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Abstract
�e second quantum revolution, signaled by the emergence of practical quantum
technologies such as secure quantum communication, quantum computing and
quantum limited and enhanced sensing, is pushing the need for ever be�er exper-
imental control and design of quantum systems. However, with this development
has come the realization that one single quantum system may not e�ciently imple-
ment all the di�erent tasks needed for, e. g., a “�antum Internet”, or generalized
quantum computers. To this end, hybrid quantum systems, incorporating funda-
mentally disparate material systems have been proposed, e�ciently harnessing the
advantages and capabilities of the di�erent sub-systems.

In this thesis, we report on the continued development of a hybrid spin–
mechanics quantum system, ultimately showcased by the successful demonstration
of steady-state conditional entanglement between the spin and mechanics, as wit-
nessed by the conditional variance +c = 0.83 ± 0.02 < 1, below the separability
limit.

�e optomechanical system consists of a out-of-plane vibrational mode of a
so�-clamped, highly stressed silicon nitride membrane, which is embedded in a
high-�nesse free-space optical cavity, realizing a Membrane-in-the-Middle optome-
chanical system, and mounted in a 4 K cryostat. Signi�cant improvements to the
optomechanical assembly over previous work allow for a much easier implemen-
tation of optomechanical systems into hybrid setups, and allows for full electronic
control of cavity resonance as well as membrane position in the cavity standing
wave.

�e spin system is prepared in a warm (330 K) ensemble of optically pumped
cesium atoms con�ned in a spin-preserving microcell. �e collective atomic spin is
co-aligned with an external magnetic �eld around which the spin performs Larmor
precession. �is e�ectively prepares the spin in the highest energy state, thus
implementing an e�ective negative mass reference frame for the optomechanical
system.

�e itinerant light �eld probing the two systems reads out their collective
degrees of freedom, and, together with the e�ective negative mass of the spin,
allows for a �antum Back-Action Evading measurement, reducing the probe-
induced measurement noise by 2.6 dB compared to the mechanics-only case, or
4.6 dB compared to the case with two detuned systems, both signi�cant improve-
ments over previously reported results. Furthermore, a non-local cooling of the
Einstein–Podolsky–Rosen (epr) variables reduces the combined thermal noise of
the systems by 2.5 dB.

Implementation of optimized Wiener �ltering of the measured photo cur-
rent, together with the noise suppressing mechanisms, allows state estimation at
an uncertainty level of the (entangled) continuous variable epr-like state, with
deterministic conditional variance below the separability limit, demonstrating en-
tanglement.

�e implemented hybrid quantum system paves the way towards teleportation
based quantum protocols in spin-mechanics hybrid interfaces, as well as measure-
ments of motion beyond the standard quantum limits of sensitivity.
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Sammenfatning
Den anden kvanterevolution, der markeres ved fremkomsten af praktisk anven-
delige kvante-teknologier såsom sikker kvantekommunikation, kvanteberegninger,
samt kvantebegrænsede og –forbedrede målinger, øger behovet for forbedring
af den eksperimentelle kontrol over og design af kvantesystemer. Med denne ud-
vikling er kommet en erkendelse af at et enkelt kvantesystem med sandsynlighed
ikke er i stand til at implementere alle de forskellige opgaver der er nødvendige
for f.eks. et “kvante-internet”, eller en generaliseret kvantecomputer. Derfor er hy-
bride kvantesystemer, der inkorporerer forskelligartede systemer, blevet foreslået
som en mulig løsning til e�ektivt at udny�e fordele og kapaciteter af de forskellige
delsystemer.

I denne a�andling rapporterer vi den fortsa�e udvikling af et hybridt spin–
mekanik-kvantesystem, i sidste ende ved at demonstrere succesfuld stationær
betinget sammen�ltring (eng: entanglement) mellem spin og mekanik, som bev-
idnes af den betingede varians +c = 0.83 ± 0.02 < 1, som er under separabilitets-
grænsen.

Det optomekaniske system består af en “blødt-fæstnet” (eng: so�-clamped),
stærkt udspændt siliciumnitrid-membran der har en vibrationel mode ud af planet.
Membranen er indlejret i en høj�nesse åben (eng: free-space) optisk kavitet, som
dermed udgør et “Membran-i-Midten” optomekanisk system, der monteres i en
4 K-kryostat. En betydelig forbedring af den optomekaniske samling i forhold
til tidligere, gør det langt nemmere at implementere optomekaniske systemer i
hybride opstillinger og muliggør fuld elektrisk kontrol over kavitetsresonans så vel
som membranpositionen i kavitetens stående bølge.

Spinsystemet forberedes i et varmt (330 K) ensemble af optisk pumpede cæ-
siumatomer, indeholdt i en spinbevarende mikrocelle. Det kollektive atomspin
er orienteret langs et eksternt magnetisk felt, hvorom spinnet foretager Larmor-
præcession, hvilket e�ektivt forbereder spinnet i det højeste energiniveau, og
dermed implementerer en referenceramme for det optomekaniske system med
e�ektiv negativ masse.

Det rejsende optiske felt der prober de to systemer udlæser deres kollektive fri-
hedsgrader, og sammen med den e�ektive negative masse af spinnet tillader de�e
en kvantetilbagekoblingsundvigende måling, der reducerer den probeforårsagede
målestøj med 2.6 dB sammenlignet med mekanikken alene, eller 4.6 dB sammen-
lignet med tilfældet hvor de to systemer er ude af resonans, begge betydelige
forbedringer i forhold til tidligere resultater. Ydermere reducerer en ikke-lokal
køling af Einstein–Podolsky–Rosen (epr)-variablerne den samlede termiske støj af
systemerne med 2.5 dB.

Implementering af optimeret Wiener-�ltrering af den målte fotostrøm, sam-
men med de støjreducerence mekanismer, tillader tilstandsestimation med en præ-
cision på (den sammen�ltrede) kontinuert-variabel epr-lignende tilstand, med
deterministisk betinget varians under separabilitetgrænsen, hvilket demonstrerer
sammen�ltring.

Det implementerede hybride kvantesystem baner vejen mod teleportations-
baserede kvanteprotokoller med spin–mekanik-hybridsystemer, såvel som målinger
af bevægelse under standardkvantegrænserne for følsomhed.
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Preface
Wellcome to my thesis. Before the show starts in earnest in Chapter 1, allow me
these few pages to provide a very brief overview of what can be expected and the
organization of the content, as well a number of small musings about what thesis
writing is all about, and how we may all improve wri�en science communication.

This Thesis at a Glance

In Part I I will try to give a suitable exposition of both the �eld of quantum optics
in general, and quantum optomechanics in particular, as well as a suitably detailed
walkthrough of the formalism we will use to describe what is going on. We start
out in Chapter 1, where we introduce the thesis by noting the historical perspec-
tives of coupling motional degrees of freedom to light, and quantum mechanics
of meso- and macroscopic objects. In Chapter 2 we outline the previous work, in
the �eld and in �antop. In Chapter 3 I introduce a theoretical description of op-
tomechanical systems, before following up with practical implementation details in
Chapter 4. Following that, in Chapter 5, an introduction to alkali spin systems—the
other main actor in our play—is given.

Part II changes gear, and is of a much more technical nature. Here, I discuss
the process of designing and implementing a new optomechanical cavity assembly.
In Chapter 6 the design of the cavity itself is introduced. In Chapter 7 a simple
numerical model guiding this process is introduced, and compared to experimental
experience. Finally, I detail our endeavours towards minimizing the detrimental
e�ect of mechanical modes of the cavity mirrors in Chapter 8.

Part III is about the physics of hybrid systems. A�er a technical intermezzo
in Chapter 9, we get to the main course: the entanglement of our spin oscillator
to a mode of our mechanical device. Chapter 10 details the results published in
Rodrigo A. �omas et al. (2020)(1). A�er this, we round o� the thesis with a brief
set of concluding remarks in Chapter 11, which also includes a short summary of
progress since the publication of the entanglement work.

Finally, there are a number of appendices in Part IV, containing supplementary
information.

What is the Purpose of a Thesis?

One way to answer why you, as a reader, should care to read this thesis, is for me
to state why I believe we write theses in the �rst place. To me, there are three main
reasons to undertaking the task of writing a document like this, and each reason
comes with its own distinct audience:

1. To disseminate scienti�c knowledge and assess the quality of the work per-
formed in relation to the Ph.D.; this is the conventional target audience and
goal of a thesis: the scienti�c community at large and Assessment Commitee
in particular, and the awarding of the degree. While the �rst is also partially
covered by publications in journals and at scienti�c, many things are not
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(2) Especially, for some reason, �ree Le�er
Abbreviations (aka. tla).

(3) Andrew H. Hales, Kipling D. Williams,
and Joel Rector (2017). “Alienating the Audi-
ence: How Abbreviations Hamper Scienti�c
Communication”. In: APS observer 30.

(4) Fabio Crameri, Grace E. Shephard, and
Philip J. Heron (2020). “�e misuse of colour in
science communication”. In: Nature Communi-
cations 11 (1), pp. 1–10.

well suited for publication in four page le�ers, and can thus only be found in
larger works like a thesis.

2. To preserve institutional knowledge within a research group; once a research
group has been going for a while, the accumulated back-catalog of theses
can, if wri�en with this in mind, become an invaluable treasure trove of sci-
enti�c insights, experimental know-how and all the things that are deemed
too mundane to be published in papers, but without which the science would
fall apart.

3. To introduce newcomers to the �eld, group and experiment; working on the
edge of the known, as fundamental research is by de�nition supposed to do,
we o�en fall short when looking for suitable literature for new students in
the �eld. �e books have simply not been wri�en, or are not updated near
o�en enough to keep up with the evolution of the �eld, and journal articles
o�en necessitate extensive prior knowledge of the �eld. �eses wri�en by
recent students on an experiment (be they M.Sc. or Ph.D.) can serve as a
much easier introduction to the �eld and literature.

Striking the balance between these, sometimes opposing, interests or goals is an
art. While an experienced researcher may prefer brevity, new students and later
generations seeking to understand �ner details of the work may value verbose-
ness. I hope that the resulting balance is useful to as many as possible, and not too
o�ensively dredging for anybody.

With this in mind, it is hopefully also apparent that the three parts outlined
above will be of di�erent relevance to the three di�erent audiences I have pro-
posed. For example, Part II may well be of larger interest to following generations
of students than to absolute newcomers, and Part I will probably be of less signi�-
cance to the seasoned researcher.

A Couple of Notes on Stylistic Choices and Science Communication

Abbreviations(2) are, for be�er or worse, a signi�cant part of wri�en communica-
tion in physics, especially in the terse prose of papers and le�ers – a not wholly
unproblematic tendency; see, e. g., Hales, Williams, and Rector (2017)(3). Here, in
the thesis format, we can most o�en a�ord spending the extra few characters to
spell things out; the exception being things that are almost exclusively referred to
by their abbreviation, and in �gures, where the space is limited. I will do my best
to ensure clarity is not lost, but should I fail, the reader can consult the Nomencla-
ture on page 227.

Most �gures in this thesis has been plo�ed with color blind-friendly colors.
�ese come with the added bene�t of being perceptually uniform, i. e., having a
smoothly, monotonic change in brightness throughout a color scale, and thus also
vastly be�er for those of us with normal color vision. For a discussion see, e. g., the
excellent paper by Crameri, Shephard, and Heron (2020)(4). For my fellow scientists:
please stop using jet and all it’s siblings. For the color blind people that may
come across this thesis: if you �nd anything that can be improved, please do let me
know.
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�e thesis makes ample use of the margins. In there I will put supporting
�gures—the ones meant, for example, to remind the reader exactly what does a
generalized Laguerre polynomial look like—as well as “foot”notes and other an-
cillary text. Citations appear in the text in a fashion similar to most other theses
I have come across, but for most references there will also be a full reference in
the margin (marked as a ”foot”note), at least the �rst time a reference appears, or
when it is central to the point being discussed. As a general rule (to which there
will probably be exceptions), marginal content is marginal. Ignoring it should not
lead to any major loss of information.

Science communication with a single author invariably raises the question
of what pronouns to use—personal pronouns, that is. Does one write “I” or “we”?
Or does one perhaps mix? Although I do not know of any rules, experience tells
me that tradition favors the plural form, “we”, although what is o�en meant is in-
deed the singular (royal) “we”. I will try to make a slightly di�erent choice. When
I believe that something is truly my own doing or opinion, the text will re�ect
that; whenever the work presented is the result of a collaboration with colleagues,
which it is more o�en than not, “we” will be the pronoun of choice. As always,
there are bound to times where this rule does not hold.

Finally, I cannot recommend the paper “What’s Wrong with these Equations?”
by Mermin (1989) enough. It is, to me, mandatory reading for anyone writing prose
with math.
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Figure 1.1: �e comets tail pointing away
from the sun, led Kepler to suggest the
concept of radiation pressure in Keplero
(1619). Also see opposing page.

(1) Iohanne Keplero (1619). De Cometis libelli
tres. Typis Andreae Apergeri, p. 168.

(2) W. Bowen and Milburn (2015) note that
this Kepler probably thought about things
di�erently; in that case, his work remains, to
my knowledge, the �rst reported data reliably
supporting radiation pressure.

(3) James Clerk Maxwell (1873). A treatise on
electricity and magnetism. Vol. 1. Clarendon
press.

(4) Peter Lebedew (1901). “Untersuchungen
über die Druckkrä�e des Lichtes”. In: Annalen
der Physik 311.11, pp. 433–458.

(5) Although for our Sun, the radiation pres-
sure is responsible for less than a permille of
the total pressure at the center (Carroll and
Ostlie 2007, p. 296).

Photo on opposite page: Keplero (1619).
Illustration in the public domain.
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Introduction

“ �e story so far:
In the beginning the Universe was created.
�is has made a lot of people very angry and been widely regarded

as a bad move.
Douglas Adams, The Restaurant at the End of The Universe

Background, motivation and a rough overview of the work presented.

1.1 The Historical Perspective

In this thesis we will be dealing with two overarching topics: �e coupling of
ma�er and light—speci�cally the e�ect of and on light from the motional degrees of
freedom of a solid membrane as well as the “movement” of a collective spin of an
atomic ensemble—and secondly, the problem of tracking said movement.

�at light and motion couples, is in no way obvious – light is massless, a�er
all. �at it does indeed couple was proposed in 1619 by Johannes Kepler (Keplero
1619)(1), when he observed that the tails of comets always point away from the
sun(2).

James Clerk Maxwell, se�ing forth the combined theoretical description
of light as electromagnetic waves, suggested that light could carry momentum
(Maxwell 1873)(3), which, in 1901 Lebedew(4) showed experimentally to be true:
light carries momentum, and therefore exerts pressure on objects.

�ough this force seems evasive and insigni�cant, it also lends itself to main-
taining the balance on some of the largest scales in the universe; it provides, for ex-
ample, part of the pressure, which prevents stars from collapsing on themselves(5).
For larger and ho�er stars, the e�ect actually dominates that of gas pressure (Car-
roll and Ostlie 2007, p. 341) in the core.



4 Chapter 1. Introduction

(6) Indeed, the fact laser has in practice lost
its status as an abbreviation and become just
a regular noun, speaks volumes in terms of
its importance to modern science. It has even
been verbed into “lase” and adjectivized into
“lasing”.

(7) J. P. Gordon, H. J. Zeiger, and C. H. Townes
(1955). “�e Maser—New Type of Microwave
Ampli�er, Frequency Standard, and Spectrome-
ter”. In: Phys. Rev. 99 (4), pp. 1264–1274.

(8) B. P. Abbo� et al. (2016). “Observation of
Gravitational Waves from a Binary Black Hole
Merger”. In: Phys. Rev. Le�. 116 (6), p. 061102.

(9) V. B. Braginsky and A. B. Manukin (1967).
“Ponderomotive E�ects of Electromagnetic
Radiation”. In: Soviet Physics JETP.

(10) V. B. Braginsky, A. B. Manukin, and M. Yu
Tikhonov (1970). “Investigation of dissipative
ponderomotive e�ects of electromagnetic
radiation”. In: Soviet Physics JETP.

(11) From latin pondus, weight, and motive,
inciting motion.

(12) Carlton M. Caves (1980). “�antum-
Mechanical Radiation-Pressure Fluctuations in
an Interferometer”. In: Phys. Rev. Le�. 45 (2),
pp. 75–79.

(13) �e paper has one of the best abstracts
I’ve ever read: “�e interferometers now being
developed to detect gravitational waves work
by measuring small changes in the positions
of free masses. �ere has been a controversy
whether quantum-mechanical radiation-
pressure �uctuations disturb this measurement.
�is Le�er resolves the controversy: �ey do.”

(14) Carlton M. Caves (1981). “�antum-
mechanical noise in an interferometer”. In:
Phys. Rev. D 23 (8), pp. 1693–1708.

(15) Vladimir B. Braginsky, Yuri I. Vorontsov,
and Kip S. �orne (1980). “�antum Nonde-
molition Measurements”. In: Science 209.4456,
pp. 547–557.

(16) See Vladimir B. Braginsky, Vorontsov, and
�orne (1980) for more details.

While the scales at which stars operate are rather large, we will be dealing
with the other extreme: the smallest amounts of light, photons. Single quanta of
light, each carrying energy ℏl and linear momentum ℏ: , as well as spin ±ℏ, where
ℏ is the reduced Planck constant ℏ = ℎ/2π = 1.055 × 10−34 J s, l is the angular opti-
cal frequency and : = 2π/_ is the wavenumber, while _ is the optical wavelength.

For the wavelength of choice for this thesis, 852 nm, which is equivalent to
an optical frequency of l/2π = 3.12 × 1014 Hz, this amounts to an energy of
2.3 × 10−19 J and momentum of 7.8 × 10−28 kg m/s – both minuscule amounts. It is
therefore clear, that if we are to expect any tangible e�ect, whatever we go around
trying to push with our light needs to be rather light.

�at we are able to even consider studying such minute quantities is a tes-
tament to the technological advancement over the last century or so, especially
the advent of the laser(6), the optical descendant of the microwave-range maser
(see Gordon, Zeiger, and Townes (1955)(7)). �ese extremely monochromatic and
highly coherent sources of light have revolutionized the art of measurement in
immeasurable ways. �is important experimental tool, together with the advent
of computers and digital data acquisition, as well as the incredible advances in ma-
terial science and (nano)fabrication technology, has allowed the �eld of quantum
optomechanics to bloom within the last decade or so.

One related �eld worthy of special mention in this context, is that of gravita-
tional wave detection, culminating in the �rst direct detection of a gravitational
wave in September 2015 and reported in Abbo� et al. (2016)(8). In ligo, distortion
of spacetime is measured by detecting directly the change of optical phase induced
by the moving mirrors. �is is optomechanics in a very pure fashion, with kg-size
massive objects.

�e �eld of optomechanics grew out of the early works related to gravitational
sensing. In the late 60’s V. Braginsky and his colleagues, interested in interfero-
metric measurements, theoretically (V. B. Braginsky and Manukin 1967)(9) and a
few years later experimentally (V. B. Braginsky, Manukin, and Tikhonov 1970)(10)

showed the ponderomotive(11) e�ect of (microwave) radiation on mechanical ob-
jects.

Caves (1980)(12) demonstrated that quantum �uctuations of the light, and the
ponderomotive e�ects of these, set a limit to the achievable precision in interfero-
metric measurements(13). �e year a�er, in Caves (1981)(14), he suggested circum-
venting this limitation by injecting squeezed light into the interferometer. Around
the same time, Braginsky and colleagues formalized the concept of quantum non-
demolition (qnd) measurements (Vladimir B. Braginsky, Vorontsov, and �orne
1980)(15), that allows noise-less detection of single variables, following prior work
by Braginsky, Unruh, Khalili, Caves, Drever and others(16).

But, as will be discussed in further detail below, the probe light of ligo also
perturbs the mirrors, and thus sets a lower boundary on the achievable sensitivity.
�e stream of photons, each carrying minute momenta, added together gives rise
to a time-�uctuating force, which kicks the suspended mirrors in the detector
arms.

�is quantum back-action, the quantum noise e�ects driving the system being
probed by light, is a real contributor to the limits of achievable precision in ligo.
But, as we shall see later in this thesis, such quantum back-action can be evaded,
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(17) F. Ya. Khalili and E. S. Polzik (2018).
“Overcoming the Standard �antum Limit
in Gravitational Wave Detectors Using Spin
Systems with a Negative E�ective Mass”. In:
Phys. Rev. Le�. 121 (3), p. 031101.

(18) E. Zeuthen, E. S. Polzik, and F. Ya. Khalili
(2019). “Gravitational wave detection beyond
the standard quantum limit using a negative-
mass spin system and virtual rigidity”. In: Phys.
Rev. D 100 (6), p. 062004.

(19) W.P. Bowen and G.J. Milburn (2015).
�antum Optomechanics. Taylor & Francis.

(20) Engineering the environments themselves
is also of large importance – a discipline called
reservoir engineering.

(21) �e usual English word used for this
concept is “uncertainty”, as in “Heiseinbergs
Uncertainty Principle”. I personally prefer
the German “Unbestimmtheitsrelation” (or
Danish “ubestemthedsrelation”), because it
conveys the probabilistic nature of quantum
mechanics more clearly. It is not about our lack
of knowledge – it is about the fundamental
lack of a well de�ned value.

by the introduction of another quantum system, with e�ective negative mass –
and we have exactly such a system. �is quantum back-action evading measure-
ment is being proposed as one way of boosting the sensitivities of ligo and similar
detectors (Khalili and Polzik 2018; Zeuthen, Polzik, and Khalili 2019)(17),(18).

It is in a sense poetic that quantum optomechanics forked o� from gravita-
tional wave detection to become a �eld of its own, only for it now to come back to
gravitational wave physics with possible solutions to current limitations.

1.2 �antum Mechanics of Macroscopic Objects

When quantum mechanics emerged in the early 20th century, it was a theory of
very small things. A theory of electrons and atoms. But technological advances has
been steadily moving the domain of applicability of quantum mechanics to larger
and larger objects. In the words of W. Bowen and Milburn (2015, preface)(19)

�e quantum theory originated in the study of natural systems: atoms,
molecules, solids and light. Despite the di�culty in reconciling quan-
tum theory with our classical intuitions, it is a remarkably successful
theory. It is o�en claimed that one should not be alarmed by this, as it
is unreasonable to expect our classical intuitions to apply in such an
unfamiliar domain as atomic physics. However, quantum theory does
not contain within it any law that forbids us from applying it to big-
ger and bigger things, even the entire universe in the case of quantum
cosmology. �e quantum-classical border is not co-located with the
microscopic–macroscopic border.

Instead, this border turns out to be located between systems that are isolated and
strongly coupled to their environment. In essence, modern engineering has allowed
us to construct ever more macroscopic devices, that are suitably isolated from
their environment(20), and therefore suitably described by the laws of quantum
mechanics.

One central feature of quantum mechanics is that properties of non-commuting
operators, like position and momentum, cease to be de�nite values, but must be
replaced with (complex valued) wavefunctions,k (G), where the probability of �nd-
ing the particle in any given position interval δG is proportional to |k (G) |2δG . For
many quantum states, these functions are nice, smooth functions, centered around
a single, well de�ned maximum – in particular Gaussian states are very “classical”;
they resemble the classical notions of, e. g., position, but with some added “fuzzi-
ness” or indeterminancy(21). �is is, by far the type of quantum states that we will
encounter most of in this thesis – and to make ma�ers worse, we will o�en only
care about the variance of the state, not the mean values.

But these “nice” states are not the only ones worth discussing. In particular,
the opposite end of the spectrum of quantum states involves functions that are
manifestly not related to the nice probability densities mentioned above; e. g., a par-
ticle may be in a state with two local maxima. �is is sometimes loosely referred to
as the particle “being in two places at once”. �is class of non-Guassian states is in-
herently “more quantum” than the Gaussian ones, and pu�ing a truly macroscopic
object into such a state is a long term experimental goal.
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(22) Jacqueline Erhart et al. (2012). “Experi-
mental demonstration of a universally valid
error–disturbance uncertainty relation in spin
measurements”. In: Nature Physics, p. 15.

(23) Masanao Ozawa (2003). “Universally
valid reformulation of the Heisenberg un-
certainty principle on noise and disturbance
in measurement”. In: Phys. Rev. A 67 (4),
p. 042105.

(24) Of course, simply breaking the estab-
lished limits, and booking a plane ticket
for Stockholm is also a good option, but we
sometimes have to se�le for less.

Pu�ing large objects into such a state would directly lead to experimentally
interesting situations, where one can start wondering what kind of gravitational
�eld such a superposition state produces – see, e. g., W. Bowen and Milburn (2015,
chapter 10) for a discussion.

Whether the physical systems under investigation here is truly macroscopic is
a question worthy of consideration. �e membranes, in particular the oscillating
defect pads, discussed in Chapter 4, are large enough that they can be seen by
the naked eye, having a transverse size of hundreds of µm – comparable to the
transverse size of human hair. However, they are extremely thin, with thicknesses
of only tens of nm. Compared to, e. g., the kilogram-scale mirrors in ligo, our
membranes are tiny; compared to atoms our membranes are absolutely gargantuan.
In that sense, they fall nicely above the “microscopic-macroscopic” border alluded
to by Bowen & Milburn, and are not objects that have been historically considered
quantum in nature.

q 2 Q

Another important feature of quantum mechanics is that measurements fundamen-
tally disturb the systems under investigation. �is is related to, but not identical,
to the indeterminacy discussed above; for detailed discussions see Erhart et al.
(2012)(22) and Ozawa (2003)(23).

�is quantum back-action, i. e., the read-out by the probe of perturbations
of the system it has itself imprinted on the system, is of both fundamental and
practical interest. In ligo, quantum noise induced by the probing laser sets real,
tangible limitations to the achievable sensitivity, and overcoming this would allow
for signi�cant improvement in detection of gravitational waves, since the volume
of observable universe grows to the third power with the distance of the furthest
observable phenomena. On a more fundamental limit, the question is whether we
can feasibly side-step or evade this detrimental e�ect, by playing tricks(24).

�e trick that we will employ in this thesis is the negative mass reference frame
or quantum mechanics-free subspaces; the negative e�ective mass will be intro-
duced in Chapter 5.

�e short and handwavy explanation of the idea, suitable for a teaser like this,
is that we can probe two systems with the same (optical) probe, where the probe
induced perturbations are of opposite and equal size. In this way, we can probe
speci�c combinations of the degrees of freedom of the two systems, which are (in
principle) free from the probe induced perturbations, or “quantum mechanics free”.

Subjecting the two systems to these correlated perturbations is also what ul-
timately allows us to prepare them in a joint quantum state, with variances below
that of either individual systems lower allowed (ground state) variance. It can be
shown that when such a state is created, the two are entangled, i. e., their individual
states cannot be fully described without explicitly including the other system. �ey
are non-separable. How this comes about in practice is the topic of Chapter 10.

q 2 Q

An introduction would not be complete without at least a cursory introduction
to our main actors, and the stage on which they are to perform. For us, the two
systems are a so�-clamped phononically shielded membrane made from silicon
nitride, embedded in an opt(omechan)ical cavity; and the collective spin of a large
number of room temperature cesium atoms, contained in a spin-preserving coated
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(25) If this feels a li�le hand-wavy, more details
shall be provided in Chapter 5.

cell. To interrogate these systems, and correlate them, we probe �rst the spin sys-
tem and then the optomechanics in a cascaded fashion with a beam of light tuned
close to an atomic resonance, before �nally detecting the �uctuations of the light.
A cartoon depiction of the system can be seen in Fig. 1.2.

Both the membrane and the spin are, to very good approximation, harmonic
oscillators. �e membrane perhaps most obviously, by virtue of being essentially
a drum skin; the spin oscillator by considering only �uctuations transverse to the
big collective spin – �uctuations which precess around an external magnetic �eld,
�, aligned to the collective spin direction. �e spin oscillator realizes the negative
mass oscillator described above, as by �ipping the direction of the magnetic �eld,
the direction of precession can be changed(25). �is is shown in the phase space
diagrams in Fig. 1.2, where the spin and membrane systems oscillate in di�erent
directions.

%̂m

-̂mlm
� ls

%̂s

-̂s

8 (C )
%̂out

L%̂ in
L

Figure 1.2: Cartoon model of the hybrid experiment. A single beam of light, %̂ in
L probes the

two systems in a cascaded fashion. �e �rst system is the collective spin (subscript s) of a
cesium ensemble precessing in a magnetic �eld, and the second is the motion of a membrane
(subscript m) embedded in an optical cavity. A�er interaction, the output light %̂out

L is
detected, and the photocurrent 8 (C) digitized. �e photocurrent is analyzed with a �lter  (C)
to estimate the epr variables, Eq. (1.1). By aligning the magnetic �eld along the direction
of the collective spin, the spin oscillator realizes an e�ective negative mass, and precesses
the opposite way of the positive mass membrane. Figure also appears in Rodrigo A. �omas
et al. (2020).

A�er detection, the digitized photocurrent 8 (C) contains information about the
two systems, and their collective properties. By ��ing a suitable �lter  (C) to the
data, we may infer the desired properties of the oscillators. In essence, our main
objective is to �nd a suitable physical model, which allows us to �nd the �lter  (C)
that correctly estimates what we want to know.

�e two systems are each described by their (dimensionless) position and
momentum, (-̂8 , %̂8 ). �e epr variables are then constructed as[

-̂epr
%̂epr

]
=

1√
2

[
-̂m + -̂s
%̂m − %̂s

]
, (1.1)

i. e., the sum of the positions, and the di�erence of momenta. Demonstrating en-
tanglement will, in the end, amount to showing that we can measure these two epr
variables with a variance below one:

Var
[
-̂epr

] + Var
[
%̂epr

]
< 1, (1.2)

which can be compared to the single system limits, which strictly enforces

Var
[
-̂8

] + Var
[
%̂8

] ≥ 1, (1.3)
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for 8 ∈ {s,m}. In other words, the main goal is tracking the combined degrees of
freedom, the epr variables, so precisely that the variance of our estimate is below
that permi�ed for a single system—an endeavour necessitating high precision and
low noise in our detection, as well as an e�cient extraction of information from
the collected data.

q 2 Q

In short, this thesis is about the experimental realization of an entangled quantum
state of a spin oscillator and a carefully engineered macroscopic membrane, using
quantum back-action evasion and a negative mass reference frame. �is endeavour,
while extremely speci�c in its scope, ties into a larger scienti�c context, with both
fundamental and technological relevance.
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Previous Work

“ Our imagination is stretched to the utmost, not, as in �ction, to
imagine things which are not really there, but just to comprehend those
things which are there.

Richard Phillips Feynman

�e work in the �eld and in �antop, prior to and during this project.
I brie�y summarize the main milestones and results.

In the previous chapter, I set the stage for this thesis by painting with a somewhat
broad brush; what are the concepts and large scale goals of this work? In this chap-
ter, I will try to give a more detailed walkthrough of the scienti�c background and
contemporary scienti�c environment.

Literally thousands of publications could be listed here, but doing such a thing
would do absolutely nobody a favor. As such, this must be almost by de�nition a
super�cial walkthrough, highlighting only a small subset of relevant literature.

�e chapter is in two main parts: the �eld at large, followed by a discussion
of my reasearch group, �antop. Where does our group and our work �t into the
larger picture of quantum optics and related subjects?

2.1 The Field in General

What do I mean by “the �eld”? �antum optics, in the broadest sense, i. e., the
interface between material quantum mechanical systems and electromagnetic ra-
diation, will encompass most of the relevant parts. �e electromagnetic radiation
may be either light or microwave radiation, and the material systems can encom-
pass an extremely wide array of di�erent systems. A subset of possible systems
is depicted in Fig. 2.1; this “zoo” of quantum system ranges from mechanical res-
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Figure 2.1: �e zoo of quantum platforms. A wide array of quantum system, ranging from
mechanical oscillators to propagating photons, together o�er a wide array of advantages
and disadvantages. �eir combination into hybrid systems, coupled either directly (solid
lines) or through radiation (dashed lines), provides synergistic e�ects: de�ciencies in one
system can be alleviated by others. Reproduced from Kurizki et al. (2015), Copyright 2015
National Academy of Sciences.

(1) Gershon Kurizki et al. (2015). “�antum
technologies with hybrid systems”. In: Proceed-
ings of the National Academy of Sciences 112.13,
pp. 3866–3873.

(2) C. L. Degen, F. Reinhard, and P. Cappellaro
(2017). “�antum sensing”. In: Rev. Mod. Phys.
89 (3), p. 035002.

(3) H. J. Kimble (2008). “�e quantum internet”.
In: Nature 453.7198, pp. 1023–1030.

onators, to nuclear spins, superconducting qubits or electronic spin ensembles and
travelling photonic qubits.

Kurizki et al. (2015)(1) sets out a vision of implementing e�ective quantum
technologies in Hybrid �antum Systems, hqss, harnessing the best properties of
each constituent system to perform di�erent roles for quantum tasks such as quan-
tum information processing, (quantum) secure communication, and high-precision
quantum-limited sensing (Degen, Reinhard, and Cappellaro 2017)(2). For example,
one material system may show exceptional coherence times, making it a good can-
didate for quantum memory applications, while other systems may exhibit more
�exible experimental control, rendering them a good option for computational
qubits.

A similar sentiment was proposed in the seminal paper by Kimble (2008)(3),
who introduced the concept of a “quantum internet”, which necessitates “quantum
interconnects, which convert quantum states from one physical system to those of
another in a reversible manner”.

In that sense, it is interesting to follow the development of individual quantum
systems as well as the di�erent transduction and coupling schemes and techniques
developed, and demonstrating quantum mechanical e�ects such as entanglement
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(4) Peter Lodahl, Sahand Mahmoodian, and
Søren Stobbe (2015). “Interfacing single pho-
tons and single quantum dots with photonic
nanostructures”. In: Rev. Mod. Phys. 87 (2),
pp. 347–400.

(5) Morten Kjaergaard et al. (2020). “Super-
conducting �bits: Current State of Play”. In:
Annual Review of Condensed Ma�er Physics
11.1, pp. 369–395.

(6) Frank Arute et al. (2019). “�antum
supremacy using a programmable supercon-
ducting processor”. In: Nature 574 (7779),
pp. 505–510.

(7) Sankar Das Sarma, Michael Freedman, and
Chetan Nayak (2006). “Topological quantum
computation”. In: Physics Today 59.7, pp. 32–
38.

(8) Klemens Hammerer, Anders S. Sørensen,
and E. S. Polzik (2010). “�antum interface
between light and atomic ensembles”. In: Rev.
Mod. Phys. 82 (2), pp. 1041–1093.

(9) B. Julsgaard, A. Kozhekin, and E. S. Polzik
(2001). “Experimental long-lived entanglement
of two macroscopic objects”. In: Nature 413
(6854), pp. 400–403.

(10) W. Wasilewski, T. Fernholz, et al. (2009).
“Generation of two-mode squeezed and en-
tangled light in a single temporal and spatial
mode”. In: Opt. Express 17.16, pp. 14444–14457.

(11) W. Wasilewski, K. Jensen, et al. (2010).
“�antum Noise Limited and Entanglement-
Assisted Magnetometry”. In: Phys. Rev. Le�.
104, p. 133601.

(12) Hanna Krauter et al. (2011). “Entanglement
Generated by Dissipation and Steady State
Entanglement of Two Macroscopic Objects”. In:
Phys. Rev. Le�. 107 (8), p. 080503.

and teleportation between di�erent systems, thereby paving the way for novel
hybrid quantum systems.

Notable quantum platforms not covered in this thesis include systems such as
quantum dots (Lodahl, Mahmoodian, and Stobbe 2015)(4), i. e., arti�cial solid state
“atoms” which can serve as single photon emi�ers for photonic quantum tasks,
embedded in photonic nanostructures; and superconducting qubits (Kjaergaard
et al. 2020; Arute et al. 2019)(5),(6), where a non-linear inductor—the Josephson
junction—breaks the harmonicity of microwave resonator circuits, allowing the
ground and �rst excited states to be operated as an electronically controllable
qubit. Of certain interest is topologically protected qubits (Das Sarma, Freedman,
and Nayak 2006)(7), which will be, if the experiments are successful, much more
resilient to decoherence processes, because the quantum state is impervious to
local perturbations.

2.1.1 Spin Systems

�e single spin embodies perhaps the most quantum mechanical system of all; it
is an inherent quantum property, with no direct classical analog. However, due
to weak light-spin coupling, to achieve quantum limited interactions between
light and spins, steps must be taken to overcome decoherence processes. �is en-
hancement can derive from many di�erent mechanisms, such as cavity enhanced
interactions in cavity qed, where single atoms are strongly coupled to the electro-
magnetic mode of an optical resonator, or, alternatively, by increasing the number
of atoms, and interacting not with single spins, but an ensemble of spins.

�e spin ensemble, covered in Chapter 5, will be the spin system of choice in
this thesis. A picture of cell containing such a system, and a typical level scheme
for state preparation and readout can be seen in Fig. 2.2. �e quantum interface
between light and atomic ensembles is reviewed in (Klemens Hammerer, A. S.
Sørensen, and Polzik 2010)(8).
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Figure 2.2: Atomic cell (le�) and level scheme (right) for dispersive readout of alkali spin
ensembles. See Chapter 5 for details, and in particular Fig. 5.10 and Fig. 5.1.

Within this platform, a plethora of quantum e�ects have been demonstrated.
For the research group of �antop, these results include: entanglement between
two spin ensembles (B. Julsgaard, Kozhekin, and Polzik 2001)(9); squeezing and
entanglement of light (Wasilewski, Fernholz, et al. 2009)(10); quantum limited mag-
netometry, improved by epr-type entanglement (Wasilewski, Jensen, et al. 2010)(11);
dissipatively driven entanglement (Hanna Krauter et al. 2011)(12),(Muschik, Polzik,
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Communications 12 (1), p. 3699.
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106 (14), p. 143601.
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and J. Ignacio Cirac 2011)(13); deterministic teleportation (Krauter et al. 2013)(14);
and squeezing of the spin variables by stroboscopic measurement (Vasilakis, Shen,
et al. 2015)(15). Later e�orts (Dideriksen et al. 2021)(16) used these room temperature
spin ensembles as heralded single photon sources.

Other groups working on similar e�orts include that of Michael Romalis, who
showed pulsed back-action evasion in a hot alkali vapor system (Vasilakis, Shah,
and Romalis 2011)(17), and magnetometry enhanced by qnd measurements (Shah,
Vasilakis, and Romalis 2010)(18); Morgan Mitchell, who have demonstrated sub-
projection noise sensititivity in magnetometry (Koschorreck et al. 2010)(19), and
sub-sql measurement of spin amplitude and phase noise (Colangelo et al. 2017)(20)

in cold rubidium experiments; and Vladan Vuletić, who have demonstrated, e. g.,
spin squeezing (Leroux, Schleier-Smith, and Vuletić 2010)(21) and heralded entan-
glment with a negative Wigner function (McConnell et al. 2015)(22), again in cold
rubidium. For cold atoms, recent results include things such as the deterministic
creation of Schrödinger cat states between light and a single cold rubidium atom
(Hacker et al. 2019)(23).

�e group of Ofer Firstenberg are doing interesting work on understanding
the collective properties of room temperature gasses in dilute or bu�er gas �lled
cells (Shaham, Katz, and Firstenberg 2020)(24).

2.1.2 High-& Mechanical Oscillators

�e second material system covered in this thesis is that of microfabricated me-
chanical resonators. As depicted in Fig. 2.3, an extremely wide array of di�erent
designs exist, with masses ranging from g, for macroscopic mirrors, to zg, where
the mechanical resonator is comprised by the motion of cold atoms inside an op-
tical cavity. One could argue that the kg scale mirrors of ligo (Abbo� et al. 2016)
should be counted here as well, due to the quantum noise limits encountered in
current experiments.

In between these two extremes exists a whole host of resonators which have
been painstakingly designed and fabricated using advanced micro- and nanofab-
rication techniques. Roughly, these fall in two categories: those where only the
mechanically compliant element is fabricated, and those where the optical (or elec-
trical) resonator is also fabricated into the same device. Common to all these is the
use of advanced fabrication facilities to fabricate micro- and nanoscale features, in
some cases interfacing them with other types of systems such a superconducting
microwave circuits.

�e membrane-in-the-middle geometry was pionerred in the group of Jack
Harris (�ompson et al. 2008)(25), a�er realizing that commercially available silicon
nitride �lms, used as windows for x-ray spectroscopy, showed excellent mechani-
cal properties, with quality factors of 107 at cryogenic temperatures.

Since then, a host of di�erent mechanical resonator designs have been pro-
posed and implemented, from trampoline resonators (Kleckner et al. 2011)(26),
phononically shielded square membranes (Yu et al. 2014), so� clamped phononic
membranes (Yeghishe Tsaturyan et al. 2017)(27), to fractal-like string resonators
(Fedorov et al. 2020)(28), etc. �e implementation of strain engineering was also
sucessfully used to increases mechanical & (Ghadimi et al. 2018)(29). Also see As-
pelmeyer, Kippenberg, and Marquardt (2014).
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Figure 2.3: Di�erent mechanical oscillators. Reprinted �gure with permission from Markus
Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt (2014). “Cavity optomechanics”.
In: Rev. Mod. Phys. 86 (4), pp. 1391–1452. Copyright 2014 by the American Physical Society.

http://dx.doi.org/10.1103/RevModPhys.86.1391
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�e ultimate reported microresonator mechanical performance reported is that
of MacCabe et al. (2020)(30), who reported an ultra-high & = 5 × 1010, and a &5 -
product of 2.6 × 1020. Here, a nanobeam mechanical resonator at lm/2π = 5 GHz,
co-located with an optical micro-cavity (_ = 1550 nm), was fabricated in silicon.
Like many other systems, this resonator was limited by e�ective two-level systems
(tls), fabrication or material defects in amorphous materials, with two nearly
degenerate arrangements, with di�erent electric and acoustic (strain) transition
dipoles. Investigations into mitigating these e�ects, for example by saturating the
bath of tlss (Capelle et al. 2020)(31), is an active area of research.

2.1.3 �antum Optomechanics

With the advent of high-& resonators detailed above, arose the possibility of push-
ing the light-resonator interaction squarely into the quantum domain. �is devel-
opment is detailed succinctly in the review paper by Aspelmeyer, Kippenberg, and
Marquardt (2014)(32). Another good review paper, focusing more on the conceptual
ideas, and options o�ered by optomechanics can be found in Y. Chen (2013)(33),
where speci�c suggestions for probing fundamental properties of quantum theory,
including quantum gravity are presented.

Various e�orts include measurement based cooling and control to an occupa-
tion of = ∼ 5 (D. J. Wilson et al. 2015)(34), and subsequently to the ground state
(Rossi, Mason, J. Chen, Yeghishe Tsaturyan, et al. 2018)(35), paving the way for con-
tinuous force and displacement measurement below the sql (Mason et al. 2019)(36).
Wieczorek et al. (2015)(37) implemented Kalman �ltering to optimally estimate the
quantum state of a mechanical oscillator, which was later improved by Rossi, Ma-
son, J. Chen, and Schliesser (2019)(38), where a variance of 1.29, corresponding to a
coherent state purity of P = 0.78 was demonstrated.

�e long standing goal of achieving ground state cooling starting from room
temperature was demonstrated in Delić et al. (2020)(39), in a system with a levitated
nanoparticle as the mechanical object.

Entanglement has also been demonstrated in a number of optomechanical sys-
tems, including the motion of macroscopic diamond crystals at room temperature
(K. C. Lee et al. 2011)(40), and the creation of entangled light modes from two cavi-
ties with a shared mechanically pliable mirror (Barzanjeh et al. 2019)(41), as well as
heralded entanglement of two remote micromechanical oscillators (Riedinger et al.
2018)(42). Noteworthy goals include proposals for steady state entanglement of two
membranes in separate cavities (Tan et al. 2013)(43), or the same cavity (Woolley
and Clerk 2013)(44).

Other e�orts include quantum radiation pressure noise reduction by injection
of squeezed light (Yap et al. 2020)(45), optomechanical Bell tests (Marinković et al.
2018)(46), demonstration of Phonon Fock states in a bulk acoustic-wave resonator
(Chu et al. 2018)(47) and the creation of a quantum memory at telecom wavelengths
(Wallucks et al. 2020)(48) in an optomechanical device.

2.1.4 Hybrid Systems

As noted above, individual quantum systems have di�erent strengths and weak-
nesses for di�erent quantum tasks. �erefore, demonstrating quantum links be-



2.2. �antop 15
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tween di�erent systems is of great interest—an endeavour is known as “hybrid”
systems. Limiting ourselves to hybrid systems involving mechanics and either
spins or another system, the �eld of research is still vast.

Cold ion traps, used for quantum computing and simulation (J. I. Cirac and P.
Zoller 1995; Gross and Bloch 2017; Brown, Kim, and Monroe 2016)(49),(50),(51), have
been at the leading edge of quantum information for more than a decade. Here, the
motional and internal states of trapped ions are coupled, and used to implement
quantum gates. While only a single material system is involved, such systems
do involve both motional and internal degrees of freedom, e�ectively harnessing
two di�erent quantum properties. In a similiar cold atoms setup, negative-mass
instability was observed, with the atomic center of mass motion coupling to the
collective atomic spin (Kohler et al. 2018)(52).

By employing ultracold atoms to perform sympathethic cooling of a mechan-
ical oscillator, signi�cant performance over feedback cooling alone was shown
by (Jöckel et al. 2015; Christoph et al. 2018)(53),(54), with the membrane tempera-
ture starting respectively from room temperature and 500 mK. �e former group
of these two groups, of Philipp Treutlein, later demonstrated strong coupling be-
tween their membrane and cold spin ensemble (Karg et al. 2020)(55), in a tuneable
fashion, where the e�ective interaction could be tuned from Hamiltonian (energy-
conserving) to dissipative, thereby changing the decay time of the collective exci-
tations, with the e�ective negative mass of the spin system playing a vital role for
the dynamics.

Superconducting qubits, described above, implement excellent candidates for
practical qubits, but linking them together across di�erent dilution refrigerators
has proven evasive, as it requires electron temperatures that are not compatible
with room temperature interconnects. To this end, transducing the quantum sig-
nals to the optical domain via an electromechanical interaction has been demon-
strated (Higginbotham et al. 2018; Mirhosseini et al. 2020)(56),(57). In a similar vein,
Reed et al. (2017)(58) proposed using a mechanical resonator as a memory for a
travelling (photonic) qubit. In a similar line of experiments, coupling a microme-
chanical oscillator to microwave superconducting qubits allowed for the direct
measurement of the mechanical population in di�erent energy levels (Arrangoiz-
Arriola et al. 2019)(59).

Finally, the proposal of fabricating integrated devices harnessing the oppor-
tunities from both optomechanics, electromechanics and nanophotonics, Nano-
Opto-Electro-Mechanics (noems) (Midolo, Schliesser, and Fiore 2018)(60) has been
proposed. �is endeavour of tightly integrated devices with hybrid characteristics,
and others like it, is of great interest.

While the list of examples presented here is in no way exhaustive, I hope that
it does convey a sense of the many di�erent directions hybrid quantum systems
are evolving, and the opportunities a�orded by the intricate interplay of disparate
systems.

2.2 �antop

Turning now to properly understanding the role of this work, we must discuss the
scienti�c experience and status in my research group, �antop, before 2017, where



16 Chapter 2. Previous Work

(53) Philipp Christoph et al. (2018). “Combined
feedback and sympathetic cooling of a mechan-
ical oscillator coupled to ultracold atoms”. In:
New Journal of Physics 20.9, p. 093020.
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my Ph.D. started.

2.2.1 �e Room Temperature Alkali Spin System

�e alkali spin ensemble system was, by the time the hybrid endeavours began, the
quantum system of choice in �antop – supplemented by cold cesium experiments
(Appel et al. 2009; H. L. Sørensen et al. 2016). As discussed above, the system had
been employed in both cw and pulsed experiments, for experiments ranging from
teleportation to quantum enhanced magnetometry.

Common to the previous experiments, however, was the operation in markedly
di�erent regimes; in a spin–spin con�guration, the Larmor (spin resonance) fre-
quency could be chosen freely, e�ectively removing the e�ect of quadratic Zeeman
spli�ing (see Chapter 5). For the hybrid experiment, the Larmor frequency was
dictated by the membrane frequency of > 1 MHz. Furthermore, the cell geometry
needed to be modi�ed, to obtain faster motional averaging, commensurate with the
decoherence time of the mechanical system, and faster readout rates.

�ese challenges had been largely overcome by the time I joined the experi-
ment, as manifested by the results presented in Møller et al. (2017).

2.2.2 An Optomechanical System in the �antum Regime

�e optomechanical e�orts in �antop commenced with the arrival of Koji Usami
and Dalziel “Dal” Wilziel, who kicked o� the optomechanical experiments using
commercially available Norcada membranes.

With the arrival of Albert Schließer to the group in 2013 came a stronger focus
on fabricating higher quality resonators of our own design. �e fabrication e�orts
were led by Yeghishe Tsaturyan, and focused on the implementation of phononic
shields (Yu et al. 2014; Y. Tsaturyan et al. 2014; Yeghishe Tsaturyan et al. 2017). �e
di�erent membranes are discussed in more detail in Section 4.1.

�e �rst generation of membranes used for quantum experiments in our group
were phononic bandgap membranes, with the phononic shield embedded in the
silicon substrate supporting the silicon nitride membranes. �ese membranes were
used successfully in experiments like Nielsen et al. (2017) and Møller et al. (2017).
While ultimate mechanical quality factor was not much higher than those o�ered
by commercial membranes, the phononic shield did alleviate many experimental
problems related to clamping. By the time my Ph.D. started, the membranes with
the phononic shield embedded in the silicon nitride �lm (Yeghishe Tsaturyan et al.
2017) were just becoming mature enough for use in experiments, yielding orders of
magnitude higher & , and thereby improved quantum coherence.

2.2.2.1 �e Monolithic Cavity Design

Separate, but related to the fabricaiton e�orts of membranes, was the develop-
ment of a cavity design for optomechanics. �e �nal “monolithic” design, so called
for the design philosophy of removing all non-essential degrees of freedom from
the cavity assembly, is detailed in Nielsen (2016) and was successfully used for
the squeezing experiments in Nielsen et al. (2017). �is experiment showed up
to 2.4 dB of ponderomotive squeezing, from a range of mechanical modes, thus
demonstrating that a quantum enabled optomechanical system had been created.
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�e monolithic cavity is previewed in Fig. 6.1; Chapter 6 will discuss this de-
sign, and why it is less than ideal for hybrid experiments.

Figure 6.1: (preview) �e old, monolithic, cavity design concept. �is design was used suc-
cessfully for “pure” optomechanical experiments, but is less suited for hybrid experiments,
due to a lack of tunability. Adapted from Nielsen 2016, with modi�cations.

2.2.3 �e Hybrid System

�e hybrid experiment, the marriage of two very di�erent quantum systems, began
in �antop in 2015. By then, the experimental crew consisted of Ph.D. students
Christo�er Møller, Rodrigo A. �omas, and postdoc Georgios Vasilakis, under
guidance of Albert Schließer and Eugene Polzik. Møller brought the experience
from the optomechanics world, and �omas and Vasilakis brought the experience
from the atomic spin system.

2.2.3.1 �antum Backaction-Evasion, qbae

�ese e�orts, published in Møller et al. (2017)(61), and thoroughly detailed in Møller
(2018)(62) and to some extent Rodrigo A. �omas (2020)(63), resulted in demonstra-
tion of quantum back-action evasion (qbae) of 1.8 dB relative to the mechanics
only, thereby demonstrating the feasibility of using an e�ective negative mass
atomic system as a “noise eater” for mechanical sensors. Fig. 2.4 depictes the ob-
served qbae, with the atomic system detuned slightly blue of the mechanics. �e
total signal for respectively positive mass (green) and negative mass (red), com-
pared to the mechanics-only (blue), demonstates the positive and negative interfer-
ence of the back-action.

A vital experimental hurdle to overcome was that of interfacing the two sys-
tems; while previous optomechanical experiments were rather wavelength agnos-
tic, the atomic system forced the optomechanics to operate a very speci�c optical
wavelength. �is led to the so-called “semi-monolithic” cavity design; this mini-
mally invasive design change relative to the monolithic cavity did yield successful
results, but not without large experimental drawbacks, to which we shall return in
Chapter 6.
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Figure 2.4: qbae in a hybrid experiment, as reported in Møller et al. (2017). �e lines repre-
sent respectively mechanics only (blue), inferred spin signal (yellow), and the hybrid signal
for positive mass (green) and negative mass (red). �e la�er demonstrates total noise below
that of the mechanics only, proving e�cient qbae of 1.8 dB (relative to the mechanics alone).
Figure adapted from Rodrigo A. �omas (2020).

(64) Not the added noise, which is sometimes
also shown in graphs like this. Here I include
the thermal (ground state) noise.

(65) K. Hammerer et al. (2009). “Establishing
Einstein-Poldosky-Rosen Channels between
Nanomechanics and Atomic Ensembles”. In:
Phys. Rev. Le�. 102 (2), p. 020501.

2.3 �antum Mechanics-Free Subspaces

One signi�cant possibility made possible by the simultaneous measurement of
two quantum systems in a hybrid con�guration is that of quantum mechanics-free
subspaces. �e crux of this concept is that by suitable engineering, two inherently
quantum mechanical systems may have a subspace of their collective degrees of
freedom be, ideally, free from one or more of the usual limitations associated with
a single system.

In particular, for quantum sensing applications, a minimum sensitivity exists,
the so-called Standard �antum Limit (sql) for continuous measurement of motion.
�is is depicted in Fig. 2.5. In the top panels, the ground state (blue), imprecision
(orange) and back-action contributions are shown for three di�erent ratios of the
readout rate �m to the mechanical linewidth Wm. As the light power, proportional
to the readout rate, is turned up, the imprecision noise is reduced, while the back-
action noise increases. In the bo�om panel, the total noise(64) at the mechanical
resonance is shown for varied �m. We see a minimum amount of total (and added)
noise, which is the sql.

K. Hammerer et al. (2009)(65) proposed the creation of an Einstein-Poldosky-
Rosen (epr) channel between a mechanical resonator and an atomic ensemble with
e�ective negative mass. �e e�ective negative mass enables qnd readout of the epr
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Figure 2.5: �e sql for continuous measurement of a mechanical oscillator. Top panels:
ground state noise (blue), phase/imprecision noise (orange) and back-action (green), all
normalized so the ground state noise is 1/2 on resonance, for three di�erent readout rates
relative to the decay rate (�m/Wm). Bo�om panel: on-resonance noise contributions for
varied �m. �e imprecision noise falls o� as 1/�m, while the back-action grows as � 1

m,
leading to an optimum sensitivity for �m = Wm, where total added noise equals the ground
state �uctuations. �e dashed blue line shows the total noise for a thermal population of
=th = 1.5 × 105, corresponding to a temperature of 10 K. lm/2π = 1.4 MHz, Wm/2π = 20 kHz,
<e� = 2 ng, !cav = 3 mm. De�nitions here follow Aspelmeyer, Kippenberg, and Marquardt
(2014).
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variables, which e�ectively prepares the joint system in an entangled state. �e
authors also proposed the implementation of teleporation from the spin ensemble
to the mechanics, based on a Bell-type measurement of the spin and an auxillary
spin system, following the epr entanglement of the mechanics and spin.

Tsang and Caves (2010)(66) seperately suggested a related approach for evading
the back-action, based on engineering an e�ective interaction mimicking a nega-
tive mass system. Tsang and Caves (2012)(67) expanded on this idea, providing a
general framework for this “negative mass” approach to hybrid quantum system.
What Tsang and Caves (2012) calles “Engineering a classical subsystem within
a quantum environment”, was later phrased as “Trajectories without quantum
uncertainties” by Polzik and Klemens Hammerer (2015)(68) in their review of the
development of these ideas.

In practice, the idea had already been implemented, for example in B. Juls-



20 Chapter 2. Previous Work

(69) Keye Zhang, Pierre Meystre, and Weiping
Zhang (2013). “Back-action-free quantum op-
tomechanics with negative-mass Bose-Einstein
condensates”. In: Phys. Rev. A 88 (4), p. 043632.

(70) K Stannigel, P Rabl, and P Zoller (2012).
“Driven-dissipative preparation of entangled
states in cascaded quantum-optical networks”.
In: New Journal of Physics 14.6, p. 063014.

(71) Denis V. Vasilyev, Christine A. Muschik,
and Klemens Hammerer (2013). “Dissipative
versus conditional generation of Gaussian
entanglement and spin squeezing”. In: Phys.
Rev. A 87 (5), p. 053820.

(72) Xinyao Huang et al. (2018). “Unconditional
Steady-State Entanglement in Macroscopic Hy-
brid Systems by Coherent Noise Cancellation”.
In: Phys. Rev. Le�. 121 (10), p. 103602.

(73) F. Ya. Khalili and E. S. Polzik (2018).
“Overcoming the Standard �antum Limit
in Gravitational Wave Detectors Using Spin
Systems with a Negative E�ective Mass”. In:
Phys. Rev. Le�. 121 (3), p. 031101.

(74) E. Zeuthen, E. S. Polzik, and F. Ya. Khalili
(2019). “Gravitational wave detection beyond
the standard quantum limit using a negative-
mass spin system and virtual rigidity”. In: Phys.
Rev. D 100 (6), p. 062004.

(75) A. D. Manukhova, A. A. Rakhubovsky, and
R. Filip (2020). “Pulsed atom-mechanical quan-
tum non-demolition gate”. In: npj �antum
Information 6.1, p. 4.

(76) A Szorkovszky et al. (2014). “Mechanical
entanglement via detuned parametric am-
pli�cation”. In: New Journal of Physics 16.6,
p. 063043.

(77) R. D. Delaney et al. (2019). “Measurement
of Motion beyond the �antum Limit by
Transient Ampli�cation”. In: Phys. Rev. Le�.
123 (18), p. 183603.

(78) Itay Shomroni et al. (2019). “Optical
backaction-evading measurement of a mechan-
ical oscillator”. In: Nature Communications 10
(1).

(79) C. F. Ockeloen-Korppi et al. (2018). “Sta-
bilized entanglement of massive mechanical
oscillators”. In: Nature 556 (7702), pp. 478–482.

(80) Laure Mercier de Lépinay et al. (2021).
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gaard, Kozhekin, and Polzik (2001), where two spin ensembles, of opposite e�ective
masses, were entangled, although the language we now use to describe this con�g-
uration had not yet been formulated. In a spin-spin setup, the idea was utilized in
Wasilewski, Jensen, et al. (2010) to improve a magnetometry experiment.

�e concept has received signi�cant theoretical investigation since then, for
example by K. Zhang, Pierre Meystre, and W. Zhang (2013)(69), who suggested
tailloring the potential for a Bose–Einstein condensate to realize a negative mass
oscillator in order to evade back-action; Stannigel, Rabl, and Zoller (2012)(70) inves-
tigating preparation of entangled states in cascadede quantum networks; Vasilyev,
Muschik, and Klemens Hammerer (2013)(71), invetigating the properties of spin
squeezing under di�erent conditions; X. Huang et al. (2018)(72), who investigated
coherent noise cancellation for entanglement in hybrid systems; and Khalili and
Polzik (2018) and Zeuthen, Polzik, and Khalili (2019)(73),(74), investigating the feasi-
bility of utilizing negative mass oscilators for improving the sensitivity of gravita-
tional wave detectors such as ligo. A recent proposal for implementing a pulsed
qnd quantum gate in a entagled spin–mechanics hybrid system was put forward
by Manukhova, Rakhubovsky, and Filip (2020)(75).

Other suggestions for avoiding the backaction include detuned paramatric am-
pli�cation in a setup with two mechanical oscillators (Szorkovszky et al. 2014)(76),
thereby entangling them. Two tone driving and read-out was utilized by Delaney
et al. (2019)(77) to demonstrate squeezing of mechanical motion by two-tone mea-
surement, and noiseless ampli�cation by Transient Electro-mechanical Ampli�ca-
tion.

Fianlly, by driving a cavity with both blue and red detuned pulses, it is possible
to engineer a back-action evading measurement, as demonstrated by Shomroni
et al. (2019)(78), for a single mechanical oscillator. In a similar scheme, Mika A.
Sillanpää and colleagues demonstrated entanglement of two membranes (Ockeloen-
Korppi et al. 2018)(79), working as e�ective end-mirrors in a microwave cavity, with
the intracavity radiation correlating and entangling the oscillators. By extending
their scheme to a four tone drive, an interaction was engineered where one oscilla-
tor behaved as an e�ectively negative mass oscillator, thereby creating a quantum
mechanics–free subspace for the collective variables of the two oscillators (de
Lépinay et al. 2021)(80).

q 2 Q

Althought many more brilliant researchers have performed interesting and
relevant experiments, we must end the discussion of the literature here. We have
discussed the �eld of quantum optics (in the most general sense), the motivation
behind hybrid quantum systems, the �elds of spin ensembles and optomechanics,
previous scienti�c endeavours in �antop, and �nally the concept of quantum
mechanics free subspaces.
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Basic Optomechanics

“ �e easiest way to be on top of the �eld, is to pick a very small �eld.

Simone Giertz

Basic optomechanics is introduced. Canonical system, equations of motions,
dissipation & noise. Also, some needed math is introduced.

A�er the very general overview presented in Chapter 1, and the somewhat super-
�cial walk through of the scienti�c results obtained in qantop until the summer
of 2017 in Chapter 2, we now change gears to a somewhat lower, but much more
concrete level. We will be covering a rather large amount of material from basic
harmonic oscillators, optical cavities, canonical quantum cavity optomechanics to
the mapping of membrane-in-the-middle systems to the canonical description.

We start out with the 1d harmonic oscillator in Section 3.1, and move on to
how a membrane may be described as one in Section 3.2. In Section 3.3 we treat
(classical) dissipation and its relation to thermal noise. �e classical harmonic
oscillator is quantized in Section 3.4. �e basic coupling mechanism between mem-
branes and light, radiation pressure, is covered in Section 3.5, before we move on
to our way of enhancing this interaction, optical cavities, in Section 3.6. With these
ingredients in place, we are ready to introduce the canonical description of (quan-
tum) cavity optomechanics in Section 3.7. Since our system does not trivially map
to this canonical description, Section 3.8 deals with how to treat the membrane-in-
the-middle system as a canonical system through the Transfer Matrix Model (tmm).
We round o� the chapter with a brief overview of a number of cavity optomechani-
cal e�ects relevant to our discussions in Section 3.9.

�e descriptions given here will be somewhat idealized; the true horrors of
actually implementing a system such as the one described here will be postponed
to Chapter 4 or later.
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(1) At least two other options exist. One
concerns the normalization, pu�ing 1/√2π
on each transformation, instead of 1/2π only
on the inverse. �e other is �ipping the sign
of iS to −iS . �e la�er is used in Rodrigo A.
�omas et al. (2020).

(2) �at is, both have the properties of additiv-
ity and homogeneity:

5 (G) + 5 (H) = 5 (G + H)
5 (0G) = 05 (G) .

(3) Noting that

F {F −1 [5 (S) ] (C ) }(S) = 5 (S) .

�is chapter borrows extensively from the excellent thesis by Nielsen (2016),
especially with regards to the derivations for spectral densities, thermal �uctu-
ations etc. Other good expositions, with emphasis on di�erent aspects, may be
found in, e. g., Møller (2018) and Rodrigo A. �omas (2020).

But, before we dig into the physics, we must, as one is o�en forced to, start out
with a bit of math.

3.0 Transforming to the Freqency Domain

In this section I introduce some needed math and notations, speci�cally that of
Fourier transforms and the Power Spectral Density, psd.

3.0.1 �e Fourier Transform

For a continuous function 5 (C) we de�ne the Fourier transform as(1)

5 (S) = F {5 (C)} (S) ≡
∞∫

−∞
5 (C)e−iSC dC, (3.1)

and the inverse transform as

5 (C) = F −1{5 (S)} (C) ≡
∞∫

−∞
5 (S)e+iSC dS

2π . (3.2)

In general, we always use the short hand notation 5 (S), but sometimes the more
explicit F {·}(S) is helpful.

We will o�en be dealing with time derivatives of Fourier transforms. Luck-
ily, both the Fourier transform and the derivative are linear in the mathematical
sense(2), so one easily obtains

d
dC 5 (C) =

d
dC F

−1{5 (S)} (C) = F −1{iS5 (S)} (C), (3.3)

and by Fourier transforming both sides of this equation we get(3)

F

{
d
dC 5 (C)

}
(S) = iS5 (S), (3.4)

or in other words, time derivatives in Fourier space is achieved by multiplication
by iS (or, −iS if the Fourier transform is de�ned with the opposite sign).

Sometimes we will need to transform not only normal functions, but quantum
operators. �e de�nitions for operators are analogous to those for functions, how-
ever two di�erent conventions exist and both are in active use in our groups work.
Nielsen (2016) and Møller (2018) use one, while Rodrigo A. �omas (2020), Møller
et al. (2017), and Rodrigo A. �omas et al. (2020) use another.

In the �rst, and simplest, convention one simply uses the de�nition of the
Fourier transform. �e upshot then is that, in general, the conjugate of the Fourier
transform of an operator �̂ does not equal the Fourier transform of the conjugate:(

�̂(S)
)†

≠ �̂† (S), (3.5)
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because(
�̂(S)

)†
=

(∫ ∞

−∞
�̂(C)e−iSC dC

)†
=

∫ ∞

−∞
�̂† (C)e+iSC dC = �̂† (−S). (3.6)

�e other convetion, now with the opposite sign convention for the “forward”
transform, de�nes a “new”, or �ipped, Fourier transform for transposed operators,
speci�cally 0̂†, so

F {0̂(C)} (S) =
∞∫

−∞
0̂(C)e+iSC dC ≡ 0̂(S) (3.7)

F ′
{
0̂† (C)} (S) =

∞∫
−∞

0̂† (C)e−iSC dC ≡ 0̂† (S). (3.8)

In this case we have

(
0̂(S))† = (∫ ∞

−∞
0̂(C)e+iSC dC

)†
=

∫ ∞

−∞
0̂† (C)e−iSC dC = 0̂† (S), (3.9)

i. e., the statement we found was not true in the other convention, cf. Eq. (3.5).
�e motivation for this change relates to the case where one considers side-

bands around a laser frequency, lL. In this “�ipped” convention 0̂(S) and 0̂† (S)
both describe �uctuations at the upper sideband (absolute frequency lL +S), while
0̂(−S) and 0̂† (−S) concern the lower sideband—i. e., it relates what one would
measure in a homodyne measurement of the upper/lower sideband more naturally.

To make the di�erence even more concrete, let’s end this section by applying
the Fourier transform to the sum 0̂(C) + 0̂† (C)—combinations like these appear for
example in expressions describing optomechanical interactions and homodyne
detection. We multiply by respectively exp(−iSC) and exp(+iSC), and integrate
over C , with both conventions:

F
{
0̂(C) + 0̂† (C)} =

∞∫
−∞

e−iSC (0̂(C) + 0̂† (C)) dC = 0̂(S) + 0̂† (+S) (�rst convention)

(3.10)

F
{
0̂(C) + 0̂† (C)} =

∞∫
+∞

e+iSC
(
0̂(C) + 0̂† (C)) dC = 0̂(S) + 0̂† (−S) (second convention),

(3.11)

where in the last term of Eq. (3.11), we used the fact that we are transforming with
+iSC instead of −iSC .

�e situation is kind of a mess, and have led many untrained experimentalists
astray. I present both conventions here to hopefully elucidate the situation, as well
as to be able to follow the derivations in the respective sources where it is relevant.

3.0.2 Power Spectral Density (psd)

Next, we move on to the Power Spectral Density (psd), which is central to our
descriptions of oscillators. Following Nielsen (2016) we �rst de�ne the �nite time
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(4) Some authors make a point of distin-
guishing things that oscillate by themselves,
oscillators, from things that resonate due to
external perturbations, reonators. I will make
no such distinction, and simply call them all
oscillators.

Fourier transform

5) (S) ≡
) /2∫

−) /2

5 (C)e−iSC dC, (3.12)

and then de�ne the Power Spectral Density, psd, from this, as

( 5 5 (S) ≡ lim
)→∞

1
)
|5) (S) |2 . (3.13)

�e psd is central to a lot of our discussions. It describes the power present in the
signal 5 (C) at the frequency S , thus separating spectrally separated signals that are
hard to discern in the time domain.

Similarly, we can de�ne the Cross Spectral Density, csd, from two di�erent
signals 5 (C) and 6(C)

( 5 6 (S) ≡ lim
)→∞

1
)
5 ∗) (S)6) (S) (3.14)

To gain some understanding of what the csd tells us, we introduce the cross-
correlation function between 5 and 6 as

5 ★6(C) ≡ lim
)→∞

∫ ) /2

−) /2
5 (C ′)6(C ′ + C) dC ′. (3.15)

For 5 = 6, the cross-correlation becomes the auto-correlation function. �e Wiener–
Khinchin theorem relates the cross-correlation (or equivalently auto-correlation) to
the csd (psd), by stating

( 5 6 (S) = F {5 ★6(C)} (S). (3.16)

In other words, a csd tells us about the frequencies present in a cross-correlation
function.

All of these de�nitions are made for the continuous time case. �e experimen-
tally inclined may already now wish to interject that the data that we acquire is
always discretized, in both time and value. We will deal with the discretization
of time in Section 9.3. Until then, we will always assume continuous time, or the
di�erence will be immaterial.

With these de�nitions out of the way, we are armed for the physics. Let’s go.

3.1 The Harmonic Oscillator

To start out, we �rst show how to obtain the mechanical susceptibility, j (S), i. e.,
the frequency dependent response of an oscillator(4) to external perturbations.
�roughout the thesis we will work almost exclusively in the frequency domain,
but recalling at all times that susceptibility is just another way of rephrasing New-
ton’s laws is bene�cial.

We start with Newton’s second law for an object of mass<, subjected to a
number of external forces, such as the one depicted in Fig. 3.1∑

� =<0 =< ¥G, (3.17)
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<

¤G

G

�ext

:G,W ¤G

Figure 3.1: �e idealized 1d harmonic oscillator. An object of mass< is connected to a rigid
suspension point by a spring with spring constant : , and is currently at a position G away
from the spring equilibrium. �e block is moving with velocity ¤G , which leads to a velocity
damping of size W ¤G in the opposite direction. Finally, the mass is subjected to a total external
force �ext.

(5) We here also note a notational point: Capi-
tal omega, S , will be reserved for independent
variables, while small omegas, l , will be used
for speci�c angular frequencies, e. g., reso-
nance frequencies, drive frequencies, corner
frequencies of �lters etc.

where 0 and G is understood to be time dependent, e. g., G (C), and the dot(s) denote
time derivatives. Identifying the relevant forces and their directions as depicted in
Fig. 3.1, we obtain

< ¥G = �ext − :G − W ¤G, (3.18)

which we rearrange into

:G + W ¤G +< ¥G = �ext . (3.19)

With no external forces and zero dissipation, the solutions take the form � cos(lC) +
� sin(lC), with l2 = :/< being the angular frequency. Hence their name harmonic
oscillators.

We now go the Fourier domain (see Section 3.0.1 for details), i. e., we Fourier
transform the entire equation (3.19), and make an ansatz of linearity, such that
frequencies do not mix, by which we obtain

:G (S) + iWSG (S) −<S2G (S) = �ext (S). (3.20)

We have now transformed the equation for independent Cs into an equation for
independent Ss. Dividing through by<, and collecting factors, by which we then
divide, we get to spectral response of a harmonic oscillator to a general force

G (S) = 1
<

1
l2 −S2 + iWS �ext (S) = j (S)�ext (S), (3.21)

a�er identifying l2 = :/<, as the angular frequency squared of a harmonic oscilla-
tor without damping(5), and rede�ning W/< → W .

We plot a set of di�erent susceptibilities in Fig. 3.2. A couple of point to be
noted: at very low frequencies, all amplitudes go to one and the phase is zero,
i. e., for dc forces, they all react in phase to the external force, and with the same
amplitude. For S � l all traces asymptotically go towards 1/S2. and the phase
goes towards −π; i. e., all responses are heavily dampened, and react exactly out of
phase to external forces.
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Figure 3.2: Mechanical susceptibilities for di�erent values of W . Top: Response amplitude,
|j (S) |. Grey dashed line: 1/(S/l)2. Dots: Maximum response. Bo�om: Response phase,
arg (j (S)), relative to the perturbing force.

(6) �e oscillation is now in the I-direction - G
(and H) is orthogonal to the axis of oscillation.

(7) Both of which are material properties,
describing respectively the �exural rigidity
under compression or tension and (for small
compression) the ratio of transverse elongation
divided by the axial compression.

Close to the bare resonance frequency, S/l ∼ 1, traces with small damping
(W/l) show huge enhancement of the response, i. e., resonance. Also, as W shrinks,
so does the di�erence between the frequency with maximum response and the bare
resonance frequency (dots, top panel of Fig. 3.2). Note that all responses lag exactly
π/2 behind the force at the bare resonance frequency, independent of the size of
the damping.

3.2 Membranes as Oscillators

Now that we’ve established some formalism for 1d harmonic oscillators, we must
then ask ourselves: how do we successfully use this to describe the very much
3d objects that membranes are? In this section I will give a description of how
and why we are able to model the oscillations of membranes as simple harmonic
oscillators.

We start by considering �rst the simple case of square (or slightly rectangular)
membrane, rigidly clamped at the edge. We assume that the thickness 3 is orders of
magnitude smaller than the side lengths !G , !H .

�e governing di�erential equation for the out-of-plane displacementF (G, H ; C)(6)

of a uniform membrane with uniform in-plane tension is (Nielsen 2016, p. 18)

�

3
∇4F (G, H ; C) − T ∇2F (G, H ; C) + d m

2

mC2F (G, H ; C) = 0, (3.22)

where T is the tensile stress, d the material density per volume, and � is the �exu-
ral rigidity, which depends on the Young’s modulus, �, and the Poisson’s ratio, a (7):
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!G !H

3

GH

F

Figure 3.3: A rectangular membrane of
sidelengths !G , !H and thickness 3 , with
out-of-plane displacementF .

(8) Advanced, but analytically untractable.

� =
�33

12(1 − a2) . (3.23)

Material constants for Si3N4 may be found in Appendix B. �e three terms of (3.22)
represent respectively the energy associated with bending, the in-plane tension
and the kinetic energy. In many regards the �rst of these terms can be ignored,
as it is typically orders of magnitude smaller then the la�er two – see Nielsen
(2016) for details. Discarding this term, simpli�es the problem to a the normal wave
equation

∇2F (G, H ; C) = − 1
22

m2

mC2F (G, H ; C). (3.24)

In the simplest description, the modes of a rectangular membraneF<= (G, H ; C),
with mode indices = and<, can be seperated into an oscillatory term, I<= (C) and a
spatial part:

F=< (G, H ; C) = I=< (C)"=< (G, H) = I=< (C) sin (=:GG) sin
(
<:HH

)
(3.25)

I=< (C) = I0 (C) cos (l=<C) , (3.26)

where I0 is the slowly varying displacement amplitude, and :8 = π/!8 is the
wavenumber; it arises directly from the requirement that the displacement is zero
at the edge. �e spatial part of (3.25) is plo�ed in Fig. 3.4, for =,< ∈ {1, 2, 3} and a
square membrane.

(1, 1) (2, 1)

(2, 2) (3, 1)

Figure 3.4: Mode shapes, "=< (G, H) of four combinations of (=,<) for a square membrane.

�ese modes have frequencies

l=< = 2
√
=2:2

G +<2:2
H = π

√
T

d

√
=2

!2
G
+ <

2

!2
H
, (3.27)

where 2 =
√
T
d is the speed of sound in the material.

A couple of learning points from this equation that will eventually carry over
to our more advanced(8) phononically shielded so� clamped membranes: high
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(9) Yeghishe Tsaturyan (2019). “Ultracoher-
ent so�-clamped mechanical resonators for
quantum cavity optomechanics”. Ph.D. thesis.
University of Copenhagen.

(10) Our choice of "=< is already normalized.
Also, don’t confuse this& (displacement)
with the quality factor,& de�ned in the next
section.

tension and small size leads to high frequencies. At the same time, small = and<
corresponds to small spatial frequency and small oscillation frequencies. Curiously
absent from the equation is the membrane thickness 3 ; a fact originating from
the unspoken assumption that we can neglect the energy loss associated with
bending—an assumption which turns out to be analytically favorable, but in the
end wrong—we shall return to why in a later chapter.

If we instead of considering the spatial part, as depicted in Fig. 3.4, consider
the time evolution of a �xed (G0, H0), we see that it is entirely harmonic. Neglecting
for a moment that we cannot probe the membrane in a point, but will always probe
some (small) area, our next step in transforming the 3d oscillation to a 1d descrip-
tion will be to simply require that the potential energy of a given mode equals the
energy of a 1d harmonic oscillator at the same frequency:

+osc (C) = 1
2:I

2
G0,H0 (C) =

1
2l

2
=<<e�I

2
G0,H0 (C). (3.28)

If we, on the other hand, integrate the potential energy of each small part of the
membrane we get

+osc (C) =
!G∫

0

!H∫
0

1
2l

2
=<F

2 (G, H ; C)d3 dGdH (3.29)

=

!G∫
0

!H∫
0

1
2l

2
=<I

2
=< (C)"2

=< (G, H)d3 dGdH (3.30)

=
1
2l

2
=<


!G∫

0

!H∫
0

"2
=< (G, H)d3 dGdH


I2
=< (C), (3.31)

which is mathematically just the 1d harmonic oscillator of (3.28), with an e�ective
mass given by the term in brackets. For a rectangular membrane, this integral
evaluates to

<e� =
!G!Hd3

4 =
1
4<phys, (3.32)

independent of = and<, and equal to a quarter of the physical mass. For the gen-
eral case, the e�ective mass may be wri�en as (Yeghishe Tsaturyan 2019, p. 9)(9)

<e� = d
∫ ( |& |
|&max |

)2
d+ , (3.33)

where & is the out of plane displacement, and &max is the maximum displacement
normalizing the mode shape(10).

We have now seen how a manifestly 3d membrane can be e�ectively treated
as a (classical) 1d harmonic oscillator. �is abstraction will be used throughout
the rest of the thesis. �is classical oscillator is the one we will be quantizing in
Section 3.4. But �rst, we turn to the decay term, and its relation to thermal noise.
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(11) �e speci�cs of what damping model to
use is o�en glossed over—because the one
presented here is adequate, so will I. For more
details, see, e. g., Dalziel J. Wilson (2012). “Cav-
ity Optomechanics with High-Stress Nitride
Films”. Ph.D. thesis. California Institute of
Technology.

(12) G. E. Uhlenbeck and L. S. Ornstein (1930).
“On the �eory of the Brownian Motion”. In:
Phys. Rev. 36 (5), pp. 823–841.

3.3 Dissipation & Noise

Having now dealt with harmonic oscillators at some length, we move on to the
dampened part of harmonic oscillators, as described by W in the equation of mo-
tions for a harmonic oscillator, (3.18).(11)

Focusing for a moment on the time domain, for example by Fourier trans-
forming back from the Fourier domain response described by (3.21), one gets a�er
assuming G (0) = 0 and E (0) = 0 (Uhlenbeck and Ornstein 1930, p. 834)(12)

G (C) = 1
<e�l1

C∫
0

� (g)e−W (C−g)/2 sin
(
l1 (C − g)

)
dg, (3.34)

where l1 =
√
l2 − W2/4 is the e�ective oscillation frequency. For our membranes,

lm/W = & is on the order of 109, and thus l1 = lm for all practical purposes.
�e full solution to Eq. (3.18) is

G (C) = WG0 + 2 ¤G0
2l1

e−WC/2 sin(l1C) + G0e−WC/2 cos(l1C) + 1
<e�l1

C∫
0

� (g)e−W (C−g)/2 sin
(
l1 (C − g)

)
dg, (3.35)

where G0 is the initial position, and ¤G0 is the initial velocity. If the force term � (g) is
su�ciently small, or stochastic, the last term may be ignored for su�ciently large
G0 and small times. In that case, we can rewrite Eq. (3.35) as

G (C) = G- (C) cos(l1C) + G. (C) sin(l1C) (3.36)

where G- (C) and G. (C) are the two quadratures of oscillation, which are equal to
the prefactors to the harmonics in Eq. (3.35). Measuring G (C) and performing a
lock-in detection at l1 yields the time-dependent quantity

G' (C) =
√
G2
- (C) + G2

. (C) =
√(

WG0 + 2 ¤G0
2l1

)2
+ G2

0 × e−WC/2 (3.37)

�is quantity decays with a time constant g = 2/W , which, given that the oscil-
lation frequency is known (which it is, since we just did lock-in detection of the
oscillation), allows us to calculate & as

& =
lm
W

=
lmg

2 . (3.38)

How this measurement is performed in practice will be covered in Section 4.4.

3.3.1 Brownian Noise & the Fluctuation-Dissipation �eorem

A�er the initial displacement and velocity has decayed, the convolution term
of Eq. (3.35) becomes dominant, and we must think about how to describe this
force. �e most relevant case for us is that of thermal perturbations. �e �uctuation-
dissipation theorem states that any dissipation is always accompanied by thermal
�uctuations and vice versa. In our case, if there is velocity damping, as postulated
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Figure 3.5: Full model of Eq. (3.41) and
Lorentzian approximation of Eq. (3.42),
normalized so (GG (0) = 1 for the full
model. Frequency is axis is normalised to
the oscillator frequency l , and
W = 0.002l .

by in our equations of motion, there must also be a corresponding thermal force,
�th on our oscillator.

If the reservoir responsible for the thermal force �th is at the temperature ) ,
and the oscillator has equilibrated to the reservoir, the power spectral density of
the thermal force is

(�th�th (S) = 4:B)W<e� , (3.39)

where :B is Boltzmann’s constant. �is spectral density is independent of S , and
thus has in�nite power, which is of course unphysical. Using the Wiener-Khinchin
theorem, this can be shown to correspond to a delta-time correlation. In truth, the
spectral density falls o� for very high frequencies, corresponding to a very short
coherence time, much faster than any other process in our system. In this case, the
spectrally �at approximation is good.

Using the frequency domain expression for G (S) in Eq. (3.21) and the de�ni-
tion of psd in Section 3.0.2, the spectrum of displacements arising from this force

(GG (S) = (�� (S) |j (S) |2 (3.40)

becomes, by insertion of the susceptibility, j (S), again from Eq. (3.21), as well as
the psd of the thermal force from Eq. (3.39),

(GG (S) =
4W:B)<

−1
e�

(l2
m −S2)2 +S2W2 . (3.41)

Since we are almost always interested in the response close to resonance, and
not the wings where the response has decayed by many orders of magnitude, we
may approximate this expression by a Lorentzian response as

(GG (S) ≈ W:B)

l2<e�

1
(l −S)2 + W2/4 , (3.42)

with W now being the full width half maximum (fwhm) of the Lorentzian. �e two
equations (3.41) and (3.42) are displayed in Fig. 3.5.

We now invoke Parseval’s theorem
∞∫

−∞
|5 (C) |2 dC = 1

2π

∞∫
−∞
|5 (S) |2 dS, (3.43)

and the knowledge that 〈G〉 = 0, and thus Var(G) = 〈G2〉 to write

〈G2〉 = 1
2π

∞∫
−∞
|G (S) |2 dS. (3.44)

Since the Hamiltonian for a harmonic oscillator is given by

� =
1
2<e�l

2G2 + 1
2<e� ¤G2 (3.45)
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(13) Nielsen (2016) gives a di�erent expres-
sion for this standard deviation, which does
not have dimensions of force, and scales
incorrectly with the choice of ΔC .

and since the equipartition theorem of statistical mechanics states that each quadratic
term will have mean energy :B) /2, we also have

〈G2〉 = :B)

<e�l2 , (3.46)

and, therefore

1
2π

∞∫
−∞
|G (S) |2 dS =

:B)

<e�l2 . (3.47)

In words, the variance of motion may be directly found by integrating over the psd,
and the variance is directly proportional to the temperature.

Simulating the e�ects of Brownian noise can be done by numerical integration
of numerical integration of (3.34). We discretize time with the step size ΔC , and
insert for � (g) a Gaussian noise with standard deviation(13) √2:B)<e�/ΔC .

�e result of such a simulation is shown in Fig. 3.6 for three di�erent values of
& . In the le� hand column the time domain signal G (C) is shown. In the right hand
side, the averaged psd obtained by spli�ing the time domain signal into 10 equal
segments is shown, together with the full oscillator response model of Eq. (3.41)
with zero free parameters.

As & decreases, the response in frequency space becomes wider and lower,
while the variance, 〈G2〉, remains the same. In the time domain, the oscillation
amplitude changes slower for high & , and large excursions are rarer than for low
& .

3.4 �antum Mechanics

Having dealt, until now, with a purely classical description, it is now time to turn
to the quantum part of quantum optomechanics. O�en, when introducing quantum
mechanics, one starts from the Schrödinger equation, which can be solved for
the particles of interst, and goes on to introduce second quantization with ladder
operators. In quantum optomechanics, the approach is di�erent. �oting again W.
Bowen and Milburn (2015, preface)

A key feature of the theory of engineered quantum systems is how
the quantum description is given. One does not solve the Schrödinger
equation for every atomic or molecular constituent of the macroscopic
system. On the contrary, one begins with a classical description of
the relevant macroscopic degrees of freedom — elastic deformations
in the case of mechanics and classical current and �ux in the case of
quantum circuits — and quantises these collective degrees of freedom
directly. �is works if the macroscopic system can be so designed that
the relevant collective degrees of freedom largely de-couple from the
microscopic degrees of freedom, which remain only as a source of
noise and dissipation.

�e authors note further that this approach makes quantum optomechanics ‘Essen-
tially (. . . ) an “e�ective quantum �eld theory.”’
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Figure 3.6: �ermal response of harmonic oscillators to a Gaussian/thermal driving force.
Le� column: position as a function of time, G (C). Right column: psd of the displacement,
(GG (S). l/2π = 1.5 MHz,<e� = 20 ng, ) = 300 K, ΔC = 50 ns. For these parameters
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(14) Another common choice for the position
operator is @̂.

�e classical Hamiltonian for a harmonic oscillator, as described in the previ-
ous sections, is

� =
1
2:G

2 + 1
2<?

2, (3.48)

with the two terms representing respectively the potential and kinetic energy of
the oscillator. We now postulate that these degrees of freedom are represented by
quantum operators, Ĝ (14) and ?̂ , leading to the Hamiltonian

�̂ =
1
2:Ĝ

2 + 1
2<?̂

2, (3.49)

which is the starting point for the quantum mechanical description. �ese two op-
erators do not commute, [Ĝ, ?̂] = iℏ. Although the equation looks deceptively simi-
lar to the one one is bound to encounter in an undergraduate quantum mechanics
course (indeed, the math is identical), there is an abstraction here, alluded to in the
quote above. While the “undergraduate Hamiltonian” describes a single particle
(maybe an electron) in some kind of potential, whose origin we do not know or
particularly care about, Eq. (3.49) describes the collective dynamics of many atoms,
whose collective motion gives rise to a single momentum, and whose internal
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(15) Slightly di�erent variations exist. I fol-
low David J. Gri�ths (2005). Introduction to
quantum mechanics. Pearson Prentice Hall,
p. 468.

(16) W. Bowen and Milburn (2015) as well as
Gerry and Knight (2005) claim that these zero
point �uctuations are a “direct consequence of
the zero-point energy”. I �nd this to be a tau-
tology or a misunderstanding—the �uctuations
are a result of the non-commutability of the
operators, which limits product of variances,
c.f. Heisinberg’s indeterminacy (uncertainty)
relation. �e fact that a state with a �nite
momentum variance has kinetic energy, and
vice versa, is not too surprising.

stresses and possibly advanced geometrical arrangement gives rise to the spring
potential 1

2:Ĝ
2. �at this approach works relies on a number of things; for example,

we have to know that the single mode description is reasonable. A membrane is an
inherently multi-mode object, but if the modes are spectrally well separated and
the motion does not leave the linear regime, so frequencies do not mix, we may
simple choose to care about a single mode only, and quantize the motion of that.

We now de�ne the creation and annihilation operators(15),

0̂ = (2ℏ<l)−1/2 (i?̂ + lĜ) 0̂† = (2ℏ<l)−1/2 (−i?̂ + lĜ) . (3.50)

�ese ladder operators will be used to describe both membranes, spins and light
�elds throughtout this thesis. �ey have the well known commutation relation

[0̂, 0̂†] = 0̂0̂† − 0̂†0̂ = 1. (3.51)

We rewrite the Hamiltonian in terms of these, as

�̂ = ℏl
(
0̂†0̂ + 1

2

)
. (3.52)

For the harmonic oscillator, a set of (energy) eigenstates, {k=} or {|=〉}, exists,
for which

0̂ |=〉 = √= |= − 1〉 (3.53)
0̂† |=〉 = √= + 1 |= + 1〉 , (3.54)

thus respectively lowering or raising the quantum number =, which counts the
number of excitations in the oscillator, since

0̂†0̂ |=〉 = = |=〉 , (3.55)

which leads to the obvious de�nition =̂ ≡ 0̂†0̂. �e exception is that the lowering
operator on the state |0〉 returns, by de�nition, nothing; 0̂ |0〉 ≡ 0. �e energy
of the Fock state |=〉 is ℏl (= + 1

2 ), leading to the identi�cation of the factor 1
2 in

Eq. (3.52) as the ground state energy—the lowest energy state, that the oscillator can
possibly assume.

Similarly, we can also express the position, Ĝ and ?̂ , from the ladder operators

Ĝ = Gzpf (0̂† + 0̂) (3.56)
?̂ = ?zpf (0̂† − 0̂), (3.57)

with

Gzpf =

√
ℏ

2<l (3.58)

?zpf =

√
ℏ<l

2 =<lGzpf , (3.59)

are the zero point �uctuations of the oscillator, i. e., the standard deviation of the
vacuum state, |0〉(16). For our membranes, with e�ective masses on the order of
2 ng (Yeghishe Tsaturyan et al. 2017) and frequencies around l/2π = 1.4 MHz,
Gzpf ∼ 50 am = 5 × 10−17 m.
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(17) When the equality in (3.63) holds

Var(%̂ ) = 1/4 Var(-̂ ),
so

Var(-̂ ) + Var(%̂ ) = Var(-̂ ) + 1/(4 Var(-̂ )),
which is easily veri�ed to be minimized for
Var(-̂ ) = 1/2.

�e zero point �uctuations also leads to an obvious way of introducing dimen-
sionless variables, -̂ and %̂ , as

-̂ =
Ĝ√

2Gzpf
=

1√
2

(
0̂† + 0̂

)

%̂ =
?̂√

2?zpf
=

i√
2

(
0̂† − 0̂

)
. (3.60)

�ese variables are normalized such that
[
-̂ , %̂

]
= i, (3.61)

from which we directly conclude

f
(
-̂

)
f

(
%̂
)
≥ 1

2
��〈 [-̂ , %̂ ]〉�� = 1

2 . (3.62)

or equivalently

Var
(
-̂

)
Var

(
%̂
)
≥ 1

4 , (3.63)

which leads directly to the lower bound on their sum

Var
(
-̂

)
+ Var

(
%̂
)
≥ 1, (3.64)

which holds when Var
(
-̂

)
= Var

(
%̂
)
= 1

2 – any other combination of variances
that ful�ll Eq. (3.63) will have a sum of variances larger than 1(17). �is single sys-
tem bound, will become the epr state boundary that we need to break to demon-
strate entanglement in Chapter 10.

Since our membranes are coupled to a hot environment, they will not occupy
the ground state, or indeed any other low-occupation state if we do nothing to
them. Since phonons, i. e., mechanical excitations, are bosons, Bose–Einstein statis-
tics apply. If the oscillator has thermalized to an environment at the temperature ) ,
the probability distribution for �nding the oscillator in the energy level = is

? (=) = e−
ℏl=
:B)

[
1 − e−

ℏl
:B)

]
, (3.65)

with mean occupancy

=̄ = 〈=〉 =
∞∑
==0

=? (=) =
[
e

ℏl
:B) − 1

]−1
. (3.66)

For a membrane at l/2π = 1.4 MHz held at 4 K, =̄ = 6 × 104, or, in other words,
very far from the ground state with =̄ = 0.

In terms of the ladder operators, the variance of the position and momentum
operators for a state in thermal equilibrium is given by

Var
(
-̂

)
= Var

(
%̂
)
= =̄ + 1. (3.67)
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Figure 3.7: A coherent state phase space
representation

Instead of representing a state in terms of the position and momentum, it is
o�en bene�cial to represent it as a phasor, i. e., by an amplitude and a phase, plus
an “uncertainty ball” (W. Bowen and Milburn 2015, p. 7), as depicted in Fig. 3.7.

�is picture is especially useful for coherent states, which are a special set of
states, that are eigenstates of the annihilation operator

0̂ |U〉 = U |U〉 , (3.68)

where U is a complex number. It may be shown (Gerry and Knight 2005, p. 44) that
the coherent state expressed as a sum of number states is

|U〉 = e−
1
2 |U |2

∞∑
==0

U=√
=!
|=〉 . (3.69)

�e coherent state has the same uncertainty in both -̂ and %̂ as the ground state,
and thus can be thought of also as a displaced ground state. �e complex number U
can of course be wri�en |U |ei\ . �is makes the representation as a phasor obvious,
as long as one keeps the uncertainty in mind.

In absence of decay and external forces, the coherent state evolves as

|U〉 → |e−ilCU〉 , (3.70)

i. e., revolves in phase space with the frequency l going in clockwise circles.
�e coherent state amplitude U is directly related to the number of excitations

present in the system, as

〈=̂〉 = 〈U | =̂ |U〉 = 〈U | 0̂†0̂ |U〉 = 〈U | U∗U |U〉 = |U |2. (3.71)

�e probability of �nding the system in a given number state is given by

%= = | 〈= |U〉 |2 = e−|U |2 |U |
2=

=! = e−=̄ =̄
=

=! , (3.72)

which is a Poisson distribution with mean =̄.
q 2 Q

We’ve now covered the needed material for harmonic oscillators, how to treat
membranes as such, and a quantum mechanical description. As such, we’re now
ready to move onto the opto-part of optomechanics. We start out with a section on
the interaction of light and mechanics, before moving on to the light and optical
cavities in more details.

3.5 Radiation Pressure Coupling

�e foundation of coupling of light and mechanical degrees of freedom is radia-
tion pressure. A stream of photons, each carrying momentum ℏ: , with : being the
wavenumber, impinging on a (partially) re�ective medium, thus exerts a force pro-
portional to the number of photons impinging. If the light is incident normal to
the surface, the momentum of a re�ected photon is fully reversed, thus imparting a
change of

Δ? = 2ℏ:, (3.73)
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(18) Other mechanisms can be envisioned; for
example, a mirror that tilts would de�ect the
beam instead, thus changing the amount of
light re�ected in a given direction.

(19) �e factor of 2 comes from the light going
back and forth.

per photon. A picture of the situation is shown in Fig. 3.8. Since Δ? = �ΔC , we can
estimate the force from a beam of light. Take, for example, 1 mW of light at 852 nm,
which corresponds to about 4.2 × 1015 photons per second, or in other words

� = =phot
Δ?

ΔC
= 6.7 × 10−12 N. (3.74)

�is is an absolutely minute force, even compared to the low e�ective masses of
a new ng that we will encounter. In the next section, we will deal with a way of
amplifying this force.

�in, iin

�re�, iin + 2:ΔG

<
e�

ΔG0

�rp

Figure 3.8: Radiation pressure force on a harmonically suspended mirror. �e input light
leads to a radiation pressure force �rp as it is re�ected o� the suspended mirror. �e re-
�ected beam acquires a phase that depends on the position of the mirror, so the phase of the
re�ected light iin → iin + 2:ΔG .

�e motion of the re�ecting material modi�es the light by changing the optical
phase of the re�ected light(18). Here, one must consider the phase sensitivity one
needs to measure a given displacement. Since a movement of the re�ective surface
by ΔG changes the phase, Δi = :2ΔG (19), the smallest detectable change in position
is

ΔG =
Δi

2: . (3.75)

A phase sensitivity of 1 mrad and light at _ = 852 nm leads to a position sensi-
tivity of ΔG = 68 pm. So, even a rather good phase sensitivity leads to minimal
detectable displacements that are many orders of magnitude larger than the zero
point �uctuations, Gzpf .

�e message is clear: we need to boost the interaction strength, if we are to
have any hope of doing something interesting.

3.6 Optical Cavities

�e basic recipe for boosting the light-mechanics interaction will be having the
light interact with the mechanics several times. If, for example, the light somehow
samples the change in path length # times, the change in phase as well as the
radiation pressure on the material will be boosted by a factor # , assuming that
all of the interactions happen in a time scale much faster than the motion of the
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(20) I am sweeping some complexity under the
rug; one should keep track of which side the
beam is coming from, so each surface has four
coe�cients, A, C and A ′, C ′ respectively. With
the optical phase referenced at the plane of
incidence for both beams, unitarity (essentially
energy conservation) requires that

CC ′ = 1 − A 2

A ′ = −A .
We pick C = C ′, thus restricting the transmis-
sion phases, with li�le loss of generality, and
explicitly insert −A for re�ections from high to
low refractive index. For details, see Eugene
Hecht (2002). Optics. 4th International Edition.
Addison Wesley, Sec. 4.11..

mechanical object. Our chosen way of “recycling” the photons, will be to build
a Fabry–Perot resonator from two highly re�ective mirrors, although a host of
alternative strategies exist, as described in Chapter 2, especially Fig. 2.3.

We consider the simplest way of constructing an optical resonator, the plano-
plano Fabry-Perot cavity, as depicted in Fig. 3.9. �e design with two plane mirrors
is not stable for practical applications; however, the idealized description essen-
tially holds for the similar case of, e. g., a plano-concave or concave-concave design,
where one or two of the plane mirrors are replaced with concave counterparts.
�e mirrors are placed ! apart. Each mirror has a �eld transmission and re�ec-
tivity of (A8 , C8 ), which we allow to be complex, to describe an arbitrary phase of
the re�ected/transmi�ed beam. �e power re�ectivity and transmissivity we label
('8 ,)8 ), with '8 = |A8 |2,)8 = |C8 |2(20).

(A1, C1)

�in

�re�

�trans�1 �2

�3�4

(A2, C2)

!

Figure 3.9: A simple optical cavity. �e relation of the �eld at di�erent locations is explained
in the main text.

�e input beam, �in, is partially re�ected into �re� and partially transmi�ed
into �1. At the same time �4 is transmi�ed into �re� and re�ected into �1. �us,

�1 = C1�in + A1�4 (3.76)
�re� = −A1�in + C1�4, (3.77)

with the minus sign on the re�ection in second line explained in (20).
�2, �3 and �trans relate in a similar fashion. Finally, �2 is simply �1, upon ac-

quiring a propagation phase of :!, i. e.,

�2 = �1ei:! �4 = �3ei:!, (3.78)

and �3 is simply �2 re�ected on the second mirror:

�3 = A2�2. (3.79)

By expressing �4 from �3, �3 from �2 and �nally �2 from �1, we obtain an
expression for �1, that depends only on the system parameters and the input �eld
�in:

�1 = C1�in + A1A2e2i:!�1, (3.80)

which is easily transformed to

�1 =
C1

1 − A1A2e2i:! �in. (3.81)
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(21) �e fsr is sometimes labeled with a
subscript to denote the units used. If no label is
present it is almost always safe to assume that
real (non-angular) frequencies are assumed.

�e corresponding circulating optical power, |�circ |2, normalized to the input power
is plo�ed in Fig. 3.10, for a symmetric cavity, i. e., A1 = A2 = A , and di�erent values
of A , expressed through the �nesse, F, de�ned below.

When the round trip phase, 2i = 2:!, equals =π, the cavity is resonant, and
the circulating power builds up to values much larger than the input power –
roughly by a factor F/π.
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Figure 3.10: Cavity resonances for di�erent values of the �nesse, F. �e cavity is resonant
when i = :! = =π, i. e., when the intracavity �eld, �circ, builds up to much larger values
than the input �eld, �in.

Combining the expressions above, we obtain for the transmi�ed �eld

�trans =
C1C2ei:!

1 − A1A2e2i:! �in, (3.82)

and re�ected �eld

�re� =

(
−A1 +

A2C
2
1 e2i:!

1 − A1A2e2i:!

)
�in. (3.83)

Since we have ignored losses, it is not too cumbersome to verify that ( |�re� |2 +
|�trans |2)/|�in |2 = 1, or in other words, that all energy is eventually transmi�ed
or re�ected. �e re�ected and transmi�ed powers are plo�ed in Fig. 3.11. As the
re�ectivity goes up, the resonances become narrower,

We now de�ne a number of useful quantities. �e �rst is the free spectral
range, fsr(21),

fsra =
2

2! , (3.84)

which quanti�es the separation in frequency between consecutive resonances.
�is is only a property of the separation between the mirrors, !. It is also equal
to the inverse of the round trip time of the light, i. e., gRT = fsr−1

a . �e next is the
cavity �nesse,

F=
2π

− ln'1'2
. (3.85)
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Figure 3.11: Re�ection and transmission through a lossless cavity, for di�erent values of the
�nesse, F. �e sum of normalized transmi�ed and re�ected power equals 1, since we have
neglected all losses. Note the linear H-scale, as opposed to Fig. 3.10.

�e �nesse quanti�es the ratio between the width of the resonances and the fsr

F=
fsr
^/2π . (3.86)

In Fig. 3.12, I plot the Finesse for a symmetric cavity, for di�erent mirror re�ectiv-
ities, '. In the le� panel, the �nesse is plo�ed on a semi-logarithmic axis, while in
the right panel, for small transmissivities, (1 − '), the axes are log-log. For the sake
of calculating the �nesse, only ' ma�ers—whether the rest is transmission or loss
does not ma�er—and thus this graph may be used to infer the �nesse for a total
loss plus transmission of some size. For example, 10 ppm transmission and loss
on both mirrors, gives a �nesse of ∼3 × 105, or an enhancement of the circulating
power of ∼105.

�e cavity linewidth ^ quanti�es simultaneously the width of the cavity reso-
nance features as a function of detuning of the input light frequency, as well as the
loss rate of light from the optomechanical cavity. It can be expressed as the loss per
roundtrip divided by the round trip time, and the di�erent loss mechanisms add
linearly

^ = ^1 + ^2 + ^L, (3.87)

where ^8 describes the loss of photons from the cavity at mirror 1 & 2 or though
some loss-process, subscripted !. �e mirror loss rates equals

^1 =
1
g
|C1 |2 ^2 =

1
g
|C2 |2 (3.88)
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Figure 3.12: Cavity �nesse, F, for a symmetric cavity, with '1 = '2 = '. Le�: As a function
of ' ∈ [0, 1]. Right: As a function of 1 − ' ∈ [10−3, 10−6]. Notice the peculiar choice of G-axis,
such that low values of 1 − ' is to the right, to agree with the �gure to the le�. Note di�erent
H-axes.

(22) Yes, it is rather confusing that the overcou-
pling parameter describes both cavities that are
undercoupled and overcoupled. Such is life.
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Figure 3.13: Relative power transmission
as a function of the cavity coupling
parameter, [. Because we want to
maximize the detection of the light that
has interacted with the membrane, we
typically operate our system as close to
[ = 1 as practically possible, leading to
low overall power transmission.

Since it is useful to describe where light is going, we de�ne the overcoupling, [,
which is simply a given loss rate divided by the total cavity loss rate

[8 =
^8
^
. (3.89)

People use this terminology slightly di�erently, but in general three di�erent sit-
uations exist; [ < 1/2, [ = 1/2 and [ > 1/2, called respectively under-, critically and
over-coupled(22).

From the point of a beam of light impinging on a cavity, [ describes how
much of the beam will enter the cavity, as well as how much light is re�ected.
For [ = 1/2 no light is re�ected o� the cavity – it is either lost or transmi�ed. At
the extremes, low [ means that li�le light enters the cavity, but the beam is simply
re�ected, while high [ means that a lot of light enter the cavity, but is transmi�ed
out through the same port. In more quanti�able terms, the ratio of the input power
to the transmi�ed power, on cavity resonance and for no loss, ^L = 0, is

%trans
%in

=
4)1)2
()1 +)2)2 = 4[trans (1 − [trans) = 4(1 − [in)[in, (3.90)

which is plo�ed in Fig. 3.13. �is also highlights that cavities are linear, in the
sense that the transmission is independent of which direction you send light
through them, although the intracavity �eld may vary.

From the point of view of an intracavity �eld, the di�erent [’s describe trans-
mission in di�erent directions. It is then said that the cavity is undercoupled (or
overcoupled) in either transmission or re�ection, depending on which mirror
serves as the input mirror.

Having discussed optical resonators in some depth now, we are ready for the
holy marriage of cavities and mechanics.
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3.7 Canonical Cavity Optomechanics

We consider the canonical cavity optomechanical setup, as depicted in Fig. 3.14.
Here a single, perfectly re�ective and mechanically compliant mirror (”membrane”)
is is used to form a Fabry–Perot cavity with another, stationary, mirror, the allows
for light to enter and exit the cavity.

�e canonical setup is in many ways the conceptually simplest way of depict-
ing a optomechanical setup, and independent of the actual implementation one is
dealing with, it is o�en helpful to map the speci�c system to the canonical case.
We will deal with a more realistic model for our setup in Section 3.8.

lm, Wm

), �th

�in

�re�

0̂

<
e�

! δG

Figure 3.14: Canonical optomechanical system. A mechanically compliant mirror forms
a Fabry–Perot cavity of length ! together with another mirror. �e moving mirror, with
resonance frequency lm and mass<e� , moves δG and thus modulates the cavity resonance
frequency, and is coupled to a reservoir at temperature ) with the rate Wm, giving rise to a
�uctuating thermal force, �th. �e cavity �eld is described by the �eld operator 0̂, and the
input and output electrical �elds �in and �re�.

We restrict ourselves to the case where only a single optical cavity mode
is populated, and describe the electrical �eld by the (quantum) operator 0̂—as
strongly indicated by this notation, we will see that the description of a bosonic
degree of freedom applies not only to the membrane, but also to the optical �eld.
�e membrane, with frequency lm and mass<e� is coupled to a bath at tempera-
ture ) at the rate Wm, giving rise to thermal forces �th. �e cavity is ! long, and the
mechanical motion away from equilibrium is δG .

�e strength of the optomechanical coupling is quanti�ed by the coupling
parameter,

� ≡ mlcav
mGm

. (3.91)

For a canonical system like the one discussed here, the resonance frequency of the
cavity is given by lcav = 2π=2/2!, with = some integer. Evaluating the derivative at
the equilibrium position as ! → ! + Gm, we get

� =
m

mGm

2π=2
2(! + Gm)

����
Gm=0

=
lcav
!

. (3.92)

For a resonance frequency corresponding to a wavelength of 852 nm and a typical
cavity length of 2 mm, � = 1.1 × 1018 m−1 s−1. �is is of course a number that bears



42 Chapter 3. Basic Optomechanics

(23) And, analogously with what will be de-
�ned for the dissipative coupling, ℎ0 = �Gzpf
and ℎ =

√
=cavℎ0

(24) Vincent Dumont et al. (2019). “Flexure-
tuned membrane-at-the-edge optomechanical
system”. In: Opt. Express 27.18, pp. 25731–
25748.

(25) A. K. Tagantsev and E. S. Polzik (2021).
“Dissipative optomechanical coupling with a
membrane outside of an optical cavity”. In:
Phys. Rev. A 103 (6), p. 063503.

li�le relevance to reality – we will never be able to change the length of a cavity
by one metre, from the original length of a couple of millimetres, without funda-
mentally changing the cavity; further, any rate that are three orders of magnitude
faster than the hundreds of THz optical frequency showing up in your calculations
should be reason for, if not concern, then at least a�ention.

For optomechanics, the obvious way to get rid of this horrible PHz-scale fre-
quency, is to multiply the rate by a characteristic length scale of the movement, to
wit, the zero point �uctuations, Gzpf ,

60 ≡ �Gzpf , (3.93)

which takes a much more reasonable size. With � = 1.1 × 1018 m−1 s−1 and Gzpf =
5 × 10−17 m we get a rough estimate of 60 being on the order of 6 × 101 s−1, if we
were to use a membrane as the compliant mirror and somehow made it perfectly
re�ecting.

�e dispersive coupling described above, where the membrane motion changes
the cavity resonance frequency is by far the most common. It is however not the
only scheme for cavity optomechanics. �e most prominent alternative option
is that of dissipative optomechanics, where the membrane motion modulates the
cavity linewidth, ^. One then de�nes a dissipative coupling rate � = d^

dG as a di-
rect analog of � (23). As we will see in Section 3.8.1, our membrane-in-the-middle
setup actually does have dissipative coupling, albeit at lower rate than the dissi-
pative coupling. Dissipative coupling in a membrane-at-the-edge system (closely
related to a membrane-in-the-middle) was explored theoretically in Dumont et al.
(2019)(24), as well as in an system with a highly re�ecting membrane outside the
cavity in Tagantsev and Polzik (2021)(25). Although dissipative optomechanics is an
interesting �eld, we will focus on the dispersive interaction from now on.

3.7.1 �e Optomechanical Hamiltonian

Turning to the Hamiltonian describing the optomechanical interaction, we see that
we must have two harmonic oscillators, the optical �eld and mechanical element
respectively, a coupling term plus driving term for the optical �eld:

�̂ = �̂opt + �̂mech + �̂int + �̂drive, (3.94)

where the individual terms are given by

�̂opt = ℏlcav
(
0̂†0̂ + 1

2

)
(3.95)

�̂mech =
1

2<e�
?̂2 + <e�l

2
m

2 Ĝ2 = ℏlm
(
1̂†1̂ + 1

2

)
(3.96)

�̂int = ℏ�Ĝ0̂†0̂ (3.97)

�̂drive = ℏ
√
^in

(
B̄in0̂

†e−ilLC − B̄∗in0̂eilLC
)
. (3.98)

�e optical and mechanical Hamiltonians should come as no big surprise – they
are simply the harmonic oscillators we introduced already, albeit with 0̂, 0̂† re-
served for the optical �eld, and 1̂, 1̂† for the mechanical oscillator. �e interaction
Hamilton follows the form introduced above; radiation pressure displaces the mem-
brane, and thus the number of optical excitations must show up (0̂†0̂), and the
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(26) �e drive term is o�en seen with a prefac-
tor of i, owing to a di�erent convention for the
cavity input/output relations.

(27) �e �uctuations are sometimes introduced
as δ0̂, and then later renamed back to 0̂. Here
we take the full step straight away.

(28) A word of caution: this de�nition is the
standard de�nition used in the �eld of optome-
chanics. Later, we will encounter a rede�ned
version of 6.

membrane position (Ĝ) changes the optical resonance with the rate � . �e drive
term has mean photon �ux (̄in, and couples in with a rate √^in, and we have explic-
itly wri�en the time evolution of the optical drive �eld(26).

�e interaction Hamiltonian may be re-wri�en as

�̂int = ℏ�Gzpf

(
1̂† + 1̂

)
0̂†0̂ = ℏ60

(
1̂† + 1̂

)
0̂†0̂. (3.99)

If the optical �eld inside the cavity is strong, it is o�en useful to separate the �eld
into the mean �eld and the �uctuations around this value as(27)

0̂ → U + 0̂. (3.100)

giving us

�̂int = ℏ60 (1̂† + 1̂)
(
U∗ + 0̂†

) (
U + 0̂) (3.101)

= ℏ60 (1̂† + 1̂)
(
|U |2 + U0̂† + U∗0̂

)
(3.102)

�e �rst term is a constant shi� of the mechanical equilibrium position, which
we simply absorb into Ĝ (and since Ĝ changes, also the detuning, J). We have also
dropped the term containing the product 0̂†0̂, which is quadratic in the �uctua-
tions, and thus small compared to the terms enhanced by U . De�ning the �eld
enhanced coupling rate(28)

6 = 60 |U | = 60
√
〈=̂〉, (3.103)

we arrive at the linearized interaction Hamilton,

�̂int = ℏ6
(
0̂ + 0̂†

) (
1̂† + 1̂

)
. (3.104)

�e phase choice above is that of real U , i. e., that we are referencing other phases
to the phase of the intracavity �eld, which we pick to be real, without loss of gen-
erality. �is is the standard choice for optomechanics; however, for hybrid systems,
it is sometimes bene�cial to use the input �eld as the phase reference. In that case,
the intracavity alpha is not real, but rotated depending on the cavity detuning, as
discussed in Section 3.6. �is leads to a Hamiltonian of the form

�̂int = ℏ6
(
0̂e−iq + 0̂†eiq

) (
1̂† + 1̂

)
. (3.105)

�e drive, or input, term describes an input �eld, denoted B̄in to denote 1) that
it is a classical �eld, and 2) to di�erentiate propagating �elds, which have dimen-
sion of �ux (square root of photons per time), from localized �elds, which count a
number of photons. �e linearization performed above gets rid of the mean cav-
ity occupation, so for large �elds, �̂drive is o�en found only implicitly in the �eld
enhanced coupling rate, 6. For other scenarios, for example when driving the op-
tomechanics with a modulated light beam, the �uctuating part of B̄in reappears in
our equations, although sometimes with the classical part suppressed as before.
Later, we will also encounter this term where it is labeled 0̂, and the fact that it is a
propagating �eld must be inferred from the subscripts instead.
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(29) With the obvious other approach being
that of the Master equation approach.

(30) C. W. Gardiner and P. Zoller (2000).
�antum Noise. 2nd edition. Springer-Verlag.

To get rid of the terms evolving at optical frequencies, we transform to a frame
rotating at the frequency of the optical drive laser. With the detuning J = lL − lcav,
the needed transformation is (W. Bowen and Milburn 2015, chapter 1)

�̂ → *̂ †�̂*̂ − )̂ , where )̂ = ℏlL0̂
†0̂ and *̂ = e−i)̂ C/ℏ . (3.106)

In the end, we obtain a total Hamiltonian

�̂/ℏ = −J0̂†0̂ + lm1̂
†1̂ + 6

(
0̂† + 0̂

) (
1̂† + 1̂

)
+ √^in

(
B̄in0̂

† − B̄∗in0̂
)
, (3.107)

where we have also dropped the zero point energies.
A note on the �eld operators: a�er transformation to the rotating frame, they

are de�ned in terms of the quantum amplitudes

0̂(C) = 1
2c

∫ ∞

−∞
dS 4−8SC 0̂(S) 0̂† (C) = 1

2c

∫ ∞

−∞
dS 4+8SC 0̂† (S), (3.108)

where 0̂ is the �eld in a rotating frame with respect to the relevant optical carrier
frequency, lL, so that 0̂(S) represents the �eld at absolute frequency S + llaser. �is
expression is valid for Fourier frequencies close to the optical carrier, |S | � llaser.

3.7.2 Heisenberg–Langevin Formalism

Armed with the Hamiltonian describing the interaction and systems, we are ready
to introduce dissipation in our quantum mechanical description. �e approach is
that of the Heisenberg–Langevin formalism(29); a deeper exposition of this formal-
ism may be found in Gardiner and P. Zoller (2000, chapter 3)(30), or for our case the
more relevant formulation found in W. Bowen and Milburn (2015, section 1.4).

For a general system operator �̂, the time evolution in the Heisenberg picture
is given by

¤̂� =
i
ℏ

[
�̂, �̂

]
. (3.109)

Now, if the total Hamiltonian contains a coupling term to a thermal bath (of har-
monic oscillators, index by 9 ), this coupling term will contribute to the time evo-
lution of the system operators. If the bath interacts with the system through the
position degree of freedom, we may write

�̂sys−bath =
∑
9

[
?̂ 9

2< 9
+ : 92

(
Ĝ 9 − Ĝ

)2
]
. (3.110)

�is coupling to a large number of oscillators turns out to lead to exactly the kind
of �uctuating zero mean force described in Section 3.3. Mathematically, the noise
operator takes the form

f̂(C) =
∑
9

: 9 @̂
ℎ
9 (C), (3.111)

where @̂ℎ9 = @̂ 9 (0) cos(l 9C) + ?̂ 9 (0)
l 9< 9

sin(l 9C). If the initial displacements and mo-
menta are random and of zero mean, it is easy to convince oneself that f̂ is zero
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mean also; that the large number of independent oscillators lead to a �uctuating,
seemingly stochastic, signal also seems intuitively appealing.

�e mathematical de�nition of the noise operator, f̂, is not very easy to use in
practice; instead, the statistical properties, expressed through the psd can be found
as

(f,f(S) = 2<WℏS
(
=̄(S) + 1

)
(f,f(−S) = 2<WℏS =̄(S), (3.112)

where we have already made the �rst Markovian approximation W (C) = WX (C), or
equivalently W (S) = W , and where

=̄(S) = 1
eℏS/ B) − 1

. (3.113)

We may also de�ne the symmetrized psd as

(̄f,f =
(f,f(S) + (f,f(−S)

2 =<W (S)ℏS (2=̄ + 1). (3.114)

A�er a set of lengthy derivations, the Markov quantum Langevin equation can
be found as

¤̂� =
i
ℏ

[
�̂sys, �̂

] − 1
iℏ

[
�̂, Ĝ

]
f̂(C) + <e�

2iℏ

{ [
�̂, Ĝ

]
, W ¤̂G (C)

}
, (3.115)

where {�, �} = �� + �� is the anti-commutator. As we will o�en work with dimen-
sionless quantities, -̂ , %̂ , it is useful to express Eq. (3.115) in terms of -̂ instead of Ĝ .
�is leads to a rescaled noise operator

%̂in (C) =
Gzpff̂(C)
ℏ
√
W

, (3.116)

and the total equation taking the form

¤̂� =
i
ℏ

[
�̂sys, �̂

] + i√2W
[
�̂, -̂

]
%̂in (C) + 1

2i&

{ [
�̂, -̂

]
, ¤̂-

}
. (3.117)

We notice here, that the last term is suppressed by the oscillator & , and so will be
repressed for most practical purposes in our experiment.

�e equation looks unwieldy, but may be tackled by �rst �nding ¤̂- . We use
the Hamiltonian Eq. (3.107) and ignore the optical parts for now. Since an operator
commutes with itself, the two last terms of Eq. (3.117) vanish, and we are le� with

¤̂- =
i
ℏ

[
�̂sys, -̂

]
=

i
ℏ

[
ℏlm1̂

†1̂, -̂
]
, (3.118)

which by recalling the de�nition of -̂ and %̂ as well as the commutator relation
[1̂, 1̂†] = 1, can be easily evaluated to

¤̂- = lm%̂ . (3.119)

Once ¤̂- is known, one then similarly �nds

¤̂% = −lm-̂ − W%̂ + √2W%̂in. (3.120)
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Figure 3.15: Cavity rotations. On
resonance (a), the membrane motion
modulates the intracavity �eld phase. For
�nite detuning ±J (b), the membrane
motion modulates the optical phase and
amplitude. By time reversal, we may infer
that the membrane couples to both
amplitude and phase noise of light
impinging on the cavity. Figure
reproduced from Rodrigo A. �omas
(2020).

(31) Alternatively, this can be thought of
as a change of the phase reference for the
intracavity �eld with respect to the input �eld,
so 0̂ → 0̂e−ikin .

�ese equations take exactly the form one would expect from the classical de-
scription. �e two variables rotate into one another at the frequency lm. In the
momentum variable, we �nd the decay term, proportional to the momentum itself,
as well as a noise operator term, responsible for the thermal perturbations.

As a �nal note, one sometimes encounters the quantum Langevin equation
in the rotating wave approximation, where non-energy conserving terms have
been neglected, by inserting the ladder operators forms of Ĝ and Ĝ 9 into Eq. (3.110)
and neglecting quickly oscillating terms such as 1̂†( 9)1̂

†
( 9) and 1̂ ( 9)1̂ ( 9) . Here, the

Langevin equation takes the form

¤̂� =
i
ℏ

[
�̂sys, �̂

] − [
�̂, 1̂†

] (W
2 1̂ −

√
Wf̂(C)

)
+

(W
2 0̂
† − √Wf̂† (C)

) [
�̂, 1̂

]
, (3.121)

where the noise operator now has the following properties
[
1̂in (C), 1̂†in (C ′)

]
= X (C − C ′) (3.122)[

1̂in (C), 1̂in (C ′)
]
=

[
1̂†in (C), 1̂†in (C ′)

]
= 0 (3.123)〈

1̂†in (C)1̂in (C ′)
〉
= =̄X (C − C ′) (3.124)〈

1̂in (C)1̂†in (C ′)
〉
= (=̄ + 1)X (C − C ′). (3.125)

�e rotating wave approximation “smears out” the bath interaction over the entire
oscillation, leading to the appearance of decay and noise operators also in the
position operator.

3.7.3 Input–output Formalism

�e e�ective interaction Hamilton above, Eq. (3.107), describes the intracavity
�eld, the optomechanics and their interaction. �e interaction term couples the
amplitude quadrature of the light, -̂L ∝ 0̂† + 0̂, to the membrane position -̂m ∝ 1̂† + 1̂.
However, we have no access to the intracavity �eld, only what leaks out of the
cavity, and this depends on the cavity parameters.

Fig. 3.15 displays the e�ect of a cavity on resonance and detuned by some
amount ±J. We consider the e�ect a vibrating membrane has on the intracavity
�eld. On resonance, the cavity light �eld phase is modulated by the dispersive shi�
induced by membrane motion, while the amplitude is not changed to �rst order.
For a detuning ±J, the phase modulation is reduced, because the slope of the phase
response is lower, and a direct amplitude modulation of the �eld appears. Note that
the phase responses are in phase, while the amplitude responses are out of phase,
for the di�erent detunings.

�e trick now appears: by virtue of time reversal symmetry, we may infer that
for a detuned cavity the membrane motion couples to both amplitude and phase
noise of the beam outside of the cavity.

�is motivates a rotation of the intracavity �eld operators(31) bykin = arctan(2J/^),
leading to a Hamilton of the form

�̂/ℏ =
lm
2

(
-̂ 2

m + %̂2
m

)
−J

(
-̂ cav

L,m
2 + %̂ cav

L,m
2
)
−46

(
-̂ cav

L,m coskin + %̂ cav
L,m sinkin

)
-̂m, (3.126)
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(32) Usually pronounced “chi-moo”.

where the factor of 4 comes in part (a factor 2
√

2) from the change to quadrature
operators instead of ladder operators, with the light quadrature operators

-̂L =
0̂ + 0̂†

2

%̂L =
0̂ − 0̂†

2i ,

(3.127)

which should be contrasted with Eq. (3.60), where the light operators carry an
extra factor 1/√2. �e remaining factor

√
2, by virtue of elimination, arises from a

rede�nition of 6 → 6/√2. �is non-standard choice is used in our work Rodrigo
A. �omas et al. (2020), and I preserve it here for consistency between the le�er
and this thesis. Further, the de�nitions of the light operators above enforces a
commutator [-̂L, %̂L] = i/2, in contrast to the mechanical quadratures, for which
[-̂m, %̂m] = i. We have also introduced the subscripts 〈·〉L,m, which will become
relevant with the introduction of the spins in Chapter 5 – here we will need to
label, for example, the optical operators at the spin systems with 〈·〉L,s.

In the rest of this section, I will follow the notation and derivations found in
our paper Rodrigo A. �omas et al. (2020) and its Supplementary Information. Here
we �nd that the rotation of the optical quadratures with the Heisenberg–Langevin
equations and the Hamiltonian above leads to a set of equations of motions, which
in the frequency domain and steady state regime become

©­«
^/2 − iS J 26 sinkin
−J ^/2 − iS −26 coskin

−46 coskin −46 sinkin j−1
m00

ª®¬
©­­«
-̂ cav

L,m
%̂ cav

L,m
-̂m

ª®®¬
=

©­­«

√
^in-̂

in
L,m +

√
^ex-̂

ex
L,m√

^in%̂
in
L,m +

√
^ex%̂

ex
L,m

f̂m

ª®®¬
,

(3.128)

where j−1
m00 ≡ (l2

m0 − S2 − 8SWm0)/lm0
(32) is the bare susceptibility for the dimen-

sionless position (without optical spring and broadening e�ects, introduced in the
following section).

�e optical noise operators are respectively related to the input light �eld,
which couples into the cavity at rate √^in, and the noise related to light coupling
out of the second cavity mirror as well as intracavity losses, with a total rate of
^ex = ^HR

ex + ^ loss
ex .

Absent from these equations is %̂m; this variable is eliminated with the Fourier-
domain Heisenberg–Langevin equation for -̂m,

−iS-̂m = lm0%̂m. (3.129)

�e solution for %̂m can thus be inserted, which leads to decay (contained in jm)
and the noise operator f̂m showing up in the position variable. �e momentum
variable can be found via Eq. (3.129), but we do not need to explicitly carry it
throughout the calculations.

�ese equations of motion may be wri�en in a more compact form, which
we shall use to a high degree throughout the rest of the thesis. We de�ne certain



48 Chapter 3. Basic Optomechanics

(33) For J > 0 the rate can be negative, i. e.,
anti-damping. For practical reason the, by
far, most o�en encountered situation is that
of J < 0, for which the optics dampen the
mechanics.

submatrices of Eq. (3.128) as the matrices

G =

(
^/2 − 8S J
−J ^/2 − 8S

)
H =

(
0
−26

)

I =
(
−46 0

)
ˆ̂ 9L,m =

(
-̂ 9

L,m
%̂ 9L,m

)
,

(3.130)

with 9 ∈ {cav, in, ex} labeling the di�erent optical �elds. Further, de�ning a general
2d rotation matrix

UU =

(
cosU − sinU
sinU cosU

)
(3.131)

we also de�ne Ukin for the input cavity rotation.
Noting that the cavity response matrix G is invariant under quadrature rota-

tions, UkGUᵀk = G, we �nd the intracavity �eld and the mechanical variable as a
function of the input �uctuations and thermal bath

ˆ̂ cav
L,m = G−1

(√
^in ˆ̂ in

L,m +
√
^ex ˆ̂ ex

L,m

)
−G−1UkinH-̂m, (3.132)

-̂m = jm
[
−IG−1Uᵀ

kin

(√
^in ˆ̂ in

L,m +
√
^ex ˆ̂ ex

L,m

)
+ f̂m

]
, (3.133)

in which jm = (j−1
m00 − IG−1H)−1 is the e�ective mechanical susceptibility in the

presence of optomechanical coupling,

jm =
lm0

(l2
m + 2Sδlm −S2 − iSWm) (3.134)

where the modi�ed resonance frequency, lm = lm0 + δlm, and line width, Wm =
Wm0 + δWm are changed as

δlm(Ω) =
462lm
^S

[ (J +S)^/2
(J +S)2 + (^/2)2 +

(J −S)^/2
(J −S)2 + (^/2)2

]
(3.135)

δWm (S) = 862lm
^S

[ (^/2)2
(J +S)2 + (^/2)2 −

(^/2)2
(J +S)2 + (^/2)2

]
, (3.136)

which are called respectively the optical spring shi� and optical damping rate(33).
�e optical spring and damping are plo�ed in Fig. 3.16, for an experimentally rele-
vant set of paramters. We see that the optical spring shi� is on the order of a cou-
ple of kilohertz; compared to our bare mechanical frequencies of lm/2π ∼ 1.4 MHz,
this is a small e�ect. �e optical damping rate also easily reaches several kilohertz,
but comparing that of the intrinsic damping rate of Wm0 ∼ 2 mHz this e�ect very
quickly dominates other decay terms.

�e optical cooling may be understood by considering the picture in Fig. 3.17.
For two di�erent ratios of the cavity line width, ^, to the mechanical frequency,
lm, we depicted the cavity envelope in blue. Detuned from the cavity resonance,
is a carrier at lL. �e optomechanical interaction supports processes that scat-
ter photons out of the carrier, to higher (anti-Stokes, lL + lm) and lower (Stokes,
lL − lm) frequencies by the simultaneous annihilation and creation of a phonon
in the mechanics, plus the inverse processes (creation of carrier photon plus cre-
ation/annihilation of phonon). If the cavity is narrow (^ � lm), the cavity is said
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Figure 3.16: Optical spring, δlm, (le�) and damping, δWm, (right) for di�erent cavity widths.
Other parameters: lm0/2π = 1.4 MHz, 6/2π = 100 kHz.

to be resolved, and one sca�ering process is enhanced by the cavity response. If the
cavity is wide (^ � lm), it is unresolved, and the two di�erent processes happen
with almost identical rates. Since the process that destroys phonons removes en-
ergy from the mechanical system, the oscillator is cooled by the interaction with
light. For blue detuning, the process is reversed, and the membrane is heated. Once
the total line width Wm0 + δWm crosses 0, the mechanical motion is parametrically
ampli�ed, and grows exponentially, quickly leading to a runaway process.
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Figure 3.17: Sideband resolution in the unresolved (le�) and resolved (right) regime. In the
unresolved case, the cavity enhancement of sca�ering to the Stokes and anti-Stokes side-
bands are almost the same. Placing the carrier at the steepest point of the cavity envelope, at
J = ∓^/√12, maximizes the asymmetry. For the resolved case, the asymmetry of sca�ering
rates is maximized when J = ∓lm. �e sideband heights are not to scale with the carrier
height.

Substituting Eq. (3.133) in Eq. (3.132) solves the system for the cavity �eld

ˆ̂ cav
L,m = Ukin_

−1Uᵀ
kin

(√
^in ˆ̂ in

L,m +
√
^ex ˆ̂ ex

L,m

)
− Ukin_

−1Hjm00f̂m, (3.137)

where _ = G − Hjm00I is the e�ective cavity response matrix in the presence
of optomechanical coupling. �e solution uses the Schur complement detailed in
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Appendix E, for the 3 × 3 matrix in Eq. (3.128), and the de�nition of the sub-matrices
in Eq. (3.130). �is solution for the cavity �eld can also be used to express the
mechanical response, Eq. (3.133), as

-̂m = −jm00I_
−1Uᵀ

kin

(√
^in ˆ̂ in

L,m +
√
^ex ˆ̂ ex

L,m

)
+ jmf̂m. (3.138)

Finally, the �eld leaking out of the cavity can be detected, and the mechanical
motion inferred from this light. �e phase of the outgoing classical carrier �eld
with respect to the cavity �eld is given bykout = arctan(2J/(^in − ^ex)). Overall, the
total phase shi� with respect to the input �eld iskout +kin. �e cavity input-output
relations, taking into account the acquired phase shi� with respect to the input,
from Eq. (3.137), is

ˆ̂ out
L,m = Uᵀ

kin+kout
(− ˆ̂ in

L,m +
√
^in ˆ̂ cav

L,m) (3.139)

= Uᵀ
kout
(^in_

−1 − 12)Uᵀkin
ˆ̂ in

L,m +
√
^in^exU

ᵀ
kout

_−1Uᵀ
kin

ˆ̂ ex
L,m

− √^inU
ᵀ
kout

_−1Hjm00f̂m,
(3.140)

where in the second line we have inserted the expression for the intracavity �eld
from Eq. (3.137).

�ese equations, describing respectively the intracavity �eld, mechanical
response and the output light are the full solutions, on which the �nal modelling
of our system will be based. However, they are also somewhat unwieldy and not
overly transparent – as o�en, however, a suitable set of simplifying assumptions
can be made, which will serve to highlight the most crucial features of the scheme.

We note �rst that the cavity response matrix can be expressed in terms of the
complex Lorentzian sideband amplitudes

L (S) ≡ (^/2)
^/2 − i(S + J) (3.141)

with phaseK (S) ≡ Arg[L (S)], and where the dependence on J is suppressed for
notational brevity. �is allows us to write G−1 as

G−1 =
1
^

(
L (S) + L∗ (−S) i[L (S) − L∗ (−S)]
−i[L (S) − L∗ (−S)] L (S) + L∗ (−S)

)
(3.142)

= |L (S) |+ |L (−S) |
^ ei[K (S)−K (−S) ]/2U [K (S)+K (−S) ]/2

[
12 + i |L (S) |− |L (−S) ||L (S) |+ |L (−S) |U−π/2

]
.

(3.143)

If the response of the cavity, L (S), is su�ciently �at over the relevant frequency
band, we can substitute the response evaluated at the mechanical frequency,
L (±S) ≈ L (±lm), which also �xesK (±S) ≈ K (±lm). �is motivates the ro-
tation of input light quadratures as

^ in(ex)′
L,m ≡ ei[K (lm)−K (−lm) ]/2U [K (lm)+K (−lm) ]/2U

ᵀ
kin

^ in(ex)
L,m , (3.144)

which, using Eqs. (3.143) and (3.144) to reexpress the light (qba) force on the me-
chanical mode (i.e., Eq. (3.133), 1st term in square brackets), we �nd

−IG−1Uᵀ
kin

(√
^in ˆ̂ in

L,m +
√
^ex ˆ̂ ex

L,m

)
≈ 2

√
�m

(
1

iZm

)ᵀ (√
^in/^ ˆ̂ in′

L,m +
√
^ex/^ ˆ̂ ex′

L,m

)
,
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(3.145)

where we have introduced the mechanical readout rate and sideband asymmetry
parameter,

�m ≡ 462

^
( |L (lm) | + |L (−lm) |)2, Zm ≡ |L (lm) | − |L (−lm) |

|L (lm) | + |L (−lm) | , (3.146)

respectively, remembering that L depends on J. �e readout rate and sideband
asymmetry are plo�ed in Fig. 3.18. For narrow cavities, we see that the sideband
asymmetry is high, and maximized for J = lm, while for wider cavities the point
of maximum Zm moves to larger detunings, in line with the heuristical description
above. We also see that the readout rate has some interesting features. For low ^,
the shape has three local maxima, at J ∈ { ±lm, 0 }, while for large ^ the shape is
smooth. Further, evidently the maximally achievable readout rate for �xed 6 has a
maximum for intermediate ^; as a function of growing ^, for �xed J, �m �rst grows
and then falls o� again.
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Figure 3.18: Optical readout rate, �m, (le�) and sideband asymmetry, Zm, (right) for varied ^.
6/2π = 100 kHz, lm = 1.4 MHz. Vertical dashed lines indicate J = −lm.

Returning to the equations above, we make the �nal approximation, and ig-
nore the �nite overcoupling by se�ing ^in = ^, i. e., ignoring losses and outcoupling
through the high re�ector mirror. Inserting this approximation into Eq. (3.145) we
arrive at the �nal, simpli�ed response of -̂m.

-̂m = jm [f̂m + 2
√
�m (-̂ in

L,m + iZm%̂
in
L,m)], (3.147)

where we now have for the e�ective, Fourier-domain susceptibility

jm (S) = lm0
(l2

m −S2 − iSWm) (3.148)

with dynamical broadening/damping δWm ≡ Wm − Wm0 = 2Zm�m, parametrized by Zm
and �m.

Noting that −12 + ^G−1 = ei[K (lm)−K (−lm) ]UK (lm)+K (−lm) , we �nd in this limit
that the rotated output quadrature

^out′
L,m ≡ e−i[K (lm)−K (−lm) ]/2Uᵀ[K (lm)+K (−lm) ]/2U

ᵀ
kin

^out
L,m, (3.149)
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In: New Journal of Physics 10.9, p. 095008.
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obeys

^out′
L,m = ^ in′

L,m +
√
�m

(
iZm
1

)
-̂m, (3.150)

as follows from ˆ̂ out
L,m = − ˆ̂ in

L,m +
√
^in ˆ̂ cav

L,m combined with Eq. (3.132), again assuming
^in = ^.

�is concludes the derivation of the main equations governing the mechanical
system and its interaction with light. We will meet these equations again in the
following sections, as well as in Chapter 10, and a similar set of relations for the
spin system in Chapter 5. For now, we turn our a�ention to mapping of our spe-
ci�c optomechanical setup, the membrane-in-the-middle concept, to the canonical
optomechanical system described thus far.

3.8 Membrane-in-the-Middle (mim) Optomechanics

Membrane-in-the-Middle (mim)Canonical system

Figure 3.19: Canonical (le�) and mim optomechanical (right) systems. In the canonical setup,
one end mirror is mechanically pliable. In a mim setup a membrane is placed inside the
standing wave of a resonator with (ideaelly) stationary mirrors.

In Fig. 3.19 a canonical optomechanical system and a membrane-in-the-middle
(mim) setup are displayed. In the canonical system, the mechanically compliant ele-
ment is one of the end mirrors, forming the optical resonator; in the mim setup, the
mechanical element is placed within the optical mode of a “normal” Fabry–Perot
resonator; the membrane dividies the cavity into two subcavities. �is approach
o�ers several distinct advantages, as well as some disadvantages. In this section,
we will deal not so much with why one would be interested in mim optomechanics,
but in how to map such a system to the canonical model.

3.8.1 �e Transfer Matrix Model (tmm)

�e Transfer Matrix Model (tmm) is our daily workhorse for evaluating things
like the e�ect of the membrane position in the standing wave of the unperturbed
cavity (what we will later call ”2:I modulation”), 60, cavity overcoupling [ and so
on. Introduced by Jayich et al. (2008)(34) and expanded in, e. g., Dalziel J. Wilson
(2012)(35), it consists of a conceptually rather straightforward model, shown in
Fig. 3.20. Two �at mirrors with �eld re�ection and transmission coe�cients (A1, C1)
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(36) Which is true in particular for real A and C .

and (A2, C2) are placed ! apart, with a dielectric membrane (with (Am, Cm)) placed I
away from one mirror.

�e re�ected and transmi�ed �elds, as well as properties like the overcoupling
in transmission and re�ection, the ratio of powers in the two subcavities, etc., may
then be numerically evaluated.

Although the model is very crude, ignoring all sorts of complicating factors
such as non-�at mirrors, higher order modes, etc., it has proven extremely robust
and accurate in describing a variety of di�erent mim optomechanical designs.

(A1, C1)

�in

�re�

�trans�1 �3

�4�2

(A2, C2)

!

Im

(Am, Cm)

Figure 3.20: tmm concept. Two mirrors, placed ! apart, and with �eld re�ection and trans-
mission coe�cients (A8 , C8 ) form a cavity, containing a dielectric membrane (Am, Cm). By
solving for �trans, �re� in terms of �in for varying values of the membrane position I, we can
calculate di�erent properties of the optomechanical system.

�e model starts by writing the relations connecting the electrical �elds at
di�erent places, just like we did for the Fabry–Perot cavity in Section 3.6. �is time,
we use a di�erent convention for the transmission and re�ection coe�cients than
the one explained in footnote (20) on page 37. We do this to keep the notation in
line with the one in Jayich et al. (2008), and reproduced in Nielsen (2016), Møller
(2018) and so on. �e transformation connecting the input and output �elds must
still be unitary, but by allowing the plane of reference for the phases of the optical
�elds to not co-incide, it is possible to obtain a notation that gets rid of the awk-
ward minus-sign on one re�ection. �e trick is to let C → iC and A ′ = A , such that
the sca�ering matrix, S, connecting the input �elds to the output �elds takes the
form (

�re�,1
�re�,2

)
=

(
A iC
iC A

) (
�in,1
�in,2

)
= S

(
�in,1
�in,2

)
(3.151)

as opposed to(
�re�,1
�re�,2

)
=

(
A C
C −A

) (
�in,1
�in,2

)
. (3.152)

Verifying that both of these matrices are unitary (i. e., that S†S = 1) is easy, as long
as A ∗C −AC∗ = 2=(A ∗C) = 0(36); hence, they both conserve energy. �e convention used
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refractive index = and thickness 3 .

2:I

= · 2:I + 2:Im

Figure 3.21: Membrane position in the
cavity �eld, 2:I. �e �eld of the
unperturbed cavity (red), has a node
every _/2 = π/: , and is therefore periodic
in 2:I. �e membrane is positioned Im
into the =th bubble.

here, with iC , has the virtue of being independent of which side the beam is coming
from, but does introduce a slightly arti�cial shi� of the phase reference point. A
longer discussion of this phase convention may be found in Siegman (1986, chapter
11.1)(37).

�e set of equations we must solve is

�1 = iC1�in + A1�2ei: (!−Im)

�2 = iC<�4ei:Im + Am�1ei: (!−Im)

�3 = iC<�1ei: (!−Im) + Am�4ei:Im

�4 = A2�3ei:Im

�re� = iC1�2ei: (!−Im) + A1�in

�trans = iC2�3ei:Im .

(3.153)

�e membrane transmission and re�ection coe�cients are covered in Section 4.1.3.
�ese coe�cients are not real, but do respect the condition =(A ∗ C) = 0.

By se�ing �1 = 1, the set of equations in Eq. (3.153) can be solved, yielding
a set of analytically cumbersome expressions, which are however easily solved
numerically for a given set of parameters { C1, A1, C2, A2, Cm, Am, !, Im }(38) for arbitrary
optical wavenumber : .

�e mim model can obviously be thought of as two coupled cavities, with
the membrane acting as the coupling mirror. It should therefore come as no big
surprise as the resonance condition of each subcavity ma�ers, or in other words,
that the system is sensitive to displacements of the membrane by distances smaller
than half an optical wavelength, the distance between two nodes of a standing
wave. �e same conclusion can be drawn from imagining the membrane as a very
transmissive element moving in the unperturbed standing wave of a cavity, as
depicted in Fig. 3.21. In this picture, as the membrane is moved δIm = π/: starting
from a node, it moves from one node to the next, sampling an entire “bubble” of
light. Since, !, Im � _, this system is approximately periodic in :I = π, and not
2π like normal periodic functions, it is customary to work with the quantity 2:I,
which is then 2π-periodic.

For a lossless cavity (A = 1, = purely real), the resonance condition of the cavity
is mod�ed by the membrane as

|Am | cos(2:resΔI) = cos(:res! + q), (3.154)

where ΔI = Im − !/2 denotes the membrane distance from the center of the
cavity, and q = arg(Am), and :res is the resonant wavenumber. Neglecting the
constant phase q , and approximating the le� hand side expression for :res by the
bare (unperturbed) wavenumber, :0,= = =π/!, one arrives at an expression for the
resonant wavenumbers

:res =
1
!

cos−1 ( |Am | cos(2:0,=)
) + :0,= (3.155)

≈ 1
!
|Am | sin

(
2:0,=Im

) + :0,= . (3.156)

In this picture, where we imagine the geometry to be frozen and the wavelength
(and thus wavenumber) varied, we see that the membrane modulates the reso-
nances in a periodic fashion. �e periodic part can be turned into a frequency
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(39) I. e., a weighted sum
∑
U8^8 , with U8 ≥ 0

and
∑
8 U8 = 1.

change, 2
2π

1
! |Am | sin(2:0,=Im), which when plo�ed against the resonant wavenum-

ber folded into a single 2:I bubble leads to the picture in Fig. 3.22. Recalling the
de�nition of our dispersive coupling, this change of the resonance frequency with
membrane position is exactly what we are a�er; the derivative of the curves are
directly proportional to the coupling � . �e curves are further vertically o�set by
subtraction of the maximum values, such that we only plot negative frequency
shi�s – �rst, a small o�set has li�le impact on our system, and secondly, adding a
material with = > 1 should only increase the optical path length, thus reducing the
resonance frequency.
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Figure 3.22: Frequency shi� as a function of 2:I, for varied membrane re�ectivity. �e
curves are o�set vertically so that only negative changes are allowed. ! = 2.3 mm,
ΔIm = −0.12 mm.

�e rest of the model is mostly based on the numerical simulations, but a
few points can still be made. First, the cavity transmission and re�ection is now
not only a function of the mirrors transmissions – the amount of light in the two
subcavities also ma�er, and thus

)cav =
|�trans |2
|�in |2 =

|C2�3 |2
|�in |2 'cav =

|�re� |2
|�in |2 . (3.157)

Similarly, the overcoupling parameters now also re�ect the di�erent amount of
light in the two subcavities. For no loss, we get

[trans =
|C2 |2 |�3 |2

|C2 |2 |�3 | + |C1 |2 |�2 |2 [re� =
|C1 |2 |�2 |2

|C2 |2 |�3 | + |C1 |2 |�2 |2 . (3.158)

With the addition of losses, the denominator must be modi�ed in a suitable manner
to re�ect where the losses happen, since more light at a lossy element means more
total e�ective loss.

�e cavity linewidth is modi�ed in a similar manner. Dumont et al. (2019)
gives an analytical expression for the linewidth as

^ =
(1 − |Am |2)2 |C1 |2 + (1 + 2|Am | cos(2:resIm + iA ) + |Am |2)2 |C2 |2

2Im (1 − |Am |2) + 2(! − Im) (1 + 2|Am | cos(2:resIm + ir) + |Am |2) . (3.159)

While this equation is nice, it is not particularly transparent, so in practice we
evaluate the linewidth numerically with the tmm. Nielsen (2016) notes that the
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linewidth should always be a convex combination(39) of the decay rates of two
subcavities, assuming a perfectly re�ecting membrane,

^1 =
2 |C1 |2

2(! − Im) ^2 =
2 |C2 |2
2Im

, (3.160)

which can provide a sanity check, as the total linewidth must lie between these two
values.

�e last point is that of the interpretation of the dispersive shi� arising from
an e�ective radiation pressure force. In the mim setup, the membrane feels not one,
but two radiation pressure forces, one from each of the subcavities. Recalling the
radiation pressure force from Section 3.5, for the canonical system, we have

�can =
2ℏ:=̄cav
gRT

= ℏ�=̄cav . (3.161)

With two di�erent forces, we simply add them together while keeping track of
their directions, and obtain

�MIM = �1 − �2 = 2ℏ:
(
=̄1
g1
− =̄2
g2

)
= 2ℏ: =̄2

g2

(
=̄1g2
=̄2g1

− 1
)
≡ ℏ�=̄cav,e� . (3.162)

�is de�nes the e�ective number of cavity photons such that the mim expression
matches that of the canonical system. Isolating� , we get

� = 2: =̄1/g1 − =̄2/g2
=̄1 + =̄2

, (3.163)

or when expressed through the electrical �elds (which are �uxes, so =1/2 = g1/2 ( |�1/3 |2+
|�2/4 |2)), and scaling with Gzpf

60 =
2:Gzpf

2π
|�1 |2 + |�2 |2 −

( |�3 |2 + |�4 |2
)

g1 (|�1 |2 + |�2 |2) + g2
( |�3 |2 + |�4 |2

) . (3.164)

�us, it is clear that the optomechanical coupling is proportional to the di�erence
of photons in the two subcavities, or when !1 ∼ !2 so g1 ∼ g2, the ratio (=1/=2) − 1.

Pu�ing all this together, we plot in Fig. 3.23 the tmm evaluated for the optome-
chanical assembly used in Chapter 10 – the parameters are listed in Table 3.1.

We see here that all important parameters are modulated by the movement
of the membrane in 2:I. Starting from the top plot, two distinct high-coupling
points exist, with near-identical amplitude and di�erent sign. �is sign di�erence
is immaterial for practical purposes, as we almost ways encounter 60-squared.
However, the cavity linewidth, ^, and the overcoupling in re�ection [, is modulated
in a similar fashion as 60. Since we are interested in maximizing [, we choose to
work on the high-^ high-coupling point. �is also minimizes the transmission (and
conversely maximizes the re�ection). 62

0/^ and 62
0/^2 can be useful in estimating

the ratio of coherent interactions to loss mechanisms, such as for calculation of
cooperativities, � .

�is concludes the derivation of the Transfer Matrix Model (tmm), which e�ec-
tively maps our membrane-in-the-middle optomechanical system to the canonical
system. For a given choice of parameters (transmissions, losses, lengths etc.), we
obtain direct parallels to the parameters describing the canonical system, including
the optomechanical coupling, � , and have derived a method for predicting other
important system parameters.
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Figure 3.23: Transfer matrix model, evaluated for experimentally relevant parameters, as
listed in Table 3.1.
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Parameter Symbol Value

Membrane e�ective mass <e� 2 ng
Membrane frequency lm/2π 1.4 MHz

Input mirror transmission )1 360 ppm
Input mirror loss X1 20 ppm

Back mirror transmission )2 20 ppm
Back mirror loss X2 4 ppm

Cavity length ! 2.6 mm
Membrane position Im 1.25 mm

Membrane thickness 3 14 nm
Table 3.1: Parameters for the tmm.

(40) Albert Schliesser (2009). “Cavity Op-
tomechanics and Optical Frequency Comb
Generation with Silica Whispering-Gallery-
Mode Microresonators”. Ph.D. thesis. Lud-
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(41) G. S. Agarwal and Sumei Huang (2010).
“Electromagnetically induced transparency in
mechanical e�ects of light”. In: Phys. Rev. A 81
(4), p. 041803.

(42) Stefan Weis et al. (2010). “Optomechan-
ically Induced Transparency”. In: Science
330.6010, pp. 1520–1523.

3.9 Cavity Optomechanical Effects

As a last point of action in this chapter, we will brie�y discuss a couple of interest-
ing or important processes or e�ects in our optomechanical system.

3.9.1 omit

OptoMechanically Induced Transparency (omit), analogously to the atomic physics
predecessor, Electromagnetically Induced Transparency (eit), is both an interesting
and important physical process in its own right, as well as an important experimen-
tal tool.

�e e�ect was �rst proposed in the context of optomechanics in Schliesser
(2009)(40), and shortly therea�er in Agarwal and S. Huang (2010)(41), and success-
fully implemented and reported in Weis et al. (2010)(42). �oting the abstract of
original paper, omit is performed in the following manner:

A control optical beam tuned to a sideband transition of a micro-
optomechanical system leads to destructive interference for the ex-
citation of an intracavity probe �eld, inducing a tunable transparency
window for the probe beam.

�e “control optical beam” here refers to a strong, classical beam tuned below the
resonance of the cavity. �is driving beam will by itself drive the mechanics. If we
introduce a second beam to the cavity, for example by suitable modulation of the
strong classical beam, the response of the mechanics to the strong beam may inter-
fere with the weak “probe” beam. �e original formulation is valid for system well
into the resolved sideband regime, where the lower sideband can easily be ignored.
For our case, in the intermediate regime, between resolved and unresolved, the
description must include both modulation sidebands, if the probe beam is gener-
ated by modulation of the carrier – such treatments can be found in Nielsen (2016),
Yeghishe Tsaturyan (2019) and Møller (2018). Further, the original implementation
was for a whispering gallery mode resonator, where light was coupled in from a
tapered optical �ber, the transmission of which served as the detection path. �is
change of the relevant input-output relations leads to a shi� from transparency to
opaqueness; had we probed in re�ection, we would observe a transparency window.
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omit is quantum interference e�ect, originating with the discretized energy
levels, but is classical in the sense that no quantum noise is involved; we are ob-
serving classical mean values and the driving �elds are classical. �e scheme is
depicted in Fig. 3.24.
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|=p, =m + 1〉

|=p + 1, =m〉
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J
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Figure 3.24: omit level scheme. �e two-photon detuning, X = lp − lL − lm, is chosen X = 0.

We start with a strong, coherent �eld at frequency lL, which we phase mod-
ulate at frequency lp (? for probe) with modulation index V . We then split the
�eld into a strong part and �uctuations. Using the Jacobi–Anger expansion, and
terminating at �rst order in V , we get

0in (C) = UineilLC+V sin(lpC ) (3.165)

= UineilLC

[
1 + V2

(
eilpC − e−ilpC

)]
= (Uin + δ0) eilLC (3.166)

δ0(C) = Uin
V

2

(
eilpC − e−ilpC

)
= UiniV sin(lpC). (3.167)

Note that if the input �eld is chosen real, Uin = U∗in, the modulation sidebands are
purely imaginary. �e phase of the modulation (sin(lpC vs. cos(lpC )) is arbitrary in
practice, and one might have started as well with any harmonic modulation. What
is important is that V is small, so the sidebands are much weaker than the carrier.

In the simplest scheme, we perform direct detection of the total output �eld
from the cavity, detecting the amplitude �uctuations of the light, i. e., - out

L . �e
resulting photocurrent is then demodulated at the modulation frequency, and we
obtain an omit amplitude and phase.

In our quadrature language, and since we will be demodulating output �eld at
the modulation frequency, the input �eld takes the form

ˆ̂ in
L (lp) =

(
0
�

)
(3.168)

where � is the e�ective modulation strength, proportional to V and U (the larger
the classical input �eld, the larger the size of the sidebands).

We �nd the intra-cavity �eld by starting with Eq. (3.137), the �nal expression
for the intracavity �eld, and dropping all terms containing only noise operators,
which are irrelevant compared to our classical drive. �is gives

^ cav
L,m = Ukin_

−1Uᵀ
kin

√
^in^

in
L,m, (3.169)
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(43) Derivations in, e. g., Yeghishe Tsaturyan
(2019) and Møller (2018) displays the non-
squared response. In practice, we all �t the
squared version.

where the hats have been dropped, due to the classical nature of the �elds.
If performed in transmission, and assuming a lossless cavity, the output optical

quadratures is related to the intracavity quadratures by the input-output relation

^out,ex
L =

√
^ex^

cav
L . (3.170)

However, these quadratures are de�ned with respect to the phase of the input
optical �eld, while we are using the transmi�ed beam as the detection lo. Since
the phase of the output �eld arg[Uex,out] = arg[Ucav] = arg[Uin] +kin, performing
direct detection ∝ 0̂†nl0̂nl = (U∗ + 0̂†) (U + 0̂) (with “nl” denoting the non-linearized
ladder operators) measures not only -L, but -L coskin + %L sinkin; this is equivalent
to the rotation

^out,e�
L = Uᵀ

kin
^out,ex

L , (3.171)

and detection of the -L. Collecting these expressions we get an expression for the
detected light

- out,e�
L =

(
1 0

) √
^in^ex_

−1Ukin^
in
L , (3.172)

which we easily evaluate to

- out,e�
L =

−J coskin + (^/2 − iS) sinkin
(^/2 − iS)2 + J2 + 862Jjm00

√
^in^ex�, (3.173)

or, by inserting the de�nition ofkin = arctan(2J/^),

- out,e�
L =

−8JiS√
1 + 4J2

^2 ^
(
4J [J + 862jm00]

) + 2 (^/2 − iS)
√
^in^ex�. (3.174)

�ese equations can be factored into equations of the form

- out,e�
L =

� (S)
1 −" (S)�, (3.175)

which leads to the following interpretations: �rst, the entire equation for the sig-
nal can be thought of as a (complex) transfer function of the input modulation,
-L (S) = ) (S)� (S), and our goal is now to �nd ) , independent of � . Secondly,
since the mechanics appear only in the term " (S), the entire response can be
though of as the bare cavity response, divided by (1 −" (S)).

In practical experiments, frequency-dependent delays in the acquisition elec-
tronics make precise measurements of the phase of ) (S) impractical, and we al-
most always measure and �t the magnitude (absolute square) of the transfer func-
tion |) (S) |2, which I de�ne as the omit signal, omit = |) (S) |2(43).

Finally, this derivation was performed for a single mechanical mode. In prac-
tice, our systems are highly multi-mode, so we need to explicitly include all cou-
pled modes (which are broadened such that they can not be smoothed out of the
data) to our �t. �is is done by modifying " (S) by

62jm00 →
∑
8

62
8 jm00,8 , (3.176)
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Figure 3.25: omit signal. Top panel: bare cavity (68 = 0, do�ed line) and full omit response
with three mechanical modes. Bo�om row: zoom in on the resonances. All traces are nor-
malized to the maximum response for the empty cavity. ^/2π = 4 MHz, J/2π = −2 MHz,
W0,8/2π = 1 mHz, 68/2π = 200 kHz, l0/2π ∈ { 1.4 MHz,

√
J2 + (^/2)2/2π∼2.83 MHz, 5 MHz }.

(44) �is is true to a degree, where, in our
group, the term “omit” is used colloquially
to mean simply a measurement of the cavity
parameters with phase modulation – the
optomechanical parameters are ignored.

as discussed in Nielsen (2016, section 2.3.7).
�e �nal expression is plo�ed in Fig. 3.25, for a case with three mechanical

modes. �e three modes have frequencies that are respectively below, at, and above
the frequency with highest response of the bare cavity, at l =

√
J2 + (^/2)2. �e

lowest frequency mode shows a dispersive-like feature with �rst a peak below the
mechanical resonance, and a dip at the mechanical frequency. For the highest fre-
quency peak the dispersive feature is mirrored, with the peak landing to the right
of the dip. �e peak at the maximum of the response curve of the omit feature is a
symmetrical dip with only small but wide peaks on either side of the resonance.

omit measurements are used extensively in the experiments to measure pre-
dominantly ^ and J, i. e., properties of the cavity. In that sense, omit itself, which
is a mechanical e�ect interesting in its own right, for practical purposes is o�en a
correction to the cavity response � (S)(44).

3.9.2 Ponderomotive Squeezing

�e driven coherent response discussed in the last section, omit, is related to a
quantum (and therefore more digni�ed) process, called ponderomotive squeezing,
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where the optomechanical interaction squeezes the (amplitude) �uctuations of the
output light below those of the coherent (and groundstate) optical �elds. Where
omit was driven by a classical modulation, ponderomotive squeezing arises solely
from the interference of the light-induced quantum backaction with the shot noise
itself.

As noted by P. Meystre et al. (1985)(45), there is a one-to-one correspondence
between a (canonical) optomechanical system, and a cavity with a medium whose
refractive index changes with the intensity of the light, i. e., a Kerr medium or j (3)
non-linear material. Later that year, the �rst ever squeezing of light was reported
in a Kerr-type system, consisting of sodium (Na) atoms in a cavity (Slusher et al.
1985)(46), albeit at the very modest level of 0.3 dB.

Since then, a very large number of physical systems have been shown to fa-
cilitate squeezing of light below the shot noise level. Most prominently, systems
with j (2) non-linear crystals in cavities, hold the current record of 15 dB of optical
squeezing (Vahlbruch et al. 2016)(47). However, since the squeezing generated by
j (2) non-linearities occur at an optical frequency di�erent (usually twice that) from
the pumping �eld, j (3) type squeezers are still interesting for many applications,
where the squeezing close the pumping frequency is desired. In the context of op-
tomechanics, squeezing has been reported by, e. g., Brooks et al. (2012)(48), Purdy
et al. (2013)(49), Safavi-Naeini et al. (2013)(50), and Nielsen et al. (2017).

�e derivation found in Nielsen (2016)(51) gives a clear exposition of the physics
at play; the intracavity �eld quadratures are expressed through the input quadra-
tures and cavity transduction functions plus the optomechanical coupling, the me-
chanical response is eliminated by insertion of the expressions for the mechanical
-̂ quadrature, and �nally the psd is calculated from the output optical quadratures.
�is derivation thus essentially mirrors the derivation of the general output �eld
of Eq. (3.140) – in essence, we just need to evaluate this equation and we’re done;
in practice some insights can be gleamed by a set of simpli�cations. �e expres-
sions that I obtain here are not as analytically nice – instead, this section serves as
a demonstration of how to apply our formalism to quantum noise driven processes.

Starting from Eq. (3.140) and assuming a perfectly one-sided lossless cavity
probed in re�ection, i. e., ^ = ^in and ^ex = 0, and thuskin = kout = k , we have

ˆ̂ out
L,m = Uᵀ

k
(^_−1 − 12)Uᵀk ˆ̂ in

L,m −
√
^Uᵀ

k
_−1Hjm00f̂m. (3.177)

Assuming further that the output �eld is detected without any loss, and that we
either perform direct detection, or homodyne detection of the optical -̂ quadrature,
we have

-̂ det
L = -̂ out

L , (3.178)

or in other words, the �rst component of Eq. (3.177). By making these assumptions
we have reduced the number of inputs to our equation to the optical input quadra-
tures and the mechanical noise operator. �e expression for the detected optical
quadrature is

-̂ det
L =

[{(4J2 + ^2) (^2 + 4J (J + 862jm00)
) − 4(4J2 − ^2)S2} -̂ in

L
] + 16J^S

(
−i6

√
1 + 4J2

^2
√
^jm00f̂m +S%̂ in

L

)
(4J2 + ^2) [4J (J + 862jm00) + (^ − 2iS)2] . (3.179)
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Since all input variables are, by de�nition, zero mean stochastic variables, we
cannot evaluate the equation directly. Instead, following the procedure lined out in
Section 10.2.2, we note that Eq. (3.179) is linear in the noise operators, allowing us
to write is as a matrix equation,

Wout = [W in, (3.180)

with Wout = (-̂ det
L ), and W in = (-̂ in

L , %̂
in
L , f̂m)ᵀ , which allows us to calculate the

(symmetrized) output power spectral density as

(̄-L-L = [ †Ȳ in[ , (3.181)

where Ȳ in is the (diagonal) matrix containing the noise spectral densities of the
inputs, i. e., Ȳ in = diag

(
1/4, 1/4, W0 (=th + 1/2) ) .

�e output (detected light psd) is displayed in Fig. 3.26. We here see a promi-
nent dip below the shot noise level (do�ed line) for frequencies below the mechani-
cal resonance frequency of l0/2π = 1.37 MHz. As the coupling rate, 6, is increased,
the dip broadens, becomes deeper and the minimum moves to a lower frequency.

In Fig. 3.27, the spectrum is displayed for varied bath temperature, ) . We here
see that the overall shape of the squeezing curve is una�ected, but the dip depth is
reduced for higher temperatures.

1.34 1.36 1.38 1.40
Frequency, S/2π [MHz]

10−1

100

ps
d,
(̄
-

L-
L
(S
)[

SN
]

6/2π [kHz]
50
100
200

Figure 3.26: Ponderomotive squeezing in re�ection
for varied 6. l0/2π = 1.37 MHz, ^/2π = 4.2 MHz,
J/2π = −0.5 MHz, ) = 10 K, & = 650 × 106.
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Figure 3.27: Ponderomotive squeezing in re�ec-
tion for varied ) . Other parameters like Fig. 3.26,
6/2π = 100 kHz.

Including the �nite detection e�ciency, [, modi�es the detected light as

-̂ det
L =

√
[-̂ out

L + √1 − [-̂ in
L,[, (3.182)

e�ectively replacing part of the squeezed output light with uncorrelated shot noise,
reducing the detected squeezing, as depicted in Fig. 3.28. Here, entire trace is re-
duced in amplitude; evidently, though both �nite detection e�ciency and tem-
perature limits the a�ainable squeezing, the two e�ects can be distinguished in a
�t.

Finally, including the �nite overcoupling into our model leads to the full model
needed to �t experimental traces. �e �nite overcoupling leads to di�erent input
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Figure 3.28: Ponderomotive squeezing in re�ection for varied ) . Other parameters like
Fig. 3.26, 6/2π = 100 kHz.

(52) Markus Aspelmeyer, Tobias J. Kippen-
berg, and Florian Marquardt (2014). “Cavity
optomechanics”. In: Rev. Mod. Phys. 86 (4),
pp. 1391–1452.

and output rotationskin ≠ kout, e�ectively sending some of the phase response of
the light into the detected quadrature, enhancing the peak above resonance and
limiting squeezing.

In Fig. 3.29 an experimental squeezing trace is shown. J and ^ have been sep-
arately measured by an omit-style measurement; further Wm0/2π = 2.15 mHz and
cavity overcoupling in re�ection [re� = 0.91 are �xed by separate calibrations.
Because the squeezing is limited by detection e�ciency, the �t is insensitive to ) ,
which is �xed at 10 K. �e light blue trace is the raw data, while the dark blue trace
is a smoothened version of the data. �e solid orange line depicts the �t of our full
squeezing model (to the unsmoothened data). Finally, the �t is evaluated with a de-
tection e�ciency of [ = 95 %, showing that a large increase in squeezing e�ciency
is realistically a�ainable by improving the detection e�ciency. Even without an
increased detection e�ciency, the observed squeezing of (3.92 ± 0.12) dB over a
3 kHz region around the minimum (and ��ed squeezing of 4.34 dB) is higher than
reported elsewhere for optomechanical squeezing.

By detecting the transmi�ed beam, instead of the re�ected, the squeezing
signal is essentially �ipped around the resonance, such that the squeezing appears
above the mechanical resonance. Experimentally, for us, the transmi�ed beam has
signi�cantly higher detection e�ciency, of [ ∼ 0.9, which means that sensitivity to
temperature is higher. Such two squeezing traces are shown in Fig. 3.30

3.9.3 Static Bistability

A feature of the optomechanical system, which sets practical limitations to the
achievable coupling rates is static bistability. In essence, when increasing the intra-
cavity power, a regime is reached where more than one quasistable con�guration
exists; the mean displacement of the membrane in the cavity shi�s the cavity reso-
nance, which changes the intracavity power.

�e e�ect may be explained in several ways – I here follow that in Aspelmeyer,
Kippenberg, and Marquardt(52). �is description assumes that the light force re-
acts instantaneously to the mechanical motion, i.e., that the cavity bandwidth is
signi�cantly larger than the mechanical frequency, ^ � S< .
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Figure 3.29: Ponderomotive squeezing in re�ection. Light blue trace is data. Dark blue line is
smoothed data. Solid orange line is a �t of the full squeezing model to the unsmoothed data.
Do�ed orange line shows the �t evaluated with an increased detection e�ciency, [det = 0.95,
predicting close to 8 dB of squeezing. �e peak at 1.36 MHz is laser phase noise; it is not
removed from the data before ��ing.
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Figure 3.30: Ponderomotive squeezing in transmission. �e two traces are �t collectively,
with [det = 0.9, [trans = 0.09, Wm0 = lm0/& ∼ 2π × 2.1 mHz, ^/2π = 3.3 MHz. �e ��ed
temperature is ) = 10.4 K.

�e two forces acting on the membrane is the spring force, � = −:G , and the
radiation-pressure force, �rad = ℏ�=̄cav (G). Both depend on membrane position G ;
the spring force directly, the radiation-pressure force through the position depen-
dence of the number of photons =̄cav (G).

Since both these forces are conservative, a corresponding potential may be
de�ned:

� (G) = �spring (G) + �rad (G) = − m+ (G)
mG

= − m+rad (G)
mG

− m+spring (G)
mG

. (3.183)

In the regime where only a single optical mode needs to be included (̂ �
JaFSR), the number of circulating photons is

=̄cav (G) =
=̄max

cav
1 + [2(�G + J)/^]2 , (3.184)
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where =̄max
cav is the number of photons on resonance, and proportional to the incom-

ing optical power. Integrating �rad (G) we �nd

+rad (G) = − 1
2ℏ^=̄

max
cav arctan

[
2(�G + J)

^

]
, (3.185)

leading to a total potential of

+ (G) = <e�l
2
m

2 G2 − 1
2ℏ^=̄

max
cav arctan

[
2(�G + J)

^

]
. (3.186)

�is potential is plo�ed in Fig. 3.31 for increasing optical power. While the �rst
term is dependent on the mechanical mode, for our system� is roughly indepen-
dent of the mode shape, as long as the mode has a maximum at the same point as
our normal mode of interest.
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Figure 3.31: Static bistability. As the optical power is increased, a second minimum appears
for positive G . �e system can thus assume two stable con�gurations, with two circulating
optical powers. Random perturbations can lead to switching between the two states.

Static bistability is not observed for our normal mode of interest; instead it be-
comes more of a technical limitation, as lower frequency modes of our membranes
(discussed in the next chapter) reach the point of static bistability �rst, which sets
the cavity into random oscillations between the two stable points, e�ectively mak-
ing locking the cavity impossible.

q 2 Q

�is concludes the chapter about theoretical descriptions of optomechanics.
We started out with a simple 1d description of classical harmonic oscillators. We
then mapped 3d membranes to the 1d description, before considering the e�ects of
dissipation and thermal noise, before quantizing the motion of the membrane.

We then turned from pure mechanics to light-ma�er interaction, speci�cally
radiation pressure forces, and position measurements by phase measurements.
Since those e�ects are small, we introduced the concept of optical resonators, to
boost the interaction between light and mechanics.

With the interaction mechanism in place, we turned to the canonical op-
tomechanical description, followed by the transfer matrix model, which maps
our membrane-in-the-middle system to the canonical case. Finally, we explored a
small number of optomechanical e�ects with relevance to our experiment.
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�e descriptions in this chapter have been highly idealized. �e world, unfor-
tunately, is never quite as simple as introductory chapters would have you believe,
and so in the following chapter we will turn to some of the complexities that have
been, so far, swept under the rug.
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“ Possibly the most common error of a smart engineer, is to optimize
a thing that should not exist.

Elon Musk

Practical implementation details of a membrane-in-the-middle optomechanical
system. Cryostats, &-measurements, membrane fabrication & other dirty
details.

4.1 Membrane Fabrication

4.1.1 Membrane Generations

�e �eld of cavity optomechanics took o� with the realization that commercially
available Si3N4-membranes used as windows for X-ray applications also possessed
excellent mechanical properties (Jayich et al. 2008; Dalziel J. Wilson et al. 2009;
Dalziel J. Wilson 2012)(1). �ese membranes are fabricated by (amongst others, but
for optomechanics primarily) Norcada Inc. and almost universally referred to as
simply “Norcada membranes” – such a membrane is depicted in Fig. 4.1 (le�).

Norcada membranes su�er from a number of experimental challenges, though.
�e most serious one is that the mechanical qualities turned out to depend very
sensitively on the clamping of the membrane, and because cryogenic cooling is
simultaneously a requirement, so�ly suspending the membranes is also not a solu-
tion.

�e solution chosen in our group is to use phononic bandgaps. �ese o�er a
twofold advantage: it severely reduces sensitivity to clamping, thus allowing for
much more repeatable characteristics, and it shields the mechanical mode from
radiative losses and external perturbations in the frequency region of interest.
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(2) Y. Tsaturyan et al. (2014). “Demonstration
of suppressed phonon tunneling losses in
phononic bandgap shielded membrane res-
onators for high-Q optomechanics”. In: Opt.
Express 22.6, pp. 6810–6821.

(3) P.-L. Yu et al. (2014). “A phononic bandgap
shield for high-Q membrane microresonators”.
In: Applied Physics Le�ers 104.2, p. 023510.

(4) Yeghishe Tsaturyan et al. (2017). “Ultraco-
herent nanomechanical resonators via so�
clamping and dissipation dilution”. In: Nature
Nanotechnology 12 (8), pp. 776–783.

(5) Yeghishe Tsaturyan (2019). “Ultracoher-
ent so�-clamped mechanical resonators for
quantum cavity optomechanics”. Ph.D. thesis.
University of Copenhagen.

�ree major generations of membranes were developed, with the last being divided
into 4 sub-generations, as this design concept has been proven to be the superior
one by far.

�e �rst generation (not depicted) used a 1d phononic shield, where a single
beam of Si3N4 was shaped (Y. Tsaturyan et al. 2014)(2). �is was abandoned due
to the entire pa�erned beam supporting low frequency modes with too large ex-
cursions – Møller (2018) calls them “too �oppy”. �e second generation (pictured
in Fig. 4.1, middle) used a 2d phononic shield, with a central defect supporting a
suspended slightly rectangular membrane (Yu et al. 2014)(3). �is membrane design
o�ered a big step up in experimental relevance for quantum applications, as the
susceptibility to changing clamping was essentially eliminated, and the introduc-
tion of a bandgap allowed for very good isolation of the mechanical mode, leading
to & ∼ 107 for 3 = 60 nm.

�e third major generation of membranes took a di�erent approach. Instead
of embedding the phononic pa�ern in the supporting silicon, now the Si3N4 ma-
terial was pa�erned. �is came with a series of advantages, mainly a orders-of-
magnitude increase in & due to a reduction of losses related to bending of the
membrane at rigid membrane–support interface (Yeghishe Tsaturyan et al. 2017;
Yeghishe Tsaturyan 2019)(4),(5).

�e phononically pa�erned Si3N4 membranes exist in four major generations:
the �rst one, published in Yeghishe Tsaturyan et al. (2017), Gen I, supported a sim-
ple defect at the center. Gen II added small holes to the membrane defect, thus
reducing the e�ective mode mass, increasing the mode frequency, and thereby
pushing the mode of interest further into the bandgap region. Gen III slightly ad-
justed these holes, sacri�cing some bandgap–mode separation for even higher &s,
and the appearance of a second order bandgap. Gen IV is currently being devel-
oped in the group of Albert Schließer, primarily by postdoc Eric Langman. �ese
new membranes, among other things, use a pa�ern of non-circular holes, and a
modi�ed defect, which be�er distributes the internal stress of the Si3N4, at the cost
of a reduced membrane pad defect size.

a b c

1mm

Figure 4.1: Membrane generations. a) Commercially available square membranes from Nor-
cada Inc. b) Membranes with a 2d phononic pa�ern embedded in the Si. c) Membrane with
the phononic pa�ern embedded in the Si3N4. �e thickness of the Si3N4 layer determines
the color through normal thin-�lm interference.
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�e second major generation membranes, i. e., the ones with the 2d phononic
shield embedded in the silicon, was used for Nielsen et al. (2017) and Møller et al.
(2017). When I joined the experiment in Summer 2017, the third major generation
of phonically pa�erned membranes were just maturing enough to be utilized in
quantum experiments, having been only recently well understood enough for
publication (Yeghishe Tsaturyan et al. 2017). For the results reported in Chapter 10
Gen II of these membranes were utilized.

Of course such a change in membrane design leads to a number of new chal-
lenges and potentially very di�erent optimum parameters choices. Some of these
experiences led to an overall redesign of our optomechanical cavities, as described
in Part II. �e most important driver for this change was the reduction of the op-
tically clear area of the membrane pad. As shown in Fig. 4.2, the defect pad at the
center of the membrane is around 200 µm across, leading to signi�cantly higher
chances of increased cavity losses if the optical mode of the cavity is not perfectly
aligned to the membrane – see Fig. 4.9 for a relatively well aligned mode.

4.1.2 Modes of the Phononic Bandgap Membranes

�e mode shapes of these so� clamped phononic bandgap silicon nitride mem-
branes is of course very far from the description in Section 3.2, where we discussed
the oscillation pa�erns of uniform, rectangular plates.

For the so� clamped membranes the rectangular geometry is replaced with
a hexagonal grid of holes, breaking both uniformity and also leading to things
such non-uniform in-plane tension. By simple virtue of everything being static
in the plane, the tension in thinner tethers must be higher than in the wider sec-
tions. �e hexagonal pa�ern is terminated in a square hole of a supporting silicon
frame. �ese things conspire to making analytical treatment of these membranes
untractable, and we must therefore resort to numerical methods such as the �nite
element method (fem).

In �antop, the fem so�ware of choice is COMSOL Multiphysics®. �is
so�ware is a very powerful tool for simulating a very wide variety of physical
problems, with excellent simulation of cross-couplings between di�erent physical
parameters. For the purpose of this thesis, mainly the mechanical part is of ma-
jor interest – both in this section, where we concern ourselves with mechanical
mode shapes of membranes, and in section Chapter 8 where we are interested in
simulating the mechanical spectrum and mode shapes of mirrors.

�e simulated mode shapes of the Gen II are depicted in Fig. 4.2. �e mode
in the top frame, labeled a, is the lowest frequency mode within the phononic
bandgap, and the mode with which we will be working. �is is sometimes called
the “fundamental” mode because it is the only mode in the bangdap with approx-
imate rotational symmetry, although one can readily see that the radial mode
pro�le has several nodes.

�e four other modes in the bandgap, labeled b-e with increasing frequency,
are pictured below. �ese all have zero displacement amplitude at the center of
the defect, and are not even approximately rotationally symmetric. �ese modes
are high & and by themselves not uninteresting for optomechanics. For example,
modes c and d are near-degenerate, which may be an interesting feature. From a
more mundane point of view, measuring the coupling rates to these four modes
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can be used to infer the mode position on the membrane; this was done in a sys-
tematic way for rectangular membranes in Nielsen et al. (2017) and Nielsen (2016).
In practice we most o�en use it as a rough gauge; as long as the coupling to mode
a is signi�cantly higher than that with any other mode, the beam is relatively well
centered on the membrane defect pad.

In Fig. 4.3 the displacement amplitude of mode a is shown along G and H . We
observe that the mode amplitude decays exponentially with the distance from the
center. �e drastically reduced amplitude close to the clamping edges leads to sup-
pression of sharp bends of the membrane, which leads to the drastic improvement
of & for these so�-clamped membranes, compared to the rectangular membranes
with the phononic shield embedded in the silicon frame. �e energy associated
with the (now reduced) bending at the edges of the membrane is exactly the term
we ignored in the wave equation for the membrane in Chapter 3; including it into
the physical description explains why the membrane & could be boosted by orders
of magnitude by this design change.

4.1.3 Membrane �ickness

4.1.3.1 Membrane Re�ection

Membrane re�ection is a very important parameter, since it forms the basic mech-
anism for light-membrane coupling. �e phenomenon is essentially thin �lm in-
terference, in a simple boundary: normal incidence, input medium with = = 1,
and monochromatic input. Solving the Fresnell equations combined with a simple
geometric model, leads directly to the following expression for the membrane �eld
re�ectivity and transmission:

A< =
(=2 − 1) sin(:=3)

2i= cos(:=3) + (=2 + 1) sin(:=3) (4.1)

C< =
2=

2i= cos(:=3) + (=2 + 1) sin(:=3) . (4.2)

= is the refractive index of the membrane material. For Si3N4 and a wavelength of
_ = 852 nm, = = 2.

�e amplitude of the re�ection coe�cient is plo�ed in Fig. 4.4 for varied thick-
ness. In the le� panel the re�ection is plo�ed for _ ∈ { 780 nm, 852 nm, 920 nm }.
For thicknesses smaller than 100 nm the three curves are almost identical. Only
for 3 larger than ∼150 nm do the curves dephase, and we see signi�cantly di�erent
re�ections for the di�erent wavelengths.

Since the optomechanical coupling is proportional to both re�ection and,
through the zero points �uctuations, Gzpf ∝ <−1/2

e� , the total coupling rate 60 has
a nontrivial shape, with especially the �rst maximum displaced towards smaller
thickness, compared to the re�ection curves, with the maximum 60 for 3 ∼ 60 nm. I
plot 60 and a curve ∝ 3−1/2 to guide the eye in the right panel of Fig. 4.4.

4.1.3.2 E�ect on &

As discussed in Yeghishe Tsaturyan et al. (2017), the overall scaling of mechanical
& with thickness depends on which damping mechanism dominates. For our mem-
branes, the dominating loss term is associated with surface losses (as opposed to



4.1. Membrane Fabrication 73

1.3884 MHz

a

1.4608 MHz

b

1.5291 MHz

c

1.5297 MHz

d

1.5681 MHz

e

−1.0

−0.5

0.0

0.5

1.0

Figure 4.2: Normalized out of plane displacement for the �ve di�erent modes in the bandgap
for a Gen II membrane. Scale bars and tick spacings are 200 µm.
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volume losses), as long as the membrane is kept below ∼100 nm. �is is always the
case for us, in which case the membrane & scales as

& =
02

3
, (4.3)

where 0 is the la�ice constant, and can be thought of as an overall scale parameter
for the membrane. Since the membrane frequency scales with 0−1, we expect & to
scale with 5 −2 and 3−1, as was observed in Yeghishe Tsaturyan et al. (2017). If one
then wants maximize & without regard to any other parameter, low frequencies
and thin membranes are the way to go; however, as the coupling scales with the re-
�ectivity, there is a trade-o� to be made, and since low frequencies are problematic
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(6) Peter W. Milonni and Joseph H. Eberly
(2010). Laser physics. Wiley.

(7) Concave mirrors have ' > 0, while convex
mirrors have ' < 0 in this convention.

(8) H. Kogelnik and T. Li (1966). “Laser Beams
and Resonators”. In: Appl. Opt. 5.10, pp. 1550–
1567.

Figure 4.5: Resonator stability diagram.
Note the dual axes with 61, 62 growing
towards +G, +H and 3/'1, 3/'2 growing
towards −G,−H respectively. Reprinted
from Kogelnik and Li (1966).

(9) �e polarization is assumed orthogonal to
the cavity axis I.

in terms of things like laser noise (see Chapter 9), the choice of frequency is also
limited by other factors.

4.2 Optical Cavities in Practice

Optical cavities as presented in Section 3.6 are not actually feasibly in reality. First
of all, a set of two plane mirror do not form a stable resonator in practice; only for
perfectly parallel mirrors – see Milonni and Eberly (2010, chapter 7)(6). Instead at
least one of the mirrors is almost always replaced by a curved (concave) mirror.

While a longer exposition on optical modes in cavities is outside of the scope
of this thesis, a number of relevant properties must be treated.

First, the question of resonator stability. �is essentially describes whether a
geometric con�guration of mirrors (their curvatures, the distance between them
and their tilt with the axis connecting them) is stable, i. e., whether they support
stable modes. Ignoring the tilt, one can, using geometrical optics, calculate a stabil-
ity criterion

0 ≤ 6162 ≤ 1, (4.4)

where 61 and 62 are parameters describing the geometry through the relations

61 = 1 − !

'1
62 = 1 − !

'2
, (4.5)

with '8 being the radius of curvature of the two mirrors(7), and ! is the separation
between them. Since �at mirrors have ' = ∞, for a plano-plano cavity, 6162 = 1
independent of !. �us, the resonator is marginally stable - any tilt will ruin the
stability.

�e general stability criterion may be represented graphically as in Fig. 4.5
from the extremely nice paper by Kogelnik and Li (1966)(8). For two identical
curved mirrors with '1 = '2 = ', a stable cavity is formed for 0 < ! ≤ 2',
and for a �at mirror one one end, '1 = ∞, 0 < ! ≤ '.

4.2.1 Gaussian Modes

Following Milonni and Eberly (2010) (a similar derivation may be found in Kogel-
nik and Li (1966)), the general solution to the paraxial wave equation is that of
Gaussian modes, i. e., modes whose intensity decay radially as Gaussian. For a ge-
ometry with rectangular geometry, the solutions to the governing equations is that
of Hermite–Gaussian modes

K (G, H, I) = K0
F0
F (I)�<

[√
2 G

F (I)

]
�=

[√
2 H

F (I)

]
×

ei[:I−(<+=+1) arctan(I/I0)ei: (G2+H2)/(2' (I))e−(G2+H2)/F2 (I) .
(4.6)

Taking the terms one at a time, we ahove the electric �eld amplitude and polar-
ization K0 = �GeG + �HeH (9), followed by a term normalizing the �eld amplitude
with the ratio of beam sizeF (I) to the minimum beam size (waist),F0. A�er that
follows two Hermite polynomials � 9 [G]. �e three exponential function represent
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respectively a mode-dependent propagation phase, the phase curvature and the
radial decay.

�e mode waist size at the minimum is given by

F0 =

√
_!

π

[
6162 (1 − 6162)
61 + 62 − 26162

]1/4
=

√
_

π

[
!('1 − !) ('2 − !) ('1 + '2 − !)

('1 + '2 − 2!)2
]1/4

, (4.7)

and evolves as

F (I) = F0

√
1 + I

2

I2
R
, (4.8)

where IR is the Rayleigh range

IR =
πF2

0
_
, (4.9)

and the curvature '(I) given by

'(I) = I + I
2
R
I
. (4.10)

�e waist position relative to the end mirrors is given by

I1 =
−!62 (1 − 61)
61 + 62 − 26162

I2 =
!61 (1 − 62)

61 + 62 − 26162
= I1 + !. (4.11)

Restricting ourselves to the case of a symmetric cavity, i. e., where '1 = '2 = ',
we can plot the cavity waist size and the beam size at the mirrors as a function of
!, as seen in Fig. 4.6. �e waist size,F0, is symmetric around ! = ', and tends to
zero for ! → 0 and ! → 2'. For small ! the beam size at the mirrors,F1, follows
F0, but deviates substantially for ! & '/2, and diverges as ! → 2'. Choosing
the geometry of the optomechanical cavity is important, because a too large waist
size leads to sca�ering on the phononic pa�ern, which leads to excess intracavity
losses. In general, it is therefore advisable to have a cavity with ! close to either 0
or 2', to minimize sca�ering losses.

Computing the stability for the range of lengths, shows that the cavity is only
marginally stable for ! ∼ 0, ! ∼ 2', and (perhaps more surprising) for ! ∼ '. �is
means that any mirror tilt or di�erence in mirror rocs, will render the cavity unsta-
ble; avoiding the la�er con�guration is therefore a good idea for optomechanics.
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Figure 4.6: Cavity waist size,F0, and beam size at the mirrors,F1, as a function of cavity
length, !, for a symmetric cavity, '1 = '2 = ' = 25 mm. Le� panel: linear scale. Right panel:
Logarithmic scale. For small ! the sizes are almost identical, while for large ! the waist size
is small and the spot size at the mirrors diverges.
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Figure 4.7: Free Spectral Range, fsr, and
Transverse Mode Spacing, tms. �e
modes with longitudinal mode number @
are split by the tms for every increase in
< + =, the transverse mode numbers. �e
distance between two consecutive
longitudinal modes, tem00@ and
tem00(@+1) , is the fsr. Peak heights are
arbitrary but represent a typical spectrum
for a misaligned cavity. Each peak
represents (< + = + 1) degenerate modes.

�e mode-dependent Gouy phase in Eq. (4.6) gives rise to a mode-dependent
resonance condition, spli�ing the di�erent modes according to< + = + 1 as well as
the longitudinal mode number @, as

a<=@ = fsr
[
@ + 1

π
(< + = + 1) arccos

(√
6162

) ]
, (4.12)

with the fsr de�ned in Section 3.6, and the transverse mode spacing, tms, given by

tms =
fsr
π

arccos
(√
6162

)
. (4.13)

�e fsr, tms and the ratio tms/fsr is plo�ed in Fig. 4.8. �e fsr drops o� as ∝ !−1,
as expected, while the tms in absolute frequency has a non-trivial shape; compar-
ing the tms to the fsr reveals a simpler relation. For short cavities the spli�ing
between consecutive modes is small (tms is small). For ! = ', tms = fsr/2, so
equal order modes overlap with equal order modes of other axial modes (@), and
odd modes overlap with odd modes. For ! → 2', tms → fsr, but this limit is not
practical due to the diverging beam size at the mirrors and the lack of stability of
the resonator. In Fig. 4.7 an example spectrum is shown, for tms/fsr ∼ 1/3.5.

4.2.2 Mode Matching to a Cavity

While the usual solution for a Fabry–Perot cavity with round mirrors is not the
one given above, in Eq. (4.6), but rather that of Laguerre–Gaussian modes (which
will be covered in Chapter 7), which have rotational symmetries, inserting an ever
so slightly tilted membrane into a cavity breaks this symmetry and e�ectively
splits the mode of equal< + = slightly. In practice, completely eliminating tilt is
almost impossible, so the basis most relevant to us is indeed the Hermite–Gaussian
modes.

In Chapter 3 we derived a model under the assumption of only a single optical
mode being populated. �e frequency of di�erent longitudinal modes serves a a
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(10) Dana Z. Anderson (1984). “Alignment of
resonant optical cavities”. In: Appl. Opt. 23.17,
pp. 2944–2949.

discriminator in this case, but with potentially much smaller transverse mode spac-
ing, we have to work a li�le harder to ensure that only a single mode is populated.
Here, the spatial overlap of the input optical beam with the transverse cavity mode
of interest will serve as a spatial discriminator, ensuring that light is only coupled
into a single mode, and with as high an e�ciency as possible; this procedure is
known as mode matching.

Modematching of optical beams to cavities is covered excellently in Anderson
(1984)(10). As noted there, the set of Hermite–Gaussian (or, equivalently, Laguerre–
Gaussian) modes forms a complete set. �e approach is therefore to decompose
the input optical beam onto this set of modes; this is most easily done at the waist,
where the modes take their most simple form – the beam has the smallest size,
and the phase fronts are �at. In total, six parameters determine the overlap of
the input beam with a given cavity mode: two describing transverse translation,
two describing relative rotations of the cavity axis and input beam propagation
direction and �nally the waist axial position and size.

It is almost always easiest to perform mode matching of an input beam by
measuring the transmi�ed intensity; in re�ection the size of the dips in the re-
�ection depends heavily on the cavity overcoupling, whereas in transmission the
overall gain on the detector can be adjusted to a suitable level (or the input beam
a�enuated with a neutral density �lter). One then scans either the laser frequency
or a piezo in the cavity by at least one fsr, which is o�en easily identi�ed by a
repeated pa�ern in the transmission peaks, and detects the transmi�ed intensity
with a suitable photodetector and an oscilloscope.

If the input beam is close to aligned (correct transverse position and rota-
tion) and close to mode matched (correct waist position and size), Anderson (1984)
shows that the mismatched mode couples only to transverse modes with< + = > 2,
i. e., which are spectrally o�set from the fundamental by 2 × tms. �e other four
parameters couple to the �rst higher order family with< + = = 1. In practice,
this means that it is possible to isolate the e�ects of misalignment and subopti-
mal modematching; by iteratively removing the coupling of the input beam to
the tem10/tem01 family, o�set by 1tms from the fundamental (which can be done
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100 `m

Figure 4.9: �e optical mode on the
membrane.

(11) Janis has since been acquired by Lake
Shore Cryotronics, Inc.

Figure 4.10: �e st-100 cryostat.
Gas/vacuum ports from top to bo�om:
LHe inlet port, LHe outlet/vent, science
chamber vacuum port with valve. Total
height: 60 cm.

solely by displacing and rotating the beam axis relative to the cavity axis), the
mode mismatch can be assessed. �e beam waist size and position can then be
adjusted by moving one or more lenses in the beam path, and the alignment re-
optimised.

To assess which direction the beam is mis-aligned, a camera imaging the trans-
mi�ed intensity is o�en helpful. By scanning the cavity over a full fsr and imaging
the output beam, it is possible to infer which axis (G or H) is most mis-aligned, and
adjust the beam steering mirrors before the cavity accordingly. Such a picture, for a
well-aligned tem00 mode, can be seen in Fig. 4.9.

4.3 The Cryostat

Since thermal perturbations is our main enemy in terms of decoherence, it is abso-
lutely necessary to cool the optomechanical assembly to cryogenic temperatures.
Broadly speaking, three options exist: liquid nitrogen (LN, 77 K), liquid helium
(LHe, 4 K) and helium dilution fridges (∼50 mK).

In practice, LN turns out to be not cold enough, and some kind of helium
based cooling is needed. In Section 4.3.1 I discuss our choice of cryostat, the Janis
st-100. �en, in Section 4.3.2, I discuss why we did not, despite its many potential
advantages, buy a closed cycle cryostat or a dilution refrigerator.

4.3.1 Janis st-100 LHe Crystat

�e cryostat used in our experiment is the Janis(11) st-100 �ow cryostat, depicted
in Fig. 4.10. �e cryostat uses either LHe or LN, which is supplied to the cryostat
from the topmost �ange, into which a transfer tube can be inserted. �e cryogenic
then evaporates, and is vented to the environment through the kf �ange on the top
tube.

�e cryostat can be mounted either vertically, as depicted, or horizontally
– we exclusively use it in the vertical orientation. In the science chamber, at the
bo�om, a cold �nger with a�achment points (see Fig. 4.11) for out optomechanical
assembly is found.

Optical access to the cryostat is provided through up to four windows. We
have no use for two of these, so they are masked o� with aluminium blanks. Janis
supplies only windows without optical coatings. To minimize optical losses, 1 in
windows with high quality anti-re�ection coatings for 852 nm have been epoxied
into aluminium blanks.

�e cryostat can operate in two main modes: push and pull. In the push mode,
a slight overpressure in the cryogenic dewar pushes the liquid and gas through
the transfer tube, into the cryostat, while in pull-mode a vacuum pump enhances
the pressure di�erential across the cryostat, e�ectively sucking, or pulling, the
cryogenic through the system. We most o�en use the system in push mode, relying
solely on the pressure in the dewar for ge�ing the �ow running. On rare occasions,
starting the �ow with a pump can aid the process. Once �ow is established, the
pump can be turned o� – much like how a chimney sucks be�er once it has been
heated.

Running the pump on the cryogenic line does have one main advantage: it
lowers the boiling point of the cryogenic liquid, thus reducing the lowest a�ainable
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Figure 4.11: Approximate geometry of the
cold �nger. 7 m3 holes on a 1 in diameter,
spaced at 45° intervals, with a �a�ened
edge. �e overall diameter is 1.25 in.
When the cryostat is mounted in the
orientation shown in Fig. 4.10 the
depicted plane and holes point towards
the �oor. Scale 1:1.

(12) Be�er known as “kitchen vacuum”.

(13) An iron-nickel alloy with approximately
64 % iron and 36 % nickel. Also known as
FeNi36.

(14) Given enough grant money can be
acquired.

temperature. For our cryostat around 2 K can be achieved at the cold �nger in
pull mode. �e sacri�ce one makes is mechanical vibrations associated with the
pumping action, and an increase in consumption (with a corresponding reduction
in operating time).

�e cryostat also supplies a means of reducing the gas pressure at the mem-
brane. We evacuate the cryostat with a Pfeiffer HiCube eco 80 pumping station,
which includes both a small turbo pump, backing pump and integrated controls for
push-bu�on operation. �e st-100 is by no means a high vacuum system. At room
temperature, we never observe much below 10−3 mbar(12), measured with a sensor
placed at the pump – so the pressure in the chamber is probably even somewhat
worse. However, at cryogenic conditions, cryo pumping, the action of condensation
of gas particles onto cold surfaces, reduces the chamber pressure to levels where
we are no longer limited by gas damping, and routinely observe & ∼ 109. In this
regime, the measurements at the pump reach around 10−6 mbar, which is probably
higher than the chamber pressure.

�e turbo pump runs at 90 000 rpm, or with a frequency of 1.5 kHz. If the
pump is connected directly to the cryostat, this vibration completely prevents
any locking of the optomechanical cavity, due to the size of the excursions. �is
is solved by the introduction of what Nielsen (2016) calls a impedance mismatch
along the vacuum line. In practice, this means embedding a section of the vacuum
tube in a suitably large chunk of cement. �is extra mass e�ectively dampens all
vibrations, allowing us to lock the cavity with the pump running.

�e mounting and mechanical design of the cryostat has a couple of draw-
backs, related to the length. One, the central part of the cryostat itself contracts by
more than a mm upon cooldown. �is is by no means a showstopper, as the length
is stable almost as soon as a cryogenic temperature has been reached, but it does
completely mis-align the cavity from the input optical beams. �is means that cou-
pling the beam into the cavity has to be re-optimized continuously when changing
between room temperature and cryogenic operation. Secondly, and worse, sus-
pending the ∼60 cm long cryostat vertically entails equally long supports standing
on the optical table. For the experiments in Chapter 10, we used Bosch Rexroth
aluminium pro�les, which are good for many things, but whose thermal expansion
of around 23 ppm/K means that a 1 K change of temperature of a 60 cm beam will
displace the cavity by around 14 µm, which should be compared to the beam waist
of around 50 µm. Di�erential heating of the two beams supporting the cryostat is
even worse, as this e�ectively tilts the membrane, with a cantilever e�ect, ampli-
fying the mis-alignment. We have since upgraded the vertical beams to Invar(13),
which drops the thermal expansion coe�cient to around 1.2 ppm/K.

4.3.2 Why Not Closed Cycle?

�e choice of using a �ow cryostat raises the obvious question: why not closed
cycle? A lot of the problems related to �ow cryostats can be solved(14) by buying
a closed cycle cryostat. One might even consider going for a dilution refrigerator,
instead of a 4 K cryostat.

�e primary advantage of using a closed cycle cryostat is the continuous oper-
ation of cryogenic temperatures. With 4 K operating times are limited to a handful
of days, before a typical 100 l dewar is depleted. With closed cycle, samples can be
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(15) Massimiliano Rossi (2020). “�antum
Measurement and Control of a Mechani-
cal Resonator”. Ph.D. thesis. University of
Copgenhagen.

(16) Yannick Seis (2021). “Ultra-Coherent
Electro-Mechanics in the �antum Regime”.
Ph.D. thesis. University of Copenhagen.

kept cold for practically unlimited time.
�e main disadvantage of closed cycle systems is the presence of recondensers,

used to re-liquefy the helium. �ese typically involve a displacer unit operating
at at frequency of 1 Hz, periodically modulating the gas pressure at the cold head.
�e slow but sudden change of gas pressure leads to periodic wideband mechani-
cal noise, perturbing the optomechanics. While the displacements are small, even
minute forces resonant with, e. g., a low-frequency membrane mode, may com-
pletely hamper optomechanical operation. A Montana Cryostation C2 was tested in
our labs in the spring of 2016, and found to have unacceptable excursions for our
needs.

�e possibility of reducing the bath temperature from 4 K to mK range in a
dilution fridge poses the same mechanical disadvantage, but would be very ben-
e�cial in relaxing requirements for optomechanical cooling. However, as will be
discussed later, we do not observe thermalization to even 4 K of our membranes;
instead they thermalize to somewhere around 10 K. �e mechanism leading to this
elevated temperature is not understood at present—it seems, most importantly, to
be independent of probe light power—rendering thermalization anywhere close
to mK temperatures wishful at best. In our sister group of Albert Schließer (see
Rossi (2020, appendix C)(15)), a Bluefors ld-250 dilution refrigerator has been used
with some success, albeit only for pure interferometric measurements of bare mem-
branes (no cavities), and with no free space optical access—laser light is guided
trough �bers, rendering such a cryostat unusable for our needs—or, as reported
in Seis (2021)(16) for electro-mechanics, where the optical beams are replaced by
microwave electrical drives.

In summary, closed cycle cryostats would, if mechanical disturbances can
be alleviated, provide a signi�cant experimental improvement, especially if the
question of thermalization can be solved, and the membrane bath temperature
reduced by order(s) of magnitude. However, cashing out the money for such a
device is a large investment, considering the amount of unknowns.

4.4 &-measurements

A central �gure of merit of membranes is, as stated the quality factor or &-factor,
i. e., the ratio of oscillation frequency to damping :

& =
l

W
. (4.14)

�is quantity shows up again and again, e. g., in the coherence time of the oscilla-
tor, and is therefore of vital importance for our experiments. In general, the & is
limited by several di�erent factors, that all add up like (Aspelmeyer, Kippenberg,
and Marquardt 2014)

&−1
total =

∑
8

&−1
8 , (4.15)

where 8 labels the individual loss mechanisms, which include things like:

• gas damping

• clamping losses
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Figure 4.12: &gas as a function of pressure
? , for ) = 300 K and 10 K. 3 = 20 nm,
l/2π = 1.3 MHz, d = 3.17 g/cm3,
<molar = 29 g/mol.

(17) Minhang Bao et al. (2002). “Energy trans-
fer model for squeeze-�lm air damping in low
vacuum”. In: Journal of Micromechanics and
Microengineering 12.3, pp. 341–346.

(18) Both the& and in a more general sense

(19) Typically 21 samples on a 6 inch wafer,
which absolutely does not �t in our cryostats.

(20) Andreas Barg (2014). “Optical Charac-
terization of Micromechanical Membranes”.
M.Sc. thesis. University of Copenhagen &
University of Hamburg.

• anharmonic e�ects, including thermoelastic damping and phonon-phonon
interactions

• material-induced losses, including losses induced by fabrication or material
defects; this is o�en modeled by so-called two-level defects

Longer discussions of these loss mechanisms can be found in, e. g., Yeghishe Tsat-
uryan (2019), Møller (2018) or in the review article Aspelmeyer, Kippenberg, and
Marquardt (2014).

For a square membrane, the gas damping for the (=,<) mode is (Bao et al.
2002)(17)

&gas = d3l=<

√
π')

32<molar

1
?
, (4.16)

where ' is the gas constant,<molar is the molar weight of the residual gas and ? is
the gas pressure, which we seek to lower with our vacuum equipment. &gas can be
seen for room and cryogenic temperatures in Fig. 4.12. �is equation also neglects
an e�ect know as squeeze damping, which starts to ma�er when membranes are
positioned close to large objects, like mirrors. For details see Bao et al. (2002) and
Møller (2018, p. 54).

In general, we seek to measure the quality(18) of our samples. While things like
internal and clamping losses are something that can be alleviated or minimized
in the design and fabrication steps, once a device leaves the cleanroom, the only
two real handles we, as experimentalists, have are the sample temperature and
the pressure of the surrounding gas. Because cryogenic cooldown of entire wafers
of samples(19) is unfeasible, primary characterization needs to happen at room
temperature. Once a given membrane has been installed into an optomechanical
assembly, its & can be checked in situ and at cryogenic temperatures, as long as
one ensures that dynamical optomechanical e�ects can be neglected.

Since the & is, per Eq. (4.14), a ratio of resonance frequency to linewidth, the
temptation might fall upon the researcher to simply try to go and measure both
of these quantities. However, for our membrane where & routinely falls in the
range of 100 million to a billion (108 − 109), and for frequencies around 1 MHz, the
linewidth is only on the order of mHz. Ge�ing this kind of spectral resolution is
very hard. We therefore need a di�erent approach.

4.4.1 Ringdown Measurements

�e way we measure &s can be summarized rather simply: excite the membrane
to a large, classical amplitude, and measure the exponential decay. In practice, this
excitation can be performed with either a piezo, mechanically shaking the entire
membrane and frame, or by the application of a modulated radiation pressure force.
�e two methods o�er slightly di�erent advantages, but for our purposes can be
considered essentially identical – for purposes such as measuring the displacement
pro�le of a membrane, the di�erence between local and global excitation of the
mode becomes important. Details about our speci�c setup for & characterization
can be found in Barg (2014)(20).
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Figure 4.13: Michelson type
interferometer for membrane &
measurements.

(21) Typically a Zurich Instruments hf2li.

Recalling Eq. (3.37), the lock-in detection of a large oscillation amplitude de-
caying, and rewriting it in a simpler form, the large initial oscillation amplitude
G'0, decays as

G' (C) = G'0e−WC/2. (4.17)

By detecting the decay, and ��ing it with a function 0e−1C , we can then infer W =
21, and obtain

& =
πam
1

=
lm
21 . (4.18)

Importantly, 0 does not enter into the equation, so we do not have to worry about
transduction e�ciencies or other complicating factors; as long as the amplitude
is large enough to be reliably detected above the noise �oor and the excitation is
large enough to dwarf out thermal motion we should be �ne. With frequencies of
∼1.4 MHz and & of ∼1 × 108, 1 ∼ 4 × 10−2, or a time constant g = 1−1 of g ∼ 22 s for
the signal to decay to 1/e.

�e read out scheme is very close to the one described in Section 3.5, with the
membrane motion inducing an optical phase shi� Δi (C) = :2ΔG' (C), which we
then detect interferometrically in a Michelson-type interferomter, as depicted in
Fig. 4.13. Where a normal Michelson interferometer uses a non-polarizing beam-
spli�er, we use a pbs and half wave plates in each arm, and perform polarization
homodyning of the combined beams. A piezo in the reference arm stabilizes the
interferometer with the sum of of the photocurrents from the detectors.

A lock-in ampli�er(21) drives either an aom, leading to a modulated radiation
pressure force, or a piezo. �e same lock-in ampli�er then demodulates the de-
tected photocurrent at the modulation frequency, and yields G' (C). Since the mem-
branes have linewidths of on a couple of mHz, very �ne control of the excitation
frequency is needed.

A typical data trace for a ringdown measurement is shown in Fig. 4.14. During
the times marked in red, the excitation force is turned on, and the amplitude of
the oscillations grow. As soon as the excitation is turned o�, the amplitude decays
like a simple exponential. By knowing the exciting frequency and ��ing the decay
time, & can be measured.

Once the membrane has been assembled into a full optomechanical cavity
and placed in our st-100 cryostat, we need to measure the & again. However, as
noted above, the gas pressure in our cryostat at room temperature leaves a lot to
be desired, and we are therefore gas damping limited at room temperature. Here
we can only assess whether things are potentially ok or very much not ok, i. e., if
the & is gas damping limited or very low, & . 10−6. At cryogenic temperatures,
gas damping is no longer a limitation, but we have to consider optomechanical
e�ects. If we probe the cavity red detuned we can dampen the membrane, and blue
detuned we can reduce the e�ective damping, both of which are obviously bad
estimates of the intrinsic & .

In practice, our approach is to detune the laser close to the lower limit of the
Ti:Sapph tuning range, approximately 780 nm. At this wavelength, the mirror coat-
ings are dramatically less re�ective, and the cavity �nesse is reduced to a number
close to unity, reducing cavity intensity build-up, reducing 6, and thus optomechan-
ical e�ects like optical damping. To further ensure that optical damping plays no
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Figure 4.14: Ringdown measurement example. �e red regions are excluded from the �ts,
and used for exciting the membrane. Data (blue) is ��ed by a simple exponential 0e−1C
(orange), and the & is calculated with Eq. (4.18). �is membrane has am = 1.26 MHz, and
& ∼ 51 × 106 at room temperature.

(22) M. L. Gorodetsky et al. (2010). “Determina-
tion of the vacuum optomechanical coupling
rate using frequency noise calibration”. In: Opt.
Express 18.22, pp. 23236–23246.

role, we measure the & through ringdown measurements with laser detuned both
red and blue (typically at the half-max transmission point on both sides), arguing
that if the measured &s and thus linewidths are equal, i. e., Wm0 + Wopt ∼= Wm0 − Wopt,
then Wopt is very small, and can be ignored.

4.5 Membrane Temperature Calibrations

Calibrating the membrane temperature is important, as it determines the thermal
decoherence rate and membrane occupation for a given optical damping rate.

One standard way of measuring the e�ective bath temperature ) follows
Gorodetsky et al. (2010)(22). �is procedure is also described in detail in Nielsen
(2016, chapter 3.8). �e method uses the fact that the integrated displacement spec-
trum of Eq. (3.47) is directly proportional to the temperature, as well as to the quan-
tity 62

0=e� , with =e� being the e�ective occupation of the membrane. Assuming 60
is constant for a range of temperatures, one can measure at number of e�ective
temperatures, while keeping �q � 1 to minimize quantum backaction, and �t the
relationship between cold �nger temperature and e�ective temperature.

However, this method is cumbersome in practice. It involves stabilizing the
cryostat at a number of temperatures, and for each ensuring you are operating at
the same 2:I point, before taking a number of spectra with varied detuning. Once
this process has been performed once for a given membrane geometry and cavity
assembly, easier (but somewhat less precise) methods usually su�ce. Consistent
observations across time and di�erent setups with identical membranes serves as a
sanity check for these methods.

�e most used method for our setup is to measure ponderomotive squeezing in
transmission, from which the e�ective bath temperature can be extracted through
the Wm (= + 1/2)-term in the denominator

�q =
462

^Wm (= + 1/2) , (4.19)
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and by knowing the other parameters separately, because the amount of squeezing
observed scales with (Møller 2018, sec. 4.4)

(out
-L-L

SN = 1 − �q

�q + 1 . (4.20)

In Chapter 10 we �t our full model to squeezing traces in transmission, and
deduce an e�ective bath temperature of 11 K, in line with what is reported else-
where, for similar membranes. �is is somewhat higher than the approximately 7 K
reported for the previous generation of membranes, such as in Møller et al. (2017).
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Alkali Spin Systems

“ When physicists don’t understand something, they do what every-
one else does: give it a name. �at helps them talk about it, but don’t
confuse that with understanding.

Richard A. Muller

�e physics of alkali atomic spin systems.

�e second material system in our hybrid setup is formed by the collective spin of
a large number (# ∼ 109) of room temperature cesium atoms, con�ned in a glass
cell. In this chapter we will cover the short version of spin systems; the interested
reader may consult, e. g., Brian Julsgaard (2003)(1) and Rodrigo A. �omas (2020)(2);
a number of the �gures in this chapter is reproduced with permission from the
la�er. �e main goal is to describe how a collection of atomic spins may serve as
one e�ective harmonic oscillator.

We end the section with a section about cifar, a novel spin readout rate cali-
bration method, reported in Rodrigo A. �omas et al. (2021)(3).

5.1 Spin Ensembles

5.1.1 Cesium

Our spin ensemble consists of cesium-133. Cesium is the heaviest, stable(4) alkali
metal. Cesium-133 is the only stable isotope, and as such only trace amounts of
other isotopes occur in cesium samples; cesium-137, a �ssion product of uranium-
235, being the most prominent.

Cesium is an a�ractive choice of atom for a number of reasons: a relatively
simple electronic level structure, owing to the single electron in the outermost
shell, high vapor pressure at room temperature, and widely available laser sources,
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(5) Daniel A. Steck (2019). Cesium D Line Data.
available online at h�p://steck.us/alkalidata
(revision 2.2.21, 21 November 2019).

(6) We will use primes to denote spin values for
the electronically excited states, and unprimed
for the ground state. Usually, we put the prime
on the le�ers (e. g., � ′), but sometimes one may
encounter a shorthand like 5′.

(7) Notation is
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with = the electron shell number, ( the spin
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Figure 5.2: Cesium �2 levels in both the
upper and lower manifolds. �e numbers
above the lines denote the<� quantum
number. �ere are 16 states in the lower
manifold and 32 in the upper.

(8) An assumption that will always hold in this
thesis.

to name some. Other noteworthy alternative alkali metals are potassium and rubid-
ium. For cesium, the standard reference for any kind of data is Steck (2019)(5).

Cesium has a nuclear spin of � = 7/2, which together with the electron spin of
( = 1/2, gives the two possible ground state spin amplitudes � = { 3, 4 }. For the �rst
electronically excited state, !′ = 1, so � ′ = !′ + ( ′ assumes the values { 1/2, 3/2 }. �e
two excited states thus have � ′ ∈ { 3, 4 } and � ′ ∈ { 2, 3, 4, 5 } respectively(6). Ce-
sium has the electron structure [Xe]6s1, with the �rst excited state being [Xe]6p1,
and thus the two transitions are 62(1/2 → 62%1/2 and 62(1/2 → 62%3/2(7). �ese
two transitions are referred to respectively as the �1 and �2 transitions, and have
transition wavelengths of _�1 = 894.592 nm and _�2 = 852.347 nm. �is large scale
level structure is depicted in Fig. 5.1, together with our optical probing, pumping
and repumping scheme.

� = 3

� = 4

� ′ = 2
� ′ = 5

� ′ = 4

�1 line

�2 line

repump

pump

probe

J

6%3/2

6%1/2

6(1/2

· · ·

Figure 5.1: Level scheme of cesium, with our optical probing, pumping and repumping
scheme. J is our probing detuning from the � = 4→ � ′ = 5.

Due to the large energy separation between the ground state manifold and
the two excited states, essentially all atoms will be somewhere in the ground state
unless actively pumped to an excited state. �erefore, we will concern ourselves
mainly with the dynamics of the spins in the ground state manifold, and the e�ects
of external magnetic �elds. �e di�erent spins (nuclear, orbital angular, and elec-
tron) each have their own magnetic moment `, and all interact with each other via
the �ne and hyper�ne couplings. If the energy shi�s induced by an external mag-
netic �eld B are small compared to the hyper�ne spli�ings(8), the good quantum
numbers are � and the projection on our chosen quantization axis,<� ; the la�er is,
since we’re always dealing with the �,<� quantization, sometimes simply denoted
<. �e total level structure involved in the �2 transition is shown in Fig. 5.2. �e
energy of a state with total angular momentum � and projection<� , ��,< is given
by the Breit–Rabi forumla (Steck 2019)

��,< = − ℎahfs
2(2� + 1) + 6� `B<� ± ℎahfs

2

√
1 + 4<

2� + 1G + G
2, (5.1)

where ℎ is Planck’s constant, ahfs is the hyper�ne spli�ing, the sign ± is the same
as � = � ± 1/2, � = |B|, `B = ℎ · 1.4 MHz/G is the Bohr Magneton, and G quanti�es
the relative strength of the Zeeman e�ect (second term in (5.1)) to the hyper�ne
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(9) See Steck (2019) for exact values

(10) For comparison, the earth magnetic �eld in
Copenhagen is around 0.5 G, highlighting that
magnetic shield will be important for us

spli�ing

G =
(6� − 6� )`B�

ℎahfs
. (5.2)

�e spin-orbit and nuclear 6-factors are approximately 6� ≈ 2 and 6� ≈ −4 × 10−4(9).
For the magnetic �elds relevant to our experiment, � < 10 G = 1 mT, which gives
G ∼ 10−3.

Expanding Eq. (5.1) around G = 0, and keeping only the �rst and second order
terms, gives us a suitable expression for the energies in the low-�eld limit. For the
� = 4 levels,

�4,< = ℏls< +
ℏlqzs

2 <2, (5.3)

where ls is the Larmor frequency and lqzs is the quadratic Zeeman spli�ing, given
respectively by

ls
2π =

6� `B�

ℎ
= as (5.4)

lqzs

2π =
2a2

s
ahfs

. (5.5)

�e hyper�ne Landé 6-factor is given by

6� = 6�
� (�+1)−� (�+1)+� ( � +1)

2� (�+1) +6� � (�+1)+� (�+1)−� ( � +1)2� (�+1) =

{
0.250390 for � = 4
−0.251194 for � = 3.

(5.6)

In the end, the Larmor frequency scales as 350 kHz/G · �; to match the mechani-
cal frequencies of 1.4 MHz, we therefore need magnetic �elds around 4 G - a rather
modest requirement(10). For � = 4 G, lhfs/2π = 428 Hz. �is is on the order of the
spin linewidths that we have, so some cancellation of this shi� will be needed.

�e quadratic Zeeman shi� is positive for all values of<� , and the frequency
di�erence between two adjacent<� -levels, where Δ< =<′ −< = 1, is

�<′ − �<
ℏ

=
�<+1 − �<

ℏ
= ls + lqzs

(
< + 1

2

)
, (5.7)

so for the extreme levels, the e�ect is larger by a factor 4 or 3, depending on � . �e
quadratic Zeeman spli�ing may also be used to spectrally separate the di�erent
transitions in the limit where ls � Ws; we will use this fact to measure the spin
polarization with mors, as explained in Section 5.6.

In the experiments, laser light or radio frequency radiation will drive tran-
sitions between di�erent<� -levels. Due to selection rules, only transitions with
Δ<� ∈ { 0,±1,±2 } can be driven, and we will mostly be interested in those where
Δ<� = ±1. We will be driving these transitions when the radio frequency �eld is
tuned to lrf ∼ ls, and the di�erence in spin frequencies will show up in our sig-
nals at ls. �e 2� + 1 levels will give rise to 2� di�erent peaks in the regime where
the levels are split by the quadratic term.

Pu�ing what we know about the energies, and restricting ourselves to transi-
tions within a single sub-manifold of the ground state (in practice, � = 4), we write
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62S1/2

4.021 776 375 GHz (exact)

5.170 855 370 625 GHz (exact)

9.192 631 770 GHz (exact)

∼ ��,<� /<�

F=4 6� ≈ 1/4 0.35 MHz/G

F=3 6� ≈ −1/4 −0.35 MHz/G

62P3/2

F’=5 6� ≈ 2/5 0.56 MHz/G

F’=4 6� ≈ 4/15 0.37 MHz/G

F’=3 6� ≈ 0 0.00 MHz/G

F’=2 6� ≈ −2/3 −0.93 MHz/G

263.81(2) MHz

188.44(1) MHz

339.64(2) MHz

12.815(9) MHz 251.00(2) MHz

201.24(2) MHz

151.21(2) MHz

852.347 275 82(27) nm

351.725 718 50(11) THz

Figure 5.3: Cesium �2 level structure. �e lower manifold is split by the hyper�ne spli�ing
into two sub-manifolds with � ∈ { 3, 4 }, and the upper manifold into � ′ ∈ { 2, 3, 4, 5 }. Figure
produced with inspiration from Steck (2019).

(11) Further, in Rodrigo A. �omas et al. (2020)
the collective spin is labeled �{G,H,I,0 } . I here
use the notation from Rodrigo A. �omas
(2020).

the Hamiltonian

�� = ℏ
∑
<

[
ls< |<〉 〈< | +

lqzs<
2

2 |<〉 〈< |
]
, (5.8)

where |<〉 is a shorthand notation for the state |�,<� 〉.
Our chosen basis until now has been the energy eigenstates of the atom in an

external magnetic �eld. We now change into a basis of angular momenta. At the
same time, we depart from the single atom description thus far, and move explicitly
to collective degrees of freedom of our # atoms. �e individual atoms have angular
momentum 5 (8){ G,H,I } , with 8 indexing the atoms. To preserve consistency with the
notation used in other works from my group (see, e. g., Brian Julsgaard (2003),
Rodrigo A. �omas (2020)), the chosen quantization axis is along G , as opposed to
the conventional choice of I(11). In total,
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(12) T. Holstein and H. Primako� (1940). “Field
Dependence of the Intrinsic Domain Magneti-
zation of a Ferromagnet”. In: Phys. Rev. 58 (12),
pp. 1098–1113.

(13) Klemens Hammerer (2006). “�antum
Information Processing with Atomic Ensem-
bles and Light”. Ph.D. thesis. Technische
Universität München.

�̂G =
#∑
8=0

5̂ (8)G =
#∑
8=0

4∑
<=−4

<�̂ (8)<<

�̂H =
#∑
8=0

5̂ (8)H =
1
2

#∑
8=0

3∑
<=−4

2 (�,<)
(
�̂ (8)<+1,< + �̂ (8)<,<+1

)

�̂I =
#∑
8=0

5̂ (8)I =
1
2i

#∑
8=0

3∑
<=−4

2 (�,<)
(
�̂ (8)<+1,< − �̂ (8)<,<+1

)

�̂0 =
#∑
8=0

5̂ (8)I =
#∑
8=0

4∑
<=−4

�̂ (8)<<,

(5.9)

where 2 (�,<) =
√
� (� + 1) −<(< + 1) and the operator �̂ (8)

01
≡ |0〉 〈1 | (8) =

|�, 0〉 〈�, 1 | (8) de�ne the weight of the atomic coherences. �e sums include re-
spectively the diagonal and the �rst o�-diagonal elements of the total matrix∑
=
∑
< |=〉 〈< | (8) .

�e four spin operators thus describe the total ensemble spin along the three
spatial directions, and the total spin length. We further de�ne �̂+ = �̂H + i�̂I and
�̂− = �̂H − i�̂I , the ladder operators in the angular momentum basis.

�e equation here assumes homogeneous coupling to all atoms; in practice
this is not the case in any given instant. I will ignore this for now, and refer the in-
terested reader to Brian Julsgaard (2003). �e spin operators have the commutator
[�̂: , �̂; ] = in:;< �̂< , with nGHI being the Levi–Civita symbol.

In this basis, the energy of the collective spin, neglecting the quadratic Zee-
man shi�, can be wri�en as

�B = ℏls�̂G , (5.10)

which takes the form of a classical dipole in an external magnetic �eld along the
G-axis, for which � ∝ B · F.

5.1.2 �e Holstein–Primako� Approximation

In the hybrid experiment we will be working always with a highly spin-polarized
ensemble of atoms, i. e., where most of the atoms have their spin aligned along (or
anti-parallel to) the magnetic �eld. In that limit, we may treat the spin along G as a
classical variable of size �G ∼ | 〈�̂G 〉 |, with the transverse spin components �̂H and
�̂G having only small �uctuations.

We now apply the Holstein–Primako� transformation or approximation (Hol-
stein and Primako� 1940)(12). �is allows us to introduce bosonic ladder operators
for the collective spins, 1̂ and 1̂†, respectively with [1̂, 1̂†] = 1. Following Klemens
Hammerer (2006)(13) and Rodrigo A. �omas (2020), we write the spin component

�̂G = �G − 1̂
†1̂
2 , (5.11)

i. e., we express it as a mean value plus some small number of �uctuations, that
always decrease the total spin length. In the low excitation (high polarization) limit
〈1̂†1̂〉 � �G , the ladder operators are given by

�̂+ '
√
�G1̂ �̂− '

√
�G1̂
†, (5.12)
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(14) Flaminia Giacomini, Esteban Castro-Ruiz,
and Časlav Brukner (2019). “�antum me-
chanics and the covariance of physical laws
in quantum reference frames”. In: Nature
Communications 10, p. 494.

(15) �e astute reader may have noticed that
the convention for the sign on ls is a bit
messy. My apologies. Sometimes, like here,
the negative mass system is represented
with frequency −ls (i. e., ls > 0, so minus a
positive value), and sometimes we de�ne it as
a negative frequency ls < 0. I hope context
is enough to devulge which notation is being
used at a given time.

allowing us to write

1̂†1̂ =
�̂−�̂+
�G

=
�̂ 2
H + �̂ 2

I + i[�̂H , �̂I]
�G

≈
�̂ 2
H + �̂ 2

I

�G
, (5.13)

where the term with the commutator, [�̂H , �̂I] = i�̂G , evaluates to −�̂G/�G , which is
constant, and can be ignored.

Pu�ing this together, we can write the Hamiltonian from Eq. (5.10) as

�̂B/ℏ = ls�̂G ≈ ls�G − ls
2

(
-̂ 2

s + %̂2
s

)
, (5.14)

with the dimensionless spin conjugate variables

-̂s = �̂I/
√
ℏ�G

%̂s = ±�̂H/
√
ℏ�G ,

(5.15)

where the ± sign foreshadows the choice of negative or positive e�ective mass. �e
conjugate variables have the usual commutator [-̂s, %̂s] = i. �e constant energy
term ls�G , as all constant energy o�sets, will contribute nothing to the overall
dynamics of the system, and can be disregarded.

5.2 Negative Effective Mass

As alluded to many times already, the spin system will assume the role of an oscil-
lator with negative e�ective mass. We will now see how this comes about. For a
general introduction to the question of quantum frames of reference, with positive
or negative mass, see Giacomini, Castro-Ruiz, and Brukner (2019)(14).

�e idea is depicted in Fig. 5.4. �e state |0〉 describes the fully polarized state,
where all atoms are pointing towards G or −G , with the magnetic �eld � being
aligned towards G . If � and �G are pointing in opposite directions, the state with
zero excitations, |0〉, has the lowest total energy possible. If, on the other hand,
the spin is aligned parallel to the magnetic �eld, the energy is maximized. Which
spin polarization one obtains can be chosen, by changing the polarization of the
pumping and re-pumping light; f+ polarization drives the atoms towards |4, +4〉
(parallel to �), while f− polarized light drives them towards |4,−4〉 (anti-parallel to
�).

If the system starts out in |0〉, we can add an excitation to the system with
1̂† |0〉 = |1〉. �is collective operator either adds or subtracts adds a single quantum
of energy ls from the system, depending on whether the state is spin and magnetic
�eld is aligned in parallel or anti-parallel, while also increasing the �uctuations
in the transverse quadratures, -̂s, %̂s. �e feature that increasing �uctuations in
the relevant quadratures corresponds to decreasing the energy is what makes this
oscillator e�ectively negative mass.

In Fig. 5.5 we show a driven measurement of the spin with positive mass (+l ,
in blue) and negative mass (−l , in orange)(15). �e top panel shows the size of the
driven responses, which are virtually identical for the two orientations. In the bot-
tom panel, the phase of the responses are shown. Apart from a slight background
originating in electrical delays, the blue line �ts very well with the expected shape
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Figure 5.4: Positive and negative mass con�gurations of the spin. All spins are idealized as
residing in the extreme<� level, which has minimum tranverse �uctuations, which we label
|0〉. Adding an excitation bring the collective spin to the |1〉 state, while adding (positive
mass) or removing (negative mass) ℏls of energy. Figure reproduced, with changes, from
Rodrigo A. �omas (2020).
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Figure 5.5: Driven response of the spin oscillator with positive and negative mass. �e
amplitudes of the responses are virtually identical, but the phases are out of phase for the
postive mass (blue, +l) and negative mass (orange, −l) con�gurations. Figure reproduced,
with changes, from Rodrigo A. �omas (2020).

of a normal harmonic oscillator: in phase for low frequency, π out of phase for
high frequency. �e negative mass case shows the exact opposite response: π out
of phase for low drive frequency, and 2π = 0 phase, i. e., in phase, for high drive
frequency. �is perfect π fundamentally says that the spin responds to an external
perturbation exactly oppositely of a normal oscillator.

�e term “negative mass” is perhaps be�er called “negative frequency” – there
is a�er all no mass in Eq. (5.14). �e term arises from analogy to the normal har-
monic oscillator with mass<,

� =
<l2

2 -̂ 2 + 1
2<%̂

2, (5.16)

where �ipping the sign of< changes the sign of both terms. Flipping the sign of ls
has the same role for us.
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(16) Nota bene! A given Stokes vector does
not point in the direction of its label; indeed
(G = −(0 describes light fully polarized along
H .

(G

(H

(I

Figure 5.6: Poincare sphere. Modi�ed
�gure, original by Geek3, published under
CC BY 3.0.

5.3 Stokes Parameters

We divert our a�ention now, from that of atoms and spins, to the topic of the po-
larization of light. �e motivation for this is the e�ect on light of our atoms; for
a linearly polarized beam of light, propagating along an axis orthogonal to the
mean spin/magnetic �eld direction, the main e�ect will be a rotation of the light
polarization.

If we consider a wave propagating in the I-direction, we may write any gen-
eral �eld at a given point in space as

E(C) = eG eG cos(lC + iG )︸              ︷︷              ︸
�G

+eH eH cos(lC + iH )︸              ︷︷              ︸
�H

. (5.17)

With �G and �H being the electric �eld in the G and H directions. �e polarization
state is determined by the relative size of the �eld strengths, and their relative
phase δi = iG −iH . Instead of the pair of orthogonal basis vectors { eG , eH }, we may
have picked any number of other bases: { e+45, e−45 } or { ef+ , ef− }, being the two
most obvious alternatives.

Alternatively, to describe light polarization, one may de�ne the Stokes vec-
tors; instead of keeping track of e{ G,H } and their phases {iG , iH }, one can instead
choose to track four (possibly normalized) intensities—the Stokes parameters. �ese
are sometimes labeled ( { 0,1,2,3 } , but we will use a notation more closely related to a
spatial interpretation(16):

• (G : �e intensity polarized along G minus that along H

• (H : �e intensity along 45° w.r.t. the G-axis minus that along −45°

• (I : �e intensity of right hand circularly polarized light minus that of le�
hand polarized light

• (0: �e total intensity

�e �rst three of these are depicted in Fig. 5.6, with (0 de�ning the radius of the
sphere, such that a vector [(G , (H , (I] falls on the surface or within the sphere at all
times.

Writing the electric �eld of Eq. (5.17) in quantized form, we get

Ê(I, C) = eGeG
(
0̂GeiqG (C ) + 0̂†Ge−iqG (C )

)
+ eHeH

(
0̂HeiqH (C ) + 0̂†He−iqH (C )

)
, (5.18)

where we have wri�en the time evolution of the �eld operators explicitly as q8 (C) =
:I − lC + i8 .

Given the de�nitions of Stokes parameters and the quantized electrical �eld,
the quantum version of the Stokes parameters become (Møller 2018)

(̂G (I, C) = 1
2

(
0̂†G 0̂G − 0̂†H 0̂H

)
=

1
2

(
=̂G − =̂H

)
(5.19a)

(̂H (I, C) = 1
2

(
0̂†G 0̂H + 0̂†H 0̂G

)
=

1
2

(
=̂+45 − =̂−45

)
(5.19b)

(̂I (I, C) = 1
2i

(
0̂†G 0̂H − 0̂†H 0̂G

)
=

1
2 (=̂R − =̂L) (5.19c)

(̂0 (I, C) = 1
2

(
0̂†G 0̂G + 0̂†H 0̂H

)
=

1
2

(
=̂G + =̂H

)
. (5.19d)

https://commons.wikimedia.org/wiki/User:Geek3
https://creativecommons.org/licenses/by/3.0/deed.en
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Figure 5.7: Stokes parameter
measurements. �e polarizing beam
spli�er (pbs) re�ects G-polarized and
transmits H-polarized light. �e Half
(hwp) and �arter (qwp) waveplates
rotate the input light as described in the
main text.

(17) Warwick P. Bowen et al. (2002). “Polar-
ization Squeezing of Continuous Variable
Stokes Parameters”. In: Phys. Rev. Le�. 88 (9),
p. 093601.

(18) G. S. Agarwal and S. Chaturvedi (2003).
“Scheme to measure quantum stokes parame-
ters and their �uctuations and correlations”. In:
Journal of Modern Optics 50.5, pp. 711–716.

(19) �e hwp and �ip the polarization around
the fast axis, and the polarization is thus
rotated by 2π/8 = π/4 = 45°.

�e Stokes operators ful�ll commutation relations similar to that for angular
momentum operators, �̂ , i. e.

[(̂ 9 , (̂: ] = iY 9:; (̂;
[(̂0, (̂ 9 ] = 0, 9 ∈ { G, H, I }

(̂0 ((̂0 + 1) = (̂2
G + (̂2

H + (̂2
I

(5.20)

We may already now consider the time evolution of the Stokes operators in a
given medium. If the interaction Hamilton between the light and the medium is
described by �̂int, we may write the evolution as (Møller 2018, p. 18)(

m

mC
+ 2 m

mI

)
(̂ 9 (I, C) = i

ℏ

[
�̂int, (̂ 9 (I, C)

]
. (5.21)

Our material systems, atomic cells, generally have a length of 10 mm; if the atomic
sample had a refractive index of = = 1, this would mean that a pulse of light would
transverse the length of the cell in 33 ps. On the other hand, the dynamics of inter-
est happens much slower, at timescales of around ∼1 μs. Møller (2018) argues that
we may therefore ignore the faster of these evolutions, because the light does not
appreciably retard during the passage of the cell, and thus

2
m

mI
(̂ 9 (I, C) ≈ i

ℏ

[
�̂int, (̂ 9 (I, C)

]
(5.22)

If the sample is located from I = 0 to I = !, the input and output stokes operators
are given by

(̂ in
9 (C) ≡ (̂ 9 (I = 0, C) (5.23)

(̂out
9 (C) ≡ (̂ 9 (I = !, C). (5.24)

5.3.1 Measuring the Stokes Parameters

�e Stokes parameters may be measured with the aid of two photodetectors, one
polarizing beam-spli�er (pbs), and a set of half and quarter waveplates (hwp and
qwp). �e idea is depicted in Fig. 5.7, and detailed in W. P. Bowen et al. (2002)(17)

and Brian Julsgaard (2003). Also see Agarwal and Chaturvedi (2003)(18).
In this idealized description, the perfect pbs re�ects all light polarized in the

plane (G), and transmits all light polarized out of the plane (H). �e total power
is measured by adding the photocurrents on the two detectors together, since
(0 = (=G + =H )/2.

�e three remaining operators are measured by taking the di�erence of the
photocurrents. �e waveplates transform the input polarization of interest to the G
and H linearly polarized �elds just before the pbs. (G is just the input �elds.

(H neccesitates the prescense of a hwp set to rotate the �elds by 45°, which
means that the fast axis must be set to π/8(19).

Measuring (I comes with some degree of freedom. If the input light is circu-
larly polarized, adding a quarter wave plate will turn it into a linear polarization,
independent of the waveplate rotation. Adding a qwp with the axis aligned along
G rotates a circularly polarized input to a linear polarization at ±45°, which is then
rotated to the G, H-basis by a following hwp. Alternatively, a qwp rotated to π/4
directly rotates circularly polarized light to the same linear polarization.
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(20) J. M. Geremia, John K. Stockton, and Hideo
Mabuchi (2006). “Tensor polarizability and
dispersive quantum measurement of multilevel
atoms”. In: Phys. Rev. A 73 (4), p. 042112.

5.4 The Faraday Interaction

�e interaction between the collective spin and our light is described by the Fara-
day interaction; a linearly polarized beam of light will have its polarization rotated
around the axis of propagation by an amount proportional to the spin projection
along the propagation direction.

Detailed derivations and descriptions of the process may be found in, e. g.,
Brian Julsgaard (2003) or Rodrigo A. �omas (2020). Also see Geremia, Stockton,
and Mabuchi (2006)(20) for a good reference on dispersive readout of multilevel
atoms. In this thesis we will skip very lightly over the derivations and justi�ca-
tions.

As usual, we are interested only in the highly spin polarized case, with close
to all atoms pumped to the |� = 4,<� = 4〉 state, and in timescales slower than the
excited state lifetime, such that the upper states can be adiabatically eliminated.
Further, we operate the laser far detuned (several GHz), as to remain far below
saturation.

For � = 4 and high detuning, J � WCs, the e�ective atom-light interaction
Hamiltonian (Rodrigo A. �omas (2020, p. 30)) is

�̂/ℏ = 6Cs
(
00(̂01̂9 + 01(̂I �̂I + 02

[
(̂0�̂

2
I − 2(̂G (�̂ 2

G − �̂ 2
H ) − 2(̂H (�̂G �̂H + �̂H �̂G )

] )
, (5.25)

where

6Cs = − 2WCs
8��J

_2
Cs

2π (5.26)

is the e�ective single photon-single atom coupling rate and the 08 parameters
describe the relative strengths of the scalar, vector, and tensor light interactions
respectively, and equal

00 =
1
4

(
1

1 − Δ35/J +
7

1 − Δ45/J + 8
)

→ 4 (5.27)

01 =
1

120

(
− 35

1 − Δ35/J −
21

1 − Δ45/J + 176
)
→ 1 (5.28)

02 =
1

240

(
5

1 − Δ35/J −
21

1 − Δ45/J + 16
)
→ 0, (5.29)

where the→ denotes the asymptotic value as J → ±∞, and Δ35/2π = 452 MHz,Δ45/2π =
251 MHz is the frequency di�erence between the excited state levels � ′ = 3/4 and
� ′ = 5, respectively. For our typical detuning of J/2π ∼ 3 GHz, 00 ∼ 3.83, 01 ∼ 1.05
and 02 ∼ 0.004.

�e three terms in Eq. (5.25) represent, like stated above, respectively the
scalar, vector and tensor light shi�s. �e �rst involves only the total light intensity
and the identity operator, simply counting the atoms; it is an overall phase retar-
dation, which can be ignored for most relevant situations. �e vector interaction
involves (̂I and �̂I , which in our chosen basis of Stokes vectors and with the spin
quantized along G and light propagating along I involves a rotation of the spin
variable around the I axis, as well as a rotation of the light variables around (̂I ,
i. e., a circular birefringence, which leaves circular polarizations unchanged, and
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(21) Ivan H. Deutsch and Poul S. Jessen (2010).
“�antum control and measurement of atomic
spins in polarization spectroscopy”. In: Optics
Communications 283.5. �o vadis �antum
Optics?, pp. 681–694.

rotates linear polarizations around the real propagation axis. �e tensor light shi�
involves products of Stokes operators to the �rst power and quadratic terms of
spin variables, �̂ . A geometric interpretation is less obvious here, especially for the
spin, but for the light, the �rst term is another overall retardation, while for the
last two terms the e�ect is a linear birefringence around the (̂G vector and linear
birefringence around (̂H , respectively. For more details see Deutsch and Jessen
(2010)(21).

�e tensor light shi� carries the dual role of being itself a deviation from our
nice harmonic oscillator description, and the recipe for �xing the imperfection
introduced by the quadratic Zeeman shi�. �e tensor Stark shi�, ltss, induces a
<� dependent energy shi�, which changes the spectral response of our ensemble.
Allowing now the input �eld propagating along I to be polarized not along the
magnetic �eld direction, but any axis perpendicular to the propagation direction,
the electric �eld,

E/�0 = eG cosU + eH sinU, (5.30)

is angled U away from the magnetic �eld B = �eG . �e average normalized Stokes
parameters for such a �eld are

(G/(0 = �
∗
G�G − �∗H�H = cos 2U

(H/(0 = 2<(�G�∗H ) = sin 2U (5.31)
(I/(0 = 0

Inserting into Eq. (5.25) and performing �rst order perturbation theory, one �nds
that the spli�ing between adjacent Zeeman levels is changed by

ltss =
�<+1 − �<

ℏ
=

WCs
8��J

_2
Cs

2π 02(0
1 + 3 cos 2U

2 . (5.32)

For cos 2U = 1/3, or U ≈ 54.7°, the whole term cancels out. On the other hand,
the quadratic Zeeman shi� may be compensated for a well polarized ensemble by
tuning U ; this e�ect is used extensively in our experiment.

Skipping again the details, in the limit of all atoms in a stretched magnetic
level, |� = 4,<� = ±4〉, assuming that the quadratic Zeeman shi� has been can-
celled by the tensor Stark shi�, and canceling the terms proportional to �̂G and 1 by
adjusting the magnetic �eld, we are le� with an e�ective spin-1/2 description of the
magnetic precession plus the interaction with light,

�̂1/2/ℏ = ls�̂G + 6Cs
(
01(̂z�̂z ± 1402(̂y�̂y

)
. (5.33)

Since we have used the tensorial shi� to compensate the quadratic Zeeman
shi�, it makes sense to rotate the Stokes operators accordingly, and we de�ne

©­­­«

(̂ ‖
(̂⊥
(̂I
(̂0

ª®®®¬
=

©­­­«

(̂G cos 2U − (̂H sin 2U
(̂G sin 2U + (̂H cos 2U

(̂I
(̂0

ª®®®¬
. (5.34)
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�e classical driving �eld is along (̂ ‖ , so 〈(̂ ‖〉 = 〈(̂0〉 = ( ‖ , and the variables (̂⊥ and
(̂I remain quantum variables. �ese we rede�ne as

-̂L =
(̂I√
( ‖

%̂L = − (̂⊥√
( ‖

(5.35)

with [-̂L, %̂L] = i
2 .

Using the de�nitions of the spin quadrature operators in Eq. (5.15), we write
Eq. (5.33) as

�̂s/ℏ =
ls
2

(
-̂ 2

s + %̂2
s

)2
− 2

√
�s

(
-̂s-̂L + Zs%̂S%̂L

)
, (5.36)

where Zs = −1402
01

cos 2U quanti�es the ratio of the tensor interaction to the vector
interation, and we have de�ned the spin readout rate

�s = 6
2
Cs0

2
1( ‖�G (5.37)

For the usual detuning in our experiments, J ∼ 3 GHz, and the angle used
to cancel the quadratic Zeeman shi�, U ∼ 60°, the tensor interaction is small,
on the order of Zs ∼ 0.01, which brings the total spin interaction close to a qnd
interaction.

5.5 Input-output Relations

With the e�ective quadrature language Hamiltonian in Eq. (5.36), and the Heisenberg–
Langevin equations introduced in Section 3.7.2, the equations of motion for the
spin and optical operators evolve as

d
dC

(
-̂s
%̂s

)
=

(−Ws0/2 ls
−ls −Ws0/2

) (
-̂s
%̂s

)
+ 2

√
�s

(−Zs%̂L
-̂L

)
+

(
f̂X

s
f̂P

s

)
(5.38)

(
-̂ out

L,s
%̂out

L,s

)
=

(
-̂ in

L,s
%̂ in

L,s

)
+

√
�s

(
0 −Zs
1 0

) (
-̂s
%̂s

)
(5.39)

Again, following the derivations in Rodrigo A. �omas et al. (2020) and its
Supplementary Information, we go to the Fourier domain, where we �nd

(
Ws0/2 + Zs�s − iS −ls

ls Ws0/2 + Zs�s − iS

) (
-̂s
%̂s

)
= 2

√
�S

(
0 −Zs
1 0

) (
-̂ in

L,s
%̂ in

L,s

)
+

(
f̂X

s
f̂P

s

)
, (5.40)

(
-̂ out

L,s
%̂out

L,s

)
=

(
-̂ in

L,s
%̂ in

L,s

)
+

√
�s

(
0 −Zs
1 0

) (
-̂s
%̂s

)
, (5.41)

where f̂X
s , f̂

P
s are the e�ective forces acting on the spins via the thermal bath. We

note here that where a mechanical oscillator usually decays on in the %̂-quadrature,
the spin oscillator naturally has decay in both -̂ and %̂ ; the underlying spin quadra-
tures �̂H and �̂I decay in the same way a�er all.



5.5. Input-output Relations 99

Wishing again to �nd a more compact notation, we de�ne like in Section 3.7.3,
a number of matrices

` =

(
0 −Zs
1 0

)
, R =

(
Ws0/2 + Zs�s − iS −ls

ls Ws0/2 + Zs�s − iS

)−1
,

ˆ̂ in(out)
L,s =

(
-̂ in(out)

L,s
%̂ in(out)

L,s

)
, ˆ̂ s =

(
-̂s
%̂s

)
, f̂s =

(
f̂X

s
f̂P

s

)
.

(5.42)

With these de�nitions, we write Eq. (5.40) and Eq. (5.41) as

ˆ̂ s = 2
√
�sR` ˆ̂ in

L,s + Rf̂s (5.43)
ˆ̂ out

L,s = ˆ̂ in
L,s +

√
�s` ˆ̂ s = (12 + 2�s`R` ) ˆ̂ in

L,s +
√
�s`Rf̂s, (5.44)

where in the last line we have inserted the expression for ˆ̂ s we just found.
Turning our a�ention to R, describing the spin oscillator response to external

forces, can be wri�en in a more transparent form as (Rodrigo A. �omas 2020,
chapter 3)

R =

(
ds (S) js (S)
−js (S) ds (S)

)
, (5.45)

with the two susceptibilities

js (S) = ls
l2

s −S2 − iSWs + (Ws/2)2 (5.46)

ds (S) =
Ws/2−iΩ

l2
s −S2 − iSWs + (Ws/2)2 , (5.47)

where Ws = Ws0 + 2Zs�s is the total spin linewidth. For the limit of narrow spins,
Ws � ls, and close to resonance, we can approximate the susceptibilities as

js (S) ≈ 1
2

1
ls −S − iWs

ds (S) ≈ −ijs (S).
(5.48)

Just like for the mechanics, where we track only -̂m, and calculate %̂m from it
using a simple Fourier domain relation, we can do the same for the spins. We seek
approximate versions of Eq. (5.43) and (5.44), valid in the limit |ls | � Ws, |S − |ls | |,
i. e., for a narrow spin system, and only close to the resonance. In this limit, the
e�ective thermal forces f̂X

s and f̂P
s can be combined into the single thermal force

term f̂s ≈ if̂X
s + f̂P

s . In this limit, the evolution equation for -̂s in terms of the
susceptibility js (S) arises from Eq. (5.43)) (se�ing ls0 ≡ ls),

-̂s = js

[
2
√
�s

(
1
−iZs

)ᵀ
ˆ̂ in

L,s + f̂s

]
= js

[
2
√
�s (-̂ in

L,s − iZs%̂
in
L,s) + f̂s

]
. (5.49)

Noting that %̂s ≈ −sign(ls0)i-̂s for S/|ls | ∼ 1, the simpler input-output relation
�nally becomes,

^out
L,s = ^ in

L,s +
√
�s

( −iZs
1

)
-̂s, (5.50)
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which follows from Eq. (5.44).
We now have our �nal expression for the equations of motions of our spin

oscillator, and the input-output relation describing the interaction with light. We
have made a number of approximations, reducing the complex physics of a large
number of atoms down to a harmonic oscillator, interacting with two light quadra-
tures. �is mapping into a harmonic oscillator language, puts the spin system on
e�ectively equal footing as our mechanical oscillator in Chapter 3. �e spin re-
sponse will be investigated in certain conditions in the rest of this chapter, before
we encounter it again in Chapter 10.

5.6 Magneto-Optical Resonance Spectroscopy (mors)

An important backbone in our calibrations of the atomic system is the Magneto-
Optical Resonance Spectroscopy, mors, described in B. Julsgaard, Sherson, et al.
(2004)(22), and elaborated in Brian Julsgaard (2003) and Rodrigo A. �omas (2020),
this method allows us to measure the population di�erences between neighboring
<� -levels, as well as the coherence times of the individual transitions and the
di�erential Stark shi�s.

In the end, we are a�er the spin polarization, ? , de�ned as

? =
|�G |
�

=
1
�

Tr [d�G ] , (5.51)

which describes how well we have managed to pump the atoms towards a single
extreme<� -level.

�e mors is a driven measurement, with a small rf magnetic �eld. �e rf
�eld is polarized orthogonal to the large dc magnetic �eld, as induces a precession
around the mean spin direction. �e rf frequency is stepped across the atomic
Zeeman resonances, and for each frequency, the detected signal is demodulated to
extract the response amplitude and phase.

Skipping all pretenses of a derivation, the signal of the 8 Zeeman lines is given
by

mors(lrf ) = 20

�����#
�−1∑
<=−�

(� (� + 1) −<(< + 1)) (%<+1 − %<) W<+1,<
(l<+1,< − lrf ) − iW<+1,</2

�����
2

(5.52)

where 20 is an arbitrary proportionality constant, %< is the population in the<th
level, W<+1,< is the decoherence rate of the coherence between levels< + 1 and<,
and the frequencies are labeled similarly. In other words, the mors signal is the
absolute square of the sum of 8 complex Lorentzians, with weight proportional to
the population di�erences between levels.

�is is a rather large number of parameters (25 to be exact, if we combine 20
and # to 20#

2); luckily a number of simplifying assumptions can be made. First,
we can restrict all linewidths to be the same, W0; this assumption is rather crude,
and not consistent with experimental observations in many conditions (see Ro-
drigo A. �omas (2020, chapter 7)). Secondly, we can constrain the frequency
di�erences to l<+1,< = ls +<lqzs. �ese simpli�cations reduce the number of
free parameters by 7 and 6 respectively. Lastly, we can introduce the so-called spin
temperature distribution (Vasilakis, Shah, and Romalis 2011)(23), which states that
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the density matrix describing the optically pumped state may be wri�en as

d̂ = eV�G //, (5.53)

where / is the partition function, and

V = ln
[

1 + ?
1 − ?

]
, (5.54)

where ? is the spin polarization. Note, that this V is dimensionless, as opposed to
the usual V encountered in the expressions for normal thermal distributions. �e
“spin temperature” is then proportional to V−1, but the overall scale is not set. �is
assumption leads directly to the populations in the di�erent Zeeman levels being

%< = eV<//, (5.55)

allowing us to calculate the spin polarization easily as

? =
〈�G 〉
�

=
1
�

∑
<

<eV< . (5.56)

Following S.-K. Lee (2008)(24), the spin temperature can be given an absolute
scale and unit of kelvin, by de�ning(25) V = ℏls/:B) . Lee notes that the tempera-
ture is physical, because of its direct relation to adiabatic demagnetization cooling.

In the end, this reduces the 8 population di�erences to one single parameter,
bringing us to 5 total: { 20#

2, V, W0, ls, lqzs }, and a simpli�ed expression

mors0 (lrf ) = 20#
2

/ 2

�����
�−1∑
<=−�

(� (� + 1) −<(< + 1)) (eV (<+1) − eV<
)
W0

(ls +<lqzs − lrf ) − iW0/2

�����
2

. (5.57)

Fi�ing the mors0 model can be done without further assumptions, while for
the mors model, one other assumption needs to be made: since we are only �t-
ting population di�erences, 8 peaks does not contain enough information to nail
down 9 populations. We therefore assume that the population in |4,−4〉 is 0. �is is
probably a small error, due to the presence of our optical pump.

�e two models are ��ed to experimental data in Fig. 5.8. We observe that
the full model present a signi�cantly be�er �t at the low population end, where
the simpli�ed model underestimates the populations. For the same reason, the full
model estimates a slightly lower spin polarization. It is remarkable, however, how
well the simpli�ed model �ts the data, with much fewer free parameters.

5.7 Spin Coated Microcells

Our spin cells deserve a section of their own—albeit a short one; more detail may
be found in Rodrigo A. �omas (2020) or Zugenmaier (2018)(26). A typical cell is
shwown in Fig. 5.10. It consists of a circular glass tube, closed o� at each end by an
anti-re�ection coated window, with the windows clamping between them a “chip”,
i. e., a piece of glass with a square channel along its length, and a microchannel
(μ-channel) on one face, connecting the small channel to the larger volume of the
cylindrical cell, as depicted in Fig. 5.9, allowing atoms to slowly leak in and out of
the channel, thus slowly changing the number of atoms. A stem is connected to
the encapsulating cylinder, partly for fabrication reasons, and in part as a place to
position a drop of cesium.
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Figure 5.8: mors and mors0 models ��ed to experimental trace. �e full model �ts the
data be�er, especially for the peaks with low population di�erences, where the simpli�ed
model undershoots the experimental data, leading to a slight overestimation of the spin
polarization, ? .
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Figure 5.9: Cell chip photograph with
lines to guide the eye, and inset with
close up of the microchannel connecting
the channel to the reservoir of atoms
outside the chip. Reproduced from
Rodrigo A. �omas (2020).
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An end-view of the cell is shown in Fig. 5.10, along with a concept drawing.
�e cell is illuminated so the channel and microchannel light up. A faint ring
roughly half the diameter of the encapsulating cell marks the ar coated region
of the end windows.

encapsulation

chip

stem

channel

μ-channel

2 mm

Figure 5.10: Microcell photograph and end view drawing. Reproduced from Rodrigo A.
�omas (2020).

�e glass chips are purchased commercially, but all other cell fabrication is
performed exclusively by Mikhail Balabas (see Balabas, Jensen, et al. (2010)(27),
Balabas, Karaulanov, et al. (2010)(28)). Apart from mastering the cra� of glassblow-
ing of scienti�c grade glassware, Balabas is also the expert on coating these cells
with spin-preserving coatings. �ese alkene or para�n coated cells dramatically
increase the spin lifetime of the atomic ensemble, e�ectively preserving the spin
over a very large number of wall collisions. Alkene coated cells show superior spin
lifetimes, but degrades when the cells are heated to increase the number of atoms
in the cell. Para�n, in our case c30, is therefore the coating material of choice for
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us, as it allows us to raise the temperature as high as ∼60 ◦C, boosting the number
of atoms.

Our cell channels are typically 300 μm × 300 μm × 10 mm, which means that
atoms with mean thermal velocity

Eth =

√
8:B)

π<
, (5.58)

which for ) = 60 ◦C and with<Cs = 132.9 u = 2.2 × 10−25 kg(29) evaluates
to Eth = 220 m/s. In other words, an average atom traverses the cell in around
300 μm/220 m/s = 1.3 μs. Given that we observe spin lifetimes of more than 1 ms,
we conclude that a single atomic spin preserves its spin for thousands of wall col-
lisions(30)—more elaborate arguments than this crude estimate usually puts the
number of collisions a spin survives at ∼104 (Balabas, Karaulanov, et al. 2010).

5.8 Motional Averaging

�e atoms are con�ned to the small channel of 300 μm× 300 μm× 10 mm. Probing of
the atoms is performed with a normal Gaussian beam, which means that uniformly
�lling the channel with light is not possible, without incurring serious sca�ering
losses and beam deformation with the light hi�ing the edge of the channel, the
chip, etc. Typically we use a beam with waist sizeF0 ∼ 80 μm (1/e2 radius), which
limits optical losses to an acceptable level and optimally covers the channel.

�is strongly non-uniform coupling is directly at odds with the assumption of
uniform coupling we made in the preceding section. We need some kind of mech-
anism to remedy this; luckily the thermal motion of the atoms discussed, provides
such a mechanism known as motional averaging (Borregaard et al. 2016)(31). Very
loosely speaking, an individual atom will experience an instantaneous coupling
68 (C), proportional to the light intensity at its position at a given time; if the prob-
ing is slow enough gread ∝ �−1

s � gtransit, all atoms will cross through the beam
many times and the time-averaged interaction strengths should tend towards a
narrow unimodal distribution.

�e two-time autocorrelation function of the coupling strengths is given in
Borregaard et al. (2016) as

〈68 (0)68 (C)〉 = 〈68 (0)2〉 e−C/g1 + 〈68 (0)〉2
(
1 − e−C/g1

)
(5.59)

where the brackets denote the ensemble average. �e two terms represent the
short-time correlations, proportional to the variance of coupling strengths and the
long time correlations proportional only to the mean values. Rodrigo A. �omas
(2020, chapter 7) gives a longer exposition and experimental investigation of this
e�ect, but I here summarize only the main e�ect: the presence of short-time corre-
lations leads to the presence of a broad spectral feature from the atoms. �e feature
has a spectral width of

Ws,b
2π =

1
πg1

. (5.60)

Borregaard et al. (2016) simulated the movement of atoms in a cell and a beam of
width 2F0 = 110 μm and found g1 = 0.26 μs, corresponding to Ws,b = 1.24 MHz,
which is well well in line with our measurements.
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While more detailed investigations of spin noise is interesting, see for exam-
ple Tang et al. (2020)(32), Shaham, Katz, and Firstenberg (2020)(33) or Rodrigo A.
�omas (2020), we here limit ourselves mostly to a phenomenological model, and
simply introduce the broadband spin mode as an uncorrelated spin mode with the
same resonance frequency as the normal spin resonance, but with a (much) larger
linewidth and independent readout rate. We write the broad spin mode as

ˆ̂ s,b = 2
√
�s,bRb`-̂

in
L,s + Rbf̂s,b, (5.61)

where Rb is de�ned as R with Ws0 → Wb and �s → �s,b. �e input-output relation for
this total spin system is further modi�ed to

ˆ̂ out
L,s = ˆ̂ in

L,s +
√
�s` ˆ̂ s +

√
�s,b` ˆ̂ s,b. (5.62)

We further assume that the narrow and broad are uncorrelated, which will factor
into how we model the broad spin mode in Chapter 10.

�e scaling of the broadband spin mode strength with beam size is shown in
Fig. 5.11. In the le� hand panel we plot the full response close to resonance; the
narrow peak is essentially unchanged with beam size. In the right hand panel,
the broad response only is shown, where we see a clear dependence on the peak
amplitude with changing beam size. As discussed in Rodrigo A. �omas (2020,
chapter 7), the linewidth of the broad mode also depends on the beam size, and the
peak height in shot noise units also changes with beam size.
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Figure 5.11: Spin noise a function of beam size. Le� hand panel: response close to resonance.
Right hand panel: Broad response, with the narrow response masked out. �e panels are
��ed independently. Reproduced from Rodrigo A. �omas 2020.

5.9 Practical Implementation Details

5.9.1 Experimental Setup

A simpli�ed experimental setup for atoms-only measurements is shown in Fig. 5.12.
�e full hybrid experimental setup is detailed in Chapter 9, but for now we discuss
a couple of things relevant only to the spin system.
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�e atomic sample (black dots) sits in the middle of a magnetic shield (solid
black rectangles), which contains also a set of coils producing a large dc magnetic
�eld, �dc, and two time-varying magnetic �elds, �rf and �mw, at microwave and
radio frequency ranges respectively. �e microwave tone can be used to drive
transitions from the |3〉 manifold to the |4〉 manifold (and vice versa), and is not
used for anything contained in this thesis, but the option is a nice experimental
tool; Rodrigo A. �omas (2020) used these �elds to investigate microwave assisted
state preparation. �e rf �eld is used to drive Zeeman transitions, such as for
mors (see Section 5.6).

�e optical beams are respectively the pump and re-pump beams (green ar-
row), detailed in Section 5.9.3, and the probe beam (red). For most spin-only ex-
periments, the probe interacts with the spins a single time, before reaching the
polarization self-homodyning setup depicted on the right. As shown in Chapter 9,
the detection setup can be �ipped out of the optical path for hybrid experiments;
instead a mirror retro-re�ects the beam through the cell for a second interaction,
increasing the interaction.

HWP PBS

�rf

�dc

HWP
QWP

G
I

�mw

Figure 5.12: Spin system experimental setup concept.

5.9.2 �e Magnetic Shield

�e magnetic shield surrounding the atomic cell shields the cell from the earth
and laboratory magnetic �elds. Since cesium has a Larmor frequency of around
350 kHz/G, we typically work with � ∼ 4 G. �is should be compared to the earth
magnetic �eld of around �earth ≈ 0.5 G in a somewhat unfeasible direction (angled
roughly 70° with the horizontal, World Magnetic Model 2020.(34)).

Further, any electromagnetic radiation from laboratory sources can directly
perturb the various magnetic coherences, so rf magnetic noise must also be shielded
for. �e magnetic shield therefore consists of a number of layers of μ-metal and alu-
minium, which are e�ective against low and high-frequency �elds respectively.

Since a gradient of the magnetic �eld across the cell would lead to a broaden-
ing of the resonance, and we require roughly that

Δ�

�0
� Ws

ls
, (5.63)

which for the typical values of Ws and ls means less than 1 ppm magnetic �eld
variation/inhomogeneity. Since our cells are relatively short, this is not too di�cult

https://doi.org/10.25921/11v3-da71
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to obtain, but some care has to be taken in de-Gaussing (de-magnetizing) the shield,
and tuning the magnetic coils.

5.9.3 Optical (re-)Pumping

As shown in Fig. 5.1, we prepare the spin ensemble in the spin polarized state by
the application of pump and repump light.

�e repump light is responsible for moving atoms in the |� = 3〉 manifold
to the |� = 4〉 manifold. Just the task of pumping between manifolds is most e�-
ciently achieved by pumping on the |3〉 → |4′〉 transition; |3〉 → |5′〉 is not an
allowed transition due to selection rules, and of the three options |2′〉 , |3′〉 and |4′〉,
|4′〉 has the most bene�cial branching ratio of the spontaneous decay, i. e., most of
the pumped atoms end up in |4′〉.

However, because we want to minimize the use of optical pumping, which
destroys coherences in the |4〉 manifold, we want to use the repump to perform as
much optical pumping as possible. We achieve this by pumping resonantly on the
|3〉 → |2′〉 transition with f+ polarized light. Because decay from |2′〉 all goes back
to the |3〉 manifold, the repump laser essentially works �rst as a pump for the |3〉
manifold, collecting atoms in |� = 3,<� = 3〉, before o�-resonantly(35) repumping
to (ideally) |4, 4〉.

�e di�erence between repumping on |2′〉 or |4′〉, measured by mors, is shown
in Fig. 5.13. We observe an increase in the spin polarization from ? = 0.54 to
? = 0.65, when changing the repump from |4′〉 to |2′〉.
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Figure 5.13: Repumping on � ′ = 2 or � ′ = 4. �e spin polarization ? increases from ? = 0.54
to ? = 0.65, when changing the repump from |4′〉 to |2′〉.

Pumping within the |4〉 manifold is performed with a circularly polarized
laser tuned to the �1 resonance. Here we are le� with the choice of pumping
on |4〉 → |4′〉 or |4〉 → |3′〉. �e �rst is most e�cient in transferring atoms
to the stretched state, but directly couples to atoms in |4, 3〉, thus destroying the
|4, 3〉 〈4, 4| coherence. Pumping on the la�er leaves the coherence unchanged,
but also has |4, 3〉 population untouched, limiting the a�ainable polarization. �e
power broadening of the |4, 3〉 〈4, 4| coherence is shown in Fig. 5.14, where the
detrimental e�ect of the two can be seen. While the |3′〉 repump should leave the
coherence completely untouched, some broadening is observed in practice, origi-
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nating either with o�-resonant coupling to the other excited manifold, or from a
non-perfect optical polarization.
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Figure 5.14: Power broadening of the W43 linewidth, as a function of pump power on the �1
line. Tuning the repump laser to the � ′ = 4 resonance signi�cantly broadens the line, while
tuning to the � ′ = 3 line signi�cantly reduces this broadening e�ect.

5.9.3.1 Spin Temperature

Relating the spin polarization measured with mors to an e�ective occupation
of the spin oscillator involves relating the transverse �uctuations, related to the
e�ective spin Langevin force, to the occupation =s. �is is covered in more detail in
Rodrigo A. �omas (2020, chapter 5). We can examine the extremes easily.

For a perfectly polarized ensemble, |? | = 1, the Heisenberg relation gives

|�̂ 2
H | |�̂ 2

I | =
1
4
��〈 [�̂H , �̂I ]〉��2 = 1

4
��〈�̂G 〉��2 = � 2

4 , (5.64)

and further noting that the two variances are identical, unless the spin state is
squeezed.

For the unpolarized case, |? | = 0, We use the angular momentum relation
〈L̂ 2〉 = � (� + 1), to write〈

�̂ 2
G

〉 + 〈
�̂ 2
H

〉
+ 〈
�̂ 2
I

〉
= � (� + 1). (5.65)

Noting that for the completely mixed state the variances in all directions are identi-
cal, we get

〈�̂ 2
9 〉 =

� (� + 1)
3 , 9 ∈ { G, H, I } . (5.66)

So, for � = 4, the transverse variances varies from 2 to 20
3 , or normalized to � , from

1
2 to 5

3 , as depicted in the le� hand panel of Fig. 5.15.
Mapping these transverse �uctuations to an e�ective occupation happens

under the same assumptions as the Holstein–Primako� approximation, namely
high spin polarization. Rodrigo A. �omas (2020) gives

=s =

〈
�̂ 2
H

〉
+ 〈
�̂ 2
I

〉
〈
�̂G

〉 − 1
2 . (5.67)

which I plot in Fig. 5.15, right panel.
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Figure 5.15: Spin transverse variance and thermal occupations as a function of spin polariza-
tion, |? |. Le�: transverse spin component �uctuation for � = 4. Right: E�ective thermal spin
occupations, =s.

(36) Reminding ourselves that 〈·〉∗ denotes
complex conjugation of the entries, 〈·〉ᵀ
denotes the transpose and 〈·〉† denotes
transposition and complex conjugation.

5.9.4 Optical Readout

�e optical �eld at our detector is related to the output �eld from the atoms by a
rotation related to the se�ings of the waveplates described in Section 5.3.1, as long
as we restrict ourselves to the polarizations corresponding to -̂L,s and %̂L,s. �e
e�ective homodyning angle i leads to

ˆ̂ det
L =

(
-̂ det

L
%̂det

L

)
= Ui ˆ̂ out

L,s =

(
cosi-̂ out

L,s − sini%̂out
L,s

sini-̂ out
L,s + cosi%̂out

L,s

)
. (5.68)

By varying i we can thus access both output quadratures from the spins. Similarly,
we need only derive expressions for one quadrature, as the two can be rotated
freely into one another.

We are interested in the psd of the light, which is given by the symmetrized
correlation function(36)

(̄det
^^X (S −S ′) = 1

2

〈
ˆ̂ det

L (S) ˆ̂ det,†
L (S ′) + ˆ̂ det,∗

L (S ′) ˆ̂ det,ᵀ
L (S)

〉
= Ui (̄

out
^^U

ᵀ
i ,

(5.69)

�is 2 × 2 matrix contains the power and cross spectral densities in the detected
light.

Specifying in the input noise operators

(̄ in
^^X (S−S ′) = 1

4

(
1 0
0 1

)
X (S−S ′) (̄ffX (S−S ′) =

(
1 0
0 1

)
Ws

(
=s + 1

2
)
X (S−S ′),

(5.70)

and restricting ourselves to the qnd case, one �nds the output �eld as

(̄out
^^ = 1

4

(
1 2�sj

∗
s

2�sjs 1 + 4� 2
s |js |2

)
+ �s (|js |2 + |ds |2)

(
0 0
0 1

)
Ws0

(
=s + 1

2
)
, (5.71)
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(37) While recalling that Ws0 includes power
broadening but not dynamical broadening
(which is 0 for qnd readout).

where new the thermal contribution from -S in -L is suppressed by the qnd read-
out, expressed in `qnd = ( 0 0

1 0 ). �e o�-diagonal terms represent correlations
between the - and % light quadratures, induced by the interaction with the light;
the light -L quadrature drives the spin, and the motion is wri�en into %L. Restrict-
ing ourselves to detection of the %det

L quadrature, i. e., the (2, 2) entry in (̄det
^^ matrix,

one �nds (still in the qnd case)

(det
%%

SN = 1+4� 2
s |js |2 cos2 i+4�s<[js] sini cosi+4Ws0�s ( |js |2 + |ds |2) cos2 i

(
=s + 1

2
)
,

(5.72)

where SN = 1/4 is the shot noise level, to which we normalize the output spec-
trum.
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Figure 5.16: �eoretical spin noise curves, Eq. (5.72), evaluated for i = 0° (le�) and i = −84°.
�s

q = 5, Ws,dark = 1 kHz, =s = 0. �s varied from 1 kHz to 50 kHz. Peak heights and linewidths
for the le� hand panel are displayed in Fig. 5.17.

Using the de�nition of the spin quantum cooperativity(37)

�s
q =

�s

2Ws0
(
= + 1

2
) (5.73)

we can evaluate Eq. (5.72) for constant �s
q and no thermal population, =s = 0. We

evaluate the model for i = 0° and i = −84°. displayed respectively le� and right in
Fig. 5.16. �e spin response in the le� hand panel grows with the increase in �s in
two ways: �rst, the peak height increases, and secondly the area of the peak grows
because the spin linewidth is increased by power broadening. �e peak height and
linewidth is plo�ed versus �s in in Fig. 5.17.

�e righthand panel, (̄det
%% evaluated for i = −84° displays squeezing, origi-

nating from the correlations between -̂ out
L and %̂out

L . As �s is increased, the squeez-
ing becomes stronger (the minimum becomes lower), and the point of maximum
squeezing moves away from the resonance. For these parameters, we calculate
about 3 dB of optical squeezing. At last, we note that se�ing i = ±90° leads to no
atomic contributions in the signal; for qnd readout the spin signal is not present in
the optical -̂L quadrature.



110 Chapter 5. Alkali Spin Systems

0

10

W
s/2

π
[k

H
z]

0 20 40
�s/2π [kHz]

0

100

Pe
ak

he
ig

ht
[S

N
]

Figure 5.17: Peak height and linewidths from Fig. 5.16.
Dots indicate correspond to traces, while the line
displays the behaviour for other values of �s.
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Figure 5.18: Spin LW and peak signal size as a func-
tion of probe power, as displayed in Fig. 5.19.

�ese overall predictions can be observed experimentally. In Fig. 5.19 we plot
the spin signal for i ∼ 0°, and i ∼ 90°, for varied optical power probing the atoms.
However, a number of simplifying assumptions are not applicable to our system in
practice.
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Figure 5.19: Spin signal vs. probe power. Optical phase quadrature (le�) and amplitude
quadrature (right) psds for varied optical power. As the power is increased, the broadband
noise mode is read out more strongly, e�ectively increasing the noise �oor, which for the
right hand panel washes out the observed squeezing. Peak heights and linewidths for the
le� hand panel are displayed in Fig. 5.18.

First, we note that the noise level observed away from resonance in the le�
hand panel is always above the shot noise level, and increases with optical power.
�is extra noise is the broadband mode, which is read out more e�ectively as we
increase the power. Extracting the peak height and ��ing the linewidths leads to
the results in Fig. 5.18, which follows the expected behavior well: the linewidth
increases linearly, and the peak height saturates for high power. Further, we see
the resonance shi� a li�le bit with power, arising from a need to re-balance the lo
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(38) Rodrigo A. �omas et al. (2021). “Cali-
bration of spin-light coupling by coherently
induced Faraday rotation”. In: Opt. Express
29.15, pp. 23637–23653.

angle, U to minimize the quadratic Zeeman spli�ing, which in turn shi�s the whole
resonance.

�e le� hand panel displays the optical squeezing expected, but as �s is in-
creased, so is the broadband noise contribution to the signal, e�ectively drowning
out the quantum correlations allowing us to observe optical squeezing. �e in-
creased readout of the broadband noise, masking the “good” correlations turned
out to be of vital importance for us; whereas early understanding of the physics in-
volved would imply “high �q is always be�er”, the concomitant uncorrelated noise
originating from higher �s turned out detrimental to our entanglement e�orts, and
the spin readout rate had to be lowered, reducing �s

q.

5.10 Coherently Induced Faraday Rotation (cifar)

An important experimental task related to atoms is measuring the readout rate �s.
�is has previously been measured in various ways, which all shared the common
disadvantage of necessitating changes to the optical setup, compared to the con-
�guration used for quantum experiments. Since any changes to an optical setup
comes with the potential of changes the conditions of the readout process, this
is severely disadvantageous. To this end we developed a new technique for spin
readout rate calibration, which does not require any changes to our optical setup.
Furthermore, the method is insensitive to optical losses and calibration of detection
e�ciency.

�e method is reminiscent of omit, in that it measures the interference of a
weak probe beam with the driven system response. Since we read out the spins via
the Faraday e�ect, we call the method Coherently Induced FAraday Rotation, or
cifar. �e method was used in Rodrigo A. �omas et al. (2020) and expanded in
the dedicated article Rodrigo A. �omas et al. (2021)(38), where most of the �gures
also appear.
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Figure 5.20: cifar setup. �e strong linearly polarized pump (red) is combined with a
much weaker phase modulated beam (blue), with relative phase di�erence between the
beams \ . �e beams are rotated such that the strong lo is polarized with angle U to the
magnetic �eld. A�er interacting with the spin system, the beam is detected in a polarization
self-homodyning setup.
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(39) Note the di�erence between i and q .

We start with the needed experimental setup, depicted in Fig. 5.20. Compared
to the normal spin setup (discussed in detail in Chapter 9), the pbs before the spin
system is now used not for spli�ing of lo1 and lo2, but for injecting a (phase)
modulated beam in an orthogonal polarization to the spin lo. �e other port
of the pbs is used for locking the relative phase of the modulated beam and the
lo, \ . A�er interacting with the spin system the light is detected in polarization
self-homodyning setup, with rotation angle q . We sweep the input modulation
frequency lrf across the spin resonance, and demodulate the output at the same
frequency.

Turning to the model, we start with the simpli�ed collective spin Hamiltonian
in the quadrature operator formulation for the highly polarized ensemble,

�̂s/ℏ =
−ls

2

(
-̂ 2

s + %̂2
s

)
− 2√Ws

(
-̂s-̂L + Zs%̂s%̂L

)
, (5.74)

and the time evolution of spin variables

d
dC

(
-̂s
%̂s

)
=

(−Ws/2 ls
−ls −Ws/2

) (
-̂s
%̂s

)
+ 2

√
�s

(
0 −Zs
1 0

) (
-̂ in

L
%̂ in

L

)
. (5.75)

Since cifar is a driven measurement, with a sinusoidal drive input in ^ in
L , we

make the ansatz that the spin will be oscillating at the drive frequency, i. e., that
other drive and noise terms can essentially be neglected,

^ s =

(
-s (lrf )
%s (lrf )

)
e−ilrfC , (5.76)

where -s (lrf ) and %s (lrf ) are complex numbers.
�e normal input-output relations hold, i. e.

^out
L = ^ in

L +
√
�s`^ s = (12 + 2�s`R` )^ in

L , (5.77)

where we see that the input is allowed to interfere with the response of the system.
�e expression can be evaluated to become

(
- out

L
%out

L

)
=

(
1 − 2�sZs

(WS
2 − ilrf

)
js −2�sZ

2
slsjs

2�slsjs 1 − 2�sZs
(Ws

2 − ilRF
)
js

) (
- in

L
% in

L

)
. (5.78)

�e input light is assumed to be pure phase modulation� = |� |eii , which we
can rotate into an arbitrary light quadrature by adjusting the phase, \ , between the
lo and the modulated light. Similarly, we can detect an arbitrary component of the
output light by rotation with the phase q (39), giving us

(
- in

L
% in

L

)
=

(
cos\ − sin\
sin\ cos\

) (
�
0

)
=

(
cos\
sin\

)
�, (5.79)

(
- det

L
%det

L

)
=

(
cosq − sinq
sinq cosq

) (
- out

L
%out

L

)
. (5.80)
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By combining these expressions, and choosing the detected light quadrature to
be %out

L , we arrive at an expression for cifar,

|cifar|2 ≡
���%det

L

���2 = ��%out
L cosq + - out

L sinq
��2

=
�� (1 − 2�sZs

(Ws
2 − ilrf

)
js

)
sin(\ + q)

+ �slsjs
[(1 − Z 2

s ) cos(\ − q) + (1 + Z 2
s ) cos(\ + q)] ��2 |� |2.

(5.81)

Because we are only considering the coherent interactions, and not various
noise driven terms, the broadband noise is added trivially as

^out
L = (12 + 2�s`R` + 2�s,b`Rb` )^ in

L , (5.82)

allowing for the interference between the probe, the broadband and the narrow-
band response. For the �ts of the model, the broadband mode is included in �ts
etc., but we now ignore it again for a while, while we consider what insights can be
made analytically.

We �rst consider the case of \ = 45° and q = 0°, which corresponds to driving
with equal amounts of modulation in the two optiacl quadratures, and detection of
%̂L. In this case, Eq. (5.81) simpli�es to

|cifar(\ = 45°, q = 0°) |2 = |1 − 2�s (−ls + Zs (Ws/2 − ilrf))js |2 |� |2. (5.83)

�e two terms, one constant and one proportional to �sjs, add coherently to give
the total cifar signal. �e readout rate appears prominently, determining the
strength of the second term.

For high spin oscillator & , i. e., when Ws � ls, the spin susceptibility can be
approximated by

js ≈ −js0
ls

, (5.84)

where

js0 =
1
2 (Jrf + iWs/2)−1 , (5.85)

with Jrf = lrf − ls denoting the detuning of the modulation tone from the spin reso-
nance. With these approximations, the signal, normalized to the input amplitude� ,
becomes

|cifar|2/|� |2 ∼ |1 − 2�s (1 + iZs)jB0 |2 = 1 + �
2
s (1 + Z 2

s ) − 2�s (Jrf + ZsWs)
J2

rf + (Ws/2)2 . (5.86)

Restricting ourselves to the qnd case, where Zs = 0, we make the �nal approxi-
mation to arrive at

|cifar0 |2/|� |2 = 1 + � 2
s − 2�sJrf

J2
rf + (Ws0/2)2 . (5.87)

�is signal is a combination of three terms: a constant, a Lorentzian and a disper-
sive feature, representing respectively the drive, the spin response and the inter-
ference between the two terms. In the limit of strong coupling, one �nds that the
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maximum and minimum of the signal are separated by approximately
√
� 2

s + W2
s ,

which in the high-& limit is approximately �s. In the simplest case, the readout rate
can therefore be estimated simply by measuring the frequency di�erence between
the maximum and minimum response.

For the case when Zs ≠ 0, equation (5.86) leads to a correction of the separa-
tion, as the maximum and minimum are separated by ∼

√
(1 + Z 2

s ) (� 2
s (1 + Z 2

s ) + W2
s − 2�sWsZs).

In the high-coupling limit, �s � Ws, this simpli�es to ∼ �s (1+ Z 2
s ). For our case, when

Zs ∼ 0.03, the correction from the qnd case is small. Even though the qnd result
was derived under a set of approximations, the rule of thumb applies surprisingly
well to the full model as well (for \ = ±45° and q = 0°).

�e full cifar model is presented in Fig. 5.21, for the qnd case, and without
the broadband mode included. In the le� hand panel, the response is shown for
detection of the phase quadrature (q = 0°), and with varied input modulation angle.
For \ = ±π/4 = ±45°, we see that the signal is essentially �ipped around the
resonance, and the minimum response is found at ±�s/2π = ±10 kHz.

In the righthand panel, the input angle is �xed at \ = π/4, and �s varied from
1 kHz to 20 kHz; we see that the minimum moves to large detunings, and that the
interference becomes stronger, leading to a deeper dip.
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Figure 5.21: cifar simple theory. Le�: cifar for varied input modulation angle, \ . Right:
cifar for varied �s. Zs = 0 (qnd case), ls/2π = 1 MHz, Ws/2π = 1 kHz. �e broadband mode
is not included.

Next, we turn to experimental investigations of the cifar signal. In Fig. 5.22
we plot the signal for \ = 45°, q = 0°, for a range of di�erent rms drive voltages
sent to the eom, e�ectively changing � . We plot the amplitude and phase of the
cifar signal, instead of the amplitude squared discussed in the text. First, we see
the thermal response in gray at the bo�om; except for the very lowest drive volt-
age, the signals are all orders of magnitude above the thermal background, and
ignoring it is justi�ed. For the lowest drive voltage displayed, we are on the brink
of needing to include the thermals directly, to accurately model the response at the
dip.

Second, we see that the data is overall well described by the model. �e resid-
uals of the �ts in Fig. 5.22 is shown in Fig. 5.23. We here see that for low drives,
the residuals are �at, and gaussianly distributed; as� is increased, we start to see
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Figure 5.22: cifar as a function of modulation amplitude. Average of 3 scans, with 1f sta-
tistical error bars. �e cifar amplitude (top panel) scales with the eom modulation depth,
� , proportional to the drive voltage, while the phase response (bo�om panel) is insensitive
to the drive amplitude. �e model (solid lines) is �t collectively to the amplitude and phase
curves, but separately for each drive voltage. Grey line: response with no drive. Inset: ��ed
readout rates, �s with asymmetrical error bars – see main text for details. �e broadband
mode is included in the model. \ = 45°, q = 0°. Fit residuals are displayed in Fig. 5.23.

(40) Ma� Newville et al. (2021). LMFIT: Non-
Linear Least-Square Minimization and Curve-
Fi�ing for Python. zenodo.org/record/4516651.
Version 1.0.2.

structure in the residuals, a deviation from the Gaussian distribution of the resid-
uals. We also observe a trend of higher reduced j-square value, j2

ref , indicating a
worse �t. Data errors is the statistical error from repeated measurements, and the
amplitude and phase traces are ��ed collectively for each trace.

�e ��ed readout rates are displayed in the inset in Fig. 5.22, with their asym-
metrical 68.27 % con�dence interval, corresponding to a 1f uncertainty for the
symmetric uncertainties. �e con�dence interval is evaluated with the conf -
interval function of our ��ing package lmfit (Newville et al. 2021)(40). �e
function returns the parameter values for which j2 = j2

min + 1. At �rst sight, the
is a clear trend that higher � leads to a lower ��ed �s. Here we note that the four
results corresponding to the lowest drive voltages all agree statistically, and that
only the result for a drive voltage of 500 mV disagrees—and here the clear struc-
ture in the residuals and overall worse �t quality indicate that the �t should not
be trusted too much. Furthermore, the variation seen in the inset is on the percent
scale, despite the order-of-magnitude change in � . Indeed, the ��ed value is rather
resilient to changes in � , not obviously dependent on it, as long as the �t is good.

To verify the scaling with readout rate, we need to vary either the amount
of light or the mean spin. �e minimally invasive method is to change the spin,
because changing the readout rate e�ectively also changes our detection. We there-
fore vary the cell temperature, which changes the number of atoms, and thereby

https://zenodo.org/record/4516651
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Figure 5.23: Scaled �t residuals from Fig. 5.22. Residuals between the model and data, both
in cifar amplitude (le� column) and phase (right column), scaled with the data uncertainty,
for the various drive voltages shown in Fig. 5.22. In the right-most column we show the
histogram of the residuals along with a unity width Gaussian curve (dashed lines) to guide
the eye. We also print the reduced j2. Some outliers are not shown.

�G . �e result of this measurement is shown in Fig. 5.24. Because the change of gas
pressure and thermal velocity leads to a slight change in the atomic linewidth, the
results are normalized to the respective values of Ws.

�e results in Fig. 5.24 should be compared to the single-mode theoretical
curves in the right hand panel of Fig. 5.21. Overall, the experimentally observed
behaviour is very well described by the model, as also witnessed by the overall
good quality �ts. �e most obvious discrepancy between the experimental results
and Fig. 5.21 is that while the simple model predicts that the cifar response am-
plitude at the minimum keeps ge�ing lower and lower, experimentally we seem to
observe a �oor below which the peaks do not drop, even for larger readout rates.
We ascribe this behaviour to the presence of the broadband mode.

�e inset of Fig. 5.24 depicts the rule of thumb that the point of the minimum
of the cifar curves being located �s away from the maximum, by plo�ing the sepa-
ration from maximum to minimum values, Jrf , normalized to the spin linewidth, Ws,
versus the ��ed readout rate �s.

We turn now to the role of the lo angle, U , which controls the tensor coupling,
Zs as

Zs = −1402
01

cos(2U), (5.88)

which means that the size of the tensor coupling is maximized for U = = × 90°, and
turned o� for U = 45°. To reduce the quadratic Zeeman spli�ing we reduce ls to
400 kHz, and turn down the probe power to 250 µW to reduce power broadening.
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Figure 5.24: cifar as a function of cell temperature, e�ectively changing �s/Ws. We vary the
readout rate by changing the temperature of the cell from ∼34 ◦C to ∼59 ◦C. Inset: �e loca-
tion of the minimum of the cifar response in units of Jrf/Ws as a function of the normalized
readout rate �s/Ws. Solid line: line with slope 1.

We perform the measurement for two di�erent se�ing of the input modulation
and \ , displayed in Fig. 5.25; in the top panel we display the curves for \ = 45°, as
above, while in the bo�om panel we display the corresponding curves for \ = 90°.
According to equation (5.81), the detected signal goes as

|cifar(\ = 90°, q = 0°)/� |2 =
��1 − 2�sZs

(Ws
2 − ilrf

)
js

��2 (5.89)

∼ 1 − Zs�sWs
J2

rf + (Ws/2)2 , (5.90)

where in the second line we used the high-& (Ws � ls and lrf ∼ ls), and the small
tensor coupling (Zs � 1) limits.

�e top panel shows curves essentially looking like those presented in Fig. 5.22.
�e change in Zs does lead to a slightly modi�ed spin linewidth and resonance fre-
quency, but all with a readout rate of �s = 4.9 kHz.

For \ = 90°, we directly measure the input modulation, which dominates the
signal. �e spin system responds only with addition (Zs < 0) or subtraction (Zs > 0)
of signal close to the spin resonance. We �t the tensor terms to

Z 0°
s = −0.045 ± 0.002

Z 90°
s = 0.040 ± 0.003,

(5.91)

which should be compared to the calculated value for a perfectly spin polarized
ensemble of |Zs |max = 0.053. For U = 45°, the theory predicts zero tensor coupling,
re�ected in the �at response in Fig. 5.25; here we �t Z 45°

s = 0.000 ± 0.001.
Finally we present measurements of the broadband mode contribution to the

cifar signal, in Fig. 5.26. We increase the scan range from the 30 kHz displayed
in Fig. 5.22 to ∼600 kHz, thus probing the broadband mode shape more e�ectively,
but otherwise run the experiment under the same conditions as the 62 mV trace.
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Figure 5.25: cifar signal for di�erent tensor coupling parameters Zs. �e overall response of
the spin oscillator to light depends on Zs, here controlled by the angle U between the input
linear polarization lo and the direction of the magnetic bias �eld �. �e cifar signals for
input modulation with \ = 45° (top panel, logarithmic scale) and with \ = 90° (bo�om panel,
linear scale), and U = {0°, 45°, 90°} are shown in blue, orange and green, respectively.

We perform these measurements for \ ∈ { −45°, 0°, 45° }, and plot the amplitude
responses (top panel) and phase responses (bo�om panel).

Comparing the ±45° traces (green and blue, respectively), we see that �ipping
\ �ips the cifar signal around the resonance, and send the phase from “zero plus a
peak” to “180 degrees minus a dip”. Insets show the narrow phase responses.

For \ ∼ 0°, we observe a near-Lorentzian peak, with the asymmetry arising
from a slightly wrong \ . For this trace we split the ��ed model (dark orange line)
into the narrow (light orange line) and broadband (dashed) responses, by evaluat-
ing the model with �s,b = 0 and �s = 0 respectively. For the amplitude we observe
how the narrow mode is dominated by the broadband response away from res-
onance. For the phase response, we see how the expected shi� from 180° to 0° is
added together with the much more slowly varying broadband mode phase, lead-
ing to the non-trivial shape which undergoes a full 180° �ip on resonance, but de-
viates from the light solid line away from resonance. We �t the broadband readout
rate �s,b = 33.4 kHz and Ws,b = 0.93 MHz, which should be compared to the readout
rate for the narrow mode of �s = ∼10.6 kHz, and Ws0 = 1.3 kHz. �e experimental
traces are very well described by the model over a very wide range of frequencies,
despite the highly simpli�ed two-mode model used, thus reinforcing our belief in
this simpli�cation for cifar and other experiments.

J 777 j

�is concludes the chapter on spin systems, as well as the entire �rst part of
this thesis.

In this chapter we saw how to e�ectively map the collective spin of an ensem-
ble of alkali atoms to a harmonic oscillator picture (potentially with a negative
e�ective mass). We started by considering the single-atom Hamiltonian, and de-
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Figure 5.26: Coherent interference between the responses of the narrow and broadband
spin modes. cifar response amplitude (top row) and phase (bo�om row) data (points with
error bars) and �ts (dark solid lines) as a function frequency detuning for three di�erent
modulation phases, \ ∈ {−45°, 0°, 45°}. �e data was taken under the same experimental
conditions as the 62 mV drive trace (orange curve) in Fig. 5.22. For \ = 0° we also plot the �t
result evaluated with the broadband readout rate set to �s,b = 0 (solid light orange curves,
top and bo�om panels) and narrowband readout rate �s = 0 (dashed light orange curves).

scribing the e�ect of (weak) magnetic �elds in the energy-eigenstate basis, before
going to the collective angular momentum operator basis.

With the collective spin variables, we performed the Holstein–Primako� ap-
proximation, which maps the transverse spin components of the large collective
spin to a harmonic oscillator picture. By �ipping the relative orientation of the
collective spin and the external magnetic �eld, we saw how the system can be pre-
pared either in the maximum energy state or the minimum energy state, which
corresponds to e�ective negative and positive mass, respectively.

We then turned to the interaction of light with the spin ensemble. A�er in-
troducing the Stokes parameters, describing the polarization state of light, before
discussing how light reads out the spin projection on the light propagation axis
through the Faraday e�ect, and we saw a corresponding back-action drives the
spin. We then derived a set of input–output relations for the spin system.

With the theory in place, we turned to a set of practical tasks: how to actually
implement a suitable spin system in practice, how to calibrate it, and a number of
important aspect le� out of the description so far, most importantly the motional
averaging. We �nished the chapter by a longer exposition of cifar, our novel
method for e�ciently measuring the spin readout rate.

7 7

With these words we close this Part, having discussed the �eld of quantum
optics, in which this work is set, and the relevant physics of both optomechanics
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and ensemble spin systems. In Part II we will discuss a new optomechanical cavity
design, relevant to hybrid optomechanics.



Part II

A N E W H Y B R I D C AV I T Y
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Photo on opposite page: Technical
drawing of cavity design.

(1) I. e., ideally consisting of a single piece.
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A New Cavity

“ �e �rst step of any project is to grossly underestimate its complex-
ity and di�culty.

Nicoll Hunt

A new optomechanical cavity design for hybrid optomechanics is presented.
We introduce several important degrees of freedoms to the cavity, compared
to earlier, semi-monolithic designs. We present a set of associated problems,
and how we overcame these.

6.1 Motivation & Context

As described earlier, in Section 2.2, the design choices made for the �rst optome-
chanical assemblies in our group was in many ways very good for “pure” optome-
chanics. I. e., the choices made were conducive to successful quantum optomechan-
ics experiments such as Nielsen et al. (2017), but lacked the the necessary degrees
of freedom to easily interface with other quantum systems, e. g., atomic spin sys-
tems.

�e main design philosophy in the �rst successful cavity designs implemented
in �antop, was the so-called “monolithic”(1) design. Although the design was not
in practice truly monolithic, the design philosophy favored having the smallest
amount of parts, to minimize the number of degrees of freedom; all of which could
become misaligned upon cryogenic cool down. For a more detailed discussion see
Nielsen (2016).

�e cavity assembly, depicted schematically in Fig. 6.1, consisted in the end
of a copper holder, with a spring pushing the (�at) bo�om mirror towards a stack
of spacers, the membrane, a second copper piece clamping this spacer stack down,
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(2) As long as membrane and mirror re�ectivi-
ties are constant.

(3) typically 20 GHz to 50 GHz.

and �nally a top copper piece which holds the (curved) top mirror and allows for
transverse alignment of the mode. �e spring at the bo�om allowed for a control-
lable amount of clamping force, ensuring that the silicon wafers would not sha�er
while remaining tightly pressed to the plot bo�om mirror. In this design, all align-
ment had to be performed at ambient conditions, and locked down with screws.
Once at operating conditions, no mechanical degrees of freedom was accessible to
experimenter.

Cold �nger
4.2 K

Cu piece

Spring

Flat mirror

Si spacer

Si spacer
Curved mirror

Membrane
chip

Figure 6.1: �e old, monolithic, cavity design concept. In practice, the top (curved) mirror
was suspended from a separate copper piece, to allow for transversal alignment of the beam
to the defect, and the top spacer was clamped by copper. Adapted from Nielsen 2016, with
modi�cations.

For pure optomechanical experiment this limitation is not a showstopper. Tun-
ing the wavelength through a series of fsrs, thus sampling a variety of di�erent
2:I-points, allowed for the necessary freedom in being resonant with the cavity
and having the membrane at a good coupling point.

In Møller et al. (2017), the membrane system was for the �rst time coupled to
an atomic system. Whereas the optomechanics cares, to good approximation(2),
only about the membrane position in 2:I, the cesium atoms care also about the
absolute frequency. We typically operate detuned 3 GHz blue detuned of the d2
line at 852.347 nm plus minus 1 GHz for speci�c experiments, and with any given
experiment needing much smaller changes to the detuning – tens of MHz being
a good upper limit of permissible deviations. Since the fsr of optomechanical
cavities employed in our lab is much larger(3) than the permissible tuning range,
having the atoms and cavity be resonant at the same time, with no degrees of
freedom in the cavity is simply not feasible.

To overcome this, the top copper part, which had until then only been utilized
for transversal alignment of the curved top mirror, was modi�ed by the addition of
piezo, in what is internally named the “semi-monolithic” design. �e mirror was
glued to the piezo, which was itself glued to the top copper part, thus suspending
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the mirror on the piezo alone. �is allowed for tuning of the overall cavity length,
and thus the cavity could be brought into resonance with the light tuned to the
atomic transition.

�e main disadvantage of this semi-monolithic cavity was the lack of 2:I-
tuning. Having used the one degree of freedom to put the cavity into resonance
with the light, one is simply le� with whatever coupling one has. In practice, ther-
mally cycling the entire cavity setup from 4 K to ∼ 100 K and back allowed for
some change in 2:I at the cesium wavelength, but the tuning direction or size
was not predictable, and once a good coupling point had been reached, all further
experiments had to be performed with the remaining LHe in the dewar, as the
thermal shi� associated with a dewar change would lead to an undesirable change.

At the end of 2017 we concluded that the (semi-)monolithic design had to be
abandoned in favor of a new cavity design, allowing for full electronic 2:I control.
However, simply repeating the “suspend a mirror from a piezo” would not su�ce
a second time: the monolithic design assumed the clamping of the membrane chip
to the surface of a �at mirror. Being at once suspended and tightly clamped are
incommensurate requirements. A new strategy was needed.

6.2 Reqirements and Design Constraints

I will now try to describe a set of criteria that sums up the condensed knowledge
and experience that crystallized from our iterative development. �ese require-
ments and the consequences we draw from them are thus not a list of criteria we
consciously set down during the design process, but a post facto summary of our
�nal design goals.

�e main goal of a new cavity design is thus most easily summed up as:

Requirement 1. We require full 2:I tuning and cavity locking at cryogenic con-
ditions.

Given the constraints lined out in Section 6.1 this quickly leads to the follow-
ing

Consequence 1.1. Either both mirrors must be suspended or a compressible ele-
ment must be placed between one mirror and the membrane.

�e second option, i. e., the mechanically pliable element between one mirror
and the membrane was the “simplest” solution, since it involved in principle only
changes to one element of the previous design: Replacing a single silicon spacer
with one that had been partially edged over a large area to a thickness signi�cantly
thinner than the usual 500 µm, whereas the former possibility meant a total re-
design. Since a full 2:I equals _/2 ∼ 425 nm, the deformation of the silicon “spring”
is by itself not problematic.

�e former option, suspending both mirrors, on the other hand required a
dramatically di�erent cavity design, with the parallelity of the membrane with the
optical mode no longer ensured by the clamping.
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Requirement 2. �ere must be good thermal contact between the membrane and
the cold �nger of the cryostat.

Consequence 2.1. �e membrane must be clamped directly by a copper piece.

Requirement 3. It must be possible to change the overall cavity length by sev-
eral millimeters.

Since the overall cavity length is directly responsible for parameters such as light-
membrane coupling, 60, and cavity linewidth, ^, we need to be able to adjust the
length in a �exible way, e. g., to get more or less sideband resolution. Having the
cavity length �xed by the design is undesirable.

Requirement 4. �e cavity must be low loss.

As discussed in more depth in Chapter 7, this requirement not only means having
low loss mirrors and a membrane with good optical qualities, but also imposes
strict requirements on the membrane/optical mode alignment.

Consequence 4.1. Adjusting the e�ective membrane tilt must be possible.

Consequence 4.2. We need to place the mode on the membrane defect, to mini-
mize sca�ering on the edges.

Consequence 4.3. We need the ability to place the membrane at the cavity waist.

Further, it would be preferable if the degrees of freedom controlling the tilt and
transverse position of the cavity mode on the membrane was somehow controlled
by a gear or lever, trading actuation range for precision and repeatability. Posi-
tioning a mirror to a few tens of µm with your �ngers only is not the easiest of
tasks, and the alignment procedure in the old design could be excessively frustrat-
ing. Even worse, locking the parts in place would o�en ruin the alignment, such
that the procedure in practice involved aligning the mirror to a certain degree of
misalignment, which would then be corrected by tightening down the relevant
fasteners.

6.3 The Solution

�e chosen cavity design, internally called the high degree of freedom design, is
shown in Fig. 6.2. It consist of a central piece, which holds the membrane, and
two xy-translation stages, which support the mirrors. �e central piece holds the
membrane in a recess, and a lid clamps the membrane in place through an o-ring.



6.3. �e Solution 127

GH stage
sample holder/
center part

cavity mirrors

piezo

piezo

membrane

Figure 6.2: New cavity design. Le�, picture of fully assembled assembled cavity. Center,
cad drawing with cut-away. Right, zoom in on the actual optical cavity, formed by the
two mirrors (blue). �e membrane is black with a brow hue on the cut-away sides, and sits
below an o-ring (red), clamped by the lid (green).

(4) sm alludes to the original use in sewing
machines, and 05 indicates a half inch diameter.
�e thread is currently used extensively by
�orlabs, and apparently virtually nowhere
else.

ntf

Both

Figure 6.3: Di�erent combinations of
ptfe spacers. Also tested, but now shown:
only ptfe at the front or back of the
mirror. White: ptfe, blue: mirror, black:
copper barrel, brown: piezo.

(5) �orlabs lists the minimum permissible
voltage as 0 V, and Piezomechanik as −30 V. In
practice we have found no problem with using
negative voltages with either.

(6) I. e., expansion of the piezo from one volt-
age extreme to the other with no force applied
to the end faces.

�e central piece is clamped directly to our cold �nger. �e GH-stages support one
”barrel” each, in wihch a mirror–piezo stack is hosted, forming the optical cavity.

Instead of a plano-concave cavity design, with the membrane placed close to
the �at mirror, we use a symmetric concave-concave cavity, with the membrane
placed close to the center of the cavity.

�e entirety of the cavity is machined from Elmedur copper by the institute in-
house mechanical workshop; the only exceptions being the �ne adjuster bushing,
which we purchase from �orlabs, and the �exture part of the xy stages, which
was machined by an external company, plus trivial accessories, such a fasteners
and o-rings.

�e mirrors are mounted in a “barrel”, see Fig. 6.4, which threads into the xy-
translation stages with an external sm05 thread(4), and an internal m10 thread. �e
mirror sits at the front of the barrel, pressed against a thin lip of copper, alterna-
tively a ptfe spacer, as depicted in Fig. 6.3. Behind the mirror sits a piezo, and the
stack is clamped by a copper piece which threads into the internal thread of the
barrel, internally called the batman, because of its vague similarity to that logo.
�e cutaways in the batman screw allows the piezo leads to exit the rear end of
the can. A special tool (“trident”) is used to tighten the batman part using the two
small holes, while a central pin centers the piezo.

�e piezos used are either Piezomechanik HPCh 150/6-2/x (where x denotes
the piezo thickness, usually 6 mm) or Thorlabs pk44rb5p2 piezo stacks. Both of
these can be driven safely with voltages up to 150 V, and as low as −30 V(5) �e
Piezomechanik piezos have a listed free stroke(6) of around 3 µm for a 2 mm piezo
stack. �is value is then reduced �rst by external forces (the thing that the piezo
is moving pushes back) and secondly by a factor of 4-5 by cooling to cryogenic
temperatures. �is means that in practice we have found the need for at least 4 mm
piezo stacks, and ideally 6 mm.

�e front face of the barrel is machined to a thinness (200 µm) where defor-
mation by the piezo easily pushes the mirror forward, thus tuning the cavity.
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�e overall cavity length is controllable by screwing the entire barrel in or out
of the xy-stage. A lock-ring �xes the barrel once the desired cavity length has been
found.

a b

c

Mirror
Piezo

Figure 6.4: �e mirror barrel (a) and batman (b), plus assembly tool (c) (sometimes called a
“trident”). �e barrel is shown with a mirror-piezo-batman stack, but no te�on spacers. All
metal parts are machined from copper, except for the assembly tool, which is steel.

�e translation states, shown in Fig. 6.5 bo�om le�, are essentially copper
versions of the Thorlabs cp1xy xy-translation stage. �e original steel version is
designed for mounting in �orlabs’ 30 mm cage system, and features a sm05 thread
in the center, for mounting optics in half in size or smaller. Two �ne adjusters push
the central part of the stage in either direction, and a spring mounted diametrically
provides a force in the opposite direction, giving approximately ±250 µm travel
range in both directions. In our design, the four holes in the corners are used to
mount the translation stages to the central part.

�e steel version is mechanically superior to our copper version, and was used
for initial tests of the design. However, steel has the unlovable characteristic that
it e�ectively stops conducting heat around 20 K, which makes cryogenic operation
virtually impossible. One could consider using steel translation stages, with the
membrane in a copper holder, but di�erential thermal expansion makes this a bad
choice; maintaining a good alignment from room temperature to 4 K requires that
all major elements are made from the same materials.

Unfortunately the �exible part of the xy-stage supports two mechanical modes
at around 2 kHz, of which one is shown in the bo�om le� panel of Fig. 6.5. Because
the mirrors are directly suspended from the threaded hole in the center, the cavity
length is heavily perturbed, and locking becomes impossible if nothing is done
to alleviate these oscillations. We dampen these vibrations by placing two rubber
o-rings between the xy-stages and the center part/lid.

Fig. 6.5 also depicts the central copper part, clamping the membrane (top two
panels). �e membrane sits in a square recess, and is pressed to the copper by
a rubber o-ring, which is clamped by a lid. �e lid clamps tightly to the copper
piece, ensuring thermalization, but also the the clamping force on the membrane
is not sensitive to how tight the screws holding the lid are. Instead, the force is
determined solely by the geometry of the recess, a similar recess in the lid, and the
membrane and o-ring thicknesses.
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a b

Membrane
o-ring

c

Spring

d

Fine adjuster
bushing hole

Holes for guiding rods

Top plate/lid

Figure 6.5: �e cavity design exploded. �e top two panels (a and b) depict the center part
(dark orange), with and without the top plate/lid (green). �e center part hosts the mem-
brane (grey), which is clamped down by an o-ring (red). �e bo�om le� panel depicts the GH
stage; the thread in the center hosts the barrels, and can move in two directions, controllable
by �ne adjusters, which sit in bushings pushed into a set of holes. Opposite of each �ne
adjuster is a coarse thread, where a spring can be inserted and held in place by a set screw.
Panel d depicts a mechanical mode of the GH stage with a frequency of ∼ 2 kHz, which
we dampen by placing o-rings between the center piece/lid and the GH-stages. All panels
feature a cut-away for one quadrant, allow us to see the inside of the parts.

�e lid and center part both have 4 small holes, which correspond to similar
holes in the silicon frame of the membranes. By inserting thin rods into these
holes, the transverse alignment of the membrane can be improved. A�er tightening
the four screw securing the lid, the rods are removed from the assembly.

Finally, the center part contains two holes orthogonal to the cavity axis. �ese
are used for clamping the center part to the cold �nger (see Section 4.3.1), with a
set of long bolts.

6.3.1 Aligning the Cavity

In terms of alignment the available degrees of freedom is displayed in Fig. 6.6. �e
length of the cavity can be changed large scale by the threading on the outside of
the barrels, and �ne-tuned by using the two piezos (brown). Further, the mirrors
can be moved orthogonally to the cavity axis by the xy-stages.

�e movement of the membrane in 2:I is displayed in Fig. 6.7. �e common-
mode (“center of mass”) movement of the two mirrors keeps the cavity length un-
changed, but moves the membrane in 2:I. Conversely, the di�erential movement
changes the resonance condition, but (for I< close to !/2) keeps 2:I unchanged.
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Stage GH movement

Large length change by
screwing barrel in/out

Small length change
by piezo tuning

Figure 6.6: High degree of freedom cavity design concept. Each mirror can be moved lat-
erally (in G and H) by the GH stages in which the barrels are mounted. Furhter, large scale
length changes can be performed by screwing the barrels in and out. Fine control of the
cavity length is achived by the piezos (brown) mounted behind each mirror.

Alternatively, one can think of one mirror as controlling 2:I and the other
ensuring that the resonance condition is ful�lled for a given optical wavelength;
this is how the hybrid experiment is typically operated, but similar designs used
for optomechanics-only experiments in our group have used the former picture
with success, partly due to their higher wavelength indi�erence.

Figure 6.7: Moving the membrane in 2:I. In the le� picture, the membrane is si�ing in a
node of the cavity �eld (pink). By moving both mirrors to the le�, by contracting the le�
piezo and extending the right, the standing wave moves le�, so the membrane moves from
the node to the high coupling point.

In the same vein, the common transverse movement of the mirrors displaces
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(7) Taking care to always position the mem-
brane in a consistent way, i. e., with the
membrane face up or face down in the recess
of the sample holder part.

the entire optical mode. �e di�erential movement is used to control the e�ective
membrane tilt, as displayed in Fig. 6.8. �is ability to remove the e�ective tilt of the
membrane is absolutely critical, and relies on the concave-concave geometry. At
the same time it removes the necessity of clamping the membrane to one mirror,
which in the old assembly was the method of minimizing tilt.

Figure 6.8: Aligning the membrane tilt in the new cavity design. Transverse movement of
the mirrors tilts the cavity, such that a tilted membrane can be made perpendicular to the
cavity mode.

6.3.1.1 Practical Alignment Procedure

A new cavity assembly is most easily aligned in a series of steps. First, the cavity is
assembled without a membrane, the input optical mode is coupled into the cavity,
and the cavity length is measured, for example by a measurement of the fsr. If
needed, the cavity length is adjusted by screwing in or out one or both of the mir-
ror barrels. Since the thread pitch is known (40 tpi, giving 635 µm translation per
full revolution), changing the cavity length in relatively well known steps is rather
straight forward.

Once the desired length has been established, a membrane is added to the
assembly(7), and a rough alignment is performed; for this step minimizing losses
is not crucial, as the goal is primarily measuring Im, which is most easily done
through a 2:I measurement (or two, as measuring both sub-cavity lengths gives
a sanity check, because the total length is known). In the same manner as before,
the subcavity lengths can be adjusted by turning the mirror barrels. Once the
(sub-)cavity length(s) has been set, the membrane can be changed, and the cavity
re-aligned without needing to change the barrel positions again.

In rough steps, the alignment procedure then goes as:

• Overlap mode with defect

• Remove visual movement of the cavity mode when 2:I is scanned

• Remove spli�ing of higher-order cavity modes

�e overlap of the mode with the defect is most easily done by simply imaging
the membrane with a camera while scanning one piezo by a full fsr, and overlap-
ping the laser spot with the defect pad. �is may require some work to couple into
the e�ective cavity mode, which can be located somewhat far o� the defect, and
then iteratively moving the cavity mirrors and the mode, while keeping the input
mode somewhat well-aligned. Alternatively, removing one mirror allows one to
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place the laser spot on the defect freely; once the laser is positioned at the right
spot, the mirror is put in place, and both mirrors are moved until the cavity mode
overlaps with the well-aligned input mode.

Once the mode is overlapped with the defect has been achieved, removing the
tilt of the membrane is the next task. �is is achieved in two steps, with the �rst
using visual information. As detailed in Chapter 7, if the membrane is tilted with
respect to the cavity mode, the cavity mode position becomes 2:I dependent. If one
changes 2:I while keeping the cavity resonant, one can see, o�en quite clearly,
the cavity mode move. Such a situation is seen in Fig. 6.9. In practice, it is easier to
use one piezo to scan one fsr slowly (∼0.1 Hz) while the other piezo scans one fsr
fast (∼20 Hz). �e fast scan ensures that each camera picture sees the fundamental
mode, while the slow scan leads to a time-dependent mode position on the camera
image. �e movement of the mode can now be suppressed by small alignment
changes of the mirrors, while keeping the mode centered on the membrane defect.

Figure 6.9: �e optical mode moves as the cavity is scanned through 2:I. For this assembly,
the tilt is most prominent in the G direction, so the movement is largest in that direction.

On the large tilt has been removed, the last step in our alignment procedure
is to remove the last amount of tilt, by minimizing the 2:I-dependent spli�ing of
higher-order cavity modes. �e tilt breaks the degeneracy of the di�erent tem=<
families (for which = +< is constant). For example, the tem01 and tem10 modes
are split by a tilted membrane, but the spli�ing depends on the 2:I position. �ere-
fore, we minimize this spli�ing by monitoring the spli�ing of these modes, while
scanning one piezo over a full fsr. It is o�en not possible to completely remove the
spli�ing, but it can be dramatically reduced from the initial value.

b ( ) c

In this chapter, I introduced our new cavity design, which deviates strongly
from the previous design philosophy of ”monolithic” cavities, as well as our rea-
sons for this deviation from previous e�orts.

�e addition of full electronic 2:I and resonance tuning, through the addition
of a second piezo, is a major stepping stone, however trivial it seems at �rst glance,
to implementing membrane-in-the-middle optomechanical systems in hybrid setps.
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“ It wasn’t a dark and stormy night.
It should have been, but that’s the weather for you. For every mad

scientist who’s had a convenient thunderstorm just on the night his Great
Work is �nished and lying on the slab, there have been dozens who’ve
sat around aimlessly under the peaceful stars while Igor clocks up the
overtime.

Terry Pratchett & Neil Gaiman, Good Omens

A numerical model for evaluating hybridization and spli�ing of higher
order optical modes in optomechanical cavities. �e model gives valuable
insight into the detrimental e�ects of membrane tilt, wavefront curvature
and clipping losses. �e model is compared to experimental data.

In this chapter, I will present a numerical model for the higher order modes of a
plano-concave optical cavity with a tilted, possibly sca�ering/clipping membrane
somewhere in the mode of the bare cavity. �e code is available online at h�ps:
//erda.ku.dk/archives/5526970a884�ef314e5fc9753fcbec3/published-archive.html.

We will see how the model predicts that tilt, sca�ering and wavefront curva-
ture each lead to detrimental e�ects for low loss optomechanical cavities; these
points were used in the design of our new cavity in Chapter 6. To validate the
model, we compare its predictions to experimental data.

https://erda.ku.dk/archives/5526970a884fbef314e5fc9753fcbec3/published-archive.html
https://erda.ku.dk/archives/5526970a884fbef314e5fc9753fcbec3/published-archive.html
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7.1 Context & Motivation

When we transitioned away from using rectangular membranes with phononic
shields in the silicon frame, and to the so� clamped membranes described in Sec-
tion 4.1, several detrimental features of our optomechanical assemblies became
apparent. �is was in a way compounded by the fact that we were at this point
gaining electronic 2:I-tuning, and therefore could much easier investigate these
kinds of features. In a monolithic cavity, only discrete points in 2:I may be probed,
and with a single piezo, probing the whole 2:I required tuning the laser. In this
way, one would sometimes just get a “bad 2:I point”, but since this was used for
pure optomechanics, jumping to another point was really no problem.
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Figure 7.1: Avoided mode crossing of tem00 mode with a higher order mode from a lower
longitudinal mode family. �e optical �eld is driven with 500 MHz phase modulation side-
bands. Top: Cavity transmission as a function of optical wavelength (horizontal axis) and
detuning from the primary cavity resonance. Note that the G-axis goes from high to low
frequency, corresponding to low to high wavelength. Bo�om: Cavity transmission as a
function of detuning from cavity resonance, for a selection of optical frequencies around the
avoided crossing. Vertical lines in top �gure marks the corresponding �gures in the bo�om
panels. Solid line: data, dashed line: �ts to a double-Lorentzian model.

�e most prominent sign of something breaking our nice single mode descrip-
tion is depicted in Fig. 7.1: avoided crossings of optical modes, when scanning
2:I. Landing right on top of such a mode crossing severely broadens the mode,
because higher order modes generally sca�er more than the fundamental, by virtue
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of simply being spatially larger. Any hybridization of the fundamental with higher
order modes is thus an undesirable thing for us, leading to deformation of the op-
tical mode (with concomitant decrease of coupling e�ciency and homodyning
visibility), worse overcoupling, larger cavity linewidth, reduced lock stability, etc.
Understanding which factors contribute to spli�ing of higher order modes and to
coupling of the fundamental mode to higher order modes is therefore important.
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Figure 7.2: Cavity linewidth of two modes in an avoided mode crossing. Le�: Fits to two
Lorentzian lineshapes plus an o�set. Round and triangular markers denote the maxima.
Lines are o�set vertically for clarity. Right: Linewidths of the two Lorentzians as a function
of optical wavelength. We clearly observe the narrow and wide mode switch. Note that the
G-axis goes from high to low frequency, corresponding to low to high wavelength. �e large
markers in the right �gure correspond to the traces in the �gure on the le�, while the small
markers correspond to traces not shown.

�is hybridization, and broadening of the narrowest mode, can be seen in
Fig. 7.2. In the le� panel, I �t cuts of the data from Fig. 7.1 to a simple sum of two
Lorentzians plus an o�set. �e round and triangular markers mark the maxima.
In the right panel, I plot the ��ed cavity linewidths as a function of the optical
frequency.

7.2 A Numerical Model

To understand the observed mode crossings, and their causes, we developed a nu-
merical model. �e majority of the programming and derivations were done by
Jürgen Appel. I present the model here, because the the understanding it brought
to our cavity design was important, and comparison of our experimetnal data to a
model without any explanation is unsatisfactory. �e mathematical derivations of
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(1) �e old cavity used this cavity geometry
with one �at and one curved mirror, while
the new cavity uses two curved mirrors. �e
numerical model is based around the old
geometry, and is not trivially modi�able to a
curved–curved geometry, for reasons discussed
below.

(2) I. e., describing the change of propagation
direction upon re�ection o� a tilted surface,
or the focusing of the beam by re�ection on a
curved surface.

(3) �ere is a sneaky assumption here, that
the membrane re�ection is independent of the
angle, which is strictly not true, but since we
are always dealing with very small tilts we
ignore this and press on.

a number of the expressions in the model will be simply postulated; the presenta-
tion here is based on an internal note prepared by J. Appel.

DRR∗M

LAL;

C; = sin\;

®�+; ®�+A

®�−A®�−;
CA = sin\A

!;

I = 0

!A

Figure 7.3: Mode model concept.

�e basic building blocks of the model are depicted in Fig. 7.3. �e cavity con-
sist of one �at mirror at I = −!; , with transmission C; , a curved mirror at I = !A
(transmission CA ) and a membrane at I = 0(1). �e transmissions and re�ections are
parametrized by the angles \; , \A , implying that no losses is assumed. A number
of matrices are de�ned, which describe the spatial part(2) of re�ection of the �eld
at various places: M,R,D – we will return to these later. Propagation in a given
subcavity is described by a matrix L

(†)
;/A , with the dagger denoting propagation to

the le� and no dagger to the right.
�e �elds are denoted by the subcavity they belong to, ; for le� and A for right

subcavity, as well as the direction they are traveling, + for right and − for le�:

®�+/−
;/A , (7.1)

and where the components of this vector are complex �eld amplitudes.
We now consider how the �eld impinging on the membrane relates to those

leaving it, and by parametrising the membrane transmission by Cm = sin\m
(3), we

get the following expression(
®�+A
®�−
;

)
︸︷︷︸

outgoing �elds

=

(
cos\m1 − sin\mR

sin\mR† cos\m1

)
︸                         ︷︷                         ︸

unitary operation, to
preserve energy

(
®�+
;®�−A

)
.

︸︷︷︸
incoming �elds

(7.2)

We now consider the �elds in the le� side of the cavity. �e right-propagating
�eld, just before the membrane, ®�+A can be expressed purely in terms of the le�-
propagating ®�−

;
and the matrices L and M, giving

®�+; = L;ML
†
;
®�−; . (7.3)

Similarly, the le�-propagating �eld just le� of the membrane can be expressed in
terms of re�ected part of the right propagating �eld ®�+

;
and the transmi�ed part of

the le�-propagating �eld in the right sub-cavity

®�−; = sin\mR† ®�+; + cos\m1 ®�−A . (7.4)
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(4) �e 2:I phase could have been imple-
mented into a small change in the lengths
!A , !; , but this approach is perfectly suf-
�cient, as long as the change of position
needed to scan the entire 2:I is much smaller
than the lengths of the subcavities, i. e.,
I2π = 2π/2: � !A , !; .

Combining these two expressions we get

®�+; = L;ML
†
;

sin\mR† ®�+; + cos\mL;ML
†
;
®�−A , (7.5)

which, upon collecting terms of the respective �elds, becomes(
1 − sin\mL;ML

†
;
R†

)
®�+; = cos\mL;ML

†
;
®�−A . (7.6)

For future use, we now multiply both sides of the equation by cos\m, and divide by
the prefactor on the le� hand side, to obtain

cos\m ®�+; = cos2 \m
(
1 − sin\mL;ML

†
;
R†

)−1
L;ML

†
;
®�−A . (7.7)

Turning to the right hand side of the cavity, we perform a similar procedure,
starting with the le�-propagating �eld

®�−A = L†ADLA ®�+A , (7.8)

which is simply expressed in terms of the right-propagating �eld. �is �eld is in
turn expressed as the re�ected �eld in the right side of the cavity, and the transmit-
ted beam from the le� hand side, giving us

®�+A = cos\m ®�+; − sin\mR ®�−A . (7.9)

We now insert �rst the expression for cos\m ®�+; from (7.7) as well as the expression
for ®�−A , and obtain

®�+A =
[
cos2 \m

(
1 − sin\mL;ML

†
;
R†

)−1
L;ML

†
;
− sin\mR

]
®�−A (7.10)

=
[
cos2 \m

(
1 − sin\mL;ML

†
;
R†

)−1
L;ML

†
;
− sin\mR

]
L†ADLA ®�+A .

(7.11)

�is equation is, despite of the somewhat bulky appearance, essentially just an
equation describing a �eld roundtrip, and can be expressed in the (deceptively)
simple form

®�+A = A ®�+A , (7.12)

where the problem has now been reduced to �nding the eigenvectors and -values
of A.

We can further expand this equation a bit, using the expressions

D = D̃ sin\A4−ii M = M̃ sin\;4 ii , (7.13)

where we have broken out the geometric e�ects of the mirrors into the matrices
D̃, M̃, the transmission by the prefactors sin\;/A , and the phase factor 4 (−)ii de-
notes the extra phase accumulated in each subcavity by moving the membrane a
tiny amount, i. e., the 2:I position(4).



138 Chapter 7. Higher Order Optical Modes in an Optomechanical Cavity

−20 0 20 40
Position, I [mm]

0

100

200

Be
am

w
ai

st
,F
(I
)[
μm

]

−I'
F0

√
2F0

\

Figure 7.4: Beam size,F (I), of a
Laguerre-Gaussian beam with waist size
F0 = 50 μm, which corresponds to a
Rayleigh range, I' , of 9.2 mm.
_ = 852 nm.

Combining all of this, we get

®�+A =

[
cos2 \m sin\;4 ii

(
1 − sin\m sin\;4 iiL;M̃L

†
;
R†

)−1
L;M̃L

†
;︸                                                    ︷︷                                                    ︸

≡Q

− sin\mR

]
4−ii sin\AL†A D̃LA

︸                                                                                                                      ︷︷                                                                                                                      ︸
≡A

®�+A ,

(7.14)

where we have de�ned the total matrix A and a sub-matrix Q.
D T d

It is now time to turn our a�ention to the most obvious question le� un-
touched so far: how do we obtain a suitable expression for the propagation ma-
trices M,D,L(;,A )?

Our solution will be to expand the �eld on a (truncated) basis of Laguerre-Gaussian
modes, and express the coupling in terms of sums of couplings between these
modes. In this way, we avoid having to evaluate the �eld at a very large number of
points in space, but only need to compute O(# 2) couplings, where # is the total
number of modes included in the truncation. We can then evaluate any particular
solution as a weighted sum of Laguerre-Gaussians at the locations in the cavity we
are interested in.

Some freedom is le� w.r.t. the choice of basis. One obvious choice would be
to pick the eigenbasis of the entire cavity, without the membrane. Instead, we will
pick the eigenbasis of the subcavity with the curved mirror. �is choice will make
the matrices describing propagation in this subcavity much simpler.

We start with the general expression for the �eld strength of a Laguerre-
Gaussian mode of index ?, ; , expressed in cylindrical coordinates (W. Bowen and
Milburn 2015, chapter 7)

LG?,; (d, i, I) = 4 i;i 4
−
(

d
F (I)

)2

√
πF (I)︸     ︷︷     ︸

Gaussian

4
i:

(
I+ d2

2' (I)
)

︸      ︷︷      ︸
Curved phase fronts

4
i( |; |+2?+1) tan−1

(
I
I'

)

︸                 ︷︷                 ︸
Gouy phase

√
2?!

(? + |; |)!

( √
2d

F (I)

) |; |
L
|; |
?

( ( √
2d

F (I)
)2

)
.

︸              ︷︷              ︸
Generalized

Laguerre polynomial

(7.15)

Next, we’d be�er explain what all the di�erent elements to this equation are.
Firstly, the Rayleigh range I' describes how fast a beam grows transversally as
it propagates, and is given by

I' =
F2

0π

_
, (7.16)

whereF0 is the smallest transversal size, the waist size. As the beam propagates,
the beam size changes as

F (I) = F0

√
1 +

(
I

I'

)2
. (7.17)

�is is depicted in Fig. 7.4. Also pictured is \ = _/(πF0), the far �eld opening angle
of the beam.
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(5) Picking up a factor d from the Jacobian,
d dddi and d2 from the variance, and us-
ing already that we know that the intensity
(∝ |LG?,; (d,i, I) |2) of all beams are cylin-
drically symmetric, so the mean value is
0.

At the waist, the phase front is �at, and the curvature of the beam is therefore
0. Away from the waist, the radius of curvature '(I) is given by

1
'(I) =

I

I2 + I2
'

. (7.18)

�e curvature of the phase fronts are depicted in Fig. 7.5, where a very tightly
focused beam is seen to diverge and develop curved phase fronts as it propagates.

�e �rst few generalized Laguerre polynomials L|; |? (G) are depicted in Fig. 7.6.
�e total Laguerre–Gaussian modes (real and imaginary �eld components plus
intensity) at the waist (I = I0) are depicted in Appendix C.

�e following two pages of math is mostly relevant for those who want to
understand the code in detail. For others, those interested mainly in the physics,
understanding this should not be critical.

For compactness we now make the following two substitutions:

b =
I

I'
dI =

d

F0

√
1+b2

2

, (7.19)

which leads to

LG?,; (d, i, I) =
1√
π

dI
I
4 i:bI'4 i( |; |+2?+1) tan−1 b4−

1
2 (1+ib)d2

I4 i;id |; |I

√
?!

(? + |; |)!L
|; |
?

(
d2
I

)
(7.20)

�e “variance” of such a mode, i. e., a measure of the size is given by(5)

∞∫
0

2π∫
0

��LG?,; (d, i, 0)
��2 d3 dddi =

F2
0

2 (2? + |; | + 1). (7.21)

Further, all modes are normalized

∞∫
0

2π∫
0

��LG?,; (d, i, I)
��2 d dddi = 1, (7.22)

and have �eld amplitude at the transverse center at the beam position of

LG?,; (0, 0, 0) =



0 if ; ≠ 0√
2

πF2
0

otherwise.
(7.23)

With these identities and a somewhat bolstered understanding of what these
modes are all about, we press on and de�ne a number of couplings between di�er-
ent modes. First, we de�ne the overlap of two modes translated by bI'

OVL?2,;2
?1,;1
(bI') = 4 i:ΔI

∞∫
0

2π∫
0

LG?1,;1 (d, i, 0)∗LG?2,;2 (d, i, bI')d dddi, (7.24)
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(6) �e discrete variable equivalent of the Dirac
delta function, de�ned as

X 9
:
=

{
1 if : = 9,

0 if : ≠ 9 .

(7) De�ned as:

1�1 (0,1;G) =
∞∑
:=0

(0):
(1)::!G

: , (7.28)

where ( ·): is the Pochhammer symbol,

(I)< =
Γ (I +<)
Γ (I) . (7.29)

(8)
(=
:

)
= =!
:!(=−: ) !

where i:JI represents the trivial propagation phase. �is equation may a�er a
lengthy derivation, which I will not discuss or show here, be shown to equal

OVL?2,;2
?1,;1
(bI') = X;2;14

i(1+2?2+|; |) tan−1 b

(
−1√
1 + b2

)1+|; |√
?1!

( |; |+?1)!
?2!

( |; |+?2)!

?1∑
:1=0

?2∑
:2=0

( |; |+:1+:2)!
:1!:2!

(
?1 + |; |
?1 − :1

) (
?2 + |; |
?2 − :2

) (
− i + b

i + b/2

)1+|; |+:1+:2 (
1

1 + b2

):2

.

(7.25)

Because of the Kronecker delta(6), X;2
;1

, only a single value of ; is relevant, and the
subscripts are dropped from all other occurrences in the equation.

In a similar fashion we de�ne the overlap of two modes tilted with respect to
one another

Tilt?2,;2
?1,;1
(U) =

∞∫
0

2π∫
0

4 i:Ud siniLG?1,;1 (d, i, 0)∗LG?2,;2 (d, i, 0)d dddi, (7.26)

which can also be wri�en in a longer, but more numerically approachable fashion,
as

Tilt?2,;2
?1,;1
(U) =

√
?1!

( |; |+?1)!
?2!

( |; |+?2)!

{
(−1) |;1−;2 | ;2 > ;1

1 otherwise
×

?1∑
:1=0

?2∑
:2=0

( |;1 |+;1
2 + |;2 |+;22 +:1+:2

)
!

|;1−;2 |!:1!:2!

(
?1 + |;1 |
?1 − :1

) (
?2 + |;2 |
?2 − :2

)
(−1):1+:2×

1�1

(
1 + |;1 |+;12 + |;2 |+;22 + :1 + :2, 1 + |;1 − ;2 |;−

(
F0:

U
2
√

2

)2
) (
F0:

U
2
√

2

) |;1−;2 |
(7.27)

1�1 (0, 1;G) is the generalized hypergeometric function,(7) and
(=
:

)
are normal bino-

mial coe�cients(8).
Finally, a Hole-function is de�ned, which describes the coupling of modes

before and a�er a circular hole as

Hole?2,;2
?1,;1
(Ahole, 2hole) =

∞∫
0

2π∫
0

LG?1,;1 (d, i, 0)∗LG?2,;2 (d, i, 0)×K (Ahole, 2hole)d dddi,

(7.30)

whereK (A, 2) is a step-like function, equal to 1 where the distance from the point
(d, i) to 2 is less than A and 0 elsewhere. �ere is no nice analytical expression
here – the expression is most easily evaluated numerically.

�e beauty of these coupling matrices is that they must only be computed
once for any given geometry (independent of 2:I), essentially making the entire
problem tractable numerically.

With these coupling matrices de�ned, we can construct a total propagation
matrix for the �elds, corresponding to A from 7.14. Propagation in the le� cavity
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(9) �is thickness is somewhat arbitrary;
for the experiments described later in this
chapter we had 3 ∼ 67 nm, and for the current
membranes we typically have 3 ∼ 14 nm.

(matrices L and M) are described respectively by (7.24), and re�ection on a �at
mirror by the identity; collectively, L;ML

†
;

is implemented as a single matrix M

in the code. For the right hand cavity, we use the fact that the chosen basis is eigen-
modes of the bare subcavity, which e�ectively means that the product of matrices
L
†
ADLA is a single diagonal matrix, and the diagonal entries are simply the Gouy

phases. Finally, losses and the tilted membrane are represented by (7.30) and (7.26)
respectively.

From these matrices, the roundtrip matrix A is calculated, and �nding the
eigenvectors of this matrix is reduced to a standard linear algebra problem, which
can be e�ciently solved numerically. �is concludes the explanation of the numeri-
cal model and its implementation.

7.3 Model Results

We now turn to the numerical results of the model. �e output of the model, for a
given set of input parameters, is two plots, with the structure of optical modes in
units of the fsr as a function of 2:I, as well as the shape, size and position of the
fundamental mode, also as a function of 2:I.

We start by evaluating the mode for an empty cavity, to verify that it produces
the expected results for a Fabry–Perot cavity. �e parameters for this base case
are listed in Table 7.1. �e parameters are chosen to align roughly with the plano-
concave cavity in use in the hybrid experiment at the time where the model was
developed, and for which we have the best data comparing reality to the model.

�e empty cavity result is shown in Fig. 7.7. �e top panel displays the eigen-
modes of the cavity as a function of 2:I; since the membrane thickness is set to
0, no optomechanical e�ects should be present, and we should observe the eigen-
modes of a normal Fabry–Perot cavity. For these se�ings, we observe the funda-
mental mode, marked with a thick line (and overlaid with the plane-mirror, single
optical mode model derived earlier in orange dashes), and then a set of equidis-
tantly spaced higher order mode families. �e spectrum is folded over, so higher
order modes end up crossing the fundamental; the absolute frequency of the funda-
mental in units of fsrs is arbitrary. For the highest order modes, the sharp families
become sperad out in frequency; this is mainly a product of the truncation of the
modes used in the simulation. Increasing the number of modes used increases the
order at which numerical instabilities make the results less accurate.

�e bo�om two panels depict the optical mode intensities along G and H as a
function of 2:I. For G , the red line marks the maximum intensity for a given mem-
brane position, while for H , the green curves mark the e−2-radius, i. e., the waist
size. �e vertical blue and orange lines mark respectively the 2:I positions with
the smallest and largest waist sizes; for this (with no optomechanical coupling)
plot, the values are nonsensical, but adding optomechanical coupling, we will see
that it corresponds roughly to the two high-coupling points.

We now set the membrane thickness to 3 = 40 nm(9). We see in Fig. 7.8 (top
panel) that the �nite membrane thickness leads to a 2:I dependent modulation
of the resonance frequencies, i. e., optomechanical coupling, for all modes. �e
fundamental mode is still very well described by the single mode model. Further,
the higher order mode families are now split; we interpret the spli�ing as arising
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(10) �e green lines are only shown in the
bo�om (H) panel, but the mode exhibits the
same behaviour in the G direction.

from the �nite wavefront curvature at the position of the membrane, 500 µm from
the �at mirror.

In the bo�om panels, we see that the mean G position is unchanged with
2:I, but the size of the beam does depend on the it. Speci�cally, it grows for one
high coupling point (marked by the orange lines), and shrinks at the other (blue
lines)(10). �e spli�ing of the mode families are highest where the individual fam-
ily has the highest coupling (slope of the resonance frequency with membrane
position).

By varying the length of the subcavities we can assess how wavefront curva-
ture a�ects the spli�ing of ideally degenerate modes and the shape of the funda-
mental. We change the length of both subcavities by 400 µm (in opposite directions,
maintaining a �xed total cavity length). In Fig. 7.9 !; is reduced to 100 µm, while in
Fig. 7.10 !; is increased to 900 µm.

For the case with the membrane closer to the �at mirror (Fig. 7.9), the spli�ing
of the higher order mode families is essentially eliminated, and the mode size mod-
ulation is severely reduced. �e agreement between the single mode model and the
full simulation is also improved.

For the case with the membrane further from the �at mirror (Fig. 7.10) the
change is in the other direction: the mode families are split further, and the mod-
ulation of the optical mode is stronger. �e agreement between the simulation
and the single mode model is visibly worse than for either of the other two cases
presented so far.

We draw from these observations the conclusion that wavefront curvature is
detrimental to the optical qualities of the optomechanical cavity. �e hybridiza-
tion of the fundamental mode of the unperturbed cavity with higher order modes
(re�ected in the growing mode size) in a realistic cavity will lead to higher suscep-
tibility to clipping losses etc. Further, the spli�ing of higher order modes leads to
more 2:I positions where the fundamental mode is degenerate with a higher order
mode.

We now introduce membrane tilt to the simulation. �e tilt is always intro-
duced around the H axis, such that the change showns up in the G direction. Using
the same parameters as Fig. 7.8, we now set U = 1 mrad, and plot the simulated
result in Fig. 7.11. �is tilt corresponds roughly to a membrane chip of size 10 mm

�antity Symbol Value

Flat mirror-membrane distance !; 0.500 mm
Curved mirror-membrane distance !A 0.840 mm
Curved mirror roc ' 25 mm
Optical wavelength _ 852 nm
Membrane thickness 3 0 nm
Flat mirror re�ectivity \; arccos(√20 ppm)
Curved mirror re�ectivity \A arccos(√1400 ppm)
Membrane tilt U 0
Membrane diameter Amem ∞
Membrane center 2mem (0 mm, 0 mm)

Table 7.1: Parameters for the empty cavity simulation.
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Figure 7.7: Modes and intensity of the fundamental for an empty cavity. Parameters are
listed in Table 7.1.
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Figure 7.8: Modes and intensity of the fundamental for a cavity with medium wavefront
curvature at the membrane. Parameters as in Table 7.1, but with 3 = 40 nm.
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Figure 7.9: Modes and intensity of the fundamental for a cavity with small wavefront
curvature at the membrane. Parameters like Fig. 7.8, but !; = 100 μm and !A = 1240 μm.
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Figure 7.10: Modes and intensity of the fundamental for a cavity with large wavefront
curvature at the membrane. Parameters like Fig. 7.8, but !; = 900 μm and !A = 440 μm.
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being suspended on a surface that varies by 10 µm from one edge to the other.
�e two most prominent features introduced by the tilted membrane is a 2:I-

dependent mode position seen in the G-intensity plot, and the spli�ing of the
higher order modes at di�erent places than those introduced by wavefront cur-
vature. Where the la�er e�ect split the modes at the high coupling points, tilting
the membrane split the modes at the extreme absolute frequency shi� points, i. e.,
their zero-coupling points.

�e shi� of the mode spatial position seen in the middle panel of Fig. 7.11 is on
the order of a waist radius, which is a large e�ect, and the maximum displacement
coincides with the high-coupling points.

�e tilt also introduces a shi� of the point where the mode is largest and small-
est, as well as increasing the size changes.

In Chapter 6, this lateral change of the mode was introduced as a rough way of
estimating the membrane tilt, such that it can be tuned away. We now see roughly
how it comes about, and the amount of tilts needed to signi�cantly shi� the mode.
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Figure 7.11: Modes and intensity of the fundamental for a cavity with a tilted membrane.
Parameters like Fig. 7.8, but U = 1 mrad.

Finally, the model is also able to simulate the e�ects of sca�ering losses. �e
implementation is somewhat crude, and the results much harder to interpret. For
these reasons I refrain from displaying any plots here. �e take-away message
from the simulations however, are that one should keep the mode well clear of the
edges of the membrane, as even small extra losses can lead to signi�cant hybridiza-
tion and coupling to higher order modes.
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7.4 Experimental Data

To assess the model we compare it to measurements on a realistic cavity assembly.
While the model does capture a lot of the physics, particularly the model for losses
is quite crude; therefore, it is unrealistic to obtain very good agreement between
the data and the model.

We perform the measurement by scanning one piezo over slightly more than
one fsr, while we step the wavelength. To optically populate higher order modes,
we purposefully mis-align the input mode. For each wavelength we record the
spectrum of output light.

�e change of wavelength, _, e�ectively tunes the 2:I position of the mem-
brane, as well as the cavity resonance condition. To compare with the model, we
de-trend the change of the resonance condition by rolling and folding the recorded
spectra according to the expected sub-cavity length and known change of wave-
length. We also use the transversal mode spacing, tms, to compensate for piezo
non-linearities. In this way we obtain the spectrum shown in the le� panel of
Fig. 7.12. �e overall intensity modulation with 2:I (or _) is expected from the
transfer matrix model (see Section 3.8.1).

In the right hand panel of that �gure we show the model evaluated for the pa-
rameters in Table 7.2. �e parameters are close to the expected values for our cav-
ity, with the lengths etc. known from separate measurements, and with educated
guesses for the membrane tilt (0.4 mrad), e�ective membrane diameter (300 µm)
and cavity spot location (75 μm,−75 μm).

�e model shows reasonable agreement with the data for low-order optical
modes, and progressively worse agreement for higher order modes, where the loss
model implemented disagrees signi�cantly with the real world.

While the agreement between the model and data is not strong enough for a
quantitative evaluation of the correctness of the model, the overall behaviour of
model corresponds reasonably well to our observations.

�antity Symbol Value

Flat mirror-membrane distance !; 0.500 mm
Curved mirror-membrane distance !A 0.700 mm
Curved mirror roc ' 25 mm
Optical wavelength _ 852 nm
Membrane thickness 3 60 nm
Flat mirror re�ectivity \; arccos(√20 ppm)
Curved mirror re�ectivity \A arccos(√1400 ppm)
Membrane tilt U 0.4 mrad
Membrane diameter Amem 300 µm
Membrane center 2mem (75 μm,−75 μm)

Table 7.2: Parameters for the cavity simulation in Fig. 7.12.
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Figure 7.12: 2:I all modes. Le� panel: experimentally measured optical mode structure as
a function of wavelength, wrapped and de-trended as described in the main text. Right:
Numerical model evaluated for the parameters described in Table 7.2. Truncation of the
basis of modes leads to a �nite number of higher order modes in the simulation.
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7.5 Design Guidelines Learned

Summarizing the guidelines for optomechanical cavity design learned from this
numerical model, we have learned that:

• Wavefront curvature at the membrane position, even for in�nitely large,
untilted membrane, leads to signi�cant hybridization of the optical modes,
manifested as a 2:I-position dependent size of the fundamental mode. Fur-
ther, wavefront curvature splits higher order mode families.

• Membrane tilt further hybridizes the optical modes, and splits higher-order
mode families, but with a di�erent 2:I-dependence than wavefront curva-
ture. Tilt induces a 2:I-dependent position shi� of the fundamental optical
mode, which may be used as a probe of tilt.

• Clipping and sca�ering losses on the edges of the membrane defect pad is
detrimental to the optical quality, but the exact criteria and behaviour is not
well described by our crude loss model.

�ese learning points all played into the design choices described in the previ-
ous chapter, as well as our understanding of how to align optomechanical cavities.
Particularly the choice of going to a concave-concave cavity design to eliminate
the wavefront curvature to a higher degree, as well as the implementation of a
repeatable and controllable way of reducing membrane tilt was informed by this
model.
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(1) Jonas B. Mathiassen (2019). “Characterising
and Modelling �ermal Substrate Noise for a
Membrane in the Middle Optomechanical Cav-
ity”. M.Sc. thesis. University of Copenhagen.
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New Mirrors

“ You’d be surprised how many problems are soluble in a solution of
Benjamins.

Franklin Veaux

New mirrors for the optomechanical cavity. What we want to achieve,
design parameters, FEM-simulations, mirror mode characterization.

In this chapter we discuss the motivation for buying new mirrors for our optome-
chanical cavity, the investigations into mechanical modes, and brie�y comment
on choosing coatings. Much of the work described in the chapter was performed
by master student Jonas Mathiassen, partly under my supervision, and is also pre-
sented in his master’s thesis, Mathiassen (2019)(1), which o�ers many more details.

8.1 Why new Mirrors?

A major source of noise in cavity optomechanics is mechanical modes of the mir-
rors. Since �uctuations of the end-mirrors turn directly into intra-cavity phase and
amplitude �uctuations, having a mechanical mirror mode overlap spectrally with
your mechanical degree of interest can be detrimental – like having a big classical
noise peak, preventing e�cient cooling, e�cient state estimation etc.

For the work in Møller et al. (2017) and Rodrigo A. �omas et al. (2020), the
cavity consisted of geometrically disparate mirrors. In Møller et al. (2017), the
mirrors were respectively a ∅ = 0.25 in/6.35 mm × 3 = 3 mm curved mirror, and
a ∅ = 7.5 mm × 3 = 4 mm �at mirror. For Rodrigo A. �omas et al. (2020), we
had changed the cavity design from plano-concave to concave-concave, but still
used mirrors with di�erent geometries: ∅ = 0.25 in/6.35 mm × 3 = 3 mm and
∅ = 7.5 mm × 3 = 4 mm.
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(2) �e masses are way too high for optome-
chanical e�ects to play any role here.

�ese mirrors, owing to their rather large size, have low fundamental frequen-
cies; since the spectrum is more dense (more modes per frequency span) the higher
one goes, having low fundamental frequencies of vibration puts our frequency
region of interest into a dense part of the mirror spectrum. Even worse, since the
mirrors are di�erent, they will have modes at di�erent frequencies, making the
spectrum e�ectively even denser. Møller (2018) shows a frequency window with no
detectable mirror modes of only approximately 10 kHz width centered on 1.27 MHz
at cryogenic temperatures, ) = 4 K.

In �gure Fig. 8.1 I plot the measured mechanical spectrum of a cavity consist-
ing of two identical ∅ = 6.35 mm × 3 = 3 mm mirrors. Even for a cavity like this,
with symmetrical mirrors, it is apparently hard to �nd a frequency region without
mechanical peaks.

1.0 1.2 1.4 1.6 1.8 2.0
Frequency S/2π [MHz]

2

5

10

20

√ (
G
G

[ m
/√

H
z] ×

10
−1

8 Simulation
Measurement

Figure 8.1: Modes of the old mirrors, simulation and measurement. A symmetric cavity . �e
narrow peaks in the orange spectrum is electronic noise peaks. �e peak at 1.6 MHz is used
to estimate the loss tangent, with the mode having & ∼ 200. �e simulated mode has the
center of the Gaussian o�set by 135 µm; see Fig. 8.3.

8.2 FEM-simulations

8.2.1 Comparing to Old Mirrors

Also shown in Fig. 8.1 is a simulated spectrum for the same mirrors. We are a�er
the thermal �uctuations of the end mirrors(2). In reality the mirrors are clamped
to some kind of supporting structure, leading to hybridization of the mechanical
mode spectra. Simulating the entire cavity assembly is in principle the right way
to go, but accurately quantifying clamping conditions between di�erent elements
is hard. �erefore we go a di�erent path: simulate the modes of a free mirror, and
(if needed in practice) modify the clamping of the mirrors to minimize mode hy-
bridization.

�e fem simulation is performed in comsol (see Section 4.1.2), and uses the
so-called direct approach (Levin 1998). �e approach turns the problem of �nding
thermally induced �uctuations of the mirror geometry on its head, and simulates
instead the dissipated energy when a harmonic driving force applied to a given
area is swept across the frequency region of interest.
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With a total force �0 applied in a Gaussian pro�le, corresponding to the optical
cavity mode,the psd of �uctuations may be found as

(GG (S) = 2:B)

S2
,diss
� 2

0
, (8.1)

where,diss is the dissipated power. �e dissipated power relies on the mirror
material loss angle q , which is estimated as q = 1/& , from the narrowest peak in
the spectrum, which is the peak at 1.6 MHz with & ∼ 200. �e loss tangent only
changes the width of the simulated peaks, not their position or strength.

In Fig. 8.1 such a simulation is plo�ed together with the measured spectrum.
While the match is by no means perfect, it could also be a whole lot worse, given
how crudely the calculations simulate reality; expecting the mode spectrum of
a free mirror to match that of a clamped mirror, with potentially high mode hy-
bridization is asking a lot.

We also experimentally investigated the clamping conditions of the mirrors, by
placing Teflon™ (Polytetra�uoroethylene, ptfe) spacers around the mirrors. We
tested with no spacers (“ntf” for “no te�on”), on both sides of the mirror (“both”) as
well as on the front and back respectively, with only the former two displayed here.
�e clamping force was also varied, by torquing down the “batman” screws with a
torque wrench. �ese spectra are shown in Fig. 8.2.

While the torque se�ings used showed li�le e�ect, the addition of spacers
around the mirror can be seen to improve the match between experimentally mea-
sured displacement and the simulation substantially. We take this a sign that hy-
bridization is playing a signi�cant role, and that simulating a free mass mirror is a
reasonable approach as long as the clamping conditions are suitable.

As a last point, in Fig. 8.3 we plot the simulated displacement spectrum, as a
function of beam position on the mirror. Insets above the spectra show the mode
shapes (absolute value of the displacement). �is highlights two things: a) simula-
tions of the mode spectrum are only reliable, if the rotational symmetry is broken,
and b) centering the optical mode on the mirror reduces coupling to a lot of the
modes. �e modes being sampled with the beam centered on the mirror are all
those that have rotational symmetry, and a non-zero displacement in the center.

8.2.2 Simulating New Mirrors

Encouraged by the relatively good match of the spectra in Fig. 8.2, the simulation
was extended to a search for a new combination of diameter (∅) and thickness (3).

In general, the approach is to shrink the dimensions of the mirrors, to make
the spectrum less dense. �e e�ect of shrinking the dimensions is depicted in
Fig. 8.4, where the spectra of two simple drum skins are depicted. �e diameters
are ∅ = 7 mm and 4 mm, and the speed of sound 2 = 3 × 103 m/s.
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Figure 8.2: Mechanical spectrum of the old mirrors under di�erent clamping conditions. Top:
ptfe spacers are placed on both sides of the mirror in the clamping stack. Bo�om: spectrum
with the mirrors clamped by copper on both ends. �e ptfe spacers clearly improve the
agreement between measurement and simulation, although signi�cant discrepancy is still
present.
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Figure 8.3: Simulated displacement psd of the old mirrors. �e insets display the abso-
lute value of the out-of-plane displacement of the modes. �e modes without rotational
symmetry are all degenerate with a mode rotated 90°. ) = 10 K.
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Figure 8.4: Spectra of two simple, circular
drum heads with ∅ = 7 mm and 4 mm,
2 = 3 × 103 m/s, with each line
representing a mode. �e colors indicate
the radial mode number<, and are
identical for the two plots for comparison.
As the size is reduced, the whole
spectrum is stretched, making it
spectrally less dense.

For practical reasons, one must consider what minimum sizes can be fabri-
cated and used. Since we want to have mirrors with relatively small radii of curva-
ture (roc), the mirrors can not be so thin that the geometry does not support the
roc. A�er communication with the company responsible for grinding the mirrors,
a minimum thickness of around 1 mm was decided, for a roc of 25 mm. �e diame-
ter of the mirror should be kept above approximately 4 mm, if possible, to allow for
easier handling, mounting etc.

We now scan the parameters, ∅ and 3 , over the relevant ranges, and plot the
simulated spectra. For 3 = 1 mm and 2 mm, measured at the edge of the mirror, the
2d spectra are plo�ed in Fig. 8.5.

For the thinner of the two, clean regions more than 200 kHz appear. For the
higher thickness, some of the modes remain almost unchanged, while a set of other
modes appears. While not entirely true, it can therefore be useful to think of the
two (those that move with 3 and those that do not) as being controlled by a single
parameter, ∅ or 3 .

Restricting ourselves to a thickness of 3 ∼ 1 mm, we see that we can e�ectively
move the clean frequency window up and down. Further, there are two almost
equally good windows on either side of either side of the mode that runs almost
diagonally in Fig. 8.5. Since we know that lower frequency puts us closer to clas-
sical laser noise (see Section 9.1.1), we choose to optimize for the higher of the
frequency windows, and, somewhat arbitrarily, pick a target frequency of 1.4 MHz.

In Fig. 8.6, the simulated spectrum of the designed new mirror geometry is
displayed. It has ∅ = 5.2 mm and 3 = 1.14 mm for a center thickness of 1 mm.
�is slight increase in thickness over that displayed in Fig. 8.5 moves the window
slightly up in frequency, but the e�ect in simulations is modest.

In a faint grey line, the simulated spectrum of one of the old mirrors is also
shown; comparing these two lines, it should be readily apparent what a much
wider gap with no signi�cant mechanical mirror modes is a feasible thing to hope
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Figure 8.5: �e simulated mechanical mode spectrum for varied ∅ and 3 = 1 mm (le�) and
3 = 2 mm (right). For the thinner of the two, a set of modes all increasing in frequency
for smaller diameter. For the thicker these modes appear alongside a number of modes
independent of ∅, which signi�cantly deteriorate the spectrum. In the le� hand �gure, a
clean spectral area is marked for ∅ = 5.2 mm, which will be our target geometry.
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(3) For us, the input mirror is also the output
mirror in most situations, and the second
mirror must be high re�ection (hr).

for.
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Figure 8.6: Mechanical modes of new and old mirrors. Blue and orange: simulated spectrum
of a mirror with ∅ = 5.2 mm, 3 = 1.14 mm. Orange line: beam centered on the mirror, blue
line: beam displaced 130 µm. Grey line: simulated spectrum of a mirror with ∅ = 7.5 mm,
3 = 4 mm, and the beam displaced 130 µm. �e insets depict the mode shapes of the modes
indicated. Non-axis-symmetric modes are degenerate with a mode rotated 90°.

8.3 Choosing the Mirror Coatings

Along with a new set of mirror substrates, comes the choice of which coating to
apply to them. Here we must balance a set of wishes together with the anticipated
substrate and coating losses.

�e mirror substrates were polished by Perkins Precision Developments
(ppd). According to the manufacturer, they routinely achieve �atness of �at mirror
blanks of < 1 Å rms. For mirrors with short roc, such as the ones we are interested
in, fewer guarantees as to the quality can be made.

For a beam sampling a large �at area with rms surface roughness X , the frac-
tion of light sca�ered, S, is given by (Møller 2018, p. 26)

( = 1 − exp
[
−

(
4πX
_

)2]
≈

(
4πX
_

)2
, (8.2)

which for _ = 852 nm and X = 1 Å gives ( ≈ 2 ppm.
�e other main contributor to mirror losses is the coating losses. A reasonable

estimate for high quality coatings, such as those provided by Five Nine Optics
(fno), is a couple of ppm, bringing the total loss per mirror to around 4 ppm. �is
sets a hard upper limit on the achievable �nesse of F∼ 8 × 105.

For our experiments, we are very interested in having a high outcoupling
e�ciency, [out = ^out/^. In other words, the outcoupling transmission must be
much higher than all other losses in the cavity, ^out � ^loss, ^HR

(3).
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(4) �e coating company coated the mirrors
with 5 ppm and 1000 ppm instead of 10 ppm
and 500 ppm. �e error was �xed by addition
of a single layer of coating to each set of
substrates.

�is can of course be achieved by simply choosing a mirror with a high trans-
missivity; however, we also seek to have a reasonably short cavity and high �nesse
to boost the optomechanical interaction, as well as a total cavity linewidth that
makes the system somewhat resolved, allowing for e�cient sideband cooling. �e
simultaneous requirement of a short cavity with low linewidth, limits the total
permissible round trip loss, and thus e�ectively the the transmissivity of the out-
coupling mirror.

In the end, mirror coatings were ordered with one set of mirror having ) =
10 ppm and another having ) = 500 ppm. A�er some initial confusion(4) the deliv-
ered mirrors were found to be reasonably close to the desired values; the numbers
reported by the company was checked by us, and found to be accurate. In Fig. 8.7
I plot the Transfer Matrix Model from Section 3.8.1 evaluated for the ordered and
delivered mirror coatings, as tabulated in Table 8.1.

�e plots in Fig. 8.7 should be contrasted with Fig. 3.23, the tmm evaluated
for the experimental parameters relevant to the results in Rodrigo A. �omas et al.
(2020) and Chapter 10. In general, we will always choose to work at the 2:I-point
which has high ^ and high overcoupling in re�ection, [. With the expected mir-
ror losses and other parameter choices listed in the caption of Fig. 8.7, we expect
to reach an overcoupling of around 98 %, with ^ = 4.5 MHz. �is represents an
increase in overcoupling of ∼7 %.
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Figure 8.7: tmm evaluted for the optical coatings ordered (blue) and delivered (orange). ! =
3 mm, Im = 1.5 mm, 3mem = 20 nm.



158 Chapter 8. New Mirrors

)1 )2 X
Ordered 10 ppm 500 ppm 4 ppm
Delivered 9.3 ppm 462 ppm
Old 20 ppm 362 ppm 4/20 ppm

Table 8.1: Mirror coatings ordered and
delivered. Delivered transmissivities as
reported by the manufacturer, fno. Also
listed, transmissivities and losses for our
old mirror.

(5) Measurement and data analysis was
performed by Sergey Fedorov.

8.4 Delivered Mirrors – Mechanical Mode Characterization

A�er receiving the mirrors, the mechanical properties of the actually produced mir-
rors could be measured(5). �e results are shown in Fig. 8.8. �e black line shows
the simulated mirror spectrum with a loss tangent corresponding to a mirror mode
& of 100. �e blue, orange and green shows the experimentally measured cavity
length �uctuations (le� axis), and the corresponding frequency �uctuations (right
axis).

�e blue curve corresponds to clamping conditions similar to the one used for
the old mirrors, with te�on spacers on both ends, and a reasonably tight batman
screw, clamping the spacer-mirror-spacer-piezo stack. �is spectrum reveals signif-
icantly broadened modes. with mirror mode &s of 10–30, leading also to a general
elevation of the mechanical noise �oor.

Signi�cantly reducing the clamping force (the torque used to tighten the bat-
man screw was < 0.03 Nm; an educated guess around 0.01 Nm) leads to the orange
and green traces. Here, the mirror modes linewidths are signi�cantly reduced, and
matches the simulated spectrum much be�er. �e noise �oor level at 1.4 MHz is
reduced by a factor ∼3, compared to the tighter clamping, and agrees much be�er
with the simulation.

From these �ndings, we conclude that the smaller mirrors are signi�cantly
more sensitive to clamping conditions, and must be clamped with less force to
maintain good agreement between between simulation and reality. Further, the
non-axis-symmetric mode at 1.3 MHz is split into two large modes by the clamping,
e�ectively reducing the width of the mirror mode free region.

8.5 Delivered Mirrors – Optical Properties Characterization

�e mirrors were ordered with respectively 10 ppm and 500 ppm transmissivity
at 852 nm. �e transmissivities as a function of wavelength, as per the manufac-
turer datasheet can be seen in Fig. 8.9. Note that the trace for the 10 ppm coating
is scaled by a factor 100, to be�er show both traces on one plot. �e two traces
are both nicely centered on the design wavelength of 852 nm. �e re�ection band-
width is slightly narrower for the high re�ection coating, meaning that tuning to
higher or lower wavelength slight increases the ratio )10ppm/)500ppm from 0.02 at
852 nm to 0.026 at at 810 nm. �is essentially means that the cavity overcoupling
is roughly constant as the wavelength is changed to lower values. Going to higher
wavelengths changes the ratio a bit more; at 900 nm the ratio is 0.05.

To assess the speci�ed re�ectivities, we assembled a cavity with one of each
mirror. �e cavity length was measured by �nding the fsr, which was found to
be 0.1376 nm, or 28.4 GHz, corresponding to a cavity length of 5.27 mm. �e cavity
linewidth was then measured for the entire tuning range of our Ti:Sapph laser, as
depicted in Fig. 8.10. �e measured values were then compared to the expected
linewidth, assuming 8 ppm of residual sca�ering and coating losses, independent
of wavelength (orange line). We see overall very good agreement between the
measured and expected linewidths, for the range where the transmissivities were
speci�ed in the datasheet, with some disagreement the further from 852 nm we
tune (e. g., ^meas slightly below ^calc for _ ∼ 810 nm).
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Figure 8.8: Measured mirror modes of new mirrors. Simulated spectrum with & = 100
(black line), and measured spectra with high clamping torque (low & , blue line) and low
clamping torque (high & , orange and green lines). Top: zoom on the relevant region 0.8 MHz
to 1.8 MHz, bo�om: full spectrum. Spectra are calibrated by the use of a phase modulation
calibration tone at 1.5 MHz.
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Figure 8.10: Cavity linewidth with the new mirrors. A
cavity of length ! = 5.3 mm was assembled, and the
cavity linewidth measured for entire tuning range of
our Ti:Sapph laser. For the range where datasheet val-
ues are available, we calculate the expected linewidth,
which matches well with the measured values. By
tuning the optical wavelength we are able to change
the cavity linewidth from ∼ 2 MHz to 1 GHz – almost
an order of magnitude.

b ( ) c

In this chapter we discussed our e�orts in designing and buying new mirrors,
in order to improve both the mechanical and optical properties. �e majority of
the e�ort was focused on reducing the mirror sizes, to obtain a sparser mechanical
mode spectrum, with larger spectral regions with no added mirror noise.

�e new mirrors were not yet implemented into the experiment at the time
where the entanglement results were obtained, but are currently being investigated
and implemented in the next iteration of our experiment. �e mirror have also
been put to use in the Fock experiment, and in the group of Albert Schließer.

q

At the same time, this concludes Part II, where we discussed the new cavity
design for cavity optomechanics in a hybrid experiment (which was successfully
used in the entanglement experiment), including a numerical model for evaluating
and the new mirrors.
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(1) Also Ti:Al2O3, from the chemical composi-
tion of sapphire.

(2) M Squared (2013). SolsTiS User Manual.
Version 10.0.

Illustration on opposite page: epr trajectories.
Trajectories start at the small dots, with uncon-
ditional uncertainty of the larger circles, and
end at the large dots, with conditional uncer-
tainty of the smaller circles. See Chapter 10,
particularly Fig. 10.7.
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The Hybrid Setup

“ Wenn es doch bei dieser verdammten �antenspringerei bleiben
soll, so bedauere ich, mich mit der �antentheorie überhaupt beschä�igt
zu haben.

E. Schrödinger

A brief overview of the technical aspects of the hybrid setup. Lasers,
detection and acquisition, basic data analysis.

Having described in detail the design of our optomechanical design in Part II, and
the two constituent systems and the theoretical ideas in Part I, we are now ready to
tackle the practicalities of a hybrid quantum system.

�is chapter will be a small potpourri of technical aspects of our experiment.
Lasers, locking, data acquisition, etc.

9.1 Experimental Eqipment and Details

9.1.1 Lasers

9.1.1.1 M Squared Ti:Sapph

�e main laser of our experiment is a titanium-sapphire (Ti:Sapph(1)) from M
Squared. �is more or less o�-the-shelf laser has been the workhorse for a good
handful of years now, and o�ers many features that bene�t an experiment like
ours.

�e laser is a SolsTiS-7W-SRX-F (M Squared 2013)(2), pumped by a 7 W Sprout
diode pump at 532 nm.It features �ber pick-o� of light, for absolute wavelength
locking by a wavemeter, a reference cavity and an eom in the laser cavity. At the
time of delivery the laser was continually tunable all the way from 720 nm to above
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Figure 9.1: Ti:Sapph drawing. �e laser
cavity, formed by four mirrors, M1-M4,
contains a Ti:S rod as a gain medium, an
optical diode (isolator), an etalon and a
piezo for tuning, and a birefringent �lter
for broad tuning. �e light exits through
the �at mirror M4, and a small amount of
light is picked o� for the reference cavity.
Reproduced from M Squared datasheet,
text changed.

(3) �e strict de�nition of “shot noise limited”
is by some taken to be “less than 3 dB above
shot noise”, as then shot noise makes up
most of the noise. In practice, we o�en use
a stronger requirement, which is “adding no
detectable amount of noise”.
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Figure 9.2: Power output of a Ti:Sapph
laser similar to ours as a function of the
pump power. _ = 852 nm. �e laser
output power is well approximated by a
linear function with a slope of 0.33 W/W
above a threshold of 2.51 W (orange
curve), with the exact numbers depending
on things like the laser output coupler
transmission etc.

(4) Michał Parniak et al. (2021). “High-
frequency broadband laser phase noise
cancellation using a delay line”. In: Opt.
Express 29.5, pp. 6935–6946.

the cesium �2 line at 895 nm, with an power output of around 1 W with 7 W of
input power.

By locking the laser to an High-Finesse WS6-600 we get rather good absolute
frequency precision, as well as acceptable short time locking stability. As we will
see later, we typically lock the laser ∼ 3 GHz detuned from the atomic transition,
and the atoms can thus easily accept 100 MHz of frequency dri�, which is only
a couple of percent change in the detuning. �e optomechanical cavity will be
locked to the laser, and does not care about frequency dri�, as long as the lock can
follow.

Another good thing about the Ti:Sapph laser is the generally good noise per-
formance; since we care about the digni�ed quantum �uctuations of our light,
it is paramount that we are shot noise limited. In the amplitude quadrature, the
Ti:Sapph su�ers from relaxation oscillations, which give rise to a distinct hump
of excess noise at low frequencies. �e peak moves up in frequency as the pump
(and thus output) power is increased. In Fig. 9.3 I plot the amplitude quadrature
psd measured in direct detection for a similar laser to the one used in our experi-
ment, for di�erent pump powers. Apart from some sharp electronic noise peaks,
all traces are shot noise limited above 1.25 MHz, while for the lowest powers the
traces are shot noise limited(3) already well below 1 MHz. Since we care about
having the lowest possible noise around 1.35 MHz, it is important for us to use
the lowest pump power that we can. In practice we most o�en use around 2 W of
pump power, giving approximately 100 mW of output power at 852 nm.
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Figure 9.3: Relaxation oscillations in the amplitude quadrature of a Ti:Sapph laser. As the
power is increased, the characteristic hump moves to higher frequencies. For lower powers,
the spectrum is shot noise limited at the frequencies of interest for us, around 1.35 MHz.

�e phase quadrature noise of a laser is harder to measure, requiring either
beating it with a another laser with known or much lower phase noise, or beating
the laser with itself in a delay line setup, such as that presented in Parniak et al.
(2021)(4). Here we note simply that phase noise has not been found to be a major
contributor of noise in our experiments. For experiments with stricter phase noise
requirements, such as the mechanical Fock state experiment performed here in
�antop, phase noise sets a lower bound to the a�ainable ground state cooling
level; therefore phase noise cancellation such as the scheme reported in Parniak
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(5) C. Wieman and T. W. Hänsch (1976).
“Doppler-Free Laser Polarization Spectroscopy”.
In: Phys. Rev. Le�. 36 (20), pp. 1170–1173.

et al. (2021) can be a necessity. For the hybrid experiment, the atoms are insensitive
to the level of phase noise, the interferometers (lo1/lo2 and detection) is insensi-
tive as long as the interferometer arms are kept reasonably balanced (i. e., the op-
tical path lengths are close to equal), and the mechanics, while sensitive, is helped
by the fact that we are probing the system with very low powers. Measurements
performed on the Ti:Sapph for the Fock experiment reveals approximately 1 shot
noise unit of phase noise at an optical power of 1 mW at a frequency of 1.37 MHz.
�is means that for our powers of %<,in ∼ 10 μW, the classical phase noise contribu-
tion is much below the shot noise level. Even for signi�cantly higher lo2 powers,
the phase noise contribution is expected to not contribute signi�cant driving of the
mechanics.

�e srx laser model has a stated short time rms linewidth of < 50 kHz when
locked to the reference cavity. However, we o�en want to use the fast external
input, which is not available when the reference cavity is utilized. When the refer-
ence cavity is disabled, the short time rms linewidth is < 10 MHz in free running
operation. �e fast and slow piezo inputs are connected to two di�erent parts of
a dual stack piezo actuating the same mirror. �e fast input has a scan range of
80 MHz with a sensitivity of 3.4 MHz/V and a �at frequency response up to 30 kHz.
From there, the response drops gradually to about 1 MHz/V at 100 kHz. If the laser
is locked to the reference cavity, the laser servo will a�empt to cancel out all inputs
to the fast input; M Squared recommends that only ac signals above ∼25 kHz be
applied in this case. �e slow input is connected to a the long-throw part of the
dual piezo stack, and o�ers a much wider scan range of approximately 25 GHz, but
with a bandwidth of only 50 Hz at a sensitivity of 2.5 GHz/V. �e same consider-
ations about simultaneous locking to the reference cavity applies, but the much
slower bandwidth essentially means that any slow piezo input while locking to the
reference cavity leads to no tuning, while pu�ing strain on the locking servo.

A nice feature of the bandwidth of the fast piezo input is that the response
at the frequency of our membranes is so low that we do not have to worry about
directly inducing �uctuations at 1.3 MHz.

�e 7 W pump is shared with a similar Ti:Sapph laser from M Squared, which
is primarily used in the Fock experiment. Pump power is split by a simple _/2-
waveplate and pbs setup, which is usually set to split the light 50:50. �e lasers
are located on a 2 m by 1 m honeycomb breadboard, placed on top of our larger
optical table and suspended on passive isolation mounts (i. e., rubber feet with
air cushioning). �is setup provides excellent mechanical isolation of the laser
from the rest of the optical table, and minimizes laser frequency �uctuations from
disturbances when working on the optical setup.

9.1.1.2 Lasers for Atomic Pumping and Repumping

While the Ti:Sapph provides the probe light for the system, pump and repump light
for the atoms are provided by a set of lasers from Toptica.

�e pump laser is DL Pro, delivering ∼30 mW (nominal output 55 mW) at
895 nm, and the repump laser is a DL-100 delivering ∼60 mW at 852 nm.

�e lasers are locked to their own polarization rotation spectroscopy setup
(Wieman and Hänsch 1976)(5). �is modulation-free locking technique relies on on
one beam spin-polarizing the atoms and a counter-propagating beam sampling the
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(6) Spectrum Instrumentation GmbH (2020).
M2i.49xx Datasheet. Version 7.5.2020.

(7) Hamamatsu Photonics K.K. (2019). S5971,
S5972, S5973 series datasheet.

resulting rotation of the light polarization. �e technique allows for Doppler-free
spectroscopy, and o�ers convenient zero-crossings for all resonances.

A�er locking, the two lasers are combined into a single �ber, which is sent to
the atomic part of the setup.

9.1.2 Acquisition System and Detectors

9.1.2.1 daq card

Digitization of the photodetector signal is performed with a M2i.4931(6) digital
acquisition (daq) card from Spectrum Instrumentation GmbH. �e card has
four channels, which can be linked into two pairs for di�erential detection. �e
input range is from ±200 mV to ±10 V in six discrete steps and has 16 bit of resolu-
tion. It can sample up to 30 MS/s on all four channels simultaneously, with 512 MB
(256 MS) of memory, or around 2 s of full speed acquisition on all four channels, or
8 s full speed acquisition on a single channel. All inputs can be either 50 Ω or 1 MΩ
terminated.

�e card is controlled by a homebuilt piece of so�ware, built using LabVIEW,
which exposes the relevant parameters to the experimenter, handles transforma-
tion into the Fourier domain etc., as well as saved the averaged spectra as binary
�les for data storage e�ciency.

9.1.2.2 High �antum E�ciency Balanced Detectors

For quantum (shot noise) limited detection in the frequency region of interests we
rely almost solely on homebuilt balanced photodetectors. �e detectors use the
Hammamatstu s5971(7) diodes, which o�er rather good quantum e�ciency (qe),
good frequency response up to 100 MHz and suitable power handling at a very
modest price of less than 30 € per diode.

�e typical response for the diodes are displayed in �gure Fig. 9.4, according to
the datasheet, which gives the response in A/W. By calculating the number of pho-
tons in 1 W at a given wavelength and comparing the current (A = C/s), one may
calculate the quantum e�ciency. At 852 nm it is typically around 89 %, although
some variation exists between di�erent fabrication runs, and our experience is that
the values are more o�en higher than lower. More importantly, the response is
measured with a protective glass lid on top of the diode, which leads to around 8 %
optical loss (∼4 % at each surface due to simple re�ection, c.f. Fresnel’s equations).

Correcting the response and quantum e�ciency by a factor 1/(1 − 0.04)2 as
a crude estimate of the losses, leads to the dashed lines in Fig. 9.4, bringing the
estimated quantum e�ciency of the diodes to around 96 %.

�e home-built detectors (“bac”-detectors) (see schematic in Appendix D)
is a balanced detector using two s5971 diodes. It can be built in several di�erent
con�gurations, using di�erent opamps. If used for heterodyne measurements, the
electronic noise close to the beat frequency can be suppressed by a notch �lter.
A�er the diodes, follows �rst a transimpedance ampli�er (converting the photocur-
rent into a voltage), a �lter and a second (inverting) ampli�cation stage. �e output
is split into a “dc” part and an “ac” part (with the low frequencies suppressed by a
simple capacitor in series). �e ac signal is used for data acquisition, while the dc
part is suitably lowpassed and used for locking the detection lo phase. Removal of
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Figure 9.4: Response of a typical s5971 diode. Solid lines are values from the datasheet, as
well as the response with a quantum e�ciency of 100 % (orange). Correcting the response
and quantum e�ciency by a factor 1/(1 − 0.04)2 estimates the a�ainable response achievable
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Figure 9.5: Calculated bac detector
frequency dependent gain, for the bac3
detector. See schematic and component
choice in Appendix D.

(8) �is includes, but is not limited to, using
the detector to measure the visibility between
two beams. Since the gain for �uctuating parts
is signi�cantly higher, a beat signal between
two beams can be signi�cantly larger than the
average signal, thus giving (naı̈ve) visibilities
well over 100 %.

(9) Proportional–Integral–Di�erential, refer-
ring to three distinct types of feedback, with
adjustable gain for each.

the dc part from the signal used for data acquisition allows for higher resolution
in the digitization, which would be otherwise have to be signi�cantly coarser to
avoid saturation of the input dacs in the daq card. �is is especially true if the
light is not balanced, either because the detector is being used in this way on pur-
pose, or because we are measuring an optical quadrature di�erent from the phase
quadrature (which is generally measured when the dc signal equals 0).

To increase the permissible amount of light on the detector before saturating
the second ampli�cation stage, the gain of the detector is non-trivial, as depicted
in Fig. 9.5. Frequencies below ∼ 1 kHz has a signi�cantly lower gain than frequen-
cies in the range 0.1 MHz to 10 MHz. As long as the frequencies we care about are
safely in a region with �at gain, we are safe. However, for applications where the
detector is used in a non-balanced fashion, and the dc value must be compared to
the �uctuations, the gain curve poses very real problems(8).

9.1.3 Cavity Locking

�e practical tasks of locking cavities and interferometers requires some kind of
pid(9) circuitry.

In the hybrid experiment, the absolute laser frequency is locked with a slow
time constant, approximately 3 GHz blue-detuned from the cesium d2 line. In many
other optomechanical experiments, the cavity resonances are �xed, and the laser
tuned to these, but the atoms prevents us from doing that. We therefore lock the
cavity to the laser instead. In the simplest case, we use the transmission from the
cavity, detected by an apd, and simply “slope-lock”, i. e., (a�empt to) maintain a
constant power level transmi�ed through the cavity.Slope locking has the distinct
advantage of being very good at approaching a resonance from far away – a very
useful feature when sideband cooling is necessity for locking. However, the slope
lock is not ideal, for a number of reasons, including the non-zero error signal at the
lock point.

To get a be�er signal-to-noise ratio for the locking circuitry we most o�en
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(10) L. Neuhaus et al. (2017). “PyRPL (Python
Red Pitaya Lockbox) — An open-source so�-
ware package for FPGA-controlled quantum
optics experiments”. In: 2017 Conference on
Lasers and Electro-Optics Europe & European
�antum Electronics Conference (CLEO/Europe-
EQEC), pp. 1–1. doi: 10 . 1109 / CLEOE -
EQEC.2017.8087380.

(11) Eric D. Black (2001). “An introduction to
Pound–Drever–Hall laser frequency stabiliza-
tion”. In: American Journal of Physics 69 (1),
pp. 79–87.

transition from the simple slope lock to dither locking, once an initial cavity lock
has been obtained. We dither one cavity piezo at ∼60 kHz, which happens to be a
quiet window in our spectrum. �is small modulation can be extracted by suitable
iq demodulation, and used as an error signal for locking.

Where earlier iterations of the experiment used analog lock boxes (the New
Focus LB1005-S pi lock box from Newport was used for a long time), we now
rely almost exclusive on fpga-based locks. To run the experiment, we employ a
handful or more of Red Pitaya STEMlab 125-14 boards, with the excellent PyRPL
(Neuhaus et al. 2017)(10) so�ware. �ese cheap (∼ 400 €) boards o�er excellent
programmable feedback electronics, while also functioning, with PyRPL, as oscillo-
scopes, vnwa, asgs, iq demodulators etc.

A�er generation of a feedback signal by the Red Pitaya, we split the signal
into a fast and slow part. �e slow part is ampli�ed, and fed to one cavity piezo.
�e fast signal is sent to the fast input of the Ti:Sapph laser, which helps minimize
fast, but small excursions of the cavity, without negatively a�ecting the atoms.

For previous experiments, e. g., Møller et al. (2017), a much more elaborate lock
scheme was used. Here, a two tones were created with separate aom, one of which
was then modulated for pdh locking (Black 2001)(11) on resonance. By changing the
relative aom rf drive frequencies, the probe detuning could then be tuned freely.
However, we found that for cw experiments, the needed �exibility was unnec-
essary, provided li�le practical bene�t, but at the price of added amplitude and
phase noise from the modulation. For pulsed experiments, the picture is changed;
here, maintaining a weak lock beam on at all times is a practical necessity, and pdh
locking is a strong candidate.

9.2 Experiment Layout

Having now covered the individual components of our setup, we move on the
setup itself. In Fig. 9.6, a simpli�ed conceptual drawing of the setup is displayed.

1

d1

lo2

lo3

dfringe

lo1
�dc

hwp
qwp

d2

Figure 9.6: �e outline of the hybrid experimental setup. See main text for details. Figure
reproduced from Rodrigo A. �omas (2020).

�e two systems, the atoms (black dots in a red box) and the membrane (grey

https://doi.org/10.1109/CLEOE-EQEC.2017.8087380
https://doi.org/10.1109/CLEOE-EQEC.2017.8087380
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line in the cavity marked by a blue box), are probed sequentially. �e 852 nm
Ti:Sapph laser enters at the top, where it is split by a polarizing beam spli�er (pbs).
�e transmi�ed beam, lo3, will become the lo for the homodyne setup, while the
re�ected beam becomes lo1 and lo2, the beam for atomic read out and membrane
read out respectively.

lo1 and lo2 are split by another pbs; lo1 is double passed through the atomic
setup, and upon returning to the pbs the linear input polarization has been ro-
tated into orthogonal polarization, or in the Stokes parameter language, the atomic
response has been wri�en into (H and (I . When impinging on the pbs, these polar-
izations will be transmi�ed, and the big classical �eld lo1 will be re�ected.

lo2 is retrore�ected onto the pbs, where most of it is re�ected into the same
direction as the atomic sidebands, while a small part is transmi�ed, allowing us to
lock the relative phase of lo1 and lo2 using detector d1, feeding back on a piezo
mounted mirror in the lo2 path. A�er transmission and re�ection on the pbs the
quantum signal from the atoms and lo2 are co-propagating, but in di�erent po-
larizations. On the pbs marked 1 , most of lo2 is dumped, together with a small
fraction of the quantum signal; a�er transmission most of the signal is retained,
but a new, strong co-polarized lo has been e�ectively added. �is removal of lo1
and addition of a new lo2 is necessitated in part by the di�erent power require-
ments of the two systems, in part by the requirement of having the lo respectively
cross- and co-polarized, and in part by the necessity to of introducing a phase de-
lay, i , between the atomic response and the lo driving the mechanics, as described
in Chapter 10.

�e new lo plus atomic signal is then transmi�ed through a pbs and coupled
into the cavity. A�er interaction the light leaks primarily ([ ∼ 92 %) into the same
direction from where it came; a quarter wave plate acts, together with the pbs, as
a poor man’s isolator, sending the light towards the �nal balanced detection setup
with detector d2, where we perform homodyne detection of the phase quadrature
of lo2 with lo3. �e optical quadrature to be detected is controlled via a piezo in
the lo3 path.

�e description above is, although essentially correct, also somewhat simpli-
�ed. In Fig. 9.7 the full setup is presented. �e drawing is a quasi-correct drawing
of the setup as it was actually built, in the sense that all optical components used
are represented in the drawing, and their location is approximately correct. �e
drawing represent roughly 2 × 1 m of optical table.

While discussing the rationale behind every single change from the idealized
setup above would be unhelpful, a couple of points are worth highlighting.

Starting from the atoms, the presence of a polarization rotation detecting setup
in single pass is very helpful when aligning the cell, as well as for calibrating some
quantities, such as discerning single pass from double pass e�ects.

A fourth lo (in purple) is derived from the lo1/lo2 beam before the “atoms
pbs”. �is beam is split into two beams, the �rst being the “atoms lo”, used for
performing phase quadrature homodyning of the atomic signal without the op-
tomechanical part, using the “atom bac” detector. �e second part of the beam is
sent through a �ber coupled eom, allowing us to inject (white) noise into the atoms,
or for performing cifar, introduced in Section 5.10. For performing cifar, we need
to lock the phase between the modulated light and lo1; this is facilitated by the
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Figure 9.7: Detailed drawing of the experimental setup. See main text for details.
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bacN detector.
A�er the “projection pbs”, a Faraday rotator (Thorlabs io-5-850-hp) is placed,

i. e., a Faraday isolator with it’s polarizing elements removed to minimize optical
losses. �e isolator prevents light from leaking backwards from the optomechan-
ical cavity to the atoms. �e isolator is e�ectively completed by the the pbs’es on
either side, and e�ectively complements the poor mans isolator compromised of
the “mechanics pbs” and the quarter wave plate before the cavity (qwp-cav).

A�er leaving the cavity, the light is re�ected on the “mechanics pbs”. In the
simpli�ed setup it is overlapped with lo3 on this pbs as well. In reality, this leads
to a signi�cant amount of lo3 being re�ected o� the pbs, towards the atoms. �is
is solved by overlapping them on a subsequent pbs, at the price of adding an extra
waveplate and pbs into the quantum light’s path.

To minimize mechanical cross-coupling from the piezo controlling the phase
of lo3 with, e. g., the optomechanical cavity, lo3 is �ber coupled and sent to a small
breadboard, which is vibration isolated from the rest of the table. �is does come at
the price of increased polarization/amplitude �uctuations of lo3, however.

Finally, we have several di�erent supplementary beams of light and detectors
for the optomechanical part of the setup. From the back, we can send light from
the Ti:Sapph, with or without an eom in the path. �e eom is used for things like
omit, but sets a rather low limit on optical power due to limitations on the �ber
eom used. For high power beams from the back side (to compensate for the low
cavity transmission through the ) = 20 ppm high re�ector mirror) the beam with-
out an eom may be used. On either side we have an apd for high gain detection of
weak beams.

9.3 The Periodogram Estimator - Finite Time psd

When the light has been detected by our photo detectors, and converted into a volt-
age and �nally digitized by our computer, we are le� with a (discrete) time-domain
signal. Since we almost always want information in the frequency domain, where
we are also doing most of our theoretical modeling, we must somehow transform
the data. In the same way that one can in principle choose di�erent estimators for
an average value, e. g., the aritmetic mean, the median, the harmonic mean, the
weighted mean etc., several di�erent recipes for obtaining frequency domain in-
formation from time domain data exist, each with their own statiscial biases and
e�ciency. Our choice of estimator is the periodogram. As we will see in the follow-
ing section, the estimator is extremely handy given our way of expressing spectral
densities and susceptibilities, introduced already in Section 3.0.2, but it also comes
with a couple of features or caveats, of which a diligent experimentalist should be
aware.

9.3.1 Discrete Time

�e previous discussions have assumed continuous functions 5 (C) – alas, no data
we as physicists acquire is continuous, and we must adapt our descriptions to this
unfortunate reality. In reality, we always deal with a �nite number of samples
acquired in a �nite time, In this case, we can approximate, following Nielsen (2016),
the continuous Fourier transform with the discrete Fourier transform (dft). With
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(12) �e dft is in principle distinct from the
fast Fourier transform, fft, that one o�en
encounters, and which is a numerical method
for computing the dft.

(13) Or # , depending on how one looks at it,
but since # /2 of those are redundant, only
# /2 of those are independent estimates.

the # data points 5= , sampled at the frequency �S, the dft is given by:

dft[5 ] (<) ≡
#−1∑
==>

5=e−2πi<=/# , (9.1)

where the< index runs from 0 to # − 1 and maps to real frequencies as

< →< × �S/# . (9.2)

�e ratio �S/# is known as the resolution bandwidth (rbw), i. e., the frequency
di�erence between two di�erent<’s, and equals the inverse of the acquisition time,
) = rbw−1 = # /�S. Where the continuous time Fourier transform was de�ned for
positive as well as negative frequencies, the dft is de�ned, at �rst glance, for posi-
tive frequencies only; however since the function is periodic, indices

[−#2 , #2 − 1
]

(for even # ) could have been used as well, bringing back the negative frequency
components.

�e (�nite) continuous time Fourier transform can now be approximated from
the dft(12) as

5) (S) =
) /2∫

−) /2

5 (C)e−iSC dC ≈
#∑
==0

5=e−2πi<=/# ΔC = dft[5 ] (<) ΔC, (9.3)

where ΔC = 1/�S. Comparing to the de�nition of the of the psd in (3.13), de�ning
the periodogram, %5 as

%5 (<) =
1
)
|dft[5 ] (<)ΔC |2 = 1

#�S
|dft[5 ] (<) |2 , (9.4)

which converges to the psd as ) →∞, and will be our estimator of choice for spec-
tral densities. A�er a lot of mathematical gymnastics, we thus arrive at a rather
straightforward recipe: acquire the data, 5= , take the dft, take the absolute square
and divide by #�S. %5 now estimates ( 5 5 .

Since the input signals, 5= , will always be real, it can be shown that only the
positive frequency, or similarly the �rst half of the indices,< < # /2, is of impor-
tance. �e rest of the trace contains the same information. From this, it should also
be immediately apparent that the highest frequency one can discern is �S/2, the
so-called Nyquist frequency.

As noted by Nielsen (2016), the periodogram is a rather ine�cient estimator
for the spectral density at a given frequency. Where the mean, e. g., estimates one
number from # values, the periodogram estimates # /2(13) numbers from # data
points. Intuitively, this leads to the statistical power of the estimator being smaller
than one might have hoped for, and a fact we shall discuss next.

9.3.2 Variance of the Periodogram Estimator

Perhaps the most striking feature of the periodogram is the variance of the spectral
density, which for Gaussian noise approximately can be stated as:

�e standard deviation of the periodogram estimator is equal to the
expectation value.
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(14) �is e�ectively changes the resolution
bandwidth of each trace, with higher = giving
lower spectral resolution, and is sometimes
known as Bartle�’s method. A similar method,
Welch’s method uses overlapping segments,
and thus introduces correlation between these.

(15) And higher moments, should we so desire;
a�er all we know that the distribution is
non-Gaussian. But we will refrain from digging
deeper than needed.

Or in other words: the variance is the mean value squared. Given that the peri-
odogram can assume only strictly positive values, this naturally means that the
disitribution cannot be Gaussian, as just one standard deviation below the mean is,
by de�nition, not an allowed value.

�at this is the truth can be ver�ed by suitable derivations, by looking up the
answer (see Broersen (2006, p. 52)) or by a simple example, the la�er of which will
follow here.

To demonstrate this property I take a long quasi-continuous time-domain
data�le for our hybrid sytem. In total, 300 traces of each 250 000 samples, sam-
pled at 14 MHz, is concatenated into a single stream of data. �is stream is then
chopped into a varying amount (=) of sub-samples, ranging from 30 to 3000(14).
�ese samples are then individually transformed by the periodogram estimator,
and for each frequency we can then compute the mean value and the standard
deviation(15).

For = = 300, 50 of such transforms are plo�ed together in Fig. 9.8. Taking the
mean and standard deviations across all traces, for varying values of =, one obtains
the traces of Fig. 9.9. �e traces are o�set vertically by a factor 3 between each
trace for be�er visual separation.

It is clear from these plots that the statistical standard deviation of our chosen
estimator has the curious property that the uncertainty is directly proportional to
the observed value. Averaging traces of course reduces the uncertainty of the mean
value by 1/√=, so for example for = = 300, the uncertainty of a given mean value is
equal to 5.8 % of the value.
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Figure 9.8: 50 periodograms plo�ed together.

q 2 Q

�is concludes this somewhat technical exposition of the experimental setup,
data acquisition and some technical aspects of data analysis. Armed with this
knowledge, we are now ready to �nally tackle the hybrid experiment in all its
glory.
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Figure 9.9: Periodogram mean values (le�) and standard deviation (right) for varying num-
ber of samples. �e traces are o�set vertically by a factor 3 between each trace for be�er
visual separation.
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Entanglement Between Distant

Oscillators

“ Once you’ve ruled out the impossible then whatever is le�, however
improbable, must be the truth. �e problem lay in working out what was
impossible, of course. �at was the trick, all right.

�ere was also the curious incident of the orangutan in the night-
time. . .

Terry Pratchett, Guards! Guards!

We report the creation and experimental veri�cation of entanglement
between the spin and mechanical subsystems of the hybrid setup. �is
section contains the main scienti�c result of the thesis.

Finally, we are ready for the big �nale. In this chapter, I will present the results of
our paper (Rodrigo A. �omas et al. 2020), showing the creation of an entangled
epr state between our membrane and our spin system.

10.1 epr States

Until now, we have been dealing with conjugate variables -̂ , %̂ of single systems,
with the commutators [-̂ (C), %̂ (C)] = i. �is non-vanishing commutator limits the
product of variances, and thus also their sum, as derived in Chapter 3. In particular,

Var
(
-̂

)
+ Var

(
%̂
)
≥ 1. (3.64 revisited)

Such a fundamental limit does not exist for a pair of commuting variables. One
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(1) A. Einstein, B. Podolsky, and N. Rosen
(1935). “Can �antum-Mechanical Description
of Physical Reality Be Considered Complete?”
In: Phys. Rev. 47 (10), pp. 777–780.

(2) Or, in the original German, “spukha�e
Fernwirkung”.

(3) Ryszard Horodecki et al. (2009). “�antum
entanglement”. In: Rev. Mod. Phys. 81 (2),
pp. 865–942.

(4) Lu-Ming Duan et al. (2000). “Inseparability
Criterion for Continuous Variable Systems”. In:
Phys. Rev. Le�. 84 (12), pp. 2722–2725.

such pair of variables can be constructed as

-̂epr =
1√
2

(
-̂m − -̂s

)

%̂epr =
1√
2

(
%̂m + %̂s

)
.

(10.1)

Such a class of collective variables is named a�er the authors, Einstein, Podolsky &
Rosen, of a seminal 1935 paper(1), and related to the concept of what Einstein called
“spooky action at a distance”(2), i. e., the non-local correlations, that allows precise
determination of one quantum system by measurement of another. Preparing two
systems in an epr state, which is non-local by virtue of the constituent systems
being spatially separated, allows for a non-local collapse of the wavefunction of
one system, by measuring the other.

At the same time, epr states is an important building block, or resource, for
more general quantum networks – for a good review on entanglement as a re-
source for quantum technologies see Horodecki et al. (2009)(3). Simultaneously,
there is a recognition that the successful implementation of a large scale quantum
network may bene�t from harnessing the advantages of di�erent constituent sys-
tems, for the creation of hybrid quantum networks. For example, one quantum
system may have an advantage that makes it suitable as a quantum memory, but
not as a transducer of quantum signals (or vice versa). �erefore, demonstrating
the creation of such entangled states between di�erent types of quantum systems
is of wide interest.

For the variables de�ned above, we have

[-̂epr, %̂epr] = 1
2

( [
-̂m − -̂s

] [
%̂m + %̂s

] − [
%̂m + %̂s

] [
-̂m − -̂s

] )
(10.2)

=
1
2

(
-̂m%̂m + -̂m%̂s − -̂s%̂m − -̂s%̂s − %̂m-̂m + %̂m-̂s − %̂s-̂m + %̂s-̂s

)
.

(10.3)

Using the fact that operators of di�erent system commute, the terms involving
operators of both systems drop out, and we are le� with

=
1
2

(
[-̂m, %̂m] − [-̂s, %̂s]

)
. (10.4)

[-̂epr, %̂epr] = 1
2 (i − i) = 0. (10.5)

Since these epr variables commute, there is no fundamental lower bound to their
sum of variances. In fact, Duan et al. (2000)(4) shows that if the sum of variances
goes below the single system limit of 1, the two constituent system are inseparable,
i. e., entangled.

�e epr pair above consists of the di�erence of positions and the sum of mo-
menta. �e other combination, the sum of positions and di�erence of momenta, is
also an epr pair, and also has a vanishing commutator. In fact, transforming one
into the other is simply related to rotating the coordinate system for one system
by π, sending, e. g., -̂s → −-̂s, which also �ips the sign of the momentum, while
the physics must stay the same since our choice of coordinate system should not
in�uence anything.
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Taking the generalization of epr states a �nal step further, we allow for two
more degrees of freedom in the de�nition of an epr pair: we allow for di�erent
weights of the two systems, and we allow an arbitrary rotation of the spin degrees
of freedom into one another. �is is akin to de�ning -̂s and %̂s in a coordinate
system rotated around the mean spin direction �G . In total

-̂
0,V
epr =

1√
1 + 02

(
-̂m − 0-̂ Vs

)

%̂
0,V
epr =

1√
1 + 02

(
%̂m + 0%̂Vs

)
,

(10.6)

where 0 is the weight and

-̂
V
s = -̂s cos V + %̂s sin V

%̂
V
s = %̂s cos V − -̂s sin V,

(10.7)

are the rotated spin variables. Verifying that these also have a vanishing commuta-
tor, [-̂0,Vepr, %̂

0,V
epr] = 0, is straightforward. For notational brevity, the superscript (·)0,V

will be suppressed from now on, with the understanding that we are discussing the
generalized form.

q 2 Q

%̂m

-̂mlm
� ls

%̂s

-̂s

8 (C )
%̂out

L%̂ in
L

Figure 1.2: (revisited) Cartoon model of the hybrid experiment. A single beam of light, %̂ in
L

probes the two systems in a cascaded fashion. �e �rst system is the collective spin (sub-
script s) of a cesium ensemble precessing in a magnetic �eld, and the second is the motion
of a membrane (subscript m) embedded in an optical cavity. A�er interaction, the output
light %̂out

L is detected, and the photocurrent 8 (C) digitized. �e photocurrent is analyzed with
a �lter  (C) to estimate the epr variables, Eq. (1.1). By aligning the magnetic �eld along
the direction of the collective spin, the spin oscillator realizes an e�ective negative mass,
and precesses the opposite way of the positive mass membrane. Figure also appears in
Rodrigo A. �omas et al. (2020).

Now that we have de�ned what kind of quantum states we are a�er, we brie�y re-
visit the cartoon picture from Chapter 1, repeated here as Fig. 1.2. While simpli�ed,
the cartoon accurately captures the essential features in our system. A single beam
of light, %̂ in

L , probes the spins �rst, then the mechanics and the output light, %̂out
L , is

detected as a photocurrent 8 (C). �e spins are aligned with the mean spin along an
external magnetic �eld, and thus realize an e�ective negative mass oscillator – and
thus precesses the opposite way in phase space than the (positive mass) mechani-
cal oscillator. By electronically �ltering the photocurrent 8 (C) with the �lter  (C),
we seek to estimate the epr variables.

�e slightly more realistic, but still simpli�ed setup is depicted in Fig. 10.1.
Here we have added the complexities involved in the double pass readout of the
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spin system, the stripping of lo1 and addition of lo2, detection of the mechani-
cal system in re�ection instead of transmission, as well as the homodyne detec-
tion with lo3, instead of the simpli�ed direct detection, allowing us to measure
the phase quadrature of light, %̂out

L . �is picture is enough for understanding the
physics of what is going on – for more technical details, Chapter 9 contains more
detailed (and correct) setup drawings.

lo2

hwp
B

Input lo3

Cryostat 4 K

lo1

i
qwp

Homodyne detectio
n

pbs

Spin
ensemble Phase o

Membrane

Figure 10.1: Simpli�ed experimental setup for entanglement generation. �e local oscillator
lo1 reads out the spin system precessing in the magnetic �eld �, with the quantum sideband
�elds wri�en into the orthogonal light polarization. A�er spli�ing o� lo1, lo2, phase
shi�ed by i relative to lo1, is mixed with the sidebands. A�er projection into a common
polarization, this light is sent to the mechanical system, which is probed in re�ection. Final
homodyne measurement of the cascaded hybrid system is performed with lo3, with phase
o . See main text for details. Inset: Mode shape of the mechanical mode under investigation
(absolute displacement, linear scale). �e �gure and caption also appears in Rodrigo A.
�omas et al. (2020).

�e rest of the chapter will continue as follows: �rst we will glue together
the input-output relations for the two systems into a complete hybrid model, al-
lowing us to discuss the important concept of quantum back-action evasion in an
experimental context, before discussing how to go from input-output relations
to an expression for the spectral densities observed. We turn then to quantum
back-action in practice, and discuss the achieved qbae. A�er that we discuss our
�ltering procedure, used to extract information about the epr variables most e�-
ciently, including the important point of deterministic conditional variance. Armed
with the �ltering theory, we analyze our experimental data, and obtain the �nal
result: the time dependent conditional epr variance, presented in Section 10.5.

10.2 Hybrid Input-Output Relations

From Chapter 5 and Chapter 3 we have the input-output relations for the spin and
mechanical system respectively. Now we glue those expressions together, for a
complete model of our hybrid spin-mechanical system.

�e schematic representation of our entire system is seen in Fig. 10.2. �e
orange box represent the spin system, with input �eld ˆ̂ in

L,s, spin variables -̂s and
%̂s, thermal noise forces f̂-s , f̂%s , and output �eld ˆ̂ out

L,s .
A�er leaving the spin system, the light �eld encounters various propagation

losses, which we lump together and model as a beam-spli�er loss. For power trans-
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-̂ in
L,s

[

-̂ in
L,[

okout
-̂ out

L,m

-̂ in
L,ex

-̂ cav
L,m

f̂m

%̂m-̂m

-̂ in
L,m

kinia

-̂ in
L,a

-̂ out
L,s

f̂-s f̂%s

%̂s-̂s

Figure 10.2: Schematic representation of the hybrid system. �e light -̂ in
L,s encounters the

spin system (orange box) followed by propagation loss (blue boxes) and phase rotations
(white boxes), before interacting with the mechanical system (blue box). Upon leaving the
optomechanical cavity the �elds are rotated again, before encountering more propagation
and detection losses. In the end, the �elds are detected with homodyne phase o . �is �g-
ure is a modi�ed version of the �gure in Rodrigo A. �omas et al. (2020, Supplementary
Information).

mission e�ciency a (loss 1 − a), the �eld undergoes the transformation

ˆ̂ out
L =

√
a ˆ̂ in

L +
√

1 − a ˆ̂ L,a , (10.8)

where ˆ̂ L,a represents the (vacuum) �eld leaking in through the lossy port.
Apart from simple propagation losses, we may also encounter losses related to

mismatched visibilities, i. e., mismatching beam pro�les, reducing the fringe visi-
bility in an interferometric measurement of two beams. With the usual de�nition
of visibility, two beams of equal intensity and polarization, the visibility may be
extracted experimentally as

+ =
�max − �min

�max + �min − 2�bg
, (10.9)

where � {max,min,bg } represent respectively the maximum, minimum and background
intensities recorded with a photodetector, when scanning the relative phase of the
two optical beams. For a visibility + , we model these losses as a = + 2, i. e.,

ˆ̂ out
L = + ˆ̂ in

L +
√

1 −+ 2 ˆ̂ L,+ . (10.10)

When the sidebands of lo1 is combined with the new lo2 at the output of
the Michelson-type interferometer, the angle i , proportional to the path length
di�erence between the los, determines a rotation of the quantum �uctuations, as

^out
L = Ui^

in
L . (10.11)

One should keep in mind that we are dealing with quantum �uctuations only, and
that the big classical �elds are only carried implicitly. �e same kind of rotation
applies when the output of the hybrid system is �nally homodyned with lo3. In
this sense, the interferometer described by this equation has only one input and
output mode, because we neglect noise in the second port and classical �elds are
omi�ed.

We recall the input-output relations of the spin systems, which we found as

ˆ̂ s = 2
√
�sR` ˆ̂ in

L,s + Rf̂s (5.43 revisited)
ˆ̂ out

L,s = ˆ̂ in
L,s +

√
�s` ˆ̂ s = (12 + 2�s`R` ) ˆ̂ in

L,s +
√
�s`Rf̂s. (5.44 revisited)
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(5) Not to be confused with the cavity over-
coupling parameter. I retain this notation for
consistency with Rodrigo A. �omas et al.
(2020).

As depicted in Fig. 10.2, this output is subjected to a loss and rotated, before
becoming the mechanical input �eld,

ˆ̂ in
L,m = Ui

(√
a ˆ̂ out

L,s +
√

1 − a ˆ̂ L,a
)
. (10.12)

�e rotation Ui is determined by us, and physically represents the phase o�set of
lo2 from lo1. Since the last term, representing uncorrelated shot noise, is indeed
uncorrelated, any rotations on this term can be neglected; there is shot noise in
both quadratures. In general, the rotation matrix mixes the spin response phase
and amplitude quadratures, such that the input to the optomechanical cavity con-
tains the spin response in both quadratures, even for spin qnd (Zs = 0) readout. As
noted in Chapter 3, the input light undergoes further cavity induced rotations of
the quadratures whenever J ≠ 0.

From Section 3.7.3 we recall the solution for the mechanical output optical
�eld

ˆ̂ out
L,m = Uᵀ

kout
(^in_

−1 − 12)Uᵀkin
ˆ̂ in

L,m +
√
^in^exU

ᵀ
kout

_−1Uᵀ
kin

ˆ̂ ex
L,m

− √^inU
ᵀ
kout

_−1Hjm00f̂m,
(3.140 revisited)

as well as the mechanical response in Eq. (3.138), which by insertion of the rotated,
lossy spin signal becomes

-̂m = −jm00I_
−1Uᵀ

kin

(√
a^inUi [(12 + 2�s`R` ) ˆ̂ in

L,s +
√
�s`Rf̂s]

+
√
(1 − a)^inUi ˆ̂ L,a +

√
^ex ˆ̂ ex

L,m

)
+ (j−1

m00 − IG−1H)−1f̂m. (10.13)

We here note, that the mechanical system is not driven solely by its own thermal
noise and the light shot noise, but also driven by the spin thermal noise as well as
the spin optical response wri�en into the optical quadratures leaving the spin.

Finally, the light undergoes another amount of loss, parametrized by [(5), as
well as a homodyne detection with the angle o ,

ˆ̂ meas
L =

√
[Uo ˆ̂ out

L,m +
√1 − [ ˆ̂ L,[ . (10.14)

�e homodyne detection picks out only a single quadrature of ˆ̂ meas
L , in particular

%̂meas
L . Again, the uncorrelated noise originating from the losses is independent of

rotations.
Plugging the (lossy, rorated) solution for ˆ̂ out

L,s into the solution for ˆ̂ out
L,m led to

Eq. (10.13); plugging this into expression for ˆ̂ meas
L leads to the full model

ˆ̂ meas
L =

√
[UoU

ᵀ
kout
(^in_

−1 − 12)Uᵀkin
×(√

aUi
[
(12 + 2�s`R` ) ˆ̂ in

L,s +
√
�s`Rf̂s

]
+ √1 − aUi ˆ̂ L,a

)
+ √[^in^exUoU

ᵀ
kout

_−1Uᵀ
kin

ˆ̂ ex
L,m

− √[^inUoU
ᵀ
kout

_−1Hjm00f̂m + √1 − [ ˆ̂ L,[ .

(10.15)

Going from the last term and working our way towards the beginning, the terms
represent: uncorrelated noise associated with the detection losses; thermal noise on
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the mechanics, transduced by the optomechanics and the cavity; light shot noise
leaking in through the high re�ector mirror and other losses in the cavity, again
transduced by the cavity; the last term in the parenthesis represents light noise
associated with intersystem losses; the term before that thermal spin noise; and
lastly, the �rst term, proportional to ˆ̂ in

L,s represents the qba of the two systems
and their interference.

�is equation describes the entirety of the physics of our system, and allows
us to �t the model to experimentally measured values and thereby established
relevant correlations. However, what it has in terms of correctness it absolutely
lacks in terms of clarity. We therefore also seek an approximate solution, inspired
by the simplifying assumptions made individually for the

10.2.1 Simpli�ed Input-Output Relations

To begin, we recall the simpli�ed input-output relations for the individual systems

^out′
L,m = ^ in′

L,m +
√
�m

(
iZm
1

)
-̂m, (3.150 revisited)

^out
L,s = ^ in

L,s +
√
�s

( −iZs
1

)
-̂s, (5.50 revisited)

as well as the simpli�ed expressions for the system responses

-̂m = jm [2
√
�m (-̂ in

L,m + iZm%̂
in
L,m) + f̂m], (3.147 revisited)

-̂s = js

[
2
√
�s

(
1
−iZs

)ᵀ
ˆ̂ in

L,s + f̂s

]
= js

[
2
√
�s (-̂ in

L,s − iZs%̂
in
L,s) + f̂s

]
,

(5.49 revisited)

and where the system susceptibilities are

jm (S) = lm0
(l2

m −S2 − iSWm) (3.148 revisited)

js (S) = ls0
(l2

s −S2 − iSWs) , (10.16)

where W 9 = W 90 + δW 9 = W 90 + 2Z 9�9 , and �9 is the readout rate, with 9 labeling the two
systems ( 9 ∈ m, s). One should also recall that for our experiments ls0 < 0, so the
susceptibilities di�er by a sign.

Combining these simpli�ed input-output relations, and adjusting the phase i
to π, so that ˆ̂ in

L,m = −√a ˆ̂ out
L,s +
√

1 − a ˆ̂ L,a , we obtain a simpli�ed expression for the
phase quadrature of the output light

%̂out
L = %̂ in′

L +
√
[

(√
�m-̂m −

√
a�s-̂s

)
(10.17a)

≈ %̂ in′
L +
√
[

(
− √a

[
js
js0
�mjm + jm

jm0
�sjs

]
2-̂ in

L,s+
√
�mjm [f̂m +

√
(1 − a)�m2-̂L,a ] − jm

jms

√
a�sjsf̂s

)
,

(10.17b)
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In this notation, %̂ in′
L includes the input shot noise, the shot noise contributions in

the phase quadrature related to losses as well as the broadband spin noise from the
spins, e�ectively treating the broadband noise as simply an elevated noise level.

�e second line of Eq. (10.17b) contains the uncorrelated noise sources reach-
ing the detector, respectively the thermal noises and the qba arising from the shot
noise related to intersystem losses. �e thermal forces on the two subsystems are
suppressed by the presence of dynamical cooling δWj > 0, entering through the
susceptibilities j 9 . Further, the spin thermal response is �ltered by the mechanical
response, expressed in the term jm/jms, with the cross-susceptibility

j−1
ms (S) ≡ j−1

m0 (S) − 2iZs�m. (10.18)

�is non-local suppression of the spin thermal noise dynamically cools the epr
variables, improving the system performance. �e e�ect is related to omit, and
internally in qantop sometimes referred to as “omit cooling”.

�e �rst line of Eq. (10.17b) contains the correlated contributions to our signal.
�is is the quantum back-action contribution, and as we see they can interfere. By
rewriting the bracketed term as

jmjs
jm0js0

[�mjm0 + �sjs0] , (10.19)

highlighting the requirements for total destructive interference of the qba: �mjm +
�sjs0 = 0, or, in other words

lm
!
= −ls, Wm0

!
= Ws0 and �m

!
= �s. (10.20)

Curiously, total backaction evasion of the spin does not require unity transmission
between the two system – whatever spin response reaches the mechanics can be
cancelled. However, uncorrelated shot noise does leak in, driving the mechanics,
leading to uncorrelated mechanical backaction.

Our systems obviously do not meet the criteria in Eq. (10.20). It is, however,
still possible to obtain signi�cant quantum backaction evasion; the noise evasion
is maximized for lm = −ls, even for unmatched intrinsic linewidths, Wm0 ≠ Ws0.
�e form of the qba interference term, as wri�en in 10.17b may be understood
as follows: the spin system produces amplitude squeezed �uctuations -̂ out

L,s ∼
(jS/js0)-̂ in

L,s. �ese amplitude �uctuations drive the mechanical system, which
maps them into the phase quadrature response according to �mjm, Second, the
spin qba response %̂out

L,s ∼ �sjs-̂
in
L,s is subsequently �ltered by the mechanical sys-

tem according to jm/jm0.
An important feature of this e�ects is that the functions j 9/j 90 suppresses

near-resonant spectral components in a bandwidth W 9 with maximal suppression
W 90/W 9 at S ∼ l 9 (for δW 9 > 0). �e mechanical noise is reduced by the amplitude
squeezing produced by the spins, and the spin response is �ltered in an omit-
like e�ect. Since Wm0/Wm � 1, the spin qba response is very strongly suppressed,
whereas the amplitude squeezing by the spin is more moderate Ws0/Ws ≈ 0.6, lead-
ing to only a slight reduction of the mechanical noise.
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(6) In principle, having access to -̂meas
L would

also be nice, but alas, we can only measure a
single quadrature with our homodyne setup.

10.2.2 Matrix Formulation

�e equations (5.43), (10.13), and (10.15) fully describe the system dynamics, ex-
cept for one important factor: all the noise operators are, by de�nition, zero mean
stochastic variables. �is means that naively propagating these input operators
through the equations, one �nds (to no big surprise, hopefully) that all output vari-
ables also have zero mean. Luckily, we are (mostly) not a�er trajectories (the �rst
moments of the operators), but a�er �uctuations (second moments), expressed as
power and cross spectral densities. Further, the equations are bulky and somewhat
hard to work with. We proceed, in hopes of �nding a way of transforming our
equations into a form, where we can use them to �t our experimental data, and
quantify the correlations among the various constituents .

We note that the equations are all linear in the input noise operators, which
means that the entire system may be described by a single rectangular matrix [ ,
connecting these input noise operators to the output operators of interest, as

Wout = [W in, (10.21)

where the inputs are all the relevant noise operators,

W in ≡ (f̂-s , f̂%s , f̂m, -̂
in
L,s, %̂

in
L,s, -̂

in
L,a , %̂

in
L,a , -̂

in
L,ex, %̂

in
L,ex, -̂

in
L,[, %̂

in
L,[)ᵀ, (10.22)

and the outputs are the operators of interest to us(6), namely

Wout ≡ (-̂m, %̂m, -̂s, %̂s, %̂
meas
L )ᵀ . (10.23)

From the input vector we calculate the symmetrized power (and cross) spectral
densities, as

Ȳ inX (S −S ′) = 1
2

〈
W†in (S) [W in (S ′)]ᵀ + W in (S) [W†in (S ′)]ᵀ

〉
, (10.24)

where [·]ᵀ signi�es a row-vector, while † indicates Hermitian conjugation of the
individual vector elements, not the vector as a whole. For the input noise operators
here, S̄in is a square matrix with diagonal entries

diag(Ȳ in) =
(
(f-s f-s

, (f%s f%s , (fmfm , (-L-L , (%L%L , (-L-L , (%L%L +
a

1 − a (s,bb,

(-L-L , (%L%L , (-L-L , (%L%L

)
, (10.25)

and all other elements equal to zero. �at is, all o�-diagonal elements, the cross
spectral densities, are zero, and thus all noise operators are uncorrelated. All light
noise operators represent vacuum, and therefore have their indices suppressed for
brevity. �e �rst three terms represent the thermal Langevin forces on the spins
and mechanics, respectively, and are given by

(f-s f-s
(S)X (S −S ′) ≡ 1

2

〈
f̂-,†s (S)f̂-s (S ′) + f̂-s (S ′)f̂-,†s (S)

〉
= Ws0 (=s + 1/2)X (S −S ′) (10.26a)

(f%s f%s (S)X (S −S ′) ≡
1
2

〈
f̂%,†s (S)f̂%s (S ′) + f̂%s (S ′)f̂%,†s (S)

〉
= Ws0 (=s + 1/2)X (S −S ′) (10.26b)

(fmfm (S)X (S −S ′) ≡
1
2

〈
f̂†m (S)f̂m (S ′) + f̂m (S ′)f̂†m (S)

〉
= 2Wm0 (=m + 1/2)X (S −S ′), (10.26c)
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while the rest of the operators represent light shot noise, except for the term in-
volving (s,bb, which includes the broadband atomic noise (scaled by the intersystem
losses) as an extra noise term. We include the broadband response here mostly out
of convenience. At �rst look the scaling factor a/(1 − a) can look odd, as it diver-
gres for a → 1; however, in the model the broadband noise is injected in a port
with weight

√
1 − a (for the �eld), while the true weight should have been

√
a . We

therefore need to multiply the noise psf by a and divide by (1 − a).
Once [ has been found and Y in speci�ed, we may �nd the power and cross

spectral densities of the output operators as

Yout = [ †Y in[ , (10.27)

where the (·)† now is taken to be the conjugate transposed matrix. Yout is a 5 × 5
matrix, with each entry containing the cross or power spectral density of two
given operators, for example the (1, 1) element contains the power spectral density
of the mechanical oscillator position, Y-m-m , and the (2, 5) element contains the
cross spectral density between the mechanical oscillator momentum and the phase
quadrature of the measurement light, Y%m%meas

L
.

De�ning the sub-matrix Yms as the �rst four rows and columns of Yout, allows
us to de�ne the steady state unconditional covariance matrix

\ u =

∞∫
−∞

Yms (S) dS
2π , (10.28)

where the elements are the (co)variances of the operators in the order de�ned
in Wout. For example, element (2, 4) is the covariance between the mechanical
momentum and the spin momentum in the steady state, and the (3, 3) element is
the variance of the spin position -̂s.

With these variances, one can compute the epr variance – as it turns out, the
unconditional variance of the epr variables is signi�cantly above the entanglement
bound, and we must employ �ltering of the collected data to get the variance of the
state below the entanglement bound.

While �ltering is absolutely a necessity for our setup, there is in principle
nothing preventing another physical system from displaying unconditional epr
variance below the entanglement bound. In a sense, with such a system, the experi-
menter turns on the experiment, and is guaranteed to have an entangled state. We
need to work a li�le harder, by actually using the measurement data to know the
state well enough. �is will be the subject of Section 10.4.

q 2 Q

�is was a rather long section, so perhaps a short summary is in order. In this
section we derived the full input-output relations for the hybrid system, using
the results from Chapter 3 and Chapter 5. Cascading these expressions, together
with intersystem losses and rotations, led to a model with all relevant physics
included. �is model was simpli�ed, and a number of important e�ects of the
hybrid system were discussed, including qba evasion and the coherent suppression
of thermal noise in the two systems. Finally, we expressed the entire dynamics
in a matrix formulation, which allowed us to compactly describe power spectral
densities of the system operators, given a set of input noise operators, and de�ne
the unconditional covariance matrix.
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10.3 �antum Backaction Evasion

With the full model of our system in place, we are armed to tackle the experimen-
tal data. We turn �rst to the quantum back-action (evasion) (qba(e)) e�ects ob-
served in our system.

In Fig. 10.3a we plot the psd of the mechanics and spins for a situation where
the spin frequency has been increased to |ls | ∼ 1.48 MHz, and the two systems
thus spectrally separated, apart from the broadband atomic noise, (̄bb, which shows
up as an elevated noise �oor for both systems, included in the measurement noise.
We note that the spin response is for practical purposes unchanged for this ∼ 10 %
change of the resonance frequency except for the trivial shi�. �e data (orange)
has been �t to the full hybrid model (blue), which is then used to decompose the
measured spectra into the di�erent components contributing to the total signal,
the two thermal noises, the broadband noise, qba and measurement noise, which
includes shot noise and the broadband atomic noise.

Each system is e�ectively a Lorentzian response, ∝ |j 9 |2, dynamically broad-
ened by the light. For each system, the ratio of qba to thermal noise th can be
evaluated. For the spin system the ratio (qba/th)s = 4.9, and for the mechanical
system (qba/th)m = 19.

1.35 1.36 1.37 1.38
FrequencyS/2π [MHz]

100

101

102

PS
D

[S
N

]

Resonant hybrid

1.35 1.36 1.37 1.38
FrequencyS/2π (MHz)

0.2

0.5

1

| 
-
(S
)|2
/| 

-
(S
)|2 m

ax

Wiener
�lter

1.35 1.36 1.37 1.38
FrequencyS/2π [MHz]

100

101

102

PS
D

[S
N

]

Membrane

1.47 1.48 1.49

Spinsa

b c

-π/2

0

π/2

π

ar
g{
 
-
(S
)}

Data
�eory

Measurement noise
Mechanics thermal

Spins thermal
Backaction

Figure 10.3: Optical phase quadrature power spectral densities for measurement of me-
chanics and detuned spins (panel a le� and right) and hybrid (b), in units of shot noise (sn).
�e individual system responses can be seen in panel a, with the qba (hatched area) and
thermal contributions (solid blue and green). For the hybrid epr system, the qba is reduced,
and the thermal forces �ltered by the susceptibilities of the other system, as discussed in
Section 10.2. �e narrow peak at 1.359 MHz is a laser phase noise peak. Note the logaritmic
H-axis. Panel c depicts the Wiener �lter, discussed in Section 10.4, for the resonant case.

In panel Fig. 10.3b the spins are tuned close to resonance with the mechan-
ics, −ls ≈ lm, by adjusting the magnetic �eld. Here we observe several e�ects
described in the previous section. First, the overall noise is reduced signi�cantly,
compared to a naı̈ve addition of the noise peaks in Fig. 10.3a; in fact, it is even re-
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duced below that of the mechanical system alone. �is is due, �rst of all, to the
destructive interference (or evasion) of the qba, and secondly to the dynamical
non-local cooling discussed in the previous section. We see how the spin thermal
response is very heavily �ltered by the mechanics, whereas the reduction of the
mechanical thermal noise is much more modest. �e slight asymmetry in the hy-
brid response is due to the small, but non-zero spin-mechanics detuning and the
choice of lo2 phase i .

�e qba is reduced by 4.6 dB compared to the sum of qba of the two detuned
systems – this should be compared to the results in Møller et al. (2017), which
reported a maximum of 1.8 dB of suppression of the qba noise compared to the me-
chanics alone; with this metric, we observe a qba reduction of approximately 45 %
or 2.6 dB. �e thermal noises in the resonant case is reduced by 2.5 dB compared to
the sum of individual noises. �ese two reductions together lead to a reduction of
the unconditional variance, de�ned in Eq. (10.28), of the epr system by 5.0 dB from
6.07 to 1.91. �is is still well above the entanglement bound of 1.

In Fig. 10.4, the spin system is scanned across the mechanical resonance, and
the total noise spectrum is recorded for each spin frequency. For |ls | < lm (bo�om
panels), we observe a decrease in noise, i. e., qbae, on the mechanical resonance. In
the bo�om panels we see two distinct peaks, with a distinct peak at the spin res-
onance and one at the mechanical resonance. As |ls | is increased, the two modes
join together to form a single peak, with total noise below that of the mechanics
alone (black lines). As we increase it further, the noise level rises above that of the
mechanics alone, while still being much lower than the sum of the two peaks, be-
fore �nally becoming two separate peaks again for the top panel. Note that the top
two panels vertical axes are changed by a factor 2.

10.4 Wiener Filtering

In this section I will discuss the Wiener �ltering procedure used to extract a condi-
tional estimate of the epr state, as well as the variance of the said estimate.

10.4.1 Wiener Filtering 101

In our experiments we measure %̂meas
L (C), which is turned into a photocurrent 8 (C).

�e basic task is to �nd a �lter  (g), which optimally estimates the desired quan-
tity, e. g., -̂epr from the measurement record 8 (C). Since the estimate depends on
the data, it is a conditional estimate, and it arises from the convolution of the data
and �lter as

- c
epr (C) =

C∫
0

 - (C ′ − C ; C)8 (C ′) dC ′, (10.29)

where the second argument of  - (g ; C) denotes that the �lter is optimized for a �-
nite data record of length C , which is also in this case the time we wish to estimate
the position. Determining the �lter requires detailed knowledge of the systems
equations of motion under probing as well as the noise characteristics. By a stroke
of luck, the equations of motion are exactly what we derived in the previous sec-
tion, and the noise is also a well known property of our system, so we continue.
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�e applicability of such a �ltering technique to quantum systems is however
not obvious. For Gaussian quantum states, and weak, continuous probing with ef-
fective interactions linear in the involved operators, Müller-Ebhardt et al. (2009)(7)

and Miao (2010)(8) proved the applicability of classical �ltering theory. Our optical
probe %̂meas

L (C) and any given observable of our system .̂ (C), with .̂ denoting for
example -̂m or %̂s, together possess two “classical” properties. As summarised in
Müller-Ebhardt et al. (2009)

1. the output optical �elds at di�erent times C and C ′ are individually measur-
able to arbitrary precision, without inducing any fundamental limits, leading
to

[%̂meas
L (C), %̂meas

L (C ′)] = 0 ∀C ≠ C ′ (10.30)

2. the measurement output at the present time does not respond to future
changes in system observables, i. e.,

[.̂ (C), %̂meas
L (C ′)] = 0 ∀C > C ′ (10.31)

With the properties, the only manifestation of quantum mechanics in our detection
system is that it enforces the presence of amplitude and phase quantum noise
in the light. Since the origin of the noise is immaterial to the Wiener �lter, the
approach is applicable to our Gaussian quantum systems.

As a preparation for the �lter itself, we introduce the power spectral density of
the measurement current, which with the correct normalization is de�ned as

(88 = (%meas
L %meas

L
. (10.32)

With this de�nition, the cross spectral density YW,8 , describing the correlation
between the photocurrent and the system operators, is given by the �rst four ele-
ments in the last row of Yout. Finally, we note that any given spectral density can
be converted into time domain correlation functions � (g), by virtue of the Wiener-
Khinchin theorem (see Eq. (3.16)) and the inverse Fourier transform,

�01 (g) = F −1
{
(01 (S)

}
(g) =

∞∫
−∞

(01 (S)eiSg dS
2π , (10.33)

with 0 and 1 labeling two relevant operators.
Our system is driven solely by optical and thermal forces with wide-sense

stationary noise statistics, i. e., both �rst and second moments of all noises are con-
stant, and all covariances depending only on the time di�erence, g = C − C ′ (Broersen
2006). �erefore, the appropriate set of causal �lters Q for estimating the systems
�rst and second moments is the so-called Wiener �lter (Wiener 1964). Convolv-
ing the �lter with the measurement current yields the best unbiased estimate of
the system variables, i. e., the estimate with the minimum mean-square error. In
vectorized form, and for data going back in�nitely far, this then reads

Wc
∞ (C) =

C∫
−∞

Q (C ′ − C)8 (C ′) dC ′, (10.34)
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where Wc = (- c
m, %

c
m, -

c
s , %

c
s )ᵀ is the conditional trajectory; in other words, it is our

best estimate of the positions and momenta given (conditioned on) our data 8 (C)
and knowledge of the systems dynamics, which is re�ected in the �lters.

For a �nite length of data, the optimal �lter may take a di�erent form than
simply truncating the in�nite time �lter, and (as indicated in Eq. (10.29)) therefore
takes the data acquisition time as a meta-parameter,

Wc =

C∫
0

Q (C ′ − C ; C)8 (C ′) dC ′. (10.35)

10.4.2 Finding the Wiener Filter

Having described how �ltering works, we turn our a�ention to actually �nding the
optimal �lter. �is is done by solving the Wiener–Hopf equations, which state that
the optimal conditional estimates, W2 (C), must obey

ĪWc8 (C ′) = ĪW8 (C ′), (10.36)

for all C ′ within the conditioning window. In words, this equation states that the
cross-correlation of the best conditional estimates and the measurement current
must equal the cross-correlation between the theoretically calculated quadratures
and the measurement current. �e right hand term, ĪW8 (C), the inverse Fourier
transform of YW8 , contains the theoretical description of the system, while the le�
hand term contains the �lters, that de�ne Wc, and the cross-correlation with the
measurement current.

For in�nite conditioning time, the Wiener–Hopf equation, Eq. (10.36), can be
stated as

∞∫
0

Qᵀ (−C ′′)�̄88 (C ′ − C ′′) dC ′′ = ĪW8 (C ′) ∀ C ′ ≥ 0, (10.37)

where the vector notation should be understood as a set of equations, one for each
variable in W (for us, 4); the transpose on the le� hand side is arbitrary – one might
just as well have transposed the entire right hand side. Note that the time integral
goes to positive in�nite time from 0, which is compensated for by the minus sign
in the �lter argument. In words, this states the the cross-correlation of Wc and 8 (C)
may be found by convolving the �lter Q with the autocorrelation of 8 , Ī88 , and that
the optimal �lter ful�lls the Wiener–Hopf equation, Eq. (10.36)

For a �nite amount of data, with length C , the integral is limited to the interval
C ′′ ∈ [0, C], and the �lter shape now depends explicitly on C ,

C∫
0

Qᵀ (−C ′′; C)�̄88 (C ′ − C ′′) dC ′′ = ĪW8 (C ′) ∀ C ′ ∈ [0, C] . (10.38)

In this form and for �nite time, the Wiener–Hopf equation can also be easily dis-
cretised and cast in a matrix equation form. �e optimal �lter is then found via
the Levinson–Durbin recursion algorithm. Note that in the �nite-time limit, the
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(9) J. Durbin (1960). “�e Fi�ing of Time-Series
Models”. In: Revue de l’Institut International
de Statistique / Review of the International
Statistical Institute 28.3, pp. 233–244.

Wiener �lter Q (C ′; C) is only de�ned for −C < C ′ < 0, in accordance with the inte-
gration domain in Eq. (10.35).

Discretizing the Wiener–Hopf equation is discussed in more detail in Rodrigo
A. �omas (2020, chapter 11.5.3). �e short version is that, knowing that the auto-
correlations are symmetric around 0, � (g) = � (−g), we can discretize the acquisi-
tion time C into # equally sized time steps ΔC , and express a single equation from
Eq. (10.38) for the variable & as

#−1∑
8=0

�88 (C= − C8 ) & (−C8 ; C)ΔC = �&8 (C=). (10.39)

where C= takes the role of C ′ and C8 the role of C ′′. �is can be wri�en for all C= (but
still for a single variable &) as a matrix product

�̄88 &ΔC = �̄&8 , (10.40)

or less compactly

©­­­­­­«

�88 (C0) �88 (C1) �88 (C2) · · · �88 (C#−1)
�88 (C1) �88 (C0) �88 (C1) · · · �88 (C#−2)
�88 (C2) �88 (C1) �88 (C0) · · · �88 (C#−3)
...

...
...

. . .
...

�88 (C#−1) �88 (C#−2) �88 (C#−3) · · · �88 (C0)

ª®®®®®®¬

©­­­­­­«

 & (C0)
 & (C1)
 & (C2)

...
 & (C#−1)

ª®®®®®®¬
ΔC =

©­­­­­­«

�&8 (C0)
�&8 (C1)
�&8 (C2)

...
�&8 (C#−1)

ª®®®®®®¬
.

(10.41)

�e ΔC can then �nally be absorbed into the de�nition of the discretized �lter.
As noted in Rodrigo A. �omas (2020), the matrix �̄88 is a Toeplitz matrix, which
means the equation for  can be solved e�ectively by the Levinson–Durbin algo-
rithm (Durbin 1960)(9).

�e notation we use here warrants a slight warning. While �88 is a purely mea-
sured quantity—it is a�er all just the autocorrelation of the measurement current—
�&8 is a purely calculated quantity, despite the appearance of the 8 subscript. It is
the predicted autocorrelation of the system variables & with an ideal, noiseless
measurement current 8 .

10.4.3 Stochastic Trajectories with Deterministic Variance

�e trajectories of our systems, and thus our best estimate of said trajectories, Wc,
are stochastic. �is is however not the case for the second moment, the variance, of
our estimate. �is evolves deterministically with the conditioning time, and is given
by

\ c (C) = \ u − \ be (C), (10.42)

with the ensemble covariance matrix of the best estimate given by

\ be (C) =
C∫

0

Q (−C ′; C)ĪW8 (C ′) dC ′ = Cov
(
W,Wc (C)), (10.43)
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which is a 4 × 4 covariance matrix. In the in�nite conditioning time limit, this
reduces to the special case

\ be =

∞∫
0

Q (−C)ĪW8 (C) dC = Cov
(
W,Wc

∞
)
. (10.44)

\ be, for zero conditioning time, C = 0, has zeros in all entries, and the condi-
tional variance equals the unconditional. As the conditioning time increases, the
ensemble variance of the best estimate increases, thus reducing the conditional
variance. To convince oneself of this fact, consider what is the best, but not nec-
essarily good, estimate for W with zero conditioning time? Since no data has been
obtained, the best estimate must be that of a thermal state, which has zero mean
position and momentum. As the conditioning time increases, the di�erent best
estimate trajectories spread out in phase space, increasing \ be.

It also follows from the relation in Eq. (10.42) that only for zero conditional
variance does the variance of the best estimate ever reach unconditional variance.
�is can be understood as the �lter being somehow “conservative” in estimating
the excursions away from zero; the estimation strategy that minimizes the mean
squared error has an ensemble variance that is smaller than the unconditional
variance, i. e., the size of the thermal state.

�e relation \ be (C) = Cov(W,Wc (C)) in Eq. (10.43) follows directly from the
Wiener–Hopf equation, Eq. (10.36), by convolving it with Q .

10.4.4 Optimum epr Variables

As noted in Eq. (10.6), generalized epr variables can be constructed to optimize the
entanglement. We now explain how we �nd the optimum combination. �e param-
eter V describes the rotation of the spin variables, cf. Eq. (10.7), while 0 describes
the relative weight of the spin and mechanics.

We write the generalized epr variables as a vector product of some matrix,
u, and the vector W . �e columns of u are unit-length vectors, and describe the
relative weights of the di�erent variables as

-̂epr =
-̂m − 0-̂ ′m√

1 + 02
= uᵀ-W (10.45)

%̂epr =
%̂m + 0%̂ ′m√

1 + 02
= uᵀ%W (10.46)

ˆ̂ epr = uᵀW (10.47)

We can now compute an epr variance (conditional or unconditional) + =
Var

[
-̂epr, %̂epr

]
, with the covariance matrix \

+0,V = uᵀ-\u- + u
ᵀ
% \u% , (10.48)

which can be numerically minimized for each spin-mechanics detuning, to obtain
the optimal entanglement

+opt = min0,V+0,V . (10.49)
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10.5 Putting the Theory to Work

In Section 10.3 we discussed the qbae realized experimentally, and showed that the
model could successfully be ��ed to experimental spectra. Speci�cally in Fig. 10.3,
the detuned spectra of mechanics and spin, as well as their resonant spectrum plus
the corresponding Wiener �lter was displayed. We now discuss in more detail how
these �ts were performed, and what we believe we can learn from them.

As noted above, we record spectra of the two systems detuned, and for varying
amounts of spin-mechanics detuning (see Fig. 10.4). We �t our complete hybrid
model to these spectra collectively. Some of the parameters are shared between
all traces, while the parameters allowed to change are atomic frequency, lo1–lo2
phase, i , cavity detuning J and mechanical coupling rate 6. �e variation in ls
should be self-explanatory, while the last three deserve an explanation.

In an ideal setup, lo1 is stripped completely from the quantum sidebands a�er
interaction with the spin system; in reality a small part of the 350 µW in lo1 leaks
towards the mechanics on the pbs. Fluctuations in the phase i , which we estimate
to be around 3°, thus turn into a �uctuation of the power in lo2, due to interference
of lo1 and lo2. Since we lock our cavity in transmission using a simple dither lock,
changes in power lead directly to changes in detuning, J, and coupling rate, 6.

�e �t result (discussed in more detail below), thus returns a full set of parame-
ters describing the complete hybrid system. For the near-resonant case, the model
is displayed in Fig. 10.5 – this is the same spectra as Fig. 10.3b, but over a wider
range. �e wider range also displays the colored (non-�at) spectral features in and
outside of our mechanical bandgap. �ese noise peaks are what we seek to reject
with our �lters.

With the model, the photocurrent and optimized parameters from the �ts,
we compute the photocurrent autocorrelation �̄88 and the system-photocurrent
crosscorrelation �W8 , which allows us to compute the Wiener �lters  W . �e (fre-
quency space) Wiener �lter for the resonant case is displayed in the bo�om panel
of Fig. 10.5. We here see how the �lter rejects colored noise peaks in the mea-
sured spectrum. Noticeably, the �lter bandwidth is much wider than the system
linewidths, scaling with the readout rates, �9 .

In the spectrum we see a host of things that we exclude from our state estima-
tion. Most prominent are the membrane modes outside of the bandgap, i. e., below
∼1.3 MHz and above ∼1.53 MHz. In the bandgap we observe a wide peak, related
to the mechanical mode of one of the end mirrors, as well as the four mechani-
cal peaks corresponding to the four other modes introduced in Chapter 4. Two of
these are virtually uncoupled, and are treated simply as noise, while the two modes
with highest frequencies are included in the full model, because of their consider-
able optomechanical coupling. For the case where the spins are detuned far from
the mechanical mode, the separation between these modes and the spin mode is
only around 2 kHz, so some interference is possible. While they are included in
the full model, they are excluded from the �lter, leading to the dip in the �lter at
around 1.51 MHz.

�e full model �t also allows us to calculate the unconditional variance \ u,
cf. Eq. (10.28). �is variance is displayed for the near-resonant case in Fig. 10.6a
and for the detuned systems in Fig. 10.6e. Panel c displays \ u for the optimized
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Figure 10.5: Wide range resonant hybrid spectrum and Wiener �lter. Top panel (a) shows
the near-resonant hybrid spectrum from Fig. 10.3(b). �e spectrum is broken into elec-
tronic noise (dark orange), measurement noise (shot noise and broadband atomic noise),
hybrid model (blue line) with contributions from quantum back-action (hatched area)
and spin and mechanical thermal noise (green and blue areas). �e mechanical modes at
lm/2π ∼ 1.52 MHz are included into the model, due to an appreciable optomechanical cou-
pling and back-action for these modes. �e grey line shows the measured phase quadrature
power spectral density in units of shot noise (sn). Bo�om panel (b) shows the normalized
Wiener �lter amplitude (blue) and phase (orange), which most successfully rejects the
noise peaks not accounted for in the model, i. e., out of bandgap modes, mirror modes, laser
phase noise, and the other mechanical modes in the bandgap (including the coupled modes
included in the model �t). Note that the Wiener �lter bandwidth is signi�cantly higher than
the hybrid system linewidth.
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choice of epr basis for the near-resonant case.
For the separate systems-basis ({-m, %m, -

′
s, %

′
s }), the near-resonant case

shows unconditional variances of around 4.3 for the two system, with strong cor-
relations between the position and momentum variables of the two systems, e. g.,
Cov(-m, -

′
s) = 3.40. Importantly, the positions are positively correlated, while the

momenta are anti-correlated, as we expect for the simultaneous measurement of a
positive and negative mass system.

With the Wiener �lter, we can also calculate the variance of the best estimates,
\ be, cf. Eq. (10.44), and from there the �nal conditional variance, using Eq. (10.42).
We display \ c for the near-resonant case in Fig. 10.6b. Comparing to the uncon-
ditional case, we see that the mechanical variance is reduced slightly, while the
atomic variances and the covariances remain mostly unchanged. �e anti-diagonal,
however, is zero—this is ensured by our choice of V , which for the non-epr basis is
arbitrary. �e unchanged covariances and spin variance tell us that the �lter is not
able to separate the two systems e�ectively, when they are resonant.

Comparing to the far detuned case in panels e and f, we observe �rst that the
initial variances are lower, with almost no covariances between the two systems.
However, now the �lter can e�ciently reduce the variance of both subsystems.
+c,m = Varc [-m] + Varc [%m] = 1.6, signi�cantly lower than the unconditional
variance of 4.12, but not below the entanglement bound. A similar reduction is
seen for the spins.

With the full conditional variance matrix \ c for the near-resonant case, such
as displayed in Fig. 10.6b, we can also use the procedure described in Section 10.4.4
to �nd the choice of epr variables the minimizes the �nal conditional variance.
For the near-resonant case, the result is shown in Fig. 10.6c and d. �e ��ing
routine returns the optimum combinations of { 0, V }, which for this detuning is
0 ≈ 0.85, V ≈ 20°. Panel c shows an unconditional variance for the epr variables
of 1.92, while the conjugate variables have +u = 15.33. �is shows that the back-
action evasion for the epr variables comes with the expected pile-up of back-action
noise in the other combination of variables. While for example the di�erence of
positions can now be known well, much less is known about the sum of positions.

Applying the �lter to the epr basis leads to the covariance matrix in Fig. 10.6d.
We see here the main result of this thesis: the reduction of the conditional variance
of the epr variables of the hybrid system below the separability criterion,

+ = 0.83 < 1. (10.50)

�e obtained �lters discussed so far were the (approximately) in�nite-time
�lters. Turning now to the time evolution of the conditional variance as a function
of conditioning time, we plot in the right hand panel Fig. 10.7 the evolution of
the conditional variance for the epr variables in the resonant and far-detuned
cases respectively. Both start out signi�cantly above 1, but with the resonant case
much lower, due to qbae and non-local cooling. As conditioning time increases,
the variances are reduced; detuned case to around 2, and for the resonant case to
around +c = 0.83 for a conditioning time of 110 µs.

In the le� hand panel, we plot the slowly varying epr variables

˜̂ c
epr = UlsvC^

c
epr, (10.51)
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Figure 10.6: Covariance matrices. �e le� hand column displays unconditional (co)variances,
and the right hand column conditional variances. �e rows, from top to bo�om are for the
near-resonant case in the separate-systems basis, the near-resonant case in the epr basis and
�nally the original basis for the far-detuned systems.
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where we remove the majority of the time evolution, by going to a frame rotating
at approximately the system resonances. �e choice of the frequency lsv/2π =
1.37 MHz is somewhat arbitrary; for anything but the strictly resonant case, lm =
|ls |, there is not a single well-de�ned slowly varying frequency. �e example
trajectory shown starts out with ˜̂ c

epr = (0, 0)ᵀ , as expected. As time progresses,
the system di�uses through phase space. Also shown is the uncertainty of the
initial state,

√
+u and the conditional uncertainty,

√
+c for a conditioning time of

C = 110 μs. Also see the stylistic rendering of a larger set of trajectories on 162.
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Figure 10.7: epr trajectory and variance. Le� hand panel slows the time evolution of one
conditioning run from C = 0 μs to C = 110 μs, along with the unconditional and conditional
uncertainties,

√
+D/2 . �e right hand panel shows the deterministic time evolution of the

conditional variances for the resonant and far detuned cases. As the conditioning time
increases, we see a reduction of the conditional variance towards their �nal values of 0.82
and ∼2. �e circles show the initial and �nal variances for the trajectory in the le� hand
panel. �e shaded areas mark the 1f uncertainty of the conditional variances, discussed
below.

10.5.1 Variying the Larmor Frequency

We now turn to an investigation of the entanglement as a function of the spin-
mechanics detuning. As explained above, we �t the full hybrid model to a detuning
series of spectra simultaneously; while the previous section focused solely on the
two cases with near-resonant and far-detuned systems, the full analysis procedure
for any other Larmor frequency is virtually identical.

In Fig. 10.8 we plot a subset of these spectra (top panels), as well as the �nal
conditional variances in the bo�om panel. �e spectra are identical to those shown
in Fig. 10.4, but repeated here for a clearer connection between the spectra and
�nal variances. For each detuning, the combination of 0 and V that minimizes the
�nal + is found; we �nd that 0 is approximately constant, while V is approximately
20° for the orange trace, and varies by tens of degrees as ls is changed.

We observe robust entanglement over a window more than 10 kHz wide –
signi�cantly more than the linewidths of the two systems. �is shows, that even
though there is a modest overlap of the bare responses, the non-local cooling and
qbae still manages to correlate the systems su�ciently for our detection to mea-
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(10) Daniel Foreman-Mackey et al. (2013). “em-
cee: �e MCMC Hammer”. In: Publications of
the Astronomical Society of the Paci�c 125.925,
pp. 306–312.

sure the epr variable with enough precision to prepare the systems in an condition-
ally entangled state.
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Figure 10.8: Hybrid psds and epr variances for di�erent spin-mechanics detunings. Finite
spin-mechanics detuning tunes the distinguishability of the two oscillators, thus reducing
the achievable conditional epr variance. Top panels: hybrid spectra (light colored lines)
plus full model �t (dark lines), as well as mechanics-only psd and �t (grey and black lines
respectively). Vertical dashed lines show the spin resonance frequency. Note the di�erent
H-axes. Bo�om panel: epr variance with 1f statistical uncertainties a a function of of spin
detuning, |ls | − lm. Orange line denotes the ground state variance of a single oscillator
system, i. e., the entanglement bound. �e dark grey line shows the model bound, i. e., the
ideal epr variance in the absence of experimental noise sources, deduced from the full model
with parameters from the orange point. Black points correspond to traces not shown; see
Fig. 10.9.

10.5.2 Uncertainties

�e claims we have made so far are strong claims, and dependent on an advanced
analysis of systems subjected to a set of very strong simpli�cations. We should
therefore also spend some time discussing how certain we are about our conclu-
sions.

To produce the statistical error bars shown in, e. g., Fig. 10.8, we perform
Markov Chain Monte Carlo (mcmc) simulations (Foreman-Mackey et al. 2013)(10).
mcmc is a numerical tool for Bayesian inference, evaluating posterior distributions
for parameters, given a model and data with uncertainties. More importantly, by
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evaluating any other function, for example calculating the conditional variance, on
the same posterior distribution of the variables, the correct posterior distribution of
the variances is also available.

�e full model has a large number of parameters; as discussed above many
of those are shared across all traces, except for Larmor frequency, the phase i ,
cavity detuning J and optomechanical coupling 6, with the la�er three varying
due to �uctuations in the lo1-lo2 phase, i . We establish prior estimates for all
these parameters, by using the characterization techniques explained in Chapter 3,
Chapter 4 and Chapter 5, as well as by other more mundane techniques, such as
simply measuring power losses etc.

�e majority of the statistical error bars come directly from the variance of the
periodogram estimator, discussed in Section 9.3.2. For each detuning we have 200
traces, leading to a relative error bar of 1/√200 = 7 %. Further, small uncertainty
in the shot-noise (sn) level leads to another percent relative uncertainty. To com-
pensate for the presence of small mirror modes, buried in the shot-noise, we add
another 0.1 units of sn, which signi�cantly improves the �ts.

We run the mcmc algorithm with 150 walkers for 4000 burn in steps, and 6000
subsequent sampling steps. From these 150 × 6000 = 900 000 points in our # -
dimensional parameter space, which together sample the posterior distribution,
we randomly select 1000 parameter combinations, for which we compute the en-
tanglement. �e choice of the number of samples for entanglement calculation is
set by the computational cost of evaluating the conditional variance. Sampling the
1000 points from a larger set of mcmc points reduces the co-variance of the points
sampling the posterior log-likelihood landscape.

In general the mcmc results, which are listed in Appendix A, agree well with
the priors. �e most noteworthy exception is the inter-system quantum e�ciency,
a . �e posterior value, estimated by measuring trivial power losses, and estimation
of the cavity mode matching gave a prior of aprior = 0.65 ± 0.03, while the mcmc re-
turned a = 0.53 as the optimal value. �is excess inter-system loss is unaccounted
for, but will only reduce our entanglement. Possible explanations for the discrep-
ancy include an overestimation of the mode matching or polarization-dependent
losses for the quantum signal.

Further, we obtain slightly lower posterior detection e�ciency [ = 0.77 than
the prior, [prior = 0.80 ± 0.03 and higher overcoupling ^in/^ = 0.925 ± 0.005 than
^in/^prior = 0.91 ± 0.01 �e atomic parameters are kept reasonably within the prior
bounds with �s,prior/2π = (18 ± 1) kHz and posterior �s/2π = (20.3 ± 0.4) kHz as
well as =s,prior = 0.72 ± 0.05 and posterior =s = 0.81 ± 0.05.

As stated, we calculate the conditional variance for the di�erent Larmor fre-
quencies 1000 times. �e traces and the distribution of calculated +c is shown in
Fig. 10.9. All the distributions are reasonably Gaussian, and we therefore feel con�-
dent in calculating for each of them a simple mean and standard deviation, which
we take as the �nal uncertainty on the conditional variances. Most notably, the
near-resonant trace discussed extensively above, has the �nal conditional variance
of

+c = 0.83 ± 0.02 < 1, (10.52)

which places it squarely below the entanglement limit.
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Figure 10.9: Histograms of variances from Monte Carlo simulations. On the le�, the traces
for di�erent Larmor frequencies, vertically o�set for clarity; dashed lined mark the Larmor
frequency for each trace. Panel b, 1000 conditional variances calculated by sampling the pos-
terior distribution of parameters a�er mcmc simulation. �e distributions are all reasonably
Gaussian, allowing us to extract a mean and statistical uncertainty for each +c, plo�ed in the
bo�om panel of Fig. 10.8.
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Conclusion & What’s Next

“ Harry thought over his collected experimental data. It was only the
most crude and preliminary sort of e�ort, but it was enough to support at
least one conclusion: “Aaaaaaargh this doesn’t make any sense!”

Harry Potter
- Harry Po�er and the Methods of Rationality, Eliezer Yudkowsky

A brief summary of the thesis and the results. We put this work and
our progress into a wider context, and try to give some idea about where
the hybrid experiment in particular is moving.

11.1 Conclusion

In this thesis I have presented our experimental implementation of a hybrid spin–
mechanics quantum interface, which allowed us to demonstrate the experimental
creation of an entangled Eistein–Podolsky–Rosen state. �e work was previously
reported in Rodrigo A. �omas et al. (2020), as well as in the Ph.D. thesis by Ro-
drigo A. �omas (2020); whereas the la�er focused mostly on the spin system, this
thesis has been focused primarily on the optomechanical part of the hybrid system.

In Chapter 1 and Chapter 2, we set the stage for hybrid quantum spin–mechanics
experiments, by discussing the motivations and the scienti�c endeavors in the �eld,
before and concurrently with the Ph.D. project. In Chapter 3 and Chapter 4, the
optomechanical subsystem was introduced. In Chapter 5 the atomic spin ensemble
was introduced. �e needed formalism and theory were detailed, and some practi-
cal aspects of implementing good light–ma�er quantum interfaces were discussed.

Part II concerned the design of a new optomechanical cavity, which allowed
us to more easily operate the mechanical system in a hybrid se�ing; speci�cally,
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(1) Meaning here, that it is a solid object which
can physically collide with objects; a feature
the spin system does not have.

(2) I. e., a�er the publication of the entangle-
ment results.

by adding electronic tuning of both resonance and 2:I position of the membrane,
while also facilitating easier alignment. Chapter 6 explained the chosen design for
our cavity assembly, Chapter 7 detailed a numerical model informing the design
choices, and �nally Chapter 8 described the related task of designing new mirrors,
for improved optical and mechanical properties.

In the �nal Part, Part III, the two subsystems were brought together into one
hybrid setup, in Chapter 9. With the formalism established for the individual sys-
tems in Part I, tying the two together into a full model for the system was pre-
sented in Chapter 10. We then experimentally demonstrated �rst improved qbae of
up to 4.6 dB compared to the qba for two detuned systems, or 2.6 dB compared to
the mechanical system alone – a signi�cant improvement over the 1.8 dB reported
in Møller et al. (2017).

A�er demonstrating improved quantum back-action evasion, we moved on
to the main result of the thesis: the successful demonstration of entanglement be-
tween the motion of our mechanical resonator and the collective spin of the spin
system. Finding an optimal Wiener �lter, allowed us to demonstrate the determin-
istic evolution of the conditional variance; demonstrating that this (conditional)
variance went below that of a single system (+ < 1) directly corresponding to
demonstrating entanglement. Optimal estimation of the epr state returned

+c = 0.83 ± 0.02 < 1. (10.52 revisited)

�is entanglement result rea�rms the roles of room temperature spin en-
sembles, cavity optomechanics and particularly their combination into a hybrid
spin–mechanics system, as viable candidates for implementing practical quantum
resources, for example in teleportation based quantum protocols, or for improv-
ing measurement sensitivities beyond the standard quantum limits for continuous
measurement of motion.

A key aspect of our achievement, is the disparate nature of our two entangled
systems; this makes them useful as sensors for di�erent things; the spin senses
magnetic �eld, while the mechanics does not, and the mechanics responds to ”clas-
sical”(1) forces in a very di�erent manner than the spin.

Whereas entanglement has been previously created and shown in a number
of di�erent systems, our work marks the �rst creation of entanglement between
separated, disparate material quantum systems, extending the range of systems in
the hybrid quantum toolbox.

11.2 The Next Step: Teleportation

�e current endeavours(2) in the hybrid experiment is aimed towards using the
established epr link to perform teleportation from one system to the other. To
motivate why this particular avenue was chosen, we must �rst discuss a number of
shortcomings of the experiment described in this thesis, and possible avenues for
remedying these. �is section is not exhaustive, and the level of detail will be quite
super�cial.
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(3) Or, alternatively, a round top-hat beam
probing a circular cell. We have a square
top-hat beam shaper and cells with square
channels, so this is the obvious choice for us.
Cylindrical cells are simpler in other ways, e.g.
analytical treatments.

11.2.1 Experimental Shortcomings in the Hybrid Setup

�e current hybrid experiment, described in (e. g.) Chapter 9 and shown in Fig. 9.7,
has several shortcomings, including, but not limited to:

1. Optical losses between the two systems , for which some possible sources are

a) Suspected bad/distorted optical mode leaving the cell, the severity of
which is likely increased by the double pass nature of setup. Mode
distortion reduces mode matching to the optomechanical cavity and the
homodyning lo

b) �e optical isolator in the beam path, which removes back-re�ections
from mechanics to spins

c) Bad polarisation rejection of lo1 and lo2

2. Broadband atomic noise, leading to an elevated e�ective detection noise level

3. Higher than ideal intrinsic decay rate of atoms; �s/Ws0 is too low, and �s is
e�ectively set by the requirement of matching the membrane �s

4. Bad overcoupling of optomechanical cavity

5. Weird phase rotation e�ects due to bad lo1/lo2 locking

Item 1 is a rather large problem. We currently have intersystem power trans-
mission e�ciency of a ∼ 55 % and detection e�ciency of [ ∼ 77 %. In the simple
qnd model presented in our Rodrigo A. �omas et al. (2020), detection losses limits
the conditional variance +c (entanglement) to

+c =
1√
[

√ 1
2�q

. (11.1)

�is should be compared to the back action-full (single system) conditional vari-
ance

+c =
1√
[

√
1 + 1

2�q
. (11.2)

�e ideal back action evasion thus removes the constant factor under the square
root; if we have inter system losses, back-action of the second system cannot be
cancelled, as it is driven by a new vacuum. �is obviously detrimental e�ect is
something we must try to reduce. As outlined below, this is hard in the setup pre-
sented.

Item 2, similarly limiting entanglement, can essentially be only solved by in-
creasing the �lling factor of the cell, i.e. how large a fraction of the cell is covered
by the interrogating light. Without adding extra losses, this means that there is
a �nite upper limit to what can be achieved with Gaussian modes of light inter-
rogating the atoms. �is thus leads us to pursue probing the atoms with a square
top-hat beam(3).

However, because transforming a top hat mode back into a Gaussian, which
can coupled e�ciently to a cavity mode is, for practical considerations, not possi-
ble with an e�ciency close to what we need. �erefore the order with which the
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itinerant light interacts with the systems must be �ipped. �e self-homodyne detec-
tion suggested below (allowed by the strong lo interrogating the spin system) also
mitigates the problems related to item 1a, as lo and signal will experience the same
distortions.

Item 3 pertains mainly to the choice of the cell and the choice of implementing
a double pass or not. �e double pass boosts the read out rate �s, but is incompati-
ble with the top hat beam. It also, in the current setup, leads to extra need for iso-
lation and thus losses, cf. 1b, as well as potentially the spurious phase �uctuations,
cf. 5.

Item 4 is essentially ”just” a ma�er of new mirrors, discussed in Chapter 8.
A further bene�t is the anticipated absence of mirror modes in the spectrum, al-
lowing for a wider selection of membranes which can be used. Calculated optical
characteristics of the new cavity are shown in Fig. 8.7. �e measured mechanical
modes of the new mirrors is shown in Fig. 8.8

Item 5 arises from spurious re�ections in the atomic double pass arm (we
think), and leads to spurious �uctuations of the lo1-lo2 phase, o . �ese �uctua-
tions are rather large, and lead to mixing of squeezed and anti-squeezed quadra-
tures. It is perhaps related to item 1c on the pbs where we split/combine lo1 and
lo2.

Combining these shortcomings and possible solutions, we decided on the
following avenue:

• Flip the order, so the light probes mechanics �rst and spin last

• Implement a top hat beam for the spin probe, and perform self-homodyning
of the light

• Probe the optomechanics in transmission, in a new cavity with mirrors with
improved optical and mechanical properties

• Use a larger cell, which reduces Ws0, but boosts the number of atoms (by
simply increasing the volume of atomic vapor in the channel), and thereby
also �s. �e new cell has dimensions of 1 mm × 1 mm × 40 mm, or roughly 44
times larger volume than the old cell, thus more than compensating for the
departure from the increase in readout rate o�ered by a double pass setup.
�e larger cross section also makes creation of a high quality top hat beam
easier

Because the next logical step for our setup in the implementation of a teleportation
protocol, we also need to consider changes needed to change from cw to pulsed
operation. �is, among other things means the inclusion of a lock beam, shi�ed
from the interrogating lo by a modulator.

Further, if we want to implement a teleportation protocol, we must be able to
measure the two systems in a collective measurement, and subsequently measure
one system by itself for veri�cation. �is can be done by changing the magnetic
�eld to move the atoms out of resonance with the mechanics, but the needed elec-
tronics to reliably switch magnetic �elds fast is not easily implemented. �us, we
opt for using a Pockels cell to send the light from the optomechanics to a separate
veri�cation setup.
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(4) Vincent Boyer et al. (2008). “Entangled
Images from Four-Wave Mixing”. In: Science
321.5888, pp. 544–547.

In total, a quite realistic proposal for a new setup is shown in Fig. 11.1. �e
setup is being implemented at the time of writing, with the overall ideas presented
here.

Figure 11.1: Flipped experiment drawing. In this setup, the optomechanics is probed �rst,
and the spin last. �e introduction of a top hat beam shaper should reduce the e�ect of
the broadband atomic noise. �e introduction of modulators for pulsed operation is an
important step towards implementing a teleportation protocol in a hybrid spin–mechanics
system. See main text for more details and discussion.

�e experiment, hindered by a global pandemic, signi�cant change in the
experiment sta�, and sickness, is now well underway to the new con�guration. As
with all major rebuilds, hitches arise, goals shi� and new opportunities opens up
along the way.

At the time of �nishing this thesis, the atomic part of the setup is close to
optimized; here, we have recently observed more than 7 dB of ponderomotive
squeezing from the atoms, a signi�cant improvement over previously reported
squeezing results from warm atomic ensembles. Where other experiments, such
as Boyer et al. (2008)(4), have showed 4 dB of two-mode squeezing, we perform
single mode squeezing. Also note, that while our observed squeezing is high for
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(5) Charles H. Benne� et al. (1993). “Tele-
porting an unknown quantum state via
dual classical and Einstein-Podolsky-Rosen
channels”. In: Physical Review Le�ers 70 (13),
p. 1895.

(6) Lev Vaidman (1994). “Teleportation of quan-
tum states”. In: Phys. Rev. A 49 (2), pp. 1473–
1476.

j (3) type systems, it is nowhere close to what has been observed for j (2) type
squeezing from opos, such as the 15 dB reported in Vahlbruch et al. (2016). We
have a manuscript in preparation detailing these developments.

�e mechanical and hybrid parts of the setup are also coming along, with a
signi�cant learning curve for our team in terms of running the optomechanical
experiment pulsed, and in a signi�cantly di�erent regime in almost every regard.

>

Having now established our chosen avenue of research with the hybrid experi-
ment, towards pulsed operation in a �ipped con�guration, we end the thesis with
a short discussion of what teleportation is, and why it is interesting. Indeed, what
does “teleporation” mean?

First proposed in Benne� et al. (1993)(5) and expanded on soon a�er by Vaid-
man (1994)(6), I here de�ne teleportation as

the disembodied transfer of a quantum state between two quantum systems.

In the words of Benne� et al. (1993), it is possible to perform

“teleportation” of an intact quantum state from one place to another,
by a sender who knows neither the state to be teleported nor the loca-
tion of the intended receiver.

�e protocol necessitates the use of two channels: one classical channel, sharing
the classical measurement result of a measurement on the joint quantum system,
and one quantum, or epr, channel.

What this means is that there are also a couple of things that quantum telepor-
tation are not:

• faster than light; the classical channel very e�ectively puts a stop to this

• involving the transfer of anything material; the protocol takes the quantum
state of one object and transfers that state to the other (material) system

• classical; well, it says in the name, and the necessary epr state should also
make it obvious. But what it does mean is that there should be a classical
limit to beat, if one wishes to demonstrate successful quantum teleportation

A very similar experiment, involving two atomic samples instead, was re-
ported from out group in (Krauter et al. 2013). In a sense, we seek to replicate that
experiment, but with one atomic sample replaced by an optomechanical system.

�e chosen con�guration means that we will be a�empting to teleport the
state of the spin system onto the mechanics. For example, a spin squeezed state
(Vasilakis, Shen, et al. 2015) may be prepared in the spin, and teleported onto the
mechanics. If successful, this would open up an avenue towards squeezing of the
mechanical state in a cavity optomechanical system, something which so far has
been a hard experimental task. Squeezing the mechanical state would allow for
improved force sensitivity, when using mechanical oscillators as force sensors. One
could also envision using the mechanical resonator as quantum memory, where
the spin would e�ectively act as a transducer from magnetic or optical signals, to a
stationary quantum state, which can be teleported onto the mechanics.
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ix A
Experimental Parameters

�is appendix contains experimental parameters for the entanglement experiment,
reported in Chapter 10. Most parameters are posterior estimates, as evaluated by
the Bayesian estimation mcmc routine. A few of them are directly measured (e. g.,
optical powers) See main text in Chapter 10, in particular Section 10.5.2, for details.
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Parameter Symbol Value

Atomic spin oscillator
Decoherence rate in the dark Ws0,dark/2π 450 Hz

Intrinsic linewidth Ws0/2π 1.7 kHz
E�ective linewidth (incl. dynamical damping) Ws/2π 2.9 kHz

Tensor contribution Zs 0.028
LO1 driving power 350 µW

Readout rate �s/2π 20 kHz
Spin Polarisation ? 0.82

Spin thermal occupancy =s 0.8
Microcell single pass optical losses [microcell 4 %

Microcell temperature 50◦C
�antum cooperativity �s

q ∼ 5

Mechanical oscillator and cavity
Intrinsic mechanical frequency lm0/2π 1.370 MHz

Intrinsic damping rate Wm0/2π 2.1 mHz
Optical damping rate Wm/2π 3.9 kHz

Cavity detuning J/2π −0.7 MHz
Total cavity linewidth ^/2π 4.2 MHz

lo2 drive power ∼8 μW
Intracavity photons # 1.6 × 106

Single photon coupling rate 60/2π 6 × 101 Hz
Readout rate �m/2π 15 kHz

Cavity overcoupling ^in/^ 0.93
�ermal bath temperature ) 11 K

Bath occupancy =m0 173×103

Mean occupancy =m ∼ 2
�antum cooperativity �m

q ∼ 15

Hybrid & detection
�antum e�ciency between systems a 0.53
Cavity mode-matching (amplitude) 0.9

Power transmission between systems 0.8
Detection e�ciency [ 0.77

Homodyning visibility 0.96
Power transmission and detector QE 0.87

lo1–lo2 phase i ∼180°
Detection phase o 2°

Table A.1: Summary of notation and experimental parameters. When applicable, we quote
the posterior mean values from the mcmc simulation. See Section 10.5.2 for details and
discussion.
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Si3N4 Material Constants

Material constants for stochiometric silicon nitride lpcvd deposited thin �lm,
Si3N4.

�antity Symbol Value Reference

Tensile stress T 1.0 GPa Tabata et al. (1989)
(1.27 ± 0.02) GPa Yeghishe Tsaturyan (2019)

Poisson’s ratio a 0.23 ± 0.02 Edwards, Coles, and Sharpe (2004)
Young’s modulus � (325 ± 30) GPa Kaushik, Kahn, and Heuer (2005)

270 GPa Yeghishe Tsaturyan (2019)
Density d 3.19 g/cm3 Pierson (1999)

Table B.1: Material constants for Si3N4.
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ix C
Laguerre-Gaussian Modes

�is Appendix is simply a set of illustrations of Laguerre-Gaussian modes, as used
in the numerical model introduced in Chapter 7.

I plot the real and imaginary parts in Fig. C.1 and Fig. C.2 respectively, as well
as the intensity distributions in Fig. C.3. �e parameters are listed in Table C.1.

Radial index, ? [0..4]
Angular index, ; [−3..3]
Waist size,F0 50 µm

Waist position, I0 0 nm
Optical wavelength, _ 852 nm

Table C.1: Parameters for the �gures in this appendix.

Note that the real parts are identical for modes with angular index ±; , the
imaginary part antisymmetric for ; = ±; and vanishes for ; = 0.

�e intensities are all rotationally symmetric, with increasing ? leading to
more radial oscillations, and increasing ; leading to a larger radial size for identical
?’s. Only the modes with ; = 0 have a non-zero intensity at the origin.
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Figure C.1: Real part of LG;? (d, i, I = 0).



215
;
=
−3

? = 0 ? = 1 ? = 2 ? = 3 ? = 4

;
=
−2

;
=
−1

;
=

0
;
=

1
;
=

2
;
=

3

−150 μm 0 +150 μm

=
(
®� (d,i, I)

)

Figure C.2: Imaginary part of LG;? (d, i, I = 0).
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Figure C.3: Squared absolute amplitude of LG;? (d, i, I = 0).
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ix D
BAC Detectors

�e electronic diagram for the bac3 detector described in Section 9.1.2.2 is pre-
sented in the next �gure.
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ix E
The Schur Complement

For @ and ? real non-negative integers, and the complex-valued matrices G,H, I,J
of size ? × ? , ? × @, @ × ? and @ × @ with, let

S =

(
G H
I J

)
, (E.1)

a matrix of size (? + @) × (? + @).
If J is invertible, the Schur complement of the block J of S is a ? × ? matrix

de�ned as

(S/J) ≡ G − HJ−1I . (E.2)

Similarly, if G is invertible, the Schur complement of the block G of S is a @ × @
matrix de�ned as

(S/G) ≡ J − IG−1H. (E.3)

�e Schur complements are related to the Guass–Jordan elimination of S . For
us, the most useful property is that the inverse of S may be found easily, as

S−1 =

(
G H
I J

)−1
=

( (S/J)−1 −(S/J)−1HJ−1

−J−1I (S/J)−1 J−1 + J−1I (S/J)−1HJ−1

)
(E.4)

=

(
G−1 +G−1H(S/G)−1IG−1 −G−1H(S/G)−1

−(S/G)−1IG−1 (S/G)−1

)
, (E.5)

as long as the relevant matrices are invertible.
Apart from �nding the inverse of S , one can also relate the sub-matrices to

one another, for example

(S/J)−1 = [G − HJ−1I]−1 = G−1 +G−1H(S/G)−1IG−1. (E.6)
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Nomenclature

�e Nomenclature contains a list of abbreviations and important symbols used
throughout this thesis.

ac Alternating Current. Time-varying signals.

aom Acousto-Optic Modulator. A device that transforms an electrical signal
into a modulation on a light-beam through photon-phonon coupling in
a crystal. �e electrical signal induces vibrations in a crystal, which in
e�ect create a moving di�raction grating in the crystal. �e device thus
changes the frequency of the photons, as well as allowing for very fast
switching of optical signals.

apd Avalanche Photo Diode. A very sensitive photo diode. High sensitiviy
and high electronic noise. Saturate with optical powers needed for
homoyne detection.

ar Anti-Re�ection. ar coatings are applied to optical surfaces to reduce
optical losses.

cad Computer-Aided Design.

cifar Coherently Induced FAraday Rotation. A novel method for measuring
spin readout rates. See Section 5.10.

csd Cross Spectral Density. See Eq. (3.9), page 21.

daq Digital Ac�isition.

dc Direct Current. Time-constant signals.

dds Direct Digital Synthesizer. A device capable of generating arbitrary
waveforms from a �xed frequency reference.

dft Discrete Fourier Transform. See Eq. (9.1), page 168.

eom Electro Optical Modulator. A device that imprints an electric modula-
tion to, e. g., the phase or polarization of a light-�eld.

epr Einstein–Podolsky–Rosen. Usually used to refer to a certain type of
entangled quantum states (epr states), such as the one repored in Chap-
ter 10.

fem Finite Element Method. A numerical method for solving coupled di�er-
ential equations in complex geometries.
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fft Fast Fourier Transform. An algorithm for computing the dft.

F Finesse. A measure of cavity resonance linewidths, or, equivalently, the
round trip losses. See Eq. (3.80), page 36.

fpga Field-Programmable Gate Array. User-programmable integrated cir-
cuits, i. e., programmable hardware. By programming custom algo-
rithms an modules in hardware instead of so�ware, signi�cant speed
up of many tasks can be achieved.

fsr Free Spectral Range. �e spectral separation between consecutive reso-
nances of (the transverse fundamental mode of) a cavity. See Eq. (3.79),
page 35.

fwhm Full Width at Half Max. A measure of widths of distributions and line-
shapes, particularly Lorentzians, for which the standard deviations (and
mean) is unde�ned. De�ned as the distance between the two values
where the lineshape goes below half the maximum value.

gwd Gravitational Wave Detecion. �e art of measuring gravitational waves.
Performed by detectors such as ligo and virgo.

hr High Re�ection. hr coatings are applied to glass substrates to make
mirrors. Very good coatings have a transmission of ) = 10 ppm.

hwhm Half Width at Half Max. Half the fwhm.

hwp Half Wave Plate. An optical element, where light polarized along one
axis is retarded by half a wavelength, relative to the other axis. Also:
_/2. Rotates the polarization direction of linearly polarized light.

LHe Liquied Helium. Used to cool our membrane to cryogenic temperatures.
LHe has a boiling point of 4.2 K at atmospheric pressure.

lo Local Oscillator. A strong electromagnetic �eld in a hetero- or homo-
dyning measurement, where two or more �elds are overlapped on a
photo-detector.

mcmc Markov Chain Monte Carlo. See Section 10.5.2.

mim Membrane-In-the-Middle. A type optomechanical systems, where a
resonator (typically a membrane) is placed in the middle of a Fabry–
Perot resonator.

mors Magneto-Optical Resonance Spectroscopy. See Section 5.6.

nbi �e Niels Bohr Institute.

omit Optomechanically Induced Transparency. See Section 3.9.1.

pbs Polarizing Beam-Spli�er. An optical device that transmits one and
re�ects the other linear polarization.

pd Photo Detector. A device that converts light into currents and/or volt-
ages.

pdf Probability Distribution Function.
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pdh Pound–Drever–Hall. A modulation based method of locking cavities.

pid Proportional-Integral-Di�erential. A feedback system which reacts
to the instantaneous error signal (proportional), the accumulated er-
ror signal (integral) and the change in error signal (di�erential). �e
di�erential feedback is o�en omi�ed.

pll Phase-Locked Loop. A feedback mechanism where two oscillators
are locked such that their beatnote is phase-stable relative to a third
frequency. Example: One laser is locked to another such that their
beatnote matches a normal rf signal.

psd Power Spectral Density. See Eq. (3.8), page 21.

ptfe PolyTetraFluoroEthylene. A white synthethic �ouropolymer material.
Also known as Te�on™.

qba �antum Back Action. �e probe-induced noise imprinted onto a quan-
tum system, and read out by said probe.

qbae �antum Back Action Evasion. �e process of cancelling or evading
qba in a measurement.

qe �antum E�ciency. �e probability of a given photo detector generat-
ing a photo-electron upon absorption of one photon. Depends on the
wavelength, _.

qnd �antum Non-Demolition.

qantop �e Danish Center for �antum Optics, qantop. My research group,
led by pro�. Eugene S. Polzik.

qwp �arter Wave Plate. An optical element, where light polarized along
one axis is retarded by a quater of a wavelength, relative to the other
axis. Also: _/4. Turns linearly polarized light into elliptically (circu-
larly) polarized light, and vice versa.

rbw Resolution BandWidth. �e spectral resolution of a dft or spectrogram.
See Eq. (9.2), page 168.

rf Radio Frequency. Signals or drives in the frequency range from ∼
20 kHz to ∼ 1 GHz, depending on de�nition. Higher frequencies than
rf are usually called microwave (μ-wave).

rms Root Mean Square. What is says on the tin: the square root of the mean
value of the squares of a bunch of numbers,

√∑
G2
8 /# .

roc Radius Of Curvature. Descibes the curvature of mirrors.

slab Schließer LAB, the research group of pro�. Albert Schließer at nbi.

sn Shot Noise. �e inherent quantum �uctuations of light.

sql Standard �antum Limit. A lower bound on the uncertainty achievable
in measurements on “standard” quantum systems. �e limit may be
circumvented through, e. g., squeezing of another quadrature.
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tem Transverse Electromagnetic Mode. �e �eld distribution transverse to
the propagation of a given mode. In free space and cavites, Laguerre–
Gaussian modes (tem?; ) and Hermite–Gaussian modes (tem<=) modes
can serve as a basis for an arbitrary �eld. See Appendix C.

tls Two Level System. O�en used in the context of the bath of e�ective
two level defects, which increase the decoherence rates of many me-
chanical oscillators.

tmm Transfer Matrix Model. See Section 3.8.1.

tms Transversal Mode Spacing. See Eq. (4.13), page 73.

tpi �reads Per Inch. A measure of thread pitch on imperial screws and
bolts.
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(2015). “Entanglement with negative Wigner function of almost 3,000 atoms
heralded by one photon”. In: Nature 519 (7544), pp. 439–442 (cit. on p. 12).

Mermin, N. David (1989). “What’s Wrong with these Equations?” In: Physics Today
42.10, pp. 9–11 (cit. on p. xi).

Meystre, P., E. M. Wright, J. D. McCullen, and E. Vignes (1985). “�eory of radiation-
pressure-driven interferometers”. In: J. Opt. Soc. Am. B 2.11, pp. 1830–1840 (cit.
on p. 62).

Miao, Haixing (2010). “Exploring Macroscopic �antum Mechanics in Optome-
chanical Devices”. Ph.D. thesis. University of Western Australia (cit. on p. 188).

Midolo, Leonardo, Albert Schliesser, and Andrea Fiore (2018). “Nano-opto-electro-
mechanical systems”. In: Nature Nanotechnology 13, pp. 11–18 (cit. on pp. 15,
16).

Milonni, Peter W. and Joseph H. Eberly (2010). Laser physics. Wiley (cit. on p. 75).
Mirhosseini, Mohammad, Alp Sipahigil, Mahmoud Kalaee, and Oskar Painter

(2020). “Superconducting qubit to optical photon transduction”. In: Nature
588 (7839), pp. 599–603 (cit. on pp. 15, 16).

Møller, Christo�er B. (2018). “�antum Back-Action Evasion in a Hybrid Spin-
Optomechanical System”. Ph.D. thesis. University of Copenhagen (cit. on pp. 17,
22, 53, 58, 60, 62, 70, 82, 85, 94, 95, 150, 155).

Møller, Christo�er B., Rodrigo A. �omas, Georgios Vasilakis, Emil Zeuthen,
Yeghishe Tsaturyan, Mikhail Balabas, Kasper Jensen, Albert Schliesser, Kle-
mens Hammerer, and E. S. Polzik (2017). “�antum back-action-evading mea-



238 BIBLIOGRAPHY

surement of motion in a negative mass reference frame”. In: Nature 547.7662,
pp. 191–195 (cit. on pp. 16–18, 22, 71, 85, 124, 149, 168, 186, 202).

Müller-Ebhardt, Helge, Henning Rehbein, Chao Li, Yasushi Mino, Kentaro Somiya,
Roman Schnabel, Karsten Danzmann, and Yanbei Chen (2009). “�antum-state
preparation and macroscopic entanglement in gravitational-wave detectors”. In:
Phys. Rev. A 80 (4), p. 043802 (cit. on p. 188).

Muschik, Christine A., E. S. Polzik, and J. Ignacio Cirac (2011). “Dissipatively driven
entanglement of two macroscopic atomic ensembles”. In: Phys. Rev. A 83 (5),
p. 052312 (cit. on pp. 11, 12).

NCEI Geomagnetic Modeling Team and British Geological Survey (2019). World
Magnetic Model 2020. NOAA National Centers for Environmental Information.
doi: 10.25921/11v3-da71. (Visited on 08/12/2022) (cit. on p. 105).

Neuhaus, L., R. Metzdor�, S. Chua, T. Jacqmin, T. Briant, A. Heidmann, P.-F. Co-
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Wieman, C. and T. W. Hänsch (1976). “Doppler-Free Laser Polarization Spec-
troscopy”. In: Phys. Rev. Le�. 36 (20), pp. 1170–1173 (cit. on p. 165).

Wiener, N. (1964). Extrapolation, Interpolation, and Smoothing of Stationary Time
Series: With Engineering Applications. Massachuse�s Institute of Technology :
Paperback series. M.I.T. Press (cit. on p. 188).

Wilson, D. J., V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg
(2015). “Measurement-based control of a mechanical oscillator at its thermal
decoherence rate”. In: Nature 524 (7565), pp. 325–329 (cit. on p. 14).

Wilson, Dalziel J. (2012). “Cavity Optomechanics with High-Stress Nitride Films”.
Ph.D. thesis. California Institute of Technology (cit. on pp. 29, 52, 69).



242 BIBLIOGRAPHY

Wilson, Dalziel J., C. A. Regal, S. B. Papp, and H. J. Kimble (2009). “Cavity Optome-
chanics with Stoichiometric SiN Films”. In: Phys. Rev. Le�. 103 (20), p. 207204
(cit. on p. 69).

Woolley, M. J. and A. A. Clerk (2013). “Two-mode back-action-evading measure-
ments in cavity optomechanics”. In: Phys. Rev. A 87 (6), p. 063846 (cit. on pp. 14,
15).

Yap, Min Jet et al. (2020). “Broadband reduction of quantum radiation pressure
noise via squeezed light injection”. In: Nature Photonics 14, pp. 19–23 (cit. on
pp. 14, 15).

Yu, P.-L., K. Cicak, N. S. Kampel, Y. Tsaturyan, T. P. Purdy, R. W. Simmonds, and
C. A. Regal (2014). “A phononic bandgap shield for high-Q membrane microres-
onators”. In: Applied Physics Le�ers 104.2, p. 023510 (cit. on pp. 12, 16, 70).

Zeuthen, E., E. S. Polzik, and F. Ya. Khalili (2019). “Gravitational wave detection
beyond the standard quantum limit using a negative-mass spin system and
virtual rigidity”. In: Phys. Rev. D 100 (6), p. 062004 (cit. on pp. 5, 20).

Zhang, Keye, Pierre Meystre, and Weiping Zhang (2013). “Back-action-free quan-
tum optomechanics with negative-mass Bose-Einstein condensates”. In: Phys.
Rev. A 88 (4), p. 043632 (cit. on p. 20).

Zugenmaier, Michael (2018). “Towards a Room Temperature Single Photon Source
Based on Atomic Vapour”. Ph.D. thesis. University of Copenhagen (cit. on
p. 101).


	Abstract
	Preface
	Brief Table of Contents
	Detailed Table of Contents
	List of Publications
	I Introduction
	1 Introduction
	1.1 The Historical Perspective
	1.2 Quantum Mechanics of Macroscopic Objects

	2 Previous Work
	2.1 The Field in General
	2.1.1 Spin Systems
	2.1.2 High-Q Mechanical Oscillators
	2.1.3 Quantum Optomechanics
	2.1.4 Hybrid Systems

	2.2 Quantop 
	2.2.1 The Room Temperature Alkali Spin System
	2.2.2 An Optomechanical System in the Quantum Regime
	2.2.2.1 The Monolithic Cavity Design

	2.2.3 The Hybrid System
	2.2.3.1 Quantum Backaction-Evasion, qbae


	2.3 Quantum Mechanics-Free Subspaces

	3 Basic Optomechanics
	3.0 Transforming to the Frequency Domain
	3.0.1 The Fourier Transform
	3.0.2 Power Spectral Density (psd)

	3.1 The Harmonic Oscillator
	3.2 Membranes as Oscillators
	3.3 Dissipation and Noise
	3.3.1 Brownian Noise and the Fluctuation-Dissipation Theorem

	3.4 Quantum Mechanics
	3.5 Radiation Pressure Coupling
	3.6 Optical Cavities
	3.7 Canonical Cavity Optomechanics
	3.7.1 The Optomechanical Hamiltonian
	3.7.2 Heisenberg–Langevin Formalism
	3.7.3 Input–output Formalism

	3.8 Membrane-in-the-Middle (mim) Optomechanics
	3.8.1 The Transfer Matrix Model (tmm)

	3.9 Cavity Optomechanical Effects
	3.9.1 omit
	3.9.2 Ponderomotive Squeezing
	3.9.3 Static Bistability


	4 Optomechanics in Practice
	4.1 Membrane Fabrication
	4.1.1 Membrane Generations
	4.1.2 Modes of the Phononic Bandgap Membranes
	4.1.3 Membrane Thickness
	4.1.3.1 Membrane Reflection
	4.1.3.2 Effect on Q


	4.2 Optical Cavities in Practice
	4.2.1 Gaussian Modes
	4.2.2 Mode Matching to a Cavity

	4.3 The Cryostat
	4.3.1 Janis st-100 LHe Crystat
	4.3.2 Why Not Closed Cycle?

	4.4 Q-measurements
	4.4.1 Ringdown Measurements

	4.5 Membrane Temperature Calibrations

	5 Alkali Spin Systems
	5.1 Spin Ensembles
	5.1.1 Cesium
	5.1.2 The Holstein–Primakoff Approximation

	5.2 Negative Effective Mass
	5.3 Stokes Parameters
	5.3.1 Measuring the Stokes Parameters

	5.4 The Faraday Interaction
	5.5 Input-output Relations
	5.6 Magneto-Optical Resonance Spectroscopy (mors)
	5.7 Spin Coated Microcells
	5.8 Motional Averaging
	5.9 Practical Implementation Details
	5.9.1 Experimental Setup
	5.9.2 The Magnetic Shield
	5.9.3 Optical (re-)Pumping
	5.9.3.1 Spin Temperature

	5.9.4 Optical Readout

	5.10 Coherently Induced Faraday Rotation (cifar)


	II A New Hybrid Cavity
	6 A New Cavity
	6.1 Motivation and Context
	6.2 Requirements and Design Constraints
	6.3 The Solution
	6.3.1 Aligning the Cavity
	6.3.1.1 Practical Alignment Procedure



	7 Higher Order Optical Modes in an Optomechanical Cavity
	7.1 Context and Motivation
	7.2 A Numerical Model
	7.3 Model Results
	7.4 Experimental Data
	7.5 Design Guidelines Learned

	8 New Mirrors
	8.1 Why new Mirrors?
	8.2 FEM-simulations
	8.2.1 Comparing to Old Mirrors
	8.2.2 Simulating New Mirrors

	8.3 Choosing the Mirror Coatings
	8.4 Delivered Mirrors – Mechanical Mode Characterization
	8.5 Delivered Mirrors – Optical Properties Characterization


	III Measuring Motion in a Negative-Mass Reference Frame 
	9 The Hybrid Setup
	9.1 Experimental Equipment and Details
	9.1.1 Lasers
	9.1.1.1 M Squared Ti:Sapph
	9.1.1.2 Lasers for Atomic Pumping and Repumping

	9.1.2 Acquisition System and Detectors
	9.1.2.1 daq card
	9.1.2.2 High Quantum Efficiency Balanced Detectors

	9.1.3 Cavity Locking

	9.2 Experiment Layout
	9.3 The Periodogram Estimator - Finite Time psd
	9.3.1 Discrete Time
	9.3.2 Variance of the Periodogram Estimator


	10 Entanglement Between Distant Oscillators
	10.1 epr States
	10.2 Hybrid Input-Output Relations
	10.2.1 Simplified Input-Output Relations
	10.2.2 Matrix Formulation

	10.3 Quantum Backaction Evasion
	10.4 Wiener Filtering
	10.4.1 Wiener Filtering 101
	10.4.2 Finding the Wiener Filter
	10.4.3 Stochastic Trajectories with Deterministic Variance
	10.4.4 Optimum epr Variables

	10.5 Putting the Theory to Work
	10.5.1 Variying the Larmor Frequency
	10.5.2 Uncertainties


	11 Conclusion & What's Next
	11.1 Conclusion
	11.2 The Next Step: Teleportation
	11.2.1 Experimental Shortcomings in the Hybrid Setup



	IV Appendices etc.
	A Experimental Parameters
	B Si3N4 Material Constants
	C Laguerre-Gaussian Modes
	D BAC Detectors
	E The Schur Complement
	List of Figures
	List of Tables
	Nomenclature
	Bibliography


