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Preface

This Ph.D. thesis summarizes my scientific research in collaboration with the
Niels Bohr Institute (NBI) and the Globe Institute, University of Copenhagen,
and was funded by the Lundbeck Foundation. The research was supervised by
Associate Professor Troels C. Petersen (NBI) and Assistant Professor Thorfinn S.
Korneliussen (Globe Institute).

Being a cross-disciplinary project, the research presented in this thesis is
multi-faceted and covers a wide range of topics with the main scope being the
development and integration of novel statistical methods and machine learning
models for the analysis of large-scale biological data. The thesis is organized as
follows: First I present a brief introduction to the statistical methods and machine
learning models used in the thesis and then I present the research in the form
of four papers, each of which reflects a different aspect of the research. The
introduction is written with my former self in mind, containing the background
knowledge I would have liked to know when I started the projects. I hope that it
will be useful for anyone interested in the research presented in this thesis.

The first paper presents a novel method I developed for detecting and classi-
fying ancient DNA damage in metagenomic samples taking the full taxonomic
information into account. While the first paper focuses on the development of
the statistical model in the field of ancient genomics, the second paper focuses
on the use of modern machine learning models in medicine and how advanced
boosted decision trees can not only improve the accuracy of identifying patients
at risk of being readmitted after knee or hip surgery, but doing so in a way that is
interpretable as well.

In the beginning of 2020 we all experienced how COVID-19 suddenly changed
our lives and impacted our societies in dramatic ways. During this time, I worked
for Statens Serum Institut, the Danish Center of Disease Control, on a project to
develop an agent based model capable of simulating the spread of COVID-19 in
Denmark. This model is presented in the third paper and was used to inform the
Danish government on how to best handle the pandemic in the early stages and
the effect of contact tracing.

Lastly, in the fourth paper I show how advanced Bayesian methods can be
utilized to better estimate the diffusion coefficients in silencing foci in the cell
nucleus with single-particle tracking experiments.





Abstract

In recent years, methods such as next generation sequencing in genomics and
the use of electronic records in the health care sector has dramatically increased
the amount of data in the life sciences. In the field of ancient genomics, newer
lab protocols, combined with strict precautions, now allow for the sequencing
of ancient environmental DNA millions of years old. In health care, electronic
records have allowed for the use of modern machine learning models due to the
increased amount of collected data. This has led to a need for new methods and
tools to analyze and interpret this vast amount of information that seems to keep
increasing in size in the coming years. This thesis focuses on the use cases and
potential issues with applying modern statistical and data science related methods
on biological data.

The work of this thesis is split into four parts, each with a dedicated paper sup-
porting it. The first paper introduces a novel statistical method that we developed
for analysing ancient metagenomic DNA damage. To our knowledge, no prior
methods exist which are designed to cover this specific use case in genomics. We
show that the work of this project, the metaDMG software, is both faster at ancient
DNA damage estimation than existing methods and provides more accurate dam-
age estimates – even at taxonomic levels down to 100 reads. As such, metaDMG is
state-of-the-art for ancient DNA damage estimation for both simple and complex
ancient genomic datasets.

The second paper presents a machine learning approach to predict medical
complications after surgery, in particular knee and hip operations. The use of
machine learning in anaesthesiology is still in its infancy, and this work is a first
step towards the use of machine learning in this field. We show that modern
machine learning models can be used to predict complications after surgery with
higher accuracy than classical statistical methods commonly used in the field.
Concretely, we find a 9.7% increase in precision and 1.6 percentage points increase
in the area-under-ROC-curve metric when using a boosted decision tree compared
to logistic regression. We further show how explainability methods can not only
be used to better understand the “black box” of machine learning models, and thus
the risk predictions themselves, but also help support the doctors in their decision
making process.

The third paper describes how spatial heterogeneities affect the fitted predic-
tions of an epidemic curve in the early phase. In collaboration with Statens Serum
Institut, the Danish Center for Disease Control, we developed an agent based
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model which extends on the classical SIR models often used in epidemiology. This
allowed us to model the spread of disease in the Danish population and introduce
complex interaction patterns between the agents in the form of heterogeneities
based on geographical density. We found that fitting with classical SEIR models
overestimate the peak number of infected and the total number of infected by a
factor of two if only fitted on an early-stage epidemic.

All living cells share the same DNA, yet the expression of genes differ wildly
between cells. The mechanisms regulating gene expressions and the silencing
of specific genes are not yet fully understood, however, it is known that the
heterogeneous environment in the cell nucleus is a key factor in this. In particular,
the silencing and repair foci play an important role. The fourth paper presents the
analysis of these foci by analysing the single molecule dynamics using Bayesian
inference based on diffusion models. This allow us to extract and quantify the
diffusion coefficients of the foci which describe the physical mechanisms of the
formation of the foci.



Dansk Resumé

Metoder som næste-generation sekventering i genetik og brugen af elektroniske
journaler i sundhedsvæsenet har i løbet af de seneste år drastisk øget mængden
af data. Nye laboratorieprotokoller har inden for arkæogenetik nu muliggjort
sekventering af DNA som er millioner år gammelt. Med indførslen af elektroniske
patientjournaler blev den tilgængelige mængde data øget kraftigt, hvilket har mu-
liggjort brugen af moderne maskinlæringsmodeller. Tilsammen har disse moderne
metoder ført til et øget behov for nye værktøjer til at analysere og fortolke denne
enorme mængde information – information som ser ud til at fortsætte med at
vokse i størrelse i de kommende år. Denne afhandling fokuserer på udviklingen og
brugen af moderne statistiske metoder på forskellig biologisk data.

Indholdet af denne afhandling er delt op i fire dele baseret på hver sin artikel. I
den første artikel introducerer vi en ny statistisk metode til analyse af DNA-skade i
arkæogenetik. Vi er ikke bekendt med nogen tidligere metoder der er designet til at
dække dette specifikke anvendelsesområde. Vi viser i artiklen at produktet af vores
forskning, metaDMG softwaren, er både hurtigt og præcist til at estimere DNA-skade
– selv med kun ganske lidt data (helt ned til kun 100 DNA-sekvenser). Dette viser
at metaDMG er et førende værktøj indenfor feltet til estimering af DNA-skade for
både simple og komplekse arkæogenetiske datasæt

I den anden artikel præsenterer vi en ny tilgang til at forudsige medicinske
komplikationer efter en knæ- eller hofteoperation ved brug af moderne maskinlæ-
ringsmodeller. Brugen af maskinlæring er stadig forholdsvis ny indenfor anæstesi
og dette er et første skridt i at anvende maskinlæring indenfor dette felt. Vi vi-
ser i artiklen at moderne maskinlæringsmetoder kan anvendes til at forudsige
medicinske komplikationer med højere præcision end de klassiske metoder der
ofte er benyttet inden for feltet. Vi finder en 9,7% forbedring i præcision og 1,6
procentpoint forøgelse i arealet-under-ROC-kurven når man sammenligner ma-
skinlæringsmodellen med en logistisk regression. Vi viser yderligere at metoder
relateret til model-forklaring ikke blot kan bruges til at forstå modellens inderste
dele, og dermed selve risikoforudsigelserne, men også kan hjælpe lægerne i deres
beslutningsproceser.

Vi beskriver i den tredje artikel hvordan rumlige uensartetheder påvirker de
teoretiske forudsigelser af en epidemikurve, hvis man baserer sine forudsigelser
på data fra den tidlige fase af en epidemi. Vi udviklede i samarbejde med Statens
Serum Institut en agent-baseret model. Denne model var bygget på de klassiske SIR-
modeller som ofte er anvendt i epidemiologien. Brugen af agent-baserede modeller
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tillod os at modellere spredningen af sygdom i den danske befolkning og introdu-
cere komplekse interaktionsmønstre mellem agenterne i form af uensartetheder
baseret på geografisk tæthed. Vi fandt at forudsigelser baseret på SIR-lignende
modeller overestimerer det maksimale antal samtidig smittede, og det samlede
antal smittede, med en faktor to, hvis man kun kigger på data fra den tidlige fase
af en epidemi.

Alle levende celler deler det samme DNA, dog er der stor forskel på hvilke gener
som hver enkel celle rent faktisk udtrykker. Mekanismerne bag denne genregule-
ring og dæmpningen af specifikke gener er stadig ikke forklaret fuldstændig, men
man ved at den fysiske struktur af cellekernen spiller en stor rolle. Især dæmpnings-
og reperationsfokusserne i cellekernen er særdeles vigtige i denne sammenhæng. I
den fjerde artikel analyserer vi disse fokusser ved hjælp af Bayesiansk inferens
baseret på diffusionsmodeller. Ud fra dette måler vi diffusionskoefficienterne af
fokusserne, hvilket kan bruges til at beskrive de fysiske processer som ligger til
grund for skabelsen af fokusserne.
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1 Introduction

The primary content of my thesis is the four papers included in the thesis in
Chapter 2 to Chapter 5. This chapter is meant as a brief introduction to the
background needed to understand the basics of the methods used throughout the
papers. As such, this chapter is not meant to be a comprehensive guide to all
the statistical methods and bioinformatic tools used in the papers. The original
research motivation supporting the funding of this Ph.D. was multi-disciplinary
and the papers included in my thesis are also highly influenced by this.

In Section 1.1, I will shortly introduce the field of ancient genomics and the
statistical methods used to identify ancient DNA will be explained. Paper I, see
Chapter 2, utilize modern Bayesian methods to classify which species are ancient,
and which ones are not. Bayesian methods are great when possible, however, they
also rely on some statistical model being defined. In the case of Paper I, the model
is a beta-binomial distribution combined with a modified geometric damage profile
(exponential decay).

Sometimes the model is not known and the data generation process has to
be inferred by other means. This is the case in Paper II, see Chapter 3, where we
utilize machine learning methods to extract this information. This paper deals with
estimating the individual risk scores for each patient being re-hospitalized after
a knee or hip operation. Section 1.2 introduces the reader to basic classification
with machine learning models.

While the former two papers are based on real life data, Paper III, see Chapter 4,
concerns the development of a new agent based model for COVID-19. The model
is based on the SIR model but by using an agent-based model it allows for more
complex and realistic behaviour of the disease and the transmission process. The
model is used to simulate the spread of virus in Denmark and to estimate the effect
of contact tracing. The model is also used to simulate and predict the spread of
the “alpha” variant of COVID-19 in Denmark. Section 1.3 introduces the reader to
the basics of agent based models.

Finally, the method of Bayesian model comparison of different diffusion models
is introduced in Paper IV, see Chapter 5. In particular, this paper deals with different
mixture-models of independent Rayleigh-distributions, and how they can be used
to extract important information about the underlying diffusion processes of a
polymer bridging model in cell nuclei, see Section 1.4.



2 INTRODUCTION

1.1 Ancient DNA and Bayesian Statistics

The similarity between family members and the degree to which siblings resemble
one another has long been a mystery in human history. People have always
thought about the balance between nature and nurture, as in the famous fairy tale
“The Ugly Duckling” by Hans Christian Andersen from 1843. These questions were
addressed two decades later, when Gregor Mendel founded genetics as a modern,
scientific discipline with his studies on trait inheritance in pea plants (Mendel,
Gregor, 1866).

A century later, a major breakthrough occurred when Watson and Crick dis-
covered the double helix structure of DNA (Watson and Crick, 1953). This lead
to other important discoveries within genetics, such as the development of DNA
sequencing allowing scientists to identify the genetic makeup for a specific cell.
Until the mid 1980s, studies within archaeogenetics were limited to analysis of
fossilised samples of plants, animals or other species (Parducci and Petit, 2004).
Following the first successful recovery of ancient DNA from 5000 year old ancient
Mummies, it was shown that it was indeed possible to extract and sequence DNA
(Pääbo, 1985a; Pääbo, 1985b). This discovery, along with a dozen other, pushed the
boundary for what is scientifically possible with ancient DNA, and led to Svante
Pääbo being awarded with the Nobel Prize in Physiology or Medicine in 2022 for
“his discoveries concerning the genomes of extinct hominins and human evolution”
(Karolinska Institutet, 2022).

The field of ancient DNA (aDNA) was drastically changed with the invention
of the Polymerase Chain Reaction (PCR) method (Mullis et al., 1986) along with the
Next Generation Sequencing (NGS) technology which revolutionized the speed
and throughput of genomic sequencing, while decimating the cost (Slatko, Gardner
and Ausubel, 2018). This technological advance has lead to better understanding
of human migration and the genealogical tree of modern humans including the
previously unknown human (sub)species; the Denisova hominin (Krause et al.,
2010). In 2008, the first human genome was sequenced and since then multiple NGS
methods have allowed for cheap, high-quality, in-depth sequencing of genetical
samples (Genomics and Mobley, 2021). All of this shows, that the field of genetics
has grown exponentially and become a central part of modern biology.

Leaving the homocentric world view, aDNA also allows for the study of archaic
animals. The age limitation for when aDNA can be sequenced has in the recent
years increased; in 2013 with the early Middle Pleistocene 560–780 kyr BP horse
(Orlando et al., 2013) and in 2021 with the million-year-old mammoths (van der
Valk et al., 2021). High-throughput sequencing not only allows for the sequencing
of single genomes – like single humans, animals, or plants – but also for sequen-
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cing of entire communities of organisms, so-called metagenomics. By analysing
environmental DNA (eDNA) from a set of samples, one can survey the rich plant
and animal assemblages of a given area and at a specific time in the past. Our new
paper in Nature shows it is now possible to perform metagenomic sequencing on
environmental DNA that is 2 million years old, see Appendix A. This is a direct
application of the statistical method developed in Paper I, see Chapter 2, showing
that metaDMG can help to push the boundary of what is possible with ancient DNA.

Ancient DNA is difficult to work with since it often contains only a limited
amount of biological material due to bad preservation, leading to low endogenous
content with high duplication rates, making high-depth sequencing difficult1 1 Genotype likelihoods are

often used to alleviate the
problem of low-coverage
data (Nielsen et al., 2011).

(Renaud et al., 2019). Here endogenous content refers to DNA from the species of
interest and not e.g. ancient bacteria or modern contamination. In addition to this,
ancient DNA is often highly degraded. In particular, the two prominent issues
with aDNA is fragmentation and deamination (Dabney, Meyer and Pääbo, 2013;
Peyrégne and Prüfer, 2020). Fragmentation refers to the fact that through time
the DNA is broken into very short fragments, often with a size of less than 50 bp.
A consequence of this, upon alignment, is low mapping quality, multimapping,
and reference bias, which can somewhat be mitigated by the use variant graphs
(Martiniano et al., 2020).

Figure 1.
Illustration of DNA damage.

Ancient DNA is often highly
fragmented with short
reads compared to modern,
present-day DNA. Due to
deamination, aDNA can
contain uracils (U), which
will be misread as thymines
(T) while sequencing, lead-
ing to C-to-T nucleotide
misincorporations. This is
primarily happening at the
end of the reads. Modified
from Peyrégne and Prüfer,
2020.

overhang
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Deamination is a process in which cytosine (C) in the single-stranded overhangs
in the end of the DNA molecules is often hydrolized to uracil (U) which is read as
thymine (T) by the DNA polymerase. This particular type of postmortem damage
is known as cytosine deamination, or C-to-T transitions, and is one of the main
reasons behind nucleotide misincorporations in ancient DNA (Briggs et al., 2007).
Due to the short fragment sizes in ancient DNA, the fragments will often contain
overhangs with over-expressed C-to-T frequency. In the case of single-genome
analysis, previous solutions have been to either remove all transitions and only
keep transversions, apply trimming at the read ends, or enzymatically remove
them with USER treatment (Schubert et al., 2012; Rohland et al., 2015). For an
illustration of both fragmentation and deamination of ancient DNA, see Figure 1.
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Measuring DNA damage is thus a way to prove authentic aDNA. Currently,
a handful of different methods for quantifying ancient DNA damage exist. In
particular, the mapDamage software has been the standard for how to measure
ancient DNA damage in the field (Jónsson et al., 2013). While mapDamage allows
for estimating all of the four Briggs parameters, it is often the empirical deamination
patterns that mapDamage computes that are used. Newer and faster methods
for estimating ancient DNA damage are continuously being developed, including
PyDamage (Borry et al., 2021), which tackles some of mapDamage’s limitations.
However, within metagenomics, which studies the genetic material of all organisms
collected from an environmental sample, faster methods suited to analyse this
large-scale dataset are still lacking.

Paper I, see Chapter 2, introduces the metaDMG software which utilizes the
C-to-T deamination pattern2 to identify ancient DNA damage. One of the key2 for the forward strand

and the G-to-A deamina-
tion pattern for the reverse
strand.

features of this method is the beta-binomial model which allows the uncertainty of
the deamination frequency to be fitted independently of the mean of the frequen-
cies leading to improved accuracy of the damage estimation. The deamination
frequencies are based on the number of C-to-T transitions, 𝑘, out of the total num-
ber of C’s, 𝑁 , for a given position within the fragment. The classical likelihood to
use for this type of data is a binomial distribution. The mean and variance of the
binomial distribution is given by:

𝔼 [𝑘] = 𝑁𝑝

𝕍 [𝑘] = 𝑁𝑝(1 − 𝑝),
(1)

where 𝑝 is the probability of success (a C-to-T substitution). One of the issues,
however, is that the variance of the binomial distribution is proportional to the
mean. The binomial distribution is thus not flexible enough to accommodate large
amounts of variance in the data, so-called overdispersion (McElreath, 2020). One
way to accommodate overdispersion is to instead use a beta-binomial model. The
beta-binomial model is a generalization of the binomial distribution where the
variance is independent of the mean. Technically, the beta-binomial model assumes
that 𝑝 is a random variable which follows a beta distribution 𝑝 ∼ Beta(𝜇, 𝜑) where
the beta distribution is parameterized3 in terms of its mean, 𝜇, and dispersion3 This can be reparameteriz-

ation in term of the classical
𝛼, 𝛽 parameterization by:
𝜇 = 𝛼/(𝛼 + 𝛽) and 𝜑 = 𝛼 + 𝛽.

parameter, 𝜑, (Cepeda-Cuervo and Cifuentes-Amado, 2017). The mean and variance
of this beta-binomial model is then given by:

𝔼 [𝑘] = 𝑁𝜇

𝕍 [𝑘] = 𝑁𝜇(1 − 𝜇)
𝜑 + 𝑁
𝜑 + 1

.
(2)
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Comparing Equation 1 and Equation 2, it is seen that the variance of the beta-
binomial model is no longer (strictly) proportional to the mean, but instead is a
function of the dispersion parameter, 𝜑, allowing for higher variance than the
binomial-only model. When 𝜑 = 0, the variance of the beta-binomial model is 𝑁
times larger, and when 𝜑 → ∞ the variance reduces to the variance of the binomial
model, showing that the beta-binomial model is a generalization of the binomial
model.

Equation 2 shows how to model the C-to-T damage at a specific base position in
the read. We model the position-dependent damage frequency, 𝑓 (𝑥) = 𝑘(𝑥)/𝑁(𝑥),
see Figure 1, as a function of the distance from the end of the read, 𝑥 , with a
modified geometric damage profile (exponential decay):

𝑦(𝑥; 𝐴, 𝑞, 𝑐) = 𝐴(1 − 𝑞)𝑥−1 + 𝑐. (3)

Here 𝐴 is the scale factor, or amplitude, 𝑞 is the decay rate, and 𝑐 is a constant
offset. The offset can be interpreted as the baseline C-to-T background substitution
rate or baseline damage rate. Since 𝑥 is discrete, this is similar to a (modified)
geometric sequence starting from 𝑥 = 1. The combination of equation (2) and (3)
is illustrated in Figure 2, which shows the position-dependent decreasing damage
frequency. The figure also shows the increase in uncertainty in the beta-binomial
model compared to the binomial-only model.

Figure 2.
Illustration of the damage
model. The figure shows
data points as circles and
the fitted damage frequency,
𝑦(𝑥), as a solid line. The
amplitude of the damage
is 𝐴, the offset is 𝑐, and the
relative decrease in damage
pr. position is given by 𝑞.
The damage uncertainty
for a binomial model is
shown in dark grey and
the uncertainty for a beta-
binomial model in light grey.
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The damage framework described above is based on the nucleotide misincor-
porations, i.e. the C-to-T transitions. The background for this data can be from
either DNA sequence files mapped to a single genome or from metagenomic data
consisting of multiple mapped reads. As such, the damage framework is a general
tool for estimating damage based on DNA alignment files.
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In the metagenomic case, metaDMG identifies the lowest common ancestor
(LCA) based on the algorithm from ngsLCA (Wang et al., 2022). For each read
that maps to multiple reference genomes from separate species, i.e. has multiple
alignments, the taxonomic tree is traversed for each alignment until a common
ancestor is found. Figure 3 illustrates the LCA for a read that maps to different
(sub)species. In this example, the LCA of alignment 1 and 2 is the Subspecies I
while the LCA for all four alignments is the Genus X. metaDMG works by default
with the NCBI taxanomic database but can also be used with custom databases.

Figure 3.
Illustration of the lowest
common ancestor (LCA) for
taxonomic trees. Here the
LCA of alignment 1 and 2 is
Subspecies I, while the LCA
of all four reads is Genus X.
The dots (… ) refers to other
taxonomic levels, e.g. family
and order.

Root

. . .

Genus X
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Given the nucleotide misincorporations, either coming from a single-reference
alignment file or after LCA in the metagenomic case, eq. (2) and (3) are fitted with
a Bayesian model. This is done to ensure the optimal inference of the parameters,
𝐴, 𝑞, and 𝑐, and to account for the uncertainty in the data. Bayesian inference also
allows for the inclusion of domain knowledge in the form of the prior distribution
by Bayes theorem. Bayes theorem is based on the law of conditional probability
(Barlow, 1993) stating that the probability of two events, 𝐴 and 𝐵, both happening,
𝑃(𝐴 ∩ 𝐵), is given by:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵)𝑃(𝐴|𝐵), (4)

where 𝑃(𝐵) is the probability of 𝐵 and 𝑃(𝐴|𝐵) is the conditional probability of 𝐴
given 𝐵. Similarly, 𝑃(𝐴 ∩ 𝐵) can also be expressed in terms of the probability of 𝐴:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴). (5)
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Combining Equation 4 and Equation 5 and rearranging terms gives the Bayes
theorem:

𝑃(𝜃|𝐷) =
𝑃(𝜃)𝑃(𝐷|𝜃)

𝑃(𝐷)
, (6)

with a change of variables where 𝐷 refers to the observed data and 𝜃 the para-
meter(s) of the model4. The first term in the numerator, 𝑃(𝜃), is the prior distribu- 4 In the case of metaDMG,

𝐷 would be the observed
deamination frequencies
and 𝜃 the four fit paramet-
ers.

tion and describes the probability distribution assigned to 𝜃 before observing any
data. The second term is the likelihood function, 𝑃(𝐷|𝜃), which is the probability
of observing the data given the parameter(s). Together these two terms combine
to a compromise between data and prior information.

The numerator, 𝑃(𝐷), also known as the evidence, can be treated as a data-
related normalization factor. In the case of continuous 𝜃, this can calculated as the
marginalization of the likelihood function over 𝜃:

𝑃(𝐷) = ∫
𝜃
𝑃(𝐷|𝜃)𝑃(𝜃) d𝜃. (7)

This equation, however, is often intractable to compute in the higher-dimensional
case. Luckily, it can be shown that Markov Chain Monte Carlo (MCMC) sampling
can approximate the posterior distribution, 𝑃(𝜃|𝐷), and asymptotically converge
to the correct distribution (Gelman, Carlin et al., 2015).

Traditionally MCMC methods such as Metropolis Hastings (MH) or Gibbs
sampling have been used for Bayesian inference, however, these methods are often
slow and require a lot of tuning. In the last decades, a new class of MCMC methods
have been developed, namely Hamiltonian Monte Carlo (HMC) methods. While
traditional MH uses a Gaussian random walk, HMC is a gradient-based MCMC
method that uses Hamiltonian dynamics to guide the sampling. This makes HMC
more efficient than traditional MCMC methods and allows for sampling from high-
dimensional distributions (Neal, 2011; Betancourt, 2018). A particularly efficient
type of HMC is the No-U-Turn Sampler (NUTS). NUTS is a variant of HMC that
automatically tunes the step size and number of steps to take in the Hamiltonian
dynamics (Homan and Gelman, 2014).

Most statistical domain-specific languages (DSL) such as Stan (Carpenter et al.,
2017), Pyro (Bingham et al., 2019), NumPyro (Phan, Pradhan and Jankowiak, 2019)
or Turing.jl (Ge, Xu and Ghahramani, 2018), implement HMC and in particular the
NUTS algorithm. Since the statistical modelling part of metaDMG is implemented
in Python, NumPyro is used for the Bayesian inference of the damage model, as it
is easy to implement and computationally efficient since it uses JAX (Bradbury
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et al., 2018) under the hood for automatic differentiation and just-in-time (JIT)
compilation.

Even though NumPyro is fast and metaDMG is efficiently implemented, the
Bayesian inference of the damage model is still computationally expensive. Thus,
it was decided to also include a faster, approximate method of Bayesian inference:
the maximum a posteriori (MAP) estimate. The MAP estimate is the point estimate
of the posterior distribution that maximizes the posterior probability density
function, i.e. the posterior mode:

𝜃̂MAP = argmax
𝜃

𝑃(𝜃|𝐷) = argmax
𝜃

𝑃(𝜃)𝑃(𝐷|𝜃), (8)

where the second equality is due to the evidence being independent of 𝜃. Since
this is a point estimate, 𝜃̂MAP does not fully explain the full posterior, however,
it is often a good approximation5. Comparing 𝜃̂MAP to the maximum likelihood5 Especially when the pos-

terior is unimodal, which
is generally the case for
metaDMG.

estimate (MLE):

𝜃̂MLE = argmax
𝜃

𝑃(𝐷|𝜃), (9)

the MAP estimate can be seen as a regularized version of the MLE estimate (Murphy,
2012). To further optimize the computational efficacy of the MAP estimation in
metaDMG, the MAP estimation function is JIT compiled using Numba (Lam, Pitrou
and Seibert, 2015) and mathematically optimized with iMinuit (Dembinski et al.,
2021).

1.2 Anestesiology – a Machine Learning Approach

This section explains the technical background behind Paper II, see Chapter 3. This
study investigates the potential advantages of using a modern machine-learning
model compared to classical logistic regression to predict the risk of patients
being re-hospitalized after fast-track hip and knee replacements. In particular,
the patients were grouped into two groups. The first group were the so-called
“risk-patients” that stayed at least 4 days in the hospital post surgery or were
re-hospitalized within 90 days of surgery. The second group were the non-risk-
patients. As such, this is a binary classification problem where the patient’s
risk-score is predicted based on historical data. The machine learning models
were trained on 33 variables, of which 7 were continuous, related to the patient’s
medical record, such as age, gender, the use of walking aid, anaemia, diabetes,
etc. A total of 22.017 patients were included in the study, of which 1.476 were
risk-patients.
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Most classification and regression problems fall under the same machine learn-
ing (ML) branch called supervised learning. In supervised learning, the goal is to
find the hypothesis ℎ∗ in the hypothesis set  that matches the unknown, “true”
data-generating function 𝑓 ∶  →  optimally, where  is the input space and 
is the output space. Assuming that we have access to realizations of 𝑓 , the so-called
training data train = {(𝐱𝑖, 𝑦𝑖)}𝑁𝑖=1, we can use a learning algorithm  combined
with the training data to estimate ℎ∗ (Abu-Mostafa, Magdon-Ismail and Lin, 2012).
Here 𝑁 refers to the number of training samples and 𝐱𝑖 is the 𝑖th observation with
the true label 𝑦𝑖. This process is illustrated in Figure 4.

Figure 4.
Illustration of how to learn
from data in a supervised
learning setting. Adap-
ted from (Abu-Mostafa,
Magdon-Ismail and Lin,
2012).

Hypothesis set

Target function Training examples

Learning algorithm Final hypothesis

Both logistic regression (LR) and ML models can be viewed through the lens
of Figure 4, just with |LR| ≪ |ML|, i.e. the machine learning model is a lot
more complex than the logistic regression model and the hypothesis space thus
significantly larger. While sufficiently parameterized ML methods can in theory
achieve perfect performance on the labelled training set, one is rarely interested
in the predictive power of ℎ∗ on the training set, as the truth is already known.
Instead, one often wish to apply the trained model to new, unseen data where the
truth is unknown.

Assessing the performance of ℎ∗ on unlabelled data can be difficult. A naive
estimate would be to assume that the performance on new, unseen data is the
same as on the training data. However, this would likely be a poor estimate due to
overfitting and thus bias the predicted performance, especially for high cardinality
hypothesis sets. (Abu-Mostafa, Magdon-Ismail and Lin, 2012). The concept of
overfitting is illustrated in Figure 5, which shows the training loss as a function of
model complexity. The figure shows how more advanced models can achieve lower
and lower training losses, however, at some point they start to overfit, leading to
higher validation losses. The validation loss is the error on unseen data and is thus
the quantity of interest. The goal is to find the sweet spot between underfitting
and overfitting.

To avoid overfitting and get accurate estimates of the performance of ℎ∗, we
use a technique called cross-validation (CV). In the simplest way, this can be done
by splitting the data into two sets, one called the training and one called the
validation set, and then only train on the training set. Afterwards the trained
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Figure 5.
Illustration of the loss as
a function of model com-
plexity. The training error
is shown in blue and valid-
ation error in red. Figure
from Michelsen, 2020.
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Theorem 3 (VC Generalization Bound). Let H be a hypotheses class
with VC-dimension: dVC(H) = dVC. Then with probability at least 1 � d:

L(h)  L̂(h, S) +

s
8
N

ln
✓

4
d

⇣
(2N)

dVC + 1
⌘◆

. (2.15)

Equation (2.15) states that the out of sample error L(h) is bounded
from above by the empirical error L̂(h, S) and second term which is
related to the complexity of the hypothesis space H, the number of
samples N and the certainty d. This is called the model complexity
penalty W(N,H, d):

W(N,H, d) =

s
8
N

ln
✓

4
d

⇣
(2N)

dVC(H)
+ 1

⌘◆
. (2.16)

As the hypothesis space complexity, dVC, grows, the model complex-
ity penalty increases but it is more likely that H contains a strong
hypothesis. This relationship is called the approximation-estimation
or the bias-variance tradeoff. When the model is too simple to prop-
erly fit the complexity in the data, it is called underfitting11. When 11 Here the error from L̂(h, S) domi-

nates.the model is so complex that it starts fitting the inherent noise in
the data, it is called overfitting12. The loss as a function of model 12 Here the error from W(N,H, d) dom-

inates.complexity gives the characteristic curve illustrated in Figure 2.2. As
the model complexity increases, the training loss decreases. Initially,
also the validation loss decreases, but at some point the behavior
of the model on the validation set worsens and the loss increases;
overfitting happens.

Figure 2.2: Illustration of the empirical
loss as a function of model complexity.
The training error is shown in blue and
validation error in red.

2.4 Avoiding overfitting

Avoiding overfitting is one of the most important issues in machine
learning. By now, most modern machine learning algorithms have
the inherent model complexity needed for overfitting and it thus has
to be managed. Due to the importance of the issue, a number of
different methods exists which reduce overfitting. Most of them are
complementary of each other and can be taken advantage of in a
combination. Model regularization will be introduced in subsec-
tion 2.4.1, cross validation in subsection 2.4.2, and early stopping
in subsection 2.4.3.

2.4.1 Model Regularization

One of the earliest methods developed for preventing overfitting was
model regularization. A. N. Tikhonov [95] was one of the first to de-
scribe this method in 1943. In particular, regularization was used to
solve ill posed13 linear regression problems. Regular linear regression 13 The definition of “ill posed” is given

in further down.problems refer to minimizing the residual sum of squares written in
matrix form as:

b̂LS = arg min
b

ky � Xbk2
2 = arg min

b
ky � f(X)k2

2

f(X) = Xb.
(2.17)

model can be evaluated on the validation set without biasing the performance
estimate. This process can further be refined by splitting the data into 𝐾 folds and
then repeating the process 𝐾 times, where each fold is used as the validation set
once. This is called 𝐾 -fold cross-validation and is illustrated in Figure 6a (Murphy,
2012; Hastie, Tibshirani and Friedman, 2016). 𝐾 -fold cross validation works well
in many cases, yet in the case of temporal data, it also risks introducing bias in
the performance estimates, since, in the different folds, it, effectively, is allowed
to “look into the future”. The most extreme case of this is shown in the bottom of
Figure 6a where the model trains on future data and is then evaluated on past data
(relative to test fold). In many time dependent datasets, such as the one in Paper II,
this is undesirable. Instead, we use a technique called temporal cross validation,
see Figure 6b, which circumvents this problem by only allowing the model to train
on past data and evaluate on future data (Tashman, 2000). As the patient data is
time dependent, this is the technique we use in Paper II.

Figure 6.
Two types of cross valida-
tion: 𝐾 -fold cross validation,
and temporal cross valid-
ation. Both figures from
Michelsen, 2020.
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test set. This can be seen as training on the test set and thus it has
“tainted” the purity of the test set. To avoid this, an additional split
is made such that we get a training set, a validation set, and a test
set, where you often see a (80/10/10)% ratio. The two models can
then be compared on the validation set and the performance of the
chosen model can be estimated from the test set.

This way of splitting up the data has some clear benefits and is
thus also often used. There is a drawback, however, and that is that
we are not fully utilizing a lot of the data in this way. Basically, 20 %
of the data are only used to provide a single number of performance
and does not necessarily allow an uncertainty or confidence inter-
val of this measurement to be calculated. Thus, other methods of
estimating model performance are developed.

Figure 2.6: k-fold cross validation.

One of the most used and well-known ones is the k-fold cross val-
idation (CV). In k-fold cross validation the entire dataset is split up
into k chunks which are randomly drawn subsamples (without re-
placement). In the first iteration, the model is trained on the first
k � 1 subsamples and evaluated on the last k subsample. In the sec-
ond iteration the evaluation subsample is a new one. This process is
continued k times until all samples in the dataset have been trained
and evaluated on [56]. For an illustration of this, see Figure 2.6.

The process yields k estimates of the performance of the model
which can then be averaged to form a single performance num-
ber and the variability of the performance can even be gauged22. 22 Special care has to be taken here since

the k different performance values are
not independent.

The disadvantage of k-fold CV is that the performance estimate is
now slightly biased, however, this effect is generally very small. The
biggest disadvantage is the computational burden related to doing k-
fold CV where k � 1. A compromise often used in applied machine
learning is k = 5 which is also what is used in this project.

Special care has to be taken when dealing with time series data.
Here the problem of data leakage is often introduced inadvertently.
Data leakage is when the model is exposed to information from the
test set that it was not supposed to be exposed to. In the case of
time series data, if the data is split by the usual k-fold CV, then each
subsample contains events from all times and the model does not
learn how to predict future events. To circumvent this problem, a
special type of k-fold CV for time series data has to be used. Here all
samples up to a specific time, eg. all houses sold before 2018, is used
for training and then the model is evaluated on the performance of
samples after the event, e.g. houses sold in 2018. For an illustration
of this, see Figure 2.7.

Figure 2.7: k-fold cross validation for
time series data.

2.4.3 Early Stopping

Most modern machine learning models are trained iteratively. This is
the case for both (boosted) decision trees and neural networks, both
of which are used in this project. In this context, iteratively means
that the model starts off with an initial guess of the parameters of the
model and “learns” a new and better set of values by looking at the

(a) 𝐾 -fold cross validation
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model and “learns” a new and better set of values by looking at the
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The actual training of the learning model  is model-dependent and will
not be covered in this thesis. The term training refers of the optimization of the
internal parameters in the ML model. In most cases, the training depends on the
gradient of the loss function with respect to internal parameters to be computed,
see Michelsen, 2020 for a more detailed description of the training process.

Training is not the only way to optimize the performance of , albeit it is the
primary one. In addition to the internal parameters of the model, some parameters
are external to the model in the sense that they are not optimized by the model
itself, but rather by the user. These are called hyperparameters and are often
optimized using a technique called hyperparameter optimization (HPO). In the
case of logistic regression, the number of variables to include would be an example
of a hyperparameter; in the case of a decision tree model, the depth of the tree.
Hyperparameter optimization can be performed in many ways, where the common
one is through grid search, see Figure 7.
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should be noted that it is a good place to start. In subsection 2.7.1
the HPO method called grid search is introduced which is further
generalized and optimized in subsection 2.7.2 with random search.
Both these methods are easily parallelizable since they do not have
any inherent history in its guesses. This is in contrast to Bayesian
optimization introduced in subsection 2.7.3 which allows for “smart”
guesses.

2.7.1 Grid Search

Grid search (GS) is a HPO method also known as full factorial design.
It is called grid search because it tries all possible combinations of the
hyperparameter configuration space: the so-called cartesian product
of L. Imagine a 2D space where the two domains are respectively
x = {1, 2, 3} and y = {1, 2, 3, 4}. Grid search runs through all 3⇥ 4 =

12 combinations of these two sets:

Figure 2.11: Visualization of grid search
run on the two hyperparameters x and
why y with the domains x = {1, 2, 3}
and y = {1, 2, 3, 4}.

(xi, yi) 2 {(1, 1), (1, 2), . . . , (xi, yi), . . . , (3, 4)}, (2.37)

as visualized in Figure 2.11. The advantage of grid search is that
it is an exhaustive search over all combinations of hyperparameters,
however, the total number of combinations grows exponentially and
grid search as a method thus suffers the curse of dimensionality30. 30 Not the dimensionality of the input

feature space, but of the hyperparame-
ter configuration space.

2.7.2 Random Search

To circumvent the problems of grid search, Bergstra and Bengio [23]
developed the Random Search (RS) algorithm in 2012. Regarding
the effect of the curse of dimensionality on grid search they wrote:
“This failure of grid search is the rule rather than the exception in high
dimensional hyper-parameter optimization” [23]. Instead of searching
through all possible values of l, like in grid search, random search
makes B runs where each li is given by:

li ⇠
K

Â
j=1

PDFj(Lj) · êj, (2.38)

where êj is the unit vector for dimension j in the K dimensional
hyperspace. Equation (2.38) should be understood in the follow-
ing way. For each hyperparameter draw a random number from a
user-defined probability density function (PDF) and then let l be the
vector of those K random numbers. In a 2D-space, li could thus be:

li ⇠
"
N (100, 4)

U (0, 1)

#
, (2.39)

where N (100, 4) is normal (Gaussian) distribution with mean µ =

100 and standard deviation s = 4 and U (0, 1) is the uniform dis-
tribution in the interval [0, 1]. The PDF can be a probability mass
function (PMF) in the case of discrete hyperparameter domains.

The reason why random search is so powerful is not only because
the number of function evaluations B is easily tunable31, but also 31 Compared to grid search which tries

all possible combinations.

Figure 7.
Illustration of grid search.
Figure from Michelsen,
2020.

In grid search, all combinations of the hyperparameters (the cartesian product)
are tested and the best combination is chosen. This is a simple and intuitive
approach, however, it scales exponentially with the number of hyperparameters.
As such, grid search suffers from the curse of dimensionality. In addition to this, it
depends on the user-defined grid, which might not be optimal. To circumvent this,
a technique called random search (RS) was developed (Bergstra and Bengio, 2012).
Random search is a randomized version of grid search, where the hyperparameters
are sampled randomly from a distribution. This allows for a more efficient sampling
of the hyperparameter space, see Figure 8. Another advantage is that RS lets the
user decide on the number of iterations beforehand.

Figure 8.
Illustration comparing grid
search to random seach. The
height of green surve is the
score-function which has to
be optimized. Figure from
Bergstra and Bengio, 2012.
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

The disadvantage of random search is that all draws are fully independent.
While this allows for easy parallelisation of the algorithm, this also means that
each new sample might be infinitesimal close in the hyperparameter space to a
previous sample with bad performance, which with high probability will thus also
have a high loss. An approach that does take the history of the previous samples’
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performance into consideration is Bayesian optimization (Brochu, Cora and de
Freitas, 2010). In Bayesian optimization each successive hyperparameter is chosen
based on an acquisition function, which optimizes the expected improvement
in the performance of the model. This is illustrated in Figure 9. This leaves
the user with the task of choosing between “exploitation” and “exploration” of
the hyperparameter space in the definition of the acquisition function, yet most
implementations of bayesian optimization have decent default settings.

Figure 9.
Illustration of the learn-
ing process of Bayesian
optimization. The previous
observations are shown as
black dots and the true ob-
jective function is shown
as a dashed black line. This
line is fitted with Gaus-
sian processes which is
shown as the solid line with
its uncertainty in purple.
The acquisition function
is shown in green and its
maximum decides what the
next iteration of the hyper-
parameter value(s) should
be (Michelsen, 2020).

22 a physicist’s approach to machine learning – understanding the basic bricks

chance of finding a new good value of l is. The acquisition func-
tion has to be chosen manually and especially the tradeoff between
exploitation versus exploration is particularly important. This value de-
cides how “adventurous” or conservative the BO algorithm should
be when exploring the evaluation space.

Bayesian optimization is better explained by looking at Figure 2.13.
First look at the top plot. This is a plot of the surrogate function in
black with uncertainties shown in blue. This is a result of fitting
GPs to the two previous points, t = 2. This surrogate function is
supposed to fit the unknown hyperparameter-dependent evaluation
function (called objective in the figure) shown as a dashed black line.
Below we see the acquisition function in green. This is a function of
the blue curve and the position of its maximum decides where the
next guess of l should be. With the chosen acquisition function and
exploration willingness, we see that the next guess should be slightly
to the left of the right-most point. This is a simple 1D toy problem,
but one should imagine this happening in a high-dimensional space.
After making a new guess, t = 3 in the middle plot, the acquisi-
tion function changes since it learnt that this gave a worse evaluation
value than the right-most point. Therefore, the next proposal for l

is slightly to the right of the right-most point. The process continues
like this in an iterative fashion: first fitting GPs to the previous eval-
uation values and then choosing the next l according the acquisition
function.

Figure 2.13: Illustration of the learn-
ing process of Bayesian optimization.
The previous observations are shown as
black dots and the true objective func-
tion is shown as a dashed black line.
This line is fitted with Gaussian pro-
cesses (GPs) which is shown as the solid
line with its uncertainty in purple. The
acquisition function is shown in green
and its maximum decides what the next
iteration of the hyperparameter value(s)
should be. Adapted from Brochu et al.
[28].

We use the Python package Optuna (Akiba et al., 2019) for HPO in Paper II
due to its ease of use and its support for Bayesian optimization. In particular, we
use the Tree-structured Parzen Estimator algorithm for the Bayesian optimization
and a median stopping rule to minimize optimization time (Bergstra, Bardenet
et al., 2011). This allowed for a good comporise between optimization time and
performance.

While model performance is often paramount, in some fields – such as medicine
– being able to explain the model’s predictions is almost as important. This is
especially true in the case of medical decision support systems, where the model is
used to make decisions about the patient’s treatment. Model explainability helps
to build trust in the model, for both the patient and the medical staff alike.
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In Paper II, we employ the SHapley Additive exPlanations (SHAP) values which
provide estimates on which variables contribute most to the risk score predictions
(Scott M Lundberg and Lee, 2017; Scott M. Lundberg, Erion et al., 2020). SHAP
values allow for not only a global explanation of the model, i.e. which features are
most important generally, but also a local explanation, i.e. which features led to a
single patient being predicted at risk of being re-hospitalized. It has previously
been shown that the interaction between SHAP values and medical doctors can
improve the performance of anaesthesiologists (Scott M. Lundberg, Nair et al.,
2018).

While the aim of Paper II is to show how modern machine learning techniques
can be used to improve the risk prediction process, the usefulness of the SHAP
values in a medical context is demonstrated in our paper in Appendix B. The
paper uses the SHAP values to compare the preoperative haemoglobin level in
the patient with the risk-score, stratified by sex and operation type (knee vs. hip
replacement). Currently, the WHO guidelines for the haemoglobin levels are
gender specific, however, our study finds no significant gender difference and a
haemoglobin threshold close to the WHO suggestions for men (Anaemias and
Organization, 1968).

1.3 COVID-19 and Agent Based Models

In early 2020, a contagious disease called COVID-19 started to spread in Europe,
including Denmark. With new infections showing up faster and faster, govern-
ments started to implement different measures to limit the spread of the contagious
disease, including lockdowns, travel restrictions, and social distancing, measures
not previously seen in peacetime since the Spanish flu in 1918. This was the
background for the work that we did in 2020 which became the basis for Paper III,
see Chapter 4. This paper deals with the development of a new agent based model
for COVID-19 in Denmark in collaboration with Statens Serum Institut (SSI), the
Danish Center for Disease Control.

Historically, most mathematical models of infectious diseases were variations
of the SIR model, which describe the evolution of a pandemic by approximating
all individuals as one population (Kermack, McKendrick and Walker, 1927). As
one of the simplest compartmental models, the susceptible-infectious-recovered
(SIR) model is based on a system of three non-linear differential equations that
describe the transition between each state, or compartment, of the model (Kröger
and Schlickeiser, 2020). Initially the entire population is susceptible. At 𝑡 = 0 an
outbreak happens where some number of random agents are infected and become
infectious, allowing the disease to spread. After having been infectious, the in-
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dividuals recover and become immune to the disease and stop being infectious.
Several variations of the SIR model exist, including the SIS model, where the re-
covered individuals become susceptible again (Hethcote, 1989). Another variation
is the SEIR model, which includes an exposed state, where individuals are infected
but not yet infectious, which is the basis for the model used in Paper III.

SIR-like models suffer from several shortcomings, including the assumptions
that the population is homogeneous, and that agents are equally infectious through-
out there infectious period. In reality, neither the population nor the transmission
rates are homogenous. While multistage SEIR and multicompartment models
can help mitigate some of the issues none of these can handle the geographical
interactions between agents, which is why we chose to develop an agent based
model (ABM) (Tang et al., 2020; Wu et al., 2022). Agent based models simulate
individual agents in a population in a way that allows for complex interactions
patterns, e.g. based on geographical features such as agent density (Wilensky and
Rand, 2015).

In particular, we implemented an event-based, stochastic, spatial ABM using
the Gillespie algorithm, a stochastic simulation algorithm (Gillespie, 1977). The
model is JIT compiled with Numba (Lam, Pitrou and Seibert, 2015) to speed up
the simulation, allowing the simulation of the Danish population of 5.8 million
people in a couple of hours instead of days. The model allows for the individual
tuning of the three main effects; A) heterogeneities in the infection strength6, B)6 allowing super-shedders

heterogeneities in the number of connections7, C) and the spatial clustering of the7 allowing super-connecters

agents. In the absence of any of these effects, we find that the ABM’s predictions
matches the SEIR model’s predictions within ±5%. Once we allowed for spatial
clustering, we found that the epidemic developed faster and with a higher infection
peak compared to the SEIR model, but that the total number of infected in the end
of the epidemic was lower.

In real-life scenarios, one does not have the opportunity to let the epidemic run
loose and afterwards evaluate the strength of the epidemic; the goal is to predict the
intensity in the very beginning of the epidemic and implement lockdown-related
measured based on this estimate. In the second part of Paper III, we show that
once spatial clustering is introduced, fitting standard SEIR-models to infection
numbers from the first few days of the epidemic, predictions are overestimated
by a factor of two. The result is a significant over-estimation of the impact of the
epidemic, in particular the reproduction number 0 and thus also the number of
infected, both the maximal number of simultaneously infected and the endemic
steady state number of infected. Since the population is highly susceptible in the
beginning of an epidemic, this also highlights the benefits of early lockdowns to
reduce the effect of the super+connectors.
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The developed ABM was further used by SSI to estimate the effect of contact
tracing related to COVID-19 in Denmark, see Appendix C. It was further used
to estimate spread of the “alpha” variant of COVID-19 (B.1.1.7) in Denmark, see
Appendix D. Based on data available January 2nd 2021, the model predicted that
the “alpha” variant would be the dominant variant in Denmark February 10–20,
2021. It became the dominant variant in Week 7: February 15–21, 2021 (Bager
et al., 2021).

1.4 Diffusion Models and Bayesian Model Comparison

While Section 1.1 discusses the behaviour of ancient DNA, Paper IV focusses on
how living cells work and, in particular, how they regulate the transcription of
DNA in the cell nucleus. Despite the fact that all cells share the same DNA, the
regulation and expression of the genes stored within can vary. The mechanism of
the cell-specific expression and silencing of specific genomic regions are one of
the most fundamental biological challenges.

Currently, different biological models try to explain the physical principles
creating the heterogeneous environment in the cell nucleus of eukaryotic cells. One
of these is the polymer-bridging model (PBM) that models the micro compartments
called the foci. The cell nucleus contains two different types of loci; the repair foci
and the silencing foci. Paper IV studies the physical mechanism of the formation
of the silencing foci.

Figure 10.
Illustration of the cell nuc-
leus. The nucleus membrane
is shown in red and the
repair foci in yellow. The
black line represents the
DNA fiber which is curled
up in the silencing foci in
green. The right side of the
figure shows a zoomed in
view of the silencing foci
according to the polymer-
bridging model with the
binding and bridging sites
that interact with the SIR
proteins. The tracking of
the SIR proteins is shown
as blue stars. Partly adapted
from (Heltberg et al., 2021).

DNA fiber

Binding site

Bridging site

Nucleus
Repair DNA fiber

Silencing

Tracked molecule

Figure 10 illustrates the parts of the cell nucleus relevant to the polymer-
bridging model. Inside the nucleus, DNA fibers are curled up and some parts
of the DNA locate inside the silencing foci. Inside the silencing foci, the PBM
predicts binding and bridging sites that interact with the DNA fiber through the
SIR proteins, which are up-regulated inside the the region of the foci (Heltberg
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et al., 2021). The silent Information Regulator (SIR) proteins repress the underlying
genes, and, due to the increased concentration inside the focus, the foci are termed
silencing foci.

With the use of single particle tracking and photoactivated localization mi-
croscopy, it is possible to track the individual SIR protein at high temporal and
spatial resolution (Manley et al., 2008; Oswald et al., 2014). As the SIR proteins are
assumed to follow a diffusion process, the tracking allows for the determination of
the diffusion coefficients of cell nucleus, which help quantify the heterogeneous
structure in the nucleus.

Assuming classical Brownian motion in 2D, the displacement lengths, Δ𝑟𝑖,
defined as the distances between subsequent observations 𝑥:

Δ𝑟𝑖 = ||𝑥𝑖+1 − 𝑥𝑖||, (10)

follows a Rayleigh distribution:

Rayleigh(𝑟; 𝜎) =
𝑟
𝜎2 𝑒

−𝑟2/(2𝜎2) 𝑟 > 0, (11)

with scale parameter 𝜎 =
√
2𝑑𝜏, where 𝑑 is the diffusion coefficient and 𝜏 is the

time between observations (Anderson et al., 1992) . Using Bayesian mixture models,
the switch diffusion process is a simple model describing the system, (Baker, 2021).
With 𝐾 = 2 diffusion states, Figure 11 illustrates the model in directed factor
graph notation (Dietz, 2022). It shows how the two diffusion coefficients, 𝑑1 and
𝑑2, each define their own Rayleigh distribution, 𝑘 , which are then combined to a
mixture distribution, 1,2, with mixing probabilities 𝜃. The measured data, Δ𝑟 , are
modelled as 𝑁 realisations from this mixture distribution.

Figure 11.
A graphical representation
of the Bayesian model case
of two diffusion components
using the directed factor
graph notation (Dietz, 2022).
Here 𝑑1 is the diffusion
coefficient, 1 is the 𝑑-
parameterized Rayleigh
distribution and 1,2 is
the mixture model of the
Rayleigh distributions with
a 𝜃 prior.

𝑑1

𝑑2

1

2

𝜃

1,2

Δ𝑟

𝑁

The diffusion model illustrated in Figure 11 with 𝐾 = 2 diffusion states can be
extended to 𝐾 states, where data shows that both a simpler 𝐾 = 1 model (𝐾1), the
𝐾 = 2 model (𝐾2), and a more advanced model with 𝐾 = 3 diffusion states (𝐾3), all
yields appropriate results. Remembering that the formation of the foci depends on
the physical properties of the cell nucleus, it is important to be able to evaluate
the different models since they provide different diffusion estimates.
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The models are compared using the Widely Applicable Information Criterion
(WAIC) (Watanabe, 2010) which is a generalized version of the Akaike informa-
tion criterion (AIC), useful for Bayesian model comparison (Gelman, Hwang and
Vehtari, 2014). The WAIC is an approximation of the out-of-sample loss of the
model and is defined as:

WAIC = −2(lppd − 𝑝WAIC), (12)

where the log-pointwise-predictive-density (lppd) is a Bayesian version of the
accuracy of the model and 𝑝WAIC is a penalty term that penalizes the model for
the effective number of parameters (McElreath, 2020). To compare two models,
the model with the lowest WAIC is preferred, however, the difference between
the WAICs should also be considered. The results for the WT1 dataset from Paper
IV is shown in Figure 12. This figure shows the WAIC in black for the 𝐾1, 𝐾2 and
𝐾3 models along with their uncertainties and it is easily seen that the model with
only a single diffusion component does not perform well. The difference between
the WAIC of the model and the best performing model (𝐾3) is shown in grey, Δ𝐴,𝐵,
where the 𝑧-value above the error bars are the number of sigmas the difference is
from zero:

𝑧 =
Δ𝐴,𝐵

𝜎Δ𝐴,𝐵

. (13)

Following Occam’s razor, the 𝐾2 model is chosen as the optimal model, since
the difference between the 𝐾2 model and the 𝐾3 model, the best performing one, is
statistically non-significant (𝑧 = 0.57 < 2).

Figure 12.
Comparison between dif-
fusion models with 𝐾 = 1,
𝐾 = 2, or 𝐾 = 3 diffusion
coefficients for the Wild
Type 1 data (WT1). The x-
axis shows the WAIC score,
where lower values indicate
higher-performing models.
The WAIC-score for each
model is shown in black
along with its uncertainty.
The difference in WAIC-
scores between the model
and the best performing
model (WT1 K3) is shown in
grey with 𝑧 being the num-
ber of standard deviations
between them.

WAIC (lower is better)
-35500 -35000 -34500

WT1 K3
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Abstract

1. Motivation Under favourable conditions DNA molecules can persist for hundreds of12

thousands of years. Such genetic remains make up invaluable resources to study past
assemblages, populations, and even the evolution of species. However, DNA is subject to14

degradation, and hence over time decrease to ultra low concentrations which makes it
highly prone to contamination by modern sources. Strict precautions are therefore16

necessary to ensure that DNA from modern sources does not appear in the final data is
authenticated as ancient. The most generally accepted and widely applied authenticity for18

ancient DNA studies is to test for elevated deaminated cytosine residues towards the
termini of the molecules: DNA damage. To date, this has primarily been used for single20

organisms and recently for read assemblies, however, these methods are not applicable for
estimating DNA damage for ancient metagenomes with tens and even hundreds of22

thousands of species.
2. MethodsWe present metaDMG, a novel framework and toolkit that allows for the estimation,24
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quantification and visualization of postmortem damage for single reads, single genomes
and even metagenomic environmental DNA by utilizing the taxonomic branching structure.26

It bypasses any need for initial classification, splitting reads by individual organisms, and
realignment. We have implemented a Bayesian approach that combines a modified28

geometric damage profile with a beta-binomial model to fit the entire model to the
individual misincorporations at all taxonomic levels.30

3. ResultsWe evaluated the performance using both simulated and published environmental
DNA datasets and compared to existing methods when relevant. We find metaDMG to be an32

order of magnitude faster than previous methods and more accurate – even for complex
metagenomes. Our simulations show that metaDMG can estimate DNA damage at taxonomic34

levels down to 100 reads, that the estimated uncertainties decrease with increased number
of reads and that the estimates are more significant with increased number of C to T36

misincorporations.
4. Conclusion metaDMG is a state-of-the-art program for aDNA damage estimation and allows38

for the computation of nucleotide misincorporation, GC-content, and DNA fragmentation
for both simple and complex ancient genomic datasets, making it a complete package for40

ancient DNA damage authentication.
keywords: ancient DNA, DNA damage estimation, DNA damage, metaDMG, metagenomics.42

1 | INTRODUCTION44

Throughout the life of an organism it contaminates its environment with DNA, cells, or tissue, thus
leaving genetic traces behind. As the cell leaves its host, DNA repairmechanisms stops and theDNA46

is subjected to intra and extra cellular enzymatic, chemical, and mechanical degradation, resulting
in fragmentation and molecular alterations that over time lead to the characteristics of ancient48

DNA (Briggs et al., 2007; Dabney, Meyer, and Pääbo, 2013). Ancient DNA (aDNA) has been shown
to persist in a diverse variety of environmental contexts, e.g. within fossils such as bones, soft-50

tissue, and hair, as well as in geological sediments, archaeological layers, ice-cores, permafrost soil
for hundreds of thousands of years (Valk et al., 2021; Zavala et al., 2021). Common for all is that52

they have an accumulated amount of deaminated cytosines towards the termini of the DNA strand,
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which, when amplified, results in misincorporations of thymines on the cytocines (Ginolhac et al.,54

2011; Dabney, Meyer, and Pääbo, 2013).
Even though postmortem DNA damage (PMD) is characterized by the four Briggs parameters56

(Briggs et al., 2007), they are rarely used directly for asserting “ancientness”. Researchers work-
ing with ancient DNA tend to simply use the empirical C→T on the first position of the fragment58

together with other supporting summary statistic of the experiment (Jónsson et al., 2013). Quanti-
fying PMD have become standard for single individual sources like hair, bones, teeth and also ap-60

plied to smaller subsets of species in ancient environmental metagenomes (Pedersen et al., 2016;
Murchie et al., 2021; Wang, Pedersen, et al., 2021; Zavala et al., 2021). While this is a relatively fast62

process for single individuals it becomes increasingly demanding, iterative, and time consuming as
the samples and the diversity within increases, as in the case for metagenomes from ancient soil,64

sediments, dental calculus, coprolites, and other ancient environmental sources. It has therefore
been practice to estimate damage for only the key taxa of interest in a metagenome, as metage-66

nomic samples easily include tens of thousands of different taxonomic entities, which makes a
complete estimate across the metagenomes computationally intractable, if not an impossible task68

(Pedersen et al., 2016). To overcome these limitations, we designed a toolkit called metaDMG (pro-
nouncedmetadamage) which allows for the rapid computation of various statistics relevant for the70

quantification of PMD at read level, single genome level, and evenmetagenomic level by taking into
account the intricate branching structure of the taxonomy of the possible multiple alignments for72

the single reads.
Our thorough analysis with both simulated and real data shows that metaDMG is both faster at74

ancient DNA damage estimation and provides more accurate damage estimates. Furthermore, as
metaDMG is designed with the increasingly large datasets that are currently generated in the field76

of ancient environmental DNA in mind, metaDMG is able to process complex metagenomes within
hours instead of days. At the same time, it outperforms standard tools that estimate DNA damage78

for single genomes and samples with low complexity. Furthermore, it can compute a global dam-
age estimate for a metagenome as a whole. Lastly, metaDMG is compatible with the NCBI taxonomy80

and use ngsLCA (Wang, T. S. Korneliussen, et al., 2022) to perform a lowest common ancestor (LCA)
classification of the aligned reads to get precise damage estimates at all taxonomic levels. It also82

allows for custom taxonomies and thus also the use of metagenomic assembled genomes (MAGs)
as references.84
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This paper is organized as follows. In section 2 we present our statistical models including two
novel test statistics, 𝐷f it and 𝑍f it . We quantify the performance of our test statistics using various86

simulation approaches in section 3. The results of these simulations is shown in section 4 and
finally, the method and results are discussed in section 5.88

2 | METHODS & MATERIALS
To quantify ancient damage, one can either compute it on a per read level or across an entire90

taxa. A priori, the actual biochemical changes which characterizes post mortem damage in a
single read cannot be directly observed, but by aligning each fragment and considering the ob-92

served difference between the reference and read, the possible PMD can be computed. We have
(re)implemented the approach used in PMDtools (Skoglund et al., 2014) which allows for the ex-94

traction of single DNA reads which are estimated to contain PMD, see Appendix 1. This approach,
will preferentially choose reads that has excess of C→T in the first positions and can not be used96

directly for asserting or quantifying to what degree a given library might contain damaged frag-
ments. We have therefore developed a novel statistical method that aims to mitigate this caveat98

by using all reads or reads that aligns to specific taxa. First we will define the mismatch matrices
in subsection 2.1 followed by the lowest common ancestor method in subsection 2.2. The mis-100

match matrices can further be improved by multinomial regression, see subsection 2.3, however,
this requires more data than than what is usually available in metagenomic studies. As such, we102

present the beta-binomial damage model in subsection 2.4which aims to work even on extremely
low-coverage data.104

2.1 | Mismatch matrices/nucleotide misincorporation patterns

We seek to obtain the pattern or signal of damage across multiple reads by generating what is106

called the mismatch matrix or the nucleotide misincorporation matrix. This matrix represents
the nucleotide substitution counts across reads and provides us with the position dependent mis-108

matchmatrices,𝑀(𝑥), with 𝑥denoting the position in the read, starting from1. At a specific position
𝑥, 𝑀ref→obs(𝑥) describes the number of nucleotides that was mapped to a reference base ref but110

was observed to beobs, where is one of the four bases: A, C, G, T. The number of C→T transitions
at the first position, e.g., is denoted as𝑀𝐶→𝑇 (𝑥 = 1).112

Alignments for a read can be discarded based on their mapping quality, and we also give the
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user the possibility of filtering out specific nucleotides of the read if the base quality score fall below114

some threshold. The quality scores could also be used as probabilistic weights, however, due to
the four-bin discretization of quality scores on modern day sequencing machines, we limit the use116

of these to filtering.

2.2 | Lowest Common Ancestor and Mismatch matrices118

For environmental DNA (eDNA) studies a competitive alignment approach is routinely applied.
Here all possible alignments for a given read are considered. Each read is mapped against a multi120

species reference databases (e.g. nucleotide or RefSeq from NCBI or custom downloaded). A sin-
gle read might map to a highly conserved gene that is shared across higher taxonomic ranks such122

as class or even domains. This read will not provide relevant information due to the generality,
whereas a read that maps solely to a single species, e.g, would be indicative of the read being well124

classified. We limit the tabulation and construction of themismatchmatrices to the subset of reads
that are well classified.126

For each read, we compute the lowest common ancestor using all alignments contained within
the user defined taxanomic threshold (species, genus or family) and tabulate the mismatches ma-128

trices for each cycle (Wang, T. S. Korneliussen, et al., 2022). If none of the alignments pass the
filtering thresholds (excess similarity, mapping quality, etc.), the read is discarded. Depending on130

the run mode, we allow for the construction of these mismatch matrices on three different levels.
Firstly, we can obtain a basic single global mismatch matrix which could be relevant in a standard132

single genome aDNA study and similar to the tabulation used in mapDamage (Jónsson et al., 2013).
Secondly, we can obtain the per reference counts, or, finally, if a taxonomy database has been134

supplied, we can build mismatch matrices at the species level and aggregate from leaf nodes to
the internal taxonomic ranks (genus, kingdom etc) towards the root. We will use the term “taxa”136

to refer to either of these levels; i.e. a specific taxa can either refer to a specific LCA, a specific
reference, or all reads in a global estimate, depending on the run-mode.138

When aggregating the mismatch matrices for the internal nodes in our taxonomic tree, two
different approaches can be taken. Either all alignments of the read will be counted, which we will140

refer to as weight-type 0, or the counts will be normalized by the number of alignments of each
read; weight-type 1, which is the default.142
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2.3 | Regression Framework

The nucleotidemisincorporation frequencies are routinely used as the basis for assessing whether144

or not a given library is ancient by looking at the expected drop of C→T (or its complementary G→A)
frequencies as a function of the position of the reads. This signal is caused by a higher deamination146

rate in the single-strand part of the damaged fragment than that in the double strand part. The
mismatch matrix is constructed based on the empirical observations and are subject to stochastic148

noise. The effect of noise in the mismatch matrix can be limited by the use of the multinomial
regression model. We continue the work of Cabanski et al., 2012 to provide four different regres-150

sion methods to stabilize the raw mismatch matrix across all combinations of reference bases,
observed bases, strands and positions, see Appendix 2 for details, derivation and results. Given152

enough sequencing data, this approach will provide an improved, noise-reduced mismatch ma-
trix which would be relevant for single genome ancient DNA studies. However, for extremely low154

coverage studies, such as environmental DNA, the method is likely to overfit and would not be as
suitable as the simplified model described in the subsection 2.4.156

2.4 | Damage Estimation

In standard ancient DNA context it is generally not possible to obtain vast amounts of data and158

thus we propose two novel tests statistics, 𝐷f it and 𝑍f it , that are especially suited for this common
scenario. The damage pattern observed in aDNA has several features which are well characterized.160

Bymodelling these, one can construct observables sensitive to aDNA signal. Wemodel the damage
patterns seen in ancient DNA by looking exclusively at the C→T transitions in the forward direction162

(5’) and the G→A transitions in the reverse direction (3’). For each taxa, we denote the number of
transitions, 𝑘(𝑥), as:164

𝑘(𝑥) =

⎧⎪⎪⎨⎪⎪⎩

𝑀𝐶→𝑇 (𝑥) for 𝑥 > 0 (forward)
𝑀𝐺→𝐴(𝑥) for 𝑥 < 0 (reverse),

(1)
166

and the number of reference counts 𝑁(𝑥):

𝑁(𝑥) =

⎧
⎪⎪⎨⎪⎪⎩

∑
𝑖∈{𝐴,𝐶,𝐺,𝑇 }

𝑀𝐶→𝑖(𝑥) for 𝑥 > 0 (forward)
∑

𝑖∈{𝐴,𝐶,𝐺,𝑇 }
𝑀𝐺→𝑖(𝑥) for 𝑥 < 0 (reverse).

(2)168

The damage frequency is thus 𝑓 (𝑥) = 𝑘(𝑥)∕𝑁(𝑥).170
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1 Note that we do not param-
eterize the beta distribution in
terms of the common (𝛼, 𝛽) pa-
rameterization, but instead us-
ing the more intuitive (𝜇, 𝜙) pa-
rameterization. One can re-
parameterize (𝛼, 𝛽) → (𝜇, 𝜙)

using the following two equa-
tions: 𝜇 = 𝛼

𝛼+𝛽 and 𝜙 = 𝛼 + 𝛽

(Cepeda-Cuervo and Cifuentes-
Amado, 2017).

A natural choice of likelihood model would be the binomial distribution. However, we found
that a binomial likelihood lacks the flexibility needed to deal with the large amount of variance172

(overdispersion) we found in the data due to pooly curated references and possiblemisalignments.
To accommodate overdispersion, we instead apply a beta-binomial distribution,BetaBinomial, which174

treats the probability of deamination, 𝑝, as a random variable following a beta distribution1 with
mean 𝜇 and concentration 𝜙: 𝑝 ∼ Beta(𝜇, 𝜙). The beta-binomial distribution has the the following176

probability density function:
BetaBinomial(𝑘 ∣ 𝑁,𝜇, 𝜙) =

(
𝑁
𝑘

)
𝐵 (𝑘 + 𝜇𝜙, 𝑁 − 𝑘 + 𝜙(1 − 𝜇))

𝐵 (𝜇𝜙, 𝜙(1 − 𝜇))
, (3)178

where 𝐵 is defined as the beta function:180

𝐵(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦)
Γ(𝑥 + 𝑦)

, (4)
182

with Γ(⋅) being the gamma function (Cepeda-Cuervo and Cifuentes-Amado, 2017).
The close resemblance to a binomial model is most easily seen by comparing the mean and184

variance of a random variable 𝑘 following a beta-binomial distribution, 𝑘 ∼ BetaBinomial(𝑁,𝜇, 𝜙):
𝔼 [𝑘] = 𝑁𝜇

𝕍 [𝑘] = 𝑁𝜇(1 − 𝜇)𝜙 +𝑁
𝜙 + 1

.
(5)186

The expected value of 𝑘 is similar to that of a binomial distribution and the variance of the beta-
binomial distribution reduces to a binomial distribution as 𝜙 → ∞. The beta-binomial distribution188

can thus be seen as a generalization of the binomial distribution.
Note that both equation (3) and (5) relates to the damage at a specific base position (cycle),190

i.e. for a single 𝑘 and 𝑁 . To estimate the overall damage in the entire read using the position
dependent counts, 𝑘(𝑥) and 𝑁(𝑥), we model 𝜇 as being position dependent, 𝜇(𝑥), and assume a192

position-independent concentration, 𝜙. We model the damage frequency with a modified geomet-
ric sequence, i.e. exponentially decreasing for discrete values of 𝑥:194

𝑦(𝑥;𝐴, 𝑞, 𝑐) = 𝐴(1 − 𝑞)|𝑥|−1 + 𝑐. (6)
196

Here 𝐴 is the amplitude of the damage and 𝑞 is the relative decrease of damage pr. position. A
background, 𝑐, was added to reflect the fact that the mismatch between the read and reference198

might be due to other factors than just ancient damage. As such, we allow for a non-zero amount
of damage, even as 𝑥 → ∞. This is visualized in Figure 1 along with a comparison between the200

classical binomial model and the beta-binomial model.
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Figure 1. Illustration of the damage model. The figure shows data points as circles and the damage, 𝑓 (𝑥), as a
solid line. The amplitude of the damage is 𝐴, the offset is 𝑐, and the relative decrease in damage pr. position
is given by 𝑞. The damage uncertainty for a binomial model is shown in dark grey and the uncertainty for a
beta-binomial model in light grey.

2 Parameterized as (𝜇, 𝜙)
To estimate the four fit parameters,𝐴, 𝑞, 𝑐, and 𝜙, we apply Bayesian inference to utilize domain202

specific knowledge in the form of priors. We assume weakly informative beta-priors2 for both 𝐴, 𝑞,
and 𝑐. In addition to this, we assume an exponential prior on 𝜙 with the requirement of 𝜙 > 2 to204

avoid too much focus on 0-or-1 probabilities (McElreath, 2020). The final model is thus:
[𝐴 prior] 𝐴 ∼ Beta(0.1, 10)206

[𝑞 prior] 𝑞 ∼ Beta(0.2, 5)

[𝑐 prior] 𝑐 ∼ Beta(0.1, 10) (7)208

[𝜙 prior] 𝜙 ∼ 2 + Exponential(1∕1000)

[likelihood] 𝑘𝑖 ∼ BetaBinomial
(
𝑁𝑖, 𝑦

(
𝑥𝑖;𝐴, 𝑞, 𝑐

)
, 𝜙

)
,210

where 𝑖 is an index running over all positions.212

Wedefine thedamagedue to deamination,, as the background-subtracteddamage frequency
at the first position:  ≡ 𝑦(𝑥 = ±1) − 𝑐. As such,  is the damage related to ancientness. Using the214

properties of the beta-binomial distribution, eq. (5), we find the mean and variance of :
𝔼 [] ≡ 𝐷f it = 𝐴

𝕍 [] ≡ 𝜎2
𝐷 = 𝐴(1 − 𝐴)

𝑁
𝜙 +𝑁
𝜙 + 1

.
(8)216

Since estimates the overexpression of damage due to ancientness, not only is the mean of,
𝐷f it , relevant but also the certainty of it being non-zero (and positive). We quantify this through the218
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significance 𝑍f it = 𝐷f it∕𝜎𝐷 which is thus the number of standard deviations (“sigmas”) away from
zero. Assuming a Gaussian distribution of , 𝑍f it > 2 would indicate a probability of 𝐷 being larger220

than zero, i.e. containing ancient damage, with more than 97.7% probability. This assumption
works well in the case of many reads or a high amount of damage due to central limit theorem.222

When the assumption breaks down, the significance is still a relevant test statistic, it is only the
conversion to a probability that will become biased.224

These two values allows us to not only quantify the amount of ancient damage (𝐷f it ) but also the
certainty of this damage (𝑍f it ) without having to runmultiplemodels and comparing these. An intu-226

itive interpretation of our𝐷f it statistic is, that this is the excess deamination in the beginning of the
read, taking all cycle positions into account and excluding the constant deamination background228

(𝑐). This is visually similar to the 𝐴 parameter in Figure 1.
We perform the Bayesian inference of the parameters models using Hamiltonian Monte Carlo230

(HMC) sampling which is a particular of Monte Carlo Markov Chain (MCMC) algorithm (Betancourt,
2018). Specifically, we use the NUTS implementation in NumPyro (Phan, Pradhan, and Jankowiak,232

2019), a Python package which uses JAX (Bradbury et al., 2018) under the hood for automatic differ-
entiation and JIT compilation. We treat each taxa as being independent and generate 1000 MCMC234

samples after an initial 500 samples as warm up.
Since running the full Bayesian model is computationally expensive, we also allow for a faster,236

approximate method by fitting the maximum a posteriori probability (MAP) estimate. We use iMi-
nuit (Dembinski et al., 2021) for the MAP optimization with Numba acceleration (Lam, Pitrou, and238

Seibert, 2015) for even faster run times. On a Macbook M1 Pro model from 2021, the timings for
running the full Bayesian model is 1.41 ± 0.04 s pr. fit and for the MAP it is 4.34 ± 0.07 ms pr. fit,240

showing more than a 2 order increase in performance (around 300x) for the approximate model.
Both models allow for easy parallelisation to decrease the computation time.242

2.5 | Visualisation

We provide an interactive graphical user interface (dashboard) to visualise, explore, and manip-244

ulate the results from the modelling phase. An interactive example of this can be found online
(https://metadmg.onrender.com/). The structure of the dashboard is explained in Figure 2. The dash-246

board allows for filtering, styling and variable selection, visualizing the mismatch matrix related to
a specific taxa, and exporting of both fit results and plots. By filtering, we include both filtering by248
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3 NCBI: NC_012920.1
4 NCBI: KX703002.1
5 NCBI: NZ_CP024731.1
6 NCBI: NZ_LS483369.1
7 NCBI: GCA_001929375.1

sample, by the summary statistics of the data (e.g. requiring 𝐷f it to be above a certain threshold),
and even by taxonomic level (e.g. only looking at taxa that are part of the Mammalia class). We250

greatly believe that a visual overview of the fit results increase understanding of the data at hand.
The dashboard is implemented with Plotly plots and incorporated into a Dash dashboard (Plotly,252

2015).

3 | SIMULATION STUDY254

Todetermine metaDMG’s performance, weperformeda set of rigorous in-silica simulations to identify
and quantify any possible biases as well the accuracy of our test statistics. Overall, the simulations256

can be split two groups. The first is based on a genome from a single species and is used to mea-
sure the performance of the actual damage estimation and damage model. The second is based258

on syntethic ancient metagenomic datasets using the statistics and nature of a set of published
ancient metagenomes.260

3.1 | Single-genome simulations

The first simulations follow a simple setup in which we extract reads from a set of representa-262

tive genomes having variable length and GC-content. We next added post-mortem damage mis-
incorporations using NGSNGS (Henriksen, Zhao, and T. Korneliussen, 2022) a recent implemen-264

tation of the original Briggs model similar to Gargammel (Neukamm, Peltzer, and Nieselt, 2021)
and lastly added sequencing errors (Renaud et al., 2017). All reads are hereafter mapped using266

Bowtie2 against each of the respective reference genomes and ancient DNA damage estimated
the DNA damage using metaDMG. The simulations were computed with varying amount of damage268

added by changing the single-stranded DNA deamination, 𝛿SS in the original Briggs model (Briggs
et al., 2007).270

In detail, we focused on the following genomes; Homo Sapiens mitochondrial3, a Betula nana
chloroplast4, and threemicrobial genomes (Fusobacteriumpseudoperiodonticum5, Neisseria cinerea6,272

and Actinomyces oris strain S64C7) with the varying GC-content, low (28%), medium (37%), and high
(50%) respectively. For each simulation, we performed 100 independent replications to measure274

the variability of the parameter estimation and quantify the robustness of the estimates. We fur-
ther simulated eight different sets of damage (0%, 1%, 2%, 5%, 10%, 15%, 20%, and 30% damage276

on position 1), all with 13 sets of different number of reads (10, 25, 50, 100, 250, 500, 1.000, 2.500,
Michelsen & Pedersen et al. 2022 | metaDMG: An Ancient DNA Damage Toolkit bioR𝜒 iv | 10 of 68
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Figure 2. Overview of the interactive metaDMG dashboard. A) The main damage plot shows the damage (𝐷f it ) on the y-axis and the significance
(𝑍f it ) on the x-axis. Each point is a single taxa from one of the metagenomic samples, see Table 1. Once clicked on a specific taxa, the right-hand
window shows information about the selected taxa and related fit. B) The top window shows a plot of the damage frequency for both the
forward and reverse direction along with the estimated fit and damage. C) Below, the results of the fit are shown, including taxonomic
information, read-specific information, the fit results, and the full taxonomic path. D) In the left filtering window, the samples to include can be
selected. E) This windows allows for selection based on taxa-specific criteria. Here we show a selection of only taxa with “species” as their LCA
and taxa that are part of the archaea domain. F) The final filtering window allows for setting fit related thresholds such as the minimum damage
or significance. Here it is shown discarding taxa with fever than 1000 reads. G) In the top right, after the selection and filtering process is
finished, the final taxa can be exported to a CSV file along with all of the fit information, or the damage plots can be generated and saved.
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5.000, 10.000, 25.000, 50.000, and 100.000 reads). We also sought to measure the effect of the278

fragment lengths using three sets of different fragment length distributions sampled from a log-
normal distribution with mean 35, 60, and 90, each with a standard deviation of 10). Furthermore,280

to investigate whether the damage estimation by metaDMG is independent of contig size, we artifi-
cially created three different genomes by sampling 1.000, 10.000 or 100.000 different basepairs282

from a uniform categorical distribution of A, C, G, and T. Based on these three genomes, we added
artificial deamination for a different number of reads, as for the other simulations. Lastly, we also284

created 1000 repetitions of non-damaged simulations for Homo Sapiens to measure the rate of
false positives. The exact commands used can be found in Appendix 3.286

To compare the damage estimates to known values, for each of the genomesmentioned above
and for each amount of artificial damage, we generated 1.000.000 reads using NGSNGS without288

any added sequencing noise. The values we compare is the difference in damage frequency at
position 1 and 15:290

𝐷known =
𝑓 (𝑥 = 1) − 𝑓 (𝑥 = 15)

2
+ 𝑓 (𝑥 = −1) − 𝑓 (𝑥 = −15)

2
, (9)

which is the average of the C→T damage frequency difference and the G→A damage frequency292

difference.

3.2 | Metagenomic Simulations294

A metagenome contains a complex mixture of organisms, all with highly different characteristics
in GC content, read length, abundance, or degree of DNA damage, and there are large differences296

between different environments. It is therefore far from simple to obtain DNA damage estimates
for such multitude of organisms. In order to test the accuracy and sensitivity of metaDMG, we simu-298

lated six of the nine ancient metagenomes (with more than 1 million reads) covering a wide span
of environments and ages (Table 1).300

First, we mapped all reads of each metagenome with bowtie2 against a database consisting of
the GTDB (r202) (Parks et al., 2018) species cluster reference sequences, all organelles from NCBI302

RefSeq (NCBI Resource Coordinators, 2018), and the reference sequences fromCheckV (Nayfach et
al., 2021). We thenusedbam-filter v1.0.11 (Fernandez-Guerra, 2022a)with the flag --read-length-freqs304

to get read length distributions for each genome reads aligned to and their respective abundance.
Next, we filtered genomes with an observed-to-expected coverage ratio greater than 0.75 using306
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Table 1. Metagenomic samples. “Name” is the name of the sample used throughout this paper. “Site” is the type of metagenomic site. “Type” is
the type of environment. “Age” is the approximate age of the sample in kyr Bp. “Sediment” is the name type of sediment. “Instrument” is the
Illumina model. “Library” is the library type where D. means double stranded and S. means single stranded. “Reads” is the raw number of reads
(in millions). “Source” is the source of the data. The dagger (†) indicates samples that were not a part of the metagenomic simulation pipeline.

Name Site Type Age (kyr) Sediment Instrument Library Reads (M) Source
Library-0† Control Control 0 Reagents HiSeq4000 D. 19.7 (Ardelean et al., 2020)
Pitch-6 Syltholmen pitch Chewed organic material 5.7 Organic material HiSeq2500 D. 150.3 (Jensen et al., 2019)
Lake-1† Spring Lake Lake gyttja/sediment 1.4 Organic material HiSeq 100 D. 49.8 (Pedersen et al., 2016)
Lake-7 Lake CH12 Lake gyttja/sediment 6.7 Organic material HiSeq2500 S. 291.9 (Schulte et al., 2021)
Lake-9 Spring Lake Lake gyttja/sediment 9.2 Organic material HiSeq 100 D. 128.4 (Pedersen et al., 2016)
Shelter-39† Abri Pataud Rock shelter 39.4 Sediment MiSeq S. 0.4 (Braadbaart et al., 2020)
Cave-22 Chiquihuite cave Cave sediment 22.2 Carbonate rock HiSeq4000 D. 5.7 (Ardelean et al., 2020)
Cave-100 Eustatuas Cave Cave sediment 100 Carbonate rock HiSeq2500 S. 21.8 (Vernot et al., 2021)
Cave-102 Pesturina Cave Neanderthal tooth 102 Dental calculus HiSeq4000 D. 12.3 (Fellows Yates et al., 2021)

bamfilter. The filtered BAM files were then processed by metaDMG to obtain misincorporation matri-
ces for each genome. The abundance tables, fragment length distribution, and misincorporation308

matriceswere thenused in aMGSIM-smk v0.0.1 (Fernandez-Guerra, 2022b), a Snakemakeworkflow
(Mölder et al., 2021) that facilitates the generation ofmultiple synthetic ancientmetagenomes. The310

underlying tools in this workflow is the gargammel toolkit (Renaud et al., 2017), that based on in-
put read length distribution extract a subset of sequences (FragSim) with similar length. This is312

then followed by the addition of 𝐶 → 𝑇 substitutions (DeamSim) which mimics the postmortem
damage process. Finally the deaminated sequences are passed to the ART (Huang et al., 2012) for314

sequence simulation. The data used and generated by the workflow can be obtained from ERDA.
We then performed taxonomic profiling and damage estimation using identical parameters as for316

the synthetic reads generated by aMGSIM-smk.

4 | RESULTS318

We tested the accuracy and performance of the metaDMG damage estimates, 𝐷f it , using a set of
different simulation scenarios and subsequently tested on 9 real-life ancientmetagenomic dataset.320
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Figure 3. Overview of the single-genome simulations based on the Homo Sapiens genome with a fragment length distribution with mean 60
and the Briggs parameter 𝛿SS = 0.31 (approximately 10% damage). A) This plot shows the estimated damage (𝐷f it ) of 20 replicates, each with 100
reads. The grey points shows the mean damage (with its standard deviation as errorbars). The known damage (𝐷known) is shown as a dashed
line, see eq. (9). B) This plot shows the average damage as a function of the number of reads. The grey points show the average of the individual
means (with the average of the standard deviations as errors).

4.1 | Single-genome simulation results

To illustrate the results the performance on single-genomes, we first focus on a single, specific set322

of simulation parameters. This simulation is based on the Homo Sapiens genome with the Briggs
parameter 𝛿SS = 0.31 (approximately 10% damage) and a mean fragment length of 60. In general,324

we use 𝛿 = 0.0097, 𝜈 = 0.024, and 𝜆 = 0.36 as Briggs parameters, while varying 𝛿SS (Briggs et al.,
2007). We show the metaDMG damage results for the 100 independent replications in Figure 3. The326

left part of the figure shows the individual metaDMG damage estimates for an arbitrary choice of 20
replications (iteration 60 to 79). When the damage estimates are very low, the distribution of𝐷f it is328

skewed (restricted to positive values), sometimes leading to errorbars going into negative damage,
which represents unrealistic estimates. The right hand side of the figure visualizes the average330

amount of damage based on all 100 replications across a varying number of reads. This shows
that the damage estimates converge to the known value with more data, and that one needsmore332

than 100 reads to even get strictly positive damage estimates (when including uncertainties) for
this specific set of simulation parameters.334

Acrossmultiple simulations, eachwith 8 different damage levels, 13 different numbers of reads,
and 100 replications, we find no significant difference in test statistic across different species (Fig-336
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Figure 4. Relationship between the damage and the number of reads for simulated data (single-genome).
Given a specific significance cut, the solid contour line shows the relationship between the amount of damage
and the number of reads required to be able to correctly infer damage in 95% of the taxa. The dashed line
shows the similar value for a simulation fraction of 50%. The green part of the figure shows the “good” region
of number of reads and estimated damage, given than one wants to be more than 95% certain of correctly
identifying damage with more than 4𝜎 confidence.

ure S5 and Figure S6), across different GC-levels (Figure S7–Figure S9), different fragment length
distributions (Figure S10-Figure S12), or even different contig lengths (Figure S13–Figure S15), see338

Appendix 4. Based on the single-genome simulations, we compute the relationship between the
amount of damage in a taxa and the number of reads required to correctly infer that the reads340

from that taxa are damaged, see Figure 4. If we want to assert damage with a significance of more
than 2 (solid blue line) in a sample with around 5% expected damage, it requires about 1000 reads342

to be 95% certain that we will find results this good, whereas we only need 100 reads if our target
organism has 30 % damage.344

Finally, to quantify the risk of incorrectly classifying a non-ancient taxa as damaged, we created
1000 independent replications for a varying number of reads, where none of themhad any artificial346

ancient damage applied, only sequencing noise. Figure 5 shows the damage (𝐷f it ) as a function of
the significance (𝑍f it ) for the case of 1000 reads. Even though the estimated damage is larger than348

zero, the damage is non-significant since the significance is less than one. When looking at all the
figures across the different number of reads, see Appendix 5, we note that a relaxed significance350

threshold requiring that 𝐷f it > 1% and 𝑍f it > 2 would filter out all of non-damaged points. Overall
the conclusion being that our novel test statistic is conservative and has low false positive rate.352
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Figure 5. Inferred damage of modern, simulated data (single-genome). The plot shows the inferred damage
estimates of 1000 replicates, each with 1000 reads and no artificial ancient damage applied. Each single cross
corresponds to a simulation and the red lines outlines the kernel density estimate (KDE) of the damage
estimates. The marginal distributions are shown as histograms next to the scatter plot.

4.2 | Metagenomic simulation results

With the full metagenomic simulation pipeline we can further probe the performance of metaDMG.354

By considering the different metagenomic scenarios, see Table 1, at different steps in the pipeline,
we are able to show that metaDMG provides relevant and accurate damage estimates.356

To verify that the risk of getting false positives is non-significant, we run metaDMG on the metage-
nomic assemblages after fragmentation with FragSim, but before any no deamination with Deam-358

Sim has yet been added. We find that the previously established relaxed significance threshold
(𝐷f it > 1% and 𝑍f it > 2) correctly filters out all of the taxa, see Figure 6. This is as expected, as there360

has not yet been added any artificial post mortem damage in the form of deamination.
We see a clear difference in the damage estimates between the ancient and the non-ancient362

taxa once we add deamination with DeamSim and sequencing errors with ART, see Figure 7. The
non-ancient taxa would still not pass the relaxed threshold, in contrast to the taxa in the ancient364

samples.
The results of Figure 7 are summarized in Table 2. We find that Cave-100-forward, Cave-102,366

Pitch-6 all havemore than 60% of their ancient taxa correctly labelled as damaged according to the
relaxed threshold, while it for Cave-22 and Lake-7-forward is a bit lower and Lake-9 does not show368
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Figure 6. Estimated amount of damage as a function of significance for metagenomic simulations. This figure
shows the metagenomic simulations after FragSim has been applied, but before including any deamination
or sequencing errors. We generate both non-ancient and ancient taxa in the simulation pipeline. The left
subfigure shows the damage of the ancient taxa and similarly for the non-ancient taxa in the right subfigure.

any clear support of damage. However, oncewe condition on the requirement of havingmore than
100 reads, the fraction of ancient taxa correctly identified as ancient increases to more than 90%370

for most of the samples. A small investigation of one of the ancient taxa (Stenotrophomonas Mal-
tophilia) in the simulation that did not meet the criteria to be ancient metaDMG, i.e. a false negative,372

can be found in Appendix 6.

4.3 | Real Data374

The results from running the real metagenomic data through the metaDMG pipeline show clear ev-
idence of taxa with significant DNA damage present in the metagenome and a layered pattern376

similar to what was observed in the simulated ancient metagenomes, see Figure 8.
As DNA damage is not a function of time, we cannot expect that there is a direct relation be-378

tween damage and time, however, we do see that the oldest samples, Cave-100 and Cave-102, see
Table 1, which are 100 and 102 thousand years BP, show the highest amount of damage of all the380

metagenomes. Both the Pitch-6 and Cave-22 samples, which are 6 and 22 thousand year old and
thus younger than two above mentioned cave samples, have almost similar levels of damage. This382

is not unexpected as the micro environment surrounding the layer in which the metagenome was
found plays a significant role in the state of DNA. In our case, the younger Pitch-6 derives from a384

water logged but open air site, while the Cave-22 sample was obtained in dry but cool (~11 degree
Celsius year around) cave layers.386
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Figure 7. Estimated amount of damage as a function of significance for metagenomic simulations. This figure
shows the metagenomic simulations after fragmentation, deamination, and sequencing errors have been
applied. The left subfigure shows the damage of the ancient taxa and similarly for the non-ancient taxa in the
right subfigure.

Table 2. metaDMG damage results for the six different metagenomic simulations. The first column is the total
number of taxa, the second column is the total number of taxa that would pass the threshold of 𝐷f it > 1% and
𝑍f it > 2, the third column is the number of taxa with more than 100 reads, and the final column is the number
of taxa with more than 100 reads that also do pass the cut.

Sample Total Pass +100 Reads +100 Reads and Pass
Cave-100-forward 135 107 79.3% 88 87 98.9%

Cave-102 500 326 65.2% 309 285 92.2%
Pitch-6 415 260 62.7% 274 260 94.9%
Cave-22 393 71 18.1% 73 69 94.5%
Lake-9 410 2 0.5% 8 0 0%

Lake-7-forward 32 4 12.5% 6 4 66.7%
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Figure 8. Estimated amount of damage as a function of significance using the real data, see Table 1.

The metagenomes with the least DNA damage are the ones from the lake sediments (Lake-1,
Lake-7 and Lake-9). These samples do show some taxa with significant DNA damage, although388

they do not have a strong damage signal.
Importantly, we find that in the true metagenomes, metaDMG is able to assign low significance to390

the taxa that likely are not damaged or that have too little data, see e.g. the upper right hand corner
of Figure 9. This subfigure shows the damage plot for the Gallus Gallus species (red junglefowl)392

from the Lake-1 sample. This particular species only has 𝐷f it = 2.2% and 𝑍f it = 1.0, which does
not satisfy the relaxed DNA damage threshold (𝐷f it > 1%, 𝑍f it > 2). In addition to the Gallus Gallus394

species, Figure 9 further shows examples of species with large amounts of data (Homo Sapiens in
the Pitch-6 sample and Crocuta Crocuta in the Cave-100 sample, based only on forward data), and396

an example of medium damage (Equisetum Arvense in Lake-7, based only on forward data).
Interestingly, and of high importance for downstream interpretation, is that for certain samples,398

some taxa were found to have a high significance although with lower DNA damage than what is
observed across the given metagenome as a whole. This underlines the need to evaluate the DNA400

damage variation within each metagenome, perform a proper outlier test and the basic setting of
logical thresholds.402

We find that when using the relaxed DNA damage threshold, metaDMG falsely classifies a single
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Figure 9. Damage plots of four representative species from the real-data metagenomic samples, see Table 1.
Each subfigure shows the damage rate 𝑓 (𝑥) = 𝑘(𝑥)∕𝑁(𝑥) as a function of position 𝑥 for both forward (C→T)
and reverse (G→A). The metaDMG fit is shown in grey with the 68% credible intervals as shaded regions. In the
upper right corner of each subfigure, the information about the sample and the species together with the
metaDMG damage estimates is shown.
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Figure 10. Comparison between the full Bayesian model and the fast, approximate, MAP model for the
estimated damage and significance. The figure shows data after a loose cut of 𝐷f it > 1%, 𝑍f it > 2 and more
than 100 reads. The dashed, grey line shows the 1:1 ratio and the correlation, 𝜌, is shown in the upper left
corner.

of the taxa from the control test Library-0 as being ancient. However, with a more conservative404

damage threshold (𝐷f it > 2%, 𝑍f it > 3, more than 100 reads), none of the taxa from the library
control are classified as ancient.406

4.4 | Bayesian vs. MAP

Due to the higher computational burden of computing the full Bayesian model compared to the408

faster, approximate MAP model in samples with several thousand taxa, the MAP model is in prac-
tice the model of choice due to lower computational complexity. We compared the performance410

of 𝐷f it and 𝑍f it on the real datasets in Table 1, see Figure 10. This figure compares the estimated
damage between the Bayesian model and the MAP model (left subfigure) and the estimated sig-412

nificances (right subfigure) for taxa passing a threshold of 𝐷f it > 1%, 𝑍f it > 2, and more than 100
reads. The figure shows that the vast majority of taxa map 1:1 between the Bayesian and the MAP414

model. It should be noticed that the taxa with the worst correspondence in damage estimates
are all based on forward-only fits, i.e. with no information from the reverse strand, which leads416

to less data to base the fits on. For the comparison with no thresholds applied, see Figure S23 in
Appendix 7. We recommend to use the full, Bayesian model in the case of extremely low-coverage418

data or when used on only a small number of taxa (e.g. when using metaDMG in global-mode).
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4.5 | Existing Methods420

To our knowledge there are not currently available methods for assesing and quantifying post-
mortem DNA damage in ametagenomic context. We compare the performance of the𝐷f it statistic422

in metaDMG to existing methods such as those found in PyDamage (Borry et al., 2021). Since PyDam-
age is based solely on single genome analysis we use the non-LCA mode of metaDMG. This mode424

iterates through the different referenceIDs for all mapped reads and estimates the damage for
each. In general, we find that metaDMG is more conservative, accurate and precise in its damage426

estimates.
One example of this can be found in Figure 11, which shows both the metaDMG and PyDamage428

results of the simulations described in subsection 3.1, in particular the 100 replications of theHomo
Sapiens single-genome with 100 reads and 15% added artificial damage (and a fragment length430

distribution with mean 60). Figure 11 shows that the metaDMG estimates are between 5% and 25%
damage, while PyDamage estimates up tomore than 50% damage, in a sample with 15% artificially432

added damage. The comparisons between metaDMG and PyDamage for the other sets of simulation
parameters can be found in Figure S24–Figure S31 in Appendix 8.434

To compare the computational performance, we use the real-life Pitch-6 sample (i.e. non-
simulated), see Table 1. This alignment file (in BAM-format) takes up 857 MB of space and has436

3.7 millions reads with a total of 19 million alignments to 11.433 unique taxa. When using only
a single core, PyDamage took 1105s to compute all fits, while metaDMG took 88s, a factor of 12.6x438

faster. The rest of the timings are shown in Table 3. PyDamage requires the alignment files to
be sorted by chromosome position and be supplied with an index file, allowing it to iterate fast440

through the alignment file, at the expense of computational load before running the actual dam-
age estimation. metaDMG on the other hand requires the reads to be sorted by name to minimize442

the time it takes to run the LCA.

5 | DISCUSSION444

To our knowledge there are no currently available methods other than metaDMG that is geared to-
wards damage analysis in a metagenomic setting. It is the first general framework designed specif-446

ically for the quantification of ancient damage in all contexts. The toolkit contains various inter-
linked and independent modules including a state-of-the-art graphical user interface that allow448
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Figure 11. Parallel coordinates plot comparing metaDMG and PyDamage for the Homo Sapiens single-genome simulation with 100 reads and 15%

added artificial damage. The two first axes show the estimated damage: 𝐷f it by metaDMG and 𝑝max by PyDamage. The following two axes show the
fit quality: significance (𝑍f it ) by metaDMG and the predicted accuracy (Accpred) by PyDamage. The final axis shows the 𝑞-value by PyDamage. Each
of the 100 replications are plotted as single lines. Replications passing the relaxed metaDMG damage threshold (𝐷f it > 1% and 𝑍f it > 2) are shown
in color proportional to their significance. Replications that did not pass are shown in semi-transparent black lines.

Table 3. Computational performance of PyDamage and metaDMG. The table contains the times it takes to run
either PyDamage or metaDMG on the full Pitch-6 sample containing 11.433 taxa. The timings are shown for both
single-processing case (1 core) and multi-processing (2 and 4 cores). The timings were performed on a
Macbook M1 Pro model from 2021. “12.6x” means that metaDMG was 12.6 times faster than PyDamage for that
particular test.

Cores Pydamage (s) metaDMG (s) Improvement (x)
1 1105 88 s 12.6
2 592 66 s 9.0
4 398 54 s 7.4
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researchers to explore their data.
Multiple areas of future improvements exists. Currently, our novel test statistic for the damage450

estimation𝐷f it is based on a statistical model wherewe only consider the C→T andG→A transitions
and where each taxa is modelled as being fully independent, even for closely related species when452

provided a taxanomic tree. This could be improved upon with the use of a hierarchical model
were information across taxonomic leaf nodes is shared. The current implementation, however,454

allows for easy parallelization of the individual fits which reduces the time spent on the inference.
In addition to the mismatch matrices, another improvement would be to include the read length456

distribution as a covariate in the damagemodel, as, in addition to deamination, the fragment length
distribution is also an indicator of ancient damage (Dabney, Meyer, and Pääbo, 2013; Peyrégne and458

Prüfer, 2020).
We show that the 𝐷f it statistic that metaDMG provides is accurate across different damage levels460

and different number of reads. In the single-genome reference case, we further show that the
estimates are stable across different species and fragment length distributions. In addition to this,462

we find that the results are independent of the contig size, in contrast to PyDamage (Borry et al.,
2021).464

The basis for the 𝐷f it statistic is the leaf node mismatch matrices which contains the raw ob-
served substitution frequencies. The computation of these could also take into account the com-466

puted mapping uncertainty and the uncertainty of the assigned called nucleotide. We include a
regression approach for stabilizing the mismatch matrices across all covariates but this requires468

muchmore data than our current approach. Rather than regressing on all covariates, it might also
be more biological meaningfull to regress on the four Briggs parameters.470

In our toolkit we have included the PMDtools approach (Skoglund et al., 2014) that allows for
the separation of highly damaged reads from undamaged reads. The method offers a reasonable472

way to distinguish the endogenous ancient DNA from possible modern contamination. But this
method may suffer from the fact that some fixed empirical parameters are applied. A possible474

extension can be using several statistics estimated from the specific sample (e.g., taxa specific 𝐷f it

and the ancient fragment lengths) as priors in an empirical Bayes inference framework to learn the476

categories of reads unsupervisedly.
Our research indicate that the metaDMG results are conservative with very low false positive rates.478

This is particularly important withmetagenomic samples as the number of taxa, and thus the num-
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ber of damage estimates, tend to be large. As the number of fits increases, we strongly believe that480

a graphical user interface is important. This helps to select and filter the fit results, and to better un-
derstand the data at hand. We have tested metaDMG using a state of the artmetagenomic simulation482

pipeline based on multiple metagenomic real-life sample from a variety of different environments.
We hope that metaDMG can improve the knowledge about DNA damage degradation in different484

environments and be the foundation of a more general, metagenomic ancient damage study.
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Appendix 1

PMDTOOLS604

Three non-mutually exclusive events can lead to an observation of C→T or G→A (Skoglund
et al., 2014), namely (i) a true biological polymorphism (occurring at rate 𝜋), (ii) a sequenc-
ing errors (rate 𝜖, can be extracted from the base quality scores of the site on the sampled
strand), and (iii) in the case of damaged DNA, the damaged nucleotide frequencies are as-
sumed to be only related to its position from either termini of the ancient fragment (C→T
from 5’ end, and G→A from 3’ end). The error probability of the postmortem nucleotide
misincorporation is under the pmdtools model given by:

𝐷𝑥 = 𝐶 + 𝑝 (1 − 𝑝)|𝑥| , (10)
here 𝐶 = 0.01 and 𝑝 = 0.3 are both suitable constants. Skoglund et al., 2014 defines the
likelihood ratio of a strand between the PMDmodel and the NULLmodel as its postmortem
damage score (PMDS),

PMDS = log

{ ∏
𝑥 𝐿

(
PMD ||𝑆𝑥

)
∏

𝑥 𝐿
(
NULL ||𝑆𝑥

)
}

, (11)
The reads with the PMDS exceeding an empirical p-value threshold can then be used for
filtering intensively damaged fragments.
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Appendix 2

MULTINOMIAL LOGISTIC REGRESSIONS624

Full Multinomial Logistic Regression

Postmortem damages have impacts on the next generation sequencing reads. A common
phenomenon is the increasing of the calling error rates from nucleotide C→T due to the
cytosine deamination process. Unawareness of this will lead to inaccurate inferences. Ev-
idences show that the magnitude of such changes are related to the positions the site is
within a read (the fraction of the ancient DNA). Here we present four slightly different ways
(i.e., full unconditional regression, full conditional regression, folded unconditional regres-
sion and folded conditional regression) to unveil the relationship between the calling error
rates and the mismatching reference/read pairs as well as the site positions within a read.
The methods are based on the multinomial logistic regressions.

626

628

630

632

634

Data Description
We perform the regressions based on the summary statistic of the mismatch matrix,i.e.,
𝑀(𝑥), which is a table which contains the counts of reads of different reference/read cat-
egories (in total 16) and positions on the forward/reversed strand (15 positions on each
direction). Table S1 and Table S2 give an example of the data format we use for the infer-
ence.

636

638

640
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Read Counts
Ref. A C
Read A C G T A C G T
1 12794053 8325 28769 16073 10404 8045811 8020 2092619
2 13480290 6812 21107 12102 9151 8260185 6531 1145605
3 12760253 6131 18859 10327 7772 8385423 5899 914709
4 12995572 5240 17671 8940 7880 8345892 5252 767237
5 12930102 4601 17021 8188 8374 8474964 5161 703283
6 12879355 4684 16435 7536 8726 8571141 4811 643607
7 12684349 4557 15298 7394 8835 8727254 4762 586674
8 12585563 4454 15497 7236 8898 8888173 5058 527691
9 12468622 4309 14704 6942 8948 9076851 4673 481170
10 12491183 4437 14567 6912 9103 9237982 4702 443329
11 12430899 4296 14083 6515 9313 9364121 4609 404431
12 12419506 4226 13985 6503 9342 9357468 4367 371475
13 12469412 4147 13851 6375 9586 9386737 4588 345390
14 12549936 4045 13650 6246 9673 9324488 4628 322294
15 12566555 4174 13499 6213 9735 9305820 4518 301360
-1 11599167 8800 16164 14851 90888 9613102 10843 19810
-2 11985637 8769 14044 12040 28799 9561124 7184 18424
-3 12941743 7805 13861 12001 24988 9400151 6368 15466
-4 12808985 7141 12885 9889 23067 9509723 5421 14901
-5 12869585 6954 12100 9428 22349 9464831 5789 13987
-6 12784911 6440 12080 8735 20556 9566794 6544 14021
-7 12878349 5946 12311 8225 19480 9566359 6478 16419
-8 12719722 9521 12156 8131 19226 9725468 6709 23434
-9 12652860 5634 11940 7671 18035 9762224 6321 31667
-10 12566817 5448 11850 7178 17353 9701382 6306 37831
-11 12702498 5309 12092 7568 16121 9526031 6035 43215
-12 12731940 5207 11933 6856 15637 9533858 5557 47650
-13 12697647 4989 12199 7153 15072 9508117 5434 51614
-14 12689924 4944 11891 6816 15050 9525285 5237 55598
-15 12660634 4746 11753 6732 14815 9561359 5184 59633

Appendix 2—table S1. The read counts per position given the reference nucleotides are A or C of an
ancient human data. The negative position indices are the position on the reversed strand. In the
manuscript, the elements (the values of a specific nucleotide read counts per position given the
reference nucleotide is A or C) in this table are denoted as𝑀𝐴→𝑖(𝑥) or𝑀𝐶→𝑖(𝑥).
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Read Counts
Ref. G T
Read A C G T A C G T
1 16389 8976 9639767 86584 11733 15878 8351 11718463
2 17614 6483 9510149 26655 10761 13958 7011 11974947
3 15164 5949 9488917 23374 9509 13767 6046 12839015
4 14844 5186 9566468 21960 8170 12509 5585 12721790
5 14005 5612 9497118 20468 7186 11991 5233 12795244
6 13671 6195 9622572 19096 6948 11683 4790 12686645
7 16648 6394 9609855 18594 6203 12122 4780 12794172
8 23659 6405 9768666 17341 6131 11847 4758 12626614
9 31680 6139 9785449 17034 5998 12040 4469 12579260
10 38484 5982 9700857 16235 5487 11546 4175 12513653
11 44665 5722 9536341 15284 5651 12044 4176 12646627
12 48949 5371 9547134 14569 5449 11663 4060 12684645
13 53076 5234 9543953 14090 5262 11785 4046 12631297
14 57343 5186 9551477 13855 5257 11768 4006 12624840
15 61236 5137 9583481 13667 5122 11733 3947 12612416
-1 2078554 7947 8096447 11847 15732 28461 8551 12890628
-2 1138478 6656 8232666 10760 12299 20759 6999 13446882
-3 921712 5970 8399013 8643 10514 18226 6564 12718084
-4 775038 5720 8319235 8416 9415 17800 5388 12977322
-5 710955 5499 8462058 8926 8526 17088 4911 12886576
-6 647761 5052 8545455 9193 7640 16351 4879 12852322
-7 593854 4872 8693834 9318 7600 15523 5048 12664576
-8 535542 7828 8889921 9399 7163 18704 4718 12510123
-9 486549 4696 9075263 9522 7109 14547 4611 12409220
-10 448895 4622 9226758 9432 6816 14567 4668 12438344
-11 409027 4654 9352528 9544 6575 14019 4611 12388650
-12 376069 4637 9344701 9419 6511 13874 4486 12390148
-13 350609 4655 9384853 9885 6197 13877 4327 12432024
-14 326760 4595 9337266 9889 5986 13928 4403 12490990
-15 305014 4541 9310617 10065 5919 13442 4232 12529684

Appendix 2—table S2. The read counts per position given the reference nucleotides are G or T of the
same human data as in Table S1. The negative position indices are the position on the reversed
strand. In the manuscript, the elements (the values of a specific nucleotide read counts per position
given the reference nucleotide is G or T) in this table are denoted as𝑀𝐺→𝑖(𝑥) or𝑀𝑇→𝑖(𝑥).

648

650

652

The terminology used here might not be standard. The term full regression here is to
distinguish itself from the folded regression discussed later, which simply means inferring
the coefficients of forward strand and reversed strand separately. Full regression includes
both unconditional regression and conditional regression. The unconditional regression’s
objective is to infer the probability of observing a read of nucleotide 𝑗 and its reference is 𝑖 at
position 𝑥, i.e., 𝑃𝑖→𝑗(𝑥)while the conditional regression’s target is to estimate the probability
of observing a read of nucleotide 𝑗 given its reference is 𝑖 at position 𝑥, i.e., 𝑃𝑗|𝑖(𝑥). Their
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relationship is as follows:
𝑃𝑗|𝑖(𝑥) =

𝑃𝑖→𝑗(𝑥)∑
𝑗∈ 𝑃𝑖→𝑗(𝑥)

.

So in fact, unconditional regression can give us more detailed inferred results (extra infor-
mation the nucleotide composition per position of the reference, which may be related to
the prepared libraries).

654

656

658

660

662

664

666

Unconditional Regression Likelihood
The unconditional regression’s log-likelihood function is defined as follows,

𝑙uncond =
∑
𝑥

∑
𝑖,𝑗∈

𝑀𝑖→𝑗(𝑥) log𝑃𝑖→𝑗(𝑥)

=
∑
𝑥

[
𝑀(𝑥) log𝑃𝑇→𝑇 (𝑥) +

∑
(𝑖,𝑗)≠(𝑇 ,𝑇 )

𝑀𝑖→𝑗(𝑥) log
𝑃𝑖→𝑗(𝑥)
𝑃𝑇→𝑇 (𝑥)

]
, (12)

where𝑀(𝑥) =
∑

𝑖,𝑗∈ 𝑀𝑖→𝑗(𝑥). According to the multinomial logistic regression, we assume,
log

𝑃𝑖→𝑗(𝑥)
𝑃𝑇→𝑇 (𝑥)

=
order∑
𝑛=0

𝛼𝑖,𝑗,𝑥,𝑛𝑥
𝑛 (13)

Applying Equation 13 to Equation 12, we have
𝑙uncond =

∑
𝑥

{
−𝑀(𝑥) log

[
1 +

∑
(𝑖,𝑗)≠(𝑇 ,𝑇 )

exp

(order∑
𝑛=0

𝛼𝑖,𝑗,𝑥,𝑛𝑥
𝑛

)]
+

∑
(𝑖,𝑗)≠(𝑇 ,𝑇 )

𝑀𝑖→𝑗(𝑥)
order∑
𝑛=0

𝛼𝑖,𝑗,𝑥,𝑛𝑥
𝑛

}
(14)

Thenumber of inferredparameters ( 𝛼𝑖,𝑗,𝑥,𝑛), for the full conditional regression is 30×(order + 1).
And the relevant derivatives of the unconditional regression likelihood are as follows,

𝜕𝑙uncond
𝜕𝛼𝑖,𝑗,𝑥,𝑛

= −𝑀(𝑥)
𝑥𝑛 exp

(∑order
𝑛=0 𝛼𝑖,𝑗,𝑥,𝑛𝑥𝑛

)

1 +
∑

(𝑖,𝑗)≠(𝑇 ,𝑇 ) exp
(∑order

𝑛=0 𝛼𝑖,𝑗,𝑥,𝑛𝑥𝑛
) +𝑀𝑖→𝑗(𝑥)𝑥𝑛. (15)

668

670

672

674

676

678

680

682

684

Conditional Regression Likelihood
Viewed as the sum of log-likelihoods given the reference nucleotide 𝑖 ∈ , the conditional
regression’s log-likelihood function is,

𝑙cond =
∑
𝑖∈

∑
𝑥

∑
𝑗∈

𝑀𝑖→𝑗(𝑥) log𝑃𝑗|𝑖(𝑥)

=
∑
𝑖∈

∑
𝑥

[
𝑀𝑖(𝑥) log𝑃𝑇 |𝑖(𝑥) +

∑
𝑗≠𝑇

𝑀𝑖→𝑗(𝑥) log
𝑃𝑗|𝑖(𝑥)
𝑃𝑇 |𝑖(𝑥)

]
, (16)
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where𝑀𝑖(𝑥) =
∑

𝑗∈ 𝑀𝑖→𝑗(𝑥). Furthermore, if we assume,
log

𝑃𝑗|𝑖(𝑥)
𝑃𝑇 |𝑖(𝑥)

=
order∑
𝑛=0

𝛽𝑖,𝑗,𝑥,𝑛𝑥
𝑛 (17)

By applying Equation 17 to Equation 16, we can obtain,
𝑙cond =

∑
𝑖∈

∑
𝑥

{
−𝑀𝑖(𝑥) log

[
1 +

∑
𝑗≠𝑇

exp

(order∑
𝑛=0

𝛽𝑖,𝑗,𝑥,𝑛𝑥
𝑛

)]
+
∑
𝑗≠T

𝑀𝑖→𝑗(𝑥)
order∑
𝑛=0

𝛽𝑖,𝑗,𝑥,𝑛𝑥
𝑛

}
(18)

686

688

690

692

694

696

698

The number of inferred parameters (𝛽𝑖,𝑗,𝑥,𝑛) for the full unconditional regression is 24 ×

(order + 1). And the relevant derivatives of the conditional likelihood are as follows,
𝜕𝑙cond
𝜕𝛽𝑖,𝑗,𝑥,𝑛

= −𝑀𝑖(𝑥)
𝑥𝑛 exp

(∑order
𝑛=0 𝛽𝑖,𝑗,𝑥,𝑛𝑥𝑛

)

1 +
∑

𝑗≠𝑇 exp
(∑order

𝑛=0 𝛽𝑖,𝑗,𝑥,𝑛𝑥𝑛
) +𝑀𝑖→𝑗(𝑥)𝑥𝑛. (19)

700

702

Folded Multinomial Logistic Regression704

The folded regressions use the same log-likelihood functions as the full regression (i.e.,
Equation 14 and 18) but are conducted based on a presumable symmetric PMD pattern,
i.e., the probability of 𝐶 → 𝑇 at the position 𝑥 of an random chosen ancient DNA strand
is assumed to equal to the probability of 𝐺 → 𝐴 at the position −𝑥. Such an theoretical
assumption go match the current ancient library preparation process (Dabney, Meyer, and
Pääbo, 2013; Henriksen, Zhao, and T. Korneliussen, 2022).

𝛼𝑖,𝑗,𝑥,𝑛 = 𝛼𝑐(𝑖),𝑐(𝑗),−𝑥,𝑛, (20)
𝛽𝑖,𝑗,𝑥,𝑛 = 𝛽𝑐(𝑖),𝑐(𝑗),−𝑥,𝑛, (21)

where 𝑐(𝑖)means the complimentary nucleotide of the nucleotide 𝑖, e.g., 𝑐(𝐴) = 𝑇 and 𝑐(𝐺) =

𝐶 .

706

708

710

712

714

By doing the folded regression, we halve the number of inferred parameters (𝛼𝑖,𝑗,𝑥,𝑛 or
𝛽𝑖,𝑗,𝑥,𝑛). Hence The number of inferred parameters for the folded unconditional regression
is 15 × (order + 1), and that of folded conditional regression is 12 × (order + 1).

716

718

Results for multinomial logistic regression

The optimization of the likelihood functions are based on the C++ library of gsl and use the
function gsl_multimin_fminimizer_nmsimplex2 with the initial searching point set to be the
results of logistic regression. We here present here 4 figures pertaining to showcase the
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performance of our model. The regression methods are based on the summary statistic
of the counts of mismatches and the optimization is therefore in the scale of miliseconds.
Figure S1 and Figure S2 are the conditional regression results of the ancient and control
human data correspondingly. And Figure S3 and Figure S4 are the folded conditional re-
gression results of the same data as above.

720

722

724

726
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728

Appendix 2—figure S1. Conditional regression results with the order 4 of the ancient human data.
Each panel of figure represents a specific reference/read pair and plots its frequency across different
positions. The positions from left to right are −1 to −15 and 15 to 1.

730

732

Michelsen & Pedersen et al. 2022 | metaDMG: An Ancient DNA Damage Toolkit bioR𝜒 iv | 37 of 68

62 PAPER I



Appendix 2—figure S2. Conditional regression results with the order 4 of the control human data.
Each panel of figure represents a specific reference/read pair and plots its frequency across different
positions. The positions from left to right are −1 to −15 and 15 to 1.

734

736

Michelsen & Pedersen et al. 2022 | metaDMG: An Ancient DNA Damage Toolkit bioR𝜒 iv | 38 of 68

63



738

Appendix 2—figure S3. Folded conditional regression results with the order 4 of the ancient human
data. Each panel of figure represents a specific reference/read pair and plots its frequency across
different positions. The positions from left to right are −1 to −15 and 15 to 1.
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Appendix 2—figure S4. Folded conditional regression results with the order 4 of the control human
data. Each panel of figure represents a specific reference/read pair and plots its frequency across
different positions. The positions from left to right are −1 to −15 and 15 to 1.
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As shown in the figures, the regression models stabilize the coarse mismatch matrices
and describe a much more detailed PMD pattern (not only C→T and G→A, but also all other
reference and read combinations), but they might suffer from an overfitting issue espe-
cially when the data is limited, while the simpler regression model in the main text ( sub-
section 2.4) shows an acceptable statistic power even with extremely small amount of data,
we thus recommend the readers to use the simpler regression model unless used with ex-
tremely high-coverage data.

748

750

752

754

Our code can also perform the unconditional regression, but as the unconditional regres-
sion needs to estimate more parameters based on the same dataset, it is more vulnerable
to a possible overfitting issue. We thus only present the figures of the conditional results.

756
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Appendix 3758

NGSNGS COMMANDS
The resulting read data files (fastq files) were simulated with NGSNGS using the above
mentioned simulation parameters, all with the same quality scores profiles as used in ART
(Huang et al., 2012), basedon the IlluminaHiSeq 2500 (150bp). Themappingwasperformed
using Bowtie-2 (Langmead and Salzberg, 2012):

760

762

./ngsngs -i $genome -r $Nread -ld LogNorm,$lognorm_mean,$lognorm_std -seq SE \764

-f fq -q1 $quality_scores -m b,0.024,0.36,$damage,0.0097 -o $fastq

bowtie2 -x $genome -q $fastq.fq --no-unal766
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Appendix 4

NGSNGS SIMULATIONS768

The following figures show the metaDMG damage estimates for the different NGSNGS simu-
lations (Henriksen, Zhao, and T. Korneliussen, 2022). These simulations include different
species (Homo Sapiens and Betula), different GC-levels (low, middle, high), different frag-
ment length distributions (with mean 35, 60, and 90), and different contig lengths (length
1.000, 10.000, 100.000), see subsection 3.1 for more information.

770

772
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Appendix 4—figure S5. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S6. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S7. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S8. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S9. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S10. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S11. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S12. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S13. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S14. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 4—figure S15. This plot shows the average damage as a function of the number of reads.
The grey points show the average of the individual means (with the average of the standard
deviations as errors.
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Appendix 5

NGSNGS SIMULATIONS – ZERO DAMAGE830

Damage estimates for non-damaged simulated data, each with 1000 replications, see sub-
section 3.1. The inferred damage is shown on the y-axis and the significance on the x-axis.
Each simulation is shown as a single cross and the red lines show the kernel density esti-
mate (KDE) of the damage estimates. The marginal distributions are shown as histograms
next to the scatter plot.
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Appendix 5—figure S16. Left) 25 simulated reads. Right) 50 simulated reads.838
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Appendix 5—figure S17. Left) 100 simulated reads. Right) 250 simulated reads.842
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Appendix 5—figure S18. Left) 500 simulated reads. Right) 1.000 simulated reads.846
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Appendix 5—figure S19. Left) 2.500 simulated reads. Right) 5.000 simulated reads.850
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Appendix 5—figure S20. Left) 10.000 simulated reads. Right) 25.000 simulated reads.854

Michelsen & Pedersen et al. 2022 | metaDMG: An Ancient DNA Damage Toolkit bioR𝜒 iv | 56 of 68

81



1.0 1.5
Significance

0.020%

0.040%

0.060%

D
am

ag
e

sim N reads = 50000, # = 1000

1.0 1.5
Significance

0.020%

0.040%

0.060%

D
am

ag
e

sim N reads = 100000, # = 1000

856

Appendix 5—figure S21. Left) 50.000 simulated reads. Right) 100.000 simulated reads.858
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Appendix 6

FALSE NEGATIVES862

Even though the simple requirement of having more than 100 reads drastically improves
the performance of the damage estimates, see subsection 4.2, it does not identify all of
the species that were simulated to be ancient. One of these non-identified taxa is the
Stenotrophomonas Maltophilia species in the Pitch-6 sample. We show the damage es-
timates for different simulations for this particular taxa in Figure S22 to quantify the be-
haviour of the damage estimate at the different stages of the simulation pipeline. For the
final stage in the gargammel pipeline, ie. including fragmentation, deamination, and se-
quencing noise (red in the figure), only 167 reads are assigned to this specific taxa after
mapping, when a total of 1 million reads were simulated. The significance is 𝑍f it = 1.9, just
below the damage threshold.
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Appendix 6—figure S22. Damage estimates of the Stenotrophomonas maltophilia species from the
Pitch-6 sample. Damage is shown as a function of the total simulation size, with the fragmentation
files in green, the deamination files in blue and the final files including sequencing errors in red. All
errors are 1𝜎 error bars (standard deviation). The number of reads for each fit is shown as text the
simulated amount of damage is shown as a dashed grey line.
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Appendix 7880

BAYES VS. MAP
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Appendix 7—figure S23. Comparison between the full Bayesian model and the fast, approximate,
MAP model for the estimated damage and significance. The dashed, grey line shows the 1:1 ratio.884
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Appendix 8886

PYDAMAGE COMPARISON
The following figures show the parallel coordinates plot comparing metaDMG and PyDamage
for the Homo Sapiens single-genome simulation with 100 reads for different amount of ar-
tificially added damage, see subsection 4.5. The two first axes show the estimated damage:
𝐷f it by metaDMG and 𝑝max by PyDamage. The following two axes show the fit quality: signif-
icance (𝑍f it ) by metaDMG and the predicted accuracy (Accpred) by PyDamage. The final axis
shows the 𝑞-value by PyDamage. Each of the 100 replications are plotted as single lines.
Replications passing the relaxed metaDMG damage threshold (𝐷f it > 1% and 𝑍f it > 2) are
shown in color proportional to their significance. Replications that did not pass are shown
in semi-transparent black lines.
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Appendix 8—figure S24. parallel coordinates plot comparing metaDMG and PyDamage for 0% artificial
damage.
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Appendix 8—figure S25. parallel coordinates plot comparing metaDMG and PyDamage for 1% artificial
damage.
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Appendix 8—figure S26. parallel coordinates plot comparing metaDMG and PyDamage for 2% artificial
damage.
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Appendix 8—figure S27. parallel coordinates plot comparing metaDMG and PyDamage for 5% artificial
damage.
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Appendix 8—figure S28. parallel coordinates plot comparing metaDMG and PyDamage for 10%
artificial damage.
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Appendix 8—figure S29. parallel coordinates plot comparing metaDMG and PyDamage for 15%
artificial damage.
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Appendix 8—figure S30. parallel coordinates plot comparing metaDMG and PyDamage for 20%
artificial damage.
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Appendix 8—figure S31. parallel coordinates plot comparing metaDMG and PyDamage for 30%
artificial damage.
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ABSTRACT

Objectives: Machine-learning models may improve prediction of length of stay (LOS) and 

morbidity after surgery. However, few studies include fast-track programs, and most rely on 

administrative coding with limited follow-up and information on perioperative care. This study 

investigates benefits of machine-learning models for prediction of postoperative morbidity in 

fast-track total hip (THA) and knee arthroplasty (TKA).

Design: Cohort study with prospective recording of comorbidity and prescribed medication. 

Information on length of stay and readmissions through the Danish National Patient Registry 

and medical records. 

Participants: Consecutive unselected primary THA or TKAs between 2014-2017 from seven 

Danish centers with established fast-track protocols. Data from 2014-2016 (n:18013) was used 

for training and data from 2017 (n:3913) was used for testing. 

Outcomes: Ability of a machine-learning model based on boosted decision trees with 33 

preoperative variables for predicting “medical” morbidity leading to LOS >4 days or 90-days 

readmissions vs. a logistic regression model. We also evaluated a parsimonious machine-

learning and logistic regression model using the ten most important variables. Model 

performances were analyzed using precision, area under receiver operating (AUROC) and 

precision recall curves (AUPRC) among other performance measures. Variable importance was 

analyzed using Shapley Additive Explanations values. 

Results: Using a threshold of 20% “risk-patients” (n:782), precision, AUROC and AUPRC were 

13.6%, 76.3% and 15.5% vs. 12.4%, 74.7% and 15.6% for the machine-learning and logistic 

regression model, respectively. The parsimonious machine-learning model performed better 

than the full logistic regression model. Of the top ten variables, eight were shared between the 

machine-learning and logistic regression models, but with a considerable age-related variation 

in importance of specific types of medication.

Conclusion: Machine-learning algorithms using preoperative characteristics and prescriptions 

slightly improved identification of patients in high-risk of “medical” complications after fast-track 

THA and TKA. Such algorithms could help identify patients who benefit from intensified 

perioperative care.
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STRENGTHS AND LIMITATIONS

Strengths
 Fully implemented fast-track protocols with complete follow-up through nationwide 

registries and medical records.
 State of the art machine-learning techniques
 Novel analysis on the importance of preoperative prescriptions in predicting 

postoperative morbidity.
Limitations
 Limited amount of multilevel continuous data, potentially limiting full realization of the 

machine-learning model.
 Registration of preoperative prescriptions dependent on reimbursement and lack of 

information on actual use on day of surgery
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INTRODUCTION

Prediction of postoperative morbidity and requirement for hospitalization is important for 

planning of health care resources. With regard to the common surgical procedures of primary 

total hip (THA) and knee arthroplasty (TKA), the introduction of enhanced recovery or fast-track 

programs has led to a significant reduction of postoperative length of stay (length of stay) as 

well as morbidity and mortality.1-3 However, despite such progress, a fraction of patients still 

have postoperative complications leading to prolonged length of stay or readmissions.1 3 4 

Consequently, in order to prioritize perioperative care, many efforts have been published to 

preoperatively predict length of stay and morbidity using traditional risk factors such as age, 

preoperative cardio-pulmonary disease, anemia, diabetes, frailty, etc.4-8 These efforts have 

been based on traditional statistical methods, most often multiple regression analyses, and 

essentially concluding that it is “better to be young and healthy than old and sick”. 

Consequently, despite being statistically significant, conventional risk-stratification based on 

such studies has had a relatively limited clinically relevant ability to predict and reduce 

potentially preventable morbidity and length of stay.4-8

More recently, machine-learning methods have been introduced with success in several areas 

of healthcare and where preliminary data suggest them to improve surgical risk prediction 

compared to traditional risk calculation in certain anesthetic and surgical conditions.9 10 This is 

also the case in THA, TKA and uni-compartmental knee replacement, where several 

publications on machine-learning algorithms for prediction of  length of stay,11 12 complications,13 

disability,14 potential outpatient setup,15 readmissions16  or payment models,17 18 have shown 

promising predictive value compared to conventional statistical methods.19 

However, few papers have included fast-track programs, and most are based on large database 

cohorts with the presence of risk factors and complications often relying on administrative 

coding with limited information on perioperative care, follow-up and discharge destination. In our 

previous study of 9512 THA and TKAs within a fully implemented fast-track protocol and 

including the above information, we did not find advantages of machine-learning methods 

compared to logistic regression in predicting a length of stay > 2 days.20 However, this may 

have been due to data imbalance, lack of details on medication and the chosen outcome of 

length of stay of >2 days.20 Thus, machine-learning models remain promising and could provide 

an improved basis for identifying a potential “high-risk” surgical population who may benefit from 

more extensive preoperative evaluation and postoperative medical care.

Consequently, we used a large consecutive cohort of patients undergoing fast-track total hip 

and knee replacement within a national public health-care system1 to develop an improved 
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machine-learning model for preoperative prediction of “medical” complications resulting in 

prolonged length of stay and readmissions. Model performances were subsequently compared 

to a traditional logistic regression model. In addition to well-defined patient-reported 

preoperative risk-factors, we also included information on dispensed reimbursed prescriptions 6 

months prior to surgery using a nationwide registry.21 

METHODS

Reporting of the study is done in accordance with the Transparent reporting of multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD) statement22 and the Clinical AI 

Research (CAIR) checklist proposal.23

The study is based on the Centre for Fast-track Hip and Knee Replacement database which is a 

prospective database on preoperative patient characteristics and enrolling consecutive patients 

from 7 departments between 2010 and 2017. The database is registered on ClinicalTrials.gov 

as a study registry (NCT01515670). Patients completed a preoperative questionnaire with nurse 

assistance if needed. Additional information on reimbursed prescriptions 6 months prior to 

surgery was acquired using the Danish National Database of Reimbursed Prescriptions 

(DNDRP) which records all dispensed prescriptions with reimbursement in Denmark.21 Finally, 

data were combined with the Danish National Patient Registry (DNPR) for information on length 

of stay (counted as postoperative nights spent in hospital), 90-days readmissions with overnight 

stay and mortality. In case of length of stay >4 days or readmission, patient discharge 

summaries were reviewed for information on postoperative morbidity and in case of insufficient 

information, the entire medical records were reviewed. Readmissions were only included if 

considered related to the surgical procedure, thus excluding planned procedures like cancer 

workouts, cataract surgery, etc. Readmissions due to urinary tract infection or dizziness after 

day 30 were also considered unrelated to the surgical procedure. In case of postoperative 

mortality the entire medical record, including potential readmissions, was reviewed to identify 

cause of death. Evaluation of discharge and medical records was performed by PP supervised 

by CJ. In case of disagreement, records were conferred with HK. Subsequently, causes of 

length of stay >4, readmissions or mortality were classified as “medical” when related to 

perioperative care (renal failure, falls, pain, thrombosis, anemia, venous thromboembolism or 

infection etc.) and “surgical” if related to surgical technique (prosthetic infection, revision 

surgery, periprosthetic fracture, hip dislocation, etc.).1 In case of a length of stay 4-6 days with a 

standard discharge summary describing a successful postoperative course, it was assumed that 

no clinically relevant postoperative complications had occurred. If length of stay was >6 days 
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but with standard discharge summary, the entire medical record was evaluated to confirm that 

no relevant complications had occurred.

For the present study, only cases between 2014 and 2017 were used to provide the most up-to 

date data.  All patients had elective unilateral total hip and knee replacement in dedicated 

arthroplasty departments with similar fast-track protocols, including multimodal opioid sparing 

analgesia with high-dose (125mg) methylprednisolone, preference for spinal anesthesia, only in-

hospital thromboprophylaxis when length of stay ≤5 days, early mobilization, functional 

discharge criteria and discharge to own home.1 There were no selection criteria for the fast-track 

protocol as it is considered standard of care, but we excluded patients with previous major hip 

or knee surgery within 90-days of THA or TKA and THA due to severe congenital joint disorder 

or cancer (Supplemental Material 1). 

Patient and Public Involvement
There was no involvement of patients or the public in the planning or conduction of the study.

Outcomes

The primary outcome was to develop a machine-learning model to predict the occurrence of 

“medical” complications resulting in a length of stay >4 days or readmission and compare model 

performance with a traditional logistic regression model (primary outcome). Secondarily, we 

investigated how inclusion of cases with a length of stay >4 days but no reported “medical” 

complication as a positive outcome influenced the model (secondary outcome). For both 

outcomes, we also investigated whether a parsimonious model including only the top ten 

variables would perform equally well as the full model. All figures and tables in the main text are 

based on the primary outcome; the corresponding figures for the secondary outcome are 

reported in the Supplemental Material.
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Statistical Analysis

Data consisted of 33 input variables, of which 7 were continuous. All variables were collected 

prospectively, either through the patient completed questionnaire, through the DNDRP or a 

combination of both (table 1).  Initially we trimmed the dataset by removing 156 patients (1.7%) 

who were outliers with regards to weight (<30 kg or >250 kg) and height (<100 cm or >210 cm) 

or where these data were missing. To reduce the risk of overfitting and allow for unbiased 

evaluation of model performance, data was subsequently split into a training set consisting of 

18013 (82.2%) procedures from 2014-2016 and a test set of 3913 (17.8%) procedures from 

2017, as is standard in modelling of data with a temporal component.24 (Supplemental Material 

1). These sample sizes are larger than the proposed minima of 3656, when assuming the model 

will explain 20% of the variability.25  The data analysis was performed in Python and is available 

online at https://zenodo.org/record/7330268. 

As reference model, we used logistic regression with missing values being handled by multiple 

imputations. All variables were then normalized to have zero mean and unit standard deviation 

by subtracting the original mean and dividing by the original standard deviation. In addition, we 

used boosted decision trees (LightGBM)26 for the machine-learning models, as such methods 

work well with categorical data and missing values. We used cross entropy as the objective 

function for the machine-learning model. 

The full machine-learning model was trained and hyperparameter optimized using the state of 

the art framework Optuna27 with the Tree-structured Parzen Estimator algorithm28 to efficiently 

sample hyperparameters and with a median stopping rule to minimize optimization time. The 

models were trained on the training data and then used for making predictions on the unseen 

test data (Supplemental Material 1). The classification threshold was calibrated such that 20% 

of the total number of patients were predicted as positive by the model (positive predictive 

fraction of 20%). We also included results for values of 25% and 30%. Furthermore, we trained 

two parsimonious models using machine-learning and logistic regression with only the 10 most 

important features. All mentioned models were calibrated using Platt’s method (Supplemental 

Material 2).29  Finally, we constructed a model based on age alone (Age) to explore the added 

value of multiple variable prediction.  

To investigate the importance of the included variables, we computed the SHapley Additive 

exPlanations (SHAP) values, which provide estimates on which variables contribute most to the 

risk score predictions.30 31 Finally, we investigated a potential relation between reimbursed 

prescribed cardiac drugs, anticoagulants, psychotropics and pulmonary drugs and age, as the  
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relation between polypharmacy and postoperative outcomes have mainly been found in older 

patients.32

For evaluating model performance, we computed the number of true positives (TP), false 

positives (FP), false negatives (FN), true negatives (TN), sensitivity (true positive rate = TP / 

(TP+FN)), precision (positive predictive value = TP / (TP+FP)). Since the data was quite 

imbalanced (about a 1:20 positive:negative ratio) we also computed the Matthews Correlation 

Coefficient (MCC) which is independent of class imbalance.33 34 The MCC ranges between -1 

(the 100% wrong classifier), 0 (the random classifier), and +1 (the perfect classifier). Finally, we 

computed the area under the receiver operating characteristic curve (AUROC) and the area 

under the precision recall curve (AUPRC). To evaluate the statistical difference between the 

classifiers, we applied a Bayesian metric comparison P(sensitivity),35 which is the probability 

that a model will perform better than the machine-learning model relative to the sensitivity. Thus, 

for two equally performing models P(sensitivity) is ≈ 50%. 

RESULTS

Median age in the 3913 patients was 70 years (IQR 62-76), 59% were female and 58% had 

THA (table 1). 

Table 1.  patient demographics with and without the primary outcome (length of stay >4 days or 
readmissions due to “medical” morbidity) in the combined test and training dataset.
Preoperative characteristics 
n (%) unless otherwise specified

training set 
(n:18013)

test set
(n:3913)

mean age (SD) 69.0 (62.0-75.0) 70.0 (62.0-76.0)
mean number of reimbursed prescriptions1 (SD) 2.0 (0.0-3.0) 2.0 (0.0-3.0)
female gender 755 (64.0) 12133 (58.2)
hip arthroplasty 9918 (54.8) 2260 (57.8) 
mean weight in kg (SD) 80.5 (70.0-93.0) 81.0 (70.0-92.0)
mean height in cm (SD) 170.0 (164.0-177.0) 170.0 (164.0-177.0)
mean body mass index (SD) 27.5 (24.6-31.2) 27.5 (24.6-31.1)
regular use of walking aid

missing
552 (46.8)
29 (2.5)

4398 (21.5)
359 (1.7)

living alone
with others
institution

missing

5914 (32.9)
11971 (66.5)
116 (0.6)
12 (0.6)

1381 (35.7)
2469 (63.8)
21 (0.5)
42 (1.1)

Hemoglobin (SD)
Missing

8.6 (8.1-9.1)
291 (1.5)

8.6 (8.1-9.2)
55 (1.4)

>2 units of alcohol/day
Missing

1382 (7.7)
57 (0.8)

286 (7.4)
36 (0.9)
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active smoker

missing
130 (11.0)
11 (0.9)

2751 (13.2)
141 (0.7)

cardiac disease
missing

2527 (14.0) 
17 (0.6)

529 (13.7) 
53 (1.4)

hypercholesterolemia
missing

5396 (29.9%)
83 (0.5)

1133 (29.3%)
44 (1.2)

hypertension 
missing

9030 (51.4)
546 (3.0)

1849 (49.5) 
179 (4.6)

pulmonary disease
missing

1668 (9.2) 
63 (0.4)

355 (9.2)
38 (1.0)

previous cerebral attack
missing

1038 (5.8)
157 (1.3)

213 (5.6) 
77 (2.0)

previous VTE
missing

1331 (7.5)
283 (1.6)

283 (7.4)
66 (1.7)

malignancy (undefined)
previous radically treated malignancy
missing

1469 (8.1)
1752 (9.7)
136 (0.8)

134 (3.4)
440 (11.2)
40 (1.0)

chronic kidney disease
missing

266 (1.5)
276 (1.5)

57 (1.5)
50 (1.3)

family member with VTE
missing

2235 (14.1)
2189 (12.6)

430 (12.5)
479 (12.2)

regular snoring
uncertain about snoring
missing

266 (22.5)
208 (17.6)
259 (21.9)

5522 (26.5)
3781 (18.1)
3309 (15.9)

not feeling rested
uncertain about being rested
missing

7272 (42.4)
48 (4.1)
105 (8.9)

9340 (44.8)
809 (3.9)
1230 (5.9)

psychiatric disorder
missing

1464 (8.4) 
580 (3.2)

282 (7.6)
182 (4.7)

Characteristic based on combination of questionnaire and DNDRP
Diabetes

diet treated diabetes2

oral antidiabetics
insulin treated diabetes3

missing

251 (1.4)
1294 (7.2)
405 (2.2)
68 (0.4)

52 (1.3)
291 (7.5)
68 (1.8)
36 (0.9)

SD: standard deviation VTE: venous thromboembolic event DNDRP: Danish National Database of 
Reimbursed Prescriptions.
1Antirheumatica, steroids, anticoagulants, cardiac, cholesterol lowering, respiratory and psychotropic drugs. 
2Reported diabetes but no registered prescriptions 3 +/- oral antidiabetics

Details on prescribed drug types are shown in Supplemental Material 3. Median length of stay 

was 2 (IQR: 1-2) days with 7.6% 90-days readmissions and the primary outcome occurring in 

182 (4.7%) patients. When applying any model with a positive prediction fraction of 20% to the 

3913 patients, 782 qualified as “risk-patients”. The results are summarized in figure 1 and table 

2. 
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When considering risk scores from the full machine-learning (figure 1a) and full logistic 

regression model leading to this risk-patient selection, 106 and 98 had the primary outcome, 

respectively. Correspondingly, the sensitivity and precision were 58.2% and 13.6% for the full 

machine-learning and 53.3% and 12.4% for the full logistic regression model, respectively. The 

full machine-learning model was superior (figure 1b) on all parameters (except AUPRC) 

compared to any of the other models, although the differences were minor (table 2).

The results were similar when using positive prediction fractions of 25% and 30%, but with the 

sensitivity for the full machine-learning model increasing to 64.3% and 69.2% and precision 

decreasing to 12.0% and 10.7%, respectively (Supplemental Material 4). Despite age being the 

single most important variable, age alone had a significantly lower sensitivity at 47.8%.

When evaluating feature importance, we found a strong correlation between the full machine-

learning and full logistic regression model, with age and use of walking aids being the most 

important variables in both (figure 2a). From the combined importance of variables outside the 

top ten, the machine-learning approach extracted more information with fewer variables than 

logistic regression (figure 1b).

For the full machine-learning model, there was a clear signal that increasing age, number of 

reimbursed prescriptions, and presence of comorbidity, all contributed to an increased risk 

score. In contrast, a recent date of surgery and an increased hemoglobin level seemed to 

Table 2: Performance of the models with a predefined positive prediction fraction of 20% for primary outcome.

Positive 
prediction 
fraction 20%

TP FP FN TN Sensitivity
%

Precision
%

MCC
%

AUROC
%

AUPRC
%

Brier
%

P 
(sensitivity)

%

Full machine-
learning model 106 676 76 3055 58.2 13.6 21.1 76.3 15.5 4.19 -

Full logistic 
regression 
model

97 685 85 3046 53.3 12.4 18.4 74.7 15.6 4.32 17.2

Parsimonious 
machine-
learning model

100 682 82 3049 54.9 12.8 19.3 75.9 17.3 4.34 26.4

Parsimonious 
logistic 
regression 
model

90 692 92 3039 49.5 11.5 16.3 73.8 15.8 4.33 4.86

Age-only 
model 87 676 95 3055 47.8 11.4 15.8 69.7 12.1 38.8 3.55

TP: true positives FP: false positives FN: false negatives TN: true negatives MCC: Matthews correlation 
coefficient AUROC: area under the operating receiver curve AUPRC: area under the precision recall curve 
P(sensitivity): probability that a model performs better than the machine-learning model relative to sensitivity.
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reduce the calculated risk (figure 2b). Individual analysis of the SHAP interaction values for 

types of anticoagulant prescriptions revealed that prescriptions on vitamin-K antagonists (VKA) 

or adenosine diphosphate (ADP) antagonists increased, while acetylic salicylic acid and direct 

oral anticoagulants (DOAC) reduced the risk score of the full machine-learning model, 

regardless of age (figure 3a). The SHAP analysis of prescribed cardiac drugs revealed that 

prescriptions on Ca2+-antagonists and betablockers in combination with one or two other 

antihypertensives increased the risk-score, as did prescriptions on nitrates, other 

antihypertensives and antiarrhythmics. For the remaining cardiac drugs, prescriptions either 

reduced or had minor influence, and with limited relation with age (figure 3b). Preoperative 

psychotropic prescriptions increased the risk-score except for antipsychotics (0.6%). For users 

of selective serotonin inhibitors there was a clear age-related distinction with the risk score 

being increased in elderly patients but decreased in those < 60 years (figure 3c). Finally, the risk 

score increased with prescriptions on inhalation steroid and β-blockers, and more accentuated 

in the younger patients (figure 3d). 

The results including patients with a length of stay >4 days, but no reported postoperative 

complications (secondary outcome) were similar as for the primary outcome. In general, we 

found that the full machine-learning model was superior to the others, although the differences 

were smaller than for the primary outcome. (Supplemental Material 5 listing outcome 

parameters and Supplemental material 6 figure S1a-b showing distributions and ROC curves for 

the secondary outcome). While the ten most important variables for the full machine-learning 

model remained unchanged, familiar disposition for venous thromboembolism replaced gender 

as one of the top ten important variables in the full logistic regression model (Supplemental 

material 7 figure S2a-b showing SHAP values for the secondary outcome). Furthermore, the 

SHAP analysis on specific prescribed drugs demonstrated that the machine-learning model 

found no benefits from information on prescriptions on respiratory drugs, why all SHAP values 

were zero. In addition, the reduced risk with acetylsalicylic acid and DOAC prescriptions, as well 

as the influence of practically all cardiac drugs except for nitrates, other antihypertensives and 

antiarrhythmics, was attenuated (Supplemental material 8 figure S3a-d showing SHAP-values of 

prescriptions of specific drugs for the secondary outcome).

DISCUSSION

We found that using a machine-learning algorithm including all 33 available variables and a 

parsimonious machine-learning-algorithm encompassing only the 10 most important predictors 
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improved prediction of patients at increased risk of having a length of stay >4 days or 

readmissions due to medical complications compared to traditional logistic regression models. 

In contrast, when also including patients having a length of stay >4 days but without a well-

defined complication as an outcome, the parsimonious machine-learning model was slightly 

worse than a traditional logistic regression model including all variables. We also found that 

although age was the single most important predictor of both the primary and the secondary 

outcome, it was less suited for prediction of postoperative medical complications after fast-track 

THA and TKA on its own. Finally, we demonstrated how the chosen classification threshold of 

the machine-learning algorithm influenced model performance through an increase in sensitivity 

at the cost of decreased precision. 

A previous systematic review also found that machine-learning algorithms may provide better 

prediction of postoperative outcomes in THA and TKA.36 However, the authors concluded that 

such models performed best at predicting postoperative complications, pain and patient 

reported outcomes and were less accurate at predicting readmissions and reoperations.36 That 

machine-learning algorithms may improve prediction of complications after THA and TKA 

compared to traditional logistic regression was also found by Shah et al. who used an 

automated machine-learning framework to predict selected major complications after THA.13 

However, theirs was a retrospective study based on diagnostic and administrative coding and 

the selected complications occurred only in 0.61% of patients, potentially limiting clinical 

relevance. In contrast, we aimed at identifying a cohort which would comprise 20% of patients in 

which we found about 60% of all medical complications. This we believe, is within the means of 

the Danish socialized healthcare system to allocate additional resources for intensified 

perioperative care and with both patient-related and economic benefits due to potentially 

avoided complications and costs.

In contrast to many other machine-learning studies,37 our dataset included not only preoperative 

data but also only one paraclinical variable, which was preoperative hemoglobin. Although the 

inclusion of other laboratory tests such as preoperative albumin, sodium and alkaline 

phosphatase has been found to be of importance in machine-learning algorithms for home 

discharge in uni-compartmental knee replacement12 and spine surgery,9 they are not standard in 

fast-track protocols and not easy to interpret from a pathophysiological point of view. 

Most decisions on which patients may benefit from more extensive postoperative care will likely 

need to be conducted preoperatively, as there is an increasing need to prioritize limited health-

care resources. Thus, although postoperative information such as duration of surgery, 

perioperative blood length of stays or postoperative hemoglobin have been included in other 
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studies37, we decided against the use of peri- and postoperative data. The same approach has 

been used by Ramkumar et al. who used U.S. National Inpatient Sample data including 15 

preoperative variables, to predict length of stay, patient charges and disposition after both TKA38 

and THA.18 However, these studies were not conducted in a socialized health care system, and 

the main focus was on the need for differentiated payment bundles and without specific 

information on the reason for increased length of stay or non-home discharge.38 Wei et al. used 

an artificial neural network model to predict same-day discharge after TKA, based on the 

NSQUIP database from 2018 and found that six of the ten most important variables were the 

same compared with logistic regression, similar to our findings.39 However, patients with one-

day length of stay were intentionally excluded due to variations in in-patient vs. out-patient 

registration.39  

Age has traditionally been a major factor when predicting surgical outcomes and remained the 

single most important predictor in our study.. However, although elderly patients had increased 

risk of postoperative complications, likely related to decline of physical reserves,40 the use of 

chronological age alone was inferior compared to both machine-learning and logistic regression 

models incorporating comorbidity and functional status. Thus, using age by itself for identifying 

the high-risk population resulted in missing 18% of the “true risk-patients” (87 compared to 106 

in the full ML model).

We used the SHAP values for estimation of feature importance, thus providing a better 

understanding of the otherwise “black-box” machine-learning model. The SHAP values showed 

which variables contribute most to the risk-score predictions. In this context, inclusion of specific 

data on reimbursed prescriptions 6 months prior to surgery based upon the unique Danish 

registries, unsurprisingly found increased risk-scores with increased number of prescriptions 

and with the majority being in elderly patients. Similarly, a Canadian study in elective non-

cardiac surgery found decreased survival and increased length of stay and readmissions and 

costs in patients >65 years with polypharmacy.32 However, this is a complex relationship where 

some patients benefit from their treatments, while other may suffer from undesirable side-

effects. Consequently, the authors cautioned against altering perioperative practices based on 

current evidence.32 However, the information from the included prescriptions with SHAP 

analysis may provide inspiration for new hypothesis-generating studies such as investigation of 

the potential differences in risk-profile between having preoperative prescribed VKA and 

DOAKs. Also, the age-related differences in risk from SSRI’s in our study could guide further 

studies on “deprescription”.
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Another requirement for machine-learning-algorithms to be clinically useful is user friendliness 

and not depending on excessive additional data collection by the attending clinicians. In this 

context, it was a bit disappointing that the parsimonious machine-learning algorithm with only 

the ten most important variables was slightly worse at predicting the secondary outcome than 

the full logistic regression model. A reason for this could be that when including a length of stay 

>4 days but without described medical complications, the combination of all variables provides 

information not available by merely including the ten most important ones. This highlights the 

need for as much detailed, and preferably non-binary, data as possible to fulfill the true potential 

of machine-learning algorithms. 

Our study has some limitations. First, one of the strengths of machine learning compared to 

logistic regression is the analysis of multilevel continuous data, whereas we included only a 

limited number of, often binary, preoperative variables. This could have limited the full 

realization of our machine-learning model. As previously mentioned, we excluded intraoperative 

information, including type of anesthesia, surgical approach etc. all of which may influence 

postoperative outcomes. The observational design of this study means that we cannot exclude 

unmeasured confounding or confounding by indication. Also, despite that the DNDRP has a 

near complete registration of dispensed medicine in Denmark, some types or drugs, especially 

benzodiazepines, are exempt from general reimbursement and thus not sufficiently captured.21 

Furthermore, it is doubtful whether the patients used all types of drugs at the time of surgery 

(e.g. heparin which is rarely for long-term use).  Finally, classification of a complication being 

“medical” depended on review of the discharge records which can also introduce bias. However, 

we believe our approach to be superior to depending only on diagnostic codes which often are 

inaccurate41 and provide limited details on whether the complication may be attributed to a 

medical or surgical adverse event. The strengths of our study include the use of national 

registries with high degree of completion (>99% of all somatic admissions in case of the 

DNDRP),42 prospective recording of comorbidity, extensive information on prescription patterns 

6 months prior to surgery and similar established enhanced recovery protocols in all 

departments. 

In summary, our results suggest that machine-learning-algorithms likely provide clinically 

relevant improved predictions for defining patients in high-risk of medical complications after 

fast-track THA and TKA compared to a logistic regression model. Future studies could benefit 

from using such algorithms to find a manageable population of patients who benefit from 

intensified perioperative care. 
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FIGURE LEGENDS
Figure 1a-b
1a) Distribution of full machine learning model risk scores for patients +/- the primary outcome. 
The dashed line marks the classification threshold of 20% positive prediction fraction. 
1b) Receiver operating curves (ROC) for the full machine learning model (F-MLM), full logistic 
regression model (F-LRM), parsimonious machine learning model (P-MLM), parsimonious 
logistic regression model (P-LRM) and the age-only model (AM).

Figure 2a-b
2a) The overall importance of the 10 most important variables measured by the SHAP-values 
for the full machine-learning and full logistic regression models on the primary outcome (LOS >4 
days or readmission due to “medical” morbidity). Only the importance of prescribed 
anticholesterols and gender differ between the models. The contributions of the remaining 
variables are summed in the bottom bar. 
2b) The SHAP-values for the full machine-learning model on the primary outcome, where 
positive increase and negative values decrease the risk score. Each dot represents a patient 
and the color is related to the value of the variable with blue being lowest and red highest..

Figure 3a-d
SHAP scatter-plot on the contributions to the full machine-learning model on the primary 
outcome (LOS >4 days or readmission due to “medical” morbidity), for individual types of 
prescribed anticoagulants, cardiac drugs, psychotropics and respiratory drugs stratified by age. 
3a) Prescribed anticoagulants 
VKA: vitamin K antagonists ASA: acetylsalicylic acid DOAC: direct oral anticoagulant ADP: 
Adenosine diphosphate ACE: angiotensin converting enzyme 
3b) Prescribed cardiac drugs 
ACE: angiotensin converting enzyme AHT: antihypertensive. Other AHT were defined as AHT 
different from diuretics ANG-II/ACE inhibitors or Ca2+antagonists. IHD: Ischemic heart disease
3c) Prescribed psychotropics 
SSRI: Selective serotonin inhibitor SNRI: Serotonin and norepinephrine reuptake inhibitor NaRI: 
Norepinephrine reuptake inhibitor NaSSA: Norepinephrine and specific serotonergic 
antidepressants. AD: antidepressants BZ: Benzodiazepines (likely underreported due to limited 
general reimbursement in Denmark). ADHD: Attention-deficit/hyperactivity disorder 
3d) Prescribed respiratory drugs
SABA: Short-acting beta agonist LABA: long-acting beta agonist LAMA: Long-acting muscarinic 
antagonist.
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1a) Distribution of full machine learning model risk scores for patients +/- the primary outcome. The dashed 
line marks the classification threshold of 20% positive prediction fraction. 

1b) Receiver operating curves (ROC) for the full machine learning model (F-MLM), full logistic regression 
model (F-LRM), parsimonious machine learning model (P-MLM), parsimonious logistic regression model (P-

LRM) and the age-only model (AM). 
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2a) The overall importance of the 10 most important variables measured by the SHAP-values for the full 
machine-learning and full logistic regression models on the primary outcome (LOS >4 days or readmission 
due to “medical” morbidity). Only the importance of prescribed anticholesterols and gender differ between 

the models. The contributions of the remaining variables are summed in the bottom bar. 
2b) The SHAP-values for the full machine-learning model on the primary outcome, where positive increase 
and negative values decrease the risk score. Each dot represents a patient and the color is related to the 

value of the variable with blue being lowest and red highest. 
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All THA/TKA in the DNPR Jan 2010– Aug 2017 
 n= 41292 

Fractures, non-elective procedures or previous major 
joint arthroplasty within 90 days n=2319 

Severe congenital disorder or cancer surgery n=172 
Simoultaneous bilateral procedures n=816 

Other (e.g. non-Danish citizens or age < 18 years) 
n=41  

Primary elective unilateral THA/TKA in the 
DNPR Jan 2010– Aug 2017 

 n= 37944 

Procedures without a completed questionaire in the 
Lundbeck Centre Database n=1009 

Procedures with a completed questionaire in the Lundbeck Centre Database 2010-
2017 n= 36935 

Procedures with a completed questionaire 2014-2017 n= 22173 

Procedures performed from 2010-2013 n= 14762 

Excluded due to data trimming on BMI n= 156 

Procedures performed in 2017 (test set) 
n= 3913 (17.8%) 

Procedures performed 2014-2016
(training set) n= 18104 (82.2%) 

Flowchart of the study population and final sample size. THA: total hip arthroplasty TKA: total knee ar-
throplasty DNPR: the Danish National Patient Registry 
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For peer review onlyCalibration plot of the machine learning model (ML) and the logistic regression (LR) for both the calibrated and un-calibrated models for the primary (A) 
and secondary (B) outcome.  
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Supplemental material table 3 
Details on specific drugs with reimbursed prescriptions 6 months preoperatively.  
Numbers are n (%) 
Reimbursed prescriptions within 3 months preoperatively training set 

(n:18104) 
test set 
(n:3913) 

Anticoagulants 
none 
VKA 
Heparin & Acetylsalicylic acid 
DOAC 
Acetylsalicylic acid 
Dipyradimol 
ADP-antagonist 
Acetylsalicylic acid & Dipyradimol 
VKA & Acetylsalicylic acid 
DOAC & Acetylsalicylic acid 
VKA & ADP-antagonist 
DOAC & ADP-antagonist 
VKA & Heparin 
DOAC & Acetylsalicylic acid & ADP-antagonist 
Acetylsalicylic acid & ADP-antagonist 
Acetylsalicylic acid & ADP-antagonist & Heparin 
Acetylsalicylic acid & ADP-antagonist & Dipyradimol 

 
13570 (75.0) 
729 (4.0) 
6 (0.0) 
526 (2.9) 
2235 (12.3) 
31 (0.2) 
522 (2.9) 
169 (0.9) 
81 (0.4) 
42 (0.2) 
13 (0.1) 
12 (0.1) 
22 (0.1) 
3 (0.0) 
124 (0.7) 
12 (0.1) 
7 (0.0) 

 
2953 (75.5) 
127 (3.2) 
1 (0.0) 
181 (4.6) 
462 (11.8) 
3 (0.1) 
122 (3.1) 
16 (0.4) 
7 (0.2) 
5 (0.1) 
2 (0.1) 
5 (0.1) 
0 (0.0) 
1 (0.0) 
26 (0.7) 
1 (0.0) 
1 (0.0) 

Cardiac prescriptions 
none 
diuretics 
angiotensin-II/ACE-inhibitors 
Ca2+ antagonists 
β-blocker  
nitrates 
other antihypertensives 
other types of medication for IHD 
2 antihypertensives 
β-blocker & 1 antihypertensive1 

3 antihypertensives 
β-blocker & 2 antihypertensives1 

β-blocker & 3 antihypertensives1 

4 antihypertensives 
β-blocker & 4 antihypertensives 
other antihypertensive & antihypertensives1 

nitrates & any hypertensive 
other drugs for IHD & any antihypertensive and/or nitrate  
other antiarrhythmics & any antihypertensives 

 
7741 (42.8) 
1070 (5.9) 
2287 (12.6) 
688 (3.8) 
492 (2.7) 
14 (0.1) 
12 (0.1) 
22 (0.1) 
2360 (13.0) 
966 (5.3) 
515 (2.8) 
902 (5.0) 
235 (1.3) 
16 (0.1) 
15 (0.1) 
78 (0.4) 
323 (1.8) 
16 (0.1) 
352 (1.9) 

 
1780 (45.5) 
191 (4.9) 
528 (13.5) 
140 (3.6) 
96 (2.5) 
5 (0.1) 
0 (0.0) 
1 (0.0) 
513 (13.1) 
195 (5.0) 
83 (2.1) 
168 (4.3) 
55 (1.4) 
4 (0.1) 
6 (0.2) 
18 (0.5) 
57 (1.5) 
4 (0.1) 
69 (1.8) 

Anticholesterols 
none 
statins 
other anti-lipids 
statins +other anti-lipids 

 
12665 (70.0) 
5218 (28.8) 
118 (0.7) 
103 (0.6) 

 
2762 (70.6) 
1105 (28.2) 
24 (0.6) 
22 (0.6) 

Systemic steroids 1038 (5.7) 234 (6.0) 
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Antirheumatics 

none 
disease-modifying antirheumatic drugs 
other antirheumatics 

 
17709 (97.8) 
392 (2.2) 
3 (0.0) 

 
3822 (97.7) 
91 (2.3) 
0 (0.0) 

Respiratory prescriptions 
none 
SABA 
LABA or LAMA 
inhalation steroid only 
SABA & Ipratropium (+/- others) 
LABA & steroid 
LABA & LAMA & steroid 
LAMA & steroid 
LABA & LAMA 
other pulmonary drugs 
other pulmonary drugs & steroid 
SABA & LABA or LAMA 
SABA & LABA or LAMA & steroid 

 
16256 (89.8)  
235 (1.3)  
194 (1.1) 
176 (1.0) 
24 (0.1) 
432 (2.4) 
115 (0.6) 
10 (0.1) 
56 (0.3) 
26 (0.1) 
95 (0.5) 
76 (0.4) 
409 (2.3) 

 
3498 (89.4) 
54 (1.4) 
42 (1.1) 
43 (1.1) 
0 (0.0) 
87 (2.2) 
26 (0.7) 
1 (0.0) 
31 (0.8) 
9 (0.2) 
12 (0.3) 
26 (0.7) 
84 (2.1) 

Psychotropic prescriptions 
none 
SSRI/SNRI/NaRI 
other antidepressants 
antipsychotics 
benzodiazepines2 

anti-cholinergics or memantine 
anti-ADHD drugs 
NaSSA 
other psychotropics 
SSRI + other antidepressants 
SSRI + NaSSA 
SRRI + antipsychotics 
SRRI + other psychotropics 
benzodiazepines + any psychotropic 
antipsychotics + any psychotropic 
anti-ADHD + any psychotropic 
NaSSA + any psychotropic 
other psychotropics + any specified psychotropic 

 
16113 (89.0) 
1055 (5.8) 
16 (0.1) 
104 (0.6) 
7 (0.0) 
27 (0.1) 
7 (0.0) 
177 (1.0) 
166 (0.9) 
9 (0.0) 
86 (0.5) 
80 (0.4) 
72 (0.4) 
11 (0.1) 
137 (0.8) 
11 (0.1) 
16 (0.1) 
10 (0.1) 

 
3496 (89.3) 
209 (5.3) 
2 (0.1) 
20 (0.5) 
0 (0.0) 
6 (0.2) 
4 (0.1) 
32 (0.8) 
44 (1.1) 
1 (0.0) 
16 (0.4) 
18 (0.5) 
19 (0.5) 
4 (0.1) 
32 (0.8) 
3 (0.1) 
6 (0.2) 
1 (0.0) 

VKA: vitamin K antagonists DOAC: direct oral anticoagulant ADP: Adenosine diphosphate ACE: angiotensin 
converting enzyme IHD: Ischemic heart disease SABA: Short-acting beta agonist LABA: long-acting beta 
agonist LAMA: Long-acting muscarinic antagonist SSRI: Selective serotonin inhibitor SNRI: Serotonin and 
norepinephrine reuptake inhibitor NaRI: Norepinephrine reuptake inhibitor NaSSA: Norepinephrine and 
specific serotonergic antidepressants 
1either diuretics, ACE/ANG-II inhibitors or Ca2+antagonists 2 likely underreported due to limited general 
reimbursement for benzodiazepines in Denmark 
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Supplemental material 4 

Performance of the different models with a predefined positive prediction fraction of 25 and 30 for the primary outcome (LOS >4 days or 
readmission due to “medical” morbidity. 

Positive prediction 
fraction 25% 

TP FP FN TN Sensitivity 
% 

Precision 
% 

MCC 
% 

AUROC 
% 

AUPRC 
% 

Brier 
% 

P(sensitivity) 
% 

Full machine-learning 
model 

120 858 62 2873 65.9 12.3 20.9 77.0 15.3 4.32 - 

Full logistic regression 
model 

108 870 74 2861 59.3 11.0 17.5 74.6 15.6 4.32 10.4 

Parsimonious machine-
learning model 

114 864 68 2867 62.6 11.7 19.2 74.9 14.1 4.35 26.2 

Parsimonious logistic 
regression model 

103 875 79 2856 56.6 10.5 16.1 73.6 15.2 4.33 3.9 

Age-model 94 824 88 2907 51.6 10.2 14.7 69.7 12.2 38.8 1.2 

Positive prediction 
fraction 30% 

TP FP FN TN Sensitivity 
% 

Precision 
% 

MCC 
% 

AUROC 
% 

AUPRC 
% 

Brier 
% 

P(sensitivity) 
% 

Full machine-learning 
model 

130 1043 52 2688 71.4 11.1 20.0 77.0 15.3 4.32 - 

Full logistic regression 
model 

117 1056 65 2675 64.2 10.0 16.5 74.6 15.6 4.32 8.4 

Parsimonious machine-
learning model 

124 1049 58 2682 68.1 10.6 18.4 74.9 14.1 4.35 30.0 

Parsimonious logistic 
regression model 

118 1055 64 2676 64.8 10.1 16.8 73.6 15.2 4.33 14.0 

Age-model 100 955 82 2776 54.9 9.5 13.9 69.7 12.2 38.8 0.9 

TP: true positives FP: false positives FN: false negatives TN: true negatives MCC: Matthews correlation coefficient AUROC: area under the 
receiver operating curve  AUPRC: area under the precision recall curve P(sensitivity): probability that the model performs better than the 
machine-learning model relative to sensitivity.  
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Table S1:  Performance of different models for the secondary outcome (LOS >4 days or readmissions due to “medical” morbidity or LOS 
>4 days but without recorded morbidity)  

Positive 
prediction 
fraction 20% 

TP FP FN TN Sensitivity 
% 

Precision 
%  

MCC 
%  

AUROC 
%  

AUPRC 
%  

Brier 
% 

P(sensitivity)
%  

Full machine-
learning model 

117 665 112 3019 51.1 15.0 19.4 75.0 18.1 5.23 - 

Full logistic 
regression model 

115 667 114 3017 50.2 14.7 18.9 74.1 16.7 5.35 46.4 

Parsimonious 
machine-learning 
model 

109 673 120 3011 47.6 13.9 17.2 72.1 15.8 5.33 35.2 

Parsimonious 
logistic regression 
model 

109 673 120 3011 47.6 13.9 17.2 72.9 16.7 5.37 22.6 

Age-model 102 661 127 3023 44.5 13.4 15.8 68.7 13.4 38.3 10.3 

Positive 
prediction 
fraction 25% 

TP FP FN TN Sensitivity 
% 

Precision 
% 

MCC 
% 

AUROC 
% 

AUPRC 
% 

Brier 
% 

P(sensitivity)
% 

Full machine-
learning model 

128 850 101 2834 55.9 13.1 17.8 75.0 18.1 5.23 - 

Full logistic 
regression model 

133 845 96 2839 58.1 13.6 19.1 74.1 16.7 5.35 68.0 

Parsimonious 
machine-learning 
model 

121 857 108 2827 52.8 12.3 16.3 72.1 15.8 5.33 25.5 

Parsimonious 
logistic regression 
model 

127 851 102 2833 55.5 13.0 17.5 72.9 16.7 5.37 46.6 

Age-model 113 805 116 2879 49.3 12.3 15.2 68.7 13.4 38.3 17.2 

Positive 
prediction 
fraction 30% 

TP FP FN TN Sensitivity 
% 

Precision 
% 

MCC 
% 

AUROC 
% 

AUPRC 
% 

Brier 
% 

P(sensitivity)
% 

Full machine-
learning model 

146 1027 83 2657 63.4 12.4 18.4 75.0 18.1 5.23 - 

Full logistic 
regression model 

144 1029 85 2655 62.9 12.3 17.9 74.1 16.7 5.35 42.4 

Parsimonious 
machine-learning 
model 

135 1038 94 2651 59.0 11.5 15.8 72.1 15.8 5.33 14.9 

Parsimonious 
logistic regression 
model 

140 1033 89 2651 61.1 11.9 17.0 72.9 16.7 5.37 28.3 

Age-model 122 933 107 2751 53.3 11.6 14.8 68.7 13.4 38.3 7.9 

TP: true positives FP: false positives FN: false negatives TN: true negatives MCC: Matthews correlation coefficient AUROC: area under 
the receiver operating curve  AUPRC: area under the precision recall curve P(sensitivity): probability that a model performs better than 
the machine-learning model relative to sensitivity.  
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Supplemental material ϲ Figure S1a-b 

S1a) Distribution of full machine-learning model risk-scores for patients +/- the secondary outcome (LOS >4 days or readmissions due to ”medical” mor-
bidity or LOS >4 days with no recorded morbidity). The dashed line marks the classification threshold of a 20% positive prediction fraction. 

S1b) Receiver operating curves (ROC) for the full machine-learning model (F-MLM), full logistic regression model (F-LRM), parsimonious machine-
learning model (P-MLM), parsimonious logistic regression model (P-LRM) and the age-only model (AM). 
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S2a) The overall importance of the 10 most important variables measured by the SHAP-values for the full machine-learning and full logistic regression models for the sec-
ondary outcome (LOS >4 days or readmissions due to “medical” morbidity or LOS >4 days with no recorded morbidity).  
Only the importance of prescribed anti-cholesterols and familiar disposition for venous thromboembolism differed between the models. The contributions of the remaining 
variables are summed in the bottom bar.  
S2b) The SHAP-values for the full machine-learning model. Positive SHAP-values increase the risk score while negative values decrease the risk score. Each dot repre-

Supplemental 0DWHULDO �

Figure S2a-b 
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Figure S3a-d
6+$3�VFDWWHU�SORW�RQ�WKH�FRQWULEXWLRQV�WR�WKH�IXOO�PDFKLQH�OHDUQLQJ�PRGHO�RQ�RXWFRPH�%��/26�!��GD\V�RU�
UHDGPLVVLRQ�GXH�WR�³PHGLFDO´�PRUELGLW\���IRU�LQGLYLGXDO�W\SHV�RI�SUHVFULEHG�DQWLFRDJXODQWV��FDUGLDF�GUXJV��
SV\FKRWURSLFV�DQG�UHVSLUDWRU\�GUXJV�VWUDWLILHG�E\�DJH��

Supplemental material �

Legend:
3a) Prescribed anticoagulants 
9.$��YLWDPLQ�.�DQWDJRQLVWV�$6$��DFHW\OVDOLF\OLF�DFLG�'2$&��GLUHFW�RUDO�DQWLFRDJXODQW�$'3��$GHQRVLQH�
GLSKRVSKDWH�$&(��DQJLRWHQVLQ�FRQYHUWLQJ�HQ]\PH�
3b) Prescribed cardiac drugs 
$&(��DQJLRWHQVLQ�FRQYHUWLQJ�HQ]\PH�$+7��DQWLK\SHUWHQVLYH��2WKHU�$+7�ZHUH�GHILQHG�DV�$+7�GLIIHUHQW�IURP�
GLXUHWLFV�$1*�,,�$&(�LQKLELWRUV�RU�&D��DQWDJRQLVWV��,+'��,VFKHPLF�KHDUW�GLVHDVH
3c) Prescribed psychotropics 
665,��6HOHFWLYH�VHURWRQLQ�LQKLELWRU�615,��6HURWRQLQ�DQG�QRUHSLQHSKULQH�UHXSWDNH�LQKLELWRU�1D5,��1RUHSLQHSKULQH�
UHXSWDNH�LQKLELWRU�1D66$��1RUHSLQHSKULQH�DQG�VSHFLILF�VHURWRQHUJLF�DQWLGHSUHVVDQWV��$'��DQWLGHSUHVVDQWV�%=��
%HQ]RGLD]HSLQHV��OLNHO\�XQGHUUHSRUWHG�GXH�WR�OLPLWHG�JHQHUDO�UHLPEXUVHPHQW�LQ�'HQPDUN���$'+'��$WWHQWLRQ�
GHILFLW�K\SHUDFWLYLW\�GLVRUGHU�
3d) Prescribed respiratory drugs
7KH�PRGHO�IRXQG�QR�DGGLWLRQDO�LQIRUPDWLRQ�IURP�WKLV�YDULDEOH�ZK\�DOO�YDOXHV�HTXDO���
6$%$��6KRUW�DFWLQJ�EHWD�DJRQLVW�/$%$��ORQJ�DFWLQJ�EHWD�DJRQLVW�/$0$��/RQJ�DFWLQJ�PXVFDULQLF�DQWDJRQLVW��
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TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic Item Checklist Item Page
Title and abstract

Title 1 D;V Identify the study as developing and/or validating a multivariable prediction model, the 
target population, and the outcome to be predicted. 1

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions. 2

Introduction

3a D;V
Explain the medical context (including whether diagnostic or prognostic) and rationale 
for developing or validating the multivariable prediction model, including references to 
existing models.

4-5Background 
and objectives

3b D;V Specify the objectives, including whether the study describes the development or 
validation of the model or both. 4

Methods

4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or registry 
data), separately for the development and validation data sets, if applicable. 5

Source of data
4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if applicable, 

end of follow-up. 5

5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, general 
population) including number and location of centres. 5

5b D;V Describe eligibility criteria for participants. 5Participants

5c D;V Give details of treatments received, if relevant. 5

6a D;V Clearly define the outcome that is predicted by the prediction model, including how and 
when assessed. 6Outcome

6b D;V Report any actions to blind assessment of the outcome to be predicted. N/A

7a D;V Clearly define all predictors used in developing or validating the multivariable prediction 
model, including how and when they were measured. 7

Predictors
7b D;V Report any actions to blind assessment of predictors for the outcome and other 

predictors. N/A

Sample size 8 D;V Explain how the study size was arrived at. N/A

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method. 7

10a D Describe how predictors were handled in the analyses. 7

10b D Specify type of model, all model-building procedures (including any predictor selection), 
and method for internal validation. 7

10c V For validation, describe how the predictions were calculated. 7

10d D;V Specify all measures used to assess model performance and, if relevant, to compare 
multiple models. 8

Statistical 
analysis 
methods

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done.
7 and 
Sup 

mat 2
Risk groups 11 D;V Provide details on how risk groups were created, if done. 
Development 
vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility 

criteria, outcome, and predictors. Tbl1

Results

13a D;V
Describe the flow of participants through the study, including the number of participants 
with and without the outcome and, if applicable, a summary of the follow-up time. A 
diagram may be helpful. 

Sup 
mat 1

13b D;V
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for 
predictors and outcome. 

Tbl 1Participants

13c V For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome). Tbl 1

14a D Specify the number of participants and outcome events in each analysis. 7-9Model 
development 14b D If done, report the unadjusted association between each candidate predictor and 

outcome. N/A

15a D Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point). 7Model 

specification 15b D Explain how to the use the prediction model. Fig 
2a-b

Model 
performance 16 D;V Report performance measures (with CIs) for the prediction model. Tbl2

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model 
performance). N/A

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per 
predictor, missing data). 14

19a V For validation, discuss the results with reference to performance in the development 
data, and any other validation data. Interpretation

19b D;V Give an overall interpretation of the results, considering objectives, limitations, results 
from similar studies, and other relevant evidence. 10-14

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 14
Other information

Supplementary 
information 21 D;V Provide information about the availability of supplementary resources, such as study 

protocol, Web calculator, and data sets. 16

Funding 22 D;V Give the source of funding and the role of the funders for the present study. 16
*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are 
denoted by V, and items relating to both are denoted D;V.  We recommend using the TRIPOD Checklist in conjunction with the TRIPOD 
Explanation and Elaboration document.
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The modelling of pandemics has become a critical aspect in
modern society. Even though artificial intelligence can help
the forecast, the implementation of ordinary differential
equations which estimate the time development in the number
of susceptible, (exposed), infected and recovered (SIR/SEIR)
individuals is still important in order to understand the
stage of the pandemic. These models are based on simplified
assumptions which constitute approximations, but to what
extent this are erroneous is not understood since many factors
can affect the development. In this paper, we introduce
an agent-based model including spatial clustering and
heterogeneities in connectivity and infection strength. Based on
Danish population data, we estimate how this impacts the early
prediction of a pandemic and compare this to the long-term
development. Our results show that early phase SEIR model
predictions overestimate the peak number of infected and the
equilibrium level by at least a factor of two. These results are
robust to variations of parameters influencing connection
distances and independent of the distribution of infection rates.

© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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1. Introduction
Over the past years, the pathogen now known as SARS-CoV-2 has spread dramatically, risen in several
waves, paralyzing societies, resulting in a large number of deaths and severe economic damage
worldwide [1,2]. Mathematical models have estimated the reproduction number and guided the
authorities in an attempt to minimize the damage caused by the virus [3–6]. Even though modern
algorithms using machine learning have helped the process [7,8], the majority of models used to predict
the size of the pandemic (or a rising wave of the disease) have been variants of the SIR/SEIR model.
The SIR model was originally proposed in 1927, in the seminal work of Kermack and McKendrick, who
successfully described the evolution of a pandemic, using a mean field approximation where all
individuals are described as one population [9]. In the investigations of the SARS-CoV-2 pandemic, the
mathematical models have varied in complexity including simple deterministic compartmental models
[6,10], meta-population compartmental models [11–13], individual based models without including
spatial specifications [4,14,15] and spatio-temporal agent-based models [16].

One aspect in the modelling is the ability to predict the infection peak height and the number of
individuals who will be infected based on the early rise in the number of infected (before
governmental interference). Earlier work has pointed out the importance of including heterogeneity
when modelling the spread of infectious disease such as contact patterns between individuals [17],
population mixing assumptions [18], heterogeneities caused by super-spreaders [15], and the spatial
dependency of COVID-19 [19,20]. These mathematical models have not combined heterogeneous
elements nor quantified how much the early SIR/SEIR predictions might be biased.

In this paper, we include geographical distributions based on an entire population, using population
data of Denmark. When the SIR model was originally formulated, 95 years ago, data was not available to
investigate the effects of geographical and demographic differences among the population, which might
be one of the reasons why fundamental properties for diseases, such as the basic reproduction number
(R0), can vary significantly between different regions [21]. However, with modern collection of data, these
geographical aspects might be accounted for. Our main goal of this work is therefore to investigate the
importance of heterogeneities in a geographically distributed population on the spread of a pandemic.
We find that the heterogeneity arising from spatial inhomogeneities causes an increase in the early
stage of the pandemic, affecting the initial forecast and highlighting the importance of early
intervention in order to minimize the effects of the pandemic.

1.1. Construction of the model
In order to investigate the effect of a geographically distributed population, we extracted the number of
infected per commune (from the Danish Serum Institute [22]) and divided this number with the number
of inhabitants in each commune to obtain the number of infected per individual in each commune. This
number we then plotted against the number of inhabitants in that specific commune (extracted from
statistics Denmark [23]). Doing so, we found a strong correlation between the population density and
the number of infections per inhabitant as seen in figure 1a. This observation has been made for many
other countries [24–29] and underlines the aspect of disease spreading that has been observed since
ancient times; that densely populated regions often have larger pandemics than the rural areas. Note
that in the very early stage of a pandemic, before the exponential growth rate is reached, micro
outbreaks will guide its evolution and these events can likely take place in regions with low density [30].

1.2. Disease simulation
To simulate evolution of the disease, we assigned each individual (agent) to a state (predominantly
initialized in state S) and assigned four states to the exposed phase and four states to the infectious
phase, in order to achieve an Erlang distribution (which is related to the Gamma distribution) of time
in each phase [31]. Once in the exposed phase, the infected agent has a rate to move into another
state, where the rate is fixed based on experimental data in order to achieve a mean time in the
exposed phase of approximately 4 days (table 1). Each agent in the Infectious phase can infect other
agents that have a connection to this agent in the network. This definition of agents in discrete states
is naturally a simplification of the real pandemic, and we stress that this mathematical model aims at
describing the spread of the disease in a simple way that does not capture all aspects of the real
disease. We do not believe that this impacts our main conclusions in any way, as we are aware that
one should always be careful when making these kinds of simplifications. To investigate the effect of
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infection heterogeneities, we assigned an infection strength to each connection in the network, so some
agents were more infectious than others. In order to control the degree of this heteogeneity, we assigned a
boolean parameter sb, that if switched on generated an exponential distribution in infection strengths,
keeping the mean field reproduction number fixed. The reproduction number between the ABM and
the SIR model is related through the parameter ~b ¼ bðm=2N0Þ. All transitions between states and
infection of other individuals were done using the Gillespie algorithm [32]. This is schematized in
figure 1b.

1.3. Network creation
In order to construct the underlying network, we created a set-up whereby two agents were chosen at
random but based on their individual connectivity weight each iteration and connected with some
probability based on their spatial position. To include the possibility of highly connected individuals
independent of their spatial position, we assigned a boolean parameter sm that, if switched on,
generated an exponential distribution in weights for the individuals, keeping the mean field
reproduction number fixed similar to the heterogeneity in infection strengths. To include the spatial
position in the network, we introduced a parameter ρ, so the probability of connecting two chosen
agents decayed exponentially with the distance between them: pconnect ¼ e�r�dij . In order to allow
some long-distance connections we introduced another parameter ε∈ [0; 1], that determines the
fraction of distance-independent contacts. To construct the network of spatially distributed contacts,
we chose the parameters using data based on:

— The geographical location of people in Denmark (from Boligsiden [33])
— The average number of contacts per individual per day of 11 (from HOPE [34]). Given an average

infectious period of 4 days, we approximate the average number of effective contacts to be μ = 40
— The average commuting distance ρ = 0.1 km−1 and the fraction of long-distance commutes er ¼ 4%

(from statistics Denmark [23])

This is schematized in figure 1c and further described in the Methods section. All 10 parameters in this
model are defined and outlined in table 1. We note that in order to keep the parameters space low, this
model does not include the effects of temporal changes such as seasonality and holidays. While all agents
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have been assigned parameters to their infection network that are derived from statistics of Denmark for
both employees and students, we have not divided each agent into specific occupations.

Before including heterogeneity, we compared the ABM to the corresponding SEIR model as a test,
and found them to agree within 5% for all parameter configurations tested. Here, we also tested the
effect of the number of individuals initially infected (see electronic supplementary material). This
concludes that the SEIR and ABM model are calibrated to have the same reproduction number in the
absence of heterogeneities. Next, we will introduce heterogeneities into the system, while keeping the
sum of contacts and infection strengths constant, to study how this affects the evolution of the pandemic.

2. Results
2.1. Geographical distributions in a population and large variances in numbers of contacts

leads to increased infection levels
Having introduced heterogeneity, the distributions of connections in this network were created
automatically through the population clustering, see figure 2a. This naturally leads to individuals
living in densely populated areas having higher number of connections. In an example simulation
with 100 initially infected individuals, Ninit = 100, we observed a spatial difference in areas affected by
the disease (figure 2b), as expected. Note that we also show the effective reproduction number (Reff)
as a function of time in the lower part of the inserted panel. One region reached local endemic steady
state (green arrow, figure 2b) while other regions of similar density were highly infected (red arrow,
figure 2b) and yet other districts were almost unaffected (grey arrow, figure 2b). To quantify the effect
of population clustering, we compared the ABM result to the reference SEIR model of similar
parameters. Generally, we observed that the epidemic developed faster with a higher infection peak
Ipeak, but also subsided quicker, leading to a lower number of infected once reaching endemic steady
state, R∞ (figure 2c,d ).

In order to explore how population clustering affects the epidemic, we chose a reference value of
infection rates, β = 0.01, and an alternative value of β = 0.007. In the absence of spatial dependence
(ρ = 0 km−1), these correspond to initial reproduction numbers R0 � 1:7 and 1.1, respectively. Here, we
define the reproduction number as the average number of agents each infectious agent will infect in
the first part of the disease. Increasing the spatial dependence (i.e. increasing ρ) leads to a significant
rise in the infection peak for the ABM, IABM

peak , compared to the (unaffected) SEIR model, ISEIRpeak for both
the reference value and the alternative lower value of β (black and blue points, figure 2e). We
introduced heterogeneity in infection strengths (sb ¼ 1, see figure 1b), thus making some individuals
much more infectious than others (i.e. including super shedders). We found no significant impact from
this effect (red points in figure 2e). Similarly, we introduced heterogeneity in connection weights
(sm ¼ 1, see figure 1b), thus making some individuals much more likely to form contacts than others

Table 1. Overview of the 10 parameters applied in this study, their typical value, and the ranges we have considered. The first
six parameters are standard SEIR parameters, whereas the last four parameters define the heterogeneity in the model. These four
parameters do not affect the SEIR model.

variable description value range units

N0 : population size 5.8 × 106 105−107 —

Ninit : number of individuals initially infected 100 1−104 —

μ : average number of network contacts 40 10−100 —

β : typical infection strength 0.01 0.001−0.1 d−1

λE : rate to move through 1
4 of latency period 1 0.5−4 d−1

λI : rate to move through 1
4 of infectious period 1 0.5−4 d−1

sm : population clustering spread 0 0−1 —

sb : interaction strength spread 0 0−1 —

ρ : typical acceptance distance 0.1 0−0.5 km−1

er : fraction of distance-independent contacts 0.04 0−1 —
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(i.e. including super connecters). This leads to a significant effect for ρ = 0 km−1, which converges towards
the other curves for ρ > 0.1 km−1 (orange (only super connecters) and green (super connecters and super
shedders) points in figure 2e). The total number of individuals that have been in the infectious state, when
there are not enough susceptible agents for the disease to keep infecting new individuals, is termed R∞,
and this converged towards half of the SEIR model prediction as a function of ρ except for β = 0.007
where the endemic steady state level is larger than the one obtained by the SEIR model (figure 2f ).
We note that in reality, individuals can lose immunity and therefore new waves can emerge. But for a
completely susceptible population, R∞ describes the fraction of the population that will get the disease
during a specific wave. Fixing ρ = 0.1 km−1 and increasing the fraction of distance-independent
contacts, er, we found that IABM

peak is almost unaffected for er , 0:5 (figure 2g), while RABM
1 increases

linearly towards the SIER model RSEIR
1 , as expected (figure 2h).

2.2. Fitting early infection curves leads to significant bias in estimating the size
of the pandemic

Next, we consider how these heterogeneities bias the traditional SEIR model predictions, especially the
predictions based on fits to the number of infected (i.e. the curve to be flattened) in the beginning of the
epidemic (see Methods). Without spatial dependence, the predicted curves fitted the number of infected
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individuals very well (figure 3a). Introducing spatial dependence (ρ = 0.1 km−1) leads to a severe
overestimation of the epidemic based on the number of early infection cases (figure 3b). This result
can be interpreted by the fact that in societies where population density and thus individual contact
number varies significantly, the early phase will be driven by people with many contacts (super
connecters). This typically happens in cities where the population density is high. Increasing the spatial
dependence ρ, we found that the SEIR model predictions overestimated the infection peak height Ipeak
and the total number of infected R∞ significantly even for very small spatial heterogeneities (figure 3c,
d ). We observed this general trend for all tested combinations of parameters and heterogeneities. In
particular, we found that if long-distance connections er are below 10%, the bias in the estimated
infection peak height, Ipeak, was constant within statistical uncertainty (figure 3e). For the total
number of infected, R∞, we observed an almost linear regression to the SEIR model as er approaches
one. However, even when er ¼ 0:25, the prediction bias was still a factor of two (figure 3f ). We
concluded from these curves a general trend; if one fits an SEIR model to infection numbers during
the beginning of an epidemic, and use these estimates to predict the characteristics of the epidemic at
a national level, one overestimates the number of infected by at least a factor of two.

3. Discussion
In summary, this work outlines that the degree of population clustering in Denmark creates a discrepancy
between the early predictions made by the SEIR models and the underlying agent-based interactions. It
results in a significant overestimation of the impact of the disease, both in terms of maximal number of
simultaneously infected (by a factor of 3) and the endemic steady state level (by a factor of 2.5). Such
discrepancies have been observed for earlier pandemics, for instance, the 1918 Spanish flu, where the
predicted number of individuals that would get the disease within a season turned out to be higher
than the actual outcome [35]. The present results can be an important element in explaining these
mismatches, even though other elements, such as for instance social distancing and the population
behaviour, play a vital part. When facing a rising pandemic, societies are faced with the task of laying
out strategies to minimize the consequences, including the importance of flattening the curve. While this
is truly crucial to avoid overpopulated hospitals, the understanding of the pandemic should be taken
seriously enough that we might specify to a higher degree of certainty which curve to be flattened. Our
results highlight an important element in the prediction of infection levels and quantify the effect of
density heteogeneities. We are aware that these results are not directly applicable to the pandemic of
SARS-CoV-2 as a whole, since numerous mutations have increased the infection rates compared to the
early estimates and created a strong heterogeneity in the infection worldwide. Furthermore, the actual
evolution of the pandemic was highly affected by the different governmental interventions, that are not
included in this work. However, this study emphasizes the abnormally large reproduction rates in the
beginning of a pandemic, due to individuals with more connections than the rest of the population
and attempts to quantify this bias, when countries should estimate the severity of a disease based on
the data collected in the early phase. This also underlines the benefits by making lockdowns early
in the pandemic, when a population is highly susceptible (for instance to a new mutation) and therefore
can be driven by super connectors. Since people living in city-clusters are more likely to have many
contacts, or infection events, they are on average more likely to be affected in the early stage of the
pandemic (if they do not implement social distancing). By removing contacts from these individuals,
through some level of interaction in order to reduce the number of social contacts, one can avoid the
worst peak while affecting the lowest number of people. While our work describes some fundamental
aspects of the disease spreading, this model does not consider asymptomatic individuals, which has
been an important aspect of the SARS-CoV-2 pandemic [36,37]. Effectively, asymptotic individuals
would correspond to a very heterogenous distribution of time the agents spend in the infectious state.
While agents with symptoms would predominantly isolate themselves and thereby significantly reduce
their ability to infect other agents, asymptomatic agents would have a long time in the infectious state,
thereby infecting more individuals. In this work, we have not considered the observation that
individuals lose their immunity to SARS-CoV-2 which was first studied in the Brazilian city of Manaus.
For this model, the temporal decline of immunity would lead to more pandemic ‘waves’, but for a fixed
disease transmissibility this would not alter the maximal height of the peak number of infected, since
this occurred for all the initially susceptible population. Finally, we note that this work does not include
a vast range of divisions for the population, including age, socio-economic status etc. We have not
included this directly, since we wanted to estimate as cleanly as possible how the heterogeneity in the
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contact pattern, arising from a geographically distributed population, could affect the evolution of a
disease. We are aware that for instance the distribution of age has an enormous impact on the health
risk and that this risk is vital in the prediction of hospitalizations in modern society. However, our aim
was to understand the bias in the prediction of a disease, based on the data that comes during the early
periods of a disease, independently of the mortality of this disease. Mathematical predictions of disease
progression have been heavily criticized [38,39] and it is important to improve the theoretical
foundations of the mathematical descriptions, in order to increase the confidence in the predictions. Our
work highlights the importance of estimating the spatial clustering and connectivity skewness in the
population in order to correct the predictions based on SEIR models, by quantifying their biases from
not including spatial clustering. We hope that this work could serve as an input to the modelling and
prediction of future pandemics and the importance of avoiding super-spreaders in high-density areas.

3.1. Methods

3.1.1. Construction of spatial network

We initialized N0 agents on a network generating a total of μ ×N0 links between two agents, with an
assigned interaction strength βij for each link. The average contact number, μ, was fixed to 20, based on
results from the Danish HOPE project, gathering data on population behaviour since April 2020 [34]. In
order to include a realistic, geographical distribution of the population, we randomly selected agent
locations from a two-dimensional kernel density estimate we had generated based on housing sales in
Denmark 2007–2019 (data given with permission from Boligsiden, [33]). We note that in this distribution,
we do not take specific geographical elements such as roads or environment into account (which has
been previously studied for other diseases [40]) as we assume that this effect is small in a country like
Denmark, where all parts are connected and natural obstacles such as mountains and rivers are not
present. To connect the agents, we used a hit and miss method, where two random agents are first
suggested and then connected with probability, pðdÞ ¼ e�r�dij . Here, dij is the distance between agents and
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ρ is a parameter with units of inverse distance. We choose ρ= 0.1 km−1 (i.e. 10 km) which is the average
distance travelled by labour force (statistics Denmark [23]). To allow some long-distance interactions, we
introduced a parameter er ¼ 4% representing the fraction of distance-independent connections. This value
we based on the fraction of workers travelling longer than 50 km to work (statistics Denmark [23]).

3.1.2. Fits and predictions

We defined an early phase to be the period of time when between 0.1% and 1% of the population were
infected (blue lines figure 3a). We then fitted β and a time delay, τ, to the SEIR model with a χ2-fit
(assuming Poissonian statistics) and kept λE and λI fixed to the true numbers (used in the simulation).
The initial number of infected, Ninit, was also fixed to the true numbers. The fit parameters were then
inserted into the SEIR model, and Ifitpeak and Rfit

1 were extracted from the fitted model and compared to
the IABM

peak and RABM
1 from the ABM simulation.
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Abstract10

In order to obtain fine-tuned regulation of protein production while maintaining cell integrity, it is

of fundamental importance to living organisms to express a specific subset of the genes abailable12

in the genome. One way to achieve this is through the formation of subcompartments in the

nucleus, known as foci, that can form at various locations on the DNA fibers and repress the14

transcriptional activity of all genes covered. In this work we investigate the physical nature of

such foci, by applying single molecule microscopy in living cells. Here we study the motion of the16

protein SIR3. By combining various statistical methods, and combining a frequentist with a

bayesian approach, we extract the diffusion properties for motion in a repair foci. In order to18

obtain useful information based on this, we derive similar measures for the foci itself, the motion

of SIR3 outside the foci and other mutants of the cell. We reveal that the behaviour inside a repair20

foci is highly immobile and we compare this to theoretical expressions. Based on this we

hypothesize that the repair foci is probably not a result of a second order liquid-liquid phase22

separation but rather a so-called Polymer Bridgng Model with numerous binding sites.
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24

1 | INTRODUCTION
Understanding the physical principles of how cells can express and silence specic regions of the26

genome presents one of the most fundamental challenges in biology. As a model to study this,

budding yeast chromosomes is a strong candidate, since it has very few repetitive sequences out-28

side of the rDNA compared to other eucaryotes that contain centromeric hetero-chromatin. When

haploid cells grow at their maximal rate, one characteristic aspect is that 32 telomeres accumulate30

at the nuclear envelope allowing them to form≈3–5 foci. The sizes of these are in the order of a few

hundreds of nanometer and therefore below the diffraction limit of conventional epifluorescence32

microscopes.

Inside such foci, the silent regulatory factors Sir2, Sir3 and Sir4 concentrate into the form of the34

SIR complex (Palladino et al., 1993). These are therefore termed silencing foci, since they can re-

press the expression of the underlying genes through interaction with the telomeric protein Rap1,36

and thereby spread on chromatin and potentially forming a compact chromatin structure. Studies

in vitro has revealed that this complex associates with nucleosome in a 1:2:1 stochiometry and can38

significantly compact chromatin (Swygert et al., 2018).

The sequestration of SIR proteins from silent chromatin favor the subtelomeric repression and40

the position of telomeres inside these foci favors faithful recombination events upon double strand

break (Batté et al., 2017). Furthermore, it also prevents the binding of the SIRs at specific groups42

of promoters in the genome (Maillet et al., 1996; Marcand et al., 1996; Taddei et al., 2009).

In the foci, the telomere composition is not fixed, however telomeres show preferential attach-44

ment to other telomeres coupled to chromosome arms of approximately equal length (Therizols

et al., 2010; Schober et al., 2008; Duan et al., 2010). This process of telomeres grouping in a lim-46

ited number of foci requires Sir3 association to telomeres but is independent of heterochromatin

formation (Ruault et al., 2011) and these foci has been revealed to fuse into bigger foci or hyper-48

clusters when SIR3 is overexpressed, suggesting a regulatory role on telomere clustering for SIR3

(Ruault et al., 2011).50

In this work we investigate the physical mechanism of the formation of silencing foci. In particular

we use using Single Particle Tracking (SPT) and Photo Activable Localization Microscopy (PALM) in52
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Saccharomyces cerevisiae cells in order to obtain precise information obout the dynamics of sin-

gle particles in the heterogenous environment. In this, SPT is a powerful technique that makes54

the microscopic steps taken by the molecules observable, by taking “live” recordings of individual

molecules in a cell at high temporal and spatial resolution (50 Hz, 30 nm) (Dolgin, 2019; Manley56

et al., 2008; Oswald et al., 2014). Based on this in vivo movement, SPT allows for grouping specific

proteins into subpopulations defined by the measured diffusion coefficients. From this it is pos-58

sible to quantify the motion of each subpopulation and thereby estimating the residence times

in different parts of the nucleus, allowing us to estimate the free-energy of the system. To assist60

the SPT measurements, PALM can establish a density maps of the molecules of interest by their

position at 30 nm resolution.62

Using these methods we have assessed the dynamics of SIR3 cells with silencing foci. We find

that inside the silencing foci, SIR3moves significantly slower and we relate this to themotion of the64

the whole focus itself. This allow us to identify the diffusion properties of both free telomeres, and

telomeres inside a focus. Next we apply, Sir4 deprived mutants and observe that the foci has dis-66

appeared, allowing us to extract the free diffusion coefficient of SIR3. Finally we use this to extract

the free energy of the molecules inside the repair foci, and we compare this to the theoretical pre-68

diction, assuming that the repair foci belongs to the Polymer-Bridging model. Here we find a good

agreement, thus suggesting that the physical nature of these foci is really a dense collection of mul-70

tiple binding sites that suppress the movement of molecules while enhancing their concentration

is the formed region.72

2 | METHODS & MATERIALS

2.1 | Diffusion model74

For each of the different types of data, we load in the cells and group them by cell number and ID.

For each group we compute the distance Δ𝑟 between the subsequent observations 𝑥⃗𝑖:76

Δ𝑟𝑖 = ‖𝑥⃗𝑖+1 − 𝑥⃗𝑖‖. (1)

E.g., for Wild Type 1, we find 914 groups across 43 different cells, leading to a total of 𝑁 = 10.02578

distances. We model the diffusion distances with a Rayleigh likelihood, where the Rayleigh distri-
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Figure 1. A graphical representation of the Bayesian model case of two diffusion components using the

directed factor graph notation (Dietz, 2022). Here 𝑑1 is the diffusion coefficient, 1 is the 𝑑-parameterized

Rayleigh distribution and 1,2 is the mixture model of the Rayleigh distributions with a 𝜃 prior.

bution is given by:80

Rayleigh(𝑟; 𝜎) = 𝑟
𝜎2 𝑒

−𝑟2∕(2𝜎2), 𝑥 > 0. (2)

In this study, we parameterize the Rayleigh distribution in terms of the diffusion coefficient 𝑑, which82

is related to the scale parameter 𝜎 in eq. (2), through the time resolution parameter, 𝜏:

𝜎 =
√
2𝑑𝜏, (3)84

with 𝜏 = 0.02 in the current study. In the simplest form, where we assume only a single diffusion

coefficient, 𝑑, the Bayesian model for this process is:86

[𝑑 prior] 𝑑 ∼ Exponential(0.1)

[transformation] 𝜎 =
√
2𝑑𝜏 (4)88

[likelihood] Δ𝑟𝑖 ∼ Rayleigh(𝜎).
90

A more realistic diffusion model include more than a single diffusion coefficient. Figure 1 shows

this for the two-component case in directed factor graph notation (Dietz, 2022). In particular, the92

figure shows the combination of the𝐾 = 2 diffusion coefficients 𝑑𝑘 through amixturemodel1,2 of

the two 𝑑-parameterized Rayleigh distributions 𝑘 with a 𝑣-prior. We model each of the distances94

as independent, indicated by the 𝑁-replications plate. In equations, the figure is similar to:

[𝑑1 prior] 𝑑1 ∼ Exponential(0.1)96

[𝑑2 prior (ordered)] 𝑑2 ∼ Exponential(0.1), 𝑑1 < 𝑑2

[𝜃 prior] 𝜃1 ∼ Uniform(0, 1), 𝜃 =
[
𝜃1, 1 − 𝜃1

]
(5)98

[mixture model] 1,2(𝑑1, 𝑑2, 𝜃) = MixtureModel
([(𝑑1),(𝑑2)

]
, 𝜃
)

[likelihood] Δ𝑟𝑖 ∼ 1,2(𝑑1, 𝑑2, 𝜃).100
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1 ordered such that

𝑑1 < 𝑑𝑘 < 𝑑𝐾 to prevent

the classical label-switching

problem in the case of mixture

models (McLachlan and Peel,

2004)

2.2 | Model comparison102

We can generalize the𝐾 = 2 diffusion model to higher values of𝐾 by having 𝑑1,… , 𝑑𝐾 ordered1 dif-

fusion coefficients and letting themixturemodel’s 𝜃̄-prior be a random variable from a flat Dirichlet104

distribution (such that
∑

𝑘 𝜃𝑘 = 1). We find that including up to three diffusion coefficients yields

appropriate results. To compare the three models of different complexity, we compute the Widely106

Applicable Information Criterion (WAIC) (Watanabe, 2010) which is a generalized version of the

Akaike information criterion (AIC) useful for Bayesian model comparison (Gelman, Hwang, and Ve-108

htari, 2014). In short, theWAIC is an approximation of the out-of-sample performance of themodel

and consists of two terms, the log-pointwise-predictive-density, lppd, and the effective number of110

parameters 𝑝WAIC:

WAIC = −2
(
lppd − 𝑝WAIC

)
. (6)112

The lppd is the Bayesian version of the accuracy of the model and 𝑝WAIC is a penalty term related to

the risk of over-fitting; complex models (usually) have higher values of 𝑝WAIC than simple models,114

(McElreath, 2020). The minus 2 factor is just a scaling included for historical reasons leading to low

WAICs being better. Given two models, A and B, we compute both the individual WAIC values,𝑊𝐴116

and 𝑊𝐵 , their standard deviations, 𝜎𝑊𝐴
and 𝜎𝑊𝐵

, their difference, Δ𝐴,𝐵 , and the standard error of

their difference, 𝜎Δ𝐴,𝐵
.118

2.3 | Implementation

The data analysis has been carried out in Julia (Bezanson et al., 2017) and the Bayesian models120

are computed using the Turing.jl package (Ge, Xu, and Ghahramani, 2018). We use Hamiltonian

Monte Carlo sampling (Betancourt, 2018) with the NUTS algorithm (Hoffman and Gelman, 2011).122

In particular, each Bayesian model have been run with 4 chains, each chain 1000 iterations long

after discarding the initial 1000 samples (“warm up”).124

3 | RESULTS

3.1 | Two diffusive populations identified at for SIR3 mobility in WT126

We started out by using SPT to investigate the mobility of individual SIR3 proteins in vivo in WT

cells. To obtain this imaging of SIR3 without altering its normal expression level, we constructed128

a line of haploid cells that express the endogenous SIR3 fused to Halo (Figure 2A and Materials
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and methods). Before we visualized this on a PALM microscope (see Materials and methods), we130

incubated the exponentially growing cells with fluorescent and fluorogenic JF647. This is a dye that

emits light when it is bound to Halo. We then used a low concentration of JF647 in order to obtain132

visible individual molecules (Ranjan et al., 2020; Figure 1B). With this setup, the SIR3-Halo bound

to JF647 (SIR3-Halo/JF647) were visualized at 20 ms time intervals (50 Hz) in 2-dimensions during134

1000 frames until all signal had decayed. A typical individual cell is shown in Figure 2B and the

tracking of the individual molecules is visualised in Figure 2C and based on these we moved on136

to calculate the density and displacement maps of the SIR3 molecules. Here it should be noted

that the tracking of SIR3 is performed in 2-dimensions and the molecules are observable as long138

as are inside the focal plan which is the z-section of about 400 nm (Figure 2D). After measuring

all the traces, we computed the Probability Density Function for the trace lengths, and here we140

found that while the shortest traces seemed to follow an exponential decay, there was a tail with

some very long traces (Figure 2E). Here it is important to note that the half-life time of JF6467 is142

approximately 2 seconds, meaning that the short traces are due to molecules moving out of the

observable z-section and not the photo bleaching of the JF647 dyes.144

We aimed to estimate the effective diffusion coefficient of SIR3 in the WT environment, and

therefore we computed the displacement for all points in each trace separately, and grouped these146

into the displacement histogram (Hansen et al., 2018; Klein et al., 2019; Stracy and Kapanidis, 2017).

In this way we could test the naive hypothesis that SIR3 molecules simply exhibit a single diffusive148

motion. We therefore fit the displacement histograms to a Rayleigh distribution (a one parameter

fit), and use the resulting fit quality to determine if this hypothesis is sufficient to describe the150

obtained data. By using Maximum-likelihoodminimisation, we extract the most likely value for the

diffusion coefficient and based on this we use the Kolmogorov-Smirnoff (KS) test, obtaining a p-152

value of 𝑝 = 0.0001, indicating that more complex motion takes place. To take into account that the

molecules can diffuse inside the silencing foci and outside these, we introduce two subpopulations154

characterized by distinct diffusion coefficients (seeMaterials andmethods). By analysing individual

cells, we observe that single traces can be very long in a small region of space, indicating a lower156

diffusion coefficient (Figure 2F). By fitting the displacement histogram with the two-population fit,

we reveal that this leads to a good agreement. We further introduce a third population of diffusion158

coefficients, but obtain similar quality of the fit arguing that two diffusion coefficients is sufficient

to explain the motion of the data (Figure 2G).160
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Figure 2. Mobility of Sir3 inside foci in WT cells.

Based on this we conclude that SIR3 in WT seem to have a motion defined by two distinct pop-

ulations, significantly different from each other. While one of these populations has a very small162

diffusion coefficient, representing themotion inside the focus, the other seem tobe slow compared

to free molecules (compare to the free RAD52 for instance in Miné-Hattab et al., 2022). Therefore164

we hypothesise that this could be related tomotion of SIR3molecules attached to single telomeres,

that are not part of the foci and therefore has higher mobility. In order to test this hypothesis, we166

tried to remove the existing foci and obtain the motion in this environment.

3.2 | Increased mobility of SIR3 in SIR2D-4D mutants168

From the theory of silencing foci, it is well established that the proteins SIR2D and SIR4D should be

present in order for the foci to assemble. Therefore, we hypothesised that by deleting these two170

related genes and thereby removing the availability of SIR2D and SIR4D, the silencing foci should

not be able to form (Figure 3A). We succeeded in doing this, and observed that the motion of SIR3172
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seemed less dense at specific locations compared to the motion of WT (Figure 3B, compare to

Figure 2B). Furthermore, we also noted that the traces seemed to be shorter and no traces were174

as long as the ones we observed in the WT conditions (Figure 3B). Therefore again computed the

displacement histogram and used similar methods as described in Figure 2G to extract the dif-176

fusion coefficients. Again, we found that one diffusion coefficient could not explain the motion

of SIR3, but two- and three subpopulations did indeed fit the data sufficiently well. Even though178

the three-diffusion coefficient fit did lead to a slight improvement in the fit, the two-population

fitted the data very well (Figure 3C). This was further confirmed by turning to the Bayesian analysis,180

where we obtain a well-defined and unimodal distributions for each of the fitting parameters in

the two-population fit (Figure 3D). By comparing the related WAIC scores, we also found that the182

three-population fit leads to a 1.28 σ increase in the fit quality, but since this is within statistical

uncertainty, we conclude that the two-population fit has the most explanatory power of the ob-184

served data. By inspecting the diffusion coefficients here we note a very interesting aspect: While

the slow diffusion coefficient, found in the WT motion, has disappeared in the SIR2D-4D mutant,186

the high diffusion coefficient for the WT is also identified in the motion of SIR3 in the SIR2D-4D

mutant, but that a new faster population also has emerged. This supports our hypothesis that188

the slow observed diffusion coefficient in the WT is a result of the motion inside the foci, but that

the fast diffusion coefficient does not represent freely diffusing molecules, but rather molecules190

attached the the semi-mobile telomeres. This also means that effectively all SIR3 molecules are

bound in the WT suggesting a high number of binding sites and a high binding rate of these sites.192

To further support these claims, we constructed a SIR2Dmutant, that was deprived of SIR2 but

still had SIR4 (Figure 3E). Herewe again found awell distributedmapof SIR 3 (Figure 3F), andby com-194

puting the displacement histogramwe revealed that approximately the same diffusion coefficients

existed in this mutant (Figure 3G – compare to Figure 3C). Here is seemed that the two-population196

fit differed slightly more from the three-population fit than the double mutant. To compare the

quality of all hypotheses we again turned to the Bayesian analysis, where we could again find198

that all parameters in the two-population fit where smoothly, unmorally distributed, and while the

three population fit had slightly better predictive power it was still only 1.78 σ and therefore within200

statistical uncertainty (Figure 3H).

Based on this, we conclude that by depriving the cell of SIR2 (and SIR4), the foci disappears and202

the mobility of SIR3 is increased and is described by two populations: A slow population repre-
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Figure 3. Mobility of Sir3 inside foci in mutant strains.

senting the bound molecules to single telomeres and a fast population representing the free SIR3204

molecules. To understand the nature of the actual foci, we needed to understand the mobility of

SIR3 inside the foci better. Therefore, we investigated the movement of the foci itself.206

3.3 | Mobility of silencing foci is comparable to the motion of SIR3 inside

the foci208

Our aim was now to extract the motion of the foci as a single structure and compare this to the

motion of the single molecules. In order to obtain this, we used high photo-activation illumination210

to simultaneously activate all SIR3-mMaple and image the silencing foci as a single entities. Here

we are aware that the observed movement should now be dominated by the focus, but since the212

binding of single SIR3molecules to the single telomeres, we should be aware that this could also be

observed in the data (Figure 4A). We extracted the traces of these whole-mobility structures, and214

we obtained some confined slowly diffusing traces (blue part in Figure 4B) but also many faster

moving traces (multiple colours in Figure 4B). By eye, this does suggest that somemovement takes216

place as a well-defined structure (a silencing-focus) while other motion might be due to the more

mobile single telomeres. To test this, we now generated the displacement histograms for the en-218

tities, and extracted the diffusion coefficients (Figure 4C). In order to compare the hypotheses of

the subpopulations, we directly applied the bayesian analysis and while the two-parameter fit did220

again lead to well-defined parameters, the three-population fit did lead to a better fit (6.08 σ). We
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Figure 4. Individual Sir3 vs. whole focus.

note however that in both fits, the fast part of the population does match the diffusion coefficient222

of the single telomeres observed for single molecule SIR3 in both WT and SIR2D-SIR4D mutants.

Now focusing on the slow part of the diffusion coefficients, we note that thesematch the extracted224

diffusion coefficients we found for the singlemoleculemovement of SIR3. However to obtain a bet-

ter understanding for the similarities of these, and in particular in order to extract the experimental226

noise levels in the measurements since these might differ significantly for the measurements of

the entire focus and and measurements of the single SIR3, we moved on to measure the mean228

squared distance (MSD) and use these to extract the actual diffusion coefficients.

3.4 | Diffusion of SIR3 inside the silencing focus match the predicted move-230

ment of a Polymer Bridging Model

Our aim was now to extract the motion of the foci as a single structure and compare this to the

motion of the single molecules. In order to obtain this, we used the previously derived theoretical

result that connects the diffusion coefficient inside the foci structures to the free energy of these

(Heltberg et al., 2021). Here the exact diffusion coefficient is extremely important and the result we

obtained in section two is affected by the experimental noise level and this has a significant impact

since the diffusion coefficient is so low. In order to separate these we used the method of Mean-

Square Distances (MSD). Herewe take the slow part of the population in theWT data, and for traces

belonging to this family of diffusion coefficients we generate the mean square distances. Finally,
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we fit the three first datapoints to a straight line, and use the slope as the diffusion coefficient

whereas the intersection is a parameter determined by the experimental noise level. In order to

obtain the free energy, we compare the fraction of traces belonging to the slow population, relative

to the fast part of the population (See Miné-Hattab et al., 2022 for similar application). In this we

take the size of the observable frame compared to the overall size of the cell nucleus into account,

as well as we estimate an average of four foci on average. With this we obtain a relation between

the free energy and the diffusion coefficient. We know that in a polymer bridgingmodel this should

scale as:

𝑈 = 𝑘BT ln
( 𝐷inside −𝐷focus

𝐷outside −𝐷focus

)
. (7)

Figure 5. Free energy and diffusion relation. Relation to Rad52.

Here we assume that the diffusion coefficient of the focus is similar to the diffusion coefficient232

of the binding sites that would diffuse in a bridging model. We then used the simulation results of

Heltberg et al., 2021, to show that in the simulations this type of structure always yield this relation234

and we showed the result of the relation in the repair foci that is markedly off this line (Figure 5B).
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Finally we plotted the result for the silencing foci for the values obtained in this study and here236

we obtained a remarkable agreement. To further validate these results we used the Bayesian

approach, wherewe tested themutual correlation of the parameters investigated in theMSD curve238

(Figure 5C). Next we used thismethod to extract the free energy from the populations and compare

this to the free energy estimate based on the extracted diffusion coefficients (Figure 5D). These240

were completely comparable, which further strengthens the conclusion that the motion inside the

silencing foci is really comparable to what would be theoretically expected in the polymer bridging242

model.

4 | DISCUSSION244

The two leading hypotheses for describing the nature of nuclear foci is the polymer bridgingmodel

and the liquid droplet model. In this work we have used the data obtained from SPT experiments246

to investigate the underlying nature of the silencing foci, experienced by the motion of SIR3. We

find that the behaviour is comparable with the theoretical expectations of the polymer bridging248

model and thiswork therefore strengthens the hypothesis that these structures are indeed a dense

collection of binding sites.250

From a theoretical perspective, it is noteworthy that the method we apply here cannot directly

falsify the hypothesis of a liquid structure, but rather it fails to disprove the hypothesis of a polymer252

bridging structure. We use a statistical mechanics formulation, derived a mean field, for the PBM.

This shares the same functional form as the LPM in the sense that the diffusion coefficient follow a254

step function with one value inside the focus and another value outside. However for the PBM we

have an additional constraint that precisely links the concentration of proteins and their relative256

diffusion inside the focus: the more time spent inside the focus, the slower the effective diffusion.

In this sense, if the diffusion coefficient is higher than some value (To the right of the diagonal in258

Figure 4A), then this would typically represent a liquid droplet where diffusion can be faster.

From a functional perspective, it is also interesting to consider the role of a polymer bridging260

model, compared to a liquid model. The simplest form of a silencing foci, would simply keep away

the transcription factors and activators. We have previously shown (Heltberg et al., 2021) that the262

existence of a polymer bridging model, would typically increase the first passage time to find a

target, whereas a liquid model could greatly enhance this. Therefore it is a tempting hypothesis,264
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that foci formedwith the aimof slowing down rateswould be of a polymer bridgingmodel, whereas

the foci with the aimof increasing rates (for instance in the repair foci) could be liquid droplets. On a266

more general point, foci are formed inside the nucleus for various reasons with different roles, and

it is clear that they can remain stable very different timescales. Here it is interesting that repair foci268

are maintained for relative short periods (timescale of hours) and they have the ability to quickly

dissolve as long-term stability is not so important. On the other hand, gene expression foci can be270

very stable (Hnisz et al., 2017; Bing et al., 2020), and this could be explained by the hypothesis that

these would typically be polymer bridging structures.272
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of ancient damage in these species. This shows that modern modern statistical
methods combined with excellent work in the ancient DNA labs can provide new
insights into the past – even on data that are more than two million years old.



Nature  |  www.nature.com  |  1

Article

A 2-million-year-old ecosystem in Greenland 
uncovered by environmental DNA

Kurt H. Kjær1,23 ✉, Mikkel W. Pedersen1,23, Bianca De Sanctis2,3, Binia De Cahsan4, 
Thorfinn S. Korneliussen1, Christian S. Michelsen1,5, Karina K. Sand1, Stanislav Jelavić1,6, 
Anthony H. Ruter1, Astrid M. Z. Bonde7, Kristian K. Kjeldsen8, Alexey S. Tesakov9, 
Ian Snowball10, John C. Gosse11, Inger G. Alsos12, Yucheng Wang1,2, Christoph Dockter13, 
Magnus Rasmussen13, Morten E. Jørgensen13, Birgitte Skadhauge13, Ana Prohaska1, 
Jeppe Å. Kristensen9,14, Morten Bjerager9, Morten E. Allentoft1,15, Eric Coissac12,16, 
PhyloNorway Consortium*,**, Alexandra Rouillard1,17, Alexandra Simakova9, 
Antonio Fernandez-Guerra1, Chris Bowler18, Marc Macias-Fauria19, Lasse Vinner1, 
John J. Welch3, Alan J. Hidy20, Martin Sikora1, Matthew J. Collins21, Richard Durbin3, 
Nicolaj K. Larsen1 & Eske Willerslev1,2,22 ✉

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates 
resembling those forecasted under future warming2. Palaeoclimatic records  
show strong polar amplification with mean annual temperatures of 11–19 °C above 
contemporary values3,4. The biological communities inhabiting the Arctic during  
this time remain poorly known because fossils are rare5. Here we report an ancient 
environmental DNA6 (eDNA) record describing the rich plant and animal assemblages 
of the Kap København Formation in North Greenland, dated to around two million 
years ago. The record shows an open boreal forest ecosystem with mixed vegetation 
of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and 
herbs, many of which had not previously been detected at the site from macrofossil 
and pollen records. The DNA record confirms the presence of hare and mitochondrial 
DNA from animals including mastodons, reindeer, rodents and geese, all ancestral  
to their present-day and late Pleistocene relatives. The presence of marine species 
including horseshoe crab and green algae support a warmer climate than today.  
The reconstructed ecosystem has no modern analogue. The survival of such ancient 
eDNA probably relates to its binding to mineral surfaces. Our findings open new areas 
of genetic research, demonstrating that it is possible to track the ecology and 
evolution of biological communities from two million years ago using ancient eDNA.

The Kap København Formation is located in Peary Land, North Greenland  
(82° 24′ N 22° 12′ W) in what is now a polar desert. The upper deposi-
tional sequence contains well-preserved terrestrial animal and plant 
remains washed into an estuary during a warmer Early Pleistocene 
interglacial cycle7 (Fig. 1). Nearly 40 years of palaeoenvironmental and 
climate research at the site provide a unique perspective into a period 
when the site was situated at the boreal Arctic ecotone with recon-
structed summer and winter average minimum temperatures of 10 °C 
and −17 °C respectively—more than 10 °C warmer than the present7–11. 

These conditions must have driven substantial ablation of the Green-
land Ice Sheet, possibly producing one of the last ice-free intervals7 
in the last 2.4 million years (Myr). Although the Kap København  
Formation is known to yield well-preserved macrofossils from a conifer-
ous boreal forest and a rich insect fauna, few traces of vertebrates have 
been found. To date, these comprise remains from lagomorph genera, 
their coprolites and Aphodius beetles, which live in and on mammalian 
dung10,11. However, the approximately 3.4 Myr old Fyles Leaf bed and 
Beaver Pond on Ellesmere Island in Arctic Canada preserve fossils of 
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mammals that potentially could have colonized Greenland, such as 
the extinct bear (Protarctos abstrusus), giant beavers (Dipoides sp.),  
the small canine Eucyon and Arctic giant camelines4,12,13 (similar to  
Paracamelus). Whether the Nares Strait was a sufficient barrier to iso-
late northern Greenland from colonization by this fauna remains an 
open question.

The Kap København Formation is formally subdivided into two mem-
bers7 (Fig. 1). The lower Member A consists of up to 50 m of laminated 
mud with an Arctic ostracod, foraminifera and mollusc fauna deposited 
in an offshore glaciomarine environment14. The overlying Member 
B consists of 40–50 m of sandy (units B1 and B3) and silty (unit B2) 
deposits, including thin organic-rich beds with an interglacial macro-
fossil fauna that were deposited closer to the shore in a shallow marine 
or estuarine environment represented by upper and lower shoreface 
sedimentary facies7.

The specific depositional environments are also reflected in the min-
eralogy of the units, where the proximal B3 locality has the lowest clay 
and highest quartz contents (Sample compositions in Supplementary 
Tables 4.2.1 and 4.2.2 and unit averages in Supplementary Tables 4.2.3 
and 4.2.4). The architecture of the basin infill suggests that Member B 
units thicken towards the present coast—that is, distal to the sediment 
source in the low mountains in the north (Fig. 1). Abundant organic 
detritus horizons are recorded in units B1 and B3, which also contain 
beds rich in arctic and boreal plant and invertebrate macrofossils, as 
well as terrestrial mosses10,15. Therefore, the taphonomy of the DNA 

Q9

Q10
Q11

Q12

Q13

most probably reflects the biological communities eroded from a range 
of habitats, fluvially transported to the foreshore and concentrated as 
organic detritus mixed into sandy near-shore sediments within units 
B1 and B3. Conversely, the deeper water facies from Member A and 
unit B2 have a stronger marine signal. This scenario is supported by the 
similarities in the mineralogic composition between Kap København  
Formation sediments and Kim Fjelde sediments (Supplementary 
Tables 4.2.1 and 4.2.5).

Geological age
A series of complementary studies has successively narrowed the 
depositional age bracket of the Kap København Formation from 
4.0–0.7 million years ago (Ma) to a 20,000-year-long age bracket 
around 2.4 Ma (see Supplementary Information, sections  1–3).  
This was achieved by a combination of palaeomagnetism, biostratigra-
phy and allostratigraphy7,14,16–18. Notably, the last appearance data of the 
mammals, foraminifera and molluscs in the stratigraphic record show 
an age close to 2.4 Myr (see Supplementary Information, section 2). 
Within this overall framework, we add new palaeomagnetic data show-
ing that Member A has reversed magnetic polarity and the main part 
of the overlying unit B2 has normal magnetic polarity. In the context 
of previous work, this is consistent with three magnetostratigraphic 
intervals in the Early Pleistocene where there is a reversal: 1.93 Myr  
(scenario 1), 2.14 Myr (scenario 2) or 2.58 Myr (scenario 3) (Supplementary 
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Information, section 1). Furthermore, we constrain the age using cos-
mogenic 26Al:10Be burial dating of Member B at four sites in this study 
(Supplementary Information, section 3). The recommended maximum 
burial age for the Kap København Formation is 2.70 ± 0.46 Myr (Fig. 2; 
Methods). However, we discard the older scenario 3 as it contradicts 
the evidence for a continuous sedimentation across Members A and B 
during a single glacial–interglacial depositional cycle7,14,16,18,19. This leaves 
two possible scenarios (scenarios 1 and 2), in which scenario 1 supports 
an age of 1.9 Myr and scenario 2 supports an age of 2.1 Myr.

DNA preservation
DNA degrades with time owing to microbial enzymatic activity, mechan-
ical shearing and spontaneous chemical reactions such as hydrolysis 
and oxidation20. The oldest known DNA obtained to date has been 
recovered from a permafrost-preserved mammoth molar dated to 
1.2–1.1 Ma using geological methods and 1.7 Ma (95% highest poste-
rior density, 2.1–1.3 Ma) using molecular clock dating21. To explore the 

likelihood of recovering DNA from sediments at the Kap København 
formation, we calculated the thermal age of the DNA and its expected 
degree of depurination at the Kap København Formation. Using the 
mean average temperature22 (MAT) of −17 °C, we found a thermal age 
of 2.7 kyrDNA@10 °C—that is, 741 times less than the age of 2.0 Myr (Sup-
plementary Information, section 4 and Supplementary Table 4.4.1). 
Using the rate of depurination from Moa bird fossils23, we found it plau-
sible that DNA with an average size of 50 base pairs (bp) could survive 
at the Kap København Formation, assuming that the site remained 
frozen (Supplementary Information, section 4 and Supplementary 
Table 4.4.2). Mechanisms that preserve DNA in sediments are likely to 
be different from that of bone. Adsorption at mineral surfaces modi-
fies the DNA conformation, probably impeding molecular recognition 
by enzymes, which effectively hinders enzymatic degradation24–27.  
To investigate whether the minerals found in Kap København Formation 
could have retained DNA during the deposition and preserved it, we 
determined the mineralogic composition of the sediments using X-ray 
diffraction and measured their adsorption capacities. Our findings 
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highlight that the marine depositional environment favours adsorption 
of extracellular DNA on the mineral surfaces (Supplementary Infor-
mation, section 4 and Supplementary Table 4.3.1.1). Specifically, the 
clay minerals (9.6–5.5 wt%) and particularly smectite (1.2–3.7 wt%), 
have higher adsorption capacity compared to the non-clay minerals 
(59–75 wt%). At a DNA concentration representative of the natural 
environments28 (4.9 ng ml−1 DNA), the DNA adsorption capacity of 
smectite is 200 times greater than for quartz. We applied a sedimen-
tary eDNA extraction protocol29 on our mineral-adsorbed DNA sam-
ples, and retrieved only 5% of the adsorbed DNA from smectite and 
around 10% from the other clay minerals (Methods and Supplementary 
Information, section 4). By contrast, we retrieved around 40% of the 
DNA adsorbed to quartz. The difference in adsorption capacity and 
extraction yield from the different minerals demonstrates that mineral 
composition may have an important role in ancient eDNA preservation 
and retrieval.

Kap København metagenomes
We extracted DNA29 from 41 organic-rich sediment samples at five 
different sites within the Kap København Formation (Supplementary 
Information, section 6 and Source Data 1), which were converted into 
65 dual-indexed Illumina sequencing libraries30. First, we tested 34 of 
the 65 libraries for plant plastid DNA by screening for the conserved 
photosystem II D2 (psbD) gene using droplet digital PCR (ddPCR) with a 
gene-targeting primer and probe spanning a 39-bp region and a P7 index 
primer. Further, we screened for the psbA gene using a similar assay 
targeting the Poaceae (Methods and Supplementary Fig. 6.12.1). A clear 
signal in 31 out of 34 samples tested confirmed the presence of plant 
plastid DNA in these libraries (Source Data 1, sheets 5 and 6). Addition-
ally, we subjected 34 of the 65 libraries to mammalian mtDNA capture 
enrichment using the Arctic PaleoChip 1.031 and shotgun sequenced 
all libraries (initial and captured) using the Illumina HiSeq 4000 and 
NovaSeq 6000. A total of 16,882,114,068 reads were sequenced, which 
after adaptor trimming, filtering for ≥30 bp and a minimum phred qual-
ity of 30 and duplicate removal resulted in 2,873,998,429 reads. These 

were analysed for kmer comparisons using simka32 (Supplementary 
Information, section 6) and then parsed for taxonomic classification 
using competitive mapping with HOLI (https://github.com/miwipe/ 
KapCopenhagen.git), which includes a recently published dataset of more 
than 1,500 genome skims of Arctic and boreal plant taxa33,34 (Methods  
and Supplementary Information, section 6). Considering the age of 
the samples and thus the potential genetic distance to recent reference 
genomes, we allowed each read to have a similarity between 95–100% 
for it to be taxonomically classified using ngsLCA35. The metaDMG 
(v.0.14.0) program (https://metadmg-dev.github.io/metaDMG-core/
index.html) was subsequently used to quantify and filter each taxo-
nomic node for postmortem DNA damage for all the metagenomic 
samples (Methods). This method estimates the average damage at 
the termini position (D-max) and a likelihood ratio (λ-LR) that quanti-
fies how much better the damage model (that is, more damage at the 
beginning of the read) fits the data compared with a null model (that 
is, a constant amount of damage; see Supplementary Information,  
section 6). We found the DNA damage to be highly increased, especially 
for eukaryotes (mean D-max = 40.7%). From this we set D-max ≥25% 
as a filtering threshold for a taxonomic node to be parsed for further 
downstream analysis as well as a λ-LR higher or equal to 1.5. We further-
more set a threshold requiring that the minimum number of reads per 
taxon exceeded the median of reads assigned across all taxa divided 
by two to filter for taxa in low abundance. Similarly, for a sample to be 
considered, the total number of reads for a sample had to exceed the 
median number of reads per sample divided by two, to filter for samples 
with fewest reads. Lastly, we filtered out taxa with fewer than three 
replicates and subsequently reads were normalized by conversion to 
proportions (Figs. 3 and 4a).

DNA, pollen and macrofossils comparison
Greenland’s coasts extend from around 60° to 83° N and include bio-
climatic zones from the subarctic to the northern polar desert36,37. 
There are 175 vascular plant genera native to Greenland, excluding 
historically introduced species38–40. Of these, 70 (40%) were detected 
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Fig. 3 | Early Pleistocene plants of Northern Greenland. Metagenomic 
taxonomic profiles of the plant assemblage. Taxa in bold are genera only  
found as DNA and not as macrofossil or pollen. Asterisks indicate those that  
are found at other Pliocene arctic sites. Extinct species as identified by either 

macrofossils or phylogenetic placements are marked with a dagger.  
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are probably over-classified DNA sequences belonging to another species 
within Rosaceae that are not present as a reference genome.
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by the metagenomic analysis (Fig. 3); the majority of these genera are 
today confined to bioclimatic zones well to the south of Kap Køben-
havn’s polar desert (see ref. 41 and references therein), for example, 
all aquatic macrophytes. Reads assigned to Salix, Dryas, Vaccinium, 
Betula, Carex and Equisetum dominate the assemblage, and of these 
genera, Equisetum, Dryas, Salix arctica and two species of Carex (Carex 
nardina and Carex stans) grow there currently, whereas only a few 
records of Vaccinium uliginosum are found above 80º N, and Betula 
nana are found above 74º N (ref. 42). Out of the 102 genera detected in 
the Kap København ancient eDNA assemblage, 39% no longer grow in 
Greenland but do occur in the North American boreal (for example, 
Picea and Populus) and northern deciduous and maritime forests (for 
example, Crataegus, Taxus, Thuja and Filipendula). Many of the plant 
genera in this diverse assemblage do not occur on permafrost sub-
strates and require higher temperatures than those at any latitude on 
Greenland today.

In addition to the DNA, we counted pollen in six samples from locality 
119, unit B3 (Methods and Supplementary Fig. 4.1.1). Percentages were 
calculated for 4 of the samples with pollen sums ranging from 71–225 
terrestrial grains (mean = 170.25). Upland herbs, including taxa in the 
Cyperaceae, Ericales and Rosaceae comprised around 40% of sample 4. 
Samples 5 and 6 were dominated by arboreal taxa, particularly Betula. 
The Polypodiopsida (for example, Equisetum, Asplenium and Athyrium 
filix-mas) and Lycopodiopsida (Lycopodium annotinum and Selaginella 
rupestris) were also well represented and comprised over 30% of the 
assemblage in samples 1, 4 and 6.

A total of 39 plant genera out of the 102 identified by DNA also 
occurred as macrofossils or pollen at the genus level. A further 39 taxa 
were potentially identified as macrofossil or pollen but not to the same 

taxonomic level10,15 (Source Data 1, sheets 1 and 2). For example, 12 
genera of Poaceae were identified by DNA (Alopecurus, Anthoxanthum, 
Arctagrostis, Arctophila, Calamagrostis, Cinna, Dupontia, Hordelymus, 
Leymus, Milium, Phippsia and Poa), of these only Hordelymus is not 
found in the Arctic today (http://panarcticflora.org/), but these were 
only distinguished to family level in the pollen analysis and only one 
Poaceae macrofossil was found. There were 24 taxa that were recorded 
only as DNA. These included the boreal tree Populus and a few shrubs 
and dwarf shrubs, but mainly herbaceous plants. Of the 73 plant genera 
recovered as macrofossils10,15, only 24 were not detected in the DNA 
analysis. Because macrofossils and DNA have similar taphonomies—as 
both are deposited locally—more overlap is expected between them 
than between DNA and pollen, which is typically dispersed regionally43. 
Nine of the taxa absent in DNA were bryophytes, probably owing to poor 
representation of this group within the genomic reference databases. 
Furthermore, the extinct taxon Araceae is not present in the reference 
databases. The remaining undetected genera were vascular plants, and 
all except two (Oxyria and Cornus) were rare in the macrofossil record. 
Because the detection of rare taxa is challenging in both macrofossil 
and DNA records44, we argue that this overlap between the DNA and 
macrofossil records is as high as can be expected on the basis of the 
limitations of both methods.

An additional 19 taxa were recorded in the pollen record presented 
here and in that of Bennike45 including four trees or shrubs, five ferns, 
three club mosses, and one each of algae, fungi and liverwort. We also 
find pollen from anemophilous trees, particularly gymnosperms, which 
can be distributed far north of the region where the plants actually 
grow10. Bennike45 also notes a high proportion of club mosses and ferns 
and suggests they may be overrepresented owing to their spore wall 
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being resistant to degradation. Furthermore, if these taxa were pref-
erentially distributed along streams flowing into the estuary, their 
spores could be relatively more concentrated in the alluvium than  
the pollen of more generally distributed taxa. Thus, both decay resist-
ance and alluvial deposition could contribute to the relative frequencies 
we observe. This same alluvial dynamic might also have contributed to 
the very large read counts for Salix, Betula, Populus, Carex and Equise-
tum in the metagenomic record, implying that neither the proportion 
of these taxa in the pollen records nor read counts necessarily cor-
relate with their actual abundance in the regional vegetation in terms 
of biomass or coverage.

Finally, we sought to date the age of the plant DNA by phylogenetic 
placement of the chloroplast DNA. We examined data for the genera 
Betula, Populus and Salix, because these had both sufficiently high chlo-
roplast genome coverage (with mean depth 24.16×, 57.06× and 27.04×, 
respectively) and sufficient present-day whole chloroplast reference 
sequences (Methods). Owing to their age and hence potential genetic 
distance from the modern reference genomes, we lowered the similar-
ity threshold of uniquely classified reads to 90% and merged these by 
unit to increase coverage. Both Betula and Salix placed basally to most 
of the represented species in the respective genera, and the Populus 
placement results showed support for a mixture of different species 
related to P. trichocarpa and P. balsamifera (Extended Data Figs. 7–9).

We used the Betula chloroplast reads for a molecular dating analysis, 
because they were placed confidently on a single edge of the phyloge-
netic tree (that is, not a mixture as in Populus), had a large number of 
reference sequences, and had high coverage in the ancient sample. We 
used BEAST46 v1.10.4 to obtain a molecular clock date estimate for our 
ancient Betula chloroplast sample (see Methods, ‘Molecular dating 
methods’ for details). We included 31 modern Betula and one Alnus 
chloroplast reference sequences, used only sites that had a depth of 
at least 20 in the ancient sample, and included a previously estimated 
Betula–Alnus chloroplast divergence time47 of 61.1 Myr for calibration of 
the root node. Our BEAST analysis was robust to both different priors on 
the age of the ancient sample, and to different nucleotide substitution 
models (Supplementary Fig. 10). This yielded a median age estimate of 
1.323 Myr, with a 95% HPD of (0.6786, 2.0172) Myr (Fig. 2).

Animal DNA results
The metazoan mitochondrial and nuclear DNA record was much less 
diverse than that of the plants but contained one extinct family, one 
that is absent from Greenland today, and four vertebrate genera native 
to Greenland as well as representatives of four invertebrate families 
(Fig. 4a). Assignments were based on incomplete and variable repre-
sentation of reference genomes, so we identified reads to family level, 
and only where sufficient mitochondrial reads were present, we refined 
the assignment to genus level by matching these into mitochondrial 
phylogenies based on more complete present-day mitochondrial 
sequences (Supplementary Information, section 6). As for the plant 
reads, uniquely classified animal reads with more than 90% similarity 
were parsed and merged by unit to increase coverage for phylogenetic 
placement.

Most notably, we found reads in unit B2 and B3 assigned to the 
family Elephantidae, which includes elephants and mammoths, but 
taxonomically not mastodon (Mammut sp.)—which are, however, in 
the NCBI taxonomy, and therefore our analysis reads classified to 
Elephantidae or below therefore include Mammut sp. A consensus 
genome of our Elephantidae mitochondrial reads falls on the Mammut  
sp. branch (Fig. 4b) and is placed basal to all clades of mastodons. How-
ever, we note that this placement within the mastodons depends on 
only two transition single nucleotide polymorphisms (SNPs), with the 
first one supported by a read depth of three and the second by only 
one (Extended Data Fig. 4, Methods and Supplementary Information, 
section 6). Furthermore, we attempted dating the recovered mastodon 
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mitochondrial genome using BEAST48. We implemented two dating 
approaches, one was based on using radiocarbon-dated specimens 
alone, while the other used radiocarbon- and molecular-dated mas-
todons. The first analysis yielded a median age estimate for our mas-
todon mitogenome of 1.2 Myr (95% HPD: 191,000 yr–3.27 Myr), the 
second approach resulted in a median age estimate of 5.2 Myr (95% 
HPD: 1.64–10.1 Myr) (Supplementary Fig. 6.8.5 and Supplementary 
Information, section 6).

Similarly, reads assigned to the Cervidae support a basal place-
ment on the Rangifer (reindeer and caribou) branch (Extended Data 
Fig. 3). Mitochondrial reads mapping to Leporidae (hares and rabbits) 
place near the base to the Eurasian hare clade (Extended Data Fig. 2), 
which is the only mammal found in the fossil record7. Lepus, specifi-
cally Lepus arcticus, is also the only genus in the Leporidae living in 
Greenland today. Mitochondrial reads assigned to Cricetidae cover 
only one informative transversion SNP, which places them as deriv-
ing from the subfamily Arvicolinae (voles, lemmings and muskrats) 
(Extended Data Fig. 6). For the only avian taxon represented in our 
dataset—Anatidae, the family of geese and swans—we found a robust 
basal placement to the genus Branta of black geese, supported by three 
transversion SNPs with read depths ranging between two and four 
(Extended Data Fig. 5). The refined vertebrate assignments based on 
mitochondrial references are more biogeographically conserved than 
for plants. Dicrostonyx—specifically Dicrostonyx groenlandicus (the 
Nearctic collared lemming)—is the only genus of the Cricetidae native 
to Greenland today, just as Rangifer—specifically Rangifer tarandus 
groenlandicus (the barren-ground caribou)—is the only member of 
the Cervidae. The mastodon is the exception, as no member of the 
Elephantidae lives in present-day Greenland.

Ancient DNA from marine organisms
The other metazoan taxa identified in the DNA record were a single 
reef-building coral (Merulinidae) and several arthropods, with 
matches to two insects—Formicidae (ants) and Pulicidae (fleas)—and 
one marine family—Limulidae (horseshoe crabs). This is somewhat 
unexpected, given the rich insect macrofossil record from the Kap 
København Formation, which comprises more than 200 species, 
including Formica sp. The marine taxa are less abundant than the ter-
restrial taxa, and no mitochondrial DNA was identified from marine 
metazoans. The read lengths, DNA damage and the fact that the reads 
assigned distribute evenly across the reference genomes suggests that  
these are not artefacts but may be over-matched DNA sequences of 
closely related, potentially extinct species within the families that 
are currently absent from our reference databases owing to poor 
taxonomic representation. By contrast, Limulidae, in the subphylum 
Chelicerata, is unlikely to be misidentified as this distinct genus is 
the only surviving member within its order and thus deeply diverged 
from other extant organisms.

The probable source of these reads is a population of Limulus 
polyphemus, the only Atlantic member of the genus, which would 
have spawned directly onto the sediment as it accumulated. Today 
this genus does not spawn north of the Bay of Fundy (about 45° N), 
suggesting warmer surface water conditions in the Early Pleistocene 
at Kap København consistent with the +8 °C annual sea surface tem-
perature anomaly reconstructed for the Pleistocene of the coast of 
northeast Greenland49. By aligning our reads against the Tara Oceans 
eukaryotic metagenomic assembled genomes (SMAGs) data (Meth-
ods), we further reveal the presence of 24 marine planktonic taxa in 
14 samples, covering both zooplankton and phytoplankton (Fig. 5). 
These detected SMAGs belong to the supergroups Opisthokonta (6), 
Stramenopila (15) and Archaeplastida (3). The majority of these signals 
are from SMAGs associated with cold regions in the modern ocean 
(that is, the Arctic Ocean and Southern Ocean), such as diatoms (Bacil-
lariophyta), Chrysophyceae and the MAST-4 group (Supplementary 
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Table 6.11.1), as we expected. However, a few are cosmopolitan, whereas 
others, such as Archaeplastida (green microalgae), have an oceanic 
signal that is today confined to more temperate waters in the Pacific 
Ocean (Fig. 5). Although we do not know whether modern day ecologies 
can be extrapolated to ancient ecosystems, the abundance of green 
microalgae is believed to be increasing in Arctic regions, which tends 
to be associated with warming surface waters.

Discussion
The Kap København ancient eDNA record is extraordinary for sev-
eral reasons; the upper limit of the 95% highest posterior density of 
the estimated molecular age is 2.0 Myr and independently supports 
a geological age of approximately 2 Myr (Fig. 2). This implies that the 
DNA is considerably older than any previously sequenced DNA21. Our 
DNA results detected five times as many plant genera as previous stud-
ies using shotgun sequencing of ancient sediments29,34,50,51, which is 
well within the range of the richest northern boreal metabarcoding 
records52. The accuracy of the assignments is strengthened by the 
observation that 76% of the taxa identified to the level of genus or family 
also occurred in macrofossil and/or pollen assemblages from the same 
units. Our results demonstrate the potential of ancient environmental 
metagenomics to reconstruct ancient environments, phylogeneti-
cally place and date ancient lineages from diverse taxa from around 
2 Ma (Supplementary Information, section 6). Finally, the DNA iden-
tified a set of additional plant genera, which occur as macrofossils at 
other Arctic Late Pliocene and Early Pleistocene sites (Figs. 1 and 3a 
and Supplementary Information, section 5) but not as fossils at Kap 
København, thereby expanding the spatiotemporal distribution of 
these ancient floras.

Of note, the detection of both Rangifer (reindeer and caribou) and 
Mammut (mastodon) forces a revision of earlier palaeoenvironmental 
reconstructions based on the site’s relatively impoverished faunal 
record, entailing both higher productivity and habitat diversity for 
much of the deposition period. Because all the vertebrate taxa identi-
fied by DNA are herbivores, their representation may be a function 
of relative biomass (see discussion on taphonomy in Supplementary 
Information, section 6). Caribou, geese, hares and rodents can all be 
abundant, at least seasonally, in boreal environments. Additionally, 
the excrement of large herbivores (such as caribou and particularly 
mastodons) can be a significant component of sediments34. By contrast, 
carnivores are not represented, consistent with their smaller total 
biomass. This dynamic also explains the dominance of plant reads 
over metazoans and to some extent differences in representation of 
various plant genera (Supplementary Information, section 6). In the 
general absence of fossils, DNA may prove the most effective tool for 
reconstructing the biogeography of vertebrates through the Early 
Pleistocene. DNA from mastodon must imply a viable population of this 
large browsing megaherbivore, which would require a more produc-
tive boreal habitat than that inferred in earlier reconstructions based 
primarily on plant macrofossils7. Mastodon dung from a site in central 
Nova Scotia from around 75,000 years ago contained macrofossils from 
sedges, cattail, bulrush, bryophytes and even charophytes, but was 
dominated by spruce needles and birch samaras53. The Kap København 
units with mastodon DNA yielded macrofossils and DNA from Betula 
as well as more thermophilic arboreal taxa including Thuja, Taxus, 
Cornus and Viburnum, none of which range into Greenland’s hydric 
Arctic tundra or polar deserts today. The co-occurrence of these taxa 
in multiple units compels a revision of previous temperature estimates 
as well as the presence of permafrost.
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No single modern plant community or habitat includes the range of 

taxa represented in many of the macrofossil and DNA samples from 
Kap København. The community assemblage represents a mixture 
of modern boreal and Arctic taxa, which has no analogue in modern 
vegetation10,15. To some degree, this is expected, as the ecological ampli-
tudes of modern members of these genera have been modified by evolu-
tion54. Furthermore, the combination of the High Arctic photoperiod 
with warmer conditions and lower atmospheric CO2 concentrations55 
made the Early Pleistocene climate of North Greenland very different 
from today. The mixed character of the terrestrial assemblage is also 
reflected in the marine record, where Arctic and more cosmopolitan 
SMAGs of Ophistokonta and Stramenophila are found together with 
horseshoe crabs, corals and green microalgae (Archaeplastida), which 
today inhabit warmer waters at more southern latitudes.

Megaherbivores, particularly mastodons, could have had a signifi-
cant impact on an interglacial taiga environment, even providing a 
top-down trophic control on vegetation structure and composition 
at this high latitude. The presence of mastodons56,57 coupled with the 
absence of anthropogenic fire, which has had a role in some Holo-
cene boreal habitats58, are important differences. Another impor-
tant factor is the proximity and biotic richness of the refugia from 
which pioneer species were able to disperse into North Greenland 
when conditions became favourable at the beginning of interglacials. 
The shorter duration of Early Pleistocene glaciations produced less 
extensive ice sheets allowing colonization from relatively species-rich 
coniferous-deciduous woodlands in northeastern Canada12,59. More 
extensive glaciation later in the Pleistocene increasingly isolated North 
Greenland and later re-colonizations were from increasingly distant 
and/or less diverse refugia.

In summary, we show the power of ancient eDNA to add substan-
tial detail to our knowledge of this unique, ancient open boreal forest 
community intermixed with Arctic species, a community composition 
that has no modern analogues and included mastodons and reindeer, 
among others. Similar detailed flora and vertebrate DNA records may 
survive at other localities. If recovered, these would advance our under-
standing of the variability of climate and biotic interactions during the 
warmer Early Pleistocene epochs across the High Arctic.
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Methods

Sampling
Sediment samples were obtained from the Kap København Formation in 
North Greenland (82° 24′ 00″ N 22° 12′ 00″ W) in the summers of 2006, 
2012 and 2016 (see Supplementary Table 3.1.1). Sampled material con-
sisted of organic-rich permafrost and dry permafrost. Prior to sampling, 
profiles were cleaned to expose fresh material. Samples were hereafter 
collected vertically from the slope of the hills either using a 10 cm diam-
eter diamond headed drill bit or cutting out ~40 × 40 × 40 cm blocks. 
Sediments were kept frozen in the field and during transportation to 
the lab facility in Copenhagen. Disposable gloves and scalpels were used 
and changed between each sample to avoid cross-contamination. In a 
controlled laboratory environment, the cores and blocks were further 
sub-sampled for material taking only the inner part of sediment cores, 
leaving 1.5–2 cm between the inner core and the surface that provided 
a subsample of approximately 6–10 g. Subsequently, all samples were 
stored at temperatures below −22 °C.

We sampled organic-rich sediment by taking samples and biological 
replicates across the three stratigraphic units B1, B2 and B3, spanning  
5 different sites, site: 50 (B3), 69 (B2), 74a (B1), 74b (B1) and 119 (B3). 
Each biological replicate from each unit at each site was further sampled  
in different sublayers (numbered L0–L4, Source Data 1, sheet 1).

Absolute age dating
In 2014, Be and Al oxide targets from 8× 1 kg quartz-rich sand samples 
collected at modern depths ranging from 3 to 21 m below stream cut 
terraces were analysed by accelerator mass spectrometry and the cos-
mogenic isotope concentrations interpreted as maximum ages using 
a simple burial dating approach1 (26Al:10Be versus normalized 10Be). 
The 26Al and 10Be isotopes were produced by cosmic ray interactions 
with exposed quartz in regolith and bedrock surfaces in the moun-
tains above Kap København prior to deposition. We assume that the 
26Al:10Be was uniform and steady for long time periods in the upper 
few metres of these gradually eroding palaeo-surfaces. Once eroded 
by streams and hillslope processes, the quartz sand was deposited in 
sandy braided stream sediment, deltaic distributary systems, or the 
near-shore environment and remained effectively shielded from cosmic 
ray nucleons buried (many tens of metres) under sediment, intermit-
tent ice shelf or ice sheet cover, and—at least during interglacials—the 
marine water column until final emergence. The simple burial dating 
approach assumes that the sand grains experienced only one burial 
event. If multiple burial events separated by periods of re-exposure 
occurred, then the starting 26Al:10Be before the last burial event would 
be less than the initial production ratio (6.75 to 7.42, see discussion 
below) owing to the relatively faster decay of 26Al during burial, and 
therefore the calculated burial age would be a maximum limiting age. 
Multiple burial events can be caused by shielding by thick glacier ice in 
the source area, or by sediment storage in the catchment prior to final 
deposition. These shielding events mean that the 26Al:10Be is lower, 
and therefore a calculated burial age assuming the initial production 
ratio would overestimate the final burial duration. We also consider 
that once buried, the sand grains may have been exposed to second-
ary cosmogenic muons (their depth would be too great for subma-
rine nucleonic production). As sedimentation rates in these glaciated 
near-shore environments are relatively rapid, we show that even the 
muonic production would be negligible (see Supplemental Informa-
tion). However, once the marine sediments emerged above sea level, 
in-situ production by both nucleogenic and muogenic production 
could alter the 26Al:10Be. The 26Al versus 10Be isochron plot reveals this 
complex burial history (Supplementary Information, section 3) and 
the concentration versus depth composite profiles for both 26Al and 
10Be reveal that the shallowest samples may have been exposed during 
a period of time (~15,000 years ago) that is consistent with deglacia-
tion in the area (Supplemental Information). While we interpret the 
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individual simple burial age of all samples as a maximum limiting age 
of deposition of the Kap København Formation Member B, we rec-
ommend using the three most deeply shielded samples in a single 
depth profile to minimize the effect of post-depositional production.  
We then calculate a convolved probability distribution age for these 
three samples (KK06A, B and C). However, this calculation depends 
on the 26Al:10Be production ratio we use (that is, between 6.75 and 7.42) 
and on whether we adjust for erosion in the catchment. So, we repeat 
the convolved probability distribution function age for the lowest and 
highest production ratio and zero to maximum possible erosion rate, to 
obtain the minimum and maximum limiting age range at 1σ confidence 
(Supplementary Information, section 3). Taking the midpoint between 
the negative and positive 3σ confidence limits, we obtain a maximum 
burial age of 2.70 ± 0.46 Myr. This age is also supported by the position 
of those three samples on the isochron plot, which suggests the true 
age may not be significantly different that this maximum limiting age.

Thermal age
The extent of thermal degradation of the Kap København DNA was 
compared to the DNA from the Krestovka Mammoth molar. Published 
kinetic parameters for DNA degradation60 were used to calculate the 
relative rate difference over a given interval of the long-term tempera-
ture record and to quantify the offset from the reference temperature of 
10 °C, thus estimating the thermal age in years at 10 °C for each sample 
(Supplementary Information, section 4). The mean annual air tempera-
ture (MAT) for the the Kap København sediment was taken from Funder 
et al. (2001)6 and for the Krestovka Mammoth the MAT was calculated 
using temperature data from the Cerskij Weather Station (WMO no. 
251230) 68.80° N 161.28° E, 32 m from the IRI Data Library (https://iri.
columbia.edu/) (Supplementary Table 4.4.1).

We did not correct for seasonal fluctuation for the thermal age 
calculation of the Kap København sediments or from the Krestovka 
Mammoth. We do provide theoretical average fragment length for 
four different thermal scenarios for the DNA in the Kap København 
sediments (Supplementary Table 4.4.2). A correction in the thermal 
age calculation was applied for altitude using the environmental lapse 
rate (6.49 °C km−1). We scaled the long-term temperature model of 
Hansen et al. (2013)61 to local estimates of current MATs by a scaling 
factor sufficient to account for the estimates of the local temperature 
decline at the last glacial maximum and then estimated the integrated 
rate using an Ea of 127 kJ mol−1 (ref. 60).

Mineralogic composition
The minerals in each of the Kap København sediment samples were 
identified using X-ray diffraction and their proportions were quantified 
using Rietveld refinement. The samples were homogenized by grinding 
~1 g of sediment with ethanol for 10 min in a McCrone Mill. The sam-
ples were dried at 60 °C and added corundum (CR-1, Baikowski) as the 
internal standard to a final concentration of 20.0 wt%. Diffractograms 
were collected using a Bruker D8 Advance (Θ–Θ geometry) and the 
LynxEye detector (opening 2.71°), with Cu Kα1,2 radiation (1.54 Å; 40 kV, 
40 mA) using a Ni-filter with thickness of 0.2 mm on the diffracted beam 
and a beam knife set at 3 mm. We scanned from 5–90° 2θ with a step 
size of 0.1° and a step time of 4 s while the sample was spun at 20 rpm. 
The opening of the divergence slit was 0.3° and of the antiscatter slit 
3°. Primary and secondary Soller slits had an opening of 2.5° and the 
opening of the detector window was 2.71°. For the Rietveld analysis, we 
used the Profex interface for the BGMN software62,63. The instrumental 
parameters and peak broadening were determined by the fundamental 
parameters ray-tracing procedure64. A detailed description of identi-
fication of clay minerals can be found in the supporting information.

Adsorption
We used pure or purified minerals for adsorption studies. The minerals 
used and treatments for purifying them are listed in Supplementary 
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Table 4.2.6. The purity of minerals was checked using X-ray diffraction 
with the same instrumental parameters and procedures as listed in the 
above section i.e., mineralogical composition. Notes on the origin, 
purification and impurities can be found in the supplementary infor-
mation section 4. We used artificial seawater65 and salmon sperm DNA 
(low molecular weight, lyophilized powder, Sigma Aldrich) as a model 
for eDNA adsorption. A known amount of mineral powder was mixed 
with seawater and sonicated in an ultrasonic bath for 15 min. The DNA 
stock was then added to the suspension to reach a final concentra-
tion between 20–800 μg ml−1. The suspensions were equilibrated on a 
rotary shaker for 4 h. The samples were then centrifuged and the DNA 
concentration in the supernatant determined with UV spectrometry 
(Biophotometer, Eppendorf), with both positive and negative controls. 
All measurements were done in triplicates, and we made five to eight 
DNA concentrations per mineral. We used Langmuir and Freundlich 
equations to fit the model to the experimental isotherm and to obtain 
adsorption capacity of a mineral at a given equilibrium concentration.

Pollen
The pollen samples were extracted using the modified Grischuk pro-
tocol adopted in the Geological Institute of the Russian Academy of 
Science which utilizes sodium pyrophosphate and hydrofluoric acid66. 
Slides prepared from 6 samples were scanned at 400× magnification 
with a Motic BA 400 compound microscope and photographed using a 
Moticam 2300 camera. Pollen percentages were calculated as a propor-
tion of the total palynomorphs including the unidentified grains. Only 
4 of the 6 samples yielded terrestrial pollen counts ≥50. In these, the 
total palynomorphs identified ranged from 225 to 71 (mean = 170.25; 
median = 192.5). Identifications were made using several published 
keys67,68. The pollen diagram was initially compiled using Tilia version 
1.5.1269 but replotted for this study using Psimpoll 4.1070.

DNA recovery
For recovery calculation, we saturated mineral surfaces with DNA.  
For this, we used the same protocol as for the determination of adsorp-
tion isotherms with an added step to remove DNA not adsorbed but only 
trapped in the interstitial pores of wet paste. This step was important 
because interstitial DNA would increase the amount of apparently 
adsorbed DNA and overestimate the recovery. To remove trapped 
DNA after adsorption, we redispersed the minerals in seawater.  
The process of redispersing the wet paste in seawater, ultracentrifu-
gation and removal of supernatant lasted less than 2.5 min. After the 
second centrifugation, the wet pastes were kept frozen until extrac-
tion. We used the same extraction protocol as for the Kap København 
sediments. After the extraction, the DNA concentration was again 
determined using UV spectrometry.

Metagenomes
A total of 41 samples were extracted for DNA71 and converted to 65 dual- 
indexed Illumina sequencing libraries (including 13 negative extraction- 
and library controls)30. 34 libraries were thereafter subjected to ddPCR 
using a QX200 AutoDG Droplet Digital PCR System (Bio-Rad) follow-
ing manufacturer’s protocol. Assays for ddPCR include a P7 index 
primer (5′-AGCAGAAGACGGCATAC-3′) (900nM), gene-targeting 
primer (900 nM), and a gene-targeting probe (250nM). We screened 
for Viridiplantae psbD (primer: 5′-TCATAATTGGACGTTGAACC-3′, 
probe: 5′-(FAM)ACTCCCATCATATGAAA(BHQ1)-3′) and Poaceae 
psbA (primer: 5′-CTCACAACTTCCCTCTAGAC-3′, probe 5′-(HEX)
AGCTGCTGTTGAAGTTC(BHQ1)-3′). Additionally, 34 of the 65 librar-
ies were enriched using targeted capture enrichment, for mammalian 
mitochondrial DNA using the PaleoChip Arctic1.0 bait-set31 and all 
libraries were hereafter sequenced on an Illumina HiSeq 4000 80 bp PE 
or a NovaSeq 6000 100 bp PE. We sequenced a total of 16,882,114,068 
reads which, after low complexity filtering (Dust = 1), quality trimming 
(q ≥ 25), duplicate removal and filtering for reads longer than 29 bp 

(only paired read mates for NovaSeq data) resulted in 2,873,998,429 
reads that were parsed for further downstream analysis. We next esti-
mated kmer similarity between all samples using simka32 (setting heuris-
tic count for max number of reads (-max-reads 0) and a kmer size of 31 
(-kmer-size 31)), and performed a principal component analysis (PCA) 
on the obtained distance matrix (see  Supplementary Information, 
‘DNA’). We hereafter parsed all QC reads through HOLI33 for taxonomic 
assignment. To increase resolution and sensitivity of our taxonomic 
assignment, we supplemented the RefSeq (92 excluding bacteria) and 
the nucleotide database (NCBI) with a recently published Arctic-boreal 
plant database (PhyloNorway) and Arctic animal database34 as well as 
searched the NCBI SRA for 139 genomes of boreal animal taxa (March 
2020) of which 16 partial-full genomes were found and added (Source 
Data 1, sheet 4) and used the GTDB microbial database version 95 as 
decoy. All alignments were hereafter merged using samtools and sorted 
using gz-sort (v. 1). Cytosine deamination frequencies were then esti-
mated using the newly developed metaDMG, by first finding the lowest 
common ancestor across all possible alignments for each read and 
then calculating damage patterns for each taxonomic level (https://
metadmg-dev.github.io/metaDMG-core/index.html) (Supplementary 
Information, section 6). In parallel, we computed the mean read length 
as well as number of reads per taxonomic node (Supplementary Infor-
mation, section 6). Our analysis of the DNA damage across all taxonomic 
levels pointed to a minimum filter for all samples at all taxonomic levels 
with a D-max ≥ 25% and a likelihood ratio (λ-LR) ≥ 1.5. This ensured that 
only taxa showing ancient DNA characteristics were parsed for down-
stream profiling and analysis and resulted in no taxa within any controls 
being found (Supplementary Information, section 6).

Marine eukaryotic metagenome
We sought to identify marine eukaryotes by first taxonomically 
labelling all quality-controlled reads as Eukaryota, Archaea, Bacte-
ria or Virus using Kraken 272 with the parameters ‘--confidence 0.5 -- 
minimum-hit-groups 3’ combined with an extra filtering step that only 
kept those reads with root-to-leaf score >0.25. For the initial Kraken 2 
search, we used a coarse database created by the taxdb-integration 
workflow (https://github.com/aMG-tk/taxdb-integration) covering 
all domains of life and including a genomic database of marine plank-
tonic eukaryotes73 that contain 683 metagenome-assembled genomes 
(MAGs) and 30 single-cell genomes (SAGs) from Tara Oceans74, follow-
ing the naming convention in Delmont et al.73, we will refer to them 
as SMAGs. Reads labelled as root, unclassified, archaea, bacteria and 
virus were refined through a second Kraken 2 labelling step using a 
high-resolution database containing archaea, bacteria and virus cre-
ated by the taxdb-integration workflow. We used the same Kraken 2 
parameters and filtering thresholds as the initial search. Both Kraken 
2 databases were built with parameters optimized for the study read 
length (--kmer-len 25 --minimizer-len 23 --minimizer-spaces 4).

Reads labelled as eukaryota, root and unclassified were hereafter 
mapped with Bowtie275 against the SMAGs. We used MarkDuplicates 
from Picard (https://github.com/broadinstitute/picard) to remove 
duplicates and then we calculated the mapping statistics for each 
SMAG in the BAM files with the filterBAM program (https://github.
com/aMG-tk/bam-filter). We furthermore estimated the postmor-
tem damage of the filtered BAM files with the Bayesian methods in 
metaDMG and selected those SMAGs with a D-max ≥ 0.25 and a fit 
quality (λ-LR) higher than 1.5. The SMAGs with fewer than 500 reads 
mapped, a mean read average nucleotide identity (ANI) of less than than 
93% and a breadth of coverage ratio and coverage evenness of less than 
0.75 were removed. We followed a data-driven approach to select the 
mean read ANI threshold, where we explored the variation of mapped 
reads as a function of the mean read ANI values from 90% to 100% and 
identified the elbow point in the curve (Supplementary Fig. 6.11.1). 
We used anvi’o76 in manual mode to plot the mapping and damage 
results using the SMAGs phylogenomic tree inferred by Delmont et al. 
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as reference. We used the oceanic signal of Delmont et al. as a proxy 
to the contemporary distribution of the SMAGs in each ocean and sea 
(Fig. 5 and Supplementary Information, section 6).

Comparison of DNA, macrofossil and pollen
To allow comparison between records in DNA, macrofossil and pollen, 
the taxonomy was harmonized following the Pan Arctic Flora check-
list42 and NCBI. For example, since Bennike (1990)18, Potamogeton has 
been split into Potamogeton and Stuckenia, Polygonym has been split 
to Polygonum and Bistorta, and Saxifraga was split to Saxifraga and 
Micranthes, whereas others have been merged, such as Melandrium with 
Silene39. Plant families have changed names—for instance, Gramineae is 
now called Poaceae and Scrophulariaceae has been re-circumscribed to 
exclude Plantaginaceae and Orobancheae77. We then classified the taxa 
into the following: category 1 all identical genus recorded by DNA and 
macrofossils or pollen, category 2 genera recorded by DNA also found 
by macrofossils or pollen including genus contained within family level 
classifications, category 3 taxa only recorded by DNA, category 4 taxa 
only recorded by macrofossils or pollen (Source Data 1).

Phylogenetic placement
We sought to phylogenetically place the set of ancient taxa with the 
most abundant number of reads assigned, and with a sufficient num-
ber of reference sequences to build a phylogeny. These taxa include 
reads mapped to the chloroplast genomes of the flora genera Salix, 
Populus and Betula, and to the mitochondrial genomes of the fauna 
families Elephantidae, Cricetidae, Leporidae, as well as the subfamilies 
Capreolinae and Anserinae. Although the evolution of the chloroplast 
genome is somewhat less stable than that of the plant mitochondrial 
genome, it has a faster rate of evolution, and is non-recombining, and 
hence is more likely to contain more informative sites for our analysis 
than the plant mitochondria78. Like the mitochondrial genome, the 
chloroplast genome also has a high copy number, so that we would 
expect a high number of sedimentary reads mapping to it.

For each of these taxa, we downloaded a representative set of either 
whole chloroplast or whole mitochondrial genome fasta sequences 
from NCBI Genbank79, including a single representative sequence from 
a recently diverged outgroup. For the Betula genus, we also included 
three chloroplast genomes from the PhyloNorway database34,80. We 
changed all ambiguous bases in the fasta files to N. We used MAFFT81 
to align each of these sets of reference sequences, and inspected mul-
tiple sequence alignments in NCBI MSAViewer to confirm quality82. We 
trimmed mitochondrial alignments with insufficient quality due to 
highly variable control regions for Leporidae, Cricetidae and Anserinae 
by removing the d-loop in MegaX83.

The BEAST suite48 was used with default parameters to create ultra-
metric phylogenetic trees for each of the five sets of taxa from the mul-
tiple sequence alignments (MSAs) of reference sequences, which were 
converted from Nexus to Newick format in Figtree (https://github.com/
rambaut/figtree). We then passed the multiple sequence alignments 
to the Python module AlignIO from BioPython84 to create a reference 
consensus fasta sequence for each set of taxa. Furthermore, we used 
SNPSites85 to create a vcf file from each of the MSAs. Since SNPSites 
outputs a slightly different format for missing data than needed for 
downstream analysis, we used a custom R script to modify the vcf for-
mat appropriately. We also filtered out non-biallelic SNPs.

From the damage filtered ngsLCA output, we extracted all readIDs 
uniquely classified to reference sequences within these respective 
taxa or assigned to any common ancestor inside the taxonomic group 
and converted these back to fastq files using seqtk (https://github.
com/lh3/seqtk). We merged reads from all sites and layers to create a 
single read set for each respective taxon. Next, since these extracted 
reads were mapped against a reference database including multiple 
sequences from each taxon, the output files were not on the same coor-
dinate system. To circumvent this issue and avoid mapping bias, we 

re-mapped each read set to the consensus sequence generated above 
for that taxon using bwa86 with ancient DNA parameters (bwa aln -n 
0.001). We converted these reads to bam files, removed unmapped 
reads, and filtered for mapping quality > 25 using samtools87. This pro-
duced 103.042, 39.306, 91.272, 182 and 129 reads for Salix, Populus, 
Betula, Elephantidae and Capreolinae, respectively.

We next used pathPhynder88, a phylogenetic placement algorithm 
that identifies informative markers on a phylogeny from a refer-
ence panel, evaluates SNPs in the ancient sample overlapping these 
markers, and traverses the tree to place the ancient sample accord-
ing to its derived and ancestral SNPs on each branch. We used the 
transversions-only filter to avoid errors due to deamination, except for 
Betula, Salix and Populus in which we used no filter due to sufficiently 
high coverage. Last, we investigated the pathPhynder output in each 
taxon set to determine the phylogenetic placement of our ancient 
samples (see supplementary information for discussion on phyloge-
netic placement).

Based on the analysis described above we further investigated the 
phylogenetic placement within the genus Mammut, or mastodons. To 
avoid mapping reference biases in the downstream results, we first built 
a consensus sequence from all comparative mitochondrial genomes 
used in said analysis and mapped the reads identified in ngsLCA as 
Elephantidae to the consensus sequence. Consensus sequences were 
constructed by first aligning all sequences of interest using MAFFT81 and 
taking a majority rule consensus base in Geneious v2020.0.5 (https://
www.geneious.com). We performed three analyses for phylogenetic 
placement of our sequence: (1) Comparison against a single representa-
tive from each Elephantidae species including the sea cow (Dugong 
dugon) as outgroup, (2) Comparison against a single representative 
from each Elephantidae species, and (3) Comparison against all pub-
lished mastodon mitochondrial genomes including the Asian elephant 
as outgroup.

For each of these analyses we first built a new reference tree using 
BEAST v1.10.4 (ref. 46) and repeated the previously described path-
Phynder steps, with the exception that the pathPhynder tree path analy-
sis for the Mammut SNPs was based on transitions and transversions, 
not restricting to only transversions due to low coverage.

Mammut americanum. We confirmed the phylogenetic placement 
of our sequence using a selection of Elephantidae mitochondrial 
reference sequences, GTR+G, strict clock, a birth-death substitution 
model, and ran the MCMC chain for 20,000,000 runs, sampling every 
20,000 steps. Convergence was assessed using Tracer89 v1.7.2 and an 
effective sample size (ESS) > 200. To determine the approximate age 
of our recovered mastodon mitogenome we performed a molecular 
dating analysis with BEAST46 v1.10.4. We used two separate approaches 
when dating our mastodon mitogenome, as demonstrated in a recent 
publication90. First, we determined the age of our sequence by compar-
ing against a dataset of radiocarbon-dated specimens (n = 13) only. 
Secondly, we estimated the age of our sequence including both mo-
lecularly (n = 22) and radiocarbon-dated (n = 13) specimens using the 
molecular dates previously determined90. We utilized the same BEAST 
parameters as Karpinski et al.90 and set the age of our sample with a 
gamma distribution (5% quantile: 8.72 × 104, Median: 1.178 × 106; 95% 
quantile: 5.093 × 106; initial value: 74,900; shape: 1; scale: 1,700,000). 
In short, we specified a substitution model of GTR+G4, a strict clock, 
constant population size, and ran the Markov Chain Monte Carlo chain 
for 50,000,000 runs, sampling every 50,000 steps. Convergence of 
the run was again determined using Tracer.

Molecular dating methods
In this section, we describe molecular dating of the ancient birch 
(Betula) chloroplast genome using BEAST v1.10.4 (ref. 46). In princi-
ple, the genera Betula, Populus and Salix had both sufficiently high 
chloroplast genome coverage (with mean depth 24.16×, 57.06× and 
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27.04×, respectively, although this coverage is highly uneven across 
the chloroplast genome) and enough reference sequences to attempt 
molecular dating on these samples. Notably, this is one of the reasons 
we included a recently diverged outgroup with a divergence time 
estimate in each of these phylogenetic trees. However, our Populus 
sample clearly contained a mixture of different species, as seen from 
its inconsistent placement in the pathPhynder output. In particular, 
there were multiple supporting SNPs to both Populus balsamifera 
and Populus trichocarpa, and both supporting and conflicting SNPs 
on branches above. Furthermore, upon inspection, our Salix sample 
contained a surprisingly high number of private SNPs which is incon-
sistent with any ancient or even modern age, especially consider-
ing the number of SNPs assigned to the edges of the phylogenetic 
tree leading to other Salix sequences. We are unsure what causes 
this inconsistency but hypothesize that our Salix sample is also a 
mixed sample, containing multiple Salix species that diverged from  
the same placement branch on the phylogenetic tree at different time 
periods. This is supported by looking at all the reads that cover these 
private SNP sites, which generally appear to be from a mixed sample, 
with reads containing both alternate and reference alleles present at 
a high proportion in many cases. Alternatively, or potentially jointly 
in parallel, this could be a consequence of the high number of nuclear 
plastid DNA sequences (NUPTs) in Salix91. Because of this, we contin-
ued with only Betula.

First, we downloaded 27 complete reference Betula chloroplast 
genome sequences and a single Alnus chloroplast genome sequence 
to use as an outgroup from the NCBI Genbank repository, and supple-
mented this with three Betula chloroplast sequences from the Phylo-
Norway database generated in a recent study29, for a total of 31 reference 
sequences. Since chloroplast sequences are circular, downloaded 
sequences may not always be in the same orientation or at the same 
starting point as is necessary for alignment, so we used custom code 
(https://github.com/miwipe/KapCopenhagen) that uses an anchor 
string to rotate the reference sequences to the same orientation and 
start them all from the same point. We created a MSA of these trans-
formed reference sequences with Mafft81 and checked the quality of our 
alignment by eye in Seqotron92 and NCBI MsaViewer. Next, we called 
a consensus sequence from this MSA using the BioAlign consensus  
function84 in Python, which is a majority rule consensus caller. We will 
use this consensus sequence to map the ancient Betula reads to, both 
to avoid reference bias and to get the ancient Betula sample on the 
same coordinates as the reference MSA.

From the last common ancestor output in metaDMG93, we extracted 
read sets for all units, sites and levels that were uniquely classified to the 
taxonomic level of Betula or lower, with at a minimum sequence similar-
ity of 90% or higher to any Betula sequence, using Seqtk94. We mapped 
these read sets against the consensus Betula chloroplast genome using 
BWA86 with ancient DNA parameters (-o 2 -n 0.001 -t 20), then removed 
unmapped reads, quality filtered for read quality ≥25, and sorted the 
resulting bam files using samtools86. For the purpose of molecular dat-
ing, it is appropriate to consider these read sets as a single sample, and 
so we merged the resulting bam files into one sample using samtools. 
We used bcftools86 to make an mpileup and call a vcf file, using options 
for haploidy and disabling the default calling algorithm, which can 
slightly biases the calls towards the reference sequence, in favour of a 
majority call on bases that passed the default base quality cut-off of 13.  
We included the default option using base alignment qualities95, which 
we found greatly reduced the read depths of some bases and removed 
spurious SNPs around indel regions. Lastly, we filtered the vcf file to 
include only single nucleotide variants, because we do not believe other 
variants such as insertions or deletions in an ancient environmental 
sample of this type to be of sufficiently high confidence to include in 
molecular dating.

We downloaded the gff3 annotation file for the longest Betula ref-
erence sequence, MG386368.1, from NCBI. Using custom R code96, 

we parsed this file and the associated fasta to label individual sites as 
protein-coding regions (in which we labelled the base with its position 
in the codon according to the phase and strand noted in the gff3 file), 
RNA, or neither coding nor RNA. We extracted the coding regions and 
checked in Seqotron92 and R that they translated to a protein align-
ment well (for example, no premature stop codons), both in the refer-
ence sequence and the associated positions in the ancient sequence. 
Though the modern reference sequence’s coding regions translated to 
a high-quality protein alignment, translating the associated positions 
in the ancient sequence with no depth cut-off leads to premature stop 
codons and an overall poor quality protein alignment. On the other 
hand, when using a depth cut-off of 20 and replacing sites in the ancient 
sequence which did not meet this filter with N, we see a high-quality 
protein alignment (except for the N sites). We also interrogated any 
positions in the ancient sequence which differed from the consensus, 
and found that any suspicious regions (for example, with multiple 
SNPs clustered closely together spatially in the genome) were removed 
with a depth cut-off of 20. Because of this, we moved forward only 
with sites in both the ancient and modern samples which met a depth 
cut-off of at least 20 in the ancient sample, which consisted of about 
30% of the total sites.

Next, we parsed this annotation through the multiple sequence 
alignment to create partitions for BEAST46. After checking how many 
polymorphic and total sites were in each, we decided to use four parti-
tions: (1) sites belonging to protein-coding positions 1 and 2, (2) coding 
position 3, (3) RNA, or (4) non-coding and non-RNA. To ensure that 
these were high confidence sites, each partition also only included 
those positions which had at least depth 20 in the ancient sequence 
and had less than 3 total gaps in the multiple sequence alignment. 
This gave partitions which had 11,668, 5,828, 2,690 and 29,538 sites, 
respectively. We used these four partitions to run BEAST46 v1.10.4, 
with unlinked substitution models for each partition and a strict clock, 
with a different relative rate for each partition. (There was insufficient 
information in these data to infer between-lineage rate variation from 
a single calibration). We assigned an age of 0 to all of the reference 
sequences, and used a normal distribution prior with mean 61.1 Myr and 
standard deviation 1.633 Myr for the root height47; standard deviation 
was obtained by conservatively converting the 95% HPD to z-scores.  
For the overall tree prior, we selected the coalescent model. The age of 
the ancient sequence was estimated following the overall procedures of  
Shapiro et al. (2011)97. To assess sensitivity to prior choice for this 
unknown date, we used two different priors, namely a gamma distribu-
tion metric towards a younger age (shape = 1, scale = 1.7); and a uniform 
prior on the range (0, 10 Myr). We also compared two different models 
of rate variation among sites and substitution types within each parti-
tion, namely a GTR+G with four rate categories, and base frequencies 
estimated from the data, and the much simpler Jukes Cantor model, 
which assumed no variation between substitution types nor sites within 
each partition. All other priors were set at their defaults. Neither rate 
model nor prior choice had a qualitative effect on results (Extended 
Data Fig. 10). We also ran the coding regions alone, since they trans-
lated correctly and are therefore highly reliable sites and found that 
they gave the same median and a much larger confidence interval, as 
expected when using fewer sites (Extended Data Fig. 10). We ran each 
Markov chain Monte Carlo for a total of 100 million iterations. After 
removing a burn-in of the first 10%, we verified convergence in Tracer89 
v1.7.2 (apparent stationarity of traces, and all parameters having an 
Effective Sample Size > 100). We also verified that the resulting MCC 
tree from TreeAnnotator46 had placed the ancient sequence phylo-
genetically identically to pathPhynder88 placement, which is shown 
in Extended Data Fig. 9. For our major results, we report the uniform 
ancient age prior, and the GTR+G4 model applied to each of the four par-
titions. The associated XML is given in Source Data 3. The 95% HPD was 
(2.0172,0.6786) for the age of the ancient Betula chloroplast sequence, 
with a median estimate of 1.323 Myr, as shown in Fig. 2.

176 KAP KØBENHAVN



Article

Reporting summary
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Portfolio Reporting Summary linked to this article.

Data availability
Raw sequence data is available through the ENA project accession 
PRJEB55522. Pollen counts are available through https://github.com/
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Code availability
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Within the last decade there has been an increasing focus on anaemia, iron 

deficiency and transfusion strategies leading to the concept of “patient blood 

management” (PBM), aiming at reducing the need for blood transfusions by 

preoperative optimisation of haemoglobin (Hb) and iron-status and use of intra- and 

postoperative restrictive transfusion protocols [1].  

When diagnosing preoperative anaemia most practitioners have adhered to the 

WHO guidelines which were developed in 1968 and use gender specific criteria of a 

Hb of < 130 g.l-1 for men and < 12 g.l-1 for women [2]. However, these thresholds are 

based on studies with less sophisticated laboratory end epidemiological techniques 

than presently available and are consequently under current revision [3]. 

Furthermore, it has been argued that the WHO definitions of anaemia may not apply 

to surgical patients, as the relative blood-loss is larger in women, potentially leading 

to increased risk of allogenic blood transfusions and morbidity when using a gender 

specific lower preoperative anaemia threshold [4-6]. 

In total hip (THA) and knee arthroplasty (TKA) it is internationally acknowledged that 

preoperative iron deficiency anaemia should be corrected by treatment with 

intravenous (i.v.) iron [7]. However, detailed knowledge of the Hb threshold to 

increase the risk of postoperative morbidity, indications for treatment and whether it 

differs in men and women is sparse. The aim of this secondary analysis was to 

investigate the influence of preoperative Hb level in a comprehensive machine-

learning model aimed at identifying patients at “high-risk” of medical complications 

leading to either a length of hospital stay of >4 days or 30-days readmission after an 

established fast-track THA and TKA [8]. While the primary study focused on 

comparing potential benefits of an overall machine-learning model in preoperative 

risk-prediction [9], this secondary analysis focus specifically on the influence of 

preoperative Hb level per se and potential differences according to gender and age. 
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We used a well-defined cohort of elective fast-track THA and TKA patients and 

evaluated the effect of preoperative Hb-level on the machine-learning model by 

SHAP-analysis which evaluates the individual effect of the variables included in a 

machine-learning model [10]. Furthermore, we assessed the distribution of Hb-levels 

and increases in risk-profile according to gender and age.  

From January 2017 to August 2017, we included 3913 patients with a median length 

of stay of 1 day.  Mean preoperative Hb was 154.8 (SD:15.12) but lower in women 

(149.4 vs. 162 g.l1: p<0.001) and there were 30.5% of women vs. 12.0% of men with 

a Hb of <130 g.l1 (p<0.001). SHAP-analysis demonstrated an immediate steep 

increase in the risk-score for medical complications with a preoperative Hb below 

147.6 g.l1, and irrespective of gender and age (figure 1). Finally, the median SHAP-

value of Hb-level was 0.35 (IQR:) in the patients with a Hb-level below 147.6 g.l1 

These results remained consistent regardless of analysing THA and TKA separately 

(online Supporting Information Figure S1a+b).  

Our analysis demonstrates that in a comprehensive machine-learning risk-model, the 

preoperative Hb threshold was the same in men and women for an increased risk of 

prolonged length of stay or readmissions due to medical issues after fast-track THA 

and TKA. The threshold value of 147.6 g.l1 is remarkably close to the 130 g.l1 

suggested for men in the current WHO guideline. Thus, the results of our study 

support the current WHO threshold for anaemia in men, but importantly also for 

removing gender specific Hb criteria for preoperative anaemia in women, at least in 

elective THA and TKA. Furthermore, the influence of preoperative Hb level < 147.6 

g.l1 was consistent regardless of age, supporting that the removal of gender specific 

criteria should apply to all patients. Finally, the effect of Hb level on the accumulated 

risk-score was clinically meaningful. Thus, figure 1, illustrates that preoperative Hb 

level contributed with SHAP-values of approximately 0.4 in patients with a Hb of 
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<147.6 g.l1. This corresponds with about 50% increased odds of being a high-risk 

patient. In contrast, in those with Hb-levels >147.6 g.l1 the odds of being high-risk 

patients decreased with about 15%.  

That gender specific Hb criteria may be inappropriate and need further 

consideration, has also been demonstrated in cardiac surgery, where women with a 

preoperative Hb of 120-129 g.l1 received more blood transfusions and had increased 

length of hospital stay compared to those with a Hb of >129 g.l1 [11]. That women 

with a preoperative Hb level of < 130 g.l1 may potentially benefit from iron-treatment 

prior to surgery was illustrated by a large study investigating preoperative Hb levels 

and iron deficiency in major elective surgery and finding similar incidence of iron 

deficiency in women with Hb < 130 g.l1 and < 120 g.l1 [12]. Our study has some 

limitations, including lack of information on perioperative blood-transfusions and 

potential use of preoperative i.v. iron. However, preoperative optimisation with i.v. 

iron was not standard in the participating departments, and even if some of the 

outcomes was due to transfusion-related morbidity it would not change the finding 

of similar SHAP-curves between men and women. Study strengths include well-

established fast-track protocols, detailed data on comorbidity and patient outcomes, 

a complete follow-up, and use of a sophisticated machine-learning model.  

In conclusion, from a machine-learning model in fast-track THA and TKA, a Hb 

threshold of 146.7 g.l1 was found to increase risk of impaired recovery, regardless of 

gender or age, thus calling for re-evaluation of preoperative anaemia risk criteria in 

the elective surgical setting. 
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Figure legend: 
 
Figure 1a+b 
SHapley Additive exPlanations (SHAP) curves for preoperative haemoglobin level in in 
relation to preoperative risk-stratification according to the machine-learning 
algorithm. Each dot indicates a patient with the colour indicating age (increasing 
from blue to red). Increasing SHAP values indicate increasing risk-score and 
decreasing values a decreased risk-score. The cut-off for going from a negative to a 
positive SHAP-value is indicated by the dotted line at a preoperative Hb level of 147.6 
g.l1   

 

 
Supplemental material 
Figure 1a+b 
SHapley Additive exPlanations (SHAP) curves for preoperative haemoglobin level in in 
relation to preoperative risk-stratification according to the machine-learning 
algorithm for total hip (1a) and total knee arthroplasty (1b), respectively. Each dot 
indicates a patient with the colour indicating age (increasing from blue to red). 
Increasing SHAP values indicate increasing risk-score and decreasing values a 
decreased risk-score. The cut-off for going from a negative to a positive SHAP-value is 
indicated by the dotted line at a preoperative Hb level of 147.6 g.l1   
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Figure 1 a+b 
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Supplemental figure 1a  
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Supplemental figure 1b  
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december 2020 – Effekten af kontaktopsporing” (Statens Serum Institut,
2020).

The report is from December 10, 2020 and is a summary on the effect of contact
tracing related to COVID-19 in Denmark. The report is in Danish and is based on
two agent based models, one from DTU and our model from NBI.
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 Side 3 

1. Sammenfatning og konklusion 
 

I indeværende rapport har modelgruppen for matematisk modellering af COVID-19 estimeret 

hvilke delelementer af kontaktopsporing, som er afgørende for at opnå størst mulig effekt af kon-

taktopsporing af nære kontakter til COVID-19 smittede personer.  

Rapporten præsenterer resultater fra to forskellige agentbaserede modeller, som er udviklet af 

eksperter fra Danmarks Tekniske Universitet (DTU) og Københavns Universitet, Niels Bohr In-

stituttet (NBI). 

En agentbaseret model gør det muligt at modellere enkelte tiltag og deres effekt på smittespred-

ningen af COVID-19. Forudsætningen for en præcis simulation er, at der er tilgængelige data, som 

kan informere modellen. Der er flere parametre, hvor der i nærværende arbejder er lavet antagel-

ser på basis af de tilgængelige oplysninger. Det forventes, at nogle af disse kan belyses efterhånden 

som yderligere data frembringes. Hvor der ikke er specifikke eller komplette data, vil en agentba-

seret model have unøjagtigheder eller risikere at være baseret på antagelser, som ikke nødvendig-

vis er retvisende. I modellerne anvendes der endvidere ens ventetidsfordelinger for alle agenter, 

selvom der i realiteten kan være lokale udsving i ventetider.    

Sundhedsstyrelsen udkom d. 23. november 2020 med opdaterede retningslinjer for smitteopspo-

ring af nære kontakter, herunder en udvidet definition af nære kontakter. Indeværende rapport 

er udviklet i henhold til de tidligere retningslinjer, og tager ikke højde for disse ændringer.  

Der er i rapporten heller ikke taget højde for den stigende brug af private antigen test. Coronaop-

sporingen under STPS foretager også opsporing af nære kontakter, for primærtilfælde som er te-

stet positiv for COVID-19 på sådanne antigen test.  

Konklusion 

Modellerne peger på, at den største reduktion i kontakttallet kan nås ved effektiv opsporing for 

flest mulige primærtilfælde. Gevinsten i form af en reduktion i kontakttallet er således større, så-

fremt der sikres effektiv opsporing for samtlige primærtilfælde, relativt til reduktionen i kontakt-

tallet, som kan opnås ved at nedbringe ventetiden til test og testsvar for primærtilfældet.  

Ventetiden til test og testsvar for et primærtilfælde med COVID-19, har stor betydning for den 

reduktion af kontakttallet, som kan opnås gennem kontaktopsporing. De to uafhængigt udviklede 

modeller fra hhv. DTU og NBI finder begge, at for hver dag ventetiden til test og testsvar forsinkes 

for primære tilfælde, stiger kontakttallet med 4%. DTU-modellen finder endvidere, at ventetiden 

til et primærtilfælde booker en test og samtidig går i isolation har stor betydning for reduktionen 

i kontakttallet. 

Modellerne viser endvidere, at med de anvendte ventetidsfordelinger, vil størstedelen af de nære 

kontakter som opspores, bliver testet så sent, at det er en mindre del af smitten, som forhindres. 

Det er derfor vigtigt at opspore nære kontakter hurtigst muligt efter eksponering, så de kan isole-

res og blive testet på dag 4 og 6. Dette vil igen afhænge af den samlede ventetid til test og testsvar 

for primærtilfældet, som er forudsætningen for at opsporingen af nære kontakter kan initieres.  

Den agentbaserede model fra NBI finder, at der er yderligere gevinst at hente ved at opspore nære 

kontakter i de netværk en person indgår i uden for husstand, job og skole. Det skyldes, at relativt 

få kontakter uden for husstand, job og skole opspores, og at disse kontakter ofte starter nye smit-

tekæder i ikke ellers relaterede netværk. En bredere smitteopsporing har den fordel, at den po-

tentielt finder de nye smittede, som ikke udviser symptomer. 
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2. Formål og baggrund 
 

2.1 Formål og baggrund for modelgruppen  

Statens Serum Institut indgår i det operationelle beredskab for smitsomme sygdomme og yder 

rådgivning og bistand til regeringen i forbindelse med den aktuelle pandemi. Som en del af denne 

opgave har Statens Serum Institut nedsat og leder en ekspertgruppe, der har til formål at udvikle 

matematiske modeller til at belyse udviklingen i COVID-19 i Danmark. Medlemmerne af ekspert-

gruppen fremgår af bilag 5.  

 

Ekspertgruppens modellering var i foråret 2020 baseret på en populationsmodel, der har fokus 

på den gennemsnitlige adfærd i befolkningen. Populationsmodellen er bedst egnet, når udviklin-

gen beskrives godt ved gennemsnittet. Derimod er populationsmodellen ikke det bedste værktøj 

til at beskrive de stokastiske hændelser i lokale udbrud, som aktuelt driver smittespredningen af 

COVID-19 i Danmark.  

Siden sommeren 2020 har modelgruppen derfor udviklet to agentbaserede modeller, som er plat-

formen for de analyser, modelgruppen forventes at levere i den kommende periode. De agentba-

serede modeller kan, modsat en populationsmodel, estimere effekten ved enkelte tiltag, såsom 

effekten ved at nedbringe forsamlingsforbuddet, eller effekten af kontaktopsporing.  

  

2.2 Formål med rapporten 

Opsporingen af nære kontakter, foretaget af Styrelsen for Patientsikkerhed (STPS), er løbende 

udbygget i Danmark siden foråret 2020. Opgaven er vokset betydeligt i takt med, at det daglige 

antal nye COVID-19 tilfælde stiger, som følge af både en opblussen af epidemien, men også af, at 

testkapaciteten i Danmark er væsentligt udbygget hen over sommeren. Der testes aktuelt omkring 

70.000 personer dagligt.  

Formålet med denne rapport er at belyse, hvilke faktorer der er afgørende for at sikre en effektiv 

kontaktopsporing. Dette belyses ved at estimere effekten af centrale elementer i kontaktopspo-

ringen, såsom ventetid til test og testresultat hos primærtilfældet, samt ventetid til at nære kon-

takter bliver opsporet og testet.  
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3. Opsporing og håndtering af nære kontakter i 

Danmark 
 

3.1 Forudsætninger for en effektiv kontaktopsporing 

Den vigtigste forudsætning for, at kontaktopsporing er et effektivt redskab til at nedbringe smit-

ten med COVID-19 er, at der til hver en tid identificeres flest mulige smittede personer, som der 

derved kan udføres smitteopsporing for. Jo lavere mørketallet er, desto flere vil kunne smitteop-

spores. Det er derfor afgørende, at der sikres nem og hurtig adgang til test, først og fremmest for 

personer med COVID-19 lignende symptomer, men også for øvrige personer, der kunne have mis-

tanke om at være smittet med COVID-19. Den Nationale Prævalensundersøgelse i Danmark har 

vist, at op mod 40-50% af dem, som havde antistoffer mod SARS-CoV-2 i blodet, ingen erindring 

havde om at have haft COVID-19 lignende sygdom1. Ved at udbyde adgang til test for flest mulige 

personer, vil man også finde flere asymptomatiske smittebærere.  

 

3.2 Definition af en nær kontakt 

Sundhedsstyrelsen udkom d. 23. november 2020 med opdaterede retningslinjer for smitteop-

sporing af nære kontakter. Indeværende rapport er udviklet i henhold til de tidligere retnings-

linjer.  

Der er således ikke taget højde for den udvidede definition af nære kontakter, eller indførslen af 

screeningsprøver for personer, som ikke umiddelbart opfylder kriteriet for nære kontakter, men 

som har været eksponeret i et omfang hvor der tilrådes en screeningstest.   

Kontaktopsporingen af nære kontakter baserer sig på, at personer der testes positiv for COVID-

19 isolerer sig, og dernæst at nære kontakter til den smittede opspores, isoleres og testes, for der-

ved at afbryde smittekæder hurtigst muligt.  

Definitionen af en nær kontakt er beskrevet i Sundhedsstyrelsens rapport om smitteopsporing af 

nære kontakter2. 

En nær kontakt er defineret som en af følgende personer: 

 En person der bor sammen med en, der har fået påvist COVID-19 

 En person der har haft direkte fysisk kontakt (fx kram) med en, der har fået påvist CO-

VID-19  

 En person med ubeskyttet og direkte kontakt til smittefarlige sekreter fra en person der 

har fået påvist COVID-19 

 En person der har haft tæt “ansigt-til-ansigt" kontakt inden for en 1 meter i mere end 15 

minutter (fx i samtale med personen) med en, der har fået påvist COVID-19 

 Sundhedspersonale og andre som har deltaget i plejen af en patient med COVID-19, og 

som ikke har anvendt værnemidler på de forskrevne måder 

 

 

                                                      
1 https://www.ssi.dk/-/media/arkiv/dk/aktuelt/nyheder/2020/notat---covid-19-prvalensundersgel-
sen.pdf?la=da 
2 https://www.sst.dk/da/Udgivelser/2020/COVID-19-Smitteopsporing-af-naere-kontakter 
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3.3 Periode for smitteopsporing 

Der foretages smitteopsporing for perioden, hvor primærtilfældet vurderes at være smitsom. 

Smitteperioden er således afgrænset til 48 timer før symptomdebut til 48 timer efter symptom-

ophør. For primære tilfælde der ikke har symptomer på COVID-19, er den smitsomme periode 

afgrænset til 48 timer før positiv test til 7 dage efter.  

 

3.4 Opsporing af nære kontakter 

Nære kontakter til en person der er smittet med COVID-19 kan opspores på følgende måder: 

 De bliver kontaktet af STPS’s Coronaopsporingen 

 De bliver kontaktet ifm. kendte udbrud, eksempelvis på skoler 

 De bliver kontaktet direkte af primærtilfældet 

 De bliver notificeret om, at de har været tæt på en smittet person via appen Smitte|Stop  

 

Nære kontakter opsporet af Coronaopsporingen 

Coronaopsporingen under STPS kontakter smittede mhp. at hjælpe med at identificere og op-

spore nære kontakter til den smittede. Smittede kan også vælge selv at iværksætte opsporing af 

nære kontakter, og henvise dem til Coronaopsporingen, hvor de nære kontakter vil modtage råd-

givning om, hvornår de bør testes, samt får adgang til at booke test på de pågældende dage.  

Aktivitetsrapporter fra STPS viser, at der i hele opsporingsperioden i gennemsnit opspores ca. 5 

nære kontakter for hvert primærtilfælde, der foretages kontaktopsporing for. Dette er et samlet 

gennemsnit for opsporede nære kontakter som STPS opsporer, og som primærtilfældet selv op-

sporer. 

Til sammenligning er det estimeret i HOPE-projektet, at danskere henover sommeren i gennem-

snit havde ca. 11 kontakter dagligt. Dette antal er nu faldet til ca. 7 kontakter dagligt, som opfylder 

kriterierne for en nær kontakt, se bilag 4. 

Det skal dog pointeres, at Coronaopsporingen ikke er involveret i opsporing af nære kontakter i 

relation til udbrud i dagtilbud, skoler, plejehjem og hospitaler. Der vil der være opsporede kon-

takter fra sådanne udbrud, som kontakter Coronaopsporingen for at få rådgivning om hvilke dage 

de bør testes, samt for at få rekvisitioner til booking af test på de pågældende dage.  

 

Nære kontakter anbefales at blive testet på dag 4 og dag 6 efter vurderet eksponering. Dette rela-

terer sig til latenstiden, som er perioden fra, at man bliver smittet, til at man er smitsom, og virus 

kan påvises. En person som er opsporet som nær kontakt til en smittet skal ifølge Sundhedssty-

relsens retningslinjer gå i selv-isolation, indtil der foreligger testsvar. Såfremt der foreligger et 

negativt testresultat på dag 4, kan den nære kontakt bryde isolationen, men skal fortsat testes på 

dag 6. Hvis testresultatet på dag 4 derimod er positivt, skal den nære kontakt ikke testes igen på 

dag 6, men forblive i isolation indtil 48 timer efter symptomophør.  

 

Nære kontakter der ikke opspores af Coronaopsporingen 

Der vil være nære kontakter, der ikke opspores og rådgives via Coronaopsporingen. Dette kunne 

fx være nære kontakter, der bliver opsporet af primærtilfældet selv, og som vælger at booke test 

på coronaprover.dk uden først at have rådført sig med Coronaopsporingen. Det kunne også være 

personer, som er opsporet via appen Smitte|Stop, eller personer der mener, at de på anden vis 
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kan være nære kontakter til en smittet – uden nødvendigvis at opfylde kriteriet for at være en nær 

kontakt.  

I oktober måned blev der i alt testet 1.091.966 personer. Heraf havde 62% (n = 675.623) bestilt 

tid på coronaprover.dk. Blandt disse svarede 58% (n = 391.146) på spørgeskemaet på coronapro-

ver.dk, hvoraf 25% (n = 99.389) anførte, at de blev testet fordi, de var nær kontakt til en smittet 

(herunder personer som er adviseret af Smitte|Stop app). Kun 13% (n = 12.706) af dem som sva-

rede, at de blev testet fordi de var nær kontakt til en smittet, var testet på én af de rekvisitionsko-

der, som der anvendes i Coronaopsporingen (Tabel 1). Samlet set blev 45.616 personer testet på 

én af de rekvisitionskoder som anvendes i Coronaopsporingen i oktober måned, hvor test-posi-

tivprocenten var ca. 4%. Til sammenligning var positivprocenten for de personer, der svarede, at 

de var nær kontakt til en smittet på Coronaprover.dk omkring 2,5 %. Dette indikerer at Corona-

opsporingen har større succes med at opspore de korrekte nære kontakter, sammenlignet med 

hvis befolkningen selv booker test som nær kontakt, uden forudgående rådgivning fra Coronaop-

sporingen. 

  

Tabel 1. Oversigt over antal testede i oktober måned 2020. 
 Oktober 

 Testpositive (1. test) 
N n % 

Testede personer 1.091.966 14.723 1,35 
Total antal tests rekvireret via Coronaopsporingen 45.616 1.941 4,26 
Bestilt på coronaprøver.dk 675.623 10.335 1,53 
 Svaret på spørgeskema 391.146 5.387 1,38 
 Ja, nær kontakt til smittet (herunder adviseret  
 på Smitte|Stop app) 

99.389 2.544 2,56 

 Rekvireret test via Coronaopsporingen 12.706  524 4,12 

 

 

 

 

  

198 SSI EKSPERTRAPPORT



 

 Side 8 

4. Agentbaserede modeller 
 

4.1 Om agentbaserede modeller 

I indeværende rapport er resultaterne for effekten af kontaktopsporing frembragt fra to forskel-

lige agentbaserede modeller, som er udviklet på henholdsvis Danmarks Tekniske Universitet 

(DTU) og Niels Bohr Instituttet, Københavns Universitet (NBI).  

En agentbaseret model simulerer et antal agenter (individer i en population) og deres interaktio-

ner med andre agenter, svarende til de interaktioner som en befolkning normal vis har. Hver 

agent er således en person, som er knyttet til en lokation i Danmark, svarende til deres bopæl., 

Agenterne indgår i flere forskellige netværk, f.eks. husstand, job og skole hvor de har kontakt til 

andre personer. Desuden har de andre kontakter til tilfældige personer i samfundet i den tid, hvor 

personen ikke er hjemme, på job eller i skole.  

Hvis en agent bliver smittet med SARS-CoV-2, er forløbet for den enkelte agent beskrevet således, 

at agenten først er eksponeret (E) og derefter infektiøs (I), hvorefter agenten ikke længere er smit-

som og betragtes som rask (R). De gennemsnitlige tider i hvert sygdomsstadie kan findes i bilag 1 

og 2. 

Hver kontakt som en agent eksponeres for tildeles en sandsynlighed for at blive smittet af en an-

den agent, hvis denne er smitsom. Sandsynligheden er sat til et niveau, som afspejler den nuvæ-

rende situation med et kontakttal omkring 1. 

Ud fra de ovenstående generelle antagelser simuleres en epidemi. For en mere detaljeret beskri-

velse af de agentbaserede modeller, herunder de inkluderede parametre, henvises til bilag 1 (NBI) 

og 2 (DTU). 

 

4.2 Forbehold 

Mens en agentbaseret model kan medtage mere detaljerede dynamikker i en epidemi, så kræver 

en præcis simulation input fra data, som ofte ikke er tilgængelige eller forefindes, fx hvem en 

person mødes med i løbet af en dag. Derfor kan en sådan model have unøjagtigheder eller bygge 

på antagelser, som ikke er retvisende. Det er ikke muligt at kvantificere den nøjagtige størrelse 

eller effekt af disse potentielle fejlkilder.   
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5. Resultater 
 

5.1 Resultater fra den agentbaserede model udviklet af Niels Bohr Instituttet, Kø-

benhavns Universitet.  

Modelkørslerne viser, at når 80% af de sekundære tilfælde i netværkenes husstande, arbejde og 

skole opspores, vurderes det, at ville nedsætte kontakttallet med omkring 30% sammenlignet med 

et hypotetisk scenarie uden opsporing af nære kontakter. Dette fremgår af figur 1. Hvis det af 

logistiske eller kapacitetsmæssige årsager ikke lykkedes at kontakte alle nye COVID-19 tilfælde, 

vil det betyde en forøgelse af kontakttallet i proportion til dette tal. Dvs. hvis opsporingen ikke 

kommer i kontakt med 20% af nye COVID-19 tilfælde, vil man potentielt miste 6 procentpoint 

(0.2 x 0.3 = 0.06) af reduktionen i kontakttallet, som ellers kunne opnås ved kontaktopsporing.  

 

Ventetiden fra at et primærtilfælde ønsker en COVID-19 test (fx hvis man har symptomer), til at 

vedkommende har modtaget resultatet fra en test har indflydelse på effekten af både selvisolation 

og kontaktopsporing. Ved en række simulationer med forskellige antagelser finder modellen, at 

for hver dag man forkorter tiden mellem bestilling af test og testresultat mindskes kontakttallet 

med omkring 4%. Effekten er lidt større ved højere kontakttal end 1.  

 

Effekten af kontaktopsporing kan øges ved at opspore flere i netværket af øvrige kontakter (ud 

over husstand og job og skole). Den agentbaserede model viser, at hvis man opsporer 25% af øv-

rige kontakter, vil kontakttallet falde med omkring 10%. En mere komplet kontaktopsporing (evt. 

yderligere hjulpet af apps på mobiltelefoner) vil således nedsætte kontakttallet væsentligt. Tilsva-

rende resultater er fundet i lignende modeller (Plank et al. (september 2020) og Kretzschmar et 

al. (august 2020)). 
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Figur 1: A) Simuleret model, hvor hver kørsel (markeret med samme farve) gentages 10 gange 

for forskellige værdier af tiden fra symptom til svar. B) Værdien af kontakttallet estimeret på 

forskellige tidspunkter i simulationen vist i A). Den lineære sammenhæng giver en værdi for 

hvor mange procent kontakttallet sænkes for hver dag, man gør opsporingen hurtigere. C) 

Samme som A, men her for forskellige værdier af hvor mange man opsporer blandt øvrige kon-

takter D) Samme som B) men som funktion af hvor mange man opsporer blandt øvrige kontak-

ter. 

 

5.2 Resultater fra den agentbaserede model udviklet af DTU Compute, Danmarks 

Tekniske Universitet 

Denne agentbaserede model er baseret på tilhørsforhold til grupper (hjem, arbejdsplads, m.fl.). 

Modellen indeholder en række ventetider fra et primærtilfælde får symptomer til sekundære til-

fælde er opsporet. Modellen er nærmere beskrevet i bilag 2. Modellen er kørt med en række for-

skellige kombinationer af parametre. For hver kombination er der lavet 40 gentagelser for at illu-

strere variabiliteten. For hver gentagelse simuleres 30 dage som en transient, hvorefter kontakt-

tallet estimeres baseret på de efterfølgende 30 dage. 

De to parametre, som betyder mest for effekten af kontaktopsporingen, er den gennemsnitlige 

ventetid fra en smittet får (milde) symptomer til at denne går i isolation og samtidig bestiller en 

test, samt andelen af kontakter som personen reducerer i perioden fra der bestilles en test til der 

foreligger et testsvar – det antages, at nære kontakter som opspores opretholder samme grad af 

isolation som andre, der venter på testsvar, hvilket vil sige, at nære kontakter går i isolation fra de 

bliver notificeret og indtil de får svar på deres første test. 

 

Figur 2: Kontakttallets afhængighed af den gennemsnitlige tid fra at primærtilfældet har symp-

tomdebut til der bestilles en test og personen går i en grad af isolation. For hver parameterværdi 

er der foretaget 40 simulationer, og boxplottet viser median, de indre kvartiler samt minimum 

og maksimum af disse. 
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På figur 2 ses en klar effekt af tiden fra symptomdebut til isolation og samtidig bestilling af test. 

For hver dag den gennemsnitlige person går hurtigere i (delvis) isolation estimeres det, at kon-

takttallet reduceres med 0,04 (når referencen er et kontakttal omkring 1).  

Modellen viser også, at omkring 25% af alle test positive, er fundet gennem kontaktopsporing. 

Det er her antaget, at der udføres kontaktopsporing for alle tilfælde (Se detaljer i bilag 2), samt at 

test af nære kontakter bestilles på de foreskrevne tidspunkter. Endvidere viser modellen, at over 

halvdelen af alle smittede aldrig bliver testet positiv (både falsk negative test og asymptomatiske 

tilfælde). Disse starter derfor nye smittekæder uden forudgående opsporing. Dette kan være år-

sagen til, at det kun er 25% som findes gennem kontaktopsporing. 

 

Figur 3. Antal opsporede og smittede i hvert sygdomsstadier, når de får foretaget hhv. første og 

anden test i opsporingsprocessen. Der er flere, som ikke kommer til anden test, bl.a. fordi de 

tester positiv i første test eller efter negativt testsvar vælger ikke at få taget den opfølgende test. 

Derudover vil der være en andel, hvor kontaktopsporingen er initieret sent, således at det kun 

er foreskrevet at teste personen én gang.  

 

Figur 3 beskriver de forskellige sygdomsstadier for smittede personer, som er opsporet som nære 

kontakter. Det ses, at en betydelig andel af de opsporede personer, med de i modellen anvendte 

ventetidsfordelinger, på tidspunktet for opsporingen allerede har overstået deres infektiøse peri-

ode, når de testes første gang – en del af disse vil være smittet tidligere og ikke i forbindelse med 

den nærværende kontaktopsporing. I praksis vil nogle af disse teste positiv, da qPCR kan detek-

tere virus 17 dage efter symptomdebut (Cevik et al., 2020). Desuden ses det, at personer i det 

præsymptomatiske stadie - hvor ca. halvdelen af smitten sker - kun udgør en lille andel af de op-

sporede smittede personer ved både første og anden test. Ved begge test er det således under halv-

delen af dem, som er smittede, som reelt er infektiøse. Kontaktopsporingen vil derfor kunne op-

timeres yderligere, hvis man identificerer flere nære kontakter i den præsymptomatiske fase. 

Dette kan ske ved at nedbringe ventetiden fra symptomdebut til testsvar for primærtilfældet. 

Personer, som tidligere er testet positiv er ikke medtaget her og bidrager derfor ikke til antallet af 

raske. Endvidere vil personer som modtager et positivt testresultat på deres første opsporingstest 

ikke få foretaget anden opsporingstest. Ovenstående diagrammer er produceret på baggrund af 

referenceparametrene som beskrevet i bilag 2.  

202 SSI EKSPERTRAPPORT



 

 Side 12 

Graden hvorved en smittet person isolerer sig, dvs. hvor stor en andel af ens kontakter man redu-

cerer i perioden fra bestilling af test til testsvar, har stor betydning for kontakttallet. Reference-

værdien antages at være 50% reduktion i antallet af kontakter i denne periode. Som det fremgår 

af figur 4 så opnås der i modellen en reduktion i kontakttallet på knap 0,04 for hver 10 procent-

point graden af isolation øges, hvis der udføres kontaktopsporing (rød og grøn). Mens reduktio-

nen er på 0,03 når der ikke udføres kontaktopsporing (blå). Således har andelen af kontakter, der 

reduceres hos primærtilfældet og opsporede nære kontakter i ventetiden fra bestilling af test til 

testsvar, større betydning for en reduktion i kontakttallet, end en reduktion i ventetiden til op-

sporing af nære kontakter.  

 

Figur 4. Kontakttallets afhængighed af andelen af kontakter et primærtilfælde og opsporede 

nære kontakter reducerer, i ventetiden fra der bestilles en test til at testsvar foreligger, samt 

betydningen af ventetiden til at en nær kontakt opspores og går i tilsvarende isolation. For hver 

parameterværdi er der foretaget 40 simulationer og boxplottet viser median, de indre kvartiler 

samt minimum og maksimum af disse. 

  

203



 

 Side 13 

6. Referencer 
 
Cevik, M., Kuppalli, K., Kindrachuk, J. & Peiris, M. (2020). Virology, transmission, and patho-

genesis of SARS-CoV-2. The BMJ. Lokaliseret: http://dx.doi.org/10.1136/bmj.m3862  

 

Kretzschmar, M., Rozhnova, G., Bootsma, M., van boven, M., Wijgert, J & Bonten, M. (2020). 

Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. 

The Lancet Public Health. Lokaliseret: https://doi.org/10.1016/S2468-2667(20)30157-2  

 

Kucirka, Lauren M., Stephen A. Lauer, Oliver Laeyendecker, et al., (2020). Variation in False-

Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests 

by Time Since Exposure. Annals of Internal Medicine. Lokalseret: 

https://doi.org/10.7326/M20-1495  

 

Plank, M., James, A., Lustig, A., Steyn, N., Binny, R. & Hendy, S. (2020). Potential reduction in 

transmission of COVID-19 by digital contact tracing systems. MedRxiv. Lokaliseret: 

https://doi.org/10.1101/2020.08.27.20068346 

 

 

  

204 SSI EKSPERTRAPPORT



 

 Side 14 

Bilag 1. Beskrivelse af den agentbaserede model 

fra Niels Bohr Instituttet 
Bidrag og udvikling: Christian Michelsen, Emil Martiny, Tariq Halasa, Mogens H. Jensen, Tro-

els C. Petersen og Mathias L. Heltberg 

 

Den agentbaserede model fra NBI baseres på agenter, dvs. individer hvis karakteristika er tildelt 

ud fra statistiske fordelinger i befolkningen. Dette er f.eks. en aldersfordeling og en fordeling over 

pendlerafstande. Modellen starter med at fordele Danmarks bopæle ud i landet baseret på det 

danske hussalg over de sidste 15 år. Herefter placeres agenter i hver husstand baseret på deres 

alder og geografiske placering.  

Figur 5: A) Skematisk oversigt over hvordan interaktionsnetværket i modellen ser ud. B) Ek-

sempel på simulation af smittespredning i Danmark i modellen, gennem et simuleret tilfælde af 

flokimmunitet i København. 

 

Et afgørende element i modellen er opbygningen af alle personers interaktionsnetværk. Dette ge-

nereres ved, at hver agent har et netværk, de interagerer med. Dette opdeles i tre dele: 1) kontakter 

i hjemmet, 2) kontakter på arbejdet, 3) kontakter i kategorien andre kontakter. Der er ikke nogen 

geografisk afhængighed af antallet af kontakter på arbejdet, men i den kategori der kaldes “andre”, 

vil der generelt være flere kontakter for dem der bor i tæt befolkede områder i forhold til dem der 

bor på landet. Måden hvorpå netværket dannes er vist i Figur 5A. 

Ud fra data fra HOPE-projektet har vi estimeret, hvor mange personer hver agent vil interagere 

med, og i denne model vil alle agenter have mellem 3 og 15 daglige kontakter. 

Når modellen simuleres vil alle inficerede agenter gennemgå et forløb, hvor de er i en latent peri-

ode, hvor de ikke smitter, hvorefter de vil rykke over i en infektiøs periode, hvor de kan smitte 

agenter i deres netværk. Denne model simuleres ud fra det der kaldes Gillespie algoritmen, såle-

des at netværket opdateres instantant for alle smittebegivenheder. En samling af de væsentligste 

parametre er vist herunder (Tabel 2). 

 

 

205



 

 Side 15 

Tabel 2: Parametre i modellen. 

Parameter Værdi in-

terval for 

middel-

værdien 

Reference 

Antal kontakter per dag 3-15 HOPE projektet 

Latent tid (dage) 3-5 Litteratur se referenceliste i bilag 5 

Infektiøs tid (dage) 4-8 Litteratur se referenceliste i bilag 5 

Andel af kontakter i “andre” (%) 30-80 HOPE projektet 

Typisk afstand mellem kontakter (km) 5-20  Trafik data 

Andel afstandsuafhængige kontakter (%) 3-5 Trafik data 

Tid fra symptom til test (Dage) 0-2 Fordeling fra spørgeskemaundersø-

gelse i foråret 2020 (ikke offentlig-

gjort) 

Sandsynlighed for at få symptomer og blive testet (%) 20-60 % Prævalensundersøgelsen 

Sandsynlighed for at kontakte husstand (%) 100% Antagelse 

Sandsynlighed for at kontakte kollegaer (%) 40-80 Antagelse 

Sandsynlighed for at kontakte andre (%) 0-75  Antagelse 
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Bilag 2. Beskrivelse af den agentbaserede model 

fra DTU 
Bidrag og udvikling: Freja Terp Petersen, Jacob Bahnsen Schmidt, Kasper Telkamp Nielsen, 

Rebekka Quistgaard-Leth, Kaare Græsbøll og Lasse Engbo Christiansen 

 

Den agentbaserede model fra DTU baseres på en befolkningstabel, hvor hver række i tabellen 

svarer til en agent - eller et individ – og hver kolonne indeholder data, der beskriver den pågæl-

dende agent, herunder aldersgrupper med 5 års-intervaller, bopælskommune, netværks-ID og 

forskellige smitteparametre.  

I sygdomsmodellen bæres smitten fremad ved, at agenter der deler netværks-ID, f.eks. hushold-

nings-ID, skole/job-ID eller omgangskreds-ID, kan smitte hinanden. Hver dag får alle agenter 

udregnet deres sandsynlighed for at blive smittet på baggrund af antal infektiøse i deres forskel-

lige netværk og på baggrund af deres individuelle antal nære kontakter, som de er blevet tildelt 

baseret på en fordeling fra totalt antal kontakter inden for 1m i HOPE projektet.  

Der er 7 forskellige netværkstyper, som en agent kan være en del af: 

 Husholdning (alle agenter har en husholdning) 

 Daginstitution (børn mellem 0 og 4 år) 

 Grundskole (børn mellem 5 og 14 år) 

 Ungdomsuddannelse (unge mellem 15-24 år samt voksne på erhvervsuddannelser) 

 Arbejdsplads med kontorinddelinger (voksne op til 65 år) 

 Omgangskreds (alle agenter har en omgangskreds) 

 Kommune (alle agenter har en kommune) 

Agenterne er blevet tildelt netværk baseret på data fra Danmarks Statistik (husholdninger og ar-

bejdspladser), Undervisningsministeriet (grundskoler og ungdomsuddannelser) samt Institu-

tion.dk (daginstitutioner).3 Det antages i modellen, at den gennemsnitlige kontorstørrelse og den 

gennemsnitlige omgangskreds uden for skole og arbejde er på 8 personer.  

 

                                                      
3 FAM122N: https://www.statistikbanken.dk/FAM122N  
FAM133N: https://statistikbanken.dk/FAM133N 
FAM55N: https://statistikbanken.dk/FAM55N 
PEND100: https://www.statistikbanken.dk/PEND100 
ERHV6: https://www.statistikbanken.dk/ERHV6 
UVM (Normering grundskoler): https://uddannelsesstatistik.dk/Pages/Reports/1577.aspx 
UVM (Normering gymnasier): https://uddannelsesstatistik.dk/Pages/Reports/1851.aspx 
UVM (Normering erhvervsuddannelse): https://uddannelsesstatistik.dk/Pages/Reports/1850.aspx 
Daginstitutioner: https://www.institutioner.dk/ 
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Figur 6. Flowdynamisk diagram af bevægelse gennem sygdomsstadier. 

 

Agenter i modellen kan være i et af følgende sygdomsstadier: Modtagelig (S), Eksponeret (E), 

Præ-symptomatisk (IPS), Symptomatisk (I), Asymptomatisk (A), Rask (R) eller Død (D). Agenter, 

som befinder sig i det præ-symptomatiske, symptomatiske eller asymptomatiske stadie, er infek-

tiøse og kan således viderebringe smitte til agenter, som befinder sig i det modtagelige stadie. 

Bliver en modtagelig agent inficeret, overgår de til at være eksponeret. Dette sygdomsstadie re-

præsenterer den latente periode, hvor den inficerede agent endnu ikke er infektiøs. Agenterne kan 

bevæge sig gennem sygdomsstadierne, som vist på det flowdynamiske diagram, figur 6. Modellen 

antager, at 2/3 af agenterne bliver symptomatiske og at 1/3 forbliver asymptomatiske ved infek-

tiøs tilstand. En andel symptomatiske agenter får et behandlingsbehov i løbet af deres sygdoms-

forløb og bliver indlagt på et Hospital (H). Sandsynligheden for indlæggelse blandt symptomati-

ske agenter er opdelt efter regioner og 10-års aldersgrupper baseret på data over indlæggelser i 

Danmark i september-oktober 2020.  

Når en agent skifter til et nyt sygdomsstadie, tildeles de den ventetid, som de skal opholde sig i 

stadiet. Ventetiden i de forskellige stadier er beskrevet ved gamma-fordelinger med parametre, 

som vist i tabel 3. Modellen simuleres i diskret tid. Hvert tids-skridt svarer til en halv dag. 

 

Tabel 3. Parametre og kvartiler for varighed af de enkelte stadier. 

 Parametre Kvartiler  

Stadier Shape Peri-

ode 

[Dage] 

Nedre 

kvartil 

[Dage] 

Median 

[Dage] 

Øvre 

kvartil 

[Dage] 

Referencer 

Eksponeret (E) 3 3 2 3 4 Litteratur se refe-

renceliste i bilag 

5 

Præsympto-

matisk (IPS) 

5 1,25 1 2 2 Litteratur se refe-

renceliste i bilag 

5 

Symptomatisk 

(I) 

4 7 5 7 9 Litteratur se refe-

renceliste i bilag 

5 

Asymptoma-

tisk (A) 

4 7 5 7 9 Litteratur se refe-

renceliste i bilag 

5 
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Hospitaliseret 

(H) 

Under 60 år  

2 3 2 3 5 Linelisten SSI 

Hospitaliseret 

(H)  

60 år og der-

over  

2 5 3 5 7 Linelisten SSI 

Ventetider       

timeSymp-

ToOrderTest 

5 1 1 1 1 Antagelser - af-

venter STPS data 

timeOrderTo-

Test 

2 2 1 2 3 Antagelser - af-

venter STPS data  

timeTestToRe-

sult 

6 1,5 2 2 2 Ventetider fra 

samfundssporet 

traceDelay 5 1 1 2 3 Antagelser – af-

venter STPS data 

 

Sandsynligheden for, at en modtagelig agent bliver inficeret af en infektiøs agent og overgår til at 

være eksponeret i et givent netværk stiger med antallet af infektiøse agenter i netværket, de infek-

tiøse agenter i netværkets smitsomhed, samt antallet af kontakter som både de modtagelige og 

infektiøse agenter har i netværket. Raten hvormed en modtagelig agent bliver inficeret er summen 

af smitterater fra de enkelte netværk, som agenten deltager i. Test og opsporing er indført i mo-

dellen ved følgende regler: 

 Når en agent får symptomer, er der en sandsynlighed (pTestGivenSymptoms =80%) for, 

at de bestiller en test efter en gammafordelt ventetid (timeSympToOrderTest). Hvis der 

er bestilt en test, vil personen reducere sine kontakter til 50% (undtagen i husholdninger, 

hvor kontakter reduceres til 70%). 

 Der er en gammafordelt ventetid fra testen bestilles, til testen udføres (timeOrderToTest).  

 Der er en gammafordelt ventetid fra testen udføres, til der kommer svar (timeTestToRe-

sult). 

 Hvis der kommer positivt svar, vil agenten isolere sig yderligere; kontakter reduceres til 

10% (husholdning: 50%). Derudover påbegyndes opsporing af netværk under følgende 

regler: 

o I skoleklasser, ungdomsskoleklasser, institutioner og i husholdninger opspores 

alle personer (i husholdninger foregår det dobbelt så hurtigt som i de øvrige net-

værk).  

o På kontorer (arbejdspladser) og i omgangskredse opspores et antal nære kontak-

ter givet ved fordeling af kontakter under 1m i data fra HOPE projektet.  

o Personer, som tidligere er testet positiv, får ikke tildelt yderligere test.  

o Der opspores med en gammafordelt forsinkelse (traceDelay) fra den positive test.  

o Ved opsporing efter en person testes positiv tildeles de opsporede personer test-

tider relativt til 48 timer før den positive fik symptomer - eller blev testet i et 

asymptomatisk tilfælde. Hvis muligt, gives test på dag 4 og dag 6, ellers dag 5 og 

7, og ellers én test hurtigt muligt.  

o Personer, som er i et igangværende opsporingsforløb, får kun tildelt test, hvis de 

venter på mindre end to testsvar. 

o Den opsporede person har samme ventetider på testsvar, som symptomatiske 

personer.  
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o Mens der ventes på test og testsvar, isoleres den opsporede person på samme 

måde som en symptomatisk, der venter på svar.  

o Hvis en opsporet person får negativt svar på den første test, vil der være en sand-

synlighed for (pNoShow2ndTest =40%) at de ikke tager test nummer 2.  

o Efter et negativt svar på test nummer 1, vil isolationen brydes. Hvis der fås et 

positivt svar, inden test nummer 2 er taget, annulleres test nummer 2, og perso-

nens egne netværk opspores. 

 For alle tests – om det er en opsporet person eller ej – antages der en sandsynlighed på 

20% for en falsk negativ test (Kucirka et al., 2020). 

 

 

 
Figur 7. Diagram, der viser test og opsporing i den agentbaserede model fra DTU.  
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Yderligere resultater 

 

Figur 8. Kontakttallets afhængighed af ventetiden på at få taget en test hos primærtilfældet, 

samt betydningen af hvor lang tid der går før nære kontakter opspores og går i tilsvarende 

isolation. For hver parameterværdi er der foretaget 40 simulationer og boxplottet viser median, 

de indre kvartiler samt minimum og maksimum af disse. 

 

Af figur 8 fremgår det, at der ikke er nævneværdig forskel på reduktionen i kontakttallet, hvorvidt 

man reducerer ventetiden til at primærtilfældet testes, i forhold til at reducere ventetiden til op-

sporing af nære kontakter. 
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Figur 9. Kontakttallets afhængighed af tiden fra der testes til at der foreligger et testsvar, samt 

betydningen af hvor lang tid der går indtil nære kontakter opspores og går i tilsvarende isola-

tion. For hver parameterværdi er der foretaget 40 simulationer og boxplottet viser median, de 

indre kvartiler samt minimum og maksimum af disse. 

 
Af figur 9 fremgår det, at der ikke er nævneværdig forskel på reduktionen i kontakttallet, hvor-
vidt man reducerer ventetiden fra at primærtilfældet og opsporede kontakter testes til der fore-
ligger et testsvar, i forhold til at reducere ventetiden til opsporing af nære kontakter. En årsag 
kan være, at ventetiden til testsvar gør, at en masse opsporede og modtagelige kontakter er iso-
leret i længere tid og derfor ikke bliver smittet. Det er ikke undersøgt om dette kun ses når kon-
takttallet er nær 1. 
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Bilag 3. Regneeksempel 
 

Følgende er et illustrativt regneeksempel på den agentbaserede model fra Niels Bohr Institut-

tet beskrevet i bilag 1. Udregningerne er baseret på modellens underliggende antagelser, nemlig 

at perioden for eksposition (E (TE), hvor den latente fase er en gammafordeling med middelværdi 

på 4.7 dage, og perioden for den smitsomme fase er en gammafordeling med middelværdi på 7 

dage, samt en antagelse om, at 40% af cases findes uden kontaktopsporing. Det antages, at for 

de COVID-19 tilfælde der findes uafhængigt af kontaktopsporingen, er de smittet uniformt for-

delt i den smitsomme periode (I).  Vi udregner nu tiden man er asymptomatisk men smitsom ved 

at trække tal fra fordelingen af tider for hele perioden, man er smitsom og tester en andel p, på et 

uniformt tilfældigt tidspunkt. Det giver en fordeling og en gennemsnitlig eksponeringstid (se fi-

gur 10A).  

Vi kigger nu på et sekundært tilfælde, der blev smittet på et uniformt tilfældigt tidspunkt i 

den smitsomme periode for primærtilfældet. Denne person kan enten findes tilfældigt, eller ved 

at primærtilfældet testes, og at sekundærtilfældet opspores efter en tidsperiode (d for delay). 

Denne ventetid, er tiden fra at primærtilfældet testes til at sekundærtilfældet kontaktes, og af-

spejler således både ventetid til test samt ventetid til opsporing. Igen antages det, at sekundærtil-

fældet går i isolation øjeblikkeligt. Ved igen at trække tal tilfældigt fra de relevante fordelinger 

fås en eksponeringsperiode, hvori sekundærtilfældet måske opspores, forhåbentligt inden smit-

ten er ført videre.  

  

Resultat  

I figur 10B vises det gennemsnitlige antal dage en kontakt er eksponeret for smitte, som en funk-

tion af den samlede ventetid til test og opsporing. Herudfra estimeres effekten af kontaktopspo-

ring på det effektive kontakttal, Rt. Det antages, at en given andel (fc) af alle smittetilfælde, fin-

des via kontaktopsporing, og derved reduceres smitten, idet eksponeringsperioden for opspo-

rede kontakter reduceres. Herved fås et simpelt estimat af effekten af kontaktopsporing på kon-

takttallet Rt. Dette vises i figur 10C. Farverne på graferne viser, hvor stor en andel af smitten der 

kan reduceres, såfremt eksponeringsperioden reduceres, som følge af kontaktopspo-

ring. Hvis det f.eks. antages, at der er 2000 nye smittede med COVID-19 per dag (ca. 1000 

fundne smittede + et mørketal), så svarer 0.05 grafen (orange) til at 100 smittede bliver fundet 

gennem kontaktopsporing dagligt.  

En væsentlig begrænsning er, at disse udregninger ikke medtager effekten af, at flere COVID-19 

tilfælde bliver fundet pga. kontaktopsporing, men er udelukkende baseret på effekten ved at for-

korte eksponeringsperioden for kontakter.  

I modellen indgår 4 mulige eksponeringsperioder. 1: Kontakter opspores ikke, hvorved ekspone-

ringsperioden ikke afkortes (blå graf), 2: 20% af kontakter opspores (gul graf), 3: 40% af kontak-

ter opspores (grøn graf) og 4): hvis 80% af kontakter opspores (rød graf). 

Af regneeksemplet fremgår det, at givet antagelserne i eksemplet vil kontakttallet kunne reduce-

res med ca. 50%, såfremt man opsporer 50% af alle kontakter inden for ca. 3 dage. 

Bemærk at alle kurverne i figur 10C er meget flade i intervallet mellem dag 0 og 3. Dette bety-

der, at der kun opnås en lille gevinst ved at afkorte den samlede ventetid fra symptomer til der 

foreligger et testsvar inden for denne periode, men at der til gengæld er en stor gevinst ved at øge 

andelen af opsporede kontakter.  
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Det skal i øvrigt bemærkes, at det i eksemplet antages, at opsporede kontakter går i isola-

tion, indtil de får svar på deres test.  

 

  

Figur 10:A) Fordeling af eksponeringstiden, gennemsnit = 4.9 dage. B) Gennemsnitlig ekspo-

neringstid for sekundære tilfælde (blå), som funktion af den samlede ventetid til test og opspo-

ring. Den orange graf viser gennemsnittet i ventetiden til test og opsporing for primærtilfæl-

det som reference. C) Det effektive kontakttal Rt efter kontaktopsporing som funktion af vente-

tiden fra symptomer til testsvar hvor udgangspunktet er et kontakttal på 1.2, inden der iværk-

sættes opsporing. Farverne indikerer hvor stor en andel af kontakter der opspores, hvorved ek-

sponeringstiden reduceres.   
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Bilag 4. Udvikling i antal kontakter fra HOPE 

projektet 

 

 
Figur 11.Kilde: Hope-projektet (12.11.2020). Estimating Local Protective Behavior in Denmark 

with dynamic MRP. https://github.com/mariefly/HOPE/raw/master/HOPE_report_2020-11-12.pdf  
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Bilag 5. Beskrivelse af parametre brugt i rappor-

ten 
 

Modellerne i rapporten bygger på en række parametre. Estimaterne, som parametre er baseret på 

er udvalgt af den relevante institution, der har udarbejdet modellerne. Begrundelsen for valg af 

estimaterne er beskrevet nærmere i dette bilag.  

Overordnet set er parametre om sygdomsforløb primært baseret på international litteratur på 

emnet, men også på data fra den danske befolkning. Estimater over befolkningens adfærd i for-

bindelse med covid-19 bygger på en række danske undersøgelser fra i år, samt på data over dan-

skernes rejsemønstre.  

 

Estimater for latensperiode, inkubationsperiode og infektiøs periode fra litteratu-

ren: 

Særligt relevant for simuleringerne over effekten af kontaktopsporing er estimaterne bag syg-

domsforløbet, herunder hvor lang tid der går fra eksponering til, at vedkommende kan smitte, og 

derefter til, at vedkommende vises symptomer. Estimaterne i modellen er blandt andet baseret 

på andre forskeres data, som er offentliggjort i international litteratur om covid-19.  

For at finde de bedste estimat på latensperioden har modelgruppen trianguleret distributioner 

fra nedenstående kilder. Estimatet er 3,6 dage med et interval på mellem 3-5 dage.  

 Read et al. (2020). Novel coronavirus 2019-nCoV: Early estimation of epidemiological 

parameters and epidemic predictions. Preprint.  

 Li et al. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–

Infected Pneumonia. N. Engl. J. Med.  

 Li et al. (2020). Substantial undocumented infection facilitates the rapid dissemination 

of novel coronavirus (SARS-CoV2). Science.    

 Milne and Xie (2020). The Effectiveness of Social Distancing in Mitigating COVID-19 

Spread: a modelling analysis. Preprint. 

 

For at finde det bedste estimat af inkubationsperioden, har Ekspertgruppen gennemgået neden-

stående litteratur. Estimatet er 5 dage med et interval på mellem 3-7 dage.  

 Lauer et al. (2020).  The Incubation Period of Coronavirus Disease 2019 (COVID-19) 

From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Int. Med.  

 Li et al. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–

Infected Pneumonia. N. Engl. J. Med.  

 Anderson et al. (2020). How will country-based mitigation measures influence the course 

of the COVID-19 epidemic. The Lancet. 

 Linton et al. (2020). Incubation Period and Other Epidemiological Characteristics of 

2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Pub-

licly Available Case Data. J. Clin. Med. 

 Liu et al. (2020). Transmission dynamics of 2019 novel coronavirus (2019-nCoV). bio-

Rχiv. 

 Shen et al. (2020). Modelling the epidemic trend of the 2019 novel coronavirus outbreak 

in China. bioRχiv. 
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 Backer et al. (2020). Incubation period of 2019 novel coronavirus (2019-nCoV) infections 

among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill. 

 Gostic et al. (2020). Estimated effectiveness of symptom and risk screening to prevent 

the spread of COVID-19. eLife 

 Hellewell et al. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases 

and contacts. The Lancet Global Health.  

 Milne and Xie (2020). The Effectiveness of Social Distancing in Mitigating COVID-19 

Spread: a modelling analysis. Preprint. 

 

For estimatet af den infektiøse periode, hvor det bedste estimat er 5 dage, mens det bedste interval 

er mellem 3-7 dage, har Ekspertgruppen gennemgået følgende artikler: 

 Read et al. (2020). Novel coronavirus 2019-nCoV: Early estimation of epidemiological 

parameters and epidemic predictions. Preprint.  

 Prem et al (2020). The effect of control strategies that reduce social mixing on outcomes 

of the COVID-19 epidemic in Wuhan, China. Centre for the Mathematical Modelling of 

Infectious Diseases COVID-19 Working and Jit, Mark and Klepac, Petra, The Effect of 

Control Strategies that Reduce Social Mixing on Outcomes of the COVID-19 Epidemic in 

Wuhan, China.  

 Milne and Xie (2020). The Effectiveness of Social Distancing in Mitigating COVID-19 

Spread: a modelling analysis. Preprint. 

 

HOPE rapporter og data: 

En del af estimaterne i modellerne om befolkningens adfærd, herunder kontaktmønstre, bygger 

på både data og rapporter for Hope-projektet (https://hope-project.dk/#/). 

HOPE-projektet udsender løbende spørgeskemaer til tilfældigt udvalgte personer i Danmark ved-

rørende både deres tillid til myndighederne, og til deres adfærdsmønstre, herunder hvor mange 

de ses med i forskellige kontaktkategorier, hvor meget afstand de holder fra andre mennesker etc. 

Denne information samles i rapporter, der løbende offentliggøres. 

Udover HOPE-rapporten, der henvises til i Bilag 4 (https://github.com/marie-

fly/HOPE/raw/master/HOPE_report_2020-11-12.pdf), oversender HOPE-projektet løbende 

anonymiserede data om befolkningens adfærd under covid-19 til Ekspertgruppen, der anvender 

det i deres modeller. Ekspertgruppen har også adgang til HOPE-projektets rapporter, der sam-

menskriver data.  

 

Trafik data: 

Antagelser om befolkningens adfærd bygges ligeledes på trafikdata, hvorudfra man kan be-

stemme danskernes rejsemønstre. Efter aftale med Trafik-, Bygge- og Boligstyrelsen får Ekspert-

gruppen løbende adgang anonymiserede data over danskernes bevægelse rundt i landet. Data er 

bl.a. brugt til at bestemme den typiske afstand mellem kontakter og afstanden mellem afstands-

uafhængige kontakter. Data bygger på 5 forskellige kilder:  

- Overblik over rejsende, der bruger rejsekort, som kommer fra Rejsekort og Rejseplanen 

A/S 

- Overblik over biltrafik på Øresunds- og Storebæltsbroen fra Sund og Bælt A/S 

217



 

 Side 27 

- Overblik over flytrafik (antal passagerer) til og fra Københavns Lufthavn og Billund Luft-

havn 

- Overblik over biltrafikken på Statsvejsnettet og cykeltrafikken (samlet ud fra tællestan-

dere) leveret af Vejdirektoratet. 

- Overblik og færgetrafik på 5 rederier, der dækker over 17 færgeruter. Data er leveret af 

Danske Rederier.  

 

Estimater for ventetider til test 

Estimater for ventetider til test og svar på test er taget fra TCDKs hjemmeside 

(https://tcdk.ssi.dk/vente-og-svartider). 

 

Data fra SSIs Linelisten 

Linelisten på SSI indeholder informationer om de covid-19 podninger, der tages en given dag. 

Data fra Linelisten er bl.a. brugt til at modellere risikoen for at blive hospitaliseret i løbet af et 

covid-19-forløb for personer over og under 60 år.  

 

Spørgeskemaundersøgelse blandt covid-19 syge lavet af SSI i foråret: 

I foråret 2020 foretog SSI en telefonisk spørgeskemaundersøgelse blandt en række personer, der 

fik konstateret covid-19. Spørgsmålene undersøgte deltagernes sygdomsforløb, herunder symp-

tomer, hvorvidt nære kontakter i husttanden var smittet og lignende.  

Data fra spørgeskemaundersøgelsen blev i modellerne brugt til at estimere tiden fra symptomde-

but til tests i dage.  

 

Den nationale prævalensundersøgelse for covid-19: 

SSI iværksatte i maj en undersøgelse af, hvor udbredt covid-19 var blandt danskerne. Undersø-

gelsen bestemmer seroprævalencen blandt et repræsentativt udsnit af danskerne fra maj og til i 

dag. Informationer fra prævalensundersøgelsen har været anvendt i modellerne til at estimere 

sandsynligheden for at få symptomer og blive testet.  
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Bilag 6. Medlemmer af ekspertgruppen 
 
Ekspertgruppen ledes af læge Camilla Holten Møller og overlæge Robert Leo Skov, Infektionsbe-

redskabet, Statens Serum Institut. 

 

Danmarks Tekniske Universitet, Institut for Matematik og Computer Science  

 Kaare Græsbøll, ph.d., MSc, Seniorforsker, Sektion for dynamiske systemer 

 Lasse Engbo Christiansen, ph.d., MSc Eng, lektor, Sektion for dynamiske systemer 

 Sune Lehmann, Professor, Afdelingen for Kognitive Systemer 

 Uffe Høgsbro Thygesen, Civilingeniør, ph.d., lektor, Sektion for dynamiske systemer 

 

Københavns Universitet, Det Sundhedsvidenskabelige Fakultet, Institut for Veteri-

nær- og Husdyrvidenskab,  

 Carsten Thure Kirkeby, Seniorforsker, ph.d., MSc. Sektion for Animal Welfare and Dis-

ease Control 

 Matt Denwood, BVMS, ph.d., Sektion for Animal Welfare and Disease Control 

 

Københavns Universitet, Institut for Folkesundhedsvidenskab 

 Theis Lange, Vice Institutleder, Lektor i Biostatistik, ph.d., Biostatistisk Afdeling 

 

Københavns Universitet, Niels Bohr Instituttet 

 Troels Christian Petersen, Lektor, Eksperimentel subatomar fysik 

 

Roskilde Universitets Center, Institut for Naturvidenskab og Miljø 

 Viggo Andreasen, Lektor, Matematik og Fysik 

 

Region Hovedstaden 

 Anders Perner, Professor, Overlæge, Intensivafdelingen, Rigshospitalet 

 

Danmarks Statistik 

 Laust Hvas Mortensen, Chefkonsulent, professor, ph.d., Metode og Analyse 

 

Statens Serum Institut 

 Mathias Heltberg, Postdoc ENS Paris samt Statens Serum Institut. Infektionsberedska-

bet 

 Frederik Plesner Lyngse, Postdoc, Økonomisk Institut, Københavns Universitet samt Sta-

tens Serum Institut, Infektionsberedskabet 

 Peter Michael Bager, Seniorforsker, ph.d., Infektionsberedskabet, Epidemiologisk Forsk-

ning, Statens Serum Institut 

 Robert Skov, Overlæge, Infektionsberedskabet, Statens Serum Institut 

 Camilla Holten Møller, Læge, PhD, Infektionsberedskabet, Statens Serum Institut 

219





D SSI Notat

The following 9 pages contain the report from Statens Serum Institut:

Ekspertgruppen for matematisk modellering, “Scenarier for udviklin-
gen i den engelske virusvariant af SARS-COV-2 (cluster B.1.1.7)” (Statens
Serum Institut, 2021).

The report is from January 2, 2021 and is a summary of the estimated spread of
the “alpha” variant of COVID-19 (B.1.1.7) in Denmark. The report is in Danish and
is based on two models, one from DTU and our agent based model from NBI.



 
 

 
 
Notatet er opdateret d. 22. januar 2021 med en præcisering af formuleringer 
vedrørende udviklingen i forholdet mellem Cluster B.1.1.7 og øvrige virusvarianter. 
 
  
Scenarier for udviklingen i den engelske virusvariant af SARS-COV-2 (cluster B.1.1.7) 
 
Ekspertgruppen for matematisk modellering, der ledes fra SSI, bringer i dette notat en række 
estimater for den forventede udbredelse af cluster B.1.1.7 i den kommende periode, dels 
ved logistisk regression af udviklingen i forekomsten af varianten, og dels ud fra simuleringer 
af spredningen af varianten i en agentbaseret model.   
 
Sammenfatning 
 

• Den observerede udvikling i forekomsten af cluster B.1.1.7 i Danmark, svarer til en 
ugentlig vækstrate for forholdet mellem cluster B.1.1.7 og de øvrige virusvarianter 
på 72% (95% CI: [37, 115] %). 

• Med udgangspunkt i den aktuelle situation hvor 2,3% af virusvarianterne i den 
rutinemæssige helgenomsekventering tilhører cluster B.1.1.7, estimeres det, at 
varianten vil udgøre halvdelen af de cirkulerende virusstammer i Danmark om 40-
50 dage såfremt ovennævnte stigning fortsætter.  

• Det nuværende niveau af restriktioner forventes ikke at være tilstrækkeligt til at få 
kontakttallet for cluster B.1.1.7 under 1. Derfor vil denne vokse eksponentielt 
upåagtet at det samlede kontakttal (for alle virusvarianter) kan være under 1 indtil 
cluster B.1.1.7 overtager om omkring en måned. 

• Forekomsten af cluster B.1.1.7 er højest i Region Nordjylland, og udviklingen i 
forekomsten er ca. fire uger foran Region Hovedstaden. 

• Det er på baggrund af engelske data estimeret at kontakttallet er ca. 1,5 gange 
højere for den nye virusvariant i forhold til andre virusvarianter. 

• Den reduktion i smittetal og indlæggelser, der kan opnås i den kommende måned 
vil give et lavere udgangspunkt for den forøgede smitte og stigende kontakttal, som 
vi må forvente. 

 
Disse beregninger er behæftet med usikkerheder af forskellige grunde. I perioden op til jul 
var der stor efterspørgsel på tryghedstest, og i samme periode er der udført et stigende 
antal antigen test. Derimod så vi i juledagene, at kun ganske få har ladet sig teste. Disse 
ændringer i testdynamikker gør det svært at følge udviklingen i covid-19, idet de vanlige 
indikatorer såsom incidenser, positivprocenter og kontakttallet påvirkes af den ændrede 
fordeling af covid-19-positive blandt de testede. Et lignende mønster forventes i dagene op 
til og efter nytår. Desuden har vi endnu ikke set effekten af de sidst indførte tiltag, herunder 
lukning af detailhandlen og liberale erhverv. Samlet set giver dette usikkerhed omkring det 
aktuelle kontakttal. Analysen er baseret på 76 isolater med cluster B.1.1.7 fordelt på de fem 
regioner. Den lille stikprøve giver relativt store statistiske usikkerheder. Der vil derfor være 
behov for at løbende at opdatere estimaterne og lave nye analyser. 

d. 2. januar 2021 
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Logistisk regression for spredningen af cluster B.1.1.7 
 
Som det fremgår af nedenstående tabel, er der stor forskel på, hvornår man har fundet 
cluster B.1.1.7 i de enkelte regioner. 

Tabel 1. Forekomst af cluster B.1.1.7 i de fem regioner baseret på helgenomsekventering af 
stikprøver af SARS-CoV-2 positive isolater. 

Uge Hovedstaden Midtjylland Nordjylland Sjælland Syddanmark 

 B.1.1.7 Total B.1.1.7 Total B.1.1.7 Total B.1.1.7 Total B.1.1.7 Total 
45 0 656 0 283 0 238 0 181 0 200 
46 4 420 0 327 0 305 0 132 0 168 
47 0 588 0 297 0 240 0 143 0 241 
48 3 679 0 291 0 169 0 165 0 195 
49 0 825 0 332 3 64 0 246 0 208 
50 2 892 0 360 7 92 0 214 1 431 
51 3 753 0 524 9 254 3 310 4 354 
52 8 774 5 221 12 169 10 193 1 225 

 

Ud fra udbredelsen af cluster B.1.1.7 i Danmark samt andelen af nye isolater i overvågningen 
som er relateret til clusteret, anvendes logistisk regression til at estimere den forventede 
udbredelse af cluster B.1.1.7. Da fokus er på spredningen af virusvarianten, og ikke på 
introduktioner af denne, er det kun regioner, hvor der er detekteret isolater tilhørende 
cluster B.1.1.7 i mindst fire uger – dvs. Region Hovedstaden og Region Nordjylland, der er 
medtaget i denne første analyse.  

Der er lavet logistisk regression med uge og region som forklarende variable. Der er også 
testet en interaktion, men den er ikke signifikant. 

Tabel 2. Estimater for logistisk regression af andelen af cluster B.1.1.7. Referencen 
repræsenterer Region Hovedstaden. 

 Estimate Std. Error z value Pr(>|z|) 
(Intercept) -32.812 5.679 -5.778 0.000 
Uge 0.540 0.112 4.844 0.000 
Region Nordjylland 2.221 0.311 7.133 0.000 
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Det ses, at log(odds) for at detektere cluster B.1.1.7 er 2.2 højere i Region Nordjylland end i 
Region Hovedstaden. Det svarer til odds på 9.2. Det mest interessante er den tidslige 
udvikling, hvoraf det ses at log(odds) øges med 0.54 for hver uge. Dette svarer til at cluster 
B.1.1.7 har en ugentlig vækstrate i odds (forholdet mellem antal cluster B.1.1.7 og øvrige 
virusvarianter) på 72% (95% CI: [37, 115] %), hvilket med den nuværende lave andel af 
cluster B.1.1.7 svarer til den samme stigning i andelen af cluster B.1.1.7 blandt alle positive 
prøver. Usikkerheden på estimatet er endnu ganske stort og estimatet er følsomt over for 
hvilke uger der medtages. Uanset usikkerheder, svarer det fundne estimat til de der er 
rapporteret fra England for denne virusvariant og det tyder på, at cluster B.1.1.7 har samme 
forøgede transmissionsrate i Danmark som i England. 

 Det ses, at log(odds) for at detektere cluster B.1.1.7 er 2.2 højere i Region Nordjylland end 
i Region Hovedstaden. Det svarer til odds på 9,2, dvs. at sandsynligheden for at detektere 
cluster B.1.1.7 her er 9,2 gange højere. Det svarer også til at Region Nordjylland er fire uger 
foran Region Hovedstaden i andelen af cluster B.1.1.7 

Det forventes, at usikkerhederne vil blive reduceret væsentligt når der er data for 1-2 uger 
mere. Men givet at B.1.1.7 er så meget mere smitsom end hidtidige varianter vil det kræve 
længerevarende restriktioner at sænke smittetallet. 

De seneste estimater af kontakttallet er lige under 1,0. Dette er dog påvirket af den ændrede 
testaktivitet og adfærd hen over jul og nytår, og vi har endnu ikke et overblik over 
konsekvenserne af sammenkomster i forbindelse med jul og nytår. Endvidere har vi endnu 
ikke set effekten af nedlukningen af de liberale erhverv og detailhandlen omkring jul. Derfor 
er det forventningen, at en fastholdelse af de nuværende restriktioner vil give et fald i 
kontakttallet, hvis man kigger på de virusvarianter som vi har set før introduktionen af 
cluster B.1.1.7. I England har man estimeret, at deres reference kontakttal var 0,8 for andre 
virusvarianter og 1,2 for cluster B.1.1.7. Det observerede kontakttal er et vægtet 
gennemsnit af virusvarianterne i populationen. 

Figur 1 viser en fremskrivning af log(odds) for B.1.1.7 mod andre virusvarianter baseret på 
ovenstående logistiske regression. Estimatet er, at cluster B.1.1.7 allerede i uge 4 vil udgøre 
halvdelen af alle positive test i Region Nordjylland. Dette er dog behæftet med stor 
usikkerhed på baggrund af de nuværende data. 
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Figur 1. Log(odds) for at detektere cluster B.1.1.7 i hhv. Region Hovedstaden og Region 
Nordjylland 

Ved sammenligning med England er vi nu, hvor de var i starten af november, hvor South 
East havde log(odds) på -2 svarende til Nordjylland og både London og East of England havde 
log(odds) omkring -4 svarende til Hovedstaden1 

Figur 2 viser den samme fremskrivning som i figur 1. Blot er der transformeret tilbage til 
andelen af positive test, som tilhører cluster B.1.1.7. 

 

                                                      
1 2020_12_23_Transmissibility_and_severity_of_VOC_202012_01_in_England.pdf 
(cmmid.github.io)   
 

225



 

 5 

Figur 2. Udviklingen i forekomsten af cluster B.1.1.7 i de kommende uger. Fremskrivningen 
viser, at halvdelen at isolaterne i Region Nordjylland vil være cluster B.1.1.7 omkring uge 4. 

Det skal bemærkes, at udviklingen i Hovedstaden er ca. 4 uger efter udviklingen i 
Nordjylland. Det er endnu for tidligt at udtale sig om niveauet i de andre tre regioner, men 
særlig Region Sjælland synes at have oplevet en hurtig stigning, om end det er baseret på 
meget lidt data. De næste par uger vil forbedre estimatet af niveauet i alle regioner. 
Hen over julen har der været et nyt toppunkt i antal indlagte og der er endnu kun set små 
fald. Det er først i uge 1, at vi kan forvente at se eventuelle indlæggelser som følge af smitte 
i julen. Alt andet lige må dette forventes at give en yderligere kortvarig pukkel i antal nye 
indlæggelser. 
På nuværende tidspunkt er prognosen, at vi har omkring en måned før det samlede 
kontakttal for alle virusvarianter hurtigt vil stige på grund af øget udbredelse af cluster 
B.1.1.7. Hvis restriktionerne skærpes i den kommende tid, vil det give en reduktion i 
smittetal og indlæggelser og dermed et lavere udgangspunkt for den forøgede smitte og 
stigende kontakttal, som vi må forvente.  
 
Et første estimat af kontakttallet for cluster B.1.1.7 for perioden uge 47 til 52 og baseret på 
observationer fra Region Hovedstaden og Region Nordjylland er 1.5 (95% CI [1,2 ; 1,7]) - 
dette er estimeret vha. Poisson regression med offset lig med 0.7*log(antal sekventerede). 
Det gennemsnitlige kontakttal (baseret på SSIs publicerede kontakttal 2020-12-29) for 
perioden er 1,1. Da kontakttallet for cluster B.1.1.7 er så meget højere må det selv med de 
nuværende restriktioner forventes, at det vedbliver med at være over 1 og dermed 
forventes cluster B.1.1.7 at vokse eksponentielt, hvis det nuværende niveau af restriktioner 
fastholdes.  
 
 
Simulering af spredningen af cluster B.1.1.7 i en agentbaseret model 
 
Agentbaserede modeller 
Spredningen af cluster B.1.1.7 er simuleret i en agentbaseret model, som er udviklet af Niels 
Bohr Instituttet, Københavns Universitet (NBI). En agentbaseret model simulerer et antal 
agenter (individer i en population) og deres interaktioner med andre agenter, svarende til 
de interaktioner som en befolkning normal vis har. Hver agent repræsenterer således en 
person, som er knyttet til en lokation i Danmark, svarende til deres bopæl. Agenterne indgår 
i flere forskellige netværk, f.eks. husstand, job og skole hvor de har kontakt til andre 
personer. Derudover har de kontakt til tilfældige personer i samfundet i den tid, hvor 
personen ikke er hjemme, på job eller i skole. Hvis en agent bliver smittet med SARS-CoV-2, 
er forløbet for den enkelte agent beskrevet således, at agenten først er eksponeret (E) og 
derefter infektiøs (I), hvorefter agenten ikke længere er smitsom og betragtes som rask (R). 
De gennemsnitlige tider i hvert sygdomsstadie kan findes i bilag 1. Hver kontakt, som en 
agent eksponeres for, tildeles en sandsynlighed for at blive smittet af en anden agent, 
såfremt denne er smitsom. For en detaljeret beskrivelse af den agentbaserede model, 
herunder de inkluderede parametre, henvises til bilag 1. 
  
Forbehold 
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Mens en agentbaseret model kan medtage mere detaljerede dynamikker i en epidemi, så 
kræver en præcis simulation input fra data, som ofte ikke er tilgængelige eller forefindes, fx 
hvem en person mødes med i løbet af en dag. Derfor kan en sådan model have 
unøjagtigheder eller bygge på antagelser, som ikke er retvisende. Det er ikke muligt at 
kvantificere den nøjagtige størrelse eller effekt af disse potentielle fejlkilder. Da 
datagrundlaget for disse simuleringer er sparsomt, fordi vi endnu har få datapunkter for 
cluster B.1.1.7, vil resultatet være behæftet med væsentlig usikkerhed. 
 
Resultater 
I det følgende er udviklingen simuleret i en model, hvor udgangspunktet er 1/10 af 
Danmarks befolkning, og hvor cluster B.1.1.7 fra starten udgør omkring 5% af de 
cirkulerende virusvarianter. Epidemien simuleres ud fra et kontakttal på omkring 1,0, samt 
en antagelse om, at cluster B.1.1.7 smitter 50% mere, som rapporteret fra England2   
 
Figur 3 viser, hvordan en epidemi vil udvikle sig i tid, forudsat at det simulerede scenarie 
ikke ændres. Der opdeles i hhv. de nuværende virusvarianter (DK, fulde linjer) og det 
engelske cluster B.1.1.7 (UK, stiplede linjer). Simulationen er gentaget flere gange 
(forskellige farver) for at se, hvor store variationer der forekommer. Som det kan ses, så 
udfases DK-versionen af smitten, mens UK-versionen B.1.1.7 giver ophav til en eksponentiel 
vækst, idet kontakttallet for denne er væsentligt over 1. 
Af figuren fremgår det, at cluster B.1.1.7 ca. 35-40 dage fra simulationens start (“1. jan.”) 
udgør omkring 50% af de cirkulerende virusvarianter. Da simulationen er startet med en 
større andel UK-varianter (5%) end det aktuelle landsgennemsnit (2.3%), så bliver estimatet 
40-50 dage til at halvdelen af de sekventerede varianter tilhører cluster B.1.1.7. I de viste 
simulationer er de første smittet med cluster B.1.1.7 varianten placeret i 
Hovedstadsområdet. I andre scenarier, hvor cluster B.1.1.7 varianten i starten udvikler sig i 
et tyndere befolket område tager udviklingen lidt længere tid, op til 60 dage. 
 

                                                      
22020_12_23_Transmissibility_and_severity_of_VOC_202012_01_in_England.pdf 
(cmmid.github.io)   

227



 

 7 

 
 
 
Figur 3. Den forventede udvikling i cluster B.1.1.7 sammenholdt med udviklingen i øvrige 
virusvarianter, simuleret i en agentbaseret model. Ud fra simulationerne estimeres det, at 
B.1.1.7 varianten vil være dominerende efter 40-50 dage. 
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Bilag 1. Beskrivelse af den agentbaserede model 
 
Den nedenstående modelbeskrivelse er et uddrag fra ekspertrapporten “effekten af 
kontaktopsporing” der er publiceret d. 16. december 2020  
 
Bidrag og udvikling: Christian Michelsen, Emil Martiny, Tariq Halasa, Mogens H. Jensen, 
Troels C. Petersen og Mathias L. Heltberg 

Den agentbaserede model baseres på agenter, dvs. individer hvis karakteristika er tildelt ud 
fra statistiske fordelinger i befolkningen. Dette er f.eks. en aldersfordeling og en fordeling 
over pendlerafstande. Modellen starter med at fordele Danmarks bopæle ud i landet 
baseret på det danske hussalg over de sidste 15 år. Herefter placeres agenter i hver husstand 
baseret på deres alder og geografiske placering.  

 

 

Figur 5: A) Skematisk oversigt over hvordan interaktionsnetværket i modellen ser ud. B) 
Eksempel på simulation af smittespredning i Danmark i modellen, gennem et simuleret 
tilfælde af flokimmunitet i København. 

 

Et afgørende element i modellen er opbygningen af alle personers interaktionsnetværk. 
Dette genereres ved, at hver agent har et netværk, de interagerer med. Dette opdeles i tre 
dele: 1) kontakter i hjemmet, 2) kontakter på arbejdet, 3) kontakter i kategorien andre 
kontakter. Der er ikke nogen geografisk afhængighed af antallet af kontakter på arbejdet, 
men i den kategori der kaldes “andre”, vil der generelt være flere kontakter for dem der bor 
i tæt befolkede områder i forhold til dem der bor på landet. Måden hvorpå netværket 
dannes er vist i Figur 5A. 
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Ud fra data fra HOPE-projektet har vi estimeret, hvor mange personer hver agent vil 
interagere med, og i denne model vil alle agenter have mellem 3 og 15 daglige kontakter. 

Når modellen simuleres vil alle inficerede agenter gennemgå et forløb, hvor de er i en latent 
periode, hvor de ikke smitter, hvorefter de vil rykke over i en infektiøs periode, hvor de kan 
smitte agenter i deres netværk. Denne model simuleres ud fra det der kaldes Gillespie 
algoritmen, således at netværket opdateres instantant for alle smittebegivenheder. En 
samling af de væsentligste parametre er vist herunder (Tabel 2). 

 

Tabel 2: Parametre i den agentbaserede model 
 

 

 

Parameter Værdi interval 
for 
middelværdien 

Reference 

Antal kontakter per dag 3-15 HOPE projektet 
Latent tid (dage) 3-5 Litteratur se referenceliste i bilag 5 
Infektiøs tid (dage) 4-8 Litteratur se referenceliste i bilag 5 
Andel af kontakter i “andre” (%) 30-80 HOPE projektet 
Typisk afstand mellem kontakter (km) 5-20  Trafik data 
Andel afstandsuafhængige kontakter (%) 3-5 Trafik data 
Tid fra symptom til test (Dage) 0-2 Fordeling fra 

spørgeskemaundersøgelse i foråret 
2020 (ikke offentliggjort) 

Sandsynlighed for at få symptomer og blive 
testet (%) 

20-60 % Prævalensundersøgelsen 

Sandsynlighed for at kontakte husstand (%) 100% Antagelse 
Sandsynlighed for at kontakte kollegaer (%) 40-80 Antagelse 
Sandsynlighed for at kontakte andre (%) 0-75  Antagelse 
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