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Abstract

This thesis covers the generation of non-classical states in a hybrid spin-optome-
chanical system. The macroscopic spin oscillator comprises cesium atoms confined
in a hot vapor cell of 330 K, coupling to light through the Faraday effect. The
optomechanical system is a highly stressed silicon nitride membrane positioned in
an optical cavity within a 4 K cryostat.

Due to quantum back-action, the parts of the hybrid system are dominated
by the interaction with the probing light field. The spin system can be prepared
in the highest energy state, effectively creating a negative mass oscillator. The
interaction between the sub-systems mediated by the light field generates a quantum
back-action evading measurement, suppressing the quantum back-action noise by
4.6 dB. This allows for an entangled link for the hybrid system, estimated by
a continuous variable Einstein-Podolsky-Rosen state with a conditional variance
Vc = 0.83±0.03 < 1, below the separability limit. This establishes a new benchmark
for the achieved quantum links between hybrid quantum systems.

In addition, an enhanced coupling to the spin oscillator has been accomplished
by improved motional averaging attained by spatially shaping the probe beam
into a square tophat, realizing a continuous measurement of light squeezing for
two advanced regimes of readout. A measurement slower than the oscillation
frequency generates 11.5+2.5

−1.5 dB of squeezing and detects 8.5+0.1
−0.1 dB of squeezing,

and a measurement faster than the oscillation frequency detecting 4.7 dB of squeez-
ing spanning more than one order of magnitude below the oscillation frequency,
demonstrating a new milestone for the performance of quantum sensors, which
enables strong coherent coupling to other material systems.

The conceived hybrid system opens avenues for teleportation protocols in
a spin-optomechanical system and quantum back-action evading measurements.
Furthermore, the spin system constitutes a new regime for the performance of
quantum oscillators, upholding the spin system’s esteemed reputation as a quantum
platform.
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Sammenfatning

Denne afhandling dækker genereringen af ikke-klassiske tilstande i et hybrid spin-
optomekanisk system. Oscillatoren som udgøre det makroskopiske spin best̊ar af
cæsium-atomer fastholdt i en varm celle ved 330 K, som kobles til lys gennem
Faraday-effekten. Den Optomekanisk membran er en højt spændt siliciumnitrid
membran, som er placeret i en optisk kavitet og nedkølet i en 4 K kryostat.

P̊a grund af kvantemekanisk tilbagevirkning domineres de hybride systemer af
interaktionen med det interagerende lysfelt. Spin-systemet kan forberedes i den
højeste energitilstand og skabe en negativ masse-oscillator. Interaktionen mellem
under-systemerne, som er medieret af lyset, genererer en ophævende kvantemekanisk
tilbagevirkning p̊a m̊alingen. Dette undertrykker den kvantemekaniske tilbagevirk-
ningsstøj med 4.6 dB, hvilket tillader et sammenfiltret/entangled link til hybrid-
systemet, som estimeres med en kontinuerlig variabel Einstein-Podolsky-Rosen
tilstand med en betinget varians Vc = 0.83 ± 0.03 < 1, som er under separations-
grænsen. Dette fastsætter en ny standard for de opn̊aede kvanteforbindelser mellem
hybride kvantesystemer.

Derudover er en forbedret kobling til spin-oscillatoren opn̊aet ved hjælp af en
forbedret bevægende middelværdi, opn̊aet ved rumligt at forme lysstr̊alen til en fir-
kantet tophat, som realiserer en kontinuerlig m̊aling af lys-komprimering/squeezing
for to avanceret målinger af udlæsningshastigheden: En måling langsommere end
oscillationsfrekvensen, hvilket genererer 11.5+2.5

−1.5 dB lys-komprimering og måler
8.5+0.1

−0.1 dB lys-komprimering, og en måling hurtigere end oscillationsfrekvensen,
hvilket måler 4.7 dB lys-komprimering, som spænder mere end en størrelsesorden
under oscillationsfrekvensen. Dette demonstrerer en ny milepæl for ydeevnen af
kvante-sensorer, som muliggør stærk kohærent kobling til andre kvante-systemer.

Det konstruerede hybrid-system åbner muligheder for teleporteringsprotokoller i
et spin-optomekanisk system og kvantemekaniske tilbagevirkningsm̊alinger. Desuden
udgør spin-systemet en ny grænse for ydeevnen af kvanteoscillatorer og opretholder
spin-systemets velrenommerede position som en kvanteplatform.
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Scope of the thesis
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CHAPTER 1

Introduction

Why are non-classical states in a hybrid spin-optomechanical system interesting?
To answer this question, we must understand a more fundamental question; why
are quantum systems interesting? What makes a spin system interesting? What
makes an optomechanical system interesting? And what capabilities come with
the interplay between hybrid spin-optomechanical systems?

At the Niels Bohr Institute, we are currently exploring the possibilities of
quantum systems, which can be traced back to the early formulation of quantum
mechanics by Niels Bohr as one of its founding fathers. Quantum mechanics opened
many physical possibilities, which was invalid to classical physics, most famously
by Einstein, Podolsky, and Rosen in [Einstein et al., 1935], arguing that quantum
mechanics must be an incomplete theory because it implied that particles at a dis-
tance could instantaneously determine the state of the other, violating the principle
of locality, calling it ”spooky action at a distance.” Moreover, the probabilistic
behavior of quantum mechanics was discomforting to Einstein, connected to his
famous quote, ”God does not play dice with the universe.” Later, Bell proposed to
test the Einstein-Podolsky-Rosen Paradox [Bell, 1964], first to be demonstrated by
the violation of Bell’s inequality in the Aspect’s experiment [Aspect et al., 1982],
notably a part of the work awarded by the recent 2022 Nobel Prize.

Quantum mechanics is already a part of our every day in the transistors of our
computers, the atomic clocks taking care of our time connected to GPS devices track-
ing our position, the medical imaging in x-rays, MRI and PET scanners, the solar
cells giving electricity, here only mentioning a small fraction of the implication that
quantum mechanics has had on our lives. The effects that made Einstein uncomfort-
able with quantum mechanics is the foundation of quantum mechanics, making it
interesting, illustrated by the capabilities to surpass classical boundaries in quantum-
enhanced sensing, quantum key distribution, quantum computing, etc. We are
starting to breach ”the second quantum revolution” [Dowling and Milburn, 2003],
referred to as the period surpassing the passive use of quantum mechanics, where it
was used to understand properties of something already existing. We are starting
to employ quantum mechanics actively for ”the second quantum revolution” in
the use of quantum dots, quantum engineered materials (phononic membranes),
quantum-enhanced sensing, and the initial appearance of quantum supremacy in
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CHAPTER 1. INTRODUCTION

quantum computers [Arute et al., 2019] [Madsen et al., 2022], and so forth. The
possible technologies within quantum mechanics are astronomical, with an almost
continuous flow of new proposed applications [Kimble, 2008, Wehner et al., 2018].

1.1 Atomic spins

Measurements of the atomic spin state is a well-explored platform used in various
metrology fields for hybrid entanglement measurements [Thomas et al., 2020], Bell-
inequalities [Hensen et al., 2015], single photon sources with built in memory to-
wards quantum repeaters [Cao et al., 2020, Dideriksen et al., 2021], magnetometers
[Dang et al., 2010], quantum simulators [Ebadi et al., 2021, Bernien et al., 2017],
and so forth. The measurements of atoms have evolved from having a strong
coupling to single or few atoms [Kimble, 1998] and for non-classical measurement
[Aspect et al., 1981] to a theoretical proposal for a weak interaction (off-resonant
Faraday rotation) with large atomic ensembles [Kuzmich et al., 1997] with one
of the first experimental implementations [Julsgaard et al., 2001]. The method
of off-resonant Faraday rotation is less detrimental for conserving the quantum
state, which can be measured in a quantum non-demolition regime that is less
constrained by the unwanted perturbations that often follow with resonant probing
[Kuzmich et al., 1998].

The energies of a spin ensemble are quantized to the Zeeman levels set by the
magnetic field, evolving the system at the Larmor precession, meaning that the
system is sensitive to magnetic perturbations, consequently making spin ensembles
an esteemed platform for quantum-enhanced magnetometry [Dang et al., 2010,
Wasilewski et al., 2010]. The interaction of light with a large ensemble of atomic
spins through the Faraday rotation is a popular choice due to the quantum non-
demolition alike measurements, along with a long memory time
[Kozhekin et al., 2000, Julsgaard et al., 2004], in addition to the properties of a
negative mass for the spin ensembles [Julsgaard et al., 2001]. This thesis utilizes a
hot paraffin-coated cesium vapor cell for the spin system described in chapter 2.

1.2 Mechanical resonators

Optomechanical phenomena were observed long before the birth of quantum me-
chanics. Kepler discovered radiation pressure by noticing that the comets’ tails
point away from the sun [Kepler, 1619]. The optomechanical coupling first got a
renewed interest for optical interferometry measurements for gravitational wave
sensing, with the first theoretical proposal of radiation-induced ponderomotive
forces on mechanical object [Braginsky and Manukin, 1967], later to be experi-
mentally verified [Braginskǐi et al., 1970], formalizing the theoretical concept of
quantum non-demolition measurements [Braginsky et al., 1980], and experimental
ground state cooling of a mechanical object [Chan et al., 2011].

The field of quantum optomechanics enables quantum-enhanced force and
positional sensing. It has been shown to produce ultra-coherent quantum oscilla-
tors [Tsaturyan et al., 2017] that can be utilized as long-lived quantum memories.
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1.3. HYBRID SPIN-OPTOMECHANICS

This thesis utilizes cavity optomechanics [Aspelmeyer et al., 2014] to position a
mechanical membrane in the-middle design outlined in chapter 3.

1.3 Hybrid spin-optomechanics

Quantum links between hybrid systems aim at combining the advantages of different
material systems [Kurizki et al., 2015]. This includes systems of large coherence,
like phononic membranes, for memory and systems easily manipulated, like su-
perconducting qubits, for quantum computing, to get a more robust and versatile
quantum system. More specifically to the material systems of this thesis, telepor-
tation between spin and optomechanical systems would open the possibility of
teleporting an engineered quantum state on the mechanical system, enabling new
tests of fundamental physics, enhanced force sensing, long-lived quantum mem-
ory, and the transduction of quantum signals between the optical and microwave
domains [Wehner et al., 2018].

A hybrid spin-optomechanical system might even solve the problem that the
field of optomechanics originated from - enhancing the sensitivity of gravitational
wave detectors, which is limited by quantum back-action arising from the light-
driven measurements of suspended mirrors. The measurement of quantum back-
action can be evaded using a negative-mass spin system [Zeuthen et al., 2019,
Khalili and Polzik, 2018], thereby enhancing the sensitivity of gravitational wave
detection. The path towards such enhancement has been recently demonstrated in
a proof-of-the-principle experiment using a spin ensemble and an optomechanical
cavity [Møller et al., 2017].

This thesis focuses on developing the spin ensemble for the hybrid spin-
optomechanical system. The thesis structure is the following:

In part I, we give an overview of the material systems, describing the spin
system for the relevant dynamics when interacting with light, and an outline of
the optomechanical system introducing the mechanical behavior in the interface of
light.

In part II, we demonstrate our most treasured characterization methods for
the atomic spin ensemble: magneto-optical resonance signal and coherent induced
Faraday rotation. Additionally, we investigate the procedure of preparing the spin
ensemble in the ground state.

In part III, we introduce the concept of motional averaging with related chal-
lenges to overcome for improving the homogeneity of the magnetic field that
determines the Larmor precession generated by a new coil design and a reduction
of fast-decaying modes from an inhomogeneous atomic probing through the gen-
eration of a square tophat beam. We complete the topic on motional averaging
by simulating the presented effects for different regimes to better understand the
limitations in measurements of our spin ensemble.

In part IV, we are laying out the phenomena of spin-induced light squeezing
for different measurement regimes, showcasing state of the art spin induced light
squeezing and measurement rates larger than the Larmor precession, demonstrating
the culmination of advancements for the spin ensemble.
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CHAPTER 1. INTRODUCTION

In part V, we outline the hybrid spin-optomechanical system for generating a
conditional entanglement, creating an Einstein-Podolsky-Rosen state
[Einstein et al., 1935] with a variance below the inseparability limit, declaring
the first entanglement generation between a spin ensemble and a mechanical
resonator. Finally, to establish a new direction for our hybrid system in the quest
to demonstrate quantum teleportation between a spin ensemble and a mechanical
resonator.

In part VI, we summarize the results of this thesis, centered on the results
of spin-induced light squeezing and entanglement generation. In the outlook, we
discuss the new opportunities in hybrid spin-optomechanical systems opened by
the experimental advances.
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CHAPTER 2

Macroscopic spin systems of
cesium atoms

This chapter serves the purpose of describing the macroscopic atomic spin system of
cesium atoms. It describes the platform of cesium atoms confined in a glass cell that
was perfected in the group of my supervisor Eugene Polzik over the last two decades.
Much of the theory and methodology that are presented overlap with the great
work of Brian Julsgaard [Julsgaard, 2003], as the theory of polarized spin ensembles
that we present still provides a comprehensive description of the dynamics that we
observe experimentally. Together with this, we have adopted a more convenient
basis for the quadratures of the light introduced by [Thomas, 2020].

The following chapter lays out the theory needed to understand the atomic
spin system, which is the quantum oscillator of primary focus in this thesis. This
provides theoretical references for the experimental chapters, as most experimental
techniques probe the same underlying physics.

2.1 Atomic spin state of cesium

Cesium-133 is a widely used isotope in metrology. In particular, the second is
defined as the hyperfine splitting for (62S1/2, F = 3) → (62S1/2, F = 4) of cesium
oscillating at 9 192 631 770 Hz [Newell and Tiesinga, 2019]. Cesium-133 is the
only stable isotope of cesium, which makes the most sense for optical purposes
since it is the only cesium species found naturally with almost ≈ 100% abundance.
Moreover, it is easy to achieve a high vapor density for cesium at temperatures
around room temperature due to its low melting point at 28.4 ◦C [Steck, 1998].
Another advantage of cesium is the wide availability of lasers for the wavelength
of the D1 line (62S1/2 → 62P1/2) and the D2 line (62S1/2 → 62P3/2) at 894 nm
and 852 nm, respectively. The relevant level scheme for this can be seen in figure
2.1. We are interested in the atoms populated in 62S1/2, F = 4 for one of the
outermost mF levels for this work, which is treated as our ground state. The
repump laser transfers atoms from F = 3 → F = 4 by shining σ-light from F = 3
to the frequency midpoint between F ′ = 2 and F ′ = 3. All the allowed transitions:
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2.1. ATOMIC SPIN STATE OF CESIUM

F = 4

F = 3

6S1/2

F ′ = 4

F ′ = 3

6P1/2

F ′ = 4

F ′ = 3

6P3/2

F ′ = 2

F ′ = 5

∆

Repump
PumpProbe

D2 line

D1 line

Figure 2.1: Cesium hyperfine transitions for the D1 line and D2 line.
The repump is stabilized in between F = 3 → F ′ = 2, 3 on the D2 line at a
wavelength of 852 nm, the pump is stabilized from F = 4 → F ′ = 4 on the D1 at a
wavelength of 894 nm and the probe is detuned to F = 4 → F ′ = 5 for the D2 line.
A positive detuning ∆ corresponds to a higher laser frequency of the probe laser to
the transition frequency (F = 4 → F ′ = 5).

F ′ = 2, F ′ = 3 and F ′ = 4 are within the Doppler width of the repump for cesium
atoms at room temperature1. It is, therefore, not easy to see the logic behind this
non-trivial choice of repumping as it has shown empirically to be the best (see
chapter 5 for further explanation). The pump laser transfers atoms to the outermost
mF level by shining σ-polarized light resonant with the transition F = 4 → F ′ = 4.
This creates a dark state in the outermost mF level, increasing the populations in
the extreme projections of the spin. The pumping beam can have disadvantages
compared to the repump since it pumps directly on the ground state, significantly
broadening the probed transitions.

The sign of the circularity of light being σ− or σ+ is either populating mF = −4
or mF = 4, respectively. This determines the sign of the effective mass of the
oscillator, where atoms pumped towards mF = −4 result in a positive mass
oscillator and atoms pumped towards mF = 4 result in a negative mass oscillator
(the negative mass reference frame is explained in the following section 2.1.1).

The probe beam is tuned off-resonance. Usually, 3 GHz blue detuned to the
F = 4 → F ′ = 5 transition. This is because we are interested in a weak interaction
without absorption(losses), so we can have a nondestructive measurement of the
spin state of the cesium atoms through the interaction of the Faraday rotation.

1The Doppler width for atoms at room temperature on the D2 line: ∆νFWHM ≈ 375MHz.
The relevant hyperfine splittings for 62P3/2: νF ′=2↔F ′=3 = 151MHz, νF ′=3↔F ′=4 = 201MHz
[Steck, 1998].
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CHAPTER 2. MACROSCOPIC SPIN SYSTEMS OF CESIUM ATOMS

2.1.1 Effective negative mass oscillator
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gy
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Figure 2.2: Illustration of the an effective negative mass oscillator. The
blue spin vector illustrates an atomic ensemble pumped to the lowest energy state
in mF = −4, referred to as an effective positive mass oscillator. The red spin vector
illustrates an atomic ensemble pumped to the highest energy state in mF = 4,
referred to as an effective negative mass oscillator. X̂S and P̂S are the canonical
observables (see equation 2.4 for definition) and B is the magnetic field.

The atomic spin state can realize an effective negative-mass oscillator. However,
an oscillator with effective negative mass can be also looked at as an oscillator
with negative resonance frequency, which is often more convenient in theoretical
calculations. This is interesting because the sign change of light-spin induced force,
quantum back-action, that can be canceled when interacting with other material
systems. This opens the possibility for measurements free of noise contributions
arising from the quantum back-action [Polzik and Hammerer, 2015].

An illustration of the negative-mass oscillator is shown in figure 2.2. The
oscillator in the negative(positive) mass reference frame is in the highest(lowest)
energy state, where the magnetic field is parallel(anti-parallel) oriented to the
mean spin Fx in red(blue). The atoms are pumped to the outermost mF level,
which is the corresponding ground state of the system. The usual description of a
system in the ground state is the lowest energy state, where excitations increase the
oscillator energy. The atoms have a finite number of excited levels, in contrast to a
mechanical membrane with infinite levels, which makes it possible for an atomic
ensemble to be prepared in the highest-energy state. Therefore, an excitation of
the system lowers the energy of the system. Manipulating our system to treat the
highest energy state as our prepared ground state changes the coupling between the
oscillator and the light. The oscillator frequency changes sign, giving an opposite
response for the susceptibilities.
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Figure 2.3: Driven measurement of the spin ensemble prepared as a
positive and negative mass oscillator. The positive and negative mass is
represented in blue and red, respectively. a) the amplitude response is identical in
an ideal situation. b) the phase of the response has a π phase shift due to the sign
change of the mass. The figure has been reproduced from [Thomas, 2020].

A measurement of a negative and positive mass oscillator can be seen in figure
2.3. The measurement of the amplitude response is unaltered from the mass change
between the positive and negative mass, shown in figure a). The phase response
of the oscillator is changed by π at all frequencies when changing the mass of the
oscillator, shown in figure b). This means that the oscillator response is exactly
the opposite when changing the oscillator’s mass.

2.1.2 Cesium in a vapor cell

We want to have the cesium atoms encapsulated as we need a way to confine
the cesium vapor to measure its spin state. Furthermore, we want to have an
encapsulation that reinforces the ability to prepare our system in a quantum state
without decaying, as well as the ability to read the quantum state out. Here is a
listing of the characteristics that are desirable for our encapsulated spin system
but also most other similar quantum systems:

1. Preparation of atoms in the ground state.

2. Low decay rate such the quantum state can be maintained (long memory).

3. A strong collective interaction with light - high optical depth.

4. Readout of quantum state with low optical losses.

The 1st point involves the ability to access the atomic ensemble with a beam of
pure polarization for the repump and pump light with either σ+ or σ− polarization.
This is achieved by choosing a square channel to host the atomic ensemble. This can
be seen in figure 2.4, where a small channel is shown in the center of the chip. The
cell is made of Borofloat, which is very transparent at the wavelengths of the D1 and
D2 lines of cesium. The square channel geometry does not create any lensing effects,
unlike a circular channel that would change the angle of light rays with respect to
the magnetic field. It is essential to keep a clean polarization and parallelism of
pumping beams to the magnetic field, as this controls the repumping and pumping
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Figure 2.4: Cesium captured in a glass cell. a) The geometry of the cesium
vapor cell. The glass is made of Borofloat and coated with paraffin as a spin anti-
relaxation coating. The input and output windows are coated with anti-reflection
coatings for 852 nm. b) A picture of our latest generation cell with a geometry of
1 mm×1 mm×40 mm.

rates. The outer channel has a round encapsulation, which is for convenience of the
fabrication. The lensing effects can also be accounted for more easily because of
the larger radius of curvature of the outer channel. The encapsulation of the outer
channel has a diameter of 25.4 mm. The (inner) channel varies in size depending on
the needed characteristics of the cell, the optimization of which is a complex topic
that is covered in part III: Experimental realizations and simulations of motional
averaging in a hot vapor cell. In the latest generation, the channel cross-section
size varies from 0.5 mm by 0.5 mm to 5 mm by 5 mm.

The 2nd point on the list is the decay of the atomic state. It is critical for
treating a spin ensemble as a collective oscillator that atoms are indistinguishable
with regards to interaction with light, therefore it is important that the decay
rate is slower than the motional averaging of light. The primary decay rate of
a spin state when encapsulating an alkali specie in a glass channel is the wall
collisions since the decay rate goes as γS

2π
= 1/τ , where τ is the average transit time

across the channel. The transit time is τ ≈ 7 µs for a square channel with a side
length of 1 mm. A memory time equal to the transit time gives a decay rate of
γS
2π

≈ 0.14 MHz, which is unacceptably short in the regime that we are working in
where a longer memory time is desirable. Memory time can be vastly improved
by introducing a paraffin coating to the atomic cell. It covers the cell surfaces
as illustrated by the red lines in figure 2.4a. The paraffin coating protects the
spin coherence, so the spin coherence lasts ∼ 104 wall collision before decaying,
bringing the memory time from a few microseconds to a few tenths of milliseconds
[Corsini et al., 2013, Balabas et al., 2010]. The paraffin used in this work is C30,
which is paraffin containing 30 carbon atoms, having shown the best experimental
results.
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2.1. ATOMIC SPIN STATE OF CESIUM

The 3rd point is the requirement of a large number of atoms for the interaction.
The cell is designed with a storage of cesium atoms confined in the stem, seen in
figure 2.4b by the brown color of the stem (the glass finger sticking up from the
glass cylinder). The stem functions as a reservoir of cesium atoms that releases
them to supply the inner channel with new cesium atoms. A small hole named the
micro-hole has been made to create a small bridge between the outer and the inner
channel for the cesium atoms to pass. The micro-hole is either a small drilled hole
into the chip or a scratch on the surface between the chip and the window enclosing
cell ends. The number of cesium atoms in the channel can then be controlled
by raising the cell temperature such that the cesium in the stem vaporizes. The
temperature is limited by the reaction of paraffin to raised temperature, where it
starts to clump at high temperatures. This problem starts to be pronounced above
a temperature of 50 ◦C, and temperatures never exceed 60 ◦C during measurements
to protect the cells. The cells have at times exceeded a temperature of 60 ◦C in the
process of curing the cell, which is the process of restoring the cell that is explained
in appendix B. The last requirement for achieving a large atomic number is to have
elongated cells along the probing direction. This enhances the interaction between
light and the spin as it enhances the optical depth of the measurement (see chapter
6 for the measurement of the readout rate).

B

λ/4

λ/2

z

y

x

Pumping and repumping

Spin ensemble

Fx
PBS

σ+

Input

λ/2

-α

Figure 2.5: Optical setup for spin preparation and readout. The atomic
ensemble is prepared in a homogeneous magnetic field, B, along the x-axis, where
it is pumped and repumped into F = 4,mF = 4 with σ+ light. A linearly polarized
beam with an angle α to the mean spin, Fx, probes the atomic ensemble. The
beam quadratures of light are measured with homodyne detection that reuses the
virtually unaltered local oscillator for detection. The phase angle of the homodyne
detection is adjusted with a combination of λ/4 and λ/2 plates.

The 4th point is the ability to produce atomic cells with a high transmission.
The chip is compressed between two windows to stay fixated inside the glass
cylinder (outer channel). These windows are coated with anti-reflection (AR)
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CHAPTER 2. MACROSCOPIC SPIN SYSTEMS OF CESIUM ATOMS

coating optimized for the D2 line at 852 nm. The highest observed transmission is
98% for this type of cell, but it usually ranges within 91 − 98%. The main reason
for a decreased transmission is the collection of paraffin spots on the windows,
resulting in light scattering. This is also one of the main reasons why the cells need
to be cured since it releases paraffin spots from the windows2.

The atomic cell in a simple optical setup for preparation and readout is shown
in figure 2.5. The setup shows a cell placed in a homogeneous magnetic field along
the x-axis, where it is pumped and repumped with a beam that is traveling parallel
to the B-field with σ+ light to prepare the ensemble in mF = 4. The total mean
spin is parallel to the magnetic field setting the quantization axis of the experiment.
The input light is linearly polarized and can be tuned by a λ/2 waveplate with the
input polarization angle denoted as α. The input light is then probing the atomic
ensemble, where the state of the atomic spin is read out into the quadratures of
light. The light is at last measured in a homodyne configuration.

The homodyne configuration of this experimental setup benefits from the local
oscillator that probes the system since it is virtually unaltered in transmission.
The interaction between light and spin is imprinted into orthogonal polarizations
of light. Waveplates differ in phase delay depending on the quantization axis of
the input polarization. This means that the light phase can be adjusted between
the polarizations of light; here, the local oscillator and the quadratures of interest.
Two waveplates are placed so the homodyne detection phase can be tuned with a
λ/4 waveplate, and the balancing between the two detectors with a λ/2 waveplate.

2.2 Spin and light interactions

We want to describe the theory behind a collective atomic spin in an external
bias magnetic field. The atoms are weakly probed by a far-detuned optical light
field, where the interaction of interest is due to the polarization-dependent AC
Stark shifts of the sub-mF levels. The reader should consider the atomic system
presented previously in this chapter.

The atoms are described by the spin operators {F̂x, F̂y, F̂z, F̂0}3, and the light is

described by the Stokes operators {Ŝx, Ŝy, Ŝz, Ŝ0}. The spin operator is an operator

for the collective macroscopic spin F̂x,y,z =
∑N

i=1 F̂
(i)
x,y,z with N ranging from 107

to 1011 depending on the cell geometry and the vapor pressure. F̂
(i)
x,y,z is the total

angular momentum projection quantum number for a single atom.

We want to begin describing the full model by first taking our standpoint in
the Hamiltonian for a single atom placed in a bias magnetic field oriented along

2The atomic cells have been fabricated by Mikhail V. Balabas using glass blowing techniques.
3The notation in this group (Quantop) has historically been using Ĵ as the spin operator,

which is not to be confused with the quantization of the spin and orbital angular momentum. F̂
is, therefore, a more appropriate operator as it includes the nuclear spin to describe the hyperfine
splitting.
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2.2. SPIN AND LIGHT INTERACTIONS

the x-direction4:

ĤS/ℏ = ± ωSF̂
(i)
x + gS

[
a0Ŝ0 + a1ŜzF̂

(i)
z +

2a2

[
Ŝ0(F̂

(i)
z )2 − Ŝx((F̂ (i)

x )2 − (F̂ (i)
y )2) − Ŝy(F̂

(i)
x F̂ (i)

y + F̂ (i)
y F̂ (i)

x )

]]
,

(2.1)

with the angular frequency of the spin precession, ωS, determined by the Zeeman
splitting between the adjacent mF levels, where the sign denotes the positive or
negative spin orientation to the magnetic field. This is referred to as the positive
and negative mass of the oscillator because it mathematically resembles a negative
mass by having a mean spin vector oppositely orientated to the bias magnetic field.
Next, gS is the single-photon coupling rate:

gS = − cγcsλ
2
cs

16πA∆
if |∆| ≫ γcs, (2.2)

where c is the speed of light, γcs/(2π) = 5.22 MHz is the natural linewidth, λcs is the
wavelength, ∆ is the detuning to the optical transition, and A is the cross-section
area of the ensemble.

We have three coefficients in equation 2.1 that we refer to as the scalar, vector,
and tensor contributions arising from a0, a1 and a2, respectively
[Deutsch and Jessen, 2010]. The three coefficients can be calculated from the
Clebsch–Gordan coefficients for a given atomic level and the individual laser
detuning to the atomic transitions5, and the result is

a0(∆) =
1

4

(
1

1 + ∆35/∆
+

7

1 + ∆45/∆
+ 8

)
−−−−→
∆→±∞

4,

a1(∆) =
1

120

(
− 35

1 + ∆35/∆
− 21

1 + ∆45/∆
+ 176

)
−−−−→
∆→±∞

1,

a2(∆) =
1

240

(
5

1 + ∆35/∆
− 21

1 + ∆45/∆
+ 16

)
−−−−→
∆→±∞

0,

(2.3)

where ∆35 is the detuning between F ′ = 3 and F ′ = 5 in 62P3/2, and ∆45 is the
detuning between F ′ = 4 and F ′ = 5 in 62P3/2

6.
The terms proportional to a1 give rise to a vectorial rotation between two

polarization states resulting in a circular birefringence for the probe light, and the
quantum back-action noise acting on the spin oscillator. The terms involving a2
also affect the probe light similarly to a1 inducing a tensorial rotation between all
three polarization states due to the linear birefringence from a2. The interaction
type coming from a2 results in dynamical back-action amplifying or dampening
the oscillator.

4The derivation for this Hamiltonian can be found in [Julsgaard, 2003].
5The complete calculation for the three a-coefficients can be found in [Julsgaard, 2003], where

the a-coefficients for atoms prepared in F = 3 also can be found.
6The relevant frequencies: ∆35/2π = 452.24 MHz and ∆45/2π = 251.09 MHz [Steck, 1998].
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CHAPTER 2. MACROSCOPIC SPIN SYSTEMS OF CESIUM ATOMS

We want to understand the contributions associated with the tensor contribution
(a2) since some terms can be neglected when describing the evolution of the spin.
We are only interested in the frequency components oscillating at ωS. We follow
the derivations and arguments in section 6.4 of [Julsgaard, 2003] to understand the
arising effects coming from the tensor contributions in the Hamiltonian equation
2.1:

• Let us look at the first two terms of the tensor contribution: Ŝ0(F̂
(i)
z )2 and

Ŝx((F̂
(i)
x )2 − (F̂

(i)
y )2). These terms can be rewritten into identity matrices

when approximating a spin-1
2

system for the polarized ensemble (see equation
A.2 for details). The identity matrices only contribute to a frequency shift of
the oscillator, which results in a higher order AC Stark shift changing the
energy splitting between the sub-mF levels.

• The last term in the tensor contribution: (−Ŝy(F̂
(i)
x F̂

(i)
y + F̂

(i)
y F̂

(i)
x )) can be

rewritten into −(2m+ 1)ŜyF̂y (see equation A.1 and A.2 for details). This
gives rise to a rotation of the quadratures that we refer to as the tensor
interaction term. It later appears in the normalized form as ζSP̂SP̂L in the
normalized Hamiltonian for the collective spin (see equation 2.12).

The Holstein-Primakoff approximation can be applied for a collective spin,
normalized to the mean angular momentum Fx, because we map the mean spin to
bosonic ladder operators F̂x = Fx − b̂†b̂/2 [Holstein and Primakoff, 1940]. A visual
illustration of the Holstein-Primakoff approximation is shown in figure 2.6, where
the change of Fx is negligible7 in the regime:

〈
F̂y

〉
,
〈
F̂z

〉
≪ Fx. The illustration

shows a mapping of the quadratures onto a 2-dimensional plane instead of a sphere
because of the large length differences between the directions of angular momentum.

F̂z

F̂y

Fx

Figure 2.6: Illustration of the effect of the Holstein-Primakoff approxi-
mation on the Bloch sphere. Fx is independent of the excursions in Fy and Fz

for the Holstein-Primakoff approximation.

The Hamiltonian can be simplified by linearizing the spin and light operators.
The atomic ensemble is prepared in the ground state such the steady-state spin is

7It is essential to note that this approximation may not be valid in case of large F̂y or F̂z,
resulting in a small spin polarization.
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Fx =
∣∣⟨F̂x⟩

∣∣. We assume small fluctuations from the mean spin in the transverse

spin components:
〈
F̂y

〉
,
〈
F̂z

〉
≪ Fx. The spin quadratures and their commutation

relation are defined as

X̂S =F̂z/
√∣∣Fx

∣∣, (2.4)

P̂S = − sgn(Fx)F̂y/
√∣∣Fx

∣∣, (2.5)

[X̂S, P̂S] =i. (2.6)

There is a need for a change of basis for the Stokes vectors to simplify the
scenario of a rotated input polarization of the light field. We want to define our
basis such that the strong linear field of our probe is the classical mean photon
flux:

〈
Ŝ∥
〉

=
〈
Ŝ0

〉
= S∥ with quantum variables being the orthogonal zero-mean

variables: Ŝ⊥ and Ŝz. The rotation of the basis can be written as

Ŝ∥ =Ŝxcos 2α− Ŝysin 2α, (2.7)

Ŝ⊥ =Ŝxsin 2α + Ŝycos 2α, (2.8)

where Ŝz and Ŝ0 are unaffected by the rotation, and α is the angle to the mean
spin Fx that has been previously depicted in figure 2.5. The light quadratures and
their commutation relation can then be defined from the above basis change:

X̂L =Ŝz/
√∣∣S∥

∣∣, (2.9)

P̂L = − Ŝ⊥/
√∣∣S∥

∣∣, (2.10)

[X̂L, P̂L] =(i/2)δ(t− t′). (2.11)

Following the Hamiltonian in equation 2.1 for a single atom, where the above
quadrature basis is used to rewrite the Hamiltonian for a collective spin:

ĤS/ℏ = ∓ωS

2
(X̂2

S + P̂ 2
S ) − 2

√
ΓS(X̂SX̂L ∓ ζSP̂SP̂L). (2.12)

We have neglected a term in the Hamiltonian −2
√

ΓSζS tan(2α)Ŝ∥/
√∣∣S∥

∣∣P̂S since

the contribution from this term has negligible effects for our working regime. It
is only important when having laser amplitude noise at the oscillation frequency,
ωS, for which it drives X̂S. In such a case, the transduction of amplitude noise can
be avoided by choosing a linear polarization of the probe along x or y, where the
term is zeroed8. The readout rate (ΓS) and the tensor interaction coefficient (ζS)
are defined as

ΓS = g2Sa
2
1S||Fx, (2.13)

ζS = −14
a2
a1

cos 2α. (2.14)

8We are operating with a titanium-sapphire laser(MSquared SolsTiS 7W-SRX-F) in our
experiment. It is pumped with low power of 2W to have the relaxation oscillations of the laser at
300 kHz, so we have shot noise limited measurements from around 1MHz [Østfeldt, 2022].
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CHAPTER 2. MACROSCOPIC SPIN SYSTEMS OF CESIUM ATOMS

The readout rate, ΓS, characterizes the ability to measure the atomic state
via Faraday interaction, as well as it determines the strength of the quantum
back-action of such a measurement. The tensor interaction coefficient, ζS, describes
the ratio between the linear birefringence (dynamical back-action) to the circular
birefringence (quantum back-action) type of interactions. The tensor interaction
also determines the asymmetry in the creation of Stokes and anti-Stokes photons
by scattering from probe beam9. The tensor interaction is maximized at α =
nπ/2, n ∈ Z because the tensor effect arises from the Larmor-induced oscillation
in Ŝy. These are maximized when Ŝy is orthogonal or parallel to the classical drive,
which follows from the defined basis in equation 2.8. The strength of the tensor
interaction is different for an imperfectly polarized ensemble, where the tensor
interaction for the other mF levels has a scaling following

ζS(m) = ζS,m=−4 · (2m+ 1)/7. (2.15)
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Figure 2.7: Readout rate and tensor interaction dependency on the
detuning. Blue and red colors denote a positive and negative detuning, respectively.
A positive detuning corresponds to higher laser frequency compared to the transition
F = 4 → F ′ = 5. a) shows the detuning dependency of the vector coefficient
responsible for the readout rate ΓS. b) shows the detuning dependency of the
tensor interaction in the outermost mF level. Note that the sign of the tensor can
easily be flipped accordingly to equation 2.14.

ΓS and ζS depend on a1(∆) and a2(∆). This means that the readout rate
and tensor terms can be changed by tuning the probe laser with respect to the
F = 4 → F ′ = 5 transition. We mostly work far from resonance, where the
atomic absorption is low with respect to the coupling since the absorption falls
off as 1/∆2 and the coupling as gS ∝ 1/∆. The full dependency of the readout
rate on the detuning can be seen in figure 2.7. We have mostly been working at
∆/2π = 3 GHz blue detuned in this work, where the probe-induced decay is low
compared to the readout10. Most of our experiments have also favored having a low

9This process creates the two interaction types that are known as entanglement generation
(Stokes) and beam-splitter interaction (anti-Stokes) that are used in quantum protocols.

10This is conditioned on a high resonant optical depth for our measurements.
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2.2. SPIN AND LIGHT INTERACTIONS

tensor interaction coefficient, as the tensor creates couplings between the P and X
quadrature as well as coupling between mF sublevels adding more complexity to
the model.

2.2.1 Frequency of the spin precession

The spin precession, denoted as ωS, arises from the torque imposed on the atomic
angular moment by the bias magnetic field. This phenomenon is understood well
both theoretically and experimentally [Steck, 1998], especially for the historical
reason that the hyperfine splitting of cesium is used in the definition of the unit of
time. This section explains the phenomena behind the observed spin precession with
the underlying physics behind the equations further explained in [Julsgaard, 2003].

We want to express the energy splitting between subsequent mF levels. The
first effect to consider, and the main contributor to the Larmor frequency, is the
weak field Zeeman effect, also known as the Larmor precession, which is a linear
energy shift between the energy levels:

ωZ

2π
=
gFµBB

h
= γeB, (2.16)

where gF is the hyperfine Landé g-factor, µB is the Bohr magneton, h is plack
constant and B is the magnetic field. γe is called the gyromagnetic ratio with the
size of 350.5 kHz/G for F = 4. We often work in the regime 1 − 2 MHz, meaning
that a field of 3 − 6 Gauss is applied to the atomic ensemble. The gyromagnetic
ratio for F = 3 is −351.6 kHz/G, which is essential to note as the interaction
with the atoms left in F = 3 is visible at Larmor frequencies 3 − 6 kHz above the
frequencies of interest for F = 4.

The second contribution affection the Larmor frequency is the quadratic Zeeman
splitting that scales quadratically with the strength of B-field:

ωQZ

2π
= − ω2

Z

2πωHFS

, (2.17)

where ωHFS is the hyperfine splitting between F = 3 and F = 4 with the value of
ωHFS/2π ≈ 9.193 GHz11. The quadratic Larmor frequency scales according to the
projection of the spin, which means that the transitions between neighboring mF

levels have different Larmor frequencies

ωS(m) = ωZ +mωQZ. (2.18)

An illustration of the resulting level splitting described by equation 2.18 can be
seen in figure 2.8. The gray dashed lines are the energy levels without quadratic
energy shift, and the red solid lines are the energy levels with quadratic energy shift.
The 9 energy levels give rise to the 8 transitions that we observe experimentally.

The quadratic effects become significant for an imperfectly polarized ensemble
as they can be used to separate the frequencies of different mF levels. However,
it can also be the case that these quadratic splittings are unwanted as the total

11It is the hyperfine transition of cesium that is used to define the second as an exact frequency
at 9.192 631 770GHz [Steck, 1998].
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Figure 2.8: Illustration of splittings between atomic levels. Energy levels
for the different mF levels in F = 4. The dashed gray lines are the energy levels
only accounting for the linear shift. The solid red lines are the full energy splitting
accounting for quadratic effects. Linear and quadratic splittings are not to scale
for illustrative purposes.

interaction between all mF levels is favorable. Figure 2.9 shows the effect of the
quadratic splitting on the spectrum. The red curve shows a spectrum for which the
resonance frequency is 1.3 MHz with a quadratic Zeeman splitting of ωQZ ≈ 370 Hz,
where all the transitions can be distinguished from each other. The blue curve
shows a response without a quadratic splitting of the levels, where all the transitions
contribute constructively to the signal. This configuration cannot distinguish the
levels, enhancing the overall resonance signal strength.

We want to be able to control the quadratic splitting between mF levels. This
is briefly mentioned in section 2.2 when discussing the effects arising from terms
proportional to a2 for the Hamiltonian in equation 2.1. Some terms give rise to
polarization-dependent identity operators equivalent to energy shifts. These shifts
are higher-order AC Stark shifts that we refer to as the tensor Stark shift

ωTSS

2π
=

γcsλ
3
cs

32π3hc
· a2(∆)

∆
· P
A

· (1 + 3 cos(2α)). (2.19)

The tensor Stark shift can be tuned by the laser power P , the polarization angle
of the input light α, or by the detuning ∆. This is one of the most commonly
used formulas for sanity checks as it can estimate α and the detuning dependent
parameters for calculating ζS. It is, therefore, convenient to have the numbers

written up for the scaling of terms in equation 2.19: γcsλ3
cs

32π3hc
= 6.47 · 1011 [Hz ·

rad · m2/(W · s)]12. We are often working at the same detuning at ∆/2π =
3 GHz, therefore, giving the detuning dependent scaling for a detuning of 3 GHz:
a2(∆)
∆

= 2.14 · 10−13 [s/rad)]. The tensor Stark shift can be zeroed for an angle

12The confusing units only emphasize the importance between angular frequencies and frequen-
cies. ∆ needs to be given in angular frequencies to have the result, ωTSS

2π , as a frequency.
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Figure 2.9: Impact on the power spectral density for a quadratic energy
splitting. Atoms prepared in a thermal distribution with a spin polarization of
p = 85% (see chapter 5 for the definition of the spin polarization) for both red
and blue. The red curve has a quadratic splitting of 370 Hz, and the blue curve is
without a quadratic splitting.

of α = 54.7◦. The tensor Stark shift only takes a negative value for −1 >
3 cos(2α), which is the regime that cancels the quadratic Zeeman splitting. ζS also
has a dependency on cos(2α) (see equation 2.14), meaning that the optimum in
polarization angle depends on the requirements of the experiment. It is only for a
pulsed experiment, where a pin polarization close to perfect can be achieved (see
chapter 5 for ground state preparation), for which quadratic frequency effects do
not have to be considered.

2.2.2 Input-output relations

The time evolution of the quadratures can be calculated from the Hamiltonian in
equation 2.12 in the Heisenberg picture. The time evolution for a negative mass
oscillator can be written as

d

dt

(
X̂S

P̂S

)
=

(
−γS0/2 − ζSΓS ωS

−ωS −γS0/2 − ζSΓS

)(
X̂S

P̂S

)

+ 2
√

ΓS

(
0 −ζS
1 0

)(
X̂L

P̂L

)
+

(
F̂X
S

F̂ P
S

)
,

(2.20)

where F̂X
S and F̂ P

S are the effective Langevin forces, and γS0 is the decay rate
of spin including broadening effects. We are interested in the solution for the
differential equation to get the steady state solution for the quadratures of light in
the frequency space.

We use the Fourier transform: {F( d
dt
X̂S) = −iωX̂S, F( d

dt
P̂S) = −iωP̂S}. The

atoms are experiencing motional averaging for interaction with light, which comes
from the coherence of the atoms being much larger than the timescale for motionally
coupling through the light beam. This means we can treat the light field that the
atoms are experiencing as an average of the light operators. Therefore, we can
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write the solution for the atomic spin in the frequency space as

(
X̂S

P̂S

)
= 2
√

ΓSLZ

(
X̂ in

L

P̂ in
L

)
+ L

(
F̂X
S

F̂ P
S

)
. (2.21)

The light interacting with the oscillator results in the output field:

(
X̂out

L

P̂ out
L

)
=

(
X̂ in

L

P̂ in
L

)
+
√

ΓSZ

(
X̂S

P̂S

)
, (2.22)

where the matrices in the equations are defined as

Z =

(
0 −ζS
1 0

)
, (2.23)

L =

(
γS0/2 + ζSΓS − iω ωS

−ωS γS0/2 + ζSΓS − iω

)−1

=

(
ρS(Ω) χS(Ω)
−χS(Ω) ρS(Ω)

)
. (2.24)

The spin susceptibilities χS and ρS are defined as

χS(Ω) =
ωS

ω2
S − Ω2 − iΩ(γS0 + 2ΓSζS) + (γS0 + 2ΓSζS)2/4

, (2.25)

ρS(Ω) =
(γS0 + 2ΓSζS)/2 − iΩ

ω2
S − Ω2 − iΩ(γS0 + 2ΓSζS) + (γS0 + 2ΓSζS)2/4

. (2.26)

The entity; γS = γS0 + 2ΓSζS, is the full linewidth accounting for the dynamical
broadening (2ΓSζS) due to the tensor effect. Combining the solutions in equations
2.21 and 2.22 to write the solution for the output light field quadratures:

(
X̂out

L

P̂ out
L

)
=
[
12 + 2ΓSZLZ

](X̂ in
L

P̂ in
L

)
+
√

ΓSZL

(
F̂X
S

F̂ P
S

)(
X̂out

L

P̂ out
L

)

=

[
12 + 2ΓS

(
−ζSρS −ζ2SχS

χS −ζSρS

)](
X̂ in

L

P̂ in
L

)

+
√

ΓS

(
ζSχS −ζSρS
ρS χS

)(
F̂X
S

F̂ P
S

)
.

(2.27)

We can rotate the detected quadratures by adding waveplate(s) after the
atomic cell. This works similarly to having a local oscillator in a Mach–Zehnder
interferometer, where one path is changed by ∆L, which results in a change of
homodyne phase ∆ϕ. The local oscillator, S∥, propagates through the atomic
ensemble in a polarization mode that does not interact with the spins. The
waveplate(s) introduce a phase change between S∥ and the orthogonal polarization
quadratures that change the homodyne phase. This can be expressed with a
rotation matrix Mϕ:

(
X̂det

L

P̂ det
L

)
= Mϕ

(
X̂out

L

P̂ out
L

)
=

(
cos(ϕ)X̂out

L − sin(ϕ)P̂ out
L

sin(ϕ)X̂out
L + cos(ϕ)P̂ out

L

)
, (2.28)
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Mϕ =

(
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
. (2.29)

We can then take P̂ det
L as our detected quadrature (for the case of non-squeezed

input quadratures) for calculating the power spectral density (PSD):

S
det

PP(Ω) = 1
2
⟨P̂ det

L (Ω)P̂ det,†
L (Ω) + P̂ det,∗

L (Ω)P̂ det,T
L (Ω)⟩. (2.30)

We can calculate from the above equation the spectral contributions for the
input quadratures of the light, calculated from the commutation relation of the
light in equation 2.11:

SPP(Ω)δ(Ω − Ω′) = 1
4
δ(Ω − Ω′), (2.31)

and the spectral contributions for the thermal bath of the spin, FS(Ω), calculated
from the commutation relation of the spin in equation 2.6:

SFF(Ω)δ(Ω − Ω′) = γS0(nS + 1
2
)δ(Ω − Ω′). (2.32)

The introduced variable, nS, is the mean number of thermal excitation, exper-
imentally often conceived below 1 (nS < 1). The number of thermal excitations
is not directly related to the number of atoms in the ensemble as the number of
atoms is incorporated into the definition of the readout rate, see equation 2.13, in
the form of the length of the spin Fx. The number of thermal excitations can be
calculated from the distribution of atoms from the relation:

nS =
Nm

Nm+1 −Nm

, (2.33)

where Nm is the number of atoms in a given mF level. The theory behind measuring
and calculating nS is derived in section 5.1.5. The factor 1

2
added to the thermal

excitation in equation 2.32 is the ground state noise, often called the projection
noise.

We can use the expressions in 2.30 and 2.31 to write the full model for a spin
oscillator

Sdet
PP/SN =

BA + SN︷ ︸︸ ︷∣∣sin(ϕ)(1 − 2ΓSζSρS) + cos(ϕ)2ΓSχS

∣∣2 +
∣∣cos(ϕ)(1 − 2ΓSζSρS) − sin(ϕ)2ΓSζ

2
SχS

∣∣2

+ 4γS0ΓS

(
|ρS|2 + |χS|2

)(
nS + 1

2

)(
cos2(ϕ) + sin2(ϕ)ζ2S

)

︸ ︷︷ ︸
TH

.

(2.34)
The spectral density in the model is normalized to the shot noise (SN), where the
brackets help to identify the shot noise, the quantum back-action noise (BA), and
thermal noise (TH). The full model can be hard to comprehend at first glance
without taking parameters in certain limits to simplify the model.
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We want to take the following limit of γS ≪ ωS and the limit of measuring
close to resonance (Ω ∼ ωS). This makes the following approximation true for the
susceptibilities:

χS(Ω) ≈ 1

2

1

ωS − Ω − iγS/2
,

ρS(Ω) ≈ −iχS(Ω).

(2.35)

We refer to the above expression for the susceptibilities as the near resonance limit.
There is no readout into the X quadrature of light in the case of no dynamical

back-action (ζS = 0). This is clear from equation 2.27, where the following is true
X̂out

L = X̂ in
L for ζS = 0. Looking at the PSD of light when measured at ϕ = 0 is a

measurement of the P quadrature of light:

Sdet
PP/SN(ϕ→ 0◦) = 1 +

BA︷ ︸︸ ︷
4|χS(Ω)|2Γ2

S +

TH︷ ︸︸ ︷
4γS0ΓS(|ρS(Ω)|2 + |χS(Ω)|2)

(
nS + 1

2

)
.

(2.36)
The terms arising from the ζS in equation 2.34 have been neglected, which gives
rise to an expression equal to 4|ρS(Ω)|2Γ2

Sζ
2
S − 4Im[ρS(Ω)]ΓSζS. This term is close to

zero, contributing less than 1% to the readout in the parameter regime operating at
3 GHz detuning. Therefore, the tensor contribution can be considered insignificant
for amplifying the quantum back-action effects of the spin when measuring the P
quadrature.

Next, we introduce the important quantity called the quantum cooperativity of
our oscillator:

CQ =
BA

TH
=

ΓS

2γS0(nS + 1
2
)
. (2.37)

Quantum cooperativity is the ratio between the readout rate and the rate of
thermal decoherence. This can be seen from equation 2.36 by dividing the two
expressions for the quantum back-action noise by the thermal noise when setting
the dynamical broadening to zero (ζ = 0) and taken in the near resonance limit
(|ρS(Ω)|2 ≈ |χS(Ω)|2). Quantum cooperativity is a figure of merit for the sensitivity
of the oscillator to external forces, in particular, it determines the strength of the
quantum correlations that can enhance the signal-to-noise (SNR) ratio in force
measurements.

The simplest imaginable system is the spin oscillator free from the dynamical
back-action ζS = 0, which can be calculated using equation 2.34:

Sdet
PP/SN =1 +

BA︷ ︸︸ ︷
4Γ2

S|χS(Ω)|2 cos2(ϕ) + 2ΓSRe[χS(Ω)] sin(2ϕ)

+

TH︷ ︸︸ ︷
4γS0ΓS

(
|ρS(Ω)|2 + |χS(Ω)|2

)(
nS + 1

2

)
cos2(ϕ) .

(2.38)

Interestingly, the back-action depends on the real part of the susceptibility having
a sign change for the two sides of the resonance. This means there are frequencies
for back-action noise to contribute negatively to the measurement caused by the
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negative cross-correlational between the X quadrature of the atomic spin and the
quadratures of light. The regime in which the total noise of a frequency range goes
below 1 gives rise to light squeezing. This means that a polarization state of light
can be measured better than the standard quantum limit, i.e. with a resolution
below the shot noise. There is likewise an orthogonal polarization state of light that
is anti-squeezed such the Heisenberg uncertainty principle is obeyed ∆PL∆XL ≥ 1

4
.
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Figure 2.10: Spin noise dependency on the quantum cooperativity.
The power spectral density for ϕ = 0◦ in a) and ϕ = 102◦ in b). There
is no dynamical back-action (ζS = 0), the spin system is in the ground state
nS = 0 and γS0/2π = 1 kHz. The readout rate is increased from blue to red
as ΓS/2π = [0, 2.5, 5.0, 7.5, 10] kHz, which gives a quantum cooperativity of
CQ = [0, 2.5, 5.0, 7.5, 10].

The readout of the atomic spin onto the light for increased quantum cooperativity
can be seen in figure 2.10. The P quadrature (ϕ = 0◦) is the measured state of light
showcasing strongest atomic signal, shown in figure 2.10a. The fraction of thermal
noise in the measurement is gradually reduced as the quantum cooperativity is
increased, as well as an increase of signal strength due to the increase of readout
rate. This type of growth in the readout rate could be achieved by heating the
cell such the vapor pressure would increase, resulting in an increased number of
atoms for the interaction13. A measurement of an intermediate quadrature at a
measurement angle of ϕ = 102◦ is shown in figure 2.10b, where the response goes
below shot noise of 1, meaning that the light is in a squeezed state. The squeezing
level highly depends on the quantum cooperativity, which determines the minimum
value of noise relative to the shot noise for perfect detect efficiency, in which the
squeezing value of the figure results in SQ = [0, 3.1, 5.3, 6.7, 7.8] dB for quantum
cooperativity of CQ = [0, 2.5, 5.0, 7.5, 10]. The phenomenon of light squeezing is
extensively described in Part IV Spin induced light squeezing.

It is also interesting to show the contributions from a nonzero tensor, which is
the operation regime for most of our experiments. The most distinct measurement
for the nonzero tensor, ζS ̸= 0, is the X quadrature of light ϕ = 90◦ since a zero

13Increasing the vapor pressure also increases the intrinsic linewidth of the atomic ensemble
due to increased rate of atom-atom collisions, but this is often a small contribution compared to
other broadening processes, therefore, neglected in this context.
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Figure 2.11: Spin noise dependency on the dynamical back-action. The
power spectral density for ϕ = 0 in a) and ϕ = 90◦ in b). The spin system is in the
ground state with the parameters; nS = 0, γS0/2π = 1 kHz and ΓS/2π = 7.5 kHz,
which gives a quantum cooperativity of CQ = 7.5. The tensor interaction coefficient
is increased from blue to red as ζS = [−6, −4 − 2, 0, 2, 4, 6] × 10−2.

tensor does not have any spectral contribution. We can write the expression for
the X quadrature computed using equation 2.34:

Sdet
PP/SN(ϕ→ 90◦) =1 +

BA︷ ︸︸ ︷
4|χS(Ω)|2Γ2

Sζ
2
S − 4Im[χS(Ω)]ΓSζS

+

TH︷ ︸︸ ︷
8γS0ΓS|χS(Ω)|2

(
nS + 1

2

)
ζ2S .

(2.39)

We have neglected the terms proportional to ζ4S. It can be seen from the above
equation that we can both have back-action and thermal noise on the X quadrature
for nonzero tenor interaction (ζS ̸= 0). We can also be in a situation having a
negative back-action noise contribution on the X quadrature, which results in
squeezed light on the oscillator resonance for a positive tensor interaction (ζS > 0).

Figure 2.11 shows the spin noise dependency on the tensor interaction coefficient.
All parameters are fixed for both figures with a quantum cooperativity of CQ = 7.5.
The figures show the P quadrature and the X quadrature in figures a) and b),
respectively. The first pronounced feature arising from the tensor contribution can
be seen in figure a), where the spin response is only affected by the change of the
total linewidth. This is because of the dynamical broadening: γS = γS0 + 2ΓSζS.
Therefore, the spin is narrowed for the negative tensor interaction coefficient in blue
and broadened for the positive tensor interaction coefficient in red. The narrowing
and broadening are also visible for the X quadrature in figure b), where the light
is squeezed in red for a positive tensor and amplified in blue for a negative tensor.
Therefore, the sign of the tensor interaction coefficient can easily be predicted by
looking at the X quadrature as it has a ΓSζS scaling.

We are concluding this chapter, having outlined the description of macroscopic
spin systems of cesium atoms. The following parts of the thesis showcase the
experimental capabilities of the spin oscillators: in part II Experimental methods
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for characterization of an atomic spin ensemble in a hot vapor cell, part III
Experimental realizations and simulations of motional averaging in a hot vapor
cell, and part IV Spin induced light squeezing.
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CHAPTER 3

Outline of membrane in
the-middle optomechanics

An exemplary quantum oscillator requires two traits; the ability to decouple the
oscillator from the environment - the memory time, and the ability to interact with
the quantum system - the coupling rate. Using a semitransparent membrane to
couple the motion of a mechanical resonator (phonons) to the radiation pressure
(photons) seems like a crazy idea at first glance. However, the membrane can be
decoupled from the thermal surroundings by introducing a phononic band gap
structure that isolates the desired modes of the membrane from thermalizing. The
latest design of such a membrane used in these studies can be seen in figure 3.1a,
designed and fabricated by [Tsaturyan et al., 2017]. The membrane is made from
silicon nitride (Si3N4) in a structure referred to as a soft-clamped membrane because
the spatial region of the membrane and the phononic structure has a soft spatial
transition giving it its name. The advantage of the soft-clamped membrane is
to reduce the bending losses, otherwise limiting designs with sharp spatial mode
cut-off.

The excellence of the membranes is often characterized by the quality factor
calculated from the ratio of the total energy over the lost energy per oscillation,
also estimated from the ratio: Q ≈ ΩM/γM, where ΩM is the mechanical frequency
and γM is the decay rate. The quality factor intuitively represents the amount of
oscillation that the membrane oscillates after excitation before relaxing to a steady
state. The membranes used in our experiments have a quality factor of Q > 107

with the previous best of this design; Q = 1.555 · 109 at frequencies ∼ 1.3 MHz
[Tsaturyan, 2019].

To enhance the coupling between light and mechanics, the membrane is placed
inside an optical cavity to increase the strength of the interaction. A cartoon
illustration of a membrane in the-middle configuration is shown in figure 3.1b. This
design relies on stable confinement of the Gaussian beam, which is the case for the
beam propagating between the two curved mirrors and the two sub-cavities created
by the surface of the reflective membrane and the nearby mirrors. Therefore, the
membrane is placed in the center of the concave cavity to fulfill the conditions for
a stable optical resonator. Another typical design is to have the membrane placed
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a) b)

Figure 3.1: Visual representation of the silicon nitride membrane. a)
showing the design of the soft-clamped membranes. The figure is reproduced from
[Møller, 2018]. b) visualization of a membrane placed inside an optical cavity, also
known as a membrane in the-middle optomechanics.

in a plano-concave cavity with the membrane placed close to or on top of the flat
mirror, as this constructs a stable cavity geometry. Earlier experiment stages used
a plano-concave cavity design [Møller, 2018]. However, it left the cavity design
with less motional degrees of freedom to position the membrane, which decided to
migrate to a concave cavity design. See section 3.2 for further explanation.

3.1 Theoretical layout of a membrane in the-

middle optomechanics

Optomechanics is the physical dynamics of coupling of light to mechanical objects.
We are using the derivations of [Nielsen, 2016, Møller, 2018] for the description of
our mechanical system. Our mechanical object, represented by a membrane, is
described by a damped harmonic oscillator. Introducing the susceptibility for a
damped harmonic oscillator:

χ(Ω) =
ωM

ω2
M − Ω2 + iΩγM

. (3.1)

The angular oscillation frequency ωM and the damping rate γM describe the damped
oscillator. The notable difference concerning the spin system is the asymmetrical
decay process for the mechanical object, only inducing decay for the position of the
membrane and not the momentum. In contrast, the spin system has a symmetric
decay into both spin quadrature, showcasing a slightly different oscillator response
for the spin system (see equation 2.25 and 2.26 for spin susceptibility).

A simple illustration of an optomechanical system is illustrated in figure 3.2a,
showing a cavity with an end-mirror attached to a spring. The field strength and
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the spring energy can describe the energy for such a system:

Ĥopt/ℏ + Ĥmech/ℏ = ωC(â†â+ 1/2) + ωM(b̂†b̂+ 1/2), (3.2)

where â†â and b̂†b̂ are the photon and phonon numbers, respectively, described by
the creation and annihilation operators. ωC is the angular frequencies of the light
field in the cavity. The optomechanical configuration with a movable end mirror has
been unpromising due to the limited reflection coefficient of conceived membranes
(the swinging mirror) restricted by the index of refraction of the dielectric, rm ≪ 1,
except for recent promising results for a high Q photonic-crystal membrane realized
with a reflectivity of rm = 99.89% [Enzian et al., 2022].

â†â

b̂†b̂

â†â

b̂†b̂

a) b)

Figure 3.2: Illustration of an optomechanical system. â†â is the photon
number and b̂†b̂ is the phonon number. a) a canonical optomechanical system. b)
a membrane in the-middle optomechanical system.

The approach to enhance the intra-cavity optical field has been a membrane in
the-middle design shown in figure 3.2b. The membrane is positioned in a concave
cavity, creating two sub-cavities. The membrane is a small defect centered in the
phononic structure. The entire membrane is not moving, as shown for illustrative
purposes. The membrane inside the cavity gives experimental freedom by detuning
the coupling to the sub-cavities and tuning the photon to phonon coupling. Listing
all the dynamics for our optomechanical system:

Ĥ = Ĥopt + Ĥmech + Ĥint + Ĥdrive. (3.3)

We have included the photon-phonon interaction Ĥint, and the drive being the in-
coupling of light to the cavity Ĥdrive. The interaction Hamiltonian can be calculated
for a linear approximation having small fluctuations from the mean: â = α + δâ
and b̂ = β + δb̂, with α and β representing the mean field.

Ĥint/ℏ =
√

2g(δâ+ δâ†)(δb̂+ δb̂†)

∝ δâδb̂+ δâ†δb̂†︸ ︷︷ ︸
Stokes

+ δâδb̂† + δâ†δb̂︸ ︷︷ ︸
Anti-stokes

, (3.4)

where g is the optomechanical coupling rate. The interaction Hamiltonian gives
rise to Stokes or anti-Stokes dynamics. The Stokes process is associated with
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annihilating(creation) a phonon and photon pair amplifying/heating the membrane,
giving rise to entanglement generation. The anti-Stokes process is associated with
annihilating(creation) a phonon and creating(annihilating) a photon, cooling the
membrane, giving rise to a beam-splitter type of interaction.

The last term to describe the dynamics of the optomechanical system is the
drive describing the input light feeding the cavity with light.

Ĥdrive/ℏ = i
√
κ(sinδâ

† − s∗inδâ), (3.5)

where κ is the cavity linewidth and sin is the normalized amplitude of the drive
field.

Stokes Anti-Stokes

ωm ∆ Ω

Figure 3.3: Dynamical side-band asymmetry of cavity optomechanics.
The yellow curve shows the cavity mode. The large peak is the input laser detuned
by ∆ to the cavity, having side-bands for the Stokes and anti-Stokes process
generated by the light-membrane interaction. The figure have been reproduced
from [Tsaturyan, 2019].

The cavity has a complex Lorentzian describing the frequency response of the
input light for the effective cavity detuning ∆, following

L(Ω) =
κ/2

κ/2 − i(Ω + ∆)
. (3.6)

The cavity response can be used to control the coupling of modes to the membrane.
This can be seen in controlling the process of the Stokes and anti-Stokes dynamics
described by the interaction Hamiltonian. Figure 3.3 shows the cavity response in
yellow, demonstrating the suppression of the Stokes process and amplification of
the anti-Stokes process by red detuning the laser frequency to the cavity response.
This favors the anti-Stokes process over the Stokes process, resulting in a cooling
of the membrane. The presented cooling broadens the oscillator, which under the
proper condition yields ground state cooling nM < 1, provided there is a sufficient
sideband asymmetry to cool the oscillator. Important parameters describing both
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sideband asymmetry and the readout rate of the membrane [Thomas, 2020]:

ζM =
|L(ωM)| − |L(−ωM)|
|L(ωM)| + |L(−ωM)| ,

ΓM =
4g2

κ
(|L(ωM)| + |L(−ωM)|)2.

(3.7)

The two parameters are essential for understanding the relation to the spin sys-
tem for a later description of the hybrid system covered in part V Hybrid spin-
optomechanical systems, which relies on matching parameters for the hybrid
spin-optomechanical system. In addition, the quantum cooperativity can also be
defined for the optomechanical cavity described by the quantum back-action to
thermal noise:

CQ =
4g2

κγM(nbath + 1/2)
, (3.8)

where nbath is the thermal occupancy of the bath being; nbath ≈ 105 at the membrane
thermalization temperature of 10 K.

For more information, the input-output relation and mechanical response for
the described system can be found in the following dissertations [Nielsen, 2016,
Møller, 2018, Tsaturyan, 2019, Østfeldt, 2022].

3.2 Implementation of a membrane in the-middle

optomechanics

The transition to a concave-concave cavity design has been to match the optimal
laser frequency for probing the optomechanical system and the spin system. The
position of the membrane is chosen to maximize the photon-phonon coupling is
in between the maximum and minimum of a node in the standing wave of the
cavity. The membrane positioned in the maximum photon-phonon coupling can be
seen in figure 3.4c. The cavity design incorporates two piezo crystals, so the entire
cavity can be moved, effectively moving the fixed membrane in the standing wave
to accommodate the position of the maximum photon-phonon coupling. Previous
cavity designs had a plano-concave cavity design; the membrane was fixed relative
to the flat mirror dividing the cavity into a long and a short sub-cavity. The
position of the maximum photon-phonon coupling was here adjusted by tuning the
laser frequency, which is incompatible with the fixed frequency of the spin system,
being unsuited for large frequency tunings. Figure 3.4a and 3.4b show a picture and
detailed drawing of the cavity design. The detailed experimental considerations for
the design of the cavity holder can be found in [Mathiassen, 2019, Østfeldt, 2022].

It is essential to extract the parameters of the optomechanical system for
quantum protocols. Three methods are realized to characterize the optomechanical
cavity:

• Optomechanically-induced transparency (OMIT)
OMIT measures induced transparency by driving the optomechanical cavity
with phase-modulated light [Weis et al., 2010], giving rise to effects similar
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XY-stage

piezo

piezo

XY stage

cavity mirrors

a) b) c)

Figure 3.4: Optomechanical cavity design. a) a picture of the holder for the
optomechanical cavity. b) a sketch of the optomechanical cavity with a cutout. c)
An illustrative drawing of the position alignment for the holder, maximizing the
photon-phonon coupling. Figures have been reproduced from [Mathiassen, 2019].

to electromagnetically induced transparency. OMIT allows to extract the
following parameters: the cavity linewidth κ, the effective detuning ∆, and
the optomechanical coupling rate g, all important for characterizing the
optomechanical cavity. OMIT is covered in [Østfeldt, 2022].

• Ringdown technique
The ringdown technique is measured by driving the membrane with amplitude
modulated light or a piezo drive of the cavity length. This excites the
membrane leaving the mode of the membrane in a decaying excited state.
The decaying envelope allows for the extraction of the quality factor Q of the
membrane, which estimates the decay rate γM. The ringdown technique is
covered in [Tsaturyan, 2019].

• Ponderomotive squeezing
The measurement of ponderomotive squeezing for the optomechanical cavity is
the measurement of optomechanical induced light squeezing, arising from the
quantum back-action process [Purdy et al., 2013] similar to the spin induced
light squeezing briefly covered in section 2.2.2 and later investigated in part
IV Spin induced light squeezing. The ponderomotive squeezing estimates the
last parameters necessary for a complete system model of the optomechanical
cavity; the thermal occupancy of the bath nbath and the detection efficiency
η.

We are concluding this chapter on membrane in the-middle optomechanics,
which is further explained in the context of the hybrid spin-optomechanical system
in part V Hybrid spin-optomechanical systems for the entanglement generation
between a hybrid spin-optomechanical system in chapter 11, and for the quest
towards hybrid spin-optomechanical teleportation in chapter 12.
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CHAPTER 4

Outline of spin ensemble
characterizations

This chapter presents the experimental methods for characterizing an atomic
spin ensemble in a hot vapor cell. These methods are paramount for quantum
experiments since they allow for translating the signals observed in the laboratory
into the outcomes of measurements on quantum states.

We present the advancements in and the technical implementation of the
protocols for the atomic ground state preparation and verification via optical
pumping and magneto-optical resonance, and the readout calibration via coherently-
induced Faraday rotation. The presented methods allow estimating the parameters:
the readout rate (ΓS), the intrinsic decay rate (γS0), the thermal occupancy (nS),
and the tensor interaction coefficient (ζS). These are the main parameters to
characterize the atomic system as they determine its quantum cooperativity and
dynamical back-action.

The significance of the magneto-optical resonance signal and the coherent
induced Faraday rotation are due to their self-sufficient implementation. The two
methods are independent of the detection efficiency, a generic problem in quantum
characterization since calculating losses is a cumbersome and challenging task. The
knowledge about the losses can be calibrated from a fully understood quantum
oscillator. The two methods can therefore be used to estimate the losses after
calibration.

There is a number of other characterization methods that are not described in
detail. Still, they deserve to be mentioned as they have been used in the work of
this thesis, and they are essential in the characterization of atomic cell performance.
The experimental methods:

• Atomic absorption measurement
The optical depth, and the associated density of the atomic vapor, can be
measured with the atomic absorption measurement. This method relies on
atomic absorption, recorded when scanning the frequency over the resonances
of the D2 line. The absorption depth can then be calculated as a function of
the atomic density. The method of the atomic absorption measurement is
covered in [Schmieg, 2018].
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• AC Faraday angle
The quantum cooperativity for a perfectly-polarized ensemble can be esti-
mated from the AC Faraday angle. This method relies on a π/2-excitation of
the atomic spin, upon which the total spin is rotated perpendicular to the
magnetic field and modulates the output polarization with the amplitude
proportional to the mean value of Fx. The amplitude of this oscillation can
then be used to estimate the quantum cooperativity for nS = 0. The method
of the AC Faraday angle is covered in [Thomas, 2020].

• Relaxation of the Faraday angle
The decay of the longitudinal spin (T1) can be calculated from the relaxation
of the Faraday angle. This method is based on the same principles as the
AC Faraday angle, upon which the total spin is rotated perpendicular to the
magnetic field. It results in a signal decaying at the rate T1. The method of
relaxation of the Faraday angle is covered in [Schmieg, 2023].
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CHAPTER 5

Atomic ground state preparation

Preparing the collective spin in the ground state is important to reduce the thermal
noise. Ground state preparation corresponds to preparing all atoms of the ensemble
in one of the outermost mF levels of 6S1/2, F = 4 by optical pumping.

This chapter showcases the techniques to measure the thermal occupancy or
the equivalent measure being the spin polarization, which is the ratio of the spin
projection and the maximum spin length. We are using the magneto-optical
resonance signal (MORS) to characterize the spin polarization. This chapter also
describes the consideration we have made in our endeavor to optimize the spin
polarization.

All the equations in this chapter are described by preparing a positive mass
configuration, where the atoms are prepared in |F = 4,mF = −4⟩. The equations
can also be applied for a negative mass configuration, where the sign of the spin
projection is opposite (see section 2.1.1 for the definition of a negative mass reference
frame).

5.1 Magneto-optical resonance signal

The magneto-optical resonance signal (MORS) technique is used for the measure-
ment of the distribution of atoms over magnetic sublevels, by utilizing a coherent
displacement of the oscillator created by a magnetic drive at the oscillator’s fre-
quency. The drive excites the transverse spin creating a coherent displacement,
which creates signals much larger than the levels of all quantum noises. The physical
dynamics for the coherent displacement of the spin oscillator are described in the
original paper presenting the MORS technique [Julsgaard et al., 2003]. The MORS
can both be analyzed in the time domain as well as in the Fourier domain with
equivalent accuracy on the determination of the spin polarization1. The MORS
technique exploits the quadratic splittings of mF levels to decouple the amplitudes
of the different modes that represent the transitions between adjacent mF levels.

1The analysis in the Fourier domain can make it easier to visualize differences between signals
for different spin polarizations because the strengths of the transitions between the mF levels are
more visually decoupled from each other in the Fourier domain.
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The MORS spectrum is described by the expression:

MORS(ΩRF ) = A ·
∣∣∣∣

F−1∑

m=−F

C(F,m)χ(ΩRF ,m)(Pm − Pm+1)

∣∣∣∣
2

. (5.1)

Here, A is a constant proportional to the strength of the drive and the total number
of atoms, Pm is the fractional population in a mF level of the total population,
χ(ω,m) is the susceptibility of a transition between two mF levels (see equation
2.35 for the simplified spin susceptibility), C is the Clebsch-Gordan coefficients for
the transition between the mF levels:

C(F,m) = F (F + 1) −m(m+ 1). (5.2)

The spin modes are separated due to the quadratic energy shifts (see equation
2.18), giving rise to a m-dependency on the Larmor frequency.

P
ow

er

State
preparation RF drive

Readout

Time

Figure 5.1: Experimental pulse sequence for MORS measurements. The
atoms are 1. prepared by optical pumping, 2. coherently displaced with a RF drive,
and 3. readout by homodyne detection.

The experimental sequence for performing a MORS measurement can be seen
in figure 5.1. First, the atomic ensemble is prepared under the same conditions
as the experiment in that the spin polarization is desired to be measured. The
system is then displaced using a short coherent excitation of the transverse spin,
which is performed by a RF excitation of the magnetic field along one of the spin
quadratures (perpendicular to bias magnetic field). The excitation field is shown
for the experimental drawing in figure 5.2 by the olive-colored arrow pointing out
of the plane (along the y-axis). The final step is to readout the displacement of all
the mF levels, in which the signal strengths of different transitions are related to
the numbers of atoms occupying different mF levels according to equation 5.1.

RF drive

Two methods can be exploited to perform the MORS measurements in the Fourier
domain for the RF drive of the magnetic field, by applying either a short or long
coherent pulse:
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Figure 5.2: Experimental setup for MORS. All the beams can be pulsed by
virtue of AOMs; all the beams can therefore be used for state preparation. The
pump and repump are passed through a telescope to fill the entire cell channel.
The magnetic RF drive points along the y-axis. After interacting with the atomic
ensemble, the probe is measured by a homodyne detector.

1. All the atomic modes can be driven at once by applying a very short pulse -
making a broad frequency band for the excitation. This excites all the atomic
modes within the band of the excitation, where the excitation bandwidth
needs to be much broader than the entire frequency span of all the mF levels:
2π/τRF ≫ 2F · ωQZ.

2. A long coherent pulse can collect the oscillator responses at individual fre-
quencies. The driving pulse demodulates the measurements to extract sine
and cosine components of the excitation.

The two methods result in analogous spectra. The 1. method is the most used
technique of our experiment, therefore, the method presented in the succeeding
outline of the MORS technique2.

Readout

It is essential to have a long readout since this determines the resolution of the
frequency spacing for the fast Fourier transform (FFT) ∆f = 1/T . The readout
should extend beyond the characteristic decay time of the spin, T ≫ 2/γS0, to
maximize the resolution of the transformation.

2The 2. method may succeed in measuring low frequencies as it can be less susceptible to
low-frequency noise but requires a Lock-in amplifier to demodulate the signal.
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Data collection

The readout of the MORS technique is measured through homodyne detection
(realization of the measurement is explained in the following section 5.1.1). The
data collected from the homodyne detection is the photocurrent i(t). The PSD can

be found by: Sii(f) = 1
T

∣∣FFT[i(t)]
∣∣2, where T is the measurement time. Single-shot

measurements are usually not sufficient because of their low SNR, therefore we
average MORS over multiple repetitions of the same experimental sequence. The
best approach to collect the MORS measurement is to take the average of all the
time measurements before computing the PSD because all the MORS measurements
are in phase with each other. This has the same effect as averaging the collected

data before taking the Fourier transform: MORS(f) = 1
T

∣∣FFT[
〈
i(t)
〉
]
∣∣2. This

process eliminates uncorrelated noise like shot noise and other noise processes,
increasing the SNR of the final measurement.

5.1.1 Experimental implementation

The optical setup for measuring the MORS can be seen in figure 5.2. The atomic
ensemble is in a magnetic shield with the total spin oriented towards the bias
magnetic field. The probe reading out the atomic state is linearly polarized, where
the P -quadrature of the probe is detected using balanced homodyne detection,
where balancing is accomplished using a λ/2 waveplate. The pumping beams are
circularly polarized and propagate in the same spatial mode, which is shaped to
maximize the overlap of the beams with the cell. A detailed description of the
pumping is outlined in section 5.1.4.

MORS measurements require the ability to pulse lasers to perform the sequence
shown in figure 5.1. The on-off switching of the optical beams is implemented
using AOMs in the probe and the pump paths. The AOMs enables the control over
the power of the probe beam, which can be used to minimize the probe-induced
decay for the readout. A strong probe beam can introduce decay of the population
distribution or the transverse spin known as T1 or T2, respectively. T1 is the decay
of the longitudinal spin (decay of Fx) and T2 is the decay of the transverse spin
(decay of X̂S and P̂S). T1 is not of great interest in this thesis as we typically observe
T1 > T2, and we are in our measurements mostly influenced by transverse decay:
γS0 = 2/T2, since the transverse spin is readout into the light. The decoherence of
the longitudinal spin is mostly interesting when performing measurements limited
by the dark decoherence time, where we have the following equality, 2T1 = T2 when
excluding dephasing [Thomas, 2020].

The RF drive for the MORS measurement requires a very short and weak pulse
of only a few µs to have a driving pulse spanning over a large frequency band that
has a flat frequency spectrum in the frequency band of interest. We have in the
theoretical description of our spin-model neglected loss of spin polarization due to
large fluctuations in X̂S or P̂S, because of the Holstein Primakoff approximation
(see figure 2.6 for illustration). The Holstein-Primakoff approximation is not valid
in the case of a strong drive of X̂S and P̂S. The loss of spin polarization can be
accommodated by having a weak RF drive. The effect of a strong drive can be
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seen in figure 5.3. The figure illustrates that the total spin is maintained but is
rotated into the transverse spin, reducing Fx, which reduces the spin polarization.

The effect of the drive strength can be tested by increasing the RF drive until
the measurements enter the regime, where the loss of spin polarization becomes
apparent. The strength of the drive required for degrading the spin polarization
due to the RF pulse varies depending on the design of the excitation coils - a
number for strength is, therefore, not universal. We are using a RF drive with
the magnitude of ∼0.1 V peak to peak in the current iteration of the experimental
setup.

X̂S

P̂S

Fx

Figure 5.3: Illustration of the Bloch sphere dynamics following after the
application of a coherent displacement via a RF pulse. The mean spin Fx

is rotated into the transverse spin when applying a RF excitation along one of the
transverse directions of the bias magnetic field.

It is essential to have the three sequences of the MORS measurement separated
in time, especially it important to isolate the interval of the state preparation.
An overlap between the state preparation and the RF drive causes decoherence
and dephasing to the coherent displacement of the oscillator due to the pump and
repumping beams. The decoherence and dephasing are less pronounced for the
probe. Therefore, a weak probe can overlap with the other sequences without
degrading the measurement.

MORS measurement exploit the quadratic Zeeman splitting to distinguish
the ratio of the different mF transitions. The SNR, or accuracy, of the MORS
measurement can be improved by increasing the Larmor frequency, where the
splittings of the different transitions are further increased. It can therefore be
advantageous to perform the MORS measurement at higher Larmor frequencies
than those in the final experiment. The main concern with increasing the Larmor
frequency is the impact of the earth’s magnetic field as it alters the direction of
the bias magnetic field. An increase in the Larmor frequency may therefore alter
the direction of the bias magnetic field if the magnetic shield does not cancel the
earth’s magnetic field. An altered direction of the bias magnetic field changes
the alignment of the pumping beams, because the bias magnetic field sets the
quantization axis, implying a change in the spin polarization.
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5.1.2 Evaluation of a continuous state

Continuous state preparation is the preparation of a spin ensemble in a steady
state. The steady state preparation of the spin state is favorable because it is
compatible with a continuous readout of the spin state.

We want to prepare the atoms in the steady state configuration to evaluate
the spin polarization. In this case, the repump, the pump, and the probe are
continuously on until a steady state is achieved for the mean spin. This is the
initial process of the continuous MORS measurement, which is the first step (state
preparation) seen in figure 5.1. The following procedure is as described in section
5.1.1.

The population of atomic levels are distributed following a thermal distribution
if all the levels are pumped with equal rates. The thermal occupancy is the same
for all mF levels in the case of a thermal distribution. The thermal distribution
is described by the level distribution: Pm = eβm/

∑F−1
m=−F e

βm, where β is the spin
temperature: β = 1/(kBTS) [Appelt et al., 1998]. Later derived in equation 5.10,
the thermal distribution has the thermal occupancy:

nS =
eβ

1 − eβ
. (5.3)

The spin polarization is defined as the length of the Fx normalized to the total
length of the spin, p = |⟨Fx⟩|/F ; later defined in equation 5.14, the thermal
distribution result in the spin polarization:

p =
1

F

∣∣∑F−1
m=−F me

βm
∣∣

∑F−1
m=−F e

βm
. (5.4)

The distribution of atoms over the levels is not thermal in presence of dark states.
The pump beam has |F = 4,m = −4⟩ for a positive mass configuration as a dark
transition, which means that eβm cannot be used to model the distribution. The
thermal occupancy, nS, has to be considered more thoroughly in this incidence as
the thermal occupancy varies on the different transitions between the mF levels.

The expression for MORS assuming a thermal distribution of atoms is

MORS(Ω) = A ·
∣∣∣∣

F−1∑

m=−F

e−iϕm
(
eβm−eβ(m+1)

) C(F,m)

ωZ +mωQZ − Ω − iγm/2

∣∣∣∣
2

+B. (5.5)

A is the overall scaling, B is the background, eβ is the thermal distribution, ωZ

is the linear Zeeman splitting, ωQZ is the quadratic Zeeman splitting, γm are the
transverse decay rates and ϕm are the oscillator phases as fitted parameters. The
transverse decay rates are not fitted with a separate rate for each mode, as many
modes experience the same decay rate. Because of spin exchange, the atom-atom
collisions change the coherence between mF levels differently depending on the
projection m [Savukov and Romalis, 2005]. The highest populated mF levels are
less affected since collision of atoms with equal spin does not alter the projection
of the atoms involved3. Therefore, the highest populated mF levels are fitted with
a different decay rate.

3These effects are more thoroughly studied in [Thomas, 2020].
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Figure 5.4: MORS for continuous state evaluation with repump and
probe. The repump and probe each has a power of 10 mW. The spin polarization
is 79.0 ± 0.4%, and the thermal occupancy is nS = 0.85 ± 0.02 for atoms populated
towards |4, 4⟩ in the negative mass configuration.

The continuous MORS is often fitted for 3 decay rates (in case of a positive mass
oscillator); γ−4, γ−3, and γ−2 +. The oscillator phase ϕm describes the interference
between different modes. The main mode has the largest signal contribution with
which the other modes interfere, meaning that the phases of less populated modes
result in an over fitting. Therefore, we fit over 3 phases for the continuous state
evaluation ϕ−4, ϕ−3 and ϕ−2 with the other phases being zero. The fit over phases
can be reduced to one phase if the signal is heavily dominated by one mode, which
is the case for the pulsed state evaluation in section 5.1.3.

The decoherence(broadening) process must be considered in preparing the
atomic ensemble into a steady state for a continuous readout. The broadening
induced by the repump is minimal since it does not address F = 4. On the
other hand, the pump beam addresses F = 4 → F ′ = 4, which causes significant
broadening of all the mF levels in F = 4. The advantage of using the pump
beam for ground state preparation depends on the experimental requirements. The
decision depends on whether the added thermal noise from an elevated thermal
occupancy or an elevated decoherence rate is most detrimental to the experiment.

The presented MORS measurement for an experimental configuration relying on
the continuous readout of the atomic state is shown in figure 5.4. The measurement
is performed with a state preparation of 10 mW repump power and 10 mW probe
power. The state preparation is of 30 ms, RF drive is of 5 µs and the readout is
of 5 ms with a full cycle length of 50 ms. The probe is attenuated to 0.1 mW for
the readout. The spin polarization of this measurement is p = 79.0 ± 0.4% with
a thermal occupancy of nS = 0.85 ± 0.02, which has shown to be an upper limit
when only using the repump for state preparation. The uncertainties of the spin
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polarization and the thermal occupancy are statistical uncertainties.
A higher spin polarization of ≈ 98% can be achieved in a steady-state configu-

ration using a pumping beam. The added broadening from the pumping beam is
around 2 kHz applying approximating 3 mW of pump power. The added decoher-
ence cannot justify the improvement in the thermal occupancy. The pump beam is,
therefore, often only a few tenth of µW when applied in a continuous measurement
to limit the amount of broadening.

5.1.3 Measurements in the pulsed regime
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Figure 5.5: MORS of the best spin polarization in a pulsed regime. The
spin polarization is 98.7 ± 0.3%, and the thermal occupancy of the transitions
between the (negative mass) ground state coherence |4, 4⟩⟨4, 3| is nS = 0.042±0.004
for atoms populated towards |4, 4⟩. The measurement has been driven with a RF
pulse with a duration of 5 µs.

The pulsed state preparation is the preparation of a spin ensemble in a non-
stationary state that can be probed over a short period after the preparation. The
technique of pumping atoms into a high spin polarization (p > 98%) has been
thoroughly investigated in [Dideriksen, 2021, Schmieg, 2019] for which the 3-peak
model was developed. The 3-peak model refers to the presence of only 3 modes
in the measured MORS spectrum, corresponding to the coherences |4,−4⟩⟨4,−3|,
|4,−3⟩⟨4,−2| and |4,−2⟩⟨4,−1|. The 3-peak model uses the following formula for
the MORS measurement4:

MORS(Ω) =

∣∣∣∣
2−F∑

m=−F

e−iϕmAm
C(F,m)

ωZ +mωQZ − Ω − iγm/2

∣∣∣∣
2

+B. (5.6)

4The expression for the 3-peak model can be adapted to the experimental configuration, if a
lower spin polarization is realized requiring the fitting of 4-peaks.
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It is only ϕ−4 that is fitted in the 3-peak model since the interference between the two
minor modes is negligible compared to the interference with the main(|4,−4⟩⟨4,−3|)
mode because the main mode has the largest spectral contribution. The other
phases are fixed to zero. The amplitudes Am and the decay rates γm are fitted
for each mode. The 3-peak model is applied to the data in figure 5.5. The data
represent the largest spin polarization achieved in our experimental configuration.
The atoms are pumped to the negative mass configuration with a spin polarization
of 98.7 ± 0.3%. The spin polarization can be calculated using equation 5.14 and
5.15.

The thermal occupancy is only relevant for the main mode for a high spin
polarization. The thermal occupancy of the main mode (|4, 4⟩⟨4, 3|) is nS =
0.042 ± 0.004 calculated using equation 5.16. The spectral contributions from the
other modes are small and, therefore, not interesting.

The spin polarization and thermal occupancy uncertainty are estimated from
the statistical uncertainties of the amplitudes. This is feasible because there is only
a weak correlation between the fitted amplitudes |C(Ai, Aj)| ≈ 0.1.

5.1.4 Experimental challenges in ground state preparation

The main challenge in preparing the atomic ensemble in the ground state is gener-
ating a beam of circularly polarized light, propagating co-aligned to the magnetic
field. In addition, the repumping and pumping scheme is vital to understand the
dynamics for transferring atoms into the ground state.

The optical transitions used for preparing atoms into the ground state of the
positive-mass configuration (|4,−4⟩) are shown in figure 5.6. The repump and
pump are σ− polarized to create a preferred direction for the change of the atomic
spin upon absorption events. The repump and pump beams are frequency stabilized
in separate optical setups using the method of saturation polarization spectroscopy
[Harris et al., 2006, Pearman et al., 2002].

Repump

The most important function of the repump is to transfer atoms from F = 3
to F = 4. The transfer of atoms to F = 4 is achieved using the transitions
|4′,mF − 1⟩⟨3,mF | and |3′,mF − 1⟩⟨3,mF | of the D2 line. The repump also
transfer atoms towards a lower (higher negative projection) mF state due to the
σ− polarization.

The repump only affects the atoms in F = 3, which means it may be favorable
to keep them in F = 3 until they are pumped toward a lower spin projection. The
atoms excited to F ′ = 2 only decays into F = 3. The transition |2′,mF − 1⟩⟨3,mF |
can transfer atoms towards a lower spin projection without repumping the atoms
to F = 4. The transition |3′,mF − 1⟩⟨3,mF | like wise has a higher probability of
decaying into F = 3 than |4′,mF − 1⟩⟨3,mF |. The transition |3′,mF − 1⟩⟨3,mF |
can, therefore, also be used to transfer atoms towards a lower spin projection.

It has been concluded empirically that the largest spin polarization is realized
by positioning the repump frequency between F ′ = 2 and F ′ = 3, where all the

45



5.1. MAGNETO-OPTICAL RESONANCE SIGNAL

F = 4

F = 3

6S1/2

F ′ = 4

F ′ = 3

6P1/2

F ′ = 4

F ′ = 3

6P3/2

F ′ = 2

F ′ = 5

Repump σ−

Pump σ−
F = 4

F = 3

6S1/2

-1 -2 -3 -4
mF

-5

D1 line

D2 line

Figure 5.6: Optical transitions addressed by the pump and repump
beams. The levels the pump and repump address are colored to show the appro-
priate level dynamics. This illustration is for preparing a positive mass oscillator
realized with a σ− polarization of the light.

transitions F ′ = 2, F ′ = 3 and F ′ = 4 are within Doppler width for atoms at
room temperature. All the addressed transitions for the repump are colored orange
in figure 5.6. The frequency of the repump is only to change the rates between
excitation probabilities of the three excitations of the D2 line. For maximizing
spin polarization, it is favorable to address the transitions |2′,mF − 1⟩⟨3,mF | and
|3′,mF − 1⟩⟨3,mF |, so the repump favors a pumping of the spin projection more
than pumping of atoms to the F = 4 manifold.

Pump

The pump only transfers atoms to a lower spin projection by the D1 line using
the transition |4′,mF − 1⟩⟨4,mF |. The pumping beam has the disadvantage of
addressing F = 4. Pumping on F = 4 manifold adds decoherence from spontaneous
emission, contrary to the repump beam that is 9 GHz detuned from the transitions
involving the F = 4 manifold.

Beam shaping of the pumping beams

It is necessary to have a pumping beam covering a large section of the atomic
ensemble. This maintains a homogeneous and high spin polarization by addressing
all the atoms. The remaining atoms not covered by the pumping beams are
addressed through motional averaging for the hot atomic vapor. The atomic cell is
elongated in the plane of pumping, having a cross-section of 1 mm×40 mm. We use
a telescope in a combination with a Powell lens (line-generator) and a cylindrical
lens to accommodate the elongated shape of the cell. Figure 5.7 shows the optical
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Figure 5.7: Optical system for generation of collimated pumping beams.
a) the optical setup and beam propagation in the xz-plane. b) the optical setup
and beam propagation in the xy-plane. Powell Lens: Thorlabs - LGL130.

system for generating the pumping beams. Figure a) shows the xz-plane, where
the Powell and cylindrical lenses enlarge the beam profile. Figure b) shows the
xy-plane shaped by two spherical lenses and adjusted to cancel the focusing of the
outer channel such the collimation of the beam is maintained. The objective of
the lens system is to have a uniform coverage of the pumping beam with the beam
rays being aligned to the magnetic field. The optical system has a lot of coupled
alignment degrees of freedom for achieving this, which is an experimental challenge
addressed with mirrors and translation stages for the two spherical lenses and the
Powell lens.

a) b) c)

Figure 5.8: Cylindrical lens holder for collimating the pumping beams.
a) the cylindrical lens holder. b) the cylindrical lens holder positioned inside the
magnetic shield. c) a top view of a two-dimensional slice of the cylindrical lens
holder to illustrate how the lens holder accommodates a diverging beam.

The magnetic shield used in this experiment has a round pumping hole of
25 mm in diameter. This is insufficient for a pumping beam covering the entire
cell with the cell length of the z-axis being 40 mm. Therefore, the cylindrical lens
is positioned inside the magnetic shield, so a pumping beam covering the entire
cell can be generated. The mount for holding the lens inside the magnetic shield
can be seen in figure 5.8. The mount is made of the plastic material PEEK due to
its magnetic and electric properties as well as mechanical properties5. The atomic

5The lens holder has been fabricated in collaboration with the technical support group at the
Niels Bohr institute.
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5.1. MAGNETO-OPTICAL RESONANCE SIGNAL

ensemble is very sensitive to magnetic disturbances that induce classical noise into
the measurement. Therefore, we only use plastics and ceramics inside the magnetic
shield, excluding the coil systems for generating the bias magnetic and the RF drive.
A cone structure is engraved into the lens holder to accommodate the divergence
of the optical beam and the small hole of the magnetic shield. The cone structure
follows the diverging angle of the beam shown in figure 5.8c.

The beam size of pumping beams is too large for a camera to image the beam
profile. A picture of a fluorescence paper is instead used to show the beam shape.
The shape of the pumping beam is uniform over the elongated direction shown
in figure 5.9a. The uniformity is achieved by the optical properties of the Powell
lens that generates a uniform line. Using two cylindrical lenses creates an elliptical
beam, where the edges experience a lower intensity than the center, illustrated
in figure 5.9b. The use of a Powell lens for shaping the pumping beams allows
for uniformly addressing all the atoms of the ensemble, contrary to the use of
cylindrical lenses, therefore increasing the spin polarization and making the spin
polarization more uniform.
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Figure 5.9: Beam shape of pumping beam measured on a fluorescence
paper. a) beam shape of the pumping beam measured with a fluorescence paper.
The beam is generated by the optical setup in figure 5.7. The beam size is slightly
enlarged vertically due to light scattering on the fluorescence paper. b) illustration
of pumping beams using Gaussian optics for comparison.

The scattering of light on the cell walls hitting the ensemble addresses other
transitions resulting in a depolarization of the atoms. Therefore, it is essential
not to have a beam larger than the probed channel since the clipping on the cell
walls decreases the spin polarization. It is also essential to have a polarization
state of the pumping beam as purely σ− polarized as possible. This is achieved
by having a polarizer to generate a clean linear polarization of light followed by
an achromatic λ/4 waveplate compatible with both the wavelengths of the D1

and D2 line, 894 nm and 852 nm, respectively. This should, in theory, generate a
perfect beam of circular polarized light, but the real-world λ/4 waveplates are not
perfect. Therefore, an achromatic λ/2 waveplate is placed after the λ/4 waveplate
to cancel any slight imperfection of the waveplate. The waveplate combination
can be seen in figure 5.7 positioned just before the Powell lens. The degradation
of the beam polarization due to the Powell and cylindrical lenses is below our
detection resolution for measuring depolarized optical beams. The high achieved
spin polarization of 98.7% can only be achieved with a good beam polarization,
inferring that the effect of beam polarization degradation from the telescope must
be low.
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CHAPTER 5. ATOMIC GROUND STATE PREPARATION

A consideration to further improve the spin polarization past this work could
be to pulse shape the repump and pump. A rapid extinguishing of the beams
introduces a lot of broadband frequency noise, where the broadband frequency
noise is inversely proportional to the cut-off time. The rapid extinguishing of
the beams has been shown to diminish the spin polarization in the work of
[Dideriksen, 2021, Schmieg, 2023, Bao et al., 2020], where spin polarization is im-
proved by smoothening the extinguishing of the beams.

5.1.5 Thermal occupancy

We want to derive the expression for the added thermal noise from the thermal
occupancy nS in our system. We derive it for preparing the system in the ground
state |4,−4⟩. The same derivation can be used for a system prepared in |4, 4⟩ being
aware of sign changes for the projection of the spin6. Following the derivation of
[Bærentsen et al., 2023], we can define the ladder operators for the system summing
over N atoms:

Σ̂ =
N∑

i=1

σ̂
(i)
m−1,m,

Σ̂† =
N∑

i=1

σ̂
(i)
m,m−1.

(5.7)

The density operator is defined as σ̂a,b = |a⟩⟨b| = |F, a⟩⟨F, b|. The ladder operators

can give the total number of atoms: Nm = ⟨Σ̂†Σ̂⟩, and it has the commutation:
[Σ̂, Σ̂†] = Nm−1 − Nm. The bosonic ladder operators are defined to have the
commutation relation:

[b̂, b̂†] = 1. (5.8)

We can write up bosonic ladder operators for our system by normalizing our ladder
operators:

b̂ =
Σ̂√

Nm−1 −Nm

(5.9)

We can then calculate the number for the thermal occupancy by using the definition:

nS = ⟨b̂†b̂⟩ =
Nm

Nm−1 −Nm

. (5.10)

We want to calculate the distribution over the levels from the MORS measure-
ment to infer the spin polarization and the thermal occupancy in our calibration.
We measure the difference of distribution between two subsequent mF levels when
measuring a transition with the MORS technique:

αAm = ∆Nm = Nm −Nm+1, (5.11)

where Am is the measured transition amplitude between two mF levels, and α is a
constant. We can assume for a pumped ensemble that the projection oppositely

6Equation 5.10 changes in the negative mass configuration change to nS = Nm

Nm+1−Nm
.
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oriented to pumped transition has a population of zero N4 = 0. Therefore, we have
the boundary condition αA3 = N3. This makes it possible for us to write up the
population for each level:

Nm = α

F−1∑

k=m

Ak,

Ntotal = α
F−1∑

m=−F

m∑

k=F−1

Ak = α

F−1∑

k=−F

(k + 5)Ak.

(5.12)

We can, from the above formulas, calculate fraction of atoms in a mF level:

Nm/Ntotal = Pm =

∑F−1
k=mAk∑F−1

k=−F (k + 5)Ak

. (5.13)

The spin polarization is the length of Fx compared to the total length of the spin:

p =
|⟨Fx⟩|
F

=
1

F

∣∣∣∣
F−1∑

k=−F

mPm

∣∣∣∣. (5.14)

High spin polarization

We can practically not measure A−1 for a high spin polarization. It is often only 3
peaks that are measurable, which also motivated the 3-peak model earlier described
in this chapter. We can write up the boundary condition for the 3-peak model
as N−1 ≈ 0 → αA−2 = N−2. In this regime, we use the following formula for the
calculation of the level distribution:

Pm =

∑2−F
k=mAk∑2−F

k=−F (k + 5)Ak

. (5.15)

When running the experiment in the high spin polarization regime, we only measure
the mode between the ground and the first excited state. Therefore, we only consider
the thermal occupancy between the ground state and the first excited state:

nS =
Nm

Nm−1 −Nm

=
A−2 + A−3

A−4

. (5.16)
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CHAPTER 6

Atomic readout: Calibration of
spin-light coupling by coherently

induced Faraday rotation

This chapter introduces the experimental technique of calibrating the atomic readout
with the method of coherently induced Faraday rotation (CIFAR) presented in the
published work:

Rodrigo A. Thomas, Christoffer Østfeldt, Christian Bærentsen, Micha l
Parniak, and Eugene S. Polzik, Calibration of spin-light coupling by coherently
induced Faraday rotation. Optics Express 29, 23637-23653 (2021).

The published work can be found in appendix F.

6.1 Introduction to the CIFAR technique

This introduction presents key aspects of the published work [Thomas et al., 2021].
The full text of the paper can be found in appendix F.

The technique of calibrating the readout rate, ΓS, is paramount for calibrating
the oscillator. Determining the coupling strength between spin and light is highly
coupled to the detection efficiency, making it challenging to measure. Previous
calibration of the readout rate in [Møller et al., 2017] used a noise modeling of
an increased probe power to extrapolate the ratio of noise processes through the
difference of noise scaling to the readout rate1. On the other hand, the CIFAR
method relies on a coherent drive of the spin oscillator that is self-sufficient and
does not rely on any other calibrations.

The CIFAR method is motivated by the optomechanical method known as
optomechanically-induced transparency (OMIT) [Weis et al., 2010], where a phase-
modulated drive induces a signal that enables extraction of the coupling strength

1The method uses the scaling presented in equation 2.36 of the quantum back-action noise and
the thermal noise, where they scale quadratically and linearly with the readout rate, to calibrate
the quantum cooperativity.
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between light and the mechanical oscillator without being sensitive to neither the
detection efficiency nor the driving strength.

−40 −30 −20 −10 0 10 20 30 40

(Ω− ωS)/2π [kHz]

10−2

100

102

C
IF

A
R

[a
rb

.
u

n
it

s]

ΓS ΓS

Figure 6.1: Illustration of the CIFAR signal. The spin system is driven with
a polarization modulation having equal amplitudes for the two orthogonal light
polarization. The drives are phase shifted by π/2 for the curves in red and blue.
The curves illustrate an ensemble with a readout rate of ΓS = 20 kHz and a decay
rate of γS = 2 kHz.

The CIFAR technique relies on a drive on the transverse quadratures of light,
X in

L and P in
L . Therefore, only addressing/amplifying the light components associated

with the transverse input drive. The input-output relation of the spin in equation
2.27 can be rewritten, showing the case without dynamical back-action, to only
incorporate the terms, including the quadratures of light:

Xout
L = X in

L ,

P out
L = P in

L + 2ΓSχSX
in
L .

(6.1)

The thermal noise processes are neglected due to the classical drive dominating the
signal. The classical drive modulates the orthogonal linear polarization and the
orthogonal circular polarization of the input light. The method relies on having
an equal classical drive for the two quadratures; P in

L = ±X in
L = G, giving us the

ability to rewrite the above equation:

P out
L = (1 ± 2ΓSχS)G. (6.2)

Giving rise to the characteristic spectrum of the CIFAR method:

CIFAR(Ω) = |P out
L (Ω)|/G|2 = 1 + 4Γ2

S|χS(Ω)|2 ± 4ΓSRe[χS(Ω)]. (6.3)

The CIFAR signal arises from the same dynamics of the spin-light interface
as the spin-induced light squeezing. This can be seen for the shot noise and
quantum back-action noise in equation 2.38 illustrating the squeezing signal. The
characteristic dip of the CIFAR signal emerge from the negative cross-correlational
between the X-quadrature of the atomic spin and the modulation drive.
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CHAPTER 6. ATOMIC READOUT: CALIBRATION OF SPIN-LIGHT
COUPLING BY COHERENTLY INDUCED FARADAY ROTATION

The strength of the CIFAR method is its ability to convert the readout associated
with a scaling of the noise spectrum into a frequency dependent variable, making
the detected signal independent of detection losses. An illustration of the model and
how it converts the readout rate into a frequency dependent parameter can be seen
in figure 6.1. The distance between the minimum and the maximum of the CIFAR
signal is |Ωmin − Ωmax| =

√
Γ2
S + γ2S, where the separation can be approximated

to be the readout rate, |Ωmin − Ωmax| ≈ ΓS, for a high quantum cooperativity,
ΓS ≫ γS.

We are concluding the introduction to the CIFAR technique - a robust method
for measuring the coupling between spin and light that benefits from being a
self-sufficient characterization technique. The experimental results and detailed
description are presented in appendix F.
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Part III

Experimental realizations and
simulations of motional

averaging in a hot vapor cell
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In the following chapters, we cover the influence of motional averaging for the
readout of the atomic state and the effect of magnetic inhomogeneities of the bias
magnetic field.

Motional averaging relates to the individual atoms of the hot vapor moving
inside the cell with a velocity dictated by the Maxwell-Boltzmann distribution. As
a result, the atoms encounter inhomogeneities in the dynamics that characterize
the ensemble. The inhomogeneities are averaged over the motion of the atoms.
The critical time scale of these effects is for the coherence time to be longer than
the time of the motional averaging, 1/γS0 > τmotion.

The motional averaging comes with a price in the form of dephasing of the
atomic ensemble for the magnetic inhomogeneities and excess noise from the decay
in the dark for the atomic readout. We have addressed these issues by innovating
new experimental techniques uncovered in the succeeding chapters: implementing
a new coil system to improve dephasing processes and implementing a square
tophat beam to improve the fast decaying modes arising from imperfect motional
averaging.

At last, simulations of the motional averaging processes are covered, which have
been used to investigate experimental boundaries of motional averaging, effect of cell
geometries, and the practical benefits of implementation. Finally, the experimental
results are compared to the simulated results assessing the quality of the simulated
forecasting, which is used as a decision tool for experimental implementations.
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CHAPTER 7

Magnetic inhomogeneities

When an atomic ensemble resides in a static magnetic field, the Larmor precession
of the atomic spin is determined by the strength of the magnetic field. Due to
the spatial extent of our ensemble, the strength of the magnetic field varies across
the cell dimensions resulting in a spatial variation of the local Larmor frequency.
The velocity of the atomic ensemble is thermally distributed with a mean velocity
along one axis of 142 [m/s] for a cesium ensemble at 50 ◦C. As a result, the atoms
experience a variation in the Larmor frequency as they move through the magnetic
field of varying strength. The shifting Larmor frequency induces dephasing of the
ensemble, broadening the oscillator’s response. The effect of dephasing can be
accommodated by improving the homogeneity of the magnetic field.

We have, in the work of this thesis, changed our cell geometry from a cell with a
cross-section of 300 µm×300 µm and a length of 10 mm to a cell with a cross-section
of 1 mm×1 mm and a length of 40 mm1. The biggest concern regarding the magnetic
inhomogeneities is the elongated geometry since it is experimentally harder to
ensure a high magnetic field homogeneity over the entire cell length. The geometry
change has therefore elevated our sensitivity to the magnetic inhomogeneities,
introducing a need for design change of the coil system generating the magnetic
field.

We are in the following of this chapter, detailing the change of coil design and
experimental characterization of the new coil system.

7.1 Magnetic field generation

The atomic ensemble is positioned in a magnetic shield of 4 layers: aluminum,
µ-metal, µ-metal, and iron from the inside and out. The aluminum is good at
shielding electromagnetic radiation at higher frequencies in the RF domain. The
µ-metal is a ferromagnetic alloy of high permeability that can shield the cell from
an external magnetic field. The iron also has some magnetic shielding effect like the
µ-metal, but it also serves as a cheaper outside protection of the other layers. The
magnetic shield serves the purpose of canceling the effect of the earth’s magnetic

1The reasoning for the change of geometry is explained thorough chapter 8 and 9.
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7.1. MAGNETIC FIELD GENERATION

field and magnetic fields from laboratory equipment. The shield is cylindrically
shaped with an inner diameter of 150 mm and an inner length of 350 mm.
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a) b)

Figure 7.1: Rotating the experimental setup for a more homogeneous
magnetic field. The purple arrow is the bias magnetic field, and the olive arrow,
pointing out of the plane, is the coil for the coherent RF drive. a) the previous
experimental setup in a Lee-Whiting coil configuration. b) the current experimental
setup to accommodate the larger cell size.

We were in a position where it was required of us to reduce the magnetic inhomo-
geneities over the cell geometry. The previous experimental configuration was using
a Lee-Whiting coil configuration [Kirschvink, 1992], where a series of Helmholtz
coils are applied to cancel the magnetic inhomogeneities over the cell geometry.
Figure 7.1a shows the previous experimental configuration. The cell’s long axis was
orthogonal to the long axis of the shield. The magnetic inhomogeneities increase
for this configuration when you are getting closer to the diameter/edge of the
Helmholtz coils, which would not be suitable for a larger cell geometry. The current
experimental setup can be seen in figure 7.1b, where the cell is rotated to align
the magnetic shield’s long axis to the cell’s long axis. This gives some technical
challenges of a new coil design, but also for all the optical beams, especially the
pumping beams, addressed in section 5.1.4.

Jürgen Appel first started investigating magnetic inhomogeneities to simulate
complex coil shapes imprinted onto printed circuit boards (PCB). The efforts into
using PCB coils for magnetic field generation was picked up by [Yde, 2020] and
later joined by Jun Jia for the experimental testing of the PCB coils. The PCB
coil system can be seen in figure 7.2a. The figure shows the EXCITATION PCB
coil on top used for coherent displacements and the CAP PCB coil on the side
to generate the bias magnetic field. The EXCITATION PCB coil has a c-shaped
design such that the coil system can be removed easily so that we can get access
to the atomic cell. The CAP PCB coil has an elongated cutout in the center to
accommodate the access of the pumping beams to the atomic cell.

The PCB coils work similarly to Helmholtz coils, where two identical coils are
displaced, having the current flowing in the same direction of the two coils. The
PCB coils are simulated to generate a perfect homogeneous magnetic field for a
given volume. This also works when measuring the generated magnetic field of the
PCB coils. The PCB coils can then be positioned in a magnetic shield, where the
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CHAPTER 7. MAGNETIC INHOMOGENEITIES

reflected field of the shield walls alters the magnetic field generated by the PCB
coils. All the PCB coils are simulated by [Yde, 2020] for this experiment.

a) b)

Figure 7.2: Mounted coil systems. a) PCB coil system showing the EXCI-
TATION PCB coils and CAP PCB coils. b) RECTANGLE coil system with the
geometry of 320 mm×100 mm and a separation between the coils of 60 mm.

7.2 Experimental characterization of the coil sys-

tem

The magnetic field has to be characterized inside the magnetic shield to account
for the effect of the shield on the magnetic field. The setup for characterizing the
magnetic field inhomogeneities can be seen in figure 7.3. A cubic cell with a volume
of 5 mm×5 mm×5 mm is attached to a hollow glass rod on a translation stage.
This hollow glass rod allows us to move the cell without obscuring the probe beam
path for measuring the interaction with the atoms using homodyne detection. The
repump laser is expanded to cover the full measured range, transferring atoms to the
F = 4 manifold. The Larmor frequency can then be calculated from the detected
signal for each cell position. This technique uses atoms as a precise magnetometer
to measure the positional dependency on the magnetic field. The spin oscillator is
driven by white noise applied using an orthogonal pair of coils in order to increase
the SNR in the detection of the Larmor frequency. The central Larmor frequency
of the cell is determined for each position for magnetic field strength determination.

The most homogeneous magnetic field generated by the PCB coils in a magnetic
shield is generated by the CAP PCB coils2. The shape of the magnetic field
generated by the PCB coils strongly depends on the separation between the two
coils. The magnetic field also depends on the geometry and the shield’s permeability.
This means that characterization of the PCB coils must be remeasured when
implemented into a new magnetic shield. The magnetic field generated by the CAP
PCB coils can be seen in figure 7.4, where the separations between the PCB coils are
82 mm and 86 mm in a) and b), respectively. The magnetic field is first measured in

2The PCB coils are named after their curvature with the CAP PCB coils having a negative
second-order curvature - forming a cap shape.
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λ/2
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Bbias BRF
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Probe

Powell lens

Figure 7.3: Experimental setup for measuring the magnetic inhomo-
geneities. A cubic cell is used as a magnetometer on a translation stage to map
the positional dependency of the Larmor frequency. The probe interacts with the
cubic cell and is measured through homodyne detection.

one direction, represented by the blue dots, where the magnetic field is flipped by an
equal alternating current, represented by the orange dots. This process removes the
background by taking the average of the two measurements, primarily influenced
by the earth’s magnetic field. The alignment of the magnetic moment to the earth’s
magnetic field is achieved with demagnetization or degaussing by resetting the
alignment with a strong magnetic field [Thiel et al., 2007]. This explains the big
difference in the background between figure 7.4a and 7.4b. The red fit is a polynomial
applied to quantify the curvature of the field: f(x) = a0 + a2x

2 + a3x
3 + a4x

4. The
most essential magnetic field parameters are a2 and a4 for the characterization of
the field homogeneity. The parameter a3 has a minor scaling that probably comes
from the wiring and the shield’s opening required for translating the cubic cell.

The magnetic field performed by the CAP PCB coils is insufficient. The idea is,
therefore, to generate a set of PCB coils with opposite curvature that we refer to
as the CUB PCB coils. The opposite curvature can then cancel the second-order
scaling of the inhomogeneities of the CAP PCB coils, using the same principle
as a Lee-Whiting coil configuration to cancel the magnetic inhomogeneities. The
magnetic inhomogeneities of the CUB PCB coils can be seen in figure 7.5 for a
PCB coil separation of 74 mm and 78 mm in a) and b), respectively. The fitted
curves can be seen in table 7.1, for which the CUB PCB coils can be compared
with CAP PCB coils.

The best combination of the PCB coils for a homogeneous magnetic field is the
CAP - 82 mm and the CUP - 78 mm calculated from the fitted magnetic profiles.
The theoretical best magnetic field generated by combining the CAP and the
CUP can be seen in figure 7.6. The standard deviation of the magnetic field
homogeneity over the central 40 mm (the length of our atomic cell) is σ = 27 ppm.
This was considered acceptable for the application resulting in a broadening of
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Figure 7.4: Magnetic inhomogeneities of the CAP PCB coil design. The
magnetic field is measured for two field directions in blue and orange dots, where
the green dots are averages. The measurement is normalized to the mean Larmor
frequency. a) measurement of the CAP PCB coils with a separation of 82 mm. b)
measurement of the CAP PCB coils with a separation of 86 mm. The values for
the fitted red curves can be seen in table 7.1.

Coils - separation a2 a3 a4

CAP - 82 mm −9.7 · 10−4 2.6 · 10−7 3.0 · 10−7

CAP - 86 mm −1.2 · 10−3 −1.2 · 10−6 1.8 · 10−7

CUP - 74 mm 8.9 · 10−3 −5.5 · 10−6 −2.4 · 10−7

CUP - 78 mm 7.9 · 10−3 −1.6 · 10−6 −4.8 · 10−7

RECTANGLE - 60 mm 7.4 · 10−5 1.8 · 10−7 2.3 · 10−8

EXCITATION - 110 mm −9.4 · 10−3 −1.3 · 10−4 −1.7 · 10−6

Table 7.1: Fit of the magnetic inhomogeneities: f(x) = a0 + a2x
2 + a3x

3 + a4x
4.

a0 approximates to 100 for all the coils as the data is normalized to the average
field strength.

γdephasing ≈ 200 Hz at 1.37 MHz. However, the number for the broadening comes
with a notable uncertainty, which comes from an inherent heating limitation for the
PCB coils, resulting in a heating of the cell inducing other broadening processes,
making the estimation of the broadening challenging.

The strength of the magnetic field generated by the PCB coils is very low
compared to the applied current and resistance of the coils. The required currents
for reaching 1.37 MHz for the PCB coils are 0.6 A and 1 A for the CUP PCB coils
and CAP PCB coils, respectively. This results in a heat dissipation of 135 W from
the coils. The magnetic shield works as a heat insulator around the coils from
having the 4 layers of metal. An equilibrium temperature of 50 ◦C is achieved
by having 15 watts dissipated inside the magnetic shield. This is one order of
magnitude below the dissipated power of the PCB coils. The problem of the heat
dissipation arises from the original design of the PCB coils, where it was meant to
be used in the work of [Yde, 2020] having a much lower Larmor frequency around
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Figure 7.5: Magnetic inhomogeneities of the CUP PCB coil design. The
magnetic field is measured for two field directions in blue and orange dots, where
the green dots are the averages. The measurement is normalized to the mean
Larmor frequency. a) measurement of the CUP PCB coils with a separation of
74 mm. b) measurement of the CUP PCB coils with a separation of 78 mm. The
values for the fitted red curves can be seen in table 7.1.

50 kHz. The heating of the coils scales quadratically to the amount of current, but
the magnetic field strength only scales linearly to the current. This means that
the heat dissipation scales quadratically to the Larmor frequency, giving a heat
dissipation for a 50 kHz Larmor frequency of 0.2 W.
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Figure 7.6: Best magnetic field homogeneity by combining the CAP -
82mm and the CUP - 78mm. The curve is generated from an optimal ratio
between the fitted polynomials for the two coils. The standard deviation of the
magnetic field over the central 40 mm is σ = 27 ppm.

We came up with a new idea for a design of a coil system using a RECTANGLE
coil design. The idea was based on the boundary condition of having an infinite
elongated rectangular coil design. This theoretical limit would create an infinite
homogeneous magnetic field along the elongated axis of the coils. The coil design
should therefore be an elongated RECTANGLE coil stretching as far as possible in
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CHAPTER 7. MAGNETIC INHOMOGENEITIES

the cylindrical shield. Another addition to creating a more homogeneous field was
implementing the Python simulation using the software package bfieldtools3. This
made it possible to simulate the effect of the magnetic shield on the coil system
to first order before implementing them experimentally. Unfortunately, it was not
directly possible to design PCB coils using bfieldtools since the PCB simulation
software’s physical principles were incompatible with the package, where the entire
software would have to be rewritten to include the package.
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Figure 7.7: Magnetic inhomogeneities of the RECTANGLE coil design
and the EXCITATION PCB coil design. The magnetic field is measured for
two field directions in blue and orange dots, where the green dots are the averages.
The measurement is normalized to the mean Larmor frequency. a) measurement
of the RECTANGLE coils with a 60 mm separation. b) measurement of the
EXCITATION PCB coils with a separation of 110 mm. The standard deviation of
the EXCITATION field over the cell length is σ = 1%. The values for the fitted
red curves can be seen in table 7.1.

Implementing the RECTANGLE coil design was collaborative work with Sergey
A. Fedorov in designing and experimental testing the coil system. The design of
the RECTANGLE coil system can be seen in figure 7.2b. The coil system has a
RECTANGLE geometry of 320 mm×100 mm and a separation of 60 mm. We also
designed a much smaller winded compensation coil seen in figure 7.2b, but it did
not show promising results. The measured magnetic field of the RECTANGLE coil
design can be seen in figure 7.7a, showing a magnetic field homogeneity close to that
generated by the CAP and CUP coils combined. The background subtraction from
the orange and blue dots can not be seen in figure 7.7a because the background is
much larger than the inhomogeneities of the RECTANGLE coils. The fitted curves
can be seen in table 7.1, where the RECTANGLE coils show homogeneity levels
one order of magnitude better than the CAP PCB coils.

The magnetic inhomogeneities can be improved even more by combining the
design of the RECTANGLE coils and the CAP PCB coils since the quadratic
term for the two coils is opposite. The heat dissipation of the CAP PCB coils

3https://bfieldtools.github.io/authors.html created by Joonas Iivanainen, Antti Mäkinen, and
Antti Mäkinen.
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is not a problem because of the large difference in homogeneity between the two
coil systems, such only a tenth of the current is going through the CAP PCB
coils. This generates around 2 watts of dissipated power at 1.37 MHz, below the
15 watts that saturates the temperature of the cell at 50 ◦C. The coil system
for a hybrid coil system by combining the RECTANGLE coils, the CAP PCB
coils, and the EXCITATION PCB coils can be seen in figure 7.8. The theoretical
magnetic field from combining the RECTANGLE coils and the CAP PCB coils
can be seen in figure 7.9, where the standard deviation of the magnetic field over
the central 40 mm is σ = 5 ppm. The added broadening from this magnetic field
is γdephasing ≈ 90 Hz at 1.37 MHz. The small amount of dephasing achieved is
acceptable for the experiment, which is lower than the atom-atom collisional and
wall collisional broadening that is γcollisional ≈ 110 Hz. The dominant decay process
for the atomic spin in our experiment is probe induced decay, which exceeds the
decay rate in the dark at about 0.5 mW of probe power at 3 GHz detuning, where
the probe induced decay is γprobe ≈ 200 Hz.

Figure 7.8: Mounted hybrid coil system. The PCB coils are mounted on the
RECTANGLE coil frame. The EXCITATION PCB coils are placed on top and
below the frame with a separation of 110 mm, and the CAP PCB coils are placed
on both sides of the RECTANGLE coils with a separation for the CAP PCB coils
of 86 mm.

The magnetic field homogeneity of the EXCITATION PCB coil is also relevant
since it determines the homogeneity of the coherent displacement when driving the
atoms. The requirement for field homogeneity is much lower than that of the bias
magnetic field. The measurement of the field homogeneity for the EXCITATION
PCB coil is performed similarly to the bias coils, where the CAP PCB coils are
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used for white noise driving to enhance the atomic signal instead of using the
EXCITATION PCB coils for this process since the EXCITATION PCB coils serve
the purpose of the bias magnetic field for this measurement. The measured magnetic
field for the EXCITATION PCB coils can be seen in figure 7.7b. The fitted red
curve can be seen in table 7.1, showing that the homogeneity of the magnetic
field is limited by the uneven (a3) parameter because of the c-shape of the coils.
The standard deviation of the magnetic field over the central 40 mm is σ = 1%
(σ = 104 ppm), which means that the coherent displacement when driving the
atomic ensemble is uniformly displaced within 1% standard deviation. This is
considered to be acceptable.
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Figure 7.9: Best magnetic field homogeneity by combining the RECTAN-
GLE - 60mm and the CAP - 86mm. The curve is generated from an optimal
ratio between the fitted polynomials for the two coils. The standard deviation of
the magnetic field over the central 40 mm is σ = 5 ppm.

Figure 7.10: Heating pad for temperature regulation of the atomic
ensemble. Product: OMEGA PLM-106/10-P. Image reused from product website:
https://sea.omega.com/ph/pptst/PLM-SERIES.html.

We had to implement a new heating system to elevate the cell temperature, in
a range of 50−70 ◦C, without alternating the magnetic field inside of the shield.
The previous heating of the cell was introduced by having a wire made of a
semiconducting material to heat the shield. The wire was folded in half and twisted
to cancel the magnetic field generated by the wire. The wire was wrapped around
the coil frame giving it good thermal contact. This was not possible with the new
coil frame made of the plastic material ABS. The new method was to heat the
shield with a heating pad (OMEGA PLM-106/10-P) shown in figure 7.10. The
heating pad was placed in the bottom of the magnetic shield to have good thermal
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contact and to create a gradient between the channel of the cell and the stem of
the cell (the cell terminology for the cell geometry is explained in figure 2.4). The
temperature gradient makes the cesium condense back in the stem, which is desired
for avoiding cell clogging (see appendix B for explaining clogging of the cell) or
cesium condensing on the windows of the cell. The stem points upwards away from
the heating pad, creating a heating gradient of 1−2 ◦C between the cell’s body and
the stem. The advantage of this heating pad is the wire configuration aligned to
have the forward and alternating current co-aligned for magnetic field cancellation.
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CHAPTER 8

Fast decaying spin-modes from an
inhomogeneous readout

In this chapter, we investigate the effect of motional averaging on the light-spin
interaction arising from the uneven probing, consequently, an uneven readout for
the state of the spin ensemble. The atoms decaying in the dark give rise to fast
decaying spin-modes, referred to as one unity named the broadband noise (BBN)
due to its broad spectral profile. The single atom response, resembling the mode
of the long-lived oscillator response, is referred to as the narrowband noise (NBN)
due to its narrow spectral mode profile.

Through experimental investigation, the BBN has been shown to consist of
uncorrelated noise, raising the overall extrinsic noise level in detection. It is
treated similarly to shot noise because it is much broader than the NBN, therefore,
considered to be flat around the oscillation frequency.

The BBN arises from the lack of information about the atoms in the dark;
therefore, the BBN can be reduced by increasing the filling factor of the probe
beam. This is shown for a cell with a cross-section of 0.5 mm×0.5 mm and a length
of 25 mm in figure 8.1 for a varying beam size. The data around the oscillation
frequency is removed to focus on the BBN. The figure illustrates the reduction of
BBN resulting from an increase in beam size, showing a reduction from 8 to 2 shot
noise units. This is for increasing the Gaussian beam size by a factor of 2, reducing
the BBN by a factor of 4 for this measurement.

The size of the Gaussian beam is limited by the geometry of the atomic channel,
limiting the reduction of BBN without introducing significant clipping losses for
the Gaussian beam. This chapter introduces the use of a non-Gaussian beam for
an increased filling factor by implementing a square tophat beam profile.
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Figure 8.1: Broadband noise dependency on the size of the Gaussian
probe beam. Data and fit of the BBN for a varying beam size with the data for
the NBN removed. The atomic channel has a cross-section of 0.5 mm × 0.5 mm
and a length of 25 mm. The Gaussian width 2w is the beam’s diameter (1/e2).
The figure has been reproduced from [Thomas, 2020].

8.1 Theoretical interpretation of the broadband

noise

The BBN can be described from a mode picture of spatial beam modes with decay
rates set by the mean free path. A similar approach is taken in [Shaham et al., 2020],
where an elevated noise level is described from an inhomogeneous spin-decay,
focusing on the inhomogeneous spin-decay from wall collisions. Another approach
to describe the BBN is a time of flight model [Borregaard et al., 2016], following
the derivation presented in [Bærentsen et al., 2023] by computing the time-domain
correlation function of the atomic motion:

R(τ) = eiωSt⟨x(t)x(t+ τ)⟩ = ⟨g(t)g(t+ τ)⟩, (8.1)

where x(t) is the atomic signal and g(t) is the demodulated atomic signal by the
oscillation frequency. The correlation function results in the NBN for a large delay
R(τ ≫ τBBN) → ⟨g(t)⟩2, where τBBN is the decay time of the fast decaying modes.
We can write the correlation function of the fast-decaying modes as

R(τ)BBN = ⟨∆g(t)∆g(t+ τ)⟩, (8.2)

described by the deviation from the mean: ∆g(t) = g(t) − ⟨g(t)⟩. The correlation
function for the BBN mathematically expresses the added frequency components
emerging from atoms traveling in and out of the beam. We can from the correlation
function in equation 8.2 write up the spectrum for the BBN:

SBBN(Ω) =

∫ ∞

−∞
⟨∆g(t)∆g(t+ τ)⟩ei(Ω−ωS)τdτ. (8.3)
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The width of the BBN is closely related to the transition time of an atom in the
channel, approximating the decay rate of the BBN; 1/τBBN = vavg/(2w) ≈ γBBN/2π,
where 2w is the beam diameter and vavg is the average transverse speed of an
atom. The power ratio between the BBN and the NBN can be written up using
the defined correlation functions:

PBBN

PNBN

=
⟨∆g(t)2⟩
⟨g(t)⟩2 . (8.4)

A more uniformly distributed probe beam can minimize the coupling to the BBN.
However, this is challenging due to the propagating mode following Laguerre-
Gaussian modes, which makes it challenging to have a large filling factor for the
probe beam when having a square chip. The investigation into having a larger
filling factor is covered in the succeeding section 8.2.

The BBN arises from the uncorrelated atoms moving in and out of the beam.
It is important to note that correlated atoms have a different scaling for the BBN.
For example, a collective displacement achieved by the excitation of the transverse
spin (see section 5.1 for details about the coherent displacement) excites the BBN
less than the NBN because the excitation is correlated for different atoms.

The BBN appears in the spin equation of motion (see section 2.2.2 for details
about the spin equation of motion) similar to the NBN with a changed susceptibility.
The BBN has a very broadband spectral profile, which puts it in the regime;
ΓBBN ≪ γBBN, where the readout is much smaller than the decay rate1. This entails
that the BBN is predominantly thermal noise, whereas the quantum back-action
contribution in the spectra of the BBN is negligible. The atomic motion is largely
diffusive, which results in a BBN profile being Gaussian. The broadband response
can therefore be approximated to have the following relation measured at the P
quadrature of light:

SBBN
PP /SN = ABBNe

− 1
2
(Ω−ωS)

2/γ2
BBN , (8.5)

where γBBN is Gaussian width of the BBN and ABBN is the height of the BBN in
shot noise units. The BBN changes its shape towards a Lorentzian susceptibility
for ballistic motion [Borregaard et al., 2016], which can be seen for vapor cells
operating at lower temperatures, having a lower gas pressure.

8.2 Implementation of a square tophat beam

We want to increase the filling factor of the probe beam reading out the atomic
ensemble. This can be accommodated by a square tophat beam, which is a beam
that resembles a square transverse intensity profile, similar to a super-Gaussian
beam profile [Mielec et al., 2018] being a round tophat beam. The square tophat
beam profile is to accommodate the square channel size of the atomic cell.

1The only operational regime, where this is not the case is presented in part IV Spin in-
duced light squeezing. Demonstrating measurements for maximized readout by tuning closer to
resonance.
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8.2.1 Tophat beam shaper

There are several methods for generating an arbitrary beam shape. A spatial
light modulator is a popular choice for generating arbitrary beam shapes with
the disadvantage of optical losses and finite resolution. Therefore, the choice for
generating a tophat beam has been a special lens named a tophat beam shaper
with a high spatial resolution and low optical losses.
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Figure 8.2: Beam shaper generated beam profiles. Optical setup specified
by the manufacturer for tophat beam generation. The beam profile is imaged with
a Thorlabs camera DCC1545M for distances close to the generation of the best
tophat beam and the beam waist. The images have a size of 520 µm × 520 µm.

The beam shaper2 for the generation of a square tophat beam is primarily
designed for high-intensity laser precision welding/cutting, where a focused beam
is desirable to have for a sharp square beam profile. Therefore, the beam shaper is
designed to have a focusing lens positioned after the beam shaper to determine the
size of the tophat and the position of the tophat beam generation, see figure 8.2 for
an illustrative optical setup. By design, the most flat/square tophat beam profile
is generated one focal length after the focusing lens, referred to as the position
of the best tophat beam. The waist of the beam is displaced further away than
the best tophat beam, such the beam keeps converging after the best tophat beam
generation.

The optical setup for showcasing the beam propagation in the optical setup
specified by the manufacturer can be seen in figure 8.2. The distance specifies the

2The beam shaper used in this thesis: Topag GTH-3.6-1.75FA.
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displacement from the focusing lens, where the best tophat beam is positioned the
focal length of lens, f = Lbest = 100 mm, away from the lens, keeping in mind that
the focal length of lens may deviate slightly from the manufacturer specification
of the lens and the systematical errors of measuring distances from a lens to a
camera. The beam has a Gaussian intensity profile after the combination of the
beam shaper and lens since the first optical elements only changes the phase front
such the beam propagates/converges into a square tophat beam. It is not possible
to maintain a square tophat beam profile over a long propagation distance due
to the decomposition of the tophat beam into Gaussian modes, where the beam
waist is approximately at a distance of 109 mm from the lens. The focusing lens
determines the size of the tophat beam, where the size of the best tophat beam is
linearly proportional to the focal length of the focusing lens.

The mismatch between the position of the beam waist and the best tophat
beam is a manufacturing design giving the beam shaper a slight divergence of
1.75 mrad for our beam shaper. This divergence angle is known as the full fan
angle, see manual for details [Eksmaoptics-manual, 2023]. The input beam is a
Gaussian beam with a waist of 1.8 mm (radius 1/e2).

8.2.2 The generation of a collimated tophat beam

The designed scheme provided by the manufacturer is insufficient for creating a
beam that uniformly fills an elongated cell. An illustration of a conceivable optical
scheme resulting in a tophat beam with an overlap of the beam waist and the
best tophat beam can be seen in figure 8.3a. A negative lens can be placed in the
position of the best tophat beam changing the waist position to coincide with the
best tophat beam referred to as a collimated tophat beam. The focal length can
be calculated from lens equations using the full fan angle of the beam shaper ϕFA,
the input beam size win, and the focal length of the focusing lens f1:

f2 =
ϕFA/winf1

ϕFA/win − 1/f1
. (8.6)

The lens system shown in figure 8.3a would require the last lens to be positioned
inside the cell for a good tophat beam generation making it disadvantageous.
The course has been to decompose the intuitive/conceivable lens system into a
ray transfer matrix Ma, where a more advantageous optical scheme can generate
with the same ray transfer matrix. The optical scheme in figure 8.3b shows a
non-intuitive optical scheme for generating a tophat beam. The optical scheme has
three free variables L1, L2, and L3, where the focal length of the lenses F1 and F2

are fixed. Having more free parameters than minimally required is useful because
the ray transfer matrix can be matched to fulfill the condition Ma = Mb while
giving us the flexibility to choose the lens positions suited for our experimental
setup. We can write the ray transfer matrices for the two systems as

Ma = L(f2)S(f1)L(f1),

Mb = S(L3)L(F2)S(L2)L(F1)S(L1).
(8.7)

We use ray transfer matrices for propagation in free space, S, and passing through
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Figure 8.3: Optical setups for generating a collimated tophat beam. a)
an intuitive optical scheme for generation of a collimated tophat beam, having a ray
transfer matrix Ma. The black dashed lines show the beam convergence without
putting the negative lens f2. b) a non-intuitive optical scheme for generating a
collimated tophat beam, having a ray transfer matrix Mb. The optical scheme in
b) fulfills the condition Ma = Mb to generate the same transformation of the input
optical beam as the optical scheme in a).

a thin lens, L:

S(L) =

[
1 L
0 1

]
,

L(f) =

[
1 0

−1/f 1

]
.

(8.8)

The full solution for Ma and Mb in equation 8.7 using the ray transfer matrices in
8.8:

Ma =

[
0 −f1
1
f1

f1+f2
f2

]
,

Mb =

[
F1(F2−L3)+L2L3−F2(L2+L3)

F1F2

L1L2L3−F1L3(L1+L2)−F2L1(L2+L3)+F1F2(L1+L2+L3)
F1F2

−F1+F2−L2

F1F2

F1(F2−L1−L2)+L1(−F2+L2)
F1F2

]
.

(8.9)
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The ray matrix Ma has practically been complemented with the addition of a
4f-system3, which creates an inversion in the plane of the transverse beam profile,
resulting in more flexible solutions for the choice of lenses and positions. The
matrix operation gives a solution for the lens positions, the focal length of the
lenses can then be adjusted to accommodate the experimental geometry. The
optimization of lenses has been focused on the position for the last lens, F2, such
that it is positioned outside the magnetic shield, having L3 larger than half the
shield length, additionally making the total distance of the beam generation as
short as possible.
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Figure 8.4: Camera pictures of a collimated square tophat beam. The
beams are measured with L3 as a zero reference point. The images have a size of
0.8 mm × 0.8 mm. The optical scheme follows the presented scheme in figure 8.3b,
having the parameters: L1 = 343 mm, L2 = 400 mm, L3 = 100 mm, F1 = 300 mm
and F2 = 50 mm.

The generation of a collimated tophat beam using the optical scheme shown in
figure 8.3b can be seen in figure 8.4. The zero reference point for the distance is
the calculated position of the best tophat beam being a distance of L3 after F2 in
figure 8.3b. The imaginary lens in figure 8.3a, setting the beam size is f1 = 300 mm
using F1 = 300 mm and F2 = 50 mm as lenses for the beam generation with a total
length for the optical setup of L1 + L2 + L3 = 843 mm. The beam propagates
from a beam assembling a Gaussian beam towards a square tophat beam and then

3The ray transfer matrix of a 4f-system: S(f)L(f)S(2f)L(f)S(f).
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towards a beam profile named the donkey ears because of the sharp corner peaks
imitating donkey ears when looking along a cut of one of the beam profile axes.
The objective is to have the flattest and most homogeneous beam profile generated
around the position of the best tophat beam, in theory minimizing the BBN the
most.

The rapid intensity oscillation, giving noisy patterns to the beam pictures,
should be neglected since they are generated by a glass piece protecting the camera
sensor, introducing interference patterns to the measurement for all beam profiles
presented in this thesis.
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Figure 8.5: Parameters characterizing a tophat beam. Tophat beam at
a distance of 5 mm in figure 8.4. a) image of the tophat beam with a red square
marking an intensity drop to 1/e2. b) the accumulated intensity of the vertical
axis. c) the accumulated intensity of the horizontal axis. The red curve is a fit of
the blue data with a super-Gaussian. The fitted super-Gaussian power is n = 4.5,
and the diameter is 2w = 0.63.

The beam size of the generated tophat beam in figure 8.4 can be seen in figure
8.5 for the tophat beam at a distance of 5 mm. Figure a) shows the beam profile
with a red square symbolizing the drop to an intensity of 1/e2 for the power level of
the flat plateau. Figures b) and c) are the accumulated intensity over the vertical
and horizontal axis, respectively. The red curve is a fit of the blue data using a
super-Gaussian distribution:

Ae−2[(x−x0)2/w2]n , (8.10)

where n = 1 resembles a Gaussian intensity distribution. The fitted width w is
the radius (1/e2) determining the red square in figure 8.5a. The power of the
super-Gaussian is n = 4.5 and the diameter is 2w = 0.63 mm. The figure of merit
for a well-collimated tophat beam is having a constant width w for the propagating

74



CHAPTER 8. FAST DECAYING SPIN-MODES FROM AN
INHOMOGENEOUS READOUT

70 80 90 100 110 120 130
Distance [mm]

0 10 20 30 40 50 60

Figure 8.6: Camera pictures of a large square tophat beam. The images
have a size of 3 mm × 3 mm. The beam at a distance of 0 mm has a fitted super-
Gaussian power of n=4.1 and a diameter 2w = 2.3 mm converging to 2w = 2.1 mm
for the beam at a distance of 130 mm.

tophat beam, which insures the maximum filling factor. This is also defined as the
overlap between the waist potion and the position of the best tophat beam.

The size of the tophat beam determines the distance it takes to evolve from the
Gaussian beam profile over to the beam profile of the donkey ears. The tophat beam
is discomposed of propagating Gaussian modes, therefore, the beam propagates
accordingly to the Rayleigh length of the Gaussian modes. Because of this, a
smaller beam profile propagates at a shorter distance from the Gaussian beam
toward the donkey ears. The Rayleigh length scales quadratically with the beam
waist, implying that the tophat beam maintains 4 times the distance for twice the
size. The distance for maintaining the tophat beam limits the use case since the
tophat beam is hard to maintain for a small channel size. The tophat beam has
been tested on an atomic channel with a cross-section of 0.5 mm × 0.5 mm and
length 25 mm. This was a challenging task, where a smaller channel size used in
chapter 11 with a cross-section of 0.3 mm×0.3 mm and length 1 mm would be even
harder to implement the tophat beam, making the disadvantages over shine the
advantages of the tophat beam. The cell length would have to be shrunk in order
to maintain the beam profile, limiting the quantum cooperativity of the atomic
ensemble due to the restricted propagation length of the tophat beam, emphasizing
that the tophat beam is best to be implemented at cell geometries with a square
side length of 0.5 mm or larger.

Propagation of a larger tophat beam can be seen in figure 8.6 with the displayed
distance of the beam profiles being equal to the distance from the calculated best
tophat beam position. The beam is generated from the same optical scheme as in
figure 8.4 using an expanding telescope to resize the tophat beam. The beam is
enlarged by a factor ≈ 3.5 generating a tophat beam with a size of 2w = 2.3 mm
with a slight convergence of the tophat beam having a beam size at 130 mm of
2w = 2.1 mm. The propagation of the tophat beam can be compared with the
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first presented tophat beam in figure 8.4. Maintaining the large tophat beam over
the 130 mm would compare to maintaining the small tophat beam for ≈ 11 mm
by making the Rayleigh length comparison. The tophat beam is maintained the
best in the collimated configuration, which would put the large tophat beam at
disadvantage since it has a slightly converging beam. Still, the enlarged tophat
beam demonstrates that the tophat beam is maintained for a longer distance when
enlarging the beam profile.

8.3 The noise improvement upon changing to a

square tophat beam
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Figure 8.7: Optical setup for implementing a square tophat beam. The
square tophat beam is generated using a ray transfer matrix for the lens positions.
The flip mirror directs the tophat beam towards a camera to measure the beam
profile. Camera model: IDS - UI-1220LE-M-GL Rev.2. The beam positions are
measured from the first window of the cell as the zero reference point.

The tophat beam’s worth must be determined by its ability to reduce the
BBN. The optical setup for implementing and testing a square tophat beam on
our atomic ensemble is depicted in figure 8.7, showing a square tophat beam
transmitted through our atomic ensemble with a flip mirror for measuring the
tophat beam profile. The distance for pictures of the tophat beams is referenced to
the zero reference point determined by the first window of the atomic cell. The
best tophat beam is optimized to be in the cell center at 20 mm. The cross-section

76



CHAPTER 8. FAST DECAYING SPIN-MODES FROM AN
INHOMOGENEOUS READOUT

of the atomic channel is 1 mm × 1 mm with a length of 40 mm. The image size of
the tophat beams is 1 mm × 1 mm to match the size of the cell cross-section for
better visualization.
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Figure 8.8: Characterization of the tophat beam for cell testing. Tophat
beam measured for the center of the cell, L = 20 mm, in figure 8.7. a) image of
the tophat beam with a red square marking an intensity drop to 1/e2. b) the
accumulated intensity of the vertical axis. c) the accumulated intensity of the
horizontal axis. The red curve is a fit of the blue data with a super-Gaussian. The
fitted super-Gaussian power is n = 3.2 and the diameter is 2w = 0.84 mm.

The tophat beam at the center of the cell has a diameter of 2w = 0.84 mm
with the beam profile shown in figure 8.8. The tophat beam has a transmission
through the cell of 96.8% similar to the transmission of a small Gaussian beam,
demonstrating the absence of clipping losses. The optical transmission losses occur
due to reflections of the anti-reflection-coated windows as well as paraffin collecting
on the channel windows4.

A comparison between the spectra for a Gaussian beam and a square tophat
beam can be seen in figure 8.9. The spectra are measured for the P -quadrature
of light with shot noise subtracted. The response from probing with a Gaussian
beam is shown in red, and the square tophat beam is shown with a reduced BBN
in blue. The width of the Gaussian beam is maximized to have the largest value
allowed by the cell without incurring a significant clipping loss. The Gaussian
beam has a diameter of 2w = 0.80 mm shown in figure 8.10. The Gaussian beam
has a transmission of 95%, meaning that it has more clipping losses than the
tophat beam, illustrating that the tophat beam could be enlarged even further
for a fair comparison. Therefore, the presented results are a lower bound of the

4A transmission of 96.8% is considered high for paraffin coated cesium vapor cells at QUANTOP
with cell transmissions of the newest generation non-discarded cells ranging from 91% to 97%
[Schmieg, 2023].
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Figure 8.9: Spectral comparison between atomic noise arising from
Gaussian and tophat beam profiles. The spectrum for probing with a Gaussian
beam profile is shown in red, and with a square tophat beam profile in blue. The
bright curves show the spectra fits. The fit shows an increased readout rate:
ΓTH
S /ΓGaus

BBN = 1.33, and a reduction of the BBN: AGaus
BBN/A

TH
BBN = 2.55 when probing

with a square tophat beam.

improvements gained by transiting to a square tophat beam.

The fitted bright curves in figure 8.9 include the full spin model for a single spin
oscillator in the dynamical back-action free regime, ζS = 0, presented in equation
2.38. The detection angle is the same for the measurement of the Gaussian beam
and the tophat beam, completed for the same experimental configuration resulting
in an equal number for the amount of thermal excitations. The BBN is modeled
accordingly to equation 8.5 having a Gaussian shape for the BBN. The comparison
between a Gaussian beam and a square tophat beam in figure 8.9 shows a reduction
of the BBN by a factor of AGaus

BBN/A
TH
BBN = 2.55 when changing the beam profile to

a square tophat beam. The Gaussian width, γBBN, of the BBN is increased by
12% for the square tophat beam, which can be understood in the mode model to
describe the BBN since the tophat beam consists of higher order spatial modes
compared to the Gaussian beam. The higher order modes will have a higher decay
rate, broadening the the spectral profile of the BBN.

The increase of the probe filling factor has also been shown to increase the
readout rate, which has been confirmed for separate measurements. The increase
of readout in figure 8.9 comparing the probing of a Gaussian beam with a square
tophat beam, results in a readout rate increase by a factor of ΓTH

S /ΓGaus
S = 1.33

when changing to a square tophat beam, calculated from the fitted spectra of figure
8.9. The increase of coupling to NBN is a phenomenon still to be understood
theoretically, which may relate to inhomogeneous stark shifts.

The total reduction of the added thermal noise introduced by the BBN by
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combining the enhanced coupling to the NBN and the reduced level of the BBN
gives an improvement by a factor of 3.4 when changing to a square tophat beam.
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Figure 8.10: Characterization of the Gaussian beam for BBN comparison.
a) image of the Gaussian beam with a red square marking an intensity drop to 1/e2

for the horizontal and vertical axis. b) the accumulated intensity of the vertical
axis. c) the accumulated intensity of the horizontal axis. The red curve is a fit of
the blue data with a Gaussian fit. The fit diameter is 2w = 0.80 mm.

Disadvantages of tophat beams include potential difficulties of coupling them
into optical fibers (i.e., for photon counting) and interacting them with other
material systems after the atomic ensemble for which they were optimized. In
addition, other systems, like a cavity using spherical mirrors, are incompatible with
the mode profile of a square tophat beam. Therefore, the transmission of a cavity
with a square tophat beam would introduce a lot of losses. However, this is not
a problem for the homodyne detection method using the local oscillator in the
orthogonal polarization for detection, similar to our experimental configuration.

The advantage of using a round tophat beam (super-Gaussian) to a square
tophat is the flat phase front generated around the waist of the beam. The square
tophat beam is not rotationally symmetric, meaning it does not produce a flat
phase front at any plane. The flat phase front allows for converting the beam back
into a Gaussian beam by reflecting the flat phase front [Mielec et al., 2018]. It is
non-trivial to convert a square tophat beam back into a Gaussian beam. It would
require an optical element with an opposite phase pattern of the beam shaper, which
multiple beam shaping companies have declined to produce; therefore, a proposal
for converting a tophat beam into a Gaussian beam is presented in appendix C.

Finally, we want to evaluate the overall improvement of fast-decaying modes
compared to previous experimental configurations. We have previously used a
smaller cell geometry, 0.3 mm × 0.3 mm × 10 mm, probed with a Gaussian beam
as it will be explained that smaller cell geometries are less affected by the BBN in
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section 9.4. The previous ratio for the smaller cell was ΓS/ABBN ≈ 7.5 · 104 and
for the new experimental configuration ΓS/ABBN ≈ 15 · 104, estimating an overall
reduction of the BBN for the new configuration by a factor of 2.
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CHAPTER 9

Simulation of a hot spin ensemble
in a hot vapor cell

This chapter covers the simulations of effects arising from motional averaging.
Rebuilding an experimental setup after having exchanged spatial beam shapes,
cell geometries, or changed magnetic fields is time-consuming and can take weeks
to months to implement. Consequently, having a theoretical tool to optimize the
parameters is vital to save time. Additionally, simulations give the possibility of
independently looking into the different aspects of the dynamics to get a better
understanding of the underlining physics.

We want to simulate a thermal gas interacting with light with the same physical
parameters as the spin ensemble. The simulation assumes atoms with velocities
determined through the Maxwell–Boltzmann velocity distribution. The dynamics
of atoms, s(t), can be simulated by the Euler method

s(t+ τ) = s(t) +
ds

dt
τ. (9.1)

The system evolves in a stochastic way over each time step τ ; therefore our approach
is a Monte-Carlo simulation of the Euler method. The Euler method gives rise to
errors due to the exclusion of higher-order terms, which is insignificant due to the
stochastic behavior of the system. The Euler method can also be applied for the
dynamics for the evolution of the spin and the readout into light, as long as the
time steps are smaller than the time scale of the dynamics1.

9.1 Thermal motion and physical boundaries

We want to simulate a physical system whose dynamics resemble the thermal
motion of cesium atoms moving around in a paraffin-coated cell.

The velocity of an ensemble corresponds to the thermal motion following a

1This chapter partially overlaps with the bachelor thesis of Martin Krehbiel since I supervised
the implementation of a thermal gas in a hot vapor cell.
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Maxwell–Boltzmann distribution [Schroeder, 2014]:

P (v) =
( m

2πkBT

)3/2
4πv2e

− mv2

2kBT , (9.2)

described by the particle’s mass m, the temperature T , the Boltzmann constant kB,
and the total velocity v. The distribution can be alternatively parameterized by
the three-dimensional velocity vector with each component distributed according
to a Gaussian:

P (vx) =

√
m

2πkBT
e
− mv2x

2kBT , (9.3)

therefore, we can initialize a thermal ensemble following a Gaussian distribution of
the velocity vectors for our simulation:

v =



P (vx)
P (vy)
P (vz)


 . (9.4)

The spatial positions of the atoms are initialized evenly distributed across the
cell, after which the atoms propagate along classical trajectories calculated from
their instantaneous velocities using the Euler method.

9.1.1 Wall collisions

The atoms are confined inside a cell and therefore experience collisions with the
cell walls. The simplest form of wall collision is a perfect reflections from the wall,
which inverts the velocity component parallel to the normal vector, n, of the wall,
as can be seen in figure 9.1a. The angle parallel to the plane ϕ is maintained,
ϕ2 = ϕ1, and the angle to the normal vector is reflected θ2 = −θ1.

n

θ1

ϕ2

2π − θ2

ϕ2

n

θ1

ϕ1

2π − θ2

ϕ2

a) b)

Figure 9.1: Velocity vector after wall collision. (a) reflection of the velocity
vector after wall collision ϕ2 = ϕ1 and θ2 = −θ1. (b) outgoing velocity vector being
independent of the incoming velocity vector.

Reflective wall collisions are not a physically accurate description for rough
surfaces since we have the cells coated with paraffin, which consists of long carbon
chains and thus creates irregular surfaces at the scale of an atom. A more accurate
description of reflection is provided by Knudsen’s cosine law [Knudsen, 1967],
predicting a randomized outgoing angle described by a cosine distribution. Figure
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9.1b depicts a randomized outgoing velocity, which is independent of the incoming
vector to illustrate the behavior of Knudsen’s cosine law. Knudsen’s cosine law
has been experimentally proven for alkali atoms reflected of paraffin-coated films
[Sekiguchi et al., 2018]. Implementation of Knudsen’s cosine law into Monte-Carlo
simulation is thoroughly described in [Greenwood, 2002], demonstrating that the
angle distribution follows

P (θ) = sin2(θ). (9.5)

The distribution of ϕ for Knudsen’s cosine law is uniform over the interval [0, 2π],
independent of the incoming beam. The outgoing vector has a modulus distributed
accordingly to the Maxwell–Boltzmann distribution in equation 9.2.

Knudsen’s cosine law redistributes the atoms with a complete loss of momentum
memory after a wall collision, maintaining the spin and the positional coherence.
In simulations, occasionally an atom overshoots a wall due to the finite time steps,
which is corrected for by tracing back the point of collision for all wall-colliding
atoms, dragging each of them back to the position of collision with a wall.

9.1.2 Atom-atom collisions

Modeling atom-atom collisions is a computationally expensive problem, as it would
require us to model the atomic density of our ensemble consisting of a few million
to a few billion atoms. Furthermore, we would have to compute all the atoms’
dependency on each other, which would be a computational task proportional to
∝ N2. However, the motion of atoms can be computed for fewer atoms assuming
Brownian motion, implemented by the Langevin equation [Dean, 1996]:

dv

dt
= −λv + η(t)/m, (9.6)

where λ corresponds to the rate of velocity-changing collisions, and η(t) is a
stochastic force that has no memory, shown by the correlation function; ⟨ηi(t)ηj(t+
τ)⟩ = 2λkBTδijδ(τ). Resulting in a Gaussian probability distribution of η with
a width of σ2 = 2λkBT/τ . η is implemented using the Euler-Maruyama method
[Bayram et al., 2018].

Experimental findings for rubidium vapor cells coated with paraffin at room
temperature [Sekiguchi and Hatakeyama, 2016] show a rate of velocity-changing
collisions, λ ≈ 106 s−1; therefore, we have chosen the same value for our simulation at
room temperature, corresponding to a mean free path of Lmean = ⟨v⟩/λ = 0.2 mm.

9.2 Light-atom interaction

The spin dynamics are described in the Heisenberg picture in equation 2.20. How-
ever, modeling the quantum back-action for the spin-light coupling is non-trivial.
Therefore, the focus of the simulations has been to model the thermal noise of the
spin, which is adequate for modeling broadband noise (BBN) and dephasing due
to magnetic inhomogeneities. The simulated spin dynamics, excluding quantum
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back-action, follow

d

dt

(
X̂S

P̂S

)
=

(
−γS0/2 ωS

−ωS −γS0/2

)(
X̂S

P̂S

)
+

(
F̂X
S

F̂ P
S

)
. (9.7)

The effective Langevin forces, F̂S, are stochastic variables, assuming equal
size of the Langevin forces for both quadratures and an oscillator in the ground
state, the correlation function for the Langevin forces; ⟨F̂S(t)F̂S(t+ τ)⟩ = γS0δ(τ),
showing a Gaussian probability distribution of F̂S with a width of σ2 = γS0/τ . F̂S

is implemented using the Euler-Maruyama method similar to η for the modeling of
the Brownian motion.

The intrinsic decay rate γS0 is mainly dominated by atom-atom collisions for
the regime of this thesis, meaning that the decay rate is uniformly distributed in
the cell. However, other vapor cells operate with wall collisions as the primary
decay channel, which would open the possibility of simulating the noise behavior
assuming an inhomogeneous decay rate similar to the theoretical description by
[Shaham et al., 2020].

The readout of the atomic spin is only into the P quadrature of light, neglecting
dynamical back-action from equation 2.22;

P̂ out
L = P̂ in

L +
√

ΓSX̂S. (9.8)

The quadratures of light are normalized to
√
S|| (shot noise) accordingly to equation

2.9, correspondingly the interaction needs to be scaled by
√
S|| for the measurement:

i(t) =
√
S||
√

ΓSX̂S =
√
S||

√
g2Sa

2
1S||FxX̂S ≈ A

S||
∆
X̂S, (9.9)

where A is a overall scaling. The interaction strength with the X quadrature of
the spin depends on the detuning ∆, affected by Doppler broadening from the
atomic velocity, vz, in the direction of the light propagation, and the effect of
inhomogeneous probing, S||, from atoms moving in and out of the beam. The
varying probing strength of individual atoms is setting the dynamics of interest to
measured by i(t).

9.2.1 Normalization

The measurements are scaled by 1/
√
N , where N being the number of atoms in the

simulation. This normalizes the measurements accordingly to Gaussian statistics,
ensuring that simulations are independent of the number of atoms. The number of
simulated atoms is in the range of 104 to 106, which is determined by the statistical
requirements of the investigated dynamics.

The intensity of the light is normalized to the total light inside of the cell
Snorm(x, y, z) = S||(x, y, z)/(

∫ ∫ ∫
D
S||(x, y, z) dxdydz). This fixes the beam power

inside the cell in the simulations, allowing for a meaningful comparison between
the simulations with different beam shapes. The normalized measurement signal
from the spin ensemble summing over all the atoms is

i(t) =
1√
N

N∑

j=1

Sj
norm[xj(t), yj(t), zj(t)]

∆j[vjz(t)]
X̂j

S(t). (9.10)
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The normalization of the atomic number and the probe power ensures that the
coupling to the narrow mode of the atomic ensemble is independent of the simulation
parameters for a specific cell geometry.

9.3 Simulations of magnetic inhomogeneities

The simulations of magnetic inhomogeneities model the dynamics of atoms experi-
encing a positionally-dependent Larmor frequency, ωS(z), inside the cell. We have
used the simulations of magnetic inhomogeneities in our work to understand the
requirements for improving the design of the coil systems described in chapter 7
and for understanding the physical dynamics better.
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Figure 9.2: Simulation of magnetic inhomogeneities. The simulated cell
geometry is 5 mm × 5 mm × 80 mm at room temperature. The green data is
simulated with a perfectly homogeneous magnetic field, the red data is simulated
with the magnetic field of the CUB PCB coils, and the blue data is simulated with
vz = 0 in the magnetic field of the CUB PCB coils. The bright colored curves are
fits showing γS0 = 4 Hz and γS0 = 37 Hz in green and red, respectively.

We used the simulations in the initial development of the new coil system, using
the CUB PCB coils for the bias magnetic field generation with a similar positional
dependence as presented in figure 7.5. The cell employed in the initial testing
was a cell of geometry 5 mm × 5 mm × 80 mm operated at 24 ◦C with an intrinsic
decay rate; γS0 = 7 Hz. The dephasing due to the magnetic inhomogeneities was
evaluated experimentally at a Larmor frequency of 42 kHz, showing a broadening
of the linewidth by ≈ 30 Hz2.

2The experimental measurement of the magnetic inhomogeneities was performed by Ryan Yde
and Jun Jia.
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We implemented the same experimental parameters in our simulation to test
agreements with our experimental findings. The simulations are shown in figure
9.2, where the green data is in the absence of magnetic inhomogeneities and the
red data is with the magnetic inhomogeneities of the CUB PCB coils. The fitted
data of the simulations show a broadening due to magnetic inhomogeneities of
≈ 33 Hz, close to the dephasing experimentally verified. The broadening due to
magnetic inhomogeneities showed a dependency on the parameter for the rate of
velocity-changing collisions, λ, since it introduces Brownian motion to the ensemble,
increasing the transit time of an atom to cross the z-direction (the elongated
direction). We get a value near the experimentally verified result, which confirms a
reasonable number for the rate of velocity-changing collisions in the simulations:
λ = 106 s−1.

Additionally, we wanted to understand better the effect of atoms motionally
averaging when moving through a changing magnetic field. The z component of
the velocity was removed in the simulation whose result is shown by the blue curve
in figure 9.2. The atomic response is shaped by the magnetic field, not resembling
a Lorentzian anymore, but dominated by the magnetic inhomogeneities, showing
the effect of the motional averaging. The simulations gave insight into the effect of
the transit time when considering the broadening due to magnetic inhomogeneities.
Enlarging the cell’s long axis increases the transit time, increasing the time for
motional averaging, further broadening the spin response. The requirements for the
inhomogeneities of the magnetic fields are consequently even larger when enlarging
the cell length.

Simulations for investigating oscillation frequencies in the megahertz range that
resolves narrow features, like the broadening due to magnetic inhomogeneities, start
to be limited by the computational speed, making it more cumbersome to compute.
It is required for the time steps to be below the oscillation frequency, while the
spectral resolution is determined by the entire computation time ∆f = 1/Ttotal. It
is necessarily increasing the computation time proportional to the fastest-evolving
dynamic of the simulation. This can be solved by outsourcing the computation to
more powerful computers.

9.4 Simulations of fast decaying spin-modes

The simulations of fast decaying spin-modes model the dynamics of atoms moving
through a positionally-dependent probe intensity, S||(x, y, z), inside the cell. The
simulations of the fast decaying spins modes have been used to determine the
employed cell geometry of this thesis: 1 mm × 1 mm × 40 mm, which made the
decision of experimentally implementing a square tophat beam into our setup,
described in chapter 8.

The typical operating temperature of our ensemble is approximating 55 ◦C,
which is higher than the simulations in section 9.3. The rate of velocity changing
collisions can be assumed to be linear with the atomic number for a fixed volume,
elevating the temperature to 55 ◦C changes the atomic number by one order of
magnitude, therefore a velocity changing collision rate of λ(55 ◦C) ≈ 107 s−1 is
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implemented for the simulations in this section.
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Figure 9.3: Simulation of broadband noise arising from Gaussian and
tophat beam profiles. The simulation for a Gaussian beam profile is shown
in red, a square tophat beam profile in blue, and a uniform filling in green. The
bright curves show the spectra fits. The simulation shows the BBN comparison:
AGaus

BBN/A
TH
BBN = 3.5. The Gaussian beam has a diameter of 2w = 0.80 mm, and

the tophat beam has a diameter of 2w = 0.84 mm with a super-Gaussian power;
n = 3.2.

We want to compare our simulation to the experimental results of implementing
a square tophat beam, presented in chapter 8. Figure 9.3 shows a simulation
to be compared with the experimental result of figure 8.9, with a beam profile
for the Gaussian beam having a diameter of 2w = 0.80 mm in red, and for the
tophat beam having a diameter of 2w = 0.84 mm with a super-Gaussian power;
n = 3.2 in blue. The fitted curves for the simulations show a ratio for the BBN
of (AGaus

BBN/A
TH
BBN)sim = 3.5. This is larger than the ratio of (AGaus

BBN/A
TH
BBN)exp = 2.55

achieved for experimental realizations in figure 8.9 but close to the experimental
value of the overall reduction of thermal noise introduced by the BBN of 3.4. The
deviation in the height of the BBN, AGaus

BBN/A
TH
BBN, between the experimental data

and the simulation is not to be explained by our current model since we are looking
into the effects that increase the readout rate for increased homogeneous probing,
and we are still to implement quantum back-action into the simulations. However,
the simulation agrees with the experimental results for the overall thermal noise
reduction of the BBN, showing that the simulation gives a reasonable estimate for
the overall improvement by converting from a Gaussian beam to a tophat beam
profile. Furthermore, a simulation of uniform coverage of the entire cell for the
probe is shown by the green data in figure 9.3 for comparison, showing the lack of
BBN when having an equal probing of all the atoms, illustrating the importance of
homogeneous probing.
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Figure 9.4: Simulation of broadband noise dependency on the cell size.
All the simulations are under the same conditions, except for the cell geometry and
the size of the probing tophat beam to have the same filling factor for all the cell
geometries. The bright curves show the spectra fits. The spectra are normalized
to the lowered local intensity and decreased atomic density for an increased cell
geometry to have an equal coupling to the narrow response for all the spectra.

There are trade-offs when optimizing the cell geometry, here focusing on the
fast decaying modes and the optical depth. The optical depth is proportional to
the length of the cell geometry, which means it is beneficial to have a longer cell
only concerning the optical depth. However, the divergence of a beam is set by the
Rayleigh length; therefore, a small cross-section is ultimately limited to a shorter
cell length, in addition, having fabrication challenges in producing long cells of
small cross-sections. The 80 mm cell have consequently been limited to cells with
cross-sections larger than 1 mm × 1 mm.

To estimate the optimal cell geometry, we want to compare the BBN between
different cell geometries. A comparison of the BBN for relevant cell geometries
is shown in figure 9.4. The simulations are implemented with a tophat beam of
size 2w = 0.84 · Lside with a super-Gaussian power n = 3.2, therefore maintaining
the same filling factor for all the simulations, where Lside is the transverse side
length. The decay rate of the BBN, γBBN, is inversely proportional to the transit
time of an atom in the transverse direction of the channel, resulting in an elevated
BBN on resonance for an increased transverse cell geometry. This can be seen in
figure 9.4, showing a smaller width and an elevated noise level for the BBN. The
BBN is best described by a Gaussian response within a few sigmas of the Gaussian
distribution; an additional Gaussian distribution is implemented to model the BBN
due to the cross-section 5 mm × 5 mm having a smaller decay rate: γ5×5

BBN = 31 kHz,
consequently spanning more deviations of the Gaussian distribution when fitting
the BBN. We evaluate the amplitude of the BBN by the combined amplitude of the
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two Gaussian distributions as ABBN. The increase in BBN comparing it to the BBN
for the cell geometry of 1 mm × 1 mm: A2×2

BBN/A
1×1
BBN = 6.6, A3×3

BBN/A
1×1
BBN = 9.2 and

A5×5
BBN/A

1×1
BBN = 12.6, showing a large discrepancy in amplitude between the BBN

when enlarging the cell, which is not favorable for our experimental requirements
as the BBN is one of the experimental bottlenecks. It can be concluded that it
would not be beneficial for us to increase the cross-section of the cell based on the
simulated findings. Other experimental configurations often benefit from a larger
coherence time achieved by enlarging the cell geometry due to fewer wall collisions.
Consequently, the elevated BBN should be strongly considered when enlarging the
cell geometry.
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Figure 9.5: Simulations of the probe Doppler broadening. The probe is
uniformly filling the channel for data in red and green for a detuning of 0.7 GHz
and 3 GHz, respectively. The blue data is probing with a square tophat beam
that has a diameter of 2w = 0.84 mm with a super-Gaussian power n = 3.2 for a
detuning of 3 GHz. The bright curves show the spectra fits.

We have started to operate closer to resonance when probing the atomic ensem-
ble, see chapter 10 for details, having a detuning for the probe laser of ∆/(2π) =
0.7 GHz, which starts to be close to the Doppler width of ∆νFWHM(55 ◦C) =
396 MHz. The effect of inhomogeneous probing due to the velocity-dependent
detuning induces fast decaying modes similar to a non-uniform filling factor of
the probe beam. The effect of Doppler-induced broadband noise would be hard
to test experimentally, therefore benefiting from the simulation to test the noise
contribution, motivating the use of the simulations to understand the underlying
dynamics.

A simulation has been performed to investigate the influence of the Doppler
broadening shown in figure 9.5, where the green data is for a probe detuning of
∆/(2π) = 3 GHz and the red data is for a probe detuning of ∆/(2π) = 0.7 GHz
both of uniform probing, showing an elevated noise level for the detuning of
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∆/(2π) = 0.7 GHz. The data in blue is a tophat beam for a probe detuning of
∆/(2π) = 3 GHz for comparison. The elevated noise level due to the Doppler
broadening is only ADoppler

BBN /ATH
BBN = 2% of the elevated noise level due to the

broadband noise from an inhomogeneous filling factor. Concluding that the induced
noise due to the Doppler broadening can be considered insignificant compared to
other noise processes.

9.5 Computational challenges and implementa-

tion

This last section on the simulation describes computational challenges associated
with propagating an extensive variable system for many iterations. The correct
implementation is crucial for the speed of a simulation, which is vital for practicable
purposes. This is especially important for the knowledge transfer for the future use
of the simulation script. The simulation script is open access: https://github.

com/CBaerentsen/Simulation-gas-in-cell.git

The presented simulations of this thesis would have taken each a few months to
compute for a laptop with a processing power of ∼ 2 GHz for the first implemented
simulation. Many efforts have gone into accelerating the computation speed,
limited by the programming language of choice, Python. The resulting accelerated
process has gained on the computational time by a factor of ∼ 103, which means a
simulation only takes a few hours to compute on a laptop.

The simulations of motional averaging dynamics can be performed by having
a single atom propagating inside the cell for many iterations. However, this
is disadvantageous, requiring huge loops to collect statistical knowledge, where
it is more advantageous to simulate many atoms at once. Instead, the many
atoms can be made into a vector, implementing the dynamics by vector and
matrix multiplication, making it possible to perform the calculation by quicker
programming languages like C or C++ for the multiplication, only requiring a single
loop to run in Python for the Euler steps. The package performs the vector and
matrix multiplication: NumPy https://numpy.org/ programmed in C and C++,
decreasing the computation time by ∼ 100 compared to looping the computation
in Python.

The last addition to the speed up of the computation time is the implementation
of multi-core processing. This is not a compatible process to run in one execution for
Python, which has been bypassed by summoning several executions with separate
local storages, combining all the results after completion of the simulation. This is
implemented by a large number of atoms 104 − 106, dividing them into equal sizes
and computed on separate cores, later combing the result after computation, which
increased the computation time by the number of logical cores 7 (excluding one since
the operating system would crash when using all the logical cores). Implementing
multi-core processing has also opened the possibility of ruining the simulation on
remote computers utilizing many logical cores in supercomputers.
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Part IV

Spin induced light squeezing
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CHAPTER 10

Squeezed light from an oscillator
measured at the rate of oscillation

This chapter outlines the realization of squeezed light from a spin ensemble achieving
an unprecedented spin-induced light squeezing level and a new measurement regime
measuring the spin ensemble faster than the rate of oscillation presented in the
published work:

Christian Bærentsen, Sergey A. Fedorov, Christoffer Østfeldt, Mikhail V.
Balabas, Emil Zeuthen, and Eugene S. Polzik Squeezed light from an oscillator
measured at the rate of oscillation. arXiv. 2302.13633 (2023).

The paper submitted for publication [Bærentsen et al., 2023] is appended in
appendix D.

10.1 Outline of spin-induced light squeezing

This outline presents key results of the published work [Bærentsen et al., 2023].
The full text of the paper can be found in appendix D.

The phenomenon of spin-induced light squeezing has been introduced in section
2.2.2. It originates from negative cross-correlations between the spin oscillator and
the light, which reduces the fluctuation of light below the shot noise level.

The squeezing measurements demonstrated in [Bærentsen et al., 2023] were
performed in two measurement regimes:

1. ΓS < ωS. In this regime, the highest light squeezing is generated, reaching
11.5+2.5

−1.5 dB at the output of the cell and 8.5+0.1
−0.1 dB at the detection. The

squeezing exists in a narrow bandwidth, which, however, can be freely tuned
by changing the magnetic field.

This showcases a new benchmark for the highest achieved light squeezing
obtained from a spin oscillator. The quantum cooperativity reaches CQ = 15,
and the measurement rate reaches ΓS/(2π) = 52 kHz. The measurement is
performed at a detuning of ∆/(2π) = 3 GHz with a tunable band for the
Larmor frequency between 0.8 MHz and 5 MHz without having a significant
change for the maximum squeezing.
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2. ΓS > ωS. In this regime, the light squeezing spans over a MHz bandwidth
and reaches 6.5 dB at the its maximum.

This showcases a new benchmark for measurement rates faster than the
oscillation frequency obtained for a hot spin ensemble while obtaining a
large quantum cooperativity of CQ = 8, and measured at a readout rate
of ΓS/(2π) ≈ 2.2 MHz. The measurement is achieved at a detuning of
∆/(2π) = 0.7 GHz with a Larmor frequency of ωS/(2π) = 1.09 MHz. In
addition, realizing a back-action imprecision product close to the Heisenberg
limit, elevated 20% above the limit at frequencies higher than ωS > 100 kHz.

Measurements of an oscillator faster than the rate of oscillation conditionally
prepare a spin state with the variance of one quadrature below the variance of
the zero-point motion. On the contrary, in a measurement slower than the rate
of oscillation, the oscillator is projected on coherent states, because the oscillator
position is averaged over several oscillation periods.

The measurement of an oscillator faster than the oscillation rate opens the
possibility for continuous positional squeezing of the oscillator [Meng et al., 2020].
The fast measurement squeezes light to low frequencies inducing an effectively
instantaneous oscillator response to the back-action, which is necessary for continu-
ous positional squeezing of the oscillator, resulting in a broad squeezing level for
the measurement.

10.1.1 Experimental setup

The experimental setup for the realized spin-induced light squeezing is built using
the results of the investigations displayed in this thesis: the improved pumping of
the atomic ensemble presented in chapter 5, the reduced magnetic inhomogeneities
presented in chapter 7, and the improved filling factor for implemented square
tophat beam presented in chapter 8.

Figure 10.1 shows the experimental setup, including all the optical elements
required for measuring the spin-induced light squeezing but excluding mirrors.
A linearly polarized square tophat beam uniformly probes the atomic ensemble,
prepared with the repump (D2-line) in a negative mass configuration, with the
atomic spin Fx aligned along the magnetic field B. The spin noise imprinted on the
light polarization is measured by polarization homodyning. The pump (D1-line) is
turned off to reduce broadening, which increases the thermal noise for the squeezing
spectra. Still, the spin polarization is maintained at the level p = Fx/F ≈ 78%.

The experiment only requires ≈ 20 mW of light at the D2 transition, meaning
low power requirements compared to bulk nonlinear crystals. Those setups, which
are currently the standard for squeezed light generation [Vahlbruch et al., 2016],
generally require optical powers in the watt range and large complicated experi-
mental setups. The probe beam is aligned along the y-axis, α = π/2, to maximize
ζS. This improves the squeezing spectra, primarily due to the hybridization of the
oscillator modes (explained in the following section 10.1.2). The classical laser
amplitude noise driving the oscillator is also eliminated for input polarization along
the y-axis, making it a favorable polarization axis for squeezing measurements,
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Figure 10.1: Experimental setup for spin-induced light squeezing. The
atomic ensemble is pumped with the repump beam aligning the spin, Fx, to bias
magnetic field, B. The atomic ensemble is probed with a linear polarized square
tophat beam and detected by polarization homodyning.

arising from the otherwise neglected dynamical term for the Hamiltonian presented
after equation 2.12. The optical detection efficiency after the interaction with the
atomic ensemble, from the last window to detection, is 91 ± 3%, only exhibiting
a transmission loss of 1.6% per cell window; therefore, the losses are primarily
introduced by the detection setup.

10.1.2 Hybridization of the oscillator modes

The spin modes are coupled due to dynamical effects altering the common optical
bath, which hybridizes the spin modes. The expression for the multi-spin-mode
Heisenberg equation is analogous to the expression for a single oscillator, derived in
equation 2.20, with the addition of the coupling between oscillators (see appendix
D for complete derivation):

d

dt

(
X̂i

P̂i

)
=

(
−γi,0/2 − ζiΓi ωi

−ωi −γi,0/2 − ζiΓi

)(
X̂i

P̂i

)

+ 2
√

Γi

(
0 −ζi
1 0

)(
X̂L

P̂L

)
+

(
F̂X
i

F̂ P
i

)

−
Nmodes∑

j=1

[(
ζi
√

ΓiΓj 0
0 ζj

√
ΓiΓj

)(
X̂j

P̂j

)]

︸ ︷︷ ︸
coupling

.

(10.1)
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The dynamical processes rotate the light polarization proportional to the readout
rate, Γ, and the tensor interaction coefficient, ζ, of the spin modes (see equation 2.15
for the tensor interaction coefficient dependency on the mode number), changing
the drive light along the propagation of the cell due to the linear birefringence of
the dynamical effects.
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Figure 10.2: Hybridization of spin modes. The spin modes are prepared
in a negative mass configuration, driven with white noise for an elevated signal,
demonstrating a hybridization of spin modes for an increased probe power, measured
at a detuning of ∆/(2π) = 0.7 GHz.

The hybridization is illustrated in figure 10.2, which shows the measurements
of the spin being driven by white classical noise at different probe powers. The
detuning is brought close to the resonance ∆/(2π) = 0.7 GHz, realizing an increased
tensor interaction ζS (the tensor interaction dependency on the detuning is visualized
in figure 2.7), to increase the effect of hybridization. The spin is prepared in the
negative mass configuration, with mF = 4 being the highest populated state.
The black trace measured with a probe power of 0.04 mW shows the strongest
signal for the transition |F = 4,mF = 4⟩⟨F = 4,mF = 3| for thermal populated
states shown by the 8 transitions, having all the spin modes spectrally separated.
Three dynamics are responsible for the change of the spectral appearance when
increasing the probe power; the tensor Stark shift (see equation 2.19 for details), the
dynamical broadening 2Γiζi, and the coupling of the spin modes. It is important to
note that the spin polarization is independent of probe power, which was verified
using the MORS technique1. The probe power is progressively increased, initially
showing the tensor Stark shift pushing the modes together. First, starting to show
the hybridization of modes at a probe power of 0.22 mW. The mode position
in the spectra flips having |F = 4,mF = 4⟩⟨F = 4,mF = 3| to the right and
|F = 4,mF = −3⟩⟨F = 4,mF = −4| to the left in the spectra when exceeding

1See chapter 5 for details about the MORS technique.
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probe powers of 0.52 mW, where the two effects of dynamical broadening 2Γiζi and
the coupling of modes starts to dominate, finally hybridizing the modes into the
manifestation of two peaks that can be modeled by two coupled oscillators.

We model the hybridization of modes by two coupled modes accordingly to
the dynamics in equation 10.1 with Nmodes = 2 for the presents of two peaks
in the spectrum, only introducing a third mode for high readout measurements
(Γ/(2π) > 1 MHz), where the broadband noise starts to be dominated by the
quantum back-action, CBBN

Q ≳ 1.

10.1.3 Characterization of the squeezing spectra

The characterization of the spin system is done via quadrature sweeps, where
the detection angle, ϕ, is changed for the measurements of several spectra. The
quadrature sweep is fitted with the full model describing the frequency behavior of
interaction with the atomic ensemble by a global fit for all the detection angles.
This is achieved using three model descriptions:

1. A single oscillator model, achieved by tuning the tensor Stark shift to the
quadratic Zeemann splitting for a detuning of ∆/(2π) = 7 GHz. This process
aligns all the oscillators to have the same Larmor frequency. This can be seen
in figure 10.3a, demonstrating 7.5 dB of squeezing for a quantum cooperativity
of CQ = 11, measured for a readout of Γ/(2π) = 13 kHz.

2. A two oscillator model fitted to the hybridization of the modes into two
peaks, realized when tuning the detuning to ∆/(2π) = 3 GHz. This can
be seen in figure 10.3b, detecting 8.5+0.1

−0.1 dB of squeezing for a quantum
cooperativity of CQ = 15, and a readout rate of Γ/(2π) = 52 kHz, with the
generated squeezing level of 11.5+2.5

−1.5 dB accounting for the detection losses.
This measurement also constitutes a high level of fraction coherent spin
readout reaching ΓS/γS0 = 42.

3. A three oscillator model similar to the ”two oscillator model” with the addition
of an oscillator representing the broadband noise because the broadband
mode starts to be back-action dominated, realized when tuning the detuning
to ∆/(2π) = 0.7 GHz. This can be seen in figure 10.3c, detecting 5.3 dB
of squeezing for a quantum cooperativity of CQ = 8, and readout rate
of Γ/(2π) = 1.77 MHz. This measurement is used to calibrate the spin
parameters for a lower Larmor frequency seen in figure 10.4 since classical
low-frequency noise increases the model error for fits of the quadrature sweep
at lower frequencies.

The stability of the experimental configuration when performing the quadratures
sweep is only affected by the fluctuations of the probe power varying within 3%
between the measurements of the spectra.

Additional methods are applied for verification of experimental parameters,
using the theoretical optimum-quadrature squeezing spectrum, derived in appendix
D:

Smin(Ω)/SN = 1 − 2η
Γ

Γ + γS0(1 + 2n)
D

(
Ω − ωS

Γ + γS0(1 + 2n)

)
, (10.2)
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Figure 10.3: Squeezing spectra in three regimes. The black curve is a
global fit of all the spectra calculated for three models. The colors represent
the different detection angles ϕ. The gray curve shows the shot noise. a) single
oscillator model measured at ∆/(2π) = 7 GHz. b) two oscillator model measured
at ∆/(2π) = 3 GHz. c) three oscillator model measured at ∆/(2π) = 0.7 GHz. The
figure is revisited in the supplementary information in appendix D.
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Figure 10.4: Spectra for measurements faster than the rate of oscillation.
The measurements in orange are measured at the P quadrature, the measurements
in blue are the best squeezing levels measured close to the X quadrature, and red is
the theoretical optimum-quadrature squeezing spectrum. The spectra demonstrate
a readout rate of Γ/(2π) ≈ 2.2 MHz. The figure is revisited in appendix D.

with the function D(x) = 1/
(
1 +

√
1 + 4x2

)
. This model can be used to determine

the maximum squeezing for all frequencies. Furthermore, a model for the level
of oscillator response at zero frequency measured for the P quadrature of light,
relevant for measurements faster than the rate of oscillation:

Sϕ=0(0)/SN = 1 + 4η (Γ/ωS)2 . (10.3)

These two models aid the parameter estimation in combination with the global
quadrature sweep to determine the relevant parameters of the spin oscillator. This
is especially useful for the measurements at the detuning ∆/(2π) = 0.7 GHz having
a significant contribution from the dynamical back-action ζ = 0.18, which makes
the fits more demanding due to strong coupling between the modes.

Figure 10.4 shows the measurement of the spin oscillator faster than the rate
of oscillation for a Larmor frequency of 1.09 MHz and 1.79 MHz, performed at
the detuning of ∆/(2π) = 0.7 GHz. The measurements of the P quadrature are
presented in orange for establishing the readout rate using the model in equation
10.3. The blue curve presents the best squeezing with a Larmor frequency of
1.09 MHz reaches a flat squeezing level of 6.5 dB, aligned with the red curve for
the theoretical optimum-quadrature squeezing spectrum detailed in equation 10.2.
These measures confirm a readout rate of Γ/(2π) ≈ 2.2 MHz. The measurements
are performed with 12.8 mW of probe power concerning a probe power of 10.2 mW
for the quadrature sweep presented in figure 10.3c. Accounting for the readout rate
being proportional to the probe power allows us to conclude that the measurements
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of the readout rates are in agreement [Γ10.2W/(2π)]·[12.8 mW/10.2 mW] ≈ 2.2 MHz,
demonstrating the robustness of our model.

We are concluding the measurements of the spin-induced light squeezing con-
stituting a new regime for the performance of quantum oscillators in generating
light squeezing. Additionally, a new regime for the oscillator capabilities for mea-
surements faster than the rate of oscillation while still achieving a high quantum
cooperativity for the measurements.
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Part V

Hybrid spin-optomechanical
systems

Illustration by Bastian Leonhardt Strube and Mads Vadsholt.
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CHAPTER 11

Entanglement

This chapter outlines the experimental realization of entanglement generation and
verification between the macroscopic spin ensemble and the membrane in the-middle
optomechanical cavity presented in the published work:

Rodrigo A. Thomas, Micha l Parniak, Christoffer Østfeldt, Christoffer B. Møller,
Christian Bærentsen, Yeghishe Tsaturyan, Albert Schliesser, Jürgen Appel,
Emil Zeuthen, and Eugene S. Polzik. Entanglement between distant macroscopic
mechanical and spin systems. Nature Physics. 17, 228–233 (2021).

The published work can be found in appendix E.

11.1 Outline of hybrid spin-optomechanical en-

tanglement

This outline presents key results of the published work [Thomas et al., 2020]. The
full text of the paper can be found in appendix F.

Entanglement is essential for quantum protocols such as quantum-enhanced
sensing and quantum teleportation. [Kurizki et al., 2015] presents the prospect
of using hybrid systems in order to benefit from the strengths of the physical
properties in different material platforms. The missing link between atomic spin
ensembles and mechanical resonators described in that reference is resolved by the
realization of entanglement between hybrid spin-optomechanical systems presented
by our published work [Thomas et al., 2020].

Hybrid spin-optomechanical entanglement was initially proposed in
[Hammerer et al., 2009], using back-action evading measurements for creating an
entangled state between an atomic spin ensemble and a mechanical resonator.
The initial proposal differs from the realized experimental entanglement scheme
presented here by assuming the absence of dynamical back-action processes. This
is not feasible within the parameter constraints in our setup; moreover, dynamical
back-action can be beneficial for increasing the degree of entanglement.
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11.1.1 Einstein–Podolsky–Rosen state

The quadratures for the spin and mechanical systems are non-commuting variables:

[X̂S,M, P̂S,M] =i. (11.1)

The boundary sets a minimum uncertainty for our ability to predict system
variables set by the Heisenberg uncertainty limit. This is not the limit to the
precision for suitable measurements of the combined system that prepares an
Einstein–Podolsky–Rosen (EPR) state [Einstein et al., 1935]. This is possible for
the EPR combinations of the two systems:

X̂EPR =
1√
2

(X̂M − X̂S),

P̂EPR =
1√
2

(P̂M + P̂S),

[X̂EPR, P̂EPR] = 0.

(11.2)

The commutation relation of zero implies that the pair of EPR variables can be
prepared in simultaneously well-defined values without violating the Heisenberg
uncertainty limit. An EPR state for a pair of systems violate the locality principle
manifested by entanglement (non-separability) between the two systems. Therefore,
the variance of the combined system can go below the inseparability limit for an
entangled state [Duan et al., 2000]:

V = Var[X̂EPR] + Var[P̂EPR] < 1. (11.3)

More generally, EPR variables with unequal weights on the two subsystems, as
arises in our experimental setting, can also exhibit inseparability according to
equation 11.3 (see also the discussion of the full model for the hybrid system in
appendix E)

11.1.2 Simplified hybrid model

The spin and optomechanical systems have similar behaviors when interacting with
light. The atomic ensemble is characterized by canonical quadratures (X̂S, P̂S) that
are mapped into transverse polarization components of light through the Faraday
rotation. The mechanical oscillator is characterized by canonical quadratures
(X̂M, P̂M) that are mapped into the amplitude and phase components of light
through optomechanical effects. The translation of light quadratures between the
two systems is achieved by polarization optics converting polarization states into
amplitude and phase states. The two systems have the same type of spectral
response function1:

χS,M(Ω) =
ωS,M

ω2
S,M − Ω2 − iΩγS,M

. (11.4)

1The susceptibility of the spin is matched to the mechanics for the approximations presented
in equation 2.35.
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The interaction of the individual systems with light obeys the input-output relations
of the form: (

X̂out
L

P̂ out
L

)
=

(
X̂ in

L

P̂ in
L

)
+
√

ΓS

(
0 ±ζS,M
1 0

)(
X̂S,M

P̂S,M

)
, (11.5)

where the sign before the tensor interaction coefficient is determined by the effective
mass of the oscillator. We can write up the simplified solution for the combined/joint
input-output relation of the hybrid system when neglecting the losses of the systems,

P̂ out
L = P̂ in

L +
√

ΓMX̂M +
√

ΓSX̂S. (11.6)

The solution for the input-output relation of light interacting with the lossless
hybrid system, inserting the solution of X̂M and X̂S, derived in appendix E:

P̂ out
L ≈ P̂ in

L +

BA︷ ︸︸ ︷
[ΓSχS + ΓMχM] 2X̂ in

L

+ 2iΓMχMχS

[
2ΓS[ζM − ζS]X̂ in

L +
√

ΓS[ζM − ζS]F̂S

]

︸ ︷︷ ︸
dynamical BA

+
√

ΓSχSF̂S +
√

ΓMχMF̂M︸ ︷︷ ︸
TH

.

(11.7)

The expression for the light input-output relation with the hybrid system can be
split into three contributions; back-action noise (BA), dynamical back-action noise
(dynamical BA), and thermal noise (TH).

The spin ensemble can be configured to form a negative-mass reference frame
(see section 2.1.1 for details), where the spin response is opposite to that of the
mechanics. The ideal configuration for matching the susceptibilities is to have
the following conditions; γS = γM and −ωS = ωM, resulting in −χS = χM, in
view of equation 11.4. Furthermore, the readout rate of the systems can be
matched ΓS = ΓM, which results in a back-action evading measurement due to the
cancellation of the BA term in equation 11.7. This has been realized in a previous
experiment [Møller et al., 2017], showing measurement with a 1.8 dB reduction
of the quantum back-action. However, the dynamical BA can also be evaded by
matching ζS = ζM, still with the presents of dynamical broadening. While this yields
an idealized example of quantum back-action evading measurements, a mismatch
between the dynamical processes, ζS < ζM, in fact, contributes destructively to other
noise processes, thereby improving entanglement generation [Huang et al., 2018].

The resonant hybrid system, with system parameters listed in appendix E,
shows an overall reduction of the quantum back-action noise by 4.6 dB, additionally
reducing the thermal spin noise by 2.5 dB from non-local dynamical cooling per-
formed by the membrane. This reduces the unconditional variance from Vu = 6.07
to Vu = 1.91, transitioning from a non-evading to an evading measurement (with
regard to the quantum back-action). This is close to the limit of a system free of
dynamical effects, being in the ground-state for an unconditional variance of Vu = 1
[Vasilyev et al., 2013], which can be exceeded when including dynamical effects
[Huang et al., 2018]. The realized hybrid system can surpass the inseparability
limit by conditioning the variance on prior measurements.
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11.1.3 Conditional variance

The conditional variance is model-based by predicting the state from prior mea-
surements, realized by the equations of motion for our system, with the knowledge
of noise spectral densities for the input operators to estimate the optical filter for
predicting the state of the hybrid system.

Figure 11.1 illustrates the simplified hybrid system. The light first interacts
with the atomic ensemble then it is transmitted to interact with the optomechanical
cavity. The two systems oscillate oppositely in phase space, illustrating the negative-
mass reference frame constituted by the atomic spin ensemble. The output signal
from the hybrid system is finally detected, resulting in the photocurrent i(t). Next,
we want to filter the photocurrent in order to optimally estimate the state of the
hybrid system as illustrated by the exponential filter function, K(t), in the upper
right corner of figure 11.1.

P̂ in
L P̂ out

L

P̂S

X̂S

P̂M

X̂M

ωS
ωM

i(t)

B

Figure 11.1: Illustration of the hybrid entanglement setup. A simplified
depiction of the hybrid experiment, showing the interaction of a traveling light field
with the spin and optomechanical subsystems. i(t) is the measured photocurrent
to be filtered by the Wiener filter K(t). The figure is revisited in appendix E.

We want to track the quadratures of the hybrid system:

Q = (X̂M, P̂M, X̂S, P̂S). (11.8)

The tracking of the conditional trajectory of quadratures can be found by integrating
the homodyne current up until that point using appropriate stationary filters;

Qc =

∫ t

0

K(t′ − t, t)i(t′) dt′. (11.9)

The appropriate filter for measuring a steady-state system is the Wiener filter
[Wiener, 1964]. The Wiener filter can be calculated from the Wiener-Hopf equation,
which involves the cross-correlations between the tracked quadratures and the
photocurrent (see appendix E for details).

We can calculate the conditional covariance matrix, Vc, from the unconditional
covariance matrix, Vu, by subtracting the unconditional covariance matrix of the
best estimates obtained from optimal filtering:

Vc = Vu −Vbe, (11.10)
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where the best estimate covariances can be calculated from the covariance between
the unconditional and conditional tracking of the system:

Vbe(t) = Cov(Q,Qc(t)). (11.11)

In turn, the EPR variables can be constructed by appropriate weighting, u, of the
systems characterized by Q.

X̂EPR = u⊺Q,

X̂c
EPR = u⊺Qc.

(11.12)
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Figure 11.2: Conditional cooling of the EPR variance. a) phase space
trajectory of the conditional EPR quadratures, evolving from red to blue. b)
conditional variance as a function of time, acquiring prior information about the
state, showing the bound for entangled states, having a variance below 1. The
figure is revisited in appendix E.

The evolution of the conditional variance can be seen in figure 11.2. Figure a)
shows the trajectory in the phase space of the conditional EPR pair. X̃c

EPR and
P̃ c
EPR denotes the quadrature signals obtained by demodulation at the oscillation

frequency. The initial EPR state has the unconditional variance Vc(t→ 0) = Vu.
The conditional EPR pair’s variance is ”cooled” by extracting information from the
measurement record, therefore cooling by measurement. Figure b) shows the cooling
of the initial unconditional variance of Vu = 1.91 down below the ground-state
variance of 1;

Vc = Varc[X̂EPR] + Varc[P̂EPR] = 0.83 ± 0.02 < 1, (11.13)

showing an entangled state with uncertainties far below the inseparability limit.
This can be compared to the variance of the far-detuned subsystems above the
inseparability limit, which displays the absence of back-action evading effects,
demonstrating the advantage of the negative-mass reference frame.
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11.2 Improved hybrid system

Results in appendix E further project that a conditional variance of Vc ≈ 0.3 can
be achieved by improving experimental parameters; a reduction of the thermal
noise introduced by the broadband noise from the spin by a factor of 3, improving
the fractional coherent spin readout ΓS/γS0 by a factor of 3, reducing the optical
losses between the two systems by 37%, and improving the cavity overcoupling to
98%.

The experiment has been rebuilt since the entanglement demonstration published
in [Thomas et al., 2020]. Consequently, the experimental parameters have changed
to further improve the hybrid system, which is detailed in this thesis:

• The overall thermal noise contribution from the broadband noise has been
improved by a factor of 2 when comparing the ratio ABBN/ΓS (see chapter 8).

• The fractional coherent spin readout ΓS/γS0 has been improved by a factor
of 3.6, reaching ΓS/γS0 = 42 (see chapter 10).

• We bought new cavity mirrors to improve the overcoupling and lower the
mirror noise. The new mirrors show an overcoupling of ≈ 96% for the
membrane placed in the position of maximum photon-phonon coupling.

• The quantum efficiency between the systems has also been significantly
improved, as we were limited by the double pass of the atomic ensemble
for readout enhancement [Thomas, 2020] and the limited coupling to the
optomechanical cavity. The quantum efficiency between the systems has been
improved by ∆ν ≈ 13%.

– 5% arising from a Faraday isolator, which can be excluded in the single
pass.

– ≈ 0% by flipping the cascade order from having the first system being
the atoms to the mechanics, as the out coupling of the two systems is
similar.

– ≈ 8% from improving mode overlap of the two systems. The mode
overlap of the two systems was ≃ 90%. This has been improved, in the
flipped configuration, with preliminary results showing a mode overlap
between the mode cleaning cavity and optomechanical cavity ≈ 98%.

• The detection efficiency has also been improved due to the reversed config-
uration of the setup from 77% to 91%, resulting in an improvement of the
detection efficiency by ∆η = 14%.

The new experiment would have to be flipped due to the changed experimental
configuration, introducing a square tophat beam. This would be a disadvantage
for the non-local dynamical cooling of the spin oscillator in the old configuration,
having the spin system as the dominating thermal noise contributor. Therefore,
the flipped experiment would instead perform a non-local dynamical cooling of
the mechanical oscillator. However, this does not significantly affect the new

107



11.2. IMPROVED HYBRID SYSTEM

experimental parameters because the mechanical oscillator now has the largest
thermal contribution.

The improved system parameters are close to the outlook of the future work that
we present in appendix E. The newly achieved parameters would give a conditional
variance of Vc ≈ 0.45 using the same cascaded model for calculating the conditional
variance as presented in appendix E. This would imply that we are breaching
the boundary for EPR steering V steering

c < 0.5 [Huang et al., 2019], which would
constitute a new regime for quantum protocols in hybrid quantum systems.
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CHAPTER 12

Teleportation

Quantum teleportation is a crucial ingredient in entanglement distribution, for
example, for quantum key distribution in communication and state transfer in quan-
tum computing. The first experimental realization of quantum teleportation was
the teleportation between light fields/modes [Bouwmeester et al., 1997]. Regarding
experiments involving spin ensembles, teleportation of a coherent displacement of
light to a spin ensemble [Sherson et al., 2006], and later teleportation between two
spin ensembles [Krauter et al., 2013] have been realized. On the other hand, tele-
portation involving mechanical objects is still a relatively undeveloped field except
for a recent discrete-variable demonstration of polarization state teleportation to
mechanical objects [Fiaschi et al., 2021]. In particular, the teleportation between
a material system and optomechanics is still unheard-of. Such experiments would
open the possibility of preparing a non-classical state for the mechanical system
and the teleportation of states to the mechanical resonator as a long-lived material
system for the storage of quantum states.

Here, we present our efforts towards the teleportation of a quantum state from
the spin ensemble to the mechanics using light as the meter field, building on our
previous realization of spin-optomechanical entanglement. The teleportation can be
achieved via a Bell measurement between the atomic ensemble and the light entan-
gled with the mechanics. The Bell measurement is traditionally depicted as a Bell
state |ϕBELL⟩M,L being the entangled link between mechanics and light, performing a
Bell measurement for the light and the spin ensemble |ψ⟩S

⊗ |ϕBELL⟩M,L measured in
the basis of the EPR pair ⟨ψEPR|S,L for the light and spin systems (see equation 11.2
for the equally weighted EPR pair of the spin-optomechanical system). This process
is well-established for the discrete-variable teleportation [Bennett et al., 1993], and
for continuous variables teleportation [Braunstein and Kimble, 1998] but it has still
been unclear for non-projective measurements when collapsing the superposition
of states onto a basis of observables [Wiseman and Milburn, 2009], until recent
findings in [Fedorov and Zeuthen, 2023].

109



12.1. PREDICTION AND RETRODICTION FOR HYBRID
SPIN-OPTOMECHANICAL TELEPORTATION

12.1 Prediction and retrodiction for hybrid spin-

optomechanical teleportation

We want to teleport the spin state onto the mechanics by continuous state estimation
for the teleportation protocol, requiring us to consider the collapse of states upon
measuring, meaning filtering has to be implemented for optimal state estimation
for the teleportation protocol: It is desired to predict the mechanical state since
we want to estimate the state in which we want to teleport. This is employed by
filtering, f(t), the measurement current, i(t);

b̂M(τ) =

∫ τ

0

f(t)i(t)dt, (12.1)

to predict the mechanical state, b̂M, at time τ . And it is desired to retrodict the
spin state since we want to estimate the prepared state that we want to teleport
employed by estimating the spin state, b̂S(0) at time zero.

F
il

te
r

Time

Retrodiction Prediction

0 τ

Figure 12.1: Filtering for prediction and retrodiction of the demodulated
measurement current. Prediction of the state of the oscillator (mechanics) at
the end of the measurement interval b̂M(τ), and retrodiction of the state of the
oscillator (spin) at the beginning of the measurement interval b̂S(0). Rising and
falling exponentials to resemble the filters for prediction and retrodiction theory,
respectively, for a continuous measurement in the time interval t ∈ [0, τ ].

The concept of prediction was invoked in the context of entanglement generation
in chapter 11, where it was used to achieve the conditional estimation of a state by
filtering the measurement current. For the constant drive/readout rate Γ(t) = Γ
employed there, the optimal steady-state (Wiener) filter is a rising exponential.
Contrary to the steady-state entanglement experiment, a more involved filter is
generally required in the non-stationary context of a continuous measurement
within a finite time interval, see figure 12.1, that is Kalman filtering; the Wiener
filter is recovered in the stationary limit. The complementary procedure of retrod-
iction, concerned with estimating the initial system state at the beginning of the
measurement interval, is qualitatively similar to prediction. Considering a constant
drive/readout rate in the measurement interval, a falling filter function is required
for the optimal estimation of the initial state.

110



CHAPTER 12. TELEPORTATION
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Figure 12.2: Drive to match the prediction and retrodiction filters. a)
shaping of the mechanical and atomic drive to match the prediction and retrodiction
filters. b) a smoothened flat drive of the mechanics to reduce optical spring effects
and a raising drive of the atoms for matching the prediction and retrodiction filters.

Typical rising and falling filter functions for prediction and retrodiction can be
seen in figure 12.1. The appropriate continuous Bell measurement on the hybrid
system requires the simultaneous filtering of both retrodiction of the initial spin state
and prediction of the mechanical state at τ after the entangling interaction with
light; this superposition of prediction and retrodiction is referred to as pretrodiction
in [Fedorov and Zeuthen, 2023]. This can be accomplished by shaping the drive
envelopes ΓS,M(t), represented by the readout rate, of both systems to match the
optimal filters for the prediction and retrodiction components in order to enable the
optimal pretrodiction of the final state of mechanics and the initial state of atoms.
The matching of filters is achieved by a falling envelope of the drive for the subsystem
to be predicted (mechanics) and a rising envelope of the drive for the subsystem
to be retrodicted (atoms) seen in figure 12.2a. The time-varying envelope for the
mechanical drive could be inconvenient due to the resulting time dependence of the
induced optical spring effects [Aspelmeyer et al., 2014], which can be circumvented
by smoothened flat pulses for the mechanical drive [Zwettler, 2019]. Appropriate
reshaping of the atomic drive can ensure the matching of filters. This is achieved
by a more sharply rising atomic drive envelope, as shown in figure 12.2b. Whereas
the pairs of drive shapes shown in figure 12.2 are qualitative plots, the analytical
theory of drive envelope matching is given in [Fedorov and Zeuthen, 2023].

12.2 Experimental setup for teleportation

The presented shaping of drive pulses has required significant changes to the
experimental scheme, in addition flipping the system order of the oscillators,
implementing a tophat beam, a new optical pumping scheme, a mode cleaning
cavity, and a verification setup. Therefore, it has been necessary to perform a total
disassembly of the experimental setup.

The new experimental setup, designed for teleportation from the atomic spin
oscillator to the mechanical oscillator, can be seen in figure 12.3. Its layout can be
divided into six sections:
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12.2. EXPERIMENTAL SETUP FOR TELEPORTATION
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Figure 12.3: Teleportation setup. The setup is divided into six sections; local
oscillators, mechanics, hybrid link, atomic, joint measurement, and verification.
See the text for details.

Local oscillators

It is required for the local oscillators to be pulsed in the teleportation experiment;
this pulse shaping is implemented by AOMs.

Another addition to the experimental setup is a mode cleaning cavity for
cleaning the Gaussian mode to better mode match the mechanical and atomic
systems, and for an improved detection efficiency of the mechanics. The mode
cleaning cavity has to be locked to a counter-propagating beam for locking while
pulsing the beams.

Mechanics

It is desirable to have an interaction with light dominated by the two-mode-
squeezing type, ζM < 0, to have an efficient entangled link for the teleportation
protocol [Fedorov and Zeuthen, 2023]. Since this implies optically-induced anti-
damping of the oscillator, whereby no steady state exists, the teleportation protocol
benefits from being pulsed. Moreover, the initial cooling can be performed before
the protocol is initiated.

A Pound–Drever–Hall (PDH) lock [Black, 2001] stabilizes the cavity to the laser
frequency.

Hybrid link

The hybrid link of the experiment is responsible for transporting and converting the
light that has interacted with the mechanics so that it can interact with the atomic
ensemble. The hybrid link also transports the measurement of the mechanical state
after teleportation for the verification setup. A Pockels cell is implemented for
switching the polarization, thereby directing the light to either the atomic ensemble
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CHAPTER 12. TELEPORTATION

or the verification setup. A fixed fraction of the local oscillator is split off to drive
the atomic ensemble and the subsequent verification.

The mode of the local oscillator for the atomic drive and the sidebands of light
having interacted with the mechanics are sent through a beam-shaping lens to
shape the mode profile into a square tophat beam for probing the atomic ensemble
(see chapter 8 for details).

Atomic

The atomic ensemble also benefits from the scheme being pulsed since initial
cooling of the oscillator can be performed before initiating the protocol, cooling the
oscillator to the ground state with an effective thermal occupancy of nS = 0.042
(see chapter 5 for details), which is ideal for spin state preparation.

The atomic ensemble needs to be prepared in an initial state for us to teleport.
This could be drawn from a family of coherent states, which would be achieved
by a magnetic RF excitation of the spin, with the size of coherent displacement
referenced to the projection noise of the ensemble. By linearity, the teleportation
protocol also allows for teleporting more interesting states, for instance, a squeezed
state or a Fock state.

The atomic ensemble is to perform a measurement by the light entangled with
the mechanics. The fidelity of the teleportation is, in principle, independent of the
sideband asymmetry for the spin ensemble, ζS, in a cascaded setting under ideal
circumstances. In contrary to a parallel scheme, where it is desirable to have an
interaction dominated by the beam-splitter type of interaction ζS > 0, where it
would be advantageous to the dynamical back-action of the subsystems oppositely
matched; ζS = −ζM [Fedorov and Zeuthen, 2023].

Joint measurement

The final step of the teleportation protocol is to perform the Bell measurement
with a homodyne detector. Appropriate filtering of the photocurrent determines
the feedback to be performed by the probe laser on the mechanical membrane in
order to complete the teleportation of the initial state of the atomic ensemble to
the mechanical system.

Verification

Verification of the teleported state is required to ascertain and characterize the
performance of the protocol, typically quantified by the mean fidelity for a certain
family of input states. The Pockels cell can be switched to send all the light, having
interacted with mechanics, to the verification setup for characterization of the
teleported state.

An alternative, simpler experimental setup would be tuning the laser frequency
away from the transitions of the atomic ensemble for the verification, removing
the Pockels cell, and using the homodyne detector of the joint measurement for
verification instead. This might result in higher optical losses for the verification
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12.2. EXPERIMENTAL SETUP FOR TELEPORTATION

but lowers the complexity of the experimental setup. An experimental decision is
still to be made in this regard.

We are concluding the present chapter on teleportation, having outlined the
rebuilt/redesigned experimental setup, including the planned sequence for state
teleportation.
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Part VI

Summary and outlook
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CHAPTER 13

Summary

In this thesis, we have presented the main results of this work: Entanglement
between distant macroscopic mechanical and spin systems [Thomas et al., 2020]
appended in appendix E, and Squeezed light from an oscillator measured at the rate
of oscillation [Bærentsen et al., 2023] appended in appendix D. The presented work
was initialized to bridge the gap between spin ensembles and mechanical resonators
via entanglement generation. The accomplishment of spin-optomechanical entan-
glement and the development of a new calibration method, Calibration of spin-light
coupling by coherently induced Faraday rotation [Thomas et al., 2021] appended in
appendix F, were completed halfway into this work. The accomplishments lead us
to shift our focus in a new direction towards quantum teleportation between spin
ensembles and mechanical resonators. The previous work had given us much insight
into the technical challenges and limitations of the experiment, therefore motivating
us to restart from scratch and rethinking the entire experiment. The optical setup
has been rebuilt for the presented work of this thesis. The abolition of the old
setup is shown in the introductory image to this part VI. We having focused on the
atomic spin ensemble in this thesis, and overcoming several technical challenges
presented in part II for optical pumping and in part III for motional averaging,
which has paved the way for measuring the spin ensemble in a new regime of high
quantum cooperativity and of measurements faster than the oscillation frequency.

Summarizing the work of this thesis,

• Part I, we introduced the hybrid system of spin-optomechanics in chapter
1, with a detailed description of the macroscopic spin system of hot cesium
atoms, presenting the framework for the dynamics of a hot spin ensemble
in chapter 2. We finish the overview with an outline of the membrane in
the-middle optomechanics in chapter 3.

• Part II, we presented the experimental methods for characterizing the spin
ensemble, detailing the magneto-optical resonance signal, and the ground-
state preparation of the spin ensemble, achieving a spin polarization of
p = 98.7% and thermal occupancy of nS = 0.042 presented in chapter 5.
Lastly, we introduced the coherent induced Faraday rotation (CIFAR) method
in chapter 6.
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• Part III, we investigated motional averaging in a hot vapor cell, introducing
the effects of dephasing due to magnetic inhomogeneities in chapter 7. We
detail the characterization and experimental implementation of a new coil
system for the atomic ensemble, achieving a magnetic field with a standard
deviation of σ = 5 ppm over the cell length of 40 mm, resulting in an improved
spin dephasing of γdephasing = 90 Hz. Next, in chapter 8, we introduced the
broadband noise/fast decaying spin-modes from an inhomogeneous readout
of the atomic ensemble arising from the loss of information in the dark.
This problem was addressed by homogeneous probing of the spin ensemble
using a square tophat beam, which allowed to lower the thermal contribution
arising from the broadband noise by a factor of 3.4 compared to probing
with a Gaussian beam. Last, concluding the topic of motional averaging by
presenting the simulations of a hot spin ensemble in chapter 9, as a tool for
predicting the implications of changing the cell geometry, beam shape, or
other variables dependent on motional averaging, and for understand the
phenomena of motional averaging.

• Part IV, we outlined the spin-induced light squeezing, which is the fruit of all
the advancements realized for the spin ensemble, showcasing two measurement
regimes for the atomic ensemble: measurements slower than the rate of
oscillation, generating 11.5+2.5

−1.5 dB and detecting 8.5+0.1
−0.1 dB of squeezing in a

tunable band, and measurements faster than the rate of oscillation, detecting
a squeezing level of 6.5 dB and 4.7 dB of squeezing spanning more than one
order of magnitude below the oscillation frequency with a readout rate twice
the oscillation frequency, ΓS ≈ 2ωS, with an almost saturated imprecision
product 20% above the Heisenberg uncertainty limit.

• Part V, we first, in chapter 11, outlined the entanglement in a hybrid spin-
optomechanical system, estimated by an Einstein-Podolsky-Rosen (EPR)
state, using Wiener filtering to condition the variance, achieving a conditional
variance of EPR state: Vc = 0.83 ± 0.03 < 1, below the inseparability limit
of 1. Then, finally, we introduced, in chapter 12, the pinnacle of our quest;
the road towards quantum teleportation between a spin ensemble and a
mechanical resonator, outlining the principles of teleportation and updated
experimental setup for our pursuit.
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The achievements throughout this thesis have brought us closer to quantum
teleportation, since many experimental parameters have been improved compared
to the entanglement generation experiment. The summary of the experimental
parameters is given in table 13.1.

Parameter Symbol New value Old - Ent.
Atomics

Fractional coherent spin readout ΓS/γS0 42 12
Spin polarization p 98.7% 82%

Spin thermal occupancy nS 0.042 0.8
Broadband noise ABBN/ΓS BBNold/2 BBNold

Intrinsic linewidth in the dark γS0,dark 200 Hz 450 Hz
Mechanics

Cavity overcoupling κin/κ 96% 93%
Detection

Quantum efficiency between systems ν 66% 53%
System mode-matching (amplitude) 98% 90%

Detection efficiency η 91% 77%
Verification detection efficiency ηV 80%

Table 13.1: Experimental parameters. The estimation of the new experimental
parameters for the teleportation experiment compared to the entanglement experi-
ment. The entanglement experiment was realized for a continuous measurement,
and the teleportation experiment will be performed for a pulsed measurement.
The thermal noise and the spin polarization should therefore not be compared as
an experimental improvement. The entanglement experimental configuration has
achieved a spin polarization close to ∼ 97% for a pulsed measurement, therefore,
the spin polarization is still improved for the new experimental realizations.

We can conclude by saying that teleportation between a spin ensemble and a
mechanical resonator is attainable and within reach, in the light of the improved
parameters of the rebuilt experimental setup. Setting the stage for the future
realization of quantum teleportation between a spin ensemble and a mechanical
resonator.
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CHAPTER 14

Outlook

This outlook presents the prospects of generating non-classical states and performing
quantum teleportation in a hybrid spin-optomechanical system, given the new
improvements in the room-temperature atomic spin platform.

14.1 Atomic spin ensemble

The spin ensemble has been shown to achieve high quantum cooperativity, reaching
CQ = 15 in the continuous measurement setting, which is a new benchmark for
room-temperature spin ensembles. Furthermore, we demonstrated the fractional
coherent spin readout of ΓS/γS0 = 42, and the ground state preparation with a
thermal occupancy of nS = 0.042 for pulsed measurements. In the pulsed regime,
this would correspond to the quantum cooperativity for the spin ensemble of
CQ = 40. This would be a new milestone for quantum back-action dominated
measurements, corresponding to only 2.5% of thermal noise compared to quantum
back-action, which would put the spin ensembles on the pinnacle for quantum-
limited measurements.

Low power requirements for D2 light of ≈ 20 mW in combination with high
levels of generated squeezing 11.5+2.5

−1.5 dB in a tunable band, open the way for
realizing compact squeezing-generating modules, competitive with the established
nonlinear-crystal based ones.

Measurements faster than the rate of oscillation enable continuous generation of
spin squeezing. This unlocks possibilities for using spin ensembles as magnetometers
with quantum-enhanced sensitivity in a new, broadband, regime.

14.2 Hybrid spin-optomechanics

The verified entanglement in a spin-optomechanical system has opened the pos-
sibility for quantum-enhanced sensing, for instance, continuous force sensing in
gravitational-wave detection [Zeuthen et al., 2019, Khalili and Polzik, 2018]. More-
over, the entanglement generation demonstrated the ability to access non-classical
states in a spin-optomechanical system, paving the way for quantum teleportation.
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Teleportation between a spin ensemble and a mechanical resonator would
allow utilizing the low decoherence of a mechanical resonator for quantum mem-
ory. Alternatively, atomic ensembles can be utilized as a quantum memory for
electromechanically coupled superconducting qubits [Mirhosseini et al., 2020].

Moreover, squeezed mechanical states has shown to be challenging task only
showing small squeezing levels [Pirkkalainen et al., 2015, Wollman et al., 2015].
However, a squeezed state could be teleported to the mechanical resonator from
the atomic ensemble, where it can be more easily prepared, e.g. by stroboscopic
measurements [Vasilakis et al., 2015, Zheng et al., 2023], opening the possibility
for mechanical squeezed force sensing.
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APPENDIX A

Spin density operators in the
x-basis

We have an atypical quantization axis along the x-direction. It is useful to write
up the relevant operators as density operators to describe the spin dynamics
[Julsgaard, 2003, Thomas, 2020]:

F̂x =
∑

m

mσ̂mm,

F̂y =
1

2

∑

m

C(F,m) (σ̂m+1,m + σ̂m,m+1) ,

F̂z =
1

2i

∑

m

C(F,m) (σ̂m+1,m − σ̂m,m+1) ,

F̂+ =
∑

m

C(F,m)σ̂m+1,m,

F̂− =
∑

m

C(F,m)σ̂m,m+1.

(A.1)

The density operator σ̂a,b is defined as |a⟩⟨b| = |F, a⟩⟨F, b|, F̂± are the ladder opera-

tors for the spin and we have the following relation C(F,m) =
√
F (F + 1) −m(m+ 1).

The following higher order relations are important for understanding the simplified
Hamiltonian:

F̂xF̂y + F̂yF̂x =
1

2

∑

m

C(F,m)(2m+ 1)(σ̂m+1,m + σ̂m,m+1),

F̂ 2
x =

∑

m

m2σ̂mm,

F̂ 2
y =

1

4
(F̂+F̂+ + F̂−F̂− + F̂+F̂− + F̂−F̂+),

F̂ 2
z = −1

4
(F̂+F̂+ + F̂−F̂− − F̂+F̂− − F̂−F̂+).

(A.2)
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APPENDIX B

Curing of a paraffin coated vapor
cells

A paraffin-coated vapor can change over time towards having high optical losses,
a degrading atomic signal, or a decreasing lifetime of the transverse spin. These
effects are all unwanted. However, they can all be restored in the process of curing
the cell.

The entrusted method of curing atomic cells has been to create a heat gradient
from the cell body decreasing towards the stem. This makes paraffin and cesium
condense in the stem, leaving residue to vaporize from the cell’s windows, walls,
or micro-hole. This has historically been achieved by placing the body of the cell
on a Peltier element to heat the cell body while placed in an oven of 60 ◦C, in
the endeavor to create a 5−10 ◦C heat gradient with a cell body temperature of
65−70 ◦C and stem temperature of 60 ◦C. The baking time of the cell for curing
has usually lasted for at least 24 hours to see a restored cell performance.

Another newly implemented method, similar to the entrusted method of curing
mentioned above, is to wrap the stem in wet cotton while placed in an oven with a
temperature of 70 ◦C. This should, in practice, create an even larger heat gradient,
which has recently been introduced by our cell manufacturer and glass blower
Mikhail V. Balabas.

A picture of an atomic cell with a degraded transmission is shown in figure B.1a,
showing a cell window with paraffin spots collected on the cell window. The big
circle on the window is the anti-reflection coating of the window, and the chip is the
elongated shape with the atomic channel shown as the small dark square positioned
in the chip. The small paraffin spots are the reason for this cell’s transmission
degradation. The degradation of cell transmission has empirically always been
shown to come from deposits on cell windows.

We have experimented with a new method of removing residue from the cell
windows by locally heating the cell without curing the entire cell. This has been
desirable for cells with good characteristics such as a long lifetime of the spin and a
significant optical depth. However, the curing of cells is working on the boundary
of temperatures that the paraffin of the cell can handle. Therefore, we have only
cured cells as a last resort to recover them. The new method can be seen in figure
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Temperature-controlled heat gun

Blowing fan

Atomic cell

a) b)

Figure B.1: Deposits on cell window and removal. a) deposits of paraffin on
a cell window; see text for details. b) setup for locally restoring the cell transmission
from deposits blocking the cell window.

B.1b, using a temperature-controlled heat gun to locally heat the cell window
to 90−100 ◦C, simultaneously cooling the stem and cell body by attaching a fan
blowing on the stem. This approach has shown the ability to remove deposits of
the cell window, fully recovering the cell transmission without heating the cell body
or the stem.
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APPENDIX C

Proposal: Converting a square
tophat beam into a Gaussian beam
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Figure C.1: The use of a spatial light modulator for Gaussian mode
matching when converting from a square tophat beam. The square tophat
beam is converted back into a Gaussian beam with a spatial light modulator (SLM)
and lens system measured by a power meter.

This appendix proposes converting a square tophat beam into a Gaussian beam.
We have investigated the use of a specially designed beam shaper for converting a
square tophat beam into a Gaussian beam, having an opposite phase pattern of the
beam shaper converting a Gaussian beam into a square tophat beam. Unfortunately,
multiple companies refused to produce such a converter. Furthermore, an optical
element with these properties would also have the disadvantage of maintaining a
beam through diffraction and scattering of the cell windows changing the mode
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profile and using imperfect lenses, which limits transformation into a Gaussian
mode.

The presented proposal uses a spatial light modulator (SLM) in combination
with a spherical lens system for the generation of the square tophat beam to match
the beam profile of the square tophat beam presented in chapter 8.2.2, so it can be
converted into a Gaussian beam. We are going to take advantage of linear optical
systems being reversible. First, performing a mode-matching optimization process,
and second, inverting the beam propagation for the actual experiment.

Lens

Beam shaper

Output

SLM
&

len
s syste

m

Input

Figure C.2: Generation of square tophat beam with a spatial light
modulator, and the conversion back into a Gaussian beam using a Beam
shaper. The input and output are Gaussian beams. The setup uses the beam
shaper to convert the square tophat beam into a Gaussian beam, reducing losses
after interaction with the atomic ensemble.

The optical scheme for calibrating the system can be seen in figure C.1. The
optical beam is generated using a beam shaper followed by spherical lenses, where
a camera and the transmission of the atomic cell optimize the beam profile of the
square tophat beam. The black box then converts the beam into a Gaussian beam,
symbolizing a SLM in combination with a lens system for coupling to a fiber with a
transverse electromagnetic 00 mode profile. The coupling to the fiber is optimized
by measuring the injected power on a power meter to feedback on the mode profile
generated by the SLM. The fiber could be supplemented by a cavity if required by
the experimental settings.

The disadvantage of having the SLM system after the atomic cell is the transmis-
sion losses of the SLM system. However, the invertibility of the beam propagation
allows us to exchange the power meter by a lasing source using the SLM for tophat
beam generation, which can be seen in figure C.2 for the reverted beam propagation.
In this experimental configuration, the input and output beam profiles are Gaussian.
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APPENDIX C. PROPOSAL: CONVERTING A SQUARE TOPHAT BEAM
INTO A GAUSSIAN BEAM

This setup benefits from the low transmission losses of the beam shaper and lenses,
only having low transmission losses after the atomic ensemble. The open question
is the generation of a square tophat beam with a SLM system, which would have
to be tested for the required resolution of the modulator.

The advantage of making the calibration setup first, before generating the
tophat beam with the SLM system, is the quality of the tophat beam being
determined by the lens system having the beam shaper, where the Gaussian beam
transformation is determined by the SLM. A final (minor) tuning of the mode
profile after the reverted beam propagation could still be performed for better
Gaussian transformation since the spacial mode is already optimized for the best
tophat beam performance.
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APPENDIX D

Manuscript in review: Squeezed
light from an oscillator measured

at the rate of oscillation

Christian Bærentsen, Sergey A. Fedorov, Christoffer Østfeldt, Mikhail V. Bal-
abas, Emil Zeuthen, and Eugene S. Polzik Squeezed light from an oscillator measured
at the rate of oscillation. arXiv. 2302.13633 (2023).
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Squeezed light from an oscillator measured at the rate of oscillation

Christian Bærentsen, Sergey A. Fedorov,∗ Christoffer Østfeldt,
Mikhail V. Balabas, Emil Zeuthen, and Eugene S. Polzik†

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
(Dated: February 28, 2023)

Continuous measurements of the position of an oscillator become projective on position eigenstates
when the measurements are made faster than the coherent evolution. We evidence an effect of
this transition on a spin oscillator within an ensemble of 2 × 1010 room-temperature atoms by
observing correlations between the quadratures of the meter light field. These correlations squeeze
the fluctuations of the light quadratures below the vacuum level. When the measurement is slower
than the oscillation, we generate 11.5+2.5

−1.5 dB and detect 8.5+0.1
−0.1 dB of squeezing in a tunable band

that is a fraction of the resonance frequency. When the measurement is as fast as the oscillation,
we detect 4.7 dB of squeezing that spans more than one decade of frequencies below the resonance.
Our results demonstrate a new regime of continuous quantum measurements on material oscillators,
and set a new benchmark for the performance of a linear quantum sensor.

I. INTRODUCTION

Projective, or von Neumann, measurements collapse
the observed quantum system on eigenstates of a Her-
mitian operator, while more general measurements, de-
scribed by positive operator-valued measures, collapse
the system on states from an overcomplete set [1]. A
gradual transition between the two situations can be re-
alized in continuous measurements using meter fields, a
canonical example of which is an optical interferometric
measurement of the position of a harmonic oscillator [2].
Position measurements are associated with mechanical
resonators [3], collective atomic spins [4, 5], ferromag-
netic solid-state media [6], single molecules [7], or density
waves in liquids [8], that are linearly probed by travel-
ing optical or microwave fields. The boundary between
generalized and von Neumann measurements occurs at
a certain value of the measurement rate [9]. When the
rate is slower than the oscillation, measurements with
the meter in the vacuum input state project the oscil-
lator on coherent states. When the rate is faster than
the oscillation, measurements project the oscillator on
position-squeezed states.

In addition to the oscillator state, the rate of posi-
tion measurement affects the output state of the meter
field [9]. The quadratures of the meter are correlated, and
their fluctuations can be below the vacuum level [10, 11].
In the slow measurement regime, the correlations and the
associated squeezing exist in a narrow frequency band
near the resonance, and have a strong frequency depen-
dence due to the time-averaged response of the oscillator
to the measurement backaction. When the measurement
is faster than the oscillation, the correlations and squeez-
ing are broadband and frequency-independent at low fre-
quencies, where the oscillator responds to the backaction
instantaneously. The detection of squeezing means ob-
serving the backaction-driven motion of the oscillator at
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frequencies much lower than the resonance, which is a
necessary condition for position squeezing [9].

The squeezing of the meter light is both a valuable
quantum resource and a figure of merit for the purity of
the light-oscillator interaction. In the slow regime, we
realize a measurement of a collective spin of a room-
temperature atomic ensemble at a rate fifteen times
higher than the rate of thermal decoherence. The gener-
ated squeezing of the meter light reaches 11.5+2.5

−1.5 dB at
the output of the cell, exceeding the squeezing demon-
strated previously using collective atomic spins [12–
14], optomechanical cavities [15–17], levitated nanopar-
ticles [18, 19], and compact on-chip sources utilizing ma-
terial nonlinearity [20], while approaching the results
achievable using bulk nonlinear crystals [21]. In the fast-
measurement regime, we detect broadband squeezing in a
bandwidth of several MHz while keeping the backaction-
imprecision product [22] within 20 % from the value satu-
rating the Heisenberg uncertainty relation. These results
enable new regimes for sensing surpassing the standard
quantum limit [23, 24], tests of uncertainty relations for
past quantum states [25, 26], quantum control of mate-
rial oscillators [27–30], and links between collective spins
and other material systems [14, 31–33].

II. MEASUREMENTS OF SPIN OSCILLATORS

Linearly polarized light traveling through an oriented
atomic medium (as illustrated in Fig. 1a-b) continuously
measures the projection of the total spin on the prop-
agation direction, Ĵz, via polarization rotation. This
measurement acts back on the spin via quantum fluc-
tuations of ponderomotive torque. When the input light
is in a strong coherent state, and the spin satisfies the
Holstein-Primakoff approximation [34], the process can
be described in terms of linearly coupled pairs of canon-
ically conjugate position and momentum variables. The
canonical variables of the spin, X̂S and P̂S, are the nor-

malized projections defined as X̂S = Ĵz/
√
~〈Jx〉 and
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FIG. 1. a) An optical probe spatially shaped in a square
tophat beam travels through an atomic ensemble with the
total spin J in a magnetic field B, and is detected using bal-
anced polarization homodyning. The detected quadrature is
selected using the λ/2 and λ/4 waveplates. The total spin
is oriented by the repump beam traveling along x. PBS:
polarization beam splitter. b) The polarization angle β of

the probe as a meter for the spin projection Ĵz. c) A pho-
tograph of an anti-spin-relaxation coated cell. The channel
with probed atoms is indicated by the blue rectangle. d) The
orange curves show power spectral densities (PSD) of homo-
dyne signals recorded at ∆/(2π) = 7 GHz at different quadra-
tures. The trace showing the largest squeezing is highlighted
by the blue curve. The black curve is the theoretical predic-
tion based on the global fit including all quadratures (see the
SI). The gray curve is the shot-noise level. The red curve is
the theoretical optimum-quadrature squeezing spectrum.

P̂S = −Ĵy/
√
~〈Jx〉, which satisfy the commutation re-

lation [X̂S, P̂S] = i. The variables of the light, X̂L

and P̂L, are the quadratures proportional to the am-
plitude and phase differences between the circularly po-
larized components, respectively. Their commutator is
[X̂L(t), P̂L(t′)] = (i/2)δ(t − t′). The Heisenberg uncer-
tainty principle constrains the two-sided spectral densi-
ties of the imprecision in the P̂L-quadrature measure-
ments, Simp, and the measurement backaction, SBA, as√
Simp SBA ≥ ~/2 (see Ref. [22] and the SI). This uncer-

tainty relation is saturated if the detection efficiency is
perfect and there is no excess measurement noise.

When the ensemble is probed far-detuned from op-
tical transitions, the total spin couples to the probe
via the position-measurement Hamiltonian Ĥint =

−2~
√

Γ X̂LX̂S, and modifies the probe variables accord-
ing to the input-output relations [14, 35]

P̂ out
L (t) = P̂ in

L (t) +
√

Γ X̂S(t), X̂out
L (t) = X̂ in

L (t), (1)

where Γ is the measurement rate proportional to the opti-
cal power. The measurement backaction force is F̂QBA =

2
√

ΓX̂ in
L . The response of the spin to the measurement

backaction in this situation is described by the Fourier-
domain susceptibility χ[Ω] = ΩS/(Ω

2
S−Ω2−iΩγ0), where

ΩS is the resonance Larmor frequency and γ0 is the intrin-
sic decay rate. The response induces correlations between
X̂out

L and P̂ out
L that can be observed by detecting interme-

diate quadratures of light, Q̂φL = sin(φ)X̂out
L +cos(φ)P̂ out

L .
The two-sided spectra of those quadratures, detected by
a homodyne with efficiency η, are given by

Sφ[Ω] = 1/4 + (ηΓ/2) Re (χ[Ω]) sin(2φ)

+ ηΓ(Γ + γth)|χ[Ω]|2 cos(φ)2, (2)

where γth = (2nth+1)γ0 is the thermal decoherence rate.
The term ∝ cos(φ)2 is due to the spin oscillator motion,
and the term ∝ sin(2θ) is due to the cross-correlation

between X̂S and X̂out
L . Negative cross-correlation can

squeeze Sφ[Ω] below the vacuum level of 1/4.
In a more general situation, the internal dynamics of

the collective spin are those of 2F harmonic oscillators,
where F is the ground-state angular momentum number
of the atomic species. Their annihilation operators,

b̂m =
1√

∆Nm

N∑

j=1

|m+ 1〉j〈m|j , (3)

are introduced using the multilevel Holstein-Primakoff
approximation [36]. In Eq. (3), m is the projection quan-
tum number of the single-atom angular momentum on
the x axis, |m+ 1〉j〈m|j are the jump operators between
the states |m〉j and |m+ 1〉j of the individual atoms, and
∆Nm = Nm+1−Nm are the differences in the mean num-
bers of atoms in the corresponding states. The frequen-
cies of the oscillators are the energy differences between
|m〉j and |m+ 1〉j , controlled by an external static mag-
netic field. The oscillator-light interaction is described
by the Hamiltonian

Ĥint = −2~
F−1∑

m=−F

√
Γm

(
X̂mX̂L + ζmP̂mP̂L

)
, (4)

where the quadratures of the modes satisfy [X̂m, P̂m] = i,
Γm are the measurement rates, and ζm = ζ(2m + 1)/7
determine the strengths of dynamical backaction. The
common factor ζ is a function of the optical detuning
∆ and the level structure. The deviation of the interac-
tion Hamiltonian (4) from that of pure position measure-
ment, ζ = 0, results in dynamical-backaction damping
with rates γDBA,m = 2ζmΓm, and increases the quan-
tum backaction-imprecision product by an amount pro-
portional to ζ2 (see the SI), which is small in all our
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FIG. 2. a) Homodyne signal PSDs at ∆/(2π) = 3 GHz and different detection angles φ indicated in the figure. The points

are experimental data. The green and orange traces are obtained close to P̂L and X̂L, respectively, and the olive, blue and
purple—at intermediate quadratures. The gray points show the shot-noise level. The black curves are theoretical predictions
based on the global fit including the spectra at 15 quadratures (see the SI). The red curve is the optimum-quadrature squeezing
spectrum predicted by the single-oscillator model. b) The spectra of classically driven motion of the collective spin. The eight
peaks visible at low probe powers correspond to bare oscillator modes due to the transitions between adjacent mF levels. Their
frequencies are determined by the linear and quadratic Zeeman energies, and magnitudes are determined by the macroscopic
populations of the mF levels as shown in the inset. The spectra at high powers expose the hybridized oscillator modes.

experiments. The oscillators experience thermal decoher-
ence due to the spontaneous scattering and the collisions
of atoms. The thermal occupancy of the intrinsic damp-
ing bath is nth = Nm/∆Nm, experimentally found to be
independent of m.

The multimode structure can affect the response of the
spin to the measurement backaction at frequencies close
to ΩS, while far away from ΩS the spin acts as a single
oscillator with X̂S =

∑
m

√
Γm/ΓX̂m that is measured at

the total rate Γ =
∑
m Γm and experiences decoherence

at the rate γth =
∑
m γth,mΓm/Γ, where γth,m are the

individual decoherence rates of the modes. The quantum
cooperativities for the individual modes are defined as the
ratios of the measurement and decoherence rates. For the
total spin, the cooperativity is Cq = Γ/γth.

III. EXPERIMENT

An ensemble of N ≈ 2 × 1010 cesium-133 atoms at
52 °C is contained in the 1 mm×1 mm×4 cm channel of a
glass chip, shown in Fig. 1c. The channel is coated with
paraffin to reduce the spin decoherence from wall colli-
sions [37], and is positioned in a homogeneous magnetic
field directed along the x axis (Fig. 1a). The ensem-
ble is continuously probed by a y−polarized laser beam
propagating in the z direction that has the wavelength
852.3 nm, blue-detuned from the F = 4 → F ′ = 5 tran-
sition of the D2 line by ∆/(2π) = 0.7 − 7 GHz. The
ensemble is also continuously repumped using circularly
polarized light resonant with the F = 3 → F ′ = 2 tran-
sition of the D2 line. The combination of spontaneous

scattering of probe photons and repumping maintains a
steady-state distribution of atoms over the magnetic sub-
levels of the F = 4 ground state, which has the macro-
scopic spin orientation along the magnetic field with po-
larization 〈Ĵx〉/(NF ) ≈ 0.78. The steady-state popula-
tions are independent of the probe power in our regime,
and correspond to the occupancy of the thermal bath
nth = 0.9 ± 0.1. The resonance frequencies of the os-
cillators are set by the Larmor frequency and split by
0− 40 kHz in different regimes by the quadratic Zeeman
and tensor Stark effects. The Larmor frequency can be
positive or negative depending on the orientation of the
magnetic field, setting the signs of the effective oscillator
masses. We work in the negative-mass configuration [31],
but the effects that we observe, in particular the squeez-
ing levels, do not change upon the reversal of the sign
of mass (see the SI). The output light is detected using
balanced polarization homodyning, which enables shot-
noise-limited detection at frequencies down to 10 kHz.

IV. RESULTS

In Fig. 1d, we present homodyne spectra recorded at
the optical detuning ∆/(2π) = 7 GHz over a range of de-
tection quadratures φ. In this measurement, dynamical
backaction effects are small (ζ ≈ 0.01), and the probed
spin behaves as a single oscillator subjected to position
measurements. The data in Fig. 1d shows squeezing
down to 7.5 dB, attained by the highlighted blue trace.
From a global fit of the spectra at all quadratures, we
infer the measurement rate Γ/(2π) = 13 kHz and the
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FIG. 3. a-b) Homodyne signal PSDs at ∆/(2π) = 0.7 GHz. The gray curves show the experimental shot-noise levels, and the
red curves are the theoretical optimum-quadrature squeezing spectra derived from Eq. (2). a) Spectra for |ΩS|/(2π) = 1.09 MHz

and 1.79 MHz. The orange and blue curves are measurements with the quadrature angle set to detect P̂L and a quadrature
φ close to X̂L, respectively. LO: local oscillator, th: theoretical. b) Orange curves show homodyne spectra recorded at
|ΩS|/(2π) = 5 MHz and at different quadratures φ. The trace with the largest squeezing is highlighted by the blue curve. The
black curve is the theoretical prediction based on the global fit including all quadratures (see the SI). c) The spectra taken at

the P̂L quadrature when the probe beam is Gaussian (blue curve) and tophat (orange curve). The gray curve is the shot noise.
The inset shows the beam intensity distributions over the 1 mm×1 mm channel cross section recorded without the cell.

quantum cooperativity Cq = 11. The measurement rate
can be verified directly from Fig. 1d via the width ∆Ω
of the frequency band over which squeezing is present
in any of the traces, which in the backaction-dominated
regime is ∆Ω ∼ Γ. The envelope of the traces in Fig. 1d
is described by the spectrum given by Eq. (2) minimized
over the detection quadrature at each frequency. Neglect-
ing the imaginary part of the response, the optimum-
quadrature spectrum is given by

Smin[Ω] =
1

4
− η

2

Γ

Γ + γth
D

(
Ω− ΩS

Γ + γth

)
, (5)

where D(x) = 1/
(
1 +
√

1 + 4x2
)
. The red curve plotted

in Fig. 1d additionally accounts for 0.7 shot noise units of
excess P̂L-quadrature noise from the thermal motion of
fast-decaying spin modes (see Sec. V). This noise is the
main limitation for the backaction-imprecision product
in this measurement, which equals 1.5× (~/2).

Due to the scaling Γ ∝ 1/∆2, higher measurement
rates are achievable with the probe laser tuned closer
to the atomic transition. In Fig. 2a we present data ob-
tained at the optical detuning of 3 GHz using 8.4 mW of
probe power. In this measurement ζ = 0.054, in which
case the dynamical backaction results in optical damp-
ing and hybridization of the oscillator modes, as well as
optical squeezing in the X̂L-quadrature (see the green
trace in Fig. 2a). Since the thermal decoherence of the
oscillators is due to baths at a temperature close to zero,
the optical damping improves the maximum magnitude
of squeezing by about 0.5 dB. The minimum noise shown

by the blue trace in Fig. 2a is 8.5+0.1
−0.1 dB below the shot

noise level. The overall detection efficiency of our setup
is η = (91± 3) %, and the transmission loss at the exit
window of the cell is 1.6 %, which means that the magni-
tude of the squeezing at the exit of the cell is 11.5+2.5

−1.5 dB.
The backaction-imprecision product in this measurement
is 1.9×(~/2), which is higher than in the measurement at

7 GHz detuning due to the higher excess P̂L-quadrature
noise (two shot noise units).

The experimental spectra in Fig. 2a can be under-
stood as arising from the coupled dynamics of two nearly-
degenerate bright modes of the spin, which we refer to
as modes a and b. To extract their effective parameters,
we globally fit the set of spectra recorded over an ex-
tended range of quadrature angles (see the SI). We find
the total measurement rate to be Γ/(2π) = 52 kHz, the
individual quantum cooperativities to be Caq = 12 and

Cbq = 4, and the total cooperativity to be Cq = 15. The
lower envelope of the experimental traces is in agreement
with the optimum-quadrature spectrum predicted by the
single-oscillator model using the same Γ and Cq.

The bright modes a and b emerge due to the coupling of
the individual spin oscillators via the common reservoir
of the probe optical modes with coupling rates propor-
tional to ζm and Γm. To illustrate this effect, we set the
laser detuning to 0.7 GHz, where the dynamical backa-
tion coefficient is larger, ζ = 0.18, and excite the oscil-
lators with classical white noise applied via a magnetic
field. The spectra of the P quadrature of the output light
at different probe powers are shown in Fig. 2b. At the
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lowest power, the eight bare spin oscillators due to the
transitions between adjacent mF levels are individually
resolved. As the probe power is increased, the resonances
first merge in two (the a and b modes) and then three.
The macroscopic occupancies of different mF levels in
the atomic ensemble remain the same at all powers, as
we separately check, which means that the change in the
output spectrum is only due to the coupled dynamics of
the collective oscillators.

At the detuning of 0.7 GHz from the optical transi-
tion, the measurement rate of the spin motion can be
as high as the oscillation frequency. While around the
Larmor resonance, in a frequency band of approximately
one hundred kHz, the coupling between individual spin
oscillators is pronounced, at frequencies much lower than
the resonance the spin behaves as a single oscillator,
and the quantum measurement backaction manifests via
broadband squeezing of light. In Fig. 3a, we present
spectra recorded using 12.8 mW of optical probe power
at two resonance frequencies, 1.09 MHz and 1.79 MHz,
in which the bandwidth of low-frequency squeezing ex-
tends down to 30 kHz. The minimum noise levels of the
homodyne signals (6.5 dB below the shot noise for the
1.09 MHz data) are consistent with the quantum cooper-
ativity Cq = 8. The measurement rate can be estimated
from the signal-to-shot-noise ratio on the P quadrature
in Fig. 3a using the formula

Sφ=0[0] = 1/4 + η (Γ/ΩS)
2
, (6)

which yields Γ/(2π) ≈ 2 MHz, a value higher than the
resonance frequencies. To further corroborate the mea-
surement rate, we perform a quadrature sweep with the
resonance frequency set to 5 MHz and using 10.2 mW of
probe power (Fig. 3b). From fitting this data, we find
Γ/(2π) = 1.77 MHz, which is consistent within ten per-
cent with the previous estimate corrected for the differ-
ence in the probe powers. Theoretically, the optimum-
quadrature noise levels should saturate as the Fourier
frequency approaches zero, to a value around 0.22 shot-
noise units for the 1.09 MHz data in Fig. 3a, while ex-
perimental noise levels increase at low frequencies due to
excess noise from the atomic ensemble.

The backaction-imprecision product for the measure-
ments in Fig. 3a is below 1.2 × (~/2) at frequencies
higher than 100 kHz. This value is closer to saturat-
ing the Heisenberg uncertainty relation than the values
in the slow-measurement experiments, because the fast-
decaying modes are in the backaction-dominated regime,
and do not contribute excess thermal noise. The limit-
ing factors for the product in this case are the dynamical
backaction and detection inefficiency.

V. FAST-DECAYING MODES

In addition to the collective oscillators described by the
annihilation operators from Eq. (3), in which all atoms
contribute equally, there are other modes of the spin in

our system [38, 39]. The resonance frequencies of these
modes coincide with ΩS, but their decay rates are lim-
ited by the rate of atoms flying through the probe field
(γ0,flight/(2π) ≈ 300 kHz) rather than collisions with the
walls and other atoms (γ0,coll/(2π) ≈ 200 Hz). The anni-
hilation operators of these modes are

b̂′m =
1√

∆Nm 〈∆g(t)2〉c

N∑

j=1

∆gj(t) |m〉j〈m+ 1|j , (7)

where gj(t) are the coupling rates between the optical
probe and the individual atoms (see the SI) and 〈∆g2〉c
is the squared deviation of the coupling from the mean
averaged over classical trajectories, assumed to be the
same for all atoms. The measurement rate of the fast-
decaying modes is ∝ 〈∆g2〉c, while the measurement rate
of the slow-decaying modes is ∝ 〈g〉2c .

An enabling feature of our experiment is the high
3D uniformity of the optical probe field, achieved us-
ing a tophat beam configuration, which reduces 〈∆g2〉c
and thus the readout of the fast-decaying modes. In
Fig. 3c, we compare the spectra recorded at the P̂L-
quadrature using a tophat and a wide Gaussian probe
beam with equal optical powers in the slow-measurement
regime. The thermal noise contributed by the fast-
decaying modes is reduced from 1 to 0.3 shot-noise units
on resonance upon switching from the Gaussian to the
tophat probe. The absolute non-uniformity of the cou-
pling [40, 41] for the tophat beam is estimated to be
〈∆g2〉c/〈g〉2c = 0.6 based on the camera imaging.

VI. OUTLOOK

Continuous measurements that combine high measure-
ment rate, quantum cooperativity, and detection effi-
ciency can be used for single-shot generation of spin-
squeezed states and quantum state tomography [42]. The
entanglement link between the material spin and trav-
eling light entailed by the squeezing enables quantum-
coherent coupling of spins with other material sys-
tems [14, 32]. While the backaction-imprecision product
in all our measurements is already within a factor of two
from the Heisenberg bound, it can be further improved
by optimizing the probe power for measurements of the
P̂L-quadrature. Our measurements were optimized for
quadratures intermediate between X̂L and P̂L (i.e. for
“variational” readout [23]) which can yield superior re-
sults [43] in quantum sensing and control.

This work also establishes room-temperature atomic
spin oscillators as a practical platform for engineering
quantum light with high levels of squeezing, which is a ba-
sic resource for interferometric sensing and optical quan-
tum information processing [20]. The highest demon-
strated squeezing, reaching 8.5 dB at the detection, is
narrowband, but its frequency can be tuned by the mag-
netic field without degrading the level within the range
of approximately 0.8− 5 MHz in our experiments.
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Appendix A: Experimental setup
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FIG. SI1. Experimental setup. A linearly polarized light probe is spatially shaped as a square-tophat beam. The probe
interacts with an optically polarized ensemble of Cesium atoms located in a glass chip. The macroscopic atomic polarization
Jx is oriented along the magnetic field B. The optical probe and the atomic ensemble interact via Faraday interaction in the
dispersive regime. The output probe light is detected using a polarization self-homodyning setup. PBS: Polarizing beamsplitter.
λ/2: Half wave plate. λ/4: Quarter wave plate. Beam shaper: Gaussian-to-tophat beam-shaping lens.

A detailed schematic of our experimental setup is presented in Fig. SI1. The probed cesium-133 atoms are located
in a channel of a glass chip with 1 mm×1 mm cross-section and 40 mm length. The chip is enclosed in a glass cell,
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which has a stem attached to it that contains a piece of cesium metal providing a reservoir of atoms. The cell interior
is coated with an anti-spin-relaxation paraffin coating to decrease the decoherence due to the collisions of atoms with
walls. The cell is heated to (52± 2) ◦C and placed in a stationary homogeneous magnetic field directed along the x
axis, which is created by a pair of rectangular coils parallel to the yz plane. Additional time-dependent magnetic
field directed along the y axis can be created using another pair of coils parallel to the xz plane, which has the effect
of applying a classical force to the atomic oscillator. The cell and the entire set of coils are enclosed in a multi-layer
magnetic shield, including µ-metal layers to eliminate the magnetic field of the Earth and an aluminum layer to
protect the spins from external high-frequency magnetic noise.

The atoms interact with two light beams: the probe, which is linearly polarized and propagates along the channel,
and the repump, which is circularly polarized and propagates perpendicular to the channel, along the x axis. Both
light beams have wavelengths around 852.3 nm, close to the D2 transition from the ground state of Cs. The ground
state of Cs is split into two hyperfine levels, with the magnetic momentum numbers F = 3 and F = 4, and each
hyperfine level is further split into (2F + 1) magnetic sublevels. The repump beam is produced by a diode laser and
has the power in the range of 8−10 mW. It is blue-detuned by 80 MHz from the F = 3→ F ′ = 2 transition of the D2
line, and resonant with all transitions F = 3 → F ′ = 2, 3, 4 within the Doppler linewidth, where the primes denote
electronically excited states. The cross-section of the chip channel containing atoms is chosen to be square to avoid
lensing of the repump beam. In order to uniformly illuminate the elongated channel, the repump beam is shaped by
a combination of a Powell lens and a cylindrical collimating lens. The repump transfers all atoms to F = 4 level, and
simultaneously creates macroscopic spin orientation in the ensemble because of its circular polarization. The chirality
of the polarization, σ+ or σ−, determines the sign of the mass of the oscillator [1]. Our experiments are done with
a negative-mass oscillator, but the results, including the observed levels of squeezing, are largely independent of the
sign of the mass (see Sec. E). The probe beam is blue-detuned by 0.7− 7 GHz from F = 4→ F ′ = 5 transition; it is
produced by a Ti:Sa laser and has the power up to 13 mW. The probe interacts with the ensemble in the dispersive
regime, but the residual spontaneous scattering of photons from it contributes to the spin decoherence. The linear
polarization of the probe is set along the y axis to maximize the optical damping by the dynamical backaction (which
nevertheless remains small), and simultaneously decouple the spin from the classical intensity fluctuations. The small
amount of optical damping in our experiments improves the maximum observed level of squeezing (see Sec. F). The
decoherence rate due to the spontaneous scattering is proportional to the probe power, and is the primary limitation
for the achievable quantum cooperativity in our work. The distribution of the atoms among the magnetic sublevels
is determined by the interplay of the spontaneous scattering processes due to the probe and the repump beam, and
is independent of the probe power and detuning within our range of parameters.

After the interaction with the atomic ensemble, the relevant quadratures of the probe beam are detected using
polarization homodyning. The quadrature angle is selected using a combination of a quarter waveplate and a half
waveplate. A key advantage of the polarization homodyning method is the perfect spatial overlap between the detected
modes of light and the local oscillator. The electronic noise floor of the photodetector is typically about 30 dB below
the shot noise level and hence is negligible.

The maximum narrowband squeezing of light observed in the regime when Γ� |ΩS | is approximately independent
of the Larmor frequency within the range of Larmor frequencies between 0.8 MHz and 5 MHz. At low frequencies,
the limitation is due to classical noises acting on the spins, and at high frequencies due to the inhomogeneity of the
magnetic field, which could be straightforwardly improved.

In order to minimize the coupling to the fast-decaying modes of the spin ensemble (see Sec. B), the probe beam
is shaped into a square tophat beam using a high-transmission beam shaping lens (Topag GTH-3.6-1.75FA), and an
additional system of regular spherical lenses described in Sec. G. The resulting beam has a supergaussian intensity
cross section I(x, y) ∝ exp(−2(x/wx)2n − 2(y/wy)2n) with n ≈ 3.2 and 2wx ≈ 2wy ≈ 0.84 mm, which change
negligibly in the z direction over the length of the cell channel. The on-resonance extraneous thermal noise in the
slow-measurement regime was experimentally found to be lower by a factor of 3.6 for the tophat beam probe compared
to the Gaussian beam probe with the maximum width allowed by the cell channel. The transmission of the probe
beam through the cell reaches 96.8%, limited by the reflection and scattering of light upon hitting the cell windows,
with the loss of light due to the clipping of the beam being negligible. In order to infer the generated level of squeezing
from detected, we assume that the transmission loss is equally contributed by the input and the output windows.

Appendix B: The modes of an ensemble of moving atoms interacting with light

In this section, we describe N moving atoms interacting with the probe light field, and derive input-output relations
for the optical quadratures in terms of two types of collective spin oscillator modes: usual Larmor precession modes,
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and modes scrambled by the atomic motion. Individual atoms interact with the light field with the strengths gk(t)
(where k = 1, .., N is the integer index that labels the atoms) that is proportional to the intensity of the light field
at their instantaneous position. The interaction strengths randomly change in time as atoms move inside the cell.
The motions of different atoms are assumed to have the same statistical properties and be uncorrelated between
each other. The statistics of motion are characterized by decomposing the couplings into their mean value, ḡ, and
deviations, ∆gk(t),

gk(t) = ḡ + ∆gk(t), (SI B.1)

and specifying the motional correlation function, R(τ),

〈∆gk(t1) ∆gl(t2)〉c
〈∆g(t)2〉c

= δklR(t1 − t2), (SI B.2)

where δkl is the Kronecker symbol and 〈·〉c denotes motional averaging (following the notation of Ref. [2], to separate
from the quantum averaging 〈·〉). The normalization factor, 〈∆g(t)2〉c, is the mean squared deviation among the
individual atom-light couplings. According to the ergodic hypothesis, the result of the averaging is the same regardless
of whether it is done over the time or the realizations of the ensemble.

The dispersive interaction between the light and the k−th atom in the ensemble is described by the Hamiltonian [3, 4]

Ĥ
(k)
int = ~ gk(t)

[
a0Î + a1Ŝz ĵ

(k)
z + a2

(
Î ĵ(k)

z ĵ(k)
z − 2Ŝx

(
ĵ(k)
x ĵ(k)

x − ĵ(k)
y ĵ(k)

y

)
− 2Ŝy

(
ĵ(k)
x ĵ(k)

y + ĵ(k)
y ĵ(k)

x

))]
, (SI B.3)

where Ŝx,y,z are the Stokes parameters of the input light [3], Î is the intensity of the input light, and the parameters
a0,1,2 are functions of the level structure and the laser detuning from the optical transition [5]. After linearization
assuming a strong coherent y-polarized light probe with the mean amplitude ā, the Hamiltonian is expressed as

Ĥ
(k)
int = Ĥ

(k)
Stark − ~

āgk(t)√
2

[
a1ĵ

(k)
z X̂L − 2a2

(
ĵ(k)
x ĵ(k)

y + ĵ(k)
y ĵ(k)

x

)
P̂L

]
, (SI B.4)

where the Stark Hamiltonian Ĥ
(k)
Stark = ~gk(t)

[
a0 + a2

(
ĵ

(k)
x ĵ

(k)
x − ĵ(k)

y ĵ
(k)
y + ĵ

(k)
z ĵ

(k)
z

)]
Î describes the energy shifts

due to the dynamic Stark effect, and X̂L and P̂L are the polarization quadratures of the light field normalized such
that they satisfy the commutation relation

[X̂L(t1), P̂L(t2)] = (i/2)δ(t1 − t2). (SI B.5)

The spin components of individual atoms ĵ
(k)
x,y,z can be expressed in terms of the jump operators σ̂

(k)
n,m between the

ground state sublevels,

σ̂(k)
n,m = |n〉k〈m|k, (SI B.6)

where m,n = −F, ..., F is the projection of the angular momentum on the x axis (which coincides with the direction
of the magnetic field), and F is the total angular momentum quantum number of the ground state level. In this
notation,

H
(k)
int = Ĥ

(k)
Stark + ~

āgk(t)

2
√

2

F−1∑

m=−F
Cm

(
ia1

(
σ̂

(k)
m+1,m − σ̂

(k)
m,m+1

)
X̂L + 2(2m+ 1)a2

(
σ̂

(k)
m+1,m + σ̂

(k)
m,m+1

)
P̂L

)
, (SI B.7)

where Ĥ
(k)
Stark = ~

∑
m gk(t)

(
a0 + a2m

2
)
Î σ̂

(k)
m,m is the Stark energy, and Cm =

√
F (F + 1)−m(m+ 1) are Cleb-

sch–Gordan coefficients. When transiting from Eq. (SI B.4) to Eq. (SI B.7) we neglected the terms involving second-
order coherences that only couple to Î and are negligibly small in our case.

The individual atomic spins are precessing in a homogeneous magnetic field directed along the x axis. Taking the
zero of the energy scale to be the ground state energy of free atoms, the Hamiltonian of the precession is expressed as

Ĥ
(k)
S =

F∑

m=−F
EZeem,m σ̂

(k)
m,m, (SI B.8)
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where EZeem,m are the Zeeman energies of the magnetic sublevels that include contributions linear and quadratic in
m. The total Hamiltonian of all atoms,

Ĥ =
N∑

k=1

(
Ĥ

(k)
S + Ĥ

(k)
int

)
, (SI B.9)

can be expressed using collective operators: the total numbers of atoms in the magnetic sublevels, denoted by N̂m,
and two sets of coherences between neighboring m levels, denoted by Σ̂m and Σ̂′m. The operators are defined as

N̂m =
N∑

k=1

σ̂(k)
m,m, Σ̂m =

N∑

k=1

σ̂
(k)
m+1,m, Σ̂′m =

1√
〈∆g2〉c

N∑

k=1

∆gk(t) σ̂
(k)
m+1,m, (SI B.10)

where m = −F, ..., F − 1 for the Σ operators and m = −F, ..., F for the N operators. The expression for the
Hamiltonian, neglecting a small contribution due to the inhomogeneity of the Stark shift, is

Ĥ =
F∑

m=−F
Em N̂m + ~

F−1∑

m=−F

ḡāa1

2
√

2
Cm

(
i
(
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)
X̂L + ζm

(
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)

+ ~
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√
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2
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2
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i
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Σ̂′m − Σ̂′ †m
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X̂L + ζm

(
Σ̂′m + Σ̂′ †m

)
P̂L

)
, (SI B.11)

where ζm = 2(2m+ 1)a2/a1, and Em = EZeem,m +EStark,m is the sum of the Zeeman and the Stark energies. In the

limit of a large number of atoms in the ensemble, the two sets of Σ̂m operators are independent and have constant
commutators,

[
Σ̂n, Σ̂

†
m

]
= δnm

(
N̂m+1 − N̂m

)
−→
N�1

δnm (Nm+1 −Nm) , (SI B.12)

[
Σ̂n, Σ̂

′ †
m

]
= δnm

∑

k

∆gk(t)√
〈∆g2〉c

(
σ̂

(k)
m+1,m+1 − σ̂(k)

m,m

)
−→
N�1

0, (SI B.13)

[
Σ̂′n, Σ̂

′ †
m

]
= δnm

∑

j

∆gj(t)
2

〈∆g2〉c

(
σ̂

(j)
m+1,m+1 − σ̂(j)

m,m

)
−→
N�1

δnm (Nm+1 −Nm) , (SI B.14)

where m,n = −F, ..., F − 1, and Nm = 〈N̂〉 are the average macroscopic populations of the magnetic sublevels. By
normalizing the Σ operators to satisfy the canonic commutation relations, we can introduce two sets of bosonic modes,
b̂m and b̂′m, that appear in the main text,

b̂m = Σ̂m/
√

∆Nm, b̂′m = Σ̂′m/
√

∆Nm, (SI B.15)

where ∆Nm = Nm+1−Nm. The modes described by b̂m are those usually identified with the Larmor precession of the
spin ensemble as a whole. They experience coupling to the probe light that is averaged over the atomic trajectories [6],
and their coherence time is high, limited by the reorientation of individual spins due to the collisions with the walls
and between each other, and by the spontaneous scattering of probe photons. The modes described by b̂′m experience
additional damping and decoherence due to the atoms flying in and out of the probe beam. We refer to them as the
fast-decaying modes. Introducing the quadratures of the spin oscillators,

X̂m ≡
1

i
√

2

(
b̂m − b̂†m

)
, P̂m ≡ −

1√
2

(
b̂m + b̂†m

)
, X̂ ′m ≡

1

i
√

2

(
b̂′m − b̂′ †m

)
, P̂ ′m ≡ −

1√
2

(
b̂′m + b̂′ †m

)
, (SI B.16)

which satisfy [X̂m, P̂m] = i and [X̂ ′m, P̂
′
m] = i, and using the fact that, in the Holstein-Primakoff approximation, the

numbers of atoms in the m−th levels satisfy

N̂m ≈ Nm +
1

2

(
b̂†mb̂m + b̂′ †m b̂

′
m − b̂†m−1b̂m−1 − b̂′ †m−1b̂

′
m−1 + h.c.

)
, (SI B.17)

the total Hamiltonian in Eq. (SI B.11) is expressed as

Ĥ = ~
F−1∑

m=−F

[
Ωm
2

(
X̂2
m + P̂ 2

m

)
+

Ωm
2
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)

−2
√

Γm

(
X̂mX̂L + ζmP̂mP̂L

)
− 2
√

Γ′m
(
X̂ ′mX̂L + ζmP̂

′
mP̂L

)]
, (SI B.18)
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which is a Hamiltonian of 4F oscillators linearly coupled to a propagating field. The frequencies Ωm are determined
by the energy splittings between different magnetic sublevels due to the Zeeman and Stark effects,

~Ωm = EZeem,m − EZeem,m+1 − ~ḡa2I(2m+ 1), (SI B.19)

and the measurement rates for the slow- and the fast-decaying modes are identified as

Γm = ḡ2(āa1 Cm)2∆Nm/16, Γ′m = 〈∆g2〉c (āa1 Cm)2∆Nm/16. (SI B.20)

The input-output relations for the quadratures of the light field are derived based on Eq. (SI B.18) as described in
Ref. [7]. They are given by

X̂out
L (t) = X̂ in

L (t)−
F−1∑

m=−F
ζm

(√
ΓmP̂m(t) +

√
Γ′mP̂

′
m(t)

)
, (SI B.21)

P̂ out
L (t) = P̂ in

L (t) +
F−1∑

m=−F

(√
ΓmX̂m(t) +

√
Γ′mX̂

′
m(t)

)
, (SI B.22)

and the Heisenberg equations of motion for the slow-decaying modes are

d

dt
X̂m(t) = ΩmP̂m(t)−

F−1∑

n=−F
ζm
√

Γm

(√
ΓnX̂n(t) +

√
Γ′nX̂

′
n(t)

)
− 2ζm

√
ΓmP̂

in
L (t), (SI B.23)

d

dt
P̂m(t) = −ΩmX̂m(t)−

F−1∑

n=−F
ζn
√

Γm

(√
ΓnP̂n(t) +

√
Γ′nP̂

′
n(t)

)
+ 2
√

ΓmX̂
in
L (t). (SI B.24)

Eq. (SI B.23-SI B.24) show that the oscillators experience damping or antidamping by dynamical backaction with the
rates γDBA,m = 2ζmΓm, and are coupled between each other at the rates

√
γDBA,mγDBA,n due to the interaction with

the common optical bath. For practical calculations, intrinsic dissipation due to the atomic collisions and spontaneous
scattering is added to Eq. (SI B.23-SI B.24) using the usual quantum Langevin approach [4]. The temperatures of the
effective thermal baths can be determined from the equilibrium numbers of excitation in the modes in the absence of
probing, nth ≡ 〈b̂†mb̂m〉 = (Nm/∆Nm), which are calculated directly from the definitions of b̂m under the assumption
that the processes that determine the equilibrium populations Nm affect all atoms independently.

The Heisenberg equations of motion describing the evolution of the modes from the fast-decaying family are identical
to Eq. (SI B.23-SI B.24), except that they include additional terms due to the explicit time dependence of their
operators. These terms are more convenient to present for the annihilation operators than for the quadratures, they
are given by

d

dt
b̂′m(t) = −i

[
b̂′m, Ĥ

]
+

1√
∆Nm 〈∆g2〉c

N∑

k=1

(
d

dt
∆gk(t)

)
σ̂

(k)
m+1,m, (SI B.25)

where −i[b̂′m, Ĥ] contributes the terms due to the coherent evolution and the coupling to the light field that are
completely analogous to those present in Eq. (SI B.23-SI B.24). The added terms give rise to both extra dissipation
and fluctuations. If the motional correlation function is exponential, 〈∆gk(t1) ∆gk(t2)〉 ∝ e−γb|t1−t2|/2, as it was
suggested in [6], the stochastic evolution of ∆gk(t) can be modeled by the Ornstein–Uhlenbeck process,

d

dt
∆gk(t) = −γb

2
∆gk(t) +

√
γbfk(t), (SI B.26)

where 〈fk(t1)fk(t2)〉c = 〈∆g2〉c δ(t1 − t2). In this case, the extra terms in the Heisenberg-Langevin equations for b̂′

can be re-expressed as

d

dt
b̂′m(t) = −i

[
b̂′m, Ĥ

]
− γb

2
b̂′m(t) +

√
γbF̂ ′b(t), (SI B.27)

where 〈F̂ ′†b (t1)F̂ ′b(t2)〉 = nthδ(t1 − t2) and nth = Nm/∆Nm is the thermal occupancy of the bath. While the atomic
motion increases the decoherence rate, the thermal bath occupancies for the fast- and slow-decaying modes are the
same.
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Appendix C: The backaction-imprecision product in homodyne detection

The two conjugated quadratures of the probe light that after interaction with the atomic ensemble, X̂out
L and P̂ out

L ,

as well as any intermediate quadrature Q̂φL,

Q̂φL(t) = sin(φ)X̂out
L (t) + cos(φ)P̂ out

L (t), (SI C.1)

can be detected by balanced polarization homodyning after passing the output light through a combination of a half
and a quarter waveplates. The rotation angles of the waveplates allow setting the detection angle φ. The two-sided
power spectral density (PSD) of the photocurrent signal is given by

Sφ[Ω] =
1

4
(1− η) + η

∫ ∞

−∞
eiΩτ

〈
Q̂φL(t+ τ) Q̂φL(t)

〉
dτ, (SI C.2)

where η is the detection efficiency. When the optical field is in the vacuum state, its correlation is given by 〈Q̂φL(t+

τ) Q̂φL(t)〉 = (1/4)δ(τ), and therefore Sφ[Ω] = 1/4; this value is the shot noise level. The observation Sφ[Ω] < 1/4
means that some of the Fourier-domain modes of light are in squeezed states.

The spectral density of the photocurrent when the homodyne is tuned to detect the P quadrature is given by

Sφ[Ω] =
1

4
+ ηΓSXSXS

[Ω] + η SPP,ext[Ω], (SI C.3)

where SXSXS
[Ω] is the spectrum of the total spin motion, and SPP,ext[Ω] is the extraneous noise. In the slow-

measurement regime when Γ � |ΩS |, SPP,ext comes from the thermal noise of fast-decaying modes (see Sec. D),
and in the fast-measurement regime when Γ ∼ |ΩS |, SPP,ext = 0. There is no detectable extraneous noise in the X
quadrature of light in our experiments. The spectrum of the imprecision noise for measurements on the P quadrature
is given by

Simp[Ω] =
1/4 + SPP,ext[Ω]

ηΓ
, (SI C.4)

The spectrum of the backaction noise is given by SBA[Ω] = ~2
(
Γ(1 + ζ2) + γsc

)
, where γsc is the decoherence rate of

the oscillator due to spontaneous scattering, which is proportional to the probe power. We conservatively estimate
γsc/Γ as 1/Cq (as if all the decoherence of spin oscillators comes from spontaneous scattering). Overall, the backaction-
imprecision product in terms of the two-sided spectral densities is found as

√
Simp SBA = (~/2)

√
1

η

(
1 +

SPP,ext

SN

)(
1 + ζ2 +

1

Cq

)
. (SI C.5)

where SN = 1/4 is the shot noise level. This expression exposes how various imperfections of the measurements,
including the finite detection efficiency, the extraneous noise, the “heating” due to spontaneous scattering, and the
dynamical backaction, elevate the backaction-imprecision product above the quantum limit of ~/2 in our experiments.

Appendix D: The modeling of the experimental data

To process the experimental data, we model the homodyne spectrum as arising from the dynamics of several oscilla-
tor modes coupled to the probe field, using the input-output relations that are expressed analogously to Eqs.(SI B.21)
and (SI B.22),

X̂out
L (t) = X̂ in

L (t)−
nmodes∑

i=1

ζi
√

ΓiP̂i(t), P̂ out
L (t) = P̂ in

L (t) +

nmodes∑

i=1

√
ΓiX̂i(t). (SI D.1)

and the Heisenberg equations of motion analogous to Eqs.(SI B.23) and (SI B.24),

d

dt
X̂i(t) = ΩiP̂i(t)−

γ0,i

2
X̂i(t)−

nmodes∑

j=1

ζi
√

ΓiΓjX̂j(t)− 2ζi
√

ΓiP̂
in
L (t) + F̂Xi (t), (SI D.2)

d

dt
P̂i(t) = −ΩiX̂i(t)−

γ0,i

2
P̂i(t)−

nmodes∑

j=1

ζj
√

ΓiΓjP̂j(t) + 2
√

ΓiX̂
in
L (t) + F̂Pi (t). (SI D.3)
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The index i counts the modes of the model, corresponding to the hybridized resonances we observe in the experimental
spectra. The model accounts for the intrinsic dissipation of the modes characterized by the damping rates γ0,i, and

thermal forces F̂X,Pi (t) via the quantum Langevin approach. The correlators of the thermal forces are

〈
F̂Xi (t1)F̂Xj (t2)

〉
=
〈
F̂Pi (t1)F̂Pj (t2)

〉
= δijγ0,i(nth + 1/2)δ(t1 − t2),

〈
F̂Xi (t1)F̂Pj (t2) + F̂Pj (t2)F̂Xi (t1)

〉
= 0.

(SI D.4)

The intrinsic dissipation in our experiments is dominated by spin depolarization due to the atomic collisions and
spontaneous scattering of probe photons, which is why we assume that it symmetrically affects X and P , and that the
thermal noises are delta-correlated [5]. The thermal occupancy of the intrinsic bath is nth = 0.9 ± 0.1, as extracted
from the equilibrium macroscopic population distribution of atoms over the magnetic sublevels.

The fast-decaying modes are treated as one, because their frequency splitting is much smaller than their deco-
herence rates. This mode is accounted differently for different detunings of the optical probe. At large detunings,
the measurement rate for the fast-decaying mode also is much smaller than its decoherence rate, and the dynamic
backaction is negligible. In this case, it contributes incoherent thermal noise to the measurement of slow-decaying
modes. The spectrum of this noise in the P̂L quadrature of the output light is given by

SPP,ext[Ω] = Γ′
∫ ∞

−∞
ei(Ω−ΩS)τ 〈∆g(t+ τ)∆g(t)〉c

〈∆g(t)2〉c
dτ, (SI D.5)

where Γ′ is the measurement rate of the mode and 〈∆g(t+ τ)∆g(t)〉c is the correlation function of the atomic motion
(introduced in Sec. B). Experimentally, we find that this spectrum at frequencies close to the resonance has a Gaussian
shape (consistent with a non-Markovian thermal bath), and describe it using the expression

SPP,ext[Ω]/SN = Ab e
−(Ω−ΩS)2/(2γ2

b ), (SI D.6)

where Ab is the magnitude of the added noise on resonance in shot noise (SN) units, and γb is the characteristic decay
rate. The spectral width of the broadband noise is closely related to the transition time τ of atoms through the probe
beam, γb ∼ 1/τ = vth/w, where w is the width of the beam, vth =

√
2kBT/MCs ≈ 200 m/s is the thermal velocity

atoms, T = 52 °C is the operating temperature, kB is the Boltzmann constant and MCs is the mass of one atom.
At the detuning of the optical probe equal to 0.7 GHz, at which the measurement rate of the spin reaches the

oscillation frequency, the fast-decaying mode of the atomic ensemble is in the backaction-dominated regime. We
therefore include it as an extra oscillator in Eqs. (SI D.1—SI D.3). This approach effectively approximates the
correlation function of the thermal motion of the mode by an exponential, which in the spectral domain may introduce
an error in the frequency window of several hundreds of kHz around the resonance, much smaller than the full
bandwidth of the fit (several MHz).

The full comparison between the model and the experimental data at different optical detunings is shown in
Fig. SI2. The data obtained at 7 GHz optical detuning is described by the response of a single oscillator mode to
the measurement backaction. The data obtained at 3 GHz detuning is described with nmodes = 2. At 0.7 GHz, we
include the fast-decaying mode in the model and describe the experiment with nmodes = 3. The homodyne spectra
at all quadratures are processed in one global fit, where the resonance frequencies Ωi, the measurement rates Γi, the
dynamical backaction coefficients ζi, the intrinsic damping rates γ0,i, and the quadrature angles φ are free parameters,
and the values of the thermal occupancy nth and the detection efficiency η are taken from independent calibrations.
When processing the broadband measurements at 0.7 GHz, we additionally correct for the frequency response of the
measurement electronic chain. The total quantum cooperativity for the data in Fig. SI2c is 4.6.

Appendix E: The sign of the mass

Spin oscillators can have positive or negative effective masses depending on the orientation of the mean spin
alignment 〈Ĵx〉 with respect to the magnetic field. The sign of the mass determines the overall sign of the response
χ[Ω] of the oscillator to generalized forces, including the quantum backaction force when the oscillator is subjected to
linear measurements. Negative-mass oscillators can cancel measurement backaction on regular material oscillators [1],
and become entangled with them [4].

The sign of the oscillator mass, together with the detection angle and the Fourier frequency, determines the sign of
the backaction-imprecision correlations observed in homodyne measurement records. For multiple resonances, it also
inverts the signs of the frequency splittings due to the Stark and quadratic Zeeman effects. The total effect of inverting
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FIG. SI2. a)-c) Power spectral densities (PSD) of homodyne signals recorded at different quadrature angles φ and laser
detunings ∆. The points of different colors show the experimental spectra for different quadrature angles as labeled in the
legends. The black curves show the results of global fits at each detuning performed as described in Sec. D. Gray points show
the local oscillator shot noise. Panel a) displays only part of the 17 traces fitted in total. d) The effect of changing the oscillator

mass, M , on the homodyne spectrum measured at a quadrature intermediate between X̂L and P̂L. The blue curve shows the
spectrum recorded in a negative mass (M) configuration, the orange curve shows the spectrum recorded in a positive mass
configuration, and the gray curve shows the local oscillator (LO) shot noise. The sign of the mass was changed by inverting
the direction of the magnetic field with respect to the x axis. The spectra were recorded using a 12 mW probe detuned from
the optical transition by 3 GHz.

the mass sign on homodyne spectra is therefore the reflection of the spectra with respect to the Larmor frequency.
We observe this in Fig. SI2d, where we invert the sign of the mass by changing the direction of the magnetic field.

Appendix F: The spectrum of the homodyne signal in the presence of dynamical backaction

To illustrate the effect that the deviation of the interaction Hamiltonian from pure position measurement-type
(ζ = 0) has on the detected spectra and the squeezing of light, we present an analytical solution for the optimum-
quadrature homodyne spectrum in the single-oscillator model with arbitrary ζ ∈ [−1, 1] under the rotating-wave
approximation (RWA). For a single mode, by solving Eqs. (SI D.2-SI D.3) and using the input-output relations given
by Eq. (SI D.1), we find the spectrum of the output signal neglecting the detection losses as

Sφ[Ω]/SN = 1 + 2Re [Aχ[Ω]] + |Aχ[Ω]|2
(

1 +
γth + γ0

Γ(1 + ζ)

)
, (SI F.1)
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where SN = 1/4 is the shot noise level, χ[ω] = −(1/2)/(∆Ω + iγ/2) is the RWA force susceptibility, ∆Ω = Ω− ΩS is
the Fourier-detuning from the oscillator resonance, γ = γ0 +2ζΓ is the total oscillator linewidth, and the transduction
factor A is

A = iΓ(1 + ζ)
(
(1 + ζ) + (1− ζ)e−2iφ

)
. (SI F.2)

By minimizing Eq. (SI F.1) over the quadrature angle φ, we find the frequency-dependent maximum-squeezing angle
φmin via

tan (2φmin[Ω]) = −2∆Ω

γdec
, (SI F.3)

where the total decoherence rate γdec = γth + γQBA is the sum of the decoherence rates due to the intrinsic thermal
noise, γth and the quantum backaction, γQBA which are defined as

γth = (2nth + 1)γ0, γQBA = Γ(1 + ζ2). (SI F.4)

The shot-noise normalized signal spectrum at the optimum quadrature is

Sφmin [Ω]/SN = 1− 2γDBA/γ

1 + (2∆Ω/γ)2
− 2γdecΓ/γ2

1 + (2∆Ω/γ)2


(1− ζ2)

√
1 +

(
2∆Ω

γdec

)2

− (1 + ζ2)


 , (SI F.5)

where γDBA = 2ζΓ is the contribution of the dynamical backaction to the total oscillator linewidth (the optical
damping). The absolute minimum of the spectrum is found by further minimizing Sφmin

[Ω] over ∆Ω, which can be
done analytically in the general case, but yields a cumbersome result. Instead of presenting this result, we restrict the
attention to the case ζ � 1, which is relevant to our experiments, and estimate the minimum noise level by evaluating
Sφmin [Ω] at ∆Ωmin,ζ=0 = 1/2

√
γ(2γdec + γ), the optimum Fourier detuning for ζ = 0. The result is

Smin ≈ 1− Γ

γdec + γ0
− (γ0 + γth)γDBA

(γ0 + γdec)2
. (SI F.6)

When the thermal occupancy of the intrinsic bath is close to zero, and the quantum cooperativity is in the intermediate
regime, such that γdec has the same order of magnitude as γ0, there is an improvement in the minimum noise level
from a small positive optical damping.

Appendix G: The generation of the collimated tophat beam
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FIG. SI3. Optical setups for the generation of collimated tophat beams. Ma,b are ray transfer matrices. a) A simple setup.
The dashed black line shows how the beam would propagate after passing the beam shaper and the lens f1, but without passing
the negative lens f2. EFL: effective focal length. b) A realistic setup designed using the condition Ma = Mb. Beam shaper:
Gaussian-to-tophat beam-shaping lens.

Optical beams with tophat transverse profiles are commonly produced by passing a collimated Gaussian beam
through an aspherical beam shaper, and focusing the beam after the shaper using a spherical lens. In this configuration,
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the optimum tophat profile (giving the sharpest roll-off of the intensity distribution in the transverse direction) is
realized before the focal point, and the beam is tightly focused. In our experiment, it is essential to create a beam
in which the tophat profile coincides with the position of the beam waist, and has a relatively large transverse size,
enabling a long Rayleigh length extending over the entire cell channel.

An intuition on how to produce a tophat beam that fulfills our criteria can be obtained by examining the setup
shown in figure Fig. SI3a, which is a straightforward extension of the usual beam shaper application scheme with
an addition of a negative lens f2. The optimum tophat transverse profile is realized at a distance one effective focal
length (EFL) away from the first lens. The transverse width is proportional to the focal length f1. The beam is
converging at the optimum point, because of the full fan angle of the tophat beam shaper (i.e. the divergence the
shaper introduces in the beam). By placing an appropriate negative lens f2 in the optimum point, the beam can be
collimated, and its waist position made coincide with the optimum location of the transverse profile. The required
focal length of the negative lens can be calculated given the size of the input Gaussian beam, win, and the full fan

angle of the beam shaper, φFA, as f2 = φFA/winf1
φFA/win−1/f1

.

The setup in Fig. SI3a would be challenging to implement directly, because the waist position of the beam is located
inside the cell, where placing a lens is hardly realistic. However, one can find an optical setup with an identical ray
transfer matrix to the one in Fig. SI3a, but realized using a different physical arrangement of lenses. Such a setup is
shown in Fig. SI3b. The transfer matrices for the two setups, Ma and Mb, are given by

Ma = L(f2)S(f1)L(f1), Mb = S(L3)L(F2)S(L2)L(F1)S(L1), (SI G.1)

where the matrices for propagation in free space, S, and passing through a lens, L, respectively, are

S(L) =

[
1 L
0 1

]
, L(f) =

[
1 0
−1/f 1

]
. (SI G.2)

In our experiment, the setup in Fig. SI3b is implemented using lenses of pre-determined focal lengths F1 and F2,
while the separating distances L1, L2 and L3 are adjusted to meet the condition Ma = Mb. Additionally, the matrix
Ma is supplemented by an inversion in the transverse plane, which can be interpreted as passing the beam through
an extra 4f optical system, which is done in order to have more flexibility in the choice of lenses and more control
over the resulting distances.
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Entanglement is a key resource for quantum information pro-
cessing1, quantum-enhanced sensing2 and fundamental tests 
of quantum theory3,4. Hybrid quantum systems often provide 

novel synergetic functionalities5,6. In particular, entangled states 
of motional and spin degrees of freedom have played a prominent 
role in quantum computing and simulation with trapped ions and 
atoms7–9. There, entanglement between motion and spin is generated 
by short-range interactions between individual atoms positioned at 
micrometre-scale distances, with motional and spin degrees of free-
dom associated with the same atoms.

A very different regime, focused on long-range macroscopic 
entanglement between the motion of one object and a spin of 
another, has been proposed in ref. 10 (see also ref. 11). The key idea is 
to let an atomic spin in a magnetic field act as a negative-mass oscil-
lator10,12–14, enabling coherent quantum back-action (QBA) cancella-
tion15, thereby permitting travelling light to generate entanglement 
between the two objects. The negative-mass idea, which has been 
implicitly used in earlier experiments with two atomic ensem-
bles12,16–18, has been further developed in refs. 19–21 and has become 
the basis for quantum-mechanics-free subspaces22.

Negative-mass-enabled instability23 and strong coupling24 have 
been recently demonstrated using the coupling of a motional degree 
of freedom to a spin system. In refs. 25,26, sympathetic cooling of a 
mechanical oscillator optically coupled to atoms has been shown. 
The negative-mass reference frame idea has also been utilized in 
proposals27,28 by using an auxiliary mechanical system and multiple 
drive tones. In this way, entanglement has been generated between 
two micromechanical oscillators embedded in a common micro-
wave cavity29. An approach to mechanical–mechanical entanglement 
based on single-photon detection was demonstrated in refs. 30,31.

Here we report an experimental implementation of Einstein–
Podolsky–Rosen (EPR) entanglement in a hybrid system consist-
ing of a mechanical oscillator and a spin oscillator10, as depicted 
schematically in Fig. 1a. An out-of-plane vibrational mode of a 
soft-clamped, highly stressed dielectric membrane32, which is 
embedded in a free-space optical cavity, constitutes the mechani-
cal subsystem. The spin subsystem is prepared in a warm ensemble 
of optically pumped caesium atoms confined in a spin-preserving 
microcell33. The two oscillators are coupled to an itinerant light 
field and optically read out in a cascaded fashion. The basic ingredi-
ents of our hybrid set-up and the principle of QBA evasion using a 
negative-mass oscillator have been described in ref. 14.

The collective macroscopic spin ̂Jx ¼
PN

i¼1 F̂
ðiÞ
x

I
 of N ≈ 109 atoms, 

each with total angular momentum components ðF̂ðiÞ
x ; F̂

ðiÞ
y ; F̂

ðiÞ
z Þ

I
, is 

optically pumped in the direction x of the magnetic bias field B. 
In the limit where the magnitude of the mean longitudinal spin 
Jx ¼ jhĴ xij
I

 far exceeds the transverse collective spin components,  
Ĵ y
I
 and Ĵ z

I
, the latter can be mapped to the harmonic oscillator vari-

ables X̂S ¼ Ĵ z=
ffiffiffiffiffiffiffi
_Jx

p

I
 and P̂S ¼ �Ĵ y=

ffiffiffiffiffiffiffi
_Jx

p

I
, satisfying the canonical 

commutation relation ½X̂S; P̂S ¼ i
I

 (ref. 34). The transverse compo-
nents precess around the magnetic field at the Larmor frequency  
ωS ∝ B according to ĤS ¼ �_ωS Ĵ x  �_ωSJx þ ð_ωS=2ÞðX̂

2
S þ P̂

2
S Þ

I
, 

where the first term is a constant offset.
Since the optical pumping prepares the collective spin near 

the energetically highest Zeeman state, the collective spin real-
izes a negative-mass oscillator, that is, ωS < 0 (ref. 13), with a 
counter-rotating trajectory (Fig. 1a). The ‘negative mass’ ter-
minology arises by analogy to the standard harmonic oscillator 
Hamiltonian Ĥ ¼ mω2X̂

2
=2þ P̂

2
=ð2mÞ

I
, in which the sign of the 

Entanglement between distant macroscopic 
mechanical and spin systems
Rodrigo A. Thomas   1,5, Michał Parniak   1,5, Christoffer Østfeldt1,5, Christoffer B. Møller   1,2,5, 
Christian Bærentsen1, Yeghishe Tsaturyan   1,3, Albert Schliesser1, Jürgen Appel   1,4, Emil Zeuthen   1 
and Eugene S. Polzik   1 ✉

Entanglement is an essential property of multipartite quantum systems, characterized by the inseparability of quantum states 
of objects regardless of their spatial separation. Generation of entanglement between increasingly macroscopic and disparate 
systems is an ongoing effort in quantum science, as it enables hybrid quantum networks, quantum-enhanced sensing and prob-
ing of the fundamental limits of quantum theory. The disparity of hybrid systems and the vulnerability of quantum correlations 
have thus far hampered the generation of macroscopic hybrid entanglement. Here, we generate an entangled state between the 
motion of a macroscopic mechanical oscillator and a collective atomic spin oscillator, as witnessed by an Einstein–Podolsky–
Rosen variance below the separability limit, 0.83 ± 0.02 < 1. The mechanical oscillator is a millimetre-size dielectric membrane 
and the spin oscillator is an ensemble of 109 atoms in a magnetic field. Light propagating through the two spatially separated 
systems generates entanglement because the collective spin plays the role of an effective negative-mass reference frame and 
provides—under ideal circumstances—a back-action-free subspace; in the experiment, quantum back-action is suppressed  
by 4.6 dB.
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mass m determines that of both the potential and kinetic energies, 
as does the sign of ωS in ĤS

I
.

Trajectory of an entangled EPR pair
Fundamentally, the non-commuting quadratures of motion 
½X̂jðtÞ; P̂jðtÞ ¼ i
I

 for the individual systems (where j ∈ {S,M} labels 
spin and mechanics) cannot be known simultaneously with arbi-
trary precision due to the Heisenberg uncertainty principle; in par-
ticular, Var½X̂j þ Var½P̂j≥1

I
. This limit is enforced by the QBA of 

the meter field (for example, light) on the measured oscillator.
Such a limit does not apply to a commuting combination of vari-

ables such as ½X̂EPR; P̂EPR  ½ðX̂M � X̂SÞ=
ffiffiffi
2

p
; ðP̂M þ P̂SÞ=

ffiffiffi
2

p
 ¼ 0

I
, 

that is, the sum of variances is no longer bounded from below. In 
fact, V ¼ Var½X̂EPR þ Var½P̂EPR<1

I
 (ref. 35) implies entanglement 

between systems S and M, which is analogous to violating the 
single-system limit with the EPR variables. Since the EPR vari-
ables describe spatially separated systems, this effective oscillator  
is non-local.

We entangle the two oscillators by a back-action-evading collec-
tive position measurement. For matched frequencies, −ωS = ωM ≡ 
ω > 0, the negative-mass spin oscillator’s response to the perturbing 
optical field happens with a phase opposite to that of the positive-mass 
oscillator. The resulting information written onto the optical meter 
phase is P̂

out
L / X̂EPRðtÞ ¼ cosωtX̂EPRð0Þ þ sinωtP̂EPRð0Þ
I

, and 
thus only depends on the initial values of X̂j

I
 and P̂j

I
, in the absence 

of damping and intrinsic oscillator noise. Thus, under ideal condi-
tions, the joint measurement on an EPR-entangled system produces 

a noiseless trajectory of one oscillator in the reference frame of  
the other13.

In quantum theory, those trajectories arise as the expectation 
values of the dynamical variables with respect to the conditional 
quantum state ρ̂cðtÞ

I
, that is, incorporating the information con-

tained in the measurement record obtained at times t0< t
I

. Tracking 
the conditional state evolution is relatively straightforward in the 
present case of Gaussian states, dynamics and measurements 
(Supplementary Section C), where ρ̂cðtÞ

I
 is characterized solely by 

its first and second moments, which may be extracted by linear fil-
tering of past measurement outcomes36,37. Optimal filter functions 
are determined from the equations of motion, noise statistics and 
the input–output relations for the light fields. The optimal filter that 
takes into account data from a time period [0, t] to estimate, for 
example, X̂EPR

I
 is called the Wiener filter, a version of the Kalman 

filter widely used for state estimation38. In the simplest case, the fil-
ter envelope is an exponential with the rate defined by decoherence 
and readout processes, as pictorially shown in the inset in Fig. 1a. 
Such exponential filtering has been used in, for example, refs. 18,39. 
From the Wiener filter KX for X̂EPR

I
 the conditional quadrature is 

obtained as

Xc
EPRðtÞ ¼

Z t

0
dt0 KXðt0 � t; tÞiðt0Þ; ð1Þ

where i(t) is the instantaneous photocurrent obtained by the 
homodyne detection of the optical quadrature P̂out

L ðtÞ
I

 of the trans-
mitted light. To obtain the exact Wiener filter, we solve the Wiener–
Hopf equations (Supplementary Section C), which involve the 
cross-correlation CXi(t) between the oscillator signal X̂EPR

I
 and i(t) 

as well as Cii(t), the autocorrelation of i(t).
The variance of the conditional state, the residual uncer-

tainty in our knowledge about the system, is deterministic and 
given by Varc½X̂EPRðtÞ  Var½X̂EPRðtÞ � Xc

EPRðtÞ ¼ Var½X̂EPR
I�Var½Xc

EPRðtÞ
I

, that is, the difference between the unconditional 
(steady-state) variance Var½X̂EPR

I
 and the (ensemble) variance 

of our optimal estimate Var½Xc
EPRðtÞ ¼

R t
0 dt

0 KXð�t0; tÞCXiðt0Þ
I

 
(Supplementary Section C). We calculate Var½X̂EPR

I
 and CXi(t) 

using fitted model parameters. In this manner, a complete set of 
second moments and the full conditional covariance matrix for 
ðX̂EPR; P̂EPRÞ
I

 are found. The raw experimental photocurrent i(t) 
is used to obtain the stochastic first moments, fully defining the 
Gaussian state. Var½X̂EPR

I
 contains contributions due to imperfect 

QBA cancellation and thermal fluctuations, but if the correlation 
of X̂EPR

I
 with Xc

EPR
I

 is strong enough, it leads to entanglement as  
witnessed by Varc½X̂EPRðtÞ

I
. Qualitatively speaking, conditioning 

suppresses the thermal noise.
We use Wiener filtering to continuously track the EPR oscil-

lator ðX̂EPR; P̂EPRÞ
I

 by inferring the conditional expectation val-
ues Xc

EPR  ðXc
M � Xc

S Þ=
ffiffiffi
2

p

I
 and Pc

EPR  ðPc
M þ Pc

SÞ=
ffiffiffi
2

p

I
 (optimal 

weights of M and S variables are determined by the full model 
as presented in Supplementary Section D). Demodulating i(t) 
with cosωt

I
 and sinωt

I
, respectively, we obtain the conditional 

system quadratures ð~Xc
EPR; ~P

c
EPRÞ

I
, describing the rotating-frame 

dynamics of the EPR-entangled system (Fig. 1b). As the condi-
tioning progresses, we obtain a more precise estimate of the con-
ditional system state, as witnessed by the decreasing conditional 
variance shown in Fig. 1c. In the long-conditioning-time limit, 
maximum information is extracted from past measurements, 
and the shape of the Wiener filter attains its steady-state form, 
Kðt0 � t; tÞ ! Kðt0 � tÞ
I

. The corresponding steady-state condi-
tional variance that we observe for a near-resonant case (ωM ≈ −ωS)  
is Vc ¼ Varc½X̂EPR þ Varc½P̂EPR ¼ 0:83 ± 0:02<1

I
, certifying ent-

anglement of the spin and mechanics. This can be directly compared 
with a case where the frequencies of the systems are not matched, 
and consequently the best value Vc = 2.02 ± 0.03 is above the  
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Fig. 1 | Tracking of the EPR oscillator. a, A simplified schematic of the 
entangled system, consisting of an atomic spin ensemble and a mechanical 
oscillator in a cavity, separated from the atoms by a 1 m distance, and 
probed by light in a cascaded manner. Phase spaces and the evolution 
for the spin (X̂S; P̂S

I
) and mechanical (X̂M; P̂M

I
) quantum degrees of 

freedom are shown above the respective systems. The measurement 
photocurrent i(t) is convolved with a Wiener filter Kðt0; tÞ

I
 (approximate 

envelope shown in the inset), to yield a conditional trajectory. b, Quantum 
phase-space trajectory of an EPR-entangled oscillator pair along with 
deterministic variance of the estimate Vu = 1.91 ± 0.05 for t = 0 (red) and 
the approximately final conditional variance of Vc = 0.83 ± 0.02 at t = 110 
μs (blue). c, Evolution of the conditional variance Vc for the resonant (red to 
blue) and far-detuned (green), that is, for a joint and spectrally separated 
oscillators, respectively. The circle marks the variance at the end of the 
trajectory in b. The shaded areas mark the 1σ uncertainty of Vc.
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entanglement limit. In the rest of the paper, we describe the experi-
ment and analysis leading to the entanglement observation.

Experimental implementation
The layout of the hybrid system is outlined in Fig. 2 (see 
Supplementary Section A for further details). First, the light inter-
acts with the collective spin of a caesium atomic ensemble, contained 
in a 300 μm × 300 μm × 10 mm glass cell. The spin anti-relaxation 
coating of the cell40, along with magnetic shielding, provides a spin 
coherence lifetime of T2 = 0.7 ms.

Light interacts with the spin ensemble in a double-pass con-
figuration, thus increasing the light–spin interaction strength. The 
quantum operators of interest, X̂in

L
I

 and P̂in
L
I

, are the in-phase and 
in-quadrature vacuum fluctuations of the field polarized orthogo-
nally to local oscillator 1 (LO1). Light–matter mapping is well 
described by the Hamiltonian Ĥint=_ /

ffiffiffiffiffi
ΓS

p
ðX̂SX̂L þ ζSP̂SP̂LÞ

I
, 

which is close to the quantum non-demolition (QND) interaction 
as ζS ~ 0.03. The interaction leads to a rotation of the input polariza-
tion state16, with a coupling rate ΓS/2π = 20 kHz and the bandwidth 
γS0/2π = 1.7 kHz (full-width at half-maximum) due to decoher-
ence processes. The deviation from the QND interaction leads to 
light partially exchanging states with the oscillator17,41, addition-
ally broadening the spin oscillator18 with rate δγS/2π ≡ 2ζSΓS = 
1.2 kHz. The spin also couples to its own effective thermal bath 
with the net stochastic force F̂S

I
 originating from imperfect optical 

pumping, spin-exchange collisions and projection noise, resulting 
in the mean bath occupation nS = 0.8. After interaction with the 
spin system, quantum light is coupled to the mechanical oscillator 
 (see Methods).

The mechanical oscillator is realized in a highly stressed silicon 
nitride membrane that is 13 nm thick and has millimetre-scale 
transverse dimensions. The membrane is periodically patterned, 
leading to the emergence of a phononic bandgap. The soft-clamped32 
mechanical mode is an out-of-plane, localized centre-of-mass 
vibrational mode (see inset in Fig. 2) with a frequency of ωM0/2π 
= 1.370 MHz and a quality factor of Q = 650 × 106, that is, a natu-
ral linewidth of γM0/2π = 2.1 mHz, at cryogenic operating temper-
atures. The membrane is placed near the optical beam waist of a 
2.6-mm-long cavity that has a linewidth of κ/2π = 4.2 MHz, and is 
strongly overcoupled in reflection by 93%.

The optomechanical system is mounted in a 4 K flow cryostat 
and optically probed. The effective thermal bath at 10 K acts as a 
stochastic driving force F̂M

I
 for the mechanical mode of interest. 

Light is detuned by Δ/2π ≈ −0.7 MHz from the cavity resonance, 
cooling the mechanical mode to near its motional quantum ground 
state with a mean phonon occupancy of roughly 2. This dynami-
cal back-action cooling4 broadens the mechanical response to  
γM/2π = 3.9 kHz and redshifts its resonance frequency by 1 kHz to 
ωM/2π = 1.369 MHz. The state of the mechanical system is extracted 
optically at a readout rate of ΓM/2π = 15 kHz.

Homodyne phase-quadrature measurement of the light reflected 
off the optomechanical cavity is performed with LO3. The optical 
transmission between the spin and mechanical systems is ν = 0.53, 
and the final EPR detection efficiency is η = 0.77, which includes 
optical losses in the path between the hybrid system and the detec-
tor and the detector quantum efficiency.

Model for the hybrid system
To construct the Wiener filter and deduce the entanglement from 
the data we derive the input–output relations for both systems indi-
vidually and for the hybrid set-up.

The response equation for the individual oscilla-
tors is X̂j ¼ χj½F̂j þ 2

ffiffiffiffiffi
Γj

p
ðX̂ in

L;j ± iζjP̂
in
L;jÞ

I
, where ± signi-

fies sign(ωj0). The effective Fourier-domain susceptibility is 
χjðj0ÞðΩÞ ¼ ωj0=ðω2

j �Ω2 � iΩγjðj0ÞÞ
I

 including (excluding) the 
dynamical broadening δγj ≡ γj − γj0 = 2ζjΓj, parameterized in terms 
of the readout rate Γj and 1 > ζj > − 1 (Ω is the Fourier frequency). 
Positive dynamical broadening ζj > 0 provides beneficial cooling 
while adding extra QBA noise.

The input–output relation for the optical quadratures 

X̂
inðoutÞ
L;j  ðX̂inðoutÞ

L;j ; P̂
inðoutÞ
L;j Þ

>

I
 probing the individual oscillators 

is X̂out
L;j ¼ X̂

in
L;j þ

ffiffiffiffiffi
Γj

p
ð± iζj; 1Þ>X̂j

I
, showing how ζj ≠ 0 entails 

the simultaneous mapping of the oscillator response into both light 
quadratures (see Supplementary Section B for details).

In the hybrid experiment light propagates from the spin ensem-
ble to the mechanics, and the phases of the quadratures are adjusted 
by tuning the phase φ between LO1 and LO2 (Fig. 2) such that 
X̂

in
L;M ¼ � ffiffiffi

ν
p

X̂
out
L;S þ

ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p
X̂L;ν

I
, where X̂L;ν

I
 is the vacuum field due 

to intersystem losses 1 − ν. Whenever ζM ≠ ζS, a part of the spin 
response X̂S

I
 is mapped into the optical quadrature driving the 

mechanics, X̂in
L;M þ iζMP̂

in
L;M

I
; this enables non-local dynamical cool-

ing of the combined EPR oscillator, a mechanism related to uncon-
ditional entanglement generation18,21. The EPR readout impinging 
on the detector is X̂out

L ¼ ffiffiffi
η

p
X̂

out
L;M þ ffiffiffiffiffiffiffiffiffiffiffi

1� η
p

X̂L;η

I
, accounting for 

the finite EPR detection efficiency η.
Combining those relations, we obtain the EPR readout through 

the phase quadrature of light

P̂
out
L ¼ P̂

in 0

L þ ffiffiffi
η

p ffiffiffiffiffiffiffi
ΓM

p
X̂M �

ffiffiffiffiffiffiffiffi
νΓS

p
X̂S

�  ð2AÞ

 P̂
in 0

L þ ffiffiffi
η

p ð � ffiffiffi
ν

p χS
χS0

ΓMχM þ χM
χM0

ΓSχS

h i
2X̂

in
L;S

þ
ffiffiffiffiffiffiffi
ΓM

p
χM½F̂M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� νÞΓM

p
2X̂L;ν  � χM

χMS

ffiffiffiffiffiffiffiffi
νΓS

p
χSF̂SÞ;

ð2BÞ

where P̂in 0

L
I

 is the measurement imprecision noise including shot 
noise (SN) and broadband spin noise due to imperfect motional 
averaging33. The second line of equation (2B) contains the uncor-
related noise contributions driving the individual subsystems: 
intrinsic thermal and ground-state noise F̂j

I
 and the extraneous  

QBA X̂L;ν

I
.

The thermal forces acting on subsystem j are suppressed due to the 
dynamical cooling δγj > 0 (contained in χj) occurring locally at each 
subsystem. Additionally, the thermal spin response χSF̂S

I
 is further 
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 �

LO 3LO
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2

Input
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λ/2

λ/4
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mble

Membrane

Cryostat 4 K
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B

1 mm

Fig. 2 | Experimental set-up for hybrid entanglement generation. The 
local oscillator LO1 reads out the spin system precessing in the magnetic 
field B, with the quantum sideband fields written into the orthogonal light 
polarization. After splitting off LO1, LO2, phase shifted by φ relative to LO1, 
is mixed with the sidebands. After projection into a common polarization, 
this light is sent to the mechanical system, which is probed in reflection. 
Final homodyne measurement of the cascaded hybrid system is performed 
with LO3, with phase ϑ. λ/2, half-wave plate; λ/4, quarter-wave plate; PBS, 
polarizing beam splitter. See main text for details. Inset: mode shape of the 
mechanical mode under investigation (absolute displacement, linear scale).

NATURE PhYSiCS | VOL 17 | FEBRUARy 2021 | 228–233 | www.nature.com/naturephysics230



ArticlesNaTuRE PHysics

suppressed by χM/χMS due to the non-local dynamical EPR cooling, 
introducing the cross-susceptibility χ�1

MS ðΩÞ  χ�1
M0ðΩÞ � i2ζSΓM

I
.

The joint QBA term / X̂
in
L;S

I
 in the first line of equation (2B) 

embodies the central physical mechanism of our scheme resulting 
from the following two interfering processes: first, the spin system 
produces squeezed amplitude fluctuations X̂out

L;S  ðχS=χS0ÞX̂
in
L;S

I
 that 

map into the mechanical phase quadrature response according to 
ΓMχM; second, the spin QBA response P̂out

L;S � ΓSχSX̂
in
L;S

I
 is subse-

quently filtered by the mechanical system according to χM/χM0. We 
remark that the function χj/χj0 suppresses near-resonant spectral 
components in a bandwidth γj with maximal suppression γj0/γj at  
Ω ~ ωj (for δγj > 0). Since γM0/γM ≪ 1, this entails strong suppression 
of the spin QBA response, whereas the amplitude squeezing by the 
spin is more moderate γS0/γS ≈ 0.6.

The prefactor to X̂in
L;S

I
 may be rewritten as χMχS/(χM0χS0) × [ΓMχM0 +  

ΓSχS0], highlighting the condition ΓMχM0 + ΓSχS0 = 0 for total broad-
band QBA cancellation (independent of dynamical broadening), 
which requires ωM = −ωS. In the case of unmatched intrinsic line-
widths γM0 ≠ γS0, one still needs ωM = −ωS to minimize the term. 
Equation (2B) demonstrates that dynamical broadening enhances 
QBA suppression substantially via the factors χj/χj0.

While QBA reduction is necessary to achieve V < 1, it is not suf-
ficient, due to the inevitable presence of ground-state fluctuations 
contained in F̂j

I
 (equation (2B)). These thermal fluctuations, along 

with residual QBA, can be suppressed by the conditional tracking 
and/or the coherent dynamical cooling mechanisms (local and 
non-local) discussed above; here we simultaneously employ both 
types of mechanism.

While equation (2) captures all essential aspects of the involved 
EPR dynamics, certain technical or peripheral effects were left out 
for simplicity. These include the finite overcoupling of the optical 
cavity and the option of introducing optical quadrature rotations 
between the subsystems as well as in the homodyne detection. 

Moreover, equation (2B) neglects the phase noise QBA contributions  
/ P̂

in
L;S; P̂L;ν

I
 to the EPR response, which are minor for the parameter 

regime considered here. The full model accounting for all the afore-
mentioned effects was employed in analysing the experimental data 
(Supplementary Section B).

Back-action interference
The various noise suppression mechanisms of equation (2B) mani-
fest themselves in the noise spectra of the optical readout P̂out

L
I

  
(Fig. 3). When the two oscillators are detuned by 110 kHz, by chang-
ing ωS ∝ B, they are essentially probed separately (Fig. 3a). However, 
due to the finite detuning, the measurement noise for both subsys-
tems is the sum of optical shot noise and broadband spin noise.  
The Lorentzian features ∝ ∣χj∣2 are the dynamically broadened 
responses to thermal noise and light QBA of the two systems. The 
mechanical motion is strongly dominated by QBA, its ratio to 
intrinsic thermal noise (TH) being QBA/TH = 19, whereas for the 
spin oscillator QBA/TH = 4.9.

When the spin oscillator is tuned close to the mechanical res-
onance (Fig. 3b), we observe strong overall noise reduction for 
the EPR oscillator. Firstly, the non-local dynamical cooling of the 
spin thermal noise amounts to a reduction of the joint noise due 
to stochastic forces F̂M

I
 and F̂S

I
 by 2.5 dB. Secondly, we observe the 

reduction of the QBA due to the destructive interference by 4.6 dB  
(striped area in Fig. 3b), compared with the sum of the QBA of 
the two separate systems (striped areas in Fig. 3a). As a result, the 
unconditional EPR variance is reduced by 5.0 dB, from 6.07 to 1.91, 
as has already been indicated in Fig. 1c. The asymmetrical features 
in Fig. 3b arise due to the small but finite spin-mechanics detuning 
and the choice of the LO2 phase φ.

Conditional entanglement estimation
Having discussed the coherent suppression of the QBA and ther-
mal noise, which reduces the unconditional EPR variance Vu in our 
experiment, we now return to the Wiener filtering method we apply 
to verify conditional entanglement Vc < 1. To focus on its essential 
properties, we here consider the QND limit γj = γj0 of equation (2).

Before considering the hybrid system, we apply the filtering method 
to the tracking of a single oscillator, specifically the mechanical one, 
by setting ΓS = 0 (and ΓM ≡ 2Γ). The same argument can be made for 
the tracking of the spin oscillator. In this case, the filtering reduces 
the variance from its unconditional value Vð1Þ

u ¼ ð1þ 2nÞð1þ 2CqÞ
I

 
to Vð1Þ

c 
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2ηÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ=ΓÞV ð1Þ

u

q
¼

ffiffiffiffiffiffiffi
1=η

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ð2CqÞ

p

I

, assuming 
the rotating wave approximation (ω  γ V ð1Þ

u ;Γ
I

) and fast readout 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ηVð1Þ

u Γ=γ
q

 1

I

 here and henceforth42. We have expressed the 

quantum cooperativity Cq = Γ/(γ[2n + 1]) in terms of the thermal 
bath occupancy n. Within the QND model, Cq = QBA/TH. An effi-
cient measurement of a single system, η = 1 and Cq → ∞, can bring 
the conditional variance to the ground-state value Vð1Þ

c ! 1
I

, but  
not below.

In the idealized hybrid case with matched readout rates ΓM = 
ΓS ≡ Γ and intrinsic susceptibilities χM0 = −χS0 (implying ωM0 =  
−ωS0 ≡ ω and γM0 = γS0 ≡ γ), the tracking reduces the variance 
from the QBA-free unconditional value Vu = 1 + 2n (where now  
n = (nS + nM)/2) to

Vc 
1ffiffiffiffiffi
2η

p
ffiffiffiffiffiffiffiffiffiffi
γ

Γ
Vu

r
¼ 1ffiffiffi

η
p

ffiffiffiffiffiffiffiffi
1

2Cq

s
; ð3Þ

which shows that ideal QBA cancellation removes the lower bound 
Vð1Þ

c ≥1
I

 associated with the single-oscillator case.
It is clear from equation (3) that high QBA/TH ≫ 1 and high 

efficiencies are imperative for generation of an entangled state. 
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Fig. 3 | Quantum noise spectra of the hybrid system. a, Optical phase 
quadrature power spectral densities (PSD) for the measurements of the 
individual oscillators (detuned by 110 kHz), in units of shot noise (SN). 
The feature at ~1.359 MHz is due to laser phase noise. b, Joint spectrum 
of the EPR system for the spin oscillator tuned close to resonance with the 
mechanical oscillator. Notably, the relative (as well as absolute) amount of 
QBA noise in the joint signal is significantly reduced compared with that 
of the individual oscillators. c, Wiener filter normalized absolute square 
amplitude (blue, left axis) and phase (orange, right axis) for the resonant 
hybrid case. The filtering procedure discerns the hybrid system signal from 
experimental imperfections, for example, the laser phase noise peak.
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Numerical simulation confirms the crucial role of those factors and 
shows that with an intermediate coupling strength QBA/TH ~ 1 
and lower efficiencies, such as in ref. 14, entanglement generation is 
not possible. Key new experimental features include an enhanced 
quality factor of the mechanical oscillator, an enhanced spin–pho-
ton interaction due to the double pass and the overall improved 
efficiency of the hybrid set-up (Supplementary Table 1). The latter 
involves both better direct transmission efficiencies, as well as an 
optimized coupling of the probe beam to the collective spin mode 
leading to a substantial suppression of the broadband spin noise.

When applied to experimental data, the Wiener filter not only 
optimally discerns the EPR signal from white measurement noise, 
but also rejects other coloured, peaked or cross-correlated noises. 
Figure 3c presents the steady-state, frequency-domain Wiener fil-
ter KXðΩÞ /

R1
�1 dτ expðiΩτÞKXðτÞ

I
 for the hybrid case of nearly 

resonant oscillators. It takes into account the full model of the joint 
system along with experimentally measured noise.

In the experiment, the conditional variance is determined by 
many factors, such as optical losses ν and η, as well as mismatched 
intrinsic linewidths γM0 ≠ γS0 and readout rates Γj. Figure 3 presents 
results for the case ΓM ≈ νΓS. Whereas in Fig. 3b we have matched 

frequencies ωM ≈ −ωS, in Fig. 4a we present a series of spectra in 
which ∣ωS∣ is swept through the mechanical resonance by tuning 
the B field. The resulting Vc for a set of such measurements (Fig. 4b) 
exhibits a smooth transition between the regimes of entangled and 
non-entangled states of the hybrid system. Notably, our system is 
rather resilient even to quite substantial oscillator detunings ∣ωS∣ − 
ωM. The bandwidth of Vc as a function of the detuning is affected by 
the readout rates, here amounting to several oscillator linewidths.

Conclusion and outlook
We have demonstrated entanglement between distant objects in a 
hybrid system consisting of a mechanical oscillator and an atomic 
spin ensemble. This constitutes a new milestone for hybrid macro-
scopic entanglement and for demonstration of noiseless trajectories 
in the negative-mass reference frame.

This enables quantum communication between distant mechan-
ical and atomic systems using, for example, teleportation-based pro-
tocols1, thereby adding a hitherto missing link to the hybrid systems 
landscape6. It paves the road towards, for example, an entangle-
ment link between an electromechanically coupled superconduct-
ing qubit43,44 and a distant atomic ensemble quantum memory. 
Moreover, the disparate entangled objects respond to very differ-
ent perturbations and thus facilitate measurements of motion and 
fields with reduced quantum noise, for example, off-resonant con-
tinuous force detection in gravitational-wave interferometers45,46, 
and resonant pulsed measurements based on state preparation and 
retrodiction39.

Future work on enhancing entanglement and achieving practical 
detection of noiseless trajectories of motion will primarily concen-
trate on amending experimental imperfections. Specifically, a factor 
of 3 reduction of the broadband spin noise by better mode-matching 
of light to the atomic ensemble, reduction of intersystem opti-
cal losses down to 10%, improvement of cavity overcoupling to  
κin/κ = 0.98 and improvement of the fractional coherent spin read-
out ΓS/γS0 by a factor of 3 will lead to Vc ≈ 0.3 (−5 dB) according to 
our model.
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Methods
Coupling quantum optical signal from atoms to the mechanics. The LO1 is 
filtered out after interacting with the spin, and the quantum optical signal  
emerging from the spin is spatially overlapped with LO2. We mix the quantum 
signal with LO2 in the same polarization with a waveplate and a polarizing  
beam splitter. This directly translates the optical polarization quadrature  
operators that interacted with the spin system into the amplitude and phase  
optical quadratures that are now coupled to the membrane-in-the-middle 
optomechanical system. The radiation pressure of those quadratures drives  
the mechanical oscillator4 (Fig. 2).

Uncertainty estimation of conditional variance. Using the entire set of 
measurements we evaluated the uncertainty of the final result for Vc as further 
discussed in Supplementary Section E. We established priors for all experimental 
parameters by independent measurements, and used Markov chain Monte Carlo 
(MCMC) simulations47 and log-likelihood optimization to obtain fit parameters 
and their uncertainties, in particular obtaining the uncertainty for the conditional 
EPR variance.

We calculated 1,000 values of Vc from a sub-sample of MCMC points, and 
found the mean and standard deviation for each spin–mechanics detuning, as 
shown in Supplementary Fig. 8.

Data availability
Data that support the plots within this paper and other findings of this study are 
available from the corresponding author upon reasonable request. Source data  
are provided with this paper.
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Appendix A: Experimental setup

1. Atomic spins

The atomic spin oscillator is prepared in a 50 ◦C warm ensemble of caesium atoms, confined in a spin anti-relaxation-
coated microcell [1] (300 µm × 300 µm cross-section and 10 mm in length). The natural linewidth, in the absence of
light, is γS0,dark = 1/(πT2) = 450 Hz, as measured by pulsed Magneto-Optical Resonance Signal (MORS) [2].

The microcell is positioned in a magnetic shield equipped with coils producing a homogeneous magnetic bias field
orthogonal to the probe direction, and a heater to keep the interior at the desired temperature, effectively determining
the total atom number. The magnetic field direction sets the quantization axis, denoted as the x -direction. The high
thermal mass of the shield ensures a stable temperature throughout the experimental trials. The resonance frequency
of the spin |ωS|, i.e., the Larmor frequency, is controlled by the magnitude of the magnetic field.

The atoms travel through a Gaussian mode of the probe laser focused at the center of the microcell, with the beam
waist (w0 ≈ 80 µm) optimised to maximise the filling factor without incurring extra optical losses. The laser frequency
is blue-detuned by 3 GHz from the F = 4 → F ′ = 5 D2 transition. Even at this detuning the tensor interaction is
non-negligible, which requires a careful choice of the input linear polarisation. The chosen polarisation is at the angle
α ≈ (60± 2)◦ with respect to the magnetic field such that the tensorial Stark shifts induced by the probe cancel the
quadratic Zeeman splitting ωqzs/2π = 400 Hz, as described by the atomic polarisability tensor (see Supplementary
Information (SI) B 1 for more details).

The standard quantum Stokes variables Ŝx, Ŝy, Ŝz, Ŝ0 – representing the light electric field in terms of its linear,
diagonal, and circular polarisation states [3] and the total intensity – are redefined as {Ŝ‖ = Ŝx cos 2α−Ŝy sin 2α, Ŝ⊥ =

Ŝx sin 2α + Ŝy cos 2α, Ŝz, Ŝ0}. When mapping the polarisation variables into quadrature variables, we choose the
parallel component as the classical variable – the local oscillator LO1 with the photon flux 〈Ŝ‖〉 = 〈Ŝ0〉 = S‖, leaving



SI 2

Ŝ⊥, Ŝz as quantum variables. We define the light quadratures as X̂L = Ŝz/
√
S‖ and P̂L = −Ŝ⊥/

√
S‖. The photon

flux determines the readout rate ΓS/2π ∝ JxS‖ and the power broadening decoherence rate γpb/2π ∝ S‖. In the
experiment, the LO1 power is ∼ 350 µW. The decoherence rate of the oscillator is also affected by the optical pumping
process, represented by the contribution γop. The total bandwidth of the spin resonance in the absence of dynamical
processes is γS0 = γS0,dark + γpb + γop. For the conditions of the current experiment, the ratio of quantum backaction
to thermal noise contributions is QBA/TH = 4.9.

As the atoms move in and out of the beam, the scattered photons couple to various atomic motional modes. The
motion of the atoms is fast (flight-through time ∼1 µs) and uncorrelated, leading to a motionally averaged coupling [4].
Phenomenologically, the long-lived correlations give rise to the mean spin mode – the mode of interest – and the short-
time correlations to an uncorrelated spin contribution – the broadband spin mode. In the regime of operation both
optical responses are harmonic, with the susceptibility of short-time correlations following a low-Q damped harmonic
oscillator type, with resonance frequency ΩS and linewidth γbb/2π ∼ 1 MHz and coupling rate ΓS,bb.

We observe the response of the two spin modes to coherent drive tones X̂drive
L,S in Figures SI1(a) and SI1(b) for

different input modulation types X̂drive
L,S = X̂ in

L,S cosϑin+P̂ in
L,S sinϑin, measured by Coherent Induced FAraday Rotation

(CIFAR) [5], a calibration technique which is inspired by the OptoMechanically Induced Transparency (OMIT) [6].
In short, CIFAR references the phase-sensitive response of the spin to an oscillating input polarisation at ωRF; to the
first order, the resulting interference between the drive and response, for ΓS/γS � 1 and ϑin = ±π/4, gives rise to
a dispersive feature in the detected field, with maximum destructive interference at ±ΓS away from |ωS|. Under the
assumption that both modes are uncorrelated, we fit these data to the input-output relations (equation (SI B.14)),
allowing us to extract the readout rate ΓS. The backaction on the broadband mode is negligible, i.e., ΓS,bb/γS,bb � 1.
For all noise spectra, we treat the broadband contribution as constant in the frequency range of interest, added
incoherently with all other noise processes; effectively, it acts as added phase noise in the phase quadrature of light.
The added spectral power at the resonance frequency due to extra spin noise, corrected for losses, is SS,bb = 1.68 SN
units. This noise depends on spatial properties of the beam and could be reduced by using a cell with larger cross
section perfectly filled with a flat-top probe laser beam.

The spin oscillator is prepared by optically pumping the ensemble towards the |F = 4,mF = 4〉 Zeeman sublevel.
A repump laser is tuned to the F = 3 → F ′ = 2 hyperfine transition in the D2 line and a pump laser to the
F = 4→ F ′ = 4 hyperfine transition in the D1 line, both circularly polarised. The pump laser directly couples to the
coherences of interest, competing with the decoherence and depumping caused by the probe, adding γop/2π ∼ 1 kHz.
The spin polarisation p = 0.82± 0.01 is characterised by pulsed MORS [2], with the spectrum shown in Figure SI1(c).
Due to the dominant role of the probing and pumping lasers, the Zeeman population distribution does not follow
the spin temperature model. The fitting model follows Eq. (17) from Ref. [2] for arbitrary Zeeman population
distribution. The spin polarisation is determined by assuming that the population of |F = 4,mF = −4〉 is negligible,
which is guaranteed by the presence of the resonant pump laser. The spin oscillator variables X̂S = Ĵz/

√
~Jx and

P̂S = −Ĵy/
√
~Jx are defined according to the steady-state spin polarisation, which defines Jx. From the population

distribution we calculate the variance of the spin components, which leads to the added spin thermal occupancy
nS = 0.8, meaning that incoherent processes drive towards an equilibrium with Var[X̂S] = Var[P̂S] = nS + 1/2.

The spin system can be operated in two regimes, which differ only by their effective masses. Optical pumping of
the atoms to the highest energy state, i.e. spins aligned parallel with the bias magnetic field, leads to an effective
negative mass, whereas pumping to the lowest energy state, i.e. spin aligned anti-parallel to the bias field, leads to an
effective positive mass [7]. This choice defines the sign of the atomic susceptibility χS.

2. Optomechanics

The optomechanical system consists of a 13 nm thick, highly stressed, phononically patterned silicon nitride mem-
brane featuring a soft-clamped [8], localised out-of-plane vibrational mechanical mode with a cryogenic Q-factor of
0.65× 109 and resonance frequency of 1.37 MHz. This membrane is positioned close to the waist of a 2.6 mm long
optical cavity along its axis and with maximum spatial overlap between the cavity mode and the localised mechanical
mode. The cavity consists of two mirrors with 25 mm radius of curvature, and power transmissions of 20 ppm and
360 ppm, respectively. The entire optomechanical assembly is placed in a liquid helium flow cryostat, which is cooled
to 4.4 K.

The basis of the light-mechanics coupling is the radiation pressure force of light on the membrane whose out-of-
plane motion causes a dispersive shift of the cavity resonance frequency [9]. The placement of the membrane inside
the cavity divides it into two sub-cavities, where the amount of light in each depends on the membrane position.
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Figure SI1. Spin oscillator calibrations. a and b show the square amplitude (R2) and phase of the demodulated spin
response to a coherently driven light field with different θin. c, pulsed MORS spectrum for the distribution of atoms in the
Zeeman levels corresponding to p = 0.82± 0.01.

This system can be formally treated as a canonical end-mirror optomechanical system with just a single intracavity
optical field. In this formalism adjusting the lengths of each subcavity, periodically modulates the canonical cavity
parameters of optical linewidth, κ, resonance frequency, overcoupling κin/κ (where κin is the coupling rate of the
input mirror), as well as the optomechanical single-photon coupling rate g0.

The sub-cavities can be independently and electronically fine-tuned so as to simultaneously realise a high coopera-
tivity optomechanical system, as well as tunability, in order to set an appropriate cavity detuning with respect to the
probe of the atomic spin system. The various canonical optomechanical parameters are characterised through several
independent measurements and a full list of these system parameters can be seen in Table SI1.

The cavity linewidth is characterised first by measuring the optical amplitude quadrature beatnote of a phase-
modulation sideband transmitted through the cavity. In a second method, a single carrier is scanned across the
cavity resonance on a timescale comparable to the cavity response time and the resultant beating ringdown signal is
observed.

The cavity detuning is determined by combining the characterisation of the cavity dither lock error signal and
knowledge of the cavity linewidth. By locating the turning point of the dither error signal we translate our locked
error signal amplitude into an absolute detuning.

The effective mechanical bath temperature and field-enhanced optomechanical coupling rate g = g0|α|, where α is
intra-cavity field, can be obtained by fitting the full optomechanical model to the ponderomotive squeezing spectra,
seen in Fig. SI2. These spectra result from pumping the cavity from the high-reflector port and detecting the optical
amplitude quadrature in transmission through the highly overcoupled port [10]. We fit the model to these two spectra
simultaneously, using separately measured values for ∆, κ, and Q. From this characterisation the detection efficiency,
with and without LO3, can similarly be inferred. We observed up to 3 dB of ponderomotive squeezing. We note that
while our system is not optimised for measuring maximum ponderomotive squeezing, nor operated in the optimum
regime, we observe close to record amounts of squeezing for optomechanical systems.

A new feature of our optomechanical cavity compared to our previous work [7] is the full electronic control over
the position of the membrane inside the standing wave of the cavity. Two piezos, each with an effective travel length
of well over a half-wavelength at cryogenic conditions, allow us to scan the lengths of the two sub-cavities, so as
to effectively position the membrane at any given intra-cavity position while keeping the cavity on resonance with
the optical light field. By monitoring the cavity transmission as we scan the position of the membrane, we obtain
knowledge about the position within the standing wave. We operate the optomechanical system at the point of highest
total cavity linewidth, giving us the best overcoupling in reflection, as well as a high coupling rate g0.
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Figure SI2. Ponderomotive squeezing spectra for different cavity detunings. From these spectra we infer g, T , optical
losses in the detection path etc. See SI A 2 for details. Using other system parameters, measured independently, we obtain an
effective bath temperature of T = (11.4± 0.5) K.

3. Hybrid system matching & homodyne detection

The overall hybrid system consists of the cascaded optical readout of the spin and mechanical system by an itinerant
light field, as outlined in the main text, see Fig. 2.

After interacting with the spin, LO1 is filtered off the quantum signal, which is orthogonally polarisation to LO1.
The quantum signal is spatially overlapped with LO2 on a PBS, after which the two beams co-propagate, but have
different polarisation. To remedy this, we use a λ/2 plate and a second PBS to reject most of the LO2 beam and retain
most of the quantum signal, incurring a small (percent-scale) loss of the quantum signal. This directly translates the
polarisation quadrature operators that interacted with the spin system into the amplitude and phase quadratures
that are now coupled to the membrane-in-the-middle optomechanical system, in which radiation pressure of the LO2

drives the mechanical oscillator.
The cascaded system, including the double pass nature of our atomic read out, makes our system susceptible to

back-reflections from the optomechanical system to the spin system, since these reflections effectively amount to a self-
driving force on the spins, leading to self-induced oscillations of the spin system. Therefore, the system necessitates
the introduction of an optical isolator, leading to additional optical intersystem losses. Further, non-perfect rejection
of LO1 by the PBS separating LO1 and the quantum signal leads to a part of LO1 co-propagating with LO2. These
two LOs interfere, which effectively turns drifts in the LO1-LO2 phase ϕ into changes of the total optical power sent
to the mechanical system.

The optical output of the spin system is spatially mode matched to the optomechanical cavity by using LO1 as
a proxy. By rotating waveplates, the LO1 probe is directed to the cavity and modematched to it. The degree
of modematching is characterised by the amount of ponderomotive squeezing observed in the optical amplitude
quadrature in reflection.

Phase fluctuations of the light reflected off the optomechanical cavity are measured with homodyne detection as
depicted in Fig. 2 of the main text. The reflected beam is spatially overlapped with LO3 on a polarising beamsplitter
(PBS), and the LO3 is mode matched to the optical signal. The LO3 and LO2 plus quantum fluctuations are now
co-propagating, but in different polarisation channels. They are transmitted through a λ/2 waveplate, set to rotate
the polarisations by 45◦. The mixed polarisation components are then respectively transmitted and reflected off the
second PBS. Neglecting interference, this splits both components equally into the two ports. The total set of PBS-
λ/2-PBS thus acts as an effective 50:50 beamsplitter. The light fields are now in the correct polarisation channels to
interfere for homodyne detection.

We perform differential detection, by measuring the photocurrents of a photodetector in each arm, and electronically
subtracting the two currents. The slow component is fed back to a piezo, controlling the optical path in the LO3 arm,
thus determining the homodyne detection angle ϑ. The optical powers are ∼ 2 mW of LO3 and ∼ 9 µW of LO2.

Experimental spectra are presented in the main text, Figs. 3 and 4, as well as in Figs. SI4 and SI8. In Fig. SI4 we
present a wider frequency range, thus showing features such as out-of-bandgap mechanical modes, mechanical modes
of the mirror substrates, higher-order mechanical modes in the bandgap, etc. In Fig. SI8 we present experimental
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spectra plus model fits for all atomic detunings presented in Fig. 4.

Appendix B: Theoretical model

In this section we will present the model used to fit the experimental data and to extract parameters necessary for
the entanglement analysis and Wiener filtering. The latter also relies on signal and noise (cross-)correlation functions
calculated from the (fitted) model.

For a function in the time domain f̂(t), we use the Fourier transform sign convention and property

f̂(Ω) = F{f̂(t)} =

∫ ∞

−∞
f̂(t)eiΩt dt, F

{
d

dt
f̂(t)

}
= −iΩf̂(Ω). (SI B.1)

For the localised optical cavity mode, we introduce the photon annihilation and creation operators obeying the com-
mutation relation [â, â†] = 1, and, in turn, the light amplitude and phase quadratures (suppressing the time/Fourier-
frequency dependence for brevity)

X̂L =
â+ â†

2
P̂L =

â− â†
2i

, (SI B.2)

which obey the same-time commutation relation [X̂L(t), P̂L(t)] = i/2.
All travelling optical fields, including additional (vacuum) noise fields introduced by optical losses, are described

by amplitude and phase quadratures

X̂
in(out)
L =

âin(out) + â†in(out)

2
P̂

in(out)
L =

âin(out) − â
†
in(out)

2i
, (SI B.3)

defined in terms of the quantum amplitudes

âin(out)(t) =
1

2π

∫ ∞

−∞
dΩ e−iΩtâin(out)(Ω) â†in(out)(t) =

1

2π

∫ ∞

−∞
dΩ e+iΩtâ†in(out)(Ω) (SI B.4)

where âin(out) is the field in a rotating frame with respect to the relevant optical carrier frequency ωlaser, so that
âin(out)(Ω) represents the field at absolute frequency Ω+ωlaser. This expression is valid for Fourier frequencies close to
the optical carrier, |Ω| � ωlaser. According to the above considerations the Fourier transforms of the rotating-frame
operators âin(out)(t) and â†in(out)(t) (see Eqs. (SI B.4)), using the convention in Eq. (SI B.1), are

F{âin(out)(t)} = âin(out)(Ω), F{â†in(out)(t)} = â†in(out)(−Ω). (SI B.5)

The non-vanishing commutation relations of the travelling field operators are [X̂
in(out)
L (t), P̂

in(out)
L (t′)] = (i/2)δ(t− t′).

Accordingly, the symmetrised power spectral densities of the incoming vacuum light fields are

SXLXL(Ω)δ(Ω− Ω′) =
1

2
〈X̂ in†

L,j(Ω)X̂ in
L,j(Ω

′) + X̂ in
L,j(Ω

′)X̂ in†
L,j(Ω)〉 =

1

4
δ(Ω− Ω′) (SI B.6a)

SPLPL(Ω)δ(Ω− Ω′) =
1

2
〈P̂ in†

L,j (Ω)P̂ in
L,j(Ω

′) + P̂ in
L,j(Ω

′)P̂ in†
L,j (Ω)〉 =

1

4
δ(Ω− Ω′). (SI B.6b)

For the mechanical (M) and spin (S) oscillators, we follow the commutation relation [X̂j , P̂j ] = i for (j = M, S);
the effect of the thermal reservoirs F̂j with mean thermal occupancy nj is captured by the symmetrised correlation
functions

SFX
S FX

S
(Ω)δ(Ω− Ω′) ≡ 1

2
〈F̂X,†

S (Ω)F̂X
S (Ω′) + F̂X

S (Ω′)F̂X,†
S (Ω)〉 = γS0(nS + 1/2)δ(Ω− Ω′) (SI B.7a)

SFP
S F

P
S

(Ω)δ(Ω− Ω′) ≡ 1

2
〈F̂P,†

S (Ω)F̂P
S (Ω′) + F̂P

S (Ω′)F̂P,†
S (Ω)〉 = γS0(nS + 1/2)δ(Ω− Ω′) (SI B.7b)

SFMFM
(Ω)δ(Ω− Ω′) ≡ 1

2
〈F̂ †M(Ω)F̂M(Ω′) + F̂M(Ω′)F̂ †M(Ω)〉 = 2γM0(nM + 1/2)δ(Ω− Ω′). (SI B.7c)

The diagrammatic representation of the fields and operations under considerations is presented in Fig. SI3.
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Figure SI3. Diagramatic representation of the hybrid system. Various optical fields, operators, thermal bath forces and
rotations acting in the hybrid system, from input to detection. Spin (orange box) and mechanical system (blue box) along
with driving optical and thermal forces. Light blue boxes represent beam-splitter-like losses. White boxes represent the various
rotations applied to the optical fields.

1. Atomic ensemble

The atomic ensemble interacts dispersively with the light, leading to a mutual rotation of the light and spin variables
according to the atomic polarizability tensor [11]

ĤS/~ = −ωSĴx + gS

[
a0Ŝ0Ĵ0 + a1ŜzĴz + 2a2

[
Ŝ0Ĵ

2
z − Ŝx(Ĵ2

x − Ĵ2
y )− Ŝy(ĴxĴy + ĴyĴx)

] ]
, (SI B.8)

with a0, a1, and a2 as the relative weights of the scalar, vector and tensor contributions [11], which can be tuned by
the detuning of the laser with respect to the atomic resonance and gS is the coupling rate. We work detuned 3 GHz
to the blue from the F = 4→ F ′ = 5 D2 transition.

In the limit of high spin polarisation in the F = 4 hyperfine manifold and for a strong linearly polarised local
oscillator polarised at an angle α to the quantization axis, the Hamiltonian can be simplified to [12]

ĤS/~ =
ωS

2
(X̂2

S + P̂ 2
S )− 2

√
ΓS

(
X̂SX̂L + ζSP̂SP̂L

)
, (SI B.9)

where ΓS = g2
Sa

2
1S‖Jx is the spin oscillator readout rate and ζS = −14a2a1 cos 2α is the tensor correction factor, which for

our choice of polarisation angle α has a value of ∼ 0.028. We have omitted constant energy terms, as they do not affect
the dynamics of the spin variables of interest. The canonical light variables are {X̂L = Ŝz/

√
S‖, P̂L = −Ŝ⊥/

√
S‖}. In

our experimental regime, as ζ > 0, the spin-light interactions deviates from the QND interaction, introducing extra
correlation terms and allowing for dynamical cooling of the spin ensemble, effectively changing the decay rate and
bath occupation.

The dynamics follows from the Heisenberg-Langevin equations, which, in the steady state and in the frequency
space, are

(
γS0/2 + ζSΓS − iΩ −ωS

ωS γS0/2 + ζSΓS − iΩ

)(
X̂S

P̂S

)
= 2
√

ΓS

(
0 −ζS
1 0

)(
X̂ in

L,S
P̂ in

L,S

)
+

(
F̂X

S
F̂P

S

)
, (SI B.10)

(
X̂out

L,S
P̂ out

L,S

)
=

(
X̂ in

L,S
P̂ in

L,S

)
+
√

ΓS

(
0 −ζS
1 0

)(
X̂S

P̂S

)
, (SI B.11)

for 2ζSΓS as the tensor (dynamical) broadening, and F̂X
S , F̂

P
S as the effective force acting on the spins via the thermal

bath. We proceed defining the shorthand matrix notation

Z =

(
0 −ζS
1 0

)
, L =

(
γS0/2 + ζSΓS − iΩ −ωS

ωS γS0/2 + ζSΓS − iΩ

)−1

,

X̂
in(out)
L,S =

(
X̂

in(out)
L,S

P̂
in(out)
L,S

)
, X̂S =

(
X̂S

P̂S

)
, F̂S =

(
F̂X

S
F̂P

S

)
, (SI B.12)

and solve the equations for the atomic and light variables

X̂S = 2
√

ΓSLZX̂
in
L,S + LF̂S (SI B.13)

X̂out
L,S = X̂ in

L,S +
√

ΓSZX̂S = (12 + 2ΓSZLZ)X̂ in
L,S +

√
ΓSZLF̂S, (SI B.14)
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where 12 is the 2× 2 identity matrix.
In the main text we consider simpler, approximate versions of equations (SI B.13) and (SI B.14) valid in the limit

|ωS| � γS, |Ω − |ωS||. In this limit, the effective thermal forces F̂X
S and F̂P

S can be combined into the single thermal
force term F̂S ≈ iF̂X

S + F̂P
S . In this limit, the evolution equation for X̂S in terms of the susceptibility χS(Ω) arises

from Eq. (SI B.13) (setting ωS0 ≡ ωS),

X̂S = χS

[
F̂S + 2

√
ΓS

(
1
−iζS

)ᵀ
X̂ in

L,S

]
= χS[F̂S + 2

√
ΓS(X̂ in

L,S − iζSP̂ in
L,S)], (SI B.15)

as presented in the main text. Noting that P̂S ≈ −sign(ωS0)iX̂S, the simpler input-output relation discussed in the
main text,

Xout
L,S = X in

L,S +
√

ΓS

(
−iζS

1

)
X̂S, (SI B.16)

follows from Eq. (SI B.14).
The CIFAR modelling (see SI A 1) is based on equations (SI B.13) and (SI B.14), with the broadband response

added as another atomic mode in the following manner

X̂out
L,S = X̂in

L,S +
√

ΓSZX̂S +
√

ΓS,bbZX̂S,bb (SI B.17)

X̂S,bb = 2
√

ΓbbLbbZX̂
in
L,S, (SI B.18)

for Lbb as L with γS0 → γbb, ΓS → ΓS,bb and ΓS,bb as the broadband response readout rate. Incoherent thermal
contributions were disregarded as the input field is modulated with large amplitude. The input field X̂in

L,S quadratures
is rotated according to X̂drive

L,S = OϑinX̂
in
L,S, in which Oα

Oα =

(
cosα − sinα
sinα cosα

)
(SI B.19)

is a rotation matrix. The result of the CIFAR modelling for various ϑin is presented in Fig. SI1. Fig. SI1(a) shows
the amplitude squared R2 of the detected field; Fig. SI1(b) presents the phase of detected field in respect to the drive.

2. Optomechanics

We start with the standard linearised optomechanical interaction between a mechanical degree of freedom with
frequency ωM and the intracavity field

ĤM/~ =
ωM

2

(
X̂2

M + P̂ 2
M

)
−∆

(
X̂cav

L,M
2 + P̂ cav

L,M
2
)
− 4g

(
X̂cav

L,M cosψin + P̂ cav
L,M sinψin

)
X̂M, (SI B.20)

where ∆ = ωL − ωc is the detuning of the laser with respect to the cavity resonance ωc and g is the light-enhanced
optomechanical coupling rate. The cavity linewidth κ has contributions from the the in-and-out-coupling mirror (κin)
– we probe the cavity in reflection – and the highly-reflective (HR) back mirror (κHR

ex ) as well as from intracavity losses
(κloss

ex ), such that κ = κin+κex, with κex = κHR
ex +κloss

ex where the subscript ex signifies any extra loss mechanism. Losses
due to the HR mirror and due to intracavity scattering are mathematically equivalent. Finally, ψin = arctan(2∆/κ)
denotes the phase of the intracavity field relative to input field.

The time evolution of the optical and mechanical variables, including decay and fluctuations, is given by the
Heisenberg-Langevin equations. In the frequency domain, and in the steady-state regime, the equations of motion are




κ/2− iΩ ∆ 2g sinψin
−∆ κ/2− iΩ −2g cosψin

−4g cosψin −4g sinψin χ−1
M00






X̂cav

L,M
P̂ cav

L,M
X̂M


 =




√
κinX̂

in
L,M +

√
κexX̂

ex
L,M√

κinP̂
in
L,M +

√
κexP̂

ex
L,M

F̂M


 , (SI B.21)

in which χ−1
M00 ≡ (ω2

M0 − Ω2 − iΩγM0)/ωM0 (the subscript denotes that this susceptibility excludes both dynamical
broadening and optical spring effects) and X̂ in

L,M (X̂ex
L,M) is the input quantum field leaking in via the port ‘in’ (‘ex’).

The port ‘in’ corresponds to the main in/outcoupler, while mathematically port ‘ex’ corresponds to both the HR mirror



SI 8

and intra-cavity loss, which act in the same way since no light is present at the input of HR. The dynamics of the
membrane momentum are calculated from the relation −iΩX̂M = ωM0P̂M. The natural linewidth of the mechanical
mode is γM0, and the mean occupation due to the thermal reservoir at temperature T is nM0 = ~ωM0/kBT .

We are interested both in the effect of the mechanical mode on the light variables and in the dynamics of the
oscillator itself. By defining the matrices

A =

(
κ/2− iΩ ∆
−∆ κ/2− iΩ

)
, B =

(
0
−2g

)
, C =

(
−4g 0

)
, X̂j

L,M =

(
X̂j

L,M
P̂ jL,M

)
, (SI B.22)

Oψ as the input-intracavity field phase rotation (see Eq. (SI B.19)) and the index j ∈ {cav, in, ex} for optical fields,
we write Eq. (SI B.21) as system of matrix equations. Noting that the cavity response matrix A is invariant under
quadrature rotations, OψAOᵀ

ψ = A, we find the intracavity field and the mechanical variable as a function of the
input fluctuations and thermal bath

X̂cav
L,M = A−1

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
−A−1OψinBX̂M, (SI B.23)

X̂M = χM

[
−CA−1Oᵀ

ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
+ F̂M

]
, (SI B.24)

in which χM = (χ−1
M00 − CA−1B)−1 is the effective mechanical susceptibility in the presence of optomechanical

coupling. Substituting Eq. (SI B.24) in Eq. (SI B.23) solves the system for the cavity field

X̂cav
L,M = OψinY

−1Oᵀ
ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
−OψinY

−1BχM00F̂M, (SI B.25)

where Y = A − BχM00C is the effective cavity response matrix in the presence of optomechanical coupling. This
quantity can also be used to express the mechanical response (SI B.24) as

X̂M = −χM00CY−1Oᵀ
ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
+ χMF̂M. (SI B.26)

Finally, we detect the reflected field off port 1 in a homodyne measurement. The phase of the outgoing classical
carrier field with respect to the cavity field is given by ψout = arctan(2∆/(κin − κex)). Overall, the total phase shift
with respect to the input field is ψout +ψin. The cavity input-output relations, taking account for the acquired phase
shift with respect to the input, from Eq. (SI B.25), is

X̂out
L,M = Oᵀ

ψin+ψout
(−X̂ in

L,M +
√
κinX̂

cav
L,M)

= Oᵀ
ψout

(κinY
−1 − 12)Oᵀ

ψin
X̂ in

L,M +
√
κinκexO

ᵀ
ψout

Y−1Oᵀ
ψin

X̂ex
L,M −

√
κinO

ᵀ
ψout

Y−1BχM00F̂M, (SI B.27)

where in the second line we have substituted the solution for the intracavity field (SI B.25).
Above we have developed the exact Fourier-domain solution to a (linearised) cavity-optomechanical system, in

particular the mechanical response (SI B.24) and the optomechanical input-output relation (SI B.23). We now derive
the simplified versions of these equations used in the main text to emphasise the essential physics of our scheme.
We note that the cavity response matrix can be expressed in terms of the complex Lorentzian sideband amplitudes
L(Ω) ≡ (κ/2)/[κ/2− i(Ω + ∆)] with phase Θ(Ω) ≡ Arg[L(Ω)] as

A−1 =
1

κ

(
L(Ω) + L∗(−Ω) i[L(Ω)− L∗(−Ω)]
−i[L(Ω)− L∗(−Ω)] L(Ω) + L∗(−Ω)

)
(SI B.28)

=
|L(Ω)|+ |L(−Ω)|

κ
ei[Θ(Ω)−Θ(−Ω)]/2O[Θ(Ω)+Θ(−Ω)]/2

[
12 + i

|L(Ω)| − |L(−Ω)|
|L(Ω)|+ |L(−Ω)|O−π/2

]
. (SI B.29)

Assuming that the dependence of L(Ω) on the Fourier frequency Ω is negligible over the bandwidth of interest, we may
approximate L(±Ω) ≈ L(±ωM) (and accordingly Θ(±Ω) ≈ Θ(±ωM)). Within this approximation, we can achieve
the simplified mechanical response and input-output equations employed in the main text by introducing the rotated
quadrature basis

X
in(ex)′
L,M ≡ ei[Θ(ωm)−Θ(−ωm)]/2O[Θ(ωm)+Θ(−ωm)]/2O

ᵀ
ψin

X
in(ex)
L,M . (SI B.30)

In this way, using Eqs. (SI B.29) and (SI B.30) to reexpress the QBA force on the mechanical mode (i.e., Eq. (SI B.24),
1st term in square brackets), we find

−CA−1Oᵀ
ψin

(√
κinX̂

in
L,M +

√
κexX̂

ex
L,M

)
≈ 2
√

ΓM

(
1
iζM

)ᵀ (√
κin/κX̂

in′
L,M +

√
κex/κX̂

ex′
L,M

)
, (SI B.31)
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where we have introduced the mechanical readout rate and sideband asymmetry parameter,

ΓM ≡
4g2

κ
(|L(ωM)|+ |L(−ωM)|)2, ζM ≡

|L(ωM)| − |L(−ωM)|
|L(ωM)|+ |L(−ωM)| , (SI B.32)

respectively. Finally, we ignore the finite cavity overcoupling by setting κin = κ (and hence κex = 0) in Eq. (SI B.31) to
arrive at the main-text expression for the response of X̂M. Noting that−12+κA−1 = ei[Θ(ωm)−Θ(−ωm)]OΘ(ωm)+Θ(−ωm),
we find in the same limit that the rotated output quadrature

Xout′
L,M ≡ e−i[Θ(ωM)−Θ(−ωM)]/2Oᵀ

[Θ(ωM)+Θ(−ωM)]/2O
ᵀ
ψin

Xout
L,M, (SI B.33)

obeys

Xout′
L,M = X in′

L,M +
√

ΓM

(
iζM
1

)
X̂M, (SI B.34)

as follows from X̂out
L,M = −X̂ in

L,M +
√
κinX̂

cav
L,M combined with Eq. (SI B.23), again assuming κin = κ. Dropping the

primes on the quadrature variables in Eq. (SI B.34) for brevity we arrive at the input-output relation presented in
the main text.

3. Hybrid system I/O relations

The subsystems are coupled following the relation

X̂ in
L,M = Oϕ(

√
νX̂out

L,S +
√

1− νX̂L,ν), (SI B.35)

where optical transmission losses between the systems are modelled as a beam splitter with power transmission ν, and
X̂out

L,S is defined Eq. (SI B.14). In general, the mechanical oscillator is not only coupled to light and its own thermal
bath, but effectively also to the spin oscillator

X̂M = −χM00CY−1Oᵀ
ψin

(√
νκinOϕ[(12 + 2ΓSZLZ)X̂ in

L,S +
√

ΓSZLF̂S] +
√

(1− ν)κinOϕX̂L,ν +
√
κexX̂

ex
L,M

)

+ (χ−1
M00 −CA−1B)−1F̂M, (SI B.36)

as follows by combining Eqs. (SI B.26), (SI B.35), and (SI B.14). At the output of the optical cavity, the field is
homodyned at a quadrature of choice defined by the phase ϑ, X̂meas

L =
√
ηOϑX̂

out
L,M +

√
1− ηX̂L,η, accounting for

mode-matching and optical losses on the way to the final detector by the efficiency η. The detected field, including
all contributions from losses, rotations and oscillator couplings is

X̂meas
L =

√
ηOϑO

ᵀ
ψout

(κinY
−1 − 12)Oᵀ

ψin

(√
νOϕ[(12 + 2ΓSZLZ)X̂ in

L,S +
√

ΓSZLF̂S] +
√

1− νOϕX̂L,ν

)

+
√
ηκinκexOϑO

ᵀ
ψout

Y−1Oᵀ
ψin

X̂ex
L,M −

√
ηκinOϑO

ᵀ
ψout

Y−1BχM00F̂M +
√

1− ηX̂L,η. (SI B.37)

Note that the homodyne measurement only allows us to access one component of X̂meas
L for a given choice of ϑ.

The equations (SI B.13), (SI B.36), and (SI B.37) contain the full information needed to fit the experimen-
tal data and quantify correlations among the various constituents. To ease the handling of the theory, we con-
struct a rectangular transformation matrix U in the input basis of the forces acting on the systems Qin ≡
(F̂XS , F̂PS , F̂M, X̂

in
L,S, P̂

in
L,S, X̂

in
L,ν , P̂

in
L,ν , X̂

in
L,ex, P̂

in
L,ex, X̂

in
L,η, P̂

in
L,η)ᵀ such that

Qout = UQin (SI B.38)

and the output basis Qout ≡ (X̂M, P̂M, X̂S, P̂S, P̂
meas
L )ᵀ, which are all the output operators we might potentially be

interested in.
The various power (and cross) spectral densities are calculated by taking the absolute square of the vector Qout

given the input matrix of spectral densities

S̄inδ(Ω− Ω′) =
1

2
〈Q†in(Ω)[Qin(Ω′)]ᵀ + Qin(Ω)[Q†in(Ω′)]ᵀ〉, (SI B.39)
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where ᵀ signifies a row-vector, while † indicates Hermitian conjugation of the individual vector elements, not the
vector as a whole. S̄in is a square matrix with diagonal entries

diag(S̄in) =

(
SFX

S FX
S
, SFP

S F
P
S
, SFMFM , SXLXL , SPLPL , SXLXL , SPLPL +

ν

1− ν SS,bb, SXLXL , SPLPL , SXLXL , SPLPL

)
,

(SI B.40)

and all other elements equal to zero. Notably, for an easier theoretical treatment, the broadband noise is added via the
inter-system loss port in the P̂ in

L,ν field. As defined above, it effectively experiences the same losses and rotation as the
narrowband atomic noise. The various power spectral densities above are defined in equations (SI B.6) and (SI B.7),
with Fourier frequency dependencies Ω dropped for brevity. The diagonal entries related to light variables are all
vacuum, therefore the indistinguishable labelling.

This allows us to calculate the spectral densities of the output signals as follows

S̄out = U†S̄inU, (SI B.41)

where U† is conjugate-transpose matrix w.r.t. to U. For instance, the (1,1) element of S̄out is the power spectral
density of the mechanical oscillator position S̄XMXM

.
We may now calculate the steady-state unconditional covariance matrix in the spin-mechanics subspace. For this

we integrate S̄MS, which we define as the submatrix of S̄out containing the first 4 rows and columns, leading to the
unconditional covariance matrix

Vu =

∫ ∞

−∞

dΩ

2π
S̄MS(Ω). (SI B.42)

Figures SI5a, SI6a, and SI7a present examples of Vu in different cases and bases.

Appendix C: Wiener filtering

In this Appendix we detail the central concepts of the conditional quantum state and the Wiener filtering procedure
employed to extract conditional expectation values from measurement data.

A strong projective measurement of the initial system state ρ̂ with a set of measurement operators {Π̂i} generates
a conditional quantum state ρ̂c = Π̂iρ̂Π̂i/Tr(Π̂iρ̂Π̂i). In a quasi-continuous (multi-step) weak measurement, we
replace the projection operators with a set of generalised measurement operators (positive operator-valued measures)
acting repeatedly on the initial state [13, 14]. In general, prediction of the conditional state would require knowledge
of operators associated with each measured value. For Gaussian states, the situation simplifies so that a linear,
stationary filter can be used.

Given the weak, continuous character of our optical probing, useful measurement results must necessarily be ob-
tained as (weighted) averages over finite segments of the homodyne measurement current. The appropriate temporal
filter functions are defined by the system evolution during probing and the meter noise characteristics, necessitating
precise knowledge of the equations of motion and the input-output relations. The methodology outlined here is known
in classical physics and engineering as Kalman filtering, and its applicability to Gaussian quantum systems was proven
in Refs. [15, 16] in a manner that we will now describe.

We note that our optical probing has the following two “classical” properties: First, the operators associated with the
measurement current obtained at different times t and t′ commute, [P̂ out

L (t), P̂ out
L (t′)] = 0, implying their simultaneous

measurability ; second, causality entails that the measurement current at a given time t does not respond to the future
system evolution (at times t′ > t), in turn leading to the property [P̂ out

L (t), X̂(t′)] = 0, t′ > t, with X̂ being any
quadrature of a hybrid spin-mechanics system. Hence, the only manifestation of quantum mechanics in our probing
scheme is that it enforces the presence of amplitude and phase (quantum) noise in the meter field according to the
Heisenberg uncertainty relation. As the microscopic origin of the noise is immaterial to (classical) Wiener filtering
theory, it follows from the above observations that it is applicable to our Gaussian quantum system.

As necessary prerequisites we introduce the PSD of the measurement current as S̄ii ≡ S̄Pmeas
L Pmeas

L
since i(t) is

the result of a quadrature measurement. In general, we aim to track the entire hybrid system characterised by
Q = (X̂M, P̂M, X̂S, P̂S)ᵀ. Furthermore, we need to consider the signal-current correlation (cross-spectral density) row
vector S̄Qi, which is the last row of S̄out, Eq. (SI B.41). The spectral densities S̄(Ω) are used to compute temporal
correlation functions C̄(τ) using the inverse Fourier transform thanks to the Wiener-Khinchin theorem.
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Figure SI4. Spectra from Fig. 3b and associated Wiener filter from Fig. 3c shown in a wider range. a, the
spectrum is again decomposed into the same components as in Fig. 3b, yet including the electronic detection noise (dark
orange). Furthermore, additional membrane modes are visible in the experimental data. We model two of those modes, around
1.52 MHz, including their back-action. Those are the only high-Q modes in the bandgap that are significantly coupled to light,
which stretches from 1.31 to 1.54 MHz. Notably, the additional modes are treated as noise in the process of detecting the
motion of the main defect mode of interest and the motion of spins. b, Wiener filter for the hybrid EPR system (squared
normalised amplitude, left axis, phase, right axis). The filter automatically allows efficient tracking of the main EPR signal
with other sources of noise removed in the form of frequency notch filters. Notably, the Wiener filter is significantly broader
than the linewidth of the system itself.

Our hybrid system is driven solely by optical and thermal forces with wide-sense stationary noise statistics (i.e.,
constant first and second moments of all noises, and all covariances depending only on the time difference t− t′) [17].
Under these circumstances the appropriate set of causal filters K for purposes of estimating the system first and
second moments is the so-called Wiener filter [18]. Convolving the filter with the measurement current yields the
best unbiased estimate of the system variables (i.e., with the minimum mean-square error):

Qc
∞(t) =

∫ t

−∞
K(t′ − t)i(t′) dt′, (SI C.1)

where Qc = (Xc
M, P

c
M, X

c
S, P

c
S)ᵀ is the conditional trajectory in the steady-state scenario, i.e., for the case where we

have i(t) for all previous times available. In a more general case, where upon conditioning we increase the length of
past data, we generally write:

Qc(t) =

∫ t

0

K(t′ − t, t)i(t′) dt′, (SI C.2)

where K(τ, t) is the filter function, t′ is the running argument of convolution and t is the length of the conditioning
interval.
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To find the Wiener filters K, we solve the Wiener-Hopf equations, which state that the optimal Qc(t) must obey

C̄Qci(t
′) = C̄Qi(t

′), (SI C.3)

for all t′ within the conditioning window. In the limit of infinite conditioning time, the Wiener-Hopf equation (SI C.3)
is typically stated as

∫ ∞

0

Kᵀ(−t′′)C̄ii(t′ − t′′) dt′′ = C̄Qi(t
′) ∀ t′ ≥ 0, (SI C.4)

where C̄Qi(t
′) is the cross-correlation between Q and i calculated as the inverse Fourier transform of S̄Qi(Ω), which

is a row vector of cross-spectral densities (first four elements of the last row of S̄out, Eq. (SI B.41)). The vector form
of the above equation should here be understood as 4 independent equations.

If we only have data available for a finite past, we limit the above infinite integral to t and find the finite-input
response filter K(t′, t) as a solution of

∫ t

0

Kᵀ(−t′′, t)C̄ii(t′ − t′′) dt′′ = C̄Qi(t
′) ∀ t′ ∈ [0, t]. (SI C.5)

In this form, the Wiener-Hopf equation can also be easily discretised and cast in a matrix equation form. The
solution is then obtained via the Levinson–Durbin recursion algorithm. It is noteworthy that in the finite-time limit,
the Wiener filter K(t′, t) is only defined for −t < t′ < 0, in accordance with the integration domain in Eq. (SI C.2).

While the trajectory Qc is stochastic, the variance of residual fluctuations is deterministic; it can be calculated
as the difference between the unconditional covariance matrix Vu and the (ensemble) covariance matrix of the best
estimates Vbe,

Vc = Vu −Vbe, (SI C.6)

where

Vbe =

∫ ∞

0

K(−t)C̄Qi(t) dt = Cov(Q,Qc
∞), (SI C.7)

is the 4 by 4 covariance matrix of the best estimates and Qc(t) is given by Eq. (SI C.1). In the case of a finite
conditioning interval, we again limit the integration:

Vbe(t) =

∫ t

0

K(−t′, t)C̄Qi(t
′) dt′ = Cov(Q,Qc(t)), (SI C.8)

where Qc(t) is defined by Eq. (SI C.2). Again, Eq. (SI C.6) holds, and hence captures how the conditional variance
evolves as we increase the conditioning time t. The relation Vbe(t) = Cov(Q,Qc(t)) implied by Eq. (SI C.8) follows
directly from the Wiener-Hopf equation (SI C.3) by convolving it with K (as does the special case (SI C.7)).

We present the obtained Wiener filter, for the point with best entanglement (see SI D), in Fig. 3 of the main text,
and for a wider frequency range in Fig. SI4. The time evolution of the conditional variance is shown in Fig. 1, and
the final Vc is shown in Fig. 4.

Finally, it is noteworthy that the Wiener filter shares many characteristics with the widely used Kalman filter. In
fact, the Wiener filter is a specific case of a Kalman filter where it can be obtained from the Wiener-Hopf equations
since both noise and signal are wide-sense stationary. This still applies to our case of a finite-input response filter
K(t′, t), as to find it we assume stationary noise. In fact, the finite-input response (FIR) Wiener filters are widely used
in engineering contexts. In a more general case one needs to solve Kalman equations that are qualitatively different.

Appendix D: Entanglement estimation

Let us now analyse the properties of the covariance matrices, obtained using the hybrid system model (SI B) and
Wiener filtering (SI C), and estimate the entanglement of the bipartite state. In Fig. SI5(a) the covariance matrix
Vu corresponding to the case with best entanglement is presented. Diagonal elements represent the occupations of
individual oscillators. The conditioning procedure is then applied to obtain Vc in Fig. SI5(b). Notably, we observe
strong positive correlation between X̂M and X̂ ′S as well as negative correlation between P̂M and P̂ ′S. Furthermore,
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we can see that the conditioning procedure mostly allow us to decrease the conditional occupation of the mechanical
subsystem, which is most efficiently measured. The spin variables here are rotated, i.e., X̂ ′S = X̂S cosβ + P̂S sinβ,
P̂ ′S = P̂S cosβ − X̂S sinβ such the anti-diagonal of Vc is nulled.

The estimation of the best entangled state involves the construction the general EPR variables

X̂EPR = (X̂M − aX̂ ′S)/
√

1 + a2 = uᵀ
XQ, (SI D.1)

P̂EPR = (P̂M + aP̂ ′S)/
√

1 + a2 = uᵀ
PQ, (SI D.2)

X̂EPR = uᵀQ (SI D.3)

(with matrix u having vectors uX and uP as columns) along with canonically conjugated variables

X̂ ′EPR = (X̂M + aX̂ ′S)/
√

1 + a2 (SI D.4)

P̂ ′EPR = (P̂M − aP̂ ′S)/
√

1 + a2 (SI D.5)

where a is the relative weight of the spin component with respect to mechanics and β is the rotation angle of
the spin component, and uX and uP are unit-length vectors. The EPR variance (conditional or unconditional)
V = Var[X̂EPR] + Var[P̂EPR] is evaluated using the covariance matrix V as

Va,β = uᵀ
XVuX + uᵀ

PVuP . (SI D.6)

For the present data, a ≈ 0.85, which is approximately constant for all data point, and β ≈ 20◦ for the point of best
entanglement. For different spin-mechanics detuning optimal β varies by tens of degrees. We have minimised the
EPR variance V = mina,β Va,β for both parameters individually for each dataset.

Having defied the EPR basis we can now also plot the same matrix as in Fig. SI5 in the new basis, see Fig. SI6.
Here, we observe that for Vc the variance of the EPR components on the diagonal indeed reaches below the classical
limit of 0.5.

Finally, we compared the entangled case with the far-detuned case, presented in Fig. SI7. Here we observe negligible
off-diagonal correlation terms, and also significantly lower unconditional occupation for mechanics, as it is not driven
by the spin noise. Furthermore, the conditioning procedure can now distinguish the systems and efficiently brings
down their respective conditional variances.

To generate the conditional trajectory in Fig. 1(c) we first solve Eq. (SI C.5) for a set of conditioning times t and
find a collection of Wiener filters K(t′, t). We then use the filters to get Qc(t) as given by Eq. (SI C.2) as well as
conditional covariance matrices Vc(t) (see Eqs. (SI C.6) and (SI C.8)). We then find the optimal a and β for the Vc

associated with t → ∞, which gives us u. Subsequently, Xc
EPR = uᵀQc is calculated. Finally we move to a rotating

frame by X̃c
EPR = OωtX

c
EPR with ω/2π = 1.37 MHz, which is rather an arbitrary choice since for the EPR oscillator

there is no single distinguished frequency unless ωM = |ωS| exactly, which is not the case.
We observe Var[X̂] ≈ Var[P̂ ] for all cases (Figs. SI5–SI7) consistent with our system operating within the regime

of validity for the Rotating Wave Approximation.

Appendix E: Uncertainties

We apply elaborate statistical techniques to deduce the statistical uncertainty for the value of the degree of entan-
glement.

Spectra corresponding to points in Fig. 4b are fitted collectively to the same model. A subset of the parameters
is shared between all spectra, while others are allowed to fluctuate from spectrum to spectrum, representing small
short-timescale fluctuations.

The parameters that are allowed to change from spectrum to spectrum are atomic frequency, LO1+LO2 phase
ϕ, cavity detuning ∆, and mechanical coupling rate g. The drift of the latter two can be explained by a spurious
interference, which turns drifts in ϕ into drifts in optical power in LO2, which in turns leads to a change in ∆ and
thus also g. The typical size of drifts of ϕ is ∼ 3 degrees.

We establish prior probabilities for all parameters by independent measurements and calibrations, many of which
we explain above. We use those priors for our parameters, together with the spectra and their statistical uncertainties
to perform a log-likelihood optimisation. We use Gaussian priors for the parameters and assume a relative Gaussian
error of 8 %, stemming from the number of samples for each spectrum Nsamp = 200, i.e., the statistical variance of the
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Figure SI8. Entanglement tuning and optimisation. a, Fit results for varied atomic frequencies ωS for all points shown
in Fig. 4. For clarity, subsequent lines are offset vertically by multiplying by a constant factor. b, MCMC results for the
conditional variance for all atomic detunings. Mean and standard deviation leads to the points in Fig. 4b.

periodogram estimator, and additional uncertainty due to shot-noise level calibration. We additionally assume the
level of data uncertainty to have an extra constant offset of 0.1 SN units to account for the presence of small mirror
mode peaks beneath the signal.

Due to the vast parameter space, originating partly from the collective fitting with both shared and non-shared
parameters, we perform the optimisation with Markov Chain Monte Carlo (MCMC) simulations [19]. We run 150
walkers with 4000 burn-in steps and subsequent 6000 sampling steps. From these 900 000 points, we select 1000
random samples for which we compute entanglement. This sampling of the log-likelihood landscape leads directly to
posterior probabilities for the parameters for each spectrum, and, more importantly, also for derived values, such as
the conditional variance. The choice of the number of samples for the entanglement calculation is determined by the
computational cost of evaluating the conditional variance. Sampling those 1000 points from a larger set of MCMC
points reduces the co-variance of the points sampling of the posterior log-likelihood landscape.

The MCMC fitting routine results in a set of parameters with good agreement between priors and posteriors for
almost all parameters. The main discrepancy is for the case of inter-system quantum efficiency; here, the posterior
value of ν = 0.53 is significantly lower than the anticipated value of νprior = 0.65±0.03. In addition, we obtain a slightly
lower posterior detection efficiency η = 0.77 than ηprior = 0.80±0.03 and higher overcoupling (κin/κ) = 0.925± 0.005
than (κin/κ)prior = 0.91± 0.01. The extra optical losses are currently unaccounted for, with possible explanations for
this discrepancy that include mode matching and polarisation-dependent losses of our quantum signal. We should
stress that this discrepancy leads only to a reduction of the obtained entanglement. The atomic parameters are kept
reasonably within the prior bounds with ΓS,prior/2π = (18± 1) kHz and posterior ΓS/2π = (20.3± 0.4) kHz as well as
nS,prior = 0.72± 0.05 and posterior nS = 0.81± 0.05.
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Parameter Symbol Value

Atomic spin oscillator
Decoherence rate in the dark γS0,dark/2π 450 Hz

Intrinsic linewidth γS0/2π 1.7 kHz
Effective linewidth (incl. dynamical damping) γS/2π 2.9 kHz

Tensor contribution ζS 0.028
LO1 driving power 350 µW

Readout rate ΓS/2π 20 kHz
Spin Polarisation p 0.82

Spin thermal occupancy nS 0.8
Microcell temperature 50◦C

Mechanical oscillator and cavity
Intrinsic mechanical frequency ωM0/2π 1.370 MHz

Intrinsic damping rate γM0/2π 2.1 mHz
Optical damping rate γM/2π 3.9 kHz

Cavity detuning ∆/2π −0.7 MHz
Total cavity linewidth κ/2π 4.2 MHz

LO2 drive power ∼8 µW
Intracavity photons N 1.6×106

Single photon coupling rate g0/2π 6× 101 Hz
Readout rate ΓM/2π 15 kHz

Cavity overcoupling κin/κ 0.93
Thermal bath temperature T 11 K

Bath occupancy nM0 173×103

Mean occupancy nM ∼ 2
Quantum cooperativity CM

q 15

Hybrid & detection
Quantum efficiency between systems ν 0.53
Cavity mode-matching (amplitude) 0.9
Power transmission between systems 0.8

Detection efficiency η 0.77
Homodyning visibility 0.96

Power transmission and detector QE 0.87
LO1–LO2 phase ϕ ∼180◦

Detection phase ϑ 2◦

Table SI1. Summary of notation and experimental parameters. When applicable, we quote the posterior mean values
from the MCMC simulation.
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Abstract: Calibrating the strength of the light-matter interaction is an important experimental
task in quantum information and quantum state engineering protocols. The strength of the
off-resonant light-matter interaction in multi-atom spin oscillators can be characterized by the
readout rate ΓS. Here we introduce the method named Coherently Induced FAraday Rotation
(CIFAR) for determining the readout rate. The method is suited for both continuous and pulsed
readout of the spin oscillator, relying only on applying a known polarization modulation to the
probe laser beam and detecting a known optical polarization component. Importantly, the method
does not require changes to the optical and magnetic fields performing the state preparation and
probing. The CIFAR signal is also independent of the probe beam photo-detection quantum
efficiency, and allows direct extraction of other parameters of the interaction, such as the tensor
coupling ζS, and the damping rate γS. We verify this method in the continuous wave regime,
probing a strongly coupled spin oscillator prepared in a warm cesium atomic vapour.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The off-resonant interface of light with atomic ensembles has been widely explored in the last
decades [1–4] in ultra-cold, cold and warm alkali implementations. The spin degree of freedom
in the atomic ground state coherences and its coupling to light has been used in protocols ranging
from fundamental [5–8] to technological [9–11] applications. Furthermore, the collective spin
excitations of the highly polarized atomic ensembles in a static magnetic field can be well
approximated by harmonic oscillator-like degrees of freedom – a spin oscillator [12]. The
oscillator mapping, i.e., the effective description of the collective spin system as single harmonic
oscillator, helps facilitate the interface with nano-mechanical oscillators via back-action evasion
[13] and entangling [14] measurements, which promises sensitivity improvements in future
gravitational wave detectors [15] and optical quantum control of the hybrid spin-mechanical
system [16].

In the interface between atoms and light, characterizing the strength with which the systems
couple is paramount for understanding their dynamics. According to the principles of quantum
mechanics, the statistical nature of the quantum measurement process leads to fundamental limits
in estimation of a systems state at a given instant of time [17]. Optimizing the measurement
performed by the optical probe interacting with the spin oscillator, according to the application
or protocol in mind, is key to optimally estimating the state of the system.

While the method discussed in this paper can be described in a fully classical manner, it
is relevant to experiemnts in which quantum noise plays an important role. For instance, the
optical readout of a highly polarized atomic ensemble prepared in a spin oscillator state contains
contributions arising from [18]: optical shot noise, inherent to the quantum nature of light in the
process of photo-detection; coherent spin state or ground state noise, from the zero-point energy
required to satisfy the Heisenberg uncertainty principle; thermal noise, originating from the extra

#425613 https://doi.org/10.1364/OE.425613
Journal © 2021 Received 25 Mar 2021; revised 8 Jun 2021; accepted 8 Jun 2021; published 12 Jul 2021
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spin fluctuations of the oscillator having non-zero mean occupancy nS due to imperfect optical
pumping; and lastly, quantum back-action noise, originating from the perturbations of the optical
readout in the oscillator’s dynamics. As we obtain information about the oscillator by performing
measurements on the light that has interacted with the system, it is of key importance to faithfully
characterize the weight of each of these contributions, which scale differently with ΓS.

The standard quantum limit (SQL) for a measurement of mechanical displacements, for
example, sets the sensitivity to external fields in conventional interferometric measurements [19].
At the SQL, the detection shot noise and measurement back-action contribute equally to the
measurement imprecision. Another figure of merit that quantifies the efficiency of the coupling is
the quantum cooperativity Cq, here defined as Cq =

ΓS
2γS(nS+1/2) . Working in the regime Cq ≫ 1,

in which the coupling is strong, indicates that the measurement significantly influences the
oscillator dynamics, allowing for its control and manipulation. A highly efficient mapping of
the oscillator state to light requires the quantum back-action to dominate over the coupling to
the thermal environment [4]. Common to these protocols is the importance of the interaction
strength parameter between light and the oscillator, here defined as the readout rate ΓS (also
commonly known as the measurement rate in the optomechanics community [20]). Knowledge
of this constant facilitates evaluating the regime of interaction, but also allows quantifying the
sensitivity in absolute terms or with respect to the SQL.

In this paper, we show how the parameter ΓS may be extracted from a measurement based
on the interference of the induced Faraday rotation, i.e., the oscillator response to a classical
optical polarization modulation, with the modulation itself. We call it Coherently Induced
FAraday Rotation, or CIFAR, signal. The method further allows extraction of the damping
rate, γS, and the tensorial part of the interaction, ζS, describing the deviation from the idealized
quantum non-demolition (QND) interaction. Crucially this method relies on the same alignment
of magnetic and optical fields as well as optical pumping of the atomic ensemble, as used for
experiments such as [13,14], and thus does not require any modifications to the experimental
setup to perform the characterisation. The CIFAR method is applicable in all experimental
implementations of spin oscillators, from ultra-cold to warm vapors, in ensembles with total
angular momentum (per atom) equal to or larger than 1

2 . The coherent drive also allows for
probing the atomic motion through the laser beam [21] and characterizing the coupling to fast
decaying spin modes [22], which give rise to a broadband spin response. We verify the CIFAR
in the continuous regime, probing a spin oscillator in the strong coupling regime, prepared in
a warm cesium atomic vapour. Lastly, we also explore the limits of our linearized oscillator
description by driving the system with large classical polarization modulation.

Our experimental setup is depicted in Fig. 1. We use a spin-polarized atomic spin ensemble
prepared in an uniform magnetic field, probed by an optical local oscillator that is weakly
polarization modulated. This interaction drives the collective spin which again induces a Faraday
rotation of the light polarization, which is detected in a self-homodyning configuration. The
following signal is referred to as the CIFAR signal. See the experimental section for a specific
description of the technical details.

The content will be outlined as follows, In Section 2 the theoretical framework will by laid out,
in Section 3 the technical specifics of our experiment will be put forward, while in Section 4 the
data and model fitting is presented, before discussing further work and limitations of our work in
Section 5.

The technique here described is especially suited for continuous wave measurement of (single)
spin oscillators, which should be contrasted with the mean value transfer method [10] and thermal
noise scaling [23], which rely on time consuming measurements and more dramatic changes of
the experimental setup. We nonetheless highlight that this technique can also be employed in
the canonical state-preparation-probing experimental cycle. Furthermore, the signal depends
only on the interference between the drive and response, it is independent of the overall detection
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Fig. 1. Experimental setup. A strong linearly polarized LO (red) is mode matched to a
weaker, phase modulated beam from an EOM (blue) on a PBS. Part of the light is sent to a
polarization sensitive detection setup, which is used to stabilize the relative phase between the
two beams. The atomic input is sent through an optically polarized room temperature alkali
spin ensemble (orange circles), situated in a homogeneous magnetic field B (purple). The
collective total spin vector (orange) modulates the input light polarization due to the Faraday
interaction, while the light also drives the spin. The field at the output of the ensemble is
detected in a polarization self-homodyning setup. Technical details are more thoroughly
described in Section 3, experimental implementation. EOM: Electro-optic modulator. LO:
Local Oscillator. PBS: Polarizing beamsplitter. λ/2: Half wave plate.

quantum efficiency and thermal noise calibrations, as the calibration used in [13]. The CIFAR
method is similar to the Optomechanically Induced Transparency (OMIT)-response measurement
technique [24], used to characterize optomechanical coupling parameters [25].

2. Theory

The interaction between an atomic ensemble and light has been widely studied in the context of
optical pumping [1] and quantum information applications [4]. For a far detuned monochromatic
optical field with intensity much below saturation, the effective atom-light interaction is given
by the coupling of the electronic-ground-state magnetic sublevels to the light polarization.
The interaction can be seen as a mutual rotation of the light and spin variables, the Stokes
operators {Ŝx, Ŝy, Ŝz, Ŝ0} and spin operators {Ĵx, Ĵy, Ĵz, Ĵ0} respectively, in the form of polarization-
dependent ac Stark shifts of the ground state levels and spin-state-dependent index of refraction,
according to the atomic polarizability tensor [26,27]. The collective macroscopic spin being
represented as Ĵx,y,z =

∑︁N
i=1 F̂(i)

x,y,z, where F̂(i)
x,y,z are the Cartesian decomposition of the total angular

momentum operator of a single atom.
The light-matter interaction, along with the contribution from an external bias magnetic field

applied in the x-direction, gives the spin Hamiltonian for a single atom

Ĥ(i)
S /ℏ = ±ωSF̂(i)

x + gS

[︃
a0Ŝ0 + a1ŜzF̂(i)

z +

2a2

[︂
Ŝ0(F̂(i)

z )2 − Ŝx((F̂(i)
x )2 − (F̂(i)

y )2) − Ŝy(F̂(i)
x F̂(i)

y + F̂(i)
y F̂(i)

x )

]︂ ]︃
,

(1)

where the first term refers to the the linear Zeeman effect induced bias magnetic field, shifting
adjacent ground state magnetic sublevels by ±ωS, with sign depending on the direction of the
magnetic field with respect to the x-axis. The coefficients a0, a1, and a2 as the relative weights
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of the scalar, vector and tensor contributions of the polarizability tensor [27], and gS is the
single-photon coupling rate. The relative weights of the contributions depend on the level
structure of the atom and can be controlled by the laser detuning from the atomic resonance.
The vector and tensor contributions are related to circular and linear birefringence of the atomic
medium, respectively. The scalar component leads to a polarization independent phase shift.

We now focus in the specific case of cesium-133 [26]. For a laser beam detuned by ∆ from the
F = 4 → F′ = 5 transition in the D2 cesium line interacting with atoms in the F = 4 ground state
manifold, the ai parameters are given by

a0 =
1
4

(︃
1

1 + ∆35/∆
+

7
1 + ∆45/∆

+ 8
)︃

a1 =
1

120

(︃
−

35
1 + ∆35/∆

−
21

1 + ∆45/∆
+ 176

)︃
a2 =

1
240

(︃
5

1 + ∆35/∆
−

21
1 + ∆45/∆

+ 16
)︃

,

(2)

with ∆35/2π = 452 MHz and ∆45/2π = 251 MHz as the excited state hyperfine splittings between
F′ = 3 and F′ = 5, and F′ = 4 and F′ = 5 [28], respectively. A detuning ∆>0 (∆<0) corresponds
to the case with laser frequency above (below) the F = 4 → F′ = 5 transition. In our experiments,
the probe laser is detuned by ∆/2π = 3 GHz, where relative weights are a0 ∼ 3.83, a1 ∼ 1.05,
and a2 ∼ 0.004.

The interaction between light and the atomic ensemble in Eq. (1) can be simplified and
linearized in the case of large ground state spin polarization and a polarized laser field with mean
amplitude much larger than the vacuum fluctuations. These approximations (discussed before
Eq. (3)) constitute the mapping of the spin system to an oscillator system. As we will describe in
the next section, the ensemble is optically pumped such that the mean spin length is Jx = ⟨Ĵx⟩

and transverse spin components are ⟨Ĵy⟩, ⟨Ĵz⟩ ≪ Jx at any instant of time. Therefore, imperfect
spin polarization will reduce the macroscopic spin length.

The probe is a strong classical field linearly polarized at an angle α to the magnetic field,
which is also the quantization axis. The angle α controls the relative contributions of the
vector and tensor effects described by the Hamiltonian (3). For simplicity, we change basis of
the polarization variables such that the component Ŝ∥ describes the strong field as a classical
variable with mean photon flux ⟨Ŝ∥⟩ = ⟨Ŝ0⟩ = S∥ , leaving Ŝ⊥, Ŝz as zero-mean quantum
variables. Mathematically, we rotate the polarization variables around the Ŝz components as
{Ŝ∥ = Ŝx cos 2α − Ŝy sin 2α, Ŝ⊥ = Ŝx sin 2α + Ŝy cos 2α, Ŝz, Ŝ0}.

For a highly polarized ensemble in the F = 4 hyperfine manifold, the Hamiltonian in Eq. (1)
can be simplified [29]. In the limit of high steady state spin polarization, where only the two
extreme magnetic sublevels, i.e., either mF = +4,+3 or mF = −4,−3, are populated, we perform
the Holstein-Primakoff approximation [30] and map the spin variables to effective position and
momentum variables

ĤS/ℏ = ∓
ωS
2
(X̂2

S + P̂2
S) − 2

√︁
ΓS

(︂
X̂SX̂L + ζSP̂SP̂L

)︂
. (3)

The canonical variables for light and spins are {X̂L = Ŝz/
√︁

S∥ , P̂L = −Ŝ⊥/
√︁

S∥} and {X̂S =

Ĵz/
√︁
|Jx |, P̂S = −sgn(Jx)Ĵy/

√︁
|Jx |}, respectively, satisfying [X̂L(t), P̂L(t′)] = (i/2)δ(t − t′) and

[X̂S, P̂S] = i. Notably, the quadratic terms present in equation (1) are simplified here and the
resulting Hamiltonian is linear in both atomic and light variables. The quantity sgn(Jx) refers to
the sign of the mean spin, being positive (negative) for the negative (positive) mass oscillator
cases. Notice that the sign beforeωS carries information about the mutual orientation of Jx and the
external bias magnetic field. In the harmonic oscillator language, the mutual orientation defines



Research Article Vol. 29, No. 15 / 19 July 2021 / Optics Express 23641

the effective mass of the spin oscillator, with −ωS (+ωS) referring to the negative (positive) mass.
In the derivation of Eq. (3), we have omitted constant energy terms, as they do not affect the
dynamics of the variables of interest.

The parameters
ΓS = g2

Sa2
1S∥Jx (4)

ζS = −14
a2
a1

cos 2α, (5)

are the spin oscillator readout rate and the tensor coupling parameter, respectively. If ζS = 0
the light-spins interaction is of the Quantum Non-Demolition (QND) type. In our experimental
regime, as ζS ≠ 0, the spin-light interactions deviates from the QND interaction, allowing for
dynamical cooling/heating of the spin oscillator and changing the total decay rate and effective
bath occupation [14,31] in similar fashion to the effects of light interaction with a mechanical
oscillator in the field of optomechanics [32].

In practice, the ensemble is not perfectly polarized due to limited optical pumping efficiency
and decay due to, e.g., wall collisions, natural lifetime and optical de-pumping. Since the
expression for ζS above is derived for perfect spin polarization, the effective value observed
experimentally differs somewhat from that given by Eq. (5). As shown in Section 3, our full
model with ζS as a free parameter describes the measured response sufficiently well. Further,
the imperfect spin polarization gives rise to a thermal, stochastic distribution of the spins in the
different magnetic sublevels, which shows as thermal noise in the detection.

The spin system evolves coherently due to the Hamiltonian given in Eq. (3), and incoherently
due to spin decay and coupling to an external effective spin bath [33]. Furthermore, atomic
motion leads to a time-dependent light-spin coupling. There is, in principle, an infinite set
of collective spin modes that evolve in time accordingly to the ensemble geometry, collisions,
dephasing, and diffusion [22]. Here, we focus on the so called flat spin mode corresponding to
the total spin Ĵk =

∑︁N
i=1 F̂(i)

k , the mode which is the most resilient to motional dephasing as it is
fully symmetric with respect to shuffling atomic positions. In the linearized language introduced
above, we assign effective position and momentum variables, X̂S, P̂S to this mode. Later on,
we will also introduce effective variables to describe the dynamics of the fast decaying spin
modes, here denominated as the broadband response, and also introduce a qualitative model that
describes its response to light.

The dynamics of the spin variables due to the Hamiltonian presented in Eq. (3) for the case with
effective positive mass, including the non-Hamiltonian decay by natural and optically induced
channels [33], is

d
dt

⎛⎜⎝
X̂S

P̂S

⎞⎟⎠ = ⎛⎜⎝
−γS/2 ωS

−ωS −γS/2
⎞⎟⎠ ⎛⎜⎝

X̂S

P̂S

⎞⎟⎠ + 2
√︁
ΓS

⎛⎜⎝
0 −ζS

1 0
⎞⎟⎠ ⎛⎜⎝

X̂in
L

P̂in
L

⎞⎟⎠ , (6)

with γS/2 = γS0/2 + ζSΓS as the dynamical damping rate, including tensor effects [34]. Here,
γS0 includes the natural (in the dark) damping rate, and laser induced contributions (from the
pumping and probing lasers). For notation purposes, we write the light and spin variables in the
matrix form as

Xin(out)
L =

⎛⎜⎝
Xin(out)

L

Pin(out)
L

⎞⎟⎠ , XS =
⎛⎜⎝
XS

PS

⎞⎟⎠ , (7)

where the superscripts in (out) denote the optical mode before (after) the interaction with the
spin oscillator, to be presented below. In the CIFAR experiments, as we will discuss in Section 3,
the oscillator is coherently excited, e.g., with a drive Xin

L ∝ sinωRFt. Since the system is driven
by a classical driving field, the system response can also be considered to be classical, and we
drop the operator description from here on.
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Given the linear system of Eqs. (6) and a sinusoidal drive input Xin
L , a solution in the complex

plane can be found using the ansatz XS(t) = XS(ωRF)e−iωRFt, PS(t) = PS(ωRF)e−iωRFt, where
XS(ωRF) and XS(ωRF) are complex numbers. We write this as

XS = 2
√︁
ΓSLZXin

L , (8)

where the matrices L and Z parametrize the interaction dynamics as

Z = ⎛⎜⎝
0 −ζS

1 0
⎞⎟⎠ (9)

L = ⎛⎜⎝
γS/2 − iωRF −ωS

ωS γS/2 − iωRF

⎞⎟⎠
−1

= χS(ωRF)
⎛⎜⎝
γS/2 − iωRF ωS

−ωS γS/2 − iωRF

⎞⎟⎠ , (10)

with χS(ωRF) =
(︂
ω2

S +
(︁γS

2 − iωRF
)︁2

)︂−1
as the spin susceptibility. All spin and light variables

are understood to be functions of drive frequency, ωRF, the notation of which we suppress from
now on.

The output light field, after the interaction with the spin oscillator given in Eq. (8), is

Xout
L = Xin

L +
√︁
ΓSZXS = (12 + 2ΓSZLZ)Xin

L , (11)

where 12 is the 2 × 2 identity matrix. The equation above shows that the output light field will
have two contributions: one directly from the input field and another from the response of the
spin oscillator to the input. Having the light field as a common source, these two contributions
can interfere.

By inserting (9) and (10) into (11), we get the expressions for output optical quadratures after
the interaction with the spin ensemble

⎛⎜⎝
Xout

L

Pout
L

⎞⎟⎠ = ⎛⎜⎝
1 − 2ΓSζS

(︁γS
2 − iωRF

)︁
χS −2ΓSζ

2
SωS χS

2ΓSωS χS 1 − 2ΓSζS
(︁γS

2 − iωRF
)︁
χS

⎞⎟⎠ ⎛⎜⎝
Xin

L

Pin
L

⎞⎟⎠ . (12)

In general, we are able to select arbitrary input Xin
L and the detection Xout

L components by
controlling the ellipticity of the polarization state by the phases θ and ϕ, respectively. The input
light state, without loss of generality, is assumed to be generated from a pure phase modulation
G = |G|eiϕ that, when referenced to a local oscillator (LO) in a Mach-Zehnder interferometer,
as we have in Fig. 1, can be arbitrarily decomposed into polarization variables and effective
input amplitude and phase quadratures. Here, by convention, we have chosen Xin

L = G, Pin
L = 0

for θ = 0. Path length difference ∆L control in the Mach-Zehnder interferometer (θ ∝ ∆L, see
inset of Fig. 1) allows for mixing the drive components via a basis rotation, and polarization
homodyning angle (ϕ) allows for selecting the detection quadrature, as

⎛⎜⎝
Xin

L

Pin
L

⎞⎟⎠ = ⎛⎜⎝
cos θ − sin θ

sin θ cos θ
⎞⎟⎠ ⎛⎜⎝

G

0
⎞⎟⎠ = ⎛⎜⎝

cos θ

sin θ
⎞⎟⎠ G, ⎛⎜⎝

Xdet
L

Pdet
L

⎞⎟⎠ = ⎛⎜⎝
cos ϕ − sin ϕ

sin ϕ cos ϕ
⎞⎟⎠ ⎛⎜⎝

Xout
L

Pout
L

⎞⎟⎠ . (13)

By inserting the Eqs. (13) in Eq. (12), we get to the final form of the Coherently Induced
FAraday Rotation (CIFAR) signal. We typically define the measured quadrature as Pdet

L , such
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that the absolute squared of the detected spin response to an arbitrary input optical modulation is

|CIFAR|2 ≡
|︁|︁Pdet

L
|︁|︁2 = |︁|︁Pout

L cos ϕ + Xout
L sin ϕ

|︁|︁2
=

|︁|︁ (︁1 − 2ΓSζS
(︁γS

2 − iωRF
)︁
χS

)︁
sin(θ + ϕ)

+ΓSωS χS
[︁
(1 − ζ2

S ) cos(θ − ϕ) + (1 + ζ2
S ) cos(θ + ϕ)

]︁ |︁|︁2 |G|2.

(14)

This equation is the main result of this section, being applicable to the description of a single
collective spin mode, e.g., the flat spin mode, response to light.

In a broader view, it becomes necessary to consider other spin modes which in contrast to the
total spin will have some spatial dependencies. We consider collective operators corresponding
to the transverse spin components of mode n given by Ĵn

z,y =
√

V
∑︁N

i=1 un(xi)F̂z,y where un(x)
represents the spatial shape of the spin mode, V is the volume of cell (for the purpose of proper
normalization) and xi is the position of i-th atom. The coherent evolution of each mode (collective
operator) is then governed by Eq. (3) with the readout rate Γn

S now taking into account the overlap
between the spin mode and the Gaussian light mode IG

n , such that Γn
S ∼ |IG

n |
2 [22]. At the same

time, the incoherent part will depend on motion and wall collisions. It has been shown that even in
the paraffin- or alkene-coated cells [35–38] or cells with dilute buffer gas [39] the atomic motion
can be effectively described by the diffusion equation with adequate wall boundary condition.
The cells with coated walls will feature a slow decay for the flat mode (u0(xi) = 1/

√
V) which

depends on intrinsic dynamics and wall decay, and much faster decay for all other modes, which
is given by γn

S = Dk2
n, where D is the effective diffusion constant and kn is the characteristic

wavenumber of n-th mode [22].
For the case of quantum noise, it becomes necessary to consider both thermal contributions of

each mode (added incoherently), and the coherent interaction of each mode the the Gaussian
beam. These broadband spin noises affect the atomic ensembles serving as magnetometers [40]
or quantum memories [22]. In our case we can consider only the coherent interaction and thus
each spatial spin mode responds to the same light modulation. Therefore, we may simply modify
Eq. (11) to the multimode case:

Xout
L =

(︄
12 +

∑︂
n

2Γn
SZLnZ

)︄
Xin

L , (15)

with Ln contains the susceptibility with the respective damping rate γn
S. In our case we shall

work in a two-mode approximation for which the zeroth mode is the flat, long-lived mode, and
the other mode has γS/2π ∼ 1 MHz. We justify this approach by noticing that broad modes
contribute a similar flat background around the resonance which we primarily study here. In
our system, the main fundamental mode is much longer lived than all other modes. As long as
we try to determine the response around the resonance at ωS, the tails of the response that may
have non-Lorentzian shape due to the presence of more than one broad mode, will not contribute
significantly. Following this approach we obtain a two-component CIFAR signal in which the
narrow (with damping rate γS and readout rate ΓS) and broad parts (with damping rate γS,BB
and readout rate ΓS,BB) of the response may interfere according to their phase relation. In the
following sections we will nevertheless give simplified formulas for the single mode case to
facilitate understanding, and use the two-component model for fitting.

Given the input and detection angles, as well as the spin oscillator parameters and coupling to
light, the CIFAR signal exhibits a characteristic frequency response. For developing intuition
about the response, let us focus initially in the special case of θ = 45◦ and ϕ = 0◦, corresponding
to detecting the phase quadrature of light Pout

L and driving with an equal superposition of
amplitude Xin

L and phase modulation Pin
L . For the choice of phases described above, the detected
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signal goes as

|CIFAR(θ = 45◦, ϕ = 0◦)|2 = |1 − 2ΓS(−ωS + ζS(γS/2 − iωRF))χS |
2 |G|2. (16)

Notably, the drive, represented by the constant term, and the spin response, proportional
to the susceptibility χS, are added coherently and interfere. In particular, the readout rate ΓS
plays an important role in the interference pattern, modulating its strength. In the high-Q limit
(γS ≪ ωS) and around resonance (ωRF ∼ ωS), the spin susceptibility is χS ∼ −χS0/ωS, for
χS0 =

1
2 (∆RF + iγS/2)−1, with ∆RF = ωRF − ωS as the detuning between the spin resonance and

the input modulation tone. In this limit, the Eq. (16) becomes

|CIFAR|2/|G|2 ∼ |1 − 2ΓS(1 + iζS)χS0 |
2 = 1 +

Γ2
S(1 + ζ

2
S ) − 2ΓS(∆RF + ζSγS)

∆2
RF + (γS/2)2

. (17)

For exemplifying the procedure to extract the readout rate parameter ΓS, let us consider two
specific cases. First, we analyze the case of ζS = 0, that is, the light-matter interaction is of the
QND type. Here,Eq. (17) reduces to

|CIFAR0 |
2/|G|2 = 1 +

Γ2
S − 2ΓS∆RF

∆2
RF + (γS0/2)2

. (18)

The CIFAR0 signal is a combination of a constant, a Lorentzian, and a dispersive term,
representing the drive, the spin response and the interference between the drive and response,
respectively. Importantly, the minimum and maximum of the signal are separated by ∼√︂
Γ2

S + γ
2
S ∼ ΓS in the limit of high coupling, ΓS ≫ γS. The readout rate can thus be extracted

just by noting this frequency difference, directly from the sweep figure, such as Fig. 2.
For the second specific case, when ζS ≠ 0, Eq. (17) leads to a correction of the separation, as

the maximum and minimum are separated by ∼

√︂
(1 + ζ2

S )(Γ
2
S(1 + ζ

2
S ) + γ

2
S − 2ΓSγSζS). In the

high-coupling limit, ΓS ≫ γS, this simplifies to ∼ ΓS(1 + ζ2
S ).

Having derived the needed expressions, we now turn to an experimental investigation of the
CIFAR signal under different situations.
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Fig. 2. CIFAR as a function of modulation amplitude. CIFAR response amplitude (top)
and phase (bottom) for different electrical EOM drive voltage G. The average of 3 scans
(dots) is presented along with their statistical 1σ uncertainty error bars (vertical bars). The
solid lines are the model fits to the individual curves. The grey line in the top panel is
the measured response without any modulation at the input. Inset: fitted readout rate and
(asymmetric) error bars as function of the drive voltage. For a discussion of the error bars,
see the main text.

3. Experimental implementation

The following section describes the experimental setup depicted in Fig. 1. We start by describing
the atomic spin ensemble and the optical probing. The atomic spin ensemble is a warm gas
consisting of N ≈ 108−109 cesium-133 atoms, confined to a spin anti-relaxation-coated microcell
[41] with a 300 µm × 300 µm cross-section and 10 mm in length. The system is probed with a
Gaussian beam that has a waist of w0 ∼ 80 µm in radius (1/e2), propagating the in z-direction.
The sub-millimeter transverse dimensions of the cell allow for fast motional averaging [21],
ensuring an integrated interaction between all atoms and the light. The microcell is positioned in
a magnetic shield which contains coils producing a homogeneous magnetic bias field B in the
x-direction. The strength of the bias field splits the magnetically sensitive Zeeman levels by |ωS |,
i.e., the Larmor frequency. Here, the Larmor frequency is in the range ωS/2π ∼ 0.3 MHz to
1.5 MHz. The intrinsic (in the dark) spin damping rate at 59 °C and 1.5 MHz Larmor frequency is
γS0,dark/2π = 450 Hz. The relatively intense probe beam adds power broadening, and allows for
collective broadening/narrowing the spin resonance. The decay mechanisms are included in the
expression for the damping rate γS, as presented in Eq. (6). The steady state spin polarization is
set by the competing contributions from the linearly polarized probe, propagating orthogonally to
the bias magnetic field, and the circularly polarized resonant optical pumping beams, propagating
along the bias field. The CIFAR method is sensitive to the single atom and collective decay
channels and to the mean spin length. The steady state spin polarization in the experiments
presented here is about ∼ 80%.

The remaining part of the setup in Fig. 1 sets the phase sensitive control of the excitation and
detection of the optical signal. We effectively generate an arbitrary polarization of the input light
by combining two laser beams, here named local oscillator (LO) and modulation, with orthogonal
polarizations on a polarization beam splitter (PBS) with a phase delay θ. The modulation beam
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is phase modulated at a RF frequency ωRF in a fiber electro-optic modulator (EOM) according to
EEOMeiθeiG sinωRFt, for G as the modulation strength. An arbitrary optical polarization state can
be set by choosing a given θ and relative intensities of the beams. One of the output ports of the
PBS is sent to the spin ensemble and the other is used for a polarization detection setup (phase
lock).

We now describe the input polarization to the spin ensemble. The electric field of the laser
light after the PBS is ELO(t)êx + EEOM(t)êy ∼ |ELO |êx + |EEOM |eiθ (1 + iG sinωRFt)êy, to the first
order in G. Assuming |EEOM | ≪ |ELO |, the equivalent input Stokes parameters [42] can be
written, to the first order in |EEOM |, as

⎛⎜⎜⎜⎜⎝
Sin

x

Sin
y

Sin
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
|ELO |

2/2

|ELO | |EEOM |(sin θ + G sinωRFt cos θ)

|ELO | |EEOM |(cos θ − G sinωRFt sin θ)

⎞⎟⎟⎟⎟⎠
. (19)

The phase θ controls the relative contributions of circular and diagonal components, represented
by Sin

y and Sin
z , in the input polarization state. The DC (static) components will lead to a

small rotation in the local oscillator’s polarization; the AC components will induce CIFAR
signal. In the linearized quadrature language, the effective AC input drive is written as
(−Xin

L sin θ + Pin
L cos θ)G sinωRFt.

In the port that is directed to the phase lock output, the DC frequency interferometric signal,
given in Eq. (19) is used for stabilizing θ, the path length difference between the LO and the EOM
arms, and therefore the input modulation to the spin ensemble. Deviations from the ideal phase
shift induced by birrefringent elements, e.g., half wave plates in Fig. 1, leads to a further mixing
between Sin

y and Sin
z in Eq. (19), complicating the calibration of θ. The same argument applies to

setting the detection angle ϕ. Experimentally, we first drive the spin oscillator with a RF magnetic
field [43] to set ϕ. The detection half-wave plate is set to give the maximum photo-detected
response to the applied magnetic field, which happens at ϕ = 0◦. Subsequently, we switch to
a polarization modulation drive and find the effective θ = 90◦ when the spin response has a
Lorentzian line-shape.

The polarization modulation at frequency ωRF leads to a phase coherent interaction between
the oscillator and light according to Eq. (12). The signal is recorded by balanced polarimetry
photodetection and processed by a lock-in amplifier phase-referenced to the drive, allowing us to
extract the slowly varying amplitude R and phase components. In a experimental protocol very
similar to the one used in continuous wave Magneto-Optical Resonance Signal measurements
[43], scanning ωRF around the resonant frequency ωS at a rate much smaller than the spin
damping rates, we ensure the steady-state performance and extract the signal of interest. To
extract the useful parameters from the data, we implemented non-linear optimization and curve
fitting routine to a two spin-modes model based in Eq. (15).

For experimental implementations that operate in the pulsed regime [5,7,10], in which the
probing follows a spin-state preparation stage, the CIFAR signal can be extracted in a similar
manner to the one prescribed in the continuous readout. For example, during a single repetition,
a fixed-frequency polarization modulated probe can map out the time-evolving signal, thus
obtaining a single point in the interference signal. Repeating the experiment with different drive
frequencies allows for mapping a signal similar to those presented in the Results section. The
data analysis therefore borrows the analysis discussed in the Theory section.

4. Results

We will now present experimental support to the model described in Section 2. We fit the CIFAR
model given in Eq. (14) to the recorded data, present its performance on different experimental
conditions and discuss the overall validity of the model.
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We start by the studying the response of spin oscillator to increasing modulation amplitudes G.
In the data present in Figs. 2 to 4, we fix θ = 45◦, the probe power at 500 µW, and cancel the
non-linear quadratic Zeeman shift with tensor Stark shifts [44] by setting α ∼ 60◦. In Fig. 2, for
each modulation amplitude, we record 3 scans and show the average as points, and the statistical
1σ uncertainty error bars (vertical bars). We double the amplitude starting from 31 mV (in blue)
until 500 mV (in purple), showing |CIFAR| (top panel) and the phase response (bottom panel),
the amplitude and phase of the CIFAR signal, respectively. The grey line is the response of the
spin oscillator to a shot noise-limited drive, in which the coherent polarization modulation is
turned off. We see that the amplitude of the CIFAR signal follows the drive increase, doubling as
the amplitude doubles. As the drive amplitude increases, the coherent response dominates the
signal and the spread around the mean values decreases.

The averaged traces for each drive amplitude in Fig. 2 is fit by the CIFAR model. The fits
are displayed as solid lines, showing the good agreement to the measured amplitude and phase
data. In the Fig. 2 inset, we show the readout rate ΓS/2π returned by the fitting routine as a
function of the drive amplitude. For the 31 mV drive amplitude, the value for the readout rate is
ΓS/2π = 10.685+0.008

−0.18 kHz. For increasing drive, nonetheless, the trend is that the fitting routine
returns smaller values (see inset of Fig. 2), a trend we will discuss below.

The asymmetric parameter errors are obtained with the conf_invertal function of the
lmfit Python package [45]. The function returns the parameter values for which χ2 = χ2

min + 1,
i.e., the interval containing the usual 68.27% probability, which for a Gaussian parameter error
corresponds to the 1σ uncertainty. Similar results was obtained by Markov Chain Monte Carlo
[46] optimization (not shown). The asymmetry arises due to a strong correlation between ΓS and
other fit parameters, mainly the parameter describing the overall response ∝ G.

We further note that successfully fitting the model to the data relies on reliably ascribing errors
to the individual data points; the individual traces spans 2 orders of magnitude, and failing to
account for this in the optimization routine leads to discrepancies in either the peak or valley of the
traces. Curiously, the data errors largely inherit the shape of the undriven atomic ensemble, i.e.,
a Lorentzian centered on the spin frequency (not shown). This places the condition that to obtain
good fit values, all measurements must be repeated a number of times, to obtain trustworthy
statistics.

Looking at the fitting residuals for the different traces, presented in Fig. 3, we see that structured
deviations between model and data appear as the spin oscillator is driven with larger amplitudes.
The residuals to the traces with drive voltages above 250 mV, shown in red and purple points,
present significant deviations from our model. Some structure may be seen even for the green
trace (125 mV drive). We believe that the deviations from our model appear as we start to drive
the spin system significantly away from the small oscillation amplitude approximation that takes
the system beyond the linearized oscillator model. We have, therefore, experimentally found the
range of drive strengths that our model can describe. A more thorough investigation of the spin
response beyond the linearized regime is left for a future work. We are thus left with two trends
as the drive increases; the best-fit value for ΓS decreases, while the trustworthiness of the model
also decreases. What the absolute optimum drive amplitude is, and whether the low-drive regime
is free of systematic effects, our data cannot answer at this point.

In Fig. 4 we present the dependence of the readout rate on Jx, the mean spin length. According
to Eq. (4), ΓS ∝ Jx. The spin length is controlled by the temperature of the vapor cell, which
sets number of atoms. When heated, the cesium vapor pressure increases [28]. For the data
on Fig. 4, we record CIFAR scans while the cell is heated from ∼34 °C (blue points) to ∼59 °C
(purple points). The solid lines are fits to the data, with the frequency axis shifted according to
∆RF and re-scaled to the returned spin damping rate γS. The extracted readout rate increases
from 1.1 kHz to 10.0 kHz. As the temperature, and consequently Jx, is increased, the peak signal
increases and the minimum is shifted up in frequency. Importantly, the frequency detuning ∆RF
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Fig. 3. Scaled fit residuals from Fig. 2. Residuals between the model and data, both in
CIFAR amplitude (left column) and phase (right column), for the various drive voltages
shown in Fig. 2. In the right-most column we show the histogram of the residuals along with
a unity width Gaussian curve (dashed lines) to guide the eye. We also print the reduced χ2.
Some outliers are not shown.

Fig. 4. CIFAR scans for different ΓS///γSγSγS. We vary the readout rate by changing the
temperature of the cell from ∼34 °C to ∼59 °C. Inset: The location of the minimum of the
CIFAR response in units of ∆RF/γS as a function of the normalized readout rate ΓS/γS.
Solid line: line with slope 1.
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for which the CIFAR signal is minimal follows the readout rate ΓS, as shown in the inset. There
is, approximately, a one-to-one correspondence between ΓS/γS and the frequency of the CIFAR
signal minimum value, as shown by the line with slope 1 (solid line). Therefore, by choosing
the input modulation type θ = 45◦, an approximate readout rate can be easily extracted from the
CIFAR signal as the frequency difference between the maximum and minimum of the trace. We
also note that at the highest temperature setting (∼59 °C), with damping rate γS0/2π = 1.3 kHz
and estimated spin thermal occupation nS ∼ 0.75 [47], we have ΓS/γS ∼ 7 and estimate Cq ∼ 3,
indicating that the spin oscillator is strongly coupled to light.

In Fig. 5, we present the CIFAR signal for different strengths of the tensor coupling parameter
ζS. For a given detuning from the atomic resonance ∆, it is modified by selecting α, the angle
between the LO linear polarization and the magnetic field B direction. According to Eq. (5), the
angle α = 45◦ turns off the tensor coupling. For this experiment, we reduced the spin resonance
frequency to ωS/2π ∼ 400 kHz to avoid non-linear Zeeman splitting [43], the probe power was
set to 250 µW to reduce probe-induced power broadening, and the temperature to T = 55◦. In
Fig. 5, we show the amplitude of the CIFAR signal for θ = 45◦ (top panel) and θ = 90◦ (bottom
panel). The data for α = {0◦, 45◦, 90◦} are shown in blue, orange and green dots, respectively.
The choice of θ = 45◦ gives responses similar to those presented in Fig. 2. For this data set,
we have ΓS/2π = 4.9 kHz. The setting θ = 90◦, nonetheless, gives a rather different picture.
According to Eq. (14), the detected signal goes as

|CIFAR(θ = 90◦, ϕ = 0)/G|2 =
|︁|︁1 − 2ΓSζS

(︁γS
2 − iωRF

)︁
χS

|︁|︁2
∼ 1 −

ζSΓSγS

∆2
RF + (γS/2)2

,
(20)

where in the last passage we used the high-Q (γS ≪ ωS and ωRF ∼ ωS), and the small tensor
coupling (ζS ≪ 1) limit. For this configuration, the CIFAR is dominated by the constant term,
since we mostly detect the input modulation. Near the spin resonance, the oscillator will add
(ζS<0) or remove (ζS>0) signal according to the tensor coupling sign. The obtained tensor
coupling parameters are ζS = −0.045 ± 0.002 and ζS = 0.040 ± 0.003 for α = 0◦ and α = 90◦,
respectively. For reference, the expected tensor parameter for a perfectly spin polarized ensemble
is |ζ th

S | = 0.053. For α = 45◦ the spin contribution is, according to our theory, null; the returned
value is ζS = 0.000 ± 0.001.

In our last study we present the broadband spin contributions to the CIFAR signal. The
measurements presented in Fig. 6 are taken in the same experimental conditions as the data in
Fig. 2, but now scanning the drive tone in a ∼ 600 kHz band around ωS. The CIFAR signal
amplitude (top panels) and phase (bottom panels), including the model fits, are shown for
θ ∈ {−45◦, 0◦, 45◦} in blue, orange and green, respectively. Apart from the symmetric changes
in the response as θ is changed from −45◦ to 45◦, the θ ∼ 0◦ amplitude and phase responses
display characteristic features of a broadband spin response. The broadband spin response can be
clearly seen by setting ΓS = 0 (dashed orange line) or in our full model fit (dark orange line).
The light orange line corresponds to the predicted response of the spin oscillator in the case
ΓS,BB = 0. The broadband spin response, having a damping rate γS,BB/2π = 0.93 MHz, couples
to the drive with rate ΓS,BB/2π = 33.4 kHz, distorting the phase response and adding a pedestal
to the detected amplitude. Remarkably, although having a potentially complex origin [22], the
broadband response is qualitatively well described by a single effective mode. The good match
to data here justifies our two-mode approach in this case.
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Fig. 5. CIFAR signal for different tensor coupling parameters ζS. The overall response
of the spin oscillator to light depends on ζS, here controlled by the angle α between the
input linear polarization LO and the direction of the magnetic bias field B. The CIFAR
signals for input modulation with θ = 45◦ (top panel, logarithmic scale) and with θ = 90◦
(bottom panel, linear scale), and α = {0◦, 45◦, 90◦} are shown in blue, orange and green,
respectively.

Fig. 6. Coherent interference between the responses of the narrow and broadband
spin modes. CIFAR response amplitude (top row) and phase (bottom row) data (points with
error bars) and fits (dark solid lines) as a function of the frequency detuning for three different
modulation phases, θ ∈ {−45◦, 0◦, 45◦}. The data was taken under the same experimental
conditions as the 62 mV drive trace (orange curve) in Fig. 2. For θ = 0◦ we also plot the fit
result evaluated with the broadband readout rate set to ΓS,BB = 0 (solid light orange curves,
top and bottom panels) and narrowband readout rate ΓS = 0 (dashed light orange curves).
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5. Conclusion

In summary, we have presented a novel approach for calibrating the light-matter interaction
between off-resonant optical beams and collective spin systems, the CIFAR technique. Experi-
mentally, the calibration method relies only on applying a known input modulation and detecting
a known optical quadrature, the variables parametrized by θ and ϕ, respectively. Supplied with
the input-output relations of the spin-light interaction, a simple procedure for determining the
interaction parameters, among those most importantly the readout rate ΓS, is described. Fitting
the recorded signal to the full model provides a full characterization of the system parameters.
The technique does not rely on knowing the photo-detection efficiency or the ensemble spin
polarization. We have verified the good agreement between data and the CIFAR method by
continuously probing a strong coupled spin oscillator prepared in a warm cesium atomic vapour.

Theoretical refinement of our model can be envisioned with the consideration of the full
Zeeman structure of the ground state manifold [48] (F = 4, in the present example). With
that, the model will be able to account for the non-unity spin polarization and return consistent
values for the tensor parameter. Furthermore, in the case of large excursions by the transverse
angular momentum variables induced by the drive light, going beyond the linearized regime may
potentially allow us to account for the mismatch between theory and data shown in our residuals
analysis.

The technique here presented is also a powerful method for studying the coupling of light to the
spin modes under diffusion and spatial averaging [22]. Our works provides an evidence for the
coherent coupling and classical back-action of the short-lived spin modes with light, as opposed
to previous observations of just broadband spin noise [37]. As these couplings to higher-order
modes can now be calibrated, it would be worth to include shaping of the probe beam in the
model to determine the full mode spectrum of the interaction. Applications are twofold: in the
experiments such as the current one, where motional averaging is desired, this can be used to
minimize couplings to higher modes. On the other hand, cells with buffers gas can incorporate
multimode interfaces, for which it may be desired to design a stronger or selective interaction
with higher modes.

The CIFAR technique also paves the way for probing and engineering the optical coupling
of higher order spin modes to light, a source of inefficiencies and unwanted noise in quantum
limited measurements. By preparing the optical field in a suitable spatial mode, the multimode
capabilities of the spin-light platform can be utilized.
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