on the magnetic field is shown in Fig. 4.
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FIG. 4. �Color online� Exchange coupling as function of mag-

netic field in a two-dimensional double dot. Results were obtained

with ��0=6 meV. See Fig. 2 for details.
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Darwin states shifted to �±d ,0�. For d=0, the Fock-Darwin

ground state is

��x,y� =�m�

��
e−m��x2+y2�/2�, �A1�

where �=�0
�1+�L

2 /�0
2 with �L denoting the Larmor fre-

quency �L=eB /2mc. In the presence of a magnetic field

given by the vector potential A=Bz�−y ,x� /2, shifting the

ground state to �±d ,0� adds a phase factor of e±iyd/2lB
2

, where

lB is the magnetic length lB=��c /eB. We thus obtain the

single-dot orbitals �±d�x ,y�=e±iyd/2lB
2

��x�d ,y�, where

�±d�x ,y� then denotes the single-dot orbital centered at

�±d ,0�.
Using these single-dot orbitals, we obtain for the ex-

change coupling in the Heitler-London approximation

JHL =
��0

sinh�2d2�2b − 1/b��

cs

��b

2
�e−bd2

I0�bd2��

+
2d

�b�
�1 − e−bd2

� + 2d2�1 − erf��bd��� , �A2�

where b is the magnetic compression factor b=� /�0, I0 is

the zeroth-order Bessel function, erf�x� is the error function,

and we have introduced the dimensionless distance d

→d /r0. The prefactor cs is the ratio between the Coulomb

and confining energy, cs=
e2

4��r�0r0

1

��0
.

In the Hund-Mulliken approximation, the exchange cou-

pling is calculated by diagonalizing the two-electron Hamil-

tonian in the space spanned by �±d
D �r1 ,r2�=�±d�r1��±d�r2�

and �±
S�r1 ,r2�= ��+d�r1��−d�r2�±�−d�r1��+d�r2�� /�2,

where �±d are the orthonormalized single-particle states

�±d= ��±d−g��d� /�1−2Sg+g2, with g= �1−�1−S2� /S.

This leads to the expression JHM=V−Ur /2+
1

2
�Ur

2+16tr
2,

where2

tr = t − w = 	�±d�h���d
 − 	�+
S�C��±d

D 
/�2,

V = V− − V+ = 	�−
S�C��−

S
 − 	�+
S�C��+

S
 ,

Ur = U − V+ + X = 	�±d
D �C��±d

D 
 − 	�+
S�C��+

S
 + 	�±d
D �C���d

D 
 .

�A3�

The Coulomb matrix elements are given by Burkard et al. in

Ref. 2 and are applicable to any model potential for which

the corresponding single-dot potential is a simple harmonic

oscillator. Thus, only the matrix element t is different for our

model potential. We find

t

��0

=
S

1 − S2
 d

��b
�1 − e−bd2

� + d2 erfc�d�b�� , �A4�

where erfc�x� is the complementary error function.

APPENDIX B: NUMERICAL METHODS

Here, we discuss the numerical method used in the two-

dimensional case �=1. We use finite-element methods to

solve the single-electron problem given by the single-particle

Hamiltonian h in Eq. �1�.14 The full two-electron problem is

then solved by expressing the two-electron Hamiltonian in

Eq. �1� in a basis of product states of single-electron solu-

tions ��n
, in terms of which the matrix elements are given

by Eq. �11�. To evaluate the Coulomb elements, the single-

electron eigenstates are expanded in an orthonormalized

basis of two-dimensional �2D� Gaussians �nx,ny
�x ,y�

=xnxynye−r
2
/2, where nx and ny are positive integers or zero.

The Coulomb matrix elements between product states of 2D

Gaussians can be determined analytically, and we state the

result here for convenience27

Cijkl =
e2

4��0�r

�

2
�−

1

4
�n/2

�
s1=0

�n1/2�

¯ �
s4=0

�n4/2�

�− 1�n3+n4+s1+s2−s3−s4
��n1 + 1�

��s1 + 1���n1 − 2s1 + 1�
¯

��n4 + 1�

��s4 + 1���n4 − 2s4 + 1�

�
���n1 + n3 − 2s1 − 2s3 + 1�/2����n2 + n4 − 2s2 − 2s4 + 1�/2�

���n − 2s�/2 + 1�
2�n−2s+1�/2���n − 2s + 1�/2� ,

for n1+n3 and n2+n4 even and zero otherwise. Here, Cijkl

= 	�nx,i,ny,i
�nx,j,ny,j

�C��nx,k,ny,k
�nx,l,ny,l


 while ��x� is the gamma

function and �n /2� indicates flooring of half-integers. Above,

we have introduced n1=nx,i+nx,k, n2=ny,i+ny,k, n3=nx,j +nx,l,

and n4=ny,j +ny,l, while n=�ini and s=�isi. The two-particle

Hamiltonian matrix resulting from this procedure may then

be diagonalized in the subspaces spanned by the symmetric

and antisymmetric product states, respectively, to yield the

exchange coupling. Because the expansion in 2D Gaussians

becomes increasingly inaccurate as the interdot distance is

increased, we are limited to interdot distances of the order of

the characteristic oscillator length r0. The accuracy of the 2D

Gaussian expansion at larger interdot distances could be

greatly improved by using an expansion in relative

coordinates.6

The finite-element calculations of the single-particle states

can be carried out with very high efficiency using existing

finite-element packages14 and are not a limiting factor in
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terms of computational time or convergence. Also, the Cou-
lomb matrix elements Cijkl may be precalculated and saved
in a lookup table, such that the largest portion of the compu-
tational time is spent assembling the two-electron Hamil-
tonian matrix. For each matrix element, a total of N2 lookups
in the Cijkl table are required, where N is the number of 2D
Gaussians included in the expansion set. A significant reduc-
tion in computational time is accomplished by utilizing the
symmetry of the Hamiltonian in the product state basis, lim-

iting the calculation to matrix elements which differ by more

than a simple complex conjugation. For the results presented

in this paper, a total of 100 2D Gaussians were used to en-

sure that the results obtained may essentially be considered

exact. With this basis set and a total of 72=49 single-particle

product states, the calculation of the exchange coupling takes

approximately 2.5 h on a standard computer equipped with

an Intel Core2 Duo 1.86 MHz CPU. As few as 25 Gaussians

are in many cases sufficient to produce results that are within

10% of the exact results, and in that case a single calculation

only takes about 5 min.

The use of finite-element methods for solving the single-

electron problem makes it easy to construct the two-electron

Hamiltonian, even if analytic expressions for the matrix ele-

ments of the single-electron Hamiltonian in the basis of 2D

Gaussians cannot be easily obtained. This makes the method

very flexible, and only little work is required to solve prob-

lems with different choices of potentials. We have verified

our numerical implementation against the results in Ref. 6 as

well as for the simple problem of two opposite spin particles

in a two-dimensional parabolic potential, which can be

solved analytically.
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We suggest and study designed defects in an otherwise periodic potential modulation of a two-
dimensional electron gas as an alternative approach to electron spin based quantum information
processing in the solid-state using conventional gate-defined quantum dots. We calculate the band
structure and density of states for a periodic potential modulation, referred to as an antidot lattice,
and find that localized states appear, when designed defects are introduced in the lattice. Such
defect states may form the building blocks for quantum computing in a large antidot lattice, allow-
ing for coherent electron transport between distant defect states in the lattice and tunnel coupling
of neighboring defect states with corresponding electrostatically controllable exchange coupling be-
tween different electron spins.

PACS numbers: 73.21.Cd, 75.30.Et, 73.22.-f

I. INTRODUCTION

Localized electrons spins in a solid state structure have
been suggested as a possible implementation of a future
device for large-scale quantum information processing.1

Together with single spin rotations, the exchange cou-
pling between spins in tunnel coupled electronic lev-
els would provide a universal set of quantum gate
operations.2 Recently, both of these operations have been
realized in experiments on electron spins in double quan-
tum dots, demonstrating electron spin resonance (ESR)
driven single spin rotations3 and electrostatic control of
the exchange coupling between two electron spins.4 Com-
bined with the long coherence time of the electron spin
due to its weak coupling to the environment, and the
experimental ability to initialize a spin and reading it
out,5 four of DiVincenzo’s five criteria6 for implement-
ing a quantum computer may essentially be considered
fulfilled. This leaves only the question of scalability ex-
perimentally unaddressed.

While large-scale quantum information processing
with conventional gate-defined quantum dots is a topic of
ongoing theoretical research,7 we here suggest and study
an alternative approach based on so-called defect states
that form at designed defects in a periodic potential mod-
ulation of a two-dimensional electron gas (2DEG) resid-
ing at the interface of a semiconductor heterostructure.8

One way of implementing the potential modulation would
be similar to the periodic antidot lattices9,10 that are now
routinely fabricated. Such lattices can be fabricated on
top of a semiconductor heterostructure using local oxi-
dation techniques that allow for a precise patterning of
arrays of insulating islands, with a spacing on the order
of 100 nm, in the underlying 2DEG.11 Even though the
origin of these depletion spots is not essential for our pro-
posal, we refer to them as antidots, and a missing antidot
in the lattice as a defect. Alternative fabrication methods
include electron beam and photo lithography. In Ref. 11
a square lattice consisting of 20× 20 = 400 antidots was
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FIG. 1: (Color online) (a) Schematic illustration of a periodic
antidot lattice; antidots may, e.g., be fabricated using local
oxidation of a Ga[Al]As heterostructure. (b) Geometry of the
periodic antidot lattice with the Wigner–Seitz cell marked
in gray and the antidot diameter d and lattice constant Λ
indicated. (c) A designed defect leads to the formation of
defect states in which an electron with spin S can reside. (d)
Tunnel coupled defects. The coupling can be controlled using
a split-gate with an effective opening denoted w.

patterned on an approximately 2.5 µm × 2.5 µm area,
and the available fabrication methods suggest that even
larger antidot lattices with more than 1000 antidots and
many defect states may be within experimental reach.

The idea of using designed defects in antidot lat-
tices as a possible quantum computing architecture was
originally proposed by some of us in Ref. 8, where we
presented simple calculations of the single-particle level
structure of an antidot lattice with one or two designed
defects. Here, we take these ideas further and present de-
tailed band structure and density of states calculations
for a periodic lattice, describe a resonant tunneling phe-
nomenon allowing for electron transport between distant
defects in the lattice, and calculate numerically the ex-
change coupling between spins in two neighboring de-
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FIG. 2: (Color online) Band structures and densities of states g(ε) of the periodic antidot lattice for three different values of
the relative antidot diameter d/Λ. Notice the different energy scales for the three cases. On each band structure the gap ϑeff

is indicated, below which no states exist for the periodic lattice. The band gaps and the gap below ϑeff are highlighted as
hatched blue regions. Also shown is the periodic lattice structure with the Wigner–Seitz cell indicated in gray, as well as the
first Brillouin zone (FBZ) with the three high-symmetry points and the irreducible FBZ indicated.

fects, showing that the suggested architecture could be
useful for spin-based quantum information processing.
The envisioned structure and the basic building blocks
are shown schematically in Fig. 1.

The paper is organized as follows: In Section II we
introduce our model of the antidot lattice and present
numerical results for the band structure and density of
states of a periodic antidot lattice. In particular, we show
that the periodic potential modulation gives rise to band
gaps in the otherwise parabolic free electron band struc-
ture. In Section III we introduce a single missing anti-
dot, a defect, in the lattice and calculate numerically the
eigenvalue spectrum of the localized defect states that
form at the location of the defect. We develop a semi-
analytic model that explains the level-structure of the
lowest-lying defect states. In Section IV we consider two
neighboring defect states and calculate numerically the
tunnel coupling between them. In Section V we describe
a principle for coherent electron transport between dis-
tant defect states in the antidot lattice, and illustrate
this phenomenon by wavepacket propagations. In Sec-
tion VI we present numerically exact results for the ex-
change coupling between electron spins in tunnel coupled
defect states, before we finally in Section VII present our
conclusions.

II. PERIODIC ANTIDOT LATTICE

We first consider a triangular lattice of antidots with
lattice constant Λ superimposed on a two-dimensional
electron gas (2DEG). The structure is shown schemat-
ically together with the Wigner-Seitz cell in Fig. 1(b).
While experiments on antidot lattices are often per-
formed in a semi-classical regime, where the typical fea-
ture sizes and distances, e.g., the lattice constant Λ, are

much larger than the electron wavelength, we here con-
sider the opposite regime, where these length scales are
comparable, and a full quantum mechanical treatment
consequently is necessary. In the effective-mass approx-
imation we thus model the periodic lattice with a two-
dimensional single-electron Hamiltonian reading

H = −
~

2

2m∗
∇2

r
+

∑

i

V (r − Ri) , r = (x, y), (1)

where m∗ is the effective mass of the electron and V (r−
Ri) is the potential of the i’th antidot positioned at Ri.
We model each antidot as a circular potential barrier of
diameter d so that V (r−Ri) = V0 for |r−Ri| ≤ d/2 and
zero otherwise. In the limit V0 → ∞ the eigenfunctions
do not penetrate into the antidots, and the Schrödinger
equation may be written as

−Λ2∇2

r
ψn(r) = εnψn(r), (2)

with the boundary condition ψn = 0 in the antidots, and
where we have introduced the dimensionless eigenvalues

εn = EnΛ22m∗/~
2. (3)

In the following we use parameter values typical of GaAs,
for which ~

2/2m∗ ' 0.6 eV nm2 with m∗ = 0.067me, al-
though the choice of material is not essential. We have
checked numerically that our results are not critically
sensitive to the approximation V0 → ∞, so long as the
height is significantly larger than any energies under con-
sideration. All results presented in this work have thus
been calculated in this limit, for which the simple form
of the Schrödinger equation Eq. (2) applies. In this limit,
the band structures presented below are of a purely ge-
ometrical origin. The band structure can be calculated
by imposing periodic boundary conditions and solving
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Eq. (2) on the finite domain of the Wigner–Seitz cell.
We solve this problem using a finite-element method.12

The corresponding density of states is calculated using
the linear tetrahedron method in its symmetry corrected
form.13–15

In Fig. 2 we show the band structure and density of
states of the periodic antidot lattice for three different
values of the relative antidot diameter d/Λ. We note
that an increasing antidot diameter raises the kinetic en-
ergy of the Bloch states due to the increased confinement
and that several band gaps open up. We have indicated
the gap ϑeff below which no states exist for the periodic
structure. We shall denote as band gaps only those gaps
occurring between two bands, and thus we do not refer
to the gap below ϑeff as a band gap in the following. This
is motivated by the difference in the underlying mecha-
nisms responsible for the gaps: While the band gaps rely
on the periodicity of the antidot lattice, similar to Bragg
reflection in the solid state, the gap below ϑeff represents
an averaging of the potential landscape generated by the
antidots, and is thus robust against lattice disorder as
we have also checked numerically.16 The lowest band gap
is thus present for d/Λ > 0.35 while the higher-energy
band gap only develops for d/Λ > 0.45. As the anti-
dot diameter is increased, several flat bands appear with
∇kεn(k) ' 0, giving rise to Van Hove singularities in the
corresponding density of states.

III. DEFECT STATES

We now introduce a defect in the lattice by leaving
out a single antidot. Topologically, this structure resem-
bles a planar 2D photonic crystal, and relying on this
analogy we expect one or more localized defect states to
form inside the defect.17 The gap ϑeff indicated in Fig.
2 may be considered as the height of an effective two-
dimensional potential surrounding the defect, and thus
gives an upper limit to the existence of defect states in
this gap. Similar states are expected to form in the band
gaps of the periodic structure, which are highlighted in
Fig. 2. As defect states decay to zero far from the loca-
tion of the defect, we have a large freedom in the way
we spatially truncate the problem at large distances. For
simplicity we use a super-cell approximation, but with
ψ = 0 imposed on the edge, thus leaving Eq. (2) a Her-
mitian eigenvalue problem which we may conveniently
solve with a finite-element method.12 Other choices, such
as periodic boundary conditions, do not influence our nu-
merical results. The size of the super-cell has been chosen
sufficient large, such that the results are unaffected by a
further increase in size.

In the insets of Fig. 3(a) we show the calculated eigen-
functions corresponding to the two lowest energy eigen-
values for a relative antidot diameter d/Λ = 0.5. As
expected, we find that defect states form that to a high
degree are localized within the defect. The second-lowest
eigenvalue is two-fold degenerate and we only show one

of the corresponding eigenstates. The figure shows the
energy eigenvalues of the defect states as a function of
the relative antidot diameter together with the gap ϑeff.
As this effective potential is increased, additional defect
states become available and we may thus tune the num-
ber of levels in the defect by adjusting the relative anti-
dot diameter. In particular, we note that for d/Λ . 0.42
only a single defect state forms. As the size of the an-
tidots is increased, the confinement of the defect states
becomes stronger, leading to an increase in their energy
eigenvalues. For GaAs with d/Λ = 0.5 and Λ = 75 nm
the energy splitting of the two lowest defect states is ap-
proximately 1.1 meV, which is much larger than kBT at
subkelvin temperatures, and the level structure is thus
robust against thermal dephasing.

In Fig. 3(b) we show similar results for defect states
residing in the lowest band gap of the periodic struc-
ture. While the states residing below ϑeff resemble those
occurring due to the confining potential in conventional
gate-defined quantum dots, these higher-lying states are
of a very different nature, being dependent on the pe-
riodicity of the surrounding lattice. For the band gaps,
the existence of bound states is limited by the relevant
band edges as indicated in the figure. As the size of the
band gap is increased, additional defect states become
available and we may thus also tune the number of lev-
els residing in the band gaps by adjusting the relative
antidot diameter.

Because the formation of localized states residing be-
low ϑeff depends only on the existence of the effective
potential surrounding the defect, the formation of such
states is not critically dependent on perfect periodic-
ity of the surrounding lattice, which we have checked
numerically.16 Also, the lifetimes of the states due to the
finite size of the antidot lattice are of the order of seconds
even for a relatively small number of rings of antidots sur-
rounding the defect.8 However, the localized states resid-
ing in the band gaps are more sensitive to lattice disorder,
since they rely more crucially on the periodicity of the
surrounding lattice. Introducing disorder may induce a
finite density of states in the band gaps of the periodic
structure and thus significantly decrease the lifetimes of
the localized states residing in this region.

In order to gain a better understanding of the level-
structure of the defect states confined by ϑeff we develop
a semi-analytic model for ϑeff and the corresponding de-
fect states. We first note that the effective potential ϑeff

is given by the energy of the lowest Bloch state at the
Γ point of the periodic lattice. At this point k = 0 and
Bloch’s theorem reduces to an ordinary Neumann bound-
ary condition on the edge of the Wigner–Seitz cell. This
problem may be solved using a conformal mapping, and
we obtain the expression18

ϑeff '

(

C1 +
C2

C3 − d/Λ

)2

, (4)

where C1 ' −0.2326, C2 ' 2.7040 and C3 ' 1.0181 are
given by expressions involving the Bessel functions Y0
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FIG. 3: (Color online) Energy spectrum for a single defect.
The (dimensionless) eigenvalues corresponding to localized
states are shown as a function of the relative antidot diam-
eter d/Λ. For a given choice of Λ, the eigenvalues can be
converted to meV using Eq. (3). (a) Energy spectrum for
defect states residing in the gap below ϑeff. The full line in-
dicates the height ϑeff of the effective potential in which the
localized states reside. The dotted lines are the approximate
expressions given by Eqs. (4), (6) and (7). The approximate
results for ε1 are in almost perfect agreement with the numer-
ical calculations. (b) Energy spectrum for the defect states
residing in the lowest band gap region. The full lines indi-

cate the band gap edges of the periodic structure, ε
(K)
3 and

ε
(Γ)
2 , giving upper and lower limits to the existence of bound

states. The inset in both figures show the localized states
corresponding to the two lowest energy eigenvalues indicated
by the dashed vertical lines. The absolute square is shown.

and Y1.
18 We now consider the limit of d/Λ → 1 and

note that in this case the defect states residing below ϑeff

are subject to a potential which we may approximate as
an infinite two-dimensional spherical potential well with
radius Λ − d/2. The lowest eigenvalue for this problem

is ε
(∞)
1 = Λ2α2

0,1/(Λ − d/2)2, where α0,1 ' 2.405 is the
first zero of the zeroth order Bessel function. This ex-
pression yields the correct scaling with d/Λ, but is only
accurate in the limit of d/Λ → 1. We correct for this
by considering the limit of d/Λ → 0, in which we may
solve the problem using ideas developed by Glazman et

al. in studies of quantum conductance through narrow
constrictions.19 The problem may be approximated as a
two-dimensional spherical potential well of height π2 and

radius Λ. The lowest eigenvalues ε
(π2)
1 of this problem is

the first root of the equation

√

ε
(π2)
1

J1

(

√

ε
(π2)
1

)

J0

(

√

ε
(π2)
1

) =

√

π2 − ε
(π2)
1

K1

(

√

π2 − ε
(π2)
1

)

K0

(

√

π2 − ε
(π2)
1

) ,

(5)
where Ji(Ki) is the i’th order Bessel function of the first
(second) kind. If the height of the potential well π2 is
much larger than the energy eigenvalues, the first root
would simply be α2

0,1. Lowering the confinement must
obviously shift down the eigenvalue, and in the present

case we find that ε
(π2)
1 ' π. By expanding the equa-

tion to first order in

√

ε
(π2)
1 around

√
π we may solve

the equation to obtain ε
(π2)
1 ' 3.221, which is in excel-

lent agreement with a full numerical solution of Eq. (5).
Correcting for the low-d/Λ behavior we thus find the ap-
proximate expression for the lowest energy eigenvalue8

ε1 ' ε
(∞)
1 − lim

d/Λ→0
ε
(∞)
1 + ε

(π2)
1

= ε
(π2)
1 +

(4 − d/Λ) d/Λ

(2 − d/Λ)
2 α2

0,1. (6)

A similar analysis leads to an approximate expression for
the first excited state ε2. This mode has a finite angular
momentum of ±1 and a radial J1 solution yields

ε2 ' ε
(π2)
2 +

(4 − d/Λ) d/Λ

(2 − d/Λ)
2 α2

1,1, (7)

where ε
(π2)
2 ' 7.673 is the second-lowest eigenvalue of

the two-dimensional spherical potential well of height π2

and radius Λ, which can be found from an equation very
similar to Eq. (5). The first root of the first-order Bessel
function is α1,1 ' 3.832. The scaling of the two lowest
eigenvalues with d/Λ is thus approximately the same.
The approximate expressions are indicated by the dotted
lines in Fig. 3, and we note an excellent agreement with
the numerical results. We remark that the filling of the
defect states can be controlled using a metallic back gate
that changes the electron density and thus the occupation
of the different defect states.27

IV. TUNNEL COUPLED DEFECT STATES

Two closely situated defect states can have a finite tun-
nel coupling, leading to the formation of hybridized de-
fect states. The coupling between the two defects may
be tuned via a metallic split gate defined on top of the
2DEG in order to control the opening between the two de-
fects. As the voltage is increased the opening is squeezed,



172 Paper R

leading to a reduced overlap between the defect states.
We model such a split gate as an infinite potential bar-
rier shaped as shown in Fig. 1(d). Changing the applied
voltage effectively leads to a change in the relative width
w/Λ of the opening, which we take as a control parame-
ter in the following. If we consider just a single level in
each defect we can calculate the tunnel matrix element
as |τ | = (ε+ − ε−)/2 where ε± are the eigenenergies of
the bonding and anti-bonding states, respectively, of the
double defect. In the following, we calculate the tunnel
coupling between two defect states lying below ϑeff, but
the analysis applies equally well to defect states lying in
the band gaps.

In Fig. 4 we show the tunnel matrix element |τ | as a
function of the relative gate constriction width w/Λ for
three different values of d/Λ in the single-level regime of
each defect, i.e., d/Λ . 0.42. As expected, the tunnel
coupling grows with increasing constriction width due
to the increased overlap between the defect states. A
saturation point is reached when the constriction width
is on the order of the diameter of the defect states, after
which the overlap is no longer increased significantly. An
electron prepared in one of the defect states will oscillate
coherently between the two defect states with a period
given as T = π~/|τ |, which for GaAs with Λ = 75 nm,
d/Λ = 0.4 and w/Λ = 0.6 implies an oscillation time of
T ' 0.14 ns. A numerical wavepacket propagation of an
electron initially prepared in the left defect state is shown
in Fig. 4(b), confirming the expected oscillatory behavior.
With a finite tunnel coupling between two defect states,
two electron spins trapped in the defects will interact due
to the exchange coupling, to which we return in Section
VI.

V. RESONANT COUPLING OF DISTANT

DEFECT STATES

With a large antidot lattice and several defect states it
may be convenient with quantum channels along which
coherent electron transport can take place, connecting
distant defect states. In Refs. 20 and 21 it was sug-
gested to use arrays of tunnel coupled quantum dots as
a means to obtain high-fidelity electron transfer between
two distant quantum dots. We have applied this idea to
an array of tunnel coupled defect states and confirmed
that this mechanism may be used for coherent electron
transport between distant defects in an antidot lattice.16

This approach, however, relies on precise tunings of the
tunnel couplings between each defect in the array, which
may be difficult to implement experimentally. Instead,
we suggest an alternative approach based on a resonant
coupling phenomenon inspired by similar ideas used to
couple light between different fiber cores in a photonic
crystal fiber.23,24

We consider two defects separated by a central line of
N antidots and a central back gate Vg in the region be-
tween the defects, as shown in Fig. 5. Again, we consider
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FIG. 4: (Color online) (a) The (dimensionless) tunnel cou-
pling |τ | as a function of the relative split gate constriction
width w/Λ for three different values of d/Λ in the single-level
regime. For a given choice of Λ, the tunnel couplings can
be converted to meV using Eq. (3). (b) Time propagation
of an electron initially prepared in the left defect state for
d/Λ = 0.4 and w/Λ = 0.6. The absolute square of the initial
wavefunction is shown in the upper left panel. The follow-
ing panels show the state after a time span of T/8, 2T/8 and
3T/8, respectively, where T is the oscillation period.
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FIG. 5: (a) The structure considered for resonant coupling of
distant defect states; two defects separated by a central line
of N = 3 antidots, with a central back gate Vg controlling the
potential square well in the region marked with dashed lines.
A simple three-level model of the system is illustrated below.
(b) The eigenvalue spectrum of the three-level model. The
dashed line marks the point of resonance.
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FIG. 6: (Color online) Energy eigenvalues as a function of the
magnitude |Vg| of the back gate for the structure illustrated
in Fig. 5 for d/Λ = 0.5 and a central line of N = 7 antidots
separating the two defects. The resonances are marked with
dotted lines and characterized by a symmetric splitting of the
eigenvalues.

defect states residing below ϑeff, but the principle de-
scribed here may equally well be applied to defect states
in the band gaps. Using the back gate, the potential be-
tween the two defects can be controlled locally. If the
potential is lowered below ϑeff, a discrete spectrum of
standing-wave solutions form between the two defects.
In the following we denoted the energy of one of these
standing-wave solutions by εg, while the energy of the
two defect states is assumed to be identical and is de-
noted εd. A simple three-level analysis of this system, as
illustrated in Fig. 5, reveals that by tuning the back gate
so that the levels are aligned, εg = εd, a resonant coupling
between the two distant defects occurs, characterized by
a symmetric splitting of the three lowest eigenvalues into
ε0 = εd and ε± = εd ±

√
2|τ |, where |τ | is the tunnel

coupling between the defects and the standing-wave so-
lution in the central back gate region. If an electron
is prepared in one of the defects states, it will oscillate
coherently between the two defects with an oscillation
period of T =

√
2π~/|τ |. By turning off the back gate at

time t = T/2 we may thereby trap the electron in the op-
posite defect which may by situated a distance an order
of magnitude larger than the lattice constant away from
the other defect.

In Fig. 6 we show the numerically calculated eigenval-
ues as a function of the depth |Vg| of the central poten-
tial square well of the structure illustrated in Fig. 5 for
d/Λ = 0.5 and a central line of N = 7 antidots separating
the two defects. Contrary to the simple three-level model,
several resonances now occur as the back gate is lowered,
corresponding to coupling to different standing-wave so-
lutions in the multi-leveled central region. The energy
splitting at resonance is larger when the defect states cou-
ple to higher-lying central states due to a large overlap
between the defect states and the central standing-wave

t = 0 t = 1T/8

t = 2T/8 t = 3T/8

t = 4T/8 t = 5T/8

FIG. 7: (Color online) Numerical time propagation of an elec-
tron initially prepared in the left defect of the structure illus-
trated in Fig. 5(a) and corresponding to the results of Fig. 6
with |Vg| ' 16.54. The charge densities ρ(x, y) are shown
in the upper panels, while the lower panels show

R
dyρ(x, y).

The oscillation period is denoted T .

solution. In Fig. 7 we show a numerical time propagation
of an electron initially prepared in the left defect, con-
firming the oscillatory behavior expected from the simple
model. For GaAs and Λ = 75 nm the results indicate an
oscillation period of T ' 0.16 ns for the time propaga-
tion illustrated. The resonant phenomenon relies solely
on the level alignment εg = εd and on the symmetry con-
dition that both defect states have the same energy and
magnitude of tunnel coupling to the standing wave solu-
tion in the central region. It is in principle independent
of the number of antidots N separating the two defects,
but in practice this range is limited by the coherence
length of the sample and the fact that the levels of the
central region grow too dense if N becomes large.28 We
have checked numerically that resonant coupling of defect
levels below ϑeff is robust against lattice disorder.16

VI. EXCHANGE COUPLING

So far we have only considered the single-particle elec-
tronic level-structure of the antidot lattice. However, as
mentioned in the introduction, the exchange coupling be-
tween electron spins is a crucial building block for spin
based quantum computing architecture, and in fact suf-
fices to implement a universal set of quantum gates.25

The exchange coupling is a result of the Pauli principle
for identical fermions, which couples the symmetries of
the orbital and spin degrees of freedom. If the orbital
wavefunction of the two electrons is symmetric (i.e. pre-
serves sign under particle-exchange), the spins must be in
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the antisymmetric singlet state, while an antisymmetric
orbital wavefunction means that the spins are in a sym-
metric triplet state. One may thereby map the splitting
between the ground state energy ES of the symmetric
orbital subspace and the ground state energy EA of the
antisymmetric orbital subspace onto an effective Heisen-
berg spin Hamiltonian H = JS1·S2, where J = EA −ES

is the exchange coupling between the two spins, S1 and
S2. The implementation of quantum gates based on the
exchange coupling requires that J can be varied over sev-
eral orders of magnitude in order to effectively turn the
coupling on and off. In this section we present numeri-
cally exact results for the exchange coupling between two
electron spins residing in tunnel coupled defects as those
illustrated in Fig. 1(d).

The Hamiltonian of two electrons in two tunnel cou-
pled defects may be written as

H(r1, r2) = h(r1) + h(r2) + C(r1, r2), (8)

where

C(r1, r2) =
e2

4πεrε0

1

|r1 − r2|
(9)

is the Coulomb interaction and the single-electron Hamil-
tonians are

h(ri) =
(pi + eA)2

2m∗
+V (ri)+

1

2
gµBBSz,i , i = 1, 2, (10)

where V (r) is the potential due to the antidots and
the coupled defects. As previously, we model the an-
tidots and the split gate as potential barriers of infinite
height, and use finite-element methods to solve the single-
electron problem defined by Eq. (10). A Zeeman field Bẑ

applied perpendicularly to the electron gas splits the spin
states, and we choose a corresponding vector potential
reading A = B(−yx̂ + xŷ)/2.

In order to calculate the exchange coupling J we em-
ploy a recently developed method for numerically exact
finite-element calculations of the exchange coupling:22

The full two-electron problem is solved by expressing the
two-electron Hamiltonian in a basis of product states of
single-electron solutions obtained using a finite element
method.12 The Coulomb matrix elements are evaluated
by expanding the single-electron states in a basis of 2D
Gaussians,26 and the two-particle Hamiltonian matrix re-
sulting from this procedure may then be diagonalized in
the subspaces spanned by the symmetric and antisym-
metric product states, respectively, to yield the exchange
coupling. The details of the numerical method are de-
scribed elsewhere.16,22 The results presented below have
all been obtained with a sufficient size of the 2D Gaussian
basis set as well as the number of single-electron eigen-
states, such that a further increase does not change the
results.29

In Fig. 8 we show the calculated exchange coupling
for a double defect structure. The exchange coupling
varies by several orders of magnitude as the split gate
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FIG. 8: (Color online) Exchange coupling J for a double de-
fect structure. (a) Exchange coupling as a function of the
relative split gate constriction width w/Λ for two different
values of the relative antidot diameter and a lattice constant
Λ = 45 nm. (b) Exchange coupling as a function of the lattice
constant Λ for three different values of the relative split gate
constriction width.

constriction width is increased, showing that electrostatic
control of the exchange coupling in an antidot lattice is
possible, similarly to the principles proposed2 and exper-
imentally realized4 for double quantum dots. Just as the
tunnel coupling, the exchange coupling reaches a satura-
tion point when the split gate constriction width is on
the order of the diameter of the defect states. This is to
be expected since the exchange coupling in the Hubbard
approximation is proportional to the square of the tun-
nel coupling.2 As illustrated in Fig. 8(b), the exchange
coupling is highly dependent on the lattice constant, in-
creasing several orders of magnitude as the lattice con-
stant is decreased from 60 nm to 20 nm. This is in part
due to the overall increase in the energy levels and the
splitting between them with increased confinement, but
also due to a decrease in the ratio of the Coulomb in-
teraction strength to the confinement strength. As the
relative strength of the Coulomb interaction is decreased,
the defect states are effectively moved closer together, re-
sulting in an increase in the exchange coupling.

The exchange coupling is also highly dependent on
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FIG. 9: (Color online) Exchange coupling J for a double de-
fect structure as a function of ωc/ω0, where ωc = eB/m∗c
and ω0 = ~/(2m∗Λ2). Results are shown for a relative split
gate constriction width w/Λ = 2, and two different values of
the relative antidot diameter d/Λ. The lattice constant is (a)
Λ = 30 nm and (b) Λ = 45 nm.

magnetic fields applied perpendicularly to the plane of
the electrons.2 In Fig. 9 we show the exchange coupling
as a function of ωc/ω0 where ωc = eB/m∗c and we define
ω0 = ~

2m
∗Λ2 . For GaAs ωc/ω0 ' 0.00104 T−1nm−2

·Λ2B.
As expected, the results of Fig. 9 are very similar to
those obtained for double quantum dots.2,26 In all cases
we note an initial transition from the anti-ferromagnetic
(J > 0) to the ferromagnetic (J < 0) regime of exchange
coupling, followed by a return to positive values of the
exchange coupling at higher magnetic fields. The ini-
tial transition to negative exchange coupling is caused by
long-range Coulomb interactions.2 As the magnetic field
is increased further, magnetic confinement becomes dom-

inant, compressing the orbits and thus reducing the over-
lap between the single-defect wave functions. This leads
to a strong reduction of the magnitude of the exchange
coupling. Due to the increased confinement strength for
smaller lattice constants Λ, these transitions occur at
larger magnetic fields. The same is the case for the larger
relative antidot diameters, in which the ratio of mag-
netic confinement to confinement due to the antidots is
reduced. We have only considered the case of a large
constriction width w/Λ = 2, since this regime of rela-
tively large exchange coupling is the most interesting for
practical purposes. For small values of w/Λ we expect to
find results similar to those obtained in the limit of large
interdot distances for double quantum dot systems.2

VII. CONCLUSIONS

In conclusion, we have suggested and studied an al-
ternative candidate for spin based quantum information
processing in the solid-state, namely defect states form-
ing at the location of designed defects in an otherwise
periodic potential modulation of a two-dimensional elec-
tron gas, here referred to as an antidot lattice. We have
performed numerical band structure and density of states
calculations of a periodic antidot lattice, and shown how
localized defect states form at the location of designed de-
fects. The antidot lattice allows for resonant coupling of
distant defect states, enabling coherent transport of elec-
trons between distant defects. Finally, we have shown
that electrostatic control of the exchange coupling be-
tween electron spins in tunnel coupled defect states is
possible, which is an essential ingredient for spin based
quantum computing. Altogether, we believe that de-
signed defects in antidot lattices provide several prereq-
uisites for a large quantum information processing device
in the solid state.
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